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La filosofia è scritta in questo grandissimo
libro che continuamente ci sta aperto innanzi
agli occhi (io dico l’universo), ma non si può
intendere se prima non s’impara a intender
la lingua, e conoscer i caratteri ne’ quali è
scritto.
Egli è scritto in lingua matematica, e i

caratteri sono triangoli, cerchi, ed altre
figure geometriche, senza i quali mezzi è
impossibile a intenderne umanamente
parola; senza questi è un aggirarsi
vanamente per un oscuro laberinto.

G. Galilei, Il Saggiatore, VI, 232



Preface

The present volume is a collection of papers with a strong focus on recent results in
the theory of PDEs, Harmonic Analysis and Time–Frequency Analysis. It addresses
general theoretical issues such as linear models with low regular coefficients,
qualitative properties of solutions to nonlinear models and models from applications
as well.

The last decade has been marked by important breakthroughs in the study of
well-posedness or local solvability for linear equations with low regular coefficients
or the critical exponents in nonlinear evolution models. Here, we refer in particular
to the results for blow-up phenomena or existence of global (in time) small data
solutions. Moreover, applied models such as traffic flows, Einstein-Euler systems or
stochastic PDEs are discussed, and, finally, recent results from Harmonic Analysis
and Time-Frequency Analysis, such as the action of localizing operators in quasi-
Banach settings and the description of wavefront sets, are considered.

The papers of the volume, written by leading experts in their respective fields, are
expanded versions of talks given at the INDAM Workshop “Anomalies in Partial
Differential Equations” held in September 2019 at the Istituto Nazionale di Alta
Matematica, Dipartimento di Matematica “Guido Castelnuovo”, Università di Roma
“La Sapienza”.

We wish to warmly thank all the contributors as well as the people who took part
in the workshop.

We are grateful to the Istituto Nazionale di Alta Matematica “Francesco Severi”
for having made possible the workshop through his administrative and financial
support.

Bologna, Italy Massimo Cicognani
Trieste, Italy Daniele Del Santo
Bologna, Italy Alberto Parmeggiani
Freiberg, Germany Michael Reissig
August 2020

vii



Contents

Semilinear p-Evolution Equations in Weighted Sobolev Spaces . . . . . . . . . . . . 1
Alessia Ascanelli and Marco Cappiello

Random-Field Solutions of Linear Parabolic Stochastic Partial
Differential Equations with Polynomially Bounded Variable
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Alessia Ascanelli, Sandro Coriasco, and André Süß

The Non-isentropic Relativistic Euler System Written
in a Symmetric Hyperbolic Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Uwe Brauer and Lavi Karp

Blow-up Result for a Semilinear Wave Equation with a Nonlinear
Memory Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Wenhui Chen and Alessandro Palmieri

An Introduction to Barenblatt Solutions for Anisotropic p-Laplace
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Simone Ciani and Vincenzo Vespri

No Loss of Derivatives for Hyperbolic Operators
with Zygmund-Continuous Coefficients in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Ferruccio Colombini, Daniele Del Santo, and Francesco Fanelli

Note on the Wigner Distribution and Localization Operators
in the Quasi-Banach Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Elena Cordero

Wavefronts in Traffic Flows and Crowds Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 167
Andrea Corli and Luisa Malaguti

A New Critical Exponent for the Heat and DampedWave Equations
with Nonlinear Memory and Not Integrable Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Marcello D’Abbicco

ix



x Contents

Blow-Up Results for Semi-Linear Structurally Damped σ -Evolution
Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Tuan Anh Dao and Michael Reissig

Critical Exponent for a Class of Semilinear Damped Wave
Equations with Decaying in Time Propagation Speed . . . . . . . . . . . . . . . . . . . . . . . 247
Marcelo Rempel Ebert and Jorge Marques

Local Solvability of Some Partial Differential Operators
with Non-smooth Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Serena Federico

On Exceptional Times for Pointwise Convergence of Integral
Kernels in Feynman–Trotter Path Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Hans G. Feichtinger, Fabio Nicola, and S. Ivan Trapasso

Decay Estimates for a Klein–Gordon Model with Time-Periodic
Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Giovanni Girardi and Jens Wirth

Conditional Stability of Semigroups and Periodic Solutions
to Evolution Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
Nguyen Thieu Huy, Vu Thi Ngoc Ha, and Vu Thi Mai

Anomalous Solutions to Nonlinear Hyperbolic Equations . . . . . . . . . . . . . . . . . . 347
Michael Oberguggenberger

An Introduction to the Gabor Wave Front Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Luigi Rodino and S. Ivan Trapasso

On the Regularity of Characteristic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Winfried Sickel

Small Data Wave Maps in Cyclic Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Karen Yagdjian, Anahit Galstian, and Nathalie M. Luna-Rivera



Editors and Contributors

About the Editors

Massimo Cicognani is Professor of Mathematical Analysis at the University of
Bologna. His research field is regularity of solutions to PDEs of evolution type.

Daniele Del Santo is Professor of Mathematical Analysis at the University of
Trieste. His research focuses on PDEs’ theory, in particular hyperbolic and parabolic
equations with non-regular coefficients.

Alberto Parmeggiani is Professor of Mathematics at the University of Bologna.
His research field is Analysis, more specifically the geometric theory of partial
differential equations.

Michael Reissig is Professor of Partial Differential Equations at the TU
Bergakademie Freiberg. His research area is the theory of linear and nonlinear
dispersive models.

Contributors

Alessia Ascanelli Dipartimento di Matematica ed Informatica, Università di Fer-
rara, Ferrara, Italy

Uwe Brauer Departamento de Matemática Aplicada, Universidad Complutense
Madrid, Madrid, Spain

Marco Cappiello Dipartimento di Matematica “G. Peano”, Università di Torino,
Torino, Italy

Wenhui Chen Institute of Applied Analysis, Faculty of Mathematics and Com-
puter Science, Technical University Bergakademie Freiberg, Freiberg, Germany

xi



xii Editors and Contributors

Simone Ciani Dipartimento di Matematica e Informatica “Ulisse Dini”, Università
di Firenze, Firenze, Italy

Ferruccio Colombini Dipartimento di Matematica “Leonida Tonelli”, Università
di Pisa, Pisa, Italy

Elena Cordero Dipartimento di Matematica “G. Peano”, Università di Torino,
Torino, Italy

Sandro Coriasco Dipartimento di Matematica “G. Peano”, Università di Torino,
Torino, Italy

Andrea Corli Department of Mathematics and Computer Science, University of
Ferrara, Ferrara, Italy

Marcello D’Abbicco Department of Mathematics, University of Bari, Bari, Italy

Tuan Anh Dao School of Applied Mathematics and Informatics, Hanoi University
of Science and Technology, Hanoi, Vietnam
Faculty for Mathematics and Computer Science, TU Bergakademie Freiberg,
Freiberg, Germany
Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi,
Vietnam

Daniele Del Santo Dipartimento di Matematica e Geoscienze, Università di
Trieste, Trieste, Italy

Marcelo Rempel Ebert Department of Computer Science and Mathematics,
University of São Paulo, Ribeirão Preto, SP, Brazil

Francesco Fanelli Institut Camille Jordan, Université Claude Bernard - Lyon 1,
Villeurbanne Cedex, France

Serena Federico Department of Mathematics: Analysis, Logic and Discrete Math-
ematics, Ghent University, Ghent, Belgium

Hans G. Feichtinger Faculty of Mathematics, University of Vienna, Wien, Austria

Anahit Galstian University of Texas Rio Grande Valley, Edinburg, TX, USA

Giovanni Girardi Department of Mathematics, University of Bari, Bari, Italy

Vu Thi Ngoc Ha School of Applied Mathematics and Informatics, Hanoi Univer-
sity of Science and Technology, Vien Toan ung dung va Tin hoc, Dai hoc Bach khoa
Hanoi, Hanoi, Vietnam

Nguyen Thieu Huy School of Applied Mathematics and Informatics, Hanoi
University of Science and Technology, Vien Toan ung dung va Tin hoc, Dai hoc
Bach khoa Hanoi, Hanoi, Vietnam

Lavi Karp Department of Mathematics, ORT Braude College, Karmiel, Israel



Editors and Contributors xiii

Nathalie M. Luna-Rivera University of Texas Rio Grande Valley, Edinburg, TX,
USA

Vu Thi Mai Department of Mathematics, Haiphong University, Kien An,
Haiphong, Vietnam

Luisa Malaguti Department of Sciences and Methods for Engineering, University
of Modena and Reggio Emilia, Reggio Emilia, Italy

Jorge Marques University of Coimbra, CeBER and FEUC, Coimbra, Portugal

Fabio Nicola Dipartimento di Scienze Matematiche “G. L. Lagrange”, Politecnico
di Torino, Torino, Italy

Michael Oberguggenberger Unit of Engineering Mathematics, University of
Innsbruck, Innsbruck, Austria

Alessandro Palmieri Department of Mathematics, University of Pisa, Pisa, Italy

Michael Reissig Faculty for Mathematics and Computer Science, TU
Bergakademie Freiberg, Freiberg, Germany

Luigi Rodino Dipartimento di Matematica “G. Peano”, Università di Torino,
Torino, Italy

Winfried Sickel Friedrich Schiller University Jena, Jena, Germany

André Süß Zurich, Switzerland

S. Ivan Trapasso Dipartimento di Scienze Matematiche “G. L. Lagrange”, Politec-
nico di Torino, Torino, Italy

Vincenzo Vespri Dipartimento di Matematica e Informatica “Ulisse Dini”, Uni-
versità di Firenze, Firenze, Italy

Jens Wirth Department of Mathematics, University of Stuttgart, Stuttgart,
Germany

Karen Yagdjian University of Texas Rio Grande Valley, Edinburg, TX, USA



Semilinear p-Evolution Equations in
Weighted Sobolev Spaces

Alessia Ascanelli and Marco Cappiello

To Massimo Cicognani and Michael Reissig in occasion of their
60-th birthday

Abstract We consider the initial value problem for a class of semilinear p-
evolution equations with (t, x)-depending coefficients. Under suitable decay con-
ditions for |x| → ∞ on the imaginary part of the coefficients, we prove local in
time well posedness of the Cauchy problem in suitable weighted Sobolev spaces.

Keywords p-evolution equations · Semilinear Cauchy problem · Nash-Moser
theorem · Weighted Sobolev spaces · Pseudo-differential operators

1 Introduction

In the present paper we deal with the semilinear Cauchy problem

{
Pu(D)u(t, x) = f (t, x), (t, x) ∈ [0, T ] × R

u(0, x) = u0(x), x ∈ R
(1)
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2 A. Ascanelli and M. Cappiello

for the first order p-evolution operator

Pu(D)u = P(t, x, u(t, x), Dt ,Dx)u := Dtu+ ap(t)Dpx u+
p−1∑
j=0

aj (t, x, u)D
j
xu (2)

where D = 1
i
∂ , p ∈ N, p ≥ 2, ap ∈ C([0, T ],R), aj are for 0 ≤ j ≤ p − 1

continuous in time functions with values in C∞(R×C), and moreover the functions
x → aj (t, x,w) are in B∞(R) (i.e. uniformly bounded together with all their
derivatives).

For p = 2 our analysis will concern semilinear Schrödinger equations of the
form

Dtu+D2
xu+ a1(t, x, u)Dxu+ a0(t, x, u) = f (t, x).

For p = 3, the most important model is represented by the Korteweg-de Vries
equation describing the propagation of monodimensional waves of small amplitudes
in waters of constant depth:

∂tu = 3

2

√
g

h
∂x

(
1

2
u2 + 2

3
αu+ 1

3
σ∂2
xu

)
,

that can be written in the form (1) as

Dtu+ 1

2

√
g

h
σD3

xu−
√
g

h

(
α + 3

2
u

)
Dxu = 0.

Here u represents the wave elevation with respect to the water’s surface, g is the
gravity constant, h the (constant) level of water, α a fixed small constant and σ =
h3

3 − T h
ρg

, with T the surface tension, ρ the density of the fluid. Assuming the level of
water h depending on x, we are led to an operator with space-depending coefficients
that can be applied to study the evolution of the wave when the depth of the seabed
is variable, cf. [1].

Since ap is real valued, the principal symbol (in the sense of Petrowski) of P ,
given by τ + ap(t)ξp , has the real characteristic root τ = −ap(t)ξp ; by the Lax-
Mizohata theorem, real characteristics are necessary for the existence of a unique
solution in Sobolev spaces of the Cauchy problem (1) in a neighborhood of t = 0,
for any p ≥ 1. Moreover, whenever the lower order coefficients aj (t, x,w) ∈ C
for 0 ≤ j ≤ p − 1, decay conditions as |x| → ∞ are necessary on the aj for
well-posedness in Sobolev spaces, see [6, 15] respectively for p = 2, p arbitrary.

Well-posedness for the Cauchy problem (1), (2) in H∞(R) = ∩sH s(R), where
Hs(R) is the usual Sobolev space on L2, has been proved in the paper [1] under
suitable decay conditions at infinity for the aj , 0 ≤ j ≤ p − 1, relying on the
linear results of [5]; in this paper, despite very precise decay assumptions on the
coefficients, the authors have no information at all about the behavior at infinity of
the solution.
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In the last years, we started to study linear p-evolution equations in weighted
Sobolev spaces, see [3, 4] and to state a relation between the behavior at infinity of
the data and the one of the solution. Here we are interested to extend part of these
results to the semilinear case, that is to give decay conditions on the coefficients of
Pu(D) that are sufficient for the local in time well-posedness of the Cauchy problem
(1) in suitable weighted Sobolev spaces.

Namely, fixed s1, s2 ∈ R, we define Hs1,s2(R) as the space of all u ∈ S ′(R)
such that ‖u‖s1,s2 := ‖〈x〉s2〈D〉s1u‖L2 <∞ where we denote by 〈D〉s1 the Fourier
multiplier with symbol 〈ξ〉s1 := (1+ ξ2)s1/2. This space is a Hilbert space endowed
with the inner product

〈u, v〉s1,s2 := 〈〈x〉s2〈D〉s1u, 〈x〉s2〈D〉s1v〉L2

which induces the norm ‖·‖s1,s2 . We haveH 0,0(R) = L2(R) and we shall denote the
L2 norm simply by ‖ · ‖. An equivalent norm onHs1,s2(R) is given by |||u|||s1,s2 :=
‖〈D〉s1 〈x〉s2u‖L2 . Notice that for s2 = 0 we recapture the standard Sobolev spaces
and that the obvious inclusions Hs1,s2(R) ⊆ Ht1,t2(R) for every s1 ≥ t1, s2 ≥ t2
hold. We also recall that Hs1,s2(R) is an algebra with respect to multiplication for
s1 > 1/2 and s2 ≥ 0, cf. [2, Proposition 2.2]. For every given s1 ∈ R (resp. s2 ∈ R)
we define

Hs1,∞(R) :=
⋂
s2∈R

Hs1,s2(R), resp. H∞,s2(R) :=
⋂
s1∈R

Hs1,s2(R).

We remark thatHs1,∞(R) consists of functions with the same decay as the functions
of S (R) but with a limited regularity, while H∞,s2(R) consists of functions in
H∞(R) with a prescribed decay as |x| → ∞. As it will be shown in Sect. 2,
these two spaces are graded Fréchet spaces endowed with the increasing families
of seminorms

|u|s1,k := max
s2≤k

‖u‖s1,s2, resp. |u|k,s2 := max
s1≤k

‖u‖s1,s2, k ∈ N,

and they are tame (see Definition 1). Finally, we notice that

⋂
s1∈R

Hs1,∞(R) =
⋂
s2∈R

H∞,s2(R) = S (R). (3)

The main result of the paper is the following.

Theorem 1 Let P(t, x,Dt ,Dx) be an operator of the form (2). Assume that there
exist a constant C > 0 and a function γ : C → R+ of class C7 such that for all
(t, x,w) ∈ [0, T ] × R× C, β, δ ∈ N the following conditions hold:

ap(t) is real valued and ap(t) = 0, t ∈ [0, T ]; (4)
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|∂δw∂βx Im aj (t, x,w)| ≤ Cγ (w)〈x〉−
j
p−1−|β|, 0 ≤ j ≤ p − 1; (5)

|∂δw∂βx Re aj (t, x,w)| ≤ Cγ (w)〈x〉−|β|, 0 ≤ j ≤ p − 1. (6)

Then, for every given s2 ≥ 3p − 2, the Cauchy problem (1) is well-posed locally in
time in H∞,s2(R): namely for all f ∈ C([0, T ];H∞,s2(R)) and u0 ∈ H∞,s2(R),
there exists 0 < T ∗ ≤ T and a unique solution u ∈ C1([0, T ∗];H∞,s2(R)) of (1).

Remark 1 With respect to [1], in Theorem 1 from the decay at infinity of the data
we can estimate the decay of the solution as |x| → ∞. Indeed, by [1] we know
that if the data are in H∞ (and the decay conditions are satisfied), then the solution
belongs to H∞, too; Theorem 1 states that if the data are in H∞,s2 for s2 large
enough, then also u ∈ H∞,s2 .

The idea of the proof of Theorem 1 is the following: to show the existence of a
unique solution to the semilinear equation (1) in H∞,s2 , we first linearize it, fixing
a function u ∈ C([0, T ],H∞,s2(R)) with s2 ∈ R large enough, then we solve the
linear Cauchy problem in the unknown v(t, x)

{
Pu(D)v(t, x) = f (t, x), (t, x) ∈ [0, T ] × R

v(0, x) = u0(x), x ∈ R
(7)

in H∞,s2(R); finally, inspired by [6], [10] and [12], we apply the Nash-Moser
theorem to obtain the existence of a unique solution of (1) in the tame space
H∞,s2(R). We remark that we cannot apply to the Cauchy problem (1), (2) a usual
fixed point scheme in Banach spaces since the linearized problem (7) has a unique
solution which presents a loss of regularity and/or a different behavior at infinity
with respect to the data. Thus the problem (7) is not well posed in Hs1,s2; however
it turns out to be well posed inH∞,s2(R) which is a tame Fréchet space, so there we
can apply the Nash Moser theorem.

Remark 2 In the linear case treated in [3], as a consequence of the energy estimates
in weighted Sobolev spaces, we also obtained that the Cauchy problem is well posed
in S (R) andS ′(R). In the semilinear case, we are not able to prove in the same way
well posedness in S (R). In fact, if the data of the problem are Schwartz functions,
they belong in particular to H∞,s2(R) for every s2 > 0, however, in the semilinear
case, the upper bound T ∗ of the interval of existence of the solution may depend on
s2 and possibly tends to 0 when s2 → +∞.

Remark 3 The techniques used in this paper may be adapted to study semilinear
p-evolution equations in higher space dimension x at least in some particular cases
as, for instance, Schrödinger-type equations (p = 2). For this type of equations, at
least the linear theory is well established in general space dimension, cf. [8, 9, 16]
and it could be easily applied to the analysis of the linearized Cauchy problem (7).
We will treat this problem for general p-evolution equations in a future paper.
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2 Preliminaries: SG-Calculus and Nash Moser Theorem

2.1 SG-Calculus

We recall here the definition and the main properties of the SG classes of
pseudodifferential operators. In view of the purposes of this paper we shall state
them for symbols defined on R2, but they have obvious extension in higher
dimension. For this generalization and for more details on these classes we refer to
[11, 19, 20]. Fixed m1,m2 ∈ R, the space SGm1,m2(R2) is the space of all functions
p(x, ξ) ∈ C∞(R2) satisfying the following estimates:

sup
(x,ξ)∈R2

〈ξ〉−m1+α〈x〉−m2+β |∂αξ ∂βx p(x, ξ)| <∞ (8)

for every α, β ∈ N. We can associate to every p ∈ SGm1,m2(R2) the pseudodiffer-
ential operator defined by

Pu(x) = p(x,D)u(x) = (2π)−d
∫
Rd
ei〈x,ξ 〉p(x, ξ)û(ξ) dξ. (9)

If p ∈ SGm1,m2(R2), then the operator p(x,D) is a linear continuous map from
S (R) to S (R) and extends to a linear continuous map from S ′(R) to S ′(R)
and from Hs1,s2(R) to Hs1−m1,s2−m2(R) for every s1, s2 ∈ R. We also recall the
following result concerning the composition and the adjoint of SG operators.

Proposition 1 Let p ∈ SGm1,m2(R2) and q ∈ SGm′
1,m

′
2(R2). Then there exists a

symbol s ∈ SGm1+m′
1,m2+m′

2(R2) such that p(x,D)q(x,D) = s(x,D)+R whereR
is a smoothing operatorS ′(R)→ S (R).Moreover, s has the following asymptotic
expansion

s(x, ξ) ∼
∑
α

α!−1∂αξ p(x, ξ)D
α
x q(x, ξ)

i.e. for every N ≥ 1, we have

s(x, ξ)−
∑
|α|<N

α!−1∂αξ p(x, ξ)D
α
x q(x, ξ) ∈ SGm1+m′

1−N,m2+m′
2−N(R2).

Proposition 2 Let p ∈ SGm1,m2(R2) and let P ∗ be theL2-adjoint ofp(x,D). Then
there exists a symbol p∗ ∈ SGm1,m2(R2) such that P ∗ = p∗(x,D)+R′, whereR′ is
a smoothing operatorS ′(R)→ S (R). Moreover, p∗ has the following asymptotic
expansion

p∗(x, ξ) ∼
∑
α

α!−1∂αξ D
α
x p(x, ξ)
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i.e. for every N ≥ 1, we have

p∗(x, ξ)−
∑
|α|<N

α!−1∂αξ D
α
x p(x, ξ) ∈ SGm1−N,m2−N(R2).

We will denote in the sequel by Sm(R2),m ∈ R, the class of symbols p(x, ξ) ∈
C∞(R2) satisfying

sup
(x,ξ)∈R2

〈ξ〉−m+α |∂αξ ∂βx p(x, ξ)| <∞,

for every α, β ∈ N.We observe that the following inclusion holds

SGm1,m2(R2) ⊂ Sm1(R2) (10)

for every m1 ∈ R,m2 ≤ 0.
The following theorem has been proved in [3, Theorem 2.3], and provides

an extension to pseudodifferential operators of SG-type of the well known sharp
Gårding theorem.

Theorem 2 Let m1 ≥ 0,m2 ≤ 0, a ∈ SGm1,m2(R2) such that Re a(x, ξ) ≥ 0
if |ξ | ≥ C for some positive C. Then there exist pseudo-differential operators
Q = q(x,D), R = r(x,D) and R0 = r0(x,D) with symbols, respectively,
q ∈ SGm1,m2(R2), r ∈ SGm1−1,m2(R2) and r0 ∈ S0(R2) such that

a(x,D) = q(x,D)+ r(x,D)+ r0(x,D), (11)

Re〈q(x,D)u, u〉 ≥ 0 ∀u ∈ S (R) (12)

and

r(x, ξ) = ψ1(ξ)Dxa(x, ξ)+
∑

2≤α+β≤2m1−1

ψα,β(ξ)∂
α
ξ D

β
x a(x, ξ) (13)

for some real valued functions ψ1, ψα,β with ψ1 ∈ SG−1,0(R2) and ψα,β ∈
SGα−β/2,0(R2) depending only on ξ .

We remark that the terms in (13) can be re-arranged so that we have

r(x, ξ) =
m−1∑
j=1

rj (x, ξ), (14)

rj (x, ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ψ1(ξ)Dxa(x, ξ)+

∑
2≤α+β≤3

ψα,β(ξ)∂
α
ξ D

β
x a(x, ξ), j = m− 1,

∑
2(m−j)≤α+β≤2(m−j)+1

ψα,β(ξ)∂
α
ξ D

β
x a(x, ξ), 1 ≤ j ≤ m− 2.

(15)
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We also remark that Theorem 2 implies the well-known sharp Gårding inequality

Re〈A(x,Dx)u, u〉 ≥ −c‖u‖2
(m−1)/2,0 (16)

for some fixed constant c > 0 (cf. [17, Theorem 4.4]).
We recall here also the Fefferman-Phong inequality (cf. [13]):

Theorem 3 Let A(x, ξ) ∈ Sm(R2) with A(x, ξ) ≥ 0. Then

Re〈A(x,Dx)u, u〉 ≥ −c‖u‖2
(m−2)/2,0 ∀u ∈ Hm,0 (17)

for some c > 0.

We remark that, by Lerner and Morimoto [18], for m = 2 the constant c in (17)
depends only on max|α|+|β|≤7

Cα,β for Cα,β := sup
x,ξ∈R

|∂αξ ∂βx A(x, ξ)|〈ξ〉−2+α .

2.2 Tame Fréchet Spaces and the Nash Moser Theorem

We recall here the notions of tame space, tame maps, and the statement of the Nash-
Moser inversion theorem, see [14] for further details. Moreover, we show that, for
every fixed s1, s2 ∈ R, Hs1,∞ and H∞,s2 are tame spaces.

A graded Fréchet space X is a Fréchet space endowed with a grading, i.e. an
increasing sequence of semi-norms:

|x|n ≤ |x|n+1, ∀n ∈ N0, x ∈ X.

Example 1 Given a Banach space B, consider the space (B) of all sequences
{vk}k∈N0 ⊂ B such that

|{vk}|n :=
+∞∑
k=0

enk‖vk‖B < +∞ ∀n ∈ N0.

We have that (B) is a graded Fréchet space with the topology induced by the
family of seminorms | · |n (which is in fact a grading on (B)).

We say that a linear map L : X → Y between two graded Fréchet spaces is a tame
linear map if there exist r, n0 ∈ N such that for every integer n ≥ n0 there exists a
constant Cn > 0, depending only on n, s.t.

|Lx|n ≤ Cn|x|n+r ∀x ∈ X. (18)

The numbers n0 and r are called respectively base and degree of the tame estimate
(18).
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Definition 1 A graded Fréchet space X is said to be tame if there exist a Banach
space B and two tame linear maps L1 : X→ (B) and L2 : (B)→ X such that
L2 ◦ L1 is the identity on X.

Obviously, given a graded Fréchet spaceX and a tame space Y , if there exist two
linear tame maps L1 : X → Y and L2 : Y → X such that L2 ◦ L1 is the identity
on X, then also X is a tame space.

Lemma 1 The spaces Hs1,∞ and H∞,s2 are tame.

Proof We first recall that H∞ := ⋂
s∈RHs endowed with the seminorms |f |n :=

maxs≤n ‖f ‖s for every n ∈ N is a tame Fréchet space, cf. [10]. Moreover the map
L : H∞ → H∞,s2 defined by L(f ) = 〈x〉−s2f is a tame isomorphism since for
every n = 0, 1, 2, . . . we have:

|L(f )|n,s2 = max
s1≤n

‖L(f )‖s1,s2 = max
s1≤n

‖〈x〉−s2f ‖s1,s2
≤ Cn max

s1≤n
|||〈x〉−s2f |||s1,s2 = |f |n

and

|f |n = max
s1≤n

‖f ‖s1 ≤ C′
n max
s1≤n

‖〈x〉−s2f ‖s1,s2 = |L(f )|n,s2 .

Thus, H∞,s2 is a tame space. Hs1,∞ is also tame, since the Fourier transform F is
an isomorphism between Hs1,s2 and Hs2,s1 , and ‖F(f )‖s2,s1 = ‖f ‖s1,s2 ; by this, it
is easy to prove that F : Hs1,∞ → H∞,s2 defines a tame map with tame inverse
given by the inverse Fourier transform. ��

Given now a nonlinear map T : U → Y where U ⊂ X and X,Y are graded
spaces, we say that T satisfies a tame estimate of degree r and base n0 if for every
integer n ≥ n0 there exists a constant Cn > 0 such that

|T (u)|n ≤ Cn(1 + |u|n+r ) ∀u ∈ U. (19)

We say that T is tame if it satisfies a tame estimate (19) in a neighborhood of each
point u ∈ U (with constants r, n0 andCn which may depend on the neighbourhood).

Notice that a linear map is tame if and only if it is a tame linear map.
Given a map T : U ⊂ X → Y , we define the Fréchet derivative DT (u)v of T

at u ∈ U in the direction v ∈ X by

DT (u)v := lim
ε→0

T (u+ εv)− T (u)
ε

, (20)

and we say that T isC1(U) if the limit (20) exists and the derivativeDT : U×X→
Y is continuous. We can also define recursively the higher order Fréchet derivatives
DnT : U × Xn → Y of T , cf. [14]; we say that T is C∞(U) if all the Fréchet
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derivatives of T exist and are continuous. A smooth tame map T : U → Y defined
on an open subset U of X is a C∞ map such that DnT is tame for all n ∈ N0.

It is known that sums and compositions of smooth tame maps are smooth tame,
and, moreover, linear and nonlinear partial differential operators and integration are
smooth tame maps, see [14] for the proofs of these results. Finally we recall the
statement of Nash-Moser inversion theorem in the tame Fréchet spaces category,
which will be used in the sequel to approach the Cauchy problem (1).

Theorem 4 (Nash-Moser-Hamilton) Let X,Y be tame spaces, U an open subset
of X and T : U → Y a smooth tame map. If the equation DT (u)v = h has a
unique solution v := S(u, h) for all u ∈ U and h ∈ Y , and if S : U × Y → X is
smooth tame, then T is locally invertible and each local inverse is smooth tame.

3 Well Posedness for the Linearized Cauchy Problem

The following theorem is the key to prove the main result of this paper. It deals
with the linear Cauchy problem (7), and proves that if the data of (7) are chosen
in the Sobolev space Hs1,s2 , s1, s2 ∈ R, then there exists a unique solution v(t) ∈
Hs1−2δη(p−1),s2−2δε for some δ > 0 and for every 0 ≤ ε, η ≤ 1 such that ε+η = 1.

Theorem 5 Under the assumptions of Theorem 1, there exists δ > 0 such
that for every u ∈ C([0, T ];H 3p−1,3p−2(R)), f ∈ C([0, T ];Hs1,s2(R))
and u0 ∈ Hs1,s2(R), there exists a unique solution v of (7) such that v ∈
C1([0, T ];Hs1−2δη(p−1),s2−2δε(R)) for every ε, η ∈ [0, 1]with ε+η = 1. Moreover
v satisfies the following energy estimate:

‖v(t, ·)‖2
s1−2δη(p−1),s2−2δε (21)

≤ Cs1,s2,γ e(1+‖u‖
3p−2
3p−1,3p−2)t

(
‖u0‖2

s1,s2
+
∫ t

0
‖f (τ, ·)‖2

s1,s2
dτ

)
∀t ∈ [0, T ].

Remark 4 Notice that the solution v presents the loss 2δη(p−1) in the first Sobolev
index and the loss 2δε in the second one. In the case s2 = 0, ε = 0, η = 1 we
recapture the result of [1, Theorem 2.1]. Moreover, in the linear case (i.e., if (7)
does not depend on u), we can obtain either well-posedness with loss of 2δ(p − 1)
derivatives and no loss of decay (take η = 1 and ε = 0), or the result of [3], that
is well-posedness without loss of derivatives but with loss of decay 2δ (take η = 0
and ε = 1). We can also obtain all the intermediate estimates. A similar result has
been proved in [7], where intermediate estimates for Schrödinger equations (p = 2)
have been proved in Gevrey classes.

The proof of Theorem 5 consists in choosing an appropriate and invertible change
of variable

v(t, x) = e�(x,D)w(t, x) (22)
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which transforms the Cauchy problem (7) into an equivalent Cauchy problem

{
P�(t, x, u(t, x),Dt ,Dx)w(t, x) = f�(t, x) (t, x) ∈ [0, T ] × R

w(0, x) = u0,�(x) x ∈ R
(23)

for

P� := (e�)−1Pe�, f� := (e�)−1f, u0,� := (e�)−1u0

which is well-posed in L2 (and therefore in all the weighted Sobolev spacesHs1,s2).
By the energy estimate in Hs1,s2 for the solution w to the Cauchy problem (23), we
then deduce the energy estimate (21) from (22).

The operator� will be of the form

�(x,D) = λ1(x,D)+ . . .+ λp−1(x,D),

so

P� := (eλ1)−1 · · · (eλp−1)−1Peλp−1 · · · (eλ1),

f� := (eλ1)−1 · · · (eλp−1)−1f, u0,� := (eλ1)−1 · · · (eλp−1)−1u0.

We construct here below the transformation � and we point out its main
properties in Proposition 3. Then we prove the invertibility of e� in Proposition 4.
In the subsequent Lemma 2 we show how to obtain the energy estimate (21) for the
Cauchy problem (7) from the Hs1,s2 energy estimate for the Cauchy problem (23).
After that, in Lemma 5 we state the regularity with respect to x, u of the coefficients
aj (t, x, u) of the linear operator (7), for 0 ≤ j ≤ p − 1. This section ends with the
proof of Theorem 5.

Definition 2 For every k = 1, . . . , p − 1 we define the symbols

λp−k(x, ξ) :=Mp−kω
(
ξ

h

)
〈ξ〉−k+1

h

∫ x

0
〈y〉− p−k

p−1ψ

(
〈y〉

〈ξ〉p−1
h

)
dy, (24)

where h andMp−k are positive constants such that h ≥ 1, ω ∈ C∞(R) is such that

ω(y) =
{

0 |y| ≤ 1

|y|p−1/yp−1 |y| ≥ 2
, (25)

and ψ ∈ C∞
0 (R) is such that 0 ≤ ψ(y) ≤ 1 for all y ∈ R, ψ(y) = 1 for |y| ≤ 1

2 ,
and ψ(y) = 0 for |y| ≥ 1.
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Proposition 3 There exists a constant C > 0 such that for every (x, ξ) ∈ R2 the
following conditions hold:

|λp−1(x, ξ)| ≤ Mp−1 (log 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h) (26)

∀ε, η ∈ [0, 1] ε + η = 1;
|λp−k(x, ξ)| ≤ CMp−k, 2 ≤ k ≤ p − 1. (27)

Moreover, for every α, β with (α, β) = (0, 0), there exists Cα,β > 0 such that for
|ξ | > 2h:

|∂αξ ∂βx λp−k(x, ξ)| ≤ Cα,β 〈x〉−β 〈ξ〉−αh , 1 ≤ k ≤ p − 1. (28)

Proof We only prove (26) and (27); the inequality (28) can be deduced as in the
proof of [5, Lemma 2.1]. Let E = {(y, ξ) ∈ R2 : 〈y〉 ≤ 〈ξ〉p−1

h }. If x ∈ E, x > 0,
then by (24), integrating we have:

|λp−1(x, ξ)| ≤ Mp−1

∫ x

0

1√
1 + y2

dy ≤ Mp−1 log (2〈x〉)

≤ Mp−1(ln 2 + log〈x〉)
≤ Mp−1(ln 2 + log〈x〉ε〈ξ〉η(p−1)

h )

≤ Mp−1(ln 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h)

for every 0 ≤ ε, η ≤ 1, ε + η = 1. Analogously, if x /∈ E we get

|λp−1(x, ξ)| ≤ Mp−1

∫ √
〈ξ 〉2(p−1)

h −1

0

1√
1 + y2

dy

≤ Mp−1 ln(2〈ξ〉p−1
h )

≤ Mp−1(ln 2 + log〈x〉ε〈ξ〉η(p−1)
h )

≤ Mp−1(ln 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h),

using the fact that for x /∈ E we have 〈ξ〉p−1
h < 〈x〉. Similar estimates can be

obtained for x < 0. The estimate (27) can be proved by a similar argument. ��
From Proposition 3 we obtain in particular that e±λp−1 ∈ SGMp−1η(p−1),Mp−1ε

for every ε, η ≥ 0 such that ε + η = 1 whereas for k = 2, . . . , p − 1, we have
e±λp−k ∈ SG0,0(R2) ⊂ S0(R2).
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Proposition 4 For every k = 1, . . . , p−1, let λp−k be defined by (24). There exists
hk ≥ 1 such that for every h ≥ hk the operator eλp−k (x,D) is invertible and

(
eλp−k (x,D)

)−1 = e−λp−k (x,D)(I + rp−k(x,D)), (29)

where I stands for the identity operator and rp−k(x,D) is a pseudodifferential
operator with principal symbol

rp−k,−k(x, ξ) = ∂ξλp−k(x, ξ)Dxλp−k(x, ξ) ∈ SG
−k,− p−k

p−1 . (30)

Proof We first observe that

eλp−k (x,D)e−λp−k (x,D) = I − r̃p−k(x,D),

where r̃p−k has principal symbol rp−k,−k in (30). From (28) we have

|rp−k,−k(x, ξ)| ≤ CkM2
p−kh−1,

and we similarly estimate the derivatives. We see that for h large enough, say h ≥
hk , the operator I − r̃p−k is invertible on L2 with inverse given by the Neumann
series ∑

j≥0

r̃
j
p−k = I + rp−k,

and the operator rp−k has principal part (30). Thus,

eλp−k (x,D)e−λp−k (x,D)(I + rp−k) = I,

and e−λp−k (x,D)(I + rp−k) is a right inverse of eλp−k (x,D). Similarly we can
obtain that it is also a left inverse. ��
Lemma 2 If the Cauchy problem (23) isHs1,s2 well posed, and the energy estimate

‖w‖2
s1,s2

≤ Ce(1+‖u‖3p−2
3p−1,3p−2)t

(
‖u0,�‖2

s1,s2
+
∫ t

0
‖f�(τ)‖2

s1,s2
dτ

)
(31)

holds for every t ∈ [0, T ], then the Cauchy problem (7) admits a unique solution

v ∈ C([0, T ];Hs1−2δη(p−1),s2−2δε)

for every ε, η ∈ [0, 1] with ε + η = 1 which satisfies the energy estimate (5).
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Proof From Proposition 3 we know that

|�(x, ξ)| ≤Mp−1 (log 2 + ε log〈x〉 + η(p − 1) log〈ξ〉h)+
p−1∑
k=2

CkMp−k

≤ δ (1 + ε log〈x〉 + η(p − 1) log〈ξ〉h)

with a positive constant δ depending onM1, . . . ,Mp−1.This yelds

|e±�(x,ξ)| ≤ eδ〈x〉δε〈ξ〉δη(p−1)
h ,

and by the energy estimate (31) we get

‖v‖2
s1−2δη(p−1),s2−2δε = ‖e�w‖2

s1−2δη(p−1),s2−2δε ≤ ‖w‖2
s1−δη(p−1),s2−δε

≤ Ce(1+‖u‖3p−2
3p−1,3p−2)t

(
‖u0,�‖2

s1−δη(p−1),s2−δε+
∫ t

0
‖f�(τ)‖2

s1−δη(p−1),s2−δεdτ
)

≤ Ce(1+‖u‖3p−2
3p−1,3p−2)t

(
‖u0‖2

s1,s2
+
∫ t

0
‖f (τ)‖2

s1,s2
dτ

)

for every t ∈ [0, T ]. ��
The next Proposition 5 states the regularity with respect to x, u of the coefficients

aj (t, x, ξ) of the linearized operator (7).

Proposition 5 Under the assumptions (5) and (6), there exists C′ > 0 such that
for every fixed u ∈ C([0, T ];H 3p−1,3p−2(R)) the coefficients aj (t, x, u(t, x)) of
the operator Pu(D) satisfy for every 1 ≤ j ≤ p − 1, (t, x) ∈ [0, T ] × R and
β ≤ 3p − 2:

|∂βx Re aj (t, x, u(t, x))| ≤ C′γ (u)(1 + ‖u‖β1+β,β)〈x〉−β, (32)

|∂βx Im aj (t, x, u(t, x))| ≤ C′γ (u)(1 + ‖u‖β1+β,β)〈x〉−
j
p−1−β. (33)

Proof For every β ≥ 1 and 1 ≤ j ≤ p − 1 we have

∂βx (aj (t, x, u)) = (∂βx aj )(t, x, u)

+
∑

β1+β2=β
β2≥1

cβ
∑

r1+...+rq=β2
ri≥1

cq,r(∂
q
w∂

β1
x aj )(t, x, u)(∂

r1
x u) · · · (∂rqx u)
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for some cβ, cq,r > 0. By (6), using the relationship between geometric and
arithmetic mean value and Sobolev inequality, this gives for every β ≤ 4(p − 1):

|∂βx(Re aj (t, x, u))|
≤ Cγ (u)〈x〉−β +

∑
β1+β2=β
β2≥1

cβ1,β2

∑
r1+...+rq=β2

ri≥1

Cq,r1,...,rq γ (u)〈x〉−β1 |∂r1x u| · · · |∂rqx u|

≤ C′γ (u)〈x〉−β

⎛
⎜⎜⎜⎝1 +

∑
β1+β2=β
β2≥1

∑
r1+...+rq=β2

ri≥1

|〈x〉r1∂r1x u| · · · |〈x〉rq ∂rqx u|

⎞
⎟⎟⎟⎠

≤ C′γ (u)〈x〉−β

⎛
⎜⎜⎜⎝1 +

∑
β1+β2=β
β2≥1

∑
r1+...+rq=β2

ri≥1

(
|〈x〉r1∂r1x u| + · · · + |〈x〉rq ∂rqx u|

q

)q⎞⎟⎟⎟⎠
≤ C′′γ (u)(1 + ‖u‖β1+β,β)〈x〉−β ;

where we have used the fact that for every 1 ≤ j ≤ q, β ≤ 3p − 2, we have

|〈x〉rj ∂rjx u| ≤ C‖〈x〉rj ∂rjx u‖1,0 = ‖u‖1+rj ,rj ≤ ‖u‖1+β,β <∞.

On the other hand, looking at Im aj and using (5) instead of (6), the same
computations give

|∂βx (Im aj (t, x, u))| ≤ C′′γ (u)(1 + ‖u‖β1+β,β)〈x〉−
j
p−1−β .

��
Remark 5 We observe that a conjugation of the type (eλp−k )−1Tje

λp−k with λp−k
given by (24) and Tj ∈ SGj,0, j ≥ k + 1 depending on γj derivatives of u, by
Proposition 4 gives:

(eλp−k )−1Tje
λp−k = e−λp−k

(
Tj + rp−kTj

)
eλp−k (34)

where the principal symbol of rp−k is given by ∂ξλp−k(x, ξ)Dxλp−k(x, ξ) ∈
SG−k,−(p−k)/(p−1). By the asymptotic expansion we get

σ
(
Tj + rp−kTj

)
(x, ξ) = Tj (x, ξ)+

j−k−1∑
α=0

1

α!∂
α
ξ rp−k(x, ξ)Dαx Tj (x, ξ)+ S0(x, ξ)
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with S0 ∈ SG0,0. Since ∂αξ rp−kDαx Tj ∈ SGj−k−α,−(p−k)/(p−1)−|α| and depends on
γj + α derivatives of u, by re-ordering the sum we get

σ
(
Tj + rp−kTj

)
(x, ξ) = Tj (x, ξ)+

j−k∑
�=1

Tj,�(x, ξ)+ T0

with Tj,� ∈ SG�,−(p−k)/(p−1)−(j−k−�) depending on γj + j − k − � derivatives of
u and onMp−k , T0 of order (0, 0). Thus

(eλp−k )−1

⎛
⎝p−1∑
j=0

Tj

⎞
⎠ eλp−k = e−λp−k

⎛
⎝p−1∑
j=0

(Tj + rp−kTj )
⎞
⎠ eλp−k

and we have, modulo terms of order (0, 0):

σ

⎛
⎝p−1∑
j=0

(Tj + rp−kTj )
⎞
⎠ (x, ξ) = p−1∑

j=1

Tj (x, ξ)+
p−1∑
j=1

j−k∑
�=1

Tj,�(x, ξ)

=
p−1∑
j=p−k

Tj +
p−k−1∑
j=1

(
Tj + Tj+k,j + . . .+ Tp−1,j

) = p−1∑
j=1

T ′
j

with T ′
j = Tj for j ≥ p − k, while for j ≤ p − k − 1 T ′

j ∈ SGj,0 as well as Tj but
depend on max{γp−1 +p− 1− k− j, γp−2 +p− 2− k− j, . . . , γj+k} derivatives
of u and on the constantMp−k .

Remark 6 Similarly, a conjugation of the type e−λTkeλ, where λ ∈ SG0,0 and
Tk ∈ SGk,0 depends on γk derivatives of u, gives, modulo terms of order (0, 0),
the operator

Tk +
k−1∑
α=1

1

α!
(
∂αξ Tk

)
e−λDαx eλ +

k−1∑
β=1

k−β∑
α=0

1

α!β!∂
β
ξ e

−λDβx
(
∂αξ TkD

α
x e
λ
)
;

at each level 1 ≤ j ≤ k − 1 we find, except for Tj itself, new terms of

type ∂βξ e
−λDβx

(
∂αξ Tj+α+βDαx eλ

)
with the same decay as Tj and depending on

γj+α+β + β derivatives of u.

Proof of Theorem 5 First of all we observe that the assumption (4) implies that
ap(t) ≥ Cp for every t ∈ [0, T ] or ap(t) ≤ −Cp for every t ∈ [0, T ] for a positive
constant Cp . We will prove the theorem under the first condition. If the second one
holds the result remains valid with only modifications of signs in the proof.
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Fixed u, we consider the linear operator

iPu(t, x, u(t, x),Dt ,Dx) = ∂t + iap(t)Dpx +
p−1∑
j=0

iaj (t, x, u)D
j
x

with ap satisfying (4) and aj satisfying (32), (33) for every 1 ≤ j ≤ p − 1, and we
apply for h ≥ h1 (see Proposition 4) the first conjugation (eλp−1)−1iPue

λp−1 , with
λp−1 in Definition 2 satisfying Proposition 3. Let us first notice that

(eλp−1)−1iPue
λp−1 = ∂t + e−λp−1

⎛
⎝iap(t)Dpx +

p−1∑
j=0

iaj (t, x, u)D
j
x

⎞
⎠ eλp−1

+ e−λp−1

⎛
⎝irp−1(x,D)ap(t)D

p
x +

p−1∑
j=0

irp−1(x,D)aj (t, x, u)D
j
x

⎞
⎠ eλp−1

and that the principal symbol of rp−1 is given by ∂ξλp−1(x, ξ)Dxλp−1(x, ξ) ∈
SG−1,−1. The composition e−λp−1iapξ

peλp−1 provides, among others, the term
−∂ξλp−1(x, ξ)apξ

p∂xλp−1(x, ξ) = −iapξprp−1,−1(x, ξ) which cancels with the
principal part of the symbol of e−λp−1irp−1apξ

peλp−1 . Then, we notice that by
Remark 5 we can write

(eλp−1)−1iPue
λp−1 = ∂t + e−λp−1

⎛
⎝iap(t)Dpx +

p−1∑
j=0

ia′j (t, x, u,Dx)

⎞
⎠ eλp−1

+ op
(
iapξ

prp−1,−1
)
(t, x,D)

with new terms

a′p−1(t, x, u,Dx) = ap−1(t, x, u)D
p−1
x

and, for 0 ≤ j ≤ p − 2, a′j (t, x, u,Dx) is a pseudodifferential operator given by

aj (t, x, u)D
j
x plus other terms of the same order. Namely, a′j satisfy estimates of

the form

|∂αξ ∂βxRe a′j (t, x, u(t, x), ξ)| (35)

≤ CMp−1γ (u)(1 + ‖u‖p−2−j+β
p−1−j+β,p−2−j+β)〈x〉−β 〈ξ〉j−α,

|∂αξ ∂βx Im a′j (t, x, u(t, x), ξ)| (36)

≤ CMp−1γ (u)(1 + ‖u‖p−2−j+β
p−1−j+β,p−2−j+β)〈x〉−

j
p−1−β〈ξ〉j−α .
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The asymptotic expansion gives

iP1(t, x, u,D) := (eλp−1)−1iPue
λp−1 (37)

= ∂t + iap(t)Dpx + iap−1(t, x, u)D
p−1
x

+ op
(
ipapξ

p−1Dxλp−1

)

+
p−1∑
α=2

∑
β+γ=α
β≤p

1

β!γ !op
(
ap(t)∂

γ
ξ e

−λp−1 · ∂βξ ξp ·Dαx eλp−1
)

+
p−2∑
j=1

ia′j (t, x, u,Dx)

+
p−1∑
j=1

j−1∑
α=1

1

α!op
(
e−λp−1∂αξ ia

′
jD

α
x e
λp−1

)

+
p−1∑
j=1

j−1∑
β=1

j−1−β∑
α=0

∑
β1+β2=β

1

α!β1!β2!op
(
∂
β
ξ e

−λp−1D
β1
x ∂

α
ξ ia

′
jD

α+β2
x eλp−1

)

+ s0(t, x, u,D)

with a term s0 of order (0, 0). Notice that, by (35), (36) and Remark 6, in (37) we
find at each level 1 ≤ j ≤ p − 2, except for the original terms aj (t, x, u)D

j
x , terms

with decay at least of type 〈x〉−1, depending at most on Mp−1, and depending at
most on

γj+|α|+|β| + |β| = p − (j + |α| + |β|)− 1 + |β| = p − j − |α| − 1 ≤ p − j − 1

derivatives of u, so that we get

iP1 = ∂t + iap(t)Dpx + iap−1(t, x, u)D
p−1
x (38)

+op
(
ipapξ

p−1Dxλp−1

)
+
p−2∑
j=1

ia′′j (t, x, u,Dx)+ s0(t, x, u,D)

where the pseudodifferential operators a′′j are given by ajD
j
x plus other terms with

the same behavior, namely a′′j still satisfy (35) and (36).
Now, let us focus on the term Ap−1 of order p − 1 with respect to ξ in (38). By

(24) and (33), the choice of ω in (25), and (4) we get for every |ξ | ≥ 2h:

ReAp−1(t, x, u, ξ) := Re
(
iap−1(t, x, u)ξ

p−1 + pap(t)ξp−1∂xλp−1(x, ξ)
)

= − Im ap−1(t, x, u)ξ
p−1 + pap(t)ξp−1∂xλp−1(x, ξ)
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≥ −C′γ (u)〈x〉−1〈ξ〉p−1
h +Mp−1pap(t)|ξ |p−1〈x〉−1ψ

(
〈x〉

〈ξ〉p−1
h

)

≥ 〈ξ〉p−1
h

〈x〉 ψ

(
〈x〉

〈ξ〉p−1
h

)(
−C′γ (u)+Mp−1pCp

(
2√
5

)p−1
)

− C′γ (u)
〈ξ〉p−1

h

〈x〉

(
1 − ψ

(
〈x〉

〈ξ〉p−1
h

))

≥ −2C′γ (u)

if we choose Mp−1 ≥ C′γ (u)
√

5
p−1

2p−1pCp
, where we have also used the fact that

〈x〉
〈ξ〉p−1

h

≥ 1

2
on the support of 1 − ψ

(
〈x〉

〈ξ〉p−1
h

)
and |ξ |p−1 ≥ (2/

√
5)p−1〈ξ〉p−1

h

for |ξ | ≥ 2h. Being the symbol ReAp−1(t, x, u, ξ)+2C′γ (u) non negative, we can
apply the sharp Gårding Theorem 2 and we obtain that there exist pseudodifferential
operatorsQp−1(t, x, u,D), Rp−1(t, x, u,D), R0,p−1(t, x, u,D) with symbols

Qp−1(t, x, u, ξ) ∈ SGp−1,0, Rp−1(t, x, u, ξ) ∈ SGp−2,0, R0,p−1(t, x, u, ξ) ∈ S0

such that

Ap−1(t, x, u,D) = Qp−1(t, x, u,D)+ iRp−1(t, x, u,D) + R0,p−1(t, x, u,D)

with

Re〈Qp−1(t, x, u,D)h(t, x), h(t, x)〉 ≥ 0 ∀h ∈ S (R), (t, x) ∈ [0, T ] × R

and by (15)

Rp−1(t, x, u, ξ) =
p−2∑
j=1

Rj,p−1(t, x, u, ξ) (39)

Rp−2,p−1 = −i
⎛
⎝ψ1(ξ)DxAp−1 +

∑
2≤α+β≤3

ψα,β(ξ)∂
α
ξ D

β
x Ap−1

⎞
⎠

Rj,p−1 = −i
∑

2(p−1−j)≤α+β≤2(p−1−j)+1

ψα,β(ξ)∂
α
ξ D

β
x Ap−1
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for every 1 ≤ j ≤ p − 3, where ψ1 and ψα,β are real valued symbols, ψ1(ξ) ∈
SG−1,0 and ψα,β(ξ) ∈ SG(α−β)/2,0. We have so

iP1 = ∂t + iap(t)Dpx +Qp−1(t, x, u,Dx)

+ iRp−1(t, x, u,Dx)+
p−2∑
j=1

ia′′j (t, x, u,Dx)+ s0(t, x, u,Dx).

We notice that, by (39), Rp−1 adds to the terms a′′j some new terms; whenever

β = 0, these new terms have at least decay 〈x〉−1, while for β = 0 we see that

Re
(−iψα,0(ξ) ∂αξ Ap−1(t, x, u, ξ)

)
= ψα,0(ξ)∂

α
ξ ImAp−1(t, x, u, ξ) ∈ SGp−1−α/2,0 ⊂ SGp−2,0

can be added to Re a′′j , while

Im
(−iψα,0(ξ) ∂αξ Ap−1(t, x, u, ξ)

)
= −ψα,0(ξ)∂αξ ReAp−1(t, x, u, ξ) ∈ SGp−1−α/2,−1 ⊂ SGp−2,− p−2

p−1

can be added to Im a′′j . Again, by (39), we see that the largest number of x-
derivatives of u appears when α = 0, β = 2(p − 1 − j)+ 1 and we have

|ψα,β(ξ)∂αξ Dβx Ap−1(t, x, u, ξ)| ≤ C′γ (u)
(

1 + ‖u‖ββ+1,β

)
〈ξ〉p−1− α+β

2 〈x〉−β

≤ C′γ (u)
(

1 + ‖u‖2(p−j)−1
2(p−j),2(p−j)−1

)
〈ξ〉j 〈x〉−1

By these considerations, we understand that after the application of Theorem 2, we
can write

iP1 = ∂t + iap(t)Dpx +Qp−1(t, x, u,Dx )+
p−2∑
j=1

iaj,1(t, x, u,Dx)+ s1(t, x, u,D) (40)

for a new operator s1 with symbol in S0, where aj,1 are given by a′′j plus other terms
with the same order and decay, depending on 2(p − j) derivatives of u, this means
that aj,1 depend on max{p−j−1, 2(p−j)} = 2(p−j) derivatives of u. Summing
up, for every β ≤ p− 1 (we need that 2(p− j)+ β ≤ 2(p− 1)+ β ≤ 3p− 1) we
have

|∂αξ ∂βxRe aj,1(t, x, u(t, x), ξ)| (41)

≤ CMp−1γ (u)(1 + ‖u‖2(p−j)−1+β
2(p−j)+β,2(p−j)−1+β)〈x〉−β〈ξ〉j−α,
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|∂αξ ∂βx Im aj,1(t, x, u(t, x), ξ)| (42)

≤ CMp−1γ (u)(1 + ‖u‖2(p−j)−1+β
2(p−j)+β,2(p−j)−1+β)〈x〉−

j
p−1−β 〈ξ〉j−α.

Now, let us consider, for h ≥ max{h1, h2} (see Proposition 4), the operator
(eλp−2)−1iP1e

λp−2 , with λp−2 in Definition 2 satisfying Proposition 3. We observe
preliminarly that, since e±λp−2 ∈ SG0,0(R2) ⊂ S0(R2), then for the composition
(eλp−2)−1s1(t, x, u,D)e

λp−2 we can use the symbolic calculus in the Hörmander
class and obtain that (eλp−2)−1s1(t, x, u,D)e

λp−2 is again an operator with symbol

in S0(R2). Moreover, since
(
eλp−2

)−1 = e−λp−2(I + rp−2) and the principal part

of rp−2 has symbol rp−2,−2(x, ξ) = ∂ξλp−2(x, ξ)Dxλp−2(x, ξ) in SG−2,− p−2
p−1 , by

Remark 5 we obtain

(eλp−2)−1iP1e
λp−2 = ∂t + op

(
iaprp−2,−2

)

+e−λp−2

⎛
⎝iap(t)Dpx +Qp−1(t, x, u,D)+

p−2∑
j=0

ia′j,1(t, x, u,Dx)+ s1(t, x, u,D)
⎞
⎠ eλp−2

with a′p−2,1(t, x, u,Dx) = ap−2,1(t, x, u,Dx) and, for 0 ≤ j ≤ p − 3,
a′j,1(t, x, u,Dx) is given by aj,1(t, x, u,Dx) plus some new terms with the same
order and decay as aj,1 and depending on max{γp−1 + p − 1 − 2 − j, . . . , γp−� +
p − � − 2 − j, . . . γj+2} = γj+2 = 2(p − j − 2), because we have γp−� =
2(p− (p− �)) = 2� for 1 ≤ � ≤ p−1. The new terms contain a smaller number of
derivatives with respect to (41) and (42). Thus for every 1 ≤ j ≤ p−2 we have that
a′j,1 still satisfy (41) and (42) for a constant depending also onMp−2; notice that the
dependence on Mp−2 is only at levels 1 ≤ j ≤ p − 3. The asymptotic expansion
gives

iP2(t, x, u,D) := (eλp−2 )−1iP1e
λp−2

= ∂t + iap(t)Dpx +Qp−1(t, x, u,D) (43)

+ iap−2,1(t, x, u,Dx)+ op
(
ipapξ

p−1Dxλp−2

)

+
p−1∑
β=2

1

β!op
(
∂
β
ξ (iapξ

pe−λp−2 )Dβx λp−2

)

+
p−3∑
j=1

ia′j,1(t, x, u,Dx)+
p−2∑
α=1

1

α!op
(
e−λp−2 ∂αξ Qp−1D

α
x e
λp−2

)

+
p−2∑
β=1

p−2−β∑
α=0

∑
β1+β2=β

1

α!β1!β2!op
(
∂
β
ξ e

−λp−2Dβ1
x ∂

α
ξ Qp−1D

α+β2
x eλp−2

)
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+
p−2∑
j=1

j−1∑
α=1

1

α!op
(
e−λp−2 ∂αξ ia

′
j,1D

α
x e
λp−2

)

+
p−2∑
j=1

j−1∑
β=1

j−1−β∑
α=0

∑
β1+β2=β

1

α!β1!β2!op
(
∂
β
ξ e

−λp−2Dβ1
x ∂

α
ξ ia

′
j,1D

α+β2
x eλp−2

)

+ s′1(t, x, u,D)

with a new term s′1 ∈ S0. Let us now look at (43); by (41), (42), and using the
estimate (28) wih k = 2, we find at each level 1 ≤ k ≤ p − 3, the original terms
ak,1(t, x, u,D) plus terms which decay with respect to x at least like 〈x〉−1, and
possibly depending only onMp−1 andMp−2; the largest number of derivatives with
respect to u appears in

|∂βξ e−λp−2Dβ1
x ∂

α
ξ ia

′
j,1D

α+β2
x eλp−2|

≤ C′
Mp−1,Mp−2

γ (u)(1 + ‖u‖2(p−j)+β−1
2(p−j)+β,2(p−j)+β−1)〈ξ〉j−α−β 〈x〉−α−β ;

at the level k = j − α − β the largest number of x-derivatives of u appears when
α = 0 and β = j − k and it is given by 2(p − j) + β = 2(p − k − β) + β =
2(p − k)− β ≤ 2(p − k)− 1. Thus, similarly as for (38), we get

iP2 = ∂t + iap(t)Dpx +Qp−1(t, x, u,D)+ iap−2,1(t, x, u,Dx) (44)

+ op
(
ipapξ

p−1Dxλp−2

)
+
p−3∑
j=1

ia′′j,1(t, x, u,Dx)+ s′1(t, x, u,D)

where a′′j,1 are given by aj plus other terms of the same type, still satisfying (41),
(42) but with a constant CMp−1,Mp−2 depending on bothMp−1 andMp−2.

Now, let us focus on the term Ap−2 of order p − 2 with respect to ξ in (44). By
(42), (24), the choice of ω in (25), and (4) we get for every |ξ | ≥ 2h:

ReAp−2(t, x, u, ξ) := Re
(
iap−2,1(t, x, u, ξ)+ pap(t)ξp−1∂xλp−2(x, ξ)

)
= − Im ap−2,1(t, x, u, ξ)+ pap(t)ξp−1∂xλp−2(x, ξ)

≥ −CMp−1γ (u)
(

1 + ‖u‖3
4,3

) 〈ξ〉p−2
h

〈x〉
p−2
p−1

+Mp−2pap(t)|ξ |p−1〈x〉−
p−2
p−1 〈ξ〉−1

h
ψ

(
〈x〉

〈ξ〉p−1
h

)

≥ 〈ξ〉p−2
h

〈x〉
p−2
p−1

ψ

(
〈x〉

〈ξ〉p−1
h

)(
−CMp−1γ (u)

(
1 + ‖u‖3

4,3

)
+Mp−2pCp

(
2√
5

)p−1
)
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− CMp−1γ (u)
(

1 + ‖u‖3
4,3

) 〈ξ〉p−2
h

〈x〉
p−2
p−1

(
1 − ψ

(
〈x〉

〈ξ〉p−1
h

))

≥ −2CMp−1γ (u)
(

1 + ‖u‖3
4,3

)

if we choose Mp−2 ≥
CMp−1γ (u)

(
1 + ‖u‖3

4,3

)√
5
p−1

2p−1pCp
, and using again

〈x〉/〈ξ〉p−1
h ≥ 1/2 on the support of 1 − ψ(〈x〉/〈ξ〉p−1

h ) and |ξ |p ≥
(2/

√
5)p−1〈ξ〉p−1

h for |ξ | ≥ 2h. We can so apply the sharp Gårding theorem

to the symbol Ap−2(t, x, u, ξ) + 2CMp−1γ (u)
(

1 + ‖u‖3
4,3

)
≥ 0 and we obtain

that there exist pseudodifferential operators Qp−2(t, x, u,D), Rp−2(t, x, u,D),
R0,p−2(t, x, u,D) with symbols

Qp−2(t, x, u, ξ ) ∈ SGp−2,0, Rp−2(t, x, u, ξ ) ∈ SGp−3,0, R0,p−2(t, x, u, ξ ) ∈ S0

such that

Ap−2(t, x, u,D) = Qp−2(t, x, u,D)+ iRp−2(t, x, u,D)+ R0,p−2(t, x, uD)

with

Re〈Qp−2(t, x, u,D)h(t, x), h(t, x)〉 ≥ 0 ∀h ∈ S (R), (t, x) ∈ [0, T ] × R

and

Rp−2 =
p−3∑
j=1

Rj,p−2 (45)

where

Rp−3,p−2 = −i
⎛
⎝ψ1(ξ)DxAp−2 +

∑
2≤α+β≤3

ψα,β(ξ)∂
α
ξ D

β
x Ap−2

⎞
⎠

and

Rj,p−2 = −i
∑

2(p−2−j)≤α+β≤2(p−2−j)+1

ψα,β(ξ)∂
α
ξ D

β
x Ap−2,

for every 1 ≤ j ≤ p − 3. We have so

iP2 = ∂t + iap(t,D)+Qp−1(t, x, u,Dx)+Qp−2(t, x, u,Dx)

+ iRp−2(t, x, u,Dx)+
p−3∑
j=1

ia′′j,1(t, x, u,Dx)+ s′′1 (t, x, u,Dx).
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Again, each Rj,p−2 adds to a′′j,1 new terms with the same order and decay as a′′j,1
(notice that the second application of Theorem 2 is needed only in the case p ≥ 3
and in this case we have 5 ≤ p + 2, so the term ψ1(ξ)DxAp−2(t, x, u, ξ) satisfies
(41) and (42) with j = p−3 and a constant depending onMp−1,Mp−2. The largest
number of x-derivatives of u appears when α = 0, β = 2(p − 2 − j) + 1 and we
have

|ψα,β(ξ)∂αξ Dβx Ap−2(t, x, u, ξ)| ≤ CMp−1γ (u)
(
1 + ‖u‖3+β

4+β,3+β
)
〈ξ〉p−2− α+β

2 〈x〉−β

≤ CMp−1γ (u)
(
1 + ‖u‖2(p−j)

2(p−j)+1,2(p−j)
)
〈ξ〉j 〈x〉−1.

This means that, after the second application of the sharp Gårding theorem, we can
write

iP2 = ∂t + iap(t,D) +Qp−1(t, x, u,Dx)+Qp−2(t, x, u,Dx) (46)

+
p−3∑
j=1

iaj,2(t, x, u,Dx)+ s2(t, x, u,D)

for a new operator s2 with symbol in S0,where aj,2 are given by ajD
j
x plus other

terms with the same order and decay depending on 2(p− j)+ 1 x-derivatives of u;
thus aj,2 depends on max{2(p−j)+1, 2(p−j)} = 2(p−j)+1 x-derivatives of u.
Summing up, for every 1 ≤ j ≤ p−3 and for β ≤ p (we need that 2(p−j)+1+β ≤
2p − 1 + β ≤ 3p − 1) we have

|∂αξ ∂βxRe aj,2(t, x, u(t, x), ξ)| (47)

≤ CMp−1,Mp−2γ (u)(1 + ‖u‖2(p−j)+β
2(p−j)+1+β,2(p−j)+β)〈x〉−β 〈ξ〉j−α,

|∂αξ ∂βx Im aj,2(t, x, u(t, x), ξ)| (48)

≤ CMp−1,Mp−2γ (u)(1 + ‖u‖2(p−j)+β
2(p−j)+1+β,2(p−j)+β)〈x〉−

j
p−1−β 〈ξ〉j−α.

We can proceed performing the next conjugations which follow the same argument
as the second one. Arguing in this way, after � = p − 3 applications of Theorem 2
we finally come for h ≥ max{h1, . . . , hp−3} to

iPp−3 = (eλ3)−1 . . . (eλp−1)−1(iP )(eλp−1 ) . . . (eλ3) (49)

= ∂t + iap(t)Dpx +Qp−1(t, x, u,Dx)+ . . .+Q3(t, x, u,Dx) (50)

+ ia2,p−3(t, x, u,Dx)+ ia1,p−3(t, x, u,Dx)+ sp−3(t, x, u,D)
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where, for every 1 ≤ j ≤ p − 3,

Re〈Qp−j (t, x, u,D)h(t, x), h(t, x)〉 ≥ 0 ∀h ∈ S (R), (t, x) ∈ [0, T ] × R

and moreover for every β ≤ 7

|∂αξ ∂βxRe a2,p−3(t, x, u, ξ)| (51)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−9+β
3p−8+β,3p−9+β)〈x〉−β 〈ξ〉2−α,

|∂αξ ∂βx Im a2,p−3(t, x, u, ξ)| (52)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−9+β
3p−8+β,3p−9+β)〈x〉−

2
p−1−β〈ξ〉2−α,

and for β ≤ 5

|∂αξ ∂βxRe a1,p−3(t, x, u, ξ)| (53)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−7+β
3p−6+β,3p−7+β)〈x〉−β〈ξ〉1−α,

|∂αξ ∂βx Im a1,p−3(t, x, u, ξ)| (54)

≤ CMp−1,...,M3γ (u)(1 + ‖u‖3p−7+β
3p−6+β,3p−7+β)〈x〉−

1
p−1−β〈ξ〉1−α.

Now, we define, for h ≥ max{h1, . . . , hp−2}, iPp−2(t, x, u,D) :=
(eλ2)−1iPp−3e

λ2 and we get

iPp−2 = ∂t + iap(t)Dpx +Qp−1(t, x, u,Dx)+ . . .+Q3(t, x, u,Dx) (55)

+ ia2,p−3(t, x, u,Dx)+ op
(
ipapξ

p−1Dxλ2

)
+ ia′′1,p−3(t, x, u,Dx)+ s′p−3(t, x, u,D)

where a′′1,p−3 are given by aj plus other terms of the same type, still satisfying (53)
and (54) but with a constant CMp−1,...,M2 instead of CMp−1,...,M3 , and s′p−3 is still of
order 0.

Now, as usual, by choosing M2 ≥ CMp−1,...,M3γ (u)
(

1 + ‖u‖3p−9
3p−8,3p−9

)
√

5
p−1

2p−1pCp
we get

ReA2 : = Re
(
ia2,p−3(t, x, u,Dx)+ op

(
papξ

p−1∂xλ2

))
≥ 2CMp−1,...,M3γ (u)

(
1 + ‖u‖3p−9

3p−8,3p−9

)
.
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This time, since we are dealing with second order operators, we can apply the
Fefferman-Phong inequality (see Theorem 3) to

ReA2 + 2CMp−1,...,M3γ (u)
(

1 + ‖u‖3p−9
3p−8,3p−9

)
and obtain

Re〈ReA2h, h〉 ≥ −
(
c + 2CMp−1,...,M3γ (u)

(
1 + ‖u‖3p−9

3p−8,3p−9

))
‖h‖2, ∀h ∈ S (R)

for a positive constant c = c(u) depending on the derivatives ∂αξ ∂
β
x with |α|+|β| ≤ 7

of the symbol ReA2(t, x, u, ξ)+2CMp−1,...,M3γ (u)
(

1 + ‖u‖3p−9
3p−8,3p−9

)
. Since γ is

of class C7, we can now find a constant Cγ > 0 (depending also onMp−1, . . . ,M3)
such that

Re〈ReA2h, h〉 ≥ −Cγ
(

1 + ‖u‖3p−9+7
3p−8+7,3p−9+7

)
‖h‖2

= −Cγ
(

1 + ‖u‖3p−2
3p−1,3p−2

)
‖h‖2, ∀h ∈ S (R).

The advantage of the use of Fefferman-Phong inequality instead of Theorem 2 is
that we avoid the remainder of that theorem, i.e. we save some derivatives of the
fixed function u.

It now remains to treat the terms i ImA2 = i Re a2,p−3 and ia′′1,p−3 in (55). We
split i Re a2,p−3 into its Hermitian and anti-Hermitian part:

i ImA2 = i Re a2,p−3 + (i Re a2,p−3)
∗

2
+ i Re a2,p−3 − (i Re a2,p−3)

∗

2
=: H1+H2,

and we have that

Re〈H2h, h〉 = 0,

while

H1 = −1

2
∂ξ ∂x Re a2,p−3 (mod. SG0,0)

can be put together with ia′′1,p−3 since by (51) it satisfies (53). We get so

iPp−2 = ∂t + iap(t)Dpx +Qp−1(t, x, u,Dx)+ . . .+Q3(t, x, u,Dx)

+ ReA2(t, x, u,Dx)+H2(t, x, u,Dx)

+ ia1,p−2(t, x, u,Dx)+ sp−2(t, x, u,D)
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with ia1,p−2 still satisfying (53), (54) and sp−2 ∈ S0. Finally, to treat the terms
of order 1 with respect to ξ , we perform for h ≥ max{h1, . . . , hp−1} the last
conjugation:

iP� : = (eλ1)−1iPp−2e
λ1 (56)

= ∂t + iap(t)Dpx +Qp−1(t, x, u,Dx)+ . . .+Q3(t, x, u,Dx)

+ ReA2(t, x, u,Dx)+H2(t, x, u,Dx)

+ ia1,p−2(t, x, u,Dx)+ op
(
ipapξ

p−1Dxλ1

)
+ s′p−2(t, x, u,D)

with a new term s′p−2 ∈ S0. Notice that the conjugation e−λ1 (ReA2 +H2) e
λ1 gives

ReA2 +H2 plus a remainder of order (0, 0) whose principal part is given by

∂ξ (ReA2 +H2)∂xλ1 − ∂ξλ1Dx(ReA2 +H2)− ∂ξλ1(ReA2 +H2)Dxλ1 ∈ SG0,0.

As usual, by choosing M1 ≥ CMp−1,...,M2γ (u)
(

1 + ‖u‖3p−7
3p−6,3p−7

)√
5
p−1

/(
2p−1pCp

)
we get

ReA1 : = Re
(
ia1,p−2(t, x, u,Dx)+ op

(
papξ

p−1∂xλ1

))
≥ 0 − 2CMp−1,...,M2γ (u)

(
1 + ‖u‖3p−7

3p−6,3p−7

)
.

To the symbolA1(t, x, u, ξ) we can apply the sharp Gårding inequality (16) and we
obtain

Re〈A1h, h〉 ≥ −C′
γ (1 + ‖u‖3p−7

3p−6,3p−7)‖h‖ ∀h ∈ S (R).

At this point we are finally ready to prove an energy estimate in L2 for the Cauchy
problem. We compute

d

dt
‖w(t)‖2 = 2 Re〈∂tw,w〉 = 2 Re〈iP�w,w〉 − 2 Re〈iapw,w〉 −

p−1∑
k=3

2 Re〈Qkw,w〉

− 2 Re〈ReA2w,w〉 − 2 Re〈H2w,w〉 − 2 Re〈A1w,w〉 − 2 Re〈s ′p−2w,w〉

≤ C′
γ (1 + ‖u‖3p−2

3p−1,3p−2)
(
‖P�w‖2 + ‖w‖2

)
∀w ∈ S (R).

By Gronwall’s Lemma we obtain

‖w‖2 ≤ Ce(1+‖u‖3p−2
3p−1,3p−2)t

(
‖w(0, ·)‖2 +

∫ t

0
‖P�w(τ, ·)‖2dτ

)

and, by standard arguments, the energy estimate (31). ��
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Remark 7 Notice that with respect to [1], by a different proof we can relax from
4p−3 to 3p−1 the number of derivatives of u needed to perform the computations
in the linearized problem.

4 The Semilinear Problem

We now apply the energy estimates obtained in the previous section to prove the well
posedness of the semilinear Cauchy problem (1). Fixed s2 ≥ 3p − 2 and T > 0,
we consider the space Xs2T := C1([0, T ],H∞,s2(R)) and the map J : Xs2T → X

s2
T

defined by

J (u) := u(t, x)− u0(x)+ i
∫ t

0
ap(t)D

p
x u(s, x) ds

+i
p−1∑
j=0

∫ t

0
aj (s, x, u(s, x))D

j
xu(s, x) ds − i

∫ t

0
f (s, x) ds.

It is well known that the existence of a unique solution of (1) in Xs2T ∗ for some T ∗ ∈
(0, T ] is equivalent to the existence of a unique solution inXs2T ∗ of the equation Ju =
0, cf. [1, 12]. We shall approach the latter problem via the Nash-Moser inversion
theorem. As a direct consequence of Lemma 1,Xs2T is a tame Fréchet space endowed
with the family of seminorms

|g|n,s2,T = sup
[0,T ]

(|g(t, ·)|n,s2 + |Dtg(t, ·)|n,s2), n = 0, 1, 2, . . .

The map J is smooth tame since it is defined in terms of sums and composition of
integration and linear and nonlinear partial differential operators. In order to apply
Nash-Moser theorem it is sufficient to prove that for every fixed u, h ∈ X

s2
T , the

equationDJ(u)v = h has a unique solution v = S(u, h) ∈ Xs2T and that the map

S : Xs2T ×Xs2T → X
s2
T , (u, h)→ v = S(u, h) (57)

is smooth tame.

Lemma 3 For every u, h ∈ X
s2
T , the equation DJ(u)v = h admits a unique

solution v ∈ Xs2T satisfying for every n ∈ N the following estimate:

|v(t, ·)|2n,s2 ≤ Cn(u)
(
|h(0, ·)|2n+r,s2 +

∫ t

0
|Dth(τ, ·)|2n+r,s2 dτ

)
, t ∈ [0, T ]

(58)
for every r ≥ 2δ(p − 1) with Cn(u) = Cn+2δ(p−1),γ exp(1 + ‖u‖3p−2

3p−1,3p−2).
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Proof The proof follows the same argument as the proof of [1, Lemma 3.2], so we
just sketch it. A direct computation of the Fréchet derivative of J gives

DJ(u)v := lim
ε→0

J (u+ εv)− J (u)
ε

= v + i
∫ t

0
ap(s)D

p
x v(s) ds + i

p−1∑
j=0

∫ t

0
ãj (s, x, u)D

j
xv(s) ds,

where

ãj (s, x, u) =

⎧⎪⎨
⎪⎩
aj (s, x, u) 1 ≤ j ≤ p − 1

a0(s, x, u)+
p−1∑
h=0

∂wah(s, x, u)D
h
xu, j = 0.

Hence v is a solution of the equation DJ(u)v = h if and only if it is a solution of
the equation Jh0,u,Dth(v) = 0, where h0(x) := h(0, x) and for every u, u0, f ∈ Xs2T
the map Ju0,u,f : Xs2T → X

s2
T is defined by

Ju0,u,f (v) := v(t, x)− u0(x)+ i
∫ t

0
ap(s)Dxv(s, x) ds

+i
p−1∑
j=0

∫ t

0
ãj (s, x, u(s, x))D

j
xv(s, x) ds − i

∫ t

0
f (s, x) ds.

On the other hand, v solves Jh0,u,Dth(v) = 0 if and only if it is a solution of the
linear Cauchy problem

{
P̃u(D)v(t, x) = Dth(t, x)

v(0, x) = h0(x)
, (59)

where

P̃u(D) = Dt + ap(t)Dpx +
p−1∑
j=0

ãj (t, x, u)D
j
x .

Notice that ãj (t, x, u) satisfy the same conditions as aj (t, x, u). Hence, we can
apply Theorem 5 to (59), choosing η = 1 and ε = 0. It follows that there exists
v ∈ Xs2T solution of (59) satisfying the estimate (58). This concludes the proof. ��
Lemma 4 The map S defined in (57) is smooth tame.

Proof We observe that, fixed (u0, h0) ∈ X
s2
T × X

s2
T , the constant Cn(u) in the

energy estimate (58) is bounded if u belongs to a bounded neighborhood of (u0, h0).
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Evidently, from (58) we have:

|v(t, ·)|2n,s2 ≤ C′
n|h|2n+r,s2,T t ∈ [0, T ]

for some C′
n > 0. Similarly, from the equation P̃u(D)v = Dth we get

|Dtv(t, ·)|n,s2 ≤ |ap(t)Dpv(t, ·)|n,s2 +
p−1∑
j=0

|ãj (t, ·, u)Djxv(t, ·)|n,s2 + |Dth(t, ·)|n,s2

≤ C(|v(t, ·)|n+p,s2 + |h|n,s2,T )

for some C > 0. Hence

|S(u, h)|n,s2,T = sup
t∈[0,T ]

(|v|n,s2 + |Dtv(t, ·)|n,s2) ≤ Cn|h|n+r ′,s2,T ≤ Cn|(u, h)|n+r ′,s2,T

for some Cn > 0 r ′ ≥ 2δ(p − 1)+ p. Then S is tame.
We now prove that DS is also a tame map. For (u, h), (u1, h1) ∈ Xs2T ×Xs2T we

have

DS(u, h)(u1, h1) = lim
ε→0

S(u+ εu1, h+ εh1)− S(u, h)
ε

= lim
ε→0

vε − v
ε

,

where v is a solution of (59) and vε is the solution of

{
P̃u+εu1(D)vε = Dt(h+ εh1)

vε(0, x) = h0(x)+ εh1(0, x)
.

A direct computation shows that the functionwε = vε−v
ε

solves the Cauchy problem

{
P̃u+εu1wε = fε

wε(0, x) = h1(0, x)
,

where

fε = Dth1 −
p−1∑
j=0

ãj (t, x, u+ εu1)− ãj (t, x, u)
ε

D
j
xv.

We have the following: to prove thatDS is tame it is sufficient to show thatwε tends
to some w1 in Xs2T for ε → 0. Indeed, this would imply that w1 solves the Cauchy
problem

{
P̃u(D)w1 = f1

w1(0, x) = h1(0, x)
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where

f1 := lim
ε→0

fε = Dth1 −
p−1∑
j=0

∂wãj (t, x, u)u1D
j
xv

and so that w1 will satisfy an energy estimate of the form

|w1(t, ·)|2n,s2 ≤ Cn(u)
(
|h1(0, ·)|2n+r,s2 +

∫ t

0
|f1(τ, ·)|2n+r,s2 dτ

)
, (60)

which would give, by the expression of f1,

|w1(t, ·)|n,s2 ≤ C′
n(u)(|h1|n+r ′,s2,T + |h|n+r ′,s2,T ), r ′ ≥ 2r + p − 1

for (u, h) in a neighborhood of (u0, h0) and (u1, h1) in a neighborhood of some
fixed (ũ1, h̃1) ∈ Xs2T × Xs2T . Moreover, Dtw1 would satisfy a similar estimate, and
so w1 is tame.

Let us so prove that wε converges in Xs2T for ε → 0. Let ε1 > 0 and ε2 > 0 and
consider the corresponding functionswε1 andwε2 which solve the Cauchy problems

{
P̃u+εj u1(D)wεj = fεj
wεj (0, x) = h1(0, x)

, j = 1, 2.

Then, it is immediate to see that wε1 −wε2 is a solution of

⎧⎪⎪⎨
⎪⎪⎩
P̃u+ε1u1 (D)(wε1 − wε2) = fε1 − fε2 +

p−1∑
j=0

(ãj (t, x, u+ ε2u1)− ãj (t, x, u+ ε1u1))D
j
xwε2

(wε1 −wε2 )(0, x) = 0.

Then by the estimate (60) and the mean value theorem, we get

|wε1 −wε2 |n,s2 ≤ Cn(u+ ε1u1)

(
sup
t∈[0,T ]

|fε1 − fε2 |n+r,s2

+
p−1∑
j=0

sup
t∈[0,T ]

|∂wãj (t, x, u1,2)(ε1 − ε2)u1D
j
xwε1|n+r,s2

⎞
⎠

for some constant Cn(u + ε1u1) > 0 and for some u1,2 between u + ε1u1 and
u+ ε2u1. Moreover, since Hn+r,s2 is an algebra, then

|∂waj (t, x, u1,2)(ε1 − ε2) u1D
j
xwε2 |n+r,s2

≤ |∂waj (t, x, u1,2)|n+r,s2|ε1 − ε2||u1|n+r,s2 |wε2|n+r+j,s2 .
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Then, |wε1 −wε2 |n,s2 tends to 0 when ε1 → ε2 → 0 if (u, h) is in a neighoborhood
of (u0, h0) and (u1, h1) is in a neighborhood of some fixed (ũ1, h̃1) ∈ Xs2T × Xs2T .
This shows that there exists a Cauchy sequence εj tending to 0 such that the
corresponding function wεj converges in Xs2T and this implies thatDS is tame.

Using the previous results we can prove by induction on m that

DmS(u, h)(u1, h1) · · · (um, hm) = wm

is a solution of the Cauchy problem

{
P̃u(D)w

m = f m

wm(0, x) = 0

with

fm := −
p−1∑
j=0

∂wãj (t, x, u)umD
j
xw

m−1 −
p−1∑
j=0

∂2
wãj (t, x, u)um−1umD

j
xw

m−2

− · · · −
p−1∑
j=0

∂mw ãj (t, x, u)u1 · · ·um−1umD
j
xw

0,

w0 := v, and satisfies, in a neighborhood of (u, h), (u1, h1), . . . (um, hm) the
estimate

|wm|n,s2,T ≤ Cn
m−1∑
j=0

|hj |n+r(m),s2,T

for some Cn > 0 and some r(m) ∈ N, where h0 := h. The proof follows readily the
argument in the proof of Lemma 3.3 in [1]. We leave the details to the reader. ��
Proof of Theorem 1 We prove now the existence of a solution of the semilinear
Cauchy problem (1) that is of the equation Ju = 0. We recall that Ju = 0 if
and only if

u(t, x) = u0(x)− i
∫ t

0
ap(s)D

p
x u(s, x) ds (61)

− i

p−1∑
j=0

∫ t

0
aj (s, x, u(s, x))D

j
xu(s, x) ds + i

∫ t

0
f (s, x) ds.
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By a linear approximation in t we get u(t, x) = w(t, x)+ o(t) for t → 0 where

w(t, x) = u0(x)− it
⎛
⎝ap(0)Dpx u0(x)+

p−1∑
j=0

aj (0, x, u0(x))D
j
xu0(x)− f (0, x)

⎞
⎠ .

We also observe that, by the definition of J and w, we have:

∂t (Jw(t, x)) = ∂tw + iap(t)Dpx w + i
p−1∑
j=0

aj (t, x, w)D
j
xw − if (t, x)

= i(ap(t)− ap(0))Dpx u0 + i
p−1∑
j=0

(
aj (t, x, w)− aj (0, x, u0)

)
D
j
xu0

+tap(t)Dpx
⎡
⎣ap(0)Dpx u0 +

p−1∑
j=0

aj (0, x, u0)D
j
xu0 − f (0, x)

⎤
⎦

+
p−1∑
j=0

taj (t, x, w)D
j
x

⎡
⎣ap(0)Dpx u0 +

p−1∑
k=0

ak(0, x, u0)D
k
xu0 − f (0, x)

⎤
⎦

+i(f (0, x)− f (t, x)).

From this it follows that

|∂tJw(t, ·)|n,s2 ≤ sup
t∈[0,T ]

|ap(t)− ap(0)| · |u0|n+p,s2

+
p−1∑
j=0

|[aj (t, x,w)− aj (0, x, u0)]Djxu0|n,s2 + |f (0, x)− f (t, x)|n,s2

+ t sup
t∈[0,T ]

|ap(t)| ·
∣∣∣∣∣∣ap(0)Dpx u0 +

p−1∑
k=0

ak(0, x, u0)D
k
xu0 − f (0, x)

∣∣∣∣∣∣
n+p,s2

+ t
p−1∑
j=0

∣∣∣∣∣∣aj (t, x,w)Djx
⎡
⎣ap(0)Dpx u0 +

p−1∑
k=0

ak(0, x, u0)D
k
xu0 − f (0, x)

⎤
⎦
∣∣∣∣∣∣
n,s2

.

(62)

Taking w in a sufficiently small neighborhood of u0 and applying the mean value
theorem to the right-hand side of (62) we obtain

|∂tJw(t, ·)|n,s2 ≤ Ct (63)
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for a suitable constantC = C(n, s2, ap, . . . , a0, u0, f ). Now, fixed ε > 0 we define

φε(t, x) =
∫ t

0
ρ
( s
ε

)
(∂tJw)(s, x) ds,

where ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1 and ρ(s) = 0 for |s| ≤ 1 and ρ(s) = 1 for
|s| ≥ 2. Notice that φε = 0 for 0 ≤ t ≤ ε. Let U and V be neighborhoods of w and
Jw respectively such that J : U → V is a bijection. We have that

|Jw − φε|n,s2 =
∣∣∣∣
∫ t

0

(
1 − ρ

( s
ε

))
(∂tJw)(s, ·) ds

∣∣∣∣
n,s2

≤
∫ 2ε

0

∣∣∣(1 − ρ
( s
ε

))
(∂tJw)(s, ·)

∣∣∣
n,s2

ds

≤ C

∫ 2ε

0
s ds ≤ 2Cε2,

where C is the same constant appearing in (63). Similarly we obtain that

|∂t (Jw − φε)|n,s2 ≤ 2Cε.

Hence, taking 0 < ε < 1 we conclude that

|Jw − φε|n,s2,T ≤ 2Cε.

If we choose ε sufficiently small, we have that φε ∈ V . Then there exists u ∈ U
such that Ju = φε . In particular we have Ju = 0 for 0 ≤ t ≤ ε, that is u is a
solution in Xs2ε of the Cauchy problem. The uniqueness of the solution comes from
standard arguments, cf. [1]. ��

Acknowledgement The first author has been supported in the preparation of the paper by the
National Research Fund FFABR 2017.

References

1. Ascanelli, A., Boiti, C.: Semilinear p-evolution equations in Sobolev spaces. J. Differ. Equ.
260, 7563–7605 (2016)

2. Ascanelli, A., Cappiello, M.: Log-lipschitz regularity for SG hyperbolic systems. J. Differ.
Equ. 230, 556–578 (2006)

3. Ascanelli, A., Cappiello, M.: Weighted energy estimates for p-evolution equations in SG
classes. J. Evol. Eqs 15(3), 583–607 (2015)

4. Ascanelli, A., Cappiello, M.: Schrödinger type equations in Gelfand-Shilov spaces. J Math
Pures Appl 132, 207–250 (2019)



34 A. Ascanelli and M. Cappiello

5. Ascanelli, A., Boiti, C., Zanghirati, L.: Well-posedness of the Cauchy problem for p-evolution
equations. J. Differ. Equ. 253, 2765–2795 (2012)

6. Ascanelli, A., Boiti, C., Zanghirati, L.: A necessary condition for H∞well-posedness of p-
evolution equations. Adv. Differ. Equ. 21(12), 1165–1196 (2016)

7. Ascanelli, A., Cicognani, M., Reissig, M.: The interplay between decay of the data and
regularity of the solution in Schrödinger equations. Annali di Matematica Pura ed Appl (1923-)
199, 1–23 (2019)

8. Cicognani, M., Reissig, M.: Well-posedness for degenerate Schrödinger equations. Evol. Equ.
Control Theory 3(1), 15–33 (2014)

9. Cicognani, M., Reissig, M.: Some remarks on Gevrey well-posedness for degenerate
Schrödinger equations. In: Complex analysis and dynamical systems VI. Part 1. Contemporary
Mathematics, vol. 653, pp. 81–91. Israel Mathematical Conference Proceedings, American
Mathematical Society, Providence (2015)

10. Colombini, F., Nishitani, T., Taglialatela, G.: The Cauchy problem for semilinear second order
equations with finite degeneracy. In: Hyperbolic Problems and Related Topics. Graduate Series
in Analysis, pp. 85–109. International Press, Somerville (2003)

11. Cordes, H.O.: The Technique of Pseudo-Differential Operators. Cambridge University Press,
Cambridge (1995)

12. D’Ancona, P.: Local existence for semilinear weakly hyperbolic equations with time dependent
coefficients. Nonlinear Anal. 21(9), 685–696 (1993)

13. Fefferman, C., Phong, D.H.: On positivity of pseudo-differential operators. Proc. Natl. Acad.
Sci. USA 75(10), 4673–4674 (1978)

14. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7(1),
65–222 (1982)

15. Ichinose, W.: Some remarks on the Cauchy problem for Schrödinger type equations. Osaka J.
Math. 21, 565–581 (1984)

16. Kajitani, K., Baba, A.: The Cauchy problem for Schrödinger type equations. Bull. Sci. Math.
119, 459–473 (1995)

17. Kumano-Go, H.: Pseudo-Differential Operators. The MIT Press, Cambridge (1982)
18. Lerner, N., Morimoto, Y.: On the Fefferman-Phong inequality and a wiener-type algebra of

pseudo-differential operators. Publ. RIMS, Kyoto Univ. 43, 329–371 (2007)
19. Parenti, C.: Operatori pseudodifferenziali in Rn e applicazioni. Ann. Mat. Pura Appl. 93, 359–

389 (1972)
20. Schrohe, E.: Spaces of weighted symbols and weighted Sobolev spaces on manifolds. In:

Cordes, H.O., Gramsch, B., Widom, H. (eds.) Pseudodifferential Operators, Proceedings
Oberwolfach 1986. Lecture Notes in Mathematics, vol. 1256, pp. 360–377. Springer, New
York (1987)



Random-Field Solutions of Linear
Parabolic Stochastic Partial Differential
Equations with Polynomially Bounded
Variable Coefficients

Alessia Ascanelli, Sandro Coriasco, and André Süß

To Massimo and Michael, on occasion of their 60th birthday

Abstract We study random-field solutions of a class of stochastic partial differ-
ential equations, involving operators with polynomially bounded coefficients. We
consider linear equations under suitable parabolicity hypotheses, and we provide
conditions on the initial data and on the stochastic term, namely, on the associated
spectral measure, so that these kind of solutions exist in suitably chosen functional
classes. We also give a regularity result for the expected value of these solutions.
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1 Introduction

We consider linear stochastic partial differential equations (SPDEs in the sequel) of
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Lu(t, x) = [∂t + A(t)]u(t, x) = γ (t, x)+ σ(t, x)�̇(t, x), (1)
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where:

– A(t) is a continuous family of linear partial differential operators that contain
partial derivatives in space (x ∈ Rd , d ≥ 1),

– γ, σ are real-valued functions, subject to certain regularity conditions,
– � is an S′(Rd )-valued Gaussian process, white in time and coloured in space,

with correlation measure � and spectral measure M (see Sect. 2 for a precise
definition),

– u is an unknown stochastic process called solution of the SPDE.

To give meaning to (1) we rewrite it in its corresponding integral form and look for
mild solutions of (1), that is, stochastic processes u(t, x) satisfying

u(t, x) = v0(t, x)+
∫ t

0

∫
Rd
�(t, s, x, y)γ (s, y)dyds

+
∫ t

0

∫
Rd
�(t, s, x, y)σ (s, y)�̇(s, y)dyds,

(2)

where:

– v0 is a deterministic term, taking into account the initial condition;
– � is a suitable kernel, associated with the fundamental solution of the partial

differential equation (PDE in the sequel) Lu = [∂t + A(t)]u = 0;
– the first integral in (2) is of deterministic type, while the second is a stochastic

integral, and both are distributional integrals since �(t, s, x, y) is, in general, a
distribution with respect to the variables (x, y) ∈ R2d .

The kind of solution u we can construct for Eq. (1) depends on the approach we
employ to make sense of the stochastic integral appearing in (2).

In the present paper we are looking for a random-field solution of (1), that is,
we rely on the theory of stochastic integration with respect to a martingale measure
developed in [8, 11, 21]. We are so going to define the stochastic integral in (2)
through the martingale measure derived from the random noise �̇. Consequently,
we are going to obtain a random-field solution, that is, a solution u defined as a map
associating a random variable with each (t, x) ∈ [0, T0] × Rd , where T0 > 0 is the
time horizon of the solution of the equation.

Recently, hyperbolic SPDEs involving operators with (t, x)-dependent coef-
ficients have been studied. The existence of a random-field solution, first for
linear operators with uniformly bounded coefficients [3], and subsequently for
operators with polynomially bounded coefficients [6], has been shown. Moreover,
the existence of a unique function-valued solution has been shown for semilinear
hyperbolic SPDEs [5]. The main tools used for achieving this objective, namely,
pseudodifferential and Fourier integral operators, come from microlocal analysis. To
our knowledge, those are the first times that their full potential has been rigorously
applied within the theory of random-field solutions to hyperbolic SPDEs.
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Coming now to parabolic SPDEs, Dalang [11] studied random field solutions to
parabolic equations with t-continuous coefficients of the form

∂tu(t, x)−
⎛
⎝ n∑
i,j=1

ai,j (t)∂
2
xixj

+
n∑
i=1

bi(t)∂xi + c(t)
⎞
⎠u(t, x)

= γ (u(t, x))+ σ(u(t, x))�̇(t, x)
(3)

under the coercivity assumption

n∑
i,j=1

ai,j (t)ξiξj ≥ ε|ξ |2, (t, ξ) ∈ [0, T ] × Rd,

for some constant ε > 0. He obtained a random field solution of (3) under the
condition ∫

Rd

M(dξ)

1 + |ξ |2 dξ <∞.

Furthermore, Sanz-Solé and Vuillermont [19] proved the existence and unique-
ness of a variational random-field solution to a class of initial-boundary value
problems for second order parabolic equations with variable coefficients of the form

∂tu(t, x) = div (k(t, x)∇u(t, x))+ γ (u(t, x))+ σ(u(t, x))W(t, x), (t, x) ∈ [0, T ] ×D,

withD a sufficiently regular bounded domain in Rd , k a positive definite symmetric
matrix,W(t, x) a Wiener process.

In the present paper we deal with the existence of a random-field solution to
linear parabolic SPDEs of the form (1) with (t, x)-dependent coefficients admitting,
at most, a polynomial growth as |x| → ∞. More precisely, here we treat parabolic
equations of arbitrary orderm,μ > 0 of the form (1), whose coefficients are defined
on the whole space Rd , that is

L = ∂t + A(t), A(t)u(t, x) =
∑
|α|≤μ

aα(t, x) (D
α
x u)(t, x), (4)

D = −i∂, where μ ≥ 1, aα ∈ C([0, T ], C∞(Rd )) for |α| ≤ μ, and, for all
β ∈ Nd0 = (N ∪ {0})d , there exists a constant Cαβ > 0 such that

|∂βx aα(t, x)| ≤ Cαβ 〈x〉m−|β|,

for all (t, x) ∈ [0, T ]×Rd , where 〈x〉 := (1+|x|2)1/2. The parabolicity of Lmeans
that the parameter-dependent symbol a(t, x, ξ) of the SG-operators family A(t),
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defined here below, satisfies

a(t, x, ξ) :=
∑
|α|≤μ

aα(t, x)ξ
α ≥ C〈x〉m′ 〈ξ〉μ′ , (5)

with C > 0, m ≥ m′ > 0, μ ≥ μ′ > 0, that is, a is SG-hypoelliptic. Postponing to
the next Sect. 3 the precise characterization, we give here an example.

Example 1 An example of a SG-parabolic operator L is given by the generalized
SG-heat operator, defined for every m,μ ∈ N \ {0} by

L = ∂t + 〈x〉2m〈D〉2μ, x ∈ Rd .

In this case m = m′, μ = μ′, that is, a is SG-elliptic.

We study SPDEs of the form (1), (4), (5), and we derive conditions on the right-
hand side terms γ and σ , and on the spectral measure M (hence, on �̇), such that
there exists a random-field (mild) solution to the corresponding Cauchy problem.

As customary for the classes of the associated deterministic PDEs, we are
interested in the present paper in both the smoothness, as well as the decay/growth
at spatial infinity of the solutions. Here we also obtain an analog of such global
regularity properties, employing suitable weighted Sobolev spaces, namely, the so-
called Sobolev-Kato spaces Hz,ζ (Rd), z, ζ ∈ R defined by

Hz,ζ (Rd ) = {u ∈ S′(Rd ) : ‖u‖z,ζ = ‖〈·〉z〈D〉ζ u‖L2 <∞}. (6)

The results proved in this paper expand the theory developed in [3, 6] to the cases of
operators L which are parabolic and whose coefficients are not uniformly bounded,
and expand the results of [11] to the case of space-depending coefficients with
polynomial growth and of higher order equations (there, second order operators are
considered). Our main result reads as follows (see Sects. 3 and 4, and Theorem 6
below, for the precise definitions and statement).

Theorem Let us consider the Cauchy problem

{
Lu(t, x) = γ (t, x)+ σ(t, x)�̇(t, x), (t, x) ∈ (0, T ] × Rd,

u(0, x) = u0(x), x ∈ Rd,
(7)

for a SPDE associated with an SG-parabolic operator L of the form (4) with m ≥
m′ > 0, μ ≥ μ′ > 0. Let u0 ∈ Hz,ζ (Rd ), with z ≥ 0 and ζ > d/2, and assume
that γ ∈ C([0, T ];Hz,ζ (Rd)), σ ∈ C([0, T ],H 0,ζ (Rd)), s �→ Fσ(s) = νs ∈
L2([0, T ],Mb(Rd )), where Mb(Rd) is the space of complex-valued measures with
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finite total variation. Assume that one of the following conditions on the spectral
measureM, associated with the random noise �̇, holds:

(H0) either, for every t ∈ [0, T ],

sup
0≤s<t

sup
η∈Rd

∫
Rd

|e(t, s, x, ξ + η)|2 M(dξ) <∞

and for every 0 ≤ s < t

lim
h↓0

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ) = 0,

where e(t, s) is the (parameter-dependent) symbol of the fundamental solu-
tion of the operator L,

(H1) or ∫
Rd

M(dξ) <∞,

(H2) orM is absolutely continuous, |νs |tv ∈ L∞(0, T ), and∫
Rd

M(dξ)

〈ξ〉μ′ <∞.

Then, there exists a random-field solution u of (7). Moreover, for any κ ∈ [0, 1),

E[u] ∈ C([0, T ],H z,ζ (Rd)) ∩ C1([0, T ],H z−m,ζ−μ(Rd ))∩
∩ C1((0, T ],S(Rd)) ∩ L1([0, T ],H z+κm′,ζ+κμ′(Rd)),

and also ∂tE[u] ∈ L1([0, T ],H z−m+κm′,ζ−μ+κμ′ (Rd)), κ ∈ [0, 1).
Remark 1 Notice that we find, for general parabolic SPDEs with coefficients in
(t, x), possibly polynomially growing as |x| → ∞, in the case of an absolutely
continuous spectral measure and |νs |tv bounded, the same condition given in [11]
on the spectral measure, with μ = μ′ = 2, see (H2).

The main tools for proving the existence of random-field solutions to (1) will be
pseudodifferential operators with symbols in the so-called SG classes. Such symbol
classes have been introduced in the 1970s by H.O. Cordes (see, e.g. [9]) and C.
Parenti [17] (see also R. Melrose [16]). The strategy to prove the main theorem
consists of the following steps:

1. construction of the fundamental solution of L in (4), and then (formally) of the
solution u to (7);

2. proof of the fact that v0 and the stochastic and deterministic integrals, appearing
in the (formal) expression (2) of u, are well-defined.
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For point (1) we need, on one hand, to perform compositions between pseudodiffe-
rential operators, using the theory developed, e.g., in [9], and, on the other hand,
the construction of the fundamental solution of parabolic operators in the SG
environment. The latter can be achieved in analogy to the theory developed in [14,
Chapter 7, §4], but here, in addition, we obtain more precise information about the
order of the pseudodifferential operator family E(t, s) that defines the fundamental
solution of L. For point (2) we rely on (a variant of) results proved in [3].

With the aim of giving a presentation as self-contained as possible, for the
convenience of the reader, we provide various preliminaries from the existing
literature. The paper is organized as follows.

In Sect. 2 we recall some notions about stochastic integration with respect to
martingale measures and the corresponding concept of random-field solution to a
SPDE. Since, in contrast to the classical references [11, 21], here we have to deal
with integrands of the form�(t, s, x, y)σ (s, y)with (t, x) fixed, we directly present
here the conditions that � and σ have to satisfy to let the stochastic integral with
respect to a martingale measure in (2) be well-defined.

In Sect. 3 we first give a brief summary of the main tools, coming from microlocal
analysis, that we use for the construction of the fundamental solution operator and
of its kernel�(t, s, x, y) (these results come mainly from [9, 15]). Subsequently, we
perform the construction of the fundamental solution of the SG-parabolic operator
L. To our best knowledge, compared with the previously existing literature, such
construction for this operator class, which is essential to us to prove our main
theorem, has not appeared elsewhere.

In Sect. 4 we focus on the parabolic SPDE (1), (4), (5), and prove our main
theorem, under appropriate assumptions (see Theorem 6). Finally, we mention
that the results illustrated in Sect. 4 about the structure of the kernel �(t, s, x, y)
appearing in (2) are employed also in [7], where we look for function-valued
solutions to the semilinear parabolic SPDEs

Lu(t, x) = γ (t, x, u(t, x))+ σ(t, x, u(t, x))�̇(t, x) (8)

associated with (1).

2 Stochastic Integration with Respect to a Martingale
Measure

Let us consider a distribution-valued Gaussian process {�(φ); φ ∈ C∞
0 (R+ ×

Rd)} on a complete probability space (�,F ,P), with mean zero and covariance
functional given by

E[�(φ)�(ψ)] =
∫ ∞

0

∫
Rd

(
φ(t) ∗ ψ̃(t))(x) �(dx)dt, (9)
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where ψ̃(t, x) := ψ(t,−x), ∗ is the convolution operator and � is a nonnegative,
nonnegative definite, tempered measure on Rd usually called correlation measure.
Then [20, Chapter VII, Théorème XVIII] implies that there exists a nonnegative
tempered measure M on Rd , usually called spectral measure, such that F� = M,
where F denotes the Fourier transform. By Parseval’s identity, the right-hand side
of (9) can be rewritten as

E[�(φ)�(ψ)] =
∫ ∞

0

∫
Rd
[Fφ(t)](ξ) · [Fψ(t)](ξ)M(dξ)dt.

Definition 1 We call (mild) random-field solution to (1) an L2(�)-family of
random variables u(t, x), (t, x) ∈ [0, T ] × Rd , jointly measurable, satisfying the
stochastic integral equation (2).

In this section we provide conditions to show that the stochastic integral in (2)
is meaningful. This will be enough for our purposes, since the other two terms in
(2) are deterministic, and will turn out to be well-defined by the theory of parabolic
partial differential equations in our setting. For a complete set of conditions such that
each term on the right-hand side of (2) is meaningful, when a general distribution�
is involved, see [3].

We want to give a precise meaning to the stochastic integral in (2) by defining

∫ t

0

∫
Rd
�(t, s, x, y)σ (s, y)�̇(s, y)dsdy:=

∫ t

0

∫
Rd
�(t, s, x, y)σ (s, y)M(ds, dy), (10)

where, on the right-hand side, we have a stochastic integral with respect to the
martingale measure M related to �. As explained in [12], by approximating
indicator functions with C∞

0 -functions, the process � can indeed be extended to
a worthy martingale measure M = (Mt(A); t ∈ R+, A ∈ Bb(Rd)), where
Bb(Rd ) denotes the bounded Borel subsets of Rd . The stochastic integral with
respect to the martingale measure M of stochastic processes f and g, indexed by
(t, x) ∈ [0, T ] × Rd and satisfying suitable conditions, is constructed by steps (see
[8, 11, 21]), starting from the class E of simple processes, and making use of the
pre-inner product (defined for suitable f, g)

〈f, g〉0 = E

[ ∫ T

0

∫
Rd

(
f (s) ∗ g̃(s))(x) �(dx)ds]

= E

[ ∫ T

0

∫
Rd
[Ff (s)](ξ) · [Fg(s)](ξ)M(dξ)ds

]
,

(11)

with corresponding semi-norm ‖ · ‖0. For a simple process

g(t, x;ω) =
m∑
j=1

1(aj ,bj ](t)1Aj (x)Xj (ω) ∈E
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(with m ∈ N, 0 ≤ aj < bj ≤ T , Aj ∈ Bb(Rd), Xj bounded, and FAj -measurable
random variable for all 1 ≤ j ≤ n), the stochastic integral with respect to M is
given by

(g ·M)t :=
m∑
j=1

(
Mt∧bj (Aj )−Mt∧aj (Aj)

)
Xj,

where x ∧ y := min{x, y}, and the fundamental isometry

E
[
(g ·M)2t

] = ‖g‖2
0 (12)

holds for all g ∈ E. The Hilbert space P0 of integrable stochastic processes
is defined as the completion of E with respect to 〈·, ·〉0. On P0, the stochastic
integral with respect to M is constructed as an L2(�)-limit of simple processes
via the isometry (12). Moreover, by Lemma 2.2 in [18] we know that P0 =
L2
p([0, T ] × �,H), where here L2

p(. . .) stands for the predictable stochastic

processes in L2(. . .) and H is the Hilbert space which is obtained by completing
the Schwartz functions with respect to the inner product 〈·, ·〉0. Thus, P0 consists of
predictable processes which may contain tempered distributions in the x-argument
(whose Fourier transforms are functions, P-almost surely).

Now, to give a meaning to the integral (10), we need to impose conditions on
the distribution � and on the coefficient σ such that �σ ∈ P0. To this aim, we
introduce the following space.

Definition 2 S′(Rd)∞ is the space of all the tempered distributions T ∈ S′(Rd )
such that, for every k, 〈·〉kT is a bounded distribution on Rd , i.e. it belongs to the
dual space of {ϕ ∈ C∞(Rd )|∀α ∈ Nd ∂αϕ ∈ L1(Rd)}.
It can be shown that S′(Rd)∞ = O′

C(R
d), where O′

C is the widest class of
distributions such that the convolution with elements of S′ is well-defined. A
necessary and sufficient condition for T ∈ S′(Rd)∞, which is useful for us, is the
following:

T ∈ O′
C(R

d ) ⇐⇒ ∀χ ∈ C∞
0 (R

d) T ∗ χ ∈ S(Rd). (13)

For more details, see [20] and the recent paper [4].
In [3], sufficient conditions for the existence of the integral on the right-hand

side of (10) have been given, in the case that σ depends on the spatial argument y,
assuming that the spatial Fourier transform of the function σ is a complex-valued
measure with finite total variation. Namely, we assume that, for all s ∈ [0, T ],

|Fσ(·, s)| = |Fσ(·, s)|(Rd) = sup
π

∑
A∈π

|Fσ(·, s)|(A) <∞,
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where π is any partition on Rd into measurable sets A, and the supremum is taken
over all such partitions. Let, in the sequel, νs := Fσ(·, s), and let |νs |tv denote
its total variation. We summarize such conditions in the following theorem (see
[2, 3, 5, 6] for details).

Theorem 1 Let �T be the simplex given by 0 ≤ t ≤ T and 0 ≤ s ≤ t . Let, for
(t, s, x) ∈ �T × Rd , �(t, s, x) be a deterministic function with values in S′(Rd)∞,
and let σ be a function in L2([0, T ], Cb(Rd)), where Cb stands for the space of
continuous and bounded functions, such that:

(A1) the function (t, s, x, ξ) �→ [F�(t, s, x)](ξ) is measurable, the function s �→
Fσ(s) = νs belongs to L2([0, T ],Mb(Rd)), and, for every t ∈ [0, T ],
∫ t

0

(
sup
η∈Rd

∫
Rd

|[F�(t, s, x)](ξ + η)|2 M(dξ)
)
|νs |2tv ds <∞; (14)

(A2) � and σ are as in (A1) and, for every t ∈ [0, T ],

lim
h↓0

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|[F(�(t, s, x)−�(t, r, x))](ξ + η)|2 M(dξ)
)

× |νs |2tv ds = 0.

Then �σ ∈ P0. In particular, the stochastic integral on the right-hand side of (10)
is well-defined and

E
[
((�(t, ·, x, ∗)σ (·, ∗)) ·M)2t

] ≤
≤
∫ t

0

(
sup
η∈Rd

∫
Rd

|[F�(t, s, x)](ξ + η)|2 M(dξ)
)
|νs |2tv ds.

Remark 2 In [3] conditions (A1) and (A2) are given in a slightly different way.
Namely, an integral on [0, T ] appears there, in place of integrals on [0, t] for every
t ∈ [0, T ]. Moreover, in (A2) a characteristic function naturally appears in the proof
of Theorem 2.3 in [3]. The present formulation is actually the minimal requirement
needed to prove that theorem, see the corresponding proof.

Remark 3 If σ = σ(s), then Fσ(s) = (2π)dσ (s)δ0, where δ0 is the Dirac delta
distribution with total variation 1. In such case, the necessary condition becomes∫ T

0 σ(s)
2
∫
Rd |[F�(t, s, x)](ξ)|2 M(dξ)ds < ∞, which is actually weaker than

(14), in the sense that there is no supremum over η, and corresponds to the one
given in [11, Example 9].
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3 Microlocal Analysis and Fundamental Solution to
Parabolic Equations with Polynomially Bounded
Coefficients

3.1 Elements of the SG-Calculus

We recall here the basic definitions and facts about the so-called SG-calculus of
pseudodifferential operators, through standard material appeared, e.g., in [5, 6], and
elsewhere (sometimes with slightly different notational choices). In the sequel, we
will often write A � B when |A| ≤ c · |B|, for a suitable constant c > 0.

The class Sm,μ = Sm,μ(Rd ) of SG symbols of order (m,μ) ∈ R2 is given by all
the functions a(x, ξ) ∈ C∞(Rd × Rd) with the property that, for any multiindices
α, β ∈ Nd0 , there exist constants Cαβ > 0 such that the conditions

|DαxDβξ a(x, ξ)| ≤ Cαβ〈x〉m−|α|〈ξ〉μ−|β|, (x, ξ) ∈ Rd × Rd, (15)

hold. For m,μ ∈ R, � ∈ N0, a ∈ Sm,μ, the quantities

‖a‖m,μ� = max|α+β|≤� sup
x,ξ∈Rd

〈x〉−m+|α|〈ξ〉−μ+|β||∂αx ∂βξ a(x, ξ)| (16)

are a family of seminorms, defining the Fréchet topology of Sm,μ. The correspond-
ing classes of pseudodifferential operators Op(Sm,μ) = Op(Sm,μ (Rd)) are given,
for a ∈ Sm,μ(Rd), u ∈ S(Rd), by

(Op(a)u)(x) = (a(·,D)u)(x) = (2π)−d
∫
eixξa(x, ξ)û(ξ)dξ, (17)

where û stands for the Fourier transform of u, extended by duality to S′(Rd). The
operators in (17) form a graded algebra with respect to composition, i.e.,

Op(Sm1,μ1) ◦ Op(Sm2,μ2) ⊆ Op(Sm1+m2,μ1+μ2).

The symbol c ∈ Sm1+m2,μ1+μ2 of the composed operator Op(a)◦Op(b), a ∈ Sm1,μ1 ,
b ∈ Sm2,μ2 , admits the asymptotic expansion

c(x, ξ) ∼
∑
α

i |α|

α! D
α
ξ a(x, ξ)D

α
x b(x, ξ), (18)

which implies that the symbol c equals a · b modulo Sm1+m2−1,μ1+μ2−1.
The residual elements of the calculus are operators with symbols in

S−∞,−∞ = S−∞,−∞(Rd ) =
⋂

(m,μ)∈R2

Sm,μ(Rd) = S(R2d),
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that is, those having kernel in S(R2d), continuously mapping S′(Rd) to S(Rd). For
any a ∈ Sm,μ, (m,μ) ∈ R2, Op(a) is a linear continuous operator from S(Rd )
to itself, extending to a linear continuous operator from S′(Rd ) to itself, and from
Hz,ζ (Rd ) to Hz−m,ζ−μ(Rd), where Hz,ζ (Rd), (z, ζ ) ∈ R2, denotes the Sobolev-
Kato (or weighted Sobolev) space defined in (6) with the naturally induced Hilbert
norm. When z ≥ z′ and ζ ≥ ζ ′, the continuous embedding Hz,ζ ↪→ Hz′,ζ ′ holds
true. It is compact when z > z′ and ζ > ζ ′. SinceHz,ζ = 〈·〉z H 0,ζ = 〈·〉z H ζ , with

Hζ the usual Sobolev space of order ζ ∈ R, we find ζ > k + d

2
⇒ Hz,ζ ↪→ Ck ,

k ∈ N0.
One also actually finds

⋂
z,ζ∈R

Hz,ζ (Rd) = H∞,∞(Rd ) = S(Rd),

⋃
z,ζ∈R

Hz,ζ (Rd) = H−∞,−∞(Rd) = S′(Rd ),
(19)

as well as, for the space of rapidly decreasing distributions, see [4, 20],

S′(Rd)∞ =
⋂
z∈R

⋃
ζ∈R

Hz,ζ (Rd) = H+∞,−∞(Rd). (20)

The continuity property of the elements of Op(Sm,μ) on the scale of spaces
Hz,ζ (Rd ), (m,μ), (z, ζ ) ∈ R2, is expressed more precisely in the next Theorem 2.

Theorem 2 Let a ∈ Sm,μ(Rd), (m,μ) ∈ R2. Then, for any (z, ζ ) ∈ R2, Op(a) ∈
L(H z,ζ (Rd),H z−m,ζ−μ(Rd)), and there exists a constant C > 0, depending only
on d,m,μ, z, ζ , such that

‖Op(a)‖L (Hz,ζ (Rd ),Hz−m,ζ−μ(Rd )) ≤ C‖a‖m,μ[
d
2

]
+1
, (21)

where [t] denotes the integer part of t ∈ R and L (X, Y ) stands for the space of
linear and continuous maps from a space X to a space Y .

Cordes introduced the class O(m,μ) of the operators of order (m,μ) as follows,
see, e.g., [9].

Definition 3 A linear continuous operatorA : S(Rd )→ S(Rd ) belongs to the class
O(m,μ), of the operators of order (m,μ) ∈ R2 if, for any (z, ζ ) ∈ R2, it extends to
a linear continuous operator Az,ζ : Hz,ζ (Rd)→ Hz−m,ζ−μ(Rd). We also define

O(∞,∞) =
⋃

(m,μ)∈R2

O(m,μ), O(−∞,−∞) =
⋂

(m,μ)∈R2

O(m,μ).
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Remark 4

1. Trivially, any A ∈ O(m,μ) admits a linear continuous extension A∞,∞ : S′(Rd )
→ S′(Rd ). In fact, in view of (19), it is enough to set A∞,∞|

Hz,ζ (Rd ) = Az,ζ .

2. Theorem 2 implies Op(Sm,μ(Rd)) ⊂ O(m,μ), (m,μ) ∈ R2.
3. O(∞,∞) and O(0, 0) are algebras under operator multiplication, O(−∞,−∞)

is an ideal of both O(∞,∞) and O(0, 0), and O(m1, μ1)◦O(m2, μ2) ⊂ O(m1 +
m2, μ1 + μ2).

The following characterization of the class O(−∞,−∞) is often useful, see [9].

Theorem 3 The classO(−∞,−∞) coincides with Op(S−∞,−∞(Rd)) and with the
class of smoothing operators, that is, the set of all the linear continuous operators
A : S′(Rd ) → S(Rd ). All of them coincide with the class of linear continuous
operators A admitting a Schwartz kernel KA belonging to S(R2d).

An operator A = Op(a) and its symbol a ∈ Sm,μ are called elliptic (or Sm,μ-
elliptic) if there exists R ≥ 0 such that

C〈x〉m〈ξ〉μ ≤ |a(x, ξ)|, |x| + |ξ | ≥ R,

for some constant C > 0. If R = 0, a−1 is everywhere well-defined and smooth,
and a−1 ∈ S−m,−μ. If R > 0, then a−1 can be extended to the whole of R2d so that
the extension ã−1 satisfies ã−1 ∈ S−m,−μ. An elliptic SG operator A ∈ Op(Sm,μ)
admits a parametrix A−1 ∈ Op(S−m,−μ) such that

A−1A = I + R1, AA−1 = I + R2,

for suitable R1, R2 ∈ Op(S−∞,−∞), where I denotes the identity operator. In such
a case, A turns out to be a Fredholm operator on the scale of functional spaces
Hz,ζ (Rd ), (z, ζ ) ∈ R2.

Proposition 1 Let A = Op(a) be a SG pseudodifferential operator, with symbol
a ∈ Sm,μ(Rd), (m,μ) ∈ R2, and let KA denote its Schwartz kernel. Then, the
Fourier transform with respect to the second argument of KA, F·�→ηKA(x, ·), is
given by

F·�→ηKA(x, ·) = e−ix·ηa(x,−η). (22)

The proof of Proposition 1 can be found, e.g., in [9]. The next Lemma 1 is
a special case of the similar, more general result for the kernel of SG Fourier
integral operators proved, for instance, in [5]. We give its direct proof here, for
the convenience of the reader.

Lemma 1 Let A = Op(a) be a SG pseudodifferential operator with symbol a ∈
Sm,μ(Rd), (m,μ) ∈ R2, and let KA denote its Schwartz kernel. Then, for every
x ∈ Rd , KA(x, ·) ∈ S′(Rd)∞. More precisely, we find KA ∈ C∞(Rd ,S′(Rd )∞).
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Proof Given a fixed x ∈ Rd , by [4, Theorem 3.3], to see thatKA(x, ·) ∈ S′(Rd)∞ it
suffices to show that for every χ ∈ D(Rd ),KA(x, ·)∗χ ∈ S(Rd).We already know
[20, p. 244/245] thatKA(x, ·)∗χ is a C∞ function of slow growth. Computing now
its Fourier transform (in the distributional sense), using Proposition 1 we see that

F·�→η(KA(x, ·) ∗ χ)(η) = F·�→ηKA(x, ·)χ̂(η) = e−ix·ηa(x,−η)χ̂(η) ∈ S(Rdη).

It follows that, for its inverse Fourier transform,KA(x, ·)∗χ ∈ S(Rd ), too. Finally,
the fact that the map

x �→ KA(x, y) =
∫
Rd
ei(x−y)·ξa(x, ξ)d̄ξ

belongs to C∞(Rd ,S′(Rd)∞) is a consequence of the general properties of oscilla-
tory integrals, taking into account that x · ξ and a(x, ξ) are smooth functions with
respect to x. This completes the proof.

3.2 Construction of the Fundamental Solution of
SG-Parabolic Operators

We work here with a class of operators with more general symbols than the
(polynomial) ones appearing in (4). Namely, we consider operators of the form

L = ∂t + A(t) = ∂t + Op(a(t)), (23)

where, for m,μ > 0, A(t) = Op(a(t)) are SG pseudodifferential operators with
parameter-dependent symbol a ∈ C([0, T ], Sm,μ(Rd)). Notice that, of course, (4)
is a special case of (23). The parabolicity condition on L is here expressed by means
of the (SG-)hypoellipticity of A(t), namely,

∃C > 0 Re a(t, x, ξ) ≥ C〈x〉m′ 〈ξ〉μ′ ,

∀α, β ∈ Nd ∃Cαβ > 0

∣∣∣∣∣
∂αx ∂

β
ξ a(t, x, ξ)

Re a(t, x, ξ)

∣∣∣∣∣ ≤ Cαβ〈x〉−|α|〈ξ〉−|β|.
(24)

where 0 < m′ ≤ m, 0 < μ′ ≤ μ, t ∈ [0, T ], x, ξ ∈ Rd . A(t) is (SG-)elliptic if
m = m′, μ = μ′, see above. Elements of the microlocal analysis of SG-parabolic
operators can be found in [9, 15]. As customary, A(t), t ∈ [0, T ], is considered as
an unbounded operator in L2 with dense domainHm,μ (see [9, Ch. 3, Sec. 3–4]; see
also [15] for the spectral theory of corresponding self-adjoint elliptic operators).
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Definition 4 We say that L = ∂t + Op(a(t)), a ∈ C([0, T ], Sm,μ(Rd)) is (SG-)
parabolic, with respect to m,m′, μ,μ′, 0 < m′ ≤ m, 0 < μ′ ≤ μ, if a satisfies the
(SG-)hypoellipticity condition (24).

We now prove our first main result, namely, the existence of the fundamental
solution operator of a SG-parabolic operator L.

Theorem 4 Let L = ∂t + Op(a(t)), a ∈ C([0, T ], Sm,μ(Rd )) be (SG-)parabolic,
with respect to m,m′, μ,μ′, 0 < m′ ≤ m, 0 < μ′ ≤ μ. Then, L admits a
fundamental solution operator E(t, s), 0 ≤ s ≤ t ≤ T , 0 ≤ s < T , that
is, an operator family E(t, s) = Op(e(t, s)) with e(·, s) ∈ C((s, T ], S0,0(Rd )) ∩
C1((s, T ], Sm,μ(Rd )), with the following properties:

1. E satisfies the equation

LE(t, s) = 0, 0 ≤ s < t ≤ T ; (25)

2. the symbol family e(t, s) satisfies

e(t, s, x, ξ)→ 1 weakly in S0,0(Rd) for t → s+; (26)

3. writing e(t, s) as

e(t, s, x, ξ) = exp

(
−
∫ t

s

a(τ, x, ξ) dτ

)
+ r0(t, s, x, ξ), (27)

the symbol family r0(t, s) satisfies

r0(t, s, x, ξ)→ 0 weakly in S−1,−1(Rd) for t → s+, (28){
r0(t, s, x, ξ)

t − s
}

0≤s<t≤T
is a bounded set in Sm−1,μ−1(Rd ). (29)

Remark 5

1. It is enough that (24) is satisfied for |x| + |ξ | ≥ R > 0. In fact, if this
is the case, there exists M > 0 such that aM(t, x, ξ) = a(t, x, ξ) + M

satisfies (24) everywhere. Let then EM(t, s) be the fundamental solution of
LM = ∂t + Op(aM(t)). Then, E(t, s) = eM(t−s)EM(t, s) is the fundamental
solution of L and

eM(t−s)e−
∫ t
s [a(τ )+M] dτ = e−

∫ t
s a(τ ) dτ ,

so E(t, s) has the properties stated in Theorem 4.
2. Similarly to the analogous result which holds true for parabolic operators defined

by means of the Hörmander’s symbols Smρ,δ(R
d), 0 ≤ δ < ρ ≤ 1, found in [14],
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Theorem 4 holds true, with simple modifications, for the generalized class of
SG-symbols Sm,μr,ρ (Rd ), r, ρ ≥ 0, r + ρ > 0, considered, e.g., in [10].

The next Theorem 5 is an immediate consequence of Theorem 4, by a Duhamel’s
argument and the properties of the fundamental solution E.

Theorem 5 Let u0 ∈ Hz,ζ (Rd ), f ∈ C([0, T ],H z,ζ (Rd)), z, ζ ≥ 0, and L =
∂t +A(t) satisfy the same assumptions as in Theorem 4. Then, the Cauchy problem

{
Lu(t, x) = f (t, x), (t, x) ∈ (s, T ] × Rd,

u(s, x) = u0(x), x ∈ Rd, s ∈ [0, T ), (30)

admits a solution given by

u(t, x) = E(t, s)u0(x)+
∫ t

s

E(t, τ ) f (τ, x) dτ, s ≤ t ≤ T , (31)

with E(t, s) the fundamental solution operator obtained in Theorem 4. Moreover,
such solution satisfies

u ∈ C([s, T ],H z,ζ (Rd)) ∩ C1([s, T ],H z−m,ζ−μ(Rd)).

Remark 6 Recall that the initial condition in (30) is understood as

lim
t→s+

u(t) = u0 in L2(Rd).

We prove Theorem 4 by extending to the SG setting the argument given in [14] for
the analogous result in the Smρ,δ setting. Similarly to the mentioned proof scheme,
we rely on the next three technical lemmas, which are, essentially, consequences of
the SG-calculus. In particular, the proof of Lemma 4 requires the properties of the
multiproducts of SG pseudodifferential operators (see [1]). For the sake of brevity,
we only sketch the corresponding arguments.

Lemma 2 Assume that a ∈ C([0, T ], Sm,μ(Rd)) satisfies (24), 0 < m′ ≤ m, 0 <
μ′ ≤ μ, t ∈ [0, T ], x, ξ ∈ Rd . Set

e0(t, s, x, ξ) = exp

(
−
∫ t

s

a(τ, x, ξ) dτ

)
,

and define inductively {ej (t, s)}∞j=1, {qj (t, s)}∞j=1, 0 ≤ s ≤ t ≤ T by

qj (t, s, x, ξ) =
j−1∑
k=0

∑
|α|+k=j

1

α!∂
α
ξ a(t, x, ξ) ·Dαx ek(t, s, x, ξ), j ≥ 1, (32)
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and {
[∂t + a(t, x, ξ)]ej (t, s, x, ξ) = −qj (t, s, x, ξ),

ej (s, s, x, ξ) = 0, j ≥ 1.
(33)

Then, for any α, β ∈ Nd , there exist Cαβ,C′
αβ > 0 such that

|∂αx ∂βξ ej (t, s, x, ξ)| ≤
{
Cαβ〈x〉−|α|〈ξ〉−|β|, j ≥ 0

C′
αβ(t − s)〈x〉m−|α|−j 〈ξ〉μ−|β|−j , j + |α + β| ≥ 1.

(34)

The proof of Lemma 2 follows from an accurate usage of the trivial estimate
sκe−s ≤ Cκ < ∞ for every s ≥ 0, with constants Cκ > 0, κ ∈ [0,+∞), and
from condition (24). By explicitly writing

q1(t, s, x, ξ) = −
n∑
j=1

∂ξj a(t, x, ξ) e0(t, s, x, ξ)

∫ t

s

∂xj a(τ, x, ξ) dτ,

observing that

|e0(t, s, x, ξ)| = e−
∫ t
s Re a(τ,x,ξ) dτ ≤ e−C(t−s)〈x〉m′〈ξ 〉μ′ ≤ 1, (35)

∣∣∣∣e0(t, s, x, ξ)

∫ t

s

∂xj a(τ, x, ξ) dτ

∣∣∣∣ � e− ∫ ts Re a(τ,x,ξ) dτ
∫ t

s

〈x〉−1Re a(τ, x, ξ) dτ

≤ C1〈x〉−1 � 〈x〉−1,

and similarly estimating derivatives, one can prove q1(t, s, x, ξ) ∈ SGm−1,μ−1

(and, inductively, qj (t, s, x, ξ) ∈ SGm−j,μ−j ). Now, solving (33), it follows

ej (t, s, x, ξ) = −e0(t, s, x, ξ)

∫ t

s

qj (τ, s, x, ξ)

e0(τ, s, x, ξ)
dτ, j ≥ 1. (36)

On one hand, we can estimate

|ej (t, s, x, ξ)| ≤
∫ t

s

|qj (τ, s, x, ξ)| dτ ≤ C(t − s)〈x〉m−j 〈ξ〉μ−j , j ≥ 1.

On the other hand, by explicitly writing q1 and using (24) twice, we get

|e1(t, s, x, ξ)| � 〈x〉−1〈ξ〉−1e−
∫ t
s Re a(τ,x,ξ) dτ

(∫ t

s

Re a(τ, x, ξ) dτ

)2

≤ C2〈x〉−1〈ξ〉−1 � 〈x〉−1〈ξ〉−1.
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Similar arguments work for the derivatives of ej , j ≥ 2, so that we can actually
conclude ej (t, s, x, ξ) ∈ SG−j,−j , j ≥ 1.

Lemma 3 Let, for N ≥ 1,

EN(t, s) =
N−1∑
j=0

Op(ej (t, s)),

and

RN(t, s) = Op(rN (t, s)) = LEN(t, s), (37)

with L from Theorem 4 and {ej (t, s)}∞j=1 from Lemma 2. Then,

rN (·, s) ∈ C((s, T ], Sm−N,μ−N (Rd )), 0 ≤ s < T , (38){
rN(t, s)

t − s
}

0≤s<t≤T
is bounded in S2m−N,2μ−N(Rd). (39)

The proof of Lemma 3 is straightforward, in view of Lemma 2. Indeed, by the SG-
calculus, employing the asymptotic expansion of the symbol of op(a(t))Ej (t, s),

LEN(t, s) =
N−1∑
j=0

op(∂t ej (t, s)+ a(t)ej (t, s))

+
N−1∑
j=0

N−j∑
|α|=1

i |α|

α! op(Dαξ a(t)D
α
x ej (t, s))+

N−1∑
j=0

RN,j (t, s),

with rN,j (t, s, x, ξ) ∈ SGm−N−1,μ−N−1, since ej ∈ SG−j,−j for every j ≥ 0, and
rN,j (t, s, x, ξ) ∈ SG2m−N−1,2μ−N−1, for every j ≥ 1, by the second inequality
in (34). By the choice of qj in (32) and by (33), we see that LEN(t, s) =∑N−1
j=0 RN,j (t, s) = RN(t, s), and formulae (38) and (39) hold.

Lemma 4 Let RN(t, s) = Op(rN (t, s)) be defined by (37), with

N ≥ 1 such that max{m,μ} −N ≤ 0. (40)

Define inductively the sequence of operator families {Wν(t,s)}∞ν=1 =
{Op(wν(t,s))}∞ν=1, 0 ≤ s ≤ t ≤ T , by

W1(t, s) = −RN(t, s) = −Op(rN (t, s)), (41)

Wν(t, s) =
∫ t

s

W1(t, τ ) ◦Wν−1(τ, s) dτ, ν ≥ 2. (42)
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Then, for l ≥ 1, 0 ≤ s ≤ t ≤ T ,
l∑

ν=1

Wν(t, s) = −RN(t, s)−
∫ t

s

RN(t, τ )

l−1∑
ν=1

Wν(τ, s) dτ, (43)

and, for any α, β ∈ Nd , there exist constants Aαβ,A′
αβ > 0 such that, for 0 ≤ s ≤

t ≤ T , x, ξ ∈ Rd ,

|∂αx ∂βξ wν(t, s, x, ξ)| ≤ (Aαβ)ν
(t − s)ν−1

(ν − 1)! 〈x〉m−N−|α|〈ξ〉μ−N−|β|, (44)

|∂αx ∂βξ wν(t, s, x, ξ)| ≤ (A′
αβ)

ν (t − s)ν
(ν − 1)! 〈x〉2m−N−|α|〈ξ〉2μ−N−|β|. (45)

Formula (43) follows readily by definitions (41) and (42). To get (44) and (45)
we need to write

Wν(t, s) =
∫ t

s

∫ t1

s

· · ·
∫ tν−2

s

W1(t, t1) · · ·W1(tν−1, s)dtν−1 · · · dt1.

By the choice of N , we can look at W1(t, t1) as an operator of order either (m −
N,μ − N) or (2m − N, 2μ − N) according to (37) or (38), respectively, and we
can look at W1(t1, t2), . . . ,W1(tν−1, s) as operators of order (0, 0). By integrating
on the symplex s ≤ tν−1 ≤ · · · ≤ t1 ≤ t , formulae (44) and (45) follow.

Proof of Theorem 4 Lemma 4 implies that

W(t, s) =
∞∑
ν=1

Wν(t, s)

converges in the topology of Op(Sm−N,μ−N ), since, by (44),
∑
ν wν(t, s) converges

in the topology of Sm−N,μ−N , for any fixed N satisfying (40) and 0 ≤ s ≤ t ≤ T .
WithEN(t, s) from Lemma 3, define, for 0 ≤ s < t ≤ T ,N ≥ 1, max{m,μ}−N ≤
0,

E(t, s) = EN(t, s)+
∫ t

s

EN(t, τ ) ◦W(τ, s) dτ. (46)

Then, by (37),

LE(t, s) = LEN(t, s)+W(t, s)+
∫ t

s

[LEN(t, τ )] ◦W(τ, s) dτ

= RN(t, s)+W(t, s)+
∫ t

s

RN(t, τ ) ◦W(τ, s) dτ.
(47)
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By letting l → +∞ in (43), we find, for any N satisfying (40),

W(t, s) = −RN(t, s)−
∫ t

s

RN(t, τ ) ◦W(τ, s) dτ,

so that, by (47), it follows LE(t, s) = 0, 0 ≤ s < t ≤ T , as claimed. All the
properties of the symbol e(t, s) of the operator familyE(t, s) are then consequences
of (46) and Lemmas 2, 3, and 4.

Remark 7 Clearly, by construction, e(t, s) (and E(t, s)) are continuous also with
respect to s, 0 ≤ s ≤ t ≤ T (see Lemmas 2, 3, and 4, and the proof of Theorem 4).

In the next Lemma 5, we obtain further estimates for the symbol family e(t, s),
showing that, actually, for 0 ≤ s < t ≤ T , it gives rise to (a C1 family of) operators
in O(−∞,−∞). This, of course, cannot be extended by continuity up to t = s, but
someL1 regularity with respect to t , that we employ in Sect. 4, can still be achieved.

Lemma 5 For every j ∈ N, α, β ∈ Nd , we have, for suitable constants C′
jαβ > 0,

|∂αx ∂βξ ej (t, s, x, ξ)| ≤ C′
jαβ

√|e0(t, s, x, ξ)| 〈x〉−j−|α|〈ξ〉−j−|β|, (48)

with 0 ≤ s ≤ t ≤ T , (x, ξ) ∈ Rd . Moreover, for every j ∈ N, 0 ≤ s < T ,
ej (·, s) ∈ C1((s, T ],S(R2d)) and e(·, s) ∈ L1([s, T ], S−κm′,−κμ′(Rd )) , ∂te(·, s) ∈
L1([s, T ], Sm−κm′,μ−κμ′(Rd )), for every κ ∈ [0, 1).
Proof From (35), for every m′, μ′ > 0 we see that, for every κ ∈ [0, 1),

|e0(t, s, x, ξ)| ≤
≤ e−C(t−s)〈x〉m′ 〈ξ 〉μ′ (C(t − s)〈x〉m′ 〈ξ〉μ′ )κ (C(t − s)〈x〉m′ 〈ξ〉μ′ )−κ

� Cκ

(t − s)κ 〈x〉
−κm′ 〈ξ〉−κμ′ � (t − s)−κ 〈x〉−κm′ 〈ξ〉−κμ′ ,

(49)

where Cκ is the upper bound of sκe−s , s ≥ 0, which gives 〈x〉κm′ 〈ξ〉κμ′e0(·, s, x, ξ)
∈ L1([s, T ]), and similarly for the derivatives with respect to x and ξ . By induction,
(48) follows. Let us perform part of the induction step for j = 1, leaving the
remaining details to the reader. We have:

|e1(t, s, x, ξ)| ≤
d∑
j=1

|e0(t, s, x, ξ)|
∣∣∣∣
∫ t

s

∂ξj a(τ, x, ξ) ·Dxj e0(τ, s, x, ξ)

e0(τ, s, x, ξ)
dτ

∣∣∣∣
≤

d∑
j=1

|e0(t, s, x, ξ)|
∫ t

s

|∂ξj a(τ, x, ξ)| ·
∣∣∣∣
∫ τ

s

DxjRe a(r, x, ξ) dr

∣∣∣∣ dτ
� 〈ξ〉−1〈x〉−1|e0(t, s, x, ξ)|

∫ t

s

|Re a(τ, x, ξ)| ·
(∫ τ

s

Re a(r, x, ξ) dr

)
dτ
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≤ 〈ξ〉−1〈x〉−1|e0(t, s, x, ξ)| 1
2

[
|e0(t, s, x, ξ)|

(∫ t

s

Re a(τ, x, ξ) dτ

)4
] 1

2

≤ √C4 〈ξ〉−1〈x〉−1|e0(t, s, x, ξ)| 1
2 � 〈ξ〉−1〈x〉−1|e0(t, s, x, ξ)| 1

2 ,

with C4 the upper bound of the function s4e−s , s ≥ 0. This implies

|e1(t, s, x, ξ)| �
√
e0(t, s, x, ξ) ≤ e−C

2 (t−s)〈x〉m
′ 〈ξ 〉μ′ � (t − s)−κ〈x〉−κm′ 〈ξ〉−κμ′ ,

for every κ ∈ [0, 1), and similar estimates hold for the derivatives of e1, and for ej ,
j ≥ 2. From the definition ofEN in Lemma 3, we haveEN(t, s) ∈ Op(S−κm′,−κμ′).
Again, reading W(t, s) as an operator of order (0, 0), from Eq. (46) we now see
that E(·, s) ∈ L1([s, T ],Op(S−κm′,−κμ′)), that is, e(·, s) ∈ L1([s, T ]; S−κm′,−κμ′).
That ∂t e(·, s) ∈ L1([s, T ], Sm−κm′,μ−κμ′) follows then by the result for e(·, s),
recalling ∂tE(t, s) = −Op(a(t))E(t, s), 0 ≤ s < t ≤ T , by Theorem 4, and
a ∈ C([0, T ], Sm,μ), by hypothesis.

Arguing similarly, using (24), (48), and (49), it follows, that, for all j,M ∈ N,
α, β ∈ Nd , there exists C′′

jMαβ > 0 such that, for any x, ξ ∈ Rd , 0 ≤ s < t ≤ T ,

|(〈x〉〈ξ〉)M∂αx ∂βξ ej (t, s, x, ξ)| ≤ C′′
jMαβ(t − s)−

M

min{{m′ ,μ′} ,

and analogous estimates for ∂tej (t, s, x, ξ), which imply ej (·, s) ∈ C1((s, T ],
S(Rd )), as claimed.

Corollary 1 Under the same hypothesis of Theorem 5, the solution of the Cauchy
problem (30) described there satisfies, for any κ ∈ [0, 1),

u ∈ C([s, T ],H z,ζ (Rd )) ∩ C1([s, T ],H z−m,ζ−μ(Rd ))∩
∩ C1((s, T ],S(Rd )) ∩ L1([s, T ],H z+κm′,ζ+κμ′ (Rd)).

It also satisfies L1([s, T ],H z−m+κm′,ζ−μ+κμ′ (Rd)), κ ∈ [0, 1).
Proof The claim is an immediate consequence of Lemma 5 and Duhamel’s formula
(31) from Theorem 5, using (19) and Theorem 2.

4 Existence of a Random-Field Solution

In the next Theorem 6 we prove our second main result, the existence of a random-
field solution of the SPDE (1), under the assumptions of (SG-)parabolicity for
the operator L, see Definition 4. We consider, in the L2(Rd) environment, the



Random-Field Solutions of Linear SG-Parabolic Stochastic PDEs 55

corresponding Cauchy problem{
Lu(t, x) = f (t, x) = γ (t, x)+ σ(t, x)�̇(t, x), (t, x) ∈ (0, T ] × Rd ,

u(0, x) = u0(x), x ∈ Rd,
(50)

with the aim of finding conditions on L, on the stochastic noise �̇, and on σ, γ, u0,
such that (50) admits a random-field solution. The conditions on the stochastic noise
will be given on the spectral measure M corresponding to the correlation measure
� related to the noise �̇.

Theorem 6 Let us consider the Cauchy problem (50) for a SPDE associated
with a SG-parabolic operator L of the form (23). Assume also, for the initial
conditions, that u0 ∈ Hz,ζ (Rd ), with z ≥ 0 and ζ > d/2. Furthermore, assume
that γ ∈ C([0, T ];Hz,ζ (Rd)), σ ∈ C([0, T ],H 0,ζ (Rd)), s �→ Fσ(s) = νs ∈
L2([0, T ],Mb(Rd )). Assume that one of the following conditions on the spectral
measureM, associated with the random noise �̇, hold true:

(H0) either, for every t ∈ [0, T ],

sup
0≤s<t

sup
η∈Rd

∫
Rd

|e(t, s, x, ξ + η)|2 M(dξ) <∞ (51)

and

lim
h↓0

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ) = 0, 0 ≤ s < t,

(52)

where e(t, s) is the (parameter-dependent) symbol of the fundamental
solution of the operator L,

(H1) or ∫
Rd

M(dξ) <∞, (53)

(H2) orM is absolutely continuous, |νs |tv ∈ L∞(0, T ), and∫
Rd

M(dξ)

〈ξ〉μ′ <∞. (54)

Then, there exists a random-field solution u of (7). Moreover, for any κ ∈ [0, 1),

E[u] ∈ C([0, T ],H z,ζ (Rd )) ∩ C1([0, T ],H z−m,ζ−μ(Rd ))∩
∩ C1((0, T ],S(Rd )) ∩ L1([0, T ],H z+κm′,ζ+κμ′ (Rd)).

It also satisfies ∂tE[u] ∈ L1([0, T ],H z−m+κm′,ζ−μ+κμ′ (Rd)), κ ∈ [0, 1).



56 A. Ascanelli et al.

Remark 8 The class of the stochastic noises which are admissible, if we want to
obtain a random-field solution of the Cauchy problem for a SPDE through our
method, is described by (51) and (52) for all SG-parabolic operators L, by (53)
or (54) under some additional assumptions. Conditions (51), (53), and (54) can be
understood as compatibility conditions between the noise and the equation.

Proof of Theorem 6 Let us insert f (t, x) = γ (t, x) + σ(t, x)�̇(t, x) in (31), so
that, formally,

u(t, x) = v0(t, x)+
∫ t

0

∫
Rd
�(t, s, x, y)γ (s, y) dyds

+
∫ t

0

∫
Rd
�(t, s, x, y)σ (s, y)�̇(s, y) dyds

= v0(t, x)+ v1(t, x)+ v2(t, x),

(55)

where we indicated by �(t, s) the Schwartz kernel of E(t, s) and v0 = E(t, s)u0.
In view of the special structure of � (kernel of a smooth family of certain SG-

pseudodifferential operators, as described in the previous section), the fact that the
deterministic integral in (55) and v0 are well-defined directly follows by the general
theory of SG equations, under the assumptions on γ given in the statement of
Theorem 6. By Theorem 5, recalling also Theorem 2 and (26), we find, for any
κ ∈ [0, 1),

v0 ∈ C([0, T ],H z,ζ ) ∩ C1([0, T ],H z−m,ζ−μ)∩
∩ C1((0, T ],S) ∩ L1([0, T ],H z+κm′,ζ+κμ′ ) ⊂ C([0, T ], L2),

which is a continuous function in (t, x) ∈ [0, T ] × Rd . This implies that v0(t, x)

is finite for every (t, x) ∈ [0, T ] × Rd . Since γ ∈ C([0, T ],H z,ζ ), by the
properties of E(t, s) we find that v1 is of the same regularity class of v0, namely,
it is a well-defined, continuous function in (t, x) ∈ [0, T ] × Rd . For this term,
since we also have E(t, ·) ∈ L1([0, T ],O(−κm′,−κμ′)), we additionally find
v1 ∈ C([0, T ],H z+κm′,ζ+κμ′). We can rewrite v2 in (55) as

v2(t, x) =
∫ t

0

∫
Rd
�(t, s, x, y)σ (s, y)M(ds, dy),

where M is the martingale measure associated with the stochastic noise �, as
defined in Sect. 2. Then, we prove that conditions (A1), (A2), from Sect. 2 hold
true, to achieve that such stochastic integral is well-defined. To this aim, we first
observe that, by Proposition 1 and Theorem 4,

|Fy �→η�(t, s, x, ·)(η)|2 =
∣∣∣e−ix·ηe(t, s, x,−η)

∣∣∣2 = |e(t, s, x,−η)|2 ≤ Ct,s,
(56)
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where Ct,s can be chosen to be continuous in s and t , in view of the properties of
e(t, s), see Lemmas 2–5.

1. Using (56), we get that condition (A1), with �(t, s) being the Schwartz kernel
of E(t, s), is satisfied if for every t ∈ [0, T ]

J =
∫ t

0

(
sup
η∈Rd

∫
Rd

|e(t, s, x, η + ξ)|2 M(dξ)
)
|νs |2tv ds <∞.

If we assume the hypothesis (H0), we find, by the assumptions on σ , for every
t ∈ [0, T ],

J ≤
(

sup
0≤s<t

sup
η∈Rd

∫
Rd

|e(t, s, x, η + ξ)|2 M(dξ)
)∫ t

0
|νs |2tv ds <∞,

and (A1) holds true.
If we assume the hypothesis (H1), we find, again by the assumptions on σ ,

taking into account that e(t, s) ∈ S0,0, 0 ≤ s ≤ t ≤ T ,

J �
∫ t

0

(
sup
η∈Rd

∫
Rd

M(dξ)

)
|νs |2tv ds =

(∫
Rd

M(dξ)

)∫ t

0
|νs |2tv ds <∞,

showing that (A1) holds true as well in this second case.
Finally, if we assume the hypothesis (H2), using the absolute continuity of

M, the uniform boundedness of |νs |tv, and Lemma 5, first we observe that (46)
implies e(t, s) = eN(t, s) mod C([s, T ], S−∞,−∞), and compute, for anyM ≥
max{m′, μ′} > 0, and a suitable Ct,s , continuous with respect to s, t , 0 ≤ s ≤
t ≤ T ,

∫ t

0

∫
Rd

|e(t, s, x, ξ)|2 M(dξ) |νs |2tv ds

�
∫ t

0

∫
Rd

[
|eN(t, s, x, ξ)|2 mod Ct,s · S−∞,−∞

]
M(dξ) ds

�
∫
Rd

∫ t

0

[
e0(t, s, x, ξ) + Ct,s

(〈x〉〈ξ〉)M
]
dsM(dξ)

�
∫
Rd

[
1 − e−Ct〈x〉m′ 〈ξ 〉μ′

〈x〉m′ 〈ξ〉μ′ + 1

(〈x〉〈ξ〉)M
]
M(dξ)

�
∫
Rd

M(dξ)

〈ξ〉μ′ <∞,



58 A. Ascanelli et al.

⇒ J =
∫ t

0

(
sup
η∈Rd

∫
Rd

|e(t, s, x, ξ + η)|2 M(dξ)
)
|νs |2tv ds

=
∫ t

0

(
sup
η∈Rd

∫
Rd

|e(t, s, x, ξ)|2 M(dξ)
)
|νs |2tv ds

�
(∫

Rd

M(dξ)

〈ξ〉μ′
)∫ t

0
|νs |2tv ds <∞,

proving that (A1) holds true also in this last case.
2. Using (56), we get that condition (A2), with �(t, s) being the Schwartz kernel

of E(t, s), is satisfied if

K = lim
h↓0

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)

× |νs |2tv ds = 0.

If we assume the hypothesis (H0), we find, by regularity of e with respect
to (t, s), (52), the assumptions on σ , and, recalling (51), Lebesgue’s Dominated
Convergence Theorem, for every t ∈ [0, T ],

K = lim
h↓0

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)

× |νs |2tv ds

=
∫ t

0
lim
h↓0

χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)

× |νs |2tv ds = 0,

and (A2) holds true.
If we assume the hypothesis (H1), it suffices to show that

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 ≤ C2
t,s,h, (57)
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with Ct,s,h a continuous function with respect to s, t, h, such that Ct,s,h → 0 as
h ↓ 0 and Ct,s,h ≤ CT for every h ∈ [0, t − s], 0 ≤ s < t ≤ T . Indeed, since
e(t, s) is regular with respect to s and t , if (57) holds true we find, for 0 ≤ t ≤ T ,

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)

× |νs |2tv ds

≤
∫ t

0
C2
t,s,h

(
sup
η∈Rd

∫
Rd

M(dξ)

)
|νs |2tv ds=

(∫
Rd

M(dξ)

)∫ t

0
|νs |2tvC2

t,s,h ds,

which implies

0 ≤ K

= lim
h↓0

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)

× |νs |2tv ds

≤
(∫

Rd
M(dξ)

)
lim
h↓0

∫ t

0
|νs |2tv C2

t,s,h ds

=
(∫

Rd
M(dξ)

)∫ t

0
|νs |2tv

(
lim
h↓0
C2
t,s,h

)
ds = 0,

via Lebesgue’s Dominated Convergence Theorem, showing that (A2) holds true
as well in this second case. The proof of (57) is actually a simpler version of the
analogous inequality proved in [5, 6], so we omit it here.

If we assume hypothesis (H2), it suffices to show that

sup
r∈(s,s+h)

|e0(t, s, x, ξ) − e0(t, r, x, ξ)|2 ≤ Cs,h e−C(t−s)〈x〉m
′〈ξ 〉μ′ , (58)

where Cs,h is a positive function, continuous with respect to h, s, h ∈ [0, t − s],
0 ≤ s < t ≤ T , and such that Cs,h → 0 as h→ 0, while C is the constant which
appears in (24). Indeed, if (58) holds true, writing as above e(t, s) = eN(t, s)
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mod C([s, T ], S−∞,−∞), choosing M ≥ max{m′, μ′} > 0, with At,s a suitable
continuous function of s, t , 0 ≤ s ≤ t ≤ T , we find, for 0 ≤ s < t ≤ T ,

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)

× |νs |2tv ds

≤
∫ t

0
χ[0,t−h)(s)

(∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ)− e(t, r, x, ξ)|2 M(dξ)
)
|νs |2tv ds

�
∫ t

0
χ[0,t−h)(s)

×
[∫

Rd
sup

r∈(s,s+h)

(
|e0(t, s, x, ξ)− e0(t, r, x, ξ)|2+ |At,s − At,r |2

(〈x〉〈ξ〉)2M
)

M(dξ)

]

× |νs |2tv ds

�
∫ t

0

[∫
Rd

(
Cs,he

−C(t−s)〈x〉m′〈ξ 〉μ′ + Bt,s,h

(〈x〉〈ξ〉)2M
)

M(dξ)

]
ds

� C̃t,h

∫
Rd

[ ∫ t

0

(
e−C(t−s)〈x〉m

′〈ξ 〉μ′ + 1

(〈x〉〈ξ〉)2M
)
ds

]
M(dξ)

� C̃t,h

∫
Rd

(
1 − e−Ct〈x〉m′ 〈ξ 〉μ′

〈x〉m′ 〈ξ〉μ′ + 1

(〈x〉〈ξ〉)2M
)
M(dξ)

� C̃t,h

∫
Rd

M(dξ)

〈ξ〉μ′ ,

where C̃t,h = max0≤s≤t (Cs,h + Bt,s,h), C̃t,h → 0 for h ↓ 0. This implies, by
(54),

0 ≤ K

= lim
h↓0

∫ t

0
χ[0,t−h)(s)

×
(

sup
η∈Rd

∫
Rd

sup
r∈(s,s+h)

|e(t, s, x, ξ + η)− e(t, r, x, ξ + η)|2 M(dξ)
)
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× |νs |2tv ds

�
(∫

Rd

M(dξ)

〈ξ〉μ′
)

lim
h↓0

C̃t,h = 0,

proving that (A2) holds true also in this last case. Let us then show that (58) holds
true. We have:

|e0(t, s, x, ξ) − e0(t, r, x, ξ)|
=
∣∣∣e− ∫ ts a(τ,x,ξ) dτ − e− ∫ tr a(τ,x,ξ) dτ ∣∣∣

= e−
∫ t
s Re a(τ,x,ξ) dτ

∣∣∣1 − e
∫ r
s a(τ,x,ξ) dτ

∣∣∣
≤ e−

∫ t
s Re a(τ,x,ξ) dτ

∫ r

s

Re a(τ, x, ξ) dτ

≤ e− 1
2

∫ t
s Re a(τ,x,ξ) dτ

(
e−

1
2

∫ r
s Re a(τ,x,ξ) dτ

∫ r

s

Re a(τ, x, ξ) dτ

)

≤ e−C
2 (t−s)〈x〉m

′ 〈ξ 〉μ′Cs,r

with a function Cs,r , continuous in s, r and such that Cs,r ≤ √
C2, C2 the

supremum of s2e−s , s ≥ 0. This implies

sup
r∈(s,s+h)

|e0(t, s, x, ξ)− e0(t, r, x, ξ)|2 ≤ Cs,h e−C(t−s)〈x〉m
′〈ξ 〉μ′

with Cs,h = supr∈(s,s+h) C2
s,r , which clearly has all the requested properties.

Summing up, v2 in (55) is well-defined, as a stochastic integral with respect
to the martingale measure canonically associated with M, under either one of the
hypotheses (H0), (H1), or (H2). Since E[v2] = 0, the regularity of E[u] is the same
as the one of the solution of the associated deterministic Cauchy problem, described
in Theorem 5. The proof is complete.
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The Non-isentropic Relativistic Euler
System Written in a Symmetric
Hyperbolic Form

Uwe Brauer and Lavi Karp

This paper is dedicated to our friend Michael Reissig

Abstract We cast the non-isentropic relativistic Euler system into a symmetric
hyperbolic form. Such systems are very suited to treat initial value problems of
hyperbolic type. We obtain this form by using the pressure p and not the density
ρ as a variable. However, the system becomes degenerate when the pressure p
approaches zero, and in these cases we regularise the system by replacing the
pressure with an appropriate new matter variable, the Makino variable.

Keywords Non isentropic Euler equations · Symmetric hyperbolic systems ·
Entropy · Equation of state

1 Introduction

Existence and uniqueness theorems of a class of solutions have been proved for
the non-relativistic compressible Euler equations for the isentropic case by Makino
[13], and later for the non-isentropic case by Makino et al. [15].

The situation, however, for the relativistic compressible Euler equations is more
involved. The equivalent to the result obtained by Makino [13], has been proven,
for a restricted setting by Rendall, [17], which was later extended by the authors [2]
and [1].

All those results had been obtained by casting, in one way or the other, the Euler
equations into a symmetric-hyperbolic first-order system. Such systems had been
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introduced Friedrich in 1954 [11], and has been one of the most effective approaches
to prove the well-posedness (existence, uniqueness, and continuity of the flow map)
for these systems.

The non-isentropic case is more complicated. Speck [19] studied the Cauchy
problem for the Nordström scalar gravitational field equation coupled to the non-
isentropic relativistic Euler equations. He proved local existence, uniqueness and
the continuity of the flow map, but since he claimed that the system could not be
cast into symmetric hyperbolic form, he used Christodoulou’s theory of the energy
current [6] to obtain his results.

Choquet-Bruhat studied the Cauchy problem for both, the isentropic and the non-
isentropic, Einstein–Euler system, using Leray hyperbolic systems [8]. Moreover,
she also used a different method relying upon Leray-Ohya hyperbolic systems,
see [3] and [4]. A different approach was proposed by Friedrich [9], with the
motivation to treat free initial boundary problems. So he was able to write the
relativistic Euler equations in Lagrangian coordinates as a symmetric hyperbolic
system by differentiating the equations in an appropriate manner. This leads to a
system with constraint equations, whose propagation needs to be shown separately.
The advantage of his system is the fact that it is more suited to deal with initial
free-boundary problems since in Lagrangian coordinates the boundary is fixed.

Disconzi used Friedrich’s approach to derive local existence and uniqueness
of classical solutions for the non-isentropic Einstein–Euler system [7], using
uniformly local Sobolev spaces, assuming the density to be strictly positive and a
smooth equation of state. Another approach for the non-isentropic relativistic Euler
equations was presented by Walton [20], however, no local existence and uniqueness
system is known using this approach.

The purpose of these notes is to generalize our approach as provided in [2] and
to present the non-isentropic relativistic Euler equations as a symmetric hyperbolic
system, which would enable as to prove similar local existence and uniqueness
theorem, therefore removing some of the restrictions posed in the results of [7].

2 The Relativistic Euler Equations with Entropy

We now briefly introduce the notion of a relativistic perfect, but and non-isentropic
fluid. For more information and the thermodynamical background see for example
[4, 5, 10]. We consider the fluid in a prescribed Lorentzian manifold (M, gαβ),
α, β = 0, 1, 2, 3, and we chose units such that the speed of light c = 1. For a
perfect fluid, the energy-momentum tensor takes the following form

T αβ = (ε + p)uαuβ + pgαβ, (1)

where ε is the proper energy density of the fluid, p is the pressure, and uα is the
four-velocity, which is subject to the normalization constraint

gαβu
αuβ = −1. (2)
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The relativistic Euler equations for a perfect fluid are (see e.g. [5])

∇αT αβ = 0 (β = 0, 1, 2, 3) (3)

∇α(nuα) = 0, (4)

where n is the proper number density and ∇α denotes the covariant derivative
induced by the spacetime metric gαβ . As we will discuss in Sect. 3.2, the projection
uβ∇αT αβ = 0 leads to the energy equation

uν∇νε + (ε + p)∇νuν = 0. (5)

A non-isentropic fluid contains a thermodynamic variable s that represents the
Entropy, and satisfies the following thermodynamic relation, called Gibbs relation,
[4]

T ds = d
( ε
n

)
+ pd

(
1

n

)
, (6)

where T denotes the temperature. As it was proven by Pichon [16], the energy
equation (5), the rest-mass conservation equation (4) and the Gibbs relation (6)
imply the following relation for the entropy

uα∇αs = 0, (7)

which just expresses the fact that it is conserved along the fluid lines.
The equation of state specifies the relations between the number density n,

entropy s, and the mass density ε. We assume an equation of state is given by a
nonnegative function

ε = ε(n, s), n, s ≥ 0. (8)

From laws of thermodynamics (see e.g. [10]) it follows that the pressure is given by

p = n
∂ε

∂n
− ε, (9)

and the speed of sound is given by

σ 2=∂p
∂ε

=
∂p
∂n
∂ε
∂n

. (10)

A fundamental thermodynamic assumption is that the right-hand side of (10) is
positive, hence we require that

∂ε

∂n
> 0,

∂p

∂n
> 0. (11)
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Another requirement is that σ < 1, which means that the sound speed is always
less than the speed of light.

2.1 Energy Conditions

The General Relativity literature refers to three types of energy conditions (see e.g.
[4]). The energy-momentum tensor T αβ satisfies:

1. The weak energy condition, if TαβXαXβ ≥ 0 for all timelike vectorsXα .
2. The strong energy condition, if [Tαβ− 1

2Tgαβ ]XαXβ ≥ 0 for all timelike vectors
Xα , where T = gμνT

μν .
3. The dominant energy condition, if −T αβXβ is timelike future-directed vector for

all Xα future-directed timelike vector.

Whenever ε ≥ 0 and p ≥ 0, the perfect fluid satisfies the weak and strong energy
conditions. If ε ≥ p, then it satisfies also the dominant energy condition, see [4].
We shall see that the examples below meet all the three energy conditions.

2.2 Examples of an Equation of State for the Non-isentropic
Relativistic Euler Equations

A typical non-isentropic equation of state is given by (see also [12])

ε = n+ A(s)

γ − 1
nγ , (12)

where 1 < γ < 2 and A(s) is a positive function. Equation (9) implies that p =
A(s)nγ , and from (10) we can compute the speed of sound as follows,

σ 2 = γ (γ − 1)A(s)nγ−1

(γ − 1)+ γA(s)nγ−1 . (13)

As a function of n, the speed of sound σ is increasing and tends to
√
γ − 1 as n tends

to infinity. Hence the speed of sound is less than the speed of light. The equation of
state (12) also satisfies the dominant energy condition, since

ε − p = n+ (2 − γ )A(s)nγ
γ − 1

≥ 0. (14)

Another example is a polytropic equation of state with index γ = 4
3 . We follow

the convention of Choquet–Bruhat [4], here

p = K

3

(
3s

4K

) 4
3

n
4
3 and ε = 3p + n, (15)
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where K is a positive constant. We see that ∂ε
∂n

= 4K
3

(
3s
4K

) 4
3
n

1
3 + 1 = p+ε

n
, hence

(9) is fulfilled. We also note that

p = n+K
(

3s

4K

) 4
3

n
4
3 ,

and hence it is a particular case of the equation of state (12). So this equation of
state also satisfies the dominant energy condition.

3 The Non-isentropic Equations in Symmetric Hyperbolic
Form

The equation of state (8) and the explicit formula of the pressure (9) allows
us to express the pressure p as a function of n and s, which leads to consider
U = (n, uα, s), α = 0, 1, 2, 3 as the unknowns for the relativistic Euler equations
(3) and (4).

However, such an equation of state implies also that ∇αp = ∂p
∂n
∇αn + ∂p

∂s
∇αs,

which destroys the symmetry of the corresponding matrices and makes it almost
impossible to cast the relativistic Euler equations in symmetric hyperbolic form. The
same problem occurs for the non-relativistic case, and there the solution consists in
using the pressure p as a matter variable instead of the density n.

That is why we take a similar approach here for the relativistic equations and
cast the equations in symmetric hyperbolic form. Moreover, the resulting system is
a more convenient starting point to introduce the regularizing Makino variable.

3.1 Symmetric Hyperbolic Systems

We recall the definition of symmetric hyperbolic systems.

Definition (Symmetric Hyperbolic System) A first order quasi-linear k×k system
is symmetric hyperbolic system in a regionG ⊂ Rk , if it is of the form

L[U ] = Aα(U)∂αU + B(U) = 0, (16)

where the matrices Aα(U) are symmetric and for every arbitrary U ∈ G, and there
exists a covector ξα such that

ξαA
α(U) (17)

is positive definite. The covectors ξα for which (17) is positive definite, are called
spacelike with respect to Eq. (16).
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Remark 1 In most applications, and in particular, for initial value problems, it is
essential that A0(U) is positive definite, and then system (16) takes the form

A0(U)∂tU =
3∑
i=1

Ai(U)∂xiU + B(U). (18)

To derive Eq. (16) in the above form requires to show that (1, 0, 0, 0) is spacelike
with respect to the equation. Under the assumption that the speed of sound is less
than one, we shall prove that the covector (1, 0, 0, 0) belongs the future sound cone,
and hence it is spacelike with respect to Eq. (16).

3.2 Fluid Decomposition

First, we apply the well known fluid decomposition (see for example [2]) to Eq. (3).
We project ∇νT νβ along the flow lines uν , by uβ∇νT νβ , and on the orthogonal
subspace to the flow lines O, by Pαβ∇νT νβ , where

Pαβ = gαβ + uαuβ. (19)

These projections result in

uν∇νε + (ε + p)∇νuν = 0 (20)

(ε + p)Pαβuν∇νuβ + Pνα∇νp = 0, (21)

which together with the continuity equation (4) form a system of equations. As we
already pointed out the energy equation (20), together with the continuity equation
(4) and the thermodynamical relation (6) imply the conservation of the entropy (7).
Moreover, we will also need that fact, that thanks to Eq. (11), we can express n as a
function of p. All these considerations allow us to consider the following system of
equations:

uν∇νn+ n∇νuν = 0 (22)

(ε + p)Pαβuν∇νuβ + Pνα∇νp = 0 (23)

uα∇αs = 0. (24)

3.3 Modification of the Fluid Decomposed System

In order to obtain a symmetric hyperbolic system we modify the coupled Eqs. (22)–
(24) the following way. The normalisation condition (2) implies that

uβu
ν∇νuβ = 0. (25)
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So we add nuβuν∇νuβ = 0 to Eq. (22), uαuβuν∇νuβ = 0 to (23) and we obtain
finally that

uν∇νn+ nPνβ∇νuβ = 0 (26)

(ε + p)�αβuν∇νuβ + Pνα∇νp = 0, (27)

where

�αβ = Pαβ + uαuβ = gαβ + 2uαuβ (28)

is a reflection with respect to the hyperplaneO.
We now use the equation of state (8) and (9), which allow us to express p as a

function of n and s, that is, p = p(n, s). Hence,

∇νp = ∂p

∂n
∇νn+ ∂p

∂s
∇νs, (29)

and by the conservation of the entropy (7), we conclude that

uν∇νp = ∂p

∂n
uν∇νn+ ∂p

∂s
uν∇νs = ∂p

∂n
uν∇νn. (30)

So we finally obtain the system

uν∇νp + n∂p
∂n
Pνβ∇νuβ = 0 (31)

(ε + p)�αβuν∇νuβ + Pνα∇νp = 0 (32)

uα∇αs = 0. (33)

Remark 2 (The Pressure as a Matter Variable) The idea of using the pressure as a
matter variable instead of the density is widely used in the non-relativistic case, see
for example [18]. In the relativistic case, Guo and Tahvildar-Zadeh [12] presented
the following system for the variables (p, uα, s)

1

(ε + p)σ u
ν∂νp + σ∂νuν = 0 (34)

σPμν∂νp + (ε + p)σuν∂νuμ = 0 (35)

uν∂νs = 0. (36)

It should be pointed out, that this system, however, is not symmetric hyperbolic as
it can be easily checked.
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3.4 Symmetric Hyperbolic Form

We now write system (31)–(33) in matrix form

⎛
⎝ uν n

∂p
∂n
P νβ 0

Pνα (ε + p)�αβuν 0
0 0 uν

⎞
⎠∇ν

⎛
⎝ puα
s

⎞
⎠ = 0. (37)

These matrices are not symmetric, but they can be cast into a symmetric form by
choosing an appropriate multiplier, for example, we multiply the second row of the
matrices by n∂p

∂n
, and then we obtain

⎛
⎜⎝ uν n

∂p
∂n
P νβ 0

n
∂p
∂n
P να n

∂p
∂n
(ε + p)�αβuν 0

0 0 uν

⎞
⎟⎠∇ν

⎛
⎝ puα
s

⎞
⎠ = 0, (38)

which are symmetric matrices.
In fact, it turns out that system (38) is a symmetric hyperbolic system. The

following theorem gives a precise statement.

Theorem Let ε in (8) be nonnegative density function, the pressure p be defined
by (9) and assume conditions (11). Then the relativistic Euler equations (3)–(4)
coupled with the constraint (2) can be written as a symmetric hyperbolic system.
Moreover, under the assumption that the speed of sound is less than the speed of
light, the matrix A0 is positive definite and therefore the relativistic Euler equations
(3)–(4) form are symmetric hyperbolic system as specified in Eq. (18).

Proof To show that the system (38) is symmetric hyperbolic we need to show that
ξαA

α(U) is positive definite for some covectors ξα . For that we slightly rewrite
system (38). Using Eqs. (9) and (10) we see that

n
∂p

∂n
= ∂p

∂ε
n
∂ε

∂n
= σ 2(ε + p), (39)

hence (38) is equivalent to system

⎛
⎝ uν σ 2 (ε + p) P νβ 0
σ 2 (ε + p) P να σ 2 (ε + p)2 �αβuν 0

0 0 uν

⎞
⎠∇ν

⎛
⎝ puα
s

⎞
⎠ = 0. (40)

Now we compute the principal symbol of system (40). For each ξα ∈ T ∗
x V the

principal symbol is a linear map from R × Ex to R × Fx , where Ex is a fiber in
TxV and Fx is a fiber in the cotangent space T ∗

x V . In local coordinates ∇ν = ∂ν +
�, where � = �(gγ δ, ∂gαβ) denotes the Christoffel symbols, hence the principal



Non-isentropic Relativistic Euler System 71

symbol of system (40) is

ξνA
ν =

⎛
⎜⎜⎜⎜⎜⎝

(uνξν) σ 2 (p + ε) P νβξν 0

σ 2 (p + ε) P ναξν σ 2 (p + ε) (uνξν)�αβ 0

0 0 (uνξν)

⎞
⎟⎟⎟⎟⎟⎠ . (41)

The characteristics are the set of covectors ξν for which (ξνAν) is not an isomor-
phism. Hence the characteristics are the zeros of

Q(ξ)
def= det(ξνA

ν). (42)

The geometric advantages of fluid decomposition are the following. The opera-
tors in the blocks of the matrix (41) are the projection Pνα, on the hyperplane O

that is orthogonal to the flow lines, and the reflection �αβ , with respect to the same
hyperplane. Therefore, the following relations hold:

�αγ �γβ = δβ
α, �αγ Pγ

ν = Pαν and Pβ
αPα

ν = Pνβ,

which yields

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 �αγ 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠
(
ξνA

ν
)

=

⎛
⎜⎜⎜⎝

(uνξν) σ 2 (p + ε) P νβξν 0

σ 2 (p + ε) Pανξν σ 2 (p + ε) (uνξν)
(
δαβ

)
0

0 0 (uνξν)

⎞
⎟⎟⎟⎠ .

(43)

It is now fairly easy to calculate the determinant of the right-hand side of (43)
and we have

det

⎛
⎜⎜⎜⎝

(uνξν) σ 2 (p + ε) P νβξν 0

σ 2 (p + ε) Pανξν σ 2 (p + ε) (uνξν)
(
δαβ

)
0

0 0 (uνξν)

⎞
⎟⎟⎟⎠

= σ 2 (p + ε)2 (uνξν)4
{
(uνξν)

2 − σ 2PανξνP
ν
α ξν

}
.
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Since Pαβ is a projection,

PανξνP
ν
α ξν = gνβξνP

α
β P

ν
α ξν = gνβξνP

ν
βξν = Pνβξνξβ ,

and since �γβ is a reflection,

det

⎛
⎝ 1 0 0

0 �αγ 0
0 0 1

⎞
⎠ = det

(
gαβ�

γ
β

)
= − (det

(
gαβ
))−1

> 0. (44)

Consequently,

Q(ξ) = det(ξνAν) = −σ 2 (p + ε)2 det(gαβ)(uνξν)4
{
(uνξν)

2 − σ 2Pαβξαξ
β
}

(45)

and therefore the characteristic covectors are determined by two simple equations:

ξνu
ν = 0 (46)

(ξνu
ν)2 − σ 2Pαβξαξ

β = 0. (47)

Remark 3 The characteristics conormal cone is a union of two hypersurfaces in
T ∗
x V . One of these hypersurfaces is given by the condition (46) and it is a three

dimensional hyperplane O with the normal uα . The other hypersurface is given by
the condition (47) and forms a three-dimensional cone, the so-called, sound cone.

Let us now consider the timelike vector uν and insert the covector −uν into the
principal symbol (41), since Pβνuν = 0,

−uνAν =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0

0 σ 2(p + ε)�αβ 0

0 0 1

⎞
⎟⎟⎟⎟⎟⎠ ,

and hence −uνAν is a positive definite matrix . Indeed, �αβ is a reflection
with respect to a hyperplane having a timelike normal, and as in (44) we see
that det(�αβ) > 0. Hence, −uν is a spacelike covector with respect to the
hydrodynamical equations (40). Herewith, we have shown relatively elegant and
elementary that the relativistic hydrodynamical equations are symmetric hyperbolic.

We want now to show that A0 is positive definite. To do that it suffices to show
that the covector ζν = (1, 0, 0, 0) is also spacelike with respect to the system (40).
Since Pαβuα = 0, the covector −uν belongs to the sound cone

(ξνu
ν)2 − σ 2Pαβξαξ

β > 0. (48)
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Inserting ζν = (1, 0, 0, 0) the right-hand side of (48), yields

(u0)2(1 − σ 2)− σ 2g00. (49)

Under the assumption sound velocity is less than the speed of light, that is
σ 2 = ∂p

∂ε
< c2 = 1, we conclude that (49) is positive, and hence ζν =

(1, 0, 0, 0) also belongs to the sound cone (48). Hence, the vector −uν can be
continuously deformed to ζν while condition (48) holds along the deformation path.
Consequently, the determinant of (45) remains positive under this process and hence
ζνA

ν = A0 is also positive definite.

4 Symmetrization and Regularization

In the case of a physical vacuum, that is, if the density or the pressure vanish in
certain regions, or fall-off at infinity, the symmetrization we obtained in Sect. 3
breaks down. The reason for this can be seen easily by inspecting the matrixA0(U)

which is no longer uniformly positive definite if the pressure approaches zero.
Makino symmetrised and regularised the Euler–Poisson system by introducing a
new nonlinear matter variable w = M(ρ) [13], so that the matrix A0(U) remains
uniformly positive even for ρ = 0. Later Makino generalised his regularisation to
the non isentropic Euler-Poisson system [14], starting with a system for (p, uα, s).
We follow this strategy but, naturally, have to modify it due to the more complicated
character of our equations.

So, we start with system (31)–(33)

uν∇νp + n∂p
∂n
Pνβ∇νuβ = 0 (50)

(ε + p)�αβuν∇νuβ + Pνα∇νp = 0 (51)

uα∇αs = 0. (52)

and replace p by w = w(p). Then we multiply Eq. (50) by κ2(w, s) ∂w
∂p

where κ is
a positive function we specify later in order to simplify our calculations. Moreover,
we divide Eq. (51) by (ε + p), then Eqs. (50) and (51) written in matrix form, take
the following form

⎛
⎜⎝

κ2uν κ2n
∂p
∂n
∂w
∂p
P νβ 0

1
(ε+p)

∂p
∂w
P να �αβu

ν 0

0 0 uν

⎞
⎟⎠∇ν

⎛
⎝wuα
s

⎞
⎠ = 0. (53)
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The matrices (53) are symmetric provided that

κ2n
∂w

∂n
= κ2n

∂w

∂p

∂p

∂n
= 1

ε + p
∂p

∂w
, (54)

which results in

w =
∫

1

κ

(
1

(ε + p) n
) 1

2
(
∂n

∂p

) 1
2

dp. (55)

We will now, in the subsection below, calculate an explicit form of this new
variable using the equation of state (12) presented in Sect. 2.2.

4.1 The Makino Variable for the Equation of State (12)

For this equation of state we easily compute

ε + p = n+ 1

γ − 1
A(s)nγ + p = n+ γ

γ − 1
p, (56)

n
∂p

∂n
= γp (57)

and

n = A
− 1
γ (s)p

1
γ . (58)

This allows us to calculate

1

(ε + p) n∂p∂n
= 1(

n+ γ
γ−1p

)
pγ

= 1

γ

1

np + γ
γ−1p

2

= 1

γ

1

A
− 1
γ (s)p

1+ 1
γ + γ

γ−1p
2
= 1

γ

⎛
⎝ 1

A
− 1
γ (s)+ γ

γ−1p
1− 1

γ

⎞
⎠ 1

p
1+ 1

γ

.

Keeping in mind the symmetry condition (54), we see that setting

κ2 =
⎛
⎝( 2γ

γ − 1

)2 1

γ

1

A
− 1
γ (s)+ γ

γ−1p
γ−1
γ

⎞
⎠ , (59)
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implies that ∂w
∂p

= γ−1
2 p

− γ−1
2γ , which leads to

w = p
γ−1
2γ (60)

and

κ2(w, s) =
⎛
⎝( 2γ

γ − 1

)2 1

γ

1

A
− 1
γ (s)+ γ

γ−1w
2

⎞
⎠ . (61)

So we conclude the relativistic Euler equations (3)–(4) coupled with the con-
straint (2) can be written in the form

⎛
⎜⎝ κ2uν κ2 γ (γ−1)

2 wPνβ 0
κ2 γ (γ−1)

2 wPνα �αβu
ν 0

0 0 uν

⎞
⎟⎠∇ν

⎛
⎝wuα
s

⎞
⎠ = 0, (62)

which is symmetric and regular when p, or equivalently w approaches zero.
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Blow-up Result for a Semilinear Wave
Equation with a Nonlinear Memory Term

Wenhui Chen and Alessandro Palmieri

Abstract In this note, we study the blow-up dynamic of a semilinear Cauchy
problem for the wave equation with a nonlinear memory term. More precisely, we
consider as memory term the Riemann-Liouville fractional integral of order 1 − γ
of the p power of the solution, where γ ∈ (0, 1). We prove two blow-up results
by using an iteration argument. In the subcritical case we show the blow-up in
finite time of the space average of a local in time solution, under certain integral
sign assumptions for the initial data. In the result for the limit case, we refine this
approach by considering a weighted average of a local solution instead and applying
the so-called slicing method.

Keywords Semilinear wave equation · Nonlinear memory term ·
Riemann-Liouville fractional integral · Generalized Strauss exponent · Blow-up ·
Iteration argument

1 Introduction

In this paper, we investigate the blow-up dynamic for local in time solutions to the
semilinear wave equation with the Riemann-Liouville fractional integral of order
1 − γ of the p power of the solution as nonlinear term

⎧⎪⎪⎨
⎪⎪⎩
utt −�u = Nγ,p(u) x ∈ Rn, t ∈ (0, T ),
u(0, x) = εu0(x) x ∈ Rn,

ut (0, x) = εu1(x) x ∈ Rn,
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where

Nγ,p(u)(t, x)
.= cγ

∫ t

0
(t − s)−γ |u(s, x)|p ds, cγ

.= 1/�(1 − γ ), (2)

and p > 1, γ ∈ (0, 1), ε > 0 is a parameter describing the size of initial data and �
denotes the Euler integral of the second kind.

For the sake of brevity we shall refer hereafter to the nonlinearityNγ,p(u) in (2)
as nonlinear memory term and, vice versa, whenever we mention in what follows a
nonlinear memory term we mean the nonlinearity in (2).

Over the last decade several papers have been devoted to the study of semilinear
evolution model with the nonlinear term of memory type as in (2). In the pioneering
paper [4] the authors determine the critical exponent for the semilinear heat equation
with nonlinear memory term. Afterwards, this kind of result has been generalized
for fractional (either in space or in time) heat equations [13, 21, 39] and for weakly
coupled system of heat equations [12, 26, 37].

Another evolution equation, which has already been studied with nonlinear
memory term on the right-hand side, is the classical damped wave equation (cf.
[2, 3, 7, 10]). Moreover, we recall that the structural damped wave equation and the
beam equation have been investigated in the case of a nonlinear memory term in [6]
and [8], respectively.

Finally, we mention that the semilinear wave equation with nonlinear memory
term has been considered in the case of bounded domains in [11] and in the case of
initial-boundary value problem (and in space dimension 1) in [23]. So far, up to the
knowledge of the authors, no satisfactory result has been obtained for the semilinear
wave equation with nonlinear memory term in the whole space. For this reason, we
shall determine two blow-up results for the Cauchy problem (1).

By a slight abuse of terminology, we shall refer to the two different cases in
which we are able to prove the blow-up of the solution as to the subcritical case and
to the critical case, respectively.

Recalling that

lim
γ→1−

cγ s
−γ
+ = δ0(s) in the sense of distributions, where s

−γ
+

.=
⎧⎨
⎩s

−γ if s > 0,

0 if s < 0,

it would be suitable to find in the blow-up results an upper bound p0(n, γ ) for the
exponent p in (2) that satisfies formally

lim
γ→1−

p0(n, γ ) = pStr(n), (3)

where pStr(n) denotes the Strauss exponent, i.e. the critical exponent for the
semilinear wave equation with power nonlinearity |u|p, whose analytic expression
can be derived from the quadratic equation n−1

2 p2 − n+1
2 p − 1 = 0 for n � 2

(in the one spatial dimensional case, we put pStr(1) = ∞). For the formulation
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and proof of Strauss’ conjecture on the critical exponent for the semilinear wave
equation with power nonlinearity we refer to classical works [14–16, 18–20, 25, 30–
32, 35, 38, 43, 44] (moreover, for the sharp lifespan estimates in the subcritical and
critical case we quote [9, 17, 22, 24, 33, 34, 40–42, 45]).

Let us introduce the following quadratic equation:

n− 1

2
p2 −

(
n+ 1

2
+ 1 − γ

)
p − 1 = 0, (4)

where γ ∈ (0, 1) and p > 1. Then, for any n � 2 we denote by p0(n, γ ) the
positive root of the above equation, that is,

p0(n, γ )
.= n+ 3 − 2γ +√n2 + (14 − 4γ )n+ 4γ (γ − 3)+ 1

2(n− 1)
.

Moreover, for n = 1 we set formally p0(1, γ ) = ∞ for any γ ∈ (0, 1). This
exponent p0(n, γ ) is the upper bound for p, below which we shall prove the blow-
up results. Let us point out explicitly that according to this choice of p0(n, γ ), the
formal limit relation (3) is always fulfilled.

Therefore, goal of this paper is to show the blow-up in finite time of local in
time solutions to (1) in the case 1 < p � p0(n, γ ), provided that the initial data
satisfy certain integral sign assumptions and regardless of the size of the Cauchy
data. Our approach is quite standard; in fact, we will study the blow-up dynamic of
the spatial average of a local in time solution by determining a sequence of lower
bound estimates for this time-dependent functional via an iteration procedure. Let
us stress that in the critical case (that is, for p = p0(n, γ ) and n � 2), this standard
approach with the spatial average is no longer successful and it has to be refined by
working with a weighted space average instead. More specifically, we shall employ
the approach recently introduced in [36]. As byproducts of the iteration arguments
we will obtain upper bound estimates for the lifespan of the solution.

1.1 Main Results

Before stating the main results, we introduce the notion of energy solutions to the
Cauchy problem (1) that we are going to use in our results.

Definition 1 Let u0 ∈ H 1(Rn) and u1 ∈ L2(Rn). We say that

u ∈ C
([0, T ),H 1(Rn)

) ∩C1([0, T ), L2(Rn)
)

such that Nγ,p(u) ∈ L1
loc([0, T )× Rn)
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is an energy solution of (1) on [0, T ) if u fulfills u(0, ·) = εu0 in H 1(Rn) and the
integral relation

∫
Rn
∂tu(t, x) ψ(t, x) dx − ε

∫
Rn
u1(x) ψ(0, x) dx

+
∫ t

0

∫
Rn
(∇u(s, x) · ∇ψ(s, x)− ∂tu(s, x) ψs(s, x)) dx ds

= cγ
∫ t

0

∫
Rn
ψ(s, x)

∫ s

0
(s − τ )−γ |u(τ, x)|p dτ dx ds (5)

for any ψ ∈ C∞
0

([0, T )× Rn
)

and any t ∈ [0, T ).
After a further step of integration by parts in (5), one has

∫
Rn
(ψ(t, x) ∂t u(t, x)− ψs(t, x) u(t, x)) dx − ε

∫
Rn
(ψ(0, x) u1(x) − ψs(0, x) u0(x)) dx

+
∫ t

0

∫
Rn
(ψss(s, x)−�ψ(s, x)) u(s, x) dx ds

= cγ

∫ t

0

∫
Rn
ψ(s, x)

∫ s

0
(s − τ)−γ |u(τ, x)|p dτ dx ds. (6)

for any ψ ∈ C∞
0

([0, T )× Rn
)

and any t ∈ [0, T ).
Let us state now our first result in the subcritical case.

Theorem 1 Let us consider p > 1 such that

{
p <∞ if n = 1,

p < p0(n, γ ) if n � 2.

Let u0 ∈ H 1(Rn) and u1 ∈ L2(Rn) be nonnegative and compactly supported
functions with supports contained in BR for some R > 0 such that u0 is not
identically zero. Let

u ∈ C
([0, T ),H 1(Rn)

) ∩C1([0, T ), L2(Rn)
)

such that Nγ,p(u) ∈ L1
loc([0, T )× Rn)

be an energy solution on [0, T ) to (1) according to Definition 1 with lifespan
T = T (ε) such that

suppu(t, ·) ⊂ BR+t for any t ∈ (0, T ). (7)

Then, there exists a positive constant ε0 = ε0(u0, u1, n, p, γ,R) such that for any
ε ∈ (0, ε0] the energy solution u blows up in finite time. Furthermore, the upper
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bound estimate for the lifespan

T (ε) � Cε
− 2p(p−1)
ϒ(p,n,γ )

holds, where C is a positive constant independent of ε and

ϒ(p, n, γ )
.= 2 + (n+ 1 + 2(1 − γ ))p − (n− 1)p2. (8)

In the next result, we examine the critical case.

Theorem 2 Let n � 2 and p = p0(n, γ ). Let u0 ∈ H 1(Rn) and u1 ∈ L2(Rn) be
nonnegative, nontrivial and compactly supported functions with supports contained
in BR for some R > 0. Let

u ∈ C
([0, T ),H 1(Rn)

) ∩C1([0, T ), L2(Rn)
)

such that Nγ,p(u) ∈ L1
loc([0, T )× Rn)

be an energy solution on [0, T ) to (1) according to Definition 1 with lifespan
T = T (ε) and satisfying (7). Then, there exists a positive constant ε0 =
ε0(u0, u1, n, p, γ,R) such that for any ε ∈ (0, ε0] the energy solution u blows
up in finite time. Furthermore, the upper bound estimate for the lifespan

T (ε) � exp
(
Cε−p(p−1)

)
holds, where C is a positive constant independent of ε.

Notation
We give some notations to be used in this paper. We write f � g when there exists a
positive constant C such that f � Cg. We denote g � f � g by f ≈ g. Moreover,
BR denotes the ball around the origin with radius R in Rn.

2 Subcritical Case: Proof of Theorem 1

Let us introduce the time-dependent functional

U(t)
.=
∫
Rn
u(t, x) dx.

We can choose ψ such that ψ = 1 over {(s, x) ∈ [0, t] × Rn : |x| � R + s}. Then,
using this test function in (5), it results

∫
Rn
ut (t, x) dx − ε

∫
Rn
u1(x) dx = cγ

∫ t

0

∫
Rn

∫ s

0
(s − τ )−γ |u(τ, x)|p dτ dx ds,
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that is,

U ′(t) = U ′(0)+ cγ
∫ t

0

∫
Rn

∫ s

0
(s − τ )−γ |u(τ, x)|p dτ dx ds. (9)

Hence, integrating the above relation over [0, t], we get

U(t) = U(0)+ U ′(0) t + cγ
∫ t

0

∫ s

0

∫
Rn

∫ τ

0
(τ − σ)−γ |u(σ, x)|p dσ dx dτ ds

� cγ

∫ t

0

∫ s

0

∫ τ

0
(τ − σ)−γ

∫
Rn

|u(σ, x)|p dx dσ dτ ds � 0,

where the nonnegativity of u0 and u1 is applied.
The use of Hölder’s inequality, as well as (7), implies

∫
Rn

|u(σ, x)|p dx � C(R + σ)−n(p−1)(U(σ))p,

which leads to

U(t) � Ccγ
∫ t

0

∫ s

0

∫ τ

0
(τ − σ)−γ (R + σ)−n(p−1)(U(σ))p dσ dτ ds. (10)

Our proof of Theorem 1 is based on an iteration procedure which provides us a
sequence of lower bounds for the functionalU . This sequence of lower bounds will
be determined iteratively by applying the iteration frame (10).

With the aim of deriving a first lower bound estimate for functional U(t), we
follow [38] and we introduce the function

!(x)
.=
{

ex + e−x if n = 1,∫
Sn−1 ex·ωdσω if n � 2.

(11)

The function! is a positive smooth function and satisfies the remarkable properties

�! = !,

!(x) ∼ |x|− n−1
2 ex as |x| → ∞.

If we introduce the function with separate variables " = "(t, x) = e−t!(x),
clearly, the function " is a solution to the wave equation"tt −�" = 0.

Furthermore, we introduce the auxiliary functional

U0(t)
.=
∫
Rn
u(t, x)"(t, x) dx.
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Differentiating with respect to t Eq. (9), we obtain

U ′′(t) = cγ

∫ t

0
(t − s)−γ

∫
Rn

|u(s, x)|p dx ds.

Therefore, by applying Hölder’s inequality to U0(s), one finds

∫
Rn

|u(s, x)|p dx � |U0(s)|p
(∫

BR+s
|"(s, x)| p

p−1 dx

)−(p−1)

. (12)

So, if we determine a lower bound estimate for U0(s), then, the previous inequality
provides a lower bound for

∫
Rn |u(s, x)|p dx in turn.

According to [38] the time-dependent functional U0 satisfies

U0(t) � ε
2 (1 − e−2t )

∫
Rn
(u0(x)+ u1(x))!(x) dx + ε e−2t

∫
Rn
u0(x)!(x) dx � C̃ ε

for any t � 0 with a suitable constant C̃ > 0 depending on u0 and u1, where we
applied our assumption that u0 is nonnegative and not identically 0.

Indeed, in [38, Lemma 2.2] the only condition on the nonlinearity that is actually
used is the nonnegativity, which holds trivially also for our nonlinear memory term.
For a detailed proof of the lower bound estimate for U0 see also [27, Lemma 4.3.6],
for example.

Additionally, by the asymptotic behavior of " , it is known that the inequality

∫
BR+s

|"(s, x)| p
p−1 dx � K̃(R + s)(n−1)(1−p′/2)

holds for some positive constant K̃ > 0, cf. [38, Estimate (2.5)]. So, from (12) we
have ∫

Rn
|u(s, x)|p dx � C0ε

p(R + s)n−1− n−1
2 p for any s � 0, (13)

where C0 = C̃pK̃1−p, and, consequently,

U ′′(t) � C0cγ ε
p

∫ t

0
(t − s)−γ (R + s)(n−1)(1−p/2) ds

� C0cγ ε
p

∫ t

0
(t − s)−γ (R + s)− n−1

2 psn−1 ds

� C0cγ ε
p

n
(R + t)− n−1

2 ptn−γ



84 W. Chen and A. Palmieri

for any t � 0. By integrating the above inequality twice, we get for U the lower
bound estimate

U(t) � U(0)+ U ′(0) t + C0cγ ε
p

n

∫ t

0

∫ s

0
(R + τ )− n−1

2 pτn−γ dτ ds

� C0cγ ε
p

n(n− γ + 1)(n− γ + 2)
(R + t)− n−1

2 ptn+2−γ

for any t � 0. In other words, we have

U(t) � K0(R + t)−α0 tβ0 for any t � 0, (14)

where the multiplicative constant is defined by

K0
.= C0cγ ε

p

n(n− γ + 1)(n− γ + 2)

and the exponents are

α0
.= n− 1

2
p and β0

.= n+ 2 − γ.

In the next step, we will derive a sequence of lower bounds of U by using the
iteration frame (10). To be specific, we will show that

U(t) � Kj (R + t)−αj tβj for any t � 0, (15)

where {Kj }j∈N, {αj }j∈N and {βj }j∈N are sequences of nonnegative real numbers
that will be specified later.

Obviously, we already proved (15) for j = 0. Therefore, in order to prove (15)
for all j ∈ N by using an inductive argument, it remains to show the induction step.

Plugging (15) in the iteration frame (10), we derive

U(t) � CcγKpj
∫ t

0

∫ s

0

∫ τ

0
(τ − σ)−γ (R + σ)−n(p−1)−pαj σpβj dσ dτ ds

� CcγKpj (R + t)−n(p−1)−pαj t−γ
∫ t

0

∫ s

0

∫ τ

0
σpβj dσ dτ ds

�
CcγK

p
j

(pβj + 1)(pβj + 2)(pβj + 3)
(R + t)−n(p−1)−pαj tpβj+3−γ
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for all t � 0. Thus, we showed (15) for j + 1, provided that the recursive relations

Kj+1
.=

CcγK
p
j

(pβj + 1)(pβj + 2)(pβj + 3)
, αj+1

.= n(p − 1)+ pαj , βj+1
.= pβj + 3 − γ

are satisfied.
For what follows it is useful to determine a suitable estimate from below of Kj .

For this purpose, we have to determine first the explicit representation for αj and
βj . From the relation αj = n(p− 1)+pαj−1 and βj = pβj−1 + 3− γ , we deduce

αj = pjα0 + n(p − 1)
(

1 + p + · · · + pj−1
)
= (α0 + n)pj − n, (16)

βj = pjβ0 + (3 − γ )
(

1 + p + · · · + pj−1
)
=
(
γ−3
1−p + β0

)
pj − γ−3

1−p . (17)

Thus,

(pβj−1 + 1)(pβj−1 + 2)(pβj−1 + 3) � (pβj−1 + 2)3 = (βj + γ − 1)3

� β3
j �

(
γ−3
1−p + β0

)3
p3j ,

where we used γ ∈ (0, 1). It follows that

Kj � C
�(1−γ )

(
γ−3
1−p + β0

)−3

︸ ︷︷ ︸
.=D

p−3jK
p

j−1 = Dp−3jK
p

j−1 for any j ∈ N.

Applying the logarithmic function to both sides of the inequalityKj � Dp−3jK
p
j−1

and using iteratively the resulting inequality, we derive

logKj � pj logK0 − 3

⎛
⎝ j−1∑
k=0

(j − k)pk
⎞
⎠ logp +

⎛
⎝ j−1∑
k=0

pk

⎞
⎠ logD

� pj
(

logK0 − 3p logp

(p − 1)2
+ logD

p − 1

)
+ 3j logp

p − 1
+ 3p logp

(p − 1)2
− logD

p − 1

for any j ∈ N, where the identity

j−1∑
k=0

(j − k)pk = 1

p − 1

(
pj+1 − p
p − 1

− j
)

(18)
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is used. Let j = j0(n, γ, p) ∈ N be the smallest nonnegative integer such that

j0 � logD

3 logp
− p

p − 1
.

Therefore, for any j � j0 the inequality holds

logKj � pj
(

logK0 − 3p logp

(p − 1)2
+ logD

p − 1

)

= pj log
(
p−3p/(p−1)2D1/(p−1)K0

)
= pj log

(
E0ε

p
)

(19)

for a suitable constant E0 = E0(n, γ, p) > 0.
If we combine with (15), (16), (17) and (19), we get

U(t) � exp
(
pj log(E0ε

p)
)
(R + t)−αj tβj

= exp
(
pj
(

log(E0ε
p)− (α0 + n) log(R + t)+

(
γ−3
1−p + β0

)
log t

))
(R + t)nt

3−γ
1−p

for any j � j0 and any t � 0.
Finally, since for t � R it holds log(t + R) � log(2t), from the previous

inequality we have

U(t) � exp

(
pj log

(
E0ε

p2−(α0+n)t
γ−3
1−p+β0−(α0+n)

))
(R + t)nt 3−γ

1−p (20)

for any j � j0. The exponent of t in the exponential term in the last inequality is

γ−3
1−p + β0 − (α0 + n) = 1

2(p−1)

(
2 + (n+ 3 − 2γ )p − (n− 1)p2

)
= ϒ(p,n,γ )

2(p−1) ,

whereϒ(p, n, γ ) is defined in (8). So, forp > 1 when n = 1 and 1 < p < p0(n, γ )

when n � 2, the exponent for t in the exponential term of (20) is positive. Let us fix
ε0 = ε0(u0, u1, n, p, γ,R) > 0 such that

ε
− 2p(p−1)
ϒ(p,n,γ )

0 � E1R, where E1
.=
(

2−(α0+n)E0

) 2(p−1)
ϒ(p,n,γ )

.

Thus, for any ε ∈ (0, ε0] and t > E−1
1 ε

− 2p(p−1)
ϒ(p,n,γ ) � R, it holds

log

(
εp 2−(α0+n)E0 t

ϒ(p,n,γ )
2(p−1)

)
> 0.
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Consequently, for any ε ∈ (0, ε0] and any t > E1ε
− 2p(p−1)
ϒ(p,n,γ ) letting j → ∞ in (20)

we may observe that the lower bound forU(t) blows up. So, U may not be finite for
this t as well. This proves that u is not globally in time defined and, in particular,
the lifespan of the local (in time) solution u can be estimated by

T (ε) � ε−
2p(p−1)
ϒ(p,n,γ ) .

All in all, the proof of Theorem 1 is complete.

3 Critical Case: Proof of Theorem 2

3.1 Auxiliary Functions

Let us recall the definition of a pair of auxiliary functions from [36], which are
necessary in order to introduce the time-dependent functional that will be considered
for the iteration argument in the critical case p = p0(n, γ ).

Let r > −1 be a real parameter. Then, we introduce the functions

ξr (t, x)
.=
∫ λ0

0
e−λ(t+R) cosh(λt)!(λx) λr dλ, (21)

ηr(t, s, x)
.=
∫ λ0

0
e−λ(t+R) sinh(λ(t − s))

λ(t − s) !(λx) λr dλ, (22)

where λ0 is a fixed positive parameter and! is defined by (11).
Some useful properties of ξr and ηr are stated in the following lemma, whose

proof can be found in [36, Lemma 3.1].

Lemma 1 Let n � 2 and λ0 > 0. Then, the following properties hold:

(i) if r > −1, |x| � R and t � 0, then,

ξr (t, x) � A0,

ηr (t, 0, x) � B0〈t〉−1;

(ii) if r > −1, |x| � s + R and t > s � 0, then,

ηr(t, s, x) � B1〈t〉−1〈s〉−r ;

(iii) if r > n−3
2 , |x| � t + R and t > 0, then,

ηr(t, t, x) � B2〈t〉− n−1
2 〈t − |x|〉 n−3

2 −r .
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Here A0 and Bk , with k = 0, 1, 2, are positive constants depending only on λ0, r
and R and we denote 〈y〉 .= 3 + |y|.
Remark 1 Although in [36] the previous lemma is stated by assuming r > 0 in (i)
and (ii), the proof provided in that paper holds true for any r > −1 as well.

Proposition 1 Let n � 2 and r > −1. Assume that u0 ∈ H 1(Rn) and u1 ∈ L2(Rn)
are nonnegative, nontrivial and compactly supported in BR functions. Let u be an
energy solution to (1) on [0, T ) according to Definition 1 satisfying (7). Then, the
following integral identity holds:

∫
Rn
u(t, x) ηr (t, t, x) dx = ε

∫
Rn
u0(x) ξr (t, x) dx + εt

∫
Rn
u1(x) ηr(t, 0, x) dx

+ cγ
∫ t

0
(t − s)

∫ s

0
(s − σ)−γ

∫
Rn

|u(σ, x)|p ηr(t, s, x) dx dσ ds,

(23)

for any t ∈ (0, T ), where ξr and ηr are defined in (21) and (22), respectively.

Proof According to (7) u(t, ·) has compact support contained in BR+t for any
t � 0. Therefore, we may employ (6) for a noncompactly supported test function.
So, we choose as test function

ψ = ψ(s, x) = λ−1 sinh(λ(t − s))!(λx),

where ! is defined by (11). As ! is an eigenfunction of the Laplace operator and
the function y(t, s; λ) = λ−1 sinh(λ(t − s)) solves the parameter dependent ODE

(∂2
s − λ2)y(t, s; λ) = 0

with final conditions y(t, t; λ) = 0 and ∂sy(t, t; λ) = −1, we get that ψ solves the
free wave equation ψss −�ψ = 0 and satisfies

ψ(t, x) = 0, ψ(0, x) = λ−1 sinh(λt)!(λx),

ψs(t, x) = −!(λx), ψs(0, x) = − cosh(λt)!(λx).

Let us prove (23). Employing in (6) the above defined ψ and its properties, we
get

∫
Rn
u(t, x)!(λx) dx = ε cosh(λt)

∫
Rn
u0(x)!(λx) dx + ε sinh(λt)

λ

∫
Rn
u1(x)!(λx) dx

+ cγ
∫ t

0

sinh(λ(t − s))
λ

∫
Rn

∫ s

0
(s − σ)−γ |u(σ, x)|p dσ !(λx) dx ds.
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Multiplying both sides of the last equality by e−λ(t+R)λr , integrating with respect
to λ over [0, λ0] and applying Tonelli’s theorem, we get finally (23).

3.2 Iteration Frame and First Lower Bound Estimate

Hereafter until the end of Sect. 3, we shall assume that u0, u1 satisfy the assumptions
from the statement of Theorem 2. Let u be an energy solution of (1) on [0, T ). We
introduce the following time-dependent functional:

U(t)
.=
∫
Rn
u(t, x) ηr (t, t, x) dx, (24)

where

r
.= n− 1

2
− 1

p
.

From Proposition 1 it follows immediately the positiveness of the functional U.
The next step is to derive an integral inequalities involving U both in the left and

in the right-hand side, which will set the iteration frame for the iteration procedure.

Proposition 2 Let U be the functional defined by (24). Then, there exist positive
constants C depending on n, p, γ, λ0, R such that the estimate

U(t) � C〈t〉−1
∫ t

0
(t − s)〈s〉− n−1

2 + 1
p

∫ s

0
(s − σ)−γ 〈σ 〉(n−1)(1− p

2 )
(U(σ ))p

(log〈σ 〉)(p−1)
dσ ds

(25)

holds for any t � 0.

Proof For the proof of this proposition we follow the main ideas of Proposition 4.2
in [36]. Applying Hölder’s inequality and the support property for u(σ, ·), we obtain

U(σ ) �
(∫

Rn
|u(σ, x)|pηr(t, s, x) dx

) 1
p
(∫

Bσ+R

ηr(σ, σ, x)
p′

ηr(t, s, x)
p′
p

dx

) 1
p′
. (26)

We begin with the estimate of the second factor on the right hand side in the last
inequality.

By (ii) and (iii) in Lemma 1 (note that, according to our choice of r , both r > n−3
2

and r > −1 are always fulfilled), since |x| � σ + R implies |x| � s + R for any
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σ ∈ [0, s], we obtain

∫
Bσ+R

ηr (σ, σ, x)
p′

ηr(t, s, x)
p′
p

dx � 〈t〉 p
′
p 〈s〉 p

′
p r 〈σ 〉− n−1

2 p′
∫
Bσ+R

〈σ − |x|〉( n−3
2 −r)p′ dx

� 〈t〉 1
p−1 〈s〉 r

p−1 〈σ 〉− n−1
2 p′

∫
Bσ+R

〈σ − |x|〉−1 dx

� 〈t〉 1
p−1 〈s〉 r

p−1 〈σ 〉− n−1
2 p′+n−1 log〈σ 〉,

where in the second step we used the definition of r . Combining (23), (26) and the
previous estimate, we find

U(t) �
∫ t

0
(t − s)

∫ s

0
(s − σ)−γ

∫
Rn

|u(σ, x)|p ηr(t, s, x) dx dσ ds

�
∫ t

0
(t − s)

∫ s

0
(s − σ)−γ 〈t〉−1〈s〉−r〈σ 〉 n−1

2 p−(n−1)(p−1) (U(σ ))p

(log〈σ 〉)(p−1)
dσ ds

which is exactly (25).

Proposition 3 Let us assume p = p0(n, γ ). Let U be the functional defined by
(24). Then, there exist a positive constant M depending on n, p, γ, λ0, R, u0, u1
such that

U(t) �Mεp log (2t/3) (27)

holds for any t � 3/2.

Proof We start by noticing that (13) may be rewritten as

∫
Rn

|u(σ, x)|p dx � C0ε
p〈σ 〉n−1− n−1

2 p for any σ � 1, (28)

up to a modification of the multiplicative constant. By using (23), Lemma 1 (ii) and
(28), we get

U(t) �
∫ t

0
(t − s)

∫ s

0
(s − σ)−γ

∫
Rn

|u(σ, x)|p ηr(t, s, x) dx dσ ds

� 〈t〉−1
∫ t

0
(t − s)〈s〉− n−1

2 + 1
p

∫ s

0
(s − σ)−γ

∫
Rn

|u(σ, x)|p dx dσ ds

� εp〈t〉−1
∫ t

1
(t − s)〈s〉− n−1

2 + 1
p

∫ s

1
(s − σ)−γ 〈σ 〉n−1− n−1

2 p dσ ds.
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Therefore, for t � 1 by shrinking the domain of integration we find

U(t) � εp〈t〉−1
∫ t

1
(t − s)〈s〉− n−1

2 + 1
p

∫ s

s/2
(s − σ)−γ 〈σ 〉n−1− n−1

2 p dσ ds

� εp〈t〉−1
∫ t

1
(t − s)〈s〉− n−1

2 + 1
p+n−1− n−1

2 p
s1−γ ds

� εp〈t〉−1
∫ t

1
(t − s)〈s〉− n−1

2 p+ n−1
2 +1−γ+ 1

p ds.

Since p = p0(n, γ ), from (4) we get

−n−1
2 p + n−1

2 + 1 − γ + 1
p
= −1. (29)

Hence, for t � 3/2 it follows

U(t) � εp〈t〉−1
∫ t

1
(t − s)〈s〉−1 ds � εp〈t〉−1

∫ t

1

t − s
s

ds = εp〈t〉−1
∫ t

1
log s ds

� εp(3t)−1
∫ t

2t/3
log s ds � εp log(2t/3).

This completes the proof.

In this subsection we determined the iteration frame (25) for the functional U
and a first lower bound estimate (27) for U containing a logarithmic factors. In the
next subsection we are going to prove a sequence of lower bound estimates for U by
using the so-called slicing procedure, which has been introduced for the first time
in [1]. More specifically, we will follow the main ideas of [5, 28, 29] concerning the
slicing procedure.

3.3 Iteration Argument via Slicing Method

Let us introduce the sequence {�j }j∈N, where �j
.= 2 − 2−(j+1). The goal is to

prove the following sequence of lower bound estimates for the functional U

U(t) � Mj(log〈t〉)−bj
(

log

(
t

�2j

))aj
for t � �2j and for any j ∈ N,

(30)

where {Mj }j∈N, {aj }j∈N and {bj }j∈N are sequences of nonnegative real numbers
that we shall determine recursively throughout the iteration procedure. For j = 0
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we have already shown that (30) is true thanks to Proposition 3 with

M0
.= Mεp, a0

.= 1 and b0
.= 0.

We are going to prove the validity of (30) for any j ∈ N by using an inductive
proof. As we have already pointed out the validity of the base case, it remains to
prove the inductive step. Let us assume that (30) holds for j � 1, we want to prove
it now for j + 1. Plugging (30) for j in (25), one finds

U(t) � CM
p
j
〈t〉−1

∫ t

�2j

(t − s)〈s〉−r
∫ s

�2j

(s − σ)−γ 〈σ 〉(n−1)(1− p
2 )

(
log
(
σ
�2j

))ajp
(log〈σ 〉)(p−1)+bjp dσ ds

� CM
p
j (log〈t〉)−(p−1)−bjp 〈t〉−1

×
∫ t

�2j

(t − s)〈s〉− n−1
2 + 1

p− n−1
2 p

∫ s

�2j

(s − σ)−γ 〈σ 〉n−1
(

log
(
σ
�2j

))ajp
dσ ds

for t � �2j+2. For s � �2j+1, the σ -integral in the last line can be estimated in the
following way:

∫ s

�2j

(s − σ)−γ 〈σ 〉n−1
(

log
(
σ
�2j

))ajp
dσ

�
∫ s

�2j s
�2j+1

(s − σ)−γ σn−1
(

log
(
σ
�2j

))ajp
dσ

�
(
�2j
�2j+1

)n−1
sn−1

(
log
(

s
�2j+1

))ajp ∫ s

�2j s
�2j+1

(s − σ)−γ dσ

� 1
1−γ

(
�2j
�2j+1

)n−1 (
1 − �2j

�2j+1

)1−γ
sn−γ

(
log
(

s
�2j+1

))ajp
.

Using the inequalities 2�2j > �2j+1 and 1−�2j/�2j+1 > 2−(2j+3) and the estimate
4s � 〈s〉 for any s � 1, it follows

∫ s

�2j

(s − σ)−γ 〈σ 〉n−1
(

log
(
σ
�2j

))ajp
dσ

� 1
1−γ 2−2(1−γ )j−3n−2+5γ 〈s〉n−γ

(
log
(

s
�2j+1

))ajp
.

So, combining the lower bound estimate for the σ -integral with the lower bound
estimate for U(t) and using again (29), for t � �2j+2 it holds

U(t) � Ĉ 2−2(1−γ )jMp

j (log〈t〉)−(p−1)−bjp 〈t〉−1

×
∫ t

�2j+1

(t − s)〈s〉− n−1
2 p+ n−1

2 +1−γ+ 1
p

(
log
(

s
�2j+1

))aj p
ds
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� Ĉ 2−2(1−γ )jMp

j (log〈t〉)−(p−1)−bjp 〈t〉−1
∫ t

�2j+1

(t − s)〈s〉−1
(

log
(

s
�2j+1

))aj p
ds

� 2−2Ĉ 2−2(1−γ )jMp

j (log〈t〉)−(p−1)−bjp 〈t〉−1
∫ t

�2j+1

t−s
s

(
log
(

s
�2j+1

))aj p
ds,

where Ĉ
.= C(1 − γ )−12−3n−2+5γ . Integration by parts and a further shrinking of

the domain of integration lead to

U(t) �
2−2Ĉ M

p
j

22(1−γ )j (aj p + 1)
(log〈t〉)−(p−1)−bjp 〈t〉−1

∫ t

�2j+1

(
log
(

s
�2j+1

))ajp+1
ds

�
2−2Ĉ M

p
j

22(1−γ )j (aj p + 1)
(log〈t〉)−(p−1)−bjp 〈t〉−1

∫ t

�2j+1t

�2j+2

(
log
(

s
�2j+1

))ajp+1
ds

�
2−2Ĉ M

p
j

22(1−γ )j (aj p + 1)

(
1 − �2j+1

�2j+2

)
(log〈t〉)−(p−1)−bjp 〈t〉−1t

(
log
(

t
�2j+2

))ajp+1

� 2−8Ĉ (aj p + 1)−12−2(2−γ )jMp
j
(log〈t〉)−(p−1)−bjp

(
log
(

t
�2j+2

))ajp+1

for t � �2j+2. Also, we proved (30) for j + 1 provided that

Mj+1
.= 2−8Ĉ (ajp + 1)−12−2(2−γ )jMp

j , aj+1
.= ajp + 1, bj+1

.= (p − 1)+ bjp.

Next we determine a suitable lower bound for the termMj . For this purpose, we
provide the explicit representations of the exponents aj and bj . By using recursively
the relations aj = 1 + paj−1 and bj = (p − 1)+ pbj−1 and the initial exponents
a0 = 1, b0 = 0, we get

aj = a0p
j +

j−1∑
k=0

pk = pj+1−1
p−1 and bj = pjb0 + (p − 1)

j−1∑
k=0

pk = pj − 1.

(31)

In particular, aj−1p + 1 = aj � pj+1/(p − 1) implies that

Mj � D̂ (22(2−γ )p)−jMp
j−1 (32)

for any j � 1, where D̂
.= 2−8+2(2−γ )Ĉ(p − 1)/p. Applying the logarithmic

function to both sides of (32) and using iteratively the resulting inequality, we obtain

logMj � p logMj−1 − j log
(
22(2−γ )p

)+ log D̂

� pj logM0 −
( j−1∑
k=0

(j − k)pk
)

log
(
22(2−γ )p

)+ ( j−1∑
k=0

pk
)

log D̂
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= pj

(
logM0 − p log

(
22(2−γ )p

)
(p − 1)2

+ log D̂

p − 1

)

+
(

j

p − 1
+ p

(p − 1)2

)
log
(
22(2−γ )p

) − log D̂

p − 1
,

where we used the identity (18). Let us define j1 = j1(n, p, γ ) as the smallest
nonnegative integer such that

j1 � log D̂

log
(
22(2−γ )p

) − p

p − 1
.

Then, for any j � j1 we may estimate

logMj � pj

(
logM0 − p log

(
22(2−γ )p

)
(p − 1)2

+ log D̂

p − 1

)
= pj log(L0ε

p), (33)

where L0
.= M

(
22(2−γ )p

)−p/(p−1)2
D̂1/(p−1).

Combining (30), (31) and (33), we arrive at

U(t) � exp
(
pj log(L0ε

p)
)
(log〈t〉)−pj+1 (log (t/2))(p

j+1−1)/(p−1)

= exp
(
pj log

(
L0ε

p (log〈t〉)−1 (log (t/2))p/(p−1)
))

log〈t〉 (log (t/2))−1/(p−1)

for t � 2 and any j � j1.
For t � 4 the inequalities

log〈t〉 � log(2t) � 2 log t and log(t/2) � 2−1 log t

hold true, so,

U(t) � exp
(
pj log

(
2−(2p−1)/(p−1)L0ε

p (log t)1/(p−1)
))

log〈t〉 (log (t/2))−1/(p−1)

(34)

for t � 4 and any j � j1. Let us denote J (t, ε)
.= 2−(2p−1)/(p−1)L0ε

p

(log t)1/(p−1). We can choose ε0 = ε0(n, p, γ, λ0, R, u0, u1) sufficiently small so
that

exp
(

21−2pL
1−p
0 ε

−p(p−1)
0

)
� 4.

Consequently, for any ε ∈ (0, ε0] and for t > exp
(

22p−1L
1−p
0 ε−p(p−1)

)
we get

t � 4 and J (t, ε) > 1.
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Therefore, for any ε ∈ (0, ε0] and for t > exp
(

22p−1L
1−p
0 ε−p(p−1)

)
taking the

limit as j → ∞ in (34) we see that the lower bound for U(t) blows up; so, U(t)may
not be finite. Thus, we proved that U(t) blows up in finite time and, furthermore,
we have shown the upper bound estimate for the lifespan

T (ε) � exp
(

22p−1L
1−p
0 ε−p(p−1)

)
.

This completes the proof of Theorem 2.
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Abstract We introduce Fundamental solutions of Barenblatt type for the equation

ut =
N∑
i=1

(
|uxi |pi−2uxi

)
xi

, pi > 2 ∀i = 1, ..,N, on T = RN × [0, T ],

(1)

and we prove their importance for the regularity properties of the solutions.
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1 Introduction

Consider the Cauchy problem

{
ut = divA(x, u,Du), in T = RN × (0, T ),
u(x, 0) = Mδ(x),

(2)
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whereM > 0, initial datum is the Dirac function δ(x), the fieldA : T ×R×RN →
RN is only measurable and has an anisotropic behavior

{
Ai(x, s, z)zi ≥ �∗|zi |pi
|Ai(x, s, z)| ≤ �∗|zi |pi−1,

(3)

for some constants �∗,�∗ > 0 and pi > 2 for any i ∈ {1, .., N}. We recall that
when all pis are greater than 2 the equation is called degenerate. In order to have the
existence of solutions, we require the following monotonicity property to the field
A:

[A(x, s, ξ)− A(x, s, ζ )] · [ξ − ζ ] > 0, ∀ ξ = ζ in RN . (4)

When pi ≡ p Eq. (2) is named the orthotropic p-Laplace, and has nevertheless
a different behavior from the classic p-Laplace, as its principal part evolves in
a way dictated only by the growth in the i-th direction. The problem (2) reflects
the modeling of many materials that reveal different diffusion rates along different
directions, such as liquid crystals, wood or earth’s crust (see [26]). Moreover, as
shown in [14] the solution to this equation have finite speed of propagation. Note
that this is a more reasonable assumption than the usual infinite-speed typical of
heat equation, for most of the physical phenomena.

1.1 The Open Problem of Regularity

The strong nonlinear character and in particular the anisotropy which is prescribed
by Eq. (2) has proved to be a hard challenge from the regularity point of view. The
main difference with standard non linear regularity theory is the growth (3) of the
operator A, usually referred to as non standard growth (see [1, 5]). This opens the
way to a new class of function spaces, called anisotropic Sobolev spaces (see next
Section), and whose study is still open and challenging. Even in the elliptic case,
the regularity theory for such equations requires a bound on the sparseness of the
powers pi . For instance in the general case the weak solution can be unbounded, as
proved in [16, 20]. However, the boundedness of solutions was proved in [5] under
the assumption that

p < N, max{p1, .., pN } < p∗, (5)

where

p :=
(

1

N

N∑
i=1

1

pi

)−1

, p∗ := Np

N − p . (6)
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Regularity properties are proved only on strong assumptions on the regularity of
the coefficients (see [15, 21, 22]). Even in the elliptic case, when the coefficients
are rough, Hölder continuity remains still nowadays an open problem. Indeed,
continuity conditioned to boundedness has been proved in [13] by means of intrinsic
scaling method, but with a condition of stability on the exponents pi which is only
qualitative. Removability of singularities has been considered in [28]. We refer to
[15] and [24] for a complete survey on the subject and related bibliography.

1.2 Aim of the Note

We will consider the homogeneous prototype problem

⎧⎪⎨
⎪⎩
ut =∑N

i=1

(
|uxi |pi−2uxi

)
xi

, in T = RN × (0, T ),
u(x, 0) = δo.

The purpose of this note is to show the importance of a Barenblatt Fundamental
solution B to this equation, paralleling the construction of Fundamental solutions
for the p-Laplace equation. We will show a fundamental connection between
the previous equation and a particular Fokker-Planck equation, as proved for the
porous medium equation by Carrillo and Toscani [7]. The achievement of such
Fundamental solution would provide important tools for the study of regularity of
parabolic anisotropic problems as (2). As we will see in the sequel, the problem
is more delicate than in the isotropic case, because of the lack of radial solutions.
In the isotropic case the adoption of radial symmetry brings the equation, set in
a proper scale, to a solvable ODE. In the doubly nonlinear case, a non-explicit
Barenblatt Fundamental solution has been found with this approach in [23], using a
Leray-Schauder technique. Also in mathematical physics, the use of radial solution
is usual. For instance this strategy can be used for the Navier Stokes equation (see
[17]). In our case, as already stated, the anisotropy does not allow the use of radial
solutions, and this fact compels us to look for new ideas.

2 Preliminaries

2.1 Self-Similar Fundamental solutions, Motivations and
Historical Perspectives

The issue of finding Fundamental solutions to elliptic and parabolic equations is
one of paramount importance in the study of linear elliptic and parabolic equations
(see [11]). In nonlinear theory their role is not so evident, and yet the epithet
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“Fundamental” is iconic, because representation in terms of kernels usually fails.
But they are a tool of extraordinary importance in the existence and regularity
theory as well as very important to describe the asymptotic behaviour, that’s why the
name Fundamental Solutions is deserved. Much more information about techniques
to be employed, sharp-condition examples and counterexamples can be extracted
from the knowledge of a Fundamental solution. A typical example is the Barenblatt
Fundamental Solution

B(x, t) = t−
N
λ

{
1 − γp

( |x|
t

1
λ

) p
p−1
} p−1
p−2

+
, t > 0,

for the p-Laplace equation

ut = div(|∇u|p−2∇u), in [0, T ] × RN, p > 1. (7)

These special solutions can be used to reveal a gap between the elliptic theory and
the corresponding parabolic one for p-Laplace type equations. Indeed solutions to

div(|∇u|p−2∇u) = 0, u ∈ W 1,p
loc (�), p > 1, (8)

do obey to a Harnack inequality (see [27]), while the corresponding solutions to the
parabolic version of (8) do not in general. We show this briefly. Let (x0, t0) be a point
of the boundary of the support of B, the free boundary {t = |x|λ}, and let ρ > 0.
The ballBρ(x0) intersects at the time level t0−ρp the support of x → B(x, t0−ρp)
in an open set, hence

B(x0, t0) = 0, but sup
Bρ(x0)

B(x, t0 − ρp) > 0.

Generalizing the classical heat equation to nonlinear versions, another chief example
in evolution theories is the Porous Medium Equation

ut −�(um) = 0, m > 1. (9)

This equation, introduced in the last century in connection with a number of physical
applications, has been extensively studied (see the monograph [31]) in parallel
to the p-Laplace as another prototype of nonlinear diffusive evolution equation,
with interest also in the geometry of free boundaries. Fundamental solutions were
discovered in 1950’s by Zeldovich and Kompanyeets in [32] and Barenblatt [2], and
later a complete description has been brought by Pattle in [25]. The discovery of
these explicit solutions, usually called Barenblatt solutions since then, has been the
starting point of the rigorous mathematical theory that has been gradually developed
since then.
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The surprising relation between existence and uniqueness of Fundamental
solutions and precise asymptotic behaviour relies on the existence of a scaling group
under whose action the solutions to the equation are invariant. This implies that
a Fundamental solution is self-similar: this is what we call a Barenblatt solution.
Self-similarity has big relevance for the understanding of Fundamental processes
in mathematics and physics, as described in [4]. Self-similar phenomena got in
mathematical physics quite early, perhaps with the famous work of Fourier in
1822 on the analytical theory of heat conduction. In this memoir he performed a
construction of a source-type solution

u(x, t) = A√
t
f

(
x√
t

)
, for f (ζ ) = e−

ζ2

A , A > 0,

to the heat conduction equation

ut = �u. (10)

Subsequently the phenomena under consideration and their mathematical models
became increasingly complicated and very often nonlinear. To obtain self-similar
solutions was considered a success in the pre-computer era. Indeed, the construction
of such solutions always reduces the problem to solving the boundary value
problems for an ODE, which is a substantial simplification, as we will see in
[3]. Furthermore, in ‘self-similar’ coordinates (as u

√
t , x/

√
t for (10)), self-similar

phenomena become time independent. This enlightens a certain type of stabilization.
Thus during the pre-computer era, the achievement of a self-similar solution was the
only way to understand the qualitative features of the phenomena, and the exponents
of the independent variables x, t in self-similar variables were obtained often by
dimensional analysis. Dimensional analysis is merely a simple sequence of rules
based on the Fundamental covariance principle of physics: all physical laws can be
represented in a form which is equally valid for all observers.

The very idea of self-similarity is connected with the group of transformations
of solutions (see [3]). These groups are already present in the differential equations
of the process and are determined by the dimensions of the variables appearing
in them: the transformations of the units of time, length, mass, etc. are the simplest
examples. This kind of self-similarity is obtained by power laws with exponents that
are simple fractions defined in an elementary way from dimensional considerations.
Such a course of argument has led to results of immense and permanent importance,
as the theory of turbulence and the Reynolds number, of linear and nonlinear
heat propagation from a point source, and of a point explosion. Moreover it has
enlightened the way toward to a nonlinear theory developed by DiBenedetto [10]
with the nowadays well-known method of intrinsic scaling (see also [29]).
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The Group of Transformations for the p-Laplace Equation

Let us examine the group of transformations under scaling of the p-Laplace
equation

ut = div(|∇u|p−2∇u).

We apply the following dilation in all variables

u′ = Ku, x ′ = Lx, t ′ = T t,

and impose that the function u′ so defined

u′(x ′, t ′) = Ku

(
x ′

L
,
t ′

T

)
, (11)

is again a solution to the p-Laplace equation above. Then by the simple calculations

ut ′ = K

T
ut

(
x ′

L
,
t ′

T

)
, |∇x ′u′| = K

L
|∇u|

we arrive to the conclusion that u′ is a solution to the p-Laplace equation if and only
if

TKp−2 = Lp.

So we obtain a two-parametric transformation group T (L, T ) acting on the set of
solutions of the p-Laplace equation:

(T u)(x, t) =
(
Lp

T

) 1
p−2

u

(
x

L
,
t

T

)
. (12)

and we can conclude the following Lemma.

Lemma 1 If u is a solution to the p-Laplace equation in a certain class of solutions
S which is closed under dilation in x, t, u, then (T u) given by (12) is again a
solution to the equation in the same class S.

Those special solutions that are themselves invariant under the scaling group are
called self similar-solutions: this means that (T u)(x, t) = u(x, t) for all (x, t) in
the domain of definition, which has to be itself scale-invariant.

Suppose now that we have an important information, such as (27) or conservation
of mass. We want to use some of the free parameters to force T to preserve this
important behaviour of the orbit. Analytically it consists in imposing a new relation
between two independent parameters, as K and L for instance, and in reducing the
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transformation to a one-parameter family of scaled functions. Thus we set

K = L−χ , (13)

and consequently

K = T −α, L = T β,

with α, β, χ linked by conserving the equation:

α(p, χ) = χ

χ(p − 2)+ 2
, β(p, χ) = 1

χ(p − 2)+ 2
, unless χ = −2

(p − 2)
.

Observing that χ = α/β, the equation changes into

(T u)(x, t) = T −αu(x/T β, t/T ), (14)

where α, β are linked by α(p − 2)+ β = 1. The condition of preserving the initial
mass is ∫

RN
Ku0

(
x

L

)
dx =

∫
RN
(T u0)(x)dx =

∫
RN
u0(x)dx (15)

which obliges KLN = 1, so that the one parameter family T will be given by

α = N

N(p − 2)+ 2
, β = 1

N(p − 2)+ 2
, p > 2. (16)

Observe the formula for the transformation of the initial data (which obviously must
satisfy the same transformation) must be

(T u0)(x) = T −N
λ u0

(
x

T
1
λ

)
, λ = N(p − 2)+ p. (17)

In the case of Barenblatt Fundamental solution (24) the couple (x, t) is fixed as a
single variable so that

u(x, t) = t−αu(xt−β, 1) = t−αF (xt−β), (18)

where F(η) = u(η, 1) is the profile of the solution.

Remark 1 A complete theory of existence and uniqueness for the main equation
would allow us to obtain self-similar solutions almost for free. Indeed we can
consider the solution to the Cauchy problem for scale invariant data, and then use
uniqueness to show that this must be self-similar. Let the initial data for instance be
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of the form

u′(x) = G(ξ)

|x|χ , χ ∈ R, ξ = x

|x| , and G : SN−1 → R.

Let us suppose that we are able to solve with uniqueness the Cauchy problem for
our equation with this initial data, say the solution is u. We produce another solution
to the same equation by T (u) given by (11) and if K = L−χ then the transformed
initial data is the same one:

(T u)(x, 0) = KG(ξ)

∣∣∣∣ xL
∣∣∣∣
−χ

= u(x, 0)

and so u and T (u) solve the same Cauchy problem and u is self-similar.

2.2 Notation and Settings

Given p := (p1, .., pN), p > 1 with the usual meaning, we assume that the
harmonic mean is smaller than the dimension of the space variables

p :=
(

1

N

N∑
i=1

1

pi

)−1

< N, (19)

and we define the Sobolev exponent of the harmonic mean p,

p∗ := Np

N − p . (20)

We will suppose without loss of generality along this note that the pis are ordered
increasingly. Next we introduce the natural parabolic anisotropic spaces. Given T >
0 and a bounded open set � ⊂ R we define

W 1,p
o (�) := {u ∈ W 1,1

o (�)|Diu ∈ Lpi (�)}

W
1,p
loc (�) := {u ∈ L1

loc(�)|Diu ∈ Lpiloc(�)}

Lp(0, T ;W 1,p
o (�)) := {u ∈ L1(0, T ;W 1,1

o (�))|Diu ∈ Lpi (0, T ;Lpiloc(�))}

L
p
loc(0, T ;W 1,p

o (�)) := {u ∈ L1
loc(0, T ;W 1,1

o (�))|Diu ∈ Lpiloc(0, T ;Lpiloc(�))}
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Now let A be a measurable vector field satisfying the growth conditions (3). By a
local weak solution of

ut = divA(x, u,Du), (x, t) ∈ T ,

we understand a function u ∈ C0
loc(0, T ;L2

loc(R
N)) ∩ Lp

loc(0, T ;W 1,p(RN)) such
that for all 0 < t1 < t2 < T and any test function ϕ ∈ C∞

loc(0, T ;C∞
o (R

N)) satisfies

∫
uϕ dx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
(−u ϕt + A(x, u,Du) ·Dϕ) dxdt = 0, (21)

where the integral is assumed to be in RN when no domain has been specified. By
a density and approximation argument this actually holds for any test function of
the kind ϕ ∈ W 1,2

loc (0, T ;L2
loc(R

n)) ∩ Lp
loc(0, T ;W 1,p

o (�)) for any semirectangular
domain � ⊂⊂ RN (see [18] for a discussion on anisotropic embeddings and
semirectangular domains).

Remark 2 We further give the definition of solution to the prototype equation (1)
with L1 initial data, to be used during the development of our work.

A measurable function (x, t) → u(x, t) defined in T is a weak solution to the
Cauchy Problem (2) with L1 initial data if for every bounded open set � ⊂ R, if

u ∈ C(0, T ;L1(�)) ∩ Lp(0, T ;W 1,p(�)), and

∫
�

u(x, t)ϕ(x, t)dx +
∫ t

0

∫
�

{−uϕt +
N∑
i=1

|Diu|pi−2DiuDiϕ}dxdτ

=
∫
�

u0(x)ϕ(x, 0)dx,

(22)

for all 0 < t < T and all test functions ϕ ∈ C∞(0, T ;C∞
o (�)).

Weak subsolutions (resp. supersolutions) are defined as above except that in (22)
equality is replaced by ≤ (resp. ≥) and test functions ϕ ≥ 0 are taken to be
nonnegative.

3 A Self-Similar Solution to the p-Laplace Equation

Consider the equation

{
u ∈ Cloc(0, T ;L2

loc(R
N)) ∩ Lploc(0, T ;W 1,p

loc (R
N),

ut − div(|∇u|p−2∇u) = 0, in T = RN × (0, T ). (23)
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In this case we recover the classic p-Laplace equation, and we can write explicitly
its self-similarity source-solution since the work of Barenblatt [2] as

B(x, t) = t−
N
λ

{
1 − γp

( |x|
t

1
λ

) p
p−1
} p−1
p−2

+
, t > 0 (24)

with

λ = N(p − 2)+ p, γp =
(

1

λ

) 1
p−1 p − 2

p
. (25)

We observe that B satisfies the self-similar transformation (18). This function B
solves the Cauchy problem

{
ut − div(|∇u|p−2∇u) = 0, in RN × (0,∞),
B(·, 0) =Mδo,

(26)

where δo is the Dirac measure concentrated at the origin and for every t > 0 the
mass M = ‖B(·, t)‖

L1(RN ) is conserved. The initial datum is taken in the sense of

measures, which is, for every ϕ ∈ Co(RN)∫
RN

B(x, t)ϕ dx → Mϕ(0), as t ↓ 0.

For t > 0 and every ρ > 0 we have the important bound

‖B(·, t)‖L∞(Kρ) = t−
N
λ , (27)

being Kρ the cube of edge ρ. The explicit function B is classically named
Fundamental solution in literature, because it converges pointwise in T to the heat
kernel �(x, t) when p approaches 2,

B(x, t)→ (4π)N/2�(x, t) = 1

tN/2
e−

|x|2
4t , if p ↓ 2,

but the name does not refer to the kernel property i.e. solutions to (23) are not
representable as convolutions of B with initial data. Nevertheless all non-negative
solutions to (23) behave as t ↓ 0 like the Fundamental solution B, and as |x| →
∞ they grow no faster than |x|p/(p−2). Barenblatt Fundamental solutions B are
useful, together with the comparison principle, for proving an intrinsic Harnack
estimate (see further Sect. 5), uniqueness in existence with L1 data (as in [19]), and
more generally to understand the behavior of solutions from the point of view of the
physics. In this way, a suitable revisiting of the linear theory had been shaped to face
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nonlinear equations as the p-Laplace. It is possible to build Barenblatt Fundamental
solutions centered in x̄ with initial datum at a time t̄ in the following way

Bk,ρ(x, t, x̄, t̄ ) = kρN

S
N
λ (t)

{
1 −

( |x − x̄|
S

1
λ (t)

) p
p−1

} p−1
p−2

+
, λ = N(p − 2)+ p, (28)

with

S(t) = λ

(
p

p − 2

)p−1

kp−2ρN(p−2)(t − t̄ )+ ρλ. (29)

These functions enjoy the following important properties.

1. They are weak solutions to (23) in RN × {t > t̄}.
2. If we fix t = t̄ then Bk,ρ ≡ 0 for all x ∈

(
RN − Bρ(x̄)

)
and for t > t̄ the

function x → Bk,ρ vanishes, in a C1 fashion, across the boundary of the ball

{|x − x̄| < S 1
λ (t)}.

Their support evolves compactly:

supp

(
Bk,ρ(x, t, x̄, t̄ )

)
=
{
|x − x̄| ≤ S 1

λ (t)

}
× [t̄ , t∗], (30)

thus

supp

(
Bk,ρ(x, t, x̄, t̄ )

)
⊆ BS1/λ(t∗)(x̄)× [t̄ , t∗]. (31)

3. They are bounded for fixed ρ and k ∈ R+:

Bk,ρ(x, t, x̄, t̄ ) ≤ k, x ∈ RN . (32)

In the sequel when no explicit formula for a solution as (28) (as in (1)), we will
refer to a Barenblatt Fundamental Solution as a function (resp. to (1)) satisfying
properties analogous to 1–3 above.

3.1 The Construction of B: Reduction to an Isotropic
Fokker-Planck Equation

As far as we know if we look for a Barenblatt Fundamental solution as B, we
have to impose the condition (27), because this is the behaviour that non-negative
solutions to the p-Laplace Cauchy problem with the right decay of the initial datum



110 S. Ciani and V. Vespri

do satisfy (see [10] Theorem 4.5). This motivates us to apply the following (formal)
transformations to Eq. (23) and

{
u(x, t) = t−N

λ v(xtα, t) = v(y, t),

y = xtα, α = − 1
λ
,

⇒
{
ux = t−N

λ vyyx = tα−N
λ vy,

∂
∂x

= tα ∂
∂y
.

(33)

Remark 3 We notice that the applied transformation does not belong to the group of
transformations (12), so we expect that Eq. (23) turns into another one. This is what
is called in [30] the continuous rescaling: as the change of variables (33) belongs
to the transformation group only for the fixed time t = 1, source-type solutions
transform into stationary profiles of the transformed equation.

By direct calculation we obtain

ut = −N
λ
t−

N
λ −1v + t−N

λ

[ N∑
i=1

vyi (yi)t + vt
]
=

− N

λ
t−

N
λ −1v + t−N

λ

[
∇yv · αy

t
+ vt

]

and

∇xu = tα−N
λ ∇yv. (34)

We set

ṽ(y, t̃ ) = ṽ(y, ln(t)) = v(y, t), ⇒ ṽt = ṽt̃ t
−1 = vt (35)

and Eq. (23) becomes, by multiplying it for t
N
λ
+1

ṽt̃ =
N

λ
v − N

λ
∇yṽ · y + tα∇y ·

[
t(α−

N
λ
)(p−1)|∇yṽ|p−2∇y ṽ

]
t
N
λ
+1 =

N

λ
v − N

λ
∇yṽ · y +∇y ·

[
|∇y ṽ|p−2∇yṽ

]
tα+(α−

N
λ )(p−1)+N

λ +1 =

N

λ
v − N

λ
∇yṽ · y +∇y ·

[
|∇y ṽ|p−2∇yṽ

]
,

being α = − 1
λ

. So we obtain the isotropic Fokker-Planck equation

ṽt̃ = ∇y ·
(
|∇yṽ|p−2∇y ṽ + yṽ

λ

)
. (36)
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3.2 Barenblatt Solution Solves the Isotropic Fokker Planck
Equation

Consider the Barenblatt function B(x, t), with explicitly scaled space variables

B(x, t) = t−N
λ

{
1 − γp

(√√√√ N∑
i=1

(
xi

t
1
λ

)2) p
p−1
} p−1
p−2

+
. (37)

We claim that B solves the stationary version of (36), by taking the flux to be zero,
i.e.

|∇y ṽ|p−2∇yṽ + yṽ

λ
= 0.

We have, by setting yi = xit
− 1
λ , that

B(y, t) = t−
N
λ

{
1−γp|y|

p
p−1

} p−1
p−2

+
= t−

N
λ

{
1−γp

(√∑N
i=1 x

2
i

t
1
λ

) p
p−1
} p−1
p−2

+
= B(x, t)

and thus the function

C(y, t) =
{

1 − γp|y|
p
p−1

} p−1
p−2

+

is independent from t , and

∇yC =− γp
(

p

p − 2

){
1 − γp|y|

p
p−1

} 1
p−2

+
|y| 2−p

p−1 y =

= −γp
(

p

p − 2

)
C

1
p−1 |y| 2−p

p−1 y.

Thus by calculation we have that C(y) = t
N
λ B(y, t) solves the zero flux equation

|∇yC|p−2∇yC + yC
λ

=
[
γp

(
p

p − 2

)
C 1
p−1

]p−2

|y| 2−p
p−1 (p−2)|y|p−2

[
− γp

(
p

p − 1

)
C 1
p−1 |y| 2−p

p−1 y

]
+ yC
λ

=

C
[

1

λ
− γp

(
p

p − 2

)p−1]
y = 0, for γ =

(
p − 2

p

)p−1 1

λ
.
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Consequently, so does B(x, t). Now we show that the converse reasoning holds too,
in order to show how the whole calculation is in fact reduced to a ODE solution.

3.3 Function C Solves a Particular ODE

Consider

C(η) =
{

1 − γpη
p
p−1

} p−1
p−2

+
= C(|y|), η > 0. (38)

In 0 ≤ η <
(

1
γp

) p−1
p

we have

C(η)
p−2
p−1 = 1 − γpη

p
p−1 .

We derive the equation to obtain

(
p − 1

p − 2

)
C(η)−

1
p−1 C ′(η)dη = −

(
p − 2

p

)
1

λ1/(p−1)

(
p

p − 1

)
η

1
p−1 dη.

Now, we manipulate the equation with C ′(η) ≤ 0, because

C ′(η) =
(
p − 1

p − 2

){
1 − γpη

p
p−1

}− 1
p−2

+

(
− γ

(
p

p − 1

)
η

1
p−1

)
≤ 0

so that

(
(−C ′(η))p−1

C(η)

) 1
p−1 =

(
η

λ

) 1
p−1

and so the desired mono-dimensional Fokker-Planck equation is obtained

|C ′(η)|p−2C ′(η)+ ηC(η)
λ

= 0. (39)

If one reads conversely from the end to the beginning of these calculations, it is clear
how to arrive to a solution to the isotropic Fokker Planck equation (36) by imposing
radial symmetry.
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4 Solving the Isotropic Cauchy Problem with Measure Data

Suppose now that we are not able to solve by radial symmetry the isotropic Fokker-
Planck equation (36). If we look for a solution to (26) that exhibits the properties
(30)–(32), we may adopt the following strategy. First we find a general solution u to
(26) with datum the Dirac measure δo, we show that it is positive by the maximum
principle, and then we use the transformation (33) to get a solution w to (36).
Observe that a comparison principle for subsolutions to the p-Laplace equation can
be transported to a comparison principle for subsolutions to the isotropic Fokker-
Planck equation. But we need a solution to the stationary Fokker-Planck equation to
recover the self-similarity (see Remark 3), so that we can control the behavior for
all times by scaling, and we gain for free the correct evolution of its support. More
generally speaking, if the initial data in (22) is given by

u0(·, 0) = μ, (40)

where μ is a σ—finite Borel measure in RN , then we say that u is a weak solution
of (22) with measura data if for every bounded open set � ⊂ RN and ∀t ∈ (0, T ),
u satisfies the above integral equality (22) with the right-hand side replaced by

∫
�

ϕ(x, 0)dμ,

∀ϕ ∈ C1(�T ) such that x → ϕ(x, t) is compactly supported in � ∀t ∈ [0, T ].
In the pioneering work [12] for the isotropic p-Laplace, the authors consider a

way of measuring the growth of a function f ∈ L1
loc(R

N) as |x| → ∞ by setting

|‖f ‖|r := sup
ρ≥r

ρ−λ/(p−2)
∫
Bρ

|f |dx, r > 0, λ = N(p − 2)+ p.

Note that if f ∈ L1(RN) then |‖f ‖|r < ∞, ∀r > 0. Similarly, if μ is a σ -finite
Borel measure in RN , we set

|‖μ‖|r := sup
ρ≥r

ρ−λ/(p−2)
∫
Bρ

|dμ|,

where |dμ| is the variation of μ.
In that Fundamental work, the authors demonstrate the existence of a weak

solution to the problem (22) in its isotropic configuration, within T = T (μ),
where

T (μ) =

⎧⎪⎨
⎪⎩
C0(N, p)

[
limr→∞ |‖μ‖|r

](2−p)
, if limr→∞ |‖μ‖|r > 0

+∞ if limr→∞ |‖μ‖|r = 0.

(41)
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So the existence is proved in a cylindrical domain whose last time T is dictated
by the behavior at infinity of the initial measure μ. The method relies on suitable
estimates and compactness, which permit a standard limiting process. Indeed, given
a σ—finite Borel measure μ in RN satisfying |‖μ‖|r < ∞ for some r > 0, there
exists a sequence of regular functions {u0,n}n∈N ∈ C∞

o (R
N) such that ∀ϕ ∈ Co(RN)

we have ∫
RN
u0,nϕ dx →

∫
RN
ϕdμ, & |‖u0,n‖|r → |‖μ‖|r , r > 0.

The Cauchy Problem

{
ut − div(|Du|p−2Du) = 0 in T , p > 2,

u(·, 0) = u0,n.
(42)

has a unique solution un, global in time (see [6]). Next, the authors prove the
following estimates, for all 0 < t < Tr(μ) := C0[‖|μ‖|r ](2−p), ∀ρ ≥ r > 0:

‖|u(·, t)‖|r ≤ C1(N,p)‖|μ‖|r , (43)

‖u(·, t)||L∞(Bρ) ≤ C2(N,p)t
−N/λρp/(p−2)|‖μ‖|p/λr , (44)

‖Du(·, t)||L∞(Bρ) ≤ C3(N, p)t
−(N+1)/λρ2/(p−2)‖|μ‖|2/λr , (45)

∫ t

0

∫
�
|Du|qdxdτ ≤ C4(N,P, ε, diam�) |‖μ‖|C5(N,p,ε)

r , q = p − (N + ε)/(N + 1),

(46)

and in particular with ε = 1 we obtain

∫ t

0

∫
Bρ

|Du|p−1dxdτ ≤ C5(N.p)t
1/λρ1+λ/(p−2) |‖μ‖|1+(p−2)/λ

r (47)

Moreover the function (x, t) → Du(x, t) is Hölder continuous in �× [η, T (μ) −
η], 0 < η < T (μ), with Hölder constants and exponents depending upon
N,p,C1, .., C4, diam�, η, |‖μ‖|r . It can be shown that their estimates are sharp,
by means of Barenblatt solutions. Finally, the estimates above (43)–(45) with a
monotonicity property as (4), permit to pass to the limit in the approximating
problems (42).
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5 An Application of B to Intrinsic Harnack Estimates

In this section we outline the importance of the construction of a Barenblatt
Fundamental solution for the aim of proving regularity. Indeed the rough idea is
that once that we have a solution of (23) whose support and positivity can be
easily manipulated, by means of a comparison argument is possible to expand the
positivity set of a whatever solution that is bigger than the Fundamental one in
the parabolic boundary. More precisely we will review the proof of the following
Theorem of [10].

Theorem 1 Let u be a non-negative weak solution of Eq. (23) in �T = �× [0, T ]
where� ⊂ RN bounded open set. Fix a point (x0, t0) ∈ �T and assume u(x0, t0) >

0. There exist constants γ > 1 and C > 1, depending only on N,p, such that

u(x0, t0) ≤ γ inf
Bρ(x0)

u(·, t0 + θ), θ = Cρp

[u(x0, t0)]p−2 , (48)

provided the cylinder

Q4ρ(θ) = {|x − x0| < 4ρ} × {t0 − 4θ, t0 + 4θ} (49)

is contained in �T .

Remark 4 As we can see, the geometry is intrinsically defined by the value of
the solution in (x0, t0). This brings to light a difficulty in exposition, as a priori
weak solutions to (23) are not meant to be well defined in every point. Nonetheless
by standard regularity theory we know that local weak solutions to (23) are
locally Hölder continuous, and so they are well defined pointwise as elements of
C(0, T ;W 1,p

loc (�)).

Remark 5 The constants γ and C in previous Theorem tend to infinity as p tend to
infinity, but they are stable as p ↓ 2 in the following meaning

lim
p↓2

γ (N, p) = γ (N, p), and lim
p↓2

C(N,p) = C(N,p). (50)

5.1 Outline of the Proof of Theorem 1

For the sake of conciseness ad to the aim of highlighting the importance of
Barenblatt Fundamental solutions, we will demonstrate only the case when p is
not too close to 2. The proof for p ∈ (2, 5/2] uses local comparison functions built
especially to do the same job of B, being subsolutions of (23) and observing the
same ordering imposed by the following Lemma.
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Lemma 2 Let u, v be two solutions of (23) in �T = � × [0, T ] such that u, v ∈
C(0, T ;L2(�))∩Lp(0, T ;W 1,p(�))∩C(�T ). If u ≥ v in the parabolic boundary
of �T , then u ≥ v in �T .
STEP 1. Transforming the problem by scaling.
Let (x0, t0) ∈ �T , ρ > 0 to be fixed a posteriori, assume that u(x0, t0) > 0 and for
a constant C to be determined later let Q4ρ be the box

Q4ρ = {|x − x0| < 4ρ} ×
{
t0 − 4Cρp

[u(x0, t0)]p−2 , t0 +
4Cρp

[u(x0, t0)]p−2

}
. (51)

Now introduce the change of variables

!(x, t) =
(
x − x0

ρ
,
(t − t0)[u(xo, t0)]p−2

ρp

)
, !(Q4ρ) = B4 × (−4C, 4C) =: Q

(52)

Let us denote again with x, t the new variables!(x, t), and observe that the function

v(x, t) = 1

u(x0, t0)
u

(
x0 + ρx, tρp

[u(x0, t0]p−2

)
, (53)

is a bounded non-negative solution to the Cauchy problem

{
vt − div(|Dv|p−2Dv) = 0, (x, t) ∈ Q
v(0, 0) = 1.

(54)

Theorem 1 will be proved, as shown by a simple converse rescaling, if we are able to
find constants γo ∈ (0, 1], C > 1 depending only upon N,p holding the inequality

inf
B1
v(x,C) ≥ γo. (55)

The constant γo defined successively in (62) tends to zero as p ↓ 2.
STEP 2. Finding qualitatively a point where v equals a power-like function of time.
We consider the family of nested and expanding boxes

Qτ = {|x| < τ } × (−τp, 0], τ ∈ (0, 1] (56)

and for each of these boxes we consider the numbers

Mτ = sup
Qτ

v, Nτ = (1 − τ )−b, (57)

where the number b > 0 will be suitably defined later to render quantitative the
following estimate. As M0 = N0 and considering that Mτ remains a bounded
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function of τ (because v is a bounded solution) while Nτ → +∞ when τ tends
to 1, we can choose a number τo to be the largest root of the equation

Mτ = Nτ .

This implies by construction

sup
Qτ

v ≤ Nτ , ∀τ > τo. (58)

Since v is continuous inQ there exists at least one point (x̄, t̄ ) ∈ Qτo such that

v(x̄, t̄ ) = Nτo = (1 − τo)−b. (59)

STEP 3. Ordering v and (1 − τo)−b within a small ball centered in x̄.
Let

R = 1 − τo
2

,

and consider the cylinder [(x̄, t̄ ) +Q(Rp,R)] = {|x − x̄| < R} × {t̄ − Rp, t̄}. As
τo ∈ (0, 1] we have the inclusion [(x̄, t̄ )+Q(Rp,R)] ⊂ Q 1+τo

2
which implies

sup
[(x̄,t̄)+Q(Rp,R)]

v ≤ N 1+τo
2

= 2b(1 − τo)−b =: ω.

Now we use Hölder continuity of the function v in the fashion of Proposition 3.1
of Chap. III of [10], choosing b > 0 so large that the starting one of the family of
shrinking cylinders is contained in [(x̄, t̄ ) + Q(Rp,R)]. Hence there exist γ > 1
and a, εo ∈ (0, 1) such that for all r ∈ (0, R] we have

osc
[(x̄,t̄ )+Q(Rp,R)]

v(·, t̄ ) ≤ γ (ω + Rεo)
(
r

R

)a

≤ 2b+1γ (1 − τo)−b
(
r

R

)a (60)

We let r = σR and we choose σ so small that for all {|x − x̄| < σR} we obtain

v(x, t̄ ) ≥ v(x̄, t̄ )− 2b+1γ (1 − τo)−bσ a

(1 − 2b+1)γ σa)(1 − τo)−b
1

2
(1 − τo)−b, ∀{|x − x̄|} < σR, R = 1

2
(1 − τo)

(61)
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STEP 5. Expansion of the positivity set and conclusion.
In this last step we will choose the constants b > 1 and C > 1 so that the qualitative
largeness of v(·, t̄ ) in the small ball BσR(x̄) turns into a quantitative bound below
over the full sphere B1 at some later time level C. This will be carried on by means
of the comparison with the functions Bk,ρ defined in (28) by

Bk,ρ(x, t, x̄, t̄ ) = kρN

S
N
λ (t)

{
1 −

( |x − x̄|
S

1
λ (t)

) p
p−1
} p−1
p−2

+
,

S(t) = λ

(
p

p − 2

)p−1

kp−2ρN(p−2)(t − t̄ )+ ρλ.

Indeed, we choose appropriately

k = 1

2
(1 − τo)−b, ρ = σR,

and we observe that at the time level t = C the support of Bk,ρ(·, C, x̄, t̄ ) is the ball

|x − x̄|λ < S(t) = {dγ p−2(1 − τo)(N−b)/(p−2)(C − t̄ )+ (σR)λ)}

for

γ (N, b) = 1

2

(
σ

2

)N
, and d = λ

(
p

p − 2

)p−1

.

Now choose

b = N, C = 3λ

dγ p−2 , (62)

so that the support of Bk,ρ(·, C, x̄, t̄ ) contains B2 and we can use the comparison
principle with v as we have in Bρ

v(·, t̄ ) ≥ 1

2
(1 − τo)−N = k ≥ Bk,ρ(·, t̄ ). (63)

Thence

inf
x∈B1

v(x,C) ≥ inf
x∈B1

Bk,ρ(x, C, x̄, t̄ )

≥ 2−(1+2N/λ)
(
σ

2

)N{
1 −

(
2

3

) p
p−1
} p−1
p−2 =: γo,

(64)

and the proof is concluded.
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6 Looking for a Barenblatt-Type Solution to (1)

In this section we calculate the right exponents for the transformation of Eq. (1) into
an anisotropic Fokker-Planck equation. Next we observe that the impossibility of
using radial solutions does not allow us to obtain an ODE from the Fokker-Planck
equation. Finally we show a strategy to find a non-explicit Barenblatt Fundamental
solution.

Remark 6 Observe initially that we can construct a source-type solution, but that
unfortunately has not a compact support. Indeed, consider the following solution to
(1). Let i ∈ {1, .., N} and

fi(xi, t, Ti) = κi

( |xi |pi
(Ti − t)

) 1
pi−2

, κi = κi(pi) > 0, pi > 2, (65)

be solutions of the equations

ut − (|uxi |pi−2uxi )xi = 0, xi ∈ R, t > 0. (66)

Then the function

F(x, t) =
N∑
i=1

fi(xi, t, Ti)

=
N∑
i=1

κi

( |xi |pi
(Ti − t)

) 1
pi−2

(67)

solves the prototype equation (1). The same can be done by choosing fi ≡ Bi the
mono-dimensional Barenblatt solutions solving (66). These functions reveal some
of the physical aspects of Eq. (1): for instance they can be used to show that the
lifetime of solutions is dictated by the largest exponent pN in the case of large
initial mass (see Remark 3 in [8]). Unfortunately solutions so-built do not have a
compactly supported evolution and we cannot use them to expand the positivity by
comparison as done in Sect. 5.

6.1 Finite Speed of Propagation

Consider the Cauchy problem

{
ut = div(A(t, x, u,∇u)), in T = RN × (0, T ),
u(x, 0) = u0(x) ∈ L2(RN),

(68)
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where A(t, x, u,∇u) = (Ai(x, t, u,∇u))i=1,..,N is a Caratheodory vector field
satisfying the growth conditions (3). In [14] the authors proved the following decay
properties, that will be useful to us to intercept the right exponents in the scaling
transformation leading to the Fokker-Planck equation for solutions to (1).

Theorem 2 Suppose that pi > 2 for all i ∈ {1, .., N}. Let u be a local weak
solution to (68) in T under the growth conditions (3) with

u0 ∈ L2(RN), ∅ = supp(u0) ⊆ [−R0, R0]N (69)

Then there is a solution ũ = 0 such that

supp(ũ(·, t)) ⊆
N∏
i=1

[−Rj(t), Rj (t)], (70)

for any t < T , where

Rj (t) = 2R0 + Ct
N(p̄−pj )+p̄

λpj ||u0||
p̄
pj

pj−2
λ

1 , λ = N(p̄ − 2)+ p̄. (71)

Moreover, they proved the followingL∞-L1 estimates of the decay for the solution.

Theorem 3 Let p̄ < N and let u ∈ ∩Ni=1Lpi (T ) solve (68) for u0 ∈ L1(RN) ∩
L2(RN). Then if pi > 2, ∀i = 1, .., N the following estimate holds true for any
τ ∈ [0, T ]

||u(·, t)||
L∞(RN ) ≤ Ct−

N
λ ||u0||

p̄
λ

L1(RN )
. (72)

6.2 The Anisotropic Fokker-Planck Equation

We consider a similar continuous transformation as (17), owing the choice of the
right exponent to the decay of a solution to (68), and we perform the following
formal calculations.

u(x, t) = t−βv
(
x1t

α1 , . . . , xN t
αN , t

)
= t−βv(y1, .., yN , t),

⎧⎨
⎩yi = xi t

αi ,

∂
∂xi

= tαi ∂
∂yi
.

(73)
We calculate formally

ut = −βt−β−1v+t−β
[ N∑
i=1

(
∂

∂yi
v

)
∂yi

∂t
+vt

]
=−βt−β−1v+t−β

N∑
i=1

(
∂

∂yi
v

)[
αixi t

αi

t

]
+t−βvt ,
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being

∂

∂xi
u = tαi−β ∂

∂yi
v.

We substitute these into (1) to get

−βt−β−1v + t−β
N∑
i=1

αiyi

t

(
∂

∂yi
v

)
+ t−βvt =

N∑
i=1

tαi
∂

∂yi

(
t (αi−β)(pi−1)

∣∣∣∣ ∂∂yi v
∣∣∣∣
pi−2

∂

∂yi
v

)
.

Re-ordering and multiplying each term for tβ+1 we get

tvt = βv −
N∑
i=1

αiyi
∂

∂yi
v +

N∑
i=1

t(αi−β)(pi−1)+αi+β+1 ∂

∂yi

(∣∣∣∣ ∂∂yi v
∣∣∣∣
pi−2

∂

∂yi
v

)
=

βv +
N∑
i=1

αiv +
N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi v
∣∣∣∣
pi−2

∂

∂yi
v

)
− αiyiv

]
,

by choosing

(αi − β)(pi − 1)+ αi + β + 1 = 0,

which means

αi = β − 1 + 2β

pi
< 0. (74)

This is an Euler equation. So, by redefining v(y, t) = w(y, ln(t)) Eq. (1) becomes
the non-homogeneous Fokker-Planck equation

wt =
(
β +

N∑
i=1

αi

)
w +

N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi w
∣∣∣∣
pi−2

∂

∂yi
w

)
− αiyiw

]
. (75)

If, according to (72), we consider

β = N

N(p̄ − 2)+ p̄ , (76)

then the equation reduces to

wt =
N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi w
∣∣∣∣
pi−2

∂

∂yi
w

)
− αiyiw

]
. (77)
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Remark 7 Equation (77) conserves the L1(�)-norm in time.
Moreover, a solution to the stationary version of (77) would give us the wanted

Barenblatt Fundamental solution to (1).

This anisotropic Fokker-Planck type equation is deeply different from its
isotropic counterpart (36). Anisotropy does not permit the identification of a single
variable ODE as in (39), and this is physically evident and due to the lack of radial
symmetry of the diffusion process in consideration: there is no homogeneous flux
here to be vanished. Moreover the steady equation

N∑
i=1

∂

∂yi

[(∣∣∣∣ ∂∂yi w
∣∣∣∣
pi−2 ∂

∂yi
w

)
− αiyiw

]
, in � ⊂ RN, (78)

is not a variational one i.e. it is not known if it can be written as the Euler Lagrange
equation of an energy functional. Moreover, its monotonicity and coercivity prop-
erties suffer heavily the second term influence relatively to the length in the i-th
direction of the medium �. These considerations leading to the difficulty of an
explicit formula as in the previous case (24), the existence and the main properties
characterizing a Barenblatt Fundamental solution may be derived by the simpler
original equation (1) and then defining a suitable function which solves the steady
Fokker-Planck equation (78). This would ensure that the solution to (1) found has
the properties of Theorem 2, which characterize a Barenblatt Fundamental Solution.

6.3 On the Solvability of the Anisotropic Cauchy Problem with
Measure Initial Data

We consider the prototype problem with measure initial data, i.e

{
ut −∑N

i=1(|uxi |pi−2uxi )xi = 0, (x, t) ∈ RN × [0, T ],
u(x, 0) = u0(x), x ∈ RN .

(79)

We begin the study of a weak solution to (79) i.e. a function u ∈ C(0, T ;L1(RN))∩
Lp(0, T ;W 1,p(RN)) such that for each open bounded � ⊂ RN and for all
t ∈ [0, T ) satisfies for all test function ϕ(x, t) ∈ W 1,∞([0, T , L∞(�)) ∩
L∞([0, T ],W 1,∞

o (�)) the equality

∫
�

uϕ(x, t)dx +
N∑
i=1

∫ t

0

∫
�

|uxi |pi−2uxiϕxi dxdτ

=
∫
�

ϕ(x, 0)du0 +
∫ t

0

∫
�

uϕτ (x, τ )dxdτ. (80)
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This has been done in [8, 9] for more general doubly nonlinear anisotropic
equations. We recall the notation λ = N(p − 2) + p. In [8] the authors prove a
generalised version of the following a priori estimates.

Theorem 4 Consider the problem (79) with 2 < pi ≤ p̄
(

1 + 1
N

)
, u0(x) ≥ 0 and

‖|u0‖|r := sup
ρ≥r

ρ−
λ
N

∫
Bρ

u0(x)dx <∞, r > 0, (81)

being

Bρ :=
{
x ∈ RN ||xi | ≤ ρ

p̄(pi−2)
pi (p̄−2)

2

}
.

Define by monotonicity M∞ := limr→∞ |‖u0‖|r and for a γ > 0 to be specified
later

T∗ :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞, if M∞ = 0,(
M∞
γ

)N(p−pN )+p
p(pN−2)

, if M∞ ≥ γ,(
M∞
γ

)
N(p−p1)+p
p(p1−2) , if M∞ < γ.

(82)

Then there exists a positive constant γ (pi,N) such that every nonnegative weak
solution to (79) defined on [0, T∗] must satisfy the following estimates for all t, t̄ ∈
(0, T∗):

|‖u(·, t)‖|r ≤ C|‖u0‖|r , (83)

‖u(·, t)‖L∞(Br ) ≤ Cr
p
N t−

N
λ ‖|u0‖|

p
λ
r , (84)

N∑
i=1

∫ t

0

∫
Br

|uxi |pi−1dxdτ < C(r, t), (85)

N∑
i=1

∫ t

t

∫
Br

|uxi |pi dxdτ < C(r, t, t). (86)

Remark 8 For pi = p, ∀i = 1, .., N estimates (83), (84), (85), (86) and the number
T∗ > 0 do coincide with the ones of Sect. 4 for the isotropic equation found in [12].
Secondly, it is interesting to observe that the lifetime of the solution is determined
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by the largest exponentpN in case of large initial mass ‖u0‖|r while it is determined
by the smaller p1 in case of a modest initial mass.

7 Future Strategy and Conclusion

In this note we have proven the strong connection between the Barenblatt Funda-
mental solution and the solutions to the stationary equation (78). We have shown
the existence of solutions to (77) thanks to a recent result in [9]. However, this is
not enough to use this result to prove regularity results. Indeed, we can invoke the
previous Theorem to find a solution u to (1). We already know that there exists a
solution of u that satisfies the growths (70), (72). But what is missing, to repeat
the same ideas of Sect. 1, is a nice description from below of the support of u. The
aim of our next papers is to carry on a deep analysis of the interplay between these
two equations and to develop the necessary tools for deriving regularity results and
Harnack inequalities for nonnegative solutions to (1).
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Abstract We prove that, if the coefficients of an hyperbolic operator are Zygmund-
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where, for all (t, x) ∈ [0, T ] × Rn and ξ ∈ Rn,

0 < λ0|ξ |2 ≤
n∑

j,k=1

ajk(t, x)ξj ξk ≤ �0|ξ |2

and

ajk(t, x) = akj (t, x).

It is well-known that, if the coefficients ajk are Lipschitz-continuous in t and
measurable in x, then the Cauchy problem related to L is well-posed in the energy
space. In particular, a constant C > 0 exists, such that

sup
0≤t≤T

(‖u(t, ·)‖H 1 + ‖∂tu(t, ·)‖L2)

≤ C(‖u(0, ·)‖H 1 + ‖∂tu(0, ·)‖L2 +
∫ T

0
‖Lu(s, ·)‖L2 ds),

(1)

for all u ∈ C([0, T ];H 1) ∩ C1([0, T ];L2) with Lu ∈ L1([0, T ];L2) (see [11, 12,
Ch. IX]).

In this note we are interested in second order strictly hyperbolic operators having
non Lipschitz-continuous coefficients with respect to time.

After the pioneering paper by Colombini, De Giorgi and Spagnolo [7], this
topic has been widely studied. A result of particular interest has been obtained in
[5], where it was proved that, if the coefficients are log-Lipschitz-continuous with
respect to t and x, i.e. there exists C > 0 such that

sup
t,x

|ajk(t + τ, x + y)− ajk(t, x)| ≤ C(|τ | + |y|)(1 + log
1

|τ | + |y|),

then (1) is no more valid, but the following weaker energy estimate can be recovered:

sup
0≤t≤T

(‖u(t, ·)‖H 1−θ−βt + ‖∂tu(t, ·)‖H−θ−βt )

≤ C(‖u(0, ·)‖H 1−θ + ‖∂tu(0, ·)‖H−θ +
∫ T

0
‖Lu(s, ·)‖H−θ−βs ds),

(2)

for some constants C > 0, β > 0 and for all u ∈ C2([0, T ];H∞) and θ ∈ ]0, 1[
(here and in the following H∞ = ⋂

s∈RHs). Remark that, while in (1) the norms
of u(t) and ∂tu(t) are estimated by the same norms of u(0) and ∂tu(0), in (2) the
Sobolev spaces in which u(t) and ∂tu(t) are measured are different and bigger
than the spaces in which initial data are, so the estimate is less effective. This
phenomenon goes under the name of “loss of derivatives”. We refer e.g. to the
introductions of [8, 9] for more details and references about this problem.
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Using a result obtained by Tarama in [16] (see also Remark 1 below), it is
possible to prove that if the coefficients depend only on t and are Zygmund-
continuous, i.e.

sup
t
|ajk(t + τ )+ ajk(t − τ )− 2ajk(t)| dt ≤ C2|τ |, (3)

then (1) is valid. Notice that the Zygmund assumption is weaker than the Lipschitz
one. In [9], the authors proved that if the coefficients depend also on the space
variable and verify an isotropic Zygmund assumption (i.e. they are Zygmund-
continuous both in time and space variables), then the Cauchy problem is well-posed
with no loss, but only in the space H 1/2 ×H−1/2. In particular, an estimate similar
to (1) holds true, up to replacing the H 1 and L2 norms respectively with the H 1/2

and H−1/2 norms. See also Remark 2 below for more details.
The problem whether a Zygmund assumption both in time and space is still

enough to recover well-posedness in general spaces Hs × Hs−1 (and not only for
s = 1/2) remains at present largely open. As a partial step in this direction, in this
note we consider a stronger hypothesis with respect to the space variable: namely
we prove that, if the coefficients are Zygmund-continuous with respect to t and
Lipschitz-continuous with respect to x, then an estimate without loss of derivatives,
similar to (1), holds true. Then, the Cauchy problem related to L is well-posed in
any space Hs ×Hs−1, for all s ∈ ]0, 1].

Two are the main ingredients of the proof of our result. The first one is to resort to
Tarama’s idea of introducing a new type of energy associated to operatorL: this new
energy is equivalent to the classical energy, but it contains a lower order term, whose
goal is to produce special algebraic cancellations, which reveal to be fundamental in
the energy estimates. The second main ingredient, already introduced in [8] and [9],
is the use of paradifferential calculus with parameters (see e.g. [13, 15]), in order to
deal with coefficients depending also on x and having low regularity in that variable.

We conclude this introduction with a short overview of the paper. In the next
section we fix our hypotheses and state our main result, see Theorem 1. In Sect. 3
we collect some elements of Littlewood-Paley theory, which are needed in the
description of the functional classes where the coefficients belong to, and in the
construction of paradifferential calculus with parameters. With those tools at hand,
we tackle the proof of Theorem 1, which is carried out in Sect. 4.

2 Main Result

Given T > 0 and an integer n ≥ 1, let L be the linear differential operator defined
on [0, T ] × Rn by

Lu = ∂2
t u−

n∑
j,k=1

∂j (ajk(t, x)∂ku), (4)
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where, for all j, k = 1, . . . , n,

ajk(t, x) = akj (t, x), (5)

and there exist λ0, �0 > 0 such that

λ0|ξ |2 ≤
n∑

j,k=1

ajk(t, x)ξj ξk ≤ �0|ξ |2, (6)

for all (t, x) ∈ [0, T ] × Rn and for all ξ ∈ Rn. Suppose moreover that there exist
constants C0, C1 > 0 such that, for all j, k = 1, . . . , n and for all τ ∈ R, y ∈ Rn,

sup
t,x

|ajk(t + τ, x)+ ajk(t − τ, x)− 2ajk(t, x)| ≤ C0|τ |, (7)

sup
t,x

|ajk(t, x + y)− ajk(t, x)| ≤ C1|y|. (8)

We can now state the main result of this paper.

Theorem 1 Under the previous hypotheses, for all fixed θ ∈ [0, 1[, there exists a
constant C > 0, depending only on θ and T , such that

sup
0≤t≤T

(‖u(t, ·)‖H 1−θ + ‖∂tu(t, ·)‖H−θ )

≤ C(‖u(0, ·)‖H 1−θ + ‖∂tu(0, ·)‖H−θ +
∫ T

0
‖Lu(s, ·)‖H−θ ds),

(9)

for all u ∈ C2([0, T ],H∞(Rn)).

Some remarks are in order.

Remark 1 If the coefficients ajk depend only on t , this result has been obtained by
Tarama in [16], under the hypothesis that there exists a constant C2 > 0 such that,
for all j, k = 1, . . . , n and for all τ ∈ ]0, T /2[,

∫ T−τ

τ

|ajk(t + τ )+ ajk(t − τ )− 2ajk(t)| dt ≤ C2τ. (10)

Tarama’s hypothesis is weaker than ours, but, when coefficients depend also on the
space variable, it is customary to take a pointwise condition with respect to time,
like in (7) above (see also [5, 6, 8, 9] in this respect). In particular, it is not clear at
present whether or not the pointwise condition (7) can be relaxed to an integral one,
similar to (10), in our framework.

Remark 2 If the hypoteses (7) and (8) are replaced by the weaker following one:
there exists a constant C3 > 0 such that, for all j, k = 1, . . . , n and for all τ ∈ R,
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y ∈ Rn,

sup
t,x

|ajk(t + τ, x + y)+ ajk(t − τ, x − y)− 2ajk(t, x)| ≤ C3(|τ | + |y|), (11)

the estimate (9) has been proved, only in the case of θ = 1/2, by the present authors
and Métivier in [9].

Remark 3 Assume (7) and the following hypothesis: there exists a constant C4 > 0
such that, for all j, k = 1, . . . , n and for all y ∈ Rn with 0 < |y| ≤ 1,

sup
t,x

|ajk(t, x + y)− ajk(t, x)| ≤ C4|y|(1 + log
1

|y|). (12)

As a consequence of a result of the present authors and Métivier in [8] (stated for
coefficients which are actually log-Zygmund with respect to time), one gets that, for
all fixed θ ∈ ]0, 1[, there exist a β > 0, a time T ′ > 0 and a constant C > 0 such
that

sup
0≤t≤T ′

(‖u(t, ·)‖H 1−θ−βt + ‖∂tu(t, ·)‖H−θ−βt )

≤ C(‖u(0, ·)‖H 1−θ + ‖∂tu(0, ·)‖H−θ +
∫ T ′

0
‖Lu(s, ·)‖H−θ−βs ds),

(13)

for all u ∈ C2([0, T ′],H∞(Rn)). The condition (12) is weaker than (8) but also
(13) is weaker than (9): (13) has a loss of derivatives, while (9) performs no loss. In
addition, observe that (13) holds only for θ ∈ ]0, 1[, while (9) holds also for θ = 0.

3 Preliminary Results

We briefly list here some tools we will need in the proof of the main result. We
follow closely the presentation of these topics given in [8] and [9].

3.1 Littlewood-Paley Decomposition

We will use the so called Littlewood-Paley theory. We refer to [2, 3, 14] and [1] for
the details.

We start recalling Bernstein’s inequalities.

Proposition 1 ([3, Lemma 2.2.1]) Let 0 < r < R. A constant C exists so that,
for all nonnegative integer k, all p, q ∈ [1,+∞] with p ≤ q and for all function
u ∈ Lp(Rd ), we have, for all λ > 0,
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(i) if Supp û ⊆ B(0, λR) = {ξ ∈ Rd : |ξ | ≤ λR}, then

‖∇ku‖Lq ≤ Ck+1λ
k+N( 1

p− 1
q )‖u‖Lp ;

(ii) if Supp û ⊆ C(0, λr, λR) = {ξ ∈ Rd : λr ≤ |ξ | ≤ λR}, then

C−k−1λk‖u‖Lp ≤ ‖∇ku‖Lp ≤ Ck+1λk‖u‖Lp .

We introduce the dyadic decomposition. Let ψ ∈ C∞([0,+∞[,R) such that ψ is
non-increasing and

ψ(t) = 1 for 0 ≤ t ≤ 11

10
, ψ(t) = 0 for t ≥ 19

10
.

We set, for ξ ∈ Rd ,

χ(ξ) = ψ(|ξ |), ϕ(ξ) = χ(ξ)− χ(2ξ). (14)

We remark that the support of χ is contained in the ball {ξ ∈ Rd : |ξ | ≤ 2}, while
the one of ϕ is contained in the annulus {ξ ∈ Rd : 1/2 ≤ |ξ | ≤ 2}.

Given a tempered distribution u, the dyadic blocks are defined by

�0u = χ(D)u = F−1(χ(ξ)û(ξ)),

�ju = ϕ(2−jD)u = F−1(ϕ(2−j ξ)û(ξ)) if j ≥ 1,

where we have denoted by F−1 the inverse of the Fourier transform. We introduce
also the operator

Sku =
k∑
j=0

�ju = F−1(χ(2−kξ)û(ξ)).

It is well known the characterization of classical Sobolev spaces via Littlewood-
Paley decomposition: for any s ∈ R, u ∈ S′ is in Hs if and only if, for all j ∈ N,
�ju ∈ L2 and the series

∑
22js‖�ju‖2

L2 is convergent. Moreover, in such a case,
there exists a constant Cs > 1 such that

1

Cs

+∞∑
j=0

22js‖�ju‖2
L2 ≤ ‖u‖2

Hs ≤ Cs
+∞∑
j=0

22js‖�ju‖2
L2 . (15)
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3.2 Lipschitz, Zygmund and Log-Lipschitz Functions

In this subsection, we give a description of some functional classes relevant in the
study of hyperbolic Cauchy problems. Namely, via Littlewood-Paley analysis, we
can characterise the spaces of Lipschitz, Zygmund and log-Lipschitz functions. We
start by recalling their definitions.

Definition 1 A function u ∈ L∞(Rd) is a Lipschitz-continuous function if

|u|Lip = sup
x,y∈�d ,
y =0

|u(x + y)− u(x)|
|y| < +∞,

u is a Zygmund-continuous function if

|u|Zyg = sup
x,y∈�d ,
y =0

|u(x + y)+ u(x − y)− 2u(x)|
|y| < +∞

and, finally, u is a log-Lipschitz-continuous function if

|u|LL = sup
x,y∈�d ,
0<|y|≤1

|u(x + y)− u(x)|
|y|(1 + log 1

|y|)
< +∞.

For X ∈ {Lip , Zyg , LL}, we define ‖u‖X = ‖u‖L∞ + |u|X.

Proposition 2 Let u ∈ L∞(Rd). We have the following characterisation:

u ∈ Lip(Rd ) if and only if sup
j

‖∇Sju‖L∞ < +∞, (16)

u ∈ Zyg(Rd ) if and only if sup
j

2j‖�ju‖L∞ < +∞, (17)

u ∈ LL(Rd ) if and only if sup
j

‖∇Sju‖L∞

j
< +∞. (18)

Proof The proof of (17) and (18) can be found in [3, Prop. 2.3.6] and [5, Prop. 3.3]
respectively. We sketch the proof of (16), for the reader’s convenience. Suppose
u ∈ Lip(Rd ). We have

Dj (Sku(x)) = Dj (F
−1(χ(2−kξ)û(ξ)))(x)

= F−1(ξjχ(2
−kξ)û(ξ))(x)

= 2kF−1(2−kξjχ(2−kξ)û(ξ))(x)

= 2k
∫
Rd
θj (2ky)u(x − y) 2kddy
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where θj (y) = F−1(ξjχ(ξ))(y). From the fact that
∫
Rd θj (y) dy = 0 we deduce

that

|Dj(Sku(x))| ≤ 2k|
∫
Rd
θj (2ky)(u(x − y)− u(x)) 2kddy|

≤ |u|Lip

∫
Rd

|θj (z)||z| dz,

hence supj
∥∥∇(Sj u)∥∥L∞ < C |u|Lip.

Conversely, let the second statement in (16) hold. Remarking that

Dj (�ku(x)) = F−1(ξj ϕ(2
−kξ)û(ξ))(x) = F−1(ξj (χ(2

−kξ)− χ(2−k+1ξ))û(ξ))(x),

and, by Bernstein’s inequalities,

|�ku(x)| ≤ C2−k+1(‖∇(Sku)‖L∞ + ‖∇(Sk−1u)‖L∞),

we deduce that, for a new constant C > 0,

‖�ku‖L∞ ≤ C2−k sup
j

∥∥∇Sju∥∥L∞

for all k ≥ 0. Then

|u(x + y)− u(x)| ≤ |Sku(x + y)− Sku(x)| + |
∑
h>k

(�hu(x + y)−�hu(x))|

≤ ‖∇(Sku)‖L∞|y| + 2
∑
h>k

‖�hu‖L∞

≤ C sup
j

∥∥∇(Sj u)∥∥L∞ (|y| + 2−k).

The conclusion follows from choosing k in such a way that 2−k ≤ |y|. ��
Notice that, going along the lines of the previous proof, we have actually shown

that there exists Cd > 1, depending only on d , such that, if u ∈ Lip(Rd ) then

1

Cd
|u|Lip ≤ ‖∇Sju‖L∞ ≤ Cd |u|Lip.

Proposition 3 ([3, Prop. 2.3.7])

Lip(Rd ) ⊆ Zyg(Rd ) ⊆ LL(Rd ).

In order to perform computations, we will need to smooth out our coefficients,
because of their low regularity. To this end, let us fix an even function ρ ∈ C∞

0 (R)
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such that 0 ≤ ρ ≤ 1, Suppρ ⊆ [−1, 1] and
∫
R ρ(t) dt = 1, and define ρε(t) =

1
ε
ρ( t
ε
). The following result holds true.

Proposition 4 ([9, Prop. 3.5]) Let u ∈ Zyg(R). There exists C > 0 such that,

|uε(t)− u(t)| ≤ C|u|Zyg ε, (19)

|u′ε(t)| ≤ C|u|Zyg (1 + log
1

ε
), (20)

|u′′ε (t)| ≤ C|u|Zyg
1

ε
, (21)

where, for 0 < ε ≤ 1,

uε(t) = (ρε ∗ u)(t) =
∫
R
ρε(t − s)u(s) ds. (22)

3.3 Paradifferential Calculus with Parameters

Let us sketch here the paradifferential calculus depending on a parameter γ ≥ 1.
The interested reader can look at [15, Appendix B] (see also [13] and [6]).

Let γ ≥ 1 and consider ψγ ∈ C∞(Rd × Rd) with the following properties

(i) there exist 0 < ε1 < ε2 < 1 such that

ψγ (η, ξ) =
{

1 for |η| ≤ ε1(γ + |ξ |),
0 for |η| ≥ ε2(γ + |ξ |);

(23)

(ii) for all (β, α) ∈ Nd ×Nd , there exists Cβ,α ≥ 0 such that

|∂βη ∂αξ ψγ (η, ξ)| ≤ Cβ,α(γ + |ξ |)−|α|−|β|. (24)

The model for such a function will be

ψγ (η, ξ) = χ(
η

2μ
)χ(

ξ

2μ+3 )+
+∞∑
k=μ+1

χ(
η

2k
)ϕ(

ξ

2k+3 ), (25)

where χ and ϕ are defined in (14) and μ is the integer part of log2 γ . With this
setting, we have that the constants ε1, ε2 and Cβ,α in (23) and (24) do not depend
on γ .
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To fix ideas, from now on we take ψγ as given in (25). Define now

Gψγ (x, ξ) = (F−1
η ψγ )(x, ξ),

where F−1
η ψγ is the inverse of the Fourier transform of ψγ with respect to the η

variable.

Proposition 5 ([14, Lemma 5.1.7]) For all (β, α) ∈ Nd × Nd , there exists Cβ,α,
not depending on γ , such that

‖∂βx ∂αξ Gψγ (·, ξ)‖L1(Rdx)
≤ Cβ,α(γ + |ξ |)−|α|+|β|, (26)

‖ | · | ∂βx ∂αξ Gψγ (·, ξ)‖L1(Rdx )
≤ Cβ,α(γ + |ξ |)−|α|+|β|−1. (27)

Next, let a ∈ L∞. We associate to a the classical pseudodifferential symbol

σa,γ (x, ξ) = (ψγ (Dx, ξ)a)(x, ξ) = (Gψγ (·, ξ) ∗ a)(x), (28)

and define the paradifferential operator T γa associated to a as the classical pseudod-
ifferential operator associated to σa,γ (from now on, to avoid cumbersome notations,
we will write σa), i.e.

T
γ
a u(x) = σa(Dx)u(x) = 1

(2π)d

∫
Rdξ

σa(x, ξ)û(ξ) dξ.

Remark that T 1
a is the usual paraproduct operator

T 1
a u =

+∞∑
k=0

Ska�k+3u,

while, in the general case,

T
γ
a u = Sμ−1aSμ+2u+

+∞∑
k=μ

Ska�k+3u. (29)

with μ equal to the integer part of log2 γ .
In the following it will be useful to deal with Sobolev spaces depending on the

parameter γ ≥ 1.

Definition 2 Let γ ≥ 1 and s ∈ R. We denote by Hs
γ (R

d) the set of tempered
distributions u such that

‖u‖2
Hsγ

=
∫
Rdξ

(γ 2 + |ξ |2)s |û(ξ)|2 dξ < +∞.
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Let us remark that Hs
γ = Hs and there exists Cγ ≥ 1 such that, for all u ∈ Hs ,

1

Cγ
‖u‖2

Hs ≤ ‖u‖2
Hsγ

≤ Cγ ‖u‖2
Hs .

3.4 Low Regularity Symbols and Calculus

As in [8] and [9], it is important to deal with paradifferential operators having
symbols with limited regularity in time and space.

Definition 3 A symbol of order m is a function a(t, x, ξ, γ ) which is locally
bounded on [0, T ] × Rn × Rn × [1,+∞[, of class C∞ with respect to ξ such
that, for all α ∈ Nn, there exists Cα > 0 such that, for all (t, x, ξ, γ ),

|∂αξ a(t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α|. (30)

We take now a symbol a of order m ≥ 0, Zygmund-continuos with respect to t
uniformly with respect to x and Lipschitz-continuous with respect to x uniformly
with respect to t . We smooth out a with respect to time as done in (22), and call aε
the smoothed symbol. We consider the classical symbol σaε obtained from aε via
(28). In what follows, the variable t has to be thought of as a parameter.

Proposition 6 Under the previous hypotheses, one has:

|∂αξ σaε (t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α|,

|∂βx ∂αξ σaε (t, x, ξ, γ )| ≤ Cβ,α(γ + |ξ |)m−|α|+|β|−1,

|∂αξ σ∂taε (t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α| log(1 + 1

ε
),

|∂βx ∂αξ σ∂t aε (t, x, ξ, γ )| ≤ Cβ,α(γ + |ξ |)m−|α|+|β|−1 1

ε
,

|∂αξ σ∂2
t aε
(t, x, ξ, γ )| ≤ Cα(γ + |ξ |)m−|α| 1

ε
,

|∂βx ∂αξ σ∂2
t aε
(t, x, ξ, γ )| ≤ Cβ,α(γ + |ξ |)m−|α|+|β|−1 1

ε2 ,

where |β| ≥ 1 and all the constants Cα and Cβ,α do not depend on γ .

Proof We have

σaε (t, x, ξ, γ ) = (Gψγ (·, ξ) ∗ aε(t, ·, ξ, γ ))(x),

so that the first inequality follows from (26) and (30).
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Next, we remark that∫
∂xjG

ψγ (x, ξ) dx =
∫

F−1
η (ηjψγ (η, ξ))(z) dz = (ηjψ(η, ξ))|η=0 = 0.

(31)

Consequently, using also (27),

|∂xj σaε (t, x, ξ, γ )| = |
∫
∂yjG

ψγ (y, ξ)(aε(t, x − y, ξ, γ )− aε(t, x, ξ, γ )) dy|,

≤ C

∫
|∂yjGψγ (y, ξ)| |y| dy (γ + |ξ |)m,

≤ C(γ + |ξ |)m.
The other cases of the second inequality can be proved similarly.

The third inequality is again a consequence of (26), keeping in mind (20). It is in
fact possible to prove that

|∂αξ ∂taε(t, x, ξ, γ )| ≤ Cα(1 + log
1

ε
)(γ + |ξ |)m−|α|.

Next, considering again (31), we have

∂xj σ∂taε (t, x, ξ, γ )

=
∫
Rny

∂yjG
ψγ (y, ξ)(∂taε(t, x − y, ξ, γ )− ∂taε(t, x, ξ, γ )) dy,

≤
∫
Rny

∂yjG
ψγ (y, ξ)

∫
Rs

1

ε2 ρ
′( t − s

ε
)(a(s, x − y, ξ, γ )− a(s, x, ξ, γ )) ds dy

≤
∫
Rs

1

ε2ρ
′( t − s

ε
)

∫
Rny

∂yjG
ψγ (y, ξ)(a(s, x − y, ξ, γ )− a(s, x, ξ, γ )) dy ds.

so that the fourth inequality easily follows.
The last two inequalities are obtained in similar way, using also (21). ��
To end this section it is worthy to recall some results on symbolic calculus. Again

details can be found in [8, 9] and [15, Appendix B].

Proposition 7 ([8, Prop. 3.19])

(i) Let a be a symbol of order m (see Def. 3). Suppose that a is L∞ in the x
variable. If we set

Tau(x) = σa(Dx)u(x) = 1

(2π)d

∫
Rdξ

σa(x, ξ, γ )û(ξ) dξ,

then Ta maps Hs
γ into Hs−m

γ continuously.
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(ii) Let a and b be two symbols of orderm andm′ respectively. Suppose that a and
b are Lip in the x variable. Then

Ta ◦ Tb = Tab + R,

and R maps Hs
γ into Hs−m−m′+1

γ continuously.
(iii) Let a be a symbol of order m which is Lip in the x variable. Then, denoting by

T ∗
a the L2-adjoint operator of Ta ,

T ∗
a = Ta + R,

and R maps Hs
γ into Hs−m+1

γ continuously.
(iv) Let a be a symbol of order m which is Lip in the x variable. Suppose

Re a(x, ξ, γ ) ≥ λ0(γ + |ξ |)m.

with λ0 > 0. Then there exists γ0 ≥ 1, depending only on ‖a‖Lip and λ0, such
that, for all γ ≥ γ0 and for all u ∈ H∞,

Re (Tau, u)L2 ≥ λ0

2
‖u‖2

H
m/2
γ

.

4 Proof of Theorem 1

Also for the proof of the main result, we will closely follow the strategy imple-
mented in [8] and [9].

4.1 Approximate Energy

First of all we regularize the coefficients ajk with respect to t via (22) and we obtain
ajk,ε. We consider the 0-th order symbol

αε(t, x, ξ, γ ) = (γ 2 + |ξ |2)− 1
2 (γ 2 +

∑
j,k

ajk,ε(t, x)ξj ξk)
1
2 .

We fix

ε = 2−ν,
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and we write αν and ajk, ν instead of α2−ν and ajk, 2−ν respectively. From Prop. 7,
point iv), we have that there exists γ ≥ 1 such that, for all w ∈ H∞,

‖T γ
α
−1/2
ν

w‖L2 ≥ λ0

2
‖w‖L2 and ‖T γ

α
1/2
ν (γ 2+|ξ |2)1/2w‖L2 ≥ λ0

2
‖w‖H 1

γ
,

where λ0 has been defined in (6). We remark that γ depends only on λ0 and
supj,k‖ajk‖Lip, in particular γ does not depend on ν. We fix such a γ (this means
also that μ is fixed in (29)) and from now on we will omit to write it when denoting
the operator T and the Sobolev spaces Hs .

We consider u ∈ C2([0, T ],H∞). We have

∂2
t u =

∑
j,k

∂j (ajk(t, x)∂ku)+ Lu =
∑
j,k

∂j (Tajk ∂ku)+ L̃u,

where

L̃u = Lu+
∑
j,k

∂j ((ajk − Tajk )∂ku).

We apply the operator�ν and we obtain

∂2
t uν =

∑
j,k

∂j (Tajk ∂kuν)+
∑
j,k

∂j ([�ν, Tajk ]∂ku)+ (L̃u)ν,

where uν = �νu, (L̃u)ν = �ν(L̃u) and [�ν, Tajk ] is the commutator between the
localization operator�ν and the paramultiplication operator Tajk .

We set

vν(t, x) = T
α
−1/2
ν
∂tuν − T∂t (α−1/2

ν )
uν,

wν(t, x) = T
α

1/2
ν (γ 2+|ξ |2)1/2 uν,

zν(t, x) = uν,

and we define the approximate energy associated to the ν-th component as

eν(t) = ‖vν(t, ·)‖2
L2 + ‖wν(t, ·)‖2

L2 + ‖zν(t, ·)‖2
L2 .

We fix θ ∈ [0, 1[ and we define the total energy

Eθ(t) =
+∞∑
ν=0

2−2νθeν(t).
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We remark that, as a consequence of Bernstein’s inequalities,

‖wν‖2
L2 ∼ ‖∇uν‖2

L2 ∼ 22ν‖uν‖2
L2 .

Moreover, from (20) and, again, Bernstein’s inequalities,

‖T
∂t (α

− 1
2

ν )

uν‖L2 ≤ C(ν + 1)‖uν‖L2 ≤ C′‖wν‖L2,

so that

‖∂tuν‖L2 ≤ C‖T
α
−1/2
ν

uν‖L2

≤ C(‖vν‖L2 + ‖T
∂t (α

−1/2
ν )

uν‖L2)

≤ C(eν(t)) 1
2 .

(32)

We deduce that there exist constants Cθ and C′
θ , depending only on θ , such that

(Eθ (0))
1
2 ≤ Cθ (‖∂tu(0)‖H−θ + ‖u(0)‖H 1−θ ),

(Eθ (t))
1
2 ≥ C′

θ (‖∂tu(t)‖H−θ + ‖u(t)‖H 1−θ ).

4.2 Time Derivative of the Approximate Energy

We want to estimate the time derivative of eν .
Since

∂t vν = T
α
−1/2
ν

∂2
t uν − T∂2

t (α
−1/2
ν )

uν,

we deduce

d

dt
‖vν(t)‖2

L2

= 2 Re
(
vν, Tα−1/2

ν
∂2
t uν

)
L2 − 2 Re

(
vν, T∂2

t (α
−1/2
ν )

uν
)
L2

= −2 Re
(
vν, T∂2

t (α
−1/2
ν )

uν
)
L2 + 2 Re

(
vν,
∑
j,k

T
α
−1/2
ν
∂j (Tajk ∂kuν)

)
L2

+ 2 Re
(
vν,
∑
j,k

T
α
−1/2
ν
∂j ([�ν, Tajk ]∂ku)

)
L2 + 2 Re

(
vν, Tα−1/2

ν
(L̃u)ν

)
L2 .
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We have ∣∣∣2 Re
(
vν, Tα−1/2

ν
(L̃u)ν

)
L2

∣∣∣ ≤ C(eν) 1
2 ‖(L̃u)ν‖L2,

and, from the fifth inequality in Prop. 6,

∣∣∣2 Re
(
vν, T∂2

t (α
−1/2
ν )

uν
)
L2

∣∣∣ ≤ C ‖vν‖L2 2ν‖uν‖L2 ≤ C eν(t).

Therefore, we obtain

d

dt
‖vν(t)‖2

L2 = 2 Re
(
vν,
∑
j,k

T
α
−1/2
ν

∂j (Tajk ∂kuν)
)
L2

+ 2 Re
(
vν,
∑
j,k

T
α
−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2

+ 2 Re
(
vν, Tα−1/2

ν
(L̃u)ν

)
L2 +Q1,

(33)

with |Q1| ≤ Ceν(t).
Next

∂twν = T
∂t (α

1/2
ν )(γ 2+|ξ |2)1/2uν + Tα1/2

ν (γ 2+|ξ |2)1/2∂tuν,

so that

d

dt
‖wν(t)‖2

L2

= 2 Re
(
T
∂t (α

1/2
ν )(γ 2+|ξ |2)1/2uν,wν

)
L2 + 2 Re

(
T
α

1/2
ν (γ 2+|ξ |2)1/2∂tuν,wν

)
L2

= 2 Re
(
Tαν(γ 2+|ξ |2)1/2T−∂t (α−1/2

ν )
uν,wν

)
L2 + 2 Re

(
R1uν,wν

)
L2

+ 2 Re
(
Tαν(γ 2+|ξ |2)1/2Tα−1/2

ν
∂tuν,wν

)
L2 + 2 Re

(
R2uν,wν

)
L2

= 2 Re
(
vν, Tαν(γ 2+|ξ |2)1/2wν

)
L2 + 2 Re

(
vν, R3wν

)
L2

+ 2 Re
(
R1uν,wν

)
L2 + 2 Re

(
R2uν,wν

)
L2

= 2 Re
(
vν, Tα−1/2

ν
T
α

3/2
ν (γ 2+|ξ |2)1/2wν

)
L2 + 2 Re

(
vν, R4wν

)
L2

+ 2 Re
(
vν, R3wν

)
L2 + 2 Re

(
R1uν,wν

)
L2 + 2 Re

(
R2uν,wν

)
L2

= 2 Re
(
vν, Tα−1/2

ν
Tα2

ν (γ
2+|ξ |2)uν

)
L2

+ 2 Re
(
vν, Tα−1/2

ν
R5uν

)
L2 + 2 Re

(
vν, R4wν

)
L2

+ 2 Re
(
vν, R3wν

)
L2 + 2 Re

(
R1uν,wν

)
L2 + 2 Re

(
R2uν,wν

)
L2 .
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It is a straightforward computation, from the results of symbolic calculus recalled
in Prop. 7, to verify that all the operators R1, R2, R3, R4 and R5 are 0-th order
operators. Consequently,

d

dt
‖wν(t)‖2

L2 = 2 Re
(
vν, Tα−1/2

ν
Tα2

ν (γ
2+|ξ |2)uν

)
L2 +Q2, (34)

with |Q2| ≤ Ceν(t).
Finally, from (32),

d

dt
‖zν(t)‖2

L2 ≤ |2 Re
(
uν, ∂tuν

)
L2 | ≤ Ceν(t). (35)

Now we pair the first term in right hand side of (33) with the first term in right
hand side of (34). We obtain

|2 Re
(
vν,
∑
j,k Tα−1/2

ν
∂j (Tajk ∂kuν)

)
L2 + 2 Re

(
vν, Tα−1/2

ν
Tα2

ν (γ
2+|ξ |2)uν

)
L2|

≤ C ‖vν‖L2 ‖ζν‖L2,

where

ζν = Tα2
ν (γ

2+|ξ |2)uν +
∑
j,k

∂j (Tajk ∂kuν)

= Tγ 2+∑j,k ajk,ν ξj ξk
uν +

∑
j,k

∂j (Tajk ∂kuν)

= Tγ 2uν +
∑
j,k

(Tajk,ν ξj ξk uν + T∂j ajk ∂kuν − Tajkξj ξk uν).

We have

‖
∑
j,k

T∂j ajk ∂kuν‖L2 ≤ C sup
j,k

‖ajk‖Lip‖∇uν‖L2 ≤ C(eν(t)) 1
2 ,

and, from Bernstein’s inequalities and (19),

‖
∑
j,k

T(ajk,ν−ajk)ξj ξk uν‖L2 ≤ C sup
j,k

‖ajk‖Lip 2−ν ‖∇2uν‖L2 ≤ C(eν(t)) 1
2 .

From this we deduce

‖ζν‖L2 ≤ C(eν(t)) 1
2 .
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Summing up, from (33), (34) and (32) we get

d

dt
eν(t) ≤ C1eν(t)+ C2(eν(t))

1
2 ‖(L̃u)ν‖L2

+|2 Re
(
vν,
∑
j,k

T
α
−1/2
ν

∂j ([�ν, Tajk ]∂ku)
)
L2 |.

(36)

4.3 Commutator Estimate

We want to estimate

|
∑
j,k

2 Re
(
vν, Tα−1/2

ν
∂j ([�ν, Tajk ]∂ku)

)
L2 |.

We remark that

[�ν, Tajk ]w = �ν(Sμ−1ajk Sμ+2w)+�ν(
+∞∑
h=μ

Shajk �h+3w)

−Sμ−1ajk Sμ+2(�νw)−
+∞∑
h=μ

Shajk �h+3(�νw)

= �ν(Sμ−1ajk Sμ+2w)− Sμ−1ajk �ν(Sμ+2w)

+
+∞∑
h=μ

�ν(Shajk �h+3w)−
+∞∑
h=μ

Shajk �ν(�h+3w)

= [�ν, Sμ−1ajk] Sμ+2w +
+∞∑
h=μ

[�ν, Shajk]�h+3w,

where we recall that μ is a fixed constant (depending on γ , which has been chosen
at the beginning of Sect. 4.1). Hence we have

∂j ([�ν,Tajk ]∂ku)

= ∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u))+ ∂j (
+∞∑
h=μ

[�ν, Shajk] ∂k(�h+3u)).

Consider first

∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u)).
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The support of the Fourier transform of [�ν, Sμ−1ajk] ∂k(Sμ+2u) is contained in
{|ξ | ≤ 2μ+4} and [�ν, Sμ−1ajk] ∂k(Sμ+2u) is identically 0 if ν ≥ μ + 5. From
Bernstein’s inequalities and [4, Th. 35] we deduce that

‖∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u))‖L2 ≤ C 2μ sup
j,k

‖ajk‖Lip ‖Sμ+2u‖L2 .

We have

+∞∑
ν=0

2−2νθ |
∑
j,k

2 Re
(
vν, Tα−1/2

ν
∂j ([�ν, Sμ−1ajk] ∂k(Sμ+2u))

)
L2 |

≤ C 2μ sup
j,k

‖ajk‖Lip

μ+4∑
ν=0

2−2νθ‖vν‖L2(

μ+2∑
h=0

‖uh‖L2)

≤ C 2μ+(μ+4)θ sup
j,k

‖ajk‖Lip

μ+4∑
ν=0

2−νθ‖vν‖L2

μ+4∑
h=0

2−hθ‖uh‖L2

≤ C sup
j,k

‖ajk‖Lip

μ+4∑
h=0

2−2νθ eν(t).

Consider then

∂j (

+∞∑
h=μ

[�ν, Shajk] ∂k(�h+3u)).

Looking at the support of the Fourier transform, it is possible to see that

[�ν, Shajk] ∂k(�h+3u)

is identically 0 if |h + 3 − ν| ≥ 3. As a consequence, the sum over h is reduced to
at most 5 terms: ∂j ([�ν, Sν−5ajk] ∂k(�ν−2u)), . . . , ∂j ([�ν, Sν−1ajk] ∂k(�ν+2u)).
Each of these terms has the support of the Fourier transform contained in the ball
{|ξ | ≤ 2ν+4}.

We consider the term ∂j ([�ν, Sν−3ajk] ∂k(�νu)): for the other terms the
estimate will be similar. Again by Bernstein’s inequalities and [4, Th. 35] we infer

‖∂j ([�ν, Sν−3ajk] ∂k(�νu))‖L2 ≤ C 2ν sup
j,k

‖ajk‖Lip ‖�νu‖L2,

and then

|
∑
j,k

2 Re
(
vν, Tα−1/2

ν
∂j (

+∞∑
h=μ

[�ν, Shajk] ∂k(�h+3u))
)
L2 |

≤ C sup
j,k

‖ajk‖Lip (eν−2(t)+ eν−1(t)+ eν(t)+ eν+1(t)+ eν+2(t)).
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Thus we have

+∞∑
ν=0

2−2νθ |
∑
j,k

2 Re
(
vν, Tα−1/2

ν
∂j (

+∞∑
h=μ

[�ν, Shajk] ∂k(�h+3u))
)
L2 |

≤ C sup
j,k

‖ajk‖Lip

+∞∑
ν=0

2−2νθeν(t).

As a conclusion

+∞∑
ν=0

2−2νθ |
∑
j,k

2 Re
(
vν, Tα−1/2

ν
∂j ([�ν, Tajk ]∂ku)

)
L2 | ≤ C3

+∞∑
ν=0

2−2νθ eν(t), (37)

where C3 depends on γ , θ and supj,k ‖ajk‖Lip.

4.4 Final Estimate

From (36) and (37) we obtain

d

dt
Eθ (t) ≤ (C1 + C3)

+∞∑
ν=0

2−2νθeν(t)+ C2

+∞∑
ν=0

2−2νθ (eν(t))
1
2 ‖(L̃u(t))ν‖L2

≤ (C1 + C3)

+∞∑
ν=0

2−2νθeν(t)+ C2

+∞∑
ν=0

2−2νθ (eν(t))
1
2 ‖(Lu(t))ν‖L2

+C2

+∞∑
ν=0

2−2νθ (eν(t))
1
2 ‖(∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖L2 .

We have

+∞∑
ν=0

2−2νθ (eν(t))
1
2 ‖(∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖L2

≤
( +∞∑
ν=0

2−2νθeν(t)
) 1

2
( +∞∑
ν=0

2−2νθ‖(∑
j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖2
L2

) 1
2
.

From (15) we deduce

+∞∑
ν=0

2−2νθ‖(∑
j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖2
L2 ≤ C ‖

∑
j,k

∂j ((ajk − Tajk )∂ku)‖2
H−θ
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Now, using [10, Prop. 3.5] in the case θ ∈ ]0, 1[ and [14, Th. 5.2.8] in the case
θ = 0,

‖
∑
j,k

∂j ((ajk − Tajk )∂ku)‖2
H−θ ≤ C(sup

j,k

‖ajk‖Lip)‖u(t)‖H 1−θ ,

so that

+∞∑
ν=0

2−2νθ (eν(t))
1
2 ‖(∑

j,k

∂j ((ajk − Tajk )∂ku)
)
ν
‖L2 ≤ C4Eθ(t),

and finally

d

dt
Eθ (t) ≤ C(Eθ (t)+ (Eθ (t)) 1

2 ‖Lu(t)‖H−θ ).

The energy estimate (9) easily follows from this last inequality and the Grönwall
Lemma.
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Note on the Wigner Distribution
and Localization Operators
in the Quasi-Banach Setting

Elena Cordero

Abstract Time-frequency analysis have played a crucial role in the development
of localization operators in the last 20 years. We present its applications to the study
of boundedness and Schatten Class property for such operators. In particular, new
sufficient conditions for such operators to belong to the Schatten-von Neumann
Class Sp(L2(Rd)), 0 < p < 1, are exhibited. As a byproduct, sharp continuity
results for the Wigner distribution are also presented.

Keywords Time-frequency analysis · Short-time Fourier transfrom · Wigner
distribution · Modulation spaces

1 Introduction

Localization operators have a long-standing tradition among physicists, mathe-
maticians and engineers. A special form of such operators called “Anti-Wick
operators” had been used as a quantization procedure by Berezin [5, 29] in 1971.
The terminology “Time-frequency localization operators” or simply “localization
operators” is due to Daubechies, who wrote the popular papers [11, 12] appeared
in 1988. From then onwards so many authors have written contributions on this
topic that it is not possible to cite them all. In this note we shall focus on the time-
frequency properties of such operators and we will exhibit the results known so far.
Much has been done in terms of necessary and sufficient conditions for boundedness
of such operators on suitable normed spaces, as well as their belonging to the
Schatten-von Neumann Class Sp(L2(Rd)), 1 < p ≤ ∞. Here we focus on the
quasi-Banach setting 0 < p < 1 and present outcomes in this framework, while
reviewing also the known results for the Banach case p ≥ 1.

First, we introduce the main features of this study.

E. Cordero (�)
Dipartimento di Matematica, Università di Torino, Torino, Italy
e-mail: elena.cordero@unito.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Cicognani et al. (eds.), Anomalies in Partial Differential Equations,
Springer INdAM Series 43, https://doi.org/10.1007/978-3-030-61346-4_7

149

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61346-4_7&domain=pdf
mailto:elena.cordero@unito.it
https://doi.org/10.1007/978-3-030-61346-4_7


150 E. Cordero

The protagonists of time-frequency analysis are the operators of translation and
modulation defined by

Txf (t) = f (t − x) and Mωf (t) = e2πiωtf (t), f ∈ L2(Rd). (1)

For a fixed non-zero g ∈ S(Rd) (the Schwartz class), the short-time Fourier
transform, in short STFT, of f ∈ S′(Rd) (the space of tempered distributions),
with respect to the window g, is given by

Vgf (x, ω) = 〈f,MωTxg〉 =
∫
Rd
f (t) g(t − x) e−2πiωt dt . (2)

By means of the STFT, the time-frequency localization operatorAϕ1,ϕ2
a with symbol

a, analysis window function ϕ1, and synthesis window function ϕ2 can be formally
defined as

Aϕ1,ϕ2
a f (t) =

∫
R2d
a(x, ω)Vϕϕ1f (x, ω)MωTxϕ2(t) dxdω. (3)

In particular, if a ∈ S′(R2d) and ϕ1, ϕ2 ∈ S(Rd), then (3) is a well-defined
continuous operator from S(Rd) to S′(Rd). If ϕ1(t) = ϕ2(t) = e−πt2 , then
Aa = A

ϕ1,ϕ2
a is the classical Anti-Wick operator and the mapping a �→ A

ϕ1,ϕ2
a

is understood as a quantization rule, cf. [5, 29] and the recent contribution [14].
In a weak sense, the definition of Aϕ1,ϕ2

a in (3) can be rephrased as

〈Aϕ1,ϕ2
a f, g〉 = 〈aVϕ1f, Vϕ2g〉 = 〈a, Vϕ1f Vϕ2g〉, f, g ∈ S(Rd) . (4)

The definition in (3) has suggested the study of localization operators as a
multilinear mapping

(a, ϕ1, ϕ2) �→ Aϕ1,ϕ2
a . (5)

In [7, 8, 10, 32, 33, 36] the boundedness of the map in (5) has been widely studied,
in dependence on the function spaces of both symbol a and windows ϕ1, ϕ2.
The sharpest Schatten-class results are obtained by choosing modulation space s
as spaces for both symbol and windows, as observed in [8] and [10]; in those
contributions the focus is limited to the Banach framework. Sharp compactness
results for localization operators are contained in [16]. Finally, smoothness and
decay of eigenfuctions for localization operators are studied in [4], see also [1–3].

Modulation spaces are (quasi-)Banach spaces that measure the concentration of
functions and distributions on the time-frequency plane. Since the STFT is the mean
to extract the time-frequency features of a function/distribution, the idea that leads
to the definition of modulation space s is the following: give a (quasi)norm to the
STFT. These spaces will be introduced in the following Sect. 2.2.
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Another way to introduce localization operators is as a form of Weyl transform.
The latter can be defined by means of another popular time-frequency representa-
tion, the cross-Wigner distribution. Namely, given two functions f1, f2 ∈ S(Rd ),
the cross-Wigner distributionW(f1, f1) is defined to be

W(f1, f2)(x, ω) =
∫
f1(x + t

2
)f2(x − t

2
)e−2πiωt dt. (6)

The quadratic expressionWf = W(f, f ) is called the Wigner distribution of f .
Every continuous operator from S(Rd) to S′(Rd ) can be represented as a

pseudodifferential operator in the Weyl form Lσ and the connection with the cross-
Wigner distribution is provided by

〈Lσf, g〉 = 〈σ,W(g, f )〉, f, g ∈ S(Rd). (7)

Localization operators Aϕ1,ϕ2
a can be represented as Weyl operators as follows (cf.

[6, 7, 33])

Aϕ1,ϕ2
a = La∗W(ϕ2,ϕ1), (8)

so that the Weyl symbol of the localization operator Aϕ1,ϕ2
a is given by

σ = a ∗W(ϕ2, ϕ1) . (9)

This representation of localization operators in the Weyl form, together with
boundedness properties of Weyl operators and sharp continuity properties for the
cross-Wigner distribution, yields to Schatten-class results for localization operators.
In particular here we present new outcomes in the quasi-Banach setting, while
reviewing the known results in the Banach framework, see Theorems 5 and 7 below.

The paper is organized as follows. Section 2 presents the basic definitions and
properties of the Schatten-von Neumann Classes Sp(L2(Rd)), 0 < p ≤ ∞, of the
modulation spaces and the time-frequency analysis tools needed to infer our results.
Section 3 exhibits the sufficient conditions for localization operators to be in the
Schatten-von Neumann classes Sp. To chase this goal, sharp continuity properties
for the cross-Wigner distribution are presented. Such result is new in the framework
of quasi-Banach modulation spaces and is the main ingredient to prove sufficient
Schatten class conditions for localization operators. Section 4 contains necessary
Schatten class results for localization operators and ends by showing perspectives
and open problems about this topic.
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2 Preliminaries on Schatten Classes, Modulation Spaces
and Frames

2.1 Schatten-von Neumann Classes

We limit to consider the Hilbert space L2(Rd). Let T be a compact operator on
L2(Rd). Then T ∗T : L2(Rd)→ L2(Rd) is compact, self-adjoint, and non-negative.

Hence, we can define the absolute value of T by |T | = (T ∗T ) 1
2 , acting on

L2(Rd). Recall that |T | is compact, self-adjoint, and non-negative, hence by the
Spectral Theorem we can find an orthonormal basis (ψn)n for L2(Rd) consisting
of eigenvectors of |T |. The corresponding eigenvalues s1(T ) ≥ s2(T ) ≥ · · · ≥
sn(T ) ≥ · · · ≥ 0, are called the singular values of T .

If 0 < p < ∞ and the sequence of singular values is �p-summable, then T is
said to belong to the Schatten-von Neumann class Sp(L2(Rd)). If 1 ≤ p < ∞, a
norm is associated to Sp(L2(Rd)) by

‖T ‖Sp :=
( ∞∑
n=1

sn(T )
p

) 1
p

. (10)

If 1 ≤ p <∞ then (Sp(L2(Rd)), ‖·‖Sp) is a Banach space whereas, for 0 < p < 1,
(Sp(L

2(Rd )), ‖ · ‖Sp ) is a quasi-Banach space since the quantity ‖T ‖Sp defined in
(10) is only a quasinorm.

For completeness, we define S∞(L2(Rd )) to be the space of bounded operators
onL2(Rd ). The Schatten-von Neumann classes are nested, with Sp ⊂ Sq , for details
on this topic we refer to [19, 25, 26, 29, 30, 37].

For 2 ≤ p <∞ and T in Sp(L2(Rd )), we can express its norm by

‖T ‖pSp = sup
∑
n

‖T φn‖pL2, (11)

the supremum being over all orthonormal bases (φn)n of L2(Rd). Then, it is a
straightforward consequence (see [24, Theorem 12])

(∑
n

|〈T φn, φn〉|p
)1/p

≤ ‖T ‖Sp , (12)

for every orthonormal basis (φn)n, 2 ≤ p < ∞. If T ∈ S2(L
2(Rd )) then T is

called Hilbert-Schmidt operator. If T ∈ S1(L
2(Rd )) then T is said to be a trace

class operator and the space S1 is named the Trace Class.

Remark 1 For 0 < p < 2, the characterization in (11) does not hold, in general. In
fact, a simple example is shown by Bingyang, Khoi and Zhu in the paper [24]. Let
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us recall it for sake of clarity in the case of the Hilbert space H = L2(Rd). Fix an
orthonormal basis (φn)n and consider the function h ∈ L2(Rd ) given by

h =
∞∑
n=1

φn√
n log(n+ 1)

.

Define the rank-one operator on L2(Rd ) by

Tf = 〈f, h〉h, f ∈ L2(Rd ).

We have

T φn = 〈φn, h〉h = h√
n log(n+ 1)

, n ≥ 1.

It follows that

∞∑
n=1

‖T φn‖pL2 = ‖h‖p
L2

∞∑
n=1

1

[√n log(n+ 1)]p = ∞

for any 0 < p < 2.

2.2 Modulation Spaces

Weight Functions

In the sequel v will always be a continuous, positive, submultiplicative weight
function on Rd , i.e., v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ Rd . We say that
m ∈ Mv(Rd ) if m is a positive, continuous weight function on Rd v-moderate:
m(z1 + z2) ≤ Cv(z1)m(z2) for all z1, z2 ∈ Rd . We will mainly work with
polynomial weights of the type

vs(z) = 〈z〉s = (1 + |z|2)s/2, s ∈ R, z ∈ Rd . (13)

Observe that, for s < 0, vs is v|s|-moderate.
Given two weight functionsm1,m2 on Rd , we write

(m1 ⊗m2)(x, ω) = m1(x)m2(ω), x, ω ∈ Rd .

Modulation Spaces We present the more general definition of such spaces, con-
taining the quasi-Banach setting, introduced first by Y.V. Galperin and S. Samarah
in [18].
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Definition 1 Fix a non-zero window g ∈ S(Rd), a weight m ∈ Mv(R2d) and 0 <
p, q ≤ ∞. The modulation space Mp,q

m (Rd ) consists of all tempered distributions
f ∈ S′(Rd ) such that the (quasi)norm

‖f ‖Mp,q
m

= ‖Vgf ‖Lp,qm =
(∫

Rd

(∫
Rd

|Vgf (x, ω)|pm(x, ω)pdx
) q
p

dω

) 1
q

(14)

(obvious changes with p = ∞ or q = ∞) is finite.

The most known modulation spaces are those Mp,q
m (Rd ), with 1 ≤ p, q ≤ ∞,

introduced by H. Feichtinger in [15]. In that paper their main properties were
exhibited; in particular we recall that they are Banach spaces, whose norm does
not depend on the window g: different window functions in S(Rd) yield equivalent
norms. Moreover, the window class S(Rd) can be extended to the modulation space
M1,1
v (Rd) (so-called Feichtinger algebra).
For shortness, we write Mp

m(Rd ) in place ofMp,p
m (Rd) andMp,q(Rd ) if m ≡ 1.

The modulation spaces Mp,q
m (Rd), 0 < p, q < 1, where introduced almost 20

years later by Y.V. Galperin and S. Samarah in [18]. In this framework, it appears
that the largest natural class of windows universally admissible for all spaces
M
p,q
m (Rd ), 0 < p, q ≤ ∞ (with weight m having at most polynomial growth)

is the Schwartz class S(Rd ). Many properties related to the quasi-Banach setting
are still unexplored.

The focus of this paper is on the quasi Banach setting, which allows to infer new
results for localization operators.

In the sequel we shall use inclusion relations for modulation spaces (cf. [18,
Theorem 3.4] and [20, Theorem 12.2.2]):

Theorem 1 Let m ∈ Mv(R2d). If 0 < p1 ≤ p2 ≤ ∞ and 0 < q1 ≤ q2 ≤ ∞ then
M
p1,q1
m (Rd ) ⊆Mp2,q2

m (Rd).

Remark 2 In our framework it is important to notice the following inclusion relation
for s > 0:

M∞
vs⊗1(R

2d) ⊂ Mp,∞(R2d) if p > 2d/s. (15)

This follows from the recent contribution [22, Theorem 1.5].

Let us recall convolution relations for modulations spaces. They are contained in
the contributions [7] and [34] for the Banach framework. The more general case is
exhibited in [4].
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Proposition 1 Let ν(ω) > 0 be an arbitrary weight function on Rd , 0 <

p, q, r, t, u, γ ≤ ∞, with

1

u
+ 1

t
= 1

γ
, (16)

and

1

p
+ 1

q
= 1 + 1

r
, for 1 ≤ r ≤ ∞ (17)

whereas

p = q = r, for 0 < r < 1. (18)

For m ∈ Mv(R2d), m1(x) = m(x, 0) and m2(ω) = m(0, ω) are the restrictions to
Rd × {0} and {0} × Rd , and likewise for v. Then

M
p,u
m1⊗ν(R

d) ∗Mq,t

v1⊗v2ν
−1(R

d ) ⊆ M
r,γ
m (Rd) (19)

with norm inequality

‖f ∗ h‖Mr,γ
m

� ‖f ‖Mp,u
m1⊗ν

‖h‖
M
q,t

v1⊗v2ν−1
.

2.3 Frame Theory

A sequence of functions {bj : j ∈ J} in L2(Rd) is a frame for the Hilbert space
L2(Rd) if there exist positive constants 0 < A ≤ B <∞, such that

A‖f ‖2
L2 ≤

∑
j∈J

|〈f, bj 〉|2 ≤ B‖f ‖2
L2, ∀f ∈ L2(Rd). (20)

The constants A and B are called lower and upper frame bounds, respectively. It is
straightforward from (20) (or see, e.g., [23, Pag. 398]) to check the elements of a
frame satisfy

‖bj‖L2 ≤ √
B, ∀j ∈ J. (21)

Using (21), in [8] we extended the inequality in (12) from orthonormal bases to
frames.
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Lemma 1 Let (bn)n be a frame for L2(Rd), as defined in (20), with upper bound
B. If T ∈ Sp(L2(Rd )), for 1 ≤ p ≤ ∞, then

( ∞∑
n=1

|〈T bn, bn〉|p
)1/p

≤ B‖T ‖Sp . (22)

Observe that an orthonormal basis is a special instance of frame with upper bound
B = 1; hence Lemma 1 provides an alternative proof to the inequality in (12), for
every 1 ≤ p ≤ ∞.

In the case 0 < p < 1, Lemma 1 is false in general. This is a straightforward
consequence of the following result [24, Proposition 22]:

Proposition 2 Suppose 0 < p < 1 and (φn)n any orthonormal basis for L2(Rd ).
Then there exists a positive operator S ∈ Sp(L2(Rd )) such that (〈Sφn, φn〉)n /∈ �p.
Since an orthonormal basis is a frame with frame bounds A = B = 1, it follows
that the majorization (22) fails for (φn)n and, consequently, Lemma 1 is false. For
p ≥ 1, a useful consequence of Lemma 1 is as follows (cf. [8, Corollary 2]):

Corollary 1 Let (bn)n be a frame with upper bound B. Let L ∈ S∞(L2(Rd)) and
T ∈ Sp(L2(Rd )), with 1 ≤ p ≤ ∞. Then we have

( ∞∑
n=1

|〈T bn,Lbn〉|p
)1/p

≤ B‖T ‖Sp‖L‖S∞ . (23)

In [13, Proposition 10], see also [27, 28], it is proved that, if αβ < 1 and

ϕ := 2d/4e−πx2
, (24)

then the set of the Gaussian time-frequency shift (MβnTαkϕ)n,k∈Zd is a frame for

L2(R2d) (called Gabor frame). In the sequel we shall also use the Gabor frames on
L2(R2d) given by

(MβnTαk!)k,n∈Z2d ,

where! is the 2d-dimensional Gaussian function below

!(x,ω) := 2−de−π(x2+ω2), (x, ω) ∈ R2d . (25)

It is easy to compute (or see, e.g., [20, Lemma 1.5.2]) that

Vϕϕ(x, ω) = 2−d/2e−πixωe−
π
2 (x

2+ω2). (26)
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Definition 2 For 0 < p, q ≤ ∞,m ∈ Mv(Z2d), the space �p,qm (Z2d) consists of all
sequences c = (ck,n)k,n∈Zd for which the (quasi-)norm

‖c‖�p,qm =
⎛
⎜⎝∑
n∈Zd

⎛
⎝∑
k∈Zd

|ck,n|pm(k, n)p
⎞
⎠

q
p

⎞
⎟⎠

1
q

(with obvious modification for p = ∞ or q = ∞) is finite.

For p = q , �p,qm (Z2d) = �
p
m(Z2d), the standard spaces of sequences. Namely, in

dimension d , for 0 < p ≤ ∞, m a weight function on Zd , a sequence c = (ck)k∈Zd
is in �pm(Zd) if

‖c‖�pm =
⎛
⎝∑
k∈Zd

|ck|pm(k)p
⎞
⎠

1
p

<∞.

Discrete equivalent modulation spaces norms are produced by means of Gabor
frames. The key result is the following characterization for the Mp,q

m - norm of
localization symbols (see [20, Chapter 12] for 1 ≤ p, q ≤ ∞, and [18, Theorem
3.7] for 0 < p, q < 1).

Theorem 2 Assume m ∈ Mv(R2d), 0 < p, q ≤ ∞. Consider the Gabor
frame (MβnTαk!)k,n∈Z2d with Gaussian window ! in (25). Then, for every a ∈
M
p,q
m (R2d),

‖a‖
M
p,q
m (R2d )

& ‖(〈a,MβnTαk!〉n,k∈Z2d )n,k∈Z2d‖�p,qm (Z4d)
. (27)

2.4 Time-Frequency Tools

In the sequel we shall need to compute the STFT of the cross-Wigner distribution,
contained below [20, Lemma 14.5.1]:

Lemma 2 Fix a nonzero g ∈ S(Rd) and let ! = W(g, g) ∈ S(R2d). Then the
STFT ofW(f1, f2) with respect to the window! is given by

V!(W(f1, f2))(z, ζ ) = e−2πiz2ζ2Vgf2(z1 + ζ2

2
, z2 − ζ1

2
)Vgf1(z1 − ζ2

2
, z2 + ζ1

2
) .

(28)

The following properties of the STFT (cf. [8, Lemma 1]) can be used to prove
necessary Schatten class conditions for localization operators.
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Lemma 3 If z = (z1, z2) ∈ R2d , ζ = (ζ1, ζ2) ∈ R2d , then

T(z1,z2)(Vϕ1f · Vϕ2g)(x, ω) = Vϕ1(Mz2Tz1f )(x, ω)Vϕ2(Mz2Tz1g)(x, ω), (29)

M(ζ1,ζ2)

(
Vϕ1f Vϕ2g

)
(x, ω) = Vϕ1f (x, ω) V(Mζ1T−ζ2ϕ2)(Mζ1T−ζ2g)(x, ω),

(30)

MζTz(Vϕ1fVϕ2g) = Vϕ1(Mz1Tz2f )V(Mζ1T−ζ2ϕ2)(Mζ1T−ζ2Mz1Tz2g).

(31)

3 Sufficient Conditions for Schatten Class Sp, 0 < p ≤ ∞

In this Section we present sufficient conditions for Schatten Class properties of
localization operators. The Banach case p ≥ 1 was studied in [7, 8]. The main
result (cf. Theorem 5 below) will take care of the full range 0 < p ≤ ∞.

First, we need to recall similar properties for Weyl operators, obtained in several
papers, we refer the interested reader to [7, 20, 21, 31, 34].

Theorem 3 For 0 < p ≤ ∞, we have:

(i) If 0 < p ≤ 2 and σ ∈ Mp(R2d), then Lσ ∈ Sp and ‖Lσ ‖Sp � ‖σ‖Mp .

(ii) If 2 ≤ p ≤ ∞ and σ ∈ Mp,p′(R2d), then Lσ ∈ Sp and ‖Lσ‖Sp � ‖σ‖Mp,p′ .

Proof The proof for p ≥ 1 can be found in [7, Theorem 3.1], see also references
therein. The case 0 < p < 1 is contained in [35, Theorem 3.4]. ��

We now focus on the properties of the cross-Wigner distribution, which enjoys
the following property.

Theorem 4 Assume pi, qi, p, q ∈ (0,∞], i = 1, 2, s ∈ R, such that

pi, qi ≤ q, i = 1, 2 (32)

and that

1

p1
+ 1

p2
≥ 1

p
+ 1

q
,

1

q1
+ 1

q2
≥ 1

p
+ 1

q
. (33)

Then, if f1 ∈ Mp1,q1
v|s| (Rd ) and f2 ∈ Mp2,q2

vs (Rd) we haveW(f1, f2) ∈ Mp,q
1⊗vs (R

2d),
and

‖W(f1, f2)‖Mp,q
1⊗vs

� ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

. (34)
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Vice versa, assume that there exists a constant C > 0 such that

‖W(f1, f2)‖Mp,q ≤ C‖f1‖Mp1,q1 ‖f2‖Mp2,q2 , ∀f1, f2 ∈ S(R2d). (35)

Then (32) and (33) must hold.

Proof Sufficient Conditions. The result for the indices pi, qi, p, q ∈ [1,∞] is
proved in [10, Theorem 3.1]. The general case follows easily from that one, since
the main tool is provided by the inclusion relations for modulation spaces in (1). We
detail its steps for sake of clarity.

First, study the case both 0 < p, q <∞. Let g ∈ S(Rd) and set! = W(g, g) ∈
S(R2d). If ζ = (ζ1, ζ2) ∈ R2d , we write ζ̃ = (ζ2,−ζ1). Then, from Lemma 2,

|V!(W(f1, f2))(z, ζ )| = |Vgf2(z+ ζ̃
2 )| |Vgf1(z− ζ̃

2 )| . (36)

Hence,

‖W(f1, f2)‖Mp,q
1⊗vs

&
(∫

R2d

(∫
R2d

|Vgf2(z+ ζ̃
2 )|p |Vgf1(z − ζ̃

2 )|p dz
) q
p 〈ζ 〉sq dζ

)1/q

.

Making the change of variables z �→ z − ζ̃ /2, the integral over z becomes the
convolution (|Vgf2|p ∗ |(Vgf1)

∗|p)(ζ̃ ), and observing that (1 ⊗ vs)(z, ζ ) = 〈ζ 〉s =
vs(ζ ) = vs(ζ̃ ), we obtain

‖W(f1, f2)‖Mp,q

1⊗vs
&
(∫∫

R2d
(|Vgf2|p ∗ |(Vgf1)

∗|p) qp (ζ̃ )vs(ζ̃ )q dζ
)1/p

= ‖ |Vgf2|p ∗ |(Vgf1)
∗|p ‖

1
p

L

q
p
vps

.

Hence

‖W(f1, f2)‖p
M
p,q
1⊗vs

& ‖ |Vgf2|p ∗ |(Vgf1)
∗|p ‖

L

q
p
vps

. (37)

Case 0 < p ≤ q <∞.

Step 1 Consider first the case p ≤ pi, qi , i = 1, 2, satisfying the condition

1

p1
+ 1

p2
= 1

q1
+ 1

q2
= 1

p
+ 1

q
, (38)
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(and hence pi, qi ≤ q , i = 1, 2). Since q/p ≥ 1, we can apply Young’s Inequality
for mixed-normed spaces [17] and majorize (37) as follows

‖W(f1, f2)‖pMp,q
1⊗vs

� ‖ |Vgf2|p‖Lr2,s2vp|s|
‖ |(Vgf1)

∗|p‖
L
r1,s1
vps

= ‖|Vgf1|p‖Lr1,s1vp|s|
‖ |Vgf2|p‖Lr2,s2vps

= ‖Vgf1‖p
L
pr1,ps1
v|s|

‖Vgf2‖p
L
pr2 ,ps2
vs

,

for every 1 ≤ r1, r2, s1, s2 ≤ ∞ such that

1

r1
+ 1

r2
= 1

s1
+ 1

s2
= 1 + p

q
. (39)

Choosing ri = pi/p ≥ 1, si = qi/p ≥ 1, i = 1, 2, the indices’ relation (39)
becomes (38) and we obtain

‖W(f1, f2)‖Mp,q
1⊗vs

� ‖Vgf1‖Lp1,q1
v|s|

‖Vgf2‖Lp2,q2
vs

& ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2 ,q2
vs

.

Now, still assume p ≤ pi, qi , i = 1, 2 but

1

p1
+ 1

p2
≥ 1

p
+ 1

q
,

1

q1
+ 1

q2
= 1

p
+ 1

q
,

(hence pi, qi ≤ q , i = 1, 2). We set u1 = tp1, and look for t ≥ 1 (hence u1 ≥ p1)
such that

1

u1
+ 1

p2
= 1

p
+ 1

q

that gives

0 <
1

t
= p1

p
+ p1

q
− p1

p2
≤ 1

because p1(1/p + 1/q) − p1/p2 ≤ p1(1/p1 + 1/p2) − p1/p2 = 1 whereas the
lower bound of the previous estimate follows by 1/(tp1) = 1/p+ 1/q − 1/p2 > 0
since p ≤ p2. Hence the previous part of the proof gives

‖W(f1, f2)‖Mp,q
1⊗vs

� ‖f1‖Mu1,q1
v|s|

‖f2‖Mp2,q2
vs

� ‖f1‖Mp1,q1
v|s|

‖f2‖Mp2,q2
vs

,

where the last inequality follows by inclusion relations for modulations spaces
M
p1,q1
vs (Rd ) ⊆Mu1,q1

vs (Rd) for p1 ≤ u1.
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The general case

1

p1
+ 1

p2
≥ 1

p
+ 1

q
,

1

q1
+ 1

q2
≥ 1

p
+ 1

q
,

is similar.

Step 2 Assume now that 0 < pi, qi ≤ q , i = 1, 2, and satisfy relation (33). If
at least one out of the indices p1, p2 is less than p, assume for instance p1 ≤ p,
whereas p ≤ q1, q2, then we proceed as follows. We choose u1 = p, u2 = q , and
deduce by the results in Step 1 (with p1 = u1 and p2 = u2) that

‖W(f1, f2)‖Mp,q

1⊗vs
� ‖f1‖Mu1,q1

v|s|
‖f2‖Mu2,q2

vs
� ‖f1‖Mp1 ,q1

v|s|
‖f2‖Mp2,q2

vs

where the last inequality follows by inclusion relations for modulation spaces, since
p1 ≤ u1 = p and p2 ≤ u2 = q .

Similarly we argue when at least one out of the indices q1, q2 is less than p and
p ≤ p1, p2 or when at least one out of the indices q1, q2 is less than p and at least
one out of the indices p1, p2 is less than p. The remaining case p ≤ pi, qi ≤ q is
treated in Step 1.

Case 0 < p < q = ∞ The argument are similar to the case 0 < p ≤ q <∞.

Case p = q = ∞ We use (36) and the submultiplicative property of the weight vs ,

‖W(f1, f2)‖M∞
1⊗vs

= sup
z,ζ∈R2d

|Vgf2(z+ ζ̃
2 )| |Vgf1(z − ζ̃

2 )|vs(ζ )

= sup
z,ζ∈R2d

||Vgf2(z)| |(Vgf1)
∗(z− ζ̃ )|vs(ζ )

= sup
z,ζ∈R2d

||Vgf2(z)| |(Vgf1)
∗(z− ζ̃ )|vs(ζ̃ )

≤ sup
z∈R2d

(‖Vgf1v|s|‖∞ |Vgf2(z)vs(z)|) = ‖Vgf1v|s|‖∞‖Vgf2vs‖∞

& ‖f ‖M∞
v|s| ‖g‖M∞

vs
≤ ‖f ‖

M
p1,q1
v|s|

‖f ‖
M
p2,q2
vs

,

for every 0 < pi, qi ≤ ∞, i = 1, 2.

Case p > q Using the inclusion relations for modulation spaces, we majorize

‖W(f1, f2)‖Mp,q

1⊗vs
� ‖W(f1, f2)‖Mq,q

1⊗vs
� ‖f1‖Mp1,q1

v|s|
‖f2‖Mp2,q2

vs

for every 0 < pi, qi ≤ q , i = 1, 2. Here we have applied the case p ≤ q with p = q .
Notice that in this case condition (35) is trivially satisfied, since from p1, qi ≤ q we
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infer 1/p1 + 1/p2 ≥ 1/q + 1/q , 1/q1 + 1/q2 ≥ 1/q + 1/q . This ends the proof of
the sufficient conditions.

Necessary Conditions The proof works exactly the same as that of [10, Theorem
3.5]. In fact, the main point is the use of the Mr,s-norm of the rescaled Gaussian
ϕλ(x) = ϕ(

√
λx), with ϕ(x) = e−πx2

, for which we reckon (see also [9, Lemma
3.2] and [34, Lemma 1.8]):

‖ϕλ‖Mr,s & λ−
d
2r (λ+ 1)−

d
2 (1− 1

s− 1
r ),

for every 0 < r, s ≤ ∞. ��
Based on the tools developed above, we establish the following Schatten class

results for localization operators.

Theorem 5 For s ≥ 0, we have the following statements.

(i) If 0 < p < 1, then the mapping (a, ϕ1, ϕ2) �→ A
ϕ1,ϕ2
a is bounded from

M
p,∞
1⊗v−s (R

2d)×Mp
vs (R

d)×Mp
vs (R

d) into Sp:

‖Aϕ1,ϕ2
a ‖Sp � ‖a‖Mp,∞

1⊗v−s
‖ϕ1‖Mp

vs
‖ϕ2‖Mp

vs
.

(ii) If 1 ≤ p ≤ 2, then the mapping (a, ϕ1, ϕ2) �→ A
ϕ1,ϕ2
a is bounded from

M
p,∞
1⊗v−s (R

2d)×M1
vs
(Rd)×Mp

vs (R
d) into Sp:

‖Aϕ1,ϕ2
a ‖Sp � ‖a‖Mp,∞

1⊗v−s
‖ϕ1‖M1

vs
‖ϕ2‖Mp

vs
.

(iii) If 2 ≤ p ≤ ∞, then the mapping (a, ϕ1, ϕ2) �→ A
ϕ1,ϕ2
a is bounded from

M
p,∞
1⊗v−s ×M1

vs
×Mp′

vs into Sp:

‖Aϕ1,ϕ2
a ‖Sp � ‖a‖Mp,∞

1⊗v−s
‖ϕ1‖M1

vs
‖ϕ2‖

M
p′
vs

.

Proof (i) If ϕ1 ∈ Mp
vs (R

d) and ϕ2 ∈ Mp
vs (R

d ), then W(ϕ2, ϕ1) ∈ Mp

1⊗vs (R
2d) by

(34). Since a ∈ M
p,∞
1⊗v−s , the convolution relation Mp,∞

1⊗v−s (R
2d) ∗ Mp

1⊗vs (R
2d) ⊆

Mp(R2d) of Proposition 1 implies that the Weyl symbol σ = a ∗ W(ϕ2, ϕ1) is in
Mp(R2d). The result now follows from Theorem 3 (i).

The items (ii) and (ii) are proved similarly, see [7, Theorem 3.1]. ��
Corollary 2 Any localization operators Aϕ1,ϕ2

a with symbol a in M∞
vs⊗1(R

2d), s >

0, and windows ϕ1, ϕ2 in S(Rd ) is a compact operator belonging to the Schatten
class Sp(L2(Rd)), with p > 2d/s.

Proof It immediately follows from the inclusion relations for modulation spaces in
(15) and the sufficient conditions in Theorem 5. ��
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4 Necessary Conditions

The necessary conditions for Schatten class localization operators for the Banach
case p ≥ 1 is contained in the work [8, Theorem 1 (b)], see also [16], who
recaptured the results in [8, Theorem 1 (b)] by using different techniques. Before
stating the necessary conditions, observe that using the inclusion relations for
modulation spaces in Theorem 1, one can rephrase the unweighted sufficient
conditions in Theorem 5 as follows.

Theorem 6 If 1 ≤ p ≤ ∞, then the mapping (a, ϕ1, ϕ2) �→ A
ϕ1,ϕ2
a is bounded

fromMp,∞(R2d)×M1(Rd )×M1(Rd) into Sp(L2(Rd )), i.e.,

‖Aϕ1,ϕ2
a ‖Sp ≤ C‖a‖Mp,∞‖ϕ1‖M1‖ϕ2‖M1

for a suitable constant C > 0.

Proof The inequality immediately follows from Theorem 5 and the estimate
‖ϕ2‖p ≤ ‖ϕ2‖1, for any p > 1, by the inclusion relationM1(Rd ) ⊂ Mp(Rd ). ��

The vice versa of the sufficient conditions above is shown hereafter.

Theorem 7 Consider 1 ≤ p ≤ ∞. If Aϕ1,ϕ2
a ∈ Sp(L

2(Rd )) for every pair of
windows ϕ1, ϕ2 ∈ S(Rd) with norm estimate

‖Aϕ1,ϕ2
a ‖Sp ≤ C ‖ϕ1‖M1 ‖ϕ2‖M1 , (40)

where the constant C > 0 depends only on the symbol a, then a ∈ Mp,∞(R2d).

In what follows we detail the main steps of the proof, in order to underline the tools
employed. The key role is played by Corollary 1, together with the characterization
of theMp,∞(R2d)-norm of the symbol a via Gabor frames.

Sketch of the Proof of Theorem 7 Consider 0 < α, β < 1, !(x,ω) =
2−de−x2−ω2 ∈ S(R2d) and the Gabor frame (TαkMβn!)n,k∈Z2d . We compute

theMp,∞(R2d)-norm of the symbol a in Aϕ1,ϕ2
a by using the norm characterization

in (27)

‖a‖
Mp,∞(R2d )

& ‖〈a,MβnTαk!〉n,k∈Z2d‖�p,∞(Z4d )
. (41)

Using (26) we can write

!(x,ω) = 2−de−π(x2+ω2) = Vϕϕ(x, ω)Vϕϕ(x, ω). (42)
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Now, let k = (k1, k2), n = (n1, n2) ∈ Z2d , by (42) and Formula (31), the time-
frequency shift of ! can be expressed by the point-wise product of two STFTs:

MβnTαk!(x, ω) = M(βn1,βn2)T(αk1,αk2)(VϕϕVϕϕ)(x, ω)

= V(Mβn1T−βn2ϕ)
(Mβn1T−βn2Mαk2Tαk1ϕ) · Vϕ(Mαk2Tαk1ϕ).

Using the weak definition of localization operator given in (4), we can write

〈a,MβnTαk!〉 = 〈Aϕ,(Mβn1T−βn2ϕ)
a (Mαk2Tαk1ϕ),Mβn1T−βn2Mαk2Tαk1ϕ〉. (43)

TheMp,∞-norm of the symbol a can be recast as

‖a‖Mp,∞& ‖〈a,MβnTαk!〉n,k∈�2d ‖�p,∞(�4d )

= sup
n∈�2d

⎛
⎝ ∑
k∈�2d

|〈a,MβnTαk!〉|p
⎞
⎠

1/p

= sup
(n1,n2)∈�2d

⎛
⎝ ∑
(k1,k2)∈�2d

|〈Aϕ,(Mβn1T−βn2ϕ)
a (Mαk2Tαk1ϕ),Mβn1T−βn2Mαk2Tαk1ϕ〉|p

⎞
⎠

1/p

We apply the assumption (40) to the localization operators A
ϕ,(Mβn1T−βn2ϕ)
a ; in fact,

for every choice of β, n1, n2, the functions Mβn1T−βn2ϕ are in the Schwartz class
S(Rd ), so that the localization operators satisfy the uniform estimate

‖Aϕ,(Mβn1T−βn2ϕ)
a ‖Sp ≤ C‖ϕ‖M1‖Mβn1T−βn2ϕ‖M1 = C‖ϕ‖2

M1 , (44)

since the time-frequency shifts are isometry onM1(Rd ).
Finally, applying Corollary 1 with the Gabor frame (Mαk2Tαk1ϕ)k1,k2∈Zd and

operators T = A
ϕ,(Mβn1T−βn2ϕ)
a ∈ Sp and L = Mβn1T−βn2 ∈ S∞, we can majorize

the norm ‖a‖Mp,∞ as

‖a‖Mp,∞

& sup
(n1,n2)∈Z2d

‖〈Aϕ,(Mβn1T−βn2ϕ)
a (Mαk2Tαk1ϕ),Mβn1T−βn2Mαk2Tαk1ϕ〉(k1,k2)∈Z2d‖�p(Z2d )

� sup
(n1,n2)∈Z2d

‖Aϕ,(Mβn1T−βn2ϕ)
a ‖Sp

� sup
(n1,n2)∈Z2d

‖ϕ‖2
M1 = ‖ϕ‖2

M1 <∞,

where in the last inequality we used (44). ��
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4.1 Conclusion and Perspectives

As it becomes clear from the previous proof, we cannot expect to prove necessary
conditions for small p, that is 0 < p < 1, using similar techniques to the case p ≥ 1.
The main obstruction being the fact that Corollary 1 does not hold for 0 < p < 1.
Observe that the discrete modulation norm via Gabor frames in (41) remains valid
also for 0 < p < 1. In view of the sufficient conditions in Theorem 5, we conjecture
that a necessary condition of the type expressed below should hold true.

Theorem 8 For 0 < p < 1, if Aϕ1,ϕ2
a is in Sp(L2(Rd)) for every pair of windows

ϕ1, ϕ2 ∈ S(Rd) and there exists a C > 0 such that

‖Aϕ1,ϕ2
a ‖Sp ≤ C‖ϕ1‖Mp‖ϕ2‖Mp, ϕ1, ϕ2 ∈ S(Rd ),

then a ∈ Mp,∞(R2d).

Acknowledgement The author wish to thank Prof. Fabio Nicola for his suggestions and com-
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Wavefronts in Traffic Flows and Crowds
Dynamics

Andrea Corli and Luisa Malaguti

Abstract In this paper we give an overview of some recent results concerning
partial differential equations modeling collective movements, namely, vehicular
traffic flows and crowds dynamics. The focus is on traveling-wave solutions to
degenerate parabolic equations in one space dimension, even if we briefly discuss
models based on different equations. The case of networks is also taken into
consideration. The parabolic degeneration opens the possibilities of several different
behaviors of the traveling-wave solutions, which are investigated in details.

Keywords Traveling waves · Degenerate diffusion-convection reaction
equations · Sharp profiles · Networks · Semi-wavefronts · Crowds dynamics

1 Introduction

The first papers dealing with mathematical models of vehicular traffic flows
appeared in the mid 1950s of the last century, and are due to M.J. Lighthill, G.B.
Whitham and P.I. Richards [70, 86]. In both papers the model consists of the single
equation

ρt + (ρv(ρ))x = 0, (1)

which expresses the conservation of the density ρ of the vehicles under the flux
ρv(ρ). The velocity v is a given decreasing function of ρ (at higher densities
of cars it corresponds a smaller velocity) and vanishes at some critical threshold
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density ρ (no motion is possible if the vehicles are aligned bumper to bumper). At
a first sight the model looks as oversimplified: for instance, all vehicles have the
same characteristics, they obey deterministically to the same velocity law, the road
is assumed straight and homogeneous. Rather surprisingly, however, for suitable
choices of v equation (1) catches the main features of the traffic flows. Equation
(1) is a nonlinear hyperbolic conservation law; as a consequence, its solutions can
become discontinuous at finite times even in correspondence to smooth initial data.
These discontinuities are called shock waves and correspond, roughly speaking, to
braking. Accelerations, on the other hand, are modeled by “smooth” rarefaction
waves, the other elementary ingredient in the description of general solutions to (1).
We refer to [54] for a elementary introduction to several features of the traffic flow
modeling based on (1) and to [16, 40, 96] for a general information on nonlinear
hyperbolic conservation laws.

In spite the fundamental papers of O. Oleinik [81] (see [82] for an English
translation) and P.D. Lax [68] laid the foundations for the study of hyperbolic
conservation laws, at the beginning mathematicians seemed to discard applications
to traffic flows. The baton passed to transportation engineers, who exploited rather
quickly this modeling and contributed to extend it to more general situations,
checking, at the same time, the solutions produced by (1) against real data; see
for instance [80] and several papers in [1].

An open question was how to improve the traffic flow modeling by including
one more equation, as it is done for fluid flows. There were several proposals,
which were however criticized by Daganzo [41]. In reaction to Daganzo paper,
in the 1990s two fundamental papers [6, 104] put independently new life into the
subject, opening the way for a boost of models and applications that has not yet
come to an end. Nowadays, both the modeling and the mathematical analysis of
traffic flows, including that of the close subject of crowds dynamics, have reached
a good level of completeness. In particular, macroscopic models (such as (1), i.e.,
based on averaged quantities) may include systems of several equations; they can
consider different populations of vehicles, admit lane changing and the possibilities
of entries, exits, crossroads, networks of roads. The equations can include nonlocal
operators (to take into account the evaluations of drivers about several preceding
vehicles), discontinuous terms (modeling, for instance, different characteristics of
the road) and stochastic functions (to model the unpredictability of the different
ways of driving); they can couple partial with ordinary differential equations (to
simulate, for instance, traffic flows with several cars and a few slow vehicles,
e.g., buses). We avoid from giving a long list of references and refer instead, for
recent results and modeling to the books [39, 48, 49, 88] and to the survey papers
[11, 13, 29, 55], where macroscopic models are duly presented. There, one can also
find other models, for instance based on systems of ordinary differential equations
(which are dubbed microscopic models).

The modeling of collective movements is not confined to hyperbolic equations.
Even in the paper of Lighthill and Whitham [70], the authors proposed to include a
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second-order term to (1) in order to smear out the shock waves. The corresponding
equation,

ρt + (ρv(ρ))x = Dρxx, (2)

where D > 0 is a constant diffusion parameter, turns out to be parabolic.
Unfortunately, Eq. (2) has some drawbacks. First, the propagation speed is infinite,
differently from (1). Second, while v can be easily determined by experiments, it
is not clear how to determine or mathematically deduce meaningful expressions
for D. Third, the Daganzo paradox occurs: the velocity vanishes at the maximal
allowable density ρ, but motion still occurs (both forwards and backwards!) by
diffusion. The answers to these issues were provided in several papers. First, the
effect of the infinite propagation speed is negligible if the diffusion coefficient is
sufficiently small: the total amount of “mass” that is diffused with infinite velocity
is negligible. Second, there are now several models providing different forms of
the diffusion coefficient [13, 18, 56, 78, 79, 83, 90] which, third, turns out to be
depending on ρ and, moreover, degenerate. An example is

D(ρ) = −ρv′(ρ) (δ + τρv′(ρ)) , (3)

which was proposed and in [78, 79] for vehicular traffic flows; here, δ is an
anticipation distance and τ a reaction time. An analogous expression with τ = 0
was proposed later on in [18] for crowd dynamics. Notice that D(0) = 0; slighlty
more sophisticated models [13] also prescribeD(ρ) = 0, according to the principle
of “no flux, no diffusion”. On the one hand, the degeneracy ofD avoids the Daganzo
paradox; on the other hand, degenerate parabolic equations have a property of
“finite propagation speed” [51, 99], which also contributes to answer to the first
issue. A fourth reason for introducing diffusion in (1) is that the density-flow
pairs (ρ, q) for Eq. (1) lie on the curve q = ρv(ρ) in the (ρ, q)-plane. However,
experimental data [55, 60] show that this is not the case: such pairs usually cover
a two-dimensional region. To reproduce this effect, either one considers inviscid
second-order models (see for instance [6, 83, 104], and also [47, 91] where a
relaxation term is included), or introduces a diffusive term. In the latter case the
physical flow is q = f (ρ)−D(ρ)ρx , see [12, 13, 18, 78], and the density-flow pairs
now correctly cover a full two-dimensional region in the (ρ, q)-plane.

Motivated by the previous considerations, the authors and coworkers have
recently considered [34–37], in the framework of collective movements, the degen-
erate parabolic equation

ρt + f (ρ)x = (D(ρ)ρx)x + g(ρ), (4)

where the general convection term f generalizes the flux ρv(ρ) and g is introduced
to model entries or exists. From the modeling point of view, as we explained above,
the diffusivity D(ρ) must satisfy D(0) = D(ρ) = 0, but we also treat the case
when D does not vanish. Usually we assume D(ρ) ≥ 0 but that are evidences that
the case D(ρ) < 0 makes sense (it is related to particular road conditions [78] or
to overcrowded environments [32, 35]) and can be studied as well. In these recent
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researches, the focus was on qualitative properties of solutions and the analysis was
restricted to traveling-wave solutions, i.e., solutions ρ(x, t) = ϕ(x − ct) of (4),
where c is the propagation speed of the profile ϕ. Then the analysis of (4) is reduced
to that of the ordinary differential equation

(
D(ϕ)ϕ′

)′ + (cϕ − f (ϕ))′ + g(ϕ) = 0. (5)

The degeneracy of the parabolic equation (4) implies, in particular, that the profile
may be supported by an half-line or even compactly supported, and its behavior
at the points where it reaches the values 0 and ρ deserves a detailed study. In the
analysis of these problems we exploit and generalize the techniques introduced by
the second author and coworkers in [71–74], which in turn form a whole thread of
mathematical investigations starting from [5], see [52] for general information.

A slightly different model is considered in [22], namely,

ρt + f (ρ)x = (D(ρ)!(ρx))x , (6)

where ! : R → (−1, 1) is an increasing function which satisfies !(0) = 0
and !(w) → ±1 as w → ±∞. In this model the diffusion saturates at spatial
discontinuities of the density (i.e., when the gradient become infinite) and several
interesting pattern of wavefronts arise; among them, namely, the occurrence of
discontinuous traveling waves. While the previous techniques can be applied here
as well, the very notion of discontinuous solution must be made precise; an account
of this theory can be found in [25], see [19] for a comprehensive survey.

The papers outlined in this survey do not take into account all articles dealing
with traveling-wave solutions in the modeling of traffic flows or pedestrian dynam-
ics. Several of them comprehend second-order models (i.e., systems of two or even
more equations) but are almost always characterized by a constant diffusivities,
on the contrary of the focus of this paper. About first-order models, we quote for
completeness [87], where a nonlocal flux term is introduced, [93] for an analogous
problem involving a road junction, [92] for a “follow-the-leader” ODE model for
traffic flow with rough road conditions.

In spite of the fact that we have in mind applications to collective movements,
Eq. (4) arises in a variety of physical and biological models, see for instance [52, 59,
77, 99]; our results can be applied as well to those problems. There is no room here
to describe the applications of our results to collective movements; for details about
this topic, we refer the reader to our aforementioned papers. The same remark holds
for proofs.

Here follows the plan of this paper. In Sect. 2 we briefly recall notations,
definitions and outline the main technique that is used in the proofs. In Sect. 3 we
merge the results of papers [34, 36] into a single framework; the topic there is about
source terms g with a single equilibrium point, which give rise to semi-wavefronts.
The case of negative diffusivity [35] is presented in Sect. 4, while Sect. 5 overviews
the case of networks [37]. The last Sect. 6 deals with a saturated-diffusion model
[22]. The paper ends with a long list of references, which aims at showing the close
interplay of the subject with other different mathematical topics.
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2 Notation, Definitions and Main Assumptions

In this section we briefly provide the necessary background to read what follows,
in particular concerning traveling-wave solutions. We always assume, unless differ-
ently specified, that for some ρ > 0 we have

f ∈ C1 ([0, ρ]) , g ∈ C ([0, ρ]) , D ∈ C0 ([0, ρ]) ∩ C1 ((0, ρ)) . (7)

We can assume f (0) = 0 without any loss of generality. We first give a rigorous
definition of traveling-wave solution.

Definition 1 Let I ⊆ R be an open interval and ϕ : I → [0, ρ] a continuous
function in I such that ϕ′ is differentiable a.e. and D(ϕ)ϕ ′ ∈ L1

loc(I). For every
(x, t) with x − ct ∈ I , we say that ρ(x, t) = ϕ(x − ct) is a traveling-wave solution
to (4) with wave speed c and wave profile ϕ if for every ψ ∈ C∞

0 (I)∫
I

{(
D (ϕ(ξ)) ϕ′(ξ)− f (ϕ(ξ))+ cϕ(ξ))ψ ′(ξ)− g (ϕ(ξ)) ψ(ξ)} dξ = 0. (8)

A traveling-wave solution is global if I = R; strict if I = R and ϕ is not extendible
to R (i.e., the maximal-existence interval of ϕ is strictly contained in R); classical
if ϕ is differentiable, D(ϕ)ϕ′ is absolutely continuous and (5) holds a.e.; sharp at
� ∈ [0, ρ] if g(�) = 0 and there exists ξ0 ∈ I such that ϕ(ξ0) = �, with ϕ classical in
I \ {ξ0} but not differentiable at ξ0. A wavefront solution is a global traveling-wave
solution such that ϕ(±∞) are zeros of g.

When dealing with wavefront solutions, we focus in the following on monotone
profiles: if ξ1 < ξ2 then either ϕ(ξ1) ≤ ϕ(ξ2) or ϕ(ξ1) ≥ ϕ(ξ2). For simplicity,
in the following we use the terminology introduced for solutions to (4) also for the
profiles. A wavefront profile must satisfy, in particular,

ϕ(−∞) = �−, ϕ(+∞) = �+, (9)

for some �− = �+ ∈ [0, ρ] such that g(�±) = 0. In case g is missing, every value
�± ∈ [0, ρ] (with �− = �+) is admissible.

Traveling waves are clearly not unique: if ϕ = ϕ(ξ) is a profile in an interval I ,
then also ϕ̃(ξ) = ϕ(ξ − ξ0) is a profile in I − ξ0, for every ξ0 ∈ R. If the source
term g in (4) has only one zero, the definition of wavefront solution is adapted in
the following way.

Definition 2 Let ρ be a traveling-wave solution of (4), whose wave profile ϕ is
defined in ($,+∞), $ ∈ R; let �+ ∈ [0, ρ] be such that g(�+) = 0. Then, ρ
is said a semi-wavefront solution of (4) to �+ if ϕ is monotonic, non-constant and
ϕ(ξ)→ �+ for ξ → +∞.
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Fig. 1 A strictly decreasing semi-wavefront profile ϕ1 from ρ; a strictly increasing semi-
wavefront profile ϕ5 to ρ. Non-strictly decreasing, sharp (at ρ) semi-wavefront profiles ϕ2 and
ϕ3 from ρ; a non-strictly increasing, classical semi-wavefront profile ϕ4 to ρ. While ϕ4 is smooth
at ξ4, ϕ2 and ϕ3 are not smooth at ξ2 and ξ3, respectively

Analogously, ρ is a semi-wavefront solution of (4) from �−, for some �− ∈ [0, ρ],
if g(�−) = 0, ϕ is defined (−∞,$), it is monotonic, non-constant and ϕ(ξ)→ �−
as ξ → −∞.

We refer to Fig. 1 for a representation of some semi-wavefront profiles.
Now, we provide some information on the main tools for solving (5); the first

step consists in an order reduction. If g = 0, Eq. (5) can be integrated and reduced
to the first-order equation

D(ϕ)ϕ′ + cϕ − f (ϕ) = C, (10)

for some constant C depending on the end states of ϕ. This equation degenerates
whereD vanishes.

An order reduction is also possible when g does not change sign in (0, ρ), see the
next Sect. 3. In this case it is possible to prove that every semi-wavefront solution
has a wave profile ϕ(ξ) that is strictly monotone where 0 < ϕ(ξ) < ρ, see [34,
Proposition 6.1]; hence, it is invertible there, with inverse function ξ = ξ(ϕ), ϕ ∈
[0, ρ). A simple computation shows that the function z(ϕ) := D(ϕ)ϕ ′ (ξ(ϕ)), for
ϕ ∈ (0, ρ), satisfies the singular equation

ż(ϕ) = ḟ (ϕ)− c − D(ϕ)g(ϕ)

z(ϕ)
, ϕ ∈ (0, ρ). (11)

For clarity, we distinguish derivatives with respect to ξ and ρ (or ϕ); therefore ϕ′ =
dϕ/dξ while ż = dz/dρ. Notice the interplay ofD and g that appears in a clear way
in the right-hand side of (11): roughly speaking, the zeros of eitherD and g have the
same “weight” in the numerator of the fraction in (11). The study of (11) requires
an original technique that has been developed in [73] and is based on comparison-
type arguments, i.e., on the existence of upper- and lower-solutions. The possible
degenerate behavior ofD imposes a quite precise construction of these solutions.
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3 Semi-Wavefronts

We consider in this section Eq. (4) in the case the diffusivityD and the source term
g satisfy

D > 0 in (0, ρ) and g > 0 in [0, ρ), g(ρ) = 0. (12)

The assumption (12) on g aims at modeling pedestrian entries only depending on the
density; see [7] for different (localized) models for entries and exits. In fact, assume
that pedestrians are walking along a long corridor and side access is allowed; if, for
instance, g is a decreasing function, then entries are maximum where the density
in the corridor is zero and are not possible where the maximal density in reached.
We refer to [34] for more information on the modeling. Notice that g has only one
zero, and this does not make possible wavefronts to exist; only semi-wavefronts may
exist. From a mathematical point of view the results presented in this section extend
and precise analogous results in [52].

Aiming at the widest generality, we consider in the following Theorem 1 the
existence and uniqueness of semi-wavefronts for Eq. (4) by merging the results
contained in [34, 36]. As we comment on below, the occurrence of classical or sharp
profiles depends on the conditionsD(ρ) > 0 or D(ρ) = 0.

Theorem 1 Assume (7) and (12). Then, for every c ∈ R, Eq. (4) has a strict
classical semi-wavefront solution from ρ and a strict classical semi-wavefront
solution to ρ. These solutions are unique up to shifts and their wave profiles are
of class C2 in (−∞,$) or ($,∞), respectively.

In the previous statement, uniqueness is understood in the class of classical or
sharp profiles. The above existence and uniqueness theorem is complemented by
several other results; we briefly quote the most important ones.

Behavior of the Profiles at ϕ = 0 The behavior of ϕ′(ξ) as ξ → $− (see
Definition 2) is completely described and depends on the behavior of D at 0.
For example, if D(0) > 0 then ϕ′(ξ) tends to a strictly negative real number
as ξ → $−; if D(0) = Ḋ(0) = 0, then either ϕ′(ξ) → −∞ if c ≤ c∗ or
ϕ′(ξ) → −g(0)/ (c − f ′(0)

)
if c > c∗. Here, the threshold c∗ is a real number

depending on the behavior of f , g andD at 0. An explicit expression for c∗ is not at
disposal, but rather precise estimates can be provided. The case D(0) = 0 = Ḋ(0)
is slightly more complicated.

Behavior of the Profiles at ϕ = ρ If D(ρ) > 0 then every profile is classical;
assume instead D(ρ) = 0. Profiles from ρ are sharp if c < f ′(ρ) and classical if
c > f ′(ρ); on the contrary, profiles to ρ are classical if c < f ′(ρ) and sharp if
c > f ′(ρ). If c = f ′(ρ), then profiles are classical if Ḋ(ρ) < 0; otherwise they can
be either classical or sharp, depending on the order of vanishing at ρ of D, g and
c − f ′(ρ).
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Monotony If ϕ1 and ϕ2 are two profiles from ρ with wave speeds c1 < c2 and
$1 = $2 = $ , then ϕ2(ξ) < ϕ1(ξ) for every ξ ∈ (−∞,$) with ϕ2(ξ) < ρ.

Strictly Monotonic Solutions First, assume D(ρ) > 0. If g(ρ) ≤ L(ρ − ρ) in a
left neighborhood of ρ, then every profile satisfies ϕ(ξ) < ρ. On the contrary, if
g(ρ) ≥ L(ρ − ρ)α for some α ∈ (0, 1) in a left neighborhood of ρ, then every
profile satisfies ϕ(ξ) ≡ ρ in (−∞, ξ ] (or on [ξ,+∞)) for some ξ .

Second, assume D(ρ) = 0. Under the same inequalities on g analogous results
hold true, requiring however, in the former case, c > f ′(ρ) (c < f ′(ρ)) in the case
of profiles from (resp., to) ρ.

Diffusivities with Infinite Slope at 0 Assume either D > 0 in [0, ρ], Ḋ(0) = ±∞
or D > 0 in (0, ρ], D(0) = 0, Ḋ(0) = ∞. Then, under (12) we still have a strict
classical semi-wavefront solution from ρ for every c. If D(0) > 0 then ϕ′(ξ) tends
to a strictly negative number when ξ → $−, while ifD(0) = 0 then ϕ′(ξ)→ −∞.

Diffusivities with Infinite Slope at ρ Assume D(ρ) = 0 and Ḋ(ρ) = −∞;
moreover, assume (Dg)′(ρ) ∈ (−∞, 0]. Then profiles are always classical.

Convergence of Semi-Wavefronts to Wavefronts Consider a source term g0 satisfy-
ing g(0) = g(ρ) = 0, g > 0 in (0, ρ) and let (Dg)′(0) < ∞. In this case, Eq. (5)
admits a wavefront ϕ0 connecting ρ with 0 for every c ≥ c∗0, for some c∗0 ∈ R. Also
consider a sequence of source terms gn satisfying (12), which give rise to semi-
wavefront profiles ϕn with the same speed c and satisfying c ≥ c∗0. Then ϕn → ϕ0

in C1
loc(J ), where J is the maximal open interval where 0 < ϕ0 < ρ.

The Case g < 0 Instead of (12), assume g < 0 in (0, ρ] and g(0) = 0, while
keeping the same assumption on D. These assumptions model the case of exits.
Results analogous to those outlined above can be proved.

The Case where g Changes Sign Assume g > 0 in [0, ρ0) and g < 0 in (ρ0, ρ], for
some ρ0. By a suitable pasting of the profiles obtained above we can still construct
traveling waves under the additional assumption |g(ρ)| ≥ L|ρ0 − ρ|α for some
α ∈ (0, 1) in a neighborhood of ρ0.

Applications We refer to [34] for some examples which make more precise the
patterns of the profiles as well for an interpretation of the semi-wavefronts for
collective movements.

4 The Case of Negative Diffusivity

In the previous Sect. 3 we gave a complete description of the semi-wavefront
solutions to Eq. (4), for several different diffusivities and source terms. In those
resultsD could vanish, but staying otherwise positive. In this section we report some
recent results obtained in [35] about the case when D changes sign. For simplicity
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we drop the source term g and consider the equation

ρt + f (ρ)x = (D(ρ)ρx)x . (13)

Remark that, as far as wavefronts are concerned, the scenery differs a lot from the
case where instead g is present: in the current case the end states of a profile ϕ are
completely arbitrary. The negativity ofD simulates both an unstable and aggregative
behavior; it occurs, for instance, in vehicular flows for high car densities and limited
sight distance ahead [78]. An analogous modeling can be made in the framework of
crowds dynamics, where it simulates panic behaviors in overcrowded environments
[32]. We point out that negative diffusivities are also considered in geophysics [44],
thermodynamics [62] and biological [58] models.

From an analytic point of view, Eq. (4) becomes a backward parabolic equation
in the region whereD is negative. A general framework to treat backward parabolic
equations was originally proposed in [45, 84], for the case f = 0; we recall that
the problem is not only strongly unstable but also suffers of a loss of uniqueness
[57]. In that approach, the solutions to (4) are singled out as the limits for ε→ 0 of
solutions of an augmented third-order pseudo-parabolic approximation

ρεt =
(
D(ρ)ρεx

)
x
+ ε"(ρε)xxt .

Here above, " satisfies suitable assumptions of sign and growth. This framework
has been subsequently developed and extended in several papers, see e.g. [75, 94,
95, 97, 98]. The drawback of this approach is that it is limited, for the moment, to
the case f = 0; moreover, the third-order approximation has no clear meaning for
collective movements. As a consequence, we drop this approach and focus as above
just on wavefront solutions.

More precisely, we assume f as in (7) while, for simplicity,D ∈ C1 ([0, ρ]); the
case where D ∈ C ([0, ρ]) ∩ C1 ((0, ρ)) can be dealt as in Sect. 3. Moreover, we
assume that there exists α ∈ (0, ρ) such that

D > 0 in (0, α) and D < 0 in (α, ρ). (14)

We refer to Fig. 3a. We have D(α) = 0 because of the smoothness of D. Clearly,
the interesting case for wavefronts is when

�− ∈ [0, α) and �+ ∈ (α, ρ], (15)

since otherwise the results of [52] apply. Notice that for suitable but realistic
assumptions on v and on the parameters δ and τ , the diffusivity D provided by
(3) behaves as in (14); the same behavior occurs for other models of diffusivities
proposed in [13, 56].

Wavefronts for parabolic forward-backward equations as (4) do not suffer of the
heavy problems of the general solutions, and were studied by some authors in the
case g = 0 but f = 0; we refer to [9, 10, 71] for D changing sign once and
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Fig. 2 A profile ϕ1 deduced from a profile ϕ0 by a stretching of ξ1 at level α

monostable g, [72] for the bistable case, [46, 66] for D changing sign twice where
g is, respectively, monostable and bistable.

The vanishing of D at α implies that any stretching at α of a wavefront profile
gives rise to another profile. Refer for instance to Fig. 2, where for simplicity the
value α is assumed to be reached at ξ = 0: if ϕ0 is a profile for ξ1 = 0, then for
every ξ1 > 0 the profile ϕ1 depicted in Fig. 2 and having a plateau of length ξ1 is a
profile as well.

We can now state the main result of this section.

Theorem 2 Assume (14) and (15). Equation (4) has a wavefront solution whose
profile ϕ satisfies (9) if and only if the following three conditions are satisfied:

f (α)− f (�−)
α − �− = f (�+)− f (α)

�+ − α =: c�±, (16)

f > s�± in (�−, α), f < s�± in (α, �+), (17)

D

f − s�± ∈ L1(Iα), (18)

where Iα is some neighborhood of α. We denoted s�±(ρ) = c�±(ρ−α)+f (α). The
wave speed of the profile is c�± and we have f ′(α) ≤ c�± . If ξ0 = ξ1 = 0, then ϕ is
unique; in this case, ϕ ′(ξ) > 0 when �− < ϕ(ξ) < �+, ξ = 0, while

lim
ξ→0

ϕ′(ξ) =
{
f ′(α)−c�±
D ′(α) if D ′(α) < 0,

∞ if D ′(α) = 0 and f ′(α)− c�± < 0.
(19)

Notice that by (16) the plot of the function s�±(ρ) is the straight line through(
�−, f (�−)

)
and

(
�+, f (�+)

)
; we refer to Fig. 3b for the geometric meaning of

conditions (16), (17). We point out that in order that these conditions are satisfied,
the function f must change its convexity-concavity; however, the inflection point
does not necessarily coincide with α. Notice that non-concave functions f are
known [8, 61] to show cluster or oscillatory solutions, which is precisely what we are
modeling. We observe that the role of condition (18) is to guarantee that both (non-
strictly monotone) profiles from �− to α and from α to �+ reach α for a finite value of
ξ , see [52, Th. 9.1]. Notice that if f ′(α) < c�± then (18) is clearly satisfied because



Wavefronts in Traffic Flows and Crowds Dynamics 177

Fig. 3 (a): a diffusivity D satisfying assumption (14); (b): the flux function f

D ∈ C1. As a consequence, condition (18) is only needed when f ′(α) = c�± , i.e.,
when the line s�± is tangent to the graph of f at (α, f (α)).

As we mentioned above, negative diffusivities are also introduced, e.g., in [44].
In that and in similar cases the region where D is negative is bypassed by inserting
in the solution a shock wave, which is uniquely determined by a higher-order
regularization (either of pseudo-parabolic type, or of Cahn-Hilliard type), see [103].
On the contrary, our smooth profiles fully enter into the region of negative diffusivity
and no artificial wave is added.

As in the case of Theorem 1, the previous result is the starting point for proving
several related results that we outline below.

Sharpness of the Profiles Profiles are sharp at α if D′(α) = 0 and the subcharacter-
istic condition f ′(α) < c�± holds; in the characteristic case f ′(α) = c�± , sharpness
can be investigated but depends on suitable technical conditions. Sharpness at 0 and
ρ can be characterized by adapting the arguments in [36, 37, 52].

The Vanishing-Viscosity Limit Wavefronts are not only important by themselves,
but also because they provide smooth approximations to shock waves of the inviscid
hyperbolic equation

ρt + f (ρ)x = 0. (20)

In this way, they contribute to single out unique solutions to (20). More precisely,
replaceD with εD in (13) to obtain

ρt + f (ρ)x = (εD(ρ)ρx)x , (21)

where ε > 0 is a parameter. The issue is whether solutions ρε of (21) converge to
a solution ρ0 of (20) for ε → 0. The answer is in the affirmative if D > 0, see
[63] and [40, §6] for a general presentation of the problem; the caseD ≥ 0 is much
more tricky and was first considered in [23, 100]. The problem seems open if D
changes sign. On the contrary, for wavefronts, we can prove that, in the framework
of Theorem 2, the profiles ϕε joining �− with �+ pointwisely converge to the limit
expected profile ϕ0, which is defined as �− if ξ < 0 and �+ if ξ > 0.
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Notice however that the discontinuous solution ρ0(x, t) = ϕ0(x − ct) is not
entropic in the hyperbolic sense [16, Thm. 4.4]; it is so only the analogous solution
joining �− with α, see Fig. 3b. However, even if ρ0 is not entropic, Theorem 2 shows
that it has a viscous profile, where the diffusivity is negative in the nonentropic part
of the solution; clearly, such a wave is unstable in the sense of [16, Rem. 4.7],
as it was expected. It is interesting to remark that the one-sided sonic case c�± =
f ′(�+) = f ′(�−) (or c�± = f ′(�−) = f ′(�+)) was used in [32] (see cases (R1)
and (R3)(a) there) and gives rise, in the vanishing viscosity limit, to a nonclassical
shock [69].

Generalizations of the Conditions on D The case when the signs of D are the
opposite of the ones in (14) is easily deduced and provides decreasing profiles. More
interesting is the case when D vanishes two times inside (0, ρ) and satisfies

D > 0 in (0, α) ∪ (β, ρ) and D < 0 in (α, β), (22)

for some 0 < α < β < ρ, see Fig. 4a. In this case the geometric assumptions
(16) and (17) must be modified to require that the straight line through

(
�−, f (�−)

)
and

(
�+, f (�+)

)
also meets both points (α, f (α)) and (β, f (β)); moreover, the

mutual position of the plot of the function f and of that line must be as in Fig. 4b.
As pointed out just above in the similar case (14), it is easy to understand that the
limit discontinuous solution ρ0 to (20), whose profile ϕ0 joins �− on the left to
�+ on the right with a jump propagating with velocity c�± , is nonentropic because
the flux is not convex [16, Remark 4.7]. Once again, the nonentropic part is where
the diffusivity is negative. Also shock waves connecting the states �− and �+ as in
Fig. 4b have been considered in [32] (see case (R3)(b) there).

Applications Examples are provided in [35] for different models of the diffusivity
and of the velocity. For some of these models, which are based on experimental
data, condition (14) really occurs, and the assumptions of Theorem 2 are satisfied,
both for models of vehicular traffic flows and pedestrian dynamics.

Fig. 4 (a): a diffusivity D satisfying (22); (b): the flux function f
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5 Wavefronts on Networks

The analysis of the previous sections, though rather complete and detailed, involved
a single road. An interesting issue is how to cope with the (real!) case of networks of
roads. In recent years, partial differential equations on networks have seen a boost
of papers, see for instance [42, 48, 49, 67, 85, 101] as far as dynamic equations
are concerned, with applications to several different subjects. About wavefronts in
networks of traffic flows, we review in this section the results in [37], where the
network is constituted by a crossroad connectingm incoming roads with n outgoing
roads, briefly, a star graph; more general networks can be treated by generalizing
this case. Few papers deals with wavefronts in networks; we refer to [101, 102]
for the semilinear diffusive case and to [76] for the case of a dispersive equation.
We point out that in those papers, as in most modeling of diffusive or dispersive
partial differential equations on networks, both the continuity of the unknown
functions and the Kirchhoff condition (or variants of it) are imposed at the nodes.
These assumptions are natural when dealing with heat or fluid flows, but they are
unjustified in the case of traffic modeling, where the density must be allowed to jump
at the node while the conservation of the mass must always hold, see [3, 48, 49, 88].
Moreover, such conditions impose rather strong requirements on the existence of
the profiles, which often amount to proportionality assumptions on the parameters
in play.

We denote I = {1, . . . ,m} and J = {m + 1, . . . ,m + n} the index sets
corresponding to incoming and outgoing roads, respectively, and H = I ∪ J. For
h ∈ H, the traffic in each road is modeled by the scalar diffusive equation

ρh,t + fh(ρh)x =
(
Dh(ρh)ρh,x

)
x
, (23)

where ρh is the vehicle density. Incoming roads are parametrized by x ∈ R− =
(−∞, 0] while outgoing roads by x ∈ R+ = [0,∞); the crossroad is located at
x = 0 for both parameterizations (Fig. 5). We denote the generic road by �h for
h ∈ H; then �i := R− for i ∈ I and �j := R+ for j ∈ J. The network is defined
as N := ∏

h∈H�h. We scale the densities in each road so that, according to the
previous notation, ρh = 1 for every h = 1, . . . ,m+ n. We deal with the simple but
significative case where fh andDh are C1 functions, the function fh is positive and

Fig. 5 A star graph. Here
m = 2, n = 3
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strictly concave with fh(0) = fh(1) = 0; at last, we assumeDh > 0 in (0, 1). More
general cases can be treated along the lines of the previous sections.

We denote by Fh(ρh, ρh,x) = fh(ρh)−Dh(ρh)ρh,x the parabolic flux along the
road h and, motivated by [30, 31], we require that at the crossroad the following
coupling among parabolic fluxes

Fj
(
ρj (t, 0

+), ρj,x(t, 0+)
) =∑

i∈I
αi,j Fi

(
ρi(t, 0

−), ρi,x (t, 0−)
)

for a.e. t ∈ R, j ∈ J,

(24)

takes place, for given constant αi,j ∈ (0, 1] satisfying
∑
j∈J αi,j = 1, for i ∈ I. The

coefficients αi,j represent the ratio of vehicles from road i traveling through road
j . Summing on j the equations in (24) we see that they imply the conservation of
the total flow at the crossroad, which in turn implies the conservation of the mass.
Notice that no continuity conditions as ρi(t, 0−) = ρj (t, 0+), for i ∈ I and j ∈ J, is
required, on the contrary of what is usually done in the standard modeling of (linear)
parabolic flows on networks.

Let ρh be a wavefront solution to the Eq. (23) in R × �h with profile ϕh : R →
[0, 1], speed ch ∈ R and end states �±h , for h ∈ H. We say that the vector-valued
function ρ = (ρ1, . . . , ρm+n) is a wavefront solution to the system

ρh,t + fh(ρh)x =
(
Dh(ρh)ρh,x

)
x
, h ∈ H, (25)

in the network N if (24) holds. The equation for the profile ϕh can be integrated and
can be written as

Dh (ϕh(ξ)) ϕ
′
h(ξ) = gh (ϕh(ξ))− gh(�±h ), (26)

where gh(ρ) := fh(ρ)− ch ρ.
We denote I0 = {i ∈ I : ci = 0} = {i ∈ I : fi(�−i ) = fi(�+i )}, Ic0 := I \ I0, and

L±
i,j =

{
�±i if ci cj ≥ 0,

�∓i if ci cj < 0.
(27)

For simplicity we focus on the nonstationary case, where cj = 0 for every j ∈ J. In
this case, we also define ci,j = ci/cj , Ai,j = αi,j ci,j , kj =∑

i∈Ic0(Ai,j L
±
i,j )− �±j .

Here follows the main result of this section, which deals with the non-stationary
case.

Theorem 3 Under the above conditions on fh and Dh, h ∈ H, problem (25)–(24)
admits a non-stationary traveling wave if and only if the following condition holds.
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There exist �±1 , . . . , �±m ∈ [0, 1] with �−i < �+i , i ∈ I, such that Ic0 = ∅ and for
any j ∈ J:

(i) there exist �±j ∈ [0, 1] satisfying fj (�±j ) =
∑
i∈I αi,j fi(L

±
i,j ) and fj (�

−
j ) =

fj (�
+
j );

(ii) we have

gj
(
�j (cj ξ)

)− gj (�−j )
Dj
(
�j (cj ξ)

) =
∑
i∈Ic0

Ai,j ci,j
gi (ϕi(ci ξ))− gi(�−i )

Di (ϕi(ci ξ))
for a.e. ξ ∈ R,

(28)

where ϕ1, . . . , ϕm are solutions to (9)–(26) and

�j (ξ) :=
∑
i∈Ic0

[Ai,j ϕi
(
ci,j ξ

)] − kj for ξ ∈ R.

The statement of Theorem 3 is very technical but it reduces the problem of the
existence of a wavefront in the network to some algebraic and functional conditions,
which in a sense play the role of the much simpler Kirchhoff conditions of the linear
case. Some extensions of the above result can be given, as we explain below.

Stationary and Degenerate Wavefronts A wavefront to Eq. (23) is stationary if ch =
0 and degenerate if either Dh(0) = 0 = �−h or Dh(1) = 0 = 1 − �+h . In turn,
a wavefront ρ to (25) is stationary if each component ρh is stationary; completely
non-stationary if none of its components is stationary; degenerate if at least one
component ρh is degenerate; completely degenerate if each of its components is
degenerate. Some characterizations of stationary and/or degenerate wavefronts on
the network can be given.

Continuity Conditions The above algebraic and functional conditions become
much simpler if the continuity condition ρi(t, 0−) = ρj (t, 0+), for t ∈ R and
(i, j) ∈ I× J holds, as well as the characterization of non-stationary wavefronts.

Applications Several examples, in the case m = 1 of a single incoming road, are
provided in [37], which also make much simpler and explicit the conditions of
Theorem 3 for the existence of wavefronts. In particular, they refer to the cases
of quadratic and logarithmic fluxes, for constant or linear diffusivities.

6 Wavefronts for Saturated Diffusion Models

A nonlocal model for pedestrian dynamics in � ⊂ R2 was proposed in [33, 38] and
can be written as

ρt + div (ρv(ρ) (ν +I(ρ))) = 0, (29)
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where ρ(x1, x2, t) is the crowd density at point (x1, x2) ∈ R2, with 0 ≤
ρ(x1, x2, t) ≤ ρ. The scalar pedestrians’ velocity in absence of environmental
constraints is denoted by v = v(ρ); the unit vector ν = ν(x1, x2) ∈ R2 is
the preferred direction of the pedestrian at (x1, x2). The operator I(ρ) takes into
account how a pedestrian deviates from the direction ν by trying to avoid high crowd
densities ρ. The operator I is possibly nonlocal and can involve terms of the form
∇ρ ∗ η, where η is a suitable mollifier. In the case η is the Dirac measure, and
we choose I(ρ) = −ε∇ρ/(√1 + ‖∇ρ‖2), for ε > 0, then we recover the model
proposed in [17]:

ρt + div (νρv(ρ)) = ε div
(
ρv(ρ)

∇ρ√
1 + ‖∇ρ‖2

)
. (30)

If moreover ν is constant and � = R2, then we can look for plane-wave solutions,
which are solutions of the form ρ(x1, x2, t) = ρ(μ · x, t), where μ ∈ R2 is a unit
vector. In this case ρ must satisfy the equation

ρt + μ · ν (ρv(ρ))x = ε
(
ρv(ρ)

ρx√
1 + |ρx |2

)
x
, (31)

for x ∈ R. This leads to consider equations of the form (6) where, for instance,
!(w) = w/√1 +w2. More generally, we assumeD > 0 in (0, 1),D(0) = D(1) =
0 (where we scaled the density to have ρ = 1 as in the previous section) and

! : R → (−1, 1), !′ > 0, !(0) = 0, !(w)→ ±1 as w→ ±∞. (32)

Notice that the assumption !′ > 0 in (32) implies that (6) is a forward parabolic
equation, which degenerates at ρ = 0, ρ = 1 and if ρx = ±∞, i.e., when the
tangent to the graph of ρ(·, t) becomes vertical.

Assumption (32) makes (6) a flux-saturated porous media equation. In the case
f = 0, the existence and uniqueness of solutions to the initial-value problem for
these equations with initial data ρ0 was proved in [14, 43] for D strictly positive
and ρ0 strictly increasing; the case D(0) = 0 was considered later by Caselles and
co-workers e.g. in [4, 24, 26]. The interesting feature of these equations is that they
admit discontinuous solutions; this can sound strange because the term!(ux) has no
meaning in D′ for such functions. Indeed, if u ∈ BV , then Du is a Radon measure
that can be written as Du = Dau + Dju + Dcu, where on the right-hand side
we have the absolutely continuous part (with respect to the Lebesgue measure), the
jump part, and the Cantor part ofDu, respectively [2]. In the former papers [14, 43],
an ad hoc definition of solutions is given; in the latter [4, 24, 26], equivalently, for
solutions u with u(·, t) ∈ BV a.e. it is understood that (6) holds in D′ with !(ρx)
replaced by !(Daρ). Notice that in this case the equation for the profiles becomes

(
D(ϕ)!(Daϕ)

)′ + cϕ′ − (f (ϕ))′ = 0. (33)
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In both cases the solutions are obtained as vanishing-viscosity limits, but uniqueness
is missing without some further requirements. That is not surprising, since this
subject has several common issues with the theory of hyperbolic conservation
laws [16, 40, 63, 96]: solutions are required to be entropic, see [25]. Additional
information and a bibliography on the subject can be found in the survey paper [19].

Under suitable assumptions, a first study of wavefronts for (6) was performed
by Rosenau and co-workers [27, 28, 53, 64, 65], see also [89]; however, in those
papers, the focus was oriented more toward applications and numerics. We stress
that the above assumptions on D do not allow to apply those results here. Later on,
discontinuous entropic wavefronts were rigorously analyzed in [19–21, 26], again
in the case f = 0 but with a source term; we also refer to [15, 50]. However, the
case of a parabolic equation with an advection term has never been considered in
the framework of Caselles’ theory. A general result about wavefronts for Eq. (6)
with ! satisfying (32) is that profiles are smooth if

∣∣�+ − �−∣∣ is small and possibly
discontinuous otherwise. Such a result was first justified in a special case in [64]
and proved in [89] in the case D = 1. In [22] we confirm this result in a much more
general framework. Now, we give a brief account of [22].

For simplicity, we consider the case of profiles ϕ having at most one singular
point ξ0, i.e., a point where ϕ can be either continuous, but then non-differentiable,
or just discontinuous; in R \ {ξ0} the profiles are classical. Moreover, we deal with
increasing profiles. Much more general statements can be found in [22]. In every
interval where ϕ is a classical profile, Eq. (33) can be integrated and becomes

D(ϕ)!(ϕ′)+ cϕ − f (ϕ) = k, (34)

for an arbitrary constant k. In turn, in the interval J = {ξ : 0 < ϕ(ξ) < 1} Eq. (34)
can be written as

ϕ′ = !−1 (h(ϕ)) for h(ρ) := f (ρ)− (cρ − k)
D(ρ)

. (35)

Since !−1 is only defined in the interval (−1, 1), it follows that classical solutions
ϕ are valued in the admissible region A = {ρ ∈ (0, 1) : |h(ρ)| < 1}. If �− and �+
belong to a same interval contained in A and �− = �+, then there exists [52] a
unique (up to shifts) profile ϕ joining these two end states; moreover, k = c�± −
f (�±), h(�±) = 0, and

c = f (�+)− f (�−)
�+ − �− . (36)

If instead �− and �+ belong to two different intervals contained in A, then classical
solution do not exist.

Solutions in this case can be obtained by inserting a jump in the profile as follows.
Let ϕ be a classical solution to (35) in (−∞, ξ0), with ϕ(−∞) = �−, and assume
limξ→ξ0 ϕ(ξ) = ρ1 for h(ρ1) = 1, see Fig. 6(i). By (35) we deduce limξ→ξ0 ϕ

′(ξ) =
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Fig. 6 Formation of singularities in a profile

∞. If h is as in Fig. 6(i), then we can extend ϕ by letting it jump from ρ1 to ρ2, see
Fig. 6(ii). By subtracting the expressions h(ρ1) = 1 and h(ρ2) = 1, we deduce

c = f (ρ2)− f (ρ1)− (D(ρ2)−D(ρ1))

ρ2 − ρ1
. (37)

This expression should be compatible with (36): notice that the jump points ρ1
and ρ2 must match with the diffusivity D in order to obtain the previous speed c
of the profile. If ϕ can be extended in this way to (ξ0,∞) to reach �+, then we
have succeeded in constructing a profile. A geometrical interpretation is given in
Fig. 6(iii). The case ρ1 = ρ2 is easily seen to give rise to a continuous profile whose
graph has a vertical tangent with ϕ′(ξ0) = ∞.

Singular points are proved to be only of two kinds (recall that profiles are
assumed to be increasing for simplicity):

• We say that ξ0 ∈ C if ϕ is continuous at ξ0 and the following holds: if ϕ(ξ0) ∈
(0, 1), then ϕ′(ξ0) = ∞; if ϕ(ξ0) = 0 or 1, then ϕ′+(ξ0) = 0 or ϕ′−(ξ0) = 0.
The first case corresponds to a profile having an interior (i.e., ϕ(ξ0) ∈ (0, 1))
inflection point at ξ0 with vertical tangent; in the second case, the profile comes
off from 0 or reaches 1 with a non zero (possibly infinite) slope or even the limit
of ϕ′(ξ) for ξ → ξ0 may fail to exist.

• We say that ξ0 ∈ J if ϕ has a jump discontinuity at ξ0 and the following holds:
if ϕ(ξ±0 ) ∈ (0, 1), then ϕ′(ξ0) = ∞; if ϕ(ξ−0 ) ∈ {0, 1}, then ϕ′+(ξ0) = ∞; if
ϕ(ξ+0 ) ∈ {0, 1}, then ϕ′−(ξ0) = ∞. The former case states that the plot of ϕ′
must be vertical at both sides of the jump; the latter specifies that if a profile
comes off from 0 or reaches 1 (where D degenerates), then the vertical slope
condition is only required at one side of the jump point.

As we mentioned above, in general, many singular points may occur in a
wavefront. For simplicity, we give below the definition of entropic wavefront in
the case that there is at most one of them.

Definition 3 Consider �−, �+ ∈ [0, 1], �− < �+. An increasing function ϕ : R →
[0, 1] is an entropic wavefront solution to Eq. (6) with speed c and end states �± if ϕ
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satisfies (9), it solves (33) in D′(R) and there is at most one point ξ0 as above such
that ϕ is a classical solution to (33) in R \ {ξ0}.

It can be proved that ϕ is a solution to (33) in D′(R) if and only if

c =
(
f (ϕ(ξ+0 ))− f (ϕ(ξ−0 ))

)− (D(ϕ(ξ+0 ))−D(ϕ(ξ−0 )))
ϕ(ξ+0 )− ϕ(ξ−0 )

, (38)

and, in turn, if and only if there is a unique constant γ ∈ R such that ϕ satisfies in
R \ {ξ0} the equation

D (ϕ(ξ))!
(
ϕ′(ξ)

) + cϕ(ξ)− f (ϕ(ξ)) = γ. (39)

In [22] we provide a complete description of all the possible pattern of profiles
that can arise. For simplicity, we only consider here the case of discontinuous
profiles.

Theorem 4 Under the previous assumptions, fix �± ∈ [0, 1] with �− < �+ and
assume h > 0 in (�−, �+). Then Eq. (6) has an increasing entropic WF ϕ that
satisfies (9), with c given in (36) and singular set J = {ξ0}, if there exist ρ1, ρ2 ∈
[�−, �+], with ϕ(ξ−0 ) = ρ1 < ρ2 = ϕ(ξ+0 ), such that

h < 1 in (�−, ρ1) ∪ (ρ2, �
+) and h ≥ 1 in (ρ1, ρ2), (40)

and one of the following conditions is satisfied:

(i) ρ1, ρ2 ∈ (�−, �+) and h ((�−)+) = h
(
(�+)−

) = 0;
(ii) either ρ1 = �− = 0, ρ2 < �+, h

(
(�+)−

) = 0 or ρ2 = �+ = 1, �− < ρ1,
h
(
(�−)+

) = 0;
(iii) ρ1 = �− = 0 and ρ2 = �+ = 1.

Conversely, suppose again �− < �+ and h > 0 in (�−, �+). Also assume that for
every increasing wavefront ϕ with ϕ(±∞) = �± we have J = {ξ0} and ρ1 :=
ϕ(ξ−0 ), ρ2 := ϕ(ξ+0 ). Then the above conditions on h hold.

The above result allows to confirm the previous statement about the existence of
classical or discontinuous profile according to the size of |�+− �−|. In particular, as
it is geometrically clear from Fig. 6, it shows the competition between the hyperbolic
regime (where f dominates) and the parabolic regime (where g fully smears out the
discontinuities).
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A New Critical Exponent for the Heat
and Damped Wave Equations with
Nonlinear Memory and Not Integrable
Data

Marcello D’Abbicco

Abstract In this paper, we discuss the influence of assumingLm regularity of initial
data, instead of L1, on a heat or damped wave equation with nonlinear memory. We
find that the interplay between the loss of decay rate due to the presence of the
nonlinear memory and to the assumption of initial data in Lm instead of L1, leads to
a new critical exponent for the problem, whose shape is quite different from the one
of the critical exponent for Lm theory for the corresponding problem with power
nonlinearity |u|p. We prove the optimality of the critical exponent using the test
function method.

Keywords Heat equation · Damped wave · Nonlinear memory · Critical
exponent

1 Introduction

In this paper, we show how a new critical exponent for global small data solutions
arises for a heat equation, or a damped wave equation, if we study the interplay
between a nonlinear memory term and the assumption that the initial data are not
in L1. The solutions space change accordingly to the problem considered. The
existence result is proved in the spaceC([0,∞), Lm∩L∞),m ∈ (1,∞), for the heat
model (Sobolev solutions) and in the space C([0,∞),H 1)∩C1([0,∞), L2) for the
wave model (energy solutions). The nonexistence result is proved for solutions in
the space Lploc ([0,∞)× Rn) (weak solutions).

In [1], the authors studied the Cauchy problem for

{
ut −�u = F(t, u), t ≥ 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,
(1)
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where

F(t, u) =
∫ t

0
(t − s)−γ |u(s, x)|p ds , γ ∈ (0, 1) , (2)

represents a memory term, since it is a fractional Riemann–Liouville integral of a
power nonlinearity |u|p.

Assuming initial data in C0 ∩ L1, the authors observed that the Fujita critical
exponent p̄ for (1) was not given by scaling arguments, as it happened for the heat
equation with power nonlinearity F = |u|p, whose critical exponent is the Fujita
exponent 1 + 2/n (see [8]). Indeed,

p̄1 = max{pγ (n), γ−1},

where

pγ (n) = 1 + 2(2 − γ )
(n− 2(1 − γ ))+ . (3)

The competition between the two exponents pγ (n) and γ−1 is related to two
different effects of the memory term. On the one hand, the memory term produces
a loss of decay rate t1−γ with respect to the solution to the corresponding
linear Cauchy problem, which modifies the ordinary Fujita exponent into a Fujita
exponentpγ (n) not given by scaling. On the other hand, it halts the decay rate of the
solution to a maximum vanishing speed given by t−γ , independently on the decay
rate for the corresponding linear Cauchy problem. Indeed, in bounded domains,
where the linear heat equation shows an exponential decay in time, instead of a
polynomial one, the critical exponent is γ−1 (Theorem 1.3 in [1]).

•> What Is a Critical Exponent

By saying that p̄ is a critical exponent, here and in the following, we mean that
global solutions exist for initial data, small in a certain norm, for supercritical
powers p > p̄, whereas global solutions do not exist for subcritical powers p ∈
(1, p̄), even for small initial data in the same norm as above, under a suitable sign
assumption for the data. The critical power p = p̄ may belong to the existence or
nonexistence range of global solutions, according to the problem considered.

Due to the fact that the damped wave equation shows the same decay rate profile
of the heat equation as a consequence of the diffusion phenomenon (see [13, 15]),
the critical exponent for the damped wave equation with power nonlinearity F =
|u|p is also 1 + 2/n (see [14, 16]). Similarly, the critical exponent in presence of
a nonlinear memory term for the damped wave is the same for the heat equation.
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Assuming small initial data in the energy space and in L1, global energy solutions
to ⎧⎪⎪⎨

⎪⎪⎩
utt + ut −�u = F(t, u), t ≥ 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut (0, x) = u1(x), x ∈ Rn,

(4)

exist for p > p̄1 = max{pγ (n), γ−1}, at least in space dimension n ≤ 5 (see [2]).
The difficulty of dealing with higher space dimensions is related to the fact that
the damped wave equation inherits the good decay properties of the heat equation
(the so-called “diffusion phenomenon”), but the more delicate issues with regularity
in Lp spaces, with p = 2, typical of the undamped wave equation.

However, if one drops the assumption of initial data to be (small) in L1, it is well-
known that the Fujita exponent for heat and damped wave equations with power
nonlinearity |u|p changes. In particular, if the L1 smallness assumption is replaced
by Lm smallness, withm ∈ (1, 2], then the Fujita exponent for (1) and (4) with F =
|u|p, is 1+2m/n (see [9, 11]). Interestingly, the critical case p = 1+2m/n belongs
to the nonexistence range if m = 1 (see [17]), and to the existence range if m ∈
(1, 2] (see [10]).

It would then be a natural question to ask what happens if initial data are assumed
in Lm for a model with nonlinear memory term as (1) or (4), with F as in (2). A
first educated guess which could be formulated is asking if the same phenomenon
arising for the problem with power nonlinearity |u|p, also appears: is it true that it
is like if the space dimension n is replaced by n/m, so that

p̄ = max{pγ (n/m), γ−1} ?

The answer is no.
In this paper, we will show that if we take into account of Lm smallness of

initial data, then a new critical exponent arises from the competition between the
loss of decay rate influenced by the nonlinear memory term, and the loss of decay
rate originated from dropping the L1 assumption for the initial data. This exponent
originates from the fact that the two losses do not cumulate (the technical reason is
explained later, in Remarks 6 and 7) but their interplay is more complicated.

•! The New Critical Exponent

The expected critical exponent is

p̄ = max{pγ (n), γ−1, pm,γ (n), p̃m,γ (n)}, (5)
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where the new two exponents, related to the Lm assumption of the data, are defined
by

pm,γ (n) = 1 + 2m(2 − γ )
n

, (6)

p̃m,γ (n) = 1 + 1 − γ(
1 − n

2

(
1 − 1

m

))
+
= 1 + (1 − γ )m

(2m− n(m− 1))+
. (7)

So far, we are able to prove that the exponent pm,γ (n) is really critical, that is,
global small data (Sobolev or energy) solutions exist when p > pm,γ (n) = p̄, and
no global weak solutions may exist for suitable sign assumption on the initial data
if 1 < p < pm,γ (n). On the other hand, we are only able to prove that global small
data (Sobolev or energy) solutions exist when p > p̃m,γ (n) = p̄, but we cannot
prove that no global weak solutions may exist if 1 < p < p̃m,γ (n).

The expression in (5) may appear complicated, but it is easy to determine what is
the maximum in (5), for some given γ,m, n. Indeed, if γ is sufficiently small with
respect to m, namely,

0 < γ ≤ 1 − n

2

(
1 − 1

m

)
, (8)

then

p̄ = p̄1 = max{pγ (n), γ−1},

in (5). Indeed, condition (8) corresponds to say that (1 + t) n2
(

1− 1
m

)
≤ (1 + t)1−γ ,

i.e., that the loss of decay due to the assumption of Lm smallness of the initial data
becomes irrelevant with respect to the loss of decay rate related to the presence of
the nonlinear memory term. In this case, one may easily follow the approach in [1]
and [2] and prove the global existence of (Sobolev or energy) solutions for p > p̄1,
even replacing the L1 assumption of the data by the Lm assumption.

On the other hand, if

0 < 1 − n

2

(
1 − 1

m

)
< γ, (9)

then the situation is opposite and p̄ = p̄m, where we define

p̄m = max{pm,γ (n), p̃m,γ (n)}. (10)
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As the transition from pγ (n) to γ−1 appeared in space dimension n ≥ 3 at the
threshold value γ = (n − 2)/n, which corresponds to pγ (n) = γ−1 = n/(n − 2),
the transition from pm,γ (n) to p̃m,γ (n) appears in space dimension n ≥ 3 at the
threshold value which corresponds to pm,γ (n) = p̃m,γ (n) = n/(n− 2), that is,

m = 1

2 − γ
n

n− 2
.

Since for n ≥ 3 we may write (9) as

n

n− 2(1 − γ ) < m <
n

n− 2
,

we may distinguish two cases. If

1

2 − γ
n

n− 2
< m <

n

n− 2
, (11)

then p̄ = pm,γ (n) > p̃m,γ (n). If

n

n− 2(1 − γ ) < m <
1

2 − γ
n

n− 2
, (12)

then p̄ = p̃m,γ (n) > pm,γ (n). However, the interval in (12) is empty if, and only if,

n ≥ 2

1 − γ ,

so that the exponent p̃m,γ (n) only appears for some m when 3 ≤ n < 2/(1 − γ ).
In the limit case

m = 1

2 − γ
n

n− 2
, (13)

then p̄ = pm,γ (n) = p̃m,γ (n) = n/(n− 2).
We are now ready to state our main results.

Theorem 1 Let n = 1, 2 andm ∈ (1,∞) or n ≥ 3 andm ∈ (1, n/(n−2)). Assume
that

1 − n

2

(
1 − 1

m

)
< γ < 1,
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and that p ≥ p̄m, or p > n/(n−2) if n ≥ 3 and (13) holds. Then there exists ε > 0
such that for any initial data

u0 ∈ Lm ∩ L∞, with ‖u0‖Lm∩L∞ = ‖u0‖Lm + ‖u0‖L∞ ≤ ε,

there is a unique global Sobolev solution u ∈ C([0,∞), Lm∩L∞) to (1). Moreover,
it satisfies the same decay estimates satisfied by the corresponding linear Cauchy
problem, that is, (1) with F = 0,

‖u(t, ·)‖Lq ≤ C(1 + t)− n
2

(
1
m− 1

q

)
‖u0‖Lm∩L∞, (14)

for any q ∈ [m,∞] if n = 1 and for any q ∈ [m,n/(n − 2)) if n ≥ 2. Here and
in the following we set n/(n − 2) = ∞ when n = 2. If n ≥ 2 and q = n/(n − 2),
it satisfies the same decay estimates as above, but with a logarithmic loss of decay,
that is,

‖u(t, ·)‖Lq ≤ C(1 + t)−1+ n
2

(
1− 1

m

)
log(e + t) ‖u0‖Lm∩L∞ . (15)

If n ≥ 3 and q ∈ (n/(n− 2),∞], it satisfies the following decay estimate

‖u(t, ·)‖Lq ≤ C(1 + t)−1+ n
2

(
1− 1

m

)
‖u0‖Lm∩L∞ . (16)

The constant C > 0 is independent of the initial datum.

Remark 1 We notice that the critical case p = p̄m belongs to the existence range
when (9) holds, exception given for the special case (13) (see the end of the proof
of Theorem 1 for the technical reason). On the other hand, in the case in which (8)
holds and γ ≥ (n−2)/n, the critical power p = pγ (n) belongs to the nonexistence
range.

Remark 2 We may easily check that if p ≥ p̄m, then m < p in Theorem 1. Indeed,

p ≥ p̄m ≥ pm,γ (n) = 1 + 2m(2 − γ )
n

> 1 + 2m

n
> m,

where the last inequality is true since it is either trivial if n = 1, 2, or equivalent
to m < n/(n− 2) if n ≥ 3.

For the sake of brevity, we only state the corresponding result for the damped
wave equation in space dimension n = 1, 2, but it can be easily extended to
space dimension n = 3, 4, 5, following as in [2]. Also, we restrict our assumption
to m ∈ [1, 2], to get the existence of energy solutions, in a classical sense, i.e., in
C([0,∞),H 1) ∩C1([0,∞), L2). Finally, we notice that p̄m = pm,γ (n) due to the
assumption n = 1, 2.
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Theorem 2 Let n = 1, 2 and m ∈ (1, 2]. Assume that

1 − n

2

(
1 − 1

m

)
< γ < 1,

and that p ≥ pm,γ (n). Then there exists ε > 0 such that for any initial data

(u0, u1) ∈ A = (Lm ∩H 1) ∩ (Lm ∩ L2),

with ‖(u0, u1)‖A = ‖u0‖Lm + ‖u0‖H 1 + ‖u1‖Lm + ‖u1‖L2 ≤ ε,

there is a unique global energy solution u ∈ C([0,∞),H 1)∩C1([0,∞), L2) to (4).
Moreover, it satisfies the same decay estimates satisfied by the corresponding linear
Cauchy problem, that is, (4) with F = 0,

‖u(t, ·)‖Lq ≤ C(1 + t)− n
2

(
1
m− 1

q

)
‖(u0, u1)‖A, (17)

for any q ∈ [2,∞] if n = 1 and for any q ∈ [2,∞) if n = 2. Also, its derivatives
satisfy the following decay estimates

‖ux(t, ·)‖L2 ≤ C(1 + t)− 1
4− 1

2m ‖(u0, u1)‖A, if n = 1, (18)

‖∇u(t, ·)‖L2 ≤ C(1 + t)− 1
m log(e + t) ‖(u0, u1)‖A, if n = 2, (19)

‖ut (t, ·)‖L2 ≤ C(1 + t)−1+ n
2

(
1− 1

m

)
‖(u0, u1)‖A, if n = 1, 2. (20)

Estimate (18) is the same decay estimate satisfied by the corresponding linear
Cauchy problem.

Remark 3 We notice that we used that p > 2 as a consequence of p ≥ pm,γ (n) > 2
for n = 1, 2. This allows us to work only with energy solutions, without the need
to employ L1 − Lp estimates, with p < 2, as one may do to extend Theorem 2 to
higher space dimension n = 3, 4, 5, as done in [2]. We also notice that H 1 ↪→ Lq ,
for any q ∈ [2,∞), since the space dimension is n ≤ 2 in Theorem 2.

So far, we are not able to prove that the critical exponent is p̄m if 3 ≤ n < 2/(1−γ ),
in the sense that we are able to prove a nonexistence result of global weak solutions
to (1) and (4) only for p < pm,γ (n). It remains open to check if the nonexistence of
global weak solutions can really be proved for p ≤ p̃m,γ (n), when p̄ = p̃m,γ (n).
Theorem 3 Let n ≥ 1, γ ∈ (0, 1), m ∈ (1,∞). Assume that

u0 ∈ L1
loc , u0(x) ≥ ε |x|− n

m log |x|, for |x| ( 1, (21)
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or, respectively,

u0, u1 ∈ L1
loc , (u0(x)+ u1(x)) ≥ ε |x|− n

m log |x|, for |x| ( 1, and u0 ≥ 0,
(22)

and that u ∈ L
p
loc ([0,∞) × Rn) is a global-in-time weak solution to (1) or,

respectively, (4). Then p ≥ pm,γ (n).
Remark 4 The sign assumption in (21) and (22) is taken in such a way that it is
compatible with u0, u1 ∈ Lm and so Theorem 3 is the counterpart of Theorem 1
and (2) for the Lm assumption of initial data.

Remark 5 Another model for which the critical exponent belongs to the existence
range is provided by the fractional diffusive equation

⎧⎪⎪⎨
⎪⎪⎩
∂1+α
t u−�u = |u|p, t ≥ 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut (0, x) = u1(x), x ∈ Rn,

where ∂1+α
t , with α ∈ (0, 1) denotes the Caputo fractional derivative. In [7] it is

proved that global small data Sobolev solutions exist for

p ≥ p̄ = 1 + 2

n− 2(1 + α)−1 .

In this model, the loss of decay rate is proper of the linear Cauchy problem as well,
due to the assumption that u1 = 0, even if u1 ∈ L1, and appears in comparison
with the Duhamel operator itself. The loss of decay rate is the motivation for which
one has global existence in the critical case, for the same technical reason which
also appears for models (1) and (4) in the proofs of Theorems 1 and 2. In [4],
the nonexistence counterpart result is provided for the model above and for more
general models with fractional derivatives in time.

•? Open Problem

It would be interesting to extend the results to the wave equation or to σ -evolution
equations, with effective structural damping, namely to the Cauchy problems

⎧⎪⎪⎨
⎪⎪⎩
utt + (−�)θut + (−�)σu = F(t, u), t ≥ 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut (0, x) = u1(x), x ∈ Rn,

(23)
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where σ > 0 and θ ∈ [0, σ/2]. In the case of a power nonlinearity F = |u|p it has
been proved [5] that the critical exponent, assuming small data in Lm, is

p̄ = 1 + 2mσ

n− 2θ
.

On the other hand, it has been proved [3] that the critical exponent for (23) when θ =
1/2 and σ = 1, assuming small data in L1, with nonlinear memory term F as in (2),
is

p̄ = max{pγ (n), γ−1}, pγ (n) = 1 + 3 − γ
n+ γ − 2

in space dimension n ≥ 2. The interplay between σ, θ, γ,m could lead to some
interesting result.

Also, the case in which a nonlinear memory term is related to |ut |p is of interest,
namely,

F =
∫ t

0
(t − s)−γ |ut (s, x)|p ds , γ ∈ (0, 1) ,

due to the new phenomenon investigated in [5] about how two different asymptotic
profiles appear for structurally damped evolution equations and may influence
problems with different power nonlinearities. The easier limit case σ = 2θ has
been recently investigated in [6].

2 Proof of Theorem 1

In this section, we prove Theorem 1.

Proof By Duhamel’s principle, a function u ∈ C([0,∞), Lm ∩ L∞) is a global
Sobolev solution to (1) if, and only if, it satisfies the equality

u(t, ·) = E(t, ·) ∗ u0 +
∫ t

0

∫ τ

0
(τ − s)−γ E(t − τ, ·) ∗(x) |u(s, ·)|p ds dτ , (24)

in Lm ∩L∞, whereE is the fundamental solution to the linear heat equation in, that
is,

{
Et −�E = 0, t > 0,

E(0, ·) = δ.



200 M. D’Abbicco

Explicitly, E(t, x) = (4πt)− n
2 e−

|x|2
4t for any t > 0 and x ∈ Rn.

For any T > 0 we define the Banach space

X(T )
.= C([0, T ], Lm ∩ L∞) (25)

with the norm given by

‖u‖X(T ) .= sup
t∈[0,T ]

{
‖u(t, ·)‖Lm + (1 + t)− n

2m ‖u(t, ·)‖L∞
}
, (26)

if n = 1, or by

‖u‖X(T ) .= sup
t∈[0,T ]

{
sup

q∈[m,q̄)
(1 + t) n2

(
1
m− 1

q

)
‖u(t, ·)‖Lq

+(1 + t)1− n
2

(
1− 1

m

)(
(log(e + t))−1‖u(t, ·)‖Lq̄ + sup

q∈(q̄,∞]
‖u(t, ·)‖Lq

)}
,

(27)

where q̄ = n/(n − 2). Here we recall that q̄ = ∞ if n = 2, due to the notation in
Theorem 1.

We introduced the time-dependent weights in the norm in (26) and (27) in such
a way that

‖u(t, ·)‖Lq ≤ (1 + t)− n
2

(
1
m− 1

q

)
‖u‖X(T ), (28)

for any q ∈ [m,∞] if n = 1, and for any q ∈ [1, q̄) if n ≥ 2, for any t ∈ [0, T ]. On
the other hand,

‖u(t, ·)‖Lq ≤ (1 + t)−1+ n
2

(
1− 1

m

)
log(e + t) ‖u‖X(T ), (29)

if n ≥ 2, and

‖u(t, ·)‖Lq ≤ (1 + t)−1+ n
2

(
1− 1

m

)
‖u‖X(T ), (30)

for any q ∈ (q̄,∞], if n ≥ 3.
In particular, the solution to the linear Cauchy problem corresponding to (1) (i.e.,

E(t, ·) ∗ u0) is in X(T ) for any T > 0, due to

‖E(t, ·) ∗ u0‖Lq ≤ C (1 + t)− n
2

(
1
m− 1

q

)(‖u0‖Lm + ‖u0‖Lq
)
, (31)
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for any q ∈ [m,p], with C independent of t . In particular,

‖E ∗(x) u0‖X(T ) ≤ C
(‖u0‖Lm + ‖u0‖L∞

)
. (32)

We define the operatorG such that, for any u ∈ X(T ),

Gu(t, x)
.=
∫ t

0
F(τ, u(τ, x)) dτ =

∫ t

0

∫ τ

0
(τ−s)−γ E(t−τ, x)∗(x) |u(s, x)|p ds dτ ,

(33)

then we prove the estimate

‖Gu−Gv‖X(T ) ≤ C‖u− v‖X(T )
(‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
, (34)

for any u, v ∈ X(T ), where C is independent of T ∈ (0,∞). By standard
arguments, thanks to (32), estimate (34) leads to the existence of a unique Sobolev
solution to (24). Since all of the constants are independent of T we can take T → ∞
and we gain a local and a global existence result simultaneously.

Moreover, thanks to the properties (28) and, respectively, (29) and (30), we also
obtain the desired estimate (14) and, respectively, (15) and (16), for the solution
to (1).

In order to prove (34), we use the following (L1 ∩ Lq) − Lq estimate for the
fundamental solution of the heat equation:

‖E(t − τ, ·) ∗ g‖Lq ≤ C (1 + t − τ )− n
2

(
1− 1

q

) (‖g‖L1 + ‖g‖Lq
)
, (35)

inside the inner integral of (33), for g(x) = |u(s, x)|p − |v(s, x)|p . By Hölder’s
inequality, we may estimate

‖|u(s, ·)|p − |v(s, ·)|p‖L1 ≤ C ‖u(s, ·) − v(s, ·)‖Lp ‖|u(s, ·)p−1 + |v(s, ·)p−1‖Lp′
≤ C ‖u(s, ·) − v(s, ·)‖Lp

(‖u(s, ·)‖p−1
Lp + ‖v(s, ·)‖p−1

Lp

)
.

On the other hand, due to the fact that u, v ∈ X(T ), we may then estimate

‖|u(s, ·)|p−|v(s, ·)|p‖L1 ≤ C (1+s)− n
2

(
1
m− 1

p

)
p ‖u−v‖X(T )

(‖u‖p−1
X(T )+‖v‖p−1

X(T )

)
,

if n = 1 or p < q̄, or

‖|u(s, ·)|p−|v(s, ·)|p‖L1 ≤ C (1+s)−p+
n
2

(
1− 1

m

)
p ‖u−v‖X(T )

(‖u‖p−1
X(T )

+‖v‖p−1
X(T )

)
,

if n ≥ 3 and p > q̄. A logarithmic loss (log(e + s))p appears above if p = q̄ .
We proceed similarly for ‖|u(s, ·)|p − |v(s, ·)|p‖Lq .
Now we distinguish two cases.
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Assume first that n = 1, 2, or that (11) holds if n ≥ 3. This latter corresponds to
pm,γ (n) < n/(n− 2).

Due to pq ≥ p ≥ pm,γ (n), we may estimate

‖|u(s, ·)|p − |v(s, ·)|p‖L1∩Lq

≤ C (1 + s)− n
2

(
1
m
− 1
pm,γ (n)

)
pm,γ (n) ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
= C (1 + s) n2

(
1− 1

m

)
−2+γ ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
.

Summarizing, we estimated so far

‖Gu(t, ·)−Gv(t, ·)‖Lq ≤ C ‖u− v‖X(T )
(‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
×
∫ t

0
(1 + t − τ )− n

2

(
1− 1

q

) ∫ τ

0
(τ − s)−γ (1 + s) n2

(
1− 1

m

)
−2+γ

ds dτ.

Due to the fact that the exponent of (1 + t) n2
(

1− 1
m

)
−2+γ

verifies

n

2

(
1 − 1

m

)
− 2 + γ > −1,

as a consequence of (9), and since γ ∈ (0, 1), straightforward computation leads to
estimate the inner integral by

∫ τ

0
(τ − s)−γ (1 + s) n2

(
1− 1

m

)
−2+γ

ds ≈ (1 + τ )−1+ n
2

(
1− 1

m

)
. (36)

On the other hand,

∫ t

0
(1 + t − τ )− n

2

(
1− 1

q

)
(1 + τ )−1+ n

2

(
1− 1

m

)
dτ

≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(1 + t)− n
2

(
1
m− 1

q

)
if n2

(
1 − 1

q

)
< 1,

(1 + t)−1+ n
2

(
1− 1

m

)
log(e + t) if n2

(
1 − 1

q

)
= 1,

(1 + t)−1+ n
2

(
1− 1

m

)
if n2

(
1 − 1

q

)
> 1.

Therefore, we proved (34) in the case that n = 1, 2, or that (11) holds if n ≥ 3.
Assume now that n ≥ 3 and (12) holds. In this case, due to

pq ≥ p ≥ p̃(m, γ ) > n/(n− 2),
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we may estimate

‖|u(s, ·)|p − |v(s, ·)|p‖L1∩Lq

≤ C (1 + s)
(
−1+ n

2

(
1− 1

m

))
p̃m,γ (n) ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
= C (1 + s) n2

(
1− 1

m

)
−2+γ ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
.

Once again, we obtained (36), so that we proceed as before, proving (34).
It remained open the limit case in which n ≥ 3 and (13) holds, that is, p̄ =

n/(n − 2). In this case, the situation is more tricky, since from u ∈ X(T ), we only
derive the above estimate

‖|u(s, ·)|p − |v(s, ·)|p‖L1∩Lq

≤ C (1 + s) n2
(

1− 1
m

)
−2+γ ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
,

for p > p̄, due to the fact that a logarithmic loss appears when p = p̄. For this
reason, we have to exclude the case p = p̄ = n/(n − 2) if (13) holds, in order to
obtain (36) and prove (34).

This concludes the proof. ��
Remark 6 It is crucial to remark the following difference in the use of the decay
estimates for the convolution with the fundamental solution E to the heat equation.
On the one hand, in Theorem 1 initial data are only assumed in Lm ∩ L∞, so that
the decay rate appearing in (31) for the solution to the corresponding linear problem
is “only” (n/2)(1/q − 1/m), in particular it depends on m. On the other hand, the
L1 − Lq estimate (35) is applied to the function g(s, x) = |u(s, x)|p − |v(s, x)|p .
In particular, g(s, ·) ∈ L1 ∩ L∞, due to u(s, ·), v(s, ·) ∈ Lm ∩ L∞, and p ≥ m

(see Remark 2). The fact that the decay rate (n/2)(1−1/q) in (35) is faster than the
decay rate in (31) for any m > 1, is the basis for the new effects appearing for the
interplay between the Lm data regularity and the presence of a nonlinear memory
term.

3 Proof of Theorem 2

In this section, we prove Theorem 2.
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Proof Let us denote by E the fundamental solution to the linear damped wave
equation in Rn, namely,

⎧⎪⎪⎨
⎪⎪⎩
Ett + Et −�E = 0, t > 0,

E(0, ·) = 0,

Et (0, ·) = δ,

and set Ẽ = E + Et . Then

u lin (t, ·) = Ẽ(t, ·) ∗ u0 + E(t, ·) ∗ u1

is the solution to the linear Cauchy problem for the damped wave equation, that
is, (4) with F = 0. By Duhamel’s principle, a function u ∈ C([0,∞),H 1) ∩
C1([0,∞), L2) is a global energy solution to (4) if, and only if, it satisfies the
equality

u(t, ·) = u lin (t, ·)+
∫ t

0

∫ τ

0
(τ − s)−γ E(t − τ, ·) ∗(x) |u(s, ·)|p ds dτ , (37)

in H 1, and

ut (t, ·) = u lin
t (t, ·)+

∫ t

0

∫ τ

0
(t − s)−γ Et (t − τ, ·) ∗(x) |u(s, ·)|p ds dτ ,

in L2.
For any T > 0 we define the Banach space

X(T )
.= C([0, T ],H 1) ∩C1([0, T ], L2), (38)

with the norm given by

‖u‖X(T ) .= sup
t∈[0,T ]

{
(1 + t) 1

2m− 1
4 ‖u(t, ·)‖L2

+(1 + t) 1
2m+ 1

4 ‖ux(t, ·)‖L2 + (1 + t) 1
2m+ 1

2 ‖ut (t, ·)‖L2

}
,

(39)

if n = 1, or by

‖u‖X(T ) .= sup
t∈[0,T ]

{
sup

q∈[2,∞)
(1 + t) 1

m
− 1
q ‖u(t, ·)‖Lq

+(1 + t) 1
m

(
(log(e + t))−1‖∇u(t, ·)‖L2 + ‖ut (t, ·)‖L2

)}
(40)
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if n = 2.
We introduced the time-dependent weights in the norm in (39) and (40) in such

a way that

‖u(t, ·)‖Lq ≤ (1 + t)− n
2

(
1
m
− 1
q

)
‖u‖X(T ), (41)

for any q ∈ [2,∞] if n = 1, and for any q ∈ [2,∞) if n = 2, for any t ∈ [0, T ].
On the other hand,

‖ux(t, ·)‖L2 ≤ (1 + t)− 1
4− 1

2m ‖u‖X(T ), (42)

if n = 1, and

‖∇u(t, ·)‖L2 ≤ (1 + t)− 1
m log(e + t) ‖u‖X(T ), (43)

if n = 2, whereas

‖ut (t, ·)‖L2 ≤ (1 + t)−1+ n
2

(
1− 1

m

)
‖u‖X(T ), (44)

for n = 1, 2.
In particular, the solution u lin is in X(T ) for any T > 0, due to

‖u lin (t, ·)‖Lq ≤ C (1 + t)− n
2

(
1
m− 1

q

)
‖(u0, u1)‖A, (45)

for any q ∈ [2,∞] if n = 1 and for any q ∈ [2,∞) if n = 2, and

‖∇u(t, ·)‖L2 ≤ C (1 + t)− n
2

(
1
m
− 1

2

)
− 1

2 ‖(u0, u1)‖A,

‖ut (t, ·)‖L2 ≤ C (1 + t)− n
2

(
1
m− 1

2

)
−1‖(u0, u1)‖A,

in space dimension n = 1, 2, with C independent of t . In particular,

‖u lin ‖X(T ) ≤ C ‖(u0, u1)‖A . (46)

We define the operator G for any u ∈ X(T ), as in (33), then the proof of our
statement follows as in the proof of Theorem 1, if we prove (34) for any u, v ∈
X(T ), where C is independent of T ∈ (0,∞).

In order to prove (34), we use inside the inner integral of (33), for g(x) =
|u(s, x)|p − |v(s, x)|p, the following estimates for the fundamental solution of the
damped wave equation:

‖E(t − τ, ·) ∗ g‖Lq ≤ C (1 + t − τ )− n
2

(
1− 1

q

) (‖g‖L1 + ‖g‖L2

)
, (47)
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‖∇E(t − τ, ·) ∗ g‖L2 ≤ C (1 + t − τ )− n
4− 1

2
(‖g‖L1 + ‖g‖L2

)
, (48)

‖Et(t − τ, ·) ∗ g‖L2 ≤ C (1 + t − τ )− n
4−1 (‖g‖L1 + ‖g‖L2

)
, (49)

where (47) holds for q ∈ [2,∞] if n = 1 and for q ∈ [2,∞) if n = 2 (due to the
fact that H 1(R2) is not imbedded in L∞(R2)).

As in the proof of Theorem 2, by Hölder’s inequality, and due to the fact
that u, v ∈ X(T ), for any p ≥ pm,γ (n), we may estimate

‖|u(s, ·)|p − |v(s, ·)|p‖L1∩L2

≤ C (1 + s)− n
2

(
1
m− 1

p

)
p ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
≤ C (1 + s) n2

(
1− 1

m

)
−2+γ ‖u− v‖X(T )

(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
.

We remark that we used that p > 2 as a consequence of p ≥ pm,γ (n) > 2.
Summarizing, we estimated so far

‖Gu(t, ·)−Gv(t, ·)‖Lq ≤ C ‖u− v‖X(T )
(‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
×
∫ t

0
(1 + t − τ )− n

2

(
1− 1

q

) ∫ τ

0
(τ − s)−γ (1 + s) n2

(
1− 1

m

)
−2+γ

ds dτ,

for q ∈ [2,∞] if n = 1 and for q ∈ [2,∞) if n = 2. Also, we estimated

‖∂jt ∇k(Gu(t, ·)−Gv(t, ·))‖L2 ≤ C ‖u− v‖X(T )
(‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
×
∫ t

0
(1 + t − τ )− n

4 −j− k
2

∫ τ

0
(τ − s)−γ (1 + s) n2

(
1− 1

m

)
−2+γ

ds dτ,

for j + k = 1.
As in the proof of Theorem 1, straightforward computation leads to estimate the

inner integral by (36). We conclude the proof as in the proof of Theorem 1, noticing
that

−n
2

(
1 − 1

q

)
> −1,

for any q ∈ [2,∞] if n = 1 and for any q ∈ [2,∞) if n = 2. On the other hand,

−n
4
− 1

2
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is greater than −1 for n = 1, and it equals −1 for n = 2, whereas

−n
4
− 1 < −1,

for n = 1, 2.
This concludes the proof. ��

Remark 7 As in Remark 6, we emphasize the following difference in the use of
the decay estimates for the convolution with the fundamental solution E to the
damped wave equation. On the one hand, in Theorem 2, initial data are only assumed
in (Lm ∩H 1)× (Lm ∩L2), so that the decay rate appearing in (45) for the solution
to the corresponding linear problem is “only” (n/2)(1/q − 1/m), in particular it
depends on m. On the other hand, the L1 − Lq estimate (47) is applied to the
function g(s, x) = |u(s, x)|p − |v(s, x)|p. In particular, g(s, ·) ∈ L1 ∩ L2, due
to u(s, ·), v(s, ·) ∈ H 1 ↪→ Lp ∩ L2p (see Remark 3). A similar difference also
appears for the estimates on the derivatives.

4 Proof of Theorem 3

In order to prove Theorem 3 simultaneously for the heat and for the damped wave
equation, we multiply utt and u1 in (4) by a parameter a ∈ {0, 1}. In this way,
for a = 0 we recover (1) and for a = 1 we recover (4).

Before proving Theorem 3, we shall explain the meaning of weak solutions
in Lploc ([0,∞) × Rn) in the statement. Assume first that u is a smooth solution
in C2([0,∞)×Rn). If we consider a test function ϕ ∈ C2

c ([0,∞)×Rn), multiplying
the equation by ϕ and integrating by parts, we obtain

∫ ∞

0

∫
Rn
F (t, u)ϕ dxdt =

∫ ∞

0

∫
Rn
(autt + ut −�u)ϕ dxdt

=
∫ ∞

0

∫
Rn
u (aϕtt − ϕt −�ϕ) dxdt

−
∫
Rn
(au1 + u0) ϕ(0, x) dx

+ a
∫
Rn
u0 ϕt(0, x) dx.

On the other hand, due to the fact that

F(t, u) = �(1 − γ ) (J 1−γ
0|+ |u|p)(t),
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where J 1−γ
0|+ is the Riemann–Liouville fractional integral of order 1−γ and starting

point 0, we may use the integration by parts rule for fractional integrals [12,
(2.2.31)], which gives us

∫ ∞

0

∫
Rn
F (t, u)ϕ dxdt = �(1 − γ )

∫ ∞

0

∫
Rn

|u|p (J∞|−ϕ) dxdt,

where

�(1 − γ ) (J∞|−ϕ)(t) =
∫ ∞

t

(τ − t)−γ ϕ(τ, x) dτ.

We remark that J∞|−ϕ is compactly supported, since ϕ is compactly supported.
Indeed, if ϕ(τ, x) = 0 for any τ ≥ T , then (J∞|−ϕ)(t, x) = 0 for any t ≥ T .

Then we may say that u ∈ Lploc ([0,∞)× Rn) is a weak solution to (1) or (4) if,
for any test function ϕ ∈ C2

c ([0,∞)× Rn), it satisfies the integral equality

�(1 − γ )
∫ ∞

0

∫
Rn

|u|p(J∞|−ϕ) dxdt =
∫ ∞

0

∫
Rn
u (aϕtt − ϕt −�ϕ) dxdt

−
∫
Rn
(au1 + u0) ϕ(0, x) dx

+ a
∫
Rn
u0 ϕt(0, x) dx.

It is then clear that smooth, Sobolev and energy solutions are also weak solutions.
To prove Theorem 3, we apply the above integral equality for a suitable test

function, and we obtain the necessary condition p ≥ pm,γ (n) for the global in time
existence of weak solutions with suitable sign assumption on the initial data.

Proof For a given T ≥ 1, we fix

ω = (1 − t/T )+.

In particular,ω(t)β ∈ Ck
c ([0,∞)), for any k < β. Let us define α = 1−γ ∈ (0, 1).

Then it holds (see, for instance, Lemma 4.1 in [3]):

Dαt |− ω(t)β = C(α, β) T −αω(t)β−α , for any β > α, (50)

where

C(α, β) = �(β + 1)

(β + 2 − α)�(β − α) .
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We fix " ∈ C∞
c as a radial test function, such that:

• " is supported in the unit ball B1;
• "(x) = 1, for any x ∈ B1/2;
• "(x1) ≥ "(x2) if |x1| ≤ |x2|.
For any R ≥ 1, we denote"R(x)

.= "(x/R). Let us fix

β > (α + 2)p′, and � > p′, (51)

where p′ .= p/(p − 1) is the Hölder conjugate of p, and let

!R(t, x)
.= ω(t)β "R(x)

� , ϕ
.= Dαt |−!R(t, x) .

Then, ϕ is supported in [0, T ] × BR , for any T ,R ≥ 1.
Now we use Young inequality to estimate

∫ ∞

0

∫
Rn

|u| |aϕtt − ϕt −�ϕ| dxdt

≤ δ
∫ ∞

0

∫
Rn

|u|p !Rdx dt + Cδ
∫ T

0

∫
BR

|aϕtt − ϕt −�ϕ|p′ !− 1
p−1

R dx dt,

for a sufficiently small δ > 0. Thanks to

∂2
t D

α
t |−ω(t)β = �(β + 1)

(β + 2 − α)�(β − α) T
−α∂2

t ω(t)
β−α

= �(β + 1)

(β + 2 − α)�(β − α − 2)
T −(α+2)ω(t)β−α−2,

and similarly for ∂tDαt |−ω(t)β , due to

meas ([0, T ]) = T , meas = cnR
n , (52)

and using (51), we obtain

∫ T

0

∫
BR

|aϕtt−ϕt−�ϕ|p′ !− 1
p−1

R dx dt ≤ C (T −(α+1)p′+1Rn+T −αp′+1 R−2p′+n) .
We now consider the initial data. We notice that

ϕ(0, x) = "R(x)
�(β + 1)

(β + 2 − α)�(β − α) T
−α,

ϕt (0, x) = −"R(x) �(β + 1)

(β + 2 − α)�(β − α − 1)
T −α−1,



210 M. D’Abbicco

Due to assumption (21) or (22), we get

∫
Rn
(au1 + u0) ϕ(0, x) dx ≥ cε T −α Rn

(
1− 1

m

)
logR,

for a sufficiently large R ( 1. Moreover, if we are considering (4), by u0(x) ≥ 0,
we obtain

a

∫
Rn
u0 ϕt(0, x) dx ≤ 0 .

As a consequence, for a sufficiently small δ > 0 and sufficiently large R ( 1, we
obtained the estimate

0 ≤
∫ ∞

0

∫
Rn

|u|p !Rdx dt ≤ C
(
T −(α+1)p′+1Rn + T −αp′+1R−2p′+n)

− cε T −α Rn
(

1− 1
m

)
logR.

If we now set R = √
T , so that

T −(α+1)p′+1 Rn + T −αp′+1 R−2p′+n = 2T −(α+1)p′+1+ n
2 ,

T −α Rn
(

1− 1
m

)
logR = 1

2
T
−α+ n

2

(
1− 1

m

)
log T ,

we got a contradiction, as T → ∞, if

− (α + 1)p′ + 1 + n

2
< −α + n

2

(
1 − 1

m

)
. (53)

We remark that the right-hand side of (53) is positive if, and only if,

1 − γ = α ≤ n

2

(
1 − 1

m

)
,

consistently with the result obtained for the existence of global (Sobolev or energy)
solutions.

Condition (53) reads as

(p′ − 1)(α + 1) >
n

2m
, i.e. p − 1 ≥ 2m(α + 1)

n
.

Replacing α + 1 = 2 − γ , we obtain that p ≥ pm,γ is then a necessary condition
for the existence of global weak solutions. This concludes the proof. ��
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Blow-Up Results for Semi-Linear
Structurally Damped σ -Evolution
Equations

Tuan Anh Dao and Michael Reissig

Abstract We would like to prove a blow-up result for Sobolev solutions to the
Cauchy problem for semi-linear structurally damped σ -evolution equations, where
σ ≥ 1 and δ ∈ [0, σ ) are assumed to be any fractional numbers. To deal with
the fractional Laplacian (−�)σ and (−�)δ as well-known non-local operators, a
modified test function method is applied to prove a blow-up result in the subcritical
case and in the critical case as well.

Keywords σ -evolution equations · Structural damping · Critical exponent ·
Blow-up · Test functions

1 Introduction

The main goal of this paper is to discuss the critical exponent to the following
Cauchy problem for semi-linear structurally damped σ -evolution models:

{
utt + (−�)σu+ (−�)δut = |u|p,
u(0, x) = u0(x), ut (0, x) = u1(x),

(1)

with some σ ≥ 1, δ ∈ [0, σ ) and a given real number p > 1. Here, critical exponent
pcrit = pcrit (n) means that for some range of admissible p > pcrit there exists
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a global (in time) Sobolev solution for small initial data from a suitable function
space. Moreover, one can find suitable small data such that there exists no global (in
time) Sobolev solution if 1 < p ≤ pcrit . In other words, we have, in general, only
local (in time) Sobolev solutions under this assumption for the exponent p.

For the local existence of Sobolev solutions to (1), we address the interested
readers to Proposition 9.1 in the paper [2]. The proof of blow-up results in the
present paper is based on a contradiction argument by using the test function
method. The test function method is not influenced by higher regularity of the data.
For this reason, we restrict ourselves to the critical exponent to (1) in the case,
where the data are supposed to belong to the energy space. In this paper, we use the
following notations.

• For given nonnegative f and g we write f � g if there exists a constant C > 0
such that f ≤ Cg. We write f ≈ g if g � f � g.

• We denote v̂ = v̂(ξ) := Fx→ξ

(
v(x)

)
as the Fourier transform with respect to the

spatial variables of a function v = v(x).
• As usual, Ha with a ≥ 0 stands for Bessel potential spaces based on L2.
• We denote by [b] the integer part of b ∈ R. We put

〈
x
〉 := √

1 + |x|2.
• Moreover, we introduce the following two parameters:

k− := min{σ ; 2δ} and k+ := max{σ ; 2δ} if δ ∈ [0, σ ).

In order to state our main result, we recall the global (in time) existence result of
small data energy solutions to (1) in the following theorem.

Theorem 1 (Global Existence) Let m ∈ [1, 2) and n > m0k− with 1
m0

= 1
m
− 1

2 .
We assume the conditions

2

m
≤ p <∞ if n ≤ 2k+,

2

m
≤ p ≤ n

n− 2k+
if n ∈

(
2k+, 4k+

2 −m
]
.

Moreover, we suppose the following condition:

p > 1 + m(k+ + σ)
n−mk− . (2)

Then, there exists a constant ε0 > 0 such that for any small data

(u0, u1) ∈
(
Lm ∩H k+)× (Lm ∩ L2)

satisfying the assumption ‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2 ≤ ε0, we have a uniquely
determined global (in time) small data energy solution

u ∈ C
(
[0,∞),H k+

)
∩C1

(
[0,∞), L2

)
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to (1). Moreover, the following estimates hold:

‖u(t, ·)‖L2 � (1 + t)− n

2(k+−δ) (
1
m
− 1

2 )+ k−
2(k+−δ)

(‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2

)
,

∥∥|D|k+u(t, ·)∥∥
L2 � (1 + t)− n

2(k+−δ) (
1
m
− 1

2 )− k+−k−
2(k+−δ)

(‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2

)
,

‖ut (t, ·)‖L2 � (1 + t)− n

2(k+−δ) (
1
m
− 1

2 )− σ−k−
k+−δ

(‖u0‖Lm∩Hk+ + ‖u1‖Lm∩L2

)
.

We are going to prove the following main result.

Theorem 2 (Blow-Up) Let σ ≥ 1, δ ∈ [0, σ ) and n > k−. We assume that we
choose the initial data u0 = 0 and u1 ∈ L1 satisfying the following relation:

∫
Rn
u1(x)dx > ε0, (3)

where ε0 is a suitable nonnegative constant. Moreover, we suppose the condition

p ∈
(

1, 1 + 2σ

n− k−
]
. (4)

Then, there is no global (in time) Sobolev solution u ∈ C
([0,∞), L2

)
to (1).

Remark 1 We want to underline that the lifespan Tε of Sobolev solutions to given
data (0, εu1) for any small positive constant ε in the subcritical case of Theorem 2
can be estimated as follows:

Tε ≤ Cε−
(2σ−k−)(p−1)

2σ−(n−k−)(p−1) with C > 0. (5)

Nevertheless, catching the sharp lower bound of the lifespan Tε to verify whether
the obtained upper bound in (5) is optimal or not still remains open so far.

Remark 2 If we choose m = 1 in Theorem 1, then from Theorem 2 it is clear that
the critical exponent pcrit = pcrit (n) is given by

pcrit (n) = 1 + 2σ

n− 2δ
if δ ∈

[
0,
σ

2

]
and 4δ < n ≤ 4σ.

However, in the case δ ∈ ( σ2 , σ ) there appears a gap between the exponents given by
1 + 2δ+σ

n−σ from Theorem 1 and 1 + 2σ
n−σ from Theorem 2 for 2σ < n ≤ 8δ. Related

to such a gap in the latter case, quite recently, the authors in [3] have succeeded to
indicate the global (in time) existence of small data energy solutions to (1), with
σ > 1, in low space dimensions for any p > 1 + 2σ

n−σ by using suitable Lr1 − Lr2
decay estimates, with 1 ≤ r1 ≤ r2 ≤ ∞, for solutions to the corresponding linear
equation, after application of the stationary phase method. For this reason, at least
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in low space dimensions, we can claim that the critical exponent pcrit = pcrit (n) in
the case δ ∈ ( σ2 , σ ) with σ > 1 is

pcrit (n) = 1 + 2σ

n− σ .

2 Preliminaries

In this section, we collect some preliminary knowledge needed in our proofs.

Definition 1 ([8, 10]) Let s ∈ (0, 1). Let X be a suitable set of functions defined
on Rn. Then, the fractional Laplacian (−�)s in Rn is a non-local operator given by

(−�)s : v ∈ X→ (−�)sv(x) := Cn,s p.v.

∫
Rn

v(x)− v(y)
|x − y|n+2s dy

as long as the right-hand side exists, where p.v. stands for Cauchy’s principal value,

Cn,s := 4s�( n2+s)
π
n
2 �(−s)

is a normalization constant and � denotes the Gamma function.

Lemma 1 Let q > 0. Then, the following estimate holds for any multi-index α
satisfying |α| ≥ 1:

∣∣∂αx 〈x〉−q ∣∣ � 〈
x
〉−q−|α|

.

Proof First, we recall the following formula of derivatives of composed functions
for |α| ≥ 1:

∂αx h
(
f (x)

) = |α|∑
k=1

h(k)
(
f (x)

)
⎛
⎜⎜⎝ ∑

γ1+···+γk≤α|γ1|+···+|γk |=|α|, |γi |≥1

(
∂
γ1
x f (x)

) · · · (∂γkx f (x))
⎞
⎟⎟⎠ ,

where h = h(z) and h(k)(z) = dkh(z)

dzk
. Applying this formula with h(z) = z−

q
2 and

f (x) = 1 + |x|2 we obtain

∣∣∂αx 〈x〉−q ∣∣ ≤
|α|∑
k=1

(1 + |x|2)− q
2−k

×

⎛
⎜⎜⎝ ∑

γ1+···+γk≤α|γ1|+···+|γk |=|α|, |γi |≥1

∣∣∂γ1
x (1 + |x|2)∣∣ · · · ∣∣∂γkx (1 + |x|2)∣∣

⎞
⎟⎟⎠
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≤ C1

|α|∑
k=1

(1 + |x|2)− q
2−k

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 0 ≤ |x| ≤ 1,⎛
⎜⎜⎝ ∑

γ1+···+γk≤α|γ1|+···+|γk |=|α|, |γi |≥1

|x|2−|γ1| · · · |x|2−|γk|
⎞
⎟⎟⎠ if |x| ≥ 1,

≤ C2

|α|∑
k=1

(1 + |x|2)− q
2−k

{
1 if 0 ≤ |x| ≤ 1,

|x|2k−|α| if |x| ≥ 1,

≤
{
C2|α|

〈
x
〉−q−2

if 0 ≤ |x| ≤ 1,

C2|α|
〈
x
〉−q |x|−|α| if |x| ≥ 1,

where C1 and C2 are some suitable constants. This completes the proof. ��
Lemma 2 Let m ∈ Z, s ∈ (0, 1) and γ := m+ s. If v ∈ H 2γ (Rn), then it holds

(−�)γ v(x) = (−�)m((−�)sv(x)) = (−�)s((−�)mv(x)).
One can find the proof of Lemma 2 in Remark 3.2 in [1].

Lemma 3 Let m ∈ Z, s ∈ (0, 1) and γ := m + s. Let q > 0. Then, the following
estimates hold for all x ∈ Rn:

∣∣(−�)γ 〈x〉−q ∣∣ �
⎧⎪⎪⎨
⎪⎪⎩
〈
x
〉−q−2γ

if 0 < q + 2m < n,〈
x
〉−n−2s log(e + |x|) if q + 2m = n,〈
x
〉−n−2s

if q + 2m > n.

(6)

Proof We follow ideas from the proof of Lemma 1 in [7] devoting to the casem = 0
and s = 1

2 , that is, the case γ = 1
2 is generalized to any fractional number γ > 0.

To do this, for any s ∈ (0, 1) we shall divide the proof into two cases: m = 0 and
m ≥ 1.
Let us consider the first case m = 0. Denoting by ψ = ψ(x) := 〈

x
〉−q

we write

(−�)s 〈x〉−q = (−�)s(ψ)(x). According to Definition 1 of fractional Laplacian as
a singular integral operator, we have

(−�)s(ψ)(x) := Cn,δ p.v.

∫
Rn

ψ(x)− ψ(y)
|x − y|n+2s dy.
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A standard change of variables leads to

(−�)s(ψ)(x) = −Cn,s
2

p.v.

∫
Rn

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

= −Cn,s
2

lim
ε→0+

∫
ε≤|y|≤1

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

− Cn,s

2

∫
|y|≥1

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy.

To deal with the first integral, after using a second order Taylor expansion for ψ we
arrive at

|ψ(x + y)+ ψ(x − y)− 2ψ(x)|
|y|n+2s � ‖∂2

xψ‖L∞

|y|n+2s−2 .

Thanks to the above estimate and s ∈ (0, 1), we may remove the principal value of
the integral at the origin to conclude

(−�)s(ψ)(x) = −Cn,s
2

∫
Rn

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy.

To prove the desired estimates, we shall divide our considerations into two cases. In
the first subcase {x : |x| ≤ 1}, we can proceed as follows:

∣∣(−�)s(ψ)(x)∣∣ � ∫
|y|≤1

|ψ(x + y)+ ψ(x − y)− 2ψ(x)|
|y|n+2s dy

+
∫
|y|≥1

|ψ(x + y)+ ψ(x − y)− 2ψ(x)|
|y|n+2s dy

� ‖∂2
xψ‖L∞

∫
|y|≤1

1

|y|n+2s−2 dy + ‖ψ‖L∞
∫
|y|≥1

1

|y|n+2s dy.

Due to the boundedness of the above two integrals, it follows immediately

∣∣(−�)s(ψ)(x)∣∣ � 1 for |x| ≤ 1. (7)
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In order to deal with the second subcase {x : |x| ≥ 1}, we can re-write

(−�)s(ψ)(x) = −Cn,s
2

∫
|y|≥2|x|

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

− Cn,s

2

∫
1
2 |x|≤|y|≤2|x|

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

− Cn,s

2

∫
|y|≤ 1

2 |x|
ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy. (8)

For the first integral, we notice that the relations |x + y| ≥ |y| − |x| ≥ |x| and
|x − y| ≥ |y| − |x| ≥ |x| hold for |y| ≥ 2|x|. Since ψ is a decreasing function, we
obtain the following estimate:

∣∣∣ ∫
|y|≥2|x|

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

∣∣∣
≤ 4|ψ(x)|

∫
|y|≥2|x|

1

|y|n+2s dy �
〈
x
〉−q ∫

|y|≥2|x|
1

|y|1+2s d|y|

�
〈
x
〉−q |x|−2s �

〈
x
〉−q−2s (

due to |x| ≈ 〈
x
〉

for |x| ≥ 1
)
. (9)

It is clear that |y| ≈ |x| in the second integral domain. Moreover, it follows

{
y : 1

2
|x| ≤ |y| ≤ 2|x|

}
⊂ {

y : |x + y| ≤ 3|x|}, (10)

{
y : 1

2
|x| ≤ |y| ≤ 2|x|

}
⊂ {

y : |x − y| ≤ 3|x|}. (11)

For this reason, we arrive at

∣∣∣ ∫
1
2 |x|≤|y|≤2|x|

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s
dy

∣∣∣
� |x|−n−2s

( ∫
|x+y|≤3|x|

ψ(x + y)dy +
∫
|x−y|≤3|x|

ψ(x − y)dy

+ ψ(x)
∫

1
2 |x|≤|y|≤2|x|

1dy
)

� |x|−n−2s
( ∫

|x+y|≤3|x|
ψ(x + y)dy + 〈x〉−q |x|n), (12)
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where we used the relation∫
|x+y|≤3|x|

ψ(x + y)dy =
∫
|x−y|≤3|x|

ψ(x − y)dy.

By the change of variables r = |x + y|, we apply the inequality 1 + r2 ≥ (1+r)2
2 to

get

∫
|x+y|≤3|x|

ψ(x + y)dy �
∫
r≤3|x|

(1 + r2)−
q
2 rn−1dr �

∫
r≤3|x|

(1 + r)n−q−1dr

�

⎧⎪⎪⎨
⎪⎪⎩
(1 + 3|x|)n−q if 0 < q < n,

log(e + 3|x|) if q = n,
1 if q > n.

(13)

By |x| ≈ 〈
x
〉

for |x| ≥ 1, combining (12) and (13) leads to

∣∣∣ ∫
1
2 |x|≤|y|≤2|x|

ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

∣∣∣

�

⎧⎪⎪⎨
⎪⎪⎩
〈
x
〉−q−2s if 0 < q < n,〈
x
〉−n−2s log(e + 3|x|) if q = n,〈
x
〉−n−2s if q > n.

(14)

For the third integral in (8), using again the second order Taylor expansion forψ we
obtain

∣∣∣ ∫
|y|≤ 1

2 |x|
ψ(x + y)+ ψ(x − y)− 2ψ(x)

|y|n+2s dy

∣∣∣
≤
∫
|y|≤ 1

2 |x|
|ψ(x + y)+ ψ(x − y)− 2ψ(x)|

|y|n+2s dy

�
∫
|y|≤ 1

2 |x|
max
θ∈[0,1]

∣∣∂2
xψ(x ± θy)

∣∣ 1

|y|n+2s−2 dy

�
∫
|y|≤ 1

2 |x|
max
θ∈[0,1]

〈
x ± θy〉−q−2 1

|y|n+2s−2 dy

�
〈
x
〉−q−2

∫
|y|≤ 1

2 |x|
|y|1−2sd|y| � 〈

x
〉−q−2s

. (15)
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Here we used the relation |x± θy| ≥ |x|− θ |y| ≥ |x|− 1
2 |x| = 1

2 |x|. From (8), (9),
(14), and (15) we arrive at the following estimates for |x| ≥ 1:

∣∣(−�)s(ψ)(x)∣∣ �
⎧⎪⎪⎨
⎪⎪⎩
〈
x
〉−q−2s if 0 < q < n,〈
x
〉−n−2s log(e + 3|x|) if q = n,〈
x
〉−n−2s if q > n.

(16)

Finally, combining (7) and (16) we may conclude all desired estimates for m = 0.
Next let us turn to the second case m ≥ 1. First, a straight-forward calculation gives
the following relation:

−�〈x〉−r = r
(
(n− r − 2)

〈
x
〉−r−2 + (r + 2)

〈
x
〉−r−4

)
for any r > 0. (17)

By induction argument, carrying outm steps of (17) we obtain the following formula
for any m ≥ 1:

(−�)m〈x〉−q = (−1)m
m−1∏
j=0

(q + 2j)
( m∏
j=1

(−n+ q + 2j)
〈
x
〉−q−2m

− C1
m

m∏
j=2

(−n+ q + 2j)(q + 2m)
〈
x
〉−q−2m−2

+ C2
m

m∏
j=3

(−n+ q + 2j)(q + 2m)(q + 2m+ 2)
〈
x
〉−q−2m−4

+ · · · + (−1)m
m−1∏
j=0

(q + 2m+ 2j)
〈
x
〉−q−4m

)
. (18)

Then, thanks to Lemma 2, we derive

(−�)γ 〈x〉−q = (−�)s((−�)m〈x〉−q)
= (−1)m

m−1∏
j=0

(q + 2j)
( m∏
j=1

(−n+ q + 2j) (−�)s〈x〉−q−2m

− C1
m

m∏
j=2

(−n+ q + 2j)(q + 2m) (−�)s〈x〉−q−2m−2
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+ C2
m

m∏
j=3

(−n+ q + 2j)(q + 2m)(q + 2m+ 2) (−�)s〈x〉−q−2m−4

+ · · · + (−1)m
m−1∏
j=0

(q + 2m+ 2j) (−�)s 〈x〉−q−4m
)
. (19)

For this reason, in order to conclude the desired estimates, we only indicate the
following estimates for k = 0, · · · ,m:

∣∣(−�)s 〈x〉−q−2(m+k)∣∣ �
⎧⎪⎪⎨
⎪⎪⎩
〈
x
〉−q−2γ if 0 < q + 2m < n,〈
x
〉−n−2s log(e + |x|) if q + 2m = n,〈
x
〉−n−2s if q + 2m > n.

(20)

Indeed, substituting q by q + 2(m+ k) with k = 0, · · · ,m and γ = s into (6) leads
to

∣∣(−�)s 〈x〉−q−2(m+k)∣∣ �
⎧⎪⎪⎨
⎪⎪⎩
〈
x
〉−q−2γ if 0 < q + 2(m+ k) < n,〈
x
〉−n−2s log(e + |x|) if q + 2(m+ k) = n,〈
x
〉−n−2s

if q + 2(m+ k) > n.
From these estimates, it follows immediately (20) to conclude (6) for any m ≥ 1.
Summarizing, the proof of Lemma 3 is completed. ��

Lemma 4 Let s ∈ (0, 1). Let ψ be a smooth function satisfying ∂2
xψ ∈ L∞. For

any R > 0, let ψR be a function defined by

ψR(x) := ψ
(
R−1x

)
for all x ∈ Rn. Then, (−�)s(ψR) satisfies the following scaling properties for all
x ∈ Rn:

(−�)s(ψR)(x) = R−2s((−�)sψ)(R−1x
)
.

Proof Thanks to the assumption ∂2
xψ ∈ L∞, following the proof of Lemma 3 we

may remove the principal value of the integral at the origin to conclude

(−�)s(ψR)(x) = −Cn,s
2

∫
Rn

ψR(x + y)+ ψR(x − y)− 2ψR(x)

|y|n+2s
dy

= − Cn,s
2R2s

∫
Rn

ψ
(
R−1x + R−1y

)+ ψ(R−1x − R−1y
)− 2ψ

(
R−1x

)
|R−1y|n+2s

d(R−1y)

= R−2s((−�)sψ)(R−1x
)
.

This completes the proof. ��
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Lemma 5 (One Mapping Property in the Scale of Fractional Spaces {Hs}s∈R)
Let γ, s ∈ R. Then, the fractional Laplacian

(−�)γ : f → (−�)γ f = (
(−�)γ f )(x) := F−1(|ξ |2γ f̂ (ξ))(x)

maps isomorphically the space Hs onto Hs−2γ .

This result can be found in Section 2.3.8 in [12].

Lemma 6 Let f = f (x) ∈ Hs and g = g(x) ∈ H−s with s ∈ R. Then, the
following estimate holds:

∣∣∣ ∫
Rn
f (x) g(x)dx

∣∣∣ ≤ ‖f ‖Hs ‖g‖H−s .

The proof of Lemma 6 can be found in Theorem 16 in [6].

Lemma 7 Let s ∈ R. Let v1 = v1(x) ∈ Hs and v2 = v2(x) ∈ H−s . Then, the
following relation holds:

∫
Rn
v1(x) v2(x)dx =

∫
Rn
v̂1(ξ) v̂2(ξ)dξ.

Proof We present the proof from Theorem 16 in [6] to make the paper self-
contained. Since the space S is dense in Hs and H−s , there exist sequences {v1,k}k
and {v2,k}k with v1,k = v1,k(x) ∈ S and v2,k = v2,k(x) ∈ S such that

‖v1,k − v1‖Hs → 0 and ‖v2,k − v2‖H−s → 0 for k → ∞.

On the one hand, for k → ∞ we have the relations

V̂1,k(ξ) := (1 + |ξ |2) s2 v̂1,k(ξ)→ V̂1(ξ) := (1 + |ξ |2) s2 v̂1(ξ) in L2,

V̂2,k(ξ) := (1 + |ξ |2)− s
2 v̂2,k(ξ)→ V̂2(ξ) := (1 + |ξ |2)− s

2 v̂2(ξ) in L2.

On the other hand, by Parseval–Plancherel formula we arrive at

∫
Rn
v1,k(x) v2,k(x) dx =

(
v1,k, v2,k

)
L2 =

(̂
v1,k, v̂2,k

)
L2 =

∫
Rn
v̂1,k(ξ) v̂2,k(ξ) dξ

=
∫
Rn
(1 + |ξ |2) s2 v̂1,k(ξ) (1 + |ξ |2)− s

2 v̂2,k(ξ) dξ

=
∫
Rn
V̂1,k(ξ) V̂2,k(ξ) dξ, (21)



224 T. A. Dao and Michael Reissig

where (·, ·)L2 stands for the scalar product in L2. Moreover, applying Lemma 6 we
may estimate

∣∣∣ ∫
Rn

(
v1,k(x) v2,k(x)− v1(x) v2(x)

)
dx

∣∣∣
≤
∣∣∣ ∫

Rn

(
v1,k(x)− v1(x)

)
v2,k(x)dx

∣∣∣+ ∣∣∣ ∫
Rn
v1(x)

(
v2,k(x)− v2(x)

)
dx

∣∣∣
≤ ‖v1,k − v1‖Hs ‖v2,k‖H−s + ‖v1‖Hs ‖v2,k − v2‖H−s → 0 as k → ∞.

This is equivalent to

∫
Rn
v1,k(x) v2,k(x) dx →

∫
Rn
v1(x) v2(x) dx as k → ∞. (22)

In the same way we also derive

∫
Rn
V̂1,k(ξ) V̂2,k(ξ) dξ →

∫
Rn
V̂1(ξ) V̂2(ξ) dξ as k→ ∞. (23)

Summarizing from (21) to (23) we may conclude

∫
Rn
v1(x) v2(x) dx =

∫
Rn
V̂1(ξ) V̂2(ξ) dξ =

∫
Rn
v̂1(ξ) v̂2(ξ) dξ.

Therefore, the proof of Lemma 7 is completed. ��

3 Proof of Theorem 2

We divide the proof of Theorem 2 into several cases.

3.1 The Case that Both Parameters σ and δ Are Integers

Proof The proof of this case can be found in the paper [2]. ��
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3.2 The Case that the Parameter σ Is Integer
and the Parameter δ Is Fractional from (0, 1)

Proof The first case is devoted to the subcritical case p < 1 + 2σ
n−k− . First, we

introduce the function ϕ = ϕ(|x|) := 〈
x
〉−n−2δ

and the function η = η(t) having
the following properties:

1. η ∈ C∞
0 ([0,∞)) and η(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ t ≤ 1
2 ,

decreasing for 1
2 ≤ t ≤ 1,

0 for t ≥ 1,

2. η
− p′
p (t)

(|η′(t)|p′ + |η′′(t)|p′) ≤ C for any t ∈
[1

2
, 1
]
, (24)

where p′ is the conjugate of p > 1. Let R be a large parameter in [0,∞). We define
the following test function:

ϕR(t, x) := ηR(t)ϕR(x),

where ηR(t) := η
(
R−αt

)
and ϕR(x) := ϕ

(
R−1x

)
with a fixed parameter α :=

2σ − k−. We define the functionals

IR :=
∫ ∞

0

∫
Rn

|u(t, x)|pϕR(t, x) dxdt =
∫ Rα

0

∫
Rn

|u(t, x)|pϕR(t, x) dxdt

and

IR,t :=
∫ Rα

Rα

2

∫
Rn

|u(t, x)|pϕR(t, x) dxdt.

Let us assume that u = u(t, x) is a global (in time) Sobolev solution from
C
([0,∞), L2

)
to (1). After multiplying the Eq. (1) by ϕR = ϕR(t, x), we carry

out partial integration to derive

0 ≤ IR = −
∫
Rn
u1(x)ϕR(x) dx +

∫ Rα

Rα

2

∫
Rn
u(t, x)∂2

t ηR(t)ϕR(x) dxdt

+
∫ ∞

0

∫
Rn
ηR(t)ϕR(x) (−�)σu(t, x) dxdt

−
∫ Rα

Rα

2

∫
Rn
∂tηR(t)ϕR(x) (−�)δu(t, x) dxdt

=: −
∫
Rn
u1(x)ϕR(x) dx + J1 + J2 − J3. (25)
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Applying Hölder’s inequality with 1
p
+ 1
p′ = 1 we may estimate as follows:

|J1| ≤
∫ Rα

Rα

2

∫
Rn

|u(t, x)| ∣∣∂2
t ηR(t)

∣∣ϕR(x) dxdt
�
( ∫ Rα

Rα

2

∫
Rn

∣∣∣u(t, x)ϕ 1
p

R (t, x)

∣∣∣p dxdt) 1
p

×
( ∫ Rα

Rα

2

∫
Rn

∣∣∣ϕ− 1
p

R (t, x)∂2
t ηR(t)ϕR(x)

∣∣∣p′ dxdt) 1
p′

� I
1
p

R,t

( ∫ Rα

Rα

2

∫
Rn
η
− p′
p

R (t)
∣∣∂2
t ηR(t)

∣∣p′ϕR(x) dxdt) 1
p′
.

By the change of variables t̃ := R−αt and x̃ := R−1x, a straight-forward calculation
gives

|J1| � I
1
p

R,t R
−2α+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2δ

dx̃
) 1
p′
. (26)

Here we used ∂2
t ηR(t) = R−2αη′′(t̃) and the assumption (24). Now let us turn to

estimate J2 and J3. First, by using ϕR ∈ H 2σ and u ∈ C
([0,∞), L2

)
we apply

Lemma 7 to conclude the following relations:

∫
Rn
ϕR(x) (−�)σu(t, x) dx =

∫
Rn

|ξ |2σ ϕ̂R(ξ) û(t, ξ) dξ

=
∫
Rn
u(t, x) (−�)σϕR(x) dx,∫

Rn
ϕR(x) (−�)δu(t, x) dx =

∫
Rn

|ξ |2δϕ̂R(ξ) û(t, ξ) dξ

=
∫
Rn
u(t, x) (−�)δϕR(x) dx.

Hence, we obtain

J2 =
∫ ∞

0

∫
Rn
ηR(t)ϕR(x) (−�)σu(t, x) dxdt

=
∫ ∞

0

∫
Rn
ηR(t)u(t, x) (−�)σϕR(x) dxdt,
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J3 =
∫ Rα

Rα

2

∫
Rn
∂tηR(t)ϕR(x) (−�)δu(t, x) dxdt

=
∫ Rα

Rα

2

∫
Rn
∂tηR(t)u(t, x) (−�)δϕR(x) dxdt.

Applying Hölder’s inequality again as we estimated J1 leads to

|J2| ≤ I
1
p

R

( ∫ Rα

0

∫
Rn
ηR(t)ϕ

− p′
p

R (x)
∣∣(−�)σϕR(x)∣∣p′ dxdt) 1

p′
,

|J3| ≤ I
1
p

R,t

( ∫ Rα

Rα

2

∫
Rn
η
− p′
p

R (t)
∣∣∂tηR(t)∣∣p′ϕ −p′

p

R (x)
∣∣(−�)δϕR(x)∣∣p′ dxdt) 1

p′
.

In order to control the above two integrals, the key tools rely on results from
Lemmas 1, 3 and 4. Namely, at first carrying out the change of variables t̃ := R−αt
and x̃ := R−1x we arrive at

|J2| � I
1
p

R R
−2σ+ n+α

p′
( ∫ 1

0

∫
Rn
η(t̃)ϕ

− p′
p (x̃)

∣∣(−�)σ (ϕ)(x̃)∣∣p′ dx̃dt̃) 1
p′

� I
1
p

R R
−2σ+ n+α

p′
( ∫

Rn
ϕ
− p′
p (x̃)

∣∣(−�)σ (ϕ)(x̃)∣∣p′ dx̃) 1
p′
,

where we note (σ is an integer) that (−�)σϕR(x) = R−2σ (−�)σϕ(x̃). Using
Lemma 1 implies the following estimate:

|J2| � I
1
p

R R
−2σ+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2δ−2σp′

dx̃
) 1
p′
. (27)

Next carrying out again the change of variables t̃ := R−αt and x̃ := R−1x and
employing Lemma 4 we can proceed J3 as follows:

|J3| � I
1
p

R,t R
−2δ−α+ n+α

p′

×
( ∫ 1

1
2

∫
Rn
η
− p′
p (t̃ )

∣∣η′(t̃)∣∣p′ϕ− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)∣∣p′ dx̃dt̃) 1
p′

� I
1
p

R,t R
−2δ−α+ n+α

p′
( ∫

Rn
ϕ
− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)∣∣p′ dx̃) 1
p′
.

Here we used ∂tηR(t) = R−αη′(t̃) and the assumption (24). To deal with the last
integral, we apply Lemma 3 with q = n + 2δ and γ = δ, that is, m = 0 and s = δ
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to get

|J3| � I
1
p

R,tR
−2δ−α+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2δ

dx̃
) 1
p′
. (28)

Because of the assumption (3), there exists a sufficiently large constantR0 > 0 such
that it holds ∫

Rn
u1(x)ϕR(x) dx > 0 (29)

for all R > R0. Combining the estimates from (25) to (29) we may arrive at

0 <
∫
Rn
u1(x)ϕR(x) dx � I

1
p

R,t

(
R
−2α+ n+α

p′ + R−α−2δ+ n+α
p′
)

+ I
1
p

R R
−2σ+ n+α

p′ − IR � I
1
p

R R
−2σ+ n+α

p′ − IR (30)

for all R > R0. Moreover, applying the inequality

Ayγ − y ≤ A 1
1−γ for any A > 0, y ≥ 0 and 0 < γ < 1

leads to

0 <
∫
Rn
u1(x)ϕR(x)dx � R−2σp′+n+α (31)

for allR > R0. It is clear that the assumption (4) is equivalent to −2σp′+n+α ≤ 0.
For this reason, in the subcritical case, that is, −2σp′ + n+ α < 0 letting R → ∞
in (31) we obtain ∫

Rn
u1(x) dx = 0.

This is a contradiction to the assumption (3).
Let us turn to the critical case p = 1+ 2σ

n−k− . It follows immediately−2σ+n+α
p′ = 0.

Then, repeating some arguments as we did in the subcritical case we may conclude
the following estimate:

0 < C0 :=
∫
Rn
u1(x)ϕR(x) dx ≤ C1I

1
p

R − IR,
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where C1 :=
( ∫

Rn

〈
x̃
〉−n−2δ

dx̃
) 1
p′
, that is,

C0 + IR ≤ C1I
1
p

R . (32)

From (32) it is obvious that IR ≤ C1I
1
p

R and C0 ≤ C1I
1
p

R . Hence, we obtain

IR ≤ Cp′1 (33)

and

IR ≥ C
p
0

C
p

1

, (34)

respectively. By substituting (34) into the left-hand side of (32) and calculating
straightforwardly, we get

IR ≥ C
p2

0

C
p+p2

1

.

For any integer j ≥ 1, an iteration argument leads to

IR ≥ C
pj

0

C
p+p2+···+pj
1

= C
pj

0

C

pj+1−p
p−1

1

= C
p
p−1

1

( C0

C

p
p−1
1

)pj
. (35)

Now we choose the constant

ε0 =
∫
Rn

〈
x̃
〉−n−2δ

dx̃

in the assumption (3). Then, there exists a sufficiently large constant R1 > 0 so that

∫
Rn
u1(x)ϕR(x) dx > ε0

for all R > R1. This is equivalent to

C0 > C
p′
1 = C

p
p−1
1 , that is,

C0

C

p
p−1
1

> 1.
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Therefore, letting j → ∞ in (35) we derive IR → ∞, which is a contradiction to
(33). Summarizing, the proof is completed. ��
Let us now consider the case of subcritical exponent to explain the estimate for
lifespan Tε of solutions in Remark 1. We assume that u = u(t, x) is a local (in
time) Sobolev solution to (1) in [0, T )×Rn. In order to prove the lifespan estimate,
we replace the initial data (0, u1) by (0, εu1) with a small constant ε > 0, where
u1 ∈ L1 satisfies the assumption (3). Hence, there exists a sufficiently large constant
R2 > 0 so that we have ∫

Rn
u1(x)ϕR(x) dx ≥ c > 0

for any R > R2. Repeating the steps in the above proofs we arrive at the following
estimate:

ε ≤ C R−2σp′+n+α ≤ C T − 2σp′−n−α
α

with R = T
1
α . Finally, letting T → T −

ε we may conclude (5).

Remark 3 We want to underline that in the special case σ = 1 and δ = 1
2 the

authors in [4] have investigated the critical exponent pcrit = pcrit (n) = 1 + 2
n−1 .

If we plug σ = 1 and δ = 1
2 into the statements of Theorem 2, then the obtained

results for the critical exponent pcrit coincide.

3.3 The Case that the Parameter σ Is Integer and the
Parameter δ Is Fractional from (1, σ)

Proof We follow ideas from the proof of Sect. 3.2. At first, we denote sδ := δ−[δ].
Let us introduce test functions η = η(t) as in Sect. 3.2 and ϕ = ϕ(x) := 〈

x
〉−n−2sδ .

We can repeat exactly, the estimates for J1 and J2 as we did in the proof of Sect. 3.2
to conclude

|J1| � I
1
p

R,t R
−2α+ n+α

p′ , (36)

|J2| � I
1
p

R R
−2σ+ n+α

p′ . (37)

Let us turn to estimate J3, where δ is any fractional number in (1, σ ). In the first
step, applying Lemma 7 and Hölder’s inequality leads to

|J3| ≤ I
1
p

R,t

( ∫ Rα

Rα

2

∫
Rn
η
− p′
p

R (t)
∣∣∂tηR(t)∣∣p′ϕ− p′

p

R (x)
∣∣(−�)δϕR(x)∣∣p′ dxdt) 1

p′
.
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Now we can re-write δ = mδ + sδ , where mδ := [δ] ≥ 1 is integer and sδ is a
fractional number in (0, 1). Employing Lemma 2 we derive

(−�)δϕR(x) = (−�)sδ((−�)mδϕR(x)).
By the change of variables x̃ := R−1x we also notice that

(−�)mδϕR(x) = R−2mδ (−�)mδ (ϕ)(x̃)

since mδ is an integer. Using the formula (18) we re-write

(−�)mδϕR(x) = (−1)mδR−2mδ
mδ−1∏
j=0

(q + 2j)
( mδ∏
j=1

(−n+ q + 2j)
〈
x̃
〉−q−2mδ

− C1
mδ

mδ∏
j=2

(−n+ q + 2j)(q + 2mδ)
〈
x̃
〉−q−2mδ−2

+ C2
mδ

mδ∏
j=3

(−n+ q + 2j)(q + 2mδ)(q + 2mδ + 2)
〈
x̃
〉−q−2mδ−4

+ · · · + (−1)mδ
mδ−1∏
j=0

(q + 2mδ + 2j)
〈
x̃
〉−q−4mδ

)
,

where q := n+ 2sδ . For simplicity, we introduce the following functions:

ϕk(x) :=
〈
x
〉−q−2mδ−2k and ϕk,R(x) := ϕk(R

−1x) = 〈
x̃
〉−q−2mδ−2k

with k = 0, · · · ,mδ . As a result, by Lemma 4 we arrive at

(−�)δϕR(x) = (−1)mδR−2mδ
mδ−1∏
j=0

(q + 2j)
( mδ∏
j=1

(−n+ q + 2j) (−�)sδ (ϕ0,R)(x)

− C1
mδ

mδ∏
j=2

(−n+ q + 2j)(q + 2mδ) (−�)sδ (ϕ1,R)(x)

+ C2
mδ

mδ∏
j=3

(−n+ q + 2j)(q + 2mδ)(q + 2mδ + 2) (−�)sδ (ϕ2,R)(x)

+ · · · + (−1)mδ
mδ−1∏
j=0

(q + 2mδ + 2j) (−�)sδ (ϕmδ,R)(x)
)
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= (−1)mδR−2mδ−2sδ
mδ−1∏
j=0

(q + 2j)
( mδ∏
j=1

(−n+ q + 2j) (−�)sδ (ϕ0)(x̃)

− C1
mδ

mδ∏
j=2

(−n+ q + 2j)(q + 2mδ) (−�)sδ (ϕ1)(x̃)

+ C2
mδ

mδ∏
j=3

(−n+ q + 2j)(q + 2mδ)(q + 2mδ + 2) (−�)sδ (ϕ2)(x̃)

+ · · · + (−1)mδ
mδ−1∏
j=0

(q + 2mδ + 2j) (−�)sδ (ϕmδ )(x̃)
)

= R−2δ(−�)δ(ϕ)(x̃).

For this reason, performing the change of variables t̃ := R−αt we obtain

|J3| � I
1
p

R,t R
−2δ−α+ n+α

p′

×
( ∫ 1

1
2

∫
Rn
η
− p′
p (t̃ )

∣∣η′(t̃)∣∣p′ϕ− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)∣∣p′ dx̃dt̃) 1
p′

� I
1
p

R,t R
−2δ−α+ n+α

p′
( ∫

Rn
ϕ
− p′
p (x̃)

∣∣(−�)δ(ϕ)(x̃)∣∣p′ dx̃) 1
p′
.

Here we used ∂tηR(t) = R−αη′(t̃) and the assumption (24). After applying
Lemma 3 with q = n+ 2sδ and γ = δ, i.e. m = mδ and s = sδ , we may conclude

|J3| � I
1
p

R,t R
−2δ−α+ n+α

p′
( ∫

Rn

〈
x̃
〉−n−2sδ dx̃

) 1
p′ � I

1
p

R,t R
−2δ−α+ n+α

p′ . (38)

Finally, combining (36)–(38) and repeating arguments as in Sect. 3.2 we may
complete the proof of Theorem 2. ��

3.4 The Case that the Parameter σ Is Fractional from (1,∞)

and the Parameter δ Is Integer

Proof We follow ideas from the proofs of Sects. 3.2 and 3.3. At first, we denote
sσ := σ − [σ ]. Let us introduce test functions η = η(t) as in Sect. 3.2 and ϕ =
ϕ(x) := 〈

x
〉−n−2sσ . Then, repeating the proof of Sects. 3.2 and 3.3 we may conclude

what we wanted to prove. ��
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3.5 The Case that the Parameter σ Is Fractional from (1,∞)

and the Parameter δ Is Fractional from (0, 1)

Proof We follow ideas from the proofs of Sects. 3.2 and 3.4. At first, we denote
sσ := σ − [σ ]. Next, we put s∗ := min{sσ , δ}. It is obvious that s∗ is fractional
from (0, 1). Let us introduce test functions η = η(t) as in Sect. 3.2 and ϕ = ϕ(x) :=〈
x
〉−n−2s∗ . Then, repeating the proof of Sects. 3.2 and 3.4 we may conclude what we

wanted to prove. ��

3.6 The Case that the Parameter σ Is Fractional from (1,∞)

and the Parameter δ Is Fractional from (1, σ)

Proof We follow ideas from the proofs of Sects. 3.2 and 3.5. At first, we denote
sσ := σ − [σ ] and sδ := δ − [δ]. Next, we put s∗ := min{sσ , sδ}. It is obvious that
s∗ is fractional from (0, 1). Let us introduce test functions η = η(t) as in Sect. 3.2

and ϕ = ϕ(x) := 〈
x
〉−n−2s∗ . Then, repeating the proof of Sects. 3.2 and 3.5 we may

conclude what we wanted to prove. ��

4 Critical Exponent Versus Critical Nonlinearity

In Remark 2 we explained that for some models (1) we determined the critical
exponent pcrit = pcrit (n) in the scale of power nonlinearities {|u|p}p>1. But is this
observation sharp? In the paper [5] the authors discussed this issue for the classical
damped wave model with power nonlinearity. Here we want to extend this idea to
some models of type (1). For this reason, we discuss the following model:

{
utt + (−�)σu+ (−�)δut = |u|pcrit (n)μ(|u|),
u(0, x) = u0(x), ut (0, x) = u1(x),

(39)

where σ ≥ 1, δ ∈ [0, σ2 ] and pcrit (n) = 1 + 2σ
n−2δ with n ≥ 1. Here the function

μ = μ(|u|) is a suitable modulus of continuity.

4.1 Main Results

First we state a global (in time) existence result of small data Sobolev solutions to
(39).
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Theorem 3 (Global Existence) Let σ ≥ 1, δ ∈ [0, σ2 ] and m ∈ [1, 2). Let 0 <
θ ≤ σ . We assume the conditions

{
2m0δ < n < 2θ if δ ∈ [0, σ2 ),
mσ < n < 2θ if δ = σ

2 .
(40)

Moreover, we suppose the following assumptions of modulus of continuity:

sμ′(s) � μ(s) (41)

and

∫ C0

0

μ(s)

s
ds <∞ (42)

with a sufficiently small constant C0 > 0. Then, there exists a constant ε0 > 0 such
that for any small data

(u0, u1) ∈
(
Lm ∩Hθ

)× (Lm ∩ L2)
satisfying the assumption ‖u0‖Lm∩Hθ + ‖u1‖Lm∩L2 ≤ ε0, we have a uniquely
determined global (in time) small data Sobolev solution

u ∈ C
([0,∞),H θ

)
to (39). The following estimates hold:

‖u(t, ·)‖L2 � (1 + t)− n
2(σ−δ) (

1
m
− 1

2 )+ δ
σ−δ
(‖u0‖Lm∩Hθ + ‖u1‖Lm∩L2

)
,∥∥|D|θu(t, ·)∥∥

L2 � (1 + t)− n
2(σ−δ) (

1
m− 1

2 )− θ−2δ
2(σ−δ)

(‖u0‖Lm∩Hθ + ‖u1‖Lm∩L2

)
.

Now we state a blow-up result to (39).

Theorem 4 (Blow-Up) Let σ ≥ 1 and δ ∈ [0, σ2 ] be integer numbers. We assume
that we choose the initial data u0 = 0 and u1 ∈ L1 satisfying the following relation:

∫
Rn
u1(x) dx > 0. (43)

Moreover, we suppose the following assumption of modulus of continuity:

skμ(k)(s) = o
(
μ(s)

)
as s → +0 with k = 1, 2, (44)
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and

∫ C0

0

μ(s)

s
ds = ∞, (45)

where C0 > 0 is a sufficiently small constant. Then, there is no global (in time)
Sobolev solution to (39).

In the following we restrict ourselves to prove the blow-up result.

4.2 Proof of Theorem 4

The ideas of the following proof are based on the recent paper [5] of the second
author and his collaborators in which the authors focused on their considerations
to (39) with σ = 1 and δ = 0. For simplicity, we use the abbreviations pc :=
pcrit (n) = 1 + 2σ

n−2δ to (39) in the following proof.

Proof of Theorem 4 First, we introduce a test function ϕ = ϕ(τ) having the
following properties:

ϕ ∈ C∞
0 ([0,∞)) and ϕ(τ) =

⎧⎪⎪⎨
⎪⎪⎩

1 for 0 ≤ τ ≤ 1
2 ,

decreasing for 1
2 ≤ τ ≤ 1,

0 for τ ≥ 1.

Moreover, we also introduce the function ϕ∗ = ϕ∗(τ ) satisfying

ϕ∗(τ ) =
{

0 for 0 ≤ τ < 1
2 ,

ϕ(τ ) for 1
2 ≤ τ <∞.

Let R be a large parameter in [0,∞). We define the following two functions:

ϕR(t, x) =
(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)

and

ϕ∗R(t, x) =
(
ϕ∗
( |x|2(σ−δ) + t

R

))n+2(σ−δ)
.



236 T. A. Dao and Michael Reissig

Then it is clear that

suppϕR ⊂ QR := {
(t, x) : (t, |x|) ∈ [0, R] × [0, R1/(2(σ−δ))]},

suppϕ∗R ⊂ Q∗
R := QR \ {(t, x) : (t, |x|) ∈ [0, R/2] × [0, (R/2)1/(2(σ−δ))]}.

Now we define the functional

IR :=
∫ ∞

0

∫
Rn

|u(t, x)|pcμ(|u(t, x)|)ϕR(t, x) dxdt
=
∫
QR

|u(t, x)|pcμ(|u(t, x)|)ϕR(t, x) d(x, t).
Let us assume that u = u(t, x) is a global (in time) Sobolev solution to (39). After
multiplying the Eq. (39) by ϕR = ϕR(t, x), we carry out partial integration to derive

0 ≤ IR = −
∫
Rn
u1(x)ϕR(0, x) dx

+
∫
QR

u(t, x)
(
∂2
t ϕR(t, x)+ (−�)σϕR(t, x)− (−�)δ∂tϕR(t, x)

)
d(x, t)

=: −
∫
Rn
u1(x)ϕR(0, x) dx + JR.

Because of the assumption (43), there exists a sufficiently large constant R0 > 0
such that for all R > R0 it holds∫

Rn
u1(x)ϕR(0, x) dx > 0.

Consequently, we obtain

0 ≤ IR < JR for all R > R0. (46)

In order to estimate JR , firstly we have

|∂tϕR(t, x)| �
∣∣∣ 1

R

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−1
ϕ′
( |x|2(σ−δ) + t

R

)∣∣∣
� 1

R

(
ϕ∗
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−1
. (47)
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Further calculations lead to

|∂2
t ϕR(t, x)| �

∣∣∣ 1

R2

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−2(
ϕ′
( |x|2(σ−δ) + t

R

))2∣∣∣
+
∣∣∣ 1

R2

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−1
ϕ′′
( |x|2(σ−δ) + t

R

)∣∣∣
� 1

R2

(
ϕ∗
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−2
. (48)

To control (−�)σϕR(t, x), we shall apply Lemma 8 as a main tool. Indeed, we
divide our consideration into three sub-steps as follows:

Step 1: Applying Lemma 8 with h(z) = zσ−δ+t
R

and z = f (x) = |x|2 we derive
the following estimate for |α| ≥ 1:

∣∣∣∂αx ( |x|2(σ−δ) + tR

)∣∣∣

≤
|α|∑
k=1

|x|2(σ−δ)−2k

R

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α||γi |≥1

∣∣∂γ1
x

(|x|2)∣∣ · · · ∣∣∂γkx (|x|2)∣∣
⎞
⎟⎟⎠

≤
|α|∑
k=1

|x|2(σ−δ)−2k

R

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2

∣∣∂γ1
x

(|x|2)∣∣ · · · ∣∣∂γkx (|x|2)∣∣
⎞
⎟⎟⎠

�
|α|∑
k=1

|x|2(σ−δ)−2k

R

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2

|x|2−|γ1| · · · |x|2−|γk|
⎞
⎟⎟⎠

�
|α|∑
k=1

|x|2(σ−δ)−2k

R
|x|2k−|α| � |x|2(σ−δ)−|α|

R
.

This estimate holds for |α| ≤ 2(σ − δ). But we may conclude that it holds for all
|α| ≥ 1, too and small |x|. More precisely, the singularity appearing in the case
|α| > 2(σ − δ) does not really bring any difficulty in the further treatment.
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Step 2: Applying Lemma 8 with h(z) = ϕ(z) and z = f (x) = |x|2(σ−δ)+t
R

we get
for all |α| ≥ 1 the following estimate:

∣∣∣∂αx ϕ( |x|2(σ−δ) + tR

)∣∣∣
≤

|α|∑
k=1

∣∣∣ϕ(k)( |x|2(σ−δ) + t
R

)∣∣∣

×

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2(σ−δ)

∣∣∣∂γ1
x

( |x|2(σ−δ) + t
R

)∣∣∣ · · · ∣∣∣∂γkx ( |x|2(σ−δ) + t
R

)∣∣∣
⎞
⎟⎟⎠

≤
|α|∑
k=1

∣∣∣ϕ(k)( |x|2(σ−δ) + t
R

)∣∣∣

×

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=|α|
1≤|γi |≤2(σ−δ)

|x|2(σ−δ)−|γ1|

R
· · · |x|

2(σ−δ)−|γk|

R

⎞
⎟⎟⎠

�
|α|∑
k=1

( |x|2(σ−δ)
R

)k|x|−|α| � |x|2(σ−δ)−|α|
R

(
since |x|2(σ−δ) ≤ R inQ∗

R

)
.

Step 3: Applying Lemma 8 with h(z) = zn+2(σ−δ) and z = f (x) = ϕ
( |x|2(σ−δ)+t

R

)
we obtain

∣∣(−�)σϕR(t, x)∣∣ � ∑
|α|=2σ

∣∣∂αx ϕR(t, x)∣∣ (49)

�
2σ∑
k=1

(
ϕ
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−k

×

⎛
⎜⎜⎝ ∑

|γ1|+···+|γk |=2σ
|γi |≥1

∣∣∣∂γ1
x ϕ

( |x|2(σ−δ) + t
R

)∣∣∣ · · · ∣∣∣∂γkx ϕ( |x|2(σ−δ) + t
R

)∣∣∣
⎞
⎟⎟⎠
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�
2σ∑
k=1

(
ϕ∗
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−k

×
∑

|γ1|+···+|γk |=2σ
|γi |≥1

|x|2(σ−δ)−|γ1|

R
· · · |x|

2(σ−δ)−|γk|

R

�
2σ∑
k=1

(
ϕ∗
( |x|2(σ−δ) + t

R

))n+2(σ−δ)−k |x|2k(σ−δ)−2σ

Rk

� 1

R
σ
σ−δ

(
ϕ∗
( |x|2(σ−δ) + t

R

))n−2δ (
since |x|2(σ−δ) ≈ R in Q∗

R

)
. (50)

It is clear that if δ = 0, then
∣∣(−�)δ∂tϕR(t, x)∣∣ was estimated in (47). For

the case δ ∈ (0, σ2 ], we can proceed in an analogous way as we controlled∣∣(−�)σϕR(t, x)∣∣ to derive

∣∣(−�)δ∂tϕR(t, x)∣∣ � 1

R
σ
σ−δ

(
ϕ∗
( |x|2(σ−δ) + t

R

))n+2(σ−2δ)−1
. (51)

From (47) to (51), we arrive at the following estimate:

∣∣∂2
t ϕR(t, x)+ (−�)σϕR(t, x)− (−�)δ∂tϕR(t, x)

∣∣
� 1

R
σ
σ−δ

(
ϕ∗
( |x|2(σ−δ) + t

R

))n−2δ = 1

R
σ
σ−δ

(
ϕ∗R(t, x)

) n−2δ
n+2(σ−δ) .

Hence, we may conclude

JR = |JR| � 1

R
σ
σ−δ

∫
QR

|u(t, x)| (ϕ∗R(t, x)) n−2δ
n+2(σ−δ) d(x, t). (52)

Now we focus our attention to estimate the above integral. To do this, we
introduce the function"(s) = spcμ(s). Then, we derive

"
(
|u(t, x)| (ϕ∗R(t, x)) n−2δ

n+2(σ−δ)
)

= |u(t, x)|pc (ϕ∗R(t, x)) pc(n−2δ)
n+2(σ−δ) μ

(
|u(t, x)| (ϕ∗R(t, x)) n−2δ

n+2(σ−δ)
)

≤ |u(t, x)|pc ϕ∗R(t, x)μ
(|u(t, x)|) = "

(|u(t, x)|)ϕ∗R(t, x). (53)
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Here we used the increasing property of the function μ = μ(s) and the relation

0 ≤ (ϕ∗R(t, x)) n−2δ
n+2(σ−δ) ≤ 1.

Due to the assumption (44), we may verify that" is a convex function on a small
interval (0, c0] by the following relation:

" ′′(s) = spc−2
(
pc(pc − 1)μ(s)+ 2pc sμ′(s)+ s2μ′′(s)

)
≥ 0.

Moreover, we can choose a convex continuation of " outside this interval to
guarantee that" is convex on [0,∞). Applying Proposition 1 with h(s) = "(s),

f (t, x) = |u(t, x)|(ϕ∗R(t, x)) n−2δ
n+2(σ−δ) and γ ≡ 1 gives the following estimate:

"
(∫
Q∗
R
|u(t, x)|(ϕ∗R(t, x)) n−2δ

n+2(σ−δ) d(x, t)∫
Q∗
R

1 d(x, t)

)

≤
∫
Q∗
R
"
(
|u(t, x)|(ϕ∗R(t, x)) n−2δ

n+2(σ−δ)
)
d(x, t)∫

Q∗
R

1 d(x, t)
.

We may compute

∫
Q∗
R

1 d(x, t) ≈ R
1+ n

2(σ−δ) .

Hence, we get

"
(∫
Q∗
R
|u(t, x)|(ϕ∗R(t, x)) n−2δ

n+2(σ−δ) d(x, t)

R
1+ n

2(σ−δ)

)

≤
∫
Q∗
R
"
(
|u(t, x)|(ϕ∗R(t, x)) n−2δ

n+2(σ−δ)
)
d(x, t)

R
1+ n

2(σ−δ)

≤
∫
QR
"
(
|u(t, x)|(ϕ∗R(t, x)) n−2δ

n+2(σ−δ)
)
d(x, t)

R
1+ n

2(σ−δ)
. (54)
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Combining the estimates (53) and (54) we may arrive at

"
(∫
Q∗
R
|u(t, x)|(ϕ∗R(t, x)) n−2δ

n+2(σ−δ) d(x, t)

R
1+ n

2(σ−δ)

)

≤
∫
QR
"
(|u(t, x)|)ϕ∗R(t, x) d(x, t)

R
1+ n

2(σ−δ)
. (55)

Since μ = μ(s) is a strictly increasing function, it immediately follows that
" = "(s) is also a strictly increasing function on [0,∞). For this reason, from
(55) we deduce∫

QR

|u(t, x)|(ϕ∗R(t, x)) n−2δ
n+2(σ−δ) d(x, t)

=
∫
Q∗
R

|u(t, x)|(ϕ∗R(t, x)) n−2δ
n+2(σ−δ) d(x, t)

≤ R1+ n
2(σ−δ) "−1

(∫
QR
"
(|u(t, x)|)ϕ∗R(t, x) d(x, t)

R
1+ n

2(σ−δ)

)
. (56)

From (46), (52) and (56) we may conclude

IR � R
n−2δ

2(σ−δ) "−1
(∫
QR
"
(|u(t, x)|)ϕ∗R(t, x) d(x, t)

R
1+ n

2(σ−δ)

)
(57)

for all R > R0. Next we introduce the following two functions:

g(r) =
∫
QR

"
(|u(t, x)|)ϕ∗r (t, x) d(x, t) with r ∈ (0,∞)

and

G(R) =
∫ R

0
g(r)r−1 dr.

Then, we re-write

G(R) =
∫ R

0

( ∫
QR

"
(|u(t, x)|)ϕ∗r (t, x) d(x, t))r−1 dr

=
∫
QR

"
(|u(t, x)|)( ∫ R

0

(
ϕ∗
( |x|2(σ−δ) + t

r

))n+2(σ−δ)
r−1 dr

)
d(x, t).
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Carrying out change of variables r̃ = |x|2(σ−δ)+t
r

we derive

G(R) =
∫
QR

"
(|u(t, x)|)( ∫ ∞

|x|2(σ−δ)+t
R

(
ϕ∗(r̃)

)n+2(σ−δ)
r̃−1 dr̃

)
d(x, t)

≤
∫
QR

"
(|u(t, x)|)( ∫ 1

1/2

(
ϕ∗(r̃)

)n+2(σ−δ)
r̃−1 dr̃

)
d(x, t)

(
since suppϕ∗ ⊂ [1/2, 1])

≤
∫
QR

"
(|u(t, x)|)( ∫ 1

1/2

(
ϕ(r̃)

)n+2(σ−δ)
r̃−1 dr̃

)
d(x, t)

(
since ϕ∗ ≡ ϕ in [1/2, 1])

≤
∫
QR

"
(|u(t, x)|)(ϕ( |x|2(σ−δ) + t

R

))n+2(σ−δ)( ∫ 1

1/2
r̃−1 dr̃

)
d(x, t)

(
since ϕ is decreasing

)
≤ log(1 + e)

∫
QR

"
(|u(t, x)|)(ϕ( |x|2(σ−δ) + t

R

))n+2(σ−δ)
d(x, t)

= log(1 + e)IR. (58)

Moreover, it holds the following relation:

G′(R)R = g(R) =
∫
QR

"
(|u(t, x)|)ϕ∗R(t, x) d(x, t). (59)

From (57) to (59) we get

G(R)

log(1 + e) ≤ IR ≤ C1R
n−2δ

2(σ−δ) "−1
( G′(R)
R

n
2(σ−δ)

)

for all R > R0 and with a suitable positive constant C1. This implies

"
( G(R)

C2R
n−2δ

2(σ−δ)

)
≤ G′(R)
R

n
2(σ−δ)

for all R > R0 and C2 := C1 log(1 + e) > 0. By the definition of the function
" , the above inequality is equivalent to

( G(R)

C2R
n−2δ

2(σ−δ)

)pc
μ
( G(R)

C2R
n

2(σ−δ)

)
≤ G′(R)
R

n
2(σ−δ)
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for all R > R0. Therefore, we have

1

C3R
μ
( G(R)

C2R
n−2δ

2(σ−δ)

)
≤ G′(R)(

G(R)
)pc

for all R > R0 and C3 := C
pc
2 > 0. Because G = G(R) is an increasing

function, for all R > R0 it holds the following inequality:

1

C3R
μ
( G(R0)

C2R
n−2δ

2(σ−δ)

)
≤ G′(R)(

G(R)
)pc .

After denoting s̃ := R and integrating two sides over [R0, R] we arrive at

1

C3

∫ R

R0

1

s̃
μ
( 1

C4s̃
n−2δ

2(σ−δ)

)
ds̃ ≤

∫ R

R0

G′(s̃)(
G(s̃)

)pc ds̃
= n− 2δ

2σ

( 1(
G(R0)

) 2σ
n−2δ

− 1(
G(R)

) 2σ
n−2δ

)

≤ n− 2δ

2σ
(
G(R0)

) 2σ
n−2δ

,

where C4 := C2
G(R0)

> 0. Letting R → ∞ leads to

1

C3

∫ ∞

R0

1

s̃
μ
( 1

C4s̃
n−2δ

2(σ−δ)

)
ds̃ ≤ n− 2δ

2σ
(
G(R0)

) 2σ
n−2δ

.

Finally, using change of variables s = C4s̃
n−2δ

2(σ−δ) we may conclude

C

∫ ∞

C0

μ
( 1
s

)
s

ds ≤ n− 2δ

2σ
(
G(R0)

) 2σ
n−2δ

,

where C := 2σ
C3(n−2δ) > 0 and C0 := C4R

n−2δ
2(σ−δ)
0 > 0 is a sufficiently large

constant. This is a contradiction to the assumption (45). Summarizing, the proof
of Theorem 4 is completed. ��

Remark 4 From the condition (42) in Theorem 3 and the condition (45) in
Theorem 4, we recognize that determining the critical exponent pcrit = 1 + 2σ

n−2δ
in the scale of power nonlinearities {|u|p}p>1 is really sharp to (39) in the case
δ ∈ [0, σ2 ], i.e. for “parabolic like models”. However, up to now this observation
remains an open problem for “σ -evolution like models” in the remaining case
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δ ∈ ( σ2 , σ ], the so-called “hyperbolic like models” or “wave like models” in the
case σ = 1.

Appendix

Proposition 1 (A Generalized Jensen’s Inequality) Let γ = γ (x) be a defined
and nonnegative function almost everywhere on �, provided that γ is positive in
a set of positive measure. Then, for each convex function h on R the following
inequality holds:

h

⎛
⎜⎜⎝
∫
�

f (x)γ (x) dx∫
�

γ (x) dx

⎞
⎟⎟⎠ ≤

∫
�

h
(
f (x)

)
γ (x) dx∫

�

γ (x) dx

,

where f is any nonnegative function satisfying all the above integrals are meaning-
ful.

The proof of this result can be found in [5, 9].

Lemma 8 (Useful Lemma) The following formula of derivative of composed
function holds for any multi-index α:

∂αξ h
(
f (ξ)

) = |α|∑
k=1

h(k)
(
f (ξ)

)
⎛
⎜⎜⎝ ∑

γ1+···+γk≤α|γ1|+···+|γk |=|α|, |γi |≥1

(
∂
γ1
ξ f (ξ)

) · · · (∂γkξ f (ξ))
⎞
⎟⎟⎠ ,

where h = h(z) and h(k)(z) = dkh(z)

d zk
.

The result can be found in [11] at page 202.
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Abstract We consider the Cauchy problem on R+
0 ×Rn for the semilinear damped

wave equation

utt (t, x)− a2(t)�u(t, x)+ b(t)ut (t, x) = |u(t, x)|p

with decreasing in time coefficients, the propagation speed a(t) = (1 + t)−�,
� ∈ (0, 1), the scale-invariant dissipation b(t) = β(1 + t)−1, β > 0, and a
power nonlinearity of order p > 1. The solution u0 of the corresponding linear
Cauchy problem will be represented in the explicit form using Fourier multipliers
operators with multipliers expressed in terms of special functions. Our main goal
is to prove a global in time existence result when initial data belongs to the space
Hm(Rn) × Hm−1(Rn), m ≥ 1. We are focused in finding the critical exponent
pc(n, �) such that if 1 < p < pc(n, �) there exist small data for which u blow-up in
finite time. We also prove that if p ≥ pc(n, �) the global solution has the same long
time behavior as u0. In order to estimate u we use Duhamel’s principle to represent
u and then we apply L2 − L2 estimates of u0.
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1 Introduction

In this paper, we obtain the global existence of small data solutions to the
Cauchy problem for the semilinear damped wave equation with decreasing in time
propagation speed

⎧⎪⎪⎨
⎪⎪⎩
utt − (1 + t)−2��u+ β

1+t ut = f (u), t ≥ 0, x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

ut (0, x) = u1(x), x ∈ Rn,

(1)

with f (u) = |u|p, p > 1, � ∈ (0, 1), β > 0.
If u is a solution to (1), then

λhu(λ(1 + t), λ1−�x) , with h
.= 2

p − 1
,

is a solution to the equation in (1) for any λ > 0, with initial data λhu0(λ
1−�x). We

have

λh‖u0(λ
1−�·)‖Lr = λh−

n(1−�)
r ‖u0‖Lr , r ∈ [1, 2],

so that the Lr norm is invariant if, and only if, h − n(1−�)
r

= 0. If we assume
small data with additional regularity Lr , then one is tempted to say that, at least for
β ≥ β%(n, �), with β%(n, �) > 0 sufficiently large, the critical exponent pc(r, n, �)
to (1) is

pc(r, n, �)
.= 1 + 2r

n(1 − �) .

If � = 0 and β ≥ 5
3 for n = 1, β ≥ 3 for n = 2, or β ≥ n + 2 for n ≥ 3

by assuming data in the energy space with additional regularity L1(Rn), a global
(in time) existence result for (1) was proved in [3] for p > pF (n)

.= 1 + 2
n

, the
well known Fujita index [13]. The exponent pF is critical for this model, that is,
for p ≤ pF and suitable, arbitrarily small data, there exists no global weak solution
[5]. As conjectured by [7] and [8], if β becomes smaller with respect to the space
dimension, the critical exponent increases to max{pS(n + β), 1 + 2

n
}, where pS

is the Strauss exponent for the semilinear undamped wave equation [16, 22]. In
[18] the authors shed some light on this problem and gave the explicit value for

the threshold β& = n2+n+2
n+2 , namely, for β ∈ [0, β&) we have “wave-like” models,

whereas for β ≥ β& we have “heat-like” models. Moreover, for β ∈ (0, β&) and
1 < p ≤ pS(n+ β) they proved a blow-up result and gave the upper bound for the
lifespan of solutions to (1). It is worth noticing that if β ∈ [0, β&), then pF (n) <
pS(n+ β) and, pF (n) = pS(n+ β&).
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As far as we know, it is still an open problem to prove global existence of small
data solutions for p > pF (n) in the cases 4

3 < β < 5
3 for n = 1, 2 < β < 3 for

n = 2, or β& < β < n+ 2 for n ≥ 3.
If we remove the assumption that the initial data are in L1(Rn) and we only

assume that they are in the energy space, then the critical exponent to (1) is modified
into 1 + 4

n
and one may lower the thresholds required for β (see Theorem 4 in [3]).

For the classical damped wave equation, this phenomenon has been investigated
in [20].

In [1], the authors proposed a classification of non-effective and effective
dissipation, respectively, for the damped wave equation

utt (t, x)− a2(t)�u(t, x)+ b(t)ut (t, x) = 0

with increasing speed of propagation. The authors derived sharp estimates for
solutions to the Cauchy problem and, in the case of effective dissipation, i.e.,

b(t)
A(t)

a(t)
→ ∞, as t → ∞, A(t) = 1 +

∫ t

0
a(τ) dτ,

derived global existence (in time) results for the semilinear Cauchy problem with
power nonlinearities [2] (see [6] for the case a(t) ≡ 1). A similar classification was
introduced in [9] in the case a ∈ L1. A natural generalization for the model (1) is
to consider a positive and decreasing speed of propagation a(t), with a /∈ L1. But
in this paper we restrict ourselves to the case that a is a polynomial function, since
it includes interesting models by itself, for instance, if � = 2

3 in (1), the considered
model coincides with the non-singular wave equation in the Einstein de Sitter space-
time [14, 15].

In this paper we derive higher order energy estimates for solutions to the linear
Cauchy problem associate to (1). Then, as in Theorem 6 in [3] (see Remark 5 below),
assuming small data in the energy space and for β sufficiently large, in Theorem 2
we prove a global existence result. In Theorem 1 we prove the non-existence part, so
it is verified that the critical exponent for the global existence of small data energy
solutions to (1) is given by

pc(n, �)
.= 1 + 4

n(1 − �) . (2)

Our main goal in this paper is to complete the gaps that appear on � and on the
space dimension n in Theorem 6 in [3]. By using additional Hm(Rn) regularity,
with m > n

2 , in Theorem 3 we are able to deal with higher space dimensions and
enlarge the admissible range for � ∈ (0, 1). In particular, we are able to deal with the
non-singular wave equation in the Einstein de Sitter space-time for space dimension
n = 3.
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2 Main Results

The next result explains that for 1 < p < pc(n, �) Sobolev solutions to (1) in
general can not exist globally in time even if the data are supposed to be very small.

Theorem 1 Let f (u) = |u|p, p > 1, � ∈ (0, 1) and β > � in (1). Moreover,
assume that u0, u1 ∈ L1

loc(R
n) verifies

u0(x)+ u1(x) ≥ ε(1 + |x|)− n
2 (log(e + |x|)−1 (3)

for some ε ∈ (0, 1). Then there exists no global (in time) weak solution to (1) for
any

p ∈
(

1, 1 + 4

n(1 − �)
)
.

Remark 1 Condition (3) implies that u0 + u1 /∈ L2−δ(Rn) for all δ ∈ (0, 1].
Remark 2 By replacing (3) by

u0(x)+ u1(x) ≥ ε(1 + |x|)− n
r (log(e + |x|)−1, r ∈ (1, 2]

for some ε ∈ (0, 1) and, following the proof of Theorem 1, one may conclude that
there exists no global (in time) weak solution to (1) for any

p ∈
(

1, 1 + 2r

n(1 − �)
)
.

Remark 3 Theorem 1 is optimal only for β ≥ β%, where β% is expected to be β% =
�+ 4n(1−�)

n(1−�)+4 . For β ∈ [0, β%), one may try to follow [18] and prove a non-existence

result of global (in time) weak solutions for 1 < p < p0, with 1 + 4
n(1−�) < p0.

Theorem 2 Let � ∈ (0, 1), β > 1 for n = 1 and β ≥ �+ 4n(1−�)
n(1−�)+4 for 2 ≤ n < 4

1+� .
If1

1 + 4

n(1 − �) < p ≤ 1 + 2

[n− 2]+
then there exists ε > 0 such that for any initial data

(u0, u1) ∈ D = H 1(Rn)× L2(Rn), ||(u0, u1)||D ≤ ε,

1By [x]+ we denote the positive part of x ∈ R, i.e. [x]+ = max{x, 0}.
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there exists a unique weak solution u ∈ C([0,∞),H 1(Rn) ∩ C1([0,∞), L2(Rn))
to (1). Moreover, the solution satisfies the following estimates2

||u(t, ·)||
Ḣ k

� (1 + t)−min{k(1−�), β−�2 }||(u0, u1)||D (4)

for any k ∈ [0, 1] and

‖ut (t, ·)‖L2 � (1 + t)−min{1, �+β2 }||(u0, u1)||D. (5)

Remark 4 The lower bound for β can be written as

�+ 4n(1 − �)
n(1 − �)+ 4

= �+ 4

pc(n, �)
= 2 − �− 2(1 − �)[4 − (1 + �)n]

n(1 − �)+ 4
.

The condition n < 4
1+� in Theorem 2 implies pc(n, �) < n

[n−2]+ and �+ 4
pc(n,�)

<

2−�. Moreover, the decay in (4) and (5) changes according to β < 2−� or β ≥ 2−�.
Remark 5 By applying the change of variable

v(τ, x) = u(t, x), 1 + τ = (1 + t)1−�
1 − � ,

the Cauchy problem (1) takes the form

⎧⎪⎪⎨
⎪⎪⎩
vττ −�v + β−�

(1−�)(1+τ )vτ = g(v), τ ≥ �
1−� , x ∈ Rn,

v( �
1−� , x) = u0(x), x ∈ Rn,

vτ (
�

1−� , x) = u1(x), x ∈ Rn.

with g(v) = [(1− �)(1+ τ )] 2�
1−� |v|p. In this way, Theorem 2 is essentially included

in Theorem 6 of [3]. But we included it in this paper in order that this result can be
compared with the next theorem.

In the next result, the novelty is to use higher regularity Hm(Rn),m > n
2 , in order

to relax the conditions on the parameters � and n in Theorem 6 of [3], in particular,
the condition n < 4

1+� in Theorem 2. In this way we can also take 1
3 ≤ � < 1 for

space dimension n = 3, in particular, if � = 2
3 we may derive a global existence

result for the non-singular wave equation in the Einstein de Sitter model [15].

2Let f, g : � ⊂ Rn → R be two functions. From now one we use the notation f � g if there
exists a constant C > 0 such that f (y) ≤ Cg(y) for all y ∈ �.
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Theorem 3 Let n ≥ 3, � ∈ (0, 1) and β ≥ � + 2m(1 − �) with m such that
n
2 < m ≤ pc(n, �). If p > pc(n, �), then there exists ε > 0 such that for any initial
data

(u0, u1) ∈ D = Hm(Rn)×Hm−1(Rn), ||(u0, u1)||D ≤ ε,

there exists a unique weak solution u ∈ C([0,∞),Hm(Rn)) ∩ C1([0,∞),
Hm−1(Rn)) to (1). Moreover, the solution satisfies the following estimates

‖u(t, ·)‖Ḣ k � (1 + t)−k(1−�) ||(u0, u1)||D, k = 0,m, (6)

‖ut (t, ·)‖Ḣ k � (1 + t)k(�−1)−1 ||(u0, u1)||D, k = 0,m− 1. (7)

Example 1 Let � = 2
3 in (1). For sufficiently large β and p > 1+ 12

n
, the conclusion

of Theorem 2 holds for n = 1, 2, whereas Theorem 3 holds for n = 3, 4, 5.

3 Representation of Solutions to Parameter Dependent
Cauchy Problems

Let s ≥ 0 be a parameter. We need to solve a family of parameter dependent linear
(f (u) = 0) Cauchy problems corresponding to (1):

⎧⎪⎨
⎪⎩
utt (t, x)− (1 + t)−2��u(t, x)+ β

1+t ut (t, x) = 0, t > s,
u(s, x) = g1(s, x),

ut (s, x) = g2(s, x).

(8)

We begin by applying Fourier transform to the solution of (8), then we denote the
partial Fourier transform of u : R+

0 × R+
0 × Rn → C with respect to x and its

inverse, respectively, by

F[u](t, s, ξ) = û(t, s, ξ) = (2π)−n/2
∫
Rn
e−ixξu(t, s, x) dx (9)

and

F−1[û](t, s, x) = u(t, s, x) = (2π)−n/2
∫
Rn
eixξ û(t, s, ξ) dξ . (10)
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Following Ebert and Reissig [9], we make the change of variables τ = (1+t )1−�
1−� |ξ |

and v(τ, s) = û(t, s, ξ). If u(t, s, x) is the solution of (8) then v(τ, s) satisfies

⎧⎪⎪⎨
⎪⎪⎩
v′′(τ )+ β−�

(1−�)τ v
′(τ )+ v(τ ) = 0

v
(
(1+s)1−�|ξ |

1−�
)
= ĝ1(s, ξ)

v′
(
(1+s)1−�|ξ |

1−�
)
= ĝ2(s,ξ)

|ξ | .

(11)

Moreover, if we are looking for a solution in the product form v(τ, s) = τρw(τ, s),
then w(τ, s) is a solution of the Bessel’s differential equation of order ±ρ:

τ 2w′′(τ )+ τw′(τ )+ (τ 2 − ρ2)w(τ) = 0, (12)

where ρ = 1−β
2(1−�) . We will use the set of Hankel functions, {H+

ρ (τ ),H
−
ρ (τ )} to

write the general solution of the ODE (12). First, according to Wirth’s paper [23]
we introduce an auxiliary function

ψj,γ,δ(t, s, ξ) = |ξ |j
∣∣∣∣∣∣
H−
γ

(
(1+s)1−�|ξ |

1−�
)
H−
γ+δ

(
(1+t )1−�|ξ |

1−�
)

H+
γ

(
(1+s)1−�|ξ |

1−�
)
H+
γ+δ

(
(1+t )1−�|ξ |

1−�
)
∣∣∣∣∣∣ , (13)

where j, γ, δ, s are real parameters. Since H±
γ = Jγ ± iYγ , we can rewrite it in the

form

ψj,γ,δ(t, s, ξ) = 2i|ξ |j
∣∣∣∣∣∣
Jγ

(
(1+s)1−�|ξ |

1−�
)
Jγ+δ

(
(1+t )1−�|ξ |

1−�
)

Yγ

(
(1+s)1−�|ξ |

1−�
)
Yγ+δ

(
(1+t )1−�|ξ |

1−�
)
∣∣∣∣∣∣ (14)

if γ, γ + δ ∈ Z, or

ψj,γ,δ(t, s, ξ) = 2i csc(γ π)|ξ |j
∣∣∣∣∣∣
J−γ

(
(1+s)1−�|ξ |

1−�
)

J−γ−δ
(
(1+t )1−�|ξ |

1−�
)

(−1)δJγ
(
(1+s)1−�|ξ |

1−�
)
Jγ+δ

(
(1+t )1−�|ξ |

1−�
)
∣∣∣∣∣∣
(15)

if γ, γ + δ ∈ Z, where Jγ , Yγ denote the Bessel functions of the first and second
kind, respectively. We then determine the Fourier multipliers and the first order
partial derivatives with respect to t to represent û and ût in an explicit form.

Lemma 1 Let u = u(t, s, x) be the solution of (8). Then the partial Fourier
transform of u with respect to x, û, is represented by

û(t, s, ξ) = m0(t, s, ξ)ĝ1(s, ξ) +m1(t, s, ξ)ĝ2(s, ξ) (16)
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with Fourier multipliers and the first order partial derivatives with respect to t given
by

∂
j
t mk =

(−1)kπi

4(1 − �) (1+ s)
1+(β−1)/2(1 + t)(1−β)/2−j�ψ1+j−k,ρ+k−1,1−j−k, (17)

where ρ = 1−β
2(1−�) , k, j = 0, 1.

Proof Let v1(τ ) = τρH+
ρ (τ ), v2(τ ) = τρH−

ρ (τ ). Then the solution v(τ, s) =
û(t, s, ξ) is written as

v(τ, s) = c1(s, ξ)v1(τ )+ c2(s, ξ)v2(τ ). (18)

We solve the system

[
c1(s, ξ)

c2(s, ξ)

]
= 1

W(v1(τs), v2(τs))
×
[
v′2(τs) −v2(τs)

−v′1(τs) v1(τs)

]
×
[
v(τs, s, ξ)

v′(τs, s, ξ)

]

with the initial data (11) on τs = (1+s)1−�|ξ |
1−� . Plugging v′1(τs) = τ

ρ
s H

+
ρ−1(τs),

v′2(τs) = τ
ρ
s H

−
ρ−1(τs) into the system we get

[
c1(s, ξ)

c2(s, ξ)

]
= τ

ρ
s

W(v1(τs), v2(τs))
×
[
H−
ρ−1(τs) −H−

ρ (τs)

−H+
ρ−1(τs) H

+
ρ (τs)

]
×
[
v(τs, s, ξ)

v′(τs, s, ξ)

]
.

Since the WronskianW(v1(τs), v2(τs)) = − 4i
π
τ

2ρ−1
s (1 + s)−�|ξ | we simplify

τ
ρ
s

W(v1(τs), v2(τs))
= iπ

4
(1 − �)ρ−1(1 + s)1−(1−�)ρ|ξ |1−ρ .

Multiplying by the factor τρ we have

τρ
[
c1(s, ξ)

c2(s, ξ)

]
= h(t, s, ξ) ×

[
H−
ρ−1(τs) −H−

ρ (τs)

−H+
ρ−1(τs) H

+
ρ (τs)

]
×
[
v(τs , s, ξ)

v′(τs, s, ξ)

]

where

h(t, s, ξ) = iπ

4(1 − �) (1 + s)1−(1−�)ρ(1 + t)(1−�)ρ|ξ |.

Multiplying the first component by H+
ρ (τ ) and the second one by H−

ρ (τ ) and
adding its components we obtain (17) for j = 0. To evaluate the first order partial
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derivatives with respect to t we use the chain rule, ∂tτ = (1 + t)−�|ξ | and

ρH±
ρ (τ )+ τ∂τ (H±

ρ (τ )) = τH±
ρ−1(τ ).

��
By Duhamel’s principle, the solution of (1) is represented by

u(t, x) = u0(t, 0, x)+
∫ t

0
u1(t, s, x) ds (19)

where u0 = u0(t, 0, x) is the solution of the linear Cauchy problem

⎧⎪⎨
⎪⎩
utt (t, x)− (1 + t)−2��u(t, x)+ β

1+t ut (t, x) = 0, t > 0,
u(0, x) = u0(x),

ut (0, x) = u1(x),

(20)

and u1 = u1(t, s, x) is the solution of (8) for g1(s, x) = 0 and g2(s, x) =
|u(s, x)|p. We can give explicit representation formulas for these solutions using
the convolution ∗(x)3 in the variable x.

Corollary 1 Let K0(t, 0, x) and K1(t, 0, x) be fundamental solutions of (20), that
is, the distributional solution with data4 (u0, u1) = (δ0, 0) and (u0, u1) = (0, δ0)

respectively. Then

u0(t, 0, x) = K0(t, 0, x) ∗(x) u0(x)+K1(t, 0, x) ∗(x) u1(x) , (21)

where

Kk(t, 0, x) = F−1[mk](t, 0, x), k = 0, 1.

Corollary 2 Let K1(t, s, x) be the fundamental solution of the linear Cauchy
problem (8), that is, the distributional solution with data (u0, u1) = (0, δ0). Then

u1(t, s, x) = K1(t, s, x) ∗(x) |u(s, x)|p , (22)

3Let f, g : R+ × Rn → R be two regular functions. We use the notation f ∗(x) g to indicate the
convolution with respect to the space variable of the functions f and g, i.e.,

(f ∗(x) g)(t, x) =
∫
Rn
f (t, y) · g(t, x − y) dy.

4Here δ0 denotes the Dirac measure at point x = 0.
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where

K1(t, s, x) = − πi

4(1 − �) (1 + s)1+(β−1)/2(1 + t)(1−β)/2F−1[ψ0,ρ,0](t, s, x).

4 L2 − L2 Estimates

In Sect. 4 assume β = 1. In order to obtain an estimate of (16) we have to
distinguish between large and small values for τ . We divide the extended phase
space R+

0 ×R+
0 ×R+ into three zones. Given a fixed N > 0, we define the zone of

high frequencies

Z1 = {(t, s, |ξ |) : |ξ | > N(1 − �)(1 + s)�−1};

and the zones of low frequencies

Z2 = {(t, s, |ξ |) : N(1 − �)(1 + t)�−1 ≤ |ξ | ≤ N(1 − �)(1 + s)�−1};

Z3 = {(t, s, |ξ) : |ξ | < N(1 − �)(1 + t)�−1},

splited by the boundary {(t, |ξ |) : (1 + t)1−�|ξ | = N(1 − �)}.
By Plancherel’s theorem L2 − L2 estimates of the solution correspond to L∞

estimates of the corresponding Fourier multipliers.

Lemma 2 Let � ∈ (0, 1), γ = 0, |δ| ≤ j and k ≥ 0. It holds

|ξ |k|ψj,γ,δ(t, s, ξ)| � (23)⎧⎪⎪⎨
⎪⎪⎩
(1 + s)(�−1)/2(1 + t)(�−1)/2|ξ |k+j−1 if (t, ξ) ∈ Z1

(1 + s)(1−�)(1/2−k−j)(1 + t)(�−1)/2 if |γ | ≤ k + j − 1/2 and (t, ξ) ∈ Z2

(1 + s)(�−1)|γ |(1 + t)(1−�)(|γ |−k−j) if |γ | > k + j − 1/2 and (t, ξ) ∈ Z2

(1 + s)(�−1)|γ |(1 + t)(1−�)(|γ |−k−j) if (t, ξ) ∈ Z3.

for all s ≥ 0 and t ≥ s.
Proof For any N ∈ (0, 1), the following properties hold:

|H±
γ (τ )| � τ−

1
2 , τ ∈ [N,∞); (24)

|H±
γ (τ )| � τ−|γ |, τ ∈ (0, N), γ = 0; (25)

|Jγ (τ )| � τγ , τ ∈ (0, N); (26)

|Yγ (τ )| � τ−γ , τ ∈ (0, N), γ = 0. (27)
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To conclude the estimates in zones Z1 and Z2 we may use the representation (13),
estimates (24) and (25), whereas in the zoneZ3 we use (14)–(15) and (26)–(27). ��
In the next propositions we will get decay estimates for the Ḣ k norm of solutions,
in which the regularity of the data is influenced by the zone Z1.

Proposition 1 Let � ∈ (0, 1), 0 < β = 1 and k ≥ 0. If u0 ∈ Hk(Rn) then
w(t, x) = K0(t, 0, x) ∗(x) u0(x) satisfies the following estimates:

||w(t, ·)||Ḣ k � ||u0||Hk ×⎧⎨
⎩
(1 + t)(k+2)�−β−k−1 if β ≤ (2k + 3)�− 2(k + 1)
(1 + t)(�−β)/2 if (2k + 3)�− 2(k + 1) < β < (1 − 2k)�+ 2k
(1 + t)k�−k if β ≥ (1 − 2k)�+ 2k.

Proof In the zone Z2, by Lemma 2 we obtain

|ξ |k|ψ1,ρ−1,1(t, 0, ξ)| �⎧⎨
⎩
(1 + t)(2(k+2)�−β−2k−3)/2 if β ≤ (2k + 3)�− 2(k + 1)
(1 + t)(�−1)/2 if (2k + 3)�− 2(k + 1) < β < (1 − 2k)�+ 2k
(1 + t)(2k�+β−2k−1)/2 if β ≥ (1 − 2k)�+ 2k,

then from (17) it follows that

|ξ |k|m0(t, 0, ξ)| �⎧⎨
⎩
(1 + t)(k+2)�−β−k−1 if β ≤ (2k + 3)�− 2(k + 1)
(1 + t)(�−β)/2 if (2k + 3)�− 2(k + 1) < β < (1 − 2k)�+ 2k
(1 + t)k�−k if β ≥ (1 − 2k)�+ 2k.

In Z3, we get the same estimate than in Z2 since

|ξ |k|m0(t, 0, ξ)| �
{
(1 + t)(k+2)�−β−k−1 if β ≤ 2�− 1
(1 + t)k�−k if β > 2�− 1

and in Z1 we obtain

|ξ |k|m0(t, 0, ξ)| � (1 + t)(�−β)/2|ξ |k.

Thanks to u0 ∈ Hk(Rn), we have that |ξ |km0(t, 0, ·)û0 ∈ L2(Rn) for all t ≥ 0, thus
the proof is concluded. ��
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Proposition 2 Let � ∈ (0, 1), 0 < β = 1 and k ≥ 0. If u0 ∈ Hk+1(Rn) then the
partial derivative with respect to time of w(t, x) = K0(t, 0, x) ∗(x) u0(x) satisfies
the estimates:

||wt(t, ·)||Ḣ k � ||u0||Hk+1 ×⎧⎨
⎩
(1 + t)(k+2)�−β−k−2 if β ≤ (2k + 5)�− 2(k + 2)
(1 + t)−(β+�)/2 if (2k + 5)�− 2(k + 2) < β < −(2k + 1)�+ 2(k + 1)
(1 + t)k(�−1)−1 if β ≥ −(2k + 1)�+ 2(k + 1).

Proof In the zone Z2, by Lemma 2 we obtain

|ξ |k|ψ2,ρ−1,0(t, 0, ξ)| �⎧⎪⎨
⎪⎩
(1 + t)(2(k+3)�−β−2k−5)/2 if β ≤ (2k + 5)�− 2(k + 2)
(1 + t)(�−1)/2 if (2k + 5)�− 2(k + 2) < β < −(2k + 1)�+ 2(k + 1)
(1 + t)(2(k+1)�+β−2k−3)/2 if β ≥ −(2k + 1)�+ 2(k + 1),

then from (17) it follows that

|ξ |k|∂tm0(t, 0, ξ)| �⎧⎨
⎩
(1 + t)((k+2)�−β−k−2 if β ≤ (2k + 5)�− 2(k + 2)
(1 + t)−(β+�)/2 if (2k + 5)�− 2(k + 2) < β < −(2k + 1)�+ 2(k + 1)
(1 + t)k�−k−1 if β ≥ −(2k + 1)�+ 2(k + 1).

In Z3, we get the same estimate than in Z2 since

|ξ |k|∂tm0(t, 0, ξ)| �
{
(1 + t)(k+2)�−β−k−2 if β ≤ 2�− 1
(1 + t)k�−k−1 if β > 2�− 1

and in Z1 we obtain

|ξ |k|∂tm0(t, 0, ξ)| � (1 + t)−(β+�)/2|ξ |k+1.

Thanks to u0 ∈ Hk+1(Rn), we have that |ξ |k∂tm0(t, 0, ·)û0 ∈ L2(Rn) for all t ≥ 0,
thus the proof is concluded. ��
Proposition 3 Let � ∈ (0, 1), 0 < β = 1 and k ≥ 0. If g1

.= 0 and g2(s, ·) ∈
H [k−1]+(Rn) then the solution u of the problem (8) satisfies estimates:

||u(t, s, ·)||Ḣ k � ||g2(s, ·)||L2 ×
{
(1 + s)β(1 + t)k�−β−k+1 if β < 1
(1 + s)(1 + t)k�−k if β > 1
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for k ∈ [0, 1/2] and

||u(t, s, ·)||Ḣ k � ||g2(s, ·)||L2 ×⎧⎪⎪⎨
⎪⎪⎩
(1 + s)β(1 + t)k�−β−k+1 if β ≤ (2k − 1)�+ 2(1 − k)
(1 + s)β(1 + t)(�−β)/2 if (2k − 1)�+ 2(1 − k) < β < 1
(1 + s)(1 + t)(�−β)/2 if 1 < β < (1 − 2k)�+ 2k
(1 + s)(1 + t)k�−k if β ≥ (1 − 2k)�+ 2k

for k ∈ (1/2, 1] and

||u(t, s, ·)||Ḣ k �
(
||g2(s, ·)||L2 + (1 + s)(1−�)(k−1)||g2(s, ·)||Ḣ k−1

)
×

⎧⎪⎪⎨
⎪⎪⎩
(1 + s)β(1 + t)k�−β−k+1 if β ≤ (2k − 1)�+ 2(1 − k)
(1 + s)β(1 + t)(�−β)/2 if (2k − 1)�+ 2(1 − k) < β < 1
(1 + s)(1 + t)(�−β)/2 if 1 < β < (1 − 2k)�+ 2k
(1 + s)(1 + t)k�−k if β ≥ (1 − 2k)�+ 2k

for k > 1.

Proof In the following estimates we use Lemma 2 and (17). In the zone Z2, we
obtain

|ξ |k|ψ0,ρ,0(t, s, ξ)| �
{
(1 + s)(β−1)/2(1 + t)(1−β)/2+k(�−1) if β < 1
(1 + s)(1−β)/2(1 + t)(β−1)/2+k(�−1) if β > 1

for k ∈ [0, 1/2] and

|ξ |k|ψ0,ρ,0(t, s, ξ)| �⎧⎪⎪⎨
⎪⎪⎩
(1 + s)(β−1)/2(1 + t)(2k�−β−2k+1)/2 if β ≤ (2k − 1)�+ 2(1 − k)
(1 + s)(β−1)/2(1 + t)(�−1)/2 if (2k − 1)�+ 2(1 − k) < β < 1
(1 + s)(1−β)/2(1 + t)(�−1)/2 if 1 < β < (1 − 2k)�+ 2k
(1 + s)(1−β)/2(1 + t)(2k�+β−2k−1)/2 if β ≥ (1 − 2k)�+ 2k

for k > 1/2. Then

|ξ |k|m1(t, s, ξ)| �
{
(1 + s)β(1 + t)k�−β−k+1 if β < 1
(1 + s)(1 + t)k�−k if β > 1
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for k ∈ [0, 1/2] and

|ξ |k|m1(t, s, ξ)| �⎧⎪⎪⎨
⎪⎪⎩
(1 + s)β(1 + t)k�−β−k+1 if β ≤ (2k − 1)�+ 2(1 − k)
(1 + s)β(1 + t)(�−β)/2 if (2k − 1)�+ 2(1 − k) < β < 1
(1 + s)(1 + t)(�−β)/2 if 1 < β < (1 − 2k)�+ 2k
(1 + s)(1 + t)k�−k if β ≥ (1 − 2k)�+ 2k

for k > 1/2. In the zone Z3 we have the same estimates for all k since

|ξ |k|m1(t, s, ξ)| �
{
(1 + s)β(1 + t)k�−β−k+1 if β < 1
(1 + s)(1 + t)k�−k if β > 1.

In the zone Z1 we may estimate

|ξ |k|m1(t, s, ξ)| � |ξ |k−1(1 + s)(β+�)/2(1 + t)(�−β)/2.

Now we have to analyze two cases. If k ≤ 1 we can estimate

|ξ |k−1 � (1 + s)(1−�)(1−k)

so that

|ξ |k|m1(t, s, ξ)| � (1 + s)(β+�)/2+(1−�)(1−k)(1 + t)(�−β)/2

and we obtain the same estimates that as in Z2. However, if k > 1 it holds

|ξ |k|m1(t, s, ξ)| � (1 + s)(1−�)(k−1)|ξ |k−1 ×⎧⎪⎪⎨
⎪⎪⎩
(1 + s)β(1 + t)k�−β−k+1 if β ≤ (2k − 1)�+ 2(1 − k)
(1 + s)β(1 + t)(�−β)/2 if (2k − 1)�+ 2(1 − k) < β < 1
(1 + s)(1 + t)(�−β)/2 if 1 < β < (1 − 2k)�+ 2k
(1 + s)(1 + t)k�−k if β ≥ (1 − 2k)�+ 2k.

Thanks to g2(s, ·) ∈ H [k−1]+(Rn), we have that |ξ |km1(t, s, ·)ĝ2(s, ·) ∈ L2(Rn) for
all s ≥ 0 and t ≥ s, thus the proof is concluded. ��
Proposition 4 Let � ∈ (0, 1) and 0 < β = 1 and k ≥ 0. If g1

.= 0 and g2(s, ·) ∈
Hk(Rn) then the partial derivative with respect to time of the solution u of the



Critical Exponent for Semilinear Damped Wave Equation 261

problem (8) satisfies the following estimates:

||ut (t, s, ·)||Ḣ k �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + s)β(1 + t )k(�−1)−β (||g2(s, ·)||L2 + (1 + s)(1−�)k||g2(s, ·)||Ḣ k
)

if β ≤ (1 + 2k)�− 2k ,

(1 + s)β(1 + t )−(β+�)/2 (||g2(s, ·)||L2 + (1 + s)(�−β)/2||g2(s, ·)||Ḣ k
)

if (1 + 2k)�− 2k < β ≤ � ,
(1 + s)β(1 + t )−(β+�)/2||g2(s, ·)||L2∩Ḣ k
if � < β < 1 ,

(1 + s)(1 + t )−(β+�)/2||g2(s, ·)||L2∩Ḣ k
if 1 < β ≤ 2 − � ,
(1 + s)(1 + t )−(β+�)/2 (||g2(s, ·)||L2 + (1 + s)(β+�−2)/2||g2(s, ·)||Ḣ k

)
if 2 − � < β < −(2k + 1)�+ 2(k + 1) ,

(1 + s)(1 + t )k(�−1)−1
(||g2(s, ·)||L2 + (1 + s)(1−�)k||g2(s, ·)||Ḣ k

)
if β ≥ −(2k + 1)�+ 2(k + 1) .

Remark 6 If k = 0 these estimates are reduced to

||ut(t, s, ·)||L2 � ||g2(s, ·)||L2 ×

⎧⎪⎪⎨
⎪⎪⎩
(1 + s)β(1 + t)−β if β ≤ �
(1 + s)β(1 + t)−(β+�)/2 if � < β < 1
(1 + s)(1 + t)−(β+�)/2 if 1 < β < 2 − �
(1 + s)(1 + t)−1 if β ≥ 2 − �.

Proof In the following estimates we use Lemma 2 and (17). First, in the zone Z2,

|ξ |k|ψ1,ρ,−1(t, s, ξ)| �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 + s)(β−1)/2(1 + t)(2(k+1)�−β−2k−1)/2

if β ≤ (2k + 1)�− 2k ,
(1 + s)(�−1)(k+1/2)(1 + t)(�−1)/2

if (2k + 1)�− 2k < β < −(2k + 1)�+ 2(k + 1) ,
(1 + s)(1−β)/2(1 + t)(2(k+1)�+β−2k−3)/2

if β ≥ −(2k + 1)�+ 2(k + 1) ,

and

|ξ |k|∂tm1(t, s, ξ)| �

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1 + s)β(1 + t)k�−β−k
if β ≤ (2k + 1)�− 2k ,
(1 + s)((2k+1)�+β−2k)/2(1 + t)−(β+�)/2
if (2k + 1)�− 2k < β < −(2k + 1)�+ 2(k + 1) ,
(1 + s)(1 + t)k�−k−1

if β ≥ −(2k + 1)�+ 2(k + 1) .
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Then, in the zone Z3,

|ξ |k|∂tm1(t, s, ξ)| �
{
(1 + s)β(1 + t)k�−β−k if β < 1
(1 + s)(1 + t)k�−k−1 if β > 1.

Hence, in Z2 ∪ Z3,

|ξ |k|∂tm1(t, s, ξ)| �⎧⎪⎪⎨
⎪⎪⎩
(1 + s)β(1 + t)k�−β−k if β ≤ (2k + 1)�− 2k
(1 + s)β(1 + t)−(β+�)/2 if (2k + 1)�− 2k < β < 1
(1 + s)(1 + t)−(β+�)/2 if 1 < β < −(2k + 1)�+ 2(k + 1)
(1 + s)(1 + t)k�−k−1 if β ≥ −(2k + 1)�+ 2(k + 1).

Finally, in the zone Z1,

|ξ |k|∂tm1(t, s, ξ)| � (1 + s)(β+�)/2(1 + t)−(β+�)/2|ξ |k.

Thanks to g2(s, ·) ∈ Hk(Rn), we have that |ξ |k∂tm1(t, s, ·)ĝ2(s, ·) ∈ L2(Rn) for all
s ≥ 0 and t ≥ s, thus the proof is concluded. ��

5 Non-existence via Test Function Method

The following proof is a modified version of Theorem 3 in [4]:

Proof (Theorem 1) By applying the change of variable

v(τ, x) = u(t, x), 1 + τ = (1 + t)1−�
1 − � ,

the Cauchy problem (1) takes the form

⎧⎪⎪⎨
⎪⎪⎩
vττ −�v + μ

(1+τ )vτ = f (τ)|v|p, τ ≥ τ0, x ∈ Rn

v(τ0, x) = u0(x), x ∈ Rn,

vτ (τ0, x) = u1(x), x ∈ Rn,

(28)

with f (τ) = [(1−�)(1+τ )] 2�
1−� , μ = β−�

1−� and τ0 = �
1−� . In this way, it is sufficient

to prove a non-existence of global (in time) result for (28).
We fix a nonnegative, decreasing test function ϕ ∈ C∞

c ([0,∞)) with ϕ = 1
in [0, 1/2] and supp(ϕ) ⊂ [0, 1], and a nonnegative, radial test function ψ ∈
C∞
c (R

n), such that ψ = 1 in the ball B1/2, and supp(ψ) ⊂ B1.
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We also assume ψ(x) ≤ ψ(y) when |x| ≥ |y|. Here Br denotes the ball of
radius r , centered at the origin. We may assume that

ϕ
− p′
p

(
|ϕ′′|p′ +

∣∣∣∣∂τ
(

μ

1 + τ ϕR
)∣∣∣∣
p′)

, ψ
− p′
p |�ψ|p′ , are bounded,

(29)

where p′ = p/(p − 1). Then, for R ≥ 1 and R−1τ0 ≤ 1
2 , we define:

ϕR(τ) = ϕ(R−1τ ), ψR(x) = ψ(R−1x). (30)

Let us assume that v is the global (in time) weak solution to (28). Let R > 0, and
also assume that R ≤ T , if u is a local solution in [0, T ] ×Rn. Integrating by parts,
and recalling that ϕR(τ) = 1 for τ ∈ [0, 1

2 ], we obtain

IR =
∫ ∞

τ0

∫
Rn
v

(
ϕ′′RψR + ϕR�ψR − ∂τ

(
μ

1 + τ ϕR
)
ψR

)
dxdτ

−
∫
Rn
ψR(x)

(
μ

1 + τ0
u0(x)+ u1(x)

)
dx,

where

IR =
∫ ∞

τ0

∫
Rn
f (τ)|v|pϕRψR dxdτ.

We may now apply Young inequality to estimate

∫ ∞

τ0

∫
Rn

|v|
(
|ϕ′′R|ψR + ϕR |�ψR | + ψR

∣∣∣∣∂τ
(

μ

1 + τ ϕR
)∣∣∣∣
)
dxdτ ≤ 1

p
IR+

1

p′

∫ ∞

τ0

∫
Rn
(ϕRψRf )

− p′
p

(
|ϕ′′R|ψR + ϕR |�ψR | + ψR

∣∣∣∣∂τ
(

μ

1 + τ ϕR
)∣∣∣∣
)p′

dxdτ.

Due to

ϕ
(k)
R (τ ) = R−k(ϕ(k))(R−1τ ), �ψR(x) = R−2(�ψ)(R−1x),

recalling (29), we may estimate

∫ ∞

τ0

∫
Rn
(ϕRψRf (τ))

− p′
p |ϕ′′RψR|p

′
dxdτ ≤ C R− 2�

1−�
p′
p −2p′+n+1

,

∫ ∞

τ0

∫
Rn
(ϕRψRf (τ))

− p′
p |ϕR�ψR|p′ dxdτ ≤ C R− 2�

1−�
p′
p −2p′+n+1

,



264 M. R. Ebert and J. Marques

∫ ∞

τ0

∫
Rn
(ϕRψRf (τ))

− p′
p

∣∣∣∣∂τ
(

μ

1 + τ ϕR
)∣∣∣∣
p′

dxdτ ≤ C R− 2�
1−�

p′
p
−2p′+n+1

.

Summarizing, we proved that

1

p′
IR ≤ C R− 2�

1−�
p′
p
−2p′+n+1 −

∫
Rn
ψR(x)

(
μ

1 + τ0
u0(x)+ u1(x)

)
dx.

Recalling that R−1τ0 ≤ 1
2 and assumption (3), there exists c > 0 such that

∫
Rn
ψR(x)

(
μu0(x)

1 + τ0
+ u1(x)

)
dx ≥ ε

R

∫
Rn
(1 + |x|)− n

2 (log(e + |x|)−1ψR(x)dx

≥ cε Rn−
n
2−1(log(e + R))−1.

As a consequence:

IR ≤ C R
− 2�

1−�
p′
p −2p′+n+1 − cε Rn− n

2−1(log(e + R))−1

= Rn
(
C R

− 2�
1−�

p′
p −2p′+1 − cε R− n

2−1(log(e + R))−1).
Assume, by contradiction, that the solution v is global.

In the subcritical case p < 1 + 4
n(1−�) , it follows that

2�

1 − �
p′

p
+ 2p′ − 1 > 1 + n

2

and IR < 0, for any sufficiently large R, and this contradicts the fact that IR ≥ 0.
Therefore, v cannot be a global (in time) solution and this concludes the proof. ��

6 Global Existence Results

By Duhamel’s principle, a function u ∈ X, whereX is a suitable space, is a solution
to (1) if, and only if, it satisfies the equality

u(t, x) = u0(t, x)+
∫ t

0
K1(t, s, x) ∗(x) f (u(s, x)) ds , in X, (31)

with f (u(s, x)) = |u|p, u0 and K1(t, s, x) ∗(x) f are the solutions to the linear
Cauchy problem (20) and (8) with g1 ≡ 0, respectively. The proof of our global
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existence results is based on the following scheme: We define an appropriate data
function space

D
.= Hs+1(Rn)×Hs(Rn),

and an evolution space for solutions

X(T )
.= C([0, T ],H s+1(Rn) ∩ C1([0, T ],H s(Rn)),

with s = 0 in Theorem 2 and s = m in Theorem 3, equipped with a norm related to
the estimates of solutions to the linear Cauchy problem (20) such that

‖u0‖X ≤ C ‖(u0, u1)‖D.

For any u ∈ X, we define the operator P by

P : u ∈ X(T )→ Pu(t, x) := u0(t, x)+ Fu(t, x),

with

Fu(t, x)
.=
∫ t

0
K1(t, s, x) ∗(x) f (u(s, x)) ds ,

then we prove the estimates

‖Pu‖X ≤ C ‖(u0, u1)‖D + C1(t)‖u‖pX ,
‖Pu− Pv‖X ≤ C2(t)‖u − v‖X

(‖u‖p−1
X + ‖v‖p−1

X

)
.

The estimates for the image Pu allow us to apply Banach’s fixed point theorem.
In this way we get simultaneously a unique solution to Pu = u locally in time for
large data and globally in time for small data. To prove the local (in time) existence
we use that C1(t), C2(t) tend to zero as t goes to zero, whereas to prove the global
(in time) existence we use C1(t) ≤ C and C2(t) ≤ C for all t ≥ 0.

Proof (Theorem 2) We follow closely [3]. We define the space

X(T )
.= C([0, T ),H 1) ∩ C1([0, T ], L2),

equipped with the norm

‖u‖X(T ) .= sup
t∈[0,T ]

{
‖u(t, ·)‖L2 + (1 + t)1−�‖∇u(t, ·)‖L2 + (1 + t)‖ut (t, ·)‖L2

}
(32)
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if β ≥ 2 − �, or

‖u‖X(T ) .= sup
t∈[0,T ]

{
‖u(t, ·)‖L2 + (1 + t) β−�2

(
‖∇u(t, ·)‖L2 + ‖u(t, ·)‖

Ḣ
β−�

2(1−�)

)
+

+ (1 + t) β+�2 ‖ut (t, ·)‖L2

}
,

if β ∈ (1, 2 − �). In the following we only verify how to prove the global (in time)
existence in time. Thanks to Propositions 1–4, u0 ∈ X(T ) and it satisfies

‖u0‖X ≤ C ‖(u0, u1)‖D.

It remains to show the estimates

‖Fu‖X ≤ C‖u‖pX , (33)

‖Fu− Fv‖X ≤ C‖u− v‖X
(‖u‖p−1

X + ‖v‖p−1
X

)
. (34)

Let us prove (33). Applying Proposition 3 we have for k ∈ [0, 1] the estimates

‖Fu(t, ·)‖
Ḣ k

�
∫ t

0
(1 + s)(1 + t)−min{k(1−�), β−�2 }‖|u(s, ·)|p‖L2ds.

If β ≥ 2− �, taking into account of the norm in (32), by using Gagliardo-Nirenberg
inequality we may estimate

‖|u(s, ·)|p‖L2 = ‖u(s, ·)‖p
L2p � ‖u(s, ·)‖(1−θ)p

L2 ‖∇u(s, ·)‖θp
L2 � (1 + s)(�−1)θp‖u‖p

X(T )
,

with θp = n(p−1)
2 and p ≤ n

[n−2]+ .
If β ∈ (1, 2 − �), we use the fractional Sobolev embedding to estimate

‖|u(s, ·)|p‖L2 � ||u(s, ·)||p
Ḣ k̄
, k̄ = n

2

(
1 − 1

p

)
. (35)

In space dimension n = 1, thanks to u ∈ X(T ) and k̄ < 1
2 <

β−�
2(1−�) , by Gagliardo-

Nirenberg inequality we conclude that

||u(s, ·)||
Ḣ k̄

� ‖u(s, ·)‖(1−θ)
L2 ‖u(s, ·)‖θ

Ḣ
β−�

2(1−�)
� (1 + s)(�−1)k̄‖u‖X(T ),

with k̄ = θ
β−�

2(1−�) .
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Now, let us consider space dimension n ≥ 2. If β ≥ � + 2k̄(1 − �), using again
Gagliardo-Nirenberg inequality with θ β−�

2(1−�) = k̄ we conclude that

||u(s, ·)||
Ḣ k̄

� ‖u(s, ·)‖(1−θ)
L2 ‖u(s, ·)‖θ

Ḣ
β−�

2(1−�)
� (1 + s)(�−1)k̄‖u‖X(T ).

Therefore, for β ≥ �+ 2k̄(1 − �) we have

‖Fu(t, ·)‖
Ḣ k

� (1 + t)−min{k(1−�), β−�2 }
∫ t

0
(1 + s)1+(�−1) n(p−1)

2 ds‖u‖pX(T )

� (1 + t)−min{k(1−�), β−�2 }‖u‖pX(T ),

for 1 + 4
n(1−�) < p ≤ 1 + β−�

n(1−�)−β+� and for all k ∈ [0, 1]. Now, let us consider
the case

β ∈
[
�+ 4n(1 − �)

n(1 − �)+ 4
, �+ 2k̄(1 − �)

]
,

which is not empty for p > pc(n, �). The condition β < �+2k̄(1− �) is equivalent
to p > 1 + β−�

n(1−�)−β+� . Hence, using that u ∈ X(T ) and Gagliardo-Nirenberg
inequality (now in different basis) it follows for p ≤ n

[n−2]+ that

||u(s, ·)||
Ḣ k̄

� ‖∇u(s, ·)‖θ
L2‖u(s, ·)‖1−θ

Ḣ
β−�

2(1−�)
� (1 + s) (�−β)2 ‖u‖X(T ).

Again we conclude

‖Fu(t, ·)‖
Ḣ k

� (1 + t)−min{k(1−�), β−�2 }
∫ t

0
(1 + s)1+ (�−β)p

2 ds‖u‖pX(T )

� (1 + t)−min{k(1−�), β−�2 }‖u‖pX(T ),

for p > 1 + β−�
n(1−�)−β+� ≥ 4

β−� thanks to β ≥ �+ 4n(1−�)
n(1−�)+4 .

Similarly we conclude

‖∂tFu(t, ·)‖L2 � (1 + t)−min{1, �+β2 }‖u‖pX(T ),

for p > pc(n, �).
The considerations to prove (34) are the following: due to the Mean Value

Theorem we have

||u|p − |v|p| ≤ C0|u− v|
(|u|p−1 + |v|p−1),
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and using Hölder’s inequality we get

‖|u|p − |v|p‖L2 ≤ C0‖u− v‖L2p

(‖u‖p−1
L2p + ‖v‖p−1

L2p

)
.

Now we proceed as in the proof of (33) to derive (34) and the proof of Theorem 2
is concluded. ��
Remark 7 By using an idea from [19], one may include p = 1 + 4

n(1−�) in the
statements of Theorem 2. We only sketch the idea for large β > 0. By using the
change of variable in Remark 5, it is sufficient to discuss the global existence of
small data solutions to the Cauchy problem

⎧⎪⎪⎨
⎪⎪⎩
vττ −�v + β−�

(1−�)(1+τ )vτ = g(v), τ ≥ �
1−� , x ∈ Rn,

v( �
1−� , x) = u0(x), x ∈ Rn,

vτ (
�

1−� , x) = u1(x), x ∈ Rn,

(36)

with g(v) = [(1− �)(1+ τ )] 2�
1−� |v|p. Now, for β > 0 sufficiently large, we may use

the following estimates for solutions v0 to the linear problem associate to (36):
For initial data in energy space H 1(Rn) × L2(Rn) we have (see Theorem 4 in

[3])

‖v0(τ, ·)‖Ḣ k � (1 + τ )−k‖(u0, u1)‖H 1×L2, k ∈ [0, 1],

whereas for a parameter dependent initial data (v0(s, x), v0
τ (s, x)) = (0, u1(x)) we

have (see Remark 3 in [3]):

‖v0(τ, ·)‖Ḣ k � (1 + τ )− n
2−k(1 + s)

(
‖u1‖L1 + (1 + s) n2 ‖u1‖L2

)
k ∈ [0, 1].

Hence, following as in the proof of Theorem 2 we may estimate

‖Fv(τ, ·)‖
Ḣ k � (1 + τ)− n

2−k
∫ t

0
(1 + s)

(
‖g(v(s, ·)‖L1 + (1 + s) n2 ‖g(v(s, ·))‖L2

)
ds.

Assuming the a priori estimate for solutions to (36)

‖v(τ, ·)‖Ḣ k � (1 + τ )−k‖v‖X(T ), k ∈ [0, 1],

by Gagliardo-Nirenberg inequality we may estimate

‖g(v(s, ·))‖L1 = (1 + s) 2�
1−� ‖v(s, ·)‖pLp � (1 + s) 2�

1−� ‖v(s, ·)‖(1−θ)p
L2 ‖∇v(s, ·)‖θp

L2

� (1 + s) 2�
1−�−pθ‖v‖pX(T ),
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with θp = n(p−2)
2 , and

‖g(v(s, ·))‖L2 = (1 + s) 2�
1−� ‖v(s, ·)‖p

L2p � (1 + s) 2�
1−� ‖v(s, ·)‖(1−θ)p

L2 ‖∇v(s, ·)‖θp
L2

� (1 + s) 2�
1−�−pθ‖v‖pX(T ),

with θp = n(p−1)
2 and p ≤ n

[n−2]+ . Therefore, we conclude that

‖Fv(τ, ·)‖
Ḣ k

� (1 + τ)− n
2 −k

∫ τ

�
1−�
(1 + s)1+ 2�

1−�− n(p−2)
2 ds‖v‖pX(T ) � (1 + τ)−k‖v‖pX(T ),

thanks to

2 + 2�

1 − � −
n(p − 2)

2
− n

2
≤ 0,

for p ≥ 1 + 4
n(1−�) .

Proof (Theorem 3) We define the space

X(T )
.= C([0, T ),Hm(Rn)) ∩ C1([0, T ],Hm−1(Rn)),

equipped with the norm

‖u‖X(T ) .= supt∈[0,T ]
{
‖u(t, ·)‖L2 + (1 + t)m(1−�)‖u(t, ·)‖Ḣm + (1 + t)‖ut(t, ·)‖L2

+(1 + t)m(1−�)+�‖ut(t, ·)‖Ḣm−1

}
.

Thanks to Propositions 1–4 and β ≥ �+ 2m(1 − �) > 2 − � for n ≥ 3, u0 ∈ X(T )
and it satisfies

‖u0‖X ≤ C ‖(u0, u1)‖D.

Applying Gagliardo-Nirenberg inequality with Hm(Rn) regularity and m > n
2 , we

may estimate

‖|u(s, ·)|p‖L2 = ‖u(s, ·)‖p
L2p � ‖u(s, ·)‖(1−θ)p

L2 ‖(−�)m2 u(s, ·)‖θp
L2

� (1 + s)m(�−1)θp‖u‖pX(T )

with θp = n(p−1)
2m . Hence, for i + j ≤ 1 we have

‖∇j ∂it Fu(t, ·)‖L2 �
∫ t

0
(1 + t)j (�−1)−i (1 + s)‖|u(s, ·)|p‖L2ds
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� ‖u‖pX(T )
∫ t

0
(1 + t)j (�−1)−i(1 + s)1+ n

2 (p−1)(�−1)ds

� (1 + t)j (�−1)−i‖u‖pX(T ),

thanks to p > 1 + 4
n(1−�) .

In order to estimate ‖(−�)m2 Fu(t, ·)‖L2 and ‖(−�)m−1
2 ∂tFu(t, ·)‖L2 , we may

use that Hm(Rn), with m > n
2 , is imbedded into L∞(Rn). Indeed, thanks to

Corollary 3, for p > max{1,m− 1} we may estimate

‖|u(s, ·)|p‖Ḣm−1 ≤ C‖u(s, ·)‖Ḣm−1‖u(s, ·)‖p−1
L∞ .

Now, for u ∈ X(T ) we have

‖u(s, ·)‖Ḣm−1 � (1 + s)(m−1)(�−1)‖u‖X(T ),

and applying Proposition 5 from the Appendix, we may estimate

‖u(s, ·)‖L∞ � ‖u(s, ·)‖(1−θ)
L2 ‖(−�)m2 u(s, ·)‖θ

L2 � (1 + s)m(�−1)θ‖u‖X(T ),

with θ = n
2m . Hence

‖|u(s, ·)|p‖Ḣm−1 � (1 + s) n2 (�−1)(p−1)+(m−1)(�−1)‖u‖pX(T ),

and

‖Fu(t, ·)‖Ḣm

�
∫ t

0
(1 + s)(1 + t)m(�−1)

{
|||u(s, ·)|p||L2 + (1 + s)(1−�)(m−1)|||u(s, ·)|p||Ḣm−1

}
ds

� (1 + t)m(�−1)‖u‖pX(T )
∫ t

0
(1 + s)1+ n

2 (p−1)(�−1)ds � (1 + t)m(�−1)‖u‖pX(T ),

for p > 1 + 4
n(1−�) . Moreover,

‖∂tFu(t, ·)‖Ḣm−1

�
∫ t

0
(1 + s)(1 + t)m(�−1)−� {|||u(s, ·)|p||L2 + (1 + s)(1−�)(m−1)|||u(s, ·)|p||Ḣm−1

}
ds

� (1 + t)m(�−1)−�‖u‖pX(T )
∫ t

0
(1 + s)1+ n

2 (p−1)(�−1)ds � (1 + t)m(�−1)−�‖u‖pX(T ).

We now prove the Lipschitz condition (34).
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To estimate ‖∇j ∂it (Fu − Fv)(t, ·)‖L2 , i + j = 0, 1, we follow as in the proof of
Theorem 2, but to estimate ‖(Fu− Fv)(t, ·)‖Ḣm and ‖∂t (Fu− Fv)(t, ·)‖Ḣm−1 we
use

Pu− Pv = Fu− Fv =
∫ t

0
K1(t, s, x) ∗(x)

(|u(s, x)|p − |v(s, x)|p) ds
= p

∫ t

0
K1(t, s, x) ∗(x)

( ∫ 1

0
|v + τ (u− v)|p−2(v + τ (u− v))dτ

)
(s, x)(u− v)(s, x) ds.

Indeed, applying Minkowski’s integral inequality and Proposition 3 with k = m

gives

‖(Fu− Fv)(t, ·)‖Ḣm �
∫ t

0

∥∥K1(t, s, ·) ∗(x)
(|u(s, ·)|p − |v(s, ·)|p)∥∥

Ḣm−1 ds

�
∫ t

0
(1 + t )m(�−1)(1 + s)

∥∥∥( ∫ 1

0
|v + τ (u− v)|p−2(v + τ (u− v))dτ

)
(u− v)(s, ·)

∥∥∥
L2
ds

+
∫ t

0
(1 + t )m(�−1)(1 + s)1+(1−�)(m−1) ×

∥∥∥( ∫ 1

0
|v + τ (u− v)|p−2(v + τ (u− v))dτ

)
(u− v)(s, ·)

∥∥∥
Ḣm−1

ds.

We immediately get

∥∥∥|v + τ(u− v)|p−2(v + τ(u− v))(u − v)(s, ·)
∥∥∥
L2

� ‖v + τ(u− v)‖p−1
L∞ ‖u− v‖L2

� (1 + s) n2 (�−1)(p−1)
(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
‖u− v‖X(T ).

The application of the fractional Leibniz rule from Proposition 7 from the Appendix
yields

∥∥∥|v + τ (u− v)|p−2(v + τ (u− v))(u− v)(s, ·)
∥∥∥
Ḣm−1

� ‖v + τ (u− v)‖p−1
Lr1(p−1)‖u− v‖Ḣm−1,r2 +

‖(u− v)(s, ·)‖Lr4
∥∥∥|v + τ (u− v)|p−2(v + τ (u− v))(s, ·)

∥∥∥
Ḣm−1,r3

,

under the conditions

1

r1
+ 1

r2
= 1

r3
+ 1

r4
= 1

2
.
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Now let us estimate all the terms appearing in the above integrals. By using
Proposition 5 from the Appendix we arrive at the estimate

∥∥|v + τ (u− v)|p−2(v + τ (u− v))(s, ·)∥∥
Lr1

= ‖v + τ (u− v)‖p−1
Lr1(p−1)

� ‖v + τ (u− v)‖(1−θ1)(p−1)
L2

∥∥(−))m2 (v + τ (u− v))∥∥θ1(p−1)
L2

� (1 + s)m(�−1)θ1(p−1)
(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
,

with

0 ≤ θ1 = n

m

(1

2
− 1

r1(p − 1)

)
< 1.

By using Proposition 5 from the Appendix we get for the second term

‖(−))m−1
2 (u−v)‖Lr2 � ‖u−v‖1−θ2

L2

∥∥(−))m2 (u−v)∥∥θ2
L2 � (1+s)m(�−1)θ2‖u−v‖X(T ),

under the condition

m− 1

m
≤ θ2 = n

m

(1

2
− 1

r2
+ m− 1

n

)
≤ 1, that is, 2 ≤ r2 ≤ 2n

n− 2
.

We choose r2 = 2n
n−2 > 2, i.e., θ2 = 1. Hence r1 = n and

‖(v + τ (u− v))(s, ·)‖p−1
Lr1 (p−1)‖(u− v)(s, ·)‖Ḣm−1,r2

� (1 + s)(m−1)(�−1)+ n
2 (�−1)(p−1)

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
‖u− v‖X(T ).

In the same way we estimate

‖(u−v)(s, ·)‖Lr4 � ‖u−v‖1−θ4
L2

∥∥(−))m2 (u−v)∥∥θ4
L2 � (1+s)m(�−1)θ4‖u−v‖X(T ),

with

0 ≤ θ4 = n

m

(1

2
− 1

r4

)
< 1, that is, r4 ≥ 2.

For p > max{1,m}, by Proposition 6 from the Appendix

∥∥∥|v + τ (u− v)|p−2(v + τ (u− v))(s, ·)
∥∥∥
Ḣm−1,r3

� (v + τ (u− v))(s, ·)
∥∥∥
Ḣm−1,r3

‖(v + τ (u− v))(s, ·)‖p−2
L∞ .
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As we did before

‖(v + τ (u− v))(s, ·)‖p−2
L∞ � (1 + s) n2 (�−1)(p−2)(‖u‖p−2

X(T ) + ‖v‖p−2
X(T )

)
and with r3 = r2 = 2n

n−2 we get

∥∥∥(v + τ (u− v))(s, ·)∥∥∥
Ḣm−1,r3

� (1 + s)m(�−1)(‖u‖X(T ) + ‖v‖X(T )
)
.

Hence, r4 = n and

‖(u− v)(s, ·)‖Lr4
∥∥∥|v + τ (u− v)|p−2(v + τ (u− v))(s, ·)

∥∥∥
Ḣm−1,r3

� (1 + s)(m−1)(�−1)+ n
2 (�−1)(p−1)

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
‖u− v‖X(T ).

Therefore,

‖(Fu− Fv)(t, ·)‖Ḣm

� (1 + t)m(�−1)
∫ t

0
(1 + s)1+ n

2 (�−1)(p−1) ds
(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
‖u− v‖X(T )

� (1 + t)m(�−1)
(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
‖u− v‖X(T ),

for p > 1 + 4
n(1−�) . Similarly we conclude

‖∂t (Fu− Fv)(t, ·)‖Ḣm−1 � (1 + t)m(�−1)−�(‖u‖p−1
X(T ) + ‖v‖p−1

X(T )

)
‖u− v‖X(T ).

Summarizing all the estimates implies

‖Pu− Pv‖X(t) � ‖u− v‖X(T )
(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
for any u, v ∈ X(T ). ��
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Appendix

In the Appendix we list some notations used through the paper and results of
Harmonic Analysis which are important tools for proving results on the global (in
time) existence of small data energy solutions for semi-linear models with power
non-linearities. Through this paper, we use the following.

For s ≥ 0, we denote by |D|sf = F−1(|ξ |s f̂ ) and 〈D〉s f = F−1(〈ξ〉s f̂ ), with
〈ξ〉s = (1 + |ξ |2) s2 .

For any q ∈ [1,∞], we denote by Lq(Rn) the usual Lebesgue space over Rn.
Let s ∈ R and 1 < p <∞. Then

Hs,p(Rn) = {u ∈ S′(Rn) : ‖〈D〉su‖Lp(Rn) = ‖u‖Hsp(Rn) <∞},
Ḣ s,p(Rn) = {u ∈ Z′(Rn) : ‖|D|su‖Lp(Rn) = ‖u‖Ḣ sp(Rn) <∞}

are called Bessel and Riesz potential spaces, respectively. If p = 2, then we use the
notations Hs(Rn) and Ḣ s(Rn), respectively. In the definition of the Riesz potential
spaces we use the space of distributions Z′(Rn). This space of distributions can be
identified with the factor space S′/P, where S′ denotes the dual of Schwartz space
and P denotes the set of all polynomials.

We recall that Hs,q(Rn) = Ws,q(Rn), the usual Sobolev space, for any q ∈
(1,∞) and s ∈ N.

The following inequality can be found in [12], Part 1, Theorem 9.3.

Proposition 5 (FractionalGagliardo-Nirenberg Inequality) Let 1 < p,p0, p1 <

∞, σ > 0 and s ∈ [0, σ ). Then it holds the following fractional Gagliardo-
Nirenberg inequality for all u ∈ Lp0(Rn) ∩ Ḣ σ,p1(Rn):

‖u‖Ḣ s,p � ‖u‖1−θ
Lp0 ‖u‖θḢ σ,p1

,

where θ = θs,σ (p, p0, p1) =
1
p0

− 1
p+ s

n

1
p0

− 1
p1

+ σ
n

and s
σ
≤ θ ≤ 1 .

We present here a result for fractional powers [21].

Proposition 6 Let p > 1, f (u) = |u|p or f (u) = |u|p−1u and u ∈ Hs,m, where

s ∈ ( n
m
,p
)
, 1 < m <∞. Then the following estimate holds:

‖f (u)‖Hs,m ≤ C‖u‖Hs,m‖u‖p−1
L∞ .

In [11] the following corollary was derived:

Corollary 3 Let f (u) = |u|p or f (u) = |u|p−1u, with p > max{1, s} and u ∈
Hs,m ∩ L∞, 1 < m <∞. Then the following estimate holds:
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‖f (u)‖Ḣ s,m ≤ C‖u‖Ḣ s,m‖u‖p−1
L∞ .

The next result combines in some sense some familiar results as Leibniz rule for
the product of two functions and Hölder’s inequality for derivatives of fractional
order (Theorem 7.6.1 in [17]).

Proposition 7 Let us assume s > 0 and 1 ≤ r ≤ ∞, 1 < p1, p2, q1, q2 < ∞
satisfying the relation

1

r
= 1

p1
+ 1

p2
= 1

q1
+ 1

q2
.

Then the following fractional Leibniz rules hold:

‖ |D|s (u v)‖Lr � ‖ |D|su‖Lp1‖v‖Lp2 + ‖u‖Lq1 ‖ |D|sv‖Lq2

for any u ∈ Ḣ s,p1(Rn) ∩ Lq1(Rn) and v ∈ Ḣ s,q2(Rn) ∩ Lp2(Rn),

‖〈D〉s (u v)‖Lr � ‖〈D〉su‖Lp1‖v‖Lp2 + ‖u‖Lq1‖〈D〉s v‖Lq2

for any u ∈ Hs,p1(Rn) ∩ Lq1(Rn) and v ∈ Hs,q2(Rn) ∩ Lp2(Rn).
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Local Solvability of Some Partial
Differential Operators with Non-smooth
Coefficients

Serena Federico

Abstract In this paper we will analyze the local solvability property of some
second order linear degenerate partial differential operators with non-smooth
coefficients. We will start by considering some operators with Cα,1 coefficients,
with α = 0, 1, having a kind of affine structure. Next, we will study operators with
a more general structure having C0,1 or L∞ coefficients. In both cases the local
solvability will be analyzed at multiple characteristic points where the principal
symbol may possibly change sign.

Keywords Local solvability · A priori estimates · Degenerate second order
operators · Non-smooth coefficients

1 Introduction

In this paper we shall consider the local solvability problem for two classes
of second order linear partial differential operators with multiple characteristics,
denoted by P1 and P2 respectively, given by

P1(x,D) =
N∑
j=1

Xj(x,D)
∗g|g|Xj (x,D)+ iX0(x,D)+ a0, (1)

P2(x,D) =
N∑
j=1

Xj(x,D)
∗|h|Xj(x,D)+ iX0(x,D)+ a0, (2)
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where X0(x,D), . . . , XN (x,D) (Dj = −i∂j ), are first order PDOs (partial
differential operators) with no lower order terms defined on an open set � ⊂ Rn

and having real or complex coefficients (i.e. iXj are complex or real vector fields),
g is an affine real function such that S := g−1(0) = ∅, dg|S = 0, h ∈ C1(�)

such that S := h−1(0) = ∅, dh|S = 0, and a0 is a continuous function on � with
complex values.

In particular

• In P1 we assume X1(x,D), . . . , XN(x,D) to have constant real or complex
coefficients and X0(x,D) to have affine real coefficients;

• In P2 we assume X0(x,D), . . . , XN(x,D) to have smooth complex coefficients
and X0(x,D) to have smooth real coefficients.

The local solvability problem both for P1 and P2 is considered around the points
of the set S where the operators are degenerate and where the principal symbol may
possibly change sign. In fact the operators of the form P1 have a real principal
symbol with the aforementioned property, while, because of their structure, the
operators of the form P2 do not show this behaviour (however, being degenerate,
their local solvability is not guaranteed). The reason why we consider the solvability
problem specifically at these points is due to the fact that the changing sign property
of the principal symbol affects the local solvability of the operator and, in general,
it adds degeneracy. This is indeed true even for principal type pseudo-differential
operators whose local solvability was completely characterized after the resolution
of the Nirenber-Treves conjecture. It was Nils Dencker (see [3]) who proved that
condition (") is necessary and sufficient for the local solvability of principal type
pseudo-differential operators (with C∞ coefficients), and, recall, (") is a condition
on the sign of the principal symbol (see [12] and [16]). In particular, condition (") is
satisfied if the imaginary part Imp of the principal symbolp of a pseudo-differential
operator P = Op(p) does not change sign from minus to plus when one moves in
the positive direction of a bicharacteristic of Rep, therefore it is essentially a sign
condition on the principal symbol.

For general multiple characteristics PDOs necessary and sufficient conditions
for the local solvability to hold are not available. Condition (") above, as already
observed, is a sign condition on the principal symbol and it is not well suited to
capture the more complicated geometric structure which characterizes the multiple
characteristic setting where the lower order part of the symbol has to be taken
into account. However, even though (in general) (") does not apply to the
multiple characteristics case, there are results concerning necessary and/or sufficient
conditions for classes of pseudo-differential operators with multiple characteristics.
Here we want to mention results about operators with multiple characteristics having
a structure similar to that of the classes P1 and P2.

Operators of the form P1P2 +Q (where P1, P2,Q are first order operators) with
double characteristics are studied in a paper by Helffer [10] (where he actually
studies the hypoellipticity problem, which is also related to the local solvability
problem) and by Treves [26] (in which he studies the solvability of operators of the
formX1(x,D)X2(x,D)+iY (x,D)+a0, where iX1, iX2, iY are real vector fields).
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Kohn considered in [14] operators of the form
∑N
j=1X

∗
jXj , where the vector fields

iXj are complex and satisfy a suitable Hörmander condition of rank 2. Mendoza and
Uhlmann in [18] (see also [17]), studied necessary and sufficient conditions for the
local solvability of operators with a principal symbol of the form

∑n
i,j=1 ai,j (x)ξiξj ,

where ai,j (x) is symmetric and nondegenerate on the characteristic set. About
operators on Lie groups, Müller, Ricci and Peloso studied operators which are
sums of squares of left-invariant vector fields (see [21, 22, 25]). Moreover, results
about the semi-global solvability of operators with transversal multiple symplectic
characteristics are given by Parenti and Parmeggiani in [23] (see also [24]) .

The local solvability problem for degenerate operators with non-smooth coef-
ficients has not been deeply analyzed, possibly because of the lack of a complete
pseudo-differential approach. In particular, the Fefferman–Phong inequality, which
is a key tool to get the a priori estimate from which the local solvability follows, is
not (in general) available in the non-smooth coefficients setting, therefore we shall
derive the needed estimates by exploiting the structure of the operators.

The classes P1 and P2 above, fully analyzed in [4] (see also [5]), are inspired
by previous classes analyzed by Colombini et al. in [1] and by Federico and
Parmeggiani in [7, 8] (see also [24] for a survey), and which are in turn an
elaboration of the Kannai operator (see [14]).

Let us remark, shortly, that the Kannai operator is a very interesting example
to look at in order to understand the problem in the multiple characteristic setting,
and, in particular, to see the dependence of the local solvability property not only
on the principal symbol of the operator but also on the lower order part, namely,
on the subprincipal symbol. In fact, the hypoellipticity of the Kannai operator on
Rn is not enough to guarantee the local solvability at the points around which
the principal symbol changes sign. However, as shown in [1, 7, 8], the behaviour
of the subprincipal symbol dictates, somehow, the local solvability at the multiple
characteristics points.

Due to the previous considerations also in the cases we consider here the lower
order part of the symbol plays a crucial role in obtaining the local solvability
property. Let us also stress that in the present paper we focus on giving sufficient
conditions for the local solvability of the classes P1 and P2.

We conclude this introduction by giving the plan of the paper. In Sect. 1 we
recall the definition of locally solvable partial differential operator and give a natural
definition of local solvability in the non-smooth sense for operators with non-smooth
coefficients. Moreover, we shall also recall the estimate needed to prove the local
solvability and that we will use to get the results in the subsequent sections. In Sect. 3
we analyze the problem for the class P1, state the hypotheses in this case and give
two solvability theorems, one in the real coefficients case and one in the complex
coefficients case. We will also sketch the proof and explain the differences in the
two cases listed before. In Sect. 4 we study the class P2, state the local solvability
result and show some examples of operators in the class. Finally Sect. 5 contains
some final remarks and open problems.
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2 Local Solvability and a Priori Estimates

Since the classes P1 and P2 considered here are composed by non-smooth coeffi-
cients PDOs, we will need to give a suitable definition of local solvability applicable
to this case. We shall first recall the definition of local solvability for PDOs with
smooth coefficients, and, afterwards, we will modify the definition according to our
context.

Definition 1 (Local Solvability) Let P be an mth-order partial differential oper-
ator with smooth coefficients on an open set � ⊂ Rn. We say that P is locally
solvable at x0 ∈ � if there exists a neighborhood V ⊂ � of x0 such that for all
v ∈ C∞(�) there is u ∈ D ′(�) satisfying Pu = v in V .

Definition 2 (Hs to Hs ′ Local Solvability) Let P be an mth-order partial differ-
ential operator with smooth coefficients on an open set � ⊂ Rn. Given s, s′ ∈ R
and x0 ∈ � we say that P is Hs to Hs ′ locally solvable near x0 if there is a
compact K ⊂ � with x0 ∈ K̊ (the interior of K) such that for all v ∈ Hs

loc(�)

there exists u ∈ Hs ′
loc(�) with Pu = v in K̊ . We will call the number s − s′ the

gain of smoothness (near x0) of the solution. We will say that P isHs to Hs ′ locally
solvable near V ⊂ � if P is Hs to Hs ′ locally solvable near x0 for all x0 ∈ V .
When one has Hs to Hs ′ local solvability for all s ∈ R where s′ = s +m− r, then
one calls r the loss of derivatives.

Definition 3 (Local Solvability in the Non-smooth Sense) Let P , defined on� ⊂
Rn, be an mth-order partial differential operator such that both P and its adjoint P ∗
have (at least) L∞ coefficients. We say that P is L2 to L2 locally solvable in the
non-smooth sense at x0 ∈ � if there exists a compact setK ⊂ �, with x0 ∈ U = K̊

(where K̊ denotes the interior of K), such that for all f ∈ L2
loc(�) there exists

u ∈ L2
loc(�) such that

(u, P ∗ϕ) = (f, ϕ), ∀ϕ ∈ C∞
0 (K),

where (·, ·) denotes the L2-scalar product.

Remark 1 Notice that, in order to have local solvability in the non-smooth sense
for an operator P , we ask both P and its adjoint P ∗ to have L∞ coefficients (L∞

loc
if � = Rn). This is because, as for operators in the class P2 we may have L∞
coefficients, we need to guarantee that P ∗

2 is such that, given u ∈ L2
loc(�), the L2-

scalar product identity

(u, P ∗
2 ϕ) = (f, ϕ), ∀ϕ ∈ C∞

0 (K), K � �

is well defined. Moreover we remark that operators in the class P1 always have the
required property.
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The technique used to prove local solvability results relies deeply on the validity
of some a priori estimates and on the application of the Hahn–Banach theorem. In
fact, in order to prove the L2 to L2 local solvability result for a smooth operator
P at a point x0 ∈ �, and, similarly, to prove the L2 to L2 local solvability in the
non-smooth case, it is enough to prove the following solvability estimate.

Solvability Estimate
We say that a partial differential operator P satisfies the solvability estimate at x0 ∈
� if there exists a compact set K ⊂ � containing x0 in its interior and a positive
constant CK such that

‖P ∗ϕ‖ ≥ CK‖ϕ‖, ∀ϕ ∈ C∞
0 (K),

where ‖ · ‖ denotes the L2-norm.

The solvability estimate has to be satisfied by the adjoint operator P ∗. If this is
true, given f ∈ L2

loc(�) fixed, we get that the anti-linear form

� : E := P ∗(C∞
0 (K))→ C, �(P ∗ϕ) = (f, ϕ) :=

∫
Rn
f ϕdx,

is bounded on the subspace E ⊂ L2
comp(�) and can be extended to a bounded

anti-linear form �′ on L2
comp(�) = (L2

loc(�))
∗ such that �′|E = � by means of the

Hahn–Banach theorem. Finally this will give the existence of u ∈ L2
loc(�) such that

(f, ϕ) =: �′(P ∗ϕ) = (u, P ∗ϕ) = (Pu, ϕ), ∀ϕ ∈ C∞
0 (K),

that is, P is L2 to L2 locally solvable at x0.

3 Local Solvability of the Class P1

This section is devoted to the analysis of the local solvability property of operators
in the class P1 which are of the form (1).

Recall that in this case all the vector fields iXj (x,D) = Xj (D), j = 0, have
constant real or complex coefficients, iX0(x,D) is a vector field with affine real
coefficients, and g is an affine real function such that S := g−1(0) = ∅, dg|S = 0.

We are interested in the local solvability of P1 at the points of the set S where
the operator is degenerate and has a principal symbol that changes sign in the
neighborhood of each point of S.

Notice that operators of the form P1 may have C0,1 or C1,1 coefficients (C0,1
loc

or C1,1
loc if � = Rn) depending on the tangency or transversality of the vector fields

iXj , j = 1, . . . , N , to the set S.
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We state now the hypotheses we consider on the class P1 and that will be assumed
both in the real and in the complex case.

(H1) iX0g > 0 on S;
(H2) ∀j = 1, . . . , N , ∀K ⊂ �, ∃C > 0 such that

|{Xj,X0}(ξ)|2 ≤ C
N∑
k=1

|Xk(ξ)|2, ∀ξ ∈ Rn,

where Xj(x, ξ) denotes the (principal) symbol of Xj (x,D) and {·, ·} stands
for the Poisson bracket.

Terminology We will call real case the case in which all the vector fields iXj are
real; conversely we will call complex case the case in which each iXj with j = 0 is
complex.

Remark 2 Condition (H1) is a transversality condition which implies the nondegen-
eracy ofX0 at S. Note that the (principal) symbol of iX0 represents the subprincipal
symbol of the operator P1.

Let us remark that when dealing with multiple characteristics PDOs the analysis
of the principal symbol only is not enough to get solvability results, therefore the
lower order part of the symbol can not be neglected.

As we shall see below, condition (H2) is a technical condition that permits to
control the leading part of the operator by means of the first order nondegenerate
part given by iX0.

3.1 Local Solvability in the Real Case

We are now ready to state the solvability result for the class P1 in (1) in the real
case.

Theorem 1 Let P1 be an operator of the form (1) satisfying (H1) and (H2). Then
P1 is L2 to L2 locally solvable in the non-smooth sense at each point of S.

Sketch of the Proof We give here the sketch of the proof by listing the main steps
(see [4] for the details). Recall that the goal is to obtain the solvability estimate from
which the result follows.
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First Step The first step is to reduce the problem, after an affine change of variables,
to the study of

P1 =
N∑
j=1

X∗
j x1|x1|Xj + iX0 + a0,

where the iXj are new suitable vector fields. We remark here that P1 is invariant
under affine changes of variables, therefore the new operator still satisfies hypothe-
ses (H1) and (H2).

Second Step The second step is to prove an intermediate estimate (intermediate
because it is not the solvability estimate yet), that we shall call main estimate, given
in the following proposition.

Proposition 1 (The Main Estimate) Let S = {x ∈ Rn; x1 = 0}. Then for all
x0 ∈ S there exist a compact set K0 containing x0 in its interior and three positive
constants C = C(K0), c = c(K0) and ε0 = ε0(K0), with ε0 → 0 as K0 → {x0},
such that for all compact sets K ⊂ K0

‖P ∗
1 u‖2 ≥ 1

4
‖X0u‖2 + c(P0u, u)− C‖u‖2, ∀u ∈ C∞

0 (K),

where

P0(x,D) =
N∑
j=1

(X∗
j |x1|Xj − ε2

0[Xj,X0]∗|x1|[Xj,X0]),

and where [·, ·] denotes the commutator bracket.
Third Step Here the point is to pass from the main estimate to the solvability
estimate. In the smooth coefficients case one can pass from the (suitable) main
estimate to the solvability estimate by applying the Fefferman–Phong inequality
on P0 (this is possible by virtue of the form of P0) and a Poincaré inequality on
X0. In the non-smooth coefficients case we replace the use of the Fefferman–Phong
inequality by the use of the following two lemmas.

Lemma 1 If condition (H2) holds, then, for each index j ∈ {1, · · · , N}, we have

i[Xj,X0](D) =
N∑
k=1

ckXk(D), ck ∈ R.
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This lemma is very important in order to control the term (P0u, u) in the main
estimate. In fact we can then write

(P0(x,D)u, u) =
N∑
j=1

(
(X∗

j |x1|Xj − ε2
0[Xj,X0]∗|x1|[Xj,X0])u, u

)

=
N∑
j=1

(
‖|x1|1/2Xju‖2 − ε2

0‖|x1|1/2[Xj,X0]u‖2
)
,

and get the required control of the term (P0u, u) stated in Lemma 2 below by using
Lemma 1.

Lemma 2 Consider x0 ∈ S and K0 as in the proposition above (Main estimate).
Then, suitably shrinking K0 to a compact set containing x0 in its interior, and that
we still denote by K0, we have that for all K ⊂ K0, with x0 ∈ K̊ , we have

(P0ϕ, ϕ) ≥ 0, ∀ϕ ∈ C∞
0 (K).

Finally, by using Lemma 2 in the main estimate and absorbing the L2-error by
means of a Poincaré inequality on X0 (recall,X0 is nondegenerate at S), we get that
P1 satisfies the solvability estimate at x0 ∈ S, and, in particular, we have the L2 to
L2 local solvability of P1 at x0. ��

3.2 Local Solvability in the Complex Case

We now focus on the local solvability of P1 at S is the complex case. Since we deal
with complex coefficients we need to assume the following additional condition:

(H3) Xjg = 0 on S = g−1{0}, for every j = 0.

The reason for this tangency condition will be clearer in the sketch of the proof,
which, essentially, will differ from the one in the real case in the third step.

Theorem 2 Let P1 be an operator of the form (1) satisfying (H1), (H2) and (H3).
Then P1 is L2 to L2 locally solvable in the non-smooth sense at each point of S.

Sketch of the Proof The proof follows exactly the same lines of the proof of the
real case. We repeat both the first and the second step of the proof of Theorem 1
since the main estimate still holds in this case. What differs from the real case is the
third step, that is, the way to pass from the main estimate to the solvability estimate.
In the proof of Theorem 1 we used Lemma 1 to get Lemma 2 and, as a consequence,
the solvability estimate. Unfortunately Lemma 1 does not hold in the complex case,
and this is the reason why we need to require the additional condition (H3) in this
setting. We then replace Lemma 1 with the following lemma.
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Lemma 3 Consider x0 ∈ S andK0 (x0 ∈ K̊0) as in Proposition 1 (Main estimate).
Then we can shrinkK0 to a compact set that we keep denoting byK0 , with x0 ∈ K̊0,
so that

ε2
0

N∑
j=1

|{Xj,X0}(ξ)|2 ≤
N∑
j=1

|Xj(ξ)|2, ∀ξ ∈ Rn. (3)

Notice that [Xj,X0] has constant coefficients, hence (3) applies for all ξ ∈ Rn.
Moreover, due to condition (H3), after application of the first step (where we reduce
the problem to the case g(x) = x1) we have that

[Xj ,X0](Dx1,Dx ′) = [Xj ,X0](Dx ′) and Xj (Dx1, Dx ′) = Xj (Dx1, 0)+Xj (0, Dx ′).

Then, as a consequence of Lemma 3, we get

ε2
0

N∑
j=1

|{Xj,X0}(ξ ′)|2 ≤
N∑
j=1

|Xj(0, ξ ′)|2, ∀ξ ′ ∈ Rn−1,

where ξ = (ξ1, ξ
′) ∈ Rξ1 × Rn−1

ξ ′ . By application of Plancharel theorem in

the variable x ′ ∈ Rn−1 (x = (x1, x
′)) on the first term of (P0u, u), and,

afterwards, by using Lemma 3, we get the control of
∑N
j=1 ‖ |x1|[Xj,X0]u‖2

0 by∑N
j=1 ‖|x1|Xju‖2

0, which, in particular, implies Lemma 2 (i.e. (P0ϕ, ϕ) ≥ 0) (see
[4] for details).

Finally we apply a Poincaré inequality on the term ‖X0ϕ‖2 in the main estimate
to obtain, by shrinking the compact K0 if necessary, the solvability estimate and
thus the result. ��

Focus on Condition (H3)

In the complex case we assumed the additional tangency condition (H3). Is it
possible to remove this tangency condition? The answer if positive if we assume
the following condition (H2′) in place of (H2):

(H2′) ∃C > 0 such that |{Xj,X0}(ζ )|2 ≤ C∑N
j=1 |Xj(ζ )|2, ∀ζ ∈ Cn.

Remark 3 Condition (H2′) is stronger than (H2). Moreover the following relations
are satisfied

• (H2′) *⇒ (H2)
• (H2) *⇒ (H2′)
• (H2)+ (H3) *⇒ (H2′).

These relations show that (H2′) is in general too strong to require.
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We show the second and the third property in the previous remark through some
counterexamples.

Example 1 (H2) ��⇒ (H2′)

This is an example of an operator of the form (2) with complex coefficients which
satisfies conditions (H1) and (H2) but not condition (H3). We use this example to
show that (H2) *⇒ (H2′). Let N = 1, n = 2 and

P = X1(x,D)x1|x1|X1(x,D)+ iX0(x,D),

X1(x,D) = (1 + i)D1 + (2 + i)D2, X0(x,D) = (3x1 + 1)D1 + (6x1 − x2)D2.

If (H2′) were true then for all ζ ∈ C2 such that X1(ζ ) = 0 we would also have
{X0,X1}(ζ ) = 0.

Since there exists ζ0 = (13+ i, 8+ 2i) such that X1(ζ0) = 0 and {X0,X1}(ζ ) =
20 + 12i, we get that (H2′) does not hold. Note also that, since neither (H2′) nor
(H3) are satisfied, then Theorem 2 do not apply to this operator and we can not
conclude the local solvability by using our result.

Example 2 (H2) + (H3) ��⇒ (H2′)

Now we provide an example of operator satisfying (H1), (H2) and (H3) and we
use it to show that (H2)+ (H3) *⇒ (H2′). Let N = 1, n = 3 and

P = X1(x,D)x1|x1|X1(x,D)+ iX0(x,D),

X1(x,D) = (2 + i)D2 +D3, X0(x,D) = D1 + x2D2.

Once again there exists ζ0 = (0, 2+ i, 0) such that X1(ζ0) = 0 and {X0,X1}(ζ0) =
1 + 3i, hence (H2′) does not hold. However the hypotheses of Theorem 2 are
satisfied and the operator is locally solvable at each point of S := {x1 = 0}

A Special Case

There is a special case in which P1 has complex coefficients (recall, the first order
part iX0 is always real) and (H3) is not needed, namely, when N = 1 and X1
is essentially real, that is, ReX1(D) and ImX1(D) are linearly dependent. In this
specific case we have that (H2) *⇒ (H2′) and (H3) is not needed.
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4 Local Solvability for the Class P2

In this section we discuss the local solvability of the class P2, that is,

P2(x,D) =
N∑
j=1

Xj(x,D)
∗|h|Xj(x,D)+ iX0(x,D)+ a0,

defined over� ⊂ Rn, whereX0(x,D), . . . , XN(x,D) have smooth (not necessarily
constant) complex coefficients and X0(x,D) has smooth (not necessarily affine)
real coefficients. The function h is not assumed to be affine real but to beC1(�;Rn).
Moreover we consider h such that S := h−1{0} = ∅ and dh|S = 0.

We remark here that in [4] all the fields Xj , for all j = 0, . . . , N , are assumed
to have smooth real coefficients. However, the proof of the solvability result works
exactly the same if we consider the vector field Xj (x,D), for all j = 0, having
smooth complex coefficients, therefore here we consider the problem in this more
general setting directly.

Operators of the formP2 do not have a changing sign principal symbol around the
points of the set S. However, they are still degenerate around these points, therefore
the local solvability is not guaranteed. Moreover the degree of degeneracy depends
on the interplay between the degeneracy of the vector fields in the second order part
of the operator and the vanishing of the function h. In fact, as we shall see below,
we do not impose a nondegeneracy condition on the iXj with j = 0.

Notice that the coefficients of P2 may be C0,1(�) (for instance if h is an affine
function) if all the vector fields iXj , j = 0, are tangent to S, and they are L∞(�) (
L∞

loc(�) if � = Rn) otherwise.
Once again, because of the reasons already mentioned, we study the local

solvability of the class at the points of the set S.
We assume in the present case only the following condition:

(H1) iX0h = 0 on S.

We are now ready to give the statement of the result for the class P2

Theorem 3 Let P2 be such that (H1) is satisfied. Then P2 is L2 to L2 locally
solvable in the non-smooth sense at each point of S.

Sketch of the Proof The goal is, once more, to establish the solvability estimate for
P2.

In this case, in contrast to the case previously analyzed, a direct estimate of
‖P ∗

2 ϕ‖ does not work, therefore we proceed with a Carleman estimate. We can
summaryze the proof in three steps.

First Step First, given a point x0 ∈ S and λ ∈ R (that will be chosen in the next
step), we prove that there exists a compact setK0 ⊂ � (containing x0 in its interior)
such that the quantity 2Re(P ∗

2 ϕ, e
2λf ϕ) can be estimated from below as follows
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(see [4]):

2Re(P ∗
2 ϕ, e

2λhϕ) ≥ (1 − δ|λ|)
N∑
j=1

‖|h|1/2Xjϕ‖L∞(K0)+

|λ|(c0 − 1

δ
‖|h|1/2‖L∞(K0)

N∑
j=1

‖|h|1/2Xjϕ‖L∞(K0) −
‖dX0ϕ‖L∞(K0) + ‖a0‖L∞(K0)

λ
)‖eλhϕ‖2,

for all ϕ ∈ C∞
0 (K0), where the constant c0 is a positive constant that comes from

condition (H1) on X0.

Second Step We then choose λ := λ0 in such a way that

c0 − ‖dX0ϕ‖L∞(K0) + ‖a0‖L∞(K0)

λ0
≥ c0

2
,

and fix δ = 1
2|λ0| . We then shrinkK0 around x0 to a compact that we keep denoting

by K0, in such a way that

c0

2
− 2‖|λ0||h|1/2‖L∞(K0)

N∑
j=1

‖|h|1/2Xjϕ‖L∞(K0) ≥ c0/4.

This is possible because, recall, h(x0) = 0.

Third Step We finally get, for all ϕ ∈ C∞
0 (K0), the inequality

2Re(P ∗
2 ϕ, e

2λhϕ) ≥ |λ0|c0

4
‖eλ0hϕ‖2,

that, after application of the Cauchy-Schwartz inequality on the right hand side,
gives

e
2λ0‖h‖L∞ (K0)‖P ∗

2 ϕ‖‖ϕ‖ ≥ |λ0|c0

4
e
−2λ0‖h‖L∞(K0)‖u‖2, ∀ϕ ∈ C∞

0 (K0),

from which the solvability estimate follows. ��
We conclude this section by giving some examples of operators in the class P2.

Example 1
Let n ≥ 2, g ∈ C∞(Rn;R) such that g(x) = 0 for all x ∈ S := {x1 = 0}, and
a0 ∈ C∞(Rn). Then

P(x,D) =
n∑
j=1

((x1xj )
pDxj )

∗|x1|((x1xj )
pDxj )+ ig(x)Dx1 + a0
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is L2 to L2 locally solvable in the non-smooth sense in S.

Example 2
Let fj ∈ C∞(Rn;C), for j = 1, . . . , n, h ∈ C1(Rn;R) such that ∂kh(x) = 0 (for
some k ∈ {1, . . . , n}) for all x ∈ S := h−1{0}, and g ∈ C∞(Rn;R) such that
g|S = 0. Then

P(x,D) =
n∑
j=1

(fjDj )
∗|h|(fjDj )+ igDk

is L2 to L2 locally solvable in the non-smooth sense in S.

5 Final Remarks and Open Problems

We want to conclude this paper with some final remarks about the classes considered
above.

The local solvability results for the two classes P1 and P2 are given at the points
of degeneracy where the function appearing in the second order part vanishes. If we
consider the classes outside the set S we get operators of the form considered in [8]
where a local solvability result outside of S is given by using Carleman estimates.
Therefore solvability results out of S are available for these operators.

We want to stress that in the non-smooth coefficients case most probably no better
results than L2 to L2 can be proved. Moreover, the regularity of the coefficients can
not be weakened, for instance to C0,α with α < 1, since, otherwise, the adjoint
operator would not have L∞ regularity and the definition of local solvability in the
non-smooth sense does not work.

Note also that the two classes above contain evolution operators with non-smooth
coefficients (where iX0 can be considered as the evolution direction). It would be
interesting to consider the Cauchy problem for operators with this specific form and
get conditions for the local well-posedness to hold.

In the cases analyzed here, the vector field iX0 is always assumed to have
real coefficients. What about the case when iX0 is complex (Schrödinger type
operators)? For classes with smooth coefficients of the same form the problem
has been analyzed in [6] and [8] where some local solvability results are given.
An other open question is: what about the local well-posedness of the related
Cauchy problem in this setting? We want to mention that the local well-posedness
for degenerate Schrödinger operators has not been intensively studied. We have a
significant result due to Cicognani and Reissig in [2] where the local well-posedness
of the linear Cauchy problem for degenerate Schrödinger operators with degenerate
time-dependent coefficients is considered. Schrödinger operators of the same form
considered in [2] have also been analyzed in [9] where it is shown that some
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weighted smoothing estimates are satisfied by the solutions both of the linear and of
the nonlinear problem.
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On Exceptional Times for Pointwise
Convergence of Integral Kernels in
Feynman–Trotter Path Integrals

Hans G. Feichtinger, Fabio Nicola, and S. Ivan Trapasso

Abstract In the first part of the paper we provide a survey of recent results
concerning the problem of pointwise convergence of integral kernels in Feynman
path integrals, obtained by means of time-frequency analysis techniques. We then
focus on exceptional times, where the previous results do not hold, and we show that
weaker forms of convergence still occur. In conclusion we offer some clues about
possible physical interpretation of exceptional times.

Keywords Feynman-Trotter formula · Path integral · Modulation spaces ·
Short-time Fourier transform

1 Introduction

Integration over infinite-dimensional spaces of paths plays a relevant role in modern
quantum physics. This machinery first appeared in a 1948 paper [21] by Richard
Feynman, shortly followed by Feynman [22] where path integrals paved the way
to the celebrated Feynman diagrams, hence to a completely new way to investigate
field theories.

Let us briefly recall the most important features of the functional integral
formulation of (non-relativistic) quantum mechanics. The interested reader may
consult the textbook [23] for a comprehensive introduction to the subject from a
physical perspective. Recall that the state of a particle in Rd at time t ∈ R is
represented by the wave function ψ(t, x), (t, x) ∈ R × Rd , such that ψ(t, ·) ∈
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L2(Rd). The time evolution of a state ϕ(x) at t = 0 is regulated by the Cauchy
problem for the Schrödinger equation:

{
ih̄∂tψ = (H0 + V (x))ψ
ψ(0, x) = ϕ(x), (1)

where 0 < h̄ ≤ 1 is a parameter (representing the Planck constant),H0 = −h̄2)/2
is the free particle Hamiltonian and V is a real-valued potential; we set m = 1 for
the mass of the particle. The map U(t, s) : ψ(s, ·) �→ ψ(t, ·), t, s ∈ R, is a unitary
operator on L2(Rd) and is called propagator or evolution operator; we set U(t) for
U(t, 0). Since U(t) is a linear operator we may formally represent it as an integral
operator with distribution kernel ut , namely

ψ(t, x) =
∫
Rd
ut (x, y)ϕ(y)dy.

The kernel ut (actually known as propagator in physics) is interpreted as the
transition amplitude from the position y at time 0 to the position x at time t . In
his papers Feynman essentially provided a recipe for how to compute this kernel,
involving all the possible interfering alternative paths from y to x that could be
followed by the particle. In particular, each path would contribute to the total
probability amplitude with a phase factor proportional to the action functional
corresponding to the path:

S [γ ] = S(t, 0, x, y) =
∫ t

0
L(γ (τ), γ̇ (τ ))dτ,

where L is the Lagrangian of the corresponding classical system. In a nutshell, a
formal representation of the kernel is

ut (x, y) =
∫
e
i
h̄
S[γ ]

Dγ, (2)

underpinning some integration procedure over the infinite-dimensional space of
paths satisfying the conditions above. Notice that (a still formal) application of the
stationary phase principle shows that the semiclassical limit h̄ → 0 selects the
classical trajectory, in according with the principle of stationary action of classical
mechanics.

1.1 The Mathematics of Path Integrals

In spite of the popularity and the successful predictions of path integrals, it is not
clear what the meaning of (2) could be from a mathematical point of view. This is
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in fact an open subfield of functional analysis and there have been several attempts
to provide a rigorous and satisfactory theory of path integrals with the support of
techniques ranging from infinite-dimensional analysis to operator theory, but also
from stochastics to geometry. We cannot hope to frame here more than seventy
years of literature; we suggest the monographs [2, 27, 37, 39] as points of departure
as well as the article [1] for a broad overview. We remark that only in recent times
techniques from time-frequency analysis have been fruitfully used in the study
of mathematical path integrals, see for instance [41, 43, 44]; see also [50] for an
expository paper on the topic.

Among the several frameworks mentioned above we focus here on the so-
called sequential approach, introduced by Nelson in [40]. The reasons behind this
choice are manifold; first, it is probably the mathematical scheme which best meets
Feynman’s original insight and some of its features are nowadays part of the custom
in physics literature, cf. [32, 38]. Moreover, the perturbative nature of this approach
is very well suited to certain function spaces and operators related to time-frequency
analysis, as will be elucidated later.

Nelson’s approach relies on two issues. Recall that the evolution operator for

the Schrödinger equation with V = 0, namely U0(t) = e
− i
h̄
tH0 , H0 = −h̄2)/2,

is a Fourier multiplier; an explicit representation can be derived after standard
computation (cf. [45, Sec. IX.7]):

e
− i
h̄
tH0ϕ (x) = 1

(2πith̄)d/2

∫
Rd

exp

(
i

h̄

|x − y|2
2t

)
ϕ(y)dy, ϕ ∈ S(Rd).

(3)

The second ingredient is a well-known tool from the theory of operator semi-
groups. Under suitable conditions on the domain ofH0 and on the potential V 1 , the
Trotter product formula holds for the semigroup generated byH = H0 + V :

e
− i
h̄
t (H0+V ) = lim

n→∞
(
e
− i
h̄
t
n
H0e

− i
h̄
t
n
V
)n
,

where the limit is intended in the strong topology of operators inL2(Rd). Combining

these two results gives that the complete propagator e−
i
h̄ tH can be expressed as limit

of integral operators (cf. [45, Thm. X.66]):

e
− i
h̄ t(H0+V )ϕ(x) = lim

n→∞

(
2πh̄i

t

n

)− nd
2
∫
Rnd
e
i
h̄ Sn(t;x0,...,xn−1,x)ϕ (x0) dx0 . . . dxn−1,

(4)

1For instance one may consider a potential V such that H0 + V is essentially self-adjoint on
D(H0) ∩D(V ), cf. [46, Sec. VIII.8].
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where we set

Sn (t; x0, . . . , xn−1, x) =
n∑
k=1

t

n

[
1

2

( |xk − xk−1|
t/n

)2

− V (xk)
]
, xn = x.

The role of the phase Sn (t; x0, . . . , xn)may be clarified by the following argument:
given the points x0, . . . , xn−1, x ∈ Rd , let γ be the polygonal path through the
vertices xk = γ (kt/n), k = 0, . . . , n, xn = x, parametrized as

γ (τ) = xk+ xk+1 − xk
t/n

(
τ − k t

n

)
, τ ∈

[
k
t

n
, (k + 1)

t

n

]
, k = 0, . . . , n−1.

(5)

Hence γ prescribes a classical motion with constant velocity along each segment.
The action functional for such path is given by

S [γ ] =
n∑
k=1

1

2

t

n

( |xk − xk−1|
t/n

)2

−
∫ t

0
V (γ (τ ))dτ.

According to Feynman’s heuristics, the relation in (4) should be interpreted as
the definition of an integral over all polygonal paths while Sn (x0, . . . , xn, t) is a
Riemann-like, finite-dimensional approximation of the action functional evaluated
on them. The regime n → ∞ is then intuitively clear: the set of polygonal paths
becomes the set of all paths and we recover (2).

1.2 Convergence at the Level of Integral Kernels

The sequential approach discussed above seems to suggest that path integral can be
made mathematically rigorous at the level of operators rather than integral kernels.
This remark is reinforced by the achievements of different mathematical theories
of path integrals relying on the standard operator-theoretic approach to quantum
mechanics. Consider for instance the so-called time slicing approximation approach
introduced by Fujiwara in celebrated papers like [25, 26]—see also the monograph
[27] for a systematic exposition; broadly speaking, the philosophy underlying these
works is to design sequences of finite-dimensional approximation operators on
L2(Rd) (in particular, oscillatory integral operators) and then prove convergence
to the exact propagatorU(t) in some operator topology on L2.

Actually, there are good reasons for not being completely satisfied with this
state of affairs. The lesson of Feynman’s original formulation strongly motivates a
focus shift from operators to their kernels, in particular to the problem of pointwise
convergence of the integral kernels in (4) to the kernel ut of the propagator. This
may appear as an unaffordable problem in general since non-regular or even purely
distribution kernels may show up, thus the problem of convergence can be hard
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or even pointless. A strong clue pointing in this direction comes from the already
mentioned papers by Fujiwara, where convergence in a finer topology at the level of
integral kernels is proved for sufficiently small time intervals and smooth potentials
with at most quadratic growth.

We describe below the recent results obtained by two of the authors in [43],
where techniques of time-frequency analysis are fruitfully used to prove pointwise
convergence of integral kernels in the framework provided by the sequential
approach. In contrast with the aforementioned results by Fujiwara we consider
bounded potentials (the minimal regularity assumption is continuity) and we obtain
the desired convergence for the kernels in suitable topologies which imply pointwise
convergence. Our results are global in time, namely they hold for any fixed t ∈ R\Ẽ,
where Ẽ is a set of exceptional times. We describe below the most important features
of this set from both the mathematical and physical points of view and provide
explicit examples. For the moment we confine ourselves to remark that exceptional
times are to be expected: recall that the involved kernels are in general tempered
distributions in S′(Rd) in view of the Schwartz kernel theorem and the problem of
pointwise convergence is well-posed only when the kernels are actually functions.
One may still wonder whether there is convergence at exceptional times in some
weaker distribution sense. We are able to prove global-in-time convergence in this
fashion, again supported by the framework of time-frequency analysis techniques
and function spaces. In order to precisely state and prove the claimed results we
devote the next section to collect some preparatory material.

2 Preliminaries

2.1 Notation

We set x2 = x · x, for x ∈ Rd , where x · y is the scalar product on Rd . The
Schwartz class is denoted by S(Rd ), the space of tempered distributions by S′(Rd ).
The brackets 〈f, g〉 denote the extension to S′(Rd) × S(Rd) of the inner product
〈f, g〉 = ∫

Rd f (x)g(x)dx on L2(Rd), but also other related dualities described
below.

The conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p + 1/p′ = 1. The
symbol � means that the underlying inequality holds up to a positive constant factor
C > 0. For any x ∈ Rd and s ∈ R we set 〈x〉s := (1 + |x|2)s/2. We choose the
following normalization for the Fourier transform:

Ff (ξ) =
∫
Rd
e−2πix·ξf (x)dx, ξ ∈ Rd .
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We define the translation and modulation operators: for any x, ξ ∈ Rd and f ∈
S(Rd ),

(Txf ) (y) := f (y − x), (
Mξf

)
(y) := e2πiξ ·yf (y).

These operators can be extended by duality on tempered distributions. The compo-
sition π(x, ξ) = MξTx constitutes a so-called time-frequency shift.

Given a linear space of distributions X ⊂ S′(Rd), we set

Xcomp := {u ∈ X : supp(u) is a compact subset of Rd },

Xloc := {u ∈ S′(Rd ) : ϕu ∈ X ∀ϕ ∈ C∞
c (R

d)}.

In the rest of the paper we set h̄ = 1 for convenience, since we are not concerned
with semiclassical aspects.

2.2 Modulation Spaces

The short-time Fourier transform (STFT) of a tempered distribution f ∈ S′(Rd )
with respect to the window function g ∈ S(Rd ) \ {0} is defined by

Vgf (x, ξ) := 〈f, π(x, ξ)g〉 = F(f · Txg)(ξ) =
∫
Rd
e−2πiy·ξf (y) g(y − x) dy.

(6)

The monograph [28] contains a comprehensive treatment of the mathematical
properties of this time-frequency representation, especially those mentioned below.
We stress that the STFT is deeply connected with other well-known phase-space
transforms, in particular the Wigner distribution

W(f, g)(x, ξ) =
∫
Rd
e−2πiy·ξf

(
x + y

2

)
g
(
x − y

2

)
dy. (7)

Given a non-zero window g ∈ S(Rd), s ∈ R and 1 ≤ p, q ≤ ∞, the modulation
spaceMp,q

s (Rd) consists of all tempered distributions f ∈ S′(Rd) such that Vgf ∈
L
p,q
s (R2d) (mixed weighted Lebesgue space), that is:

‖f ‖Mp,q
s

= ‖Vgf ‖Lp,qs =
(∫

Rd

(∫
Rd

|Vgf (x, ξ)|p dx
)q/p

〈ξ〉qsdξ
)1/q

<∞,

with trivial modification if p or q is ∞. If p = q , we write Mp instead of Mp,p,
while for the unweighted case (s = 0) we set Mp,q

0 ≡ Mp,q .
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It can be proved that Mp,q
s (Rd ) is a Banach space whose definition does not

depend on the choice of the window g. We mention that many common function
spaces are intimately related with modulation spaces: for instance,

(i) M2(Rd ) coincides with the Hilbert space L2(Rd);
(ii) M2

s (R
d ) coincides with the usual L2-based Sobolev space Hs(Rd);

(iii) the following continuous embeddings with Lebesgue spaces hold:

M
p,q
r (Rd) ↪→ Lp(Rd ) ↪→ M

p,q
s (Rd ), r > d/q ′ and s < −d/q.

In particular,

Mp,1(Rd) ↪→ Lp(Rd ) ↪→ Mp,∞(Rd).

For these and other embeddings we address the reader to [14–16, 28].
We wish to focus on distinguished members of the family of modulation

spaces. The Banach–Gelfand triple (M1(Rd), L2(Rd),M∞(Rd)) proved to be a
very fruitful generalization of the standard triple (S(Rd), L2(Rd),S′(Rd)) for the
purposes of time-frequency analysis, see [5, 17, 35] for further details. The space
M1(Rd ) is also known as the Feichtinger algebra [14] and it does enjoy a large
number of particularly nice properties. We stress that S(Rd) ⊂ M1(Rd) and L2(Rd )
is the completion of M1(Rd ) with respect to ‖·‖L2 norm. Moreover (M1(Rd ))′ =
M∞(Rd ) under the duality

〈f, ϕ〉 =
∫
R2d

Vgf (z)Vgϕ(z)dz, f ∈ M1(Rd ), ϕ ∈ M∞(Rd ),

for any g ∈ S(Rd )\{0}, without loss of generality with ‖g‖2 = 1. Finally,M1(Rd) is
isometrically invariant under Fourier transform and arbitrary time-frequency shifts,
and the embeddingM1(Rd) ↪→ Mp,q(Rd) hold for all 1 ≤ p, q ≤ ∞. An additional
benefit of this extended framework is that one may derive a streamlined and self-
consistent presentation of the mathematical foundations of signal analysis with a
limited amount of technicalities, cf. [20].

The role of (M1, L2,M∞) as a Gelfand triple is further reinforced by the
Feichtinger kernel theorem [4, 13, 18, 19].

Theorem 1

(i) Every distribution k ∈ M∞(R2d) defines a bounded linear operator T :
M1(Rd )→ M∞(Rd) according to

〈Tf, g〉 = 〈k, g ⊗ f 〉, ∀f, g ∈ M1(Rd ),

with ‖T ‖M1→M∞ � ‖k‖M∞ .
(ii) Any linear bounded operator T : M1(Rd )→ M∞(Rd) arises in this way for a

unique kernel k ∈ M∞(R2d); moreover ‖k‖M∞ � ‖T ‖M1→M∞ .



300 H. G. Feichtinger et al.

Another interesting modulation space is M∞,1(Rd ), also known as the Sjöstrand
class since it was highlighted in [49] as an exotic symbol class still yielding bounded
pseudodifferential operators on L2(Rd) (see the next section for further details, also
[29, 30]). In order to specify the regularity of functions in this space recall the
definition of the Fourier–Lebesgue space: for s ∈ R we set

f ∈ FL1
s (R

d) ⇔ ‖f ‖FL1
s
=
∫
Rd

|Ff (ξ)| 〈ξ〉sdξ <∞.

Proposition 1 ([28] and [44, Prop. 3.4])

1. M∞,1(Rd ) ⊂ (FL1)loc(Rd ) ∩ L∞(Rd) ⊂ C0(Rd ) ∩ L∞(Rd).
2. (M∞,1)loc(Rd ) = (FL1)loc(Rd ) = (FM)loc(Rd), where FM(Rd) is the space

of Fourier transforms of (finite) complex measures on Rd .
3. FM(Rd ) ⊂M∞,1(Rd ).

The equality (FL1)loc(Rd) = (FM)loc(Rd) is an immediate consequence of
the fact that L1(Rd) is an ideal in the convolution algebra M(Rd ).

Moreover, M∞,1(Rd ) is a Banach algebra under pointwise product. In fact,
precise conditions are known on p, q and s in order forMp,q

s to be a Banach algebra
with respect to pointwise multiplication.

Proposition 2 ([47, Thm. 3.5 and Cor. 2.10]) Let 1 ≤ p, q ≤ ∞ and s ∈ R. The
following facts are equivalent.

(i) Mp,q
s (Rd) is a Banach algebra for pointwise multiplication2 .

(ii) Mp,q
s (Rd) ↪→ L∞(Rd).

(iii) Either s = 0 and q = 1 or s > d/q ′.

We deduce that also the modulation spaces M∞
s (R

d) with s > d are Banach
algebras for pointwise multiplication. In particular we haveM∞

s (R
d) ↪→ M∞,1(Rd )

for s > d and the following characterization holds:

C∞
b (R

d) :=
{
f ∈ C∞(Rd) : ∣∣∂αf ∣∣ ≤ Cα ∀α ∈ Nd

}
=
⋂
s≥0

M∞
s (R

d); (8)

see [31, Lemma 6.1] for further details.

2To be precise, we provide conditions under which the embedding Mp,q
s · Mp,q

s ↪→ M
p,q
s is

continuous; this means that the algebra property holds up to a constant. It is a rather standard result
that that there exists an equivalent norm for which the previous estimate holds with C = 1 (cf. [48,
Thm. 10.2]). This setting will be tacitly assumed whenever concerned with Banach algebras from
now on.
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2.3 Weyl Operators

The success of time-frequency analysis in the theory of pseudodifferential operators
mainly relies on the following equality:

〈σwf, g〉 = 〈σ,W(g, f )〉, ∀f, g ∈ S(Rd ), (9)

where σ ∈ S′(R2d) is the symbol of the Weyl operator σw : S(Rd) → S′(Rd ),
which can be formally represented as

σwf (x) :=
∫
R2d

e2πi(x−y)·ξ σ
(
x + y

2
, ξ

)
f (y)dydξ,

while W(g, f ) is the Wigner transform defined in (7). The main benefit of a time-
frequency approach to Weyl operators is that very general symbol classes may be
taken into account, in particular modulation spaces—recall that classical symbol
classes are usually defined by means of decay/smoothness conditions, such as the
Hördmander classes Smρ,δ(R

2d) [34]. Moreover, most of the properties of σw are
intimately connected to those of the Wigner transform, the latter being very well
established nowadays [11, 28].

The composition of Weyl transforms induces a bilinear form on symbols, the so-
called twisted product: this means that the composition of two operators σw ◦ ρw

is in fact a Weyl operator with special symbol denoted by σ#ρ. Explicit formulas
for σ#ρ are known (cf. [51]) but we are more interested in the algebra structure
induced on symbol spaces. It is indeed a peculiar feature of M∞,1(R2d), as well as
ofM∞

s (R
2d) with s > 2d , to enjoy a double Banach algebra structure:

• a commutative one with respect to the pointwise multiplication as a consequence
of Proposition 2;

• a non-commutative one with respect to the twisted product of symbols [31, 49];
for instance, σ, ρ ∈ M∞,1(R2d) *⇒ σ#ρ ∈ M∞,1(R2d).

Furthermore, it turns out that the latter algebraic structure can be related to
a characterizing sparse behaviour satisfied by pseudodifferential operators with
symbols in those spaces, the so-called almost diagonalization property with respect
to time-frequency shifts; it can be proved that σ ∈ M∞

s (R
2d) if and only if, for some

(hence any) g ∈ S(Rd) \ {0},

|〈σwπ(z)g, π(w)g〉| ≤ C〈w − z〉−s , z,w ∈ R2d .

In a similar fashion, σ ∈ M∞,1(R2d) if and only if there exists H ∈ L1(R2d) such
that

|〈σwπ(z)g, π(w)g〉| ≤ H(w − z), z,w ∈ R2d .

The reader may consult [6, 8–10, 29, 31] for further details on this topic.
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3 Pointwise Convergence of Integral Kernels

The main results in [44] require us to consider a slightly generalized version of the
free Hamiltonian operatorH0 in (1). Let a be a quadratic homogeneous polynomial
on R2d , namely

a(x, ξ) = 1

2
x ·Ax + ξ · Bx + 1

2
ξ · Cξ,

for some symmetric matrices A,C ∈ Rd×d and B ∈ Rd×d . The solution of (1) with
H0 = aw (the Weyl transform of a) and V = 0 is given by

ψ(t, x) = e−itH0ϕ(x) = μ(At )ϕ(x),

where μ(At ) is a metaplectic operator—see [11, Sec. 15.1.3] and also [3, 24] for a
complete derivation of this classic result. A precise characterization of metaplectic
operators would lead us too far, hence we just outline their main features. First,
recall that the phase-space flow governed by the Hamilton equations

ż = J∇za(z) = Az, A =
(
B C

−A −B-
)
,

defines a mapping

R . t �→ At = e(t)A =
(
At Bt

Ct Dt

)
∈ Sp(d,R). (10)

In sloppy terms, any symplectic matrix S ∈ Sp(d,R) is associated with a unitary
bounded operator μ(S) on L2(Rd ) which satisfies the intertwining property

μ(S)−1σwμ(S) = (σ ◦ S)w, σ ∈ S′(R2d).

In particular, the classical flow At is associated (up to a complex phase factor) with
a family of unitary operators on L2(Rd) (for details see [28], Thm. 9.4.2) An explicit
formula for μ(At )may be provided in some special cases: for all t ∈ R such that At
is a free symplectic matrix, namely such that the upper-right block Bt is invertible,
the corresponding metaplectic operator may be represented as a quadratic Fourier
transform [11, Sec. 7.2.2], namely

μ(At )ϕ(x) = ct |detBt |−1/2
∫
Rd
e2πi!t (x, ξ)ϕ(y)dy, ϕ ∈ S(Rd), (11)
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for suitable ct ∈ C, |ct | = 1, where

!t (x, y) = 1

2
x ·DtB−1

t x − y · B−1
t x + 1

2
y · B−1

t Aty, x, y ∈ Rd . (12)

This representation of μ(At ) is a main ingredient of our results, hence we stress that
it does hold for any t ∈ R \ Ẽ, where we define the set of exceptional times as

Ẽ = {t ∈ R : detBt = 0}. (13)

Some of the properties of this set can be immediately deduced from the fact that it
is indeed the zero set of an analytic function: apart from the case Ẽ = R (which
trivially happens when H = 0), Ẽ is a discrete (hence at most countable) subset
of R which always includes t = 0—in particular Ẽ = {0} in the case of the free
Schrödinger equation (V = 0).

We now apply a version of Trotter formula from the theory of operator semi-
groups. It is known that H0 = aw is a self-adjoint operator on the maximal domain
(see [33])

D (H0) = {ψ ∈ L2(Rd) : H0ψ ∈ L2(Rd )}.

For our purposes it is enough to assume that V is a bounded perturbation of H0,
namely V ∈ B(L2(Rd )); notice that V ∈ L∞(Rd ) is then a suitable choice, even
for possibly complex-valued potentials.

Then, we have (cf. for instance [12, Cor. 2.7 and Ex. 2.9])

e−it (H0+V ) = lim
n→∞En(t), En(t) =

(
e−i

t
n H0e−i

t
n V
)n
, (14)

where the convergence is intended in the strong operator topology in L2(Rd). Let us
denote by en,t (x, y) the distribution kernel of En(t) and by ut (x, y) that of U(t) =
e−it (H0+V ).

We assume V ∈ L∞(Rd), and we tune its regularity as follows. In view of the
discussion on modulation spaces in the previous section, we have available a scale
of decreasing regularity spaces.

1. The best option for our purposes is given by C∞
b (R

d ), the space of smooth
bounded functions with bounded derivatives of any order.

2. At an intermediate level we have the (scale of) modulation spaces M∞
s (R

d ),
s > 2d , which contain bounded continuous functions becoming less regular
as s ↘ 2d—the parameter s can be thought of as a measure of (fractional)
differentiability.

3. We finally have a maximal space M∞,1(Rd ), where the partial regularity of
the previous level is completely lost. It is still a space of bounded continuous
functions which locally enjoy the mild regularity of the Fourier transform of a
L1 function.
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Let us first state our main result at the intermediate regularity encoded by
M∞
s (R

d ).

Theorem 2 Let H0 = aw as discussed above and V ∈ M∞
s (R

d ), with s > 2d . Let
At denote the classical flow associated with H0 as in (10). For any t ∈ R \ Ẽ:
1. the distributions e−2πi!t en,t , n ≥ 1, and e−2πi!t ut belong to a bounded subset

ofM∞
s (R

2d);
2. en,t → ut in (FL1

r )loc(R2d) for any 0 < r < s−2d , hence uniformly on compact
subsets.

The first claim ensures the kernel convergence problem is well posed under
the given assumptions, since the kernels are indeed bounded continuous functions,
while the second one characterizes the regularity at which convergence occurs—
which clearly implies pointwise convergence.

We expect to improve the convergence result in the smooth context in view of
the characterization given in (8).

Corollary 1 LetH0 = aw as discussed above and V ∈ C∞
b (R

d). LetAt denote the
classical flow associated with H0 as in (10). For any t ∈ R \ Ẽ:
1. the distributions e−2πi!t en,t , n ≥ 1, and e−2πi!t ut belong to a bounded subset

of C∞
b (R

2d);
2. en,t → ut in C∞(R2d), hence uniformly on compact subsets together with any

derivatives.

This result should be compared with the results by Fujiwara in [26], where
convergence at the level of kernels in C∞

b -sense for short times was proved. In
spite of different assumptions and approximation schemes, we stress that our result
is global in time.

We conclude with a convergence result in the same spirit, for potentials in the
Sjöstrand class.

Theorem 3 Let H0 = aw as discussed above and V ∈ M∞,1(Rd). Let At denote
the classical flow associated with H0 as in (10). For any t ∈ R \ Ẽ:
1. the distributions e−2πi!t en,t , n ≥ 1, and e−2πi!t ut belong to a bounded subset

ofM∞,1(R2d);
2. en,t → ut in (FL1)loc(R2d), hence uniformly on compact subsets.

We stress that a typical potential setting in the papers by Albeverio and coauthors
is “harmonic oscillator plus a bounded perturbation”, the latter in the form of the
Fourier transform of a (finite) complex measure on Rd—cf. [2] and the references
therein. While those results rely on completely different techniques (in particular,
infinite-dimensional oscillatory integral operators), in view of the embedding
FM(Rd) ⊂ M∞,1(Rd ) proved in [43, Prop. 3.4] we are able to cover this class
of potentials too.

In addition to the regularity properties mentioned insofar, our choice of modula-
tion space is particularly well suited to the problem in view of the rich algebraic
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structure discussed in Sect. 2. The key of the proofs is that for t ∈ R \ Ẽ the
approximate operator En(t) can be expressed in integral form and a manageable
form of the kernel en,t can be derived. In particular, with the help of some technical
lemmas we are able to write

En (t) ϕ(x) = aw
n,t μ (At ) ϕ(x)

= c(t) |detBt |−1/2
∫
Rd
e2πi!t (x,y)ãn,t (x, y) ϕ (y) dy, (15)

where !t is as in (12) and {an,t }, {ãn,t } ⊂ M∞
s (R

2d) are bounded sequences of
symbols for fixed t ∈ R \ Ẽ.

4 Results on Integral Kernels at Exceptional Times

The occurrence of a set of exceptional times in Theorems 2 and 3 comes not as a
surprise from a mathematical point of view: it may happen indeed that the integral
kernel of the evolution operator degenerates into a distribution. A standard example
of this phenomenon is provided by the harmonic oscillator, namely

i∂tψ = − 1

4π
)ψ + π |x|2ψ.

The integral kernel of the corresponding evolution operator is known as the Mehler
kernel and can be explicitly characterized [11, 36]: for k ∈ Z,

ut (x, y) =
⎧⎨
⎩c(k)| sin t|−d/2 exp

(
πi

x2+y2

tan t − 2πi x·ysin t

)
(πk < t < π(k + 1))

c′(k)δ((−1)kx − y) (t = kπ)
,

(16)

for suitable phase factors c(k), c′(k) ∈ C. This shows the expected degenerate
behaviour at integer multiples of π , which is consistent with the fact that the
associated classical flow At is given by

At =
(
(cos t)I (sin t)I
−(sin t)I (cos t)I

)
,

where I ∈ Rd×d is the identity matrix. Hence we retrieve Ẽ = {t ∈ R : sin t =
0} = {kπ : k ∈ Z}.

We may wonder whether convergence of integral kernels still occurs in some
distributional sense, hopefully better than the broadest one (that is S′(R2d)). In
view of the discussion in Sect. 2 on the triple (M1, L2,M∞), a suitable setting may



306 H. G. Feichtinger et al.

be provided by M∞. We have indeed a general result for the kernels of strongly
convergent sequences of operators in L2.

Theorem 4 Let {An} ⊂ B(L2(Rd )), n ∈ N, be a sequence of bounded linear
operators on L2(Rd) with associated distribution kernels {an} ⊂ S′(R2d), and A ∈
B(L2(Rd)) with distribution kernel a ∈ S′(R2d). Assume that An → A in the
strong operator topology. Then:

1. an, a ∈ M∞(R2d), n ∈ N;
2. an → a in the weak-* topology onM∞(R2d).

In particular we have an → a in FL∞
loc(R

2d), the latter space endowed with the
topology σ((FL∞)loc(R2d), (FL1)comp(R2d)).

Proof We have that {An} is a bounded sequence in B(L2(Rd )) as a consequence
of the uniform boundedness principle, hence also in B(M1(Rd ),M∞(Rd )). The
Feichtinger kernel theorem (Theorem 1) yields that the kernels an belong to a
bounded subset of M∞(R2d). Similarly, A ∈ B(L2(Rd )) ⇒ a ∈ M∞(R2d).
For the second part of the claim we remark that An → A in the strong operator
topology implies that an → a in S′(R2d). Therefore, for any fixed non-zero
g ∈ S(Rd) we have Vgan → Vga pointwise in R2d . Moreover, we have the estimate
|Vgan(x, ξ)| ≤ C, for some constant C > 0 independent of n by the first part of the
proof. Hence, for any ϕ ∈ M1(Rd ) we have

〈an, ϕ〉 =
∫
R2d

Vgan(x, ξ)Vgϕ(x, ξ)dxdξ

→
∫
R2d

Vga(x, ξ)Vgϕ(x, ξ)dxdξ = 〈a, ϕ〉,

by the dominated convergence theorem. ��
It would be interesting to prove the boundedness of an in M∞(R2d) in Theorem 4
without using the uniform boundedness principle, although it could be not immedi-
ate.

A straightforward application of this result allows us to prove global-in-time
convergence of integral kernels, although in a weaker sense than before.

Corollary 2 Assume V ∈ L∞(Rd). Let en,t ∈ S′(R2d) be the distribution kernel
of the Feynman-Trotter parametrix En(t) in (14) and ut ∈ S′(R2d) be the kernel of
the Schrödinger evolution operator U(t) associated with the Cauchy problem (1).
For any n ∈ N and t ∈ R we have en,t , u ∈ M∞(R2d). Moreover, en,t → ut in the
weak-* topology onM∞(R2d) for any fixed t ∈ R.

For more regular potentials we expect that the conclusion of Corollary 2 can
be improved. Let us first provide a version of the Trotter formula for potentials in
M∞,1(Rd), with strong convergence onM1(Rd).
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Theorem 5 Assume V ∈ M∞,1(Rd). Let {En(t)} be the sequence of Feynman-
Trotter parametrices defined in (14) andU(t) be the Schrödinger evolution operator
U(t) associated with the Cauchy problem (1). For any fixed t ∈ R we have

lim
n→∞En(t) = U(t), lim

n→∞En(t)
∗ = U(t)∗

in the strong topology of operators acting onM1(Rd).

Proof We prove that En(t)→ U(t) strongly in B(M1(Rd)); the claim concerning
adjoint operators follows by similar arguments since U(t)∗ = U(−t) and En(t)∗ =(
ei

t
n V ei

t
nH0
)n

.

As already observed, we know that the operator H0 with domain D(H0) =
{ϕ ∈ L2(Rd ) : H0ϕ ∈ L2(Rd )} is self-adjoint [33]. Let U0(t) = e−itH0 be the
corresponding strongly continuous unitary group on L2(Rd ). The well-posedness
of the Schrödinger equation i∂tψ = H0ψ in M1(Rd ) (see e.g. [7]) implies that
the restriction of U0(t) toM1(Rd) defines a strongly continuous group onM1(Rd ),
its generator being the restriction of H0 to the subspace {ϕ ∈ M1(Rd) : H0ϕ ∈
M1(Rd )}, as a consequence of known results on subspace semigroups, cf. [12,
Chapter 2, Sec. 2.3]. Since the pointwise multiplication by V ∈ M∞,1(Rd) defines
a bounded operator onM1(Rd), the desired result follows from the classical Trotter
formula ([12, Cor. 2.7 and Ex. 2.9]). ��

We provide an equivalent formulation of the previous result for the corresponding
integral kernels, which is indeed a partial counterpart of the pointwise convergence
results of Sect. 3.

Theorem 6 Under the same assumptions of Theorem 3, for all t ∈ R and ϕ ∈
M1(Rd ), the functions

〈en,t (x, ·), ϕ〉, 〈en,t (·, y), ϕ〉, 〈ut (x, ·), ϕ〉, 〈ut (·, y), ϕ〉

belong toM1(Rd ).
Moreover

〈en,t (x, ·), ϕ〉 → 〈ut (x, ·), ϕ〉, 〈en,t (·, y), ϕ〉 → 〈ut (·, y), ϕ〉

inM1(Rd), hence in Lp(Rd ) for every 1 ≤ p ≤ ∞.

The last conclusion follows from the continuous embedding M1(Rd ) ↪→ Lp(Rd ),
for every 1 ≤ p ≤ ∞.

Remark 1 We expect other improvements of Theorem 4 to hold in the case where
An = En(t), A = U(t). In particular, convergence result for the corresponding
integral kernels could be investigated in the context of mixed modulation spaces
and generalized kernel theorems in the spirit of [4]. We will not engage in such
formulation here in order to avoid quite technical discussions.
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5 Physics at Exceptional Times

In spite of the attempts to shed light on the nature of exceptional times and the partial
results in the previous section, a physical interpretation of exceptional times is still
not clear at the moment. This non-trivial question also appears in the form of an
enigmatic exercise in the textbook [23, Problem 3-1] by Feynman and Hibbs. While
dimensional analysis and heuristic arguments may provide some hints, a precise
answer still seems to be missing.

We give our contribution to this discussion with a short argument which
elucidates the nature of exceptional times in terms of measurable quantities. Recall
that B(u, r) denotes the ball with center u ∈ Rd and radius r > 0 in Rd . Following
the custom in physics we adopt below the Bra-ket notation, and we identify states
with their wave functions in the position representation.

Fix x0, y0 ∈ Rd and a, b > 0, and consider the normalised wave-packets

|A〉 = 1√|B(y0, a)|1B(y0,a), |B〉 = 1√|B(x0, b)|1B(x0,b).

The corresponding transition amplitude from the state |A〉 to |B〉 under the
Hamiltonian H = H0 + V as in Theorem 3, namely

I = I (t, x0, y0, a, b) = 〈B|U(t)|A〉, t ∈ R,

trivially satisfies the estimate

|I (t, x0, y0, a, b)| ≤ 1, ∀t ∈ R, x0, y0 ∈ Rd, a, b > 0.

This bound cannot be improved at exceptional times: consider for instance the case
where t = 0, x0 = y0 and a = b, which yields I = 1. Nevertheless, we have the
following result.

Proposition 3 Under the same assumptions of Theorem 3, for all t ∈ R \ Ẽ and
x0, y0 ∈ Rd we have

lim
a,b→0

I (t, x0, y0, a, b)

(ab)d/2
= Cut (x0, y0),

where C = C(d) = |B(0, 1)|.
Proof An explicit computation yields

I (t, x0, y0, a, b)

C(ab)d/2
= 1

C2(ab)d

∫
B(x0,b)

∫
B(y0,a)

ut (x, y)dydx,
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and the conclusion follows by the continuity of ut (x, y) in R2d , because ut ∈(
FL1

)
loc(R

2d) for t ∈ R \ Ẽ by Theorem 3. ��
This result shows that while |I | ≤ 1 in general, for a non-exceptional time t ∈

R \ Ẽ we have that |I | ∼ (ab)d/2 as a, b → 0. In particular |I | → 0 as a, b → 0
except (possibly) for exceptional times.
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Decay Estimates for a Klein–Gordon
Model with Time-Periodic Coefficients

Giovanni Girardi and Jens Wirth

Abstract In this paper we consider a Klein–Gordon model with time-dependent
periodic coefficients. The aim is to investigate how the presence of the mass term
influences energy estimates with respect to the case of vanishing mass, already
treated by J. Wirth (Hiroshima Math J 38:397–410, 2008). The approach is based
on a diagonalisation argument for high frequencies and a contradiction argument for
bounded frequencies.

Keywords Wave equation · Damped Klein-Gordon models · Periodic
coefficients · Long time decay estimates

1 Introduction

In [18] the second author considered the linear Cauchy problem for a damped wave
equation with time-periodic dissipation term b(t),

{
utt −�u+ 2b(t)ut = 0,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1)

and proved that the solution to (1) satisfies the well-known Matsumura-type estimate
obtained for constant dissipation by A. Matsumura in [8], that is

‖∂kt ∇j u(t, ·)‖L2 ≤ C(1 + t)−j− k
2 (‖u0‖Hj+k + ‖u1‖Hj+k−1 ), (2)
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for j, k = 0, 1 and C a positive constant independent on the initial data. In this
paper we generalise these results and consider the Cauchy problem

{
utt −�u+ 2b(t)ut +m2(t)u = 0,

u(0, x) = u0(x), ut (0, x) = u1(x)
(3)

with positive time-periodic dissipation b(t) and mass m(t). We study how the
presence of a periodic mass term influences the decay estimates for the solution
to (3).

Let us first explain, why such a problem is interesting and how it relates to
known results from the literature. There exist many papers in which decay estimates
for the solution to wave models of the form (3) are investigated under different
assumptions on the coefficients b(t) and m(t). The survey articles [12] and [19]
provide for an overview of results; moreover, we refer to the works of M. Reissig and
K. Yagdjian [14], of F. Hirosawa and M. Reissig [7], of M. Reissig and J. Smith [13],
as well as the papers of the second author [15], [16]. In the latter two papers a
classification of dissipation terms as non-effective or effective is introduced, which
distinguishes the dissipation terms according to their strength and influence on the
large-time behaviour of solutions. In all these results a control on the amount of
oscillations present in the coefficients is essential.

To understand this and the meaning of this classification we consider the
Cauchy problem (1) with the coefficient b assumed to be a bounded, non-negative,
sufficiently smooth function satisfying a condition of the form

|∂kt b(t)| ≤ Ck
b(t)

(1 + t)k for k = 1, 2. (4)

Then, we distinguish between two cases. First, if

lim sup
t→∞

tb(t) < 1. (5)

we say that b is non-effective, in the sense that the solution behaves in an asymptotic
sense like a free wave multiplied by a decay factor, that is there exists a solution
v = v(t, x) to the wave equation vtt −�v = 0 such that

(∇u(t, x)
ut (t, x)

)
∼ 1

λ(t)

(∇v(t, x)
vt (t, x)

)
, t → ∞,

the asymptotic equivalence understood in an appropriate Lp-sense and with λ =
λ(t) given as

λ(t) = exp
(1

2

∫ t

0
b(τ) dτ

)
.
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The initial data to the free wave v = v(t, x) are uniquely determined by the solution
u = u(t, x) and thus by the initial data u0 and u1. Thus, a modified form of
scattering is valid. On the other hand, if

lim
t→∞ tb(t) = ∞

holds true we say that the dissipation b is effective; in this case solutions to damped
wave equation are asymptotically related to solutions w = w(t, x) of the parabolic
heat equation wt = �w, i.e.

u(t, x) ∼ w(t, x)

holds true again in an appropriate Lp-sense. This can be made precise in the form
of the so-called diffusion phenomenon for damped waves; see [17] for the time-
dependent dissipation case or the papers of Nishihara [10] and Narazaki [9] for the
case of constant dissipation.

Wave models with mass and dissipation of the form (3) were considered by
the second author and Nunes in [11]. This paper provides in particular Lp − Lq

decay estimates in the non-effective case. In [4] the first author considered with
M. D’Abbico and M. Reissig the Cauchy problem (3) in the case in which the
damping term is effective and dominates the mass term, i.e. m(t) = o(b(t)) as
t → ∞, again under control assumptions on the oscillations of the coefficients. In
that paper it is shown that under a simple condition on the interaction between b(t)
and m(t), one can prove that the solutions to (3) satisifies the estimate

‖u(t, ·)‖L2 ≤ C γ (t) ‖(u0, u1)‖H 1×L2 , (6)

where we define

γ (t) = exp

(
−
∫ t

0

m2(τ )

b(τ )
dτ

)
. (7)

Thus, the decreasing function γ = γ (t) in (7) represents the influence on the
estimates of the mass term with respect to the damping term. In particular, estimate
(6) shows that the presence of the mass term produces an additional decay which
becomes faster as the mass term becomes more influent. In fact, in [5] the first author
proved an exponential decay in the case of dominant mass, that is

‖u(t, ·)‖L2 ≤ C exp

(
−δ
∫ t

0
b(τ) dτ

)
‖(u0, u1)‖H 1×L2 , (8)
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provided that lim inft→∞m(t)/b(t) > 1/4. This latter estimate is almost the same
as for the solution to the Cauchy problem to a damped Klein–Gordon model with
constant coefficients b(t) ≡ 1 and m(t) ≡ 1, that is

{
utt −�u+ ut + u = 0,

u(0, x) = u0(x), ut (0, x) = u1(x).
(9)

All these cited papers have in common that they use assumptions on derivatives
of the coefficients as in (4) to avoid a bad influence of oscillations. That oscillations
may have deteriorating influences was shown for example by K. Yagdjian in [20]
for a wave equation with time-periodic speed of propagation. In this case (many)
solutions have exponentially growing energy. Controlling oscillations is done by
requiring estimates for derivatives of the coefficients.

It is clear that for dissipative wave equations oscillations in the positive dissipa-
tion term can not lead to solutions with increasing energy. Therefore, it is interesting
to ask whether conditions on derivatives of the coefficient are indeed necessary for
proving large-time decay estimates for solutions of (1). A first step to look into
that was done in [18], where the author proved that the solution to (1) satisifies
estimate (2) without any condition on the oscillations of b = b(t) provided that
b is periodic. This led to the conjecture that estimate (2) can be obtained with a
general dissipation term b = b(t), with tb(t)→ ∞, without further assumptions on
derivatives. However, it is still an open problem how to prove such a result.

In the present paper we also avoid assumptions on the derivatives of the
coefficients b(t) and m(t) assuming only that they are positive, periodic and of
bounded variation. We are going to prove an exponential decay by using the same
technique used as in [18] combined with a perturbation argument for the mass term.
We remark that the presence of the mass term simplifies the study of the estimates
at small frequencies; in fact, in this zone it is not necessary to use tools of Floquet
theory as in the case of vanishing mass: we use only a contradiction argument
together with some results of spectral theory of matrices.

The study of decay estimates for the solution to the linear problem (3) has
an important application in the study of global (in time) existence results for the
corresponding nonlinear problem

{
utt −�u+ 2b(t)ut +m2(t)u = h(t, u),

u(0, x) = u0(x), ut (0, x) = u1(x)

with nonlinearity h(t, u) = (1 + ∫ t0 1/b(τ ) dτ)ω|u(t, ·)|p for a ω ∈ [−1,∞). Such
applications can be found for example in [2, 3] in the purely dissipative case and in
[4–6] for equations including mass terms.

The paper is organized as follows: In Sect. 2 we give the basic assumptions on the
Cauchy problem and we state our main results that are Theorems 1 and 2; in Sect. 3
we make considerations and discuss properties of the fundamental solution to (3)
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and the associated monodromy operator. In Sect. 4 we treat the case of constant
mass for small frequencies and we prove a fundamental lemma useful for the proof
of the main theorems. Finally in Sect. 5 the main theorems are proved.

2 Main Results

In this paper we suppose that the coefficient b = b(t) is a non-negative and
continuous periodic function of bounded variation, i.e., we assume that its weak
derivative is essentially bounded, b′ ∈ L∞. We further suppose that the coefficient
m = m(t) is measurable and periodic with the same period. We denote the period of
both coefficients by T . The first result concerns constant mass terms and provides
an exponential decay result.

Theorem 1 Suppose m ≡ m0 ∈ R is constant. There exists δ > 0 such that the
solution u = u(t, x) to the Cauchy problem (3) satisfies

‖u(t, ·)‖L2 ≤ Ce−δt (‖u0‖L2 + ‖u1‖H−1),

‖∇u(t, ·)‖L2 ≤ Ce−δt (‖u0‖H 1 + ‖u1‖L2),

‖ut (t, ·)‖L2 ≤ Ce−δt (‖u0‖H 1 + ‖u1‖L2),

where δ and C are positive constants depending on the coefficient b and on m0.

If the mass term is non-constant, the exponential decay is obtained under a
smallness condition for the deviation of the mass-term from a constant.

Theorem 2 Let m0 ∈ R and m1 = m1(t) a measurable T -periodic function such
that supt≥0 |m1(t)| = 1. Then, there exists ε sufficiently small such that the solution
to {

utt −�u+ 2b(t)ut +m2
ε(t)u = 0,

u(0, x) = u0(x), ut (0, x) = u1(x)
(10)

with m2
ε(t) = m2

0 + εm1(t) satisfies

‖u(t, ·)‖L2 ≤ Ce−σ t (‖u0‖L2 + ‖u1‖H−1),

‖∇u(t, ·)‖L2 ≤ Ce−σ t (‖u0‖H 1 + ‖u1‖L2),

‖ut (t, ·)‖L2 ≤ Ce−σ t (‖u0‖H 1 + ‖u1‖L2),

where σ and C are positive constant depending on m0, m1, b and ε.

Remark 1 It is still an open problem to understand which is the largest value that
ε can assume in order to guarantee an exponential decay of the energy. A possible
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estimate of ε is given in the proof of Theorem 2: from estimate (36) it is clear that
the value of ε depends on how large we chooseN , such that the line |ξ | = N divides
the phase space in small and large frequencies. In particular, the value ofN depends
only on the dissipation and does not depend on the mass term.

3 Representation of Solution

In a first step we derive properties of the representation of solutions for the Cauchy
problem

utt −�u+ 2b(t)ut +m2(t)u = 0, u(0, x) = u0(x), ut (0, x) = u1(x),

(11)

with b = b(t) ≥ 0 and m = m(t) ≥ 0 both periodic of period T . We denote the
mean value of b(t) as

β = 1

T

∫ T

0
b(t) dt.

A partial Fourier transform with respect to the spatial variables reduces the problem
to an ordinary differential equation

ût t + |ξ |2û+ 2b(t)ût +m2(t)û = 0, (12)

parameterised by |ξ | ∈ R. To reformulate this as first order system, we introduce
the symbol 〈ξ〉m(t) := √|ξ |2 +m2(t) and we define the new variable V =
(〈ξ〉m(t)û,Dt û)T . Then we obtain the system DtV = A(t, ξ)V with

A(t, ξ) =
(

0 〈ξ〉m(t)
〈ξ〉m(t) 2ib(t)

)
, (13)

using the Fourier derivativeDt = −i∂t . We want to study the fundamental solution
E =E(t, s, ξ) to (13), that is the matrix-valued solution to the Cauchy problem

DtE(t, s, ξ) = A(t, ξ)E(t, s, ξ), E(s, s, ξ) = I. (14)

In particular, we consider the family of monodromy matrices M(t, ξ) = E(t +
T , t, ξ). The fundamental solution to (14) can be represented by the Peano–Baker
series

E(t, s, ξ) = I +
∞∑
�=1

ik
∫ t

s

A(t1, ξ)

∫ t1

s

A(t2, ξ) · · ·
∫ t�−1

s

A(t�, ξ) dt� · · · dt1.
(15)
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The T -periodicity of coefficients implies periodicity of the matrixA(t, ξ) and hence
the T -translation invariance of the fundamental solution, i.e. E(t + T , s + T , ξ) =
E(t, s, ξ). Thus, the the monodromy matrix M(t, ξ) is T -periodic. Moreover,
since E(t, s, ξ)E(s, t, ξ) = I it follows that E(t, s, ξ) satisfies DsE(t, s, ξ) =
−E(t, s, ξ)A(s, ξ), and, therefore, M(t, ξ) satisfies the equation

DtM(t, ξ) = [A(t, ξ),M(t, ξ)], M(T , ξ) = M(0, ξ).

In what follows we will distinguish between small and large frequencies and provide
estimates for M.

3.1 Large Frequencies

For large frequencies we want to prove that the monodromy matrix is uniformly
contractive, i.e.

‖M(t, ξ)‖ < 1 (16)

holds true uniformly in t ∈ [0, T ] and |ξ | ≥ N for a constant N chosen large
enough. The choice of N does not depend on the coefficient m = m(t). In order to
prove (16) we apply two steps of diagonalization. We consider the unitary matrices

M = 1√
2

(
1 −1
1 1

)
M−1 = 1√

2

(
1 1
−1 1

)

and define the new variable V (0) = M−1V , which satisfies

DtV
(0) = (D(t, ξ) + R(t, ξ))V (0)

with

D(t, ξ) =
(〈ξ〉m(t) 0

0 −〈ξ〉m(t)
)
, R(t, ξ) = ib(t)

(
1 1
1 1

)
.

Next, we define D1 = D + diagR and R1 = R − diagR and construct a matrix
N1 = N1(t, ξ) with

DtN1 = [D1, N1] + R1, (17)

andN1(0, ξ) = I . Thus, the requirement forN1 is equivalent to the operator identity

(Dt −D1 − R1)N1 −N1(Dt −D1) = DtN1 − [D1, N1] − R1N1 = R1(I −N1).
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Hence by denoting R2 = −N−1
1 R1(I −N1) we obtain

(Dt −D1 − R1)N1 = N1(Dt −D1 − R2)

and as a consequence, provided that N1 is invertible, we obtain that the new
unknown V (1) = N−1

1 V (0) satisfies the transformed equation

DtV
(1) = (D1 + R2)V

(1)

with improved remainder allowing us later on to prove (16).
Since N1 = N1(t, ξ) satisfies equation (17) and D1 is diagonal, we find

Dt diagN1 = 0. Thus, we can use a matrix N1 of the form

N1 =
(

1 n−
n+ 1

)
,

with

Dtn
±(t, ξ) = ∓〈ξ〉m(t)n±(t, ξ)+ ib(t).

The initial conditions n±(0, ξ) = 0 giving N1(0, ξ) = I imply

n±(t, ξ) =
∫ t

0
e∓i

∫ t
s 〈ξ 〉m(r) drb(s) ds.

Integrating by parts, we obtain

|n±(t, ξ)| =
∣∣∣[ ∓i
〈ξ〉m(s) e

∓i ∫ ts 〈ξ 〉m(r) drb(s)]t
0
−
∫ t

0

∓i
〈ξ〉m(s) e

∓i ∫ ts 〈ξ 〉m(r) drb′(s)ds
∣∣∣

and using that b = b(t) is of bounded variation we find a constant C > 0 such that

|n±(t, ξ)| ≤ C(1 + t)|ξ |−1. (18)

Thus we get that n±(t, ξ) → 0 when ξ → ∞, uniformly in [0, 2T ]. Then we can
conclude that N1(t, ξ)→ I and therefore N−1(t, ξ)→ I uniformly in t ∈ [0, 2T ]
as |ξ | → ∞. Hence ‖R2(t, ξ)‖ → 0 as |ξ | → ∞ uniformly in t ∈ [0, 2T ]. Thus
the supremum on the left hand side in the following formula tends to 1 as N → ∞
and we fix N such that

sup
|ξ |≥N

sup
t∈[0,T ]

‖N1(t + T , ξ)‖e
∫ t+T
t ‖R2(s,ξ)‖ds‖N−1

1 (t, ξ)‖ ≤ eβT/2 (19)
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holds true. Note that this choice of N can be made indepent of the coefficient m =
m(t), in fact R1 = R1(t, ξ) does not depend on m(t), and N1(t, ξ), N

−1
1 (t, ξ) tend

both to I uniformly with respect to m(t).
In order to prove the desired estimate (16) we go back to the original problem. We

define λ(t) := exp(
∫ t

0 b(τ)dτ). Then, for each |ξ | > N the fundamental solution
E(t, s, ξ) to DtV = A(t, ξ)V with A defined in (13) is given by

E(t, s, ξ) = λ(s)

λ(t)
MN1(t, ξ)Ẽ0(t, s, ξ)Q(t, s, ξ)N

−1
1 (t, ξ)M−1, (20)

for all t ∈ [0, T ], where

Ẽ0(t, s, ξ) =
(
ei
∫ t
s 〈ξ 〉m(τ)dτ 0

0 e−i
∫ t
s 〈ξ 〉m(τ)dτ

)

andQ = Q(t, s, ξ) is the solution to the Cauchy problem

DtQ(t, s, ξ) = Ẽ0(s, t, ξ)R2(t, ξ)Ẽ0(t, s, ξ)Q(t, s, ξ), Q(s, s, ξ) = I.

Let R2(t, s, ξ) = Ẽ0(s, t, ξ)R2(t, ξ)Ẽ0(t, s, ξ). Then by using the Peano-Beaker
formula again we can representQ(t, s, ξ) as

Q(t, s, ξ) = I +
∞∑
�=1

ik
∫ t

s

R2(t1, s, ξ)

∫ t1

s

R2(t2, t1, ξ) · · ·
∫ tk−1

s

R2(tk, tk−1, ξ)dtk . . . dt1.

Since ‖R2(t, s, ξ)‖ = ‖R2(t, ξ)‖ we conclude

‖Q(t, s, ξ)‖ ≤ exp
( ∫ t

s

‖R2(τ, ξ)‖dτ
)
. (21)

By (20) we can represent the monodromy matrix M(t, ξ) =E(t, s, ξ) as

M(t, ξ) = λ(t)

λ(t + T )MN1(t+T , ξ)Ẽ0(t+T , t, ξ)Q(t+T , t, ξ)N−1
1 (t+T , ξ)M−1.

Since λ(t)/λ(t + T ) = e−βT the desired result ‖M(t, ξ)‖ ≤ e−βT/2 < 1 for each
t ∈ [0, T ] and each |ξ | ≥ N follows by (19) and (21). Hence we obtain

Lemma 1 There exists a constant N depending only on T , ‖b′‖∞ and ‖b‖∞ such
that the monodromy matrixM(t, ξ) satisfies

‖M(t, ξ)‖ ≤ e−βT/2

uniformly on t ∈ R and |ξ | ≥ N and independent of the mass term m(t).
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Remark 2 In the case of constant dissipation b ≡ 1 it is possible to give an explicit
value of admissible N . In fact, in such case we find explicitely

n±(t, ξ) = ∓i
〈ξ〉m(t) −

∓i
〈ξ〉m(0) e

∓i ∫ t0 〈ξ 〉m(r) dr .

Moreover, it holds

det N1(t, ξ) = 1 − n+(t, ξ)n−(t, ξ),

and we can estimate

n+(t, ξ)n−(t, ξ) =
(

1

〈ξ〉2m(t)
− 2

〈ξ〉m(t)〈ξ〉m(0) cos
( ∫ t

0
〈ξ〉m(r) dr

)
+ 1

〈ξ〉2m(0)

)

≤
( 〈ξ〉m(t) + 〈ξ〉m(0)

〈ξ〉m(t)〈ξ〉m(0)
)2

≤ 2

N
.

In the last estimate we used that the function (x+y)/(xy) is decreasing with respect
to x and y and it holds 〈ξ〉m(t), 〈ξ〉m(0) ≥ N . Toghether with estimate (18) this
allows to conclude that

‖R2(t, ξ)‖ � 1

N − 2
.

Thus, estimate (19) is satisfied, for instance, if we take N > 4.

4 Small Frequencies: Constant Mass

In this section we want to prove that there exists k ∈ N such that

‖Mk(t, ξ)‖ < 1 (22)

uniformly in |ξ | ≤ N and t ∈ [0, T ] provided that the mass term is constant. Thus,
in this section, we restrict our study to the Cauchy problem

vtt −�v + 2b(t)vt +m2
0v = 0 v(0, x) = v0(x), vt (0, x) = v1(x). (23)

In particular, we denote by E0(t, s, ξ) the fundamental solution associated to the
system DtV = A0(t, ξ)V with

A0(t, ξ) =
(

0 〈ξ〉m0

〈ξ〉m0 2ib(t)

)
, 〈ξ〉m0 =

√
|ξ |2 +m2

0. (24)
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LetM0(t, ξ) =E0(t+T , 0, ξ) be the corresponding family of monodromy matrices.
In order to get our aim we will prove at first that the spectrum specM0(t, ξ) is
contained in the open ball {η ∈ C||η| < 1}.

Since it holds

M0(t, ξ)E0(t, 0, ξ) =E0(t + T , 0, ξ) =E0(t + T , T , ξ)E0(T , 0, ξ) = E0(t, 0, ξ)M0(0, ξ),

we conclude that for each t ∈ [0, T ] the monodromy matrix M0(t, ξ) is similar
to M0(0, ξ) and, hence, has the same spectrum. Moreover, as both b(t) and m(t)
are real; the Eq. (12) has real solutions and it follows that M0(t, ξ) is similar to a
real-valued matrix. Furthermore, by Liouville Theorem we know that

detM0(0, ξ) = ei
∫ T

0 trA0(τ,ξ)dτ = e−2βT . (25)

Hence, for each ξ ∈ Rn the eigenvalues η1(ξ), η2(ξ) of M0(0, ξ) are either real,
in the form η2(ξ) = η−1

1 (ξ)e−2βT , or complex conjugate with |η1(ξ)| = |η2(ξ)| =
e−βT . In the latter case it is clear that specM0(0, ξ) ⊂ {ξ ∈ Rn||ξ | = exp(−βT )}.
In the case in which the eigenvalues are real we need to prove that for each ξ ∈
Rn both η1(ξ) and η2(ξ) have modulus less then 1. We will prove this by using a
contradiction argument.

Suppose that there exists ξ̄ ∈ Rn such that the monodromy matrix M0(0, ξ̄ )
has an eigenvalue of modulus 1, i.e, η1(ξ̄ ) = ±1 and so η2(ξ̄ ) = ±e−2βT . Let
c = (c1, c2) be an eigenvector corresponding to η1(ξ̄ ). Then, we can find a domain
�R = {x ∈ Rn||x| ≤ R} (with R depending on m0) and a function ! = !(x)

defined on �R such that −|ξ̄ |2 − m2
0 is an eigenvalue for the Dirichlet Laplacian

with normal eigenfunction! = !(x), i.e.

−�!(x) = (|ξ̄ |2 +m2
0)!(x), !(x) = 0 on ∂�R. (26)

Let us consider v = v(t, x) the solution to the Cauchy problem, with Dirichlet
boundary condition on �R⎧⎪⎪⎨

⎪⎪⎩
vtt −�v + 2b(t)v = 0,

v(0, x) = c1〈ξ̄ 〉−1
m0
!(x), vt (0, x) = ic2!(x),

v(t, ·) ≡ 0 on ∂�R for each t ≥ 0.

(27)

In particular, we look for a solution in the form

v(t, x) = f (t)!(x),

and we show that f = f (t) is T -periodic (or 2T -periodic). Since, ! = !(x)

satisfies the Dirichlet problem (26), the partial differential equation vtt − �v +
2b(t)v = 0 turns into the ordinary differential equation vtt+|ξ̄ |2v+2b(t)vt+m2

0v =
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0, with x regarded as a parameter. In particular, f = f (t) satisfies the ordinary
differential equation

f ′′(t)+ 2b(t)f ′(t)+ (|ξ̄ |2 +m2
0)f (t) = 0. (28)

Moreover, the corresponding solution v(t, x) = f (t)!(x), satisfies the Cauchy
problem

Dt

(〈ξ̄ 〉m0v(t, x)

Dtv(t, x)

)
=
(

0 〈ξ̄ 〉m0

〈ξ̄ 〉m0 2ib(t)

)(〈ξ̄ 〉m0v(t, x)

Dtv(t, x)

)
(〈ξ̄ 〉m0v(t, x)

Dtv(t, x)

) ∣∣∣
t=0

=
(
c1

c2

)
!(x).

This system can be solved by using the fundamental solution E0(t, 0, ξ̄ ); in
particular, we have that

(〈ξ̄ 〉m0v(t, x)

Dtv(t, x)

) ∣∣∣
t=T = M0(0, ξ̄ )

(
c1

c2

)
!(x) = ±

(
c1

c2

)
!(x).

We conclude that f = f (t) is T -periodic (or 2T -periodic) and f (0) = c1〈ξ̄ 〉−1
m0

.
This gives a contradiction: if we denote the energy of this solution as

E(u, t) = 1/2‖vt (t, ·)‖2
L2(�R)

+ 1/2‖∇v‖2
L2(�R)

,

we obtain

d

dt
E(v, t) = −b(t)‖vt‖2

L2(�R)
= −b(t)|f ′(t)|2.

But, by integrating the previous equation we obtain that

−
∫ T

0
b(t)|f ′(t)|2 dt = 0,

that is not possible since f = f (t) can not be constant, by Eq. (28) as (|ξ̄ |2+m2
0) >

0 for each ξ̄ ∈ Rn. Thus, ±1 /∈ specM0(t, ξ) for each ξ ∈ Rn, and therefore the
spectral radius ρ(M0(t, ξ)) < 1 for all ξ ∈ Rn.

By the spectral radius formula, we know that

lim
k→∞‖Mk

0 (t, ξ)‖
1
k = ρ(M0(t, ξ)) < 1.
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Thus, we conclude that for each t ∈ [0, T ] and ξ ∈ Rn there exists k = k(t, ξ) ∈ N
such that

‖Mk
0 (t, ξ)‖ < 1. (29)

We want to show that we can find a number k such that the condition (29) holds
uniformly with respect to t ∈ [0, T ] and |ξ | ∈ [0, N].

Let us define for each k ∈ N the set Uk = {(t, ξ) ∈ R+×Rn| ‖Mk
0 (t, ξ)‖ < 1}. It

is open due to the continuity of the monodromy matrixMk
0 (t, ξ); moreover, it holds

Uk ⊂ U�, for k ≤ �. Then, by (29) we have that the compact set C = {(t, ξ)|0 ≤
t ≤ T , |ξ | ≤ N} is contained in

⋃
kUk. By compactness we find k ∈ N such that

C ⊂ Uk. This concludes the proof of estimate (22). By continuity of Mk
0 (t, ξ) in

both variables, the estimate is uniform. Hence we obtain

Lemma 2 For constant mass term m0 and fixed N > 0 there exists a number k
such that the monodromy matrix for the problem with constant mass satisfies

sup
|ξ |≤N

sup
t∈[0,T ]

‖Mk
0 (t, ξ)‖ < 1.

5 Proof of the Main Theorems

5.1 Proof of Theorem 1

In order to prove Theorem 1 we distinguish between small and large frequencies.
Let |ξ | ≥ N . Then the monodromy matrix M(t, ξ) is estimated in Lemma 1. Let

t ≥ 0, t = �T + s, with � ∈ N and s ∈ [0, T ]. Then, we obtain

‖E(t, 0, ξ)‖ = ‖M�(s, ξ)E(s, 0, ξ)‖ ≤ e−�βT/2‖E(s, 0, ξ)‖.

Moreover, since b(t) > 0 we know that ‖E(s, 0, ξ)‖ ≤ 1 and therefore we find

‖E(t, 0, ξ)‖ ≤ e−δ0(t−T ),

by defining δ0 := β/2 > 0. We remark that this estimate for large frequencies is
valid for arbitrary periodic mass terms.

For the remainder of the proof assume thatm2(t) ≡ m2
0 constant and |ξ | ≤ N . By

Lemma 2 there exists k ∈ N depending only on m0 such that the matrix Mk
0 (t, ξ)

is a contraction uniform in t and ξ . Let t = �kT + s ≥ 0 for some � ∈ N and
s ∈ [0, kT ]. Then, we obtain the exponential decay

‖E0(t, 0, ξ)‖ = ‖Mk�
0 (s, ξ)E0(s, 0, ξ)‖ ≤ e−δ1(t−kT ), (30)
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where we set δ1 := (kT )−1 log(c1(N)
−1) > 0 and

c1(N) := sup
|ξ |≤N

sup
t∈[0,T ]

‖Mk
0 (t, ξ)‖ < 1. (31)

Going back to the original problem (3), we find

(〈ξ〉m0 û(t, ξ)

Dt û(t, ξ)

)
=E(t, 0, ξ)

(〈ξ〉m0 û0(ξ)

û1(ξ)

)
.

Thus, we find that

‖u(t, ·)‖L2 ≤ sup
ξ∈Rn

‖E0(t, 0, ξ)‖(‖u0‖L2 + ‖u‖H−1),

‖∇u(t, ·)‖L2 ≤ sup
ξ∈Rn

‖E0(t, 0, ξ)‖(‖u0‖H 1 + ‖u1‖L2),

‖ut (t, ·)‖L2 ≤ sup
ξ∈Rn

‖E0(t, 0, ξ)‖(‖u0‖H 1 + ‖u1‖L2).

The proof of Theorem 1 with C = eδ1kT follows immediately by estimate (30).

5.2 Proof of Theorem 2

Let u = u(t, x) the solution to (10) wherem2
ε(t) = m2

0+εm1(t), whitm1(t) periodic
of period T and m0 a sufficiently large constant such that m2

0 + εm1(t) > 0. The
corresponding system is

DtVε = Aε(t, ξ)Vε =
(

0 〈ξ〉mε(t)
〈ξ〉mε (t) 2ib(t)

)
Vε, (32)

where Vε = (〈ξ〉mε (t)ûε,Dt ûε). In order to obtain our result we need to estimate
‖Eε(t, 0, ξ)‖, where we denoted byEε the fundamental solution to the system (32).
In particular,E0 solvesDtV0 = A0(t, ξ)V0 where

DtV0 = A0(t, ξ)V0 =
(

0 〈ξ〉m0

〈ξ〉m0 2ib(t)

)
V0. (33)

We again distinguish between small and large frequencies. If |ξ | ≥ N , as in the case
of constant mass we conclude

‖Eε (t, 0, ξ)‖ ≤ e−δ0(t−T ),

where we recall δ0 = β/2 > 0 by making use of Lemma 1.
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If |ξ | ≤ N , there exists k ∈ N given by Lemma 2 such that the matrix Mk
0 (t, ξ)

is a contraction uniformly in t ∈ [0, T ] and |ξ | ∈ [0, N]. We write t = �kT + s ≥ 0
for some � ∈ N and s ∈ [0, kT ]; then, we have

Eε(t, 0, ξ) = Mk�
ε (s, ξ)Eε (s, 0, ξ); (34)

we can treat the fundamental solution as a perturbation of constant case

‖Eε(t, s, ξ)‖ ≤ ‖Eε(t, s, ξ) −E0(t, s, ξ)‖ + ‖E0(t, s, ξ)‖
≤ ‖Eε(t, s, ξ) −E0(t, s, ξ)‖ + e−δ(t−s−kT ),

where we recall δ1 = (kT )−1 log(c1(N)
−1) > 0 and c1(N) as in (31). In order to

estimate the difference ‖Eε (t, s, ξ) −E0(t, s, ξ)‖ we use that for each ε ≥ 0 the
fundamental solutionEε satisfies the integral equation

Eε(t, s, ξ) = I +
∫ t

s

Aε(τ, ξ)Eε (τ, s, ξ) ds,

such that

Eε(t, s, ξ) −E0(t, s, ξ) =
∫ t

s

Aε(τ, ξ)(Eε (τ, s, ξ) −E0(τ, s, ξ)) ds

+
∫ t

s

(Aε(τ, ξ) − A0(τ, ξ))E0(τ, s, ξ) ds.

By using the Gronwall inequality we get

‖Eε(t, s, ξ )−E0(t, s, ξ )‖ ≤
∫ t

s

‖E0(τ, s, ξ )‖ ‖Aε(τ, ξ )−A0(τ, ξ )‖ ds ·e
∫ t
s ‖Aε(τ,ξ )‖ dτ ;

here, for any τ > 0 and ξ ∈ Rn, since we are assuming sup
t≥0

|m1(t)| = 1 we can

estimate

‖Aε(τ, ξ) − A0(τ, ξ)‖ ≤ ε

〈ξ〉m0

, ‖A0(τ, ξ)‖ ≤ 〈ξ〉m0 + 2b(τ),

and so

‖Aε(τ, ξ)‖ ≤ Cε(ξ)+ 〈ξ〉m0 + 2b(τ), Cε(ξ) = ε

〈ξ〉m0

.
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Thus, recalling that Mk
ε (s, ξ) =Eε(s + kT , s, ξ), we find

‖Mk
ε (s, ξ) −Mk

0 (s, ξ)‖ ≤ Cε(ξ)eCε(ξ)kT e(〈ξ 〉m0+2β)kT
∫ s+kT

s

‖E0(τ, s, ξ)‖ dτ

≤ Cε(ξ)eCε(ξ)kT e(〈ξ 〉m0+2β)kT
∫ s+kT

s

e−δ1(τ−s−kT ) dτ

≤ Cε(ξ)eCε(ξ)kT e(〈ξ 〉m0+2β)kT
∫ s+kT

s

e−δ1(τ−s−kT ) dτ

≤ Cε(ξ)

δ1
eCε(ξ)kT e(〈ξ 〉m0+2β)kT (eδ1kT − 1).

Therefore, recalling that exp(δ1kT ) = c1(N)
−1, we can conclude

sup
|ξ |≤N

sup
s∈[0,T ]

‖Mk
ε (s, ξ)‖ ≤ sup

|ξ |≤N
sup
s∈[0,T ]

‖Mk
0 (s, ξ)‖

+ sup
|ξ |≤N

{Cε(ξ)
δ1

eCε (ξ)kT e(〈ξ〉m0+2β)kT (c1(N)
−1 − 1)

}

= c1(N)+ sup
|ξ |≤N

{Cε(ξ)
δ1

eCε(ξ)kT e(〈ξ〉m0+2β)kT (c1(N)
−1 − 1)

}
.

By (34) we get the desired result

sup
|ξ |≤N

sup
s∈[0,T ]

‖Mk
ε (s, ξ)‖ < 1,

by choosing ε sufficiently small such that

Cε(ξ)

δ1
eCε(ξ)kT e(〈ξ 〉m0+2β)kT (c1(N)

−1 − 1) < 1 − c1(N). (35)

Let us introduceW = W(x) the Lambert W-function defined in the set R+ := {x ∈
R : x ≥ 0} such that for any x ∈ R+ it holds x = W(x)eW(x). The function W is
increasing (see [1] for more details); thus, recalling the definition of δ1, we find that
estimate (35) is equivalent to ask

ε ≤ 〈ξ〉m0

kT
W
(
c1(N) log(c1(N)

−1)e−(〈ξ 〉m0+β)kT
)
,

for any ξ ∈ [0, N], that is

ε ≤ m0

kT
W
(
c1(N) log(c1(N)

−1)e−(〈N〉m0+β)kT
)
. (36)
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Remark 3 In the case of constant dissipation b ≡ 1 we know an admissible value of
N (see Remark 2); however, even in this case, with this technique it is not possible
to give an explicit value of ε; in fact, both k and c1(N) are not determined.
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Conditional Stability of Semigroups
and Periodic Solutions to Evolution
Equations

Nguyen Thieu Huy, Vu Thi Ngoc Ha, and Vu Thi Mai

Abstract We prove the existence and uniqueness of periodic solutions to linear
and semilinear evolution equations. Our method is based on the analysis of the
conditional stability of the semigroups generated by the corresponding linear
equations and connection with the choice of the initial data from which emanates the
periodic solution. We also give applications to damped wave equations and damped
Timoshenko beam systems.

Keywords Semigroups · Conditional ϕ-stability · Periodic solutions · Damped
wave equations · Damped Timoshenko beam systems

1 Introduction

Consider the semilinear evolution equation of the form

u′(t)− Au(t) = g(u)(t) (1)

where A is a generator of a strongly continuous semigroup (T(t))t≥0, and the
given Nemyskii’s operator g maps T -periodic functions to T -periodic functions.
The research for existence and uniqueness of a T -periodic solution to (1) is one
of important research directions related to asymptotic behavior of solutions to
evolution equations. There some approaches used for that research suitable for large
classes of differential equations, such as Massera methodology [8, 15], Tikhonov’s
fixed-point principle [10] or the Lyapunov functionals [14] (which can be applied
to some specific equations), and the most well-known approaches for establishing
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the existence of a periodic solution are the ultimate boundedness of solutions and
the compactness of Poincaré map realized through some compact embeddings (see
[1, 6, 10, 11, 13, 14] and the references therein). However, in several applications,
e.g., to partial differential equations in unbounded domains or to equations that
have unbounded solutions, such compact embeddings are no longer valid, and the
existence of bounded solutions is difficult to obtain since one has to carefully choose
an appropriate initial vector (or data) to guarantee the boundedness of the solution
emanating from that vector. One way to overcome such difficulties is to use the so-
called Massera-type theorem, that is roughly speaking that if a differential equation
has a bounded solution then it has a periodic one. However, to apply the Massera’s
principle ones have to use somehow the compactness at least at the level of weak-∗
topology (e.g., Banach-Alaoglu theorem). Actually, we have invoked this Massera’s
methodology combining with interpolation spaces to prove the existence of periodic
solutions to Navier-Stokes equations around a rotating obstacle in [9] and to general
fluid flow problems in [4]. In those works we have used the interpolation functors
in combination with ergodic method (see [9]) or with topological arguments (see
[4]). Note that there is an approach described in [7] allowing 2πki/T being in
the spectrum of A for some k ∈ Z under the requirement that such 2πki/T are
semisimple eingenvalues of A.

In the present paper, we propose another approach toward the existence and
uniqueness of the periodic solution to the abstract evolution equation (1). Namely,
we use the boundedness and conditionalϕ-stability of the corresponding semigroups
(see Definition 1 below) to construct a Cauchy sequence which converges to the
initial vector from which emanates a periodic solution. This approach seems more
direct and simpler than the approaches used in [4, 9] since we do not use the
interpolation functors. The other advantage of our approach here is lying in the
fact that we do not use any compactness arguments. Consequently, we can prove the
existence and uniqueness of general linear inhomogeneous evolution equations in
a direct and more elementary manner. Our main result is contained in Theorems 1
and 2. Then, in Sect. 3, we apply the abstract results to hyperbolic semigroups and
damped wave equations.

2 Periodic Solutions to Evolution Equations

Let us first consider the following linear evolution equation on a Banach space Y

{
u′ − Au = f (t)

u(0) = u0 ∈ Y. (2)

whereA generates a strongly continuous semigroup (T(t))t≥0 on Y , and f belongs
to Cb(R+, Y ) := {h : R+ → Y | h is continuous and supt�0 ‖h(t)‖Y < ∞}
endowed with norm ‖h‖Cb(R+,Y ) := supt�0 ‖h(t)‖Y .
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By a mild solution of (2) we mean a function u : R+ → Y satisfying the integral
equation

u(t) = T(t)u0 +
∫ t

0
T(t − s)f (s)ds. (3)

Also, we assume the following standard assumption on the semigroup.

Definition 1 Let ϕ : (0,∞) → R be a continuous function satisfying
limt→∞ ϕ(t) = 0. The semigroup (T(t))t≥0 is called conditionally ϕ-stable if

‖T(t)x‖Y � ϕ(t)‖x‖Y for all x ∈ Y such that sup
t≥0

‖T(t)x‖Y <∞. (4)

We then come to our first result for linear equation stated in the following theorem.

Theorem 1 Let (T(t))t≥0 be a conditionally ϕ-stable semigroup as in Definition 1.
Let f ∈ Cb(R+, Y ) and suppose that there exists x0 ∈ Y such that the mild solution
u(t) = T(t)x0 + ∫ t0 T(t − s)f (s)ds, t ≥ 0, belongs to Cb(R+, Y ) and satisfies
‖u‖Cb(R+,Y ) � M‖f ‖Cb(R+,Y ). Then, if f is T -periodic in time, there exists a
unique T -periodic mild solution û of (2) with

‖û‖Cb(R+,Y ) � M̃‖f ‖Cb(R+,Y ) for M̃ := (M + T ) sup
0�t�T

‖T(t)‖. (5)

Proof By the hypothesis of the theorem, we have that the mild solution u of (2) with
u(0) = x0 (i.e., u(t) = T(t)x0 +

∫ t
0 T(t − s)f (s)ds, t ≥ 0) belongs to Cb(R+, Y ).

We next prove that {u(nT )}n∈N is a Cauchy sequence in Y . Indeed, putting
w(t) = u(t + (m − n)T ) for arbitrary fixed natural numbers m > n ∈ N, using
the periodicity of f we now prove that w can be rewritten as

w(t) = T(t)u((m− n)T )+
∫ t

0
T(t − s)f (s)ds for all t ≥ 0. (6)

Indeed,

w(t) = u(t + (m− n)T )

= T(t + (m− n)T )u(0)+
∫ t+(m−n)T

0
T(t + (m− n)T − s)f (s)ds

= T(t)T((m− n)T )u(0)+
∫ (m−n)T

0
T(t)T((m− n)T − s)f (s)ds+

+
∫ t+(m−n)T

(m−n)T
T(t + (m− n)T − s)f (s)ds
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= T(t)

(
T((m− n)T )u(0)+

∫ (m−n)T

0
T((m− n)T − s)f (s)ds

)
+

+
∫ t+(m−n)T

(m−n)T
T(t + (m− n)T − s)f (s)ds

= T(t)u((m− n)T )+
t∫

0

T(t − s)f (s)ds.

Therefore, (6) follows.
The boundedness of u and therefore ofw implies that the function u(t)−w(t) =

T(t)(u(0)− w(0)), t ∈ R+, is bounded, i.e., supt≥0 ‖T(t)(u(0)− w(0))‖Y <∞.
Hence, the relation in (4) yields

‖u(t)−w(t)‖Y = ‖T(t)(u(0)−w(0))‖Y � ϕ(t)‖u(0)−w(0)‖Y � Cϕ(t), t > 0

for C := 2‖u‖Cb(R+,Y ) independent of m,n.
Taking t := nT on the above inequality we obtain

‖u(nT )− u(mT )‖Y � Cϕ(nT )

for all m > n ∈ N. From the fact lim
t→∞ϕ(t) = 0 it follows that {u(nT )}n∈N is

Cauchy sequence in Y . Since Y is a Banach space, the sequence {u(nT )}n∈N is
convergent in Y , and we put

u∗ := lim
n→∞ u(nT ) ∈ Y.

Taking now u∗ as initial value, we then prove that the mild solution û(t) =
T(t)u∗ + ∫ t

0 T(t − s)f (s)ds is T -periodic. To do this, we put v(t) := T(t +
nT )x0 + ∫ t+nT

0 T(t + nT − s)f (s)ds for every fixed n ∈ N and all t ≥ 0, i.e.,
v(t) = u(t + nT ) for

u(t) = T(t)x0 +
∫ t

0
T(t − s)f (s)ds (7)

as in previous step.
Again, by the periodicity of f we obtain that v satisfies

v(t) = T(t)u(nT )+
∫ t

0
T(t − s)f (s)ds

for u being defined as in (7).
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We then have

‖û(T )− v(T )‖Y = ‖T(T )(û(0)− v(0))‖Y � ‖T(T )‖‖û(0)− v(0)‖Y .

This means

‖û(T )− u((n+ 1)T )‖Y � ‖T(T )‖‖u∗ − u(nT )‖Y .

Letting now n→ ∞ and using the fact that lim
n→∞ u(nT ) = u∗ = û(0) in Y (see

above) we obtain

û(T ) = û(0).

Therefore, û(t) is T−periodic. The inequality (5) follows from the facts that
‖u∗‖Y � ‖u‖Cb and ‖û‖Cb = sup0�t�T ‖û(t)‖Y thanks to the periodicity of û.

The uniqueness of the T -periodic solution follows from (4). Namely, if u and v
are two T -periodic solutions of Eq. (3) with initial values u0 and v0, respectively,
then u(t) − v(t) = T(t)(u0 − v0), and from the fact that u(t) − v(t) is bounded it
follows from (4) that ‖u(t)− v(t)‖Y = ‖T(t)(u0 − v0)‖Y � ϕ(t)‖u0 − v0‖Y .

Therefore, limt→∞ ‖u(t) − v(t)‖Y = 0. This, together with periodicity and
continuity of u and v, follows that u(t) = v(t) for all t ∈ R+. ��

We now consider the following semi-linear evolution equation

{
u′(t) = Au(t)+ g(u)(t)
u(0) = u0 ∈ Y, (8)

where the operators A satisfy the above hypotheses for linear equations, and the
Nemytskii’s operator g : Cb(R+, Y )→ Cb(R+, Y ) satisfies:

(1) ‖g(0)‖Cb(R+,Y ) � γ where γ is a non-negative constant,

(2)g maps T -periodic functions to T -periodic functions,

(3) there exist positive constants ρ and L such that

‖g(v1)− g(v2)‖Cb(R+,Y ) � L‖v1 − v2‖Cb(R+,Y ) for all v1, v2 ∈ Cb(R+, Y )

with ‖v1‖Cb(R+,Y ), ‖v2‖Cb(R+,Y ) � ρ.
(9)

Furthermore, by the mild solution to (8) we mean the function u satisfying the
following equation

u(t) = T(t)u0 +
∫ t

0
T(t − s)g(u)(τ )dτ for all t ≥ 0. (10)
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We then come to our next result on the existence and uniqueness of the periodic
mild solution to Eq. (8).

Theorem 2 Let the hypotheses of Theorem 1 be satisfied, and let g satisfy the
conditions in (9). Then, if L and γ are small enough, Eq. (8) has one and only
one mild T -periodic solution û on a small ball of Cb(R+, Y ).

Proof Consider the following ball BT
ρ defined by

BT
ρ := {v ∈ Cb(R+, Y ) : v is T -periodic and ‖v‖Cb(R+,Y ) � ρ}. (11)

We then define the following transformation ! given as follows: Consider the
equation

u′(t) = Au(t)+ g(v)(t). (12)

Then, for v ∈ BT
ρ we set

!(v) = u where u ∈ Cb(R+, Y ) is the unique T -periodic mild solution

to Equation (12).
(13)

We will prove that if L and γ are sufficiently small, then the transformation! acts
from BT

ρ into itself and is a contraction. To do this, taking any v ∈ BT
ρ , by the

properties of g given in (9) we have that

‖g(v)‖Cb(R+,Y ) � ‖g(v) − g(0)‖Cb(R+,Y ) + ‖g(0)‖Cb(R+,Y ) � Kρ + γ. (14)

Applying Theorem 1 for the right-hand side g(v)(t) instead of f (t) and using
inequality (5) we obtain that for v ∈ BT

ρ there exists a unique T -periodic mild
solution u to (12) satisfying

‖u‖Cb(R+,Y ) � M̃‖g(v)‖Cb(R+,Y ) � M̃(Lρ + γ ). (15)

Therefore, if L and γ are small enough, the map ! acts from BT
ρ into itself. Then,

by Formula (3) with g(v) instead of f , we have the following representation of !

!(v)(t) = etAu(0)+
∫ t

0
e(t−τ )Ag(v)(τ )dτ for!(v) = u. (16)

Furthermore, for v1, v2 ∈ BT
ρ by the representation (16) we obtain that the

function u := !(v1)−!(v2) is the unique T -periodic mild solution to the equation

u′(t) = Au(t)+ g(v1)(t)− g(v2)(t).
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Thus, again by Theorem 1 we arrive at

‖!(v1)−!(v2)‖Cb(R+,Y ) � M̃‖g(v1)− g(v2)‖Cb(R+,Y )

� 2M̃L‖v1 − v2‖Cb(R+,Y ). (17)

We hence obtain that if L, and γ are sufficiently small, then ! : BT
ρ → BT

ρ is a
contraction. Therefore, for these values of L and γ , there exists a unique fixed point
û of!, and by definition of!, this function û is the unique T -periodic mild solution
to Eq. (8). ��

3 The Case of Hyperpolic Semigroups and Damped Wave
Equations

In this section we apply our abstract results in the previous section to the case
that the semigroup (T(t))t≥0 is hyperbolic (or admits an exponential dichotomy).
Precisely, in that case we will prove that (T(t))t≥0 is conditionally ϕ-stable for
ϕ(t) = Me−νt , t ≥ 0, which is an exponential decaying function (here ν > 0).

3.1 General Framework for Hyperbolic Semigroups

We start by recalling the notion of hyperbolic semigroups in the following definition
taken from [3].

Definition 2 A strongly continuous semigroup (T(t))t≥0 on a Banach space Y is
called hyperbolic (or admitting an exponential dichotomy) if and only if there exists
a (linear, bounded) projection P on Y and constantsM,ν > 0 such that each T(t)

commutes with P , satisfies T (t) kerP = kerP, and

‖T(t)x‖ � Me−νt‖x‖ for all t ≥ 0 and x ∈ ImP := PY,

‖T(t)x‖ � eνt

M
‖x‖ for all t ≥ 0 and x ∈ KerP := (I − P)Y. (18)

In this case, the projection P is called the dichotomy projection for the hyperbolic
semigroup (T(t))t≥0, whereasM , ν are called dichotomy constants.

Especially, the semigroup (T(t))t≥0 is called exponentially stable if it is
hyperbolic with the dichotomy projection P = Id , the identity operator on Y .

It is obvious from above definition that if (T(t))t≥0 is hyperbolic then the
restriction T(t) |KerP of T(t) to KerP is an isomorphism T(t) |KerP : KerP →
KerP . We denote its inverse by T(−t) := (T(t) |KerP )

−1 for t > 0. That is to
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say, the restriction of the semigroup (T(t))t≥0 to KerP can be extended to a group
(T(t))t∈R on the Banach space KerP . Moreover, the space PY can be characterized
by PY = {x ∈ Y : supt≥0 ‖T(t)x‖ < ∞}. Also, we have the following important
remark for latter use.

Remark 1 If (T(t))t≥0 is hyperbolic then it is obvious that (T(t))t≥0 is conditional
ϕ-stable with the function ϕ(t) = Me−νt for all t ≥ 0.

We will prove the existence and uniqueness of T -periodic mild solutions to linear
equation (2) and to semilinear equation (8), respectively. To do so, we first have to
prove that the Eq. (2) has at least a bounded mild solution so that we can apply
Theorem 1 to obtain the existence of T -periodic mild solutions. To this purpose we
now present some preliminaries for latter use.

If (T(t))t≥0 is hyperbolic with dichotomy projectionP and constantsN, ν > 0,
then the Green’s function is defined as follows:

G(t) :=
{
PT(t) for t � 0,

−T(t)(I − P) for t < 0.
(19)

Here note that for t < 0 we have T(t) := (T(−t) |kerP )
−1 which is defined on

kerP = (I − P)Y .
Also, G(t) satisfies the estimate

‖G(t)‖ � (1 + ‖P‖)Me−ν|t | for t ∈ R. (20)

The following lemma gives the form of bounded solutions of Eqs. (3) and (10).

Lemma 1 Let the semigroup (T(t))t≥0 be hyperbolic with the dichotomy projec-
tion P and constants M,ν > 0. Let f ∈ Cb(R+, Y ) and let g : Cb(R+, Y ) →
Cb(R+, Y ) satisfy conditions in (9). Then, the following assertions hold true.

(a) Let v ∈ Cb(R+, Y ) be the solution to Eq. (3) (i.e., the mild solution to (2)).
Then, v can be rewritten in the form

v(t) = T(t)ξ0 +
∫ ∞

0
G(t − τ )f (τ )dτ for some ξ0 ∈ PY, (21)

whereG(t) is the Green’s function determined as in (19).
(b) Let u ∈ Cb(R+, Y ) be a solution to Eq. (10) such that supt≥0 ‖u(t)‖Y � ρ for

a fixed ρ > 0. Then, for t ≥ 0 this function u can be rewritten in the form

u(t) = T(t)v0 +
∫ ∞

0
G(t − τ )g(u)(τ )dτ for some v0 ∈ PY, (22)

forG as in Item (a).
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Proof

(a) Denote by ‖ · ‖ the norm in Y , and by ‖ · ‖Cb the norm in Cb(R+, Y ). Put
y(t) := ∫∞

0 G(t − τ )f (τ )dτ for t ≥ 0. Since f ∈ Cb(R+, Y ), using estimate
(20) we obtain that

‖y(t)‖ � (1+‖P ‖)M‖f ‖Cb
∫ ∞

0
e−ν|t−τ |dτ � 2(1 + ‖P ‖)M‖f ‖Cb

ν
for all t ≥ 0.

Moreover, it is straightforward to see that y(·) satisfies the equation

y(t) = T(t)y(0)+
∫ t

0
T(t − τ )f (τ )dτ for t ≥ 0.

Since v(t) is a solution of the Eq. (3) we obtain that v(t)− y(t) = T(t)(v(0)−
y(0)) for t ≥ 0. Put now ξ0 = v(0) − y(0). The boundedness of v(·) and y(·)
on [0,∞) implies that ξ0 ∈ PY . Finally, since v(t) = T(t)ξ0 + y(t) for t ≥ 0,
the equality (21) follows.

(b) Similarly as in Item (a) we put y(t) := ∫∞
0 G(t − τ )g(u)(τ )dτ for t ≥ 0. Since

g satisfies the conditions in (9) and using estimate (20) we obtain that

‖y(t)‖ � (1 + ‖P‖)M
∫ ∞

0
e−ν|t−τ |(‖g(u)(τ )− g(0)(τ )‖ + ‖g(0)(τ )‖)dτ

� (1 + ‖P‖)M(Lρ + γ )
∫ ∞

0
e−ν|t−τ |dτ

� 2(1 + ‖P‖)M(Lρ + γ )
ν

for t ≥ 0.

Also, it is straightforward to see that y(·) satisfies the equation

y(t) = T(t)y(0)+
∫ t

0
T(t − τ )g(u)(τ )dτ for t ≥ 0.

Since u(t) is a solution of the Eq. (10) we obtain that u(t) − y(t) = T(t)(u(0) −
y(0)) for t ≥ 0. Put now v0 = u(0) − y(0). The boundedness of u(·) and y(·) on
R+ implies that v0 ∈ PY . Finally, from equality u(t) = T(t)v0 + y(t) for t ≥ 0
the equality (22) follows. ��
Remark 2 Straightforward computations show that the converses of statements (a)
and (b) are also true, i.e., a solution of Eq. (21) satisfies Eq. (3) for t ≥ 0, and that
of Eq. (22) satisfies Eq. (10) for t ≥ 0.

We next will show the existence of bounded solutions to (3) and (10) (i.e., bounded
mild solutions to (2) and (8), respectively) and hence that of periodic solutions in
the following theorem.
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Theorem 3 Consider equations (3) and (10). Let semigroup (T(t))t≥s≥0 be
hyperbolic with the dichotomy projection P and constants M,ν. Let further that
f ∈ Cb(R+, Y ) be T -periodic and that g : Cb(R+, Y ) → Cb(R+, Y ) satisfy the
conditions in (9) with given constants ρ, L, and γ . Then, the following assertions
hold true.

(a) Equation (3) has a unique T -periodic solution.
(b) For sufficiently small L, γ Eq. (10) has a unique T -periodic solutions.

Proof

(a) For a given f ∈ Cb(R+, Y ) taking ξ0 = 0 ∈ PY in (21) we have that Eq. (3)
has a bounded solution

u(t) =
∫ ∞

0
G(t − τ )f (τ )dτ. (23)

and this solution can be estimated using inequality (20) by

‖u‖Cb �
2M(‖P‖ + 1)

ν
‖f ‖Cb . (24)

From Remark 1 we obtain that (T(t))t≥0 is conditionally ϕ-stable with ϕ(t) =
Me−νt , t ≥ 0. Then, applying Theorem 1 we obtain that for T -periodic function
f ∈ Cb(R+, Y ) there exists a T -periodic solution û of (3) (i.e., a T -periodic
mild solution of (2)) satisfying

‖û‖Cb � M̃‖f ‖Cb (25)

where M̃ :=
(

2M(‖P‖+1)
ν

+ T
)

sup
0�t�T

‖T(t)‖.

The uniqueness of the T -periodic solution follows from the fact that for two
continuous and T -periodic (hence bounded on R+) solutions û and v̂ we obtain
by using the form for bounded solutions (21) that ‖û(t)− v̂(t)‖ = ‖T(t)(u0 −
v0)‖ � Me−νt‖u0 − v0‖ → 0 as t → ∞ since u0, v0 ∈ PX. This, together
with the periodicity, implies û(t) = v̂(t) for all t ≥ 0, finishing the proof of
Assertion (a).

(b) By assertion (a), for each T -periodic input function f , the linear problem (3)
has a unique T -periodic solution û satisfying inequality (25). Therefore, the
assertion (b) then follows from Theorem 2.

��
We now prove the conditional stability of periodic solutions to (10). To do this, we
first denote by Br(x) (by Br (v)) the ball in Y (in Cb(R+, Y ), respectively) centered
at x (at v) with radius r .

Theorem 4 Let the assumptions of the Theorem 3 hold. Suppose that û is the T -
periodic solution of (10) obtained in assertion (b) of Theorem 3. Let Bρ(0) be the
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ball containing û as in assertion (b) of Theorem 3. Suppose further that there exists a
positive constant L1 such that ‖g(v1)− g(v2)‖Cb � L1‖v1 − v2‖Cb for all v1, v2 ∈
B2ρ(0). Then, if L1 is small enough, there corresponds to each v0 ∈ B ρ

2M
(P û(0))∩

PX one and only one solution u(t) of the Eq. (10) on R+ satisfying the conditions
Pu = v0 and u ∈ Bρ(û). Moreover, the following estimate is valid for u(t) and
û(t):

‖u(t)− û(t)‖ � Ce−μt‖Pu(0)− P û(0)‖ for t ≥ 0, (26)

for some positive constants C and μ independent of u and û.

Proof For v0 ∈ B ρ
2M
(P û(0))∩PY we will prove that the transformation F defined

by

(Fw)(t) = T(t)v0 +
∫ ∞

0
G(t − τ )(g(w)(τ ))dτ for t ≥ 0

maps from Bρ(û) into Bρ(û) and is a contraction.
In fact, for w(·) ∈ Bρ(û) we have that

‖w‖Cb � ‖w − û‖Cb + ‖û‖Cb � 2ρ (27)

and ‖g(w) − g(û)‖Cb � L1‖w − û‖Cb � L1ρ. Therefore, putting

y(t) := (Fw)(t) = T(t)v0 +
∫ ∞

0
G(t − τ )(g(w)(τ ))dτ for t ≥ 0

we obtain

‖y(t)− û(t)‖ � Me−νt‖v0 − P(0)û(0)‖+

+ (1 + ‖P‖)M
∫ ∞

0
e−ν|t−τ |dτ‖g(w)− g(û)‖Cb

� M‖v0 − P û(0)‖ + 2(1 + ‖P‖)ML1ρ

ν

for all t ≥ 0. Therefore,

‖Fw − û‖Cb � M‖v0 − P û(0)‖ + 2(1 + ‖P‖)ML1ρ

ν
.

Using now the fact that ‖v0 − P û(0)‖ � ρ
2M we obtain that if L1 is small enough,

then the transformation F acts form Bρ(û) into Bρ(û).
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Now, for x, z ∈ Bρ(û) (similarly as in (27) we have ‖x‖Cb, ‖z‖Cb � 2ρ) we
estimate

‖(Fx)(t) − (Fz)(t)‖ �
∫ ∞

0
‖G(t − τ)‖‖(g(x)(τ) − g(z)(τ))‖dτ

� (1 + ‖P ‖)M
∫ ∞

0
e−ν|t−τ |dτ‖g(x) − g(z)‖Cb for all t ≥ 0.

Therefore,

‖Fx − Fz‖Cb �
2(1 + ‖P‖)ML1

ν
‖x(·)− z(·)‖Cb .

Using now the fact that 2(1+‖P‖)ML1
ν

< 1 we obtain that F : Bρ(û)→ Bρ(û) is a
contraction. Thus, there exists a unique u ∈ Bρ(û) such that Fu = u. By definition
of F we have that u is the unique solution in Bρ(û) of the Eq. (22) for t ≥ 0.
By Lemma 1 and Remark 2 we have that u is the unique solution in Bρ(û) of the
Eq. (10).

Finally, we prove the estimate (26). To do this, since both û and u are bounded
on R+, we can use the formula (22) to write

u(t)− û(t) = T(t)(Pu(0)− P û(0))+
∫ ∞

0
G(t − τ )(g(u)(τ )− g(û)(τ ))dτ.

Therefore,

‖u(t)− û(t)‖ � Me−νt‖Pu(0)− P û(0)‖+

+ (1 + ‖P‖)M
∫ ∞

0
e−ν|t−τ |‖g(u)(τ )− g(û)(τ )‖dτ

� Me−νt‖Pu(0)− P û(0)‖+

+ (1 + ‖P‖)ML1

∫ ∞

0
e−ν|t−τ |‖u(τ)− û(τ )‖dτ.

Applying now a Gronwall-type inequality [2, Corollary III.2.3] we obtain for β :=
(1 + ‖P‖)ML1 <

ν
2 that

‖u(t)− û(t)‖ � Ce−μt‖Pu(0)− P û(0)‖ for μ :=
√
ν2 − 2νβ, C := 2Mν

ν +√ν2 − 2νβ
.

The proof is complete. ��
Remark 3 The assertion of the above theorem shows us the conditional stability of
the periodic solution û in the sense that for any other solution u such that Pu(0) ∈
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B ρ
2M
(P û(0)) ∩ PY and u being in a small ball Bρ(û) we have ‖u(t) − û(t)‖ → 0

exponentially as t → ∞ (see inequality (26)).

For an exponentially stable semigroup (T(t))t≥0 (see the last part of Defini-
tion 2) we have the following corollary which is a direct consequence of Theorem 4.

Corollary 1 Let the assumptions of the Theorem 3 hold, and let û be the periodic
solution of (10) obtained in assertion (b) of Theorem 3. Suppose further that
the semigroup (T(t))t≥0 is exponentially stable. Then, the periodic solution û is
exponentially stable in the sense that for any other solution u ∈ Cb(R+, Y ) of (10)
such that ‖u(0)− û(0)‖ is small enough we have

‖u(t)− û(t)‖ � Ce−μt‖u(0)− û(0)‖ for all t ≥ 0 (28)

for some positive constants C and μ independent of u and û.

Proof We just apply Theorem 4 for P = Id to obtain the assertion of the theorem.
��

3.2 Applications to Semilinear Damped Wave Equations

In this subsection we consider applications of results obtained in the previous
subsection to damped wave equations. To that purpose, suppose A is a selfadjoint,
positive definite operator with compact resolvent in a Hilbert space H and r :
D(A

1
2 ) → H is of class C1 with r(0) = 0, r ′(0) = 0. We consider the following

abstract damped wave equation:

{
ü+ αu̇+Au+ ωu = r(u)+ f (t), t > 0

u(0) = u0; u̇(0) = u1; u0, u1 ∈ H, (29)

where α > 0, ω ∈ R are constant and f ∈ Cb(R+,H) is the external force.
To transform this equation to the first order problem we set v = u̇ and handle

with the variableU =
(
u

v

)
which belongs to the space X = D(A

1
2 )×H . Then we

obtain the following equations

⎧⎪⎪⎨
⎪⎪⎩
∂tU = AU + g(U), t > 0

U(0) =
(
u0

u1

)
∈ X; (30)
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where the matrix A is defined as A =
(

0 I

−A − ω −α
)

with the domain D(A) ×

H , and g(U) =
(

0
r(u)+ f (t)

)
. It was proved in [5, p. 4724] that the operator A

generates a hyperbolicC0−semigroup (etA)t≥0 if −ω /∈ σ(A). Moreover, since the
operator r is of C1 and r(0) = r ′(0) = 0, it follows that r is locally Lipschitz with
a small Lipschitz constant in a small neighborhood of 0. Therefore, the operator g
satisfies condition in (9) with Y = X, g(0) = f and with the Lipschitz constant
being small if the radius ρ is small. Thus, applying Theorems 3 and 4 we obtain the
following results for the damped wave equation (29).

Theorem 5 Let A be a selfadjoint, positive definite operator with compact resol-
vent in a Hilbert space H , α > 0, and ω ∈ R such that −ω /∈ σ(A). Suppose

r : D(A 1
2 ) → H is of class C1 with r(0) = r ′(0) = 0. Let f ∈ Cb(R+,H)

be T -periodic. Then, if ‖f ‖Cb(R+,H) is small enough, the Eq. (29) has a unique T -
periodic mild solution û in a small neighborhood of 0. Moreover, this solution û is
conditional stable in the sense of Theorem 4.

We next present two examples of the above results.

Example 1 Consider the damped wave equation with nonlinear forcing

∂2
t u+ α∂tu−�u = h(u)+ f (t); t ∈ R+, x ∈ �, (31)

where � is a bounded domain with C2-boundary in Rn, n = 1, 2, 3, with
homogeneous Dirichlet or Neumann boundary conditions, and α > 0 is a constant.
The nonlinear term h is given such that h is of class C1 with h(0) = 0. Then, putting
ω = −h′(0)− 1, the Eq. (31) is equivalent to

∂2
t u+ α∂tu+ (I −�)u+ ωu = h(u)− h′(0)u+ f (t); t ∈ R+, x ∈ �.

The above equation can be rewritten in the form

∂2
t u+ α∂tu+Au+ ωu = r(u)+ f (t); t ∈ R+

for A = I − � and r(u) := h(u) − h′(0)u. Then with the choice H := L2(�),
it is well-known that A = I − � with the domain D(A) = H 1

0 (�) ∩ H 2(�)

is selfadjoint, positive definite, and has compact resolvent. Moreover, by Sobolev
embeddings, it easy to to see that the corresponding operator r is a C1 map

from D(A
1
2 ) ⊂ H 1(�) to H . Therefore, Theorems 5 and 4 apply, provided that

−ω /∈ σ(A), i.e., −h′(0) /∈ σ(�), which shows that for f being T -periodic and
sufficiently small, the damped wave equation (31) has a unique T -periodic mild
solution û in a small ball of Cb(R+,H), and this periodic solution is conditionally
stable.



Conditional Stability of Semigroups and Periodic Solutions to Evolution Equations 345

Example 2 Consider the damped Timoshenko beam system with nonlinear load

∂2
t w + α∂tw − κ∂x(ϕ + ∂xw) = ∂w"(w, ϕ)+ f (t); t ∈ R+, x ∈ [0, l],

∂2
t ϕ + α∂tϕ + κ(ϕ + ∂xw)− ε∂2

xϕ = ∂ϕ"(w, ϕ); t ∈ R+, x ∈ [0, l],
(32)

with the boundary conditions

w(t, 0) = ϕ(t, 0) = 0 (clamped end), ∂xw(t, l)+ϕ(t, l) = ∂xϕ(t, l) = 0 (free end).

For the details of modeling and physical derivations of damped Timoshenko beam
we refer the reader to [12, Sect. 9]. Here, the constants α, κ, ε are positive, and
" : R2 → R is of class C2 with ∇"(0) = 0. Then, we chooseH = L2(0, l)2 and

A =
(−κ∂2

x −κ∂x
κ∂x κI − ε∂2

x

)
−∇2"(0)− ω,

equipped with the boundary conditions, and r(u) = ∇"(u) − ∇2"(0)u, where
u = (w, ϕ)T . Then the assumptions of Theorems 5 and 4 are fulfilled, provided that
−ω ≥ 0 is sufficiently large and −ω /∈ σ(A). Therefore, Theorems 5 and 4 can now
be applied to obtained that for a T -periodic function f ∈ Cb(R+,H) with ‖f ‖Cb
being sufficiently small, the systems of the damped Timoshenko beam has a unique
T -periodic mild solution û in a small ball of Cb(R+,H), and û is conditionally
stable.
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Anomalous Solutions to Nonlinear
Hyperbolic Equations

Michael Oberguggenberger

Abstract The behavior of sufficiently regular solutions to semilinear hyperbolic
equations has attracted a great deal of attention in the past decades, concerning
local/global existence, finite time blow-up, critical exponents, and propagation of
singularities. Solutions of lower regularity may exhibit unexpected (anomalous)
propagation of singularities. The purpose of this paper is to present various striking
examples that seemingly have not been addressed in the literature so far. The key
issue is the interpretation of the nonlinear operations.

Keywords Semilinear wave equations · Anomalous solutions · Propagation of
singularities · Multiplication of distributions

1 Introduction

This paper serves to display various unusual, or anomalous solutions to semilinear
wave equations

1

c2 ∂
2
t u−Δu = f (x, t, u), u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) (1)

in space dimension n ≥ 1, and to advection-reaction equations

1

c
∂tu+ ∂xu = f (x, t, u), u(x, 0) = u0(x) (2)

in one space dimension as prototypical hyperbolic partial differential equations. For
nonlinearities of the form f (x, t, u) = ±|u|p or ±|u|p−1u, the main research
direction in the past decades has been to find bounds on the exponent p and
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the regularity of the initial data, asking about the existence of global solutions
with small or large initial data, local solutions, self-similar solutions, blow-up in
finite time or stability of blow-up. The reader is referred to the discussion in the
monograph [13], the survey article from the 1990s [36], a collection of currently
known critical exponents [24] and some of the papers discussing the development
of the field [16, 37]. Relevant literature on self-similar solutions and stationary
solutions as building blocks will be quoted at the appropriate place in Sect. 4.

In order not to introduce additional singularities, the nonlinear function f will be
assumed to be smooth here (actually of the form f (x, t, u) = g(x)up with integer
p ≥ 2).

In the 1980s and 1990s, a central question has been propagation of singularities,
which started with the discovery of Jeffrey Rauch and Michael Reed [29, 30] that
in semilinear hyperbolic equations and systems, singularities do not only propagate
out from initial singularities along characteristics or bicharacteristics as in the linear
case, but may be created at later times by the interaction of previous singularity
bearing (bi-)characteristics. For example, an initial singularity at the origin in
problem (1) may lead to singularities in the solution that fill up the solid light cone
[2]. For a survey of the vast literature up to around 1990 we refer to the monograph
[3]. Rauch and Reed coined the term anomalous singularities for this phenomenon.

The results on anomalous singularities required sufficient overall regularity of
the solution, for example Hs

loc-regularity with s > (n + 1)/2, and the mechanism
for creating the anomalous singularities was still based on characteristics, bicharac-
teristics and their interaction.

The anomalous solutions presented in this paper are distinguished by (a)
lower regularity than in the previous literature and (b) propagation along non-
characteristic curves. The majority of examples is based on non-regular solutions
to the corresponding stationary elliptic equation. Derivatives are always understood
in the sense of distributions. In an attempt to categorize the solutions, four types will
be singled out:

Type I: products defined by Hörmander’s wave front set criterion;
Type II: products and powers evaluated by Nemytskii operators;
Type III: limits of weak asymptotic solutions;
Type IV: sequential solutions, especially very weak solutions in the sense of

Ruzhansky.

It is worth noting that all constructed solutions come with a certain assertion of
uniqueness.

The plan of the paper is as follows. Section 2 serves to recall results on
anomalous propagation of singularities for sufficiently regular solutions, for reasons
of comparison. Section 3 addresses Type I solutions, introducing the employed
multiplication of distributions and discussing the question of regularization. Sec-
tion 4 will exhibit seemingly harmless solutions lying in an Lp-space on which
the nonlinear operations are defined and continuous (Type II). In Sect. 5 it will be
shown that the solutions from Sect. 4 arise as limits of nets of asymptotic solutions
(satisfying the equations up to an error term converging weakly to zero, Type III). In
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Sect. 6 nets of smooth functions (uε)ε>0 will be constructed that solve the equations
at each fixed ε > 0, but need not necessarily converge as ε → 0 (Type IV).
Nevertheless, their regularity properties can be characterized by suitable estimates
on their growth in terms of negative powers of ε as ε → 0. The appendix serves to
recall some notions required to define the products arising in Type I solutions.

The author has been aware of the existence of these anomalous solutions since
the early 1980s, but due to a lack of explanation, hesitated to publish them so far. It
is hoped that this publication will arouse interest in these types of solutions among
the community. Many more examples of similar nature are known, collected by the
author and in joint work with Hideo Deguchi [10].

What concerns notation, Hs denotes the usual Sobolev space based on L2; Ck
denotes the space of k-times differentiable functions, Ckb the subspace of functions
with bounded derivatives up to order k. The notation for spaces of test functions
and distributions follows [35]. The Fourier transform is defined as Fϕ(ξ) =∫

e−2π ixξϕ(x)dx.

2 Propagation of Singularities for Regular Solutions

This section serves to recall results from the 1980s on propagation of singularities
for solutions to semilinear hyperbolic systems. These results hold for sufficiently
regular solutions (L∞

loc in one space dimension, Hs
loc for s > (n + 1)/2 in space

dimension n). We do not strive for full generality—the quoted results will be
contrasted with the much less regular solutions to be constructed in the following
sections.

We start with (m × m)-systems of first order hyperbolic equations in one space
dimension, considering the initial value problem

(∂t +Λ∂x)u(x, t) = f (x, t, u(x, t)), (x, t) ∈ R
u(x, 0) = u0(x), x ∈ R0

(3)

where R0 ⊂ R is an interval and R ⊂ R × [0,∞) is its domain of determinacy.
Here u = (u1, . . . , um), Λ = diag(λ1, . . . , λm) with real and constant entries
λi , and f = (f1, . . . , fm) is smooth. Let x1, . . . , xk ∈ R0 and denote by S0 the
union of characteristic lines emanating from x1, . . . , xk . Following [30], construct
the forward characteristic lines starting at the intersection points of S0 and call this
set S1. Let S2 be the set of forward characteristic lines starting from the intersection
points of S1. Continue recursively to construct a sequence of sets Sj . Let S be the
closure of

⋃∞
j=0 Sj intersected with R.

Proposition 1 Let u ∈ (L∞(R))m satisfy (3) in the sense of distributions and take
on the initial data u0 ∈ (L∞(R0))

m. Suppose that u0 is C∞ with each derivative
uniformly bounded on the complement of the finitely many points x1, . . . , xk . Then
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u is C∞ on R \ S and all derivatives of u have continuous extensions from each
connected component of R \ S to its closure.

Proof This is Theorem 1 from [30]. ��
Remark 1

(a) If the function f is linear, then the solution u is in C∞ on R \ S0—singularities
can only lie on characteristic curves tracing back to the singularities of the
initial data. In the nonlinear case, the solution is not C∞ on S \ S0, in general.
The singularities belonging to S \ S0 in the nonlinear case have been termed
anomalous singularities by the authors.

(b) In the scalar case and in the case of (2 × 2)-systems (thus m = 1 or m = 2),
S = S0, so no anomalous singularities arise.

Next we recall a result of [28] on propagation of singularities for semilinear wave
equations. Consider the initial value problem

(∂2
t −Δ)v(x, t) = f (v(x, t)), (x, t) ∈ R

n ×R,

v(x, 0) = v0(x), ∂t v(x, 0) = v1(x), x ∈ R
n,

(4)

where f is a polynomial with f (0) = 0, Δ denotes the n-dimensional Laplace
operator, and u0 ∈ Hs

loc(R
n), u1 ∈ Hs−1

loc (R
n) with s > (n + 1)/2. Note that

Hs
loc(R

n × R) is an algebra in this case, even contained in the space of continuous
functions, so f (u) is classically defined.

Proposition 2 Let s > (n+ 1)/2 and v ∈ Hs
loc(R

n × R) satisfy (4) in the sense of
distributions. Suppose that v0 and v1 belong to C∞(Rn\{0}). Then v is C∞ on {|x| >
|t|}, and it belongs to Hs+1+σ

loc (Rn × R) on {|x| < |t|} for all σ < s − (n+ 1)/2.

Proof This follows from Theorem 3.1, together with Theorem 1.1 of [28]. ��
Remark 2 In space dimension n = 1, the solution v is actually C∞ in {|x| < |t|},
as follows from the Corollary to Theorem 2 in [29] as well as the earlier paper [31].

It is known that the solution is not necessarily better than Hs+1+σ in {|x| < |t|} in
space dimension n ≥ 2. For a survey of the state of the art around 1990, see [3].

3 Type I Solutions: Multiplication of Distributions

In this section, we address weak solutions to nonlinear equations where the involved
products or powers exist in the sense of Hörmander’s wave front set criterion [18].
The examples will be based on the one-dimensional distribution

u0(x) = 1

x + i0
= lim
ε→0

1

x + iε
= vp

1

x
− iπδ(x) (5)
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also denoted by δ+(x) in the physics literature. Here vp 1
x

denotes the principal value
distribution vp 1

x
= ∂x log |x| and δ(x) is the Dirac measure. The Fourier transform

of u0(x) and its auto-convolution are

(Fu0)(ξ) = −2π iH(ξ) and (Fu0 ∗ Fu0)(ξ) = −4π2ξH(ξ)

where H denotes the Heaviside function. In particular, the wavefront set of u0 is
{(0, ξ) : ξ > 0}, thus u2

0 exists according to Hörmander’s criterion. Actually, it can
simply be computed as Fourier product (see Appendix),

u2
0 = F−1(Fu0 ∗ Fu0),

as well as all its powers. It holds that

u2
0(x) =

( 1

x + i0

)2 = −
( 1

x + i0

)′ = Pf
1

x2 + iπδ′(x) = −u′0(x) (6)

where Pf 1
x2 is the Hadamard finite part distribution, and

2u3
0(x) = 2

( 1

x + i0

)3 =
( 1

x + i0

)′′ = u′′0(x). (7)

3.1 A Nonlinear Advection-Reaction Equation

Proposition 3 The distribution u(x, t) ≡ u0(x) given by (5) is a weak solution to
the initial value problem

1

c
∂tu+ ∂xu+ u2 = 0, u(x, 0) = u0(x) (8)

for whatever c ∈ R, c = 0, where the square is understood in the sense of
Hörmander’s product.

Proof It is clear from (6) that ∂xu+ u2 = 0 and that ∂tu = 0. ��
Clearly, the mechanism producing this result is that the stationary solution satisfies
the nonlinear differential relation u′0 = −u2

0. Further reasons why a genuine
distribution can satisfy such a relation will be discussed below. At first we wish
to point out that the solution given in Proposition 3 exhibits anomalous propagation
of singularities. Indeed,

sing suppu = {(x, t) : x = 0, t ≥ 0}
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while the expected singular support from Proposition 1 or Remark 1(b) should be
{(x, t) : x = ct, t ≥ 0}. To be sure, u0 does not belong to L∞ as required in
Proposition 1.

Remark 3 It should be noted that anomalous propagation of singularities is not
confined to stationary solutions. The following example, due to Deguchi [10], shows
that any anomalous propagation speed is possible. Indeed,

u(x, t) = 1

ax + bct + i0
(9)

with a + b = 1 solves Eq. (8) with initial data u0(x) = 1/(ax + i0), noting that the
Fourier product respects affine transformations of the independent variables. The
singular support is

sing suppu = {(x, t) : ax = bct, t ≥ 0},

which is a non-characteristic line if a = b.

Remark 4 One possible explanation why the mentioned nonlinear differential
relation, as well as similar relations for the higher derivatives, hold for the specific
distribution (5) can be obtained by studying its representation as a boundary value
of an analytic function. Indeed, every distribution v ∈ D′(R) can be represented as
the boundary value of a function v̂(z), analytic in C \ supp(v), in the sense

v(x) = lim
ε→0

(̂v(x + iε)− v̂(x − iε)) (10)

in D′(R), see e.g. [38]. If v is a distribution of compact support, v̂(z) is given by the
Fantappiè indicatrix

v̂(z) = 1

2π i

〈
v(x),

1

x − z
〉

and in general by a partition of unity procedure. Further, |̂v(z)| grows at most like a
negative power of | Im z| as Im z→ 0, locally uniformly in Re z. The representation
v̂(z) is unique up to a function analytic on C. Further, every function v̂(z), analytic
in C \ R and satisfying the growth condition has a distributional boundary value in
the sense of (10).

If the support of v̂(z) is contained in {Im z > 0}, the representation is unique.
Thus the space of distributions H+(R) whose Fantappiè parametrix has support in
the upper complex half plane is isomorphic to the space of analytic functions in the
upper complex half plane satisfying the mentioned growth condition. However, the
latter space is a differential algebra, the differential-algebraic structure of which
can be transported to H+(R), rendering it a differential algebra [38]. (Similar
constructions have also been elaborated in [19].)
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This is exactly the case with u0(x) given by (5) for which

û0(z) =
{

1
z
, Im z > 0,

0, Im z < 0.

In the algebra of analytic functions in the upper half plane, the functional relation

dk

dzk

(1

z

)
= (−1)kk!

(1

z

)k+1
, z = 0

is valid. In this way, formulas (6) and (7) are explained. The differential-algebraic
relations persist in the boundary values.

Analytic Regularization

It will be instructive to study the behavior of approximate solutions when the
initial data are regularized. The first obvious possibility is to consider the analytic
regularization defining the distribution u0(x) = 1/(x + i0). We wish to solve the
regularized problem

1

c
∂tuε + ∂xuε + u2

ε = 0, uε(x, 0) = u0ε(x) = 1

x + iε
. (11)

Solving (11) by the method of characteristics results in the unique classical solution

uε(x, t) = u0ε(x − ct)
1 + ctu0ε(x − ct) =

1
x−ct+iε

1 + ct 1
x−ct+iε

= 1

x + iε
.

Thus, by simple arithmetic, uε(x, t) ≡ u0ε(x) and so the solution given in
Proposition 3 coincides with the weak limit of approximate solutions when the
initial data are replaced by their analytic regularization.

Regularization by Convolution with a Mollifier

The purpose of this subsection is to show that the convergence of the approximate
solution is a peculiarity of the analytic regularization and does not hold if the initial
data are regularized by convolution with a standard Friedrichs mollifier ϕε(x) =
ε−1ϕ(x/ε) with ϕ ∈ D(R),

∫
ϕ(x)dx = 1. For the sake of the argument, we take

ϕ ≥ 0 symmetric, suppϕ ⊂ (−1, 1). Thus let

U0ε(x) = (u0 ∗ ϕε)(x)
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and let Uε(x, t) be the corresponding classical solution to (11) with initial condition
Uε(x, 0) = U0ε(x). By the method of characteristics,

Uε(x, t) = (vp 1
x ∗ ϕε)(x − ct)− iπϕε(x − ct)

1 + ct((vp 1
x ∗ ϕε)(x − ct)− iπϕε(x − ct)

) .
In particular,

Uε(ct − ε, t) = (vp 1
x ∗ ϕε)(−ε)

1 + ct (vp 1
x ∗ ϕε)(−ε)

. (12)

We show that the solution Uε(x, t) blows up at latest at

tε = −1/c

(vp 1
x ∗ ϕε)(−ε)

= 1/c

(vp 1
x ∗ ϕε)(ε)

and that this number is of order ε as ε → 0. Thus there is no global solution, when
Friedrichs regularization is used.

Indeed, starting from the defining formula

(vp
1

x
∗ ϕε)(x) = lim

η→0

∫
|x−y|≥η

ϕε(y)

x − y dy,

some simple manipulations using the support properties of ϕ lead to

(vp
1

x
∗ ϕε)(−ε) = lim

η→0

∫ ∞

−1+η/ε
ϕ(y)

−ε(1 + y) dy = −1

ε

∫
suppϕ

ϕ(y)

1 + y dy = −1

ε
Cϕ

where Cϕ is a positive constant. This shows that the denominator in (12) is indeed
zero at tε = ε/cCϕ , while the numerator is nonzero.

Separation in Real and Imaginary Part

One might argue that the complex valued initial value problem (11) is actually a
real valued, nonstrictly hyperbolic system. This is indeed the case; the real and
imaginary part of the analytically regularized solution are

uε(x, t) = 1

x + iε
= vε(x, t)+ iwε(x, t) = x

x2 + ε2 − i
ε

x2 + ε2 .
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The hyperbolic system for the real and imaginary part is

∂t vε + ∂xvε = −v2
ε +w2

ε ,

∂twε + ∂xwε = −2vεwε.

Here vε(x, t) → vp 1
x

and wε(x, t) → −πδ(x) as ε → 0. However, it is well-
known (and rather immediate) that v2

ε and w2
ε do not converge in D′(R) as ε → 0.

Thus the individual terms in the first line make no sense in the limit. (By purely
arithmetic manipulations involving 1/(x + iε) and 1/(x − iε) and their limits, the
limit in the right-hand side of the second line is seen to exist and to equal −πδ′(x).)

3.2 A Nonlinear Wave Equation

In the same vein, the distribution u0(x) can serve to produce a solution to a
semilinear wave equation in one space dimension.

Proposition 4 The distribution u(x, t) = u0(x) given by (5) is a weak solution to
the initial value problem

1

c2 ∂
2
t u− ∂2

xu+ 2u3 = 0, u(x, 0) = u0(x), ∂tu(x, 0) = 0 (13)

for whatever c > 0, where the cubic term is understood in the sense of Hörmander’s
product.

Proof It is clear from (7) that −∂2
xu+ 2u3 = 0 and that ∂tu = 0. ��

In the real-valued case, the wave equation (13) has a so-called defocusing nonlinear-
ity. For initial data (u0, u1) in H 1(R)×L2(R), it would have a unique global finite
energy solution [36], belonging to C([0,∞) : H 1(R)) ∩ C1([0,∞) : L2(R)). By
local existence theory, it could also be extended to small negative times, and hence
would belong to L∞

loc in an open neighborhood of the half plane. As in Remark 2, the
Corollary to Theorem 2 in [29] would imply that a singularity in the initial data at
x = 0 can only spread along the characteristic lines x = ±ct . Clearly, the solution
given in Proposition 13 neither has the required regularity properties nor does it
show the expected singularity propagation.

Remark 5

(a) The distribution u0(x) is homogeneous of degree −1. Thus u(x, t) = u0(x) is
a self-similar solution to (13), satisfying μu(μx,μt) = u(x, t) for all μ > 0.

(b) The function u(x, t) from Eq. (9) may serve as an example of a non-stationary
solution to a nonlinear wave equation which exhibits anomalous propagation
of singularities. Indeed, when a2 − b2 = 1, it solves Eq. (13) with initial data
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u(x, 0) = 1/(ax + i0), ∂tu(x, 0) = 0. The initial singularity propagates along
the line {(x, t) : ax + bct = 0, t ≥ 0}, which is non-characteristic if a = ±b.

4 Type II Solutions: Nemytskii Operators

This section addresses weak solutions, whereby the nonlinear terms are defined by
Nemytskii operators. We recall the pseudofunctions Rλ, meromorphic functions of
λ ∈ C with values in the space of tempered distributions S ′(Rn) [11, Chapter 17].
For Re λ > −n they are given by

〈Rλ, ϕ〉 =
∫

|x|λϕ(x)dx

and can be analytically continued to C \ {−n− 2k : k ∈ N}. Outside the poles, they
satisfy

ΔRλ = λ(λ+ n− 2)Rλ−2.

In particular, when λ > 2 − n and p = 1 − 2/λ, Rλ belongs to Lploc(R
n), (Rλ)p =

Rλp and it satisfies the elliptic equation

ΔRλ = λ(λ + n− 2)(Rλ)p,

where the derivatives are understood in the weak sense and the pth power as the
evaluation of the Nemytskii operator Lploc(R

n)→ L1
loc(R

n).
We note that for λ ∈ R \ {−n − 2k : k ∈ N}, Rλ is homogeneous of degree λ,

and Rλ ∈ H 1
loc(R

n), if λ > (2 − n)/2.
As examples to be discussed further, we only consider two cases in which p is a

positive integer. In the context of propagation of singularities, fractional powers are
not interesting for our purpose, because they represent non-smooth nonlinearities.
We use the solutions Rλ as examples of peculiar rotationally symmetric stationary
solutions to nonlinear wave equations.

Example 1 Let n = 3 and λ = −1/2 (then λ(λ + n − 2) = −1/4). Let u0(x) =
|x|−1/2. Then u0 ∈ L5

loc(R
3), and u(x, t) ≡ u0(x) satisfies the nonlinear wave

equation

1

c2 ∂
2
t u−Δu−

1

4
u5 = 0, u(x, 0) = u0(x), ∂tu(x, 0) = 0 (14)

for whatever c > 0.



Anomalous Solutions to Nonlinear Hyperbolic Equations 357

Example 2 Let n = 4 and λ = −1 (then λ(λ + n− 2) = −1). Let u0(x) = |x|−1.
Then u0 ∈ L3

loc(R
4), and u(x, t) ≡ u0(x) satisfies the nonlinear wave equation

1

c2 ∂
2
t u−Δu− u3 = 0, u(x, 0) = u0(x), ∂tu(x, 0) = 0 (15)

for whatever c > 0.

In all these cases, derivatives are understood in the weak sense and the powers of u
exist as locally integrable functions, actually as evaluations of the continuous map
u → up from L

p
loc → L1

loc. Note that the nonlinear operation is taken outside the
space of distributions, and the result is embedded afterwards.

Remark 6

(a) As u0 is nonnegative, we might replace u5 by |u|5 or |u|4u. In any case, we are
dealing with so-called focusing nonlinearities.

(b) Recall that u(x, t) is a self-similar solution to the nonlinear wave equation

1

c2 ∂
2
t u−Δu± |u|p = 0, (16)

if u(x, t) = μαu(μt, μx) for all μ > 0, where necessarily α = 2/(p − 1). On
the other hand, u0 = Rλ is homogeneous of degree λ, that is, u0(sx) = sλu0(x)

for s > 0. It also satisfies Eq. (16) when λ−2 = λp, i.e., λ = −2/(p−1). Thus
the special solutions exhibited here are self-similar solutions to the nonlinear
wave equation. However, they do not fall into the classes of functions considered
e.g. in [4, 20, 26, 27, 32]. It should be noted that solutions to nonlinear
elliptic equations have also been used in the literature. They can serve for
constructing solutions of finite life span, but also for proving the existence of
(time-dependent) self-similar solutions [7, 12, 21, 22].

5 Type III: Weak Asymptotic Solutions

A net of smooth functions (uε)ε>0 is a called a weak asymptotic solution [8] to a
nonlinear partial differential equation, such as Eq. (16), if it has a limit in the space
of distributions and if it satisfies the equation up to an error term which tends to zero
weakly as ε→ 0.

The basic example derives again from a nonlinear elliptic equation. Indeed, in
R
n, we start from the relation

Δ(|x|2 + ε2)q = ((
2qn+ 4q(q − 1)

)|x|2 + 2qnε2)(|x|2 + ε2)q−2.

We will simply work out two special cases that correspond to the ones in Examples 1
and 2.
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Example 3 Let n = 3 and q = −1/4. By simple arithmetic,

(
2qn+ 4q(q − 1)

)|x|2 + 2qnε2 = −1

4
(|x|2 − ε2)− 5

4
ε2

and so

Δ(|x|2 + ε2)−1/4 = −1

4
(|x|2 + ε2)−5/4 − 5

4
ε2(|x|2 + ε2)−9/4.

Thus

uε(x, t) = (|x|2 + ε2)−1/4

satisfies the nonlinear wave equation

1

c2
∂2
t uε −Δuε −

1

4
u5
ε −

5

4
ε2u9

ε = 0 (17)

for whatever c > 0. An easy calculation shows that ε2u9
ε converges to zero in D′(R3)

as ε→ 0. Thus uε is a weak asymptotic solution to the nonlinear wave equation (14)
with initial data converging to u0(x) = |x|−1/2. As in Example 1 we set u(x, t) =
u0(x). By the continuity assertions for Type II solutions,

uε → u, u5
ε → u5 in L1

loc(R
3) as ε→ 0,

thus each term in Eq. (17) converges to the corresponding term in Eq. (14). Further,
uε is a smooth approximation to u; as ε→ 0, a singularity emerges at x = 0.

It is of interest to note that the solution to the regularized Eq. (17) is unique. This
emphasizes again the anomaly in the propagation of singularities in the initial value
problem (14).

Lemma 1 Let n = 1, n = 2 or n = 3. Assume that u0 ∈ C1
b(R

n), u1 ∈ C0
b(R

n) and
let f be smooth. Given any T > 0, the initial value problem

1

c2
∂2
t u−Δu = f (u), u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) (18)

has at most one weak solution in C0
b(R

n × [0, T ]).
Proof Let S(t) be the fundamental solution of the Cauchy problem, that is, S(t)
is the inverse Fourier transform of sin(c|ξ |t)/|ξ |. In space dimensions n = 1, 2, 3,
S(t) is a finite measure of total mass ct . The solution is given by

u(., t) = d

dt
S(t) ∗ u0 + S(t) ∗ u1 +

∫ t

0
S(t − s) ∗ f (u(., s))ds.
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By Young’s inequality, the L∞-estimate

‖u(., t)‖L∞(Rn) ≤ C(t)‖u0,∇u0, u1‖L∞(Rn) +
∫ t

0
(ct − cs)‖u(., s)‖L∞(Rn) ds

holds, where C(t) is a constant depending linearly on t . Applying this estimate to the
difference u− v of two solutions with the same initial data, writing f (u)− f (v) =
(u−v)g(u, v) with g smooth and applying Gronwall’s inequality shows that u = v.

��
Example 4 Let n = 4 and q = −1/2 and let

uε(x, t) = (|x|2 + ε2)−1/2.

By the same arguments as in Example 3 one sees that uε satisfies the nonlinear wave
equation

1

c2 ∂
2
t uε −Δuε − u3

ε − 3ε2u5
ε = 0 (19)

for whatever c > 0. Again, one shows that ε2u5
ε converges to zero in D′(R4) as

ε → 0, and uε is a weak asymptotic solution to the nonlinear wave equation (15)
with initial data converging to u0(x) = |x|−1. With u(x, t) ≡ u0(x), one has again

uε → u, u3
ε → u3 in L1

loc(R
4) as ε→ 0,

thus each term in Eq. (19) converges to the corresponding term in Eq. (15). The same
behavior as in Example 3 is observed.

Due to the continuity of the Nemytskii operators, the weak asymptotic solutions
constructed here are consistent with the solutions presented in Sect. 4.

6 Type IV: Sequential Solutions

In this section, we address solutions defined by nets of smooth functions which do
not necessarily converge. To introduce the concept, let Ω be an open subset of Rn

and let P be a possibly nonlinear partial differential operator which is a smooth
function of its arguments, Pu = P(x, u, ∂u, . . .). Let (uε)ε>0 be a net of functions
belonging to C∞(Ω). If Puε = 0 for all sufficiently small ε > 0, then the net
(uε)ε>0 is called a sequential solution of the equation Pu = 0, following e.g. [33].
The net (uε)ε>0 may or may not converge. Even if (uε)ε>0 converges, individual
terms in P(x, u, ∂u, . . .) may or may not converge. However, if (uε)ε>0 converges
to a distribution u, together with all individual terms in P(x, u, ∂u, . . .), then u can
be called a proper weak solution to Pu = 0 [23].



360 M. Oberguggenberger

Restricting the class of sequential solutions to moderate nets allows one to
establish a regularity theory for sequential solutions, even if they diverge. A net
of smooth functions (uε)ε>0 on Ω is called moderate, if for all compact subsets K
ofΩ and all multi-indices α ∈ N

n
0 there exists b ≥ 0 such that

supx∈K |∂αuε(x)| = O(ε−b) as ε→ 0.

The net of smooth functions (uε)ε>0 on Ω is called negligible, if for all compact
subsets K ofΩ , all multi-idices α ∈ N

n
0 and all a ≥ 0,

supx∈K |∂αuε(x)| = O(εa) as ε→ 0.

Following [15, 34], a moderate net satisfying Puε = 0 for all sufficiently small
ε > 0 is called a very weak solution to the equation Pu = 0. If (uε)ε>0 is moderate
and Puε = nε where (nε)ε>0 is a negligible net, then (uε)ε>0 is a Colombeau
solution to the equation Pu = 0. (As a matter of fact, its equivalence class in the
Colombeau algebraG(Ω) is a solution in the differential-algebraic sense [6, 17, 25].)

Finally, a net (uε)ε>0 is said to possess the G∞-property, if for all compact
subsets K ofΩ there is b ≥ 0 such that for all multi-indices α ∈ N

n
0,

supx∈K |∂αuε(x)| = O(ε−b) as ε→ 0.

(Note the change in quantifiers: the local order of growth is the same for all
derivatives.) The significance of this notion is that it generalizes C∞-smoothness
from distributions to moderate nets. In fact, if w ∈ E ′(Ω) is a compactly supported
distribution and ϕε is a mollifier (ϕε(x) = ε−nϕ(x/ε) with ϕ smooth, rapidly
decaying and

∫
ϕ(x)dx = 1), then

• wε = w ∗ ϕε|Ω defines a moderate net;
• (wε)ε>0 has the G∞-property if and only if w ∈ C∞(Ω).

The G∞-singular support of a moderate net (uε)ε>0 is defined as the complement of
the largest open subset ω ⊂ Ω such that (uε|ω)ε>0 has the G∞-property on ω. The
same notions can be introduced for nets of smooth functions defined on the closure
of an open subset of R

n, thereby enabling the study of initial value problems or
boundary value problems.

Replacing C∞ by G∞, classical regularity theory and propagation of singularities
for linear partial differential equations can be literally transferred to the setting
of moderate nets in the case of linear equations (with possibly non-smooth
coefficients). Here are some specific results in this direction: G∞-singularities in the
linear wave equation propagate along the light cone in any space dimension, [25].
For wave equations in one space dimension with piecewise constant coefficient,
propagation of G∞-singularities occurs along characteristic lines emanating from
the initial point singularity, with reflection/diffraction at the points of discontinuity
of the coefficient, [9]. The G∞-wave front set of the kernels of Fourier integral
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operators can be computed analogously to the classical case, and G∞-singularities
in solutions to first order hyperbolic equations propagate along the Hamiltonian flow
[14].

6.1 Moderate Sequential Solutions to an Advection-Reaction
Equation

We are going to construct moderate sequential solutions to the advection-reaction
equation in one space dimension

1

c
∂tu+ ∂xu+ 2

p
x up+1 = 0, u(x, 0) = u0(x) (20)

where—for simplicity—p is a positive integer. We first note that for continuous
initial data, there is at most one solution.

Lemma 2 Assume that u0 ∈ C0
b(R), c = 0 and let f be smooth. Given any T > 0,

the initial value problem

1

c
∂tu+ ∂xu = f (x, t, u), u(x, 0) = u0(x) (21)

has at most one weak solution in C0
b(R

n × [0, T ]).
Proof Indeed, if u is a solution, it solves the integral equation

u(x, t) = u0(x − ct)+
∫ t

0
f (x − ct + cs, s, u(x − ct + cs, s))ds.

Uniqueness follows by the same argument as in the proof of Lemma 1. ��
It is immediately checked that, for each ε > 0, the smooth function

uε(x, t) ≡ u0ε(x) = (x2 + ε2)−1/p (22)

is a solution to the initial value problem

1

c
∂tuε + ∂xuε + 2

p
x up+1

ε = 0, uε(x, 0) = (x2 + ε2)−1/p. (23)

According to Lemma 2, the solution is unique. It is clear that the net (uε)ε>0 is
moderate, hence it defines a moderate sequential solution to (20).

Lemma 3 The net (u0ε)ε>0 converges for p ≥ 3 and diverges for p = 1, 2. In
particular, (up+1

0ε )ε>0 diverges for every p > 0.
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Proof For p ≥ 3, u0(x) = |x|−2/p belongs to the space of locally integrable
functions, and u0ε(x) = (x2 + ε2)−1/p converges to it in that space.

Let p = 2 and take a test function ϕ ≥ 0 such that ϕ(x) = 1 on [−1, 1]. Then

〈u0ε, ϕ〉 =
∫ ∞

−∞
ϕ(x)√
x2 + ε2

dx ≥
∫ 1

−1

1√
x2 + ε2

dx =
∫ 1/ε

−1/ε

1√
y2 + 1

dy → ∞

as ε → 0. A similar argument shows that (x2 + ε2)−q diverges for q > 1/2. Thus
u0ε(x) = (x2 + ε2)−1/p diverges when p < 2 as well, in particular, for p = 1.
Further, up+1

0ε (x) = (x2 + ε2)−1−1/p diverges for every p > 0. ��
This shows that even in the convergent case p ≥ 2, the limit u = limε→0 uε is not a
proper solution of Eq. (20).

The Special Case p = 2

Let us have a more detailed look at the (divergent) case p = 2. Then the function

uε(x, t) = (x2 + ε2)−1/2, (24)

at fixed ε > 0, is a solution to the advection-reaction equation

1

c
∂tuε + ∂xuε + x u3

ε = 0, uε(x, 0) = (x2 + ε2)−1/2. (25)

According to Lemma 2, this solution is unique. We may study its G∞-regularity
properties.

Proposition 5 The G∞-singular support of (uε)ε>0 is {(0, t) : t ≥ 0}.
Proof Let χ(x) = (x2 + 1)−1/2. Then (uε(x, t) = (x2 + ε2)−1/2 = χε(x) =
ε−1χ(x/ε). It is straightforward to show that the kth derivative of χ is of the form

χ(k)(x) = Pk(x)(x
2 + 1)−k−1/2

where Pk is a polynomial of degree k. Therefore,

χ(k)ε (x) = ε−k−1Pk
(x
ε

)(x2

ε2 + 1
)−k−1/2 = εkPk

(x
ε

)
(x2 + ε2)−k−1/2.

When |x| ≥ x0 > 0, the latter expression is bounded independently of ε > 0. Thus
(uε)ε>0 has the G∞-property in the region {(x, t) : |x| > 0, t ≥ 0}.
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On the other hand, χ(x) is the derivative of arsinh x, whose Taylor expansion
shows that χ(k)(x) = 0 when k is an even integer. Thus

χ(k)ε (0) = ε−k−1χ(k)(0)

does not have the G∞-property: the line x = 0 is contained in the G∞-singular
support. ��
This shows that the moderate sequential solution to (25) exhibits anomalous
propagation of singularities. The initial G∞-singularity at x = 0 is not propagated
along the line x = ct as in the linear case, but rather remains at x = 0 for all times.

Remark 7 Actually, the classical initial value problem 1
c
∂tv + ∂xv + x v3 =

0, v(x, 0) = v0(x) can be solved explicitly. Transformation to characteristic
coordinates s = t , y = x − ct leads to an ordinary differential equation and to
the solution

v(x, t) = v0(x − ct)√(
x2 − (x − ct)2)v2

0(x − ct)+ 1
.

Inserting v0(x) = (x2 + ε2)−1/2 it turns out that by simple arithmetic, v(x, t) =
(x2 + ε2)−1/2, supporting the fact that uε(x, t) as given above by (24) is indeed the
solution. The same phenomenon also happens for p = 2 in (22) and (23).

6.2 Moderate Sequential Solutions to a Nonlinear Wave
Equation

Taking a further x-derivative, it is seen that uε(x, t) given by (24) also solves the
one-dimensional nonlinear wave equation

1

c2 ∂
2
t uε − ∂2

xuε + u3
ε + 3x2u5

ε = 0, uε(x, 0) = (x2 + ε2)−1/2, ∂tuε(x, 0) = 0

for every c > 0. In this case, standard energy estimates can be used to show that the
solution is unique.

Lemma 4 Given v0 ∈ H 1(R), v1 ∈ L2(R) of finite energy (defined by (27) below),
the equation

1

c2 ∂
2
t v − ∂2

x v + v3 + 3x2v5 = 0, v(x, 0) = v0(x), ∂tv(x, 0) = v1(x) (26)

has a unique solution v ∈ C([0,∞) : H 1(R))∩C1([0,∞) : L2(R)) of finite energy,
where c > 0.
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Proof It is quite obvious that the energy

E(t) = 1

2

∫ ∞

−∞

(
|∂tv|2 + c2|∂xv|2 + |v|4 + 3x2|v|6

)
dx (27)

is conserved. The proof follows standard arguments (see e.g. [36]). ��
At fixed ε > 0, uε(x, 0) = (x2 + ε2)−1/2 belongs to H 1(R) and, together with
∂tuε(x, 0) = 0, forms initial data of finite energy. Thus the stationary solution
uε(x, t) = uε(x, 0) is the unique solution in this sense. The net (uε)ε>0 provides a
moderate sequential solution to the nonlinear wave equation (26). Its G∞-singular
support {(x, t), x = 0, t ≥ 0} has been computed in Proposition 5. Again, this
differs from the linear case [14] and the nonlinear, classical case (Propositions 1, 2),
according to which the singular support should be {(x, t), |x| = ct, t ≥ 0}.

Anomalous propagation of singularities persists for sequential solutions.
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Appendix: On Multiplication of Distributions

Let S, T ∈ S ′(Rn). The S ′-convolution of S and T is said to exist, if

(ϕ ∗ Š)T ∈ D′
L1(R

n), for all ϕ ∈ S(Rn),

where Š(x) = S(−x). In this case, the convolution is defined by 〈S ∗ T , ϕ〉 =
〈(ϕ ∗ Š)T , 1〉, and S ∗ T belongs to S ′(Rn).

Let u, v ∈ S ′(Rn). If the S ′-convolution of Fu and Fv exists, one may define
the Fourier product

u · v = F−1(Fu ∗ Fv).

The definition can be localized [1] as follows. Assume that for every x ∈ R
n there

is a neighborhoodΩx and χx ∈ D(Rn), χx ≡ 1 onΩx , such that the S ′-convolution
of F(χxu) and F(χxv) exists. Locally near x, the product u · v is defined to be
F−1(F(χxu) ∗ F(χxv)). Globally, it is defined by a partition of unity argument.

A special case arises when the distributions satisfy Hörmander’s wave front set
criterion [18], requiring that for every (x, ξ) ∈ R

n × (Rn \ {0}), (x, ξ) ∈ WF(u)
implies (x,−ξ) ∈ WF(v).
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In space dimension n = 1, a very convenient case arises when suppFu and
suppFv are contained in [0,∞). (In particular, Hörmander’s criterion is fulfilled.)
The basic example used in Sect. 3 is

u0(x) = 1

x + i0
= lim
ε→0

1

x + iε
= vp

1

x
− iπδ(x)

whose Fourier transform is (Fu0)(ξ) = −2π iH(ξ). The auto-convolution results
in (Fu0 ∗ Fu0)(ξ) = −4π2ξH(ξ). Thus u2

0 = F−1(Fu0 ∗ Fu0) exists as Fourier
product, and the formula shows that u2

0(x) = −u′0(x). The remaining formulas used
in Sect. 3 follow in the same way.

A more general definition of the product of distributions on R
n can be obtained

by regularization and passage to the limit. The model product of u and v is defined
as

[u · v] = lim
ε→0

(u ∗ ϕε)(v ∗ ϕε)

provided the limit exists for all mollifiers ϕε of the form ϕε(x) = ε−nϕ(x/ε) with
ϕ ∈ D(Rn),

∫
ϕ(x)dx = 1, and is independent of the chosen mollifier. If the Fourier

product exists, so does the model product.
In the one-dimensional case (n = 1), a yet more general definition is obtained

by using the representation by boundary values of analytic functions, which was
discussed in Sect. 3. Given u ∈ D′(R), let

ũε(x) = û(x + iε)− û(x − iε),

with the right-hand side as in (10). It was seen in Sect. 3 that u(x) = limε→0 ũε(x).
If u ∈ D′

L1(R), ũε is obtained by convolving u with the special mollifier ψε(x) =
ε/(π(x2 + ε2)). The Tillmann product [38] of two distributions u, v is defined by

u ◦ v = lim
ε→0

ũε · ṽε

provided the limit exists. The definition does not work in higher space dimensions;
there, harmonic regularization should be used [5]. In any case, the powers in (6) and
(7) can also be understood in the sense of the Tillmann product.

Hörmander’s criterion implies the existence of the Fourier product, which implies
the existence of the model product and in turn also the existence of the Tillmann
product. None of the implications can be reversed.

The other products used in this paper enter at different levels. For example,
the most basic product of a smooth function with a distributions enters below
Hörmander’s criterion. The product in Hs

loc(R
n) when this space is an algebra

(s > n/2) enters as a subcase of the Fourier product, but is independent of
Hörmander’s criterion. The Nemytskii operators in the form of a continuous map
L
p

loc × L
q

loc → L1
loc, 1/p + 1/q = 1, enter at the level of the model product, but
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are independent of the Fourier product criterion. For more details on these circle of
ideas, see [25].

References

1. Ambrose, W.: Products of distributions with values in distributions. J. Reine Angew. Math.
315, 73–91 (1980)

2. Beals, M.: Self-spreading and strength of singularities for solutions to semilinear wave
equations. Ann. Math. (2) 118(1), 187–214 (1983)

3. Beals, M.: Propagation and Interaction of Singularities in Nonlinear Hyperbolic Problems.
Progress in Nonlinear Differential Equations and their Applications, vol. 3. Birkhäuser Boston
Inc., Boston (1989)
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An Introduction to the Gabor Wave
Front Set

Luigi Rodino and S. Ivan Trapasso

Abstract In this expository note we present an introduction to the Gabor wave
front set. As is often the case, this tool in microlocal analysis has been introduced
and reinvented in different forms which turn out to be equivalent or intimately
related. We provide a short review of the history of this notion and then focus on
some recent variations inspired by function spaces in time-frequency analysis. Old
and new results are presented, together with a number of concrete examples and
applications to the problem of propagation of singularities.

Keywords Wave front set · Modulation spaces · Microlocal analysis ·
Propagation of singularities · Schrödinger equation

1 Introduction

A central notion in microlocal analysis of partial differential equations is the wave
front set [29]. In somewhat rough terms, the wave front set of a distribution u is the
collection of all the points of the phase space (x0, ξ0), ξ0 = 0, where the lack of
regularity of u at x0 is detected on the spectral side by a characteristic behaviour in
the direction ξ0. Giving a rigorous meaning to this heuristic model provides a fine
scale of technical tools for the microlocal study of singularities of pseudodifferential
operators and their propagation. It should be stressed that wave front sets play
a major role in the mathematical theory of quantum fields [21, 49]. We cannot
frame here the long tradition of studies on the wave front set and its applications; a
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complete historical and technical account may be found in the monograph [29] by
Hörmander, who first introduced wave front sets in [26].

In recent times the notion of wave front set has benefited from the perspective
of time-frequency analysis [33, 44, 45, 50]. The spirit of Gabor analysis may be
condensed in the idea of simultaneous analysis of distributions with respect to
both time and frequency variables; several techniques and function spaces were
introduced in the last decades to carry out this program [25]. The affinities with
the notion of wave front set, where the regularity is measured by a simultaneous
analysis of points and directions, are evident.

The purpose of this introductory paper is to present some of the contributions in
this respect, in particular we focus on the Gabor wave front set [50]. To be precise,
the idea of a global wave front set showed up many times under several different
guises; a historical account on the issue with many pointers to the literature is given
in Sect. 3, while in Sect. 2 we collected some preliminary material from microlocal
and time-frequency analysis.

In Sect. 4 we provide a more technical description of the Gabor wave front set. In
particular, we highlight the most important results of the papers [11, 28] and [50],
together with a number of detailed examples. New results for the wave front set
in the context of modulation space regularity are derived in Sect. 4.3. We conclude
with a brief review of applications to propagation of singularities.

Most of the technical proofs are omitted to keep the presentation at an introduc-
tory level. We hope that this overview may be useful as a point of departure for the
interested reader, as well as a practical summation of the most relevant results on
the topic.

2 Preliminaries

2.1 Notation

We set x2 = x · x, for x ∈ Rn, where x · y = xy is the scalar product on Rn. The
Schwartz class is denoted by S(Rn), the space of temperate distributions by S′(Rn).
The brackets 〈f, g〉 denote the extension to S′(Rn) × S(Rn) of the inner product
〈f, g〉 = ∫

Rn f (x)g(x)dx on L2(Rn).
The conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p + 1/p′ = 1. The

symbol � means that the underlying inequality holds up to a positive constant factor
C > 0. For any x ∈ Rn and s ∈ R we set 〈x〉s := (1 + |x|2)s/2. We choose the
following normalization for the Fourier transform:

f̂ (ξ) = Ff (ξ) =
∫
Rn
e−2πixξf (x)dx, ξ ∈ Rn.
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We define the translation and modulation operators: for any x, ξ ∈ Rn and f ∈
S(Rn),

(Txf ) (y) := f (y − x), (
Mξf

)
(y) := e2πiξyf (y).

These operators can be extended by duality on temperate distributions. The compo-
sition π(x, ξ) = MξTx constitutes a time-frequency shift.

Recall that � ⊂ Rn is a conic subset of Rn if it is invariant under multiplication
by positive real numbers, namely x ∈ �⇒ λx ∈ � for any λ > 0.

The symplectic group Sp(n,R) consists of all 2n × 2n invertible matrices S ∈
GL (2n,R) such that

S-JS = SJS- = J, J =
(
O I

−I O
)
,

where J is the canonical symplectic matrix and O and I are the n × n zero and
identity matrices respectively.

In the rest of the paper we identify the cotangent set T ∗Rn of Rn with R2n to
lighten the notation.

2.2 Modulation Spaces

The short-time Fourier transform (STFT) of a temperate distribution u ∈ S′(Rn)
with respect to the window function ϕ ∈ S(Rn) \ {0} is defined by

Vϕu(x, ξ) := F(u · Txϕ)(ξ) =
∫
Rn
e−2πiyξu(y) ϕ(y − x) dy. (1)

The reader may want to consult the monograph [25] for a comprehensive
treatment of the mathematical properties of this time-frequency representation,
in particular those mentioned below. We highlight that the STFT is intimately
connected with other well-known phase-space transforms, in particular the Wigner
distribution

W(u, ϕ)(x, ξ) =
∫
Rd
e−2πiyξu

(
x + y

2

)
ϕ
(
x − y

2

)
dy. (2)

As far as the regularity is concerned, the STFT of a possibly wild distribution
u ∈ S′(Rn) is a well-behaved function; in particular, we have that Vϕu ∈ C(R2n)

and there exist constants C > 0 and N ≥ 0 such that |Vϕu(z)| ≤ C〈z〉N for all
z ∈ R2n. Furthermore, Vϕu ∈ S(R2n) ⇔ u ∈ S(Rn). It turns out that the STFT is
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one-to-one in S′(Rn), as a result of the following inversion formula: for u ∈ S′(Rn)
and ϕ,ψ ∈ S(Rn) \ {0} such that 〈ϕ,ψ〉 = 0 we have

u = 1

〈ϕ,ψ〉
∫
R2n
Vϕu(z)π(z)ψdz, (3)

to be interpreted in the distribution sense - namely, the right-hand side is a temperate
distribution whose action on φ ∈ S(Rn) coincides with 〈u, φ〉. Notice in particular
that if we choose ϕ ∈ S(Rn) \ {0} with ‖ϕ‖L2 = 1 and set ψ = ϕ we have

|Vϕu(w)| =
∣∣∣∣
∫
R2n
Vϕu(z)Vϕϕ(w − z)dz

∣∣∣∣ , w ∈ R2n. (4)

This argument generalizes to the following pointwise inequality (“change-of-
window lemma”) which will be used below.

Lemma 1 ([25, Lem. 11.3.3]) Let ϕ1, ϕ2, φ ∈ S(Rn) be such that 〈φ, ϕ1〉 = 0 and
u ∈ S′(Rn). Therefore

|Vϕ2u(x, ξ)| ≤
1

|〈φ, ϕ1〉| (|Vϕ1u| ∗ |Vϕ2φ|)(x, ξ), ∀(x, ξ) ∈ R2n.

When speaking of weight functions below we refer to some positive function
m ∈ L∞

loc(R
2n) such that m(z+ ζ ) � m(z)〈ζ 〉r for some r ≥ 0 and any z, ζ ∈ R2n -

that is, m is 〈·〉r -moderate.
Given a non-zero window ϕ ∈ S(Rn), a weight function m on R2n and

1 ≤ p, q ≤ ∞, the modulation space Mp,q
m (Rn) consists of all the temperate

distributions u ∈ S′(Rn) such that Vϕu ∈ L
p,q
m (R2n) (mixed weighted Lebesgue

space), that is:

‖u‖Mp,q
m

= ‖Vϕu‖Lp,qs =
(∫

Rn

(∫
Rn

|Vϕu(x, ξ)|pm(x, ξ)p dx
)q/p

dξ

)1/q

<∞,

with trivial modification if p or q is ∞. If p = q , we write Mp instead of Mp,p,
while for the unweighted case (m = 1) we write Mp,q .

It can be proved that Mp,q
m (Rn) is a Banach space whose definition does not

depend on the choice of the window ϕ (in the sense that different windows yield
equivalent norms). The standard weight used in the rest of the paper is m(z) =
vs(z) = 〈z〉s for some s ∈ R. We mention that many common function spaces
are intimately related with modulation spaces: for instance,M2(Rn) coincides with
the Hilbert space L2(Rn), while if m(x, ξ) = 〈ξ〉s for s ≥ 0 we have that
M2
m(R

n) coincides with the usual L2-based Sobolev space Hs(Rn). Furthermore,
the following characterizations hold for any 1 ≤ p, q ≤ ∞:

S(Rn) =
⋂
s≥0

Mp,q
vs
(Rn), S′(Rn) =

⋃
s≥0

Mp,q
v−s (R

n). (5)
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Another perspective on modulation spaces is provided by inspecting the defi-
nition of the STFT Vϕu: it may be thought of as a continuous expansion of the
function u with respect to the uncountable system {π(z)ϕ : z = (x, ξ) ∈ R2n}.
Notice that π(z)ϕ is a wave packet highly concentrated near z in phase space. For
short, we have Vϕu(x, ξ) = 〈u, π(x, ξ)ϕ〉 in the sense of the (extension to the
duality S′ −S of the) inner product on L2. This perspective is further reinforced by
the role of frame theory and discrete time-frequency representations. Given a non-
zero window function ϕ ∈ L2(Rn) and a subset� ⊂ R2n, we say that the collection
of the time-frequency shifts of ϕ along� is a Gabor system, namely

G(ϕ,�) = {π(z)ϕ : z ∈ �}.

For instance one may consider separable lattices such as

� = αZ × βZ = {(αk, βn) : k, n ∈ Z},

for lattice parameters α, β > 0; we write G(g, α, β) for the corresponding Gabor
system. Recall that a frame for a Hilbert space H is a sequence {xj }j∈J ⊂ H such
that there exist constants A,B > 0 (frame bounds) such that

A ‖x‖2
H ≤

∑
j∈J

|〈x, xj 〉|2 ≤ B ‖x‖2
H ,

∀x ∈ H.

Roughly speaking, the paradigm of frame theory consists in decomposing a vector
x along the frame, then studying the action of operators on such elementary pieces
and finally reconstructing the image vector. The entire process is encoded by the
frame operator

S : H . x �→
∑
j∈J

〈x, xj 〉xj ∈H.

If a Gabor system G(ϕ,�) is a frame for L2(Rn) it is called Gabor frame. Notice
that the Gabor frame operator reads

Sf =
∑
z∈�

Vgf (z)π(z)g,

and is a positive, bounded invertible operator on L2(Rn). A remarkable result of
frame theory is that a function can be reconstructed from its Gabor coefficients by
means of the following discrete analogue of (3):

u =
∑
z∈�

Vϕu(z)π(z)ϕ̃, (6)
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where ϕ̃ = S−1ϕ is the canonical dual window and the sum is unconditionally
convergent in L2. Notice that ϕ ∈ S(Rn) ⇒ ϕ̃ ∈ S(Rn) if G(ϕ,�) is a Gabor
frame [32].

Moreover, the reconstruction formula (6) extends to u ∈ M
p,q
m (Rn) for all

1 ≤ p, q ≤ ∞ and weight function m on R2n, with unconditional convergence
in the modulation space norm if 1 ≤ p, q <∞ (weak unconditional otherwise). In
addition, an equivalent discrete norm forMp,q

m (Rn) is given by

‖u‖Mp,q
s

=
⎛
⎜⎝∑
n∈Zn

⎛
⎝∑
k∈Zn

|Vϕu(αk, βn)m(αk, βn)|p
⎞
⎠
q/p
⎞
⎟⎠

1/q

.

2.3 Pseudodifferential Operators

In the spirit of time-frequency analysis we define Weyl operators starting from the
relation

〈σwf, g〉 = 〈σ,W(g, f )〉, ∀f, g ∈ S(Rd ), (7)

where W(g, f ) is the Wigner transform defined in (2) and σ ∈ S′(R2d) is the
symbol of the Weyl operator σw : S(Rd) → S′(Rd), which can be formally
represented as

σwf (x) =
∫
R2d

e2πi(x−y)ξ σ
(
x + y

2
, ξ

)
f (y)dydξ.

Other quantization rules may be covered in a similar fashion. In particular, for τ ∈
[0, 1] we define

〈Opτ (σ )f, g〉 = 〈σ,Wτ (g, f )〉, ∀f, g ∈ S(Rd ), (8)

where the Wigner distribution is generalized as

Wτ(f, g)(x, ξ) =
∫
Rd
e−2πiyξf (x + τy)g(x − (1 − τ )y) dy.

We refer to the papers [2, 8, 14, 15] for results in this general framework. Notice
that we recapture the Weyl quantization for τ = 1/2, while the case τ = 0
corresponds to the Kohn-Nirenberg quantization. In the rest of the paper we will
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focus on Weyl operators, but most of the stated results can be transferred to other
kind of pseudodifferential operators in view of the identity

Opτ1(a) = Opτ2(Tτ1,τ2a), Tτ1,τ2a = e2πi(τ1−τ2)DxDξ a, a ∈ S′(R2n). (9)

Nevertheless, there is a distinctive property characterizing the Weyl calculus
among other quantization rules, which is known as symplectic covariance. Recall
indeed that S ∈ Sp(n,R) can be associated with a unitary operator μ(S) on L2(Rn),
called metaplectic operator, which satisfies the intertwining property

μ(S)−1σwμ(S) = (σ ◦ S)w, σ ∈ S′(R2n).

In fact, the map μ : S �→ μ(S) defines a metaplectic operator only up to a constant
complex factor of modulus one. We will not focus on technical details concerning
the metaplectic representation; the reader may consult [20, 25, 54] for a precise
account on the issue.

A major advantage of the time-frequency analysis approach to pseudodifferential
operators is that general symbol classes may be considered, in particular modulation
spaces. Recall the definition of the classical Hördmander classes [30].

Definition 1 Letm ∈ R. The symbol class Sm0,0 is the subspace of smooth functions

a ∈ C∞(R2n) such that

sup
(x,ξ)∈R2n

〈ξ〉−m|∂αx ∂βξ a(x, ξ)| <∞, ∀α, β ∈ Nn.

It is a Fréchet space with the obvious seminorms.

For a ∈ Sm0,0 we have that aw is continuous on S(Rn) and S′(Rn); moreover
the map T0,1/2 is an automorphism of Sm0,0. Composition of Weyl operators with
symbols in Sm0,0 classes is well behaved: if a ∈ Sm0,0 and b ∈ Sn0,0, then aw ◦ bw is

again a Weyl operator with symbol a#b ∈ Sm+n0,0 - the latter is known as the Weyl (or
twisted) product of a and b. While explicit formulas are known for a#b in general,
we stress that the calculus associated with symbols in Sm0,0 is highly non-trivial due
to the lack of asymptotic expansions for Weyl product of symbols.

A somewhat better behaviour is showed by Shubin symbol classes [52], defined
as follows.

Definition 2 Letm ∈ R. The symbol class Gm is the subspace of smooth functions
a ∈ C∞(R2n) such that

sup
z∈R2n

〈z〉−m+|α||∂αz a(z)| <∞, ∀α ∈ N2n.

It is a Fréchet space with the obvious seminorms.
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We confine ourselves to recall that
⋂
m∈RGm = S(R2n) and the Weyl product is a

bilinear continuous map # : Gm ×Gn → Gm+n. We also set G∞ =⋃
m∈RGm.

3 A Short History of the Gabor Wave Front Set

By analogy with the classical Huygens’ construction of a propagating wave,
Hörmander ([27], 1971) called wave front set of a distribution u the subset WF(u)
of Rnx × (Rnξ \ {0}) defined by examining the behaviour at infinity of the Fourier
transform û. Namely, the point (x0, ξ0), ξ0 = 0, does not belong toWF(u) if there
exist a function ϕ ∈ C∞

c (R
n), ϕ(x0) = 0, and a conic neighbourhood �ξ0 ⊂ Rn of

ξ0 such that

|ϕ̂u(ξ)| ≤ CN 〈ξ〉−N ∀ξ ∈ �ξ0, N ∈ N, (10)

for a suitable constant CN > 0. Here and below we assume u ∈ S′(Rn), though
the preceding estimate applies obviously to u ∈ D′(Rn) or u ∈ D′(�) with � open
subset of Rn such that x0 ∈ � and supp(ϕ) ⊂ �.

An alternative definition can be given in terms of classical pseudodifferential
operators with polyhomogeneous symbol with respect to the ξ variables:

p(x, ξ) = pm(x, ξ)+ . . . , (11)

where pm satisfies pm(x, λξ) = λmp(x, ξ) for λ > 0 and ξ = 0. Precisely,
(x0, ξ0) /∈ WF(u) if and only if there exists p(x, ξ) with pm(x0, ξ0) = 0 such
that p(x,D)u ∈ C∞(Ux0) for some neighbourhood Ux0 of x0. The statement does
not depend on the quantization rule that we adopt to define p(x,D).

Afterwards, several variables of the definition ofWF(u) appeared. Our attention
is focused on the global wave front set of Hörmander ([28], 1989), which we denote
here byWFG(u). To defineWFG(u) for u ∈ S′(Rn) we may imitate the preceding
argument in terms of pseudodifferential operators, by taking now polyhomogeneous
symbols in the z = (x, ξ) variable, as in Shubin [52]:

p(z) = pm(z)+ . . . , (12)

with pm(λz) = λmpm(z) for λ > 0, and similarly for lower order terms. Then,
z0 = (x0, ξ0) /∈ WFG(u), z0 /∈ 0, if there exists p(z) with pm(z0) = 0 such that
p(x,D)u ∈ S(Rn). Willing to give a direct definition, we may replace the Fourier
transform with the integral transformation

T u(x, ξ) =
∫
Rn
e−2πitξ e−|t−x|2/2u(t)dt. (13)
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We have that z0 = (x0, ξ0) /∈ WFG(u) if and only if there exists a conic
neighbourhood�z0 of z0 in R2n such that

|T u(z)| ≤ CN 〈z〉−N , ∀z ∈ �z0 , N ∈ N. (14)

In the next sections we shall review the main properties of WFG(u) and present
some variants of the definition. We continue here by listing some papers of the
last 30 years, where WFG(u) was reinvented, without reference to the original
contribution by Hörmander [28].

Let us first mention Nakamura ([39], 2005), who introduced the so-called homo-
geneous wave front set to study propagation of singularities for the Schrödinger
equation through methods typically used in semiclassical analysis. Schulz and
Wahlberg ([51], 2017) proved recently that the homogeneous wave front set
coincides with WFG(u). In turn, Ito ([31], 2006) clarified the connection of the
homogeneous wave front set with the quadratic scattering wave front set of Wunsch
([55], 1999), see also [38].

To complete this survey, we may mention the related definition of the scattering
wave front set of Melrose [36], Melrose and Zworski [37], coinciding with the SG
wave front set of Cordes [16] and Coriasco and Maniccia [17].

Roughly speaking, the scattering/SG wave front set consists of three components:
WF(u), WF(û) and a third component similar to WFG(u) where analysis is
limited to rays through z0 = (x0, ξ0), with x0 ∈ Sn−1

x and ξ0 ∈ Sn−1
ξ . The enormous

developments of the corresponding SG-microlocal analysis are somewhat outside
our present perspective, see for instance [18] for references.

A new approach toWFG(u) was proposed by Rodino and Wahlberg ([50], 2014)
where the original contribution by Hörmander [28] was finally recognized and a
further equivalent definition was given in terms of time-frequency analysis. Namely,
the integral transform in (13) coincides with the Bargmann-Gabor transform of
u, that is a short-time Fourier transform with Gaussian window, see [24] and
the textbook [25]. It is then natural to replace T u with the discrete Gabor frame
representation of u, possibly with more general windows, and impose in the cone
�z0 a rapid decay of the Gabor coefficients, see the next section for the details. In
[50] the authors gave the name Gabor wave front set to the associated wave front set
and introduced the notationWFG(u), where the subscript G stands both for global
and Gabor.

In the last 5 years, this new approach and the new name were adopted by a
number of authors working in the area of time-frequency analysis. Let us try to
give a short account. As already evident from the original work of Hörmander [28],
the main application concerns the propagation of microlocal singularities for the
Schrödinger equation

{
i∂tu(t, x) = H(x,D)u(t, x)
u(0, x) = u0(x)

. (15)
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A basic example is the quantum harmonic oscillator, corresponding to the Hamil-
tonian H(x, ξ) = |x|2 + |ξ |2. In fact, starting from the Gabor-Fourier integral
representation of the Schrödinger propagator in [9, 10] one can deduce in a natural
way propagation in terms ofWFG(u), see [7, 11–13]. The analysis is extended to the
case of non-self-adjoint Hamiltonians in [6, 40, 47, 48, 53] and semilinear equations
in [41]. In all these papers the definition of WFG(u) is modified by replacing the
S-decay in (14) with other regularity conditions in order to best fit with the features
of the Hamiltonian. In particular, in [7, 11, 13] the authors reconsider WFG(u) in
the framework of weighted modulation spaces Mp introduced by Feichtinger, see
[22] and [25]. In this connection we address to the next sections, where we present
an alternative definition in terms of Gabor frames.

In [41], to study the non-linear properties of WFG(u), attention is addressed to
M2 = L2 regularity with weight 〈z〉s , z = (x, ξ) ∈ R2n, corresponding to the
spacesQs of Shubin [52]. In [51] the authors consider the same variant ofWFG(u),
under the action of localization operators. In [53] the polynomial Gabor wave front
set is defined assuming (14) satisfied for a fixed value of N .

In [4, 6, 12] the S-decay is replaced by analytic and Gelfand-Shilov decay. To be
precise, z0 = (x0, ξ0) does not belong to such wave front sets if there exists a conic
neighbourhood�z0 of z0 in R2n such that

|T u(z)| ≤ Ce−ε〈z〉r , z ∈ �z0 , (16)

for some fixed r > 0 and positive constants C and ε. The case r = 1 corresponds
to the analytic Gabor wave front set. In [3] the definition is generalized to
ultradifferentiable classes by assuming

|T u(z)| ≤ Ce−ω(z), z ∈ �z0 , (17)

for a given weight function ω(z).
Observe that in [13] and [12] the notion of WFG(u) is generalized to that

of Gabor "-filter, respectively in the analytic and modulation space setting. This
allows one to get rid of the homogeneity assumption on the Hamiltonian.

The research related to the Gabor wave front set, or other wave front sets from
the point of view of time-frequency analysis, is very intensive at present and it is
impossible to give complete references. Let us limit ourselves to further mention
[5, 19, 35, 42, 43, 46].

4 Gabor Wave Front Set: Theory and Practice

In this section we focus on the Gabor wave front set WFG introduced in the
preceding historical account.
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4.1 The Global Wave Front Set of Hörmander

We briefly review the main properties of the global wave front set WF(u)
introduced by Hörmander in [28]. We need to introduce some preparatory notions.

Definition 3 The conic support of a ∈ S′(R2n) is the set conesupp(a) of all z ∈
R2n \ {0} such that any open conic neighbourhood �z of z in R2n \ {0} satisfies

supp(a) ∩ �z is not compact in R2n.

Definition 4 Let a ∈ Gm for some m ∈ R. We say that a point z0 ∈ R2n \ {0} is
non-characteristic for a if there exist positive constantsA, ε > 0 and an open conic
set � ⊂ R2n \ {0} such that

|a(z)| ≥ ε〈z〉m, z ∈ �, |z| ≥ A.

We define char(a) as the subset of R2n \ {0} containing all the non-characteristic
points for a.

Notice that

conesupp(a) ∪ char(a) = R2n \ {0}, a ∈ Gm.

We are now ready to define the global wave front set.

Definition 5 Let u ∈ S′(Rn). We say that a point z0 ∈ R2n \ {0} does not belong to
WF(u) if there exist m ∈ R and a ∈ Gm such that awu ∈ S(Rn) and z0 /∈ char(a).

We collect below some properties satisfied byWF(u), following [50].

Proposition 1 Let u ∈ S′(Rn).

(i) WF(u) is a closed conic subset of R2n \ {0}.
(ii) WF(u) is symplectically invariant:

z0 ∈ WF(u)⇒ Sz0 ∈ WF(μ(S)u), S ∈ Sp(n,R).

(iii) For a ∈ Gm the following inclusions hold:

WF(awu) ⊆ WF(u) ∩ conesupp(a) ⊆ WF(u) ⊆ WF(awu) ∪ char(a).

In particular, if char(a) = ∅ thenWF(awu) = WF(u).
(iv) If a ∈ Gm and conesupp(a) ∩WF(u) = ∅ then awu ∈ S(Rn).
(v) WF(u) = ∅ if and only if u ∈ S(Rn).
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4.2 The Gabor Wave Front Set at Schwartz Regularity

Let us give a concise review of the Gabor wave front set in the context of Schwartz
regularity, following [50]. First we introduce a continuous version of the Gabor
wave front set characterized by rapid decay of the phase space representation of a
distribution.

Definition 6 Let u ∈ S′(Rn) and ϕ ∈ S(Rn) \ {0}. We say that z0 ∈ R2n \ {0} does
not belong to the set WF ′(u) if there exists an open conic neighbourhood �z0 of z0
in R2n \ {0} such that

sup
z∈�z0

〈z〉N |Vϕu(z)| <∞ ∀N ∈ N. (18)

It is a direct consequence of the definition that WF ′(u) is a closed conic subset
of R2n \ {0}. The definition of WF ′(u) is well-posed in the sense that the Schwartz
decay of Vϕu in a conic neighbourhood does not depend on the window function ϕ,
as detailed below.

Proposition 2 ([50, Cor. 3.3]) Let u ∈ S′(Rn), ϕ ∈ S(Rn)\{0} and z0 ∈ R2n\{0}.
Assume that there exists an open conic neighbourhood �z0 of z0 in R2n \ {0} such
that condition (18) holds. For any open conic neighbourhood �′z0

of z0 in R2n \ {0}
such that �′z0

∩ S2n−1 ⊆ �z0 and any ψ ∈ S(Rn) \ {0} we have

sup
z∈�′

z0

〈z〉N |Vψu(z)| <∞ ∀N ∈ N.

In the spirit of time-frequency analysis it is interesting to study the discrete
variant of WF ′(u) obtained by replacing the full phase-space cone �z0 in (18) with
its restriction to suitable lattice points. This remark leads to the definition of the
Gabor wave front set WFG(u).

Definition 7 Let u ∈ S′(Rn), ϕ ∈ S(Rn) \ {0} and a separable lattice � = αZn ×
βZn where α, β > 0 are such that G(ϕ,�) is a Gabor frame. We say that z0 ∈
R2n \ {0} does not belong to the Gabor wave front set WFG(u) if there exists an
open conic neighbourhood�z0 of z0 in R2n \ {0} such that

sup
λ∈�∩�z0

〈λ〉N |Vϕu(z)| <∞ ∀N ∈ N. (19)

While it is clear that WFG(u) ⊆ WF ′(u), it is a remarkable result that the other
inclusion holds too, cf. [50, Thm. 3.5], that is

WFG(u) = WF ′(u), u ∈ S′(Rn). (20)
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This characterization also shows that the definition of WFG(u) is independent of
the choice of the Gabor frame G(ϕ,�) used in (19). Moreover, it can be proved
that all these results still hold for more general lattices � = AZ2n, where A ∈
GL (2n,R). In the rest of the paper we will discard the notation WF ′(u) and we
computeWFG(u) according to (18) whenever convenient.

Another important achievement in [50] is the proof of the fact that the Gabor
wave front set coincides with Hörmander’s global wave front set. We prefer not to
include a discussion of this issue in order to keep the presentation at an introductory
level. We just mention that a key ingredient in the proof is a precise characterization
of the Gabor wave front set of Weyl operators with symbols in Sm0,0 classes.

Proposition 3 Let m ∈ R. For a ∈ Sm0,0 we have

WFG(a
wu) ⊆ conesupp(a), u ∈ S′(Rn).

In particular, for m = 0 we have

WFG(a
wu) ⊆ WFG(u) ∩ conesupp(a), u ∈ S′(Rn).

We determine below the Gabor wave front set of some special distributions in
order to get a taste of this notion and also to prepare material for applications to
Schrödinger equations.

Example 1 Fix z0 = (x0, ξ0) ∈ R2n. The Gabor wave front set is invariant under
time-frequency shifts, namely

WFG(π(z0)u) = WFG(u), u ∈ S′(Rn).

This is indeed a consequence of the invertibility of time-frequency shifts and
Proposition 3, since

π(z0) = σw, σ (x, ξ) = eπix0ξ0e2πi(xξ0−ξx0) ∈ S0
0,0.

Example 2 (Dirac Delta) Consider the Dirac distribution centered at x0 ∈ Rn,
namely δx0 ∈ S′(Rn). In view of the previous example we can assume x0 = 0
without loss of generality, namely WFG(δx0) = WFG(δ0) for all x0 ∈ Rn. Let us
compute the STFT of δ0: for a fixed window ϕ ∈ S(Rn) \ {0},

Vϕδ0(x, ξ) = 〈δ0,MξTxϕ〉 = ϕ(−x).

This implies that |Vϕδ0(0, λξ)| = |ϕ(0)| for all λ > 0 and ξ ∈ Rn. If we further
assume ϕ(0) = 0 we see that {0} × (Rn \ {0}) ⊆ WFG(δ0). To conclude, let C > 0
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and consider the conic subset � = {(x, ξ) ∈ R2n \ {0} : |ξ | < C|x|}. Let z0 =
(x0, ξ0) ∈ �; then

sup
z∈�

〈z〉N |Vϕδ0(z)| � sup
x∈Rn

〈x〉N |ϕ(−x)| <∞,

hence z0 /∈ WFG(δ0). This argument allows us to conclude that

WFG(δx0) = WFG(δ0) = {0} × (Rn \ {0}).

We remark that in the case of δx0 the Gabor wave front set is less informative than the
classical Hörmander wave front set [29], which readsWFH (δx0) = {x0}×(Rn\{0})
and coincides with the SG wave front set WFS by Coriasco and Maniccia [17].

Example 3 (Pure Frequency) Fix ξ0 ∈ Rn and consider the distribution u(t) =
e2πitξ0 . In order to determine its Gabor wave front set we apply again the invariance
property under phase-space shifts, namely

WFG(u) = WFG(Mξ01) = WFG(1).

For a fixed window ϕ ∈ S(Rn) \ {0} we have

Vϕ1(x, ξ) = 〈1,MξTxϕ〉 = 〈δ0, TξM−x ϕ̂〉 = e−2πixξ ϕ̂(−ξ),

hence |Vϕ1(λx, 0)| = |ϕ̂(0)| for any λ > 0 and x ∈ Rn. It is not restrictive to assume
v̂p(0) = 0, thus we conclude (Rn \{0})×{0} ⊆ WFG(1). The same arguments used
in Example 2 yield

WFG

(
e2πiξ0·

)
= WFG(1) = (Rn \ {0})× {0}.

To compare with other wave front sets, notice that the classical wave front set is not
able to detect any singularity since u ∈ C∞(Rn), hence WFH (u) = ∅. However,
the SG wave front set is again more precise, yieldingWFS(u) = (Rn \ {0})× {ξ0}.
Example 4 (Fresnel Chirp) Fix c ∈ R\{0} and consider the linear chirp (also known
as Fresnel function) u(t) = eπict2 . Straightforward computations for the STFT of u
with Gaussian window ϕ(t) = e−πt2 (cf. for instance [1]) provide

|Vϕu(x, ξ)| = (1 + c2)−n/4e−π |ξ−cx|2/(1+c2). (21)
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We deduce that the STFT rapidly decays in any open cone in R2n \ {0} which does
not include the hyperplane ξ = cx. Arguing as in the previous example we conclude
that

WFG

(
eπic|·|2

)
= {(x, cx) : x ∈ Rn \ {0}}.

We stress that the Gabor wave front set is superior in detecting singularities than
other notions in this case, which is characterized by varying frequency. Notice
indeed thatWFH (u) = ∅, while WFS(u) = (Rn \ {0})× (Rn \ {0}).

4.3 Modulation Space Setting

In Sect. 2.2 we introduced modulation spaces by conditioning the (weighted and
mixed) Lebesgue regularity of the phase-space representation (STFT) of their
members. This notion suggests a natural generalization of the Gabor wave front
set WFG by relaxing the Schwartz decay in (18) as follows, cf. [11].

Definition 8 Let 1 ≤ p ≤ ∞, s ≥ 0, ϕ ∈ S(Rn) \ {0} and u ∈ S′(Rn). We
say that z0 ∈ R2n \ {0} does not belong to WFp,sG (u) if there exists an open conic
neighbourhood�z0 of z0 in R2n \ {0} such that Vϕu ∈ Lpvs (�z0), that is

∫
�z0

|Vϕu(z)|p〈z〉spdz <∞, (22)

with obvious modification in the case where p = ∞.

It is clear from the definition thatWFp,sG (u) is a closed conic subset of R2n \ {0}.
We remark that other kinds of microlocal analysis at modulation space regularity

may be taken into account. In this respect we mention the wave front setWFMp,q
m
(u)

introduced in [44, 45] and defined as follows. First define for f ∈ S′(Rn) the set
(f ) as the complement in Rn \ {0} of the subset which contains all ξ̄ ∈ Rn \ {0}
such that

(∫
�ξ̄

(∫
Rn

∣∣Vϕf (x, ξ)∣∣p m(x, ξ)pdx
)q/p

dξ

)1/q

<∞,

for some conic neighbourhood �ξ̄ of ξ̄ in Rn \ {0}. Hence, for 1 ≤ p, q ≤ ∞, a

weight function m on R2n and u ∈ D′(�), � ⊆ Rn open, WFMp,q
m
(u) consists

of elements (x0, ξ0) ∈ � × Rn \ {0} such that ξ0 ∈ (φu) for any φ ∈ C∞
c (�)

with φ(x0) = 0. It is a remarkable result that modulation spaces are microlocally
equivalent to Fourier-Lebesgue spaces, in the sense of [45, Thm. 6.1]. We also refer
to [33] for a discrete version of this analysis.
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We prove below the independence of the window ϕ in the definition of WFp,sG ,
cf. [11] for more general results.

Proposition 4 Let 1 ≤ p ≤ ∞, s ≥ 0, u ∈ S′(Rn), ϕ ∈ S(Rn) \ {0} and
z0 ∈ R2n \ {0}. Assume that there exists an open conic neighbourhood �z0 of z0 in
R2n \ {0} such that condition (22) holds. For any open conic neighbourhood �′z0

of

z0 in R2n \ {0} such that �′z0
∩ S2n−1 ⊆ �z0 and any ψ ∈ S(Rn) \ {0} we have
∫
�′
z0

|Vψu(z)|p〈z〉spdz <∞. (23)

Proof Let us first recall the change-of-window estimate in Lemma 1, namely

|Vψu(z)| � (|Vϕu| ∗ |Vψϕ|)(z), z ∈ R2n.

Since Vψϕ ∈ S(R2n) for ψ, ϕ ∈ S(Rn), for any N ≥ 0 we have

|Vψu(z)| �
∫
R2n

〈z −w〉−N |Vϕu(w)|dw.

Therefore, to prove the desired estimate (23) it is enough to show that, for a suitable
choice of n ≥ 0 we have ∥∥∥∥

∫
R2n
F (·, w)dw

∥∥∥∥
Lp(�′

z0
)

<∞,

where we set F(z,w) = Fn(z,w) = 〈z〉s〈z −w〉−N |Vϕu(w)|.
We conveniently split the domain of integration in

∫
R2n F (·, w)dw in two parts,

namely �z0 and R2n \ �z0 . Let us first consider R2n \ �z0 and notice that

〈z −w〉 � max{〈z〉, 〈w〉}, z ∈ �′z0
, w ∈ R2n \ �z0 . (24)

Furthermore, in view of the characterization of S′(Rn) in (5) we deduce that u ∈
M
p
v−r (R

n) for some r ≥ 0. Therefore, for z ∈ �′z0
we may write

∫
R2n\�z0

F(z,w)dw ≤
∫
R2n\�z0

〈z〉s〈w〉r 〈z −w〉−N |Vϕu(w)|
〈w〉r dw

�
(
〈·〉r+s−N ∗ |Vϕu(·)|

〈·〉r
)
(z).
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It is then enough to assume N > r + s + 2n to conclude

∥∥∥∥∥
∫
R2n\�z0

F(·, w)dw
∥∥∥∥∥
Lp(�′

z0
)

�
∥∥∥〈·〉r+s−N∥∥∥

L1(R2n)
‖u‖Mp

v−r (�n)
<∞.

For the remaining part we have

∫
�z0

F(z,w)dw ≤
∫
�z0

〈z〉s〈w〉−s 〈z −w〉−s〈z −w〉s−N |Vϕu(w)|〈w〉sdw

�
∫
�z0

〈z−w〉s−N |Vϕu(w)|〈w〉sdw

�
(
〈·〉s−N ∗

(
1�z0 (·)|Vϕu(·)|〈·〉s

))
(z),

where 1�z0 is the characteristic function of the set �z0 . Assumption (22) finally
yields

∥∥∥∥∥
∫
�z0

F(·, w)dw
∥∥∥∥∥
Lp(�′

z0
)

�
∥∥∥〈·〉s−N∥∥∥

L1(R2n)

∥∥Vϕu∥∥Lpvs (�z0 ) <∞.

��
In complete analogy with the Gabor wave front set WFG introduced in Defini-

tion 19 we consider a discrete version ofWFp,sG .

Definition 9 Let 1 ≤ p ≤ ∞, s ≥ 0, ϕ ∈ S(Rn)\ {0} and u ∈ S′(Rn). Consider a
separable lattice � = αZn × βZn where α, β > 0 are such that G(ϕ,�) is a Gabor

frame. We say that z0 ∈ R2n \ {0} does not belong to ˜WF
p,s

G (u) if there exists an
open conic neighbourhood�z0 of z0 in R2n \ {0} such that Vϕu ∈ Lpvs (�z0), that is

∑
λ∈�∩�z0

|Vϕu(λ)|p〈λ〉sp <∞, (25)

with obvious modification in the case where p = ∞.

We show that the discrete and continuous modulation Gabor wave front set
coincide. Therefore, modulation space regularity in a conic neighbourhood of a
phase space direction is a condition as strong as modulation space regularity
restricted to the points of the same cone which belong to a suitable lattice.

Theorem 1 Let 1 ≤ p ≤ ∞, s ≥ 0 and u ∈ S′(Rn). Then WFp,sG (u) =
˜WF

p,s
G (u).



386 L. Rodino and S. I. Trapasso

Proof We give the proof only in the case where p < ∞, since the case p = ∞
requires trivial modification. We first prove that z0 /∈ ˜WF

p,s

G (u)WF
p,s

G (u), namely
that (9) implies (8). In view of the reconstruction formula (6) we write u = u1 +u2,
where

u1 =
∑

λ∈�∩�z0
Vϕu(λ)π(λ)ϕ̃, u2 =

∑
λ∈�\�z0

Vϕu(λ)π(λ)ϕ̃,

where ϕ̃ = S−1ϕ ∈ S(Rn)\ {0} is the canonical dual window. It is therefore enough
to show that Vϕu1, Vϕu2 ∈ Lpvs (�z0). Let us start with Vϕu1.

∥∥Vϕu1
∥∥p
L
p
vs (�z0 )

=
∫
�z0

∣∣Vϕu1
∣∣p (z)〈z〉psdz

≤
∫
�z0

∑
λ∈�∩�z0

(∣∣Vϕu(λ)∣∣ ∣∣Vϕ̃ϕ(z− λ)∣∣ 〈z〉s)p dz.
We use the subadditivity of the weight, namely the identity 〈z〉s ≤ 〈z− λ〉−s 〈λ〉s to
get

∥∥Vϕu1
∥∥p
L
p
vs (�z0 )

≤
∫
�z0

∑
λ∈�∩�z0

(∣∣Vϕu(λ)∣∣ 〈λ〉s ∣∣Vϕ̃ϕ(z− λ)∣∣ 〈z− λ〉−s)p dz.

Let us set f (λ) = ∣∣Vϕu(λ)∣∣ 〈λ〉s and g(z − λ) = ∣∣Vϕ̃ϕ(z− λ)∣∣ 〈z − λ〉−s for the
sake of clarity. Notice that g(z− λ) � 〈z− λ〉−N−s for arbitraryN ≥ 0. Hence, by
Hölder’s inequality we have

∥∥Vϕu1
∥∥p
L
p
vs (�z0 )

≤
∫
�z0

∑
λ∈�∩�z0

(f (λ)g(z − λ))p dz

=
∫
�z0

∑
λ∈�∩�z0

(
f (λ)g(z − λ)1/pg(z − λ)1−1/p

)p
dz

≤
∫
�z0

⎛
⎝ ∑
λ∈�∩�z0

f (λ)pg(z − λ)
⎞
⎠
⎛
⎝ ∑
λ∈�∩�z0

g(z− λ)
⎞
⎠
p/p′

dz

≤ C
∫
�z0

∑
λ∈�∩�z0

f (λ)pg(z − λ)dz,
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where

C = sup
z∈R2n

‖g(z − ·)‖p/p′
�1 <∞.

We conclude by Minkowski inequality:

∥∥Vϕu1
∥∥p
L
p
vs (�z0 )

≤ C
∫
�z0

∑
λ∈�∩�z0

f (λ)pg(z − λ)dz

≤ C
∑

λ∈�∩�z0
f (λ)p

∫
�z0

g(z − λ)dz

≤ C′ ∑
λ∈�∩�z0

f (λ)p <∞,

where we set

C′ = C

∫
�z0

g(z − λ)dz <∞,

and used the assumption (9) in the last step.
It remains to prove that Vϕu2 ∈ Lpvs (�z0), namely

∥∥Vϕu2
∥∥p
L
p
vs (�z0 )

=
∫
�z0

∣∣Vϕu2
∣∣p (z)〈z〉psdz

≤
∫
�z0

∑
λ∈�\�z0

(∣∣Vϕu(λ)∣∣ ∣∣Vϕ̃ϕ(z− λ)∣∣ 〈z〉s)p dz.
Recall from Sect. 2.2 that the STFT has at most polynomial growth, that is
|Vϕu(λ)| � 〈λ〉r for some r ≥ 0. Moreover, since Vϕ̃ϕ ∈ S(R2n) we have
|Vϕ̃ϕ(z− λ)| � 〈z − λ〉−N for any N ≥ 0. As a consequence of (24) we have

∥∥Vϕu2
∥∥p
L
p
vs (�z0 )

≤
∫
�z0

∑
λ∈�\�z0

(∣∣Vϕu(λ)∣∣ ∣∣Vϕ̃ϕ(z− λ)∣∣ 〈z〉s)p dz
�
∫
�z0

∑
λ∈�\�z0

(
〈λ〉r 〈z− λ〉−N 〈z〉s

)p
dz
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�
∫
�z0

∑
λ∈�\�z0

(
〈λ〉r−N/2〈z〉s−N/2

)p
dz

(∫
�z0

〈z〉p(s−N/2)
)⎛⎝ ∑

λ∈�\�z0
〈λ〉p(r−N/2)

⎞
⎠ <∞,

where the conclusion follows after choosingN large enough.

We need to prove now that z0 /∈ WF
p,s

G (u) ⇒ z0 /∈ ˜WF
p,s

G (u), that is (8)
implies (9). We essentially argue as before after inverting the role of discrete and
continuous norms and reconstruction formulae. To be concrete we prove that Vϕu ∈
�
p
vs (�∩�z0 ). In view of the inversion formula for the STFT in (3) we set u = u′1+u′2,

where

u′1 =
∫
�z0

Vϕu(z)π(z)ϕdz, u′2 =
∫
R2n\�z0

Vϕu(z)π(z)ϕdz.

It is enough to prove that Vϕu′1, Vϕu′2 ∈ �pvs (� ∩ �z0). Let us first prove the claim
for Vϕu′1, having in mind (4). We have

∥∥Vϕu′1∥∥�pvs (�∩�z0 ) =
∑

λ∈�∩�z0

∣∣Vϕu1(λ)
∣∣p 〈λ〉sp

�
∑

λ∈�∩�z0

(∫
�z0

∣∣Vϕu(z)∣∣ ∣∣Vϕϕ(λ− z)∣∣ dz
)p

�
∑

λ∈�∩�z0

(∫
�z0

∣∣Vϕu(z)∣∣ 〈z〉s ∣∣Vϕϕ(λ− z)∣∣ 〈λ− z〉−sdz
)p
.

We set f (z) = ∣∣Vϕu(z)∣∣ 〈z〉s and h(λ − z) = ∣∣Vϕϕ(λ− z)∣∣ 〈λ − z〉−s in order to
lighten the notation. Therefore, by applying again Hölder’s inequality we get

∥∥Vϕu′1∥∥�pvs (�∩�z0 ) �
∑

λ∈�∩�z0

(∫
�z0

f (z)h(λ− z)dz
)p

≤
∑

λ∈�∩�z0

(∫
�z0

f (z)ph(λ− z)dz
)(∫

�z0

h(z − λ)dz
)p/p′

≤ ‖h‖p/p′
L1

∑
λ∈�∩�z0

∫
�z0

f (z)ph(λ− z)dz

≤ C
∫
�z0

f (z)pdz <∞,
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where we used the assumption (8) in the last step and we set

C = ‖h‖p/p′
L1 sup

z∈Rn
∑

λ∈�∩�z0
h(z− λ) <∞.

The proof of Vϕu′2 ∈ �pvs (� ∩ �z0) follows the same pattern of the proof of Vϕu2 ∈
L
p
vs (�z0) above, hence is left to the interested reader. ��

Remark 1 As a consequence of the previous identification and Proposition 4 we

have that ˜WF
p,s

G (u) does not depend on the Gabor frame G(ϕ,�) used in (9).
Moreover, it is clear from the definition that u ∈ Mp

vs (R
n) if and only ifWFp,sG (u) =

∅, in view of the compactness of the sphere S2n−1.

The modulation space Gabor wave front set is very well suited to the study of
Weyl operators with low regular symbols, as detailed in the following result.

Proposition 5 ([11, Prop. 5.3]) Let 1 ≤ p ≤ ∞, a ∈ M∞
1⊗vγ (R

2n) with γ > 2n

and 0 < 2s < γ − 2n. For any u ∈ Mp
−s(Rn) we have

WF
p,s
G (awu) ⊂ WF

p,s
G (u).

This should be compared with Proposition 2, having in mind that
⋂
γ≥0M

∞
1⊗vγ (R

2n)

= S0
0,0.

4.4 Propagation of Singularities

We conclude this survey with some easy examples of application of the Gabor wave
front set to propagation of microlocal singularities for Schrödinger equations. We
refer to [11, 41] for a broader treatment of the topic, see also the other references
cited in the historical account above.

Let us fix the setting of our investigation. We consider the Cauchy problem for
the Schrödinger equation, namely

{
i∂tu(t, x) = Hu(t, x)

u(0, x) = u0(x)
, (26)

where H = aw is the Weyl quantization of a real-valued quadratic polynomial in
R2n, namely

a(x, ξ) = 1

2
xAx + ξBx + 1

2
ξCξ, (27)
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for some symmetric matricesA,C ∈ Rn×n andB ∈ Rn×n. The phase-space analysis
of the Schrödinger propagator U(t) : u0(x) �→ u(t, x) is intimately related to the
corresponding Hamiltonian system, that is

ż = J∇za(z) = Az, A =
(
B C

−A −B-
)
.

The classical phase-space flow At = etA : R2n → R2n is a symplectic
diffeomorphism and the following result on the propagation of singularities holds in
our setting.

Theorem 2 Consider the Cauchy problem (26) with the assumption specified
above. We have that U(t) ∈ B(M

p
vr (R

n)) for all t ∈ R, 1 ≤ p ≤ ∞ and r ∈ R. If
u0 ∈ S′(Rn) then

WFG(U(t)u0) = At (WFG(u0)), t ∈ R.

If in particular u0 ∈ Mp
v−s (R

n) for some 1 ≤ p ≤ ∞ and s ≥ 0 then

WF
p,s

G (U(t)u0) = At (WF
p,s

G (u0)), t ∈ R.

More refined results for general Hamiltonians and potential perturbations can
be found in [11]. We stress that this is one of the rare case where propagation
of singularities for Schrödinger operators with non-smooth potentials is taken into
account.

Example 5 (The Free Particle) Let us first consider the free case, namely H =
−)/2 - which corresponds to a(x, ξ) = πξ2. It is well known that the solution of
(26) can then be expressed as

u(t, x) = (Kt ∗ u0)(x), Kt(x) = 1

(2πit)n/2
eix

2/(2t ).

An easy computation reveals that the corresponding Hamiltonian flow is given by

At (x, ξ) = (x + 2πtξ, ξ), (x, ξ) ∈ R2n.

Let us consider the initial datum u0 = δ0, so that U(t)u0(x) = Kt(x). Therefore,
using the results in Example 2 we get

WFG(U(t)u0) = At (WFG(δ0)) = {(x, ξ) ∈ R2n : x = 2πtξ, ξ = 0}.
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Notice that a pure frequency initial state, namely u0(x) = e2πixξ0 for ξ0 ∈ Rn,
evolves as u(t, x) = e−2π2itξ2

0 e2πixξ0 , hence the wave front set is stationary:

WFG(U(t)u0) = WFG(u0) = {(x, 0) ∈ R2n, x = 0}.

Example 6 (The Harmonic Oscillator) Consider now the Hamiltonian

H = − 1

4π
)+ πx2,

that is the Weyl quantization of the symbol a(x, ξ) as in (27) with A = C =
(2π)I, B = 0, where I is the n × n identity matrix—see [23, Sec. 4.3] and [7,
Sec. 4] for a detailed derivation. The classical flow can be explicitly computed:

At =
(
(cos t)I (sin t)I
−(sin t)I (cos t)I

)
, t ∈ R.

Therefore, by taking into account the initial datum u0 = 1 and Example 3 above we
have for any t ∈ R

WFG(U(t)u0) = At (WFG(1)) = {(x, ξ) = ((cos t)y,−(sin t)y) ∈ R2n, y = 0}.

Let us examine the behaviour of the wave front set in the interval t ∈ [0, π/2]
for the sake of concreteness. For t = 0 we have WFG(u0) = (Rn \ {0}) × {0},
while for t = π/2 we have WF(U(π/2)u0) = {0} × (Rn \ {0}). We see that for
t ∈ (0, π/2) the singularities are propagated by clockwise rotation in phase space.
Let us stress the connection with the structure of the propagator, whose distribution
kernel is given by the Mehler formula [20, 34]: for k ∈ Z,

Kt(x, y) =
⎧⎨
⎩c(k)| sin t|−n/2 exp

(
πi

x2+y2

tan t − 2πi xysin t

)
(πk < t < π(k + 1))

c′(k)δ((−1)kx − y) (t = kπ)
,

(28)
for suitable phase factors c(k), c′(k) ∈ C.
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On the Regularity of Characteristic
Functions

Winfried Sickel

Abstract In this survey we shall deal with the regularity of characteristic functions
XE of subsetsE of Rd in the framework of Besov spaces. We will describe a number
of necessary and sufficient conditions to guarantee membership in a Besov space
of given smoothness s and with integrability p. Several examples are discussed in
detail.

Keywords Characteristic functions · Indicator functions · Regularity · Besov
spaces · Snowflake domain · Twindragon · Modified Nikodym domains

1 Introduction

Let E be a nontrivial measurable subset of Rd such that 0 < |E| < ∞. By |E| we
denote the Lebesgue measure ofE and by XE the associated characteristic function.
For 1 ≤ p ≤ ∞ and s ≥ 0 we have

XE ∈ Lp(Rd ) for all E , XE ∈ W 1
p(R

d) for all E ,

and

XE ∈ Cs(Rd ) for all E .

Neither the Lebesgue spaces Lp(Rd ) nor the first order Sobolev spacesW 1
p(R

d) nor

the Hölder spaces Cs(Rd) allow to distinguish the regularity of those characteristic
functions. Intuitively it is clear that these functions have different regularity
depending on the quality of the boundary (whatever this means at this moment).
To make this clear we have to deal with notions of fractional smoothness s ∈ (0, 1)
related to spaces with p <∞. There are several possibilities. Not only for simplicity
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we have decided here for Besov spaces Bsp,q(R
d), see Sect. 2 for a definition.

Alternatively we could have chosen Bessel potential spaces Hs
p(R

d ) or even more

general Lizorkin–Triebel spaces Fsp,q(R
d). Parts of the results obtained below carry

over from Besov spaces to the spaces Fsp,q (R
d), but there will be also exceptions,

mainly in limiting situations. We will not go into details here.
In this survey we will discuss various notions describing the regularity of the

boundary ∂E and to compare this with the regularity of XE in Besov spaces. Mostly
they will stem from fractal geometry, but not exclusively. For convenience of the
reader we have collected some basic facts from fractal geometry in the Appendix
at the end of this paper. The paper is written in a way that it is readable also
for non-experts in function spaces. The author had spend some time to look for
proofs as simple as possible. Only in a few cases we did not include the known but
more complicated proofs. This makes the paper essentially self-contained. A certain
number of examples is treated in detail.

The motivation of the author to deal with this topic originated from the theory
of pointwise multipliers for Besov spaces. Here a function f : Rd → R is called a
pointwise multiplier forBsp,q(R

d) if f · g belongs to Bsp,q(R
d ) for all g ∈ Bsp,q(Rd ).

The question, whether the characteristic function of the half space E := Rd+ is a
pointwise multiplier for Besov and Bessel potential spaces, has attracted a lot of
attention since the early sixties. Later Gulisashvili [30, 31], see also Maz’ya and
Shaposhnikova [46, 5.5.2], had found necessary and sufficient conditions on a set
E ⊂ Rd such that XE is a pointwise multiplier in specific situations. For a function
f to be a pointwise multiplier for Bsp,q(R

d ) it is necessary that f belongs at least

locally to Bsp,q(R
d ) itself. Hence, the regularity of the characteristic function XE

is part of the pointwise multiplier problem for Besov spaces. In my opinion it is
interesting enough to be considered as an independent problem.

There will be a continuation of this survey dealing with characteristic functions
as pointwise multipliers for Besov spaces.

The paper is organized as follows. Section 2 is devoted to the function spaces
under consideration. In Sect. 3 we will discuss the maximal smoothness of charac-
teristic functions related to the case s = 1/p. Section 4 contains results on less
regular characteristic functions, i.e., we consider 0 < s < 1/p.

1.1 Notation

As usual,N denotes the natural numbers,N0 = N∪{0}, Z denotes the integers andR
the real numbers. The letter d ∈ N is always reserved for the underlying dimension
in Rd . As usual, a domain in Rd is an open, non-trivial and simply connected set.
For a subset E of Rd we denote it’s complement by F and the set of inner points of
F by F̊ . Furthermore, we put

∂E = ∂F := {x ∈ Rd : dist (x,E) = dist (x, F ) = 0} .
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Several times we will work with dyadic cubes. Here by a dyadic cube we mean a
cube of type

Qj,k := {x ∈ Rd : 2−j k� ≤ x� < 2−j (k� + 1), � = 1, . . . , d} , j ∈ Z, k ∈ Zd .

With λQ we denote the cube having the same centre as Q itself, the sides of λQ
andQ are parallel and the side-length of λQ is the side-length ofQmultiplied with
λ > 0. A ball with center in x and radius r will be denoted by B(x, r).

If X and Y are two normed spaces, the symbol X ↪→ Y indicates that the
identity operator is continuous. For two sequences (an)n and (bn)n of nonnegative
real numbers we will write an � bn if there exists a constant c > 0 such that
an ≤ c bn for all n. We use an & bn if an � bn and bn � an.

2 Besov Spaces

Nowadays Besov spaces represent a standard version of regularity used in various
branches of mathematics. One of their advantages consists in the possibility to
describe them in quite different ways. For our purpose the most appropriate one
is the characterization by differences.

Definition 1 Let 1 ≤ p, q ≤ ∞.

(i) Let 0 < s < 1. Then Bsp,q(R
d) is the collection of all real-valued functions

f ∈ Lp(Rd ) such that

‖ f |Bsp,q(Rd )‖ := ‖ f |Lp(Rd )‖

+
(∫

|h|<1
|h|−sq

( ∫
Rd

|f (x + h)− f (x)|pdx
)q/p dh

|h|d
)1/q

<∞

(usual modification if p and/or q are equal to infinity).
(ii) Let 1 ≤ s < 2. Then Bsp,q(R

d ) is the collection of all real-valued functions

f ∈ Lp(Rd ) such that

‖ f |Bsp,q(Rd)‖ := ‖ f |Lp(Rd)‖ +(∫
|h|<1

|h|−sq
( ∫

Rd
|f (x + 2h)− 2f (x + h)+ f (x)|pdx

)q/p dh
|h|d

)1/q

<∞

(usual modification if p and/or q are equal to infinity).
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Remark 1

(i) Besov spaces can be defined for all s ∈ R and all p, q ∈ (0,∞] (partly by
using simply higher order differences). But for us the above definition will be
sufficient.

(ii) Besov spaces are Banach spaces. They can be characterized also in terms of
the modulus of smoothness, in a Fourier analytic way, by atoms, molecules
and wavelets etc.. Standard references are the monographs by Besov, Il’yin,
Nikol’skij [6, 7], Nikol’skij [48], Peetre [51] and Triebel [61, 62, 66].

Normally most important are the parameters p and s. The parameter q may be
considered as a fine-index which only comes into play in limiting situations. There
will be two cases, namely q = ∞ and q = p, which will be more important for us
then the other. In case q = ∞ the norm reads as

‖ f |Bsp,∞(Rd)‖ := ‖ f |Lp(Rd)‖ + sup
|h|<1

|h|−s
(∫

Rd
|f (x + h)− f (x)|pdx

)1/p

if 0 < s < 1 and

‖ f |Bsp,∞(Rd)‖ := ‖ f |Lp(Rd)‖

+ sup
|h|<1

|h|−s
(∫

Rd
|f (x + 2h)− 2f (x + h)+ f (x)|pdx

)1/p

if 1 ≤ s < 2. In case q = p we first observe that we can replace
∫
|h|<1 . . . by

∫
Rd . . .

(since the additional term (
∫
|h|≥1 . . .)

1/p is dominated by a constant C(s, p, d)

(independent of f ) times ‖ f |Lp(Rd )‖). A change of variables finally results in
the following equivalent norms for Bsp,p(R

d):

‖ f |Bsp,p(Rd )‖∗ := ‖ f |Lp(Rd )‖ +
(∫

Rd

∫
Rd

|f (x)− f (y)|p
|x − y|sp+d dx dy

)1/p

if 0 < s < 1 and

‖ f |Bsp,p(Rd )‖∗ := ‖ f |Lp(Rd )‖

+
(∫

Rd

∫
Rd

|f (2y − x)− 2f (y)+ f (x)|p
|x − y|sp+d dx dy

)1/p

if 1 ≤ s < 2. If Rd is replaced by a smooth bounded domain � these norms are
often called Gagliardo norms. Many times we shall employ so-called elementary
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embeddings. They express the monotonicity of the Besov spaces with respect to s
and q . Here we mean the following

Bs0p,q0
(Rd) ↪→ Bs0p,∞(Rd ) ↪→ B

s1
p,1(R

d ) ↪→ Bs1p,q1
(Rd) , (1)

where q0, q1 are arbitrary in [1,∞] and 0 < s1 < s0.

Remark 2

(i) To restrict the values of h by |h| < 1 is always artificial. If a is an arbitrary
positive real number, then the restriction |h| < a leads to an equivalent norm.

(ii) Officially Besov spaces have been introduced by Besov in his Phd thesis
published in the papers [3] and [4] in 1959/1961. However, Nikol’skij had
already introduced the classes Bsp,∞(Rd ) in 1951 and Gagliardo had considered

Bsp,p(R
d) in 1956 (in connection with trace problems forW 1

p(�)).

3 The Limiting Case s = 1/p

As we shall see below, the smoothness s of a characteristic function XE of a
measurable set E ⊂ Rd, 0 < |E| < ∞, will be dominated in any case by 1/p.
With this problem we will deal first. Afterwards we will characterize those sets E
such that XE has maximal regularity.

3.1 Necessary Conditions

Let us start with a very simple example. We choose d = 1 and consider the
characteristic function X of the interval (0, 1). For 1 ≤ p <∞ and 0 < h < 1 we
have

∫ ∞

−∞
|X(x + h)−X(x)|pdx =

∫ 0

−h
1 dx +

∫ 1

1−h
1 dx = 2h .

The same argument applies for −1 < h < 0. Hence

‖X( · + h)−X( · ) |Lp(R)‖ = |2h|1/p , |h| < 1 . (2)

For 1 < p < ∞ this immediately implies X ∈ Bsp,∞(R) if 0 < s ≤ 1/p and
X ∈ Bsp,∞(R) if 1/p < s < 1. Since Besov spaces are monotone in s, see (1), we
conclude X ∈ Bsp,∞(R) for all s > 1/p.
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Now we apply the same method to the case of a more general set E. Recall,
F := Rd \E. For h ∈ Rd we define

E(h) := {x ∈ E : x + h ∈ E} ;
F(h) := {x ∈ F : x + h ∈ F } .

It follows

‖XE( · + h)−XE( · ) |Lp(Rd)‖p =
∫
E(h)

1 dx +
∫
F(h)

1 dx

= |E(h)| + |F(h)| . (3)

Hence, we have a first result.

Lemma 1 Let 1 ≤ p < ∞ and 0 < s < 1. Then XE belongs to Bsp,∞(Rd) if and
only if

sup
|h|<1

|h|−s (|E(h)| + |F(h)|)1/p <∞ . (4)

There is an easy but interesting consequence of Lemma 1. Let 1 < p <∞. Observe
that XE ∈ Bs1,∞(Rd) implies XE ∈ Bs/pp,∞(Rd ) and vice versa.

Figure 1 below shows shifted versions of the supports of characteristic functions
of a circle and of a rectangle, respectively. The shaded regions are just E(h)∪F(h)
in these cases. De facto it is “seen” that |E(h)| + |F(h)| & |h|, |h| < 1.

As a consequence we obtain a second result.

Lemma 2 Let d ≥ 2. Let 1 ≤ p <∞ and s > 0. Then the characteristic function
XE of either a ball or a cuboid, i.e., the cartesian product of d segments, belongs to
Bsp,∞(Rd) if and only if s ≤ 1/p.

Proof Only p = 1 requires an additional comment. Obviously∫
Rd

|XE(x + 2h)− 2XE(x + h)+XE(x)|dx

≤
∫
Rd

|XE(x + 2h)−XE(x + h)|dx +
∫
Rd

|XE(x + h)−XE(x)|dx
= 2(|E(h)| + |F(h)|) .

This explains sufficiency. Necessity follows from Theorem 1 below. ��

Fig. 1 E(h) ∪ F(h) for
circle and rectangle
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It will be the main aim of this subsection to show that s = 1/p is a barrier for
the smoothness of characteristic functions XE in general. Our point of departure is
a generalization of a theorem of Titchmarsh, due to Gulisashvili [30].

Proposition 1 If for some ball B, B ⊂ Rd , and f ∈ L�oc1 (Rd ) we have

lim|h|→0

1

|h|
∫
B

|f (x + h)− f (x)| dx = 0

then f ≡ const almost everywhere on B.

Now we turn to an application of this Proposition 1. Let E ⊂ Rd, 0 < |E| <∞.
Then the function g(x) := |X(x+ h)−X(x)|, x ∈ Rd , only takes values in {0, 1}.
This implies

∫
B

|XE(x + h)−XE(x)| dx =
∫
B

|XE(x + h)−X(x)|p dx

for all h and all 1 ≤ p < ∞. Next we need to recall an equivalent characterization
of Besov spaces in terms of modulus of smoothness. We put

ωp(f, t) := sup
|h|<t

( ∫
Rd

|f (x + h)− f (x)|p dx
)1/p

, f ∈ L�ocp (Rd) .

Let 1 ≤ q < ∞, 1 ≤ p < ∞ and 0 < s < 1. Then there exist positive constants
A,B such that

A ‖ f |Bsp,q(Rd)‖ ≤ ‖ f |Lp(Rd )‖ +
( ∞∑
j=0

(2jsωp(f, 2
−js))q

)1/q

≤ B ‖ f |Bsp,q(Rd )‖

holds for all f ∈ Bsp,q(Rd ), we refer, e.g., to [61, 2.5.12]. A simple monotonicity
argument yields that

lim
h→0

1

|h|
( ∫

Rd
|f (x + h)− f (x)|p dx

)1/p = 0

for any f ∈ Bsp,q(Rd ). If f = XE then the assumption XE ∈ B1/p
p,q (Rd) (1 < p <

∞, 1 ≤ q <∞) and Proposition 1 yield that XE is constant on any ball B. But this
is in contradiction with E ⊂ Rd , 0 < |E| <∞.

Theorem 1 Let 1 ≤ p < ∞ and 1 ≤ q < ∞. Then there exists no subset E ⊂
Rd, 0 < |E| <∞, such thatXE ∈ B1/p

p,q (Rd).
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Proof The case 1 < p < ∞, 1 ≤ q < ∞ has been treated above. It remains to
consider p = 1. Let us assume XE ∈ B1

1,q(R
d). Since the function

gh(x) := |X(x + 2h)− 2X(x + h)+X(x)| , x ∈ Rd ,

can only take values from the set {0, 1, 2}, we obtain

‖ gh |L1(Rd)‖ ≤ ‖ gh |Lp(Rd)‖p ≤ 2p−1 ‖ gh |L1(Rd )‖ .

Let 1 ≤ r <∞. It follows∫
|h|≤1

(
|h|−1 ‖ gh |L1(Rd)‖

)r/p dh
|h|d &

∫
|h|≤1

(
|h|−1/p ‖ gh |Lp(Rd)‖

)r dh
|h|d .

Since E has finite measure, this implies XE ∈ B1
1,q(R

d) if and only if XE ∈
B

1/p
p,pq(Rd). For 1 < p <∞ and q <∞ we may apply our arguments from above.

This yields the claim for p = 1. ��
Hence we conclude that the maximal regularity of a characteristic function in the

framework of Besov spaces is given by the class B1/p
p,∞(Rd) for some p. Only in case

d = 1 the spaces B1/p
p,∞(Rd), 1 ≤ p ≤ ∞, are comparable. Then we have

B1
1,∞(R) ↪→ B

1/p0
p0,∞(R) ↪→ B

1/p1
p1,∞(R) ↪→ B0∞,∞(R) , 1 ≤ p0 < p1 ≤ ∞ .

The characteristic function X of the interval (0, 1) not only belongs to B1
1,∞(R), it

belongs to BV (R), the space of functions of bounded variation (which represents a
strictly smaller class). This will play a role in the next subsection.

3.2 Characteristic Functions with Maximal Regularity

Here we follow Gulisashvili [30]. Therefore we consider functions of bounded
variation which are integrable on Rd .

Recall, a locally integrable function f : Rd → R is of bounded variation
if its first order partial derivatives (in the distributional sense) are bounded Borel
measures. The space BV ∩ L1(Rd) will be endowed with the norm

‖ f |BV ∩ L1(Rd )‖ :=
d∑
j=1

∣∣∣ ∂f
∂xj

∣∣∣+ ‖ f |L1(Rd )‖ .

where | ∂f
∂xj

| denotes the total variation of the measure. The symbol Hs refers to the
s-dimensional Hausdorff measure, see the Appendix for details. Then the perimeter
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of a set E is the quantity

perE := lim inf
j→∞ Hd−1(∂Mj ) ,

where the limit is taken with respect to all sequences (Mj )j of sets with a smooth
boundary (or polyhedra) such that

lim
j→∞ ‖XE −XMj |L1(Rd)‖ = 0 .

A basic fact in the theory of the BV spaces is the Kronrod–Federer–Fleming–Rishel
formula

‖ f |BV (Rd )‖ =
∫ ∞

−∞
per ({x ∈ Rd : f (x) > t}) dt ,

see, e.g., Fleming, Rishel [26] and Burago, Zalgaller [11]. In particular, it follows

XE ∈ BV (Rd ) if and only if perE <∞ . (5)

Next we recall the definition of the space Lip (1, 1)(Rd). A function f : Rd → R
belongs to Lip (1, 1)(Rd) if f ∈ L1(Rd) and supt>0 t

−1 ω1(f, t) < ∞. The norm
is given by

‖ f |Lip (1, 1)(Rd )‖ := ‖ f |L1(R
d )‖ + sup

t>0
t−1 ω1(f, t) .

Hardy and Littlewood proved that BV ∩ L1(R) coincides with Lip (1, 1)(R). The
generalization to the case d > 1 has been proved by Gulisashvili [30].

Proposition 2 It holds BV ∩L1(Rd) = Lip (1, 1)(Rd ) as sets. There exist positive
constants A,B such that

A sup
t>0

t−1 ω1(f, t) ≤ ‖ f |BV (Rd )‖ ≤ B sup
t>0

t−1 ω1(f, t)

holds for all f ∈ L1(Rd).

Summarizing we get the following.

Lemma 3 Let E ⊂ Rd be a measurable set satisfying 0 < |E| <∞.

(i) Let perE <∞. ThenXE belongs to B1/p
p,∞(Rd ) for all p, 1 ≤ p <∞.

(ii) Let XE ∈ B1/p0
p0,∞(Rd ) for some p0, 1 ≤ p0 < ∞. Then perE < ∞, XE ∈

BV (Rd) andXE ∈ B1/p
p,∞(Rd ) for all p, 1 ≤ p <∞, follows.
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Proof

Step 1. Proof of (i). Thanks to (5) and perE < ∞ we know that XE ∈ BV ∩
L1(Rd ). Since this space coincides with Lip(1, 1)(Rd ), see Proposition 2, we
conclude

sup
|h|<1

|h|−1
∫
Rd

∣∣∣(XE(x + 2h)−XE(x + h)
)
−
(
XE(x + h)−XE(x)

)∣∣∣ dx
≤ 2 sup

|h|<1
|h|−1

∫
Rd

|XE(x + h)−XE(x)| dx <∞ ,

i.e., XE ∈ B1
1,∞(R

d). We put g̃h(x) := XE(x + h) −XE(x), x ∈ Rd . Observe
that |g̃(x)| ∈ {0, 1} for all x. Hence, for all p ∈ (1,∞) we get

|h|−1 ‖ g̃h |L1(Rd )‖ & |h|−1 ‖ g̃h |Lp(Rd)‖p (6)

with hidden constants independent of h. This yields that XE belongs to
B

1/p
p,∞(Rd ) for all these p.

Step 2. Proof of (ii). Once again we use (6). Since XE ∈ L1(Rd) is guaranteed by
|E| < ∞ we conclude that XE ∈ B1/p0

p0,∞(Rd ) implies that XE ∈ B1/p
p,∞(Rd ) for

all p ∈ [1,∞). We get a bit more. We also obtain that

sup
|h|<1

|h|−1
∫
Rd

|XE(x + h)−XE(x)| dx <∞.

Now we employ (3) and find

sup
0<t<1

t−1 sup
|h|<t

∫
Rd

|XE(x + h)−XE(x)| dx

= sup
0<t<1

t−1 sup
|h|<t

(E(h)+ F(h))

≤ sup
|h|<1

|h|−1 (E(h)+ F(h)) =: I <∞ .

Because of the trivial estimate

sup
t≥1

t−1 sup
|h|<t

∫
Rd

|XE(x + h)−XE(x)| dx ≤ I + 2 |E| <∞

we conclude XE ∈ Lip(1, 1) ∩ L1(Rd ) and therefore XE ∈ BV ∩ L1(Rd ), see
Proposition 2. Finally, formula (5) yields the claim.

��
The second main result in this subsection we get as an immediate consequence.
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Theorem 2 Let E ⊂ Rd and 0 < |E| < ∞. Then the following assertions are
equivalent:

(i) perE <∞;
(ii) sup|h|<1 |h|−1 (|E(h)| + |F(h)|) <∞;

(iii) XE ∈ BV (Rd );
(iv) XE ∈ Lip(1, 1)(Rd);
(v) XE ∈ B1/p0

p0,∞(Rd ) for some p0, 1 ≤ p0 <∞.

(vi) XE ∈ B1/p
p,∞(Rd) for all p, 1 ≤ p <∞.

Proof Part (i) implies (iii) by using (5). Proposition 2 yields the implication (iii) →
(iv). From Lemma 3 we derive (iv) → (v) and (v) → (vi). Lemma 1 shows (vi) →
(ii) and at the same time (ii) → (v) (p0 = 1). Finally, Lemma 3 helps to close the
circle since (v) → (i). ��

3.3 Examples

Characteristic functions of balls and of rectangles (cuboids) we have already
considered. Now we turn to more complicated domains. As usual, a domain is an
open connected set in Rd . First we apply a well-known fact in the theory of Besov
spaces. The classes Bsp,q ∩ L∞(Rd ), s > 0, 1 ≤ p, q ≤ ∞, are algebras under
pointwise multiplication, i.e., there exists a positive constant c such that

‖ f ·g |Bsp,q‖ ≤ c
(
‖ f |Bsp,q(Rd )‖ ‖ g |L∞(Rd)‖+‖ g |Bsp,q(Rd)‖+‖ f |L∞(Rd)‖

)

holds for all f, g ∈ Bsp,q ∩ L∞(Rd ). We refer to Peetre [50] and [52, 4.6]. In
addition we shall use that Besov spaces are invariant under rotations, translations
and reflections. The combination of these two facts leads to a large number of further
examples sharing the same smoothness properties as the characteristic function
of a cube. For example, multiplying the characteristic function of a cube with an
rotated, shifted and properly enlarged version of it we get that the characteristic
function of a triangle has maximal regularity as well. Hence, any domain which
allows a finite triangulation, has an associated characteristic function with maximal
regularity. All these examples are covered by the classes of characteristic functions
which we will consider below. The most important but probably not the most
interesting examples are given by characteristic functions of elementary Lipschitz
domains. Concerning these domains we shall make use of the following definition,
picked up from Burenkov [12, 4.3]. In this definition we shall apply the notation
x = (x ′, xd), x ′ = (x1, . . . , xd−1) ∈ Rd−1, xd ∈ R.
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Definition 2 Let d ≥ 2. An open bounded set E is called elementary Lip-
schitz domain if there exist a function ϕ and numbers 0 < D1 ≤ D2 <

∞, a1, . . . ad, b1, . . . , bd−1, L such that

(i) diam (E) ≤ D2;
(ii) E = {x ∈ Rd : ad < xd < ϕ(x ′), x ′ ∈ W };

(iii) W := {x ′ ∈ Rd−1 : ai < xi < bi, i = 1, . . . , d − 1};
(iv) ad +D1 ≤ ϕ(x ′), x ′ ∈ W ;
(v) |ϕ(x ′)− ϕ(y ′)| ≤ L |x ′ − y ′| , x ′, y ′ ∈ W .

For elementary Lipschitz domains it is easy to prove that the associated charac-
teristic function has maximal regularity.

Lemma 4 Let E be an elementary Lipschitz domain. ThenXE ∈ BV ∩ B1/p
p,∞(Rd )

for all p ∈ [1,∞).
Proof We will apply Theorem 2(ii).

Step 1. For positive δ we define

∂Eδ := {x ∈ Rd : dist (x, ∂E) ≤ δ} . (7)

Usually ∂Eδ is called the δ-neighbourhood of ∂E. Observe, in our particular case
we have

∂E = ∂W∗∪{(x ′, xd) : x ′ ∈ ∂W , ad ≤ xd ≤ ϕ(x ′)}∪{(x ′, ϕ(x ′)) : x ′ ∈ W } ,

where ∂W∗ := {(x ′, ad) : x ′ ∈ W }. In what follows we concentrate on the last
part since the remaining part of the boundary is either regular or can be treated
similarly as the last part. Suppose 0 < δ < D1/L, where L denotes the Lipschitz
constant of ϕ. Let

G := {(x ′, ϕ(x ′)) : x ′ ∈ W }.

We claim that

∂Gδ ⊂ � :=
{
(x ′, xd) : x ′ ∈ W , ϕ(x ′)− (L+1)δ < xd < ϕ(x ′)+ (L+1)δ

}
.

Let x ∈ Gδ and suppose dist (x,G) = ρ ≤ δ. Hence, there is a point y ∈ G such
that |x − y| = ρ. Clearly, y = (y ′, ϕ(y ′)). This yields

|xd−ϕ(x ′)| ≤ |xd−ϕ(y ′)|+|ϕ(y ′)−ϕ(x ′)| ≤ |xd−ϕ(y ′)|+L|x ′−y ′| . (8)

Since |xd − ϕ(y ′)| ≤ dist (x,G) = ρ and |x ′ − y ′| ≤ ρ, we find

|xd − ϕ(x ′)| ≤ (L+ 1)δ

and therefore x ∈ �.
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Step 2. There is an obvious relation between the δ-neighbourhood of ∂E and
E(h) ∪ F(h). We have

E(h) ∪ F(h) ⊂ ∂Eδ , |h| = δ . (9)

Applying the result of Step 1 we find

|E(h)| + |F(h)| ≤ |∂Eδ| ≤ |�| = 2 (L+ 1) δ |W | , δ = |h| .

By Theorem 2 the claim follows.
��

As already mentioned above, Besov spaces are invariant under rotations, transla-
tions and reflections. This has an immediate consequence.

Corollary 1 Let E be a domain which can be written as the union of the closures
of a finite number of pairwise disjoint domains E1, . . . , EN such that any of the
Ej , j = 1, . . . , N, is the image of an elementary Lipschitz domain under a finite

number of rotations, translations and reflections. Then XE ∈ BV ∩ B1/p
p,∞(Rd) for

all p ∈ [1,∞).
Proof Lemma 4 yields

XEj ∈ BV ∩ B1/p
p,∞(Rd)

for all p ∈ [1,∞) and all j . Since |∂Ej | = 0, j = 1, . . . , N, see Lemma 5 below,
we have

XE =
N∑
j=1

XEj .

Therefore, Corollary 1 is a consequence of Lemma 4. ��
Figure 2 shows a domain with a polygonal boundary of finite length, covered by
Corollary 1. Now we turn to examples in R3. In Fig. 3, we have a

polyhedral cone and in Fig. 4 we see an Icosahedron. Both are elementary
Lipschitz domains. But Lipschitz regularity of the boundary is not necessary
for maximal regularity of the associated characteristic function. Here are a few
examples. First we take the domainA ⊂ R2 with boundary ∂A given by the Astroid.
The determining functional equation of this curve is given by

x2/3 + y2/3 = 1 , x, y ∈ R . (10)

Afterwards we consider the rotation of this curve around the y-axis resulting in the
domain Arot ⊂ R3.
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Fig. 2 A domain with a
polygonal boundary in the
plane

Fig. 3 A polyhedral cone

Fig. 4 The icosahedron

Figure 5 shows a vertical cut through Arot, which gives us the domain A itself.
Obviously the boundary ∂A has Hölder regularityα = 2/3, see (10), and is therefore
not Lipschitz (in four isolated points). Concerning the δ-neigbourhood it is easy to
show that there exists a positive constant c such that

|Aδ| ≤ c |h| , |h| < 1 .
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Fig. 5 The Astroid

Fig. 6 The rotated Astroid

Hence, Theorem 2 yields XA ∈ BV ∩B1/p
p,∞(R2) for all p ∈ [1,∞). Figure 6 shows

the set Arot itself. Obviously the boundary ∂Arot is not Lipschitz in north and south
pole and on the equator. However, we can argue as in case of A itself, i.e., there
exists a positive constant C such that

|Aδrot| ≤ c |h| , |h| < 1 .

Hence, Theorem 2 yields XArot ∈ BV ∩ B1/p
p,∞(R3) for all p ∈ [1,∞).

The next example is even simpler, see Fig. 7. Let ε ∈ (0, 1). We define

Eε := {(x, y) ∈ R2 : − 1 < x < 1, |x|ε < y < 1} .

The domain Eε has a boundary with Hölder regularity α = ε. So the Hölder
regularity can be arbitrarily small. However, the same argument as above can be
applied. For any ε there exists a positive constant cε such that

|Eδε | ≤ cε |h| , |h| < 1 .

Hence, Theorem 2 yields that the characteristic function of the domain Eε
belongs to BV ∩ B1/p

p,∞(Rd ) for all p ∈ [1,∞).
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Fig. 7 A typical
non-Lipschitz domain

0− 1

1

1

Fig. 8 A polyhedral domain
which is not Lipschitz

Now we turn to d = 3 again. There is a famous example of a polyhedral domain in
R3 which is not a Lipschitz domain, see Fig. 8. A convenient reference is given by
Dobrowolski [20], see page 103.

The red dot indicates one of the critical points of the boundary when one tries to
describe the neigbourhood as an elementary Lipschitz domain.

But in our situation it is simpler. We may apply Corollary 1. By the obvious
splitting of the domain into the two subdomains, each of them given by one cuboid,
it is immediate that the associated characteristic function has maximal regularity,
see Lemma 2. This is the reason why we avoided the notion of a Lipschitz domain
in Corollary 1. The class of domains used in this corollary covers the class of the
Lipschitz domains, but is more general.

4 Less Regular Characteristic Functions

Now we turn to characteristic functions of sets with a more wild boundary. First we
will investigate some necessary conditions.

4.1 Necessary Conditions

Let us start with some basics.

Lemma 5 Let E be a bounded domain. If XE ∈ Bsp,q (Rd) for some s > 0, 1 ≤
p <∞ and 1 ≤ q ≤ ∞, then |∂E| = 0 follows.
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Proof We employ the Withney-type decomposition ofE into dyadic cubes, cf. Stein
[58, VI.1] for details. By dyadic cubes we mean cubes of the type

Qj,k := {x ∈ Rd : 2−j k� ≤ x� < 2−j (k� + 1), � = 1, . . . , d} ,

j ∈ Z, k ∈ Zd . Hence

E =
⋃
Q∈F

Q

where Q = Qj,k for some nonnegative integer j and k ∈ Zd , F denotes a subset
of the set of all dyadic cubes and the cubes Q are pairwise disjoint. To each point
x ∈ ∂E we can associate a sequence of points (xj )j ⊂ E approaching x. Each of
the points xj belongs to one of the dyadic cubes Q ∈ F and these cubes have the
property

diamQ ≤ dist (Q, ∂E) ≤ 4 diamQ.

Consequently, for any ε > 0 and each x ∈ ∂E there exist xj ∈ E and a cube
Q(xj ) ∈ F, x ∈ Q(xj ) such that diamQ(xj ) < ε. Since Besov spaces are
monotonically ordered with respect to s and q , see (1), we may concentrate on the
classes Bsp,p(R

d ) for some small positive s < 1. It follows

(
‖XE |Bsp,p(Rd)‖∗

)p ≥
∫
Rd

∫
Rd

|XE(x)−XE(y)|p
|x − y|d+sp dy dx

≥
∫
∂E

∫
Q(xj )

1

|x − y|d+sp dy dx

≥
∫
∂E

∫
Q(xj )

(diamQ(xj ))−(d+sp) dy dx

≥ C |∂E| (diamQ(xj ))−sp

≥ C |∂E| ε−sp ,

where C does not depend on ε. This proves the claim. ��
Now we will continue with a more serious result due to Jaffard and Meyer [35].

To establish further necessary conditions we need to have additional information on
the set E, in particular we need to know how thick the sets E and F \ ∂E are in a
neighbourhood of the boundary. We define

∂E+ =
{
x ∈ ∂E : ∃μ > 0 such that ∀ε, 0 < ε ≤ 1, ∃Aε ,Bε satisfying

Aε ⊂ B(x, ε) ∩ E, Bε ⊂ B(x, ε)∩F, and |Aε| · |Bε| ≥ με2d
}
. (11)



412 W. Sickel

Let A be a subset of Rd . By dimP (A) we denote the packing dimension, cf. the
Appendix.

Theorem 3 ([35, Thm. 2.2]) Let E be a nontrivial subset of Rd . Suppose XE
belongs to Bsp,p(R

d ) for some s > 0 and 1 ≤ p <∞. Then dimP (∂E+) ≤ d − sp.
Remark 3

(i) Jaffard and Meyer [35] worked with a slightly modified definition for the set
∂E+. They replaced |Aε| , |Bε| ≥ με2d by the more restrictive conditions
|Aε| ≥ μεd and |Bε| ≥ μεd . But this change has no relevance for the proof.
Since we shall not apply Theorem 3 below we skip the proof.

(ii) It seems that the method of proof does not apply to the Besov spaces with p = q

(but it extends to Lizorkin–Triebel spaces).

Of course, of interest are those domains E satisfying ∂E = ∂E+. We discuss
some examples.

(a) John domains. We say that a bounded domain E is a John domain provided
there is a constant C ≥ 1 and a distinguished point x0 ∈ E, so that each
point x ∈ E can be joint to x0 (inside E) by a rectifiable curve γ : [0, �] →
E, γ (0) = x, γ (�) = x0, parameterized by arc-length (� may depend on x),
and such that the distance to the boundary satisfies

dist (γ (t), ∂E) > C−1 t .

We refer to Martio, Sarvas [43] or Hajlasz, Koskela [32]. Relatives of John
domains are investigated by Besov, we refer to Definition 6 below and [5], [7].
A direct consequence of the definition of John domains is the observation that
for all x ∈ ∂E there exists a μ > 0 such that for all ε ∈ (0, 1) there exists a ball
Aε satisfying Aε ⊂ B(x, ε) ∩ E and |Aε| ≥ μεn.

Now, select a cube Q such that E ⊂ Q and dist (∂E, ∂Q) > 1. For a given
set A we denote by Å the set of all inner points of A. Define G := F ∩Q. If E
and G̊ are John domains then we conclude that ∂E = ∂E+.

(b) (ε, δ) domains. Let 0 < ε < ∞ and 0 < δ ≤ ∞. Then a domain E is called
an (ε, δ) domain whenever x, y ∈ E and |x − y| < δ, there is a rectifiable arc
γ ⊂ E joining x to y and satisfying

�(γ ) ≤ 1

ε
|x − y|

(�(γ ) denotes the length of the arc γ ) and

dist (z, ∂E) ≥ ε |x − z| |y − z||x − y| for all z ∈ γ .

It is known that for an (ε, δ) domain it holds |∂E| = 0. One of the key properties
of (ε, δ) domains is the following. Denote by W1 the collection of all dyadic
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cubes which form the Whitney decomposition of E. By W2 we denote the
collection of all dyadic cubes which form the Whitney decomposition of F̊ .
Then, for each cube Q ∈ W2 with sidelength �(Q) ≤ ε δ/(16d) there exists a
cubeQ∗ ∈ W1 such that

1 ≤ �(Q∗)
�(Q)

≤ 4 and dist (Q,Q∗) ≤ C �(Q)

where C = C(d) but independent ofQ and E. For all these properties we refer
to Jones [36]. Hence, for E being an (ε, δ) domain we have ∂E = ∂E+.

(c) Regular domains. A domain E is called regular if it satisfies the measure
density condition: there exists a constant c > 0 such that for all x ∈ E and
all r ∈ (0, 1]

|B(x, r) ∩ E| ≥ c rd .
If E and F̊ are regular then ∂E = ∂E+ follows.

(d) Extension and embedding domains. We say that a bounded domain � ⊂ Rd

is a Bsp,p-extension domain if every function u ∈ Bsp,p(�) can be extended to

a function ũ ∈ Bsp,p(Rd ), the mapping u �→ ũ is continuous and there exists a
constant C = C(d, p, s,�) such that

‖ ũ |Bsp,p(Rd)‖ ≤ C ‖u |Bsp,p(�)‖ .

Here we use the following definition for Bsp,p(�), 0 < s < 1, 1 ≤ p ≤ ∞. A
function u ∈ Lp(�) belongs to Bsp,p(�) if

‖ f |Bsp,p(�)‖∗ := ‖ f |Lp(�)‖ +
(∫

�

∫
�

|f (x)− f (y)|p
|x − y|sp+d dx dy

)1/p

<∞ . (12)

Often these spaces are denoted by Ws
p(�) and called Sobolev spaces of

fractional order s on �. In a remarkable paper Zhou [68] proved the following.
Let d ≥ 2 and � a domain in Rd . Then the following assertions are
equivalent:

• � is a regular domain;
• � is a Bsp,p-extension domain for all s ∈ (0, 1) and all p ∈ [1,∞);
• � is a Bsp,p-extension domain for some s ∈ (0, 1) and some p ∈ [1,∞).
In addition Zhou was able to prove that a similar characterization takes place
when the existence of a continuous extension operator is replaced by the validity
and continuity of the standard Sobolev embeddings into Lebsgue spaces/Hölder
spaces. We refer to [68] for more details.
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4.2 Sufficient Conditions: Approximation by Piecewise
Constant Functions

Now we turn to sufficient conditions. There are several ways to attack this problem.
All methods are related to specific characterizations of Besov spaces. The first one is
given by the characterization in terms of best approximation by piecewise constant
functions.

Let us turn to Lemma 1 again. There we have already a sharp result. However,
to make it more easy to deal with, we may use a further easy observation already
employed in the proof of Lemma 4. Recall, the δ-neighbourhood ∂Eδ of ∂E has
been defined in (7). We have

E(h) ∪ F(h) ⊂ ∂Eδ , |h| = δ ,

see (9). As a consequence, if |h|−s |∂E|h|| stays bounded in a neighborhood of 0
the function XE belongs to Bs/pp,∞(Rd). For later reference we fix this. Concerning
the definition of upper Minkowski content and upper Minkowski dimension (box
counting dimension) we refer to the Appendix below.

Lemma 6 Let E ⊂ Rd such that 0 < |E| < ∞. Let 1 ≤ p < ∞, 0 < s ≤ 1 and
0 < a ≤ 1.

(i) If

sup
0<δ<a

δ−s |∂Eδ| <∞ ,

thenXE ∈ Bs/pp,∞(Rd).
(ii) If the d − s-dimensional upper Minkowski content of ∂E, denoted by

M∗(d−s)(∂E), is finite, thenXE ∈ Bs/pp,∞(Rd).
(iii) If the upper Minkowski dimension dimM∂E = t , then XE ∈ Bs ′p,∞(Rd) for all

s′ < d−t
p

.

Proof Part (i) follows directly from Lemma 1. In view of the definition of
the Minkowski content part (ii) is just a reformulation of (i). Finally (iii) is a
consequence of (A.1). ��
Remark 4 We recall a result from Falconer [22, Prop. 9.6]. Let S be an m-tuple of
contractions on a closed subsetD of Rd such that

|Si(x)− Si(y)| ≤ ri |x − y| , x, y ∈ D ,
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where ri ∈ (0, 1) for all i = 1, . . . ,m. Then the invariant set K satisfies dimH K ≤
s and dimM K ≤ s, where s is the unique number for which

N∑
j=1

rsi = 1 .

Let E be a bounded domain with boundary ∂E = K . Hence, Lemma 6 yields
XE ∈ Bs ′p,∞(Rd) for all s′ < d−s

p
and all p ∈ [1,∞).

But we can do a little bit better. For f ∈ Lp(Rd) we define

Ej(f )p := inf
{
‖ f − g |Lp(Rd )‖ : g ∈ Lp(Rd) and

g is constant on the dyadic cubes Qj,k , k ∈ Zd
}
, j ∈ N0 .

The numberEj(f )p expresses the minimal error in approximatingf with first order
splines (piecewise constant functions) with respect to the dyadic cubes Qj,k, k ∈
Zd . By assumption any approximant has the form

g =
∑
k∈Zd

αj,kXj,k . (13)

Here the αj,k are appropriate real numbers and Xj,k denotes the characteristic
function of the dyadic cube Qj,k . There is a well-known characterization of Besov
spaces in terms of these numbers Ej(f )p. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and
0 < s < 1/p. Then f ∈ Bsp,q (Rd) if and only if f ∈ Lp(Rd) and

( ∞∑
j=0

[
2js Ej (f )p

]q)1/q

<∞ , (14)

cf., e.g., Oswald [49]. Let E be a bounded domain in Rd . Choosing the approximant
g in (13) such that αj,k = 1 as long as Qj,k ⊂ E and αj,k = 0 otherwise, then it
follows

∥∥∥XE −
∑
k∈Zd

αj,kXj,k

∣∣∣Lp(Rd)∥∥∥p =
∑

k: |Qj,k∩∂E|>0

∫
Qj,k

|χE(x)|pdx (15)

≤
∣∣∣{x ∈ E : dist (x, ∂E) ≤ √

d 2−j }
∣∣∣ .

For a subset E of Rd and δ > 0 we put

∂Eδ+ := {x ∈ E : dist (x, ∂E) ≤ δ} , (16)
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i.e., we concentrate on that part of the neigbourhood of the boundary which is part
of E.

Theorem 4 Let E be a bounded domain in Rd . Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and
0 < s < 1/p. Suppose

∫ 1

0
δ−sq |∂Eδ+|q/p

dδ

δ
<∞ if q <∞

and sup
0<δ<1

δ−s |∂Eδ+|1/p <∞ if q = ∞ .

ThenXE ∈ Bsp,q(Rd ) holds.
Proof The condition |E| <∞ implies XE ∈ Lp. Let q <∞. As a consequence of
(15) and obvious monotonicity arguments we have

∞∑
j=0

2jsq Ej (XE)
q
p ≤

∞∑
j=0

2jsq |∂E
√
d2−j

+ |q/p

≤ ds/2
∞∑
j=0

∫ √
d2−j

√
d2−j−1

δ−sq
∣∣∣∂E2

√
dδ

+
∣∣∣q/p dδ

δ

≤ ds/2 (2
√
d)sq

∫ 2d

0
t−sq |∂Et+|q/p

dt

t
.

Since

∫ 2d

1
t−sq |∂Et+|q/p

dt

t
≤ C(s, q, d) |E|q/p,

the claim follows from (14). In case q = ∞ the needed modifications are obvious.
��

Remark 5 As mentioned above, in case q = ∞ our sufficient condition is close
to the property that M∗(d−sp)(∂E) <∞. The usefulness of the (upper) Minkowski
content in connection with the regularity of characteristic functions has been pointed
out at several places, e.g. Strichartz [59] (but traced there to Madych), Jaffard and
Meyer [35, Prop.2.1], Runst, S. [52, 2.3.1] and Sickel [57].

There is a further improvement possible. In our context it is quite easy to find the
best approximation of XE . For j ∈ N0 and k ∈ Zd we define

αj,k :=
⎧⎨
⎩

1 if Qj,k ⊂ E;
1 if |Qj,k ∩E| ≥ |Qj,k|/2;
0 otherwise.
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It follows∥∥∥XE −
∑
k∈Zd

αj,kXj,k

∣∣∣Lp(Rd )∥∥∥

=
( ∑
k: 0<|Qj,k∩E|<2−jd−1

|Qj,k ∩E| +
∑

k: |Qj,k∩E|≥2−jd−1

|Qj,k ∩ F |
)1/p

= Ej(f )p .

If we change the definition of the αj,k for one cube Qj,k , then it is easy to see
that the error increases. This explains the last identity. Now we obtain an analog of
Lemma 1.

Lemma 7 Let E be a bounded nontrivial domain in Rd . Let 1 ≤ p <∞, 1 ≤ q ≤
∞ and 0 < s < 1/p. ThenXE belongs to Bsp,q(R

d) if and only if

( ∞∑
j=0

2jsq
[ ∑
k∈Zd

min(|Qj,k ∩ E|, |Qj,k ∩ F |)
]q/p)1/q

<∞

(standard modification for q = ∞).

Both, Lemmas 1 and 7 seem to have the disadvantage that they are not of great
help with respect to the understanding of concrete examples.

4.3 Examples: I

First we continue our study of elementary domains.

Definition 3 Let d ≥ 2. We define an elementary domain with Hölder continuous
boundary of order α ∈ (0, 1] by replacing (v) in Definition 2 by

|ϕ(x ′)− ϕ(y ′)| ≤ L |x ′ − y ′|α , x ′, y ′ ∈ W .

Lemma 8 Let d ≥ 2. Let α ∈ (0, 1). Let E be an elementary domain with Hölder
continuous boundary of order α. ThenXE ∈ Bα/pp,∞(Rd ) for all p ∈ [1,∞).
Proof The proof is almost the same as in case of Lemma 4. We indicate the needed
modifications only. By applying the same notation as there we have to change the
estimate (8). This yields in case ρ ≤ δ < 1

|xd − ϕ(x ′)| ≤ |xd − ϕ(y ′)| + L|x ′ − y ′|α ≤ ρα(L+ 1) .
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Hence ∂Gδ ⊂ �, where

� := {(x ′, xd) ∈ Rd : x ′ ∈ W , ϕ(x ′)− (L+ 1)δα < xd < ϕ(x ′)+ (L+ 1)δα} .

The remaining part of the boundary is regular, i.e., for the sets E(h) and F(h) we
conclude

|E(h)| + |F(h)| ≤ |∂Eδ| ≤ C δα , δ = |h|

with a constantC > 0 independent on δ. Now the claim follows from Lemma 1. ��

4.4 On the Dimension of Graphs of Functions and
Consequences

There is a certain number of contributions in the literature where the problem of
the Hausdorff or Minkowski dimension of a graph of a function is studied, we refer,
e.g., to Carvalho and Caetano [16], Deliu and Jawerth [19], Falconer [22, Cor. 11.2],
Hunt [33], Kamont and Wolnik [38], Kaplan et al. [39] and Triebel [63, Thm. 16.2].

In view of Lemma 6 any bound of the Minkowski dimension of the graph results
in an estimate for the smoothness of the characteristic function of the associated
domain. The most prominent example is the family of Weierstrass functions. Here
we will have a short look onto the simplified version

fλ(t) :=
∞∑
k=1

λ−β sin(λkt) , t ∈ R , 0 < β < 1 , λ > 1 .

For more general Weierstrass functions we refer to Kaplan et al. [39] and Hunt [33].
Since fλ represents a lacunary Fourier series, the regularity in periodic Besov spaces
Bs∞,∞(T) is well understood. For the case λ = 2 one may consult [53, Chapt. 3], for
the general case λ = 2 one has to apply in addition some arguments from Triebel
[60, 2.2.1], replacing the dyadic resolution of unity by more general resolutions
of unity (depending on λ). It follows fλ ∈ B

β∞,∞(T) and this is just the periodic

subspace of Cβ(R) = B
β∞,∞(R), see also [53, Chapt. 3], since 0 < β < 1. Define

aλ := mint∈R fλ(t) and

�λ := {(x, y) : 0 < x < 2π , aλ − 1

2
< y < fλ(x)} .

The Fig. 9 shows the graph of the function f2 on [0, 2π], i.e., below of the graph
we see �2.
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Fig. 9 A special Weierstrass function

Then

X�λ ∈ Bβ/pp,∞(Rd) for all p ∈ [1,∞)

follows. We refer also to Falconer [22, Ex. 11.3].
Let us mention that Triebel [63, proof of Thm. 16.2], [65] has constructed

another example of a Hölder continuous function of order α ∈ (0, 1) such that
the characteristic function X� of the associated domain� satisfies

X� ∈ Bα/pp,∞(Rd) for all p ∈ [1,∞)

and

X� ∈ Bsp,∞(Rd) for all s >
α

p
.

We make a short summary. Hölder continuity of the boundary of order α ∈ (0, 1] is a
sufficient condition for regularity of order α/p but by no means necessary. Triebel’s
example shows that for the class Cα itself the result is unimprovable. However,
also our examples from Figs. 5, 6, and 7 show, that Hölder regularity and Lipschitz
regularity are not well adapted to our problem of determining the smoothness of
XE .

There is one more general class of domains we would like to investigate.

4.5 Domains with a Boundary Being an h-Set

We follow Bricchi [8, 9], but see also [63–65] and [54].
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Definition 4 Let h : (0, 1] → (0,∞) be a positive non-decreasing function such
that there exists a positive constant c with

h(2−j−k)
h(2−j ) ≥ c 2−kd for all j, k ∈ N0 . (17)

Let � be a non-empty compact set in Rd . Then � is called an h-set if there exists a
finite Radon measure μ in Rd satisfying

suppμ = � and μ(B(y, r)) & h(r) , y ∈ � , 0 < r < 1 . (18)

Observe that for any such function h there exists at least one such set � (for an
explicit construction we refer to [8]). We recall a few more properties of h-sets.
Again our references are [8, 9].

Lemma 9 Let � be an h-set. Then the following assertions are true.

(i) All h-measures related to � are equivalent to the generalized Hausdorff
measureHh restricted to � (see the Appendix below for a definition).

(ii) The related Radon measure μ is a doubling measure, i.e., there exists a
constant c > 0 such that

μ(B(y, 2r)) ≤ c μ(B(y, r)) for all y ∈ � and all 0 < r < 1 .

(iii) For any t ∈ (0, 1] and any y ∈ � one has

dimH �∩B(y, t) = lim inf
r→0

log h(r)

log r
and dimP �∩B(y, t) = lim sup

r→0

log h(r)

log r

There is a list of examples in [9]. All these functions are defined on a small
intervall (0, a), 0 < a < 1, and then suitably prolonged on the whole (0, 1].
• h1(r) = rδ 0 ≤ δ ≤ d;
• h2(r) = rδ | log r|b , 0 < δ < d, b ∈ R;
• h3(r) = | log r|b , b < 0;
• h4(r) = rd | log r|b , b > 0;
• h5(r) = rδ exp(b | log r|κ) , 0 < δ < d, b ∈ R, 0 < κ < 1;
• h6(r) = rδ S(r), where S is a slowly varying function.

Here a slowly varying function S : (0, 1] → R is a positive measurable function
such that limr→0 S(λr)/S(r) = 1 for all λ ∈ (0, 1].

The most important special case is the first one. The compact sets � related to
h1 are called δ-sets (in most of the cases the letter d is used instead of δ, but d
has already a different meaning). δ-sets are discussed at various places, sometimes
they are also called regular or Ahlfors regular sets, see, e.g., Bechtel and Egert
[2], Frazer [27], Jonsson and Wallin [37], Schneider and Vybíral [54] or Triebel
[63, 65, 66].
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The main step to understand domains E with ∂E being an h-set is made with the
following lemma, see Bricchi [8].

Lemma 10 Let E be a bounded domain in Rd with boundary ∂E being an h-set.
Then there exists a constant c > 0 such that

|∂Er+| ≤ c
rd

h(r)
, 0 < r < 1 .

Proof The proof is based on the fact that the finite Radon measure controls the
thickness of ∂Er for r sufficiently small.

The starting point is the Whitney decomposition of E, see [58]. More exactly, let
F denote the collection of all dyadic cubes representing the Whitney decomposition
of E , i.e.,

E =
∞⋃
j=0

Mj⋃
�=0

Qj,�(j) , (19)

all the cubesQj,�(j) are pairwise disjoint and

√
d 2−j ≤ dist (Qj,�(j), ∂E) ≤

√
d 2−j+2 .

We shall need an estimate of the numbersMj . Let

Ej := {x ∈ E : √
d 2−j−1 ≤ dist (x, ∂E) ≤ 4

√
d 2−j+1} , j ∈ N .

By Fj we denote the collection of all � ∈ Zd such that the dyadic cube Qj,� ∈ F

is contained in Ej . Then, if k ∈ Fj , the cube 3
√
d Qj,k intersects �. Furthermore,

there exists a point yk ∈ � such that the cube Pk , side-length
√
d2−j , sides parallel

to the axes and with center in yk, is contained in 3
√
d Qj,k . Let us denote the

centre of Qj,k by xk. Then, by definition, xk is the centre of 3
√
d Qj,k as well

and |xk − x�| ≥ 2−j , k = �. Hence, every y ∈ � is contained in at most C = C(d)

(independent of j ) cubes 3
√
d Qj,k with k ∈ Fj . Let μ be the associated finite

Radon measure on �. By assumption on μ it follows

∞ > C μ(�) ≥
∑
k∈Fj

μ
(

3
√
d Qj,k ∩ �

)
≥
∑
k∈Fj

μ(Pk ∩ �) & |Fj | h(2−j ) .

Here |Fj | denotes the cardinality of Fj . Hence

sup
j=0,1,...

Mj h(2−j ) ≤ C μ(�) . (20)
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This inequality is the key step in the proof. The inequality (20) can be turned
immediately into an estimate of the Lebesgue measure of the sets ∂Er+. For a
moment we put r := √

d2−j−1, j ∈ N. Then

∂Er+ ⊂
⋃
�∈Fj

3
√
d Qj,�

and therefore

|∂Er+| ≤
C

h(2−j )

(
3
√
d 2−j

)d ≤ c rd

h(r)
,

where c is a positive constant independent of j . In the last step we used the
monotonicity of h and the doubling property, see Lemma 9. ��

In view of Theorem 4 the Lemma 10 implies the following.

Corollary 2 LetE be a bounded domain in Rd with boundary ∂E being an h-set.

(i) Let 1 ≤ p <∞ and 0 < s < 1/p. Then the characteristic functionXE belongs
to Bsp,∞(Rd) if

sup
0<r<1

rd−sp

h(r)
<∞ .

(ii) Let 1 ≤ p, q < ∞ and 0 < s < 1/p. Then the characteristic function XE
belongs to Bsp,q (R

d) if

∫ 1

0
r
( dp−s− 1

q )q h(r)
− q
p dr <∞ .

As an immediate consequence we get the following.

Corollary 3 Let E be a bounded domain in Rd with boundary ∂E being an δ-set

for some d − 1 < δ < d . Let 1 ≤ p < ∞. Then we have XE ∈ B
d−δ
p
p,∞(Rd ) for all

p ∈ [1,∞).
Remark 6

(i) Corollary 3 originates from Triebel [65, Thm. 3, Rem. 9] and Schneider, Vybíral
[54]. The proofs in [65] and [54] are partly different. They are based on the
characterization of Besov spaces by atoms.

(ii) Also Triebel [65] and Schneider, Vybíral [54] have dealt with h-sets. However,
for more general sets than δ-sets the sufficient condition

Is,p,q := sup
j∈N0

( ∞∑
k=0

2ksq
( h(2−j )
h(2−j−k)

2−kd
)q/p)1/q

<∞
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for XE , to belong to Bsp,q(R
d), given in the quoted papers, is in general stronger

than that one from Corollary 2. It is not difficult to see that

( ∫ 1

0
r
( dp−s− 1

q )q h(r)
− q
p dr

)1/q ≤ ch Is,p,q

always holds with some constant ch, depending on h. As an example for the
non-equivalence of these quantities may serve h2(r) := rδ | log r|b, 0 < r < 1.
Let E denote a bounded domain with boundary being an h-set with respect to

h2. In case d − 1 < δ < d and b > 0 Corollary 2 yields XE ∈ B
d−δ
p
p,q (Rd )

if b > p/q . But Is,p,q = ∞, s = d−δ
p

for all q < ∞. However, let us
mention that Triebel, Schneider and Vybíral showed that Is,p,q < ∞ implies

XE ∈ B
d−δ
p

p,q,self s(R
d), a smaller space than the corresponding Besov space.

The classes Bsp,q,self s(R
d ) are of some relevance in connection with pointwise

multipliers of Besov spaces.

Particular examples of δ-sets are self-similar sets, see the Appendix.

Corollary 4 Let K be a bounded domain in Rd with boundary ∂K being a self-
similar set satisfying the assumptions in Proposition 5 with s = δ, see the Appendix.
Let 1 ≤ p <∞. Then we haveXK ∈ B

d−δ
p
p,∞(Rd) for all p ∈ [1,∞).

Now we turn to the next concrete example.

4.6 The Twindragon

The twindragon is a space filling curve with a fractal boundary, see Fig. 10. More
information, also about relatives (heighway dragon, Levy dragon) of this curve, may
be found in Wikipedia, see https://en.wikipedia.org/wiki/Dragon-curve.
Let T ⊂ R2 denote the set which is filled by this curve. It is known that ∂T is a
self-similar set, which satisfies the assumptions of Proposition 5 in the Appendix
below. It holds that dimH ∂T = dimM ∂T = δ, where δ is the unique solution of

( 1√
2

)δ + 2
( 1

2
√

2

)δ = 1 ,

given by

δ := log2

(
1 + 3

√
73 − 6

√
87 + 3

√
73 + 6

√
87

3

)
∼ 1.5236 ,

https://en.wikipedia.org/wiki/Dragon-curve
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Fig. 10 The twindragon

see Mandelbrot [42, p. 78]. Most important for us is the existence of a finite Radon
measure on ∂T , which turns ∂T into a δ-set. Here we may take the Hausdorff
measure Hδ restricted to ∂T . Hence, as a consequence of Corollary 3 we conclude

XT ∈ B
2−δ
p
p,∞(R2) for all p ∈ [1,∞).

Let us mention that we do not know whether this number δ is optimal. In particular,
we do not know whether Theorem 3 is applicable. If that would be the case, we
could conclude that this number δ is best possible.

There are further interesting properties of XT , in particular of interest in the
theory of wavelets. It can be used as a scaling function, we refer to Gröchenig,
Madych [29] and Wojtaszczyk [67, 5.3]. It is not difficult to see that the associated
wavelets have the same regularity as XT has.

4.7 Some Sufficient Conditions: Quasiballs

An essential step forward has been done by Faraco and Rogers [25]. These authors
worked with quasiballs.
A homeomorphism f : Rd → Rd is called K-quasiconformal if there is a constant
K <∞ such that for all x ∈ Rd

K(x) := lim sup
ε→0

maxa: |x−a|=ε |f (x)− f (a)|
minb: |x−b|=ε |f (x)− f (b)| ≤ K .

AK-quasiball is the image of the unit ball under aK-quasiconformal mapping. For
d = 2 also the name quasicircle is commonly used.
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Theorem 5 ([25, Thm. 1.3]) Let 1 ≤ p < ∞, 0 < s < 1 and let E ⊂ Rd be a
K-quasiball. Then

‖XE |Bsp,p(Rd)‖ &
(
|E| +

∫ δ∗

0
δ−ps |∂Eδ| dδ

δ

)1/p
,

where δ∗ := inf{δ : E ⊂ ∂Eδ}.
The proof is not short enough to be included into this survey. The more

interesting part in Theorem 5 is the estimate of ‖XE |Bsp,p(Rd )‖ from below,
because this part is missing in Theorem 4. In general there is some gap between
the sufficient conditions in Theorem 4 and the necessary condition in Theorem 3.
However, in case of certain domains with a fractal boundary they almost touch. For
later use we formulate a simple consequence, already known to [25].

Corollary 5 Let 1 ≤ p <∞, 0 < s < 1 and let E ⊂ Rd be a K-quasiball. If we
assumeXE ∈ Bsp,p(Rd ), then

lim
δ→0

δ−s |∂Eδ|1/p = 0

follows.

Proof The mapping δ �→ |∂Eδ| is monotone in δ. Hence

∫ δ∗

0
δ−ps |∂Eδ| dδ

δ
&

∞∑
k=k0

2kps |∂Eδ| ,

where k0 has to be chosen in dependence of δ∗. This yields the claim. ��
Remark 7 A reformulation of Corollary 5 (just by definition) reads as follows.
Under the given restrictions we obtain M∗d−s(∂E) = 0.

The most beautiful example we discuss next.

4.8 The Snowflake Domain

The standard construction of the von Koch curve is as follows, see Fig. 11. We start
with an equilateral triangle. Then we subdivide each side into three equal parts and
remove the middle one. This middle part is replaced by an equilateral triangle again.

Sidelength is now 1/3 of the original one. This procedure is iterated. After a
few further iterations one obtains Fig. 12 which might be seen as a reasonable
approximation of the von Koch curve. The domain� with the von Koch curve as its
boundary is called the snowflake domain.
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Fig. 11 The first three steps of the construction of the von Koch curve

Fig. 12 The Snowflake domain

We collect a few facts about its properties.

(i) � is a (ε,∞) domain, see [36];
(ii) � is a John domain, see [10];

(iii) � is a quasiball, see [47, 1.2];
(iv) � is a selfsimilar set, which fulfils the conditions in Proposition 5 in the

Appendix, see [22, 9.2] and [44, p. 67];
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(v) ∂�+ = ∂�, see (i);
(vi) dimH ∂� = dimM ∂� = log 4/log 3, see, e.g., Falconer [22, Ex.9.5]);

(vii) ∂� is a δ-set with δ = log 4/log 3, see Proposition 5 in the Appendix.
(viii) 0 <Hlog 4/ log 3(∂�) ≤ M

log 4/ log 3∗ (∂�) ≤ M∗ log 4/ log 3(∂�),
see Proposition 5 in the Appendix and (A.2).

As a combination of Theorem 5, Corollary 5 and property (viii) we obtain now
the following.

Corollary 6 ([25, Cor. 1.4]) Let 1 ≤ p < ∞. The characteristic function X� of

the snowflake domain belongs to Bsp,p(R
2) if and only if s < 1

p

(
2 − log 4

log 3

)
.

This result has a counterpart for q = ∞.

Theorem 6 Let 1 ≤ p < ∞. The characteristic function X� of the snowflake
domain � belongs to Bsp,∞(R2) if and only if s ≤ (2 − log 4/ log 3

)
/p.

Proof Sufficiency follows from Proposition 5, see the Appendix, and Corollary 3.
If we assume that X� ∈ Btp,∞(R2) for some t > 2−s

p
then by the elementary

embeddings of the Besov spaces in (1) it follows X� ∈ B
(2−s)/p
p,p (R2). But this

contradicts Corollary 6. ��
The author conjectures that, for fixed p ∈ [1,∞), the smallest Besov space

containing X� is given by Bsp,∞(R2) with s := 2−log 4/ log 3
p

.

4.9 The Rotating Snowflake

The Fig. 13 below is obtained by first shifting an approximation of the snowflake
domain � in the (x, y)-plane to the right such that it will be located to the right of
x = 1. Afterwards this shifted domain is rotated around the y-axes. In the limit the
outcome in R3 is denoted by �rot. What we have in mind is a spiked car tyre.

Lemma 11 Let 1 ≤ p < ∞. The characteristic function X�rot of the rotating

snowflake domain belongs to Bsp,∞(R3) if s ≤ 1
p

(
2 − log 4

log 3

)
.

Proof Lemma 10 yields

|�r | ≤ c r2−s , r ∈ (0, 1) , s = log 4

log 3
.

Hence, because of

|�rrot| & |�r | , 0 < r < 1 ,



428 W. Sickel

Fig. 13 The rotated Snow flake domain

we get the same inequality for |�rrot|. Lemma 6(i) can be used to complete the
argument. ��

4.10 Some Sufficient Conditions: The Aikawa Dimension

This time we shall work with a sufficient condition related to the Aikawa dimension
of the boundary of a domain. In [1] Aikawa introduced the following definition of
a fractal dimension (for simplicity we concentrate on the situation in Rd and the
Lebesgue measure).

Definition 5 Let A be a subset of Rd and let G(A) be the set of those t > 0 for
which there exists a constant ct such that

∫
B(x,r)

dist (y, A)t−d dy ≤ ct rt−d for all x ∈ A and all r ∈ (0, diam (A)) .

Then the Aikawa dimension of A is defined to be dimAI A = infG(A).

Our point of departure is Lemma 1. Let p = 1, 0 < s < 1 and |h| < a < 1.
First, observe that

E(h) = Ea(h) = {x ∈ E : dist (x, ∂E) < a , x + h ∈ E}
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and similarly for F(h) = Fa(h). Furthermore

|h|−s
∫
Ea(h)

dx ≤
∫
Ea

dist (x, ∂E)−s dx .

This is almost all what is needed to prove the following supplement to Lemma 1.

Theorem 7 Let 1 ≤ p <∞ and 0 < s < 1. Let E be a bounded domain.

(i) If

sup
x∈∂E

∫
B(x,1)

dist (y, ∂E)−s dy <∞ ,

thenXE belongs to Bs/pp,∞(Rd ).
(ii) If dimAI ∂E = t , thenXE belongs to Bs

′
p,∞(Rd) for all s′ < d−t

p
.

Proof The sets Ea and Fa can be covered by finitely many balls B(xk, 1), xk ∈
∂E, since E is bounded. Hence∫

Ea
dist (x, ∂E)−s dx +

∫
Fa

dist (x, ∂E)−s dx

is finite if ∫
B(xk,1)

dist (x, ∂E)−s dx <∞

for all k. This proves (i). On the other hand part (ii) is an obvious consequence of
(i). ��
Remark 8

(i) For deciding about membership of XE in a Besov space we do not need the full
power of the Aikawa dimension since we only work with balls of radius 1. This
will be different when we switch to the question whether XE is a pointwise
multiplier for a Besov space. For more details we refer to Frazier and Jawerth
[28], Bechtel and Egert [2] and [56, 57].

(ii) It is interesting to notice that on Rd the probably more popular Assouad
dimension dimA and the Aikawa dimension coincide. We refer to Lehrbäck
and Tuominen [41] and Fraser [27] for more details.

(iii) On Rd we have the following chain of inequalities

dimH ∂E ≤ dimM∂E ≤ dimM∂E ≤ dimA ∂E = dimAI ∂E .
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Let E be a bounded domain with the boundary being a δ-set for some d − 1 <
δ < d . Then dimA ∂E = dimM ∂E = dimH ∂E = δ. We refer to Frazer [27],
see also [2].

Mainly Besov [5], but see also [7, 2.8], has worked with domains satisfying a
flexible horn condition.

Definition 6 The domain � satisfies a flexible horn condition if there exist δ0 > 0
and T > 0 such that for any x ∈ � there exist an arc

γ (t, x) := (γ1(t, x), . . . , γd(t, x)) , 0 ≤ t ≤ T ,

with the following properties.

(i) For all i ∈ {1, . . . , d} the functions γi(t, x) are absolutely continuous with
respect to t and |γi(u, x)| ≤ 1 for almost all u ∈ [0, T ].

(ii) γ (0, x) = 0 and x +⋃0≤t≤T
(
γ (t, x)+ tδ0[−1, 1]d

)
⊂ � .

This is quite close to the definition of a John domain.

Lemma 12 Let 1 ≤ p <∞.

(i) Let� ⊂ Rd be a bounded domain which satisfies a flexible horn condition with
parameters δ0 and T . Then there exists a positive number s ≤ 1 such that X�
belongs to Bs/pp,∞(Rd).

(ii) Let � ⊂ Rd be a John domain. Then there exists a positive number s ≤ 1 such
thatX� ∈ Bs/pp,∞(Rd ).

Proof In both cases it is known that the Aikawa dimension of the boundary ∂� is
positive. In case (i) this is proved in Besov [5]. For John domains we refer to Hajlasz
and Koskela [32]. ��

4.11 The Distance Zeta Function of a Set

Let A be a bounded subset of Rd . In the recent book [40] Lapidus, Radunović and
Žubrinić studied the function

ζA(s) :=
∫
Aδ

dist (x,A)s−d dx, s ∈ C ,

where Aδ denotes the δ-neigbourhood of A. The chosen fixed δ > 0 is of no
importance in their context. They call ζA the distance zeta function of A. For us
of interest are Lemmas 2.1.3 and 2.1.6 in [40]. They read as follows.

Proposition 3 Let A be an arbitrary subset of Rd and let δ be an arbitrary positive
number.
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(i) If σ > d − dimMA, then
∫
Aδ

dist (x,A)−σ dx = +∞.
(ii) If −∞ < σ < d − dimMA, then

∫
Aδ dist (x,A)−σ dx <∞.

Consequently, if 0 < s < d − dimM∂E, then in view of Theorem 7(i) we
obtain X� ∈ B

s/p
p,∞(Rd) for all p ∈ [1,∞), which is just a different proof of

Lemma 6(iii). Part (i) of Proposition 3 illustrates that on this way we can not improve
our conclusion.

4.12 Some Further Examples

When looking at the two examples of the twindragon and the snowflake domain one
could conjecture that the following formula holds:

XE ∈ Bsp,∞(Rd) and s = 1

p

(
d − dimM ∂E

)
= 1

p

(
d − dimH ∂E

)
.

In what follows we shall investigate a two-parameter family Eα,γ of domains in the
plane, see Fig. 14, with a quite different behaviour. These domains are related to the
shark-domain on the cover of the monograph of Maz’ya [45] (and on the cover of its
Russian edition). In a certain sense the domains under consideration are also limit
cases of the classical Nikodym domains, cf. [45, 1.1.4].

Let γ ≥ α > 1. Then we define

βj :=
j∑
�=1

�−α , β :=
∞∑
�=1

�−α and δj := 1

4(2j + 2)γ
, j ∈ N .
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Fig. 14 A (modified) Nikody domain
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Further we put

A−1 := {
(x, y) : 0 < x < β , 0 < y <

1

2

}
,

A0 := {
(x, y) : 0 < x < 1 ,

1

2
≤ y < 1

}
,

Aj :=
{
(x, y) : β2j < x < β2j+1 ,

1

2
≤ y < 1

}
, j = 1, 2, . . . ,

Bj :=
{
(x, y) : β2j+1 + δj < x < β2j+2 − δj , 1

2
+ δj<y < 3

2

}
, j = 0, 1, . . . ,

C0 := {
(x, y) : 0 < x < β1 + δ0 ,

1

2
+ δ0 < y <

3

2

}
,

Cj :=
{
(x, y) : β2j − δj−1 ≤ x < β2j+1 + δj , 1

2
+ δj<y < 3

2

}
, j = 1, 2, . . . ,

D := {
(x, y) : β < x < β + 1 , 0 < y <

3

2

}
∪ {(β, y) : 0 < y <

1

2
or 1 < y <

3

2

}
,

and

Eα,γ :=
⎛
⎝ ∞⋃
j=−1

Aj

⎞
⎠ ∪

⎛
⎝ ∞⋃
j=0

Bj

⎞
⎠ ∪

⎛
⎝ ∞⋃
j=0

Cj

⎞
⎠ ∪D .

What we have in mind are two combs where the teeth come closer and closer
together. Just by looking at the neigbourhood of the line {(β, y) : 1/2 < y < 1}
it is clear that Eα,γ is neither an (ε, δ)-domain nor an John domain nor a domain
satisfying a flexible horn condition in the sense of Besov. They do not belong to the
regular domains as well.

Proposition 4 Let 1 ≤ p < ∞ and γ ≥ α > 1. Then the sets Eα,γ have the
following properties.

(i) dimM(∂Eα,γ ) = 1 + 1/α.
(ii) dimH (∂Eα,γ ) = dimP (∂Eα,γ ) = 1.
(iii) χEα,γ ∈ Bsp,∞(R2) if and only if s p ≤ (1 − 1/γ ).

(iv) Let 1 ≤ q <∞. Then χEα,γ ∈ Bsp,q(R2) if and only if s p < (1 − 1/γ ).

The rather technical proofs can be found in [56]. Let γ > α. Obviously we have

1

p

(
d − dimM ∂Eα,γ

)
= 1

p

(
1− 1

α

)
<

1

p

(
1− 1

γ

)
<

1

p
= 1

p

(
d − dimH ∂Eα,γ

)
.
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Clearly, in case of these domains neither the Hausdorff dimension nor the
Minkowski dimension characterize the smoothness s of the characteristic function.
Furthermore, from our knowledge on this family Eα,γ we can derive the following
conclusions.

• Let s ∈ (0, 1), p ∈ [1,∞) and q ∈ [1,∞] be fixed. Then there exists a set
E ⊂ R2, 0 < |E| <∞, such that XE ∈ Bsp,q (R2).

• Let s ∈ (0, 1) be fixed. Then for any s′ ∈ (s, 1) there exists a set E ⊂ R2, 0 <
|E| <∞, such that the Minkowski dimension of ∂E equals 2 − s and

XE ∈ Bs ′/pp,q (R
2) for all p ∈ [1,∞) and q ∈ [1,∞].

Hence, our sufficient conditions given in Lemma 6 and Theorem 4 are not sharp
in general.

• Let p ∈ [1,∞) and q ∈ [1,∞] be fixed. Then for any s ∈ (0, 1] there exists a
set E ⊂ R2, 0 < |E| < ∞, such that the Hausdorff and the packing dimension
of ∂E equals 1 and

XE ∈ Bs/pp,q (R2) .

Summarizing one observes that in general the Hausdorff dimension and the packing
dimension of ∂E are too small to characterize the smoothness of XE . On the other
hand the Minkowski dimension of ∂E is oversized for a characterization of the
smoothness of XE in many cases.

4.13 The Mandelbrot Set

We finish this subsection with one well-known extreme example, the famous
Mandelbrot set, see Fig. 15. This set, denoted by D, satisfies dimH D = 2 and
dimH ∂D = 2, see Shishikura [55]. Obviously this implies dimM ∂D = 2. Hence,
in view of Lemma 6, we do not expect any positive smoothness of XD .

References with respect to the Mandelbrot set are, e.g., [42] and [22, 14.2].
Concerning the smoothness of XD there is at least a chance that it belongs to

some Besov spaces B0,b
p,∞(R2) of logarithmic smoothness b > 0, characterized by

the norm

‖f |B0,b
p,∞(Rd )‖ := ‖f |Lp(Rd )‖+ sup

|h|<1/2
(− log |h|)b

(∫
Rd

|f (x+h)−f (x)|pdx
)1/p

.

Recently, those function spaces have showed up in various publications, see, e.g.,
[13–15, 17, 18].
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Fig. 15 The Mandelbrot set

4.14 A Final Comment

The three methods, to obtain sufficient conditions for the regularity ofXE , discussed
in this section, seem to be more adapted to situations where

lim
t→0

dimH

(
∂E ∩ B(y, t)

)

exists and does not depend on y ∈ ∂E, compare with Lemma 9(iii). If this quantity
depends on y as in case of the domains Eα,γ , then we need more sophisticated
criteria.

Appendix

We recall some basic notions from fractal geometry. Our main sources are the
monographs of Falconer [21, 22] and Mattila [44].

Fractal Dimensions

Here we recall Hausdorff, Minkowski and packing dimension as well as the
Minkowski content.
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Hausdorff Dimension

Let A be a subset of Rd . A countable (or finite) collection of sets Ui with diameter
diamUi is called a δ-cover of A if

A ⊂
∞⋃
i=1

Ui and 0 < diamUi ≤ δ

for all i. Let s be a nonnegative real number. For any δ > 0 we put

Hs
δ (A) := inf

{ ∞∑
i=1

(diamUi)
s : (Ui)∞i=1 is a δ-cover of A

}
.

We shall write

Hs (A) := lim
δ→0

Hs
δ (A) .

This limit exists in [0,∞] for any subset of Rd . Hs (A) is called the s-dimensional
Hausdorff measure of A. If s = d ∈ N we have

Hd (A) = 2d |A|
|B(0, 1)|

where |A| and |B(0, 1)| refer to the d-dimensional Lebesgue measure of these sets.

Definition 7 The Hausdorff dimension of a set A ⊂ Rd is given by

dimH A := sup{s : Hs(A) > 0} = inf{t : Ht (A) <∞} .

We also need a generalization due to Bricchi [8, 9]. Let h : (0, 1] → (0,∞) be a
positive non-decreasing function such that there exists a positive constant c with

h(2−j−k)
h(2−j )

≥ c 2−kd for all j, k ∈ N0 .

Then, for a set A ⊂ Rd , we put h(A) := h(diamA) if A = ∅ and h(∅) := 0. The
set function

Hh(A) := lim
δ→0

(
inf
{ ∞∑
i=1

h(Ui) : (Ui)∞i=1 is a δ-cover of A
})

is called the Hausdorff measure corresponding to h.
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Minkowski Dimensions

Let A be a non-empty bounded subset of Rd . For 0 < ε <∞, let

N(A, ε) := min
{
k : A ⊂

k⋃
i=1

B(xi, ε) for some xi ∈ Rd
}
.

N(A, ε) is sometimes called covering number.

Definition 8 The upper and lower Minkowski dimension of a set E ⊂ Rd are
defined by

dimMA := inf{s : lim sup
ε↓0

N(A, ε) εs = 0}

and

dimMA := inf{s : lim inf
ε↓0

N(A, ε) εs = 0} .

In case dimMA = dimMA we call this number the Minkowski dimension of A.

It follows

dimH A ≤ dimMA ≤ dimMA ≤ d ,

see Mattila [44, pp. 78]. Let us mention that the Minkowski dimension is sometimes
also called box counting dimension.

Minkowski Content

Recall, for a given set A ⊂ Rd the family of δ-neighbourhoods Aδ, δ > 0, are
defined as

Aδ := {x ∈ Rd : dist (x,A) ≤ δ} .

Definition 9 The s-dimensional upper Minkowski content of A is defined by

M∗s(A) := lim sup
δ↓0

(2δ)s−d |Aδ|

and the s-dimensional lower Minkowski content of A by

Ms∗(A) := lim inf
δ↓0

(2δ)s−d |Aδ| .
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The Minkowski content and the Minkowski dimension are related as follows

dimMA = inf{s : M∗s (A) = 0} = sup{s : M∗s (A) > 0} , (A.1)

dimMA = inf{s : Ms∗(A) = 0} = sup{s : Ms∗(A) > 0} ,

A useful relation between Minkowski content and Hausdorff measure is given by

2−s−d |B(0, 1)|Hs (A) ≤ Ms∗(A) , (A.2)

see, e.g., Mattila [44, pp. 79].

Packing Dimension

We define upper and lower packing dimension as follows

dimPA = inf
{

sup
i

dimMAi : A =
∞⋃
i=1

Ai , Ai is bounded
}
,

dimPA = inf
{

sup
i

dimMAi : A =
∞⋃
i=1

Ai , Ai is bounded
}
,

where A is an arbitrary subset of Rd . If both numbers coincide, they are called
packing dimension of A.

Self-Similar and Sub-self-similar Sets

A mapping S : Rd → Rd is called a similarity with ratio r if

|S(x)− S(y)| = r |x − y| , x, y ∈ Rd .

If 0 < r < 1 we say that S is contracting. Suppose S := (S1, . . . SN), N ≥ 2,
is a finite sequence of similarities with contraction ratios r1, . . . , rN ∈ (0, 1). Then
there exists a unique non-empty compact set K such that

K =
N⋃
j=1

Sj (K) .
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This set K will be called self-similar. A non-empty compact set K ⊂ Rd is called
sub-self-similar for S if

K ⊂
N⋃
j=1

Sj (K) ,

see [23]. Furthermore, S satisfies the open set condition if there exists a bounded
non-empty open set O such that

N⋃
j=1

Sj (O) ⊂ O and (Si(O) ∩ Sj (O)) = ∅ if i = j .

We shall need the following two results, see Hutchinson [34] and Falconer [22,
Thm. 9.3].

Proposition 5 ([22, Thm. 9.3]) If S satisfies the open set condition, then the
invariant set K is self-similar and 0 <Hs (K) < ∞, whence s = dimH K , where
s is the unique number for which

N∑
j=1

rsi = 1 . (A.3)

Moreover, there are positive and finite numbers a and b such that

a rs ≤ Hs(K ∩ B(x, r)) ≤ b rs for x ∈ K, 0 < r < 1 .

In addition dimH K = dimM K .

There is a partial generalization to sub-self-similar sets which covers boundaries
of self-similar sets as well, see [23].

Proposition 6 ([24, Cor. 3.4], [23, Thm. 3.5]) Let S satisfy the open set condition
and let the non-empty compact set K be sub-self-similar for S. Define s as the
unique solution of (A.3). Then 0 <Hs(K) and s = dimH K = dimM K .
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Small Data Wave Maps in Cyclic
Spacetime
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Dedicated to Michael Reissig on his 60th birthday.

Abstract We study the initial value problem for the wave maps defined on the
cyclic spacetime with the target Riemannian manifold that is responsive (see
definition of the self coherence structure) to the parametric resonance phenomena.
In particular, for arbitrary small and smooth initial data we construct blowing up
solutions of the wave map if the metric of the base manifold is periodic in time.

Keywords Wave maps · Cyclic spacetime · Parametric resonance · Global
existence

1 Introduction

In this note we study a wave map

φ : (L, gμν) −→ (M, hab) ,

where L is an n + 1-dimensional Lorentzian manifold and the target M is a m-
dimensional Riemannian manifold. The map φ is a wave map if it is a stationary
point for the Lagrangian functional

L[φ] =
∫
L

1

2
gμν(x)hab(φ)∇μφa∇νφb dμg .

The Lagrangian is written in local coordinates on the target, for which the notation
φa = φa(xμ) is used. We denote by dμg the measure with respect to the metric gμν
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on the spacetime. Here the convention to write gμν(x) = (gμν(x))
−1 and hab(φ) =

(hab(φ))
−1 for the inverse of two metric tensors is used. These tensors are used

also in raising indexes. A stationary point for the Lagrangian functional implies the
following system of equations

�ub − �bcd (u)gμν(x)∇μuc∇νud = 0 ,

where � is the d’Alembert (or wave) operator

� := −∇μ∇μ

and �bcd are the Christoffel symbols on the target manifold (M, h) defined as

�ij,k(u) :=
1

2

m∑
l=1

hil
(
∂

∂uj
hkl + ∂

∂uk
hjl − ∂

∂ul
hkj

)
.

For the Minkowski spacetime R1+n to a Riemannian manifold M , the wave map
satisfies the system of equations

�ui +
m∑

j,k=1

�ij,k(u)
(
u̇j u̇k −∇uj · ∇uk

)
= 0 , i = 1, . . .m, (1)

where � = ∂2/∂t2 − � and � is the Laplacian in L. Here u̇ denotes the partial
derivative with respect to time, and ∇ denotes the gradient in x.

For Eq. (1) consider the Cauchy problem with the initial conditions

ui(0, x) = ui0(x), uit (0, x) = ui1(x) , i = 1, . . .m, x ∈ Rn . (2)

It is known (see, e.g., Theorem 6.4.11 [7]) the following local existence result : if
�ij,k(u) are C∞ functions and ui0(x) ∈ Hs+1(Rn) and ui1(x) ∈ Hs(Rn) for some
integer s > (n + 2)/2 then the problem (1)–(2) has for some T > 0 a solution
u ∈ C2([0, T ] × Rn).

For the wave map from the Minkowski spacetime R1+n, n ≥ 4, to a Riemanian
manifold M the global in time existence of the small data solution can be derived
from Theorem 6.5.2 [7]. Klainerman and Machedon [8] proved that the Cauchy
problem for (1) is locally in time well-posed in the Sobolev spaceHs(R1+n) for any
s > n/2 if �ij,k(u) are analytic and n = 3. Klainerman and Selberg [9] extended
this result to n ≥ 2.

Sideris [19] considered wave maps (1) on the Minkowski spacetime, where
�ij,k(u) are smooth functions on Rm with the property

�ij,k(u
1, 0, · · · , 0) = 0 for all u1 ∈ R, 1 ≤ i, j, k ≤ m . (3)



Small Data Wave Maps in Cyclic Spacetime 445

Since the nonlinearities in (1) are cubic, small amplitude solutions are known to
exist (see, e.g., [7]). In [19] the component u1 need not to be small.

Georgiev and Schirmer in [4] generalized the spacetime estimates obtained
by Klainerman and Machedon to wave equations on manifolds with nonconstant
metric. They applied these estimates to the question of global existence of low-
regularity solution for small data of nonlinear wave equations on Minkowski space
R1+3 satisfying the null condition. The null forms are expressions of the form
gμν∇μu∇νv or ∇μu∇νv −∇νu∇μv, where u, v are the functions on L. These esti-
mates were then applied on the Einstein cylinder (after Penrose compactification)
to prove that if (u(0), ut (0)) ∈ H 2,1(R3) × H 1,2(R3) is sufficiently small, then a
semilinear wave equations

(
∂2
t −�

)
u = F (u,∇u, ut ) with F satisfying the null

condition has a global solution.
In connection with low dimension n we recall conjecture of Klainerman that

states: Let (H2, h) be the standard hyperbolic plane. Then classical wave maps
originating on R2+1 exist for arbitrary smooth initial data.

The answer to the Klainerman’s conjecture as well as the scattering result for the
wave map are given by Krieger and Schlag in [10, 11]. In particular, it is proved in
[11] that if M is a hyperbolic Riemann surface, and the initial data (u(0), ∂tu(0)) :
S0 −→ M × TM are smooth and u(0) = const, ∂tu(0) = 0 outside of some
compact set, then the wave map evolution u of these data as a map R2+1 −→ M

exists globally as a smooth function.
In [14] the stability of the last result under perturbation of the metric g in L, that

is, in the perturbed Minkowski spacetime, is investigated. More precisely, Nishitani
and Yagdjian [14] considered the case of the Riemannian manifold (M, h), which
belongs to one-parameter family of manifolds containing the Euclidean half-space
and the Poincaré upper half-plane model (H2, h). In fact, that family consists of the
Riemannian manifolds, which are the half-plane {(u1, u2) ∈ R2 | u2 > 0} equipped

with the metric hij du
iduj = 1

(u2)l

(
(du1)2 + (du2)2

)
, where the parameter l is

a real number. For l = 0 the metric is Euclidean, while for l = 2 it is the metric
of the standard hyperbolic plane. Those are the only two manifolds of this family
which have constant curvature. In [14] is proved that the only stationary solutions
of equation (1) are the constant solutions and that the global in time solvability can
be destroyed by parametric resonance phenomena. (For the scalar quasilinear wave
equation it was proved in [22].) For the parametric resonance phenomena in the
scalar wave map-type hyperbolic equations see [23] and references therein. Then,
according to [20] (see also references therein) the parametric resonance phenomena
in the linear scalar wave equations can be localized in the space.

Nakanishi and Ohta [13] studied the Cauchy problem for the nonlinear wave
equation

{
�u+ f (u) (u̇2 − |∇u|2) = 0 , (t, x) ∈ R1+n ,
u(0, x) = u0(x), u̇(0, x) = u1(x) , x ∈ Rn ,

(4)
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where u = u(t, x) is a scalar real-valued unknown function, f is a real-valued
smooth function. In [13] the following condition

∫ ∞

0
exp

(∫ s

0
f (r)dr

)
ds = ∞ and

∫ 0

−∞
exp

(∫ s

0
f (r)dr

)
ds = ∞ (5)

is suggested to be necessary and sufficient condition (Theorem 2.1 [13]) for the
existence of a global classical solution u ∈ C∞(R1+n) for the problem (4) for any
u0, u1 ∈ C∞(Rn). Note here, that the initial data u0, u1 are not assumed to be small.
The equation of (4) is a model and special case for wave maps.

In the case of nonflat base manifold L, the wave maps are less investigated
although they are of considerable interest in the general relativity context. The
Cauchy problem for the wave maps in the perturbed Minkowski spacetime is
considered in [1] and [14] (cyclic universe). More precisely, assume that V = S×R,
with S an n-dimensional orientable smooth manifold, and let g be a Robertson-
Walker metric g = −dt2 + a2(t)σ , with the scale function a = a(t), where
σ = σij dx

i dxj is a given, smooth, time independent metric on S, with non-zero
injectivity radius.

Let (S × R, g) be a Robertson-Walker expanding universe with the metric g =
−dt2 + a2(t)σ, while (S, σ ) is a smooth Riemannian manifold of dimension n ≤ 3
with non-zero injectivity radius and a = a(t) a positive increasing function of t such
that 1/a(t) is integrable on [t0,∞). Hence a domain of influence is permanently
restricted (see, also, [23, Sec.8]). Let (M, h) be a proper Riemannian manifold
regularly embedded in RN such that Riem(h) is uniformly bounded. Then according
to Choquet-Bruhat [1] there exists a global wave map from (S × [t0,∞), g) into
(M, h) taking Cauchy data ϕ, ψ with Dϕ and ψ in H 1 if the integral of 1/a(t)
on [t0,∞) is less than some corresponding number M(a, b). The number M(a, b)
depends on the initial data. Thus, (see Corollary on page 45 [1]) under hypothesis
of the theorem, for any finite value of the integral of 1/a(t) on [t0,∞) there is
an open set U of initial data in H 1 × H 1 such that if (Dϕ,ψ) ∈ U , then there
exists a global wave map taking the Cauchy data (ϕ,ψ). In particular, this is true
for the curved spacetime of the de Sitter model of universe with the scale function
a(t) = exp(�t), � > 0.

D’Ancona and Zhang [2] derived the global existence of equivariant wave maps
from the so-called admissible manifolds to general targets for the small initial
data of critical regularity. Both base and target manifolds are assumed rotationally
symmetric manifolds with global metrics

L : dr2 + g(r)2dω2
Sn−1 , M : dφ2 + h(φ)2dφ2

S�−1 ,

where dω2
Sn−1 and dφ2

S�−1 are the standard metrics on the unit sphere. The solution
has a form u = (φ, χ) in coordinates on M , the radial component φ = φ(t, r)

depends only on time t and r , the radial coordinate on L, while the angular
component χ = χ(ω) depends only on the angular coordinate ω on L. Thus,
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χ : Sn−1 −→ S�−1 is a harmonic polynomial map of degree k, whose energy
density is k(k + n − 2) for some integer k ≥ 1, while φ satisfies the �̄-equivariant
wave map equation

φtt − φrr − (n− 1)
h′(r)
h(r)

φr + �̄

h(r)2
g(φ)g′(φ) = 0 , (6)

where �̄ = k(k + n − 2). For (6) the authors consider the Cauchy problem with
initial data

φ(0, r) = φ0(r), φt (0, r) = φ1(r) .

When g(r) = r the problem for (6) reduces to the equation originally studied in
[17, 18]. It is proved in [2] that on the admissible manifolds the wave flow satisfies
smoothing and Strichartz estimates. The metric h of the base manifold is assumed

to have a limit h
1−n

2 (h
n−1

2 )′′ as r → ∞. The existence of small equivariant wave
maps on admissible manifolds is proved in the critical space H

n
2 × H

n
2−1, and,

moreover, the solution enjoys additional LpLq integrability properties determined
by the Strichartz estimates.

In the present paper we consider the wave map from the perturbed Minkowski
spacetime, with the periodic in time perturbation, into Riemannian manifold that
is responsive (see self coherence structure below) to the parametric resonance
generated by the metric h. The result of the present note requires some assumption
on the ordinary differential equation related to the parametric resonance generated
by the periodic metric in L. Consider the ordinary differential equation

ytt (t)+
(
λb2(t)− q(t)

)
y(t) = 0 (7)

with the periodic positive smooth non-constant function b = b(t) and parameter
λ ∈ R. Let

q(t) = n

4

(n
4
− 1

)( ḃ(t)
b(t)

)2

− n

2

b̈(t)

b(t)
.

Assumption ISIN ([14]) There exists the nonempty open instability interval � ⊂
(0,∞) for Eq. (7).

We consider a wave map such that in the global chart of M it can be written as a
system of equations

uit t−n
ḃ(t)

b(t)
uit−b2(t)�ui+

∑
j,k

�ij,k(u
1, . . . , um)

(
ut
jut

k − b2(t)∇uj · ∇uk
)
= 0,

(8)
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i = 1, . . . ,m, where b = b(t) is a smooth positive periodic function. We are
concerned with the small data global in time solution to the Cauchy problem for
Eq. (8). Our main result shows that the global solvability is not a stable property
under small perturbations of the wave map if the Riemannian manifoldM possesses
a distinguished geodesic (or intrinsic self coherence structure) in the sense of the
following definition.

Definition 1 ([24]) Riemannian or Lorentzian manifold M possesses a distin-
guished geodesic (or intrinsic self coherence structure) if in some chart the straight
half-line L+ = {(a1t, . . . , amt) | t ∈ (0,∞)} is covered by the geodesics.

The intrinsic self coherence structure can be characterized explicitly in the terms of
Christoffel symbols �ij,k as follows.

Lemma 1 ([24]) If in some chart of the Riemannian manifoldM the segment I of
the straight line L = {(a1t, . . . , amt) | t ∈ R} is covered by a smooth non-constant
geodesic, then there is a function f (t) such that

m∑
j,k=1

�ij,k(a1t, . . . , amt)ajak = aif (t) for all t ∈ (a, b) ⊆ R and i = 1, . . . ,m.

(9)

Conversely, if in some chart there exists a continuously differentiable function f =
f (t) such that (9) holds for all points of the segment I ⊆ L, then there is a geodesic
covering the segment I .

The main result of this paper is given by the following theorem.

Theorem 1 Let b = b(t) be a periodic, non-constant, smooth, and positive
function defined on R, satisfying condition ISIN. Assume that the Riemannian
manifoldM possesses intrinsic self coherence structure and for the function f (t),
t ∈ R, the Nakanishi-Ohta condition (5) does not hold, that is,

∫ ∞

0
exp

(∫ s

0
f (r)dr

)
ds <∞ or

∫ 0

−∞
exp

(∫ s

0
f (r)dr

)
ds <∞ . (10)

Then for every n, s, and for every positive δ there are initial data ui0, u
i
1 ∈

C∞
0 (R

n), i = 1, . . . ,m, such that

m∑
i=1

‖ui0‖(s+1) + ‖ui1‖(s) ≤ δ , (11)

but the solution u ∈ C2(R+ × Rn) to the problem with the prescribed data

ui(0, x) = ui0(x), uit (0, x) = ui1(x) , i = 1, . . . ,m, x ∈ Rn , (12)

for the wave map (8) does not exist.
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Remark 1 Assume that (u(s), 0, . . . , 0) is geodesic and for the function

f (t) = �1
1,1(t, 0, 0, . . . , 0), t ∈ R+,

the Nakanishi-Ohta condition (5) is not fulfilled. Then the statement of the theorem
holds. That is true also for any other coordinate axis.

Remark 2 If (3) is fulfilled, then the system (8) obeys intrinsic self coherence
structure and the Nakanishi-Ohta condition (5) is fulfilled. According to [19] the
large data global solution exists for wave map without periodic perturbation (b(t) ≡
0). The small amplitude solutions are known to exist (see, e.g., [7]). According to
Theorem 1 (see also [23]) the periodic perturbation b(t) destroys global in time
solvability even for the arbitrarily small data.

Following arguments of the proof Theorem 2.1 [13] one can verify the assertion
of the next remark for the case of flat manifold although we do not know if there is
small data global existence for the case of non-flatM .

Remark 3 The Cauchy problem for the system

uit t −n
ḃ(t)

b(t)
uit −b2(t)�ui+f i(ui)

((
ut
i
)2 − b2(t)|∇ui |2

)
= 0, i = 1, . . . ,m ,

with conditions (12) has a global solution (u1(x, t), . . . , um(x, t)) ∈ C∞ for every
(u1
�(x), . . . , u

m
� (x)) ∈ C∞(Rn) × . . . × C∞(Rn), � = 0, 1, if and only if the

condition

∫ ∞

0
exp

(∫ s

0
f i(r)dr

)
ds <∞ or

∫ 0

−∞
exp

(∫ s

0
f i(r)dr

)
ds <∞ , i = 1, . . . , m .

is fulfilled.

The proof of the next theorem is given in Sect. 3.

Theorem 2 Let b = b(t) be a defined on R, periodic, smooth, and positive function.
Assume that the Riemannian manifold M possesses intrinsic self coherence struc-
ture and the Cauchy problem for (8) has a global solution (u1(x, t), . . . , um(x, t)) ∈
C2(R+ × Rn) for every initial data (u1

i (x), . . . , u
m
i (x)) ∈ C∞(Rn) × . . . ×

C∞(Rn), i = 0, 1. Then the Nakanishi-Ohta condition (5) is fulfilled.

Note that the initial data u0, u1 are not assumed small. Existence of the distinguished
geodesics allows also to extend result of [13] from the wave map type equations to
the wave map with the non-oscillating coefficients for some non-small initial data.
That will be proved in a forthcoming paper.

The present paper is organized as follows. In Sect. 2 we illustrate Theorem 1
by several examples. Then, in Sect. 3, we lower the system of equations to the
single scalar equation. In Sect. 4 we describe some elements of Floquet-Lyapunov
theory with its application to the parametric resonance in the ordinary differential
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equations. In Sects. 5 and 6 we complete the proofs of Theorems 1 and 2,
respectively. The final Sect. 7 is devoted to the proof of Lemma 1.

2 Illustration of Theorem 1 by Examples

In the spacetime with the metric tensor

gik =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
...

...
. . .

...

0 0 0 −a2(t)

⎞
⎟⎟⎟⎟⎟⎠ , |g| = a2n(t),

the covariant D’Alembert operator is defined as follows:

�gu = 1√|g|
∂

∂xi

(√|g|gik ∂
∂xk

u

)
= ∂2

∂t2
u+ nȧ(t)

a(t)

∂

∂t
u− 1

a2(t)
�u .

If we denote b(t) = 1/a(t), then

�gu = ∂2

∂t2
u− nb

′(t)
b(t)

∂

∂t
u− b(t)2�u .

The corresponding wave map equation is (8). Cyclic spacetime with the periodic
smooth positive scale factor a = a(t) is one of the models of the cosmology (see
[15, Ch. 9]).

Example 1 Consider the system (8) with m = 2:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
∂2
t − n ḃ(t)b(t)

∂t − b2(t)�
)
u1

+∑2
j,k=1 �

1
j,k(u

1, u2)
(
u̇j u̇k − b2(t)∇uj · ∇uk) = 0,(

∂2
t − n ḃ(t)b(t)

∂t − b2(t)�
)
u2

+∑2
j,k=1 �

2
j,k(u

1, u2)
(
u̇j u̇k − b2(t)∇uj · ∇uk) = 0.

(13)

We define in M the diagonal metric tensor hik(u1, u2) := h(u1, u2)δik. Then, the
Christoffel symbols are:

�ij,k =
1

2h(u1, u2)

(
∂

∂uj
h(u1, u2)δki + ∂

∂uk
h(u1, u2)δji − ∂

∂ui
h(u1, u2)δkj

)
,
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where i, j, k = 1, 2. Hence,

�1
1,1 = −�1

2,2 = �2
2,1 = �2

1,2 = 1

2h(u1, u2)

(
∂

∂u1h(u
1, u2)

)
,

�1
2,1 = �1

1,2 = �2
2,2 = −�2

1,1 = 1

2h(u1, u2)

(
∂

∂u2
h(u1, u2)

)
.

The Gaussian curvature of the surface with such metric is

K = − 1

h(u1, u2)
� lnh(u1, u2) .

The wave map Eq. (8) reads

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∂2
t − n

ḃ(t)

b(t)
∂t − b2(t)�

)
u1

+ 1

2h(u1, u2)

(
∂

∂u1h(u
1, u2)

)
(u̇1u̇1 − b2(t)∇u1 · ∇u1)

+ 1

h(u1, u2)

(
∂

∂u2
h(u1, u2)

)
(u̇1u̇2 − b2(t)∇u1 · ∇u2)

− 1

2h(u1, u2)

(
∂

∂u1h(u
1, u2)

)
(u̇2u̇2 − b2(t)∇u2 · ∇u2) = 0,(

∂2
t − n

ḃ(t)

b(t)
∂t − b2(t)�

)
u2

− 1

2h(u1, u2)

(
∂

∂u2h(u
1, u2)

)
(u̇1u̇1 − b2(t)∇u1 · ∇u1)

+ 1

h(u1, u2)

(
∂

∂u1 h(u
1, u2)

)
(u̇1u̇2 − b2(t)∇u1 · ∇u2)

+ 1

2h(u1, u2)

(
∂

∂u2h(u
1, u2)

)
(u̇2u̇2 − b2(t)∇u2 · ∇u2) = 0 .

If b(t) = const > 0, the small amplitude solutions of (13) exist globally. Now we
focus on the case with a half-diagonal L+ = {(t, . . . , t) | t ∈ (0,∞)} ⊂ D. We note
that

2∑
j,k=1

�1
jk(u

1, u2) = 1

h

(
∂

∂u2
h

)
,

2∑
j,k=1

�2
jk(u

1, u2) = 1

h

(
∂

∂u1
h

)
.

Assume that

∂h

∂uk
(u1, u2) = ∂h

∂ul
(u1, u2) if u1 = u2 for k, l = 1, 2.
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Then, due to the last assumption on h = h(u1, u2) we set a1 = a2 = 1 and obtain
the function f appearing in (9)

f (ξ) :=
2∑

j,k=1

�1
jk(ξ, ξ) =

2∑
j,k=1

�2
jk(ξ, ξ) if ξ ∈ R+ .

To determine the geodesics, let (U, ϕ) be a parametrization of the manifold M
and let α : I → M be a curve parametrized by arc length, whose trace is contained
in ϕ(U). Write

α(s) = ϕ(u(s), v(s)) ,

where u = u(s) and v = v(s) are real-valued functions of s. Then α is a geodesic if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ü(s)+ 1

2h(u, v)

(
∂

∂u
h(u, v)

)
(u̇(s))2

+ 1

h(u, v)

(
∂

∂v
h(u, v)

)
u̇(s)v̇(s)− 1

2h(u, v)

(
∂

∂u
h(u, v)

)
(v̇(s))2 = 0 ,

v̈(s)− 1

2h(u, v)

(
∂

∂v
h(u, v)

)
(u̇(s))2

+ 1

h(u, v)

(
∂

∂u
h(u, v)

)
u̇(s)v̇(s)+ 1

2h(u, v)

(
∂

∂v
h(u, v)

)
(v̇(s))2 = 0 .

We claim that there exists a geodesic curve that lies in the diagonal D. Indeed, set
u(s) = v(s). Then, the equation of geodesic and the unit speed equation read

ü(s)+ 1

h(u(s), u(s))

(
∂

∂u
h(u(s), u(s))

)
(u̇(s))2 = 0 ,

1 = h(u(s), u(s))2(u̇(s))2 .

From the second equation the solution u = u(s) can be given implicitly by

∫ u(s)

0

√
h(r, r) dr = 1√

2
s + C . (14)

Setting h(u1, u2) = (1 + u2
1 + u2

2)
α , we check condition (5):

∫ ±∞

0
exp

(∫ s

0
f (r)dr

)
ds =

∫ ±∞

0
(1 + 2s2)αds =

∫ ±∞

0
h(s, s)ds = ±∞ .



Small Data Wave Maps in Cyclic Spacetime 453

Hence, condition (5) is equivalent to the inequality α > − 1
2 . For the case of

h(u, v) = (1 + u2 + v2)α Eq. (14) for the geodesics leads to the function u = u(s)

that is defined implicitly by

uF

(
1

2
,−α

2
; 3

2
; −2u2

)
= 1√

2
s + C . (15)

If α = −1, then condition (5) is violated and (15) simplifies to u(s) = C1e
s+C2e

−s ,
that implies

u(s) = v(s) = C1e
s + C2e

−s .

The non-constant geodesic that belongs to the diagonal D and starts at the origin is
given by

u(s) = v(s) = 1√
2

sinh(s) .

For the case of h(u1, u2) = (1 + u2
1 + u2

2)
−1 on the diagonal D the Christoffel

symbols are

�1
1,1 = −�1

2,2 = �2
2,1 = �2

1,2 = �1
2,1 = �1

1,2 = �2
2,2 = −�2

1,1 = − 1√
2

tanh(s)sech(s).

The Gaussian curvature of the surface with the metric h(u1, u2) = (1 + u2
1 + u2

2)
α

is

K = − 1

h(u1, u2)
� lnh(u1, u2) = −4α(1 + u2 + v2)−α−2 .

It is also a scalar curvature. It is constant iff α = −2.

Example 2 Define the metric h(u, v) = (1+v)−�, � ≥ 0 onM = {(u, v) ∈ R | v >
−1}, then the Christoffel symbols are

�1
2,1 = �1

1,2 = �2
2,2 = −�2

1,1 = − �

2(1 + v)
while the equations for the geodesics are

⎧⎪⎨
⎪⎩
ü(s)− �

(1 + v) u̇(s)v̇(s) = 0 ,

v̈(s)+ �

2(1 + v) (u̇(s))
2 − �

2(1 + v) (v̇(s))
2 = 0 .
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If � = 2 this system has a solution u(s) = u(0), v(s) = Ces − 1, that is, a
vertical half-line in the positive half-plane. The geodesic starting at the origin is
u(s) = 0, v(s) = es − 1. Then,

f (t) = − �

2(1 + t) ,
∫ ∞

0
exp

(∫ s

0
f (r)dr

)
ds =

∫ ∞

0
(1 + s)− �

2 ds <∞

implies � > 2. For the case of � ∈ [0, 2) the nonexistence of the global solution for
arbitrary small data is proved in [14]. The global existence of arbitrary small data
solutions for the case of � = 2 and non-constant periodic b = b(t) remains an open
problem.

Example 3 Assume now that h(u1, u2) = (1+ u2
1 + u4

2)
α = (1+ u2 + v4)α. Then,

the Christoffel symbols are

�1
1,1 = −�1

2,2 = �2
2,1 = �2

1,2 = αu

u2 + v4 + 1
,

�1
2,1 = �1

1,2 = �2
2,2 = −�2

1,1 = 2αv3

u2 + v4 + 1
,

and the equations for the geodesics are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ü(s)+ αu

(1 + u2 + v4)
(u̇(s))2

+ 4v3α

(1 + u2 + v4)
u̇(s)v̇(s)− αu

(1 + u2 + v4)
(v̇(s))2 = 0 ,

v̈(s)− 2v3α

(1 + u2 + v4)
(u̇(s))2

+ 2αu

(1 + u2 + v4)
u̇(s)v̇(s)+ 2v3α

(1 + u2 + v4)
(v̇(s))2 = 0 .

The curve v(s) = 0 is geodesic if

ü(s)+ αu(s)

(1 + u2(s))
(u̇(s))2 = 0, 1 = h(u(s), u(s))(u̇(s))2 ,

that is,

ü(s)+ αu(s)

(1 + u2(s))
(u̇(s))2 = 0, 1 = (1 + u2(s))α(u̇(s))2 .

With the function f (t) = αt/(1 + t2) we observe∫ ∞

0
exp

(∫ s

0
f (r)dr

)
ds =

∫ ∞

0
exp

(∫ s

0

αr

1 + r2 dr

)
ds =

∫ ∞

0
(1 + s2)α/2ds <∞ .

The condition (5) implies α > −1.
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The line u(s) = 0 is also a geodesic and with the function f (t) = 2αt3/(1+ t4),
together with condition (5),

∫ ∞

0
exp

(∫ s

0
f (r)dr

)
ds =

∫ ∞

0
exp

(∫ s

0

2αr3

1 + r4
dr

)
ds =

∫ ∞

0
(1 + s4)α/2ds <∞

we obtain α > −1/2. Thus, the choice of the geodesic line is essential. The
Gaussian curvature of the surface with the metric h(u1, u2) = (1 + u2

1 + u4
2)
α =

(1 + u2 + v4)α is

K = −2α
(
u2
(

6v2 − 1
)
− 2v6 + v4 + 6v2 + 1

)(
u2 + v4 + 1

)−α−2
.

It is also a scalar curvature.

The next example shows that small perturbation of the diagonal metric tensor
does not eliminate the blow up phenomenon.

Example 4 Let M = Rm be provided with the metric defined by the metric tensor
hik(u) = h(u)(δik + Hik(u)), where u = (u1, . . . , um) and h = h(u) is a smooth
positive function. We denote by M such Riemannian manifold. Assume that H(u)
is a smooth matrix function with the matrix norm ‖H(u)‖ < 1 and that on the
diagonal D ofM

∂

∂uk
H(u) = 0, H(u) = 0 if u ∈ D, ∀k = 1, 2, . . . ,m,

∂

∂uk
h(u1, . . . , um) = ∂

∂ul
h(u1, . . . , um) if u ∈ D, ∀k, l = 1, 2, . . . ,m.

The Christoffel symbols for the metric hik(u) on the diagonal D are

�ijk(u) =
1

2

1

h(u)

(
∂

∂uj
h(u)δki + ∂

∂uk
h(u)δji − ∂

∂ui
h(u)δjk

)
,

and

m∑
j,k=1

�ijk(u) =
1

2
m

1

h(u)

∂

∂u1h(u), i = 1, . . . ,m, u ∈ D .

The diagonal D is a geodesic. Indeed, we set the initial conditions

u1(0) = . . . = um(0) = 0 ,
du1

ds
(0) = . . . = dum

ds
(0) = (mh(1, . . . , 1))−1/2 ,
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and consider the function ũ = ũ(s) that solves the Cauchy problem

d2ũ

ds2 + 1

2
m

1

h(u)

∂

∂u1 h(u)

(
dũ

ds

)2

= 0 , ũ(0) = 0,
dũ

ds
(0) = (mh(1, . . . , 1))−1/2 .

Then the function u(s) = (ũ(s), . . . , ũ(s)) is a geodesics that lies in D. Therefore,
if we define

f (u) := m

2h(u)

∂

∂u1h(u), u ∈ D,

then, with a1 = . . . = am = 1, condition (9) is fulfilled:

m∑
j,k=1

�1
jk(u) =

m∑
j,k=1

�2
jk(u) = . . . =

m∑
j,k=1

�mjk(u) = f (u), u ∈ D.

In order to verify condition (10) we specify h(u) = (1 + u2
1 + . . .+ u2

m)
α , then

f (u) := mαu

1 +mu2 , u ∈ R,

∫ ∞

0
exp

(∫ s

0
f (r)dr

)
ds =

∫ ∞

0
exp

(∫ s

0

mαr

1 +mr2 dr

)
ds =

∫ ∞

0
(1 +ms2)α/2ds <∞ .

Condition (10) implies α < −1.

Example 5 Let b(t) = √
1 + ε sin (t), where ε ∈ (0, 1), be a periodic, non-

constant, smooth, and positive function defined on R. Assuming m = 2, it follows

⎧⎪⎪⎨
⎪⎪⎩

(
∂2
t − n

ε cos(t)

2(1 + ε sin(t))
∂t − (1 + ε sin(t))�

)
u+ |v̇|2 − (1 + ε sin(t))|∇v|2 = 0,(

∂2
t − n

ε cos(t)

2(1 + ε sin(t))
∂t − (1 + ε sin(t))�

)
v + |u̇|2 − (1 + ε sin(t))|∇u|2 = 0.

Then, for every n, s, and for every positive δ, there are data u0, v0, u1, v1 ∈
C∞

0 (R
n) such that

‖u0‖(s+1) + ‖u1‖(s) + ‖v0‖(s+1) + ‖v1‖(s) ≤ δ

but the solution u, v ∈ C2(R+ × Rn) to the problem with data

u(0, x) = u0(x), ut (0, x) = u1(x), v(0, x) = v0(x), vt (0, x) = v1(x) , x ∈ Rn
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does not exist. If ε = 0, then a small data solution exists globally. The Riemannian
curvature of this spacetime with n = 3 is

−3ε(ε cos(2t)+ 3ε + 2 sin(t))

2(ε sin(t)+ 1)2
,

which is sign changing in time.

3 Lowering to the Scalar Equation

The main idea is to use a composition of the solution of the wave equation in L with
the distinguished geodesic of the target manifold M . This composition is a wave
map. For the properly chosen geodesic such wave map blows up for the large time
(see also [14]). Consider the system of equations

uit t − n
ḃ(t)

b(t)
uit − b2(t)�ui +

∑
j,k

�ij,k(u
1, . . . , um)

(
u
j
t u
k
t − b2(t)∇uj · ∇uk

)
= 0,

i = 1, . . .m, where �ij,k(u), b(t) are C∞ functions satisfying condition (9). The
choice of the initial data

ui(0, x) = aiu0(x), uit (0, x) = aiu1(x) , i = 1, . . .m, x ∈ Rn ,

for the system of equations and the intrinsic self coherent structure of the manifold
force a unique local solution to be on the track of the distinguished geodesic. This
allows the lowering of the wave map system to the scalar equation. Indeed, if we
consider the Cauchy problem for the auxiliary scalar equation

⎧⎪⎨
⎪⎩
utt − nḃ(t)

b(t)
ut − b2(t)�u+ f (u)

(
u2
t − b2(t)∇u · ∇u

)
= 0,

u(0, x) = u0(x), ut (0, x) = u1(x) , x ∈ Rn ,
(16)

then according to the uniqueness of the solution we have

u1(t, x) = a1u(t, x), u2(t, x) = a2u(t, x), . . . , um(t, x) = amu(t, x)

for all x ∈ Rn, t ≥ 0. Thus we can restrict ourselves to the Cauchy problem
(16) for the auxiliary scalar equation, where f (u), b(t) are C∞ functions and f (u)
is from condition (9). For this Cauchy problem we find arbitrarily small smooth
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initial data and prove that the solution blows up in finite time. This implies that the
solution to the problem (8) and (12) blows up in finite time, and competes the proof
of Theorem 1.

Consider the equation of (16). By the Hopf-Cole-Nakanishi-Ohta transformation

v = G(u) :=
∫ u

0
exp

(∫ s

0
f (r)dr

)
ds , (17)

Eq. (16) is transformed into the linear wave equation

vtt − nḃ(t)
b(t)

vt − b2(t)�v = 0 . (18)

Since G ∈ C2(R) and G′ > 0, there exists the inverse of G:

H := G−1 ∈ C2(a, b), (19)

where we denote

a := lim
u→−∞G(u) , b := lim

u→∞G(u) . (20)

Next we apply the partial Liouville transformation that eliminates the first
derivative vt in (18). More precisely, we set

v = b
n
2 (t)w , b(t) = 1/a(t),

then

vtt − n ḃ(t)
b(t)

vt − b2(t)�v

= b
n
2 (t)

[
wtt − b2(t)�w +

{
n

2

(
1 − n

2

)( d
dt

1

b(t)

)2

b2(t) − n

2

(
d2

dt2

1

b(t)

)
b(t)

}
w

]
.

Thus, we have to study the following linear hyperbolic equation

wtt − b2(t)�w +
(
n

2

(
1 − n

2

)( d
dt

1

b(t)

)2

b2(t)− n

2

(
d2

dt2

1

b(t)

)
b(t)

)
w = 0

with the 1-periodic positive smooth function b = b(t).
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4 Floquet-Lyapunov Theory: Parametric Resonance in ODE

We are going to apply the Floquet-Lyapunov theory for ordinary differential
equations with the periodic coefficients. Consider the ordinary differential equation:

Wtt +
(
λb2(t)+ n

2

(
1 − n

2

)( d
dt

1

b(t)

)2

b2(t)− n

2

(
d2

dt2

1

b(t)

)
b(t)

)
w = 0

with the periodic positive smooth non-constant function b = b(t) and parameter
λ ∈ R.

It is more convenient to rewrite this equation by means of the new positive
periodic function

α(t) := b2(t),

then

Wtt +
{
λα(t) − n

4

[
3

2

(
α̇(t)

α(t)

)2

− α̈(t)

α(t)

]
− n

8

(n
2
− 1

)( α̇(t)
α(t)

)2
}
W = 0 .

Consider now the equation

ytt (t)+ (λα(t) − q(t)) y(t) = 0 (21)

with the periodic coefficients α(t) = b2(t) and

q(t) = n

4

[
3

2

(
α̇(t)

α(t)

)2

− α̈(t)

α(t)

]
− n

8

(n
2
− 1

)( α̇(t)
α(t)

)2

.

The first part of the last expression is the so-called Schwarz derivative for the
antiderivative of α(t). For equation (21) the spectrum of the eigenvalue problem
with the boundary condition

y(0) = y(1) = 0

is discrete. Equation (21) can be written also as a system of differential equations
for the vector-valued function x(t) = t (wt , w):

d

dt
x(t) = A(t)x(t) , where A(t) :=

(
0 −λα(t) + q(t)
1 0

)
.
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Let the matrix-valued function Xλ(t, t0), depending on λ, be a solution of the
Cauchy problem

d

dt
X = A(t)X , X(t0, t0) =

(
1 0
0 1

)
. (22)

Thus, Xλ(t, t0) gives a fundamental solution to Eq. (21). In what follows we often
omit the subindex λ of Xλ(t, t0). The Liouville formula

W(t) = W(t0) exp

(∫ t

t0

S(τ)dτ

)
,

where W(t) := detX(t, t0), S(t) := ∑2
k=1 Akk(t) with S(t) ≡ 0 guarantees the

existence of the inverse matrix Xλ(t, t0)−1. For the matrix X(1, 0) we will use a
notation

Xλ(1, 0) =
(
b11 b12

b21 b22

)
.

This matrix is called a monodromy matrix and its eigenvalues are called multipliers
of system (22). Thus, the monodromy matrix is the value at t = 1 of the fundamental
matrix X(t, 0) defined by the initial condition X(0, 0) = I , and the multipliers are
the roots of the equation

det [X(1, 0)− μI ] = 0 .

Due to Theorem 2.3.1 [3] there exist the open instability intervals. The Assumption
ISIN states that there exists the nonempty open instability interval � ⊂ (0,∞) for
Eq. (21).

One can find in [3, 12] the detailed description of functions α = α(t) and
q = q(t) satisfying this condition. For instance, in Theorem 4.4.1 [3] one can find
asymptotic formula, which allows to estimate the length of the instability intervals
of the equation obtained from (21) by Liouville transformation. Then, according
to the next lemma one can find in the instability interval � a number λ such that
a non-diagonal element of the monodromy matrix does not vanish. Moreover, this
property is stable under small perturbations of λ.

Lemma 2 ([23]) Let b(t) be a non-constant, positive, smooth function defined on
R, which is 1-periodic. Then, there exists an open subset �0 ⊂ � such that b21 = 0
for all λ ∈ �0.

Next we use the periodicity of b = b(t) and the eigenvalues μ0 > 1, μ−1
0 < 1

of the matrix Xλ(1, 0) to construct solutions of (21) with prescribed values on a
discrete set of time. The eigenvalues of the matrix Xλ(1, 0) are μ0 and μ−1

0 with
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b11 + b22 = μ0 + μ−1
0 . Hence (b11 − μ0) + (b22 − μ0) = −μ0 + μ−1

0 implies
|b11 −μ0| + |b22 −μ0| ≥ |(b11 −μ0)+ (b22 −μ0)| = |μ0 −μ−1

0 | > 0. This leads
to

max{|b11 − μ0|, |b22 − μ0|} ≥ 1

2
|μ0 − μ−1

0 | > 0 .

Without loss of generality we can suppose

|b11 − μ0| ≥ 1

2
|μ0 − μ−1

0 | > 0 , |b22 − μ−1
0 | ≥ 1

2
|μ0 − μ−1

0 | > 0 ,

because of b11 − μ0 = −(b22 − μ−1
0 ). Further,

1 − b21

μ−1
0 − b22

b12

μ0 − b11
= (μ0 − μ−1

0 )
1

b22 − μ−1
0

= 0 .

Lemma 3 ([23]) LetW = W(t), V = V (t) be two solutions of the equation

wtt + (λα(t) − q(t))w = 0

with the parameter λ such that b21 = 0 and b22 = μ−1
0 . Suppose then that W =

W(t) takes the initial data

W(0) = 0 , Wt(0) = 1 ,

and that V = V (t) takes the initial data

V (0) = 1 , Vt (0) = 0 .

Then for every positive integer number M ∈ N one has

W(M) = b21

μ0 − μ−1
0

(μM0 − μ−M
0 ) ,

V (M) = −μM0
(b22 − μ−1

0 )

(μ0 − μ−1
0 )

+ μ−M
0

b21b12

(μ0 − b11)(μ0 − μ−1
0 )

.

For more applications of the Floquet-Lyapunov theory to hyperbolic equations
with oscillating coefficients see [14, 16, 20] and the bibliography therein. On the
other hand, to study the hyperbolic equations with oscillating coefficients one can
apply the so-called method of zones (see, e.g., [5, 6, 21, 25] and the bibliography
therein).
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5 Proof of Theorem 1: Construction of Blow-up Solution to
the Scalar PDE

If condition (5) of Theorem 1 does not hold, then (10) is true, that is, a > −∞ or
b <∞.
If u(t, x) is a solution of (16) and takes initial values (12) then the function (17)
solves the linear equation (18) and takes initial values

v(0, x) =
∫ u0(x)

0
exp

(∫ s

0
f (r)dr

)
ds , vt (0, x) = u1(x) exp

(∫ u0(x)

0
f (r)dr

)
.

(23)

Now let us choose initial data with the positive numbers S > 2n and M which will
be chosen later

u0(x) = 1

MS
χ
( x
M2

)
∈ C∞

0 (R
n),

u1(x) = A

MS
χ
( x
M2

)
exp

(
−
∫ u0(x)

0
f (r)dr

)
cos(x · y) ∈ C∞

0 (R
n),

where y ∈ Rn, |y|2 = λ, λ is from the instability interval stated by ISIN, while
χ ∈ C∞

0 (R
n) is a non-negative cut-off function, χ(x) = 1 when |x| ≤ 1. The

number A = ±1, which is independent of the large parameter M ∈ N , will be
chosen later. Let u = u(t, x) be a classical solution of (16) which takes these initial
data. Then the function v(t, x) = G

(
u(t, x)

)
solves Eq. (18) and at t = 0 takes

values

v(0, x) =
∫ 1

MS
χ
(
x

M2

)
0

exp

(∫ s

0
f (r)dr

)
ds ∈ C∞

0 (R
n) ,

vt (0, x) = A

MS
χ
( x
M2

)
cos (x · y) ∈ C∞

0 (R
n) .

LetW = W(t) be a solution given by Lemma 3. Consider the function

V (t, x)=
∫ 1

MS

0
exp

(∫ s

0
f (r)dr

)
ds +W(t) b

n/2(t)

bn/2(0)

A

MS
cos(x · y) ∈ C∞([0,∞]× Rn) .

Function V (t, x) solves Eq. (18) while

V (0, x) =
∫ 1

MS

0
exp

(∫ s

0
f (r)dr

)
ds, Vt (0, x) = A

MS
cos(x·y) for all x ∈ Rn .
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On the other hand for the function v(t, x) we have

v(0, x) =
∫ 1

MS

0
exp

(∫ s

0
f (r)dr

)
ds, vt (0, x) = A

MS
cos(x · y) when |x| ≤M2.

The finite propagation speed in the Cauchy problem (18), (23) implies

V (t, x) = v(t, x) in -M := [0,M] × {x ∈ Rn; |x| ≤ M3/2}

for large integerM . Hence

v(t, x) =
∫ 1

MS

0
exp

(∫ s

0
f (r)dr

)
ds +W(t) b

n/2(t)

bn/2(0)

A

MS
cos(x · y) in -M .

In particular,

v(M, 0) =
∫ 1

MS

0
exp

(∫ s

0
f (r)dr

)
ds + A

MS

b21

μ0 − μ−1
0

(μM0 − μ−M
0 ) .

Assume now that b <∞. Then the global existence of u means

v(t, x) =
∫ u(t,x)

0
exp

(∫ s

0
f (r)dr

)
ds < b for all t ≥ 0, x ∈ Rn . (24)

We choose A = 1, and S such that for M large enough one has (11) for u0, u1. On
the other hand, there is a number t (M) ∈ [0,M] such that v(t (M), 0) > b. This
contradicts (24). The case of a > −∞ can be treated in a similar way. The theorem
is proved. ��

6 Proof of Theorem 2

Assume that the problem has a global solution (u1(x, t), . . . , um(x, t)) ∈ C∞ for
every initial data (u1

�(x), . . . , u
m
� (x)) ∈ C∞(Rn) × . . . × C∞(Rn), � = 0, 1. We

are going to prove that the Nakanishi-Ohta condition (5) is fulfilled. Consider the
system (8), where �ij,k(u) are C∞ functions satisfying condition (9) and

ui(0, x) = aiu0(x), uit (0, x) = aiu1(x) , i = 1, . . .m, x ∈ Rn .

Consider also the Cauchy problem (16) for the scalar equation with the initial
conditions

u(0, x) = u0(x), ut (0, x) = u1(x) , x ∈ Rn .
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Then the uniqueness and existence theorem and condition (9) imply

u1(t, x) = a1u(t, x), u2(t, x) = a2u(t, x), . . . , um(t, x) = amu(t, x)

for all x ∈ Rn, t ≥ 0. Thus we have obtained the existence of the global solution
for the Cauchy problem for the nonlinear hyperbolic scalar equation (16).

Now we turn to the scalar equation of (16), where f (u), b(t) are C∞ functions
and f (u) is from condition (9). The Hopf-Cole-Nakanishi-Ohta transformation
converted equation of (16) into the linear wave equation for v defined by (18). For
a and b defined by (20), there exists the inverse H (19) of G since G ∈ C2(R) and
G′ > 0. We choose initial data

u0(x) = 0 , u1(x) = 1 ,

then

v(0) = 0, vt (0) = 1

and

vtt − nḃ(t)
b(t)

vt = 0 .

The explicit formula for the solution v implies

∫ u(t)

0
exp

(∫ s

0
f (r)dr

)
ds = v(t) = b−n(0)

∫ t

0
bn(τ) dτ → ±∞ as t → ±∞ .

Hence condition (5) is fulfilled. The theorem is proved. ��

7 Proof of Lemma 1

In some chart the geodesic satisfies the system of equations

d2ui

ds2 (s)+
m∑

j,k=1

�ijk(u
1(s), . . . , um(s))

duj

ds
(s)
duk

ds
(s) = 0 for all i = 1, . . . ,m .

For the smooth geodesic lying in the segment I of the straight line L =
{(a1t, . . . , amt) | t ∈ R} of the Riemannian manifold M we have u1(s) =
a1u(s), . . . , u

m(s) = amu(s) for all s ∈ [c, d] and

(
du

ds
(s)

)2 m∑
j,k=1

�ijk(a1u(s), . . . , amu(s))ajak = −ai d
2u

ds2 (s) for all s ∈ [c, d],
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i = 1, . . . ,m. The constant speed property of geodesics imply

(
du

ds
(s)

)2 m∑
j,k=1

hkj (a1u(s), . . . , amu(s))ajak = constant .

Consequently, the function du(s)/ds has no zeros and we can set

f̃ (s) = −d
2u

ds2 (s)

(
du

ds
(s)

)−2

and f (u(s)) = f̃ (s) ,

since the function u = u(s) has an inverse. On the other hand such geodesic covers
the segment I ⊆ L with the parameter t = u(s), and (9) follows.

Conversely, suppose that (9) holds. We can assume that I = {(a1t, . . . , amt) | t ∈
[1, b]}. Then for the point (a1, . . . , am) ∈ I we can solve the Cauchy problem for
the scalar equation

d2u

ds2
(s)+ f (u(s))

(
du

ds
(s)

)2

= 0 (25)

with the initial condition

u(0) = 1 ,
du

ds
(0) = ξ̂ , where ξ̂2 =

⎛
⎝∑
j,k=1

hkj (a1, . . . , am)ajak

⎞
⎠

−1

.

Further, since the point (a1u(s), . . . , amu(s)) belongs to the segment I for all
sufficiently small s, the relation (25) together with (9) implies

ai
d2u

ds2 (s)+
⎛
⎝ m∑
j,k=1

�ij,k(a1u(s), . . . , amu(s))ajak

⎞
⎠(du

ds
(s)

)2

= 0 .

Thus, (u1(s), . . . , um(s)) = (a1u(s), . . . , amu(s)) is a geodesic. The existence and
uniqueness theorem for the system of ordinary differential equations guarantees that
two geodesics with a common point and equal tangent at that point must coincide.
Hence, the geodesic covers the segment I ⊆ L. The lemma is proved. ��
Remark 4 The Poincaré half-plane model (see, e.g., [14]) possesses vertical
half-lines which are distinguished geodesics. Another interesting example of a
Lorentzian manifold that possesses half-lines, which are distinguished geodesics
is the Schwarzschild spacetime in the Eddington-Finkelstein coordinates (see, e.g.,
[15, Sec. 8.3]).
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