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On Fast-Decodable Algebraic
Space–Time Codes

Amaro Barreal and Camilla Hollanti

Abstract In the near future, the 5th generation (5G) of wireless systems will
be well established. They will consist of an integration of different techniques,
including distributed antenna systems and massive multiple-input multiple-output
(MIMO) systems, and the overall performance will highly depend on the channel
coding techniques employed. Due to the nature of future wireless networks, space–
time codes are no longer merely an object of choice, but will often appear naturally
in the communications setting. However, as the involved communication devices
often exhibit a modest computational power, the complexity of the codes to be
utilised should be reasonably low for possible practical implementation. Fast-
decodable codes enjoy reduced complexity of maximum-likelihood (ML) decoding
due to a smart inner structure allowing for parallelisation in the ML search. The
complexity reductions considered in this chapter are entirely owing to the algebraic
structure of the considered codes, and could be further improved by employing non-
ML decoding methods, however yielding suboptimal performance. The aim of this
chapter is twofold. First, we provide a tutorial introduction to space–time coding
and study powerful algebraic tools for their design and construction. Secondly, we
revisit algebraic techniques used for reducing the worst-case decoding complexity
of both single-user and multiuser space-time codes, alongside with general code
families and illustrative examples.

3.1 Introduction

Let us start this chapter by introducing, very briefly, the reader to the field of alge-
braic space–time coding. While there are various design criteria to be considered as
well as a plethora of code constructions for a variety of different channel models and
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communications settings, we will here only review the developments most relevant
to the rest of this chapter.

The first space–time code, the Alamouti code [1], was introduced in 1998
and gave rise to a massive amount of research in the attempt to construct well-
performing codes for various multi-antenna wireless communications settings. It
was discovered that the code matrices constituting this particular code actually
depict an algebraic structure known as the Hamiltonian quaternions, and by
restriction to Lipschitz (i.e., integral) quaternions, the (unconstrained) code becomes
a lattice. As Hamiltonian quaternions are the most popular example of a division
algebra, this finding prompted the study of general division algebra space–time
lattice codes [4, 34].

Division algebras are related to achieving full diversity by maximising the rank
of the code matrices [38]. Soon it was noticed that by choosing the related field
extensions carefully, one can achieve non-vanishing determinants (NVD) [4] for
the codewords, implying a non-vanishing coding gain [38]. As the coding gain is
inversely proportional to the decoding error probability, this in turn prevents the
error probability from blowing up. A related notion, the diversity–multiplexing gain
[43] captures the tradeoff between the decay speed of the decoding error probability
and available degrees of freedom. It is known that for symmetric systems, that is,
with an equal number of transmit and receive antennas, full-rate space-time codes
with the NVD property achieve the optimal tradeoff of the channel.

Several explicit constructions of space–time codes based on cyclic division
algebras exist in the literature. For instance, Perfect space-time codes and their
generalisations [5, 12, 30] provide orthogonal lattices for any number of antennas,
whereas maximal order codes [14, 15, 39] optimise the coding gain, while giving up
on the orthogonality of the underlying lattice.

In the multiuser settings considered in this chapter, multiple users are com-
municating to a joint destination, with or without cooperating with each other.
When cooperation is allowed, it is possible to take advantage of intermediate
distributed relays which aid the active transmitter in the communication process.
Various protocols exist for enabling this type of diversity—the one considered
here is the non-orthogonal half-duplex amplify-and-forward protocol, see [42]. The
non-cooperative case is referred to as the multiple access channel (MAC), where
users transmit signals independently of each other. Some algebraic MAC codes are
presented in [22, 23], among others.

One of the biggest obstacles in utilising space-time lattice codes and realising
the theoretical promise of performance gains is their decoding complexity. Namely,
maximum-likelihood (ML) decoding boils down to closest lattice point search, the
complexity of which grows exponentially in the lattice dimension. More efficient
methods exist, most prominently sphere decoding [41], which limits the search
to a hypersphere of a given radius. However, the complexity remains prohibitive
for higher dimensional lattices. To this end, several attempts have been made
to reduce the ML decoding complexity. In principle, there are two ways to do
this: either one can resort to reduced-complexity decoders yielding suboptimal
performance, or try to build the code lattice in such a way that its structure naturally
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allows for parallelisation of the decoding process, hence yielding reduction in the
dimensionality of the search. In this chapter, we are interested in the latter: we will
show how to design codes that inherently yield reduced complexity thanks to a
carefully chosen underlying algebraic structure.

On our way to this goal, we will introduce the reader to the basics of lattices
and algebraic number theory, to the extent that is relevant to this chapter. We will
also lay out the typical channel models for the considered communications settings.
Whenever we cannot explain everything in full detail in the interest of space, suitable
references will be given for completeness. We assume the reader is familiar with
basic abstract algebra and possesses some mathematical maturity, while assuming
no extensive knowledge on wireless communications.

The rest of the chapter is organised as follows. We begin in Sect. 3.2 by
familiarising the reader with the important notion of lattices and recall related
results. Following a section introducing concepts and results from algebraic number
theory, we study a particular class of central simple algebras, specifically cyclic
division algebras, and their orders. We then move on to providing a background
in wireless communications in Sect. 3.3, introducing the well-known multiple-input
multiple-output fading channel model and related performance parameters. As a
coding technique employed in this multiple-antenna communications setup, we then
introduce the main object of this chapter, space–time codes. We recall code design
criteria, and furthermore show how codes can be constructed from cyclic division
algebras. In Sect. 3.4, maximum-likelihood decoding is introduced, and we discuss a
possible decoding complexity reduction by algebraic means, defining the concept of
fast-decodable space–time codes. The definition of fast decodability is then further
refined, which allows us to consider more specific families of space–time codes with
reduced decoding complexity. We further recall a useful iterative method for code
construction. Finally, in Sect. 3.5 we discuss two specific communication scenarios
as well as explicit methods to construct fast-decodable space–time codes.

3.2 Algebraic Tools for Space–Time Coding

Although space-time codes are primarily a tool for data transmission, they are of
a highly mathematical nature. Indeed, design criteria derived for minimising the
probability of incorrect decoding, which we will revisit in Sect. 3.3.2.1, can be met
by ensuring certain algebraic properties of the underlying structure used for code
construction. For this reason, we first devote a chapter to the mathematical notions
needed for space–time code analysis and design.

We start with basic concepts and results about lattices, objects which are of
particular interest as almost all space–time codes with good performance arise from
lattice structures. This is both to ensure a linear structure—a lattice is simply a
free Z-module, thus an abelian group—as well as to avoid accumulation points at
the receiver, to which end the discreteness property of a lattice is useful. Our main
references for all lattice related results are [10, 11].
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In a successive section, we then introduce relevant tools and objects from
algebraic number theory, such as number fields, their rings of integers, and prime
ideal factorisation. These tools will play a crucial role in the construction of space–
time codes. As references, we have [28, 29].

Most importantly, we finally introduce central simple algebras and their orders,
the main objects that will determine the performance of the constructed codes. Over
number fields, every central simple algebra is cyclic, and we study these in detail.
We refer to [6, 27, 31] for good general references.

3.2.1 Lattices

We begin with the simplest definition of a lattice in the ambient space Rn.

Definition 3.1 A lattice � ⊂ R
n is the Z-span of a set of vectors of Rn that are

linearly independent over R.

Note that we do not require that the number of vectors spanning � equals the
dimension n. Indeed, any lattice is isomorphic to Z

t as groups for t ≤ n. A lattice is
thus a free abelian group of rank rk (�) = t , and is called full-rank or shortly full,
if the rank and dimension coincide, i.e., t = n. We give an alternative and useful
group theoretic definition.

Definition 3.2 A lattice � ⊂ R
n is a discrete1 subgroup of Rn.

A lattice � ⊆ R
n can hence be expressed as a set

� =
{

x =
t∑

i=1

zibi

∣∣∣∣∣ zi ∈ Z

}
,

with bi ∈ R
n (and the zi uniquely determined by x). We say that {b1, . . . , bt } forms

a Z-basis of �.
We can conveniently define a generator matrix and the corresponding Gram

matrix for �

M� = [
b1 · · · bn

] ; G� = Mt
�M�,

so that every element of � can be expressed as x = M�z for some z ∈ Z
n.

Example 3.1 The simplest lattice is the integer lattice Z
n in arbitrary dimension

n ≥ 1. A generator and Gram matrix for Zn is simply the n × n identity matrix.
A more interesting example in dimension n = 2 is the hexagonal lattice A2. A

Z-basis for this lattice can be taken to be b1 = (1, 0)t and b2 = (−1/2,
√

3/2)t . A

1By discrete, we mean that the metric on R
n defines the discrete topology on �, i.e., any bounded

region of Rn contains only finitely many points of the subgroup.
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Fig. 3.1 The Voronoi regions of the hexagonal lattice A2

graphical representation of the lattice, as well as a generator and Gram matrix with
respect to this basis are presented in Fig. 3.1.

To each lattice �, we can associate its fundamental parallelotope, defined as
P� := {M�y| y ∈ [0, 1)n}. Note that we can recover Rn as a disjoint union of the
sets x +P� for all x ∈ �. Since M� contains a Z-basis of �, any change of basis is
obtained via an integer matrix with determinant ±1. Hence, the Lebesgue measure
of P� is invariant under change of basis. Thus, we define the volume of a lattice
� ⊂ R

n as the Lebesgue measure of its fundamental parallelotope,

vol (�) := vol (P�) = √
det(G�).

We have defined a lattice to be a discrete subgroup of R
n and they are, by

definition, free Z-modules. It is however possible and often desirable to extend the
definition to other rings and ambient spaces, such as the ring of integers of a number
field, or an order in a cyclic division algebra. In this more general context, we define
a lattice � to be a discrete and finitely generated abelian subgroup of a real or
complex ambient space V . In the previous derivations, we have set V = R

n. Of
interest for purposes of space–time coding is to consider lattices in V = Mat(n,C).
In this case, we can also identify a full lattice in V with a full lattice in R

2n2
via the

R-linear isometry

ι : Mat(n,C) → R
2n2

,

[u1, . . . , un] 	→ (Re(u11), Im(u11), . . . , Im(u1n), . . . , Re(unn), Im(unn))
t .

(3.1)
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We have ‖U‖F = ‖ι(U)‖, where ‖ · ‖ (resp. ‖ · ‖F ) denotes the Euclidean (resp.
Frobenius) norm, and ι maps full lattices in V to full lattices in the target Euclidean
space. This map will be crucial for decoding considerations in later sections.

Let � ⊂ Mat(n,C) be a full lattice with Z-basis {B1, . . . , Bn} , Bi ∈ Mat(n,C).
A generator matrix and the corresponding Gram matrix for � can be given as

M� = [
ι(B1) · · · ι(Bn)

] ; G� = Mt
�M� =

(
Re(Tr(B†

i Bj ))
)

i,j
.

The volume of � is the volume of the corresponding lattice ι(�) in R
2n2

, i.e.,
vol (�) = √

det(G�).

Example 3.2 We exemplify the notion of a lattice in Mat(n,C) and corresponding
vectorisation on the famous Alamouti code [1]. As we shall see later, the Alamouti
code is constructed from a lattice in Mat(2,C) corresponding to Hamiltonian (or
more precisely Lipschitz) quaternions. More concretely, it is a finite subset

XA ⊂
{[

x1 + ix2 −(x3 − ix4)

x3 + ix4 x1 − ix2

]∣∣∣∣ (x1, . . . , x4) ∈ Z
4
}

.

A basis of the underlying lattice �A consists of the matrices

B1 =
[

1 0
0 1

]
; B2 =

[
i 0
0 −i

]
; B3 =

[
0 −1
1 0

]
; B4 =

[
0 i

i 0

]
.

Using the defined isometry ι, we can identify �A with a lattice in R
8, which we

again denote by �A, with generator and Gram matrix

M�A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; G�A =

⎡
⎢⎢⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦

The volume of this lattice is vol (�A) = √
det(G�A) = 4.

3.2.2 Algebraic Number Theory

In this section, we recall fundamental notions from algebraic number theory which
are indispensable for space–time code constructions. We assume that the reader is
familiar with basic Galois theory.
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Let L/K be an arbitrary field extension. If we view L as a vector space over K ,
we can define the degree of the field extension as the vector space dimension, that is,
[L : K] := dimK(L). If the degree is finite, we call the extension finite. An element
α ∈ L is called algebraic over K if there exists a non-zero polynomial f (x) ∈ K [x]
such that f (α) = 0, and the field extension L/K is called algebraic if all elements
of L are algebraic over K . Consider the homomorphism φ : K[x] → L, f (x) 	→
f (α). Since α is algebraic, ker(φ) �= 0, and can be generated by a single polynomial
mK,α(x), chosen to be monic of smallest degree admitting α as a root. We call this
unique polynomial the minimal polynomial of α over K . When K = Q or when the
field is clear from context, we may shortly denote mα(x).

Definition 3.3 An algebraic number field is a finite extension of Q.

Example 3.3 The simplest example of a field extension over Q is the Gaussian field
Q(i) = {a + bi | a, b ∈ Q}, where i = √−1 is the imaginary unit. The minimal
polynomial of i ∈ C over Q is given by mi(x) = x2 + 1.

We will henceforth consider L/K to be an extension of algebraic number fields.
In the above example, we constructed the field Q(i) by adjoining an algebraic
element i ∈ C to Q. By the notation Q(i) we hence mean the smallest field that
contains both Q and i. This is a more general phenomenon.

Theorem 3.1 (Primitive Element Theorem) Let L/K be an extension of number
fields. Then, there exists an element α ∈ L such that L = K(α).

We see that we can construct the field L by adjoining the algebraic element α ∈ L

to K and, since mK,α(x) is irreducible, we have the isomorphism

L ∼= K[x]/〈mK,α(x)〉.

It now becomes apparent that the degree of the field extension equals the degree of
the minimal polynomial of the adjoined element, [L : K] = deg(mK,α(x)).

Example 3.4 Consider the number field K = Q(
√

2,
√

3). We claim that K =
Q(

√
2 + √

3) and is hence generated by a single element. The inclusion Q(
√

2 +√
3) ⊆ K is trivial, as

√
2 +√

3 ∈ Q(
√

2,
√

3). For the reverse inclusion, it suffices
to express

√
2 and

√
3 in terms of elements of Q(

√
2 + √

3). Note that as (
√

2 +√
3)2 = 5 + 2

√
6 it follows that

√
6 ∈ Q(

√
2 + √

3), and we have

√
2 = 2 + √

6√
2 + √

3
; √

3 = 3 + √
6√

2 + √
3
.

This shows that Q(
√

2,
√

3) = Q(
√

2 + √
3). The minimal polynomial of α :=√

2+√
3 is mα(x) = x4 −10x2 +1, and we see that Q(α) is an extension of degree

4.

We now define a very important ring associated with a number field K .
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Definition 3.4 Let K be a number field. The integral closure of Z in K consists of
all the elements α ∈ K for which mα(x) ∈ Z[x]. The integral closure is a ring,
called the ring of integers OK of K . We call any element α ∈ OK an algebraic
integer.

Example 3.5 Consider the field extension Q(i)/Q. The ring of integers of Q(i)

is precisely Z[i]. It is however not always true that OK(α) = Z[α]. Consider for
example Q(

√
5)/Q. We have that Z[√5] is composed of algebraic integers, but

Z[√5] �= OK . For example, the element 1+√
5

2 is a root of the polynomial x2−x−1,

but 1+√
5

2 /∈ Z[√5]. In fact, it turns out that OK = Z

[
1+√

5
2

]
.

As we have seen, α ∈ K is an algebraic integer if and only if mα(x) ∈ Z[x].
Further, the field of fractions of OK is precisely K . In the above examples, the ring
of integers OK = Z[θ ] admits a Z-basis {1, θ}. In fact, we have the following result.

Theorem 3.2 Let K be a number field of degree n. The ring of integers OK of K is
a free Z-module of rank n.

As a consequence, the ring of integers OK admits an integral basis over Z, that
is, a basis as a Z-module. Given an extension L/K of number fields, it is however
not true in general that the ring of integers OL is a free OK -module. This holds for
instance if OK is a principal ideal domain (PID). We will be considering extensions
of Q and Q(i), hence circumventing this problem.2

Consider a number field K of degree n over Q. We fix compatible embeddings
of K into C, and identify the field with its image under these embeddings. More
precisely, there exist exactly n pairwise distinct embeddings (i.e., injective ring
homomorphisms) σi : K → C, forming the set HomQ(K,C) = {σ1, . . . , σn}.

We split the embeddings into those whose image is real or complex, respectively.
More concretely, let σ1, . . . , σr : K → R, and σr+1, . . . , σn : K → C. Note that
the embeddings with complex image come in conjugate pairs, of which there are
exactly s := n−r

2 . We call the tuple (r, s) the signature of the number field K .
We can use the embeddings to define two important functions, namely the norm

and trace of elements in K . For each α ∈ K , consider the induced Q-linear
homomorphism ϕα : K → K , where for all β ∈ K , we have ϕα(β) = αβ. By
fixing a basis of K over Q, ϕα can be represented by a matrix Aα ∈ Mat(n,Q).
This is referred to as the left regular representation.

Definition 3.5 Let K be a number field of degree n, and let α ∈ K . The norm and
trace of α, respectively, are defined as

NmK (α) = det(Aα) =
n∏

i=1

σi(α); TrK (α) = Tr(Aα) =
n∑

i=1

σi(α).

These definitions are independent of the choice of a basis for Aα .

2The practical reason behind this choice is that the popular modulation alphabets, referred to as
pulse amplitude modulation (PAM) and quadrature amplitude modulation (QAM), correspond to
the rings of integers of these fields.
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We note that the norm and trace are generally rational elements. When α ∈ OK ,
however, we have NmK (α) , TrK (α) ∈ Z.

Definition 3.6 Let K be a number field of degree n, with ring of integers OK , and
let {b1, . . . , bn} be an integral basis of OK . The discriminant of K is the well-defined
integer

dK = det

⎛
⎜⎝
⎡
⎢⎣

TrK (b1b1) · · · TrK (b1bn)
...

. . .
...

TrK (bnb1) · · · TrK (bnbn)

⎤
⎥⎦
⎞
⎟⎠

= det

⎛
⎜⎝
⎡
⎢⎣

σ1(b1) · · · σ1(bn)
...

. . .
...

σn(b1) · · · σn(bn)

⎤
⎥⎦
⎞
⎟⎠

2

.

The determinants above can indeed be shown to be equal. The discriminant dK is
independent of the choice of basis, and hence an invariant of the number field.

Example 3.6 Consider the number field K = Q(
√−5), with ring of integers OK =

Z[√−5]. As K is a degree-2 extension of Q, and generated by a complex element,
we have that its signature is (r, s) = (0, 1). A representative of the pair of complex
embeddings is given by σ1 : √−5 	→ −√−5, and the complex conjugate σ2 is
simply the identity.

Given an element α = x0 + √−5x1 ∈ K , the norm and trace of α can be
computed to be

NmK (α) = σ1(α)σ2(α) = x2
0 + 5x2

1; TrK (α) = σ1(α) + σ2(α) = 2x0.

Moreover, we can compute the discriminant of K by choosing a basis
{
1,

√−5
}

of OK and computing the determinant

dK = det

([
1 −√−5
1

√−5

])2

= −20.

The motivation for studying number fields has its origins in the factorisation of
integers into primes. In the ring Z, prime and irreducible elements coincide, and
every natural number factors uniquely into prime numbers. By generalising the ring
Z to the ring of integers OK of a number field, unique factorisation into prime
elements is no longer guaranteed. However, the underlying structure of the ring OK

allows for a generalisation of unique factorisation by making use of ideals, instead
of elements.
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Let K be a number field of degree n, and a ⊂ OK a non-zero ideal. Then a factors
into a product of prime ideals, unique up to permutation,

a =
g∏

i=1

pei

i ,

where ei > 0. We define the norm of the ideal a as the cardinality of the finite ring
N(a) := |OK/a|. The ideal norm extends multiplicatively, and moreover N(a) ∈ a.
Consequently, if N(a) is prime, then a is a prime ideal. More importantly, if N(a) =
p

e1
1 · · ·pek

k is the prime factorisation, then (as we can show that a divides N(a)OK )
it is clear that every prime divisor of a is a prime divisor of piOK for some i.

Remark 3.1 If all prime divisors of pOK are known for all primes p ∈ Z, then all
ideals of OK are known.

Let p ⊂ OK be a prime ideal. Then p ∩ Z = pZ is a prime ideal of Z, p prime.
We can hence write

pZ = pepe2
2 · · · pek

k

for pi distinct prime ideals of OK . The number e = e(p/pZ) is referred to as the
ramification index of pZ at p. We further define the residue class degree of p/pZ as
the integer f ≥ 1 which satisfies N(p) = pf .

Example 3.7 Consider K = Q(i), and let p > 2 be a rational prime. We want to
study the factorisation of p in OK = Z[i]. We have the following isomorphisms:

Z[i]/〈p〉 ∼= Z[x]/〈p, x2 + 1〉 ∼= Fp[x]/〈x2 + 1〉

By norm considerations, as N(pZ[i]) = |Z[i]/〈p〉| = |Fp[x]/〈x2 + 1〉| = p2, we
have that p can either remain prime in Z[i], or be the product of two prime ideals.
On the other hand, we know that pZ[i] is prime if and only if Z[i]/〈p〉 is a field. In
fact,

Z[i]/〈p〉 ∼= Z[x]/〈p, x2 + 1〉 ∼= Fp[x]/〈x2 + 1〉,
so that the residue class degree is f = 2. This quotient is a field precisely when
x2 + 1 is irreducible. This is the case for p �≡ 1 mod 4.

For the case p ≡ 1 mod 4, we can factor x2 + 1 = (x − a)(x − b), and we get a
factorisation pZ[i] = (i − a)(i − b).

3.2.3 Central Simple Algebras

Let K be a field, and A ⊇ K a finite-dimensional associative K-algebra, i.e., a
finite-dimensional K-vector space and a ring together with a K-bilinear product.
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The algebra is simple, if it contains no non-trivial two-sided ideals, and moreover
central if its centre is precisely K . The algebra is a division algebra if all of its non-
zero elements are invertible. We have the following important theorem, which is a
simplified version of a more general result.

Theorem 3.3 (Wedderburn) Every central simple K-algebra is isomorphic to
Mat(n,D) for some uniquely determined n and some division K-algebra D, unique
up to isomorphism.

If A is a central simple K-algebra and D is the division algebra from the above
theorem, we denote by ind(A) = √

[D : K] the index, and by deg(A) = √
[A : K]

the degree of the algebra. A is a division algebra if and only if ind(A) = deg(A).
If A is a finite-dimensional central simple algebra over a field K , then A is

said to be cyclic if it contains a strictly maximal subfield L such that L/K is a
cyclic field extension, i.e., the Galois group is a cyclic group. If K is a number
field, every K-central simple algebra is cyclic, and vice versa. This family of central
simple algebras has been widely used for space–time coding since the work [34]. We
start with the special case of cyclic algebras of degree 2, also known as quaternion
algebras.

Definition 3.7 Let K be a field, and a, γ ∈ K× not necessarily distinct. A
quaternion algebra (a, γ )K is a K-central algebra defined as

(a, γ )K := {x = x0 + ix1 + jx2 + kx3| xi ∈ K} ,

where the basis elements satisfy the rules

i2 = a, j2 = γ, ij = −j i = k.

Example 3.8 The most famous example is the set of Hamiltonian quaternions,
which can be defined as H = (−1,−1)R. An element x ∈ H is of the form
x = x0 + ix1 + jx2 + kx3 with (x0, x1, x2, x3) ∈ R

4, i2 = j2 = −1 and
ij = −j i = k.

For quaternion algebras, we have the following deep and important classification
result.

Theorem 3.4 Let (a, γ )K be a quaternion algebra. We have two possibilities.

(a) (a, γ )K is a division algebra.
(b) (a, γ )K ∼= Mat(2,K).

We can determine which of the cases apply by means of a simple quaternary
quadratic form. To be more precise, consider an element x = x0 + ix1+jx2+kx3 ∈
(a, γ )K , and define the norm of x as

Nm(x) = xx∗ = x2
0 − ax2

1 − γ x2
2 + aγ x2

3 ,
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where x∗ = x0 − ix1 −jx2 −kx3 is the conjugate of x. Then, the quaternion algebra
(a, γ )K is division if and only if Nm(x) = 0 implies x = 0.

Example 3.9 Recall the set of Hamiltonian quaternions H. The norm of an element
x = x0 + ix1 + jx2 + kx3 ∈ H is Nm(x) = x2

0 + x2
1 + x2

2 + x2
3 ≥ 0. As xi ∈ R, we

have equality if and only if x = 0. Hence, H is a division algebra.

A quaternion algebra is a degree-4 vector space over the centre K . They are a
special case of the more general cyclic algebras, a family of central simple algebras
which we study in the sequel.

Definition 3.8 Let L/K be a degree-n cyclic Galois extension of number fields,
and denote by 〈σ 〉 = Gal (L/K) its Galois group. A cyclic algebra is a tuple

C = (L/K, σ, γ ) :=
n−1⊕
i=0

eiL,

where en = γ ∈ K× and multiplication satisfies le = eσ(l) for all l ∈ L.
The algebra C is K-central simple, and is called a cyclic division algebra if it is

division.

The usefulness of cyclic division algebras for purposes of space–time coding
starts with the existence of a matrix representation of elements of the algebra. To be
more precise, each element x = ∑n−1

i=0 eixi ∈ C induces for all y ∈ C a right L-
linear map ρ : y 	→ xy, which is referred to as the left-regular representation of the
algebra, and describes left multiplication with x. We can define a matrix associated
with ρ, given by

x 	→ ρ(x) :=

⎡
⎢⎢⎢⎢⎢⎣

x0 γ σ(xn−1) γ σ 2(xn−2) · · · γ σn−1(x1)

x1 σ(x0) γ σ 2(xn−1) γ σn−1(x2)
...

...
...

xn−2 σ(xn−3) σ 2(xn−4) γ σn−1(xn−1)

xn−1 σ(xn−2) σ 2(xn−3) · · · σn−1(x0)

⎤
⎥⎥⎥⎥⎥⎦ .

Example 3.10 Let us consider again the Hamiltonian quaternions. Using the above
notation, we write e = j and

H = (C/R, σ = ∗, γ = −1) = C ⊕ jC,

with cj = jc∗ for all c ∈ C and j2 = γ = −1. Note that we have intentionally
chosen to represent H as a right vector space in order to be compatible with the left
regular representation.
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Let now x = x0 + jx1 with x0, x1 ∈ C. If we multiply the basis elements {1, j }C
from the left by x, we get

x · 1 = x0 + jx1 ,

x · j = (x0 + jx1)j = x0j + jx1j = jx∗
0 + j2x∗

1 = −x∗
1 + jx∗

0 .

In a matrix form, we have

x 	→ ρ(x) =
[
x0 −x∗

1
x1 x∗

0

]
.

Note that this matrix corresponds to the Alamouti code.

Example 3.11 Let L/K be a number field extension of degree n = 3. Then, we
can pick a basis

{
1, e, e2

}
of a cyclic algebra C over its maximal subfield L, where

e3 = γ ∈ K×. Let x = x0 + ex1 + e2x2, and consider left multiplication. Similarly
as above,

x · 1 = x0 + ex1 + e2x2 ,

x · e = (x0 + ex1 + e2x2)e = eσ(x0) + e2σ(x1) + e3σ(x2)

= γ σ(x2) + eσ(x0) + e2σ(x1) ,

x · e2 = (x0 + ex1 + e2x2)e
2 = e2σ(x0) + e3σ(x1) + e4σ(x2)

= γ σ(x1) + γ eσ(x2) + e2σ(x0) .

We see that in this basis, left multiplication by x can be represented by the matrix

ρ(x) =
⎡
⎣x0 γ σ(x2) γ σ 2(x1)

x1 σ(x0) γ σ 2(x2)

x2 σ(x1) σ 2(x0)

⎤
⎦

We close this section by recalling how to ensure that a cyclic algebra (L/K, σ, γ )

is division by means of the element γ ∈ K×. The result is a simple corollary to a
result due to A. Albert.

Theorem 3.5 Let C = (L/K, σ, γ ) be a cyclic algebra. If γ n/p is not a norm of
some element of L for all prime divisors p of n, then C is division.
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3.2.3.1 Orders

Given a number field K , the collection of integral elements form the ring of integers
OK of K . This ring is the unique maximal order of K , a concept which we will now
recall in a more general context.

Definition 3.9 Let C = (L/K, σ, γ ) be a cyclic division algebra. An OK -order �

in C is a subring of C sharing the same identity as C and such that � is a finitely
generated OK -module which generates C as a linear space over K .

An order is maximal if it is not properly contained in another order of C.

Every order of a cyclic division algebra is contained in a maximal order. Within a
number field K , the ring of integers OK is integrally closed and the unique maximal
order of K . In general, a maximal order � ofC is not integrally closed, and a division
algebra C may contain multiple maximal orders. In contrast, the following special
order is often of interest due to its simple structure. It is in fact the initial source for
space–time codes with non-vanishing determinants.

Definition 3.10 Let C = (L/K, σ, γ ) be a cyclic division algebra. The natural
order of C is the OK -module

�nat :=
n−1⊕
i=0

eiOL.

Note that �nat is not closed under multiplication unless γ ∈ OK .

Remark 3.2 Given a cyclic division algebra C = (L/K, σ, γ ) and an element
c ∈ �, where � ⊂ C is an order, we can define concepts like the reduced norm
nm(c) = det(ρ(c)) and reduced trace tr(c) = Tr(ρ(c)). These are elements of the
ring of integers of the centre, i.e., nm(c), tr(c) ∈ OK . Consequently, for K = Q

or K imaginary quadratic, we have | nm(c)| ≥ 1 for any non-zero c ∈ �, an
observation which is crucial for achieving the non-vanishing determinant property
(cf. Sect. 3.3.2.1).

3.3 Physical Layer Communications

In this section, we study the characteristics and properties of a wireless channel,
discussing various methods for combating the effects of fading and noise.

3.3.1 Rayleigh Fading MIMO Channel

In a wireless environment, in contrast to wired channels, the signal traverses several
different paths between a transmitter and receiver. Consequently, different versions
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of the signal distorted by (independent) environmental effects will come together
at the receiver, causing a superimposed channel output. Together with dissipation
effects caused by urban scatterers as well as interference, the signal experiences
fading, and various statistical models exist to describe these phenomena. Here, we
consider the widely used Rayleigh fading channel model. In addition, thermal noise
at the receiver further distorts the channel output.

To be more precise, assume a single source, equipped with nt ≥ 1 transmit
antennas, and a single destination, with nr ≥ 1 receive antennas. If nt , nr ≥ 2
we refer to the setup as the multiple-input multiple-output (MIMO) model, while
the case (nt , nr ) = (1, 1) is termed the single-input single-output (SISO) channel
model. The mixed cases (nt = 1, nr > 1) and (nt > 1, nr = 1) are the SIMO and
MISO channel setups, respectively.

Consider a channel between nt transmit antennas and nr receive antennas. The
wireless channel is modelled by a random matrix

H =

⎡
⎢⎢⎢⎣

h11 h12 · · · h1nt

h21 h22 h2nt

...
. . .

...

hnr 1 hnr 2 · · · hnrnt

⎤
⎥⎥⎥⎦ ∈ Mat(nr × nt ,C),

We assume that the channel remains static for T ≥ nt time slots and then changes
independently of its previous state, and refer to T as the channel delay or channel
coherence time. Each of the entries hij of H denotes the path gain from transmit
antenna j to receive antenna i. They are modelled as complex variables with i.i.d.
normal distributed real and imaginary parts,

Re(hij ), Im(hij ) ∼ N(0, σ 2
h ),

yielding a Rayleigh distributed envelope

|hij | =
√

Re(hij )2 + Im(hij )2 ∼ Ray(σh)

with scale parameter σh, which gives this fading model its name.
The additive noise is modelled by a matrix N ∈ Mat(nr × T ,C) with i.i.d.

complex Gaussian entries with finite variance σ 2
n . To combat the destructive effects

of fading, the transmitter encodes its data into a codeword matrix X ∈ Mat(nt ×
T ,C). Each column xi of X corresponds to the signal vector transmitted in the ith
time slot, across the available transmit antennas. If we denote each column of the
noise matrix N by ni , the received signal at each time slot 1 ≤ i ≤ T is given by
the channel equation

yi = Hxi + ni .
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We assume that the destination waits for the T subsequent transmissions before
starting any decoding process. As usual, we assume perfect channel state informa-
tion at the receiver, while the transmitter only has statistical channel information.
The channel is supposed to remain fixed during the entire transmission process, and
hence we can summarise the overall channel equation in a compact form to read

Y = HX + N.

Thus, by allowing the use of multiple antennas at the transmitter and/or receiver,
we have created spatial diversity. By ensuring a separation of the antennas by at
least half the used wavelength, the multiple signals will fade independently of each
other. On the other hand, the transmission over multiple time slots enables temporal
diversity, providing copies of the signal at the receiver.

The physical conditions in an actual wireless channel are rapidly changing.
Consequently, the comparison in performance of two different codes needs to be
considered with respect to a standardised quantity. We define the signal-to-noise
ratio (SNR) at the receiver as the ratio of the received signal power to noise power,
that is,

SNR = E
[‖HX‖2

]
E
[‖N‖2

] .

3.3.1.1 Performance Parameters of a Wireless Channel

Consider a MIMO channel with nt transmit antennas and nr receive antennas. The
first quantity that we need to mention is the capacity of the channel.

Definition 3.11 Assume that the receiver knows the realisation of the channel
matrix H . For a fixed power constraint on the channel input, the capacity of a MIMO
channel is the upper bound on the mutual information between the channel input and
output, given the channel realisation.

As the capacity depends on the channel matrix, it needs to be viewed as a random
variable. The ergodic capacity of a MIMO channel is given by

CH = EH

[
log det

(
Inr + SNR

nt

H †H

)]
.

Recently, the authors in [24] gave criteria for algebraic space–time codes from
division algebras to achieve the channel capacity up to a constant gap.

Equivalently we can interpret the capacity of the channel as the upper bound on
the amount of information that can be transmitted, so that the probability of error
can be maintained arbitrarily low. At high SNR, the capacity of the channel scales
with the number of antennas. More specifically, an SNR increase of 3 dB results in
an increase in capacity by min {nt , nr }.
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We now define two quantities which allow us to compare different coding
strategies for the MIMO channel.

Definition 3.12 Consider a MIMO channel.

(i) The diversity gain of a coding strategy is the asymptotic slope of the corre-
sponding error probability curve with respect to the SNR in a log − log scale.

(ii) The coding gain measures the difference in SNR required for two different full-
diversity coding strategies to achieve the same error probability.

3.3.2 Space–Time Codes

This section introduces the main object of the survey: space–time codes. These
codes are tailor-made for MIMO communications. We start with basic definitions
and relate the enabled spatial and temporal diversity to the matrix structure of space–
time codewords.

In the first subsection, the basic code design criteria for minimising the proba-
bility of incorrect decoding are derived. While the design criteria are independent
of the actual code construction method and hold for any matrix codebook, various
results are then introduced exposing how the criteria can be met by purely algebraic
means. Hence, it becomes clear which properties the underlying structures should
exhibit in order to construct well-performing codes.

After this, we utilise the algebraic tools introduced in Sect. 3.2 in order to
construct space–time codes meeting the derived criteria.

3.3.2.1 Design Criteria for Space–Time Codes

Recall the Rayleigh fading nt × nr MIMO channel model with channel coherence
time T . We have seen that the codewords X need to be taken from some collection
of matrices X ⊂ Mat(nt × T ,C). Very naively, and this is our first definition, we
simply define a code to be a finite collection of such matrices.

Definition 3.13 Let C ⊂ R
× be a finite subset and k ∈ Z+. A space–time code is

the image of an injective map φ : Ck → Mat(nt × T ,C).

Having no structure, however, may lead to accumulation of the received signals.
To circumvent this problem, forcing a discrete and linear structure on the code is
helpful, e.g., a lattice structure. We give the more specialised definition of linear
space–time codes, which we will consider henceforth.

Definition 3.14 Let {Bi}ki=1 be an R-linearly independent set of matrices in
Mat(nt × T ,C). A linear space–time block code of rank k is a set of the form

X =
{

k∑
i=1

Bisi

∣∣∣∣∣ si ∈ S

}
,
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where S ⊂ Z is a finite signalling alphabet. In relation to the previous definition,
we have X = φ(Ck), where C = S.

As the matrices {Bi}ki=1 form a basis of a lattice � ⊂ Mat(nt × T ,C), X is
called a space–time lattice code of rank k = rk (�) ≤ 2ntT , the upper bound being
imposed by the R-dimension of Mat(nt × T ,C).

We henceforth refer to such a code X simply as a space–time code. As the
transmit power consumption is directly related to the Frobenius norm of the
transmitted codeword, the finite codebook is usually carved out to consist of a
desired number of lattice elements with smallest possible Frobenius norms.3

The code rate of X is defined as R = k/T real symbols per channel use.4 In
the literature, a code is often said to be full rate if all available degrees of freedom
from the transmitter’s point of view are utilised, i.e., k = 2ntT and R = 2ntT /nt =
2T . This is a consequence of mainly having considered symmetric square systems,
that is, the case nt = nr = T . Here, we do not restrict to symmetric systems and
define full rate as the maximum rate that still maintains the discrete structure at
the receiver and allows for linear detection methods such as sphere-decoding [41].
More precisely, for nr receive antennas we define full rate as 2nr . Hence, in order
to achieve full rate as defined in this chapter (avoiding accumulation points at the
receiver’s space), for nr receive antennas we should choose a lattice of rank 2nrT

(instead of 2ntT ).
Consider a space–time code X, and let X ∈ X be the transmitted codeword. A

receiver observes its channel output Y and, as it is assumed to know the channel
H and the noise is zero-mean, decodes a maximum-likelihood estimate of the
transmitted codeword by computing

X̂ = arg min
X∈X

‖Y − HX‖2
F . (3.2)

The probability P(X → X′) that a codeword X′ �= X is decoded when X was
transmitted is asymptotically upper bounded with increasing SNR as

P(X → X′) ≤
(

det
(
(X − X′)(X − X′)†

)
SNRnt

)−nr

.

From this upper bound, two design criteria can be derived [38]. The diversity
gain of a code as defined above relates to the minimum rank of (X − X′) over all

3The smallest Frobenius norms correspond to the shortest Euclidean norms of the vectorised
matrices. Directly, this would mean spherical constellation shaping. However, it is often more
practical to consider a slightly more relaxed cubic shaping. This is the case in particular when the
lattice in question is orthogonal, as then the so-called Gray-mapping [13] will give an optimal bit
labelling of the lattice points.
4In the literature, the code rate is often defined in complex symbols per channel use. We prefer
using real symbols, as not every code admits a Gaussian basis, while every lattice has a Z-basis.
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pairs of distinct code matrices (X,X′) ∈ X2. Thus, the minimum rank of X should
satisfy

min
X �=X′ rk

(
X − X′) = min{nt , T } = nt .

A code satisfying this criterion is called a full-diversity code.
On the other hand, the coding gain can be shown to be proportional to the

determinant det
(
(X − X′)(X − X′)†

)
. As a consequence, the minimum taken over

all pairs of distinct codewords,

min
X �=X′ det

(
(X − X′)(X − X′)†

)
,

should be as large as possible. For the infinite code

X∞ =
{

k∑
i=1

siBi

∣∣∣∣∣ si ∈ Z

}
,

we define the minimum determinant as the infimum

min(X∞) := inf
X �=X′ det

(
(X − X′)(X − X′)†

)
.

If min(X∞) > 0, i.e., the determinants do not vanish as the code size increases,
the code is said to have the non-vanishing determinant property.

We assume henceforth that the number of transmit antennas and channel delay
coincide, nt = T =: n. Given a lattice � ⊂ Mat(n,C), we have by linearity

min(�) = inf
0 �=X∈�

|det(X)|2.

This implies that any lattice � with non-vanishing determinants can be scaled so
that min(�) achieves any wanted nonzero value. Consequently, the comparison of
two different lattices requires some sort of normalisation. Let � be a full lattice with
volume vol (�). The normalised minimum determinant and normalised density of
� are the normalised quantities

δ(�) = min(�)

vol (�)
1

2n

; η(�) = min(�)2n

vol (�)
,

and satisfy the relation δ(�)2 = η(�)
1
n . Thus, for a fixed minimum determinant,

the coding gain can be increased by maximising the density of the code lattice.
Or, the other way around, for a fixed volume, the coding gain can be increased by
maximising the minimum determinant of the lattice.
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3.3.2.2 Constructions from Cyclic Division Algebras

We move on to illustrate how space–time codes satisfying the two introduced criteria
can be designed. We begin by ensuring full diversity, to which end the following
result is helpful.

Theorem 3.6 ([34, Prop. 1]) LetK be a field andD an index-n divisionK-algebra
with a maximal subfieldL. Any finite subsetX of the image of a ring homomorphism
φ : D 	→ Mat(n, L) satisfies rk

(
X − X′) = n for any distinct X,X′ ∈ X.

This leads to a straightforward approach for constructing full-diversity codes,
namely by choosing the underlying structure to be a division algebra. In the same
article, cyclic division algebras were proposed for code construction as a particular
example of division algebras. The ring homomorphism φ is the link between
the division algebra and a full-diversity space–time code, as we illustrate in the
following.

Let C = (L/K, σ, γ ) be a cyclic division algebra of degree n. The left-
regular representation ρ : C → Mat(n,C) is an injective ring homomorphism (cf.
Definition 3.8 and the discussion beneath). We identify elements in C with elements
in Mat(n,C) via ρ. This leads to the following definition.

Definition 3.15 Let C be an index-n cyclic division algebra with left-regular
representation ρ : C → Mat(n,C). A space–time code constructed from C is a
finite subset

X ⊂ ρ(C).

To be consistent with Definition 3.14, let {Bi}ki=1 ⊂ Mat(n,C) with k ≤ 2n2 be
a set of Q-linearly independent matrices in ρ(C). For a fixed signalling alphabet
S ⊂ Z, symmetric around the origin, the space–time code X is of the form

X =
{

k∑
i=1

siBi

∣∣∣∣∣ si ∈ S

}
.

If C admits a basis over Z[i], we may also consider the lattice with respect to its
Z[i]-basis, and the signalling alphabet will then be a subset in Z[i].

Note that, given an element X = ρ(x), where x ∈ C, we have that det(X) =
det(ρ(x)) ∈ K . We can however restrict to certain subrings of the cyclic division
algebra, for instance an order �. For any x ∈ �, we have det(ρ(x)) ∈ OK . This
yields |det(ρ(x))| ≥ 1 for K = Q or K an imaginary quadratic number field. Then,
we can consider finite subsets of ρ(�) as space–time lattice codes guaranteeing
non-vanishing determinants (cf. Remark 3.2).

Example 3.12 Consider a MIMO system with n = nt = T = 2, and consider the
index-2 number field extension L/K = Q(i,

√
5)/Q(i). The ring of integers of L

is OL = Z[i, θ ] with θ = 1+√
5

2 , and we pick the relative integral basis {1, θ} of
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OL over OK = Z[i]. The Golden code [5] is constructed from the cyclic division
algebra

G = (L/K, σ, γ ) ∼= (5, γ )Q(i)

with σ : √
5 	→ −√

5 and γ ∈ Q(i) non-zero and such that γ �= NmL/K (l) for any
l ∈ L. We pick γ = i, leading to a (left regular) matrix representation of G of the
form

X = ρ(x) =
[
x0 + θx1 i(x2 + σ(θ)x3)

x2 + θx3 x0 + σ(θ)x1

]

= x0

[
1 0
0 1

]
+ x1

[
θ 0
0 σ(θ)

]
+ x2

[
0 i

1 0

]
+ x3

[
0 iσ (θ)

θ 0

]
,

where xi ∈ K .
The algebra G is a division algebra by Theorem 3.5, so that the Golden code

is indeed a full-diversity space–time code. Moreover, by restricting the codewords
to the natural order �nat by choosing xi ∈ Z[i] guarantees the non-vanishing
determinant property (cf. Remark 3.2).

The actual Golden code lattice is a twisted version of ρ(�nat ) in order to
get an orthogonal lattice. The twisting does not affect the normalised minimum
determinant.

3.4 Codes with Reduced ML Decoding Complexity

Using multiple antennas for increased diversity—and additionally enabling tempo-
ral diversity—comes at the cost of a higher complexity in decoding. The worst-case
complexity of maximum-likelihood (ML) decoding is upper bounded by that of
exhaustive search, and is often computationally too expensive for practical use for
higher-dimensional code lattices. A fast-decodable space–time code is, in colloquial
terms, simply a space–time code whose worst-case ML decoding complexity is
lower than that of exhaustive search.

Yet, independently of the actual decoder used, the ML decoding complexity of
a space–time code can sometimes be reduced by algebraic means, allowing for
parallelisation in the ML search. If the underlying code lattice is of rank k, this
requires in principle joint decoding of k information symbols. One way to achieve
fast-decodability (this is also how we define fast decodability more formally below)
is then to reduce the dimensionality of the (e.g., sphere) decoder, that is, to enable
parallelisation where each parallel set contains less than k symbols to be jointly
decoded.

In this section we introduce the technique of ML decoding and revise criteria
for a space–time code to be fast-decodable. We further specify different families of
fast-decodable codes and study their potential decoding complexity reduction.
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3.4.1 Maximum-Likelihood Decoding

In the previous sections, we have seen what properties a space–time code should
exhibit to potentially ensure a reasonable performance, at least in terms of reliability.
There are however more aspects of the communication process which need to
be taken into consideration. Orthogonal lattices allow for efficient encoding of
the information symbols and bit-labelling of the codewords, while not necessarily
yielding the best possible error performance. On the other hand, a too complicated
lattice structure makes it more complex to encode a signal in the first place, and may
require brute force bit labelling of the codewords.

On the receiver’s side, the structure of the code lattice determines the complexity
of the decoding process. Indeed, as already mentioned, the major bottleneck in
effective implementation of algebraic space–time codes has been their decoding
complexity. The concept of fast-decodability was introduced in [9] in order to
address the possibility for reducing the dimensionality of the ML decoding problem
(cf. (3.2)) without having to resort to suboptimal decoding methods.

Given a finite signalling alphabet S ⊂ Z, the ML decoding complexity of a
rank-k space–time code X is defined as the minimum number of values that have
to be computed for finding the solution to (3.2). The upper bound is the worst-case
decoding complexity that we denote by D(S), which for its part is upper bounded by
the exhaustive search complexity, D(S) ≤ |S|k . The following definition is hence
straightforward.

Definition 3.16 A space–time code X is said to be fast-decodable if its ML
decoding complexity is upper bounded by

D(S) = c|S|k′
,

where k′ < k is the number of symbols to be jointly decoded and c ≤ k is a constant
describing the number of parallel symbol groups to be decoded. If c = k, this means
that we can decode symbol-wise (k′ = 1) with linear complexity. We refer to k′ as
the complexity order.

We will mostly drop the constant c in the rest of the chapter and concentrate
only on the order k′, and also by abuse of notation write D(S) = |S|k′

without the
constant.

Now let us proceed to investigate how to determine the complexity order of a
space–time code X. Let {Bi}ki=1 be a basis of X over Z, and X ∈ X the transmitted
signal. Recall the isometry (3.1), which allows us to identify the space–time code
lattice with a lattice in Euclidean space. In addition, for c ∈ C let

c̃ =
[

Re(c) −Im(c)

Im(c) Re(c)

]
.
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From the channel output Y = HX + N , define the matrices

B = [
ι(B1) · · · ι(Bk)

] ∈ Mat(2ntT × k,R),

BH = [
ι(HB1) · · · ι(HBk)

] ∈ Mat(2nrT × k,R).

The equivalent received codeword under the isometry can be expressed as ι(HX) =
BH s for a coefficient vector st = (s1, . . . , sk) ∈ Sk , and we get an equivalent
vectorized channel equation

ι(Y ) = BH s + ι(N)

= (IT ⊗ H̃ )Bs + ι(N),

where H̃ = (h̃ij )i,j and ⊗ denotes the Kronecker product.
We go on to perform QR-decomposition on BH , or equivalently on (IT ⊗ H̃ )B.

We write BH = QR with Q ∈ Mat(2nrT × k,R) unitary and R ∈ Mat(k,R) upper
triangular. More precisely, if we write

BH = [
b1 · · · bk

]
, Q = [

q1 · · · qk

]
,

the matrix R is precisely given by

R =

⎡
⎢⎢⎢⎣

‖r1‖ 〈q1, b2〉 〈q1, b3〉 · · · 〈q1, bk〉
0 ‖r2‖ 〈q2, b3〉 · · · 〈q2, bk〉
...

. . .
...

0 0 · · · 0 ‖rk‖

⎤
⎥⎥⎥⎦ ,

where

r1 = b1; ri = bi −
i−1∑
j=1

〈qj , bi〉
〈qj , qj 〉qj ; qi = bi

‖bu‖ .

Since the receiver has channel state information, and as the noise is zero-mean,
the decoding process, as we have already seen, requires to solve the minimisation
problem

X̂ = arg min
X∈X

‖Y − HX‖2
F .

Using the QR decomposition, we can solve the equivalent problem

ŝ = arg min
s∈Sk

‖ι(Y ) − BH s‖2 = arg min
s∈Sk

‖Q†ι(Y ) − Rs‖2,

a problem which can be solved using a real sphere-decoder [41]. It is now clear
that the structure of the matrix R determines the complexity of decoding. With
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zero entries at specific places, the involved variables can be decoded independently
of each other, allowing for parallelisation in the decoding process, and potentially
reducing the decoding complexity.

Moreover, different orderings of the weight matrices Bi , or equivalently of the
symbols si , result in different zero patterns in the matrix R. An algorithm for
the optimal ordering of the weight matrices resulting in the minimum possible
decoding complexity is given in [20], and was implemented in [18]. We use
the implementation found in the latter article for the explicit computation of the
decoding complexity reduction of the example codes exposed in the remaining of
this section.

Before we move on to define more specialized families of fast-decodable codes,
we present the usual approach to give sufficient conditions for a code to be fast-
decodable. This so-called Hurwitz-Radon quadratic form approach is discussed
in [19, 20, 36], among others. The idea behind the Hurwitz-Radon approach on
which the quadratic form is based is to give a criterion for when two variables of
the considered code can be decoded independently. More specifically, the variables
si, sj can be decoded independently if their corresponding weight matrices Bi, Bj

are mutually orthogonal, i.e.,

BiB
†
j + BjB

†
i = 0.

To be more precise, we give the following result

Proposition 3.1 ([36, Thm. 2][8, Thm. 1]) Let X be a space–time code of rank k

with weight matrices {Bi}ki=1. The matrices Bi and Bj are mutually orthogonal, if
and only if the columns bi and bj of BH are orthogonal.

In particular, the entry (i, j) of the associated matrix R is zero. Relating to
this condition, the Hurwitz-Radon quadratic form is a tool which allows to deduce
the actual ML decoding complexity of a space–time code based on the mutually
orthogonality of the weight matrices. In particular, the criterion based on the
quadratic form shows that fast decodability can be achieved solely by designing the
weight matrices cleverly, and is independent of the channel and number of antennas.
We give the following definition.

Definition 3.17 Let X be a space–time code of rank k, and let X ∈ X. The Hurwitz-
Radon quadratic form is the map

Q : X → R,

X =
k∑

i=1

Bisi 	→
∑

1≤i≤j≤k

sisjmij ,

where mij := ‖BiB
†
j + BjB

†
i ‖2

F .

Note that Bi, Bj are mutually orthogonal if and only if mij = 0.
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3.4.1.1 Multi-Group Decodable Codes

We begin with the family of multi-group decodable codes.

Definition 3.18 Consider a space–time code X defined by the weight matrices
{Bi}ki=1.

(i) The code is g-group decodable if there exists a partition of {1, . . . , k} into g

non-empty subsets �1, . . . , �k such that for i ∈ �u, j ∈ �v with u �= v, the
matrices Bi and Bj are mutually orthogonal.

(ii) The code is conditionally g-group decodable if there exists a partition of
{1, . . . , k} into g+1 non-empty subsets �1, . . . , �g, � such that for i ∈ �u, j ∈
�v with 1 ≤ u < v ≤ g, the matrices Bi and Bj are mutually orthogonal.

The family of codes which we refer to as conditionally g-group decodable codes
are in the literature also known as fast ML decodable codes. We use the terminology
of conditionally g-group decodable so as to not confuse the general notion of fast
decodability with this specific family of fast-decodable codes.

In the following, we consider a space–time code X with weight matrices {Bi}ki=1
and corresponding real information symbols s1, . . . , sk ∈ S. For X g-group
decodable or conditionally g-group decodable, we may without loss of generality
order the variables according to the g groups �1, . . . , �g , i.e.,{

s1, . . . , s|�1|
} ∈ �1,{

s|�1|+1, . . . , s|�1|+|�2|
} ∈ �2,

...⎧⎨
⎩sg−1∑

i=1
|�i |+1

, . . . , sg−1∑
i=1

|�i |+|�g |

⎫⎬
⎭ ∈ �g.

(3.3)

We have the following result, which will be helpful in determining the decoding
complexity of a code (cf. Theorem 3.7).

Proposition 3.2 ([19, Lemma 1]) Let X be a g-group decodable space–time code,
and let M = (mij )i,j be the Hurwitz-Radon quadratic form matrix (cf. Definition
3.17) and R = (rij )i,j the R-matrix from the QR decomposition of BH . Then,
mij = rij = 0 for i < j whenever si ∈ �u and sj ∈ �v with u �= v. In particular,
the R-matrix takes the form

R =
⎡
⎢⎣

D1
. . .

Dg

⎤
⎥⎦ ,

where Di ∈ Mat(|�i |,R) is upper triangular, 1 ≤ i ≤ g, and the empty spaces are
filled with zeros.
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Example 3.13 The first example we give is the complexity order of the Alamouti
code XA (cf. Sect. 3.2). We recall that this code consists of codewords

X =
[
x1 + ix2 −(x3 − ix4)

x3 + ix4 x1 − ix2

]
,

where (x1, x2, x3, x4) ∈ Z
4 are usually taken to be integers to guarantee non-

vanishing determinants.
The R-matrix associated with this code is in fact a diagonal 4 × 4 matrix with

equal diagonal entries. Hence, XA is 4-group decodable, and exhibits a complexity
order k′ = 1. In other words, it is single-symbol decodable.

Example 3.14 We recall the code constructed for multiple-access channels in [3,
Ex. 6]. Consider the cyclic division algebra

C =
(

F(
√−3, i)/F (i), σ,− 2√

5

)
,

where F = Q(
√

5) and σ : √−3 	→ −√−3 but fixes F(i). Let τ be a generator of
the cyclic Galois group Gal(F (i)/F ), i.e., τ (i) = −i. Let us extend the action of τ

from F(i) to F(i,
√−3,

√−γ ) by letting it act as identity on both
√−3 and

√−γ ,
as justified by the isomorphism extension theorem. Consider codewords of the form

X =
[
X1 τ (X1)

X2 τ (X2)

]
,

where τ acts element-wise, and for θ = 1+√−3
2 and k = 1, 2 we have

Xk =
[

xk,1 + xk,2θ −√−γ (xk,3 + xk,4σ(θ))√−γ (xk,3 + xk,4θ) xk,1 + xk,2σ(θ)

]

with xk,j ∈ OF(i). Hence, each Xk corresponds to the left-regular representation
of an element in the natural order �nat ⊆ C, after balancing the effect of γ by
spreading it on the diagonal.5

The complexity of exhaustive search for a signalling alphabet S is |S|32. The
above code, however, is 2-group decodable. In fact, the associated R-matrix is of
the form

R =
[
D1

D2

]

with Di ∈ Mat(16,R) upper triangular. The code hence exhibits a complexity order
k′ = 16, resulting in a reduction of 50%.

5This is a usual trick to balance the average energies of the codeword entries more evenly. See [3,
Ex. 1] for more details.
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In the case of conditionally g-group decodable codes, i.e., where we have a
further non-empty group �, the R matrix is not entirely block-diagonal. Instead,
we have the following result.

Proposition 3.3 ([7, Lem. 2]) Let X be a conditionally g-group decodable code,
and let M = (mij )i,j be the Hurwitz-Radon quadratic form matrix and R = (rij )i,j
the R-matrix from the QR decomposition. Then, mij = rij = 0 for i < j whenever
si ∈ �u and sj ∈ �v with 1 ≤ u < v ≤ g. In particular, the R-matrix takes the form

R =

⎡
⎢⎢⎢⎣

D1 N1
. . .

...

Dg Ng

N

⎤
⎥⎥⎥⎦ ,

with Di ∈ Mat(|�i |,R) and N ∈ Mat(|�|,R) are upper triangular, and Ni ∈
Mat(|�i | × |�|,R).

Example 3.15 As an example of a conditionally g-group space–time code we recall
the famous Silver code [16, 32]. The code is contained as a subset in the cyclic
division algebra

C = (Q(i,
√−7)/Q(

√−7), σ, γ ),

Note that σ is not just complex conjugation, as σ(i) = −i and σ(
√

7) = −√
7.

With γ = −1, the algebra is division, and the resulting code is fully diverse and has
non-vanishing determinants. The Silver code is however not directly constructed as
a subset of ρ(�) for � an order of C. Instead, it is defined as

XS = {X = XA(x1, x2) + T XB(x3, x4)| x1, . . . , x4 ∈ Z[i]} ,

where x1, . . . , x4 ∈ Z[i] and

T =
[

1 0
0 −1

]
; XA(x1, x2) =

[
x1 −x∗

2
x2 x∗

1

]
;

XB(x3, x4) = 1√
7

[
(1 + i)x3 + (−2 + 2i)x4 −(1 − 2i)x∗

3 − (1 + i)x∗
4

(1 + 2i)x3 + (1 − i)x4 (1 − i)x∗
3 + (−1 − 2i)x∗

4

]
.

In particular, a codeword is of the form

X = 1√
7

[
x1

√
7 + (1 + i)x3 + (−1 + 2i)x4 −x∗

2

√
7 − (1 − 2i)x∗

3 − (1 + i)x∗
4

x2
√

7 − (1 + 2i)x3 − (1 − i)x4 x∗
1

√
7 − (1 − i)x∗

3 − (−1 − 2i)x∗
4

]
.

Using the optimal ordering of the weight matrices, we find that the complexity
order of the Silver code is k′ = 5, resulting in a complexity reduction of 37.5%.
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Example 3.16 As a second example, we recall the Srinath-Rajan code, originally
proposed in [36] for a 4 × 2-MIMO channel. To the best of the authors’ knowledge,
this is the best performing code known for a 4 × 2 system among codes with the
same complexity order. We recall the construction illustrated in [37], where the
underlying algebraic structure was discovered.

Let L/F be a cyclic Galois extension with cyclic Galois group Gal(L/F) =
〈τ 〉, and consider a cyclic division algebra C′ = (L/F, τ, γ ′). Moreover, let C =
(L/K, σ, γ ) be a cyclic division algebra of degree n, where K �= F and τσ = στ .
We require γ ∈ K ∩ F and γ ′ ∈ F\K .

For the 4 × 2 Srinath-Rajan code, we make the choices

(i) L = Q(i,
√

5), K = Q(
√

5), F = Q(i).
(ii) C′ = (L/F, τ, γ ′) with γ ′ = i /∈ K and τ : √

5 	→ −√
5. This cyclic division

algebra gives rise to the Golden code.
(iii) C = (L/K, σ, γ ) with γ = −1 and σ : i 	→ −i.

Fix the F -basis {θ1, θ2} of L, with θ1 = 1 + i(1 − θ), θ2 = θ1θ ∈ OL, where
θ = 1+√

5
2 . Codewords are of the form

X =

⎡
⎢⎢⎣

x0 −σ(x1) iτ (x2) −iτσ (x3)

x1 σ(x0) iτ (x3) iτσ (x2)

x2 −σ(x3) τ (x0) −τσ (x1)

x3 σ(x2) τ (x1) τσ (x0)

⎤
⎥⎥⎦ ,

where xi = xi1θ1 + xi2θ2 with xij ∈ Z[i].
This code is conditionally 4-group decodable, where 8 real variables need to be

conditioned, and the remaining 8 variables can be grouped in 4 groups of 2. This
can be seen from the structure of the R-matrix, which for this code takes the form

R =

⎡
⎢⎢⎢⎢⎢⎣

D1 N1

D2 N2

D3 N3

D4 N4

N

⎤
⎥⎥⎥⎥⎥⎦ ,

where Di are 2 × 2 upper triangular matrices, Ni are 2 × 8 matrices, and N is an
8 × 8 upper triangular matrix. This yields a decoding complexity order k′ = 10.
This is a reduction in complexity of 37.5%.

To summarize, we observe that the R matrix allows to directly read the decoding
complexity of a g-group decodable and conditionally g-group decodable code. After
conditioning the last |�| variables, the variables in each group �i can be decoded
independently of the other groups. This is summarized in the following result.
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Theorem 3.7 The decoding complexity order of a (conditionally) g-group decod-
able code X with possibly empty subset � is given by

k′ = |�| + max
1≤i≤g

|�i |.

Unfortunately, there is a trade-off between the maximum rate and maximum
decoding complexity reduction of space–time codes. The recent work [8] treats
both these questions for multi-group decodable codes by analysing the mutually
orthogonality of matrices in central simple subalgebras of Mat(n,C) over number
fields. The authors show on one hand that there is a lower bound for the decoding
complexity of full-rate n × n space–time codes. They furthermore derive an upper
bound on the number of groups of a multi-group decodable code. We summarise the
results relevant to our chapter in the following theorem. For a more general setting,
see Theorems 7–8 and Corollary 16 in [8].

Theorem 3.8 ([8]) Let X be an n × n space–time code defined by the weight
matrices {Bi}2k2

i=1, and let S denote the employed real signalling alphabet.

(i) If X is full-rate, then the decoding complexity order is not better than n2 + 1.
(ii) If X is multi-group decodable and the weight matrices are chosen from a K-

central division algebra with K a number field, we have g ≤ 4.

3.4.1.2 Fast-Group Decodable Codes

Fast-group decodable codes combine the structure of the block-diagonal R-matrix
with further parallelisation within each of the independent groups. We start with the
formal definition.

Definition 3.19 Consider a space–time code X defined by the weight matrices
{Bi}ki=1. The code is fast-group decodable if

(a) There is a partition of {1, . . . , k} into g non-empty subsets �1, . . . , �g such that
whenever i ∈ �u, j ∈ �v with u �= v, the matrices Bi and Bj are mutually
orthogonal.

(b) In addition, for at least one group �i , we have 〈ql1, bl2〉 = 0, where l1 =
1, . . . Li − 1 and l2 = l1 + 1, . . . , Li with Li ≤ |�i |.

Consider a fast-group decodable space–time code X, and denote by �1, . . . , �g

the groups in which the corresponding symbols can be jointly decoded. Assume
that the variables s1, . . . , sk are without loss of generality ordered according to their
groups, as described above (3.3).

Proposition 3.4 ([19, Lem. 3]) Let X be a g fast-group decodable space–time
code, and let M = (mij )i,j be the Hurwitz-Radon quadratic form matrix and
R = (rij )i,j the R-matrix from the QR decomposition. Then, mij = rij = 0
for i < j whenever si ∈ �u, sj ∈ �v with u �= v. Furthermore, each group
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�i admits to remove Li levels from the sphere-decoder tree if mil1 il2
= 0, where

l1 = 1, . . . , Li − 1 and l2 = l1 + 1, . . . , Li , with Li ≤ |�i |. In particular, the
R-matrix takes the form

R =
⎡
⎢⎣

R1
. . .

Rg

⎤
⎥⎦ ,

where the empty spaces are filled with zeros. Each of the matricesRi ∈ Mat(|�i |,R)

is of the form

Ri =
[
Di Bi1

Bi2

]
,

with Di ∈ Mat(Li,R) is diagonal, Bi2 is a square upper triangular matrix and Bi1

is a rectangular matrix.

Theorem 3.9 The decoding complexity of a g fast-group decodable space–time
code X with real signalling alphabet S is given by

D(S) = |S| max
1≤i≤g

{|�i |−Li+1}
.

Example 3.17 The authors in [33] construct a 4×4 fast-group decodable code based
on an orthogonal space–time code. Codewords are of the form

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 + ix2 + ix15 + ix16 + ix17 x7 + ix8 + x13 + ix14 x3 + ix4 + x11 + ix12 −x5 − ix6 + x9 + ix10

−x7 + ix8 − x13 + ix14 x1 + ix2 + ix15 − ix16 − ix17 x5 − ix6 + x9 − ix10 x3 − ix4 − x11 + ix12

−x3 + ix4 − x11 + ix12 −x5 − ix6 − x9 − ix10 x1 − ix2 + ix15 − ix16 + ix17 x7 − ix8 − x13 + ix14

x5 − ix6 − x9 + ix10 −x3 − ix4 + x11 + ix12 −x7 − ix8 + x13 + ix14 x1 − ix2 + ix15 + ix16 − ix17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where xi are real symbols. We refer to the original paper for more details on the
explicit construction. The algebraic structure of this code allows to remove 5 levels
from the sphere decoding tree. In particular, the decoding complexity order is k′ =
12, resulting in a reduction in decoding complexity of ∼30%.

3.4.1.3 Block Orthogonal Codes

The last family of fast-decodable codes that we treat are block orthogonal codes.
We define this family by means of the structure of the associated R-matrix.
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Definition 3.20 Let X be a space–time code. The code is said to be g-block
orthogonal if the associated R-matrix has the structure

R =

⎡
⎢⎢⎢⎣

R1 B12 · · · B1g

R2 · · · B2g

. . .
...

Rg

⎤
⎥⎥⎥⎦ ,

where the empty spaces are filled with zeros and the matrices Bij are non-zero
rectangular matrices. Further, the matrices Ri are block diagonal matrices of the
form

Ri =
⎡
⎢⎣

Ui,1
. . .

Ui,ki

⎤
⎥⎦ ,

with each of the blocks Ui,j is a square upper triangular matrix.

Assuming that each of the matrices Ri has the same number of blocks k, we can
determine a block orthogonal code by the three parameters (g, k, p), where g is the
number of matrices Ri, k denotes the number of block matrices which compose
each matrix Ri and p is the number of diagonal entries in the block matrices Ui,j .

Example 3.18 The aforementioned Golden code is a (2, 2, 2) block orthogonal
code. However, as its decoding complexity order is k′ = 6 < 8 = k, it is not
fast-decodable by the requirement of a strict inequality as per Definition 3.16.

As an example of a fast-decodable block orthogonal code, we consider the
(2, 4, 2) block orthogonal code from [21]. For a signalling vector (s1, . . . , s16), a
codeword is of the form

X = X′(s1, . . . , s8) +

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤
⎥⎥⎦X′(s9, . . . , s16),

where

X′(s1, . . . , s8) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(s1 − s2) + i(s3 − s4) 0 (s7 − s8) + i(s5 − s6) 0

0 (s1 − s2) + i(s4 − s3) 0 (s8 − s7) + i(s6 − s5)

−(s7 + s8) + i(s5 + s6) 0 (s1 + s2) − i(s3 + s4) 0

0 (s7 + s8) − i(s5 + s6) 0 (s1 + s2) + i(s3 + s4)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Remark 3.3 Recall that the property of fast decodability relates to the reduction
in decoding complexity without resorting to suboptimal decoding methods. By
modifying the decoding algorithm used, the decoding complexity of certain codes
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can be lowered. For example, the main algorithm of [35] reduces the complexity
order of the Golden code from k = 6, corresponding to the complexity of ML-
decoding, to k′ = 4, while maintaining nearly-ML performance. The algorithm is
specific to the Golden code, but has been generalized to the 3 × 3 and 4 × 4 perfect
codes in, respectively, [2, 17].

In contrast to the previously introduced families, the approach via the Hurwitz-
Radon quadratic form does not capture the complexity reduction for block orthogo-
nal codes. This was recently addressed in [26], where relaxed conditions are derived
for classifying codes into the here treated families of fast-decodable codes. More
precisely, for block orthogonal codes we do not have an analogue of Proposition 3.3
or 3.4 relating the matrix M of the quadratic form to the R-matrix in the QR

decomposition of BH .

3.4.2 Inheriting Fast Decodability

Crucial for space–time codes to exhibit desirable properties is the underlying
algebraic framework. Constructing codes for larger number of antennas means
dealing with higher degree field extensions and algebras, which are harder to handle.
We briefly recall an iterative space–time code construction proposed in [25] which,
starting with an n × n space–time code, results in a new 2n × 2n space–time code
with the same code rate and double (lattice) rank. The advantage of this construction
is that when applied carefully, the resulting codes inherit good properties from the
original space–time codes.

As the general setup, consider the tower of extensions depicted in Fig. 3.2.
The cyclic Galois group of L/K is generated by σ , i.e., Gal(L/K) = 〈σ 〉, and

we denote the left-regular representation by ρ : C → Mat(n, L). Let τ ∈ Aut(L) be
an automorphism of L, and make the following assumptions:

τ (γ ) = γ ; τσ = στ. (3.4)

Fig. 3.2 Tower of extensions
for the MIMO example code C = (L/K, σ, γ)

L

n

K

nCyclic Galois

Q

Finite Galois
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By the above assumptions we have τρ = ρτ . Moreover, τ can be extended to an
automorphism of C and ρ(C), respectively, by

τ

(
n−1∑
i=0

eixi

)
=

n−1∑
i=0

eiτ (xi); τ
(
(aij )i,j

) = (
τ (aij )

)
i,j

.

We can now fix an element θ ∈ C, as well as a Q-automorphism of L, τ ∈
AutQ(L), and have the following important definition.

Definition 3.21 Let K be a finite Galois extension of Q and C = (L/K, σ, γ ) be a
cyclic division algebra of degree n. Fix θ ∈ C and τ ∈ AutQ(L) as above.

(a) Define the function

ατ,θ : Mat(n, L) × Mat(n, L) → Mat(2n,L)

(X, Y ) 	→
[
X θτ(Y )

Y τ(X)

]
.

(b) If θ = ζ θ ′ is totally real or totally imaginary, θ ′ > 0 and ζ ∈ {±1,±i}, define
the alike function

α̃τ,θ : Mat(n, L) × Mat(n, L) → Mat(2n,L)

(X, Y ) 	→
[

X ζ
√

θ ′τ (Y )√
θ ′Y τ(X)

]
.

The defined maps restrict to C × C → Mat(2,C) by identifying x, y ∈ C with
their representation X = ρ(x), Y = ρ(y).

Suppose that the algebra C gives rise to a rank-k space–time code X defined
via matrices {Bi}ki=1. Then, the matrices

{
ατ,θ (Bi, 0), ατ,θ (0, Bi)

}k
i=1 (or applying

α̃τ,θ (·, ·), respectively) define a rank-2k code

Xit =
{

k∑
i=1

[
siατ,θ (Bi, 0) + sk+iατ,θ (0, Bi)

]∣∣∣∣∣ si ∈ S

}
.

We summarise the main results of [25] in the following proposition.

Proposition 3.5 ([25, Thm. 1, Thm. 2]) Let C = (L/K, σ, γ ) be a cyclic division
algebra giving rise to a rank-k space–time code X defined by the matrices {Bi}ki=1.
Assume that τ ∈ AutQ(L) commutes with σ and complex conjugation, and further
τ (γ ) = γ, τ 2 = id. Fix θ ∈ K〈τ 〉, where K〈τ 〉 is the subfield of K fixed by τ .
Identifying an element of C with its left-regular representation ρ, we have:

(i) The image I = ατ,θ (C,C) is an algebra and is division if and only if θ �= zτ(z)

for all z ∈ C. Moreover, for any ατ,θ (x, y) ∈ I, we have det(ατ,θ (x, y)) ∈
K〈τ 〉.
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(ii) If in addition θ = ζ θ ′ is totally real or totally imaginary, the image
Ĩ = α̃θ (C,C) retains both the full-diversity and non-vanishing determinant
property. If for some i, j, BiB

†
j + BjB

†
i = 0, we have

α̃τ,θ (Bi, 0)α̃τ,θ (Bj , 0)† + α̃τ,θ (Bj , 0)α̃τ,θ (Bi, 0)† = 0 ,

α̃τ,θ (0, Bi)α̃τ,θ (0, Bj )
† + α̃τ,θ (0, Bj )α̃τ,θ (0, Bi)

† = 0.

The second part of Proposition 3.5, in particular, states that under appropriate
conditions, fast decodability is inherited from the rank-k space–time code X to the
iterated code Xit.

3.5 Explicit Constructions

All the notions and concepts introduced in the previous sections lead to this last
part. To conclude the chapter, we focus on explicit construction methods for fast-
decodable space–time codes.

Throughout this chapter, we have provided multiple examples of space–time
codes with reduced ML decoding complexity. Such examples can sometimes be
found by chance, but most often a clever design gives rise to infinite families of
codes with reduced decoding complexity. In the following, we turn our attention
to communication setups for which such general results are known. To the best of
the authors’ knowledge, the constructions presented here are the only general fast-
decodable algebraic constructions found in literature.

3.5.1 Asymmetric Space–Time Codes

Above we have exemplified the 4 × 2 Srinath-Rajan code, the best performing code
for this channel among codes with the same complexity order. Here, we discuss
a methodology for constructing well-performing fast-decodable space–time codes
for the 4 × 2 MIMO channel, offering a reduction in decoding complexity of up to
37.5%.

The motivation behind the following construction is the structure of the Alamouti
code (cf. Example 3.13). As we have seen, the decoding complexity of the Alamouti
code equals the size of the employed real signaling alphabet, D(S) = |S| (or more
precisely D(S) = 4|S| as we are decoding each of the 4 real symbols in parallel).
Motivated by this observation, it is of interest to study space–time codes which are
subsets of the rings Mat(k,H). This motivates the next result.
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Theorem 3.10 ([40]) Let C be a cyclic division algebra of degree n, with center K

of signature (r, s), r + 2s = m. There exists an injection

ψ : C ↪→ diag
(
Mat(n/2,H)w × Mat(n,R)r−w × Mat(n,C)s

)
,

where each n × n block is mapped to the corresponding diagonal block of a matrix
in Mat(mn,C). Here, w is the number of places which ramify in C.

In particular, C can be embedded into Mat(n/2,H) if

(i) The center K is totally real, i.e., r = m.
(ii) The infinite places of K are ramified in C.

The ramification assumptions of places in the considered algebra are rather
technical, and the interested reader is referred to [40] for further details.

While the above result guarantees the existence of an injection into Mat(n/2,H)

when the conditions are satisfied, it does not make the embedding explicit. This is
achieved in the following result.

Theorem 3.11 ([40, Prop. 11.1]) Let C = (L/Q, σ, γ ) be a cyclic division algebra
satisfying the requirements from Theorem 3.10. Given for x ∈ C an element X =
ρ(x) ∈ X, where X is a space–time code arising from the algebra C, we have an
explicit map

ψ : C → Mat(nt /2,H)

X 	→ BPX(BP)−1,

where P = (pij )i,j is a permutation matrix with entries

pij =

⎧⎪⎪⎨
⎪⎪⎩

1 if 2 � i and j = i+1
2 ,

1 if 2 | i and j = i+nt

2 ,

0 otherwise,

and B = diag(
√|γ |, |γ |, . . . ,√|γ |, |γ |).

We now turn our attention to the 4 × 2 MIMO channel. Given the results
inroduced above, we recall a construction method for fast-decodable space–time
codes for this channel.

Theorem 3.12 ([40]) Let C = (K/Q, σ, γ ) be a division algebra of index 4, where
K is a totally complex field containing a totally real field of index 2. Assume that

(i) [K : Q] = 4,
(ii) γ, γ 2 �∈ NmK/Q

(
K×),

(iii) Gal(K/Q) = 〈σ 〉 with σ 2 complex conjugation,
(iv) γ < 0.
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Let OK = Zw1 + Zw2 + Zw3 + Zw4 be the ring of integers of K , and consider
the left regular representation ρ of x ∈ C, which under the above assumptions can
be written as

ρ : x 	→

⎡
⎢⎢⎣

x1 γ σ(x4) γ x∗
3 γ σ(x2)

∗
x2 σ(x1) γ x∗

4 γ σ(x3)
∗

x3 σ(x2) x∗
1 γ σ(x4)

∗
x4 σ(x3) x∗

2 σ(x1)
∗

⎤
⎥⎥⎦

Here, xi = g4i−3w1 + g4i−2w2 + g4i−1w3 + g4iw4 for i = 1, . . . , 4 with gj ∈ Q

for all j , and ∗ denotes complex conjugation.
For ψ the explicit map given in Theorem 3.11, ψ(�) is a lattice of dimension 16

in Mat(4,C) with the non-vanishing determinant property. For a signaling alphabet
S, codes arising from this construction have a decoding complexity order of 10 ≤
k′ ≤ 16, that is, enjoy a reduction in decoding complexity of up to 37.5%.

Example 3.19 The MIDOA4 code is a space–time code constructed in [40]. It is in
fact a (2, 2, 4) block orthogonal code, constructed from an algebra over the fifth
cyclotomic field Q(ζ5). Consider the cyclic division algebra

C =
(
Q(ζ5)/Q, σ,−8

9

)
,

where σ : ζ5 	→ ζ 3
5 .

Fix the Z-basis
{
1 − ζ5, ζ5 − ζ 2

5 , ζ 2
5 − ζ 3

5 , ζ 3
5 − ζ 4

5

}
of OK . Consider a maximal

order � of C, and ψ the conjugation given in Theorem 3.11. Under this conjugation,
codewords are of the form

X(x1, . . . , x4) =

⎡
⎢⎢⎣

x1 −r2x∗
1 −r3σ(x4) −rσ (x3)

∗
r2x2 x∗

1 rσ (x3) −r3σ(x4)
∗

rx3 −r3x∗
3 σ(x1) −r2σ(x2)

∗
r3x3 rx∗

2 r2σ(x1) σ (x1)
∗

⎤
⎥⎥⎦ ,

where r =
(

8
9

)1/4
and

xi = g4i−3(1 − ζ5) + g4i−2(ζ5 − ζ 2
5 ) + g4i−1(ζ

2
5 − ζ 3

5 ) + g4i (ζ
3
5 − ζ 4

5 ),

σ (xi) = g4i−3(1 − ζ 3
5 ) + g4i−2(ζ

3
5 − ζ5) + g4i−1(ζ5 − ζ 4

5 ) + g4i (ζ
4
5 − ζ 2

5 ).

The decoding complexity order of this code is k′ = 12, resulting in a reduction
in decoding complexity of 25%.

By choosing the basis

{
1,

ζ5+ζ−1
5

2 ,
ζ5−ζ−1

5
2 ,

ζ 2
5 −ζ−2

5
4

}
of OK instead, the decoding

complexity can be further reduced. However, this is no longer an integral basis,
and the price to pay is a smaller minimum determinant, yielding a slightly worse
performance.
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3.5.2 Distributed Space–Time Codes

The second setting we consider is a cooperative communications scenario. More
concretely, we consider the communication of (M + 1) users with a single
destination, where every user as well as the destination can be equipped with either
a single antenna or multiple antennas. In this scenario, enabling cooperation and
dividing the allocated transmission time allows for the M inactive users to aid
the active source in communicating with the destination by acting as intermediate
relays. For more details on the transmission model we refer to [3, 42]. While this
is a more involved transmission scheme, from the destinations point of view it can
be modeled as a virtual MIMO channel. Assume that the destination is equipped
with nr receive antennas. Setting T = n := 2Mnt , where nt is the number
of transmit antennas available at each transmitter, we get the familiar channel
equation Y = HX + N , where X ∈ Mat(n,C) and Y ∈ Mat(nr × n,C) are the
(overall) transmitted and received signals, and the structure of the channel matrix
H ∈ Mat(nr × n,C) is determined by the different relay paths.6

Furthermore, it is discussed in [42] that for this channel model, block-diagonal
space–time codes, that is, where each X ∈ X takes the form

X = diag (Xm)m =
⎡
⎢⎣

X1
. . .

XM

⎤
⎥⎦

with Xm ∈ Mat(2nt ,C) are good choices for this channel if they additionally respect
the usual design criteria such as non-vanishing determinants. To achieve this block
structure, the following function is crucial.

Definition 3.22 Consider an M-relay channel as discussed above. Given a space–
time code X ⊂ Mat(2nt ,C) and a suitable function η of order M (i.e., ηM(X) = X),
define the function

�η,M : X → Mat(2ntM,C)

X 	→ diag
{
ηi(X)

}M−1

i=0
=
⎡
⎢⎣

X

.. .

ηM−1(X)

⎤
⎥⎦ .

We begin with the case where nt = 1 and nr ≥ 2. Consider the tower of
extensions depicted in Fig. 3.3, where ξ is taken to be totally real, m ∈ Z≥1 and
a ∈ Z\ {0} are square-free.

6As remarked in Sect. 3.4.1, the property of fast decodability is independent of the channel. Hence,
we omit details on the structure of the effective channel.
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Fig. 3.3 Tower of extensions
for the SIMO code
construction

C = (a, γ)K
∼= (L/K, σ a − a, γ)

L = K(
√√

a)

2

K = F (ξ)

2

F = Q(
√√−m)

M

Q

2

Q(
√√

a)

2M

2

Assume that C is division. Let σ be the generator of Gal(L/K), and fix a
generator η of Gal(K/F).

To have balanced energy and good decodability, it is necessary to slightly modify
the matrix representation of the elements in C, thus for � ⊂ C an order, instead
of representing x = x0 + √

γ x1 ∈ � by its left-regular representation ρ(x), we
define the following similar and commonly used function that maintains the original
determinant,

ρ̃ : x 	→
[

x0 −√−γ σ(x1)√−γx1 σ(x0)

]
. (3.5)

Theorem 3.13 ([3, Thm. 1]) Arising from the algebraic setup in Fig. 3.3 with a <

0, γ < 0, define the set

X = {
�η,M(X)

}
X∈ρ̃(�)

=
{

diag
(
ηi(X)

)M−1

i=0

∣∣∣∣X ∈ ρ̃(�)

}
.

The code X is of rank 8M , rate R = 4 real symbols per channel use and has
the non-vanishing determinant property. It is full-rate if nr = 2. Moreover, X is
conditionally 4-group decodable, and its decoding complexity order can be reduced
from k = 8M to k′ = 5M , resulting in a complexity reduction of 37.5%.

Example 3.20 For M = 2 relays and ξ = √
5, consider the tower of extensions in

Fig. 3.4. The algebra C is division [3, Exp. 1].
Let x = x0 + √−γ x1 with x0, x1 ∈ OL and X = ρ̃(x). For 〈η〉 = �(K/F),

define the 2-relay code

X = {
�η,2(X)

}
X∈ρ̃(OL)

=
{

diag
(
ηi(X)

)1

i=0
=
[
X

η(X)

]∣∣∣∣X ∈ ρ̃(OL)

}
.
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C = −3, − 2√√
5 K

∼= L/K, σ : −3 − −3, − 2√√
5

L = K(
√√−3)

2

K = Q(i, ξ)

2

F = Q(i)

2

Q

2

Q(
√√−3)

4

2

Fig. 3.4 Tower of extensions for the SIMO example code

The resulting code is a fully diverse code of rank 16 with non-vanishing determi-
nants, which is conditionally 4-group decodable having decoding complexity order
k′ = 10 in contrast to k = 16.

We move on to the case where the transmitter and each relay is now equipped
with nt ≥ 1 antennas. We require that the number of relays is expressible as M =
(p − 1)/2, with p ≥ 5 prime. Let henceforth nt = 2. Assume further a single
destination with nr ≥ 1 antennas, and consider the tower of extensions in Fig. 3.5,
where K = Q(ξ) = Q

+(ζp) ⊂ Q(ζp) is the maximal real subfield of the pth
cyclotomic field, that is, ξ = ζp + ζ−1

p , and a ∈ Z\ {0} is square-free. Let 〈σ 〉 =
Gal(L/K) and 〈η〉 = Gal(L/F).

C a, γ K
∼= L/K, σ a − a, γ

L = K(
√√

a)

2

K = Q(ξ)

2

Q

MF = Q(
√√

a)

M

2

Fig. 3.5 Tower of extensions for the MIMO code construction
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Theorem 3.14 ([3, Thm. 2]) In the setup as in Fig. 3.5, choose a ∈ Z<0 such that
p = aOK is a prime ideal. Fix further γ < 0 and θ ∈ OK ∩ R

× = Z[ξ ] ∩ R
× such

that

• γ and θ are both non-square mod p,
• the quadratic form 〈γ,−θ〉L := l1γ − l2θ with l1, l2 ∈ L is anisotropic, i.e.,

evaluates to zero if and only if γ = θ = 0,

and further let τ = σ . Then, if � ⊂ C is an order, the distributed space–time code

X =
{

�η,M(α̃τ,θ (X, Y )) = diag
(
ηi(α̃τ,θ (X, Y ))

)M−1

i=0

∣∣∣∣X,Y ∈ ρ̃(�)

}

is a full-diversity space–time code of rank 8M , rateR = 2 real symbols per channel
use (hence full-rate for nr = 1), exhibits the non-vanishing determinant property
and is g-group decodable, with g ∈ {2, 4}. Its decoding complexity order is

k′ =
{

4M if a ≡ 1 mod 4,

2M if a �≡ 1 mod 4,

resulting in a reduction in complexity of 50% and 75%, respectively.

Example 3.21 We construct a 4-group decodable code for M = 3 relays, arising
from the tower of extensions depicted in Fig. 3.6, where ξ = ζ7 + ζ−1

7 and γ =
− 2

1+ξ
.

In the following, let τ = σ and 〈η : ξ 	→ ξ2 − 2〉 = � (L/F). Choose further
θ = 3(1 − ξ) = ζ θ ′, with ζ = −1 and θ ′ ∈ R>0, and let pmin(x, ξ) be the minimal
polynomial of ξ . With these choice of elements, the conditions from Theorem 3.14
are satisfied.

Fig. 3.6 Tower of extensions
for the MIMO example code C = L/K, σ : −5 − −5, − 2

1+ξ

L = Q(
√√−5, ξ)

2

K = Q(ξ)

2

Q

3F = Q(
√√−5)

3

2
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Let x ∈ � ⊂ C, and set ω = √−5. We define a space–time code X0 consisting
of codewords of the form

X = ρ̃(x) =
[

x1 + x2ω −√−γ (x3 + x4σ(ω))√−γ (x3 + x4ω) x1 + x2σ(ω)

]
,

where xi ∈ OK, 1 ≤ i ≤ 4. Next, we iterate X0 with the help of α̃(·, ·) to obtain
the set

Xit
0 =

{
α̃τ,θ (X, Y ) =

[
X ζ

√
θ ′τ (Y )√

θ ′Y τ(X)

]∣∣∣∣X,Y ∈ ρ̃(�)

}

and finally adapt the iterated code to the 3-relay channel by applying the map η,
resulting in distributed space–time code

X =
{

�η,3(α̃τ,θ (X, Y )) = diag
(
ηj (α̃τ,θ (X, Y ))

)2

j=0

∣∣∣∣X,Y ∈ ρ̃(�)

}

The resulting relay code is fully diverse, exhibit the non-vanishing determinant
property and are fast-decodable. More concretely, X is 4-group decodable with
decoding complexity order k′ = 6 in contrast to k = 24, resulting in a complexity
reduction of 75%.

3.6 Conclusions

In this chapter, we have given an overview on the topic of fast decodability of
algebraic space–time codes. Traditionally, space–time codes have been developed
in the context of point-to-point MIMO communications. However, with the devel-
opment of new communication protocols in order to accommodate different types of
applications and devices in modern wireless networks, so-called distributed space–
time codes have recently become a popular subject of research. Due to the nature
of the underlying communication protocols, such codes often exhibit a too high
decoding complexity for practical use. Following the ideas of fast-decodability
of more traditional space–time codes, this chapter aimed at giving an overview
on the subdivision of space–time codes into different families of so-called fast-
decodable codes. Moreover, we were particularly interested in the specific reduction
in decoding complexity offered by these codes.

While crucial for practical implementation, only few explicit construction meth-
ods of fast-decodable space–time codes can be found in literature. In this chapter,
we further recalled explicit constructions of asymmetric and distributed space–
time codes with reduced decoding complexity, accompanied by example codes to
illustrate the presented methods.

With the upcoming fifth generation (5G) wireless systems in mind, the develop-
ment of new constructions of suitable well-performing space–time codes offering
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complexity reduction is crucial for many applications, and opens up an interdisci-
plinary and rich research direction for future work.
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