
Mathematical Engineering

Victor Beresnevich
Alister Burr
Bobak Nazer
Sanju Velani   Editors

Number Theory 
Meets Wireless 
Communications



Mathematical Engineering

Series Editors
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Preface

Powerful techniques from various areas of Number Theory have played important
roles in breakthrough developments in areas of Wireless Communications. These
include the impact of geometry of numbers, Diophantine approximation and
algebraic number theory on lattice coding and interference alignment. This book
introduces and describes some of these developments as well as the techniques
that have made them possible. It lays particular emphasis on those that are at the
forefront of current research. The chapters are all written by leading researchers
in both areas. They present the state-of-the-art research, which illustrates the deep
interaction between number theory and wireless communications. Together, they
show that there is currently great scope to develop the mutual understanding of
methods and problems.

The book has been developed from lectures given at the international meeting
“Workshop on Interactions Between Number Theory and Wireless Communication”
held at the University of York in July 2016. Details, including list of participants,
programme and slides of talks, can be found at:

https://www.york.ac.uk/maths/events/2016/workshop-interactions-between-
number-theory-wirele/

The primary goal of the workshop was to inspire both early career and established
researchers to consolidate and build new and exciting bridges between Number
Theory and Wireless Communications. Naturally, this is also the overarching goal
of this book. With this in mind, we encouraged the speakers to develop their written
contributions in an expository way and to provide an overview of current tools and
developments. Each chapter thus foregrounds the main concepts behind the topic
under consideration while keeping technicalities to a bare minimum. The chapters
thus offer direct and accessible information about highly exciting current research
developments to researchers in both Number Theory and Communication Theory.
Breaking down the superficial “language barrier” between the two disciplines is key
to understanding the respective central problems and is the first step towards fruitful
collaboration and progress.

v

https://www.york.ac.uk/maths/events/2016/workshop-interactions-between-number-theory-wirele/
https://www.york.ac.uk/maths/events/2016/workshop-interactions-between-number-theory-wirele/


vi Preface

To the best of our knowledge, this book is the first volume jointly edited by
individuals working in Number Theory and Communication Theory. We hope
it provides a unique insight into key concepts, cutting-edge results, and modern
techniques that play an essential role in contemporary research. Great effort has
been made to present the material in a manner that is accessible to new researchers,
including Ph.D. students. The book will also be useful for established researchers
working in Number Theory or Wireless Communications who wish to broaden their
outlook and contribute towards the deep interplay between the two.

Many communication techniques involve choosing discrete sets of points that
represent information being sent over a communication channel. These discrete sets
represent a key element of codes and are often conveniently chosen to have a linear
structure. The presence of linear structure allows for efficient and low-complexity
decoding. Furthermore, it provides powerful properties that underpin state-of-the-
art techniques for managing interference and other challenges in wireless networks.
In number theory, discrete linear structures are natural objects of study within
the geometry of numbers and Diophantine approximation. Roughly speaking, the
geometry of numbers characterizes geometric properties (such as packing and
covering radii and Minkowski minima) of linear structures known as lattices. On
the contrary, Diophantine approximation studies the properties of linear maps on
such linear structures. The basis for the theory of Diophantine approximation
is Dirichlet’s classical theorem based on the Pigeonhole principle. The opening
chapter discusses the role it plays in the world of wireless communications. The
authors present an informal discussion of aspects of wireless communications via a
series of basic examples. These allow them to introduce a variety of concepts (such
as badly approximable, singular and well approximable points) and aspects (such
as probabilistic and manifolds theories) from Diophantine approximation while
explaining their role in wireless communications. In particular, they introduce a new
concept of jointly non-singular points and use it to improve a well-known result of
Motahari et al. regarding the Degrees of Freedom (DoF) of a two-user X-channel.
An overarching goal of Chap. 1 is to provide an answer to the question: What is the
role of number theory in the world of wireless communications?

Consider multiple transmitters and receivers that communicate with each other
across a shared wireless channel. The two main challenges to establishing reliable
communication between users are the noise introduced by the channel and the
interference between simultaneously transmitted signals. Over the past few decades,
experts in network information theory have strived to determine the fundamental
limits of reliable communication over multi-user channels. At the same time,
they attempted to realize network architectures that, in practice, could approach
these limits. In Chap. 2, the authors discuss the recent developments in network
information theory based on the use of lattice codebooks (i.e. codebooks that are
a subset of a lattice over R

n). The inherent linearity of lattice codebooks can
be effectively used as a building block for communication strategies that operate
beyond the performance available for classical coding schemes. In general, the
performance of these lattice-based strategies is determined by how closely the
channel coefficients can be approximated by integer coefficients. In other words, the
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performance is intertwined with the theory of Diophantine approximation. Overall,
this chapter provides a unified view of recent results that connect the performance
of the compute-and-forward strategy of recovering an integer-linear combination
of codewords to Diophantine approximation bounds. The chapter concludes by
highlighting scenarios in which novel applications of Diophantine approximation,
such as non-asymptotic approximation bounds over manifolds, have the potential to
yield new exciting results in network information theory.

With the roll out of the fifth-generation (5G) wireless systems, constructing
efficient space–time codes offering complexity reduction is crucial for many
applications including massive multiple-input multiple-output (MIMO) systems.
Traditionally, space–time codes have been developed in the context of point-to-point
MIMO communications. However, today’s wireless networks need to accommodate
numerous types of applications and devices. In view of this, the so-called distributed
space–time codes have become a prominent area of research. In practice, such
codes often exhibit a high decoding complexity. Algebraic number theory and
lattice theory provide a framework for overcoming this issue. In Chap. 3, the
authors give an overview on the topic of fast decodable algebraic space–time codes.
More precisely, the chapter provides a basic introduction to space–time coding
and brings to the forefront the powerful algebraic tools needed for the design and
construction of such codes. In particular, it describes the algebraic techniques used
for reducing the decoding complexity of both single-user and multiuser space–time
codes. The key lies in utilizing the carefully chosen underlying algebraic structure.
The necessary background to both the lattice theory and algebraic number theory
is provided. The chapter concludes by describing explicit construction methods
for fast-decodable algebraic space–time codes. These are crucial for practical
implementation.

The problem of finding the densest arrangement of spheres in an n-dimensional
Euclidean space has been extensively pursued in mathematics. It is a classical and
central problem in the geometry of numbers. The celebrated Minkowski–Hlawka
theorem (dating back to 1943) states that there is a lattice in R

n, such that the
corresponding best packing of spheres with centres at the lattice points has density
greater than ζ(n) 2−(n−1)—a constant dependent on the dimension. This is an
existence statement, and to date, excluding a handful of dimensions, no explicit
lattice construction achieving the Minkowski–Hlawka lower bound for the sphere
packing density is known. The proof uses probabilistic methods to analyse a random
ensemble of lattices rather than individual instances. Recent improvements to the
Minkowski-Hlawka lower bound exploit lattices with inherited algebraic structures.
For example, Venkatesh has successfully used the structure of cyclotomic number
field lattices to obtain a super-linear improvement. The sphere packing problem
has well-established and deep connections to coding theory. Indeed, building upon
the Shannon’s seminal work from 1948, it was shown in the nineties that the same
random ensembles used to produce lattices that give rise to the Minkowski–Hlawka
lower bound can be used to construct optimal lattice codes for the basic additive
white Gaussian noise (AWGN) communication channels. In other words, for such
channels the probabalistic strategy of Minkowski and Hlawka leads to the existence
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of capacity-achieving codes. Although the AWGN channel is a good model for
deep-space or satellite channels, which operate over a line of sight, modern wireless
communications call for more general models, which take into account the sending
of information propagated over different media (e.g. fading channels) via multiple
transmit and receive antennas (e.g. MIMO channels) and to various users (e.g. relay
networks). Such channels cannot be abstracted into a simple AWGN model and
require a different strategy. With this in mind, it is fruitful to consider lattices with
additional algebraic (multiplicative) structure, often inherited by the properties of
number fields. Indeed, the cyclotomic lattices exploited by Venkatesh play a crucial
role in some recent channel constructions. In Chap. 4, the authors start by providing
a self-contained exposition of random lattices and the sphere packing problem.
This includes both the classical aspects and the recent developments. Regarding the
latter, the use of algebraic number theory to utilize the structure of algebraic lattices
is brought to the forefront. A general construction that naturally incorporates a
number of important families of algebraic lattices (such as cyclotomic, Lipschitz and
Hurwitz lattices) is described. The emphasis then switches to describing how such
lattices can be applied to build effective, reliable and secure transmission schemes
for wireless communications. The main focus on the application side is threefold:
(i) to block fading, (ii) to certain forms of MIMO channels and (iii) to improving
information security.

As alluded to in the discussion above, one of the classical problems in informa-
tion and coding theory is that of designing codes that can approach the capacity of
the AWGN channel. One promising approach is to draw codewords from a lattice
and draw upon deep results from the geometry of numbers to establish performance
bounds. However, the AWGN channel model is not sufficient for modelling the
phenomena observed in wireless communication scenarios. Recent efforts have thus
shifted towards designing codes that can approach the capacity of fading channels,
which model the wireless medium via a random matrix multiplication of the channel
input followed by the addition of Gaussian noise. Here, it is also of interest to design
good lattice codebooks that can operate near the capacity. In Chap. 5, the authors
begin by reviewing the Hermite invariant approach to the design of lattice codes for
classical AWGN channels. They then propose a reduced Hermite invariant criterion
for the design of lattice codes for fading channels. Using this criterion, they are able
to translate the problem of operating within a constant gap of the fading capacity to
the problem of finding totally complex number fields with the smallest determinant.
Drawing upon powerful results from this area, they demonstrate the existence of
lattice codebooks that can operate within a constant gap of the fading capacity.
They then discuss the limitations of this approach and outline a promising direction
based on the construction of lattice codes from ideals. They conclude the chapter
with a discussion on the connection between the reduced Hermite invariant and
homogeneous forms.

A key property of the wireless medium is that a receiver’s observation can be
written as a linear superposition of all transmitted signals and Gaussian noise. By
employing codebooks based on nested lattices at each transmitter, this property
can be leveraged in order to allow the receiver to directly recover a function of
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the codewords. The compute-and-forward framework was proposed to characterize
the achievable rates for recovering integer-linear combinations, and lattice network
coding was subsequently proposed to connect this framework to module theory from
abstract algebra, which in turns allows for a much richer set of lattice codebook
constructions. In Chap. 6, the authors provide a comprehensive overview of these
frameworks, beginning with a review of necessary concepts from abstract algebra,
lattice codes and classical construction. Furthermore, methods for obtaining per-
formance bounds for compute-and-forward are also discussed. They then propose
multilevel lattice codes as a powerful method for reducing the decoding complexity
while maintaining the performance advantages of lattice codes. They introduce
detailed procedures for constructing such multilevel lattices, including a novel
elementary divisor construction, which captures prior methods as special cases.
From here, they generalize compute-and-forward and lattice network coding to
utilize multilevel lattices and demonstrate that this approach can yield a more
efficient method for decoding multiple messages. They conclude by proposing
an iterative decoding procedure for multilevel lattice codes and demonstrate its
advantages via numerical simulations.

Shannon’s beautiful theorem concerning the existence of capacity-achieving
codes for an AWGN channel makes fundamental use of a random coding argument.
In short, independent identically distributed (i.i.d.) random ensembles according
to some codeword distribution are exploited to prove the existence of “optimal”
codes. In Chap. 7, the final chapter, the authors begin by reviewing the main
steps in Shannon’s proof, in particular the use of the i.i.d. random ensembles in
the achievability part. They then revisit the achievability part from the viewpoint
of exploiting random structured ensembles such as random linear codes and
random lattice codes. For certain scenarios (e.g. those involving relay networks
or physical layer secrecy), random structured codes achieve better “rates” than
random i.i.d. codes. Furthermore, random linear codes allow for computationally
efficient encoding (since the encoding operation essentially involves simple matrix
multiplication), and random lattice codes allow for lattice decoding, which, for
example, enjoy lower complexity than maximum likelihood (ML) decoding. The
main goal of the chapter is to provide an accessible account of recent developments
and simplifications in the use of random structured codes in achievability proofs.
The focus is on addressing the two questions: Can random linear codes achieve
the discrete memoryless channel (DMC) capacity? and, Can random lattice codes
achieve the additive white Gaussian noise (AWGN) channel capacity? These two
questions are discussed separately but in a parallel manner. Indeed, the introduced
framework unifies the approaches for DMC and AWGN channels into a streamlined
analysis.

York, UK Victor Beresnevich
York, UK Alister Burr
Boston, MA, USA Bobak Nazer
York, UK Sanju Velani
June 2020
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Chapter 1
Number Theory Meets Wireless
Communications: An Introduction for
Dummies Like Us

Victor Beresnevich and Sanju Velani

Abstract In this chapter we introduce the theory of Diophantine approximation
via a series of basic examples from information theory relevant to wireless
communications. In particular, we discuss Dirichlet’s theorem, badly approximable
points, Dirichlet improvable and singular points, the metric (probabilistic) theory
of Diophantine approximation including the Khintchine-Groshev theorem and the
theory of Diophantine approximation on manifolds. We explore various number
theoretic approaches used in the analysis of communication characteristics such as
Degrees of Freedom (DoF). In particular, we improve the result of Motahari et al.
regarding the DoF of a two-user X-channel. In essence, we show that the total DoF
can be achieved for all (rather than almost all) choices of channel coefficients with
the exception of a subset of strictly smaller dimension than the ambient space. The
improvement utilises the concept of jointly non-singular points that we introduce
and a general result of Kadyrov et al. on the δ-escape of mass in the space of lattices.
We also discuss follow-up open problems that incorporate a breakthrough of Cheung
and more generally Das et al. on the dimension of the set of singular points.

1.1 Basic Examples and Fundamentals of Diophantine
Approximation

Let us start by addressing a natural question that a number theorist or more
generally a mathematician who has picked up this book may well ask: what is
the role of number theory in the world of wireless communications? We will
come clean straightaway and say that by number theory we essentially mean areas
such as Diophantine approximation and the geometry of numbers, and by wireless
communication we essentially mean the design and analysis of lattice/linear codes
for wireless communications which thus falls in the realm of information theory. To

V. Beresnevich (�) · S. Velani
Department of Mathematics, University of York, York, UK
e-mail: victor.beresnevich@york.ac.uk; sanju.velani@york.ac.uk
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2 V. Beresnevich and S. Velani

begin with, with this confession in mind, let us start by describing the role of one-
dimensional Diophantine approximation. Recall, that at the heart of Diophantine
approximation is the classical theorem of Dirichlet on rational approximations to
real numbers.

Theorem 1.1 (Dirichlet, 1842) For any ξ ∈ R and anyQ ∈ N there exist p, q ∈ Z

such that
∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<

1

qQ
and 1 ≤ q ≤ Q. (1.1)

The proof can be found in many elementary number theory books and makes use
of the wonderfully simple yet powerful Pigeonhole Principle: if n objects are placed
in m boxes and n > m, then some box will contain at least two objects. See, for
example, [16, §1.1] for details. An easy consequence of the above theorem is the
following statement.

Corollary 1.1 Let ξ ∈ R \Q, that is ξ is a real irrational number. Then there exist
infinitely many reduced rational fractions p/q (p, q ∈ Z) such that

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<

1

q2 . (1.2)

The following exposition illustrates one of the many aspects of the role of
Diophantine approximation in wireless communication. In particular, within this
section we consider a basic example of a communication channel which brings into
play the theory of Diophantine approximation. In Sect. 1.2 we consider a slightly
more sophisticated example which also brings into play the theory of Diophantine
approximation in higher dimensions. This naturally feeds into Sect. 1.3 in which
the role of the theory of Diophantine approximation of dependent variables is
discussed. The latter is also referred to as Diophantine approximation on manifolds
since the parameters of interest are confined by some functional relations. To
begin with, we consider a ‘baby’ example of a communication channel intended
to remove the language barrier for mathematicians and explicitly expose an aspect
of communications that invites the use of Diophantine approximation.

1.1.1 A ‘baby’ Example

Suppose there are two users S1 and S2 wishing to send (transmit) their messages
u1 and u2 respectively along a shared (radio/wireless) communication channel to
a receiver R. For obvious reasons, users are often also referred to as transmitters.
Suppose for simplicity that u1, u2 ∈ {0, 1}. Typically, prior to transmission, every
message is encoded with what is called a codeword. Suppose that x1 = x1(u1)

and x2 = x2(u2) are the codewords that correspond to u1 and u2. In general, x1
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and x2 could be any functions on the set of messages. In principle, one can take
x1 = u1 and x2 = u2. When the codewords x1 and x2 are being transmitted along
a wireless communication channel, there is normally a certain degree of fading of
the transmitted signals. This for instance could be dependent on the distance of
the transmitters from the receiver and the reflection caused by obstacles such as
buildings in the path of the signal. Let h1 and h2 denote the fading factors (often
referred to as channel gains or channel coefficients or paths loss) associated with
the transmission of signals from S1 and S2 to R respectively. These are strictly
positive numbers and for simplicity we will assume that their sum is one: h1 +
h2 = 1. Mathematically, the meaning of the channel coefficients is as follows: if
Si transmits signal xi , the receiver R observes hixi . However, due to fundamental
physical properties of wireless medium, when S1 and S2 simultaneously use the
same wireless communication channel,R will receive the superposition of h1x1 and
h2x2, that is

y = h1x1 + h2x2 . (1.3)

For instance, assuming that x1 = u1 and x2 = u2, the outcomes of y are

y =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if u1 = u2 = 0

h1 if u1 = 0 and u2 = 1 ,

h2 if u1 = 1 and u2 = 0 ,

1 = h1 + h2 if u1 = u2 = 1 .

(1.4)

A pictorial description of the above setup is given below in Fig. 1.1.
The ultimate goal is for the receiver R to identify (decode) the messages u1 and

u2 from the observation of y. For example, with reference to (1.4), assuming the
channel coefficients h1 and h2 are known at the receiver and are different, that is
h1 �= h2, the receiver is obviously able to do so. However, in real life there is

��

x1

��

��
x2

��������

��������

S1

S2

R

h1

h

y

2

Fig. 1.1 Two user multiple access channel (no noise)
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h1 h2
) (( )( )

��z

Fig. 1.2 Separation of intervals of radius |z| around each possible outcome of y which contain the
values of y′

always a degree of error in the transmission process, predominantly caused by the
received signal y being corrupted by (additive) noise. The noise can result from a
combinations of various factors including the interference of other users and natural
electromagnetic radiation. In short, if z denotes the noise, then instead of (1.3), R
receives the signal

y ′ = y + z = h1x1 + h2x2 + z . (1.5)

Equation (1.5) represents one the simplest models of what is known as an Additive
White Gaussian Noise Multiple Access Channel (AWGN-MAC), see Chap. 2 for
a formal definition. As before, the goal for the receiver R remains to decode the
messages u1 and u2, but now from the observation of y ′ = y + z. Let dmin denote
the minimum distance between the four outcomes of y. Then as long as the absolute
value |z| of the noise is strictly less than dmin/2, the receiver is able to recover y
and consequently the messages u1 and u2 from the value of y ′. This is simply due
to the fact that the intervals of radius dmin/2 centered at the four outcomes of y are
disjoint and y ′ will lie in exactly one of these intervals, see Fig. 1.2. In other words,
R is able to identify y by rounding y ′ to the closest possible outcome of y.
For example, it is easy to see that the maximum separation between the four
outcomes given by (1.4) is attained when h1 = 1/3 and h2 = 2/3. In this
case dmin = 1/3, and we are able to recover the messages u1 and u2 assuming
that |z| < 1/6. The upshot of the above discussion is the following simple but
fundamental conclusion.

Conclusion The greater the mutual separation dmin of the outcomes of y, the better
the tolerance for noise we have during the transmission of the signal.

In information theory achieving good separation between received signals
translates into obtaining good lower bounds on the fundamental parameters of
communication channels such as Rates-of-Communications, Channel Capacity and
Degrees-of-Freedom, see Chap. 2 for formal definitions of these notions. Within this
chapter we will concentrate on the role of Diophantine approximation in answering
the following natural and important question:

How can a good separation of received signals be achieved and how often?

Indeed, to some extent, answering this and related questions using the tools of
Diophantine approximation, algebraic number theory and the geometry of numbers
is a reoccurring theme throughout the whole book. We will solely use linear
encoding to achieve ‘good’ separation. In particular, within the above ‘baby’
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example, one is able to achieve the optimal separation (dmin = 1/3) at the receiver
regardless of the values of h1 and h2 by applying the following simple linear
encoding of the messages u1 and u2:

x1 = 1

3
h−1

1 u1 and x2 = 2

3
h−1

2 u2 .

Indeed, before taking noise into consideration, under the above encoding the
received signals become

y = h1x1 + h2x2 = 1
3u1 + 2

3u2 =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if u1 = u2 = 0 ,

1/3 if u1 = 0 and u2 = 1 ,

2/3 if u1 = 1 and u2 = 0 ,

1 if u1 = u2 = 1 .

(1.6)

To summarise, the above discussion brings to the forefront the importance
of maximizing the minimal distance/separation dmin of the received (noise-free)
signals and at the same time indicates how a linear encoding allows us to achieve
this. Nevertheless, the assumption that the messages u1 and u2 being sent by the
transmitters S1 and S2 are binary in nature makes the discussion over simplistic—
especially in terms of the use of number theory to analyse the outcomes. We now
modify the ‘baby’ example to a more general situation in which S1 and S2 wish to
send messages u1 and u2 from the set of integers {0, . . . ,Q} to a single receiver R.

1.1.2 Example 1 (Modified ‘baby’ Example)

Unless stated otherwise, here and throughout,Q ≥ 2 is a fixed integer. As we shall
see, this slightly more complex setup, in which u1, u2 ∈ {0, . . . ,Q}, naturally bring
into play the rich theory of Diophantine approximation. So with this in mind, let us
assume that the codewords x1 and x2 that are being transmitted by S1 and S2 are
simply obtained by the linear encoding of the messages u1 and u2 as follows

x1 = αu1 and x2 = βu2 (0 ≤ u1, u2 ≤ Q) , (1.7)

where α and β are some positive real numbers. We emphasise that the parameters α
and β are at our disposal and this fact will be utilized later. As in the ‘baby’ example
let h1 and h2 denote the channel coefficients associated with S1 and S2 respectively.
Then, before taking noise into account, R will receive the signal

y = h1x1 + h2x2 = h1αu1 + h2βu2 . (1.8)
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Clearly, y takes the values

h1αu1 + h2βu2 : 0 ≤ u1, u2 ≤ Q. (1.9)

Thus, there are potentially (Q+1)2 distinct outcomes of y and they lie in the interval
[0, (h1α+h2β)Q]. It is easily verified that if they were equally separated then their
mutual separation would be precisely

h1α + h2β

Q+ 2
. (1.10)

However, this is essentially never the case. Indeed, let dmin denote the minimal
distance between the points y given by (1.9). Without loss of generality, suppose
for the sake of simplicity that

0 < h1α < h2β

and define the real number

ξ := h1α

h2β
, (1.11)

which in view of the above assumption is between 0 and 1; i.e. 0 < ξ < 1. Then, by
Dirichlet’s theorem, we have that

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
≤ 1

qQ
(1.12)

for an integer pair (p, q) ∈ Z
2 satisfying 1 ≤ q ≤ Q. Since 0 < ξ < 1 and

1 ≤ q ≤ Q, we also have that 0 ≤ p ≤ q ≤ Q. On multiplying (1.12) by h2βq , we
find that

|h1αq − h2βp| ≤ C1

Q
(C1 := h2β ), (1.13)

for some integer pair (p, q) ∈ Z
2 satisfying 1 ≤ q ≤ Q and 0 ≤ p ≤ q . Now

observe that the quantity |h1αq − h2βp| on the left hand side of (1.13) is exactly
the distance between the two specific values of y within (1.9) corresponding to
u1 = q, u2 = 0 and u1 = 0, u2 = p. Since q �= 0, this demonstrates that the
minimal distance dmin between the values of y given by (1.9) is always bounded
above by C1/Q; i.e.

dmin ≤ C1

Q
. (1.14)
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For all intents and purposes, this bound on the minimal distance is smaller than the
hypothetical ‘perfect’ separation given by (1.10). In general, we have that

dmin ≤ min

{
C1

Q
,
h1α + h2β

Q+ 2

}

.

It is easily seen that we can remove the assumption that 0 < h1α < h2β if we put
C1 = max{h1α, h2β}.
Remark 1.1 On looking at (1.14), the reader may be concerned (rightly) that the
minimal distance dmin vanishes as Q grows. Luckily, this can be easily rectified
by introducing a scaling factor λ ≥ 1 into the linear encoding of the messages u1
and u2. The point of doing this is that the codeword x1 (resp. x2) given by (1.7)
becomes λαu1 (resp. λβu2) and this has no effect on the point of interest ξ given by
(1.11) but it scales up by λ the constant C1 appearing in (1.13). Thus, by choosing
λ appropriately (namely, proportional to Q) we can avoid the right hand side of
(1.14) from vanishing as Q grows. In subsequent more ‘sophisticated’ examples,
the scaling factor will be relevant to the discussion and will appear at the point of
linear encoding the messages.

Now let us bring noise into the above setup. As in the ‘baby’ example, if z denotes
the (additive) noise, then instead of (1.8), R receives the signal

y ′ = y + z = h1αu1 + h2βu2 + z . (1.15)

Note that as long as the absolute value |z| of the noise is strictly less than dmin/2,
the receiver R is able to recover y and consequently u1 and u2 from the value
of y ′. Commonly, the nature of noise is such that z is a random variable having
normal distribution. Without loss of generality we will assume that z ∼ N(0, 1),
that is the mean value of noise is 0 and its variance is 1. Therefore, when taking
the randomness of noise into account, the problem of whether or not the receiver is
able to recover messages sent by the transmitters becomes probabilistic in nature.
Loosely speaking, we are interested in the probability that |z| < dmin/2—the larger
the probability the more likely the receiver is able to recover messages by rounding
y ′ to the closest possible outcome of y. Of course, if it happens that |z| ≥ dmin/2,
then we will have an error in the recovery of y and thus the messages u1 and u2.
When z ∼ N(0, 1), the probability of this error can be computed using the Gauss
error function and is explicitly equal to

1−√2/π
∫ dmin/2

0
e−θ2/2dθ .

This gets smaller as dmin gets larger. Clearly, in view of the theoretic upper bound
on dmin given by (1.14) the probability of error is bounded above by the probability
that |z| < C1/2Q. Thus, the closer dmin is to the theoretic upper bound, the closer
we are to minimizing the probability of the error and in turn the higher the threshold
for tolerating noise. With this in mind, we now demonstrate that on appropriately
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choosing the parameters α and β associated with the encoding procedure it is
possible to get within a constant factor of the theoretic upper bound.

1.1.3 Badly Approximable Numbers

The key is to make use of the existence of badly approximable numbers—a
fundamental class of real numbers in the theory of Diophantine approximation.

Definition 1.1 (Badly Approximable Numbers) A real number ξ is said to be
badly approximable if there exists a constant κ = κ(ξ) > 0 such that for all
q ∈ N, p ∈ Z

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
≥ κ

q2 . (1.16)

Note that by definition, badly approximable numbers are precisely those real
numbers for which the right hand side of inequality (1.2) associated with Dirichlet’s
corollary (Corollary 1.1) cannot be ‘improved’ by an arbitrary constant factor. By
Hurwitz’s theorem [16], if ξ is badly approximable then for the associated badly
approximable constant κ(ξ) we have that

0 < κ(ξ) < 1/
√

5 .

It is well known that the set of badly approximable numbers can be characterized as
those real numbers whose continued fraction expansions have bounded partial quo-
tients. Moreover, an irrational number has a periodic continued fraction expansion
if and only if it is a quadratic irrational and thus every quadratic irrational is badly
approximable. In particular, it is easily verified that for any given ε > 0, the golden
ratio

γ := (√5+ 1)/2

satisfies inequality (1.16) with κ = 1/(
√

5+ ε) for all p ∈ Z and q ∈ N with q2 ≥
1/(
√

5ε). This is obtained using the standard argument that involves substituting
p/q into the minimal polynomial f of γ over Z and using the obvious fact that
1 ≤ q2|f (p/q)| ≤ q2|γ −p/q| · |γ̄ −p/q|, where γ̄ = (√5−1)/2 is the conjugate
of γ . We leave further computational details to the reader. Observe that on taking
ε = 1/

√
5, we find that γ is badly approximable with κ(γ ) ≥ √5/6.

The reason for us bringing into play the notion of badly approximable numbers
is very easy to explain. By definition, on choosing the parameters α and β so that
ξ := h1α/h2β is badly approximable guarantees the existence of a constant κ(ξ) >
0 such that

|h1αq − h2βp| ≥ κ(ξ)
C1

q
∀ q ∈ N, p ∈ Z .
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Thus, it follows that the separation between the points given by (1.9) is at least
κ(ξ)C1/Q. In other words, the minimal distance dmin is within a constant factor of
the theoretic upper bound C1/Q given by (1.14). Indeed, if we choose α and β so
that h1α/h2β is the golden ratio γ we obtain that

κ(γ )
C1

Q
≤ dmin ≤ C1

Q
. (1.17)

The upshot is that equation (1.17) gives an explicit ‘safe’ threshold for the level
of noise that can be tolerated. Namely, the probability that |z| < dmin/2 is at least
the probability that |z| < κ(γ )C1/Q. In principle, one can manipulate the values
of Q ∈ N and ε > 0 within the above argument to improve the lower bound
in (1.17). However, any such manipulation will not enable us to surpass the hard
lower bound limit of C1/(

√
5Q) imposed by the aforementioned consequence of

Hurwitz’s theorem. Therefore, we now explore a different approach in an attempt
to make improvements to (1.17) beyond this hard limit. Ideally, we would like to
replace 1/

√
5 by a constant arbitrarily close to one. We would also like to move

away from insisting that ξ is badly approximable since this is a rare event. Indeed,
although the set of badly approximable number is of full Hausdorff dimension (a
result of Jarník from the 1920s), it is a set of Lebesgue measure zero (a result of
Borel from 1908). In other words, the (uniform) probability that a real number in
the unit interval is badly approximable is zero. We will return to this in Sects. 1.2.2
and 1.2.7 below.

1.1.4 Probabilistic Aspects

The approach we now pursue is motivated by the following probabilistic problem:
Given 0 < κ ′ < 1 and Q ∈ N, what is the probability that a given real number
ξ ∈ I := (0, 1) satisfies

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
≥ κ ′

qQ
(1.18)

for all integers p and 1 ≤ q ≤ Q? Note that these are the real numbers for which
the right hand side of inequality (1.1) associated with Dirichlet’s theorem cannot be
improved by the factor of κ ′ (Q is fixed here). It is worth mentioning at this point, in
order to avoid confusion later, that these real numbers are not the same as Dirichlet
non-improvable numbers which will be introduced below in Sect. 1.1.5. To estimate
the probability in question, we consider the complementary inequality

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<
κ ′

qQ
. (1.19)



10 V. Beresnevich and S. Velani

Let 1 ≤ q ≤ Q. Then for a fixed q , the probability that a given ξ ∈ I := (0, 1)
satisfies (1.19) for some p ∈ Z is exactly 2κ ′/Q—it corresponds to the measure of
the set

Eq :=
⋃

p∈Z

(
p
q
− κ ′
qQ
,
p
q
+ κ ′
qQ

)

∩ I .

On summing up these probabilities over q , we conclude that the probability that
a given ξ ∈ I satisfies (1.19) for some integers p and 1 ≤ q ≤ Q is trivially
bounded above by 2κ ′. This in turn implies that for any κ ′ < 1/2 and any Q ∈ N

the probability that (1.18) holds for all integers p, q with 1 ≤ q ≤ Q is at least

1− 2κ ′ .

The following result shows that with a little more extra work it is possible to improve
this trivial bound.

Lemma 1.1 For any 0 < κ ′ < 1 and any Q ∈ N the probability that (1.18) holds
for all integers p, q with 1 ≤ q ≤ Q is at least

1− 12κ ′

π2
≈ 1− 1.216κ ′ . (1.20)

Remark 1.2 Observe that when

κ ′ < π2/12 ≈ 0.822 ,

the quantity 12κ ′/π2 is strictly less than 1 and therefore the probability given by
(1.20) is greater than zero. Hence for any Q ∈ N, there exist real numbers ξ
satisfying (1.18) for all integers p and 1 ≤ q ≤ Q.

Remark 1.3 Within Lemma 1.1 the word ‘probability’ refers to the uniform proba-
bility over [0, 1]. However, in real world applications the parameter ξ appearing in
(1.18) may not necessarily be a uniformly distributed random variable. For instance,
the channel coefficients could be subject to Rayleigh distribution and this will
have an obvious effect on the distribution of ξ via (1.11). Nevertheless, as long
as the distribution of ξ is absolutely continuous, a version of Lemma 1.1 can be
established, albeit the constant that accompanies κ ′ will be different. For further
details we refer the reader to [1].

Proof The proof of Lemma 1.1 relies on ‘removing’ the overlaps between the
different sets Eq as q varies. Indeed, it is easily seen that

E :=
Q
⋃

q=1

Eq =
Q
⋃

q=1

⋃

0≤p≤q
gcd(p,q)=1

(
p
q
− κ ′
qQ
,
p
q
+ κ ′
qQ

)

∩ I .
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Therefore,

Prob(E) ≤
Q
∑

q=1

∑

1≤p≤q
gcd(p,q)=1

2κ ′

qQ
=

Q
∑

q=1

2κ ′ϕ(q)
qQ

= 2κ ′

Q

Q
∑

q=1

ϕ(q)

q
, (1.21)

where ϕ is the Euler function. To estimate the above sum, it is convenient to use the
Möbius inversion formula, which gives that

ϕ(q)

q
=
∑

d |q

μ(d)

d

where μ is the Möbius function. Recall that

∞
∑

d=1

μ(d)

d2 = 1

ζ(2)
= 6

π2 .

Then

Q
∑

q=1

ϕ(q)

q
=

Q
∑

q=1

∑

d |q

μ(d)

d
=

Q
∑

q=1

∑

dd ′=q

μ(d)

d

=
∑

dd ′≤Q

μ(d)

d
=

∑

1≤d≤Q

μ(d)

d

∑

d ′≤Q/d
1

=
∑

1≤d≤Q

μ(d)

d
[Q/d] ≤ Q

∑

1≤d≤Q

μ(d)

d2

≤ 6Q

π2 .

Combining this with (1.21) gives the required estimate, that is a lower bound on
1− Prob(E), the probability of the complement to E. 
�

Let 0 < κ ′ < π2/12 and Q ∈ N be given. The upshot of the above discussion
is that there exist parameters α and β so that with probability greater than 1 −
12κ ′/π2 > 0, the real number ξ := h1α/h2β satisfies (1.18) for all integers p and
1 ≤ q ≤ Q. It follows that for such ξ (or equivalently parameters α and β) the
separation between the associated points given by (1.9) is at least κ ′C1/Q and so
the minimal distance dmin satisfies

κ ′C1

Q
≤ dmin ≤ C1

Q
. (1.22)
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In particular, we can choose κ ′ so that κ(γ ) < κ ′ in which case the lower bound in
(1.22) is better than that in (1.17) obtained by making use of badly approximable
numbers. That is to say, that the lower bound involving κ ′ is closer to the theoretic
upper bound C1/Q. Moreover, the set of badly approximable numbers is a set of
measure zero whereas the set of real numbers satisfying (1.18) for all integers p
and 1 ≤ q ≤ Q has Lebesgue measure at least 1 − 12κ ′/π2. This is an important
advantage of the probabilistic approach since in reality it is often the case that the
channel coefficients h1 and h2 are random in nature. For example, when dealing
with mobile networks one has to take into consideration the obvious fact that the
transmitters are not fixed. The upshot is that in such a scenario, we do not have
the luxury of specifying a particular choice of the parameters α and β that leads
to the corresponding points given by (1.9) being well separated as in the sense of
(1.17). The probabilistic approach provides a way out. In short, it enables us to
ensure that the minimal distance dmin between the points given by (1.9) satisfies
(1.22) with good (explicitly computable) probability. See [54, Section VI.B] for a
concrete example where the above probabilistic approach is used for the analysis of
the capacity of symmetric Gaussian multi-user interference channels.

Up to this point,Q has been a fixed integer greater than or equal to 2 and reflects
the size of the set of messages. We end our discussion revolving around Example 1
by considering the scenario in which we have complete freedom in choosingQ. In
particular, one is often interested in the effect of allowingQ to tend to infinity on the
model under consideration. This is relevant to understanding the so-called Degrees
of Freedom (DoF) of communication channels, see Sect. 1.2.4.

1.1.5 Dirichlet Improvable and Non-improvable Numbers

We now show that there are special values ofQ for which the minimal distance dmin
satisfies (1.22) with κ ′ as close to one as desired. The key is to exploit the (abundant)
existence of numbers for which Dirichlet’s theorem cannot be improved. Note that in
the argument leading to (1.17) we made use of the existence of badly approximable
numbers; that is numbers for with Dirichlet’s corollary cannot be improved.

Definition 1.2 (Dirichlet Improvable and Non-improvable Numbers) Let 0 <
κ ′ < 1. A real number ξ is said to be κ ′-Dirichlet improvable if for all sufficiently
largeQ ∈ N there are integers p and 1 ≤ q ≤ Q such that

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<
κ ′

qQ
.

A real number ξ is said to be Dirichlet non-improvable if for any κ ′ < 1 it is not κ ′-
Dirichlet improvable. In other words, a real number ξ is Dirichlet non-improvable
if for any 0 < κ ′ < 1 there exists arbitrarily largeQ ∈ N such that for all integers p
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and 1 ≤ q ≤ Q
∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
≥ κ ′

qQ
.

A well know result of Davenport & Schmidt [28] states that:

a real number is Dirichlet non− improvable

�

it is not badly approximable.

Consequently, a randomly picked real number is Dirichlet non-improvable with
probability one. The upshot of this is the following remarkable consequence: for
any random choice of channel coefficients h1, h2 and parameters α, β, with
probability one for any ε > 0 there exist arbitrarily large integers Q such that
the minimal distance dmin between the associated points given by (1.9) satisfies

(1− ε)C1

Q
≤ dmin ≤ C1

Q
.

Clearly, this is the best possible outcome for the basic wireless communication
model considered in Example 1. We now consider a slightly more sophisticated
model which demonstrates the role of higher dimensional Diophantine approxima-
tion in wireless communication.

1.2 A ‘toddler’ Example and Diophantine Approximation in
Higher Dimensions

The discussion in this section is centred on analysing the model arising from adding
another receiver within the setup of the modified ‘baby’ example.

1.2.1 Example 2

Suppose there are two users S1 and S2 as in Example 1 but this time there are
also two receivers R1 and R2. Let Q ≥ 1 be an integer and suppose S1 wishes
to simultaneously transmit independent messages u1, v1 ∈ {0, . . . ,Q}, where u1
is intended for R1 and v1 for R2. Similarly, suppose S2 wishes to simultaneously
transmit independent messages u2, v2 ∈ {0, . . . ,Q}, where u2 is intended for
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R1 and v2 for R2. After (linear) encoding, S1 transmits x1 := x1(u1, v1) and S2
transmits x2 := x2(u2, v2); that is to say

x1 = α1u1 + β1v1 and x2 = α2u2 + β2v2 (1.23)

where α1, α2, β1 and β2 are some positive real numbers. Next, for i, j = 1, 2, let
hij denote the channel coefficients associated with the transmission of signals from
Sj to Ri . Also, let yi denote the signal received by Ri before noise is taken into
account. Thus,

y1 = h11x1 + h12x2 , (1.24)

y2 = h21x1 + h22x2 . (1.25)

A pictorial description of the above setup is given in Fig. 1.3 below.
Substituting (1.23) into (1.24) and (1.25) gives that

y1 = h11α1u1 + h11β1v1 + h12α2u2 + h12β2v2 , (1.26)

y2 = h21α1u1 + h21β1v1 + h22α2u2 + h22β2v2 . (1.27)

Note that there are potentially (Q + 1)4 distinct outcomes of yi and they lie in the
interval [0, (hi1α1 + hi1β1 + hi2α2 + hi2β2)Q].

Now let us bring noise into the setup. If zi denotes the (additive) noise at receiver
Ri (i = 1, 2), then instead of (1.26) and (1.27), R1 and R2 receive the signals

y ′1 = y1 + z1 and y ′2 = y2 + z2 (1.28)

respectively. Equations (1.23)–(1.28) represent one of the simplest models of what
is known as a two-userX-channel. The ultimate goal is for the receiverR1 to decode

��
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Fig. 1.3 Two-user X-channel
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the messages u1 and u2 from the observation of y ′1 and for the receiverR2 to decode
the messages v1 and v2 from the observation of y ′2. Clearly, this goal is attainable
if 2|z1| and 2|z2| are smaller than the minimal distance between the outcomes of
y1 given by (1.26) and the minimal distance between the outcomes of y2 given by
(1.27) respectively.

Assume for the moment that u1, u2, v1, v2 ∈ {0, 1} and for the ease of discussion,
let us just concentrate on the signal y ′1 received at R1. Then there are generally up
to 16 different outcomes for y1. Now there is one aspect of the above setup that
we have not yet exploited: the receiver R1 is not interested in the signals v1 and
v2. So if these ‘unwanted’ signals could be deliberately aligned (at the transmitters)
via encoding into a single component v1 + v2, then there would be fewer possible
outcomes for y1. This is merely down to the simple fact that there are 4 different
pairs (v1, v2) as opposed to 3 different sums v1 + v2 when v1 and v2 take on binary
values. With this in mind, suppose that

x1 = λ(h22u1 + h12v1) and x2 = λ(h21u2 + h11v2) (1.29)

respectively. Here λ ≥ 1 is simply some scaling factor. Thus, with reference to
(1.23), we have that

α1 = λh22, β1 = λh12, α2 = λh21, β2 = λh11 , (1.30)

and so (1.24) and (1.25) become

y1 = λ
(

(h11h22)u1 + (h21h12)u2 + (h11h12)(v1 + v2)
)

(1.31)

y2 = λ
(

(h21h12)v1 + (h11h22)v2 + (h21h22)(u1 + u2)
)

. (1.32)

Clearly, there are now only 12 outcomes for either y1 or y2 rather than 16. The
above discussion is a simplified version of that appearing in [52, §III: Example 3]
and constitutes the basis for real interference alignment—a concept introduced and
developed in [48, 51, 52] and subsequent publications.

Remark 1.4 The original idea of interference alignment exploits the availability of
‘physical’ dimensions of wireless systems such as the frequency of the signal or
the presence of multiple antennae. In short, an antenna is a device (such as an
old fashioned radio or television ariel) that is used to transmit or receive signals.
In any case, by using several antennae it is possible for a user to simultaneously
transmit several messages and these can naturally be thought of as the coordinates
of a point in a vector space, say R

n. Thus, when analysing such wireless systems
the transmitted signals can be treated as vectors in R

n. The art of interference
alignment is to attempt to introduce an encoding at the transmitters (users) which
result in unwanted (interfering) signals at the receivers being forced to lie in a
subspace of Rn of smaller (ideally single) dimension. Such alignment is achieved
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by exploiting elementary methods from linear algebra, see for instance [37, Section
2.1] for concrete examples and a detailed overview of the process. The novel idea of
Motahari et al. involves exploiting instead the abundance of rationally independent
points in the real line R. For instance, with reference to Example 2 above and the
transmitted signals given by (1.29), assuming that h22/h12 is irrational, the signal
x1 transmitted by S1 lies in the 2-dimensional vector subspace of R over Q given by

V1 = λh22Q+ λh12Q .

Similarly, assuming that h21/h11 is irrational, the signal x2 transmitted by S2 lies in
the 2-dimensional vector subspace of R over Q given by

V2 = λh21Q+ λh11Q .

In view of the alignment, the unwanted messages v1 and v2 at receiver R1 are
forced to lie in a subspace of R over Q of dimension one; namely W1 =
λh11h12Q. Similarly, the unwanted messages u1 and u2 at receiver R2 lie in the
one-dimensional Q-subspaceW2 = λh21h22Q.

As with the ‘baby’ example, we can easily modify the above ‘binary’ considera-
tion to the more general situation when the messages u1, u2, v1, v2 are integers lying
in {0, . . . ,Q}; i.e., the setup of Example 2. It is easily seen that in this more general
situation the savings coming from interference alignment are even more stark: there
are (2Q + 1)(Q + 1)2 ∼ 2Q3 outcomes for either y1 or y2 after alignment as
opposed to (Q+ 1)4 ∼ Q4 outcomes before alignment. Consequently, based on the
outcomes for y1 and y2 after alignment being equally spaced, we have the following
trivial estimates for the associated minimal distances:

dmin,1 ≤
λ
(

h11h22 + h21h12 + 2h11h12

)

Q

(2Q+ 1)(Q+ 1)2
(1.33)

and

dmin,2 ≤
λ
(

h21h12 + h11h22 + 2h21h22

)

Q

(2Q+ 1)(Q+ 1)2
. (1.34)

We stress that dmin,1 is the minimal distance between the outcomes of y1 given
by (1.31) and dmin,2 is the minimal distance between the outcomes of y2 given
by (1.32). As in Example 1, ‘perfect’ separation is essentially never the case and
to demonstrate this we need to bring into play the appropriate higher dimensional
version of Dirichlet’s theorem.
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Theorem 1.2 (Minkowski’s Theorem for Systems of Linear Forms) Let βi,j ∈
R, where 1 ≤ i, j ≤ k, and let λ1, . . . , λk > 0. If

|det(βi,j )1≤i,j≤k| ≤
k
∏

i=1

λi, (1.35)

then there exists a non-zero integer point a = (a1, . . . , ak) such that

⎧

⎨

⎩

|a1βi,1 + · · · + akβi,k | < λi , (1 ≤ i ≤ k − 1)

|a1βk,1 + · · · + akβk,k| ≤ λk .
(1.36)

The simplest proof of the theorem makes use of Minkowski’s fundamental convex
body theorem from the geometry of numbers; see, for instance [16, §1.4.1] or,
indeed, Chap. 2 of this book.

We now show how the minimal distance dmin,1 (and similarly, dmin,2) can be
estimated from above using Minkoswki’s theorem. For simplicity, consider the case
when

max{h11h22, h21h12 , h11h12} = h11h12 ; (1.37)

that is, h11 ≥ h21 and h12 ≥ h22. Then, on applying Theorem 1.2 with k = 3, λ1 =
(h11h12)Q

−2, λ2 = λ3 = Q and

(βi,j )1≤i,j≤k =
⎛

⎝

h11h22 h21h12 h11h12

1 0 0
0 1 0

⎞

⎠ ,

we deduce the existence of integers a1, a2 and a3, not all zero, such that

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

|(h11h22)a1 + (h21h12)a2 + (h11h12)a3| < (h11h12)Q
−2 ,

|a1| < Q,
|a2| ≤ Q.

(1.38)

Remark 1.5 It is worth pointing out that the argument just given above can
be appropriately adapted to establish the following generalisation of Dirichlet’s
theorem. For the details see for instance [16, Corollary 1.4.7]. Here and throughout,
given a point x = (x1, . . . , xn) ∈ R

n we let |x| := max{|x1|, . . . , |xn|} .
Theorem 1.3 For any ξ = (ξ1, . . . , ξn) ∈ R

n and anyQ ∈ N there exists (p,q) ∈
Z× Z

n such that

|q1ξ1 + · · · + qnξn + p| < 1

Qn
and 1 ≤ |q| ≤ Q. (1.39)
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We now return to determining an upper bound for dmin,1. A consequence of (1.38)
is that for any givenQ ≥ 1 there exist integers a1, a2, a3, not all zero, such that

∣
∣
∣
∣

h11h22

h11h12
a1 + h21h12

h11h12
a2 + a3

∣
∣
∣
∣
< Q−2 ≤ 1 .

This together with the triangle inequality implies that

|a3| <
∣
∣
∣
∣

h11h22

h11h12
a1

∣
∣
∣
∣
+
∣
∣
∣
∣

h21h12

h11h12
a2

∣
∣
∣
∣
+ 1,

and so in view of our ‘maximal’ assumption (1.37), it follows that

|a3| < |a1| + |a2| + 1 ≤ Q+ (Q− 1)+ 1 = 2Q.

Now observe that the quantity

λ× ∣∣(h11h22)a1 + (h21h12)a2 + (h11h12)a3
∣
∣

is precisely the distance between the two specific outcomes of y1 associated with
(1.31) given by the following choices:

Choice 1: u1 = max{0, a1}, u2 = max{0, a2}, v1 + v2 = max{0, a3},
Choice 2: u1 = max{0,−a1}, u2 = max{0,−a2}, v1 + v2 = max{0,−a3}.

We have just observed that Theorem 1.2 guarantees that |a1| ≤ Q, |a2| ≤ Q and
|a3| ≤ 2Q and so u1, u2, v1, v2 are integers lying in {0, . . . ,Q}. Hence, in view of
(1.38) it follows (under the assumption (1.37)) that

dmin,1 ≤ λh11h12

Q2
= C2

Q2
, where C2 := λh11h12 . (1.40)

For all intents and purposes, this bound on the minimal distance is smaller than the
‘perfect’ separation estimate given by (1.33). A similar analysis can be carried out
when the maximum in (1.37) is attained on another term, and for estimating dmin,2.
Obviously the parameter C2 would reflect the situation under consideration.

As mentioned earlier, the receivers R1 and R2 can decode the respective
messages provided that the respective minimal distances dmin,1 and dmin,2 are at
least two times larger than the noise at each receiver. Given that the nature of noise
is often a random variable with normal distribution, the overarching goal is to ensure
the probability that |z1| < 1

2dmin,1 and |z2| < 1
2dmin,2 is large. Indeed, as in Example

1, the larger the probability the more likely the receivers Ri (i = 1, 2) are able to
recover messages by rounding y ′i (given by (1.28)) to the closest possible outcome
of yi (given by (1.31) if i = 1 and (1.32) if i = 2). It is therefore imperative to
understand how close dmin,1 and dmin,2 can be to their theoretical upper bounds.
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With this in mind we now describe various tools and notions from Diophantine
approximation that can be used for this purpose. In short, they allow us to get within
a constant factor of the theoretical upper bounds. As in Example 1, we start by
attempting to manipulate the encoding process so as to exploit the existence of badly
approximable points in R

n. Before we embark on this discussion we make a remark
concerning the scaling factor λ that first appears in (1.29).

Remark 1.6 Observe that estimating dmin,1 and dmin,2 from below is essentially the
same as estimating from below the size of the linear forms

(h11h22)u1 + (h21h12)u2 + (h11h12)(v1 + v2) , (1.41)

(h21h12)v1 + (h11h22)v2 + (h21h22)(u1 + u2) . (1.42)

The factor λ appearing in (1.31) and (1.32) only determines the scaling of dmin,1
and dmin,2 and can be used to ‘adjust’ these quantities, namely, to prevent them from
vanishing asQ grows, see Remark 1.1 for a similar consideration within Example 1.
Indeed, the effect of multiplication by λ can be simply understood as increasing the
separation in the constellation of messages; i.e. the messages u1, v1, u2, v2 could be
associated with {0, λ, 2λ, 3λ, . . . ,Qλ} instead of {0, 1, 2, 3, . . . ,Q}.

1.2.2 Badly Approximable Points

We start by stating the following simple consequence of Theorem 1.3. It is the higher
dimensional analogue of Corollary 1.1.

Corollary 1.2 For any point ξ ∈ R
n there exists infinitely many (p,q) ∈ Z ×

Z
n\{0} such that

|q1ξ1 + · · · + qnξn + p| < 1

|q|n . (1.43)

Note that in the corollary we have not imposed the condition that ξ is not a
point on a rational hyperplane. This is since we do not impose, as in the one-
dimensional statement, the requirement that (p,q) is primitive; that is, without a
non-trivial common divisor. Naturally, badly approximable points in R

n are defined
by requiring that the right hand side of (1.43) cannot be ‘improved’ by an arbitrary
constant factor. This we now formally state.

Definition 1.3 (Badly Approximable Points) A point ξ ∈ R
n is said to be badly

approximable if there exists a constant κ = κ(ξ ) > 0 such that for all (p,q) ∈
Z× Z

n\{0}

|q1ξ1 + · · · + qnξn + p| ≥ κ

|q|n . (1.44)
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The set of badly approximable points in R
n will be denoted by Bad(n). It is

relatively simple to verify that for any real algebraic number ξ of degree n + 1
the point (ξ, ξ2, . . . , ξn) ∈ R

n is badly approximable. Indeed, consider the norm of
the algebraic number

α1 = q1ξ + q2ξ
2 + · · · + qnξn + p ∈ Q(ξ)

which (up to sign) is the product of α1 and its other conjugates, say α2, . . . , αn+1.
For simplicity one can assume that ξ is an algebraic integer. Furthermore, we can
assume that the right hand side of (1.44) is less than one and so without loss of
generality we have that |p| � |q|. Then, it is easily seen that |αj | � |q| for all j ,
while the norm of α1 is bounded below by 1. Here and elsewhere � (respectively,
�) is the Vinogradov symbol meaning ≥ (respectively ≤) up to a multiplicative
constant factor. The upshot is that

|q1ξ + q2ξ
2 + · · · + qnξn + p| = |α1| �

n+1
∏

j=2

|αj |−1 � |q|−n ,

whence the claim that (ξ, ξ2, . . . , ξn) ∈ Bad(n) follows. This argument can be
made explicit to obtain a specific lower bound for the badly approximable constant
κ(ξ, . . . , ξn). Examples of badly approximable algebraic points of this ilk were first
given by Perron [55].

The reason for us bringing into play the notion of badly approximable numbers
is similar to that in Example 1. If the channel coefficients happen to be such that

ξ = (ξ1, ξ2) :=
(
h11h22

h11h12
,
h21h12

h11h12

)

=
(
h22

h12
,
h21

h11

)

(1.45)

is a badly approximable point in R
2, then we are guaranteed the existence of a

constant κ(ξ) > 0 such that
∣
∣
∣
∣

h11h22

h11h12
q1 + h21h12

h11h12
q2 + p

∣
∣
∣
∣
≥ κ(ξ)|q|2

for all non-zero integer points (p,q) ∈ Z × Z
2\{0}. Thus, it follows that for every

Q ∈ N:

|h11h22q1 + h21h12q2 + h11h12p| ≥ κ(ξ)h11h12

Q2

for all (q1, q2, p) ∈ Z
3 with 1 ≤ |q| ≤ Q, and so the separations between any two

points given by (1.31) is at least κ(ξ)λh11h12
Q2 . In other worlds,

dmin,1 ≥ κ(ξ)C2

Q2 (1.46)
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which complements the upper bound (1.40). Note that instead of (1.45) one can
equivalently consider ξ = (ξ1, ξ2) to be either of the points

(
h21h12

h11h22
,
h11h12

h11h22

)

,

(
h11h22

h21h12
,
h11h12

h21h12

)

, (1.47)

which will also be badly approximable if (1.45) is badly approximable. Thus, we
can in fact show that (1.46) with appropriately adjusted constant κ(ξ ) holds with C2
redefined as

C2 := max{h11h22, h21h12 , h11h12} . (1.48)

A similar lower bound to (1.46) can be established for dmin,2 if

(
h21h12

h21h22
,
h11h22

h21h22

)

=
(
h12

h22
,
h11

h21

)

(1.49)

or equivalently

(
h11h22

h21h12
,
h21h22

h21h12

)

or

(
h21h12

h11h22
,
h21h22

h11h22

)

(1.50)

is a badly approximable point in R
2.

Remark 1.7 We end this subsection with a short discussion that brings to the
forefront the significant difference between Examples 1 & 2, in attempting to exploit
the existence of badly approximable points. In short, the encoding process (1.30)
leading to the alignment of the unwanted signals in (1.31) and (1.32) comes at a
cost. Up to a scaling factor, it fixes the parameters α1, α2, β1, β2 in terms of the
given channel coefficients. This in turn, means that our analysis of the linear forms
(1.41) and (1.42) gives rise to the points (1.45) and (1.49) in R

2 that are dependent
purely on the channel coefficients. Now either these points are in Bad(2) or not. In
other words, there is no flexibility left in the encoding procedure (after alignment)
to force (1.45) or (1.49) to be badly approximable in R

n. This is very different to
the situation in Example 1. There we had total freedom to choose the parameters
α and β in order to force the point (1.11) to be a badly approximable number. The
upshot is that in Example 2, there is no such flexibility and this exacerbates the fact
that the probability of (1.45) or (1.49) being badly approximable is already zero.
The fact that Bad(n) has measure zero can be easily deduced from Khintchine’s
theorem, which will be discussed below in Sect. 1.2.4—however see Sect. 1.2.7 for
the actual derivation. Although of measure zero, for the sake of completeness, it is
worth mentioning that Bad(n) is of full Hausdorff dimension, the same as the whole
of Rn. This was established by Schmidt [57, 58] as an application of his remarkably
powerful theory of (α, β)-games. In fact, he proved the full dimension statement for
badly approximable sets associated with systems of linear forms (see Sect. 1.2.7).
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Remark 1.8 We note that if ξ is any of the points (1.45) or (1.47) and ξ ′ is any of
the points (1.49) or (1.50), then in order to simultaneously guarantee (1.46) and its
analogue for dmin,2 both ξ and ξ ′ need to be badly approximable. This adds more
constraints to an already unlikely (in probabilistic terms) event, since the points ξ

and ξ ′ are dependent. Indeed, concerning the latter, it is easily seen that

ξ ′ = f (ξ ) (1.51)

for one of the following choices of f : R2 → R
2

f (x, y) =
(

1

x
,

1

y

)

,

(

x,
x

y

)

,

(
x

y
, x

)

,
(

y,
y

x

)

, or
(y

x
, y
)

. (1.52)

Clearly, the set of pairs (ξ , ξ ′) of badly approximable points confined by (1.51) is a
subset of the already measure zero set Bad(2)×Bad(2). Nevertheless, they do exist,
as was proved by Davenport [26], and are in ample supply in the following sense: the
set of pairs (ξ , ξ ′) of badly approximable points subject to (1.51) has full Hausdorff
dimension, which is two. In other words, the dimension of Bad(2) ∩ f (Bad(2)) is
equal to the dimension of Bad(2). This follows from the results of [19].

1.2.3 Probabilistic Aspects

In this section, we consider within the higher dimensional context of Example 2,
the probabilistic approach set out in Sect. 1.1.4. Given 0 < κ ′ < 1 and Q ∈ N, let
Bn(Q, κ ′) be the set of ξ ∈ I

n := (0, 1)n such that

|q1ξ1 + · · · + qnξn + p| ≥ κ ′

Qn
(1.53)

for all integer points (p,q) ∈ Z × Z
n such that 1 ≤ |q| ≤ Q. Note that ξ ∈

Bn(Q, κ ′) are precisely the points in I
n for which the right hand side of inequality

(1.39) appearing in Dirichlet’s n-dimensional theorem, cannot be improved by the
factor of κ ′ (Q is fixed here). To estimate the probability of Bn(Q, κ ′), we consider
the complementary inequality

|q1ξ1 + · · · + qnξn + p| < κ ′

Qn
. (1.54)

Let 1 ≤ |q| ≤ Q. Then for a fixed q, it can be verified that the probability that a
given ξ ∈ I

n satisfies (1.54) for some p ∈ Z is exactly 2κ ′Q−n—this is a relatively
straightforward calculation the details of which can be found in [63, Lemma 8]. On
summing up these probabilities over q with q1 ≥ 0 (this can be assumed without
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loss of generality), we conclude that the probability that a given ξ ∈ I
n satisfies

(1.54) for some integers p and 1 ≤ |q| ≤ Q, is bounded above by

2κ ′Q−n(2Q+ 1)n−1(Q+ 1) ∼ 2nκ ′ (asQ→∞).

This in turn implies the following statement.

Lemma 1.2 For any 0 < κ ′ < 1 and anyQ ∈ N

Prob(Bn(Q, κ ′)) ≥ 1− 2nκ ′
(

1+ 1

2Q

)n−1 (

1+ 1

Q

)

. (1.55)

Similarly to the one-dimensional case (cf. Sect. 1.1.4), the above trivial estimate can
be improved, however, we leave this task to the energetic reader. We also note that
the probability in Lemma 1.2 is assumed to be uniform but it is possible to obtain a
version of Lemma 1.2 for other (absolutely continuous) distributions as mentioned
in Remark 1.3. In any case, the upshot of the above discussion is that for sufficiently
small κ ′ > 0 the probability that the point ξ given by (1.45) modulo 1 belongs
to Bn(Q, κ ′) is positive. Hence, it follows that for any ρ ∈ (0, 1) there exists an
explicitly computable constant κ ′ > 0 with the following property: with probability
greater than ρ, for a random choice of the four channel coefficients hij (i, j = 1, 2),
the separation between the associated points y1 given by (1.31) is at least κ ′C2/Q

2,
and so the minimal distance dmin,1 satisfies

dmin,1 ≥ κ
′C2

Q2 . (1.56)

Moreover, the probability ρ can be made arbitrarily close to one. However, the cost
is that the constant κ ′ becomes arbitrarily small. The above analysis holds equally
well at receiver R2 and we obtain an analogous probabilistic bound for the minimal
distance dmin,2 associated with the points y2 given by (1.32).

Remark 1.9 Obviously (1.56) is a better lower bound for dmin,1 than (1.46)
whenever κ ′ is greater than the badly approximable constant κ(ξ) appearing in
(1.46). However, this really is not the point—both approaches yield lower bounds
for the minimal distance that lie within a constant factor of the theoretic upper bound
(1.40). The main point is that the badly approximable approach has zero probability
of actually delivering (1.46) whereas the probabilistic approach yields (1.46) with
positive probability (whenever κ(ξ) is sufficiently small so that the right hand side
of (1.55) with κ ′ = κ(ξ) is positive).

Remark 1.10 In the same vein as Remark 1.8, we first observe that in order to
simultaneously guarantee (1.56) and its analogue for dmin,2, both the points ξ and ξ ′
modulo one, where ξ is given by (1.45) or (1.47) and ξ ′ is given by (1.49) or (1.50),
need to simultaneously lie in Bn(Q, κ ′). Thus to obtain the desired (simultaneous)
probabilistic statement, we need to show the probability of both ξ and ξ ′ modulo one
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belonging to Bn(Q, κ ′) is positive; say 1− κ ′ in line with (1.55). This would be an
easy task if the points under consideration were independent. However, the points
ξ and ξ ′ are confined by (1.51) and therefore the events ξ (mod1) ∈ Bn(Q, κ ′)
and ξ ′(mod1) ∈ Bn(Q, κ ′) are dependent. Nevertheless, it can be shown that the
probability of these two events holding simultaneously is at least 1− σ × κ ′, where
σ is an explicitly computable positive constant. We leave the details to the extremely
energetic reader.

Remark 1.11 For another specific (and powerful) application of the probabilistic
approach outlined in this section we refer the reader to [53]. In short, in [53] the
probabilistic approach is used to estimate the capacity of the two-user X channel
from below and above with only a constant gap between the bounds.

Notice that the fundamental set Bn(Q, κ ′) that underpins the probabilistic
approach is dependent on Q. Thus, as Q varies, so does the random choice of
channel coefficients that achieve (1.56). As we shall see in the next section, this
can be problematic.

1.2.4 The Khintchine-Groshev Theorem and Degrees of
Freedom

The probabilistic approach of Sect. 1.2.3, relies on the point ξ associated with the
channel coefficients via (1.45) being in the set Bn(Q, κ ′). Now, however large the
probability of the latter (a lower bound is given by (1.55)), it can be verified that

Prob(Bn(Q, κ ′)) ≤ 1− ωκ ′ , (1.57)

where ω > 0 is a constant depending only on n. The proof of this can be
obtained by utilizing the notion of ubiquity; in particular, exploiting the ideas used
in establishing Proposition 4 in [12, Section 12.1]. Moreover, for any κ ′ > 0 and any
infinite subset Q ⊂ N the probability that ξ lies in Bn(Q, κ ′) for all sufficiently large
Q ∈ Q (let alone all sufficiently largeQ in N) is zero. This is a fairly straightforward
consequence of Theorem 1.3 and [9, Lemma 4]. This is an unfortunate downside
of the probabilistic approach, especially when it comes to estimating the so called
Degrees of Freedom (DoF) of communication channels. Indeed, when estimating
the DoF it is desirable to achieve, with probability one, close to optimal bounds
on the minimal distances (dmin,1 and dmin,2 within the context of Example 2) for
all sufficiently large Q. Of course, the badly approximable approach described in
Sect. 1.2.2 does this in the sense that it yields (1.56) for all large Q whenever
ξ ∈ Bad(2). However, as already discussed in Remark 1.9, the downside of the
badly approximable approach is that the probability of hitting Bad(2) is zero. In
this section we describe another approach which overcomes the inadequacies of
both the probabilistic and badly approximable approaches. It gives an ‘ε-weaker’
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estimate for the minimal distance but as we shall soon see it is more than adequate
for estimating the DoF. The key is to make use of the fundamental Khintchine-
Groshev theorem in metric Diophantine approximation and this is what we first
describe.

Given a function ψ : R+ → R+, where R+ denotes the set of non-negative real
numbers, let

Wn(ψ) :=
{

ξ ∈ I
n : |q1ξ1 + · · · + qnξn + p| < ψ(|q|)

for i.m. (p,q) ∈ Z× Z
n\{0}

}

. (1.58)

Here and elsewhere, ‘i.m.’ is short for ‘infinitely many’ and given a subset X in R
n,

we will write |X|n for its n–dimensional Lebesgue measure. For obvious reasons,
points in Wn(ψ) are referred to as ψ-approximable. When n = 1, it is easily seen
that W(ψ) :=W1(ψ) is the set of ξ = ξ1 ∈ I such that

∣
∣
∣
∣
ξ − p

q

∣
∣
∣
∣
<
ψ(q)

q

has infinitely many solutions (p, q) ∈ Z × N. Investigating the measure theoretic
properties of W(ψ) was the subject of the pioneering work of Khintchine [40]
almost a century ago. The following generalisation of Khintchine’s theorem is a
special case of a result of Groshev [36] concerning systems of linear form (see
Theorem 1.12 in Sect. 1.2.7). In the one-dimensional case, it provides a quantitative
analysis of the density of the rationals in the reals.

Theorem 1.4 (Khintchine-Groshev for One Linear Form) Let ψ : R+ → R+
be a monotonic function. Then

|Wn(ψ)|n =
⎧

⎨

⎩

0 if
∑∞
q=1 q

n−1ψ(q) <∞ ,
1 if

∑∞
q=1 q

n−1ψ(q) = ∞ .

Remark 1.12 The convergence case of Theorem 1.4 is a relatively simple applica-
tion of the Borel–Cantelli Lemma from probability theory and it holds for arbitrary
functions ψ . In the divergence case, the theorem was first obtained by Groshev
under the stronger assumption that qnψ(q) is monotonic. In fact, the monotonicity
assumption can be completely removed from the statement of theorem if n ≥ 2. This
is a consequence of Schmidt’s paper [56, Theorem 2] from the swinging sixties if
n ≥ 3 and the relatively recent paper [10] covers the n = 2 case. In 1941, Duffin
& Schaeffer [29] constructed a non-monotonic approximating functionψ for which
the sum

∑

q ψ(q) diverges but |W(ψ)| = 0. Thus, the monotonicity assumption
cannot be removed in dimension one. For completeness, we mention that in the
same paper Duffin & Schaeffer formulated an alternative statement for arbitrary
functions. This soon became known as the notorious Duffin-Schaeffer Conjecture
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and it remained unsolved for almost eighty years until the breakthrough work of
Koukoulopoulos & Maynard [47].

An immediate consequence of the convergence case of Theorem 1.4 is the
following statement.

Corollary 1.3 Let ψ : R+ → R+ be a function such that

∞
∑

q=1

qn−1ψ(q) <∞ . (1.59)

Then, for almost all ξ ∈ I
n there exists a constant κ(ξ) > 0 such that

|q1ξ1 + · · · + qnξn + p| > κ(ξ) ψ(|q|) ∀ (p,q) ∈ Z× Z
n\{0} . (1.60)

Now consider the special case when ψ : q → q−n−ε for some ε > 0. Then
Corollary 1.3 implies that for almost all ξ ∈ I

n there exists a constant κ(ξ) > 0
such that

|q1ξ1 + · · · + qnξn + p| ≥ κ(ξ)

|q|n+ε

for all (p,q) ∈ Z×Z
n\{0}. In particular, for almost all ξ ∈ I

n and everyQ ∈ N we
have that

|q1ξ1 + · · · + qnξn + p| ≥ κ(ξ)

Qn+ε
(1.61)

for all (p,q) ∈ Z × Z
n\{0} with 1 ≤ |q| ≤ Q. Now in the same way if ξ given

by (1.45) is badly approximable leads to the minimal distance estimate (1.46), the
upshot of (1.61) is the following statement: with probability one, for every Q ∈ N

and a random choice of channel coefficients hij (i, j = 1, 2), the separation between
the associated points y1 given by (1.31) is at least κ(ξ)C2/Q

2+ε and so

dmin,1 ≥ κ(ξ)C2

Q2+ε . (1.62)

Just to clarify, that ξ in the above corresponds to the point given by (1.45) associated
with the choice of the channel coefficients. Note that instead of (1.45), one can
equivalently consider ξ to be either of the points given by (1.47) and this would lead
to (1.62) with C2 defined by (1.48). A similar lower bound statement holds for the
minimal distance dmin,2 associated with the points y2 given by (1.32). Of course, in
this case ξ need to be replaced by ξ ′ given by (1.49) or equivalently (1.50).

Remark 1.13 Recall that ξ is given by (1.45) or (1.47) and ξ ′ is given by (1.49)
or (1.50) and they are dependent via (1.51) and (1.52). Note that any of the maps
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in (1.52) is a diffeomorphism on a sufficiently small neighborhood of almost every
point in R

2. Therefore, if ξ avoids a subset of R2 of measure zero, then so does ξ ′.
Thus, (1.62) and an analogous bound for dmin,2 are simultaneously valid for almost
all choices of the channel coefficients.

Remark 1.14 Note that in the above analysis, if we had worked with the function
ψ : q → q−n(log q)−1−ε for some ε > 0, we would have obtained the stronger
estimate

dmin,1 ≥ κ(ξ)C2

Q2(logQ)1+ε
.

It will be soon be clear that (1.62) is all we need for estimating the DoF within the
context of Example 2.

A natural question arising from the above discussion is: can the constant κ(ξ )
within Corollary 1.3 and thus (1.62) be made independent of ξ? Unfortunately, this
is impossible to guarantee with probability one; that is, for almost all ξ ∈ I

n. To see
this, consider the set

Bn(ψ, κ) :=
{

ξ ∈ I
n : |q1ξ1 + · · · + qnξn + p| > κψ(|q|)

∀ (p,q) ∈ Z× Z
n\{0}

}

. (1.63)

Then for any κ and ψ , observe that Bn(ψ, κ) will not contain the region

[−κψ(|q|), κψ(|q|)] × R
n−1

when q = (1, 0, . . . , 0) ∈ Z
n. This region has positive probability; namely

2κψ(1)), and so the complement (which containsBn(ψ, κ)) cannot have probability
one. Nevertheless, the following result provides not only an explicit dependence on
the probability of Bn(ψ, κ) on κ , but shows that it can be made arbitrarily close to
one upon taking κ sufficiently small.

Theorem 1.5 (Effective Convergence Khintchine-Groshev for One Linear
Form) Let ψ : R+ → R+ be a function such that

∞∑

q=1

qn−1ψ(q) <∞ .

Then, for any κ > 0

Prob(Bn(ψ, κ)) ≥ 1− 4nκ
∞
∑

q=1

(2q + 1)n−1ψ(q) .
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Proof Note that

Bn(ψ, κ) = I
n \

⋃

q∈Zn\{0}
Eq(ψ) ,

where

Eq :=
{

ξ ∈ I
n : |q1ξ1 + · · · + qnξn + p| ≤ κψ(|q|) for some p ∈ Z

}

.

Now, it is not difficult to verify that |Eq|n = 2κψ(|q|) - see [63, Lemma 8] for
details. Thus, it follows that

Prob(Bn(ψ, κ)) := |Bn(ψ, κ)|n ≥ 1−
∑

q∈Zn\{0}
|Eq|n

= 1−
∑

q∈Zn\{0}
2κψ(|q|)

= 1−
∞
∑

q=1

∑

q∈Zn
|q|=q

2κψ(|q|)

= 1− 2κ
∞∑

q=1

ψ(q)
∑

q∈Zn
|q|=q

1

≥ 1− 2κ
∞
∑

q=1

ψ(q)2n(2q + 1)n−1 ,

as desired. 
�
Having set up the necessary mathematical theory, we now turn our attention

to calculating the DoF for the two-user X-channel considered in Example 2.
The advantage of utilising the Khintchine-Groshev approach rather than the badly
approximable approach, is that the value we obtain is not only sharp but it is valid
for almost every realisation of the four channel coefficients hij (i, j = 1, 2). Here,
almost every is naturally with respect to 4-dimensional Lebesgue measure. At this
point, a mathematician with little or no background in communication theory (like
us) may rightly be crying out for an explanation of what is meant by the Degrees of
Freedom of communication channels. We will attempt to provide a basic and in part
a heuristic explanation within the context of Example 2. For a more in depth and
general discussion we refer the reader to Chap. 2.

The simplest example of a communication channel is one involving just one
transmitter and one receiver. For obvious reasons, such a setup is referred to as a
point to point channel. The DoF of any other communication channel model is in
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essence a measure of its efficiency compared with using multiple point to point
channels. In making any comparison, it is paramount to compare like with like.
Thus, given that the noise zi (i = 1, 2) at both receivers Ri within Example 2 is
assumed to have normal distribution N(0, 1), we assume that the noise within the
benchmark point to point channel has normal distribution N(0, 1). In the same vein,
we assume that the messages the users transmit within both models are integers
lying in {0, . . . ,Q}; that is to say that Q is the same in Example 2 and the point
to point channel model. The parameter Q ∈ N is obviously a bound on the
message size and it provides a bound on the number of binary digits (bits) that
can be transmitted instantaneously as a single bundle. Indeed, sending the integerQ
requires transmitting a bundle of �logQ�+1 ≈ logQ bits, where the logarithm is to
the base 2. Loosely speaking, the larger the message to be sent the larger the “power”
required to transmit the message (transmitting instantaneously more bits requires
more energy). Thus a bound on the message sizeQ corresponds to imposing a power
constraint P on the channel model under consideration. For physical reasons, that
are not particularly relevant to the discussion here, the power is comparable to the
square of the message size. The upshot is that a power constraint P on the channel
model places a bound on the maximal number of bits that can be reliably transmitted
as a single bundle. With this in mind, the (total) DoF of the channel characterises the
number (possibly fractional) of simple point-to-point channels, needed to reliably
transmit the same maximal number of bits as the power constraintP tends to infinity.
We now calculate the total DoF for the concrete setup of Example 2. The exposition
given below is a simplified version of that presented in [52].

In relation to Example 2, the power constraint P means that

|x1|2 ≤ P and |x2|2 ≤ P , (1.64)

where x1 and x2 are the codewords transmitted by S1 and S2 as given by (1.29).
Now notice that since the messages u1, u2, v1, v2 are integers lying in {0, . . . ,Q},
it follows that P is comparable to (λQ)2—the channel coefficients hij are fixed.
Recall, that λ ≥ 1 is a scaling factor which is at our disposal and this will be
utilized shortly. It is shown in [52], that the probability of error in transmission
within Example 2 is bounded above by

exp

(

−d
2
min

8

)

, (1.65)

where

dmin = min{dmin,1, dmin,2}.

It is a standard requirement that this probability should tend to zero as P →∞. In
essence, this is what it means for the transmission to be reliable. Then, on assuming
(1.62)—which holds for almost every realisation of the channel coefficients—it
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follows that

dmin � λ

Q2+ε , (1.66)

and so the quantity (1.65) will tend to zero asQ→∞ if we set

λ = Q2+2ε .

The upshot of this is that we will achieve reliable transmission under the power
constraint (1.64) if we set P to be comparable toQ6+4ε; that is

Q6+4ε � P � Q6+4ε .

Now in Example 2, we simultaneously transmit 4 messages, namely u1, u2, v1, v2,
which independently take values between 0 and Q. Therefore, in total we transmit
approximately 4× logQ bits, which with our choice of P is an achievable total rate
of reliable transmission; however, it may not be maximal. We now turn our attention
to the simple point to point channel in which the noise has normal distribution
N(0, 1). In his pioneering work during the forties, Shannon [62] showed that
such a channel subject to the power constraint P achieves the maximal rate of
reliable transmission 1

2 log(1 + P)—for further details see Sect. 2.1 of Chap. 2.
On comparing the above rates of reliable transmission for the two models under
the same power constraint, we get that the total DoF of the two-user X-channel
described in Example 2 is at least

lim
P→∞

4 logQ
1
2 log(1+ P) = lim

Q→∞
4 logQ

1
2 log(1+Q6+4ε)

= 4

3+ 2ε
. (1.67)

Given that ε > 0 is arbitrary, it follows that for almost every realisation of the
channel coefficients

DoF ≥ 4

3
.

Now it was shown in [38] that the total DoF of a two-user X-channel is upper
bounded by 4/3 for all choices of the channel coefficients, and so it follows that
for almost every realisation of the channel coefficients

DoF = 4

3
. (1.68)

For ease of reference we formally state these findings, the full details of which can
be found in [52], as a theorem.
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Theorem 1.6 For almost every realisation of the four channel coefficients hij
(i, j = 1, 2), the total DoF of the two-user X-channel is 4

3 .

Remark 1.15 We reiterate that by utilising the Khintchine-Groshev approach rather
than the badly approximable approach (i.e. exploiting the lower bound (1.62) instead
of (1.46) or equivalently (1.56) for the minimal distance), we obtain (1.68) for
the DoF that is valid for almost every realisation of the four channel coefficients
hij (i, j = 1, 2) rather than on a set of 4-dimensional Lebesgue measure zero.
In Sect. 1.2.6, we shall go further and show that any exceptional set of channel
coefficients for which (1.68) fails is a subset arising from the notion of jointly
singular points. This subset is then shown (see Theorem 1.9) not only to have
measure zero but to have dimension strictly less than 4—the dimension of the space
occupied by the channel coefficients. In short, our improvement of Theorem 1.6 is
given by Theorem 1.10.

1.2.5 Dirichlet Improvable and Non-Improvable Points:
Achieving Optimal Separation

We now show that there are special values of Q for which the minimal distance
dmin,1 satisfies (1.56) with κ ′ as close to one as desired. Recall, the larger the
minimal distance the more tolerance we have for noise. The key is to exploit the
(abundant) existence of points for which Dirichlet’s theorem cannot be improved.

Definition 1.4 (Dirichlet Improvable and Non-Improvable Points) Let 0 <

κ ′ < 1. A point ξ ∈ R
n is said to be κ ′-Dirichlet improvable if for all sufficiently

largeQ ∈ N there are integer points (p,q) ∈ Z× Z
n with 1 ≤ |q| ≤ Q such that

|q1ξ1 + · · · + qnξn + p| < κ ′Q−n . (1.69)

A point ξ ∈ R
n is said to be Dirichlet non-improvable if for any κ ′ < 1 it is not

κ ′-Dirichlet improvable. Thus, explicitly, ξ ∈ R
n is Dirichlet non-improvable if for

any 0 < κ ′ < 1 there exists arbitrarily large Q ∈ N such that for all integer points
(p,q) ∈ Z× Z

n with 1 ≤ |q| ≤ Q

|q1ξ1 + · · · + qnξn + p| ≥ κ ′Q−n . (1.70)

Remark 1.16 Note that Dirichlet non-improvable points are not the same as those
considered in the probabilistic approach of Sect. 1.2.3. There the emphasis is on
both κ ′ andQ being uniform.

In a follow-up paper [27] to their one-dimensional work cited in Sect. 1.1.5,
Davenport & Schmidt showed that Dirichlet improvable points in R

n form a set
DI(n) of n-dimensional Lebesgue measure zero. Hence, a randomly picked point
in R

n is Dirichlet non-improvable with probability one. The upshot of this is
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the following consequence: for almost every random choice of the four channel
coefficients hij (i, j = 1, 2) and for any ε > 0 there exist arbitrarily large integers
Q such that the minimal distance dmin,1 between the associated points given by
(1.31) satisfies

dmin,1 ≥ (1− ε)λh11h12

Q2 = (1− ε) C2

Q2 . (1.71)

To conclude, the Dirichlet non-improvable approach allows us to almost surely
achieve the best possible separation, within the factor (1− ε) of the theoretic upper
bound (1.40), for an infinite choice of integer parametersQ ∈ Q1.

Remark 1.17 Obviously, we can obtain an analogous lower bound statement for
dmin,2 for an infinite choice of integer parameters Q ∈ Q2. However, it is not
guaranteed that the integer sets Q1 and Q2 overlap and thus the problem of
optimising dmin,1 and dmin,2 simultaneously remains open.

1.2.6 Singular and Non-Singular Points: The DoF of
X-Channel Revisited

With reference to Example 2, the Khintchine-Groshev and the Dirichlet non-
improvable approaches allows us to achieve good separation for the minimal
distances (i.e., lower bounds for dmin,1 and dmin,2 that are at most ‘ε-weaker’ than
the theoretic upper bounds) for almost all choices of the four channel coefficients
hij (i, j = 1, 2). We now turn to the question of whether good separation can
be achieved for a larger class of channel coefficients? For example, is it possible
that the set of exceptions not only has measure zero (as is the case with the
aforementioned approaches) but has dimension strictly less than four (the dimension
of the space occupied by the channel coefficients)? In short the answer is yes.
The key is to make use of the following weaker notion than that of Dirichlet non-
improvable points (cf. Definition 1.4).

Definition 1.5 (Singular and Non-Singular Points) A point ξ ∈ R
n is said to be

singular if it is κ ′-Dirichlet improvable for any κ ′ > 0. A point ξ ∈ R
n is said to

be non-singular (or regular) if it is not singular. Thus, explicitly, ξ ∈ R
n is non-

singular if there exists a constant κ ′ = κ ′(ξ ) > 0 such that there exist arbitrarily
large integersQ ∈ N so that for all integer points (p,q) ∈ Z×Z

n with 1 ≤ |q| ≤ Q

|q1ξ1 + · · · + qnξn + p| ≥ κ ′Q−n . (1.72)

By definition, any singular point is trivially Dirichlet improvable. Equivalently, any
Dirichlet non-improvable point is trivially non-singular.
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We let Sing(n) denote the set of singular points in R
n. It is easily verified that

Sing(n) contains every rational hyperplane in R
n. Therefore,

n− 1 ≤ dim Sing(n) ≤ n .

Here and throughout, dimX will denote the Hausdorff dimension of a subset X of
R
n. For the sake of completeness, we provide the definition.

Definition 1.6 (Hausdorff Dimension) Let X ⊂ R
n. Then the Hausdorff dimen-

sion dimX of X is defined to be the infimum of s > 0 such that for any ρ > 0
and any ε > 0 there exists a cover of X by a countable family Bi of balls of radius
r(Bi) < ρ such that

∞
∑

i=1

r(Bi)
s < ε .

Remark 1.18 For most sets upper bounds for the Hausdorrf dimension can be
obtained using natural covering by small balls. Indeed, let X ⊂ R

n and ρ > 0 and
supposeX can be covered byNρ(X) balls of radius at most ρ. Then, it immediately
follows for the above definition that

dimX ≤ lim sup
ρ→0

logNρ(X)

− logρ
.

Note that the Hausdorff dimension of planes and more generally smooth subman-
ifolds of R

n is the same as their usual ‘geometric’ dimension. The middle third
Cantor set K is the standard classical example of a set with fractal dimension. Recall,
K consists of all real numbers in the unit interval whose base 3 expansion does not
contain the ‘digit’ 1; that is

K := {ξ ∈ [0, 1] : ξ =∑∞
i=1ai3

−i with ai = 0 or 2} .

It is well known that

dimK = log 2

log 3
.

For a proof of this and a lovely introduction to the mathematical world of fractals,
see the bible [30].

Now returning to singular points, in the case n = 1, a nifty argument due to
Khintchine [40] dating back to the twenties shows that a real number is singular if
and only if it is rational; that is

Sing(1) = Q . (1.73)
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Recently, Cheung & Chevallier [22], building on the spectacular n = 2 work of
Cheung [21], have proved the following dimension statement for Sing(n).

Theorem 1.7 (Cheung & Chevallier) Let n ≥ 2. Then

dim Sing(n) = n2

n+ 1
.

Thus,

codim Sing(n) = n

n+ 1
.

Remark 1.19 Note that since n2

n+1 > n−1, the theorem immediately implies that in
higher dimensions Sing(n) does not simply correspond to rationally dependent ξ ∈
R
n as in the one-dimensional case—the theory is much richer. Also observe, that

since n2

n+1 < n, the set Sing(n) is strictly smaller than R
n in terms of its Hausdorff

dimension. How much smaller is measured by its codimension; i.e. n−dim Sing(n).

Now if the four channel coefficients hij (i, j = 1, 2) happen to be such that
the corresponding point ξ ∈ R

2 given by (1.45) is non-singular, then there exist
arbitrarily large integers Q such that the minimal distance dmin,1 between the
associated points given by (1.31) satisfies

dmin,1 ≥ κ
′(ξ )λh11h12

Q2 = κ ′(ξ) C2

Q2 . (1.74)

This of course is similar to the statement in which the point ξ is Dirichlet
non-improvable with the downside that we cannot replace the constant κ ′(ξ) by
(1 − ε) as in (1.71). However, the advantage is that it is valid for a much larger
set of channel coefficients; namely, the exceptional set of channel coefficients
(h11, h12, h21, h22) ∈ R

4+ for which (1.74) is not valid has dimension 10
3 , which

is strictly smaller than 4—the dimension of the ambient space occupied by
(h11, h12, h21, h22). This result seems to be new and we state it formally.

Proposition 1.1 For all choices of channel coefficients (h11, h12, h21, h22) ∈ R
4+,

except on a subset of codimension 2
3 , there exist arbitrarily large integers Q such

that the minimal distance dmin,1 between the associated points given by (1.31)
satisfies (1.74).

The proof of the proposition will make use of the following two well known results
from fractal geometry [50].

Lemma 1.3 (Marstrand’s Slicing Lemma) For any X ⊂ R
k and l ∈ N, we have

that

dim(X × R
�) = dimX + � .
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Lemma 1.4 Let X ⊂ R
k and g : Rk → R

k be a locally bi-Lipschitz map. Then

dim
(

g(X)
) = dimX .

Proof (Proof of Proposition 1.1) Consider the following map on the channel
coefficients

g : R4+ → R
4+ such that g(h11, h12, h21, h22) =

(

h11, h12,
h22

h12
,
h21

h11

)

.

As we have already discussed, for any ξ given by (1.45) such that ξ ∈ R
2+ \Sing(2)

we have that (1.74) holds. Hence, (1.74) holds for any choice of channel coefficients
such that

(h11, h12, h21, h22) �∈ g−1
(

R
2+ ×

(

R
2+ ∩ Sing(2)

))

. (1.75)

By Lemma 1.3 and Theorem 1.7, it follows that

codim
(

R
2+ ×

(

R
2+ ∩ Sing(2)

)) = 2

3
.

Finally, note that locally at every point of R4+ the map g is a C1 diffeomorphism
and hence is bi-Lipschitz. Therefore, by Lemma 1.4 it follows that g−1 preserves
dimension and thus the codimension of the right hand side of (1.75) is 2

3 . This
completes the proof. 
�
Remark 1.20 Just to clarify, that ξ appearing in (1.74) corresponds to the point
given by (1.45) associated with the choice of the channel coefficients hij (i, j =
1, 2) and κ ′(ξ ) > 0 is a constant dependent on ξ . Note that instead of (1.45), one
can equivalently consider ξ to be either of the points given by (1.47) and this would
lead to (1.74) with C2 defined by (1.48).

Naturally, the analogue of Proposition 1.1 holds for the minimal distance dmin,2
between the associated points given by (1.34). However, as in the Dirichlet non-
improvable setup (cf. Remark 1.17), we cannot guarantee that the arbitrary large
integers Q on which the lower bounds for the minimal distances are attained,
overlap. If we could guarantee infinitely many overlaps, it would enable us to
strengthen Theorem 1.6 concerning the Degrees of Freedoms (DoF) of the two-
user X-channel described in Example 2. With this goal in mind, it is appropriate to
introduce the following notion of jointly singular points.

Definition 1.7 (Jointly Singular and Non-Singular Points) The pair of points
(ξ1, ξ2) ∈ R

n ×R
n is said to be jointly singular if for any ε > 0 for all sufficiently

large Q ∈ N there exists an integer point (p,q) ∈ Z × Z
n with 1 ≤ |q| ≤ Q

satisfying

min
1≤j≤2

|q1ξj,1 + · · · + qnξj,n + p| < εQ−n ,
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where ξ j = (ξj,1, . . . , ξj,n), j = 1, 2. The pair (ξ1, ξ2) ∈ R
n × R

n will be called
jointly non-singular if it is not jointly singular, that is if there exists a constant
κ ′ = κ ′(ξ1, ξ2) > 0 such that there exist arbitrarily large Q ∈ N so that for all
integer points (p,q) ∈ Z× Z

n with 1 ≤ |q| ≤ Q

min
1≤j≤2

∣
∣q1ξj,1 + · · · + qnξj,n + p

∣
∣ ≥ κ ′Q−n . (1.76)

The set of jointly singular pairs in R
n × R

n will be denoted by Sing2(n). This
set is not and should not be confused with the standard simultaneous singular set
corresponding to two linear forms in n variables (see Sect. 1.2.7).

The above notion of jointly non-singular pairs enables us to prove the following
DoF statement.

Proposition 1.2 Let (h11, h12, h21, h22) ∈ R
4+ be given and let ξ be any of the

points (1.45) or (1.47), let ξ ′ be any of the points (1.49) or (1.50). Suppose that

(ξ , ξ ′) �∈ Sing2(2) . (1.77)

Then (1.68) holds, that is the total DoF of the two-user X-channel with hij (i, j =
1, 2) as its channel coefficients is 4

3 .

Proof To start with, simply observe that condition (1.77) means that there exist
κ ′ > 0 and an infinite subset Q ⊂ N such that for every Q ∈ Q and all integer
points (p,q) ∈ Z× Z

2 with 1 ≤ |q| ≤ Q

|q1ξ1 + q2ξ2 + p| ≥ κ ′Q−2 and
∣
∣q1ξ

′
1 + q2ξ

′
2 + p

∣
∣ ≥ κ ′Q−2 . (1.78)

Consequently, for every Q ∈ Q we can guarantee that (1.74) and its analogue for
dmin,2 are simultaneously valid. This in turn implies (1.66) for every Q ∈ Q. From
this point onwards, the rest of the argument given in Sect. 1.2.4 leading to (1.68)
remains unchanged apart from the fact that the limit in (1.67) is now along Q ∈ Q
rather than the natural numbers. 
�

Proposition 1.2 provides a natural pathway for strengthening Theorem 1.6. This
we now describe. It is reasonable to expect that the set of (ξ , ξ ′) not satisfying (1.77)
is of dimension strictly smaller than four—the dimension of the ambient space.
Indeed, this is something that we are able to prove.

Theorem 1.8 Let n ≥ 2. Then

dim Sing2(n) = 2n− n

(n+ 1)
. (1.79)

The theorem will easily follow from a more general statement concerning systems
of linear forms proved in Sect. 1.2.7 below; namely, Theorem 1.14. Note that
Theorem 1.8 is not enough for improving Theorem 1.6. Within Proposition 1.2,
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the point ξ is given by (1.45) or (1.47) and ξ ′ is given by (1.49) or (1.50), and are
therefore dependent via (1.51) and (1.52). The above theorem does not take into
consideration this dependency. This is rectified by the following result.

Theorem 1.9 Let f : U → R
n be a locally bi-Lipschitz map defined on an open

subset U ⊂ R
n and let

Sing2
f (n) := {ξ ∈ U : (ξ ,f (ξ )) ∈ Sing2(n)} .

Then

dim Sing2
f (n) ≤ n−

n

2(n+ 1)
< n. (1.80)

As with Theorem 1.8, we defer the proof of the above theorem till Sect. 1.2.7.
Combining the n = 2 case of Theorem 1.9 with Proposition 1.2 gives the following
strengthening of the result of Motahari et al. on the DoF of a two-user X-channel
(Theorem 1.6).

Theorem 1.10 The total DoF of the two-user X-channel given by (1.68) can be
achieved for all realisations of the channel coefficients hij (i, j = 1, 2) except on a
subset of Hausdorff dimension ≤ 4− 1

3 ; that is, of codimension ≥ 1
3 .

Clearly, Sing(n) is a subset Sing2
f (n). Therefore, it follows that

dim Sing2
f (n) ≥ dim Sing(n)

which together with Theorem 1.7 implies that for n ≥ 2

dim Sing2
f (n) ≥

n2

n+ 1
= n− n

n+ 1
.

The gap between this lower bound and the upper bound of Theorem 1.9 leaves
open the natural problem of determining dim Sing2

f (n) precisely. We suspect that
the lower bound is sharp.

Problem 1.1 Let n ≥ 2 and f : U → R
n be a locally bi-Lipschitz map defined on

an open subset U ⊂ R
n. Verify if

dim Sing2
f (n) =

n2

n+ 1
.

Note that to improve Theorem 1.10 we are only interested in the case n = 2 of
Problem 1.1 with f given by (1.52).
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1.2.7 Systems of Linear Forms

To date, we have in one form or another exploited the theory of Diophantine
approximation of a single linear form in n real variables. In fact, Example 1 only
really requires the notions and results with n = 1 while Example 2 requires them
with n = 2. It is easily seen, that in either of these examples, if we increase
the number of users (transmitters) S then we increase the numbers of variables
appearing in the linear form(s) associated with the received message(s) y. Indeed,
within the setup of Example 2 (resp. Example 1) we would need to use the general
n (resp. n− 1) variable theory if we had n transmitters.

The majority of the Diophantine approximation theory for a single linear form
is a special case of a general theory addressing systems of m linear forms in n real
variables. For the sake of completeness, it is appropriate to provide a brief taster of
the general Diophantine approximation theory with an emphasis on those aspects
used in analysing communication channel models. It should not come as a surprise
that the natural starting point is Dircihlet’s theorem for systems of linear forms.
Throughout, let n,m ≥ 1 be integers and Mn,m denote the set of n × m matrices
� = (ξi,j ) with entries from R. Clearly, such a matrix represents the coordinates of
a point in R

nm. Also, given (p,q) ∈ Z
m × Z

n let

|q�+ p| := max
1≤j≤m |q.ξ j + pj | ,

where ξ j := (ξ1,j , . . . , ξn,j )
t ∈ R

n is the j ’th column vector of � and q.ξ j :=
q1ξ1,j + . . .+ qnξn,j is the standard dot product.

Theorem 1.11 (Dirichlet’s Theorem for Systems of Linear Forms) For any� ∈
Mn,m and anyQ ∈ N there exists (p,q) ∈ Z

m × Z
n such that

|q�+ p| < Q− n
m and 1 ≤ |q| ≤ Q.

The theorem is a relatively straightforward consequence of Minkowski’s theorem
for systems of linear forms; namely Theorem 1.2 in Sect. 1.2.1. For the details of the
deduction see for example [60, Chapter 2]. In turn, a straightforward consequence
of the above theorem is the following natural extension of Corollary 1.1 to systems
of linear form.

Corollary 1.4 For any� ∈Mn,m there exists infinitely many (p,q) ∈ Z
m×Z

n\{0}
such that

|q�+ p| < |q|− n
m .

Armed with Theorem 1.11 and its corollary, it does not require much imagination to
extend the single linear form notions of badly approximable (cf. Definition 1.3)
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and Dirchlet improvable (cf. Definition 1.4) to systems of linear forms. Indeed,
concerning the former we arrive at the set

Bad(n,m) :=

⎧

⎪⎨

⎪⎩

� ∈Mn,m : lim inf
q∈Zn:
|q|→∞

|q| nm |q�− p| > 0

⎫

⎪⎬

⎪⎭

.

This clearly coincides with Bad(n) when m = 1. As we shall soon see, Bad(n,m)
it is a set of zero nm-dimensional Lebesgue measure. Even still, Schmidt [57, 58]
showed that it is a large set in the sense that it is of maximal dimension; i.e.
dim Bad(n,m) = nm .Moving swiftly on, given a function ψ : R+ → R+ let

Wn,m(ψ) :=
{

� ∈ Mn,m(I) :
|q�− p| < ψ(|q|) for

i.m. (p,q) ∈ Z
m × Z

n\{0}

}

.

Here and below, Mn,m(I) ⊂ Mn,m denotes the set of n × m matrices with entries
from I = (0, 1). The following provides an elegant criterion for the size of the set
Wn,m(ψ) expressed in terms of nm-dimensional Lebesgue measure. When m = 1,
it coincides with Theorem 1.4 appearing in Sect. 1.2.4.

Theorem 1.12 (The Khintchine-Groshev Theorem) Given any monotonic func-
tion ψ : R+ → R+, we have that

|Wn,m(ψ)|nm =
⎧

⎨

⎩

0 if
∑∞
q=1 q

n−1ψ(q)m <∞ ,
1 if

∑∞
q=1 q

n−1ψ(q)m = ∞ .

Consider for the moment the function ψ(r) = r− n
m (log r)−m and observe that

Bad(n,m) ∩Mn,m(I) ⊂ Mn,m(I) \Wn,m(ψ) .

By Theorem 1.12, |Wn,m(ψ)|nm = 1. Thus |Mn,m(I) \Wn,m(ψ)|nm = 0 and on
using the fact that set Bad(n,m) is invariant under translation by integer n × m
matrices, it follows that

|Bad(n,m)|nm = 0 .

Another immediate consequence of the Khintchine-Groshev Theorem is the follow-
ing statement (cf. Corollary 1.3).

Corollary 1.5 Let ψ : R+ → R+ be any function such that

∞
∑

q=1

qn−1ψ(q)m <∞ .
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Then, for almost all � ∈Mn,m there exists a constant κ(�) > 0 such that

|q�+ p| > κ(�) ψ(|q|) ∀ (p,q) ∈ Z
m × Z

n\{0} .

The following is the natural generalisation of the set given by (1.63) to systems
of linear forms and the subsequent statement is the natural generalisation of
Theorem 1.5. Let

Bn,m(ψ, κ) :=
{

� ∈Mn,m(I) :
|q�+ p| > κψ(|q|)
∀ (p,q) ∈ Z

m × Z
n\{0}

}

. (1.81)

Theorem 1.13 (Effective Convergence Khintchine-Groshev Theorem) Suppose
that

∞
∑

q=1

qn−1ψ(q)m <∞ .

Then, for any κ > 0

Prob(Bn,m(ψ, κ)) ≥ 1− 2mnκm
∞
∑

q=1

(2q + 1)n−1ψ(q)m .

We highlight the fact that the probability in Theorem 1.13 is assumed to be uniform
but it is possible to obtain a version for absolutely continuous distributions as
already mentioned in Remark 1.3. Recall, that the Khintchine-Groshev theorem
(with m = 1 and n = 2) underpinned the approach taken in Sect. 1.2.4 for
calculating the Degrees of Freedom of the two-user X-channel (cf. Theorem 1.6).

We bring our selective overview of the general Diophantine approximation
theory to a close by describing singular and jointly singular sets for systems of
linear forms. In the process we shall prove Theorems 1.8 and 1.9. Recall, that the
latter allows us to improve Theorem 1.6. For ease of comparison, it is convenient to
define the sets of interest as follows:

Sing(n,m) :=
⎧

⎨

⎩
� ∈ Mn,m :

min
(p,q)∈Zm×Zn:

0<|q|≤Q
max

1≤j≤mQ
n
m |q.ξ j + pj | → 0

as Q→∞

⎫

⎬

⎭

and

Singm(n) :=
⎧

⎨

⎩
� ∈Mn,m :

min
(p,q)∈Zm×Zn:

0<|q|≤Q
min

1≤j≤mQ
n|q.ξ j + pj | → 0

as Q→∞

⎫

⎬

⎭
.

(1.82)
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Clearly, when m = 1 the above two sets are equal and the elements coincide
with the single linear form notion of singular points (cf. Definition 1.5). In
recent groundbreaking work [25], Das, Fishman, Simmons & Urbański proved the
following dimension statement (cf. Theorem 1.7) for the set of singular n × m
matrices: for all (n,m) �= (1, 1), we have that

dim Sing(n,m) = mn

(

1− 1

m+ n
)

.

This resolved a conjecture of Kadyrov, Kleinbock, Lindenstrauss & Margulis [39].
In short, they showed that dim Sing(n,m) ≤ mn(1 − 1/(m + n)) and conjectured
that their upper bound is in fact sharp.

Regarding the set of jointly singular n×m matrices, it is clear that when m = 2
its elements coincide with the single linear form notion of jointly singular points
(cf. Definition 1.7). Furthermore, it follows from the definition that for any integers
m1,m2 ≥ 1

Singm1(n)×R
n×m2 ⊂ Singm1+m2(n) .

This together with Marstrand’s Slicing Lemma and the fact Sing1(n) = Sing(n),
implies that

dim Singm(n) ≥ (m− 1)n+ dim Sing(n) . (1.83)

In turn, this together with Theorem 1.7, implies that for n ≥ 2

dim Singm(n) ≥ nm− n

(n+ 1)
. (1.84)

The following statement showing that we have equality in (1.84) is a natural
generalisation of Theorem 1.8 to systems of linear forms.

Theorem 1.14 Let m ≥ 1, n ≥ 2. Then

dim Singm(n) = nm− n

(n+ 1)
. (1.85)

Clearly, whenm = 2 the theorem coincides with Theorem 1.8. In view of (1.84),
the key to establishing Theorem 1.14 (and thus Theorem 1.8) is the following upper
bound statement.

Theorem 1.15 Let m,n ≥ 1. Then

dim Singm(n) ≤ nm− n

(n+ 1)
. (1.86)
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Note that this upper bound estimate is valid for n = 1. Clearly, in this case it is
not sharp when m = 1 since Sing1(1) = Sing(1) = Q and so dim Sing1(1) = 0.
Also, note that the lower bound given by (1.83) does not match the upper bound
given by (1.86). Nevertheless, we suspect that (1.86) is sharp when m ≥ 2.

Problem 1.2 Let m ≥ 2. Verify if dim Singm(1) = m− 1
2 .

Clearly, if true then we can replace the conditions on m and n in Theorem 1.14 by
mn > 1. Although, not explicitly stated or even discussed, it is worth mentioning
that Problem 1.1 concerning the set Sing2

f (n) also has a natural generalisation to
systems of linear form.

The proof of Theorem 1.15 (and indeed Theorem 1.9) makes use of the powerful
connection between problems in Diophantine approximation an homogeneous
dynamics. This we now briefly explain. The various Diophantine notions discussed
in this chapter correspond to certain types of orbits of unimodular lattices under the
action by diagonal matrices. For instance, as was famously discovered by Dani [23],
a point ξ = (ξ1, . . . , ξn) ∈ R

n is badly approximable if and only if the orbit

{

gtuξZ
n+1 : t > 0

}

is bounded in the homogeneous spaceXn+1 = SLn+1(R)/ SLn+1(Z) of unimodular
lattices in R

n+1. Here and throughout,

gt :=

⎛

⎜
⎜
⎜
⎝

ent

e−t
. . .

e−t

⎞

⎟
⎟
⎟
⎠

for t ∈ R+

and

uξ :=

⎛

⎜
⎜
⎜
⎝

1 ξ1 . . . ξn

0 1
...

. . .

0 1

⎞

⎟
⎟
⎟
⎠

for ξ = (ξ1, . . . , ξn) ∈ R
n .

Today this beautiful and powerful equivalence between badly approximable points
and the behaviour of orbits in Xn+1 is simply refereed to as Dani’s correspondence.
For background and further details see for instance [24, 46].

Recall that the homogeneous space Xn+1 is non-compact and, by Mahler’s
criterion, every bounded subset of Xn+1 is contained in

Kε :=
{

� ∈ Xn+1 : inf
v∈�, v �=0

‖v‖ ≥ ε
}
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for some ε > 0, where ‖ · ‖ is any norm on R
n+1. With this in mind, in the same

paper [23], Dani went on to show that ξ ∈ R
n is singular if and only if the orbit

gtuξZ
n+1 diverges as t →∞; that is, for any ε > 0 there exists a constant tε,ξ > 0

such that

∀ t ≥ tε,ξ gtuξZ
n+1 �∈ Kε .

This means that the orbit gtuξZ
n+1 leaves any bounded set ‘forever’ from some

‘time’ point tε,ξ . In the same vein, it can be verifed that the matrix � ∈ Mn,m

composed of the columns ξ1, . . . , ξm ∈ R
n is jointly singular if and only if for any

ε > 0 there exists a constant tε,� > 0 such that

∀ t ≥ tε,� ∃ j ∈ {1, . . . ,m} gtuξ j
Z
n+1 �∈ Kε . (1.87)

Unlike for singular points, for every j ∈ {1, . . . ,m} the individual orbit gtuξ j
Z
n+1

need not be divergent and could in fact for some ε > 0 return to the bounded set Kε
arbitrarily often.

The proof of Theorem 1.15 and indeed Theorem 1.9 rely on the following
powerful statement adapted for our application in mind due to Kadyrov, Kleinbock,
Lindenstrauss & Margulis [39, Theorem 1.5]. Given ξ ∈ R

n, N > 1, s > 0 and
ε > 0, let

Sξ (N, s, ε) := {� ∈ {1, . . . , N} : gs�uξZ
n+1 �∈ Kε} .

Thus, Sξ (N, s, ε) corresponds to those times t = sl (1 ≤ � ≤ N) for which the
orbit gtuξZ

n+1 does not lie in Kε. In what follows, given a set X we let #X denote
its cardinality.

Theorem 1.16 (Kadyrov, Kleinbock, Lindenstrauss & Margulis) Let Bn1 be the
unit ball in R

n centred at the origin. Then there exist s0 > 1 and C > 0 such that
for any s > s0, there exists ε > 0 such that for any N ∈ N and δ ∈ [0, 1), the set

Z(ε,N, s, δ) :=
{

ξ ∈ Bn1 :
#Sξ (N, s, ε)

N
≥ δ
}

can be covered with Cs3Ne(n+1−δ)nsN balls of radius e−(n+1)sN .

Note that ξ ∈ Z(ε,N, s, δ) if and only if the proportion of times t = sl ≤ sN
(1 ≤ � ≤ N) for which the orbit gtuξZ

n+1 avoids Kε is at least δ. To be absolutely
precise, the case when δ = 0 is not covered by [39, Theorem 1.5]. However, it is
trivially true since then Z(ε,N, s, δ) = Bn1 and the unit ball can easily be seen to
be covered with Ce(n+1−δ)nsN balls of radius e−(n+1)sN . The next statement relates
the jointly singular sets of interest to those appearing in Theorem 1.16.
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Proposition 1.3 Let ε > 0 and s ≥ 1. Then

Singm(n) ∩ (Bn1
)m ⊂

⋃

δ∈�s

∞⋃

N0=1

∞⋂

N=N0

Zm(ε,N, s, δ) , (1.88)

where

�s :=
{

δ = (δ1, . . . , δm) ∈ 1
s
Z
m ∩ [0, 1)m : δ1 + · · · + δm ≥ 1− m+1

s

}

and

Zm(ε,N, s, δ) := Z(ε,N, s, δ1)× · · · × Z(ε,N, s, δm) .

Proof Recall, that given any � ∈ Mn,m its column vectors are denoted by
ξ1, . . . , ξm ∈ R

n. Now, suppose that � ∈ Singm(n) ∩ (Bn1
)m. Then, by (1.87),

for any ε > 0 and all N > s−1tε,� we have that

{� ∈ N : s−1tε,� ≤ � ≤ N} ⊂
m
⋃

j=1

Sξ j
(N, s, ε) .

It follows that

m
∑

j=1

#Sξ j
(N, s, ε) ≥ N − s−1tε,� .

This implies that

m
∑

j=1

#Sξ j
(N, s, ε)

N
≥ 1− tε,�

sN
. (1.89)

For each j ∈ {1, . . . ,m}, let δj ∈ 1
s
Z be the largest number such that

#Sξ j
(N, s, ε)

N
≥ δj .

Then, with δ = (δ1, . . . , δm) we have that

� ∈ Zm(ε,N, s, δ) . (1.90)
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We now show that δ ∈ �s . Since #Sξ j
(N, s, ε) ≤ N , we have that 0 ≤ δj ≤ 1. By

the maximality of δj we have that

δj + 1

s
≥ #Sξ j

(N, s, ε)

N
≥ δj .

By (1.89), it follow that for N sufficiently large

m
∑

j=1

δj ≥ 1− m
s
− tε,�
sN

≥ 1− m+ 1

s
. (1.91)

Therefore, δ ∈ �s . Since �s is finite, the latter condition together with (1.90)
implies (1.88) and thereby completes the proof of the proposition. 
�

As we shall now see, armed with Theorem 1.16 and Proposition 1.3, it is
relatively straightforward to establish Theorem 1.15 and indeed Theorem 1.9.

Proof (Proof of Theorem 1.15) Without loss of generality, it suffices to show (1.86)
for the set Singm(n)∩(Bn1

)m instead of Singm(n). In short, this makes use of the fact
that Singm(n) is contained in a countable union of translates of Singm(n) ∩ (Bn1

)m
.

By Theorem 1.16, for s > s0 and each δ ∈ �s , there exists a cover of Zm(ε,N, s, δ)
by

m
∏

j=1

Cs3Ne(n+1−δj )nsN � s3mNe(n+1)nmsN−(1−m+1
s
)nsN

balls of the same radius

r = e−(n+1)sN . (1.92)

Thus, in view of Proposition 1.3 and the trivial fact that

#�s ≤ (s + 1)m ,

it follows that we have a cover of Singm(n) ∩ (Bn1
)m by

� (s + 1)ms3mNe(n+1)nmsN−(1−m+1
s
)nsN

balls of the same radius satisfying (1.92). Therefore, by the definition of Hausdorff
dimension (see Definition 1.6 and Remark 1.18 immediately following it), for every
s > s0 we have that

dim
(

Singm(n) ∩ (Bn1
)m) ≤

≤ lim sup
N→∞

log
(

(s + 1)ms3mNe(n+1)nmsN−(1−m+1
s
)nsN

)

− log(e−(n+1)sN)
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= lim sup
N→∞

3mN log s +
(

(n+ 1)nmsN − (1− m+1
s
)nsN

)

(n+ 1)sN

= 3m log s + (n+ 1)nms − (1− m+1
s
)ns

(n+ 1)s
.

Letting s →∞ gives

dim
(

Singm(n) ∩ (Bn1
)m) ≤ (n+ 1)nm− n

n+ 1
= mn− n

n+ 1
,

and thereby completes the proof of Theorem 1.15. 
�
Proof (Proof of Theorem 1.9) Given f : U → R

n as in the statement of the
theorem, let

Mf := {� ∈Mn,2 : ξ2 = f (ξ1)} .

Since f is bi-Lipschitz,

dim
(

Sing2
f (n)

) = dim
(

Sing2(n) ∩Mf

)

.

Therefore, (1.80) is equivalent to

dim
(

Sing2(n) ∩Mf

) ≤ n− n

2(n+ 1)
. (1.93)

As in the previous proof, it suffices to show (1.93) for Sing2(n) ∩Mf ∩
(

Bn1

)2

instead of Sing2(n)∩Mf . With this in mind, by Proposition 1.3, for any ε > 0 and
any s ≥ 1 we have that

Sing2(n) ∩Mf ∩
(

Bn1
)2 ⊂

⋃

δ∈�s

∞
⋃

N0=1

∞
⋂

N=N0

Z2(ε,N, s, δ) ∩Mf . (1.94)

Observe that

max{δ1, δ2} ≥ 1
2 − 3

2s ,

and so by Theorem 1.16, for s > s0 and each δ ∈ �s , we have a cover of
Z2(ε,N, s, δ) ∩Mf by

min
1≤j≤2

Cs3Ne(n+1−δj )nsN ≤ Cs3Ne

(

n+1− 1
2+

3
2s

)

nsN
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balls of the same radius

r = e−(n+1)sN . (1.95)

Thus, in view of Proposition 1.3 and the trivial fact that

#�s ≤ (s + 1)2 ,

it follows that we have a cover of Sing2(n) ∩Mf ∩
(

Bn1

)2 by

� (s + 1)2s3Ne

(

n+1− 1
2+

3
2s

)

nsN

balls of the same radius r as given by (1.95). Therefore, for every s > s0 we have
that

dim
(

Sing2(n) ∩Mf ∩
(

Bn1
)2
)

≤

≤ lim sup
N→∞

log

(

(s + 1)2s3Ne

(

n+1− 1
2+

3
2s

)

nsN
)

− log(e−(n+1)sN)

= lim sup
N→∞

3N log s +
(

n+ 1− 1
2 + 3

2s

)

nsN

(n+ 1)sN

=
3 log s +

(

n+ 1− 1
2 + 3

2s

)

ns

(n+ 1)s
.

On letting s →∞, gives

dim
(

Sing2(n) ∩Mf ∩
(

Bn1
)2
)

≤
(

n+ 1− 1
2

)

n

n+ 1
= n− n

2(n+ 1)
,

and thereby completes the proof of Theorem 1.9. 
�
As mentioned at the start of this subsection, even if we increased the number

of users in the basic setup of Examples 1 & 2 we would still only need to call
upon the general Diophantine approximation theory described above for a singular
linear form (i.e., m = 1). A natural question that a reader may well be asking at
this point is, whether or not there is a model of a communication channel that in
its analysis requires us to genuinely exploit the general systems of linear forms
theory with m > 1? The answer to this is emphatically yes. The simplest setup
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that demonstrates this involves n users and one receiver equipped with m antennae.
Recall, an antenna is a device (such as an old fashioned radio or television ariel)
that is used to transmit or receive signals. Within Examples 1 & 2, each transmitter
and receiver are implicitly understood to have a single antenna. This convention
is pretty standard whenever the number of antennae at a transmitter or receiver is
not specified. For a single receiver to be equipped with m antennae is in essence
equivalent to m receivers (each with a single antenna) in cahoots with one another.
The overall effect of sharing information is an increase in the probability that the
receivers will be able to decode the transmitted messages. We now briefly explain
how the setup alluded to above naturally brings into play the general Diophantine
approximation theory for systems of linear forms.

Example 2A (Multi-Antennae Receivers) Suppose there are n users S1, . . . , Sn
and two receivers R1 and R2 which ‘cooperate’ with one another. Furthermore,
assume that n ≥ 3. LetQ ≥ 1 be an integer and suppose Sj wishes to transmit the
message uj ∈ {0, . . . ,Q} simultaneously to R1 and R2. Next, as in Example 2, for
i = 1, 2 and j = 1, . . . , n, let hij denote the channel coefficients associated with
the transmission of signals from Sj to Ri . Also, let yi denote the signal received by
Ri after (linear) encoding but before noise zi is taken into account. Thus,

y1 = λ
n∑

j=1

h1jαj uj , (1.96)

y2 = λ
n
∑

j=1

h2jαj uj . (1.97)

where λ, α1, . . . , αn are some positive real numbers. Now let dmin,i the minimal
distance between the (Q+1)n potential outcomes of yi . Now, the larger the minimal
distance dmin,i (i = 1, 2) the greater the tolerance for noise and thus the more
likely the receivers Ri are able to recover the messages u1, . . . , un by rounding
y ′i = yi + zi to the closest possible outcome of yi (given by (1.97)). Thus, it is
imperative to understand how dmin,i can be bounded below. Since R1 and R2 are
sharing information (in fact it is better than that, they are actually the same person
but they are not aware of it!), it is only necessary that at least one of dmin,1 or dmin,2
is relatively large compared to the noise. In other words, we need that the points
(y1, y2) ∈ R

2 are sufficiently separated. In order to analysis this, we first apply the
inverse to the linear transformation

L :=
(

h11α1 h12α2

h21α1 h22α2

)

to (y1, y2)
t . Without loss of generality, we can assume that the matrix norm of L

and its inverseL−1 are bounded above. Therefore, the separation between the points
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(y1, y2) ∈ R
2 is comparable to the separation between the points (ỹ1, ỹ2) ∈ R

2,
where

(ỹ1, ỹ2)
t := L(y1, y2)

t .

Let (ξ1, ξ2) ∈ R
n−2 × R

n−2 be the pair corresponding to the two columns vectors
of the matrix

� :=
(

L−1
(

h13α3 . . . h1nαn

h23α3 . . . h2nαn

))t

.

The upshot, after a little manipulation, is that analysing the separation of the points
(y1, y2) ∈ R

2 equates to understanding the quantity

max{|qξ1 + p1|,qξ2 + p2|}

for (p,q) ∈ Z
2 × Z

n−2 with 1 ≤ |q| ≤ Q. In particular, asking for good separation
equates to obtaining good lower bounds on the quantity in question. In turn, this
naturally brings into play the general Diophantine approximation theory for systems
of 2 linear forms in n− 2 real variables. Note that assuming the number n of users
is strictly greater than two (the number of cooperating receivers) simply avoids
the degenerate case. For further details of the setup just described and its more
sophisticated variants, we refer the reader to [49, Example 1] and [37, Section 3.2]
and references within.

1.3 A ‘child’ Example and Diophantine Approximation on
Manifolds

The theory of Diophantine approximation on manifolds (as coined by Bernik &
Dodson in their Cambridge Tract [17]) or Diophantine approximation of dependent
quantities (as coined by Sprindžuk in his monograph [63]) refers to the study of
Diophantine properties of points in R

n whose coordinates are confined by functional
relations or equivalently are restricted to a submanifold M of Rn. In this section
we consider an example of a communication channel which brings to the forefront
the role of the theory of Diophantine approximation on manifolds in wireless
communication.

Remark 1.21 The reader may well argue that in our analysis of the wireless
communication model considered in Example 2, we have already touched upon
the theory of Diophantine approximation on manifolds. Indeed, as pointed out on
several occasions (see in particular Remarks 1.8 and 1.13), the points of interest
ξ = (ξ1, ξ2) and ξ ′ = (ξ ′1, ξ ′2) associated with the example are functionally
dependent. The explicit dependency is given by (1.51) and (1.52). However, it is



50 V. Beresnevich and S. Velani

important to stress that the actual coordinates of each of these points are not subject
to any dependency and so are not restricted to a sub-manifold of R2. The upshot of
this is that we can analyse the points independently using the standard single linear
form theory of Diophantine approximation in R

n. In other words, the analysis within
Example 2 does not require us to exploit the theory of Diophantine approximation
on manifolds.

1.3.1 Example 3

In this example we will consider a model that involves several “transmitter-receiver”
pairs who simultaneously communicate using shared communication channels. For
the sake of simplicity we will concentrate on the case of three transmitter-receiver
pairs; that is, we suppose that there are three users S1, S2 and S3 and there are
also three receivers R1, R2 and R3. Let Q ≥ 1 be an integer and suppose for each
j = 1, 2, 3 the user Sj wishes to send a message uj ∈ {0, . . . ,Q} to receiver Rj .
After (linear) encoding, Sj transmits

xj := λαjuj (1.98)

where αj is a positive real number and λ ≥ 1 is a scaling factor. Note that apart
form the obvious extra user S3 and receiver R3, the current setup is significantly
different to that of Example 2 in that Sj does not wish to send independent messages
to the receivers Ri (i �= j ). In other words, we are not considering a three-user
X-channel and thus, unlike Example 2, the codeword of user Sj does not have
any component intended for any other receiver but Rj . Nevertheless, since the
communication channel is being shared, as in Example 2, the signal xj transmitted
by Sj is being received by every receiver Ri with appropriate channel coefficients
and thereby causing interference. Formally, for i, j = 1, 2, 3 let hij denote the
channel coefficients associated with the transmission of signals from Sj to Ri . Also,
let yi denote the signal received by Ri before noise is taken into account. Thus,

yi =
3∑

j=1

hij xj
(1.98)= λ

3∑

j=1

hij αjuj . (1.99)

Now as usual, let us bring noise into the setup. If zi denotes the (additive) noise at
receiver Ri (i = 1, 2, 3), then instead of (1.99), Ri receives the signal

y ′i = yi + zi . (1.100)

Equations (1.99) and (1.100) represent one the simplest models of what is known
as a Gaussian Interference Channel (GIC). The ultimate goal is for the receivers
Ri (i = 1, 2, 3) to decode the messages ui from the observation of y ′i . This is
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attainable if 2|zi | is smaller than the minimal distance between the outcomes of yi
given by (1.99), which will be denoted by dmin,i . As before, given that the nature
of noise is often a random variable with normal distribution, the overarching goal is
to ensure the probability that |zi | < 1

2dmin,i is large. Indeed, as in Examples 1 & 2,
the larger the probability the more likely the receivers Ri (i = 1, 2, 3) are able to
recover messages by rounding y ′i (given by (1.100)) to the closest possible outcome
of yi (given by (1.99)). Thus, as in previous examples it is imperative to understand
how dmin,i can be bounded below. Note that there are potentially (Q + 1)3 distinct
outcomes of yi and that

0 ≤ yi � λQ (1 ≤ i ≤ 3), (1.101)

where the implicit implied constants depend on the maximum of the channel
coefficients hij and the encoding coefficients αj . It is then easily verified, based on
the outcomes of yi given by (1.99) being equally spaced, that the minimal distance
satisfies the following inequality

dmin,i � λ

Q2 (1 ≤ i ≤ 3) . (1.102)

Ideally, we would like to obtain lower bounds for dmin,i that are both “close” to
this “theoretic” upper bound and are valid for a large class of possible choices of
channel coefficients. Before we embark on the discussion of tools from Diophantine
approximation that can be used for this purpose, we discuss how the idea of
interference alignment introduced in the context of Example 2 extends to the setup
of Example 3. This will naturally bring the theory of Diophantine approximation on
manifolds into play.

Assume for the moment that uj ∈ {0, 1} and for the ease of discussion, let us just
concentrate on the signal y1 received at R1. Then there are generally up to 23 = 8
different outcomes for y1. However, receiver R1 is not interested in the signals u2
and u3. So if these signals could be deliberately aligned (at the transmitters) via
encoding into a single component, then there would be fewer possible outcomes for
y1. Clearly, such an alignment would require that the ratio h12α2/h13α3 is a rational
number. For example, if this ratio is equal to one, that is h12α2 = h13α3, then

y1 = λ
(

h11u1 + h12α2(u2 + u3)
)

.

Clearly, in this case the number of distinct outcomes of y1 is reduced from 8 to 6,
since there are 4 different pairs (u2, u3) as opposed to 3 different sums u2 + u3
when uj take on binary values. Let us call the scenario described above a perfect
alignment. For the received signals to be perfectly aligned at each receiver would
require imposing highly restrictive constraints on the channel coefficients, which in
practice would never be realised. Indeed, an encoding realising perfect alignment
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simultaneously at each receiver would necessarily have that the following three
ratios

h12α2

h13α3
,

h21α1

h23α3
,

h31α1

h32α2

are all rational numbers. For example, if all these ratios are equal to one then we
have that

det

⎛

⎝

0 h12 −h13

h21 0 −h23

h31 −h32 0

⎞

⎠ = 0 ,

or equivalently, that

h12h23h31 = h32h21h13 .

In reality, for the channel coefficients to satisfy this equality would be so extraordi-
nary that it is not worth considering. The upshot is that perfect alignment is simply
not feasible.

Motahari et al. [52] proposed a scheme based on the method introduced by
Cadambe et al. [20], which simultaneously at each receiver realises a partial
alignment that is effectively arbitrarily close to perfect alignment. The basic idea
is to split the messages uj into ‘blocks’ and apply different linear encodings to each
‘block’. As it happens, there is a choice of encodings that allows for all but a few
of the received ‘blocks’ to be appropriately aligned as each receiver. On increasing
the number of blocks one can approach perfect alignment with arbitrary accuracy.
We now provide the details of the alluded scheme within the context of Example 3.
Recall, the user Sj (j = 1, 2, 3) wishes to send a message uj ∈ {0, . . . ,Q} to
receiver Rj . In the first instance, given an integer B ≥ 2 we let

uj,s ∈ {0, . . . , B − 1}

be a collection of ‘blocks’ that determine (up to order) the coefficients in the base B
expansion of uj . Here and throughout, for m, k ∈ N

s = (s1, . . . , sm) ∈ Sk := {0, . . . , k − 1}m

is a multi-index which is used to enumerate the blocks—in a moment we will take
m = 6. Clearly, the number of different blocks (i.e. digits available to us when
considering the base B expansion of a number) is equal to

M := km
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and so the size of the message uj that Sj can send to Rj is bounded above by
BM − 1. Without loss of generality, we can assume that

Q = BM − 1 . (1.103)

Now, instead of transmitting (1.98), after encoding Sj transmits the message

xj = λ
∑

s∈Sk
Tsuj,s . (1.104)

Here and throughout, for s ∈ Sk

Ts := T s11 · · · T smm (1.105)

are real parameters called transmit directions obtained from a fixed finite set

T := {T1, . . . , Tm}

of positive real numbers, called generators. As we shall soon see, the generators will
be determined by the channel coefficients. In short, they play the role the positive
real numbers αj appearing in the encoding leading to (1.98). It is worth highlighting
that the (linear) encoding leading to (1.104) varies from block to block. It follows
that with this more sophisticated ‘block’ setup, instead of (1.99), the signal received
by Ri before noise is taken into account is given by

yi =
3
∑

j=1

hij xj
(1.104)= λ

3
∑

j=1

hij
∑

s∈Sk
Tsuj,s

︸ ︷︷ ︸

xj

= λ
⎛

⎜
⎝

∑

s∈Sk
hiiTsui,s

︸ ︷︷ ︸

wanted at Ri

+
3
∑

j=1
j �=i

∑

s∈Sk
hijTsuj,s

︸ ︷︷ ︸

unwanted at Ri

⎞

⎟
⎠ . (1.106)

Thus, the unwanted message blocks uj,s from Sj (j �= i) arrive at Ri with the
transmit directions Ts multiplied by two possible channel coefficients hij . It follows
that the unwanted blocks appearing in (1.106) constitute a linear form with 2M =
2km terms. We now choose the generators in such a way so as to align some of
these unwanted blocks with the net effect of reducing the number of terms in the
linear form. With this in mind, define the set of generators to be the collection of all
channel coefficient with i �= j ; namely

T = {h12, h13, h21, h23, h31, h32} . (1.107)
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Thus, m = 6 with respect to the general description above. With this choice of
generators, it follows that the unwanted part within (1.106) can now be written as

∑

s∈Sk+1

Tsvi,s (1.108)

where the terms

vi,s ∈ {0, . . . , 2B − 2}

are integers formed as sums of up to two blocks uj,s. Note that the coefficients of
vi,s are monomials in the generators given by (1.107). Due to the multiplication by
hij in (1.106) the exponents in the monomials appearing in (1.108) are up to k rather
than just k−1. This explains why the summation in (1.108) is taken overSk+1 rather
than just Sk . The upshot of choosing T as in (1.107) is that the ‘unwanted’ linear
form of 2M = 2k6 terms appearing in (1.106) is replaced by a linear form given
by (1.108) of (k + 1)6 = M(1 + 1/k)6 terms. In other words, asymptotically (as k
increases) we have halved the number of terms associated with unwanted message
blocks. On substituting (1.108) into (1.106) we get that

yi = λ
⎛

⎜
⎝

∑

s∈Sk
hiiTsui,s

︸ ︷︷ ︸

wanted at Ri

+
∑

s∈Sk+1

Tsvi,s

︸ ︷︷ ︸

unwanted at Ri

⎞

⎟
⎠ . (1.109)

Thus, yi is a linear form of

M ′ := k6 + (k + 1)6

terms1 . Up to the factor λ, the coefficients of the integers ui,s and vi,s in (1.109)
are monomials in the six generators of T and are all different. It is convenient to
represent these coefficients as a ‘coefficient’ vector

Gi := (Gi,0,Gi,1, . . . ,Gi,n) where n := M ′ − 1 . (1.110)

To reiterate, the componentsGi,0,Gi,1, . . . ,Gi,n are the real numbers

Ts with s ∈ Sk+1 and hiiTs with s ∈ Sk (1.111)

1Observe that essentially half of the terms in (1.109) are wanted at Ri compared to only a third
(before alignment) in (1.106) or indeed in (1.101).
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written in any fixed order. It is easily verified that for any ε > 0, for k sufficiently
large

2M < n < 2M + ε . (1.112)

Now let

ξ i = (ξi,1, . . . , ξi,n) :=
(Gi,1

Gi,0
, . . . ,

Gi,n

Gi,0

)

(1 ≤ i ≤ 3) . (1.113)

Returning to (1.109), it is easily seen that there are potentially BM
′

distinct
outcomes of yi and as before (cf. (1.101))

0 ≤ yi � 2λB (1 ≤ i ≤ 3), (1.114)

where the implicit implied constants depend on the maximum of the channel
coefficients hij and the integer k. Now let dmin,i denote the minimal distance
between the outcomes of yi given by (1.109). It is then easily verified, based on these
outcomes being equally spaced, that the minimal distance satisfies the following
inequality (cf. (1.102))

dmin,i � λB

BM
′ =

λ

Bn
≤ λ

Q2 (1 ≤ i ≤ 3) . (1.115)

The last inequality makes use of (1.103) and (1.112). Recall, that our goal is the
same as in all previous examples. We wish to obtain lower bounds for dmin,i that
are both “close” to this “theoretic” upper bound and at the same time are valid
for a large class of possible choices of channel coefficients. As we have seen in
Examples 1 & 2, the goal is intimately related to the Diophantine properties of
certain points defined via the channel coefficients. Within the context of Example 3,
the points of interest are precisely those corresponding to ξ i ∈ R

n as given by
(1.113). In Sect. 1.3.2, we will demonstrate that this is indeed the case by calculating
the DoF of the three-user Gaussian Interference Channel (GIC). First we make an
important observation: the coordinates of each point ξ i (i = 1, 2, 3) are functions
of seven variables and are therefore dependent. The latter follows since k ≥ 1 and
so by definition n ≥ 26 > 7. The fact that the point ξ i of interest is of dependent
variables implies that ξ i lies on a submanifoldM of Rn of dimension strictly smaller
that n. Trivially, since the dimension of M is strictly less than n, we have that the n-
dimension Lebesgue measure of M is zero. The upshot of the dependency is that all
the measure theoretic Diophantine approximation results (such as those concerning
badly approximable, ψ-approximable, Dirichlet improvable, singular, etc etc) that
we have exploited so far in our analysis of Examples 1 & 2 are pretty much
redundant. We need a theory which takes into account that the points of interest
lie on a submanifold M of R

n. Luckily, today the metric theory of Diophantine
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approximation on manifolds is in reasonable shape. Indeed, for a large class of so
called non-degenerate manifolds there exists

(i) a rich badly approximable theory concerning Bad(n) ∩M—see for example
[3, 5, 7, 14, 15, 64] and references within,

(ii) a rich ψ-approximable theory concerning Wn(ψ) ∩M—see for example [1,
6, 11, 18, 31–35, 41, 42] and references within, and

(iii) a rich Dirichlet improvable theory concerning DI(n) ∩M—see for example
[43, 44, 61] and references within.

For a general overview of the manifold theory we refer the reader to [16, Section 6].
In short, the recent state of the art results for the sets just listed suffice to implement
the approaches taken in Sects. 1.2.2 to 1.2.5 within the context of Example 3. As
already mentioned, we will shortly provide the details of how the ‘Khintchine-
Groshev’ approach of Sect. 1.2.4 translates to the current setup.

Observe that in above list of Diophantine sets restricted to M there is a notable
exception. We have not mentioned singular (resp. jointly singular) sets Sing(n)
(resp. Sing2(n)) and in turn we have avoided mentioning the approach taken in
Sect. 1.2.6 that enables us to improve the result of Motahari et al. on the DoF of
a two-user X-channel. The reason for this is simple—our current knowledge of
Sing(n) ∩M is not sufficient. We will come back to this in Sect. 1.3.3.

1.3.2 The Khintchine-Groshev Theorem for Manifolds and
DoF

The goal of this section is twofold. The first is to introduce the analogue of the
Khintchine-Groshev Theorem for one linear form (i.e. Theorem 1.4 in Sect. 1.2.4)
in which the points of interest are restricted to a submanifold of Rn. The second is
to exploit this so called Khintchine-Groshev theorem for manifolds to calculate the
DoF of the three-user GIC considered in Example 3.

Let M be a submanifold of Rn and let Wn(ψ) be the set of ψ-approximable
points in R

n defined by (1.58). In short, if the manifold is “sufficiently” curved the
Khintchine-Groshev theorem for manifolds provides a ‘zero-one’ criterion for the
Lebesgue measure of the set

Wn(ψ) ∩M .

Observe that if the dimension of the manifold is strictly less than n, then with respect
to n-dimensional Lebesgue measure we trivially have that |Wn(ψ) ∩M|n = 0
irrespective of the approximating function ψ . Thus, when referring to the Lebesgue
measure of the set Wn(ψ)∩M it is always with reference to the induced Lebesgue
measure on M. More generally, given a subset S of M we shall write |S|M for the
measure of S with respect to the induced Lebesgue measure on M. Without loss of
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generality, we will assume that

|M|M = 1

since otherwise the induced measure can be re-normalized accordingly. It is not
particularly difficult to show that in order to obtain an analogue of Theorem 1.4
(both the convergence and divergence aspects) for Wn(ψ) ∩M we need to avoid
hyperplanes—see [16, Section 4.5]. To overcome such natural counterexamples, we
insist that M is a non–degenerate manifold.

Non-Degenerate Manifolds Essentially, these are smooth submanifolds of R
n

which are sufficiently curved so as to deviate from any hyperplane. Formally, a
manifold M of dimension d embedded in R

n is said to be non-degenerate if it
arises from a non-degenerate map f : U → R

n where U is an open subset of
R
d and M := f(U). The map f : U → R

n, x �→ f(x) = (f1(x), . . . , fn(x)) is
said to be l-non-degenerate at x ∈ U , where l ∈ N, if f is l times continuously
differentiable on some sufficiently small ball centred at x and the partial derivatives
of f at x of orders up to l span R

n. The map f is non-degenerate at x if it is
l-non-degenerate at x for some l ∈ N. The map f is non-degenerate if it is non-
degenerate at almost every (in terms of d-dimensional Lebesgue measure) point x
in U ; in turn the manifold M = f(U) is also said to be non-degenerate. It is well
known, that any real connected analytic manifold not contained in any hyperplane
of Rn is non-degenerate at every point [42]. In the case the manifold M is a planar
curve C, a point on C is non-degenerate if the curvature at that point is non-zero.
Moreover, it is not difficult to show that the set of points on a planar curve at which
the curvature vanishes but the curve is non-degenerate is at most countable, see
[8, Lemmas 2 & 3]. In view of this, the curvature completely describes the non-
degeneracy of planar curves. Clearly, a straight line is degenerate everywhere.

The convergence part of the following statement was independently established
in [6] and [18], while the divergence part was established in [11].

Theorem 1.17 (Khintchine-Groshev for Manifolds) Let ψ : R+ → R+ be a
monotonic function and let M be a non-degenerate submanifold of Rn. Then

|Wn(ψ) ∩M|M =
⎧

⎨

⎩

0 if
∑∞
q=1 q

n−1ψ(q) <∞ ,
1 if

∑∞
q=1 q

n−1ψ(q) = ∞ .

Remark 1.22 In view of Corollary 1.2 in Sect. 1.2.2, it follows that

Wn(ψ) ∩M =M if ψ : q �→ q−n .

Now, given ε > 0 consider the function ψε : q �→ q−n−ε . A submanifold M of Rn

is called extremal if

|Wn(ψε) ∩M|M = 0 .
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Sprindžuk (1980) conjectured that any analytic non-degenerate submanifold is
extremal. In their pioneering work [42], Kleinbock & Margulis proved that any
non-degenerate submanifold M of Rn is extremal and thus established Sprindžuk’s
conjecture. It is easy to see that this implies the convergence case of Theorem 1.17
for functions of the shape ψε .

Remark 1.23 For the sake of completeness, it is worth mentioning that the exter-
nality theorem for non-degenerate submanifolds of Rn has been extended in recent
years to submanifolds of n×m matrices, see [2, 13, 45].

An immediate consequence of the convergence case of Theorem 1.17 is the
following statement (cf. Corollary 1.3).

Corollary 1.6 Let ψ : R+ → R+ be a function such that

∞
∑

q=1

qn−1ψ(q) <∞ . (1.116)

Suppose that M is as in Theorem 1.17. Then, for almost all ξ ∈ M there exists a
constant κ(ξ) > 0 such that

|q1ξ1 + · · · + qnξn + p| > κ(ξ) ψ(|q|) ∀ (p,q) ∈ Z× Z
n\{0} . (1.117)

In line with the discussion in Sect. 1.2.4 preceding the statement of the effective
convergence Khintchine-Groshev theorem (i.e. Theorem 1.5), a natural question to
consider is: can the constant κ(ξ) within Corollary 1.6 be made independent of
ξ? The argument involving the set Bn(ψ, κ) given by (1.63) can be modified to
show that this is impossible to guarantee with probability one; that is, for almost
all ξ ∈ M. Nevertheless, the following result provides an effective solution to the
above question. It is a special case of [1, Theorem 3].

Theorem 1.18 (Effective Convergence Khintchine-Groshev for Manifolds) Let
l ∈ N and let M be a compact d-dimensional Cl+1 submanifold of Rn that is l-
non-degenerate at every point. Let ψ : R+ → R+ be a monotonically decreasing
function such that

�ψ :=
∑

q=1

qn−1ψ(q) <∞ . (1.118)

Then there exist positive constants κ0, C1 depending on ψ and M only and C0
depending on the dimension ofM only such that for any 0 < δ < 1, the inequality

|Bn(ψ, κ) ∩M|M ≥ 1− δ (1.119)
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holds with

κ := min

{

κ0,
C0δ

�ψ
, C1δ

d(n+1)(2l−1)
}

. (1.120)

Remark 1.24 The constants appearing in (1.120) are explicitly computable, see [1,
Theorem 6] for such a statement. In [31] Theorem 1.18 was also extended to a
natural class of affine subspaces, which by definition are degenerate.

We now move onto our second goal: to exploit the Khintchine-Groshev theorem
for manifolds to calculate the DoF of the three-user GIC considered in Example 3.
The overall approach is similar to that used in Sect. 1.2.4 to calculate the DoF of
the two-user X-channel considered in Example 2. In view of this we will keep
the following exposition rather brief and refer the reader to Sect. 1.2.4 for both
the motivation and the details. With this in mind, let M denote the 7-dimensional
submanifold of Rn arising from the implicit dependency within (1.113). In other
words, a point ξ i ∈ M if and only if it is of the form (1.113). That M is of
dimension 7 follows from the fact that the monomials Gi,0,Gi,1, . . . ,Gi,n depend
on hii and the other 6 channel coefficients that form the set T of generators. It
is also not difficult to see that these monomials are all different and therefore
linearly independent over R. Consequently, 1, ξi,1, . . . , ξi,n are linearly independent
over R as functions of the corresponding channel coefficients. Hence M cannot be
contained in any hyperplane of Rn. Also note that M is connected and analytic, and
therefore, it is non-degenerate.

Now suppose that

ξ �∈Wn(ψ) (1.121)

where ψ : q → q−n−ε for some ε > 0. Then, Corollary 1.6 implies that for almost
all ξ ∈M there exists a constant κ(ξ) > 0 such that

|q1ξ1 + · · · + qnξn + p| ≥ κ(ξ)

|q|n+ε

for all (p,q) ∈ Z× Z
n\{0}. Here and throughout the rest of this section, almost all

is with respect to 7-dimensional Lebesgue measure induced on M. In particular, it
follows that for almost all ξ ∈M and every B ∈ N we have that (cf. (1.61))

|q1ξ1 + · · · + qnξn + p| ≥ κ(ξ)

Bn+ε
(1.122)

for all (p,q) ∈ Z × Z
n\{0} with 1 ≤ |q| ≤ B. Then, the analysis as in Sect. 1.2.4

that leads to (1.62), enables us to make the following analogous statement: with
probability one, for every B ≥ 2 and a random choice of channel coefficients hij
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(i, j = 1, 2, 3), the minimum separation between the associated points yi given by
(1.109) satisfies

dmin,i � λ κ(ξ i )

Bn+ε
(1 ≤ i ≤ 3) . (1.123)

We stress, that ξ i corresponds to the point given by (1.113) associated with the
choice of channel coefficients. Recall, that the latter determine the set of generators
(1.107) which in turn determine the coefficient vector Gi and therefore the point ξ i .
Note that apart from the extra ε term in the power, the lower bound (1.123) coincides
(up to constants) with the upper bound (1.115).

Now, in relation to Example 3, the power constraint P on the channel model
means that

|xj |2 ≤ P (j = 1, 2, 3) , (1.124)

where xj is the codeword transmitted by Sj as given by (1.104). Now notice that
since the blocks uj,s (s ∈ Sk) are integers lying in {0, . . . , B − 1}, it follows that

|xj | � λB ,

where the implied implicit constant is independent from B and λ. Hence, we
conclude that P is comparable to (λB)2. It is shown in [52, §5], that the probability
of error in transmission within Example 3 is bounded above by (1.65) with

dmin = min{dmin,1, dmin,2, dmin,3}.

Recall, in order to achieve reliable transmission one requires that this probability
tends to zero as P → ∞. Then, on assuming (1.123)—which holds for almost
every ξ i ∈M—it follows that

dmin � λ

Bn+ε
, (1.125)

and so the quantity (1.65) will tend to zero as B →∞ if we set

λ = Bn+2ε .

The upshot of this is that we will achieve a reliable transmission rate under the
power constraint (1.124) if we set P to be comparable to B2n+2+4ε; that is

B2n+2+4ε � P � B2n+2+4ε .
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Next, recall that the largest message uj that user Sj can send to Rj is given by
(1.103). Thus, it follows that the number of bits (binary digits) that user Sj transmits
is approximately

logBM = M logB .

Therefore, in total the three users Sj (j = 1, 2, 3) transmit approximately 3M ×
logB bits, which with our choice of P is an achievable total rate of reliable
transmission; however, it may not be maximal. On comparing this to the rate of
reliable transmission for the simple point to point channel under the same power
constraint, we get that the total DoF of the three-user GIC is at least

lim
P→∞

3M logB
1
2 log(1+ P) = lim

B→∞
3M logB

1
2 log(1+ B2n+2+4ε)

= 3M

n+ 1+ 2ε
. (1.126)

Given that ε > 0 is arbitrary, it follows that for almost every (with respect to the
7-dimensional Lebesgue measure) realisation of the channel coefficients

DoF ≥ 3M

n+ 1
.

Now recall that n + 1 = M ′ = (k + 1)6 + k6 and M = k6. On substituting these
values into the above lower bound, we obtain that

DoF ≥ 3k6

(k + 1)6 + k6 .

Given that k is arbitrary, it follows (on letting k → ∞) that for almost every
realisation of the channel coefficients

DoF ≥ 3

2
.

Now it was shown in [20] that the DoF of a three-user GIC is upper bounded by 3/2
for all choices of the channel coefficients, and so it follows that for almost every
realisation of the channel coefficients

DoF = 3

2
. (1.127)

1.3.3 Singular and Non-Singular Points on Manifolds

With reference to Example 3, we have seen in the previous section that the
Khintchine-Groshev theorem for non-degenerate manifolds allows us to achieve
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good separation between the received signals yi given by (1.123). More precisely,
for almost all choices of the channel coefficients hij (i, j = 1, 2, 3) we obtain the
lower bounds (1.115) for the minimal distances dmin,i that are only ‘ε-weaker’ than
the ‘theoretic’ upper bounds as given by (1.123). As in the discussion at the start of
Sect. 1.2.6, this motivates the question of whether good separation and indeed if the
total DoF of 3/2 for the three-user GIC can be achieved for a larger class of channel
coefficients? Concerning the latter, what we have in mind is a statement along the
lines of Theorem 1.10 that improves the Motahari et al. result (Theorem 1.6) for the
total DoF of the two-user X-channel. Beyond this, but still in a similar vein, one
can ask if the more general DoF results of Motahari et al. [52] for communications
channels involving more users and receivers can be improved? Clearly, the approach
taken in Sects. 1.2.6 and 1.2.7 based on the Diophantine approximation theory of
non-singular and jointly non-singular points can be utilized to make the desired
improvements. However there is a snag—we would require the existence of such
a theory in which the points of interest are restricted to non-degenerate manifolds.
Unfortunately, the analogues of Theorems 1.7, 1.8, 1.9, 1.14 and 1.15 for manifolds
are not currently available. In short, obtaining any such statement represents a
significant open problem in the theory of Diophantine approximation on manifolds.
Indeed, even partial statements such as the following currently seem out of reach.
As we shall see, it has non-trivial implications for both number theory and wireless
communication.

Problem 1.3 Let n ≥ 2 and M be any analytic non-degenerate submanifold of Rn

of dimension d . Verify if

dim
(

Sing(n) ∩M
)

< d := dim
(

M
)

. (1.128)

Recall, that Sing(n) is the set of singular points in R
n—see Definition 1.5 in

Sect. 1.2.6.

Remark 1.25 Determining the actual value for the Hausdorff dimension of the set
Sing(n) ∩M for special classes of submanifolds M (such as polynomial curves—
see below) would be most desirable. It is not difficult to see that the intersection of
M with any rational hyperplane is contained in Sing(n). Therefore,

dim
(

Sing(n) ∩M
) ≥ d − 1 .

When d > 1, this gives a non-trivial lower bound. Obviously, when d = 1 the lower
bound is trivial.

From a purely number theoretic point of view, Problem 1.3 is of particular
interest when the manifold is a curve (d = 1). It has a well-known connection
to the famous and notorious problem posed by Wirsing (1961) and later restated
in a stronger form by Schmidt [59, pg. 258]. This we now briefly describe. The
Wirsing-Schmidt conjecture is concerned with the approximation of real numbers
by algebraic numbers of bounded degree. The proximity of the approximation is
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measured in terms of the height of the algebraic numbers. Recall, that given a
polynomial P with integer coefficients, the height H(P) of P is defined to be the
maximum of the absolute values of the coefficients of P . In turn the heightH(α) of
an algebraic number α is the height of the minimal defining polynomial P of α over
Z.

Conjecture 1 (Wirsing-Schmidt) Let n ≥ 2 and ξ be any real number that is not
algebraic of degree ≤ n. Then there exists a constant C = C(n, ξ) and infinitely
many algebraic numbers α of degree ≤ n, such that

|ξ − α| < CH(α)−n−1 . (1.129)

Note that when n = 1 the conjecture is trivially true since it coincides with the
classical corollary to Dirichlet’s theorem—the first theorem stated in this chapter.
For n = 2 the conjecture was proved by Davenport & Schmidt (1967). For n ≥ 3
there are only partial results. For recent progress and an overview of previous results
we refer the reader to [4] and references within.

The connection between the Wirsing-Schmidt conjecture and Problem 1.3 comes
about via the well know fact that the former is intimately related to singular points
on the Veronese curves Vn := {(ξ, ξ2, . . . , ξn) : ξ ∈ R}.
Lemma 1.5 Let n ≥ 2 and ξ ∈ R. If (ξ, ξ2, . . . , ξn) �∈ Sing(n), then the Wirsing-
Schmidt conjecture holds for ξ .

The proof of the lemma is pretty standard. For example, it easily follows by adapting
the argument appearing in [7, Appendix B] in an obvious manner. A straightforward
consequence of the lemma is that any upper bound for dim

(

Sing(n) ∩ V
)

gives
an upper bound on the dimension of the set of potential counterexamples to the
Wirsing-Schmidt conjecture. When n ≥ 3, currently we do not even know that the
set of potential counterexamples has dimension strictly less than one—the trivial
bound. Clearly, progress on Problem 1.3 with M = Vn would rectify this gaping
hole in our knowledge.

We now turn our attention to the question raised at the start of this subsection;
namely, whether good separation and the total DoF of 3/2 within the setup of
Example 3 can be achieved for a larger class of channel coefficients? To start with
we recall that the 7-dimensional submanifold M of Rn arising from the implicit
dependency within (1.113) is both analytic and non-degenerate. Thus it falls under
the umbrella of Problem 1.3. In turn, on naturally adapting the argument used to
establish Proposition 1.1, a consequence of the upper bound (1.128) is the following
statement: for all choice of channel coefficients {hii , h12, h13, h21, h23, h31, h32}
(i = 1, 2, 3) except on a subset of strictly positive codimension, the minimum
separation dmin,i between the associated points yi given by (1.109) satisfies (1.123).
The upshot is that if true, Problem 1.3 enables us to obtain good separation for
a larger class of channel coefficients than the (unconditional) Khintchine-Groshev
approach outlined in Sect. 1.3.2.
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As we have seen within the setup of Example 2, in order to improve the ‘almost
all’ DoF result (Theorem 1.6) of Motahari et al. we need to work with the jointly
singular set Sing2

f (n) appearing in Theorem 1.9. This theorem provides a non-trivial
upper bound for the Hausdorff dimension of such sets and is the key to establishing
the stronger DoF statement Theorem 1.10. With this in mind, we suspect that
progress on the following problem is at the heart of improving the ‘almost all’ DoF
result for the three-user GIC (see (1.127)) obtained via the Khintchine-Groshev
approach. In any case, we believe that the problem is of interest in its own right.
Recall, that Singm(n) is given by (1.82) and is the jointly singular set for systems of
linear forms.

Problem 1.4 Let k, �,m, d ∈ N, n = k+�, U ⊂ R
d and V ⊂ R

m be open subsets.
Suppose that f : U → R

k and g : U → R
� are polynomial non-degenerate maps.

For each u ∈ U and v ∈ V let �(u, v) be the matrix with columns (vif (u),g(u))t

and let

Singmf ,g(n) :=
{

(u, v) ∈ U × V : �(u, v) ∈ Singm(n)
}

.

Verify if

dim
(

Singmf ,g(n)
)

< d +m .

Of course, it would be natural to generalise the problem by replacing ‘poly-
nomial’ with ‘analytic’ and by widening the scope of the n × m matrices under
consideration. On another front, staying within the setup of Problem 1.4, it would
be highly desirable to determine the actual value for the Hausdorff dimension of the
set Singmf ,g(n). This represents a major challenge.
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Chapter 2
Characterizing the Performance
of Wireless Communication
Architectures via Basic Diophantine
Approximation Bounds

Bobak Nazer and Or Ordentlich

Abstract Consider a wireless network where several users are transmitting simul-
taneously. Each receiver observes a linear combination of the transmitted signals,
corrupted by random noise, and attempts to recover the codewords sent by one
or more of the users. Within the context of network information theory, it is of
interest to determine the maximum possible data rates as well as efficient strategies
that operate at these rates. One promising recent direction has shown that if the
users utilize a lattice-based strategy, then a receiver can recover an integer-linear
combination of the codewords at a rate that depends on how well the real-valued
channel gains can be approximated by integers. In other words, the performance
of this lattice-based strategy is closely linked to a basic question in Diophantine
approximation. This chapter provides an overview of the key findings in this
emerging area, starting from first principles, and expanding towards state-of-the
art results and open questions, so that it is accessible to researchers with either an
information theory or Diophantine approximation background.

2.1 Introduction

Consider multiple transmitters and receivers that communicate with each other
across a shared wireless channel. The two main challenges to establishing reliable
communication between users are the noise introduced by the channel and the
interference between simultaneously transmitted signals. Over the past few decades,
the field of network information theory has striven to determine the fundamental
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limits of reliable communication over multi-user channels as well as architectures
that can approach these limits in practice [11, 14, 34].

In this chapter, we discuss recent developments in network information theory
based on the use of lattice codebooks, i.e., codebooks that are a subset of a lattice
overRn [36]. The inherent linearity of these codebooks is appealing for two reasons.
First, linearity lends itself to more efficient encoding and decoding algorithms.
Second, since lattices are closed under integer-linear combinations, it is possible for
a receiver to directly decode an integer-linear combination of transmitted codewords
(without first recovering the individual codewords) [26]. This phenomenon can
be used as a building block for communication strategies that operate beyond the
performance available for classical coding schemes.

In general, the performance of these lattice-based strategies is determined by how
closely the channel coefficients can be approximated by integer coefficients. For
any particular choice of channel coefficients, we can identify the optimal integer
coefficients, and the resulting performance. However, it is often of interest to have
universal bounds that do not depend on the specific realization of the channel. As
we will demonstrate, classical and modern results from Diophantine approximation
can be used to establish such bounds.

Overall, this chapter attempts to provide a unified view of recent results that
connect the performance of the “compute-and-forward” strategy of recovering an
integer-linear combination to Diophantine approximation bounds. We also highlight
scenarios where novel applications of Diophantine approximation techniques may
lead to new results in network information theory.

2.1.1 Single-User Gaussian Channels

Consider the following channel model for time t ∈ {1, 2, . . . , T }:

y[t] = x[t] + z[t] (2.1)

where

• y[t] ∈ R represents the channel output at the receiver at time t ,
• x[t] ∈ R is the channel input of the transmitter at time t ,
• and z[t] ∈ R is the noise at time t , which is assumed to be Gaussian, z[t] ∼

N(0, 1), and generated independently for each time t .

Our goal is for the transmitter to reliably send information to the receiver at the
highest possible data rates. To this end, the channel may be used during T time
slots, which is often referred to as the blocklength of the communication scheme.
The communication rate R ≥ 0 is defined as the average number of bits that it
transmits per time slot. One practical consideration is that the transmitter has a
maximum power level that it can sustain during its transmission. This is modeled in
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the definition below via the power constraint P ≥ 0. Let ‖ · ‖ denote the Euclidean
norm.

Definition 2.1 (Code) A (2T R, T , P ) code for the channel (2.1) consists of

• a message set {1, 2, . . . , 2T R},
• an encoder that assigns a T -dimensional vector x(m) ∈ R

T to each message
m ∈ {1, 2, . . . , 2T R}. The encoder is subject to a power constraint P > 0, which
dictates that ‖x(m)‖2 ≤ T P for all m ∈ {1, 2, . . . , 2TR},

• and a decoder that assigns an estimate m̂ of the transmitted message to each
possible received sequence [y[1] y[2] · · · y[T ]].
The messageM is assumed to be uniformly distributed over {1, 2, . . . , 2T R}. The

average error probability of a code is defined as

perror =P
(

M̂ �= M). (2.2)

Definition 2.2 (Achievable Rate) A rate R is said to be achievable over the
channel (2.1) with power constraint P if, for any ε > 0 and T large enough, there
exists a (2T R, T , P ) code with perror < ε.

Definition 2.3 (Capacity) The capacity of the channel (2.1) with power constraint
P is the supremum of the set of all achievable rates.

The capacity of the Gaussian channel is due to Shannon [33].

Theorem 2.1 (Gaussian Capacity) The capacity of the channel (2.1) with power
constraint P is

C = 1

2
log(1+ P) . (2.3)

The proof of Theorem 2.1 consists of two parts: a converse part where it is shown
that if a (2T R, T , P ) code with small error probability exists, then the rate R must
satisfy R ≤ 1

2 log(1 + P), and a direct part, where it is shown that there exists a
sequence of codes (2T R, T , P ), with growing T and vanishing error probability so
long as R < 1

2 log(1+ P).
The main observation leading to the direct part is that, in high dimensions,

the noise sequence lives inside a ball of radius
√
T (1+ δ) for δ > 0 with high

probability. Thus, the coding task reduces to placing the centers of 2T R balls of this
radius inside a larger ball of radius

√
T P , with some small overlap between balls

that corresponds to the small allowable error probability. Shannon’s insight was that
the existence of such a packing can be shown via the probabilistic method, i.e., by
drawing the centers of the balls independently and uniformly within a ball of radius√
T P . In this manner, the codewords are ensured to not violate the power constraint.

Alternatively, we can draw the codewords i.i.d. according to a N(0, P I) distribution.
A typical member of the i.i.d. code ensemble lacks structure, and thus the

encoding and decoding operations require exponential complexity in T (i.e.,
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they essentially correspond to lookup tables for all 2T R codewords) and are not
practically realizable. The field of coding theory has striven to develop families of
codes with low encoding and decoding complexity and performance close to the
capacity limit.

The art of coding for the AWGN channel is by now well-developed and low-
complexity coding schemes operating near capacity, e.g., low-density parity-check
(LDPC) codes [9, 16, 32], turbo codes [6], polar codes [3], etc., are known and
implemented in various communication standards. A lot of these coding schemes
are based on mapping a binary linear code, i.e., a subspace in F

T
2 , (or more generally,

a p-ary linear code) to the Euclidean space. Consequently, the resulting code often
has some linear structure, and can be thought of as a lattice code, as we define below.

A lattice � is a discrete subgroup of RT that is closed under reflection and real
addition. Formally, for any λ1,λ2 ∈ �, we have that −λ1,−λ2 ∈ � and λ1 + λ2 ∈
�. Note that, by definition, the zero vector 0 is always a member of the lattice. Any
lattice � in R

T is spanned by some T × T matrix G such that

� = {λ = Gq : q ∈ Z
T }.

We say that a lattice is full-rank if its spanning matrix G is full-rank.
Let B(0, r) = {x ∈ R

T : ‖x‖ ≤ r} be the T -dimensional, zero-centered, closed
ball of radius r > 0. A lattice code is constructed by intersecting a base lattice �,
with some shaping region V ⊂ B(0,

√
T P ), whose role is to enforce the power

constraint. The rate of the lattice code L = � ∩V is therefore R = 1
T

log |� ∩V|.
The main motivation for using lattice codes for the AWGN channel is to exploit

the linear structure of � for simplified encoding and decoding algorithms. In
particular, for the AWGN channel, the optimal decoder corresponds to finding the
codeword with the smallest Euclidean distance from the channel output. When a
lattice code L = � ∩V is used, this can be approximated by applying the nearest
neighbor lattice quantizer defined as

Q�(y) = arg min
λ∈�

‖y− λ‖, (2.4)

to the channel output, and returning the corresponding message if Q�(y) ∈ V, or
declaring an error otherwise.

The choice of the shaping region V should on the one hand result in a high rate,
and on the other hand maintain much of the structure of the base lattice, such that
there is a “convenient” mapping between the message set {1, 2, . . . , 2RT } and the
points in L, and that a lattice decoder, which essentially ignores the shaping region,
would still perform well. Erez and Zamir [15] showed that for any P > 0, there
exists a base lattice � and a shaping region V (more precisely, a sequence in T of
�(T ),V(T )), such that the lattice code L = � ∩ V achieves the AWGN channel
capacity under (a slight modification of) lattice decoding. In particular, they took V
as the Voronoi region of a coarse lattice�c ⊂ �.
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For the point-to-point AWGN channel, the interest in lattice codes is motivated
by the need to lower the complexity of encoding and decoding operations so as
to render them practically feasible. For networks with multiple transmitters or
receivers, lattice codes can also be used to approach the performance suggested by
i.i.d. random codes. Interestingly, as we will explore below, lattice codes can also
be used to derive lower bounds on multi-user capacity that cannot be established via
i.i.d. ensembles.

2.2 Gaussian Multiple-Access Channel Model

We will focus on bounds for the Gaussian multiple-access channel (MAC), which
is a canonical model for a wireless network where multiple transmitters simulta-
neously communicate with a single receiver. We assume that there are K users,
each equipped with a single antenna, that wish to communicate with an N-antenna
receiver for time t ∈ {1, 2, . . . , T }, leading to the following model:

y[t] =
K
∑

k=1

hkxk[t] + z[t] (2.5)

where

• y[t] ∈ R
N represents the channel output at the receiver at time t ,

• xk[t] ∈ R is the channel input of the kth user at time t ,
• hk ∈ R

N is the vector of channel gains from the kth user to the N antennas of
the receiver,

• and z[t] ∈ R
N is the noise vector at time t , which is assumed to be Gaussian,

z[t] ∼ N(0, I), and generated independently for each time t .

It will be useful to express all of the channel gains together in matrix notation,

y[t] = Hx[t] + z[t] (2.6)

H = [h1 h2 · · · hK ] (2.7)

x[t] = [x1[t] x2[t] · · · xK [t]]T (2.8)

where the (n, k)th entry hn,k of H represents the channel gain from the kth user to
the nth antenna.

Definition 2.4 A (2T R1, . . . , 2T RK , T , P ) code for the channel (2.6) consists of

• K message sets {1, 2, . . . , 2T Rk }, k = 1, . . . ,K ,
• K encoders, where encoder k assigns a T -dimensional vector xk(mk) ∈ R

T

to each message mk ∈ {1, 2, . . . , 2T Rk }. All encoders are subject to a power
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constraint P > 0, which dictates that ‖xk(mk)‖2 ≤ T P for all k = 1, . . . ,K and
mk ∈ {1, 2, . . . , 2T Rk },

• and a decoder that assigns an estimate (m̂1, . . . , m̂K) of the transmitted messages
to each possible received sequence Y = [y[1] y[2] · · · y[T ]] ∈ R

N×T .

In the sequel, it will be useful to compactly represent all time slots t together:

Y = HX+ Z, (2.9)

where

Y = [y[1] · · · y[T ]] ∈ R
N×T (2.10)

X = [x[1] · · · x[T ]] = [x1(m1) · · · xK(mK)]T ∈ R
K×T (2.11)

Z = [z[1] · · · z[T ]] ∈ R
N×T . (2.12)

The message Mk of the kth user is assumed to be uniformly distributed over
{1, 2, . . . , 2T Rk }, and M1, . . . ,MK are assumed to be mutually independent. The
average error probability of a code is defined as

perror =P
(

(M̂1, . . . , M̂K) �= (M1, . . . ,MK)
)

. (2.13)

Definition 2.5 (Achievable Rates) A rate tuple (R1, . . . , RK) is said to be achiev-
able over the channel (2.6) with power constraint P if, for any ε > 0 and T large
enough, there exists a (2TR1 , . . . , 2T Rk , T , P ) code with perror < ε.

Definition 2.6 (Capacity Region) The capacity region of the channel (2.6) with
power constraint P is the closure of the set of all achievable rate tuples.

The Gaussian MAC (2.6) with power constraint P , is a special case of the family
of discrete memoryless MACs, for which the capacity region is known, and can be
expressed in closed form [2, 11, 22].

Theorem 2.2 (MAC Capacity Region) The capacity region of the Gaussian
MAC (2.6) with power constraint P is the set of all rates satisfying

∑

k∈S
Rk ≤ 1

2
log det

(

I+ PHT
SHS

)

, (2.14)

for all S = {i1, . . . , i|S|} ⊂ [K], where HS = [hi1 · · · hi|S| ].
As in the point-to-point AWGN case, the direct (achievability) part of Theo-

rem 2.2 is established by drawing each user’s codebook independently at random
from an i.i.d. ensemble [14, §9.2.1]. Consequently, the proof does not lead to
practical communication schemes for this channel.
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Note also that unlike the point-to-point AWGN model, here the channel is
characterized by a channel matrix H. Thus, in general, different codes are needed
for different channel matrices, even if R1, . . . , RK, T and P are fixed. In practical
scenarios, H is seldom known in advance, and typically it is changing with time.
Thus, a more natural approach is to design the encoders independently of H, and to
only adapt the decoder w.r.t. the actual channel matrix H. Moreover, since capacity-
approaching codes with low-complexity for the point-to-point AWGN channel
exist, a very appealing approach is to manipulate the MAC output Y using signal
processing, in order to induce parallel point-to-point channels from it.

The most natural, and widely used, example of such an approach is based on
linear estimation. In particular, in order to decode xk = xk(Mk), we can first set
ỹTk = bT

kY, where the vector bk ∈ R
N is selected to minimize σ 2

k = E‖xk − ỹk‖2.
Now, the channel from xk to ỹk can be thought of as a point-to-point AWGN channel
with noise variance σ 2

k . Thus, if xk is encoded via a “good” code for the AWGN
channel, we can apply the corresponding decoder, and decode xk from ỹk with small
error probability, ifRk < 1

2 log
(
P

σ 2
k

)

.1 We refer to the above communication scheme

as a linear equalization scheme, since roughly speaking, the vectors {b1, . . . ,bK }
attempt to equalize the channel matrix H ∈ R

N×K to IK , the identity matrix of size
K . The achievable rates for linear equalization are characterized in the following
theorem (see, e.g., [17]).

Theorem 2.3 (Performance of Linear Equalization) Let � = (

P−1IK +
HTH

)−1
and let σ 2

k = �kk . Then, any rate tuple (R1, . . . , RK) that satisfies

Rk <
1

2
log

(

P

σ 2
k

)

(2.15)

is achievable over the Gaussian MAC (2.6) with power constraint P , under linear
equalization.

2.3 Exploiting Linear Structure

As discussed above, many of the coding strategies employed in practice can be
viewed as lattice codes. It turns out that the linear structure of these lattice code
ensembles opens up a new equalization possibility: rather than decoding each
codeword individually, we can directly decode any integer-linear combination of
codewords. Specifically, since the lattice is closed under addition, any integer-linear

1The 1+ term from the capacity expression C = 1
2 log(1 + P ) is lost to compensate for the

dependence between xk and ek = xk − ỹk . However, if we set H = 1 to model a point-to-point
AWGN channel, we find that (2.15) is equal to the AWGN capacity 1/2 log(1 + P ) as desired.
See [36], [10, Lemma 2] for more details.
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combination of lattice points is itself a lattice point, and thus afforded the same
protection against noise as the original codewords.

To illustrate the potential gains of this approach, consider the following example
from [37].

Example 2.1 There are K = 2 users and N = 2 receive antennas. The channel
matrix is integer-valued

H =
[

2 1
1 1

]

(2.16)

From (2.6), the receiver observes

Y =
[

2xT1 + xT2
xT1 + xT2

]

+ Z . (2.17)

For large P , the linear equalizer roughly reduces to inverting the matrix H, i.e.,
bT

1 = [1 − 1] and bT
2 = [−1 2], which yields the effective channel outputs

ỹ1 = x1 + bT
1 Z (2.18)

ỹ2 = x2 + bT
2 Z , (2.19)

and rates

R1 = 1

2
log

(

1+ P
2

)

≈ 1

2
log

(
P

2

)

(2.20)

R2 = 1

2
log

(

1+ P
5

)

≈ 1

2
log

(
P

5

)

(2.21)

where the approximations become tight as P increases. On the other hand, if both
encoders employ the same lattice code, then the integer-linear combinations 2x1+x2
and x1 + x2 are themselves codewords and can be decoded at rates

R1 = 1

2
log

(
1

5
+ P

)

≈ 1

2
log(P ) (2.22)

R2 = 1

2
log

(
1

2
+ P

)

≈ 1

2
log(P ) . (2.23)

as will be shown by Theorem 2.4. After removing the noise, we can solve for the
desired codewords x1 and x2. The high-level intuition is that this strategy offers an
advantage since it does not enhance the noise during the linear equalization step.

The example above demonstrates that there can be performance advantages to
recovering integer-linear combinations as an intermediate step towards decoding
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the transmitted messages. We now turn to the general case where the channel coeffi-
cients are not necessarily integer-valued. As we will see, it is still possible to decode
integer-linear combinations of codewords, and the performance is determined by
how closely the integer coefficients approximate the real-valued channel gains.
First, we need to be a bit more precise about what we mean by recovering linear
combinations.

Definition 2.7 A (2T R1, . . . , 2T RK , T , P ) computation code for the channel (2.6)
consists of

• K message sets {1, 2, . . . , 2T Rk }, k = 1, . . . ,K ,
• K encoders, where encoder k assigns a unique T -dimensional vector xk(mk) ∈

R
T to each message mk ∈ {1, 2, . . . , 2T Rk }. All encoders are subject to a power

constraint P > 0, which dictates that ‖xk(mk)‖2 ≤ T P for all k = 1, . . . ,K and
mk ∈ {1, 2, . . . , 2T Rk },

• and, for a chosen integer vector a = [a1 · · · aK ]T ∈ Z
K , a decoder that

assigns an estimate v̂ of the integer-linear combination of the codewords v =
∑K
k=1 akxk(mk) to each possible received sequence Y ∈ R

N×T .

For a given channel matrix H ∈ R
N×K and integer vector a ∈ Z

K , the average
error probability of a computation code is defined as

perror =P(v̂ �= v) . (2.24)

The rates at which it is possible to recover an integer-combination depends on
both the vector of integer coefficients a ∈ Z

K and the channel matrix H ∈ R
N×K

as well as the power P . The definition below is useful for concisely describing the
computation rate.

Definition 2.8 The computation rate function R(H, a, P ) is achievable over
the channel (2.6) if, for any ε > 0 and T large enough, there exists a
(2TR1 , . . . , 2T RK , T , P ) computation code such that, for any H ∈ R

N×K and
a ∈ Z

K , we have that perror < ε if

Rk < R(H, a, P ) ∀k . (2.25)

According to the definition above, the receiver is free to recover any integer-
linear combination of codewords for which (2.25) is satisfied. That is, the transmit-
ters are completely agnostic as to the choice of the integer coefficients as well as the
channel matrix H, i.e., a codeword depends only on the selected message.

Remark 2.1 For the sake of conciseness, we have focused on the symmetric case
R1 = · · · = RK . Specifically, for a given H and a, all rates R1, . . . , RK must
be below the scalar rate threshold given by R(H, a, P ), which can be thought
of as setting all rates equal to one another. More generally, we might expect to
describe the attainable performance by a region. See [27] for relevant definitions
and theorems.
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Example 2.2 We can interpret a capacity-achieving multiple-access code as a com-
putation code in the following sense. A multiple-access code allows the receiver to
decode all of the transmitted messages, from which it can reconstruct the transmitted
codewords, and then any integer-linear combination of interest. It follows from
Theorem 2.2 that the computation rate described by the function

R(H, a, P ) = min
S⊂[K]

1

2|S| log det
(

I+ PHT
SHS

)

, (2.26)

which has no dependence on the integer vector a, is achievable.

Intuitively, we expect that, for a more interesting computation code, R(H, a, P )
should depend on a and should be larger than (2.26) whenever H and a are “close.”
Our approach is for each encoder to employ the same lattice codebook L = �∩V.
Since all codewords can be viewed as elements of the lattice, xk(mk) ∈ �,
then we have that integer-linear combinations are elements of the lattice as well
∑K
k=1 akxk(mk) ∈ �. The key idea is that, if the lattice codebook is designed

to tolerate noise up to a certain variance, then we can recover any integer-linear
combinations for which the effective noise variance is below this level. Overall, the
job of the each encoder is simple: it maps its message mk into the corresponding
lattice codeword xk(mk), and transmits it, paying no attention to nature’s choice of
the channel matrix H or the receiver’s choice of the integer vector a.

At the receiver, our goal is to recover v = ∑K
k=1 akxk(mk) = aTX from Y. We

are free to select the integer vector a based on our knowledge of H. As a first step,
we use an equalization vector b ∈ R

N to create the effective channel

ỹT = bTY (2.27)

= bTHX+ bTZ (2.28)

= aTX+ zTeff (2.29)

where

zTeff = (bTH− aT)X+ bTZ . (2.30)

It can be shown that the effective noise variance is

1

n
E‖zeff‖2 = ‖b‖2 + P‖HTb− a‖2 . (2.31)

This variance is minimized by taking ỹT to be the linear least-squares error (LLSE)
estimator of the integer-linear combination aTX from the channel output Y, which
corresponds to setting the equalization vector to

b = PaTHT(I+ PHHT)−1
. (2.32)
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We define the resulting effective noise variance to be

σ 2
eff(H, a, P ) = aT

(

P−1I+HTH
)−1a . (2.33)

After this equalization step, the receiver uses a lattice quantizer to obtain an
estimate of the integer-linear combination v̂ = Q�(ỹ). For a good lattice code, the
receiver can successfully decode if R < log(P/σ 2

eff(H, a, P )). Overall, this strategy
leads to the following theorem [26, 27, 37].

Theorem 2.4 (Computation Rate Region) The computation rate region described
by the function

R(H, a, P ) = 1

2
log

(
P

σ 2
eff(H, a, P )

)

(2.34)

= −1

2
log
(

aT
(

I+ PHTH
)−1a

)

(2.35)

is achievable over the channel (2.6) with power constraint P .

Note that the matrix
(

I + PHTH
)−1 is symmetric and positive definite, and

therefore admits a Cholesky decomposition

(

I+ PHTH
)−1 = LLT, (2.36)

where L is a lower triangular matrix with strictly positive diagonal entries. With this
notation, we can express the computation rate function as

R(H, a, P ) = −1

2
log ‖LTa‖2. (2.37)

In many cases, the receiver is interested in decodingL linearly independent linear
combinations, but does not care about the particular coefficients. Therefore, we can
use the L linearly independent integer vectors a1, . . . , aL that yield the highest
computation rates R(H, a1, P ) ≥ · · · ≥ R(H, aL, P ). Accordingly, we define the
kth computation rate Rcomp,k(H, P ) � R(H, ak, P ) to be the rate associated with
decoding the kth best integer coefficient vector ak that is linearly independent of
{a1, . . . , ak−1}.

In some applications, it suffices to recoverL < K linear combinations at a single
receiver. For instance, K receivers could each decode one (linearly independent)
integer-linear combination and forward it to a single node that solves for the
transmitted codewords. In other cases, it will be of interest to recover K (linearly
independent) integer-linear combinations at a single receiver. Overall, if we wish to
recover L linear combinations, then the rate of the lattice codebook must be smaller
than Rcomp,L(H, P ).
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Fig. 2.1 The integer-forcing receiver architecture. The receiver employs linear equalization
followed by parallel decoding to recover K linear combinations of the transmitted codewords.
It can then solve for the individual codewords (and thus the original messages)

As a concrete example, consider the integer-forcing architecture for a Gaussian
MAC as illustrated in Fig. 2.1. Each of the K users employs the same lattice
codebook. Similarly to the strategy used to establish Theorem 2.3, the receiver
applies a linear equalizer B to its observation Y to obtain the effective channel
output Ỹ = BY. In Theorem 2.3, this equalization step is used to induce an
effective channel that is close to the identity matrix, which facilitates the parallel
decoding of the K transmitter codewords. For the integer-forcing receiver, the
equalization is instead used to create any effective integer-valued, full-rank channel
matrix A. Parallel decoding can then be used to reliably decode the integer-linear
combinations AX, which can then be solved for the desired individual messages.

2.4 Universal Bounds via Successive Minima

In this section, we derive bounds on the computation rates {Rcomp,k(H, P )}Kk=1 using
known results about the successive minima of a lattice. These bounds can be used to
approximate computation rates without first finding the optimal integer coefficients.

Definition 2.9 (Successive Minima) Let �(G) be the lattice spanned by the full-
rank matrix G ∈ R

K×K . For k = 1, . . . ,K , we define the kth successive minimum
as

λk(G) � inf
{

r : dim
(

span
(

�(G)
⋂

B(0, r)
))

≥ k
}

.

In words, the kth successive minimum of a lattice is the minimal radius of a ball
centered around 0 that contains k linearly independent lattice points.

Let L be the matrix defined in (2.36), �(LT) be the lattice generated by LT, and
λk(LT) its kth successive minimum. By (2.37) and the definition of Rcomp,k(H, P ),
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we have that

Rcomp,k(H, P ) = − logλk(LT). (2.38)

It follows that any upper bound on λk(LT) immediately translates to a lower bound
on Rcomp,k(H, P ). For k = 1, such bounds are given by Minkowski’s first theorem.
Let VK = Vol(B(0, 1)) be the volume of the K-dimensional unit ball. While an
explicit expression

VK = πK/2

�(K/2+ 1)
,

exists, we will be content with the estimate VK ≥ 2KK−K/2, which is obtained by
noting that B(0, 1) contains a cube with side 2/

√
K [24].

Theorem 2.5 (Minkowski’s First Theorem) For any full-rank G,

λ1(G) ≤ 2

(∣
∣det(G)

∣
∣

VK

) 1
K

≤ √K∣∣det(G)
∣
∣

1
K . (2.39)

From Minkowki’s first theorem we immediately obtain a lower bound on
Rcomp,1(H, P ), given as a simple function of H, K , and P .

Theorem 2.6

Rcomp,1(H, P ) ≥ 1

2K
log det(I+ PHTH)− 1

2
logK. (2.40)

Proof From (2.38) and Theorem 2.5 we have that

Rcomp,1(H, P ) ≥ − 1

K
log
∣
∣det(LT )

∣
∣− 1

2
logK

= − 1

2K
log
∣
∣det(LLT )

∣
∣− 1

2
logK

= 1

2K
log det(I+ PHTH)− 1

2
logK,

where the last equality follows from (2.36). 
�
Theorem 2.2 implies that for any rate-tuple (R1, . . . , RK) that is achievable over

the channel (2.6) with power constraint P , we must have

K∑

k=1

Rk ≤ 1

2
log det(I+ PHTH). (2.41)
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The expression on the right hand side of (2.41) is referred to as the sum-capacity of
the channel.2 Consequently, if the symmetric rate-tuple (R, . . . , R) is achievable,
then we must have that

R ≤ 1

2K
log det(I+ PHTH), (2.42)

where the expression in the right hand side of (2.42) is an upper bound on the
symmetric capacity of the channel. In light of this, the interpretation of Theorem 2.6
is that Rcomp,1(H, P ) cannot be much smaller than the symmetric capacity, for all
H and P .

Next, we turn to estimating
∑K
k=1 Rcomp,k(H, P ). By (2.38), we have

K∑

k=1

Rcomp,k(H, P ) = −
K∑

k=1

logλk(LT)

= − log

( K
∏

k=1

λk(LT)

)

. (2.43)

Our goal is therefore to estimate the product of successive minima. Let a1, . . . , aK ∈
Z
K be linearly independent vectors such that λk(LT) = ‖LTak‖, and let A =
[a1| · · · |aK ] ∈ Z

K×K . Since |det(A)| ≥ 1, we have

∣
∣det(LT )

∣
∣ ≤ ∣∣det(LT )

∣
∣ · ∣∣det(A)

∣
∣ = ∣∣det(LTA)

∣
∣ ≤

K
∏

k=1

‖LTak‖ =
K
∏

k=1

λk(LT).

(2.44)

An upper bound on the product of the successive minima is given by Minkowski’s
second theorem.

Theorem 2.7 (Minkowski’s Second Theorem) For any full-rank G,

K
∏

k=1

λk(G) ≤ 2K
(∣
∣det(G)

∣
∣

VK

)

≤ KK/2∣∣det(G)
∣
∣. (2.45)

With (2.43), (2.44) and Theorem 2.7, we can establish the following.

2Specifically, it can be shown that there is a choice of rates R1, . . . , RK satisfying
∑

k Rk =
1
2 log det(I + PHTH) that satisfies the capacity region constraints from Theorem 2.2 and any
choice of rates with a higher sum rate

∑

k Rk >
1
2 log det(I + PHTH) will violate these capacity

constraints.
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Theorem 2.8 ([31, Theorem 3])

1

2
log det(I+ PHTH)− K

2
logK ≤

K
∑

k=1

Rcomp,k(H, P )

≤ 1

2
log det(I+ PHTH). (2.46)

Proof By the definition of L in (2.36), we have

log
∣
∣det(LT)

∣
∣ = 1

2
log
∣
∣det(LLT)

∣
∣ = 1

2
log det(I+ PHTH). (2.47)

The lower bound now follows from (2.43), (2.45), and (2.47), whereas the upper
bound follows from (2.43), (2.44), and (2.47). 
�

Theorem 2.8 asserts that the sum of the computation rates is never too far from
the sum capacity of the channel (2.6) with power constraint P . An operational
meaning for

∑K
k=1Rcomp,k(H, P ) is given in [31], where a low-complexity coding

scheme based on compute-and-forward for the Gaussian MAC (2.6) that achieves
this sum-rate is proposed. The remarkable conclusion from Theorem 2.8, is that
while the individual computation rates {Rcomp,k(H, P )}may be very sensitive to the
entries of H, their sum is, to the first order, only influenced by the corresponding
sum-capacity. This phenomenon is illustrated in Fig. 2.2.
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Fig. 2.2 Rcomp,1(H, P ) and Rcomp,2(H, P ) as a function of h for the channel y = x1 + hx2 + z
at P = 40 dB. The sum of these computation rates is nearly equal to the multiple-access sum
capacity. All rates are normalized by this sum capacity 1/2 log(1+ (1+ h2)P )
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We are often particularly interested in estimating the value of Rcomp,K(H, P ),
as this is the quantity that dictates the symmetric communication rate over the
MAC channel (2.6) with power constraint P , when decoding is done via first
recoveringK integer linear combinations. However, directly estimating this quantity
may be challenging, as it requires to first find K − 1 linearly independent
shortest lattice vectors. Estimating Rcomp,1(H, P ), on the other hand, is a much
simpler task, as it only involves one shortest lattice vector. It is thus desirable to
estimate Rcomp,K(H, P ) as a function of Rcomp,1(H, P ). Using the monotonicity
of Rcomp,k(H, P ) in k and Theorem 2.8, yields the following simple estimate,
which shows that if Rcomp,1(H, P ) is close to 1

2K log det(I + PHTH), then so is
Rcomp,K(H, P ).

Proposition 2.1

[
1

2K
log det(I+ PHTH)− K

2
logK

− (K − 1)

(

Rcomp,1(H, P ) − 1

2K
log det(I+ PHTH)

)]+

≤ Rcomp,K(H, P ) ≤ 1

2K
log det(I+ PHTH), (2.48)

where [x]+ = max{0, x}.
Proof By definition, we have that Rcomp,1(H, P ) ≥ · · · ≥ Rcomp,K(H, P ), which
implies that

L
∑

k=1

Rcomp,k(H, P ) ≤ L · Rcomp,1(H, P ) (2.49)

L∑

k=1

Rcomp,k(H, P ) ≥ L · Rcomp,L(H, P ). (2.50)

The upper bound in (2.48) follows from (2.50) with L = K , combined with the
upper bound from (2.43). To establish the lower bound in (2.48) we can write

Rcomp,K(H, P ) =
K
∑

k=1

Rcomp,k(H, P )−
K−1
∑

k=1

Rcomp,k(H, P )

≥ 1

2
log det(I+ PHTH)− K

2
logK − (K − 1)Rcomp,1(H, P ),
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where we have used the lower bound from (2.43), and (2.49) applied withL = K−1
in the last inequality. To arrive at the left hand side of (2.48), we write

Rcomp,1(H, P ) = 1

2K
log det(I+ PHTH)

+
(

Rcomp,1(H, P )− 1

2K
log det(I+ PHTH)

)

. (2.51)

An alternative route for estimating Rcomp,K(H, P ) involves studying the dual
lattice of �(LT ).

Definition 2.10 (Dual Lattice) For a lattice�(G)with a full-rank generator matrix
G ∈ R

K×K , the dual lattice is defined by

�∗(G) � �
(

(GT)−1
)

. (2.52)

By definition, we have that if x ∈ �(G) and x∗ ∈ �∗(G), then xTx∗ ∈ Z. Let
x1, . . . , xK ∈ �(G) be linearly independent vectors such that ‖xk‖ = λk(G) for k =
1, . . . ,K and let x∗ ∈ �∗(G) be such that ‖x∗‖ = λ1

(

(GT)−1
)

. Since {x1, . . . , xK }
form a basis for RK , we must have that xTk x∗ �= 0 for some k ∈ {1, . . . ,K}. Thus,
for this k, we must have that

λk (G) λ1

(

(GT)−1
)

= ‖xk‖ · ‖x∗‖ ≥ |xTk x∗| ≥ 1, (2.53)

where we have used the Cauchy–Schwartz inequality and the fact that xTk x∗ ∈ Z.
Since λk (G) is monotone in k and k ≤ K , we conclude that

λK (G) λ1

(

(GT)−1
)

≥ 1. (2.54)

It turns out that the product of successive minima of a lattice and its dual can also
be upper bounded.

Theorem 2.9 (Banaszczyk [4, Theorem 2.1]) Let �(G) be a lattice with a full-
rank generating matrix G ∈ R

K×K and let�∗(G) = � ((GT)−1
)

be its dual lattice.
The successive minima of �(G) and�∗(G) satisfy the following inequality

λk (G) λK−k+1

(

(GT)−1
)

≤ K, ∀k = 1, 2, . . . ,K.

Banaszczyk’s theorem and (2.54) yield the following estimate onRcomp,K(H, P ).
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Theorem 2.10 ([29])

1

2
log

(

min
a∈ZK\{0}

(

‖a‖2 + P‖Ha‖2
)
)

− logK ≤ Rcomp,K (H, P )

≤ 1

2
log

(

min
a∈ZK\{0}

(

‖a‖2 + P‖Ha‖2
)
)

(2.55)

Proof By (2.38), Theorem 2.9, applied with k = K , and (2.54) we have that

logλ1(L−1)− logK ≤ Rcomp,K(H, P ) ≤ logλ1(L−1). (2.56)

By definition of successive minima,

λ2
1(L

−1) = min
a∈ZK\{0}

‖L−1a‖2

= min
a∈ZK\{0}

aT(LLT)−1a

= min
a∈ZK\{0}

aT(I+ PHTH)a, (2.57)

where we have used the definition of L from (2.36) in the last equality. The theorem
now follows by substituting (2.57) in (2.56). 
�

2.5 Asymptotic Bounds

For the single-user AWGN channel (2.1) with power constraint P , the capacity
is C(P) = 1

2 log(1 + P) bits/channel use, by Theorem 2.1. The MAC channel
model (2.6) with power constraint P is richer than the AWGN model (unless
N = K = 1), but we would nevertheless like to compare it to a simple AWGN
channel. In our context, the notion of degrees-of-freedom (DoF) is a first-order
approximation that measures how many AWGN channels (or fractions thereof) are
needed to attain the same rate as the MAC sum capacity. To be precise, let C(H, P )
be the sum-capacity of the channel (2.6), i.e.,

C(H, P ) � 1

2
log det

(

I+ PHTH
)

. (2.58)
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Then, the DoF offered by the MAC channel (2.6) with channel matrix H is defined
as

DoF(H) � lim
P→∞

C(H, P )
C(P )

= lim
P→∞

log det

(

I+ PHTH
)

log(1+ P) . (2.59)

It is well known that DoF(H) = rank(H). In particular, for almost all H ∈ R
N×K

(w.r.t. Lebesgue measure) we have that DoF(H) = min(K,N).
In order to characterize the asymptotic behavior of communication schemes

based on decoding integer-linear combinations, we define the DoF associated with
decoding the best � equations as

dcomp,�(H) = lim
P→∞

Rcomp,�(H, P )
1
2 log(1+ P) . (2.60)

By Theorem 2.8, we have that

C(H, P ) − K
2 log(K)

C(P )
≤

K
∑

k=1

Rcomp,k(H, P )
1
2 log(1+ P) ≤

C(H, P )
C(P )

. (2.61)

Since the upper and lower bounds coincide in the limit of P →∞, we see that

K∑

k=1

dcomp,k(H) = DoF(H) = rank(H) ≤ min{K,N}. (2.62)

The main purpose of this section is to show that for almost all H ∈ R
N×K

(w.r.t. the Lebesgue measure) we have that dcomp,1(H) = · · · = dcomp,K(H) =
min{K,N}

K
. By (2.62) and the monotonicity of dcomp,k(H), it suffices to show that for

almost every H we have dcomp,K(H) ≥ min{K,N}
K

. Our focus will therefore be on
establishing lower bounds for dcomp,K(H).

Our starting point is Theorem 2.10. Denoting the Kth singular value of H by
σK(H), this theorem gives

Rcomp,K(H, P ) ≥ 1

2
log

(

min
a∈ZK\{0}

(

‖a‖2 + P‖Ha‖2
))

− logK (2.63)

≥ 1

2
log

(

min
a∈ZK\{0}

(

‖a‖2 + Pσ 2
K(H)‖a‖2

))

− logK

≥ 1

2
log
(

1+ Pσ 2
K(H)

)

− logK.
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Since σ 2
K(H) is strictly above 0 whenever rank(H) = K , we conclude that if

rank(H) = K then dcomp,K(H) = 1. For K ≤ N , this is indeed the case
for almost every H ∈ R

N×K . Thus, we have established that if K ≤ N then
dcomp,K(H) ≥ min{K,N}

K
for almost every H ∈ R

N×K . The interesting case is
thereforeN < K , which we assume in the derivation.

Instead of bounding (2.63) in terms of σK(H), we can resort to the tradeoff
between the allowed length of a and the smallest attainable ‖Ha‖ [29]

Rcomp,K(H, P ) ≥ 1

2
log

(

min
a∈ZK\{0}

(

‖a‖2 + P‖Ha‖2
))

− logK

≥ 1

2
log

(

min
a∈ZK\{0}

(

‖a‖2∞ + P‖Ha‖2∞
))

− logK, (2.64)

where for x ∈ R
m we define ‖x‖∞ = max{|x1|, . . . , |xm|}. For 0 < ε < 1, define

κε(H) ≥ 0 as

κε(H) � inf
a∈ZK\{0}

‖Ha‖∞
‖a‖1−KN 1

1−ε∞
. (2.65)

We have that

min
a∈ZK\{0}

(

‖a‖2∞ + P‖Ha‖2∞
)

≥ min
�=1,2,...

(

�2 + Pκ2
ε (H)�

2
(

1−KN 1
1−ε
))

≥ min
t>0

(

t + Pκ2
ε (H)t

1−KN 1
1−ε
)

= 1

1− N
K
(1− ε) ·

(
K

N

1

1− ε − 1

)N
K (1−ε) ·

(

κ2
ε (H)P

)N
K (1−ε)

,

(2.66)

where the last equality is obtained by straightforward differentiation. Substitut-
ing (2.66) in (2.64) and recalling the definition of dcomp,K(H), we have established
that for any 0 < ε < 1, the following holds

dcomp,K(H) ≥ N
K
(1− ε)

(

1+ 2 lim
P→∞

log κε(H)
logP

)

. (2.67)

It now remains to show that κε(H) > 0 for every 0 < ε < 1, and almost
every H. To this end, we resort to the literature on systems of small linear forms.
Several results in this field can be used, depending on whether the entries of H
are independent or dependent (i.e., they can be characterized by fewer than NK
parameters). Below, we state the most general available result, which was recently
obtained by Beresnevich, Bernik, and Budarina [5].
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2.5.1 Small Linear Forms

We will need several definitions before we can state (an adaptation of) the main
result from [5].

For j = 1, . . . , N , let Uj ⊂ R
dj be an open ball, and fj = (fj1, . . . , fjK) :

Uj �→ R
K be functions. For (x1, . . . , xN) ∈ U1 × · · · × UN , we define

F = F(x1, . . . , xN) �

⎡

⎢
⎣

f1(x1)
...

fN(xN)

⎤

⎥
⎦ =

⎡

⎢
⎣

f11(x1) . . . f1K(x1)
...

...
...

fN1(xN) . . . fNK(xN)

⎤

⎥
⎦ ∈ R

N×K.

(2.68)

For ρ > 0, define the set

W(F, ρ) �
{

(x1, . . . , xN) ∈ U1 × · · · × UN : ‖F(x1, . . . , xN)a‖∞ < (‖a‖∞)−ρ)

for infinitely many a ∈ Z
K \ {0}

}

.

(2.69)

Theorem 2.11 ([5, Theorem 2]) Let K > N ≥ 1 be integers, and let
U1, . . . , UN, f1, . . . , fN, F and W(F, ρ) be as above. Suppose that for each
j = 1, . . . , N the coordinate functions fj1, . . . , fjK of the map fj are analytic and
linearly independent over R. Then,

μ (W(F, ρ)) =
{

0 if ρ > K
N
− 1,

∏N
j=1 μ(Uj ) if ρ ≤ K

N
− 1

(2.70)

where μ(B) denotes the Lebesgue measure of a set B ⊂ R
d .

An immediate corollary of Theorem 2.11 is the following.

Corollary 2.1 Let K > N ≥ 1 be integers, and let U1, . . . , UN , f1, . . . , fN, F
and W(F, ρ) be as above. Suppose that, for each j = 1, . . . , N , the coordinate
functions fj1, . . . , fjK of the map fj are analytic and linearly independent over R.
Then, for any 0 < ε < 1 and almost every (x1, . . . , xN) ∈ U1 × · · · ×UN , we have
that κε(F(x1, . . . , xN)) > 0.

We can now combine Corollary 2.1 and (2.67) for several cases of particular
interest.
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2.5.2 Independent Channel Gains

A common assumption in wireless communication is that the entries hij of the
channel matrix H ∈ R

N×K are independent. In the context of Theorem 2.11, this
corresponds to taking Uj = [−τ, τ ]K for all j = 1, . . . , N , where τ ∈ R

+ is some
large number, and fj (xj ) = (xj1, . . . , xjK). These functions certainly satisfy the
conditions of Corollary 2.1, and we can therefore deduce the following.

Corollary 2.2 LetK > N ≥ 1. For almost every H ∈ R
N×K we have that κε(H) >

0.

Now, combining the corollary above and (2.67) we see that for K > N ≥ 1
we have that dcomp,K(H) ≥ N

K
for almost every H ∈ R

N×K . Recalling that for
1 ≤ K ≤ N we have that dcomp,K(H) ≥ 1 for almost every H ∈ R

N×K , we recover
the following lemma from [29].3

Lemma 2.1 ([29, Lemma 3]) For almost every H ∈ R
N×K ,

K · dcomp,K(H) = min{K,N}. (2.71)

Roughly speaking, this allows us to conclude that, in the limit of large P , the
integer-forcing strategy does as well as the optimal sum-capacity-achieving scheme.

2.5.3 Dependent Channel Gains

In many applications of interest, the channel model Y = HX + Z represents an
effective channel induced by certain signal processing operations performed at the
transmitters and the receivers. Often, these operations create dependencies between
the entries of H, which requires replacing the Lebesgue measure in the DoF analysis
with a measure on a suitable manifold.

As a canonical example, we will consider the symmetric two-user X-channel [20,
21, 23, 25, 28]. This channel consists of two transmitters emitting the signals x1 and
x2, respectively, each in R

1×T and satisfying the power constraint ‖xk‖2 ≤ T P , and
two receivers observing the signals

y1 = x1 + gx2 + z1

y2 = gx1 + x2 + z2,

3The proof of Lemma 3 from [29] relied on [19, Corollary 2], which can be obtained as a special
case of [5, Theorem 2].
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respectively, where z1, z2 ∈ R
1×T are two statistically independent i.i.d. N(0, 1)

noises. Each transmitter has two messages, one for the first receiver and one for the
second receiver, and we assume all four messages are of the same rate R. We now
describe one particular transmission scheme for this channel. We use one lattice
codebook of rate R and power P , such that the message from user k to receiver j is
encoded to a lattice codeword x̃jk . The users then transmit

x1 = 1
√

1+ g2

(

x̃11 + gx̃21
)

x2 = 1
√

1+ g2

(

x̃22 + gx̃12
)

.

Consequently, the receivers observe

y1 = 1
√

1+ g2

(

x̃11 + g(x̃21 + x̃22)+ g2x̃12

)

+ z1

y2 = 1
√

1+ g2

(

x̃22 + g(x̃12 + x̃11)+ g2x̃21

)

+ z1.

Since the channel output is symmetric across receivers, it suffices to analyze the
rates that allow the first receiver to decode its two desired codewords x̃11 and x̃12.
Noting that x̃2 � x̃12 + x̃11 is a lattice codeword itself, we can write

y1 = hTX1 + z1, (2.72)

where

h = h(g) = 1
√

1+ g2
[1 g2 g], X1 =

[

x̃T11 x̃T12 x̃T2
]T
. (2.73)

Thus, the effective channel (2.72) induced by our transmission scheme falls
within our generic model introduced in the first section. We can decode the two
desired codewords x̃11 and x̃12, as well as the nuisance codeword x̃2, by decoding
three integer-linear combinations and then inverting them. Thus, the asymptotic
performance of our scheme depends on dcomp,3(h).

We would like to apply Corollary 2.1 in order to show that κε(h(g)) > 0 for
almost every g ∈ R. To this end, we take U1 = [−τ, τ ] for some large τ ∈ R

+ and
set

f1(x) =
(

1√
1+ x2

,
x2

√
1+ x2

,
x√

1+ x2

)

, (2.74)
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such that h(g) = f1(g) ∈ R
1×3. Certainly, f1 satisfies the conditions of Corol-

lary 2.1, and we therefore obtain the following.

Corollary 2.3 For almost every g ∈ R we have that κε(h(g)) > 0.

Combining the corollary above with (2.67), we have established that for almost
every g ∈ R, the proposed communication scheme attains dcomp,3(h(g)) = 1/3.

The operational implication of this result, is that using the lattice-based commu-
nication scheme proposed above, each user can send both of its messages reliably,
each with a rate that scales like 1

3 · 1
2 log(P ) with P . To appreciate this, note that

the naïve scheme, which avoids interference by transmitting each of the 4 messages
over different T/4 channel uses, can only achieve reliable communication with rates
below 1

4 · 1
2 log(1+ 4P).

2.6 Non-Asymptotic Bounds

For communication applications, it is often of interest to understand performance
for finite P , as in practice the allowed transmission power is limited, and usually
quite moderate.

As a canonical example, consider the symmetric K-user Gaussian interference
channel, depicted in Fig. 2.3. In this channel model, there are K users, each
transmitting a signal xk ∈ R

T , k = 1, . . . ,K , subject to the power constraint
‖xk‖2 ≤ T P . There are also K receivers with observations

yk = xk + g
∑

j �=k
xj + zk, k = 1, . . . ,K (2.75)

Fig. 2.3 Block diagram of a symmetric Gaussian K-user interference channel
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where g ∈ R is the (symmetric) interference gain, and zk is i.i.d. Gaussian noise
with zero mean and unit variance. The goal of the kth receiver is to decode only
the codeword xk , whereas all other codewords are interference. In the proceeding
discussion, we will assume that 1 < g <

√
P .

The naïve approach for dealing with interference is to avoid it entirely. This
corresponds to splitting the channel uses into T/K different slots, and letting only
one user transmit within each slot. In this scheme, when the kth user transmits, the
kth receiver observes its signal without any interference, and the resulting achievable
rate is 1

K
· 1

2 log(1+KP).
A different, and sometimes more efficient, approach, is interference alignment.

For the symmetric interference channel, this approach boils down to having all
users encode their messages using the same lattice codebook. Consider the sum
of interfering codewords at receiver k, xinterference,k = ∑j �=k xj . Owing to the fact
that the lattice is closed under integer-linear combinations, xinterference,k is itself a
lattice codeword. Consequently, the effective two-user channel seen by receiver k is

yk = xk + g xinterference,k + zk. (2.76)

Now, it is possible to recover xk by decoding two linearly independent integer-linear
combinations of xk and xinterference,k.

The achievable rate of this interference alignment scheme is therefore the second
computation rate4 for the channel H = [1 g]. By Theorem 2.10, we can lower
bound the second computation rate by

Rcomp,2(H, P ) ≥ 1

2
log

(

min
a∈Z2\{0}

(

‖a‖2 + P‖Ha‖2
))

− 1. (2.77)

Setting H = [1 g], a = [−p q], and assuming without loss of generality that q ≥ 0,
we can write

min
a∈Z2\{0}

(

‖a‖2 + P‖Ha‖2
)

= min
p∈Z,q∈N,(p,q) �=(0,0)

(

p2 + q2 + P |qg − p|2
)

.

(2.78)

Defining p̃ = p − q�g� and g̃ = g − �g�, we can rewrite this as

min
p̃∈Z,q∈N,(p̃,q) �=(0,0)

(

(q�g� + p̃)2 + q2 + P ∣∣q�g� + qg̃ − q�g� − p̃∣∣2
)

(2.79)

= min
p̃∈Z,q∈N,(p̃,q) �=(0,0)

(

(q�g� + p̃)2 + q2 + P ∣∣qg̃ − p̃∣∣2
)

. (2.80)

4Up to a small correction term, due to the fact that the effective user xinterference,k has power (K −
1)P instead of P . See [31] for more details.
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Since g̃ ≥ 0 by definition, we see that for p̃ < 0 the expression above is lower
bounded by P . We can therefore write

min
a∈Z2\{0}

(

‖a‖2 +P‖Ha‖2
)

≥ min
p̃∈Z,q∈N,(p̃,q) �=(0,0)

(

(q�g� + p̃)2 + q2 + P ∣∣qg̃ − p̃∣∣2
)

≥ min

{

P, min
(p̃,q)∈N2\{0}

(

(q�g� + p̃)2 + q2 + P ∣∣qg̃ − p̃∣∣2
)
}

≥ min

{

P, min
(p̃,q)∈N2\{0}

max(q2�g�2, P |qg̃ − p̃|2)
}

. (2.81)

Next, we will study the behavior of the last term in (2.81). In particular, for an
integer 1 ≤ b ≤ √P and 0 < δ < 1, we will study the Lebesgue measure of the
“outage set”

Wb,δ =
{

g ∈ [b, b + 1) : min
(p̃,q)∈N2\{0}

max(q2�g�2, P |qg̃ − p̃|2) <
√
g

2
P

1
2 (1−δ)

}

⊂ b +
{

x ∈ [0, 1) : |qx − p̃| < √bP− 1
4 (1+δ) for some q ≤ P

1
4 (1−δ)√
b

, p̃ ∈ N

}

.

(2.82)

Note that for all g ∈ [b, b + 1) \Wb,δ, we have that

min
a∈Z2\{0}

(

‖a‖2 + P‖Ha‖2
)

≥
√
g

2
P

1
2 (1−δ), (2.83)

which implies, by (2.77), that

R ≥ 1

4
log(g2P)− δ

4
logP − 3

2
(2.84)

for all g ∈ [b, b + 1) \Wb,δ, 1 ≤ b ≤ √P .
In order to upper bound μ(Wb,δ), for any q ∈ Z

+, we define the set

Tb,δ(q) �
[{

0,
1

q
, . . . ,

q − 1

q

}

+ �b,δ
q

I
]

mod [0, 1), (2.85)

where I � [−1, 1] and �b,δ �
√
bP− 1

4 (1+δ). It is easy to see that

Wb,δ ⊂ b +
qmax(b,δ)⋃

q=1

Tb,δ(q), (2.86)
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where qmax(b, δ) �
⌊

P
1
4 (1−δ)√
b

⌋

. Therefore,

μ(Wb,δ) ≤ μ
⎛

⎝

qmax(b,δ)⋃

q=1

Tb,δ(q)

⎞

⎠

≤
qmax(b,δ)∑

q=1

μ
(

Tb,δ(q)
)

≤
qmax(b,δ)∑

q=1

2�b,δ

= 2qmax(b, δ)�b,δ

≤ 2P−
δ
2 . (2.87)

Now, setting δ = 2(γ + 1)/ log(P ), (2.84) and (2.87) imply that we can achieve
a rate satisfying

R ≥ 1

4
log(g2P)− γ + 1

2
− 3

2

= 1

4
log(g2P)− γ

2
− 2 (2.88)

for all g ∈ [b, b+ 1) \W, where W =Wb,2(γ+1)/ log(P ) has Lebesgue measure at
most 2−γ .

To appreciate this result, it should be contrasted with the rate attained by
interference avoidance. The interference alignment rate scales with P as 1

4 log(g2P)

whereas that of interference avoidance only scales as 1
2K log(P ). For K ≥ 3 and

largeP , the improvement is very significant. It can also be shown that the symmetric
capacity of the symmetric K-user Gaussian interference channel is upper bounded
by 1

4 log(g2P)+ 1. Thus, we have the following theorem.

Theorem 2.12 ([31]) The lattice interference alignment scheme described above
attains the symmetric capacity of the symmetric K-user Gaussian interference
channel to within 3 + γ /2 bits for all g ∈ [1,√P ) \ {W}, where the set W ⊂
[1,√P) has Lebesgue measure at most (√P − 1)2−γ .

2.7 Conclusions and Open Problems

In this chapter, we demonstrated that classical and modern results from the theory
of Diophantine approximation are extremely useful for obtaining upper and lower
bounds for the performance of lattice-based communication strategies. In particular,
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the compute-and-forward strategy makes it possible for a receiver to obtain integer-
linear combinations of codewords, with the rate determined by how well the
real-valued channel coefficients are approximated by the chosen integer coefficients.
Though not discussed in this survey, similar ideas have been found useful for
distributed data compression, where the compression rates are determined by how
well the source covariance matrix can be approximated by a matrix with integer
coefficients [12, 18, 30]. While explicitly identifying these integer coefficients is a
challenging optimization problem, we can obtain universal bounds on the achievable
communication rates via Diophantine approximation.

A major focus of this chapter was on degrees-of-freedom characterizations, i.e.,
the first-order term in the rate expression as the power P tends to infinity. For this
regime, Diophantine approximation results allow us to obtain tight bounds up to
a set of channel matrices with Lebesgue measure zero, even when dependencies
exist between the channel gains, as in interference alignment. Going further, one
can follow a similar approach to determine the degrees-of-freedom of essentially
any interference network (see, for instance, [7, 8, 25, 35] for more details).

We also considered non-asymptotic bounds that hold for any choice of P .
Specifically, we examined the symmetricK-user Gaussian interference, and derived
a lower bound on the capacity whose gap to the upper bound depends on the measure
of the excluded channel gains. Similar results are available for the two-user X chan-
nel [28]. For larger networks, we need to rely on more sophisticated interference
alignment schemes, and more research is needed to develop non-asymptotic bounds
that can handle the resulting dependencies. Specifically, alignment schemes for K-
user interference channels (with arbitrary channel gains) utilize many signaling
directions based on monomials constructed from the channel gains [7, 25]. This
corresponds to a codeword emitted per signaling direction with a rate penalty for
each additional codeword layer. In the limit asP tends to infinity, these rate penalties
can be safely ignored to approach the optimal degrees-of-freedom of 1/2 per user.
However, for finite P , we must carefully tradeoff the number of codeword layers
with the measure of excluded channel gains to attain the best performance. This
in turn requires non-asymptotic Diophantine approximation bounds over manifolds.
See [1, 13] for recent progress in this direction.
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Chapter 3
On Fast-Decodable Algebraic
Space–Time Codes

Amaro Barreal and Camilla Hollanti

Abstract In the near future, the 5th generation (5G) of wireless systems will
be well established. They will consist of an integration of different techniques,
including distributed antenna systems and massive multiple-input multiple-output
(MIMO) systems, and the overall performance will highly depend on the channel
coding techniques employed. Due to the nature of future wireless networks, space–
time codes are no longer merely an object of choice, but will often appear naturally
in the communications setting. However, as the involved communication devices
often exhibit a modest computational power, the complexity of the codes to be
utilised should be reasonably low for possible practical implementation. Fast-
decodable codes enjoy reduced complexity of maximum-likelihood (ML) decoding
due to a smart inner structure allowing for parallelisation in the ML search. The
complexity reductions considered in this chapter are entirely owing to the algebraic
structure of the considered codes, and could be further improved by employing non-
ML decoding methods, however yielding suboptimal performance. The aim of this
chapter is twofold. First, we provide a tutorial introduction to space–time coding
and study powerful algebraic tools for their design and construction. Secondly, we
revisit algebraic techniques used for reducing the worst-case decoding complexity
of both single-user and multiuser space-time codes, alongside with general code
families and illustrative examples.

3.1 Introduction

Let us start this chapter by introducing, very briefly, the reader to the field of alge-
braic space–time coding. While there are various design criteria to be considered as
well as a plethora of code constructions for a variety of different channel models and
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communications settings, we will here only review the developments most relevant
to the rest of this chapter.

The first space–time code, the Alamouti code [1], was introduced in 1998
and gave rise to a massive amount of research in the attempt to construct well-
performing codes for various multi-antenna wireless communications settings. It
was discovered that the code matrices constituting this particular code actually
depict an algebraic structure known as the Hamiltonian quaternions, and by
restriction to Lipschitz (i.e., integral) quaternions, the (unconstrained) code becomes
a lattice. As Hamiltonian quaternions are the most popular example of a division
algebra, this finding prompted the study of general division algebra space–time
lattice codes [4, 34].

Division algebras are related to achieving full diversity by maximising the rank
of the code matrices [38]. Soon it was noticed that by choosing the related field
extensions carefully, one can achieve non-vanishing determinants (NVD) [4] for
the codewords, implying a non-vanishing coding gain [38]. As the coding gain is
inversely proportional to the decoding error probability, this in turn prevents the
error probability from blowing up. A related notion, the diversity–multiplexing gain
[43] captures the tradeoff between the decay speed of the decoding error probability
and available degrees of freedom. It is known that for symmetric systems, that is,
with an equal number of transmit and receive antennas, full-rate space-time codes
with the NVD property achieve the optimal tradeoff of the channel.

Several explicit constructions of space–time codes based on cyclic division
algebras exist in the literature. For instance, Perfect space-time codes and their
generalisations [5, 12, 30] provide orthogonal lattices for any number of antennas,
whereas maximal order codes [14, 15, 39] optimise the coding gain, while giving up
on the orthogonality of the underlying lattice.

In the multiuser settings considered in this chapter, multiple users are com-
municating to a joint destination, with or without cooperating with each other.
When cooperation is allowed, it is possible to take advantage of intermediate
distributed relays which aid the active transmitter in the communication process.
Various protocols exist for enabling this type of diversity—the one considered
here is the non-orthogonal half-duplex amplify-and-forward protocol, see [42]. The
non-cooperative case is referred to as the multiple access channel (MAC), where
users transmit signals independently of each other. Some algebraic MAC codes are
presented in [22, 23], among others.

One of the biggest obstacles in utilising space-time lattice codes and realising
the theoretical promise of performance gains is their decoding complexity. Namely,
maximum-likelihood (ML) decoding boils down to closest lattice point search, the
complexity of which grows exponentially in the lattice dimension. More efficient
methods exist, most prominently sphere decoding [41], which limits the search
to a hypersphere of a given radius. However, the complexity remains prohibitive
for higher dimensional lattices. To this end, several attempts have been made
to reduce the ML decoding complexity. In principle, there are two ways to do
this: either one can resort to reduced-complexity decoders yielding suboptimal
performance, or try to build the code lattice in such a way that its structure naturally



3 On Fast-Decodable Algebraic Space–Time Codes 101

allows for parallelisation of the decoding process, hence yielding reduction in the
dimensionality of the search. In this chapter, we are interested in the latter: we will
show how to design codes that inherently yield reduced complexity thanks to a
carefully chosen underlying algebraic structure.

On our way to this goal, we will introduce the reader to the basics of lattices
and algebraic number theory, to the extent that is relevant to this chapter. We will
also lay out the typical channel models for the considered communications settings.
Whenever we cannot explain everything in full detail in the interest of space, suitable
references will be given for completeness. We assume the reader is familiar with
basic abstract algebra and possesses some mathematical maturity, while assuming
no extensive knowledge on wireless communications.

The rest of the chapter is organised as follows. We begin in Sect. 3.2 by
familiarising the reader with the important notion of lattices and recall related
results. Following a section introducing concepts and results from algebraic number
theory, we study a particular class of central simple algebras, specifically cyclic
division algebras, and their orders. We then move on to providing a background
in wireless communications in Sect. 3.3, introducing the well-known multiple-input
multiple-output fading channel model and related performance parameters. As a
coding technique employed in this multiple-antenna communications setup, we then
introduce the main object of this chapter, space–time codes. We recall code design
criteria, and furthermore show how codes can be constructed from cyclic division
algebras. In Sect. 3.4, maximum-likelihood decoding is introduced, and we discuss a
possible decoding complexity reduction by algebraic means, defining the concept of
fast-decodable space–time codes. The definition of fast decodability is then further
refined, which allows us to consider more specific families of space–time codes with
reduced decoding complexity. We further recall a useful iterative method for code
construction. Finally, in Sect. 3.5 we discuss two specific communication scenarios
as well as explicit methods to construct fast-decodable space–time codes.

3.2 Algebraic Tools for Space–Time Coding

Although space-time codes are primarily a tool for data transmission, they are of
a highly mathematical nature. Indeed, design criteria derived for minimising the
probability of incorrect decoding, which we will revisit in Sect. 3.3.2.1, can be met
by ensuring certain algebraic properties of the underlying structure used for code
construction. For this reason, we first devote a chapter to the mathematical notions
needed for space–time code analysis and design.

We start with basic concepts and results about lattices, objects which are of
particular interest as almost all space–time codes with good performance arise from
lattice structures. This is both to ensure a linear structure—a lattice is simply a
free Z-module, thus an abelian group—as well as to avoid accumulation points at
the receiver, to which end the discreteness property of a lattice is useful. Our main
references for all lattice related results are [10, 11].
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In a successive section, we then introduce relevant tools and objects from
algebraic number theory, such as number fields, their rings of integers, and prime
ideal factorisation. These tools will play a crucial role in the construction of space–
time codes. As references, we have [28, 29].

Most importantly, we finally introduce central simple algebras and their orders,
the main objects that will determine the performance of the constructed codes. Over
number fields, every central simple algebra is cyclic, and we study these in detail.
We refer to [6, 27, 31] for good general references.

3.2.1 Lattices

We begin with the simplest definition of a lattice in the ambient space Rn.

Definition 3.1 A lattice � ⊂ R
n is the Z-span of a set of vectors of Rn that are

linearly independent over R.

Note that we do not require that the number of vectors spanning � equals the
dimension n. Indeed, any lattice is isomorphic to Z

t as groups for t ≤ n. A lattice is
thus a free abelian group of rank rk (�) = t , and is called full-rank or shortly full,
if the rank and dimension coincide, i.e., t = n. We give an alternative and useful
group theoretic definition.

Definition 3.2 A lattice � ⊂ R
n is a discrete1 subgroup of Rn.

A lattice � ⊆ R
n can hence be expressed as a set

� =
{

x =
t
∑

i=1

zibi

∣
∣
∣
∣
∣
zi ∈ Z

}

,

with bi ∈ R
n (and the zi uniquely determined by x). We say that {b1, . . . ,bt } forms

a Z-basis of �.
We can conveniently define a generator matrix and the corresponding Gram

matrix for�

M� =
[

b1 · · · bn
] ; G� = Mt

�M�,

so that every element of � can be expressed as x = M�z for some z ∈ Z
n.

Example 3.1 The simplest lattice is the integer lattice Z
n in arbitrary dimension

n ≥ 1. A generator and Gram matrix for Zn is simply the n× n identity matrix.
A more interesting example in dimension n = 2 is the hexagonal lattice A2. A

Z-basis for this lattice can be taken to be b1 = (1, 0)t and b2 = (−1/2,
√

3/2)t . A

1By discrete, we mean that the metric on R
n defines the discrete topology on �, i.e., any bounded

region of Rn contains only finitely many points of the subgroup.
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Fig. 3.1 The Voronoi regions of the hexagonal lattice A2

graphical representation of the lattice, as well as a generator and Gram matrix with
respect to this basis are presented in Fig. 3.1.

To each lattice �, we can associate its fundamental parallelotope, defined as
P� := {M�y| y ∈ [0, 1)n}. Note that we can recover Rn as a disjoint union of the
sets x+P� for all x ∈ �. SinceM� contains a Z-basis of�, any change of basis is
obtained via an integer matrix with determinant ±1. Hence, the Lebesgue measure
of P� is invariant under change of basis. Thus, we define the volume of a lattice
� ⊂ R

n as the Lebesgue measure of its fundamental parallelotope,

vol (�) := vol (P�) =
√

det(G�).

We have defined a lattice to be a discrete subgroup of R
n and they are, by

definition, free Z-modules. It is however possible and often desirable to extend the
definition to other rings and ambient spaces, such as the ring of integers of a number
field, or an order in a cyclic division algebra. In this more general context, we define
a lattice � to be a discrete and finitely generated abelian subgroup of a real or
complex ambient space V . In the previous derivations, we have set V = R

n. Of
interest for purposes of space–time coding is to consider lattices in V = Mat(n,C).
In this case, we can also identify a full lattice in V with a full lattice in R

2n2
via the

R-linear isometry

ι : Mat(n,C)→ R
2n2
,

[u1, . . . ,un] �→ (Re(u11), Im(u11), . . . , Im(u1n), . . . ,Re(unn), Im(unn))
t .

(3.1)
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We have ‖U‖F = ‖ι(U)‖, where ‖ · ‖ (resp. ‖ · ‖F ) denotes the Euclidean (resp.
Frobenius) norm, and ι maps full lattices in V to full lattices in the target Euclidean
space. This map will be crucial for decoding considerations in later sections.

Let� ⊂ Mat(n,C) be a full lattice with Z-basis {B1, . . . , Bn} , Bi ∈ Mat(n,C).
A generator matrix and the corresponding Gram matrix for � can be given as

M� =
[

ι(B1) · · · ι(Bn)
] ; G� = Mt

�M� =
(

Re(Tr(B†
i Bj ))

)

i,j
.

The volume of � is the volume of the corresponding lattice ι(�) in R
2n2

, i.e.,
vol (�) = √det(G�).

Example 3.2 We exemplify the notion of a lattice in Mat(n,C) and corresponding
vectorisation on the famous Alamouti code [1]. As we shall see later, the Alamouti
code is constructed from a lattice in Mat(2,C) corresponding to Hamiltonian (or
more precisely Lipschitz) quaternions. More concretely, it is a finite subset

XA ⊂
{[

x1 + ix2 −(x3 − ix4)

x3 + ix4 x1 − ix2

]∣
∣
∣
∣
(x1, . . . , x4) ∈ Z

4
}

.

A basis of the underlying lattice �A consists of the matrices

B1 =
[

1 0
0 1

]

; B2 =
[

i 0
0 −i

]

; B3 =
[

0 −1
1 0

]

; B4 =
[

0 i
i 0

]

.

Using the defined isometry ι, we can identify �A with a lattice in R
8, which we

again denote by �A, with generator and Gram matrix

M�A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; G�A =

⎡

⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎤

⎥
⎥
⎦

The volume of this lattice is vol (�A) =
√

det(G�A) = 4.

3.2.2 Algebraic Number Theory

In this section, we recall fundamental notions from algebraic number theory which
are indispensable for space–time code constructions. We assume that the reader is
familiar with basic Galois theory.
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Let L/K be an arbitrary field extension. If we view L as a vector space over K ,
we can define the degree of the field extension as the vector space dimension, that is,
[L : K] := dimK(L). If the degree is finite, we call the extension finite. An element
α ∈ L is called algebraic overK if there exists a non-zero polynomial f (x) ∈ K [x]
such that f (α) = 0, and the field extension L/K is called algebraic if all elements
of L are algebraic over K . Consider the homomorphism φ : K[x] → L, f (x) �→
f (α). Since α is algebraic, ker(φ) �= 0, and can be generated by a single polynomial
mK,α(x), chosen to be monic of smallest degree admitting α as a root. We call this
unique polynomial the minimal polynomial of α overK . WhenK = Q or when the
field is clear from context, we may shortly denotemα(x).

Definition 3.3 An algebraic number field is a finite extension of Q.

Example 3.3 The simplest example of a field extension over Q is the Gaussian field
Q(i) = {a + bi | a, b ∈ Q}, where i = √−1 is the imaginary unit. The minimal
polynomial of i ∈ C over Q is given by mi(x) = x2 + 1.

We will henceforth consider L/K to be an extension of algebraic number fields.
In the above example, we constructed the field Q(i) by adjoining an algebraic
element i ∈ C to Q. By the notation Q(i) we hence mean the smallest field that
contains both Q and i. This is a more general phenomenon.

Theorem 3.1 (Primitive Element Theorem) Let L/K be an extension of number
fields. Then, there exists an element α ∈ L such that L = K(α).

We see that we can construct the fieldL by adjoining the algebraic element α ∈ L
to K and, since mK,α(x) is irreducible, we have the isomorphism

L ∼= K[x]/〈mK,α(x)〉.

It now becomes apparent that the degree of the field extension equals the degree of
the minimal polynomial of the adjoined element, [L : K] = deg(mK,α(x)).

Example 3.4 Consider the number field K = Q(
√

2,
√

3). We claim that K =
Q(
√

2 + √3) and is hence generated by a single element. The inclusion Q(
√

2 +√
3) ⊆ K is trivial, as

√
2+√3 ∈ Q(

√
2,
√

3). For the reverse inclusion, it suffices
to express

√
2 and

√
3 in terms of elements of Q(

√
2 + √3). Note that as (

√
2 +√

3)2 = 5+ 2
√

6 it follows that
√

6 ∈ Q(
√

2+√3), and we have

√
2 = 2+√6√

2+√3
; √

3 = 3+√6√
2+√3

.

This shows that Q(
√

2,
√

3) = Q(
√

2 +√3). The minimal polynomial of α :=√
2+√3 ismα(x) = x4−10x2+1, and we see that Q(α) is an extension of degree

4.

We now define a very important ring associated with a number field K .
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Definition 3.4 Let K be a number field. The integral closure of Z in K consists of
all the elements α ∈ K for which mα(x) ∈ Z[x]. The integral closure is a ring,
called the ring of integers OK of K . We call any element α ∈ OK an algebraic
integer.

Example 3.5 Consider the field extension Q(i)/Q. The ring of integers of Q(i)

is precisely Z[i]. It is however not always true that OK(α) = Z[α]. Consider for
example Q(

√
5)/Q. We have that Z[√5] is composed of algebraic integers, but

Z[√5] �= OK . For example, the element 1+√5
2 is a root of the polynomial x2−x−1,

but 1+√5
2 /∈ Z[√5]. In fact, it turns out that OK = Z

[
1+√5

2

]

.

As we have seen, α ∈ K is an algebraic integer if and only if mα(x) ∈ Z[x].
Further, the field of fractions of OK is precisely K . In the above examples, the ring
of integers OK = Z[θ ] admits a Z-basis {1, θ}. In fact, we have the following result.

Theorem 3.2 Let K be a number field of degree n. The ring of integers OK of K is
a free Z-module of rank n.

As a consequence, the ring of integers OK admits an integral basis over Z, that
is, a basis as a Z-module. Given an extension L/K of number fields, it is however
not true in general that the ring of integers OL is a free OK -module. This holds for
instance if OK is a principal ideal domain (PID). We will be considering extensions
of Q and Q(i), hence circumventing this problem.2

Consider a number field K of degree n over Q. We fix compatible embeddings
of K into C, and identify the field with its image under these embeddings. More
precisely, there exist exactly n pairwise distinct embeddings (i.e., injective ring
homomorphisms) σi : K → C, forming the set HomQ(K,C) = {σ1, . . . , σn}.

We split the embeddings into those whose image is real or complex, respectively.
More concretely, let σ1, . . . , σr : K → R, and σr+1, . . . , σn : K → C. Note that
the embeddings with complex image come in conjugate pairs, of which there are
exactly s := n−r

2 . We call the tuple (r, s) the signature of the number field K .
We can use the embeddings to define two important functions, namely the norm

and trace of elements in K . For each α ∈ K , consider the induced Q-linear
homomorphism ϕα : K → K , where for all β ∈ K , we have ϕα(β) = αβ. By
fixing a basis of K over Q, ϕα can be represented by a matrix Aα ∈ Mat(n,Q).
This is referred to as the left regular representation.

Definition 3.5 Let K be a number field of degree n, and let α ∈ K . The norm and
trace of α, respectively, are defined as

NmK (α) = det(Aα) =
n
∏

i=1

σi(α); TrK (α) = Tr(Aα) =
n
∑

i=1

σi(α).

These definitions are independent of the choice of a basis for Aα .

2The practical reason behind this choice is that the popular modulation alphabets, referred to as
pulse amplitude modulation (PAM) and quadrature amplitude modulation (QAM), correspond to
the rings of integers of these fields.
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We note that the norm and trace are generally rational elements. When α ∈ OK ,
however, we have NmK (α) ,TrK (α) ∈ Z.

Definition 3.6 Let K be a number field of degree n, with ring of integers OK , and
let {b1, . . . , bn} be an integral basis of OK . The discriminant ofK is the well-defined
integer

dK = det

⎛

⎜
⎝

⎡

⎢
⎣

TrK (b1b1) · · · TrK (b1bn)
...

. . .
...

TrK (bnb1) · · · TrK (bnbn)

⎤

⎥
⎦

⎞

⎟
⎠

= det

⎛

⎜
⎝

⎡

⎢
⎣

σ1(b1) · · · σ1(bn)
...

. . .
...

σn(b1) · · · σn(bn)

⎤

⎥
⎦

⎞

⎟
⎠

2

.

The determinants above can indeed be shown to be equal. The discriminant dK is
independent of the choice of basis, and hence an invariant of the number field.

Example 3.6 Consider the number field K = Q(
√−5), with ring of integers OK =

Z[√−5]. As K is a degree-2 extension of Q, and generated by a complex element,
we have that its signature is (r, s) = (0, 1). A representative of the pair of complex
embeddings is given by σ1 :

√−5 �→ −√−5, and the complex conjugate σ2 is
simply the identity.

Given an element α = x0 +
√−5x1 ∈ K , the norm and trace of α can be

computed to be

NmK (α) = σ1(α)σ2(α) = x2
0 + 5x2

1; TrK (α) = σ1(α)+ σ2(α) = 2x0.

Moreover, we can compute the discriminant ofK by choosing a basis
{

1,
√−5

}

of OK and computing the determinant

dK = det

([

1 −√−5
1
√−5

])2

= −20.

The motivation for studying number fields has its origins in the factorisation of
integers into primes. In the ring Z, prime and irreducible elements coincide, and
every natural number factors uniquely into prime numbers. By generalising the ring
Z to the ring of integers OK of a number field, unique factorisation into prime
elements is no longer guaranteed. However, the underlying structure of the ring OK
allows for a generalisation of unique factorisation by making use of ideals, instead
of elements.
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LetK be a number field of degree n, and a ⊂ OK a non-zero ideal. Then a factors
into a product of prime ideals, unique up to permutation,

a =
g
∏

i=1

peii ,

where ei > 0. We define the norm of the ideal a as the cardinality of the finite ring
N(a) := |OK/a|. The ideal norm extends multiplicatively, and moreover N(a) ∈ a.
Consequently, if N(a) is prime, then a is a prime ideal. More importantly, if N(a) =
p
e1
1 · · ·pekk is the prime factorisation, then (as we can show that a divides N(a)OK )

it is clear that every prime divisor of a is a prime divisor of piOK for some i.

Remark 3.1 If all prime divisors of pOK are known for all primes p ∈ Z, then all
ideals of OK are known.

Let p ⊂ OK be a prime ideal. Then p ∩ Z = pZ is a prime ideal of Z, p prime.
We can hence write

pZ = pepe22 · · · pekk
for pi distinct prime ideals of OK . The number e = e(p/pZ) is referred to as the
ramification index of pZ at p. We further define the residue class degree of p/pZ as
the integer f ≥ 1 which satisfies N(p) = pf .

Example 3.7 Consider K = Q(i), and let p > 2 be a rational prime. We want to
study the factorisation of p in OK = Z[i]. We have the following isomorphisms:

Z[i]/〈p〉 ∼= Z[x]/〈p, x2 + 1〉 ∼= Fp[x]/〈x2 + 1〉

By norm considerations, as N(pZ[i]) = |Z[i]/〈p〉| = |Fp[x]/〈x2 + 1〉| = p2, we
have that p can either remain prime in Z[i], or be the product of two prime ideals.
On the other hand, we know that pZ[i] is prime if and only if Z[i]/〈p〉 is a field. In
fact,

Z[i]/〈p〉 ∼= Z[x]/〈p, x2 + 1〉 ∼= Fp[x]/〈x2 + 1〉,
so that the residue class degree is f = 2. This quotient is a field precisely when
x2 + 1 is irreducible. This is the case for p �≡ 1 mod 4.

For the case p ≡ 1 mod 4, we can factor x2 + 1 = (x − a)(x − b), and we get a
factorisation pZ[i] = (i − a)(i − b).

3.2.3 Central Simple Algebras

Let K be a field, and A ⊇ K a finite-dimensional associative K-algebra, i.e., a
finite-dimensional K-vector space and a ring together with a K-bilinear product.
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The algebra is simple, if it contains no non-trivial two-sided ideals, and moreover
central if its centre is preciselyK . The algebra is a division algebra if all of its non-
zero elements are invertible. We have the following important theorem, which is a
simplified version of a more general result.

Theorem 3.3 (Wedderburn) Every central simple K-algebra is isomorphic to
Mat(n,D) for some uniquely determined n and some divisionK-algebraD, unique
up to isomorphism.

If A is a central simple K-algebra and D is the division algebra from the above
theorem, we denote by ind(A) = √[D : K] the index, and by deg(A) = √[A : K]
the degree of the algebra. A is a division algebra if and only if ind(A) = deg(A).

If A is a finite-dimensional central simple algebra over a field K , then A is
said to be cyclic if it contains a strictly maximal subfield L such that L/K is a
cyclic field extension, i.e., the Galois group is a cyclic group. If K is a number
field, everyK-central simple algebra is cyclic, and vice versa. This family of central
simple algebras has been widely used for space–time coding since the work [34]. We
start with the special case of cyclic algebras of degree 2, also known as quaternion
algebras.

Definition 3.7 Let K be a field, and a, γ ∈ K× not necessarily distinct. A
quaternion algebra (a, γ )K is a K-central algebra defined as

(a, γ )K := {x = x0 + ix1 + jx2 + kx3| xi ∈ K} ,

where the basis elements satisfy the rules

i2 = a, j2 = γ, ij = −j i = k.

Example 3.8 The most famous example is the set of Hamiltonian quaternions,
which can be defined as H = (−1,−1)R. An element x ∈ H is of the form
x = x0 + ix1 + jx2 + kx3 with (x0, x1, x2, x3) ∈ R

4, i2 = j2 = −1 and
ij = −j i = k.

For quaternion algebras, we have the following deep and important classification
result.

Theorem 3.4 Let (a, γ )K be a quaternion algebra. We have two possibilities.

(a) (a, γ )K is a division algebra.
(b) (a, γ )K ∼= Mat(2,K).

We can determine which of the cases apply by means of a simple quaternary
quadratic form. To be more precise, consider an element x = x0+ ix1+jx2+kx3 ∈
(a, γ )K , and define the norm of x as

Nm(x) = xx∗ = x2
0 − ax2

1 − γ x2
2 + aγ x2

3 ,
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where x∗ = x0− ix1−jx2−kx3 is the conjugate of x. Then, the quaternion algebra
(a, γ )K is division if and only if Nm(x) = 0 implies x = 0.

Example 3.9 Recall the set of Hamiltonian quaternions H. The norm of an element
x = x0 + ix1 + jx2 + kx3 ∈ H is Nm(x) = x2

0 + x2
1 + x2

2 + x2
3 ≥ 0. As xi ∈ R, we

have equality if and only if x = 0. Hence, H is a division algebra.

A quaternion algebra is a degree-4 vector space over the centre K . They are a
special case of the more general cyclic algebras, a family of central simple algebras
which we study in the sequel.

Definition 3.8 Let L/K be a degree-n cyclic Galois extension of number fields,
and denote by 〈σ 〉 = Gal (L/K) its Galois group. A cyclic algebra is a tuple

C = (L/K, σ, γ ) :=
n−1⊕

i=0

eiL,

where en = γ ∈ K× and multiplication satisfies le = eσ(l) for all l ∈ L.
The algebra C is K-central simple, and is called a cyclic division algebra if it is

division.

The usefulness of cyclic division algebras for purposes of space–time coding
starts with the existence of a matrix representation of elements of the algebra. To be
more precise, each element x = ∑n−1

i=0 e
ixi ∈ C induces for all y ∈ C a right L-

linear map ρ : y �→ xy, which is referred to as the left-regular representation of the
algebra, and describes left multiplication with x. We can define a matrix associated
with ρ, given by

x �→ ρ(x) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x0 γ σ(xn−1) γ σ
2(xn−2) · · · γ σn−1(x1)

x1 σ(x0) γ σ 2(xn−1) γ σn−1(x2)
...

...
...

xn−2 σ(xn−3) σ 2(xn−4) γ σn−1(xn−1)

xn−1 σ(xn−2) σ 2(xn−3) · · · σn−1(x0)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Example 3.10 Let us consider again the Hamiltonian quaternions. Using the above
notation, we write e = j and

H = (C/R, σ = ∗, γ = −1) = C⊕ jC,

with cj = jc∗ for all c ∈ C and j2 = γ = −1. Note that we have intentionally
chosen to represent H as a right vector space in order to be compatible with the left
regular representation.
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Let now x = x0+ jx1 with x0, x1 ∈ C. If we multiply the basis elements {1, j }C
from the left by x, we get

x · 1 = x0 + jx1 ,

x · j = (x0 + jx1)j = x0j + jx1j = jx∗0 + j2x∗1 = −x∗1 + jx∗0 .

In a matrix form, we have

x �→ ρ(x) =
[

x0 −x∗1
x1 x∗0

]

.

Note that this matrix corresponds to the Alamouti code.

Example 3.11 Let L/K be a number field extension of degree n = 3. Then, we
can pick a basis

{

1, e, e2
}

of a cyclic algebra C over its maximal subfield L, where
e3 = γ ∈ K×. Let x = x0 + ex1 + e2x2, and consider left multiplication. Similarly
as above,

x · 1 = x0 + ex1 + e2x2 ,

x · e = (x0 + ex1 + e2x2)e = eσ(x0)+ e2σ(x1)+ e3σ(x2)

= γ σ(x2)+ eσ(x0)+ e2σ(x1) ,

x · e2 = (x0 + ex1 + e2x2)e
2 = e2σ(x0)+ e3σ(x1)+ e4σ(x2)

= γ σ(x1)+ γ eσ(x2)+ e2σ(x0) .

We see that in this basis, left multiplication by x can be represented by the matrix

ρ(x) =
⎡

⎣

x0 γ σ(x2) γ σ
2(x1)

x1 σ(x0) γ σ
2(x2)

x2 σ(x1) σ 2(x0)

⎤

⎦

We close this section by recalling how to ensure that a cyclic algebra (L/K, σ, γ )
is division by means of the element γ ∈ K×. The result is a simple corollary to a
result due to A. Albert.

Theorem 3.5 Let C = (L/K, σ, γ ) be a cyclic algebra. If γ n/p is not a norm of
some element of L for all prime divisors p of n, then C is division.
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3.2.3.1 Orders

Given a number fieldK , the collection of integral elements form the ring of integers
OK ofK . This ring is the unique maximal order ofK , a concept which we will now
recall in a more general context.

Definition 3.9 Let C = (L/K, σ, γ ) be a cyclic division algebra. An OK -order �
in C is a subring of C sharing the same identity as C and such that � is a finitely
generated OK -module which generates C as a linear space overK .

An order is maximal if it is not properly contained in another order of C.

Every order of a cyclic division algebra is contained in a maximal order. Within a
number field K , the ring of integers OK is integrally closed and the unique maximal
order ofK . In general, a maximal order� ofC is not integrally closed, and a division
algebra C may contain multiple maximal orders. In contrast, the following special
order is often of interest due to its simple structure. It is in fact the initial source for
space–time codes with non-vanishing determinants.

Definition 3.10 Let C = (L/K, σ, γ ) be a cyclic division algebra. The natural
order of C is the OK -module

�nat :=
n−1⊕

i=0

eiOL.

Note that �nat is not closed under multiplication unless γ ∈ OK .

Remark 3.2 Given a cyclic division algebra C = (L/K, σ, γ ) and an element
c ∈ �, where � ⊂ C is an order, we can define concepts like the reduced norm
nm(c) = det(ρ(c)) and reduced trace tr(c) = Tr(ρ(c)). These are elements of the
ring of integers of the centre, i.e., nm(c), tr(c) ∈ OK . Consequently, for K = Q

or K imaginary quadratic, we have | nm(c)| ≥ 1 for any non-zero c ∈ �, an
observation which is crucial for achieving the non-vanishing determinant property
(cf. Sect. 3.3.2.1).

3.3 Physical Layer Communications

In this section, we study the characteristics and properties of a wireless channel,
discussing various methods for combating the effects of fading and noise.

3.3.1 Rayleigh Fading MIMO Channel

In a wireless environment, in contrast to wired channels, the signal traverses several
different paths between a transmitter and receiver. Consequently, different versions
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of the signal distorted by (independent) environmental effects will come together
at the receiver, causing a superimposed channel output. Together with dissipation
effects caused by urban scatterers as well as interference, the signal experiences
fading, and various statistical models exist to describe these phenomena. Here, we
consider the widely used Rayleigh fading channel model. In addition, thermal noise
at the receiver further distorts the channel output.

To be more precise, assume a single source, equipped with nt ≥ 1 transmit
antennas, and a single destination, with nr ≥ 1 receive antennas. If nt , nr ≥ 2
we refer to the setup as the multiple-input multiple-output (MIMO) model, while
the case (nt , nr ) = (1, 1) is termed the single-input single-output (SISO) channel
model. The mixed cases (nt = 1, nr > 1) and (nt > 1, nr = 1) are the SIMO and
MISO channel setups, respectively.

Consider a channel between nt transmit antennas and nr receive antennas. The
wireless channel is modelled by a random matrix

H =

⎡

⎢
⎢
⎢
⎣

h11 h12 · · · h1nt
h21 h22 h2nt
...

. . .
...

hnr 1 hnr2 · · · hnrnt

⎤

⎥
⎥
⎥
⎦
∈ Mat(nr × nt ,C),

We assume that the channel remains static for T ≥ nt time slots and then changes
independently of its previous state, and refer to T as the channel delay or channel
coherence time. Each of the entries hij of H denotes the path gain from transmit
antenna j to receive antenna i. They are modelled as complex variables with i.i.d.
normal distributed real and imaginary parts,

Re(hij ), Im(hij ) ∼ N(0, σ 2
h ),

yielding a Rayleigh distributed envelope

|hij | =
√

Re(hij )2 + Im(hij )2 ∼ Ray(σh)

with scale parameter σh, which gives this fading model its name.
The additive noise is modelled by a matrix N ∈ Mat(nr × T ,C) with i.i.d.

complex Gaussian entries with finite variance σ 2
n . To combat the destructive effects

of fading, the transmitter encodes its data into a codeword matrix X ∈ Mat(nt ×
T ,C). Each column xi of X corresponds to the signal vector transmitted in the ith
time slot, across the available transmit antennas. If we denote each column of the
noise matrix N by ni , the received signal at each time slot 1 ≤ i ≤ T is given by
the channel equation

yi = Hxi + ni .
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We assume that the destination waits for the T subsequent transmissions before
starting any decoding process. As usual, we assume perfect channel state informa-
tion at the receiver, while the transmitter only has statistical channel information.
The channel is supposed to remain fixed during the entire transmission process, and
hence we can summarise the overall channel equation in a compact form to read

Y = HX +N.

Thus, by allowing the use of multiple antennas at the transmitter and/or receiver,
we have created spatial diversity. By ensuring a separation of the antennas by at
least half the used wavelength, the multiple signals will fade independently of each
other. On the other hand, the transmission over multiple time slots enables temporal
diversity, providing copies of the signal at the receiver.

The physical conditions in an actual wireless channel are rapidly changing.
Consequently, the comparison in performance of two different codes needs to be
considered with respect to a standardised quantity. We define the signal-to-noise
ratio (SNR) at the receiver as the ratio of the received signal power to noise power,
that is,

SNR = E
[‖HX‖2

]

E
[‖N‖2

] .

3.3.1.1 Performance Parameters of a Wireless Channel

Consider a MIMO channel with nt transmit antennas and nr receive antennas. The
first quantity that we need to mention is the capacity of the channel.

Definition 3.11 Assume that the receiver knows the realisation of the channel
matrixH . For a fixed power constraint on the channel input, the capacity of a MIMO
channel is the upper bound on the mutual information between the channel input and
output, given the channel realisation.

As the capacity depends on the channel matrix, it needs to be viewed as a random
variable. The ergodic capacity of a MIMO channel is given by

CH = EH

[

log det

(

Inr +
SNR

nt
H †H

)]

.

Recently, the authors in [24] gave criteria for algebraic space–time codes from
division algebras to achieve the channel capacity up to a constant gap.

Equivalently we can interpret the capacity of the channel as the upper bound on
the amount of information that can be transmitted, so that the probability of error
can be maintained arbitrarily low. At high SNR, the capacity of the channel scales
with the number of antennas. More specifically, an SNR increase of 3 dB results in
an increase in capacity by min {nt , nr }.
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We now define two quantities which allow us to compare different coding
strategies for the MIMO channel.

Definition 3.12 Consider a MIMO channel.

(i) The diversity gain of a coding strategy is the asymptotic slope of the corre-
sponding error probability curve with respect to the SNR in a log− log scale.

(ii) The coding gain measures the difference in SNR required for two different full-
diversity coding strategies to achieve the same error probability.

3.3.2 Space–Time Codes

This section introduces the main object of the survey: space–time codes. These
codes are tailor-made for MIMO communications. We start with basic definitions
and relate the enabled spatial and temporal diversity to the matrix structure of space–
time codewords.

In the first subsection, the basic code design criteria for minimising the proba-
bility of incorrect decoding are derived. While the design criteria are independent
of the actual code construction method and hold for any matrix codebook, various
results are then introduced exposing how the criteria can be met by purely algebraic
means. Hence, it becomes clear which properties the underlying structures should
exhibit in order to construct well-performing codes.

After this, we utilise the algebraic tools introduced in Sect. 3.2 in order to
construct space–time codes meeting the derived criteria.

3.3.2.1 Design Criteria for Space–Time Codes

Recall the Rayleigh fading nt × nr MIMO channel model with channel coherence
time T . We have seen that the codewords X need to be taken from some collection
of matrices X ⊂ Mat(nt × T ,C). Very naively, and this is our first definition, we
simply define a code to be a finite collection of such matrices.

Definition 3.13 Let C ⊂ R
× be a finite subset and k ∈ Z+. A space–time code is

the image of an injective map φ : Ck → Mat(nt × T ,C).
Having no structure, however, may lead to accumulation of the received signals.

To circumvent this problem, forcing a discrete and linear structure on the code is
helpful, e.g., a lattice structure. We give the more specialised definition of linear
space–time codes, which we will consider henceforth.

Definition 3.14 Let {Bi}ki=1 be an R-linearly independent set of matrices in
Mat(nt × T ,C). A linear space–time block code of rank k is a set of the form

X =
{

k
∑

i=1

Bisi

∣
∣
∣
∣
∣
si ∈ S

}

,
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where S ⊂ Z is a finite signalling alphabet. In relation to the previous definition,
we have X = φ(Ck), where C = S.

As the matrices {Bi}ki=1 form a basis of a lattice � ⊂ Mat(nt × T ,C), X is
called a space–time lattice code of rank k = rk (�) ≤ 2ntT , the upper bound being
imposed by the R-dimension of Mat(nt × T ,C).

We henceforth refer to such a code X simply as a space–time code. As the
transmit power consumption is directly related to the Frobenius norm of the
transmitted codeword, the finite codebook is usually carved out to consist of a
desired number of lattice elements with smallest possible Frobenius norms.3

The code rate of X is defined as R = k/T real symbols per channel use.4 In
the literature, a code is often said to be full rate if all available degrees of freedom
from the transmitter’s point of view are utilised, i.e., k = 2ntT and R = 2ntT /nt =
2T . This is a consequence of mainly having considered symmetric square systems,
that is, the case nt = nr = T . Here, we do not restrict to symmetric systems and
define full rate as the maximum rate that still maintains the discrete structure at
the receiver and allows for linear detection methods such as sphere-decoding [41].
More precisely, for nr receive antennas we define full rate as 2nr . Hence, in order
to achieve full rate as defined in this chapter (avoiding accumulation points at the
receiver’s space), for nr receive antennas we should choose a lattice of rank 2nrT
(instead of 2ntT ).

Consider a space–time code X, and let X ∈ X be the transmitted codeword. A
receiver observes its channel output Y and, as it is assumed to know the channel
H and the noise is zero-mean, decodes a maximum-likelihood estimate of the
transmitted codeword by computing

X̂ = arg min
X∈X

‖Y −HX‖2
F . (3.2)

The probability P(X → X′) that a codeword X′ �= X is decoded when X was
transmitted is asymptotically upper bounded with increasing SNR as

P(X→ X′) ≤
(

det
(

(X −X′)(X −X′)†
)

SNRnt
)−nr

.

From this upper bound, two design criteria can be derived [38]. The diversity
gain of a code as defined above relates to the minimum rank of (X − X′) over all

3The smallest Frobenius norms correspond to the shortest Euclidean norms of the vectorised
matrices. Directly, this would mean spherical constellation shaping. However, it is often more
practical to consider a slightly more relaxed cubic shaping. This is the case in particular when the
lattice in question is orthogonal, as then the so-called Gray-mapping [13] will give an optimal bit
labelling of the lattice points.
4In the literature, the code rate is often defined in complex symbols per channel use. We prefer
using real symbols, as not every code admits a Gaussian basis, while every lattice has a Z-basis.
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pairs of distinct code matrices (X,X′) ∈ X2. Thus, the minimum rank of X should
satisfy

min
X �=X′

rk
(

X −X′) = min{nt , T } = nt .

A code satisfying this criterion is called a full-diversity code.
On the other hand, the coding gain can be shown to be proportional to the

determinant det
(

(X −X′)(X −X′)†). As a consequence, the minimum taken over
all pairs of distinct codewords,

min
X �=X′

det
(

(X −X′)(X −X′)†
)

,

should be as large as possible. For the infinite code

X∞ =
{

k∑

i=1

siBi

∣
∣
∣
∣
∣
si ∈ Z

}

,

we define the minimum determinant as the infimum

�min(X∞) := inf
X �=X′

det
(

(X −X′)(X −X′)†
)

.

If �min(X∞) > 0, i.e., the determinants do not vanish as the code size increases,
the code is said to have the non-vanishing determinant property.

We assume henceforth that the number of transmit antennas and channel delay
coincide, nt = T =: n. Given a lattice � ⊂ Mat(n,C), we have by linearity

�min(�) = inf
0 �=X∈� |det(X)|2.

This implies that any lattice � with non-vanishing determinants can be scaled so
that�min(�) achieves any wanted nonzero value. Consequently, the comparison of
two different lattices requires some sort of normalisation. Let� be a full lattice with
volume vol (�). The normalised minimum determinant and normalised density of
� are the normalised quantities

δ(�) = �min(�)

vol (�)
1

2n

; η(�) = �min(�)
2n

vol (�)
,

and satisfy the relation δ(�)2 = η(�) 1
n . Thus, for a fixed minimum determinant,

the coding gain can be increased by maximising the density of the code lattice.
Or, the other way around, for a fixed volume, the coding gain can be increased by
maximising the minimum determinant of the lattice.
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3.3.2.2 Constructions from Cyclic Division Algebras

We move on to illustrate how space–time codes satisfying the two introduced criteria
can be designed. We begin by ensuring full diversity, to which end the following
result is helpful.

Theorem 3.6 ([34, Prop. 1]) LetK be a field andD an index-n divisionK-algebra
with a maximal subfieldL. Any finite subsetX of the image of a ring homomorphism
φ : D �→ Mat(n, L) satisfies rk

(

X −X′) = n for any distinct X,X′ ∈ X.

This leads to a straightforward approach for constructing full-diversity codes,
namely by choosing the underlying structure to be a division algebra. In the same
article, cyclic division algebras were proposed for code construction as a particular
example of division algebras. The ring homomorphism φ is the link between
the division algebra and a full-diversity space–time code, as we illustrate in the
following.

Let C = (L/K, σ, γ ) be a cyclic division algebra of degree n. The left-
regular representation ρ : C → Mat(n,C) is an injective ring homomorphism (cf.
Definition 3.8 and the discussion beneath). We identify elements in C with elements
in Mat(n,C) via ρ. This leads to the following definition.

Definition 3.15 Let C be an index-n cyclic division algebra with left-regular
representation ρ : C → Mat(n,C). A space–time code constructed from C is a
finite subset

X ⊂ ρ(C).

To be consistent with Definition 3.14, let {Bi}ki=1 ⊂ Mat(n,C) with k ≤ 2n2 be
a set of Q-linearly independent matrices in ρ(C). For a fixed signalling alphabet
S ⊂ Z, symmetric around the origin, the space–time code X is of the form

X =
{

k
∑

i=1

siBi

∣
∣
∣
∣
∣
si ∈ S

}

.

If C admits a basis over Z[i], we may also consider the lattice with respect to its
Z[i]-basis, and the signalling alphabet will then be a subset in Z[i].

Note that, given an element X = ρ(x), where x ∈ C, we have that det(X) =
det(ρ(x)) ∈ K . We can however restrict to certain subrings of the cyclic division
algebra, for instance an order �. For any x ∈ �, we have det(ρ(x)) ∈ OK . This
yields |det(ρ(x))| ≥ 1 forK = Q or K an imaginary quadratic number field. Then,
we can consider finite subsets of ρ(�) as space–time lattice codes guaranteeing
non-vanishing determinants (cf. Remark 3.2).

Example 3.12 Consider a MIMO system with n = nt = T = 2, and consider the
index-2 number field extension L/K = Q(i,

√
5)/Q(i). The ring of integers of L

is OL = Z[i, θ ] with θ = 1+√5
2 , and we pick the relative integral basis {1, θ} of
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OL over OK = Z[i]. The Golden code [5] is constructed from the cyclic division
algebra

G = (L/K, σ, γ ) ∼= (5, γ )Q(i)
with σ : √5 �→ −√5 and γ ∈ Q(i) non-zero and such that γ �= NmL/K (l) for any
l ∈ L. We pick γ = i, leading to a (left regular) matrix representation of G of the
form

X = ρ(x) =
[

x0 + θx1 i(x2 + σ(θ)x3)

x2 + θx3 x0 + σ(θ)x1

]

= x0

[

1 0
0 1

]

+ x1

[

θ 0
0 σ(θ)

]

+ x2

[

0 i
1 0

]

+ x3

[

0 iσ (θ)
θ 0

]

,

where xi ∈ K .
The algebra G is a division algebra by Theorem 3.5, so that the Golden code

is indeed a full-diversity space–time code. Moreover, by restricting the codewords
to the natural order �nat by choosing xi ∈ Z[i] guarantees the non-vanishing
determinant property (cf. Remark 3.2).

The actual Golden code lattice is a twisted version of ρ(�nat ) in order to
get an orthogonal lattice. The twisting does not affect the normalised minimum
determinant.

3.4 Codes with Reduced ML Decoding Complexity

Using multiple antennas for increased diversity—and additionally enabling tempo-
ral diversity—comes at the cost of a higher complexity in decoding. The worst-case
complexity of maximum-likelihood (ML) decoding is upper bounded by that of
exhaustive search, and is often computationally too expensive for practical use for
higher-dimensional code lattices. A fast-decodable space–time code is, in colloquial
terms, simply a space–time code whose worst-case ML decoding complexity is
lower than that of exhaustive search.

Yet, independently of the actual decoder used, the ML decoding complexity of
a space–time code can sometimes be reduced by algebraic means, allowing for
parallelisation in the ML search. If the underlying code lattice is of rank k, this
requires in principle joint decoding of k information symbols. One way to achieve
fast-decodability (this is also how we define fast decodability more formally below)
is then to reduce the dimensionality of the (e.g., sphere) decoder, that is, to enable
parallelisation where each parallel set contains less than k symbols to be jointly
decoded.

In this section we introduce the technique of ML decoding and revise criteria
for a space–time code to be fast-decodable. We further specify different families of
fast-decodable codes and study their potential decoding complexity reduction.
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3.4.1 Maximum-Likelihood Decoding

In the previous sections, we have seen what properties a space–time code should
exhibit to potentially ensure a reasonable performance, at least in terms of reliability.
There are however more aspects of the communication process which need to
be taken into consideration. Orthogonal lattices allow for efficient encoding of
the information symbols and bit-labelling of the codewords, while not necessarily
yielding the best possible error performance. On the other hand, a too complicated
lattice structure makes it more complex to encode a signal in the first place, and may
require brute force bit labelling of the codewords.

On the receiver’s side, the structure of the code lattice determines the complexity
of the decoding process. Indeed, as already mentioned, the major bottleneck in
effective implementation of algebraic space–time codes has been their decoding
complexity. The concept of fast-decodability was introduced in [9] in order to
address the possibility for reducing the dimensionality of the ML decoding problem
(cf. (3.2)) without having to resort to suboptimal decoding methods.

Given a finite signalling alphabet S ⊂ Z, the ML decoding complexity of a
rank-k space–time code X is defined as the minimum number of values that have
to be computed for finding the solution to (3.2). The upper bound is the worst-case
decoding complexity that we denote by D(S), which for its part is upper bounded by
the exhaustive search complexity, D(S) ≤ |S|k . The following definition is hence
straightforward.

Definition 3.16 A space–time code X is said to be fast-decodable if its ML
decoding complexity is upper bounded by

D(S) = c|S|k′,

where k′ < k is the number of symbols to be jointly decoded and c ≤ k is a constant
describing the number of parallel symbol groups to be decoded. If c = k, this means
that we can decode symbol-wise (k′ = 1) with linear complexity. We refer to k′ as
the complexity order.

We will mostly drop the constant c in the rest of the chapter and concentrate
only on the order k′, and also by abuse of notation write D(S) = |S|k′ without the
constant.

Now let us proceed to investigate how to determine the complexity order of a
space–time code X. Let {Bi}ki=1 be a basis of X over Z, and X ∈ X the transmitted
signal. Recall the isometry (3.1), which allows us to identify the space–time code
lattice with a lattice in Euclidean space. In addition, for c ∈ C let

c̃ =
[

Re(c) −Im(c)
Im(c) Re(c)

]

.
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From the channel output Y = HX + N , define the matrices

B = [ι(B1) · · · ι(Bk)
] ∈ Mat(2ntT × k,R),

BH =
[

ι(HB1) · · · ι(HBk)
] ∈ Mat(2nrT × k,R).

The equivalent received codeword under the isometry can be expressed as ι(HX) =
BH s for a coefficient vector st = (s1, . . . , sk) ∈ Sk , and we get an equivalent
vectorized channel equation

ι(Y ) = BH s+ ι(N)
= (IT ⊗ H̃ )Bs+ ι(N),

where H̃ = (h̃ij )i,j and⊗ denotes the Kronecker product.
We go on to performQR-decomposition on BH , or equivalently on (IT ⊗ H̃ )B.

We write BH = QR withQ ∈ Mat(2nrT × k,R) unitary and R ∈ Mat(k,R) upper
triangular. More precisely, if we write

BH =
[

b1 · · · bk
]

, Q = [q1 · · · qk
]

,

the matrix R is precisely given by

R =

⎡

⎢
⎢
⎢
⎣

‖r1‖ 〈q1,b2〉 〈q1,b3〉 · · · 〈q1,bk〉
0 ‖r2‖ 〈q2,b3〉 · · · 〈q2,bk〉
...

. . .
...

0 0 · · · 0 ‖rk‖

⎤

⎥
⎥
⎥
⎦
,

where

r1 = b1; ri = bi −
i−1
∑

j=1

〈qj ,bi〉
〈qj ,qj 〉qj ; qi = bi

‖bu‖ .

Since the receiver has channel state information, and as the noise is zero-mean,
the decoding process, as we have already seen, requires to solve the minimisation
problem

X̂ = arg min
X∈X

‖Y −HX‖2
F .

Using theQR decomposition, we can solve the equivalent problem

ŝ = arg min
s∈Sk

‖ι(Y )− BH s‖2 = arg min
s∈Sk

‖Q†ι(Y )− Rs‖2,

a problem which can be solved using a real sphere-decoder [41]. It is now clear
that the structure of the matrix R determines the complexity of decoding. With
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zero entries at specific places, the involved variables can be decoded independently
of each other, allowing for parallelisation in the decoding process, and potentially
reducing the decoding complexity.

Moreover, different orderings of the weight matrices Bi , or equivalently of the
symbols si , result in different zero patterns in the matrix R. An algorithm for
the optimal ordering of the weight matrices resulting in the minimum possible
decoding complexity is given in [20], and was implemented in [18]. We use
the implementation found in the latter article for the explicit computation of the
decoding complexity reduction of the example codes exposed in the remaining of
this section.

Before we move on to define more specialized families of fast-decodable codes,
we present the usual approach to give sufficient conditions for a code to be fast-
decodable. This so-called Hurwitz-Radon quadratic form approach is discussed
in [19, 20, 36], among others. The idea behind the Hurwitz-Radon approach on
which the quadratic form is based is to give a criterion for when two variables of
the considered code can be decoded independently. More specifically, the variables
si, sj can be decoded independently if their corresponding weight matrices Bi, Bj
are mutually orthogonal, i.e.,

BiB
†
j + BjB†

i = 0.

To be more precise, we give the following result

Proposition 3.1 ([36, Thm. 2][8, Thm. 1]) Let X be a space–time code of rank k
with weight matrices {Bi}ki=1. The matrices Bi and Bj are mutually orthogonal, if
and only if the columns bi and bj of BH are orthogonal.

In particular, the entry (i, j) of the associated matrix R is zero. Relating to
this condition, the Hurwitz-Radon quadratic form is a tool which allows to deduce
the actual ML decoding complexity of a space–time code based on the mutually
orthogonality of the weight matrices. In particular, the criterion based on the
quadratic form shows that fast decodability can be achieved solely by designing the
weight matrices cleverly, and is independent of the channel and number of antennas.
We give the following definition.

Definition 3.17 Let X be a space–time code of rank k, and letX ∈ X. The Hurwitz-
Radon quadratic form is the map

Q : X→ R,

X =
k
∑

i=1

Bisi �→
∑

1≤i≤j≤k
sisjmij ,

wheremij := ‖BiB†
j + BjB†

i ‖2
F .

Note that Bi, Bj are mutually orthogonal if and only if mij = 0.
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3.4.1.1 Multi-Group Decodable Codes

We begin with the family of multi-group decodable codes.

Definition 3.18 Consider a space–time code X defined by the weight matrices
{Bi}ki=1.

(i) The code is g-group decodable if there exists a partition of {1, . . . , k} into g
non-empty subsets �1, . . . , �k such that for i ∈ �u, j ∈ �v with u �= v, the
matrices Bi and Bj are mutually orthogonal.

(ii) The code is conditionally g-group decodable if there exists a partition of
{1, . . . , k} into g+1 non-empty subsets �1, . . . , �g, � such that for i ∈ �u, j ∈
�v with 1 ≤ u < v ≤ g, the matrices Bi and Bj are mutually orthogonal.

The family of codes which we refer to as conditionally g-group decodable codes
are in the literature also known as fast ML decodable codes. We use the terminology
of conditionally g-group decodable so as to not confuse the general notion of fast
decodability with this specific family of fast-decodable codes.

In the following, we consider a space–time code X with weight matrices {Bi}ki=1
and corresponding real information symbols s1, . . . , sk ∈ S. For X g-group
decodable or conditionally g-group decodable, we may without loss of generality
order the variables according to the g groups �1, . . . , �g , i.e.,

{

s1, . . . , s|�1|
} ∈ �1,

{

s|�1|+1, . . . , s|�1|+|�2|
} ∈ �2,

...
⎧

⎨

⎩
sg−1∑

i=1
|�i |+1

, . . . , sg−1∑

i=1
|�i |+|�g |

⎫

⎬

⎭
∈ �g.

(3.3)

We have the following result, which will be helpful in determining the decoding
complexity of a code (cf. Theorem 3.7).

Proposition 3.2 ([19, Lemma 1]) Let X be a g-group decodable space–time code,
and let M = (mij )i,j be the Hurwitz-Radon quadratic form matrix (cf. Definition
3.17) and R = (rij )i,j the R-matrix from the QR decomposition of BH . Then,
mij = rij = 0 for i < j whenever si ∈ �u and sj ∈ �v with u �= v. In particular,
the R-matrix takes the form

R =
⎡

⎢
⎣

D1
. . .

Dg

⎤

⎥
⎦ ,

where Di ∈ Mat(|�i |,R) is upper triangular, 1 ≤ i ≤ g, and the empty spaces are
filled with zeros.
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Example 3.13 The first example we give is the complexity order of the Alamouti
code XA (cf. Sect. 3.2). We recall that this code consists of codewords

X =
[

x1 + ix2 −(x3 − ix4)

x3 + ix4 x1 − ix2

]

,

where (x1, x2, x3, x4) ∈ Z
4 are usually taken to be integers to guarantee non-

vanishing determinants.
The R-matrix associated with this code is in fact a diagonal 4 × 4 matrix with

equal diagonal entries. Hence, XA is 4-group decodable, and exhibits a complexity
order k′ = 1. In other words, it is single-symbol decodable.

Example 3.14 We recall the code constructed for multiple-access channels in [3,
Ex. 6]. Consider the cyclic division algebra

C =
(

F(
√−3, i)/F (i), σ,− 2√

5

)

,

where F = Q(
√

5) and σ : √−3 �→ −√−3 but fixes F(i). Let τ be a generator of
the cyclic Galois group Gal(F (i)/F ), i.e., τ (i) = −i. Let us extend the action of τ
from F(i) to F(i,

√−3,
√−γ ) by letting it act as identity on both

√−3 and
√−γ ,

as justified by the isomorphism extension theorem. Consider codewords of the form

X =
[

X1 τ (X1)

X2 τ (X2)

]

,

where τ acts element-wise, and for θ = 1+√−3
2 and k = 1, 2 we have

Xk =
[

xk,1 + xk,2θ −√−γ (xk,3 + xk,4σ(θ))√−γ (xk,3 + xk,4θ) xk,1 + xk,2σ(θ)
]

with xk,j ∈ OF(i). Hence, each Xk corresponds to the left-regular representation
of an element in the natural order �nat ⊆ C, after balancing the effect of γ by
spreading it on the diagonal.5

The complexity of exhaustive search for a signalling alphabet S is |S|32. The
above code, however, is 2-group decodable. In fact, the associated R-matrix is of
the form

R =
[

D1

D2

]

withDi ∈ Mat(16,R) upper triangular. The code hence exhibits a complexity order
k′ = 16, resulting in a reduction of 50%.

5This is a usual trick to balance the average energies of the codeword entries more evenly. See [3,
Ex. 1] for more details.
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In the case of conditionally g-group decodable codes, i.e., where we have a
further non-empty group �, the R matrix is not entirely block-diagonal. Instead,
we have the following result.

Proposition 3.3 ([7, Lem. 2]) Let X be a conditionally g-group decodable code,
and letM = (mij )i,j be the Hurwitz-Radon quadratic form matrix and R = (rij )i,j
the R-matrix from theQR decomposition. Then, mij = rij = 0 for i < j whenever
si ∈ �u and sj ∈ �v with 1 ≤ u < v ≤ g. In particular, the R-matrix takes the form

R =

⎡

⎢
⎢
⎢
⎣

D1 N1
. . .

...

Dg Ng

N

⎤

⎥
⎥
⎥
⎦
,

with Di ∈ Mat(|�i |,R) and N ∈ Mat(|�|,R) are upper triangular, and Ni ∈
Mat(|�i | × |�|,R).
Example 3.15 As an example of a conditionally g-group space–time code we recall
the famous Silver code [16, 32]. The code is contained as a subset in the cyclic
division algebra

C = (Q(i,√−7)/Q(
√−7), σ, γ ),

Note that σ is not just complex conjugation, as σ(i) = −i and σ(
√

7) = −√7.
With γ = −1, the algebra is division, and the resulting code is fully diverse and has
non-vanishing determinants. The Silver code is however not directly constructed as
a subset of ρ(�) for � an order of C. Instead, it is defined as

XS = {X = XA(x1, x2)+ TXB(x3, x4)| x1, . . . , x4 ∈ Z[i]} ,

where x1, . . . , x4 ∈ Z[i] and

T =
[

1 0
0 −1

]

; XA(x1, x2) =
[

x1 −x∗2
x2 x∗1

]

;

XB(x3, x4) = 1√
7

[

(1+ i)x3 + (−2+ 2i)x4 −(1− 2i)x∗3 − (1+ i)x∗4
(1+ 2i)x3 + (1− i)x4 (1− i)x∗3 + (−1− 2i)x∗4

]

.

In particular, a codeword is of the form

X = 1√
7

[

x1
√

7+ (1+ i)x3 + (−1+ 2i)x4 −x∗2
√

7− (1− 2i)x∗3 − (1+ i)x∗4
x2
√

7− (1+ 2i)x3 − (1− i)x4 x∗1
√

7− (1− i)x∗3 − (−1− 2i)x∗4

]

.

Using the optimal ordering of the weight matrices, we find that the complexity
order of the Silver code is k′ = 5, resulting in a complexity reduction of 37.5%.
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Example 3.16 As a second example, we recall the Srinath-Rajan code, originally
proposed in [36] for a 4× 2-MIMO channel. To the best of the authors’ knowledge,
this is the best performing code known for a 4 × 2 system among codes with the
same complexity order. We recall the construction illustrated in [37], where the
underlying algebraic structure was discovered.

Let L/F be a cyclic Galois extension with cyclic Galois group Gal(L/F) =
〈τ 〉, and consider a cyclic division algebra C′ = (L/F, τ, γ ′). Moreover, let C =
(L/K, σ, γ ) be a cyclic division algebra of degree n, where K �= F and τσ = στ .
We require γ ∈ K ∩ F and γ ′ ∈ F\K .

For the 4× 2 Srinath-Rajan code, we make the choices

(i) L = Q(i,
√

5), K = Q(
√

5), F = Q(i).
(ii) C′ = (L/F, τ, γ ′) with γ ′ = i /∈ K and τ : √5 �→ −√5. This cyclic division

algebra gives rise to the Golden code.
(iii) C = (L/K, σ, γ ) with γ = −1 and σ : i �→ −i.

Fix the F -basis {θ1, θ2} of L, with θ1 = 1 + i(1 − θ), θ2 = θ1θ ∈ OL, where
θ = 1+√5

2 . Codewords are of the form

X =

⎡

⎢
⎢
⎣

x0 −σ(x1) iτ (x2) −iτσ (x3)

x1 σ(x0) iτ (x3) iτσ (x2)

x2 −σ(x3) τ (x0) −τσ (x1)

x3 σ(x2) τ (x1) τσ (x0)

⎤

⎥
⎥
⎦
,

where xi = xi1θ1 + xi2θ2 with xij ∈ Z[i].
This code is conditionally 4-group decodable, where 8 real variables need to be

conditioned, and the remaining 8 variables can be grouped in 4 groups of 2. This
can be seen from the structure of the R-matrix, which for this code takes the form

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

D1 N1

D2 N2

D3 N3

D4 N4

N

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where Di are 2 × 2 upper triangular matrices, Ni are 2 × 8 matrices, and N is an
8 × 8 upper triangular matrix. This yields a decoding complexity order k′ = 10.
This is a reduction in complexity of 37.5%.

To summarize, we observe that the R matrix allows to directly read the decoding
complexity of a g-group decodable and conditionally g-group decodable code. After
conditioning the last |�| variables, the variables in each group �i can be decoded
independently of the other groups. This is summarized in the following result.
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Theorem 3.7 The decoding complexity order of a (conditionally) g-group decod-
able code X with possibly empty subset � is given by

k′ = |�| + max
1≤i≤g |�i |.

Unfortunately, there is a trade-off between the maximum rate and maximum
decoding complexity reduction of space–time codes. The recent work [8] treats
both these questions for multi-group decodable codes by analysing the mutually
orthogonality of matrices in central simple subalgebras of Mat(n,C) over number
fields. The authors show on one hand that there is a lower bound for the decoding
complexity of full-rate n × n space–time codes. They furthermore derive an upper
bound on the number of groups of a multi-group decodable code. We summarise the
results relevant to our chapter in the following theorem. For a more general setting,
see Theorems 7–8 and Corollary 16 in [8].

Theorem 3.8 ([8]) Let X be an n × n space–time code defined by the weight
matrices {Bi}2k2

i=1, and let S denote the employed real signalling alphabet.

(i) If X is full-rate, then the decoding complexity order is not better than n2 + 1.
(ii) If X is multi-group decodable and the weight matrices are chosen from a K-

central division algebra with K a number field, we have g ≤ 4.

3.4.1.2 Fast-Group Decodable Codes

Fast-group decodable codes combine the structure of the block-diagonal R-matrix
with further parallelisation within each of the independent groups. We start with the
formal definition.

Definition 3.19 Consider a space–time code X defined by the weight matrices
{Bi}ki=1. The code is fast-group decodable if

(a) There is a partition of {1, . . . , k} into g non-empty subsets �1, . . . , �g such that
whenever i ∈ �u, j ∈ �v with u �= v, the matrices Bi and Bj are mutually
orthogonal.

(b) In addition, for at least one group �i , we have 〈ql1,bl2〉 = 0, where l1 =
1, . . . Li − 1 and l2 = l1 + 1, . . . , Li with Li ≤ |�i |.

Consider a fast-group decodable space–time code X, and denote by �1, . . . , �g
the groups in which the corresponding symbols can be jointly decoded. Assume
that the variables s1, . . . , sk are without loss of generality ordered according to their
groups, as described above (3.3).

Proposition 3.4 ([19, Lem. 3]) Let X be a g fast-group decodable space–time
code, and let M = (mij )i,j be the Hurwitz-Radon quadratic form matrix and
R = (rij )i,j the R-matrix from the QR decomposition. Then, mij = rij = 0
for i < j whenever si ∈ �u, sj ∈ �v with u �= v. Furthermore, each group
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�i admits to remove Li levels from the sphere-decoder tree if mil1 il2 = 0, where
l1 = 1, . . . , Li − 1 and l2 = l1 + 1, . . . , Li , with Li ≤ |�i |. In particular, the
R-matrix takes the form

R =
⎡

⎢
⎣

R1
. . .

Rg

⎤

⎥
⎦ ,

where the empty spaces are filled with zeros. Each of the matricesRi ∈ Mat(|�i |,R)
is of the form

Ri =
[

Di Bi1
Bi2

]

,

with Di ∈ Mat(Li,R) is diagonal, Bi2 is a square upper triangular matrix and Bi1
is a rectangular matrix.

Theorem 3.9 The decoding complexity of a g fast-group decodable space–time
code X with real signalling alphabet S is given by

D(S) = |S| max
1≤i≤g{|�i |−Li+1}

.

Example 3.17 The authors in [33] construct a 4×4 fast-group decodable code based
on an orthogonal space–time code. Codewords are of the form

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1 + ix2 + ix15 + ix16 + ix17 x7 + ix8 + x13 + ix14 x3 + ix4 + x11 + ix12 −x5 − ix6 + x9 + ix10

−x7 + ix8 − x13 + ix14 x1 + ix2 + ix15 − ix16 − ix17 x5 − ix6 + x9 − ix10 x3 − ix4 − x11 + ix12

−x3 + ix4 − x11 + ix12 −x5 − ix6 − x9 − ix10 x1 − ix2 + ix15 − ix16 + ix17 x7 − ix8 − x13 + ix14

x5 − ix6 − x9 + ix10 −x3 − ix4 + x11 + ix12 −x7 − ix8 + x13 + ix14 x1 − ix2 + ix15 + ix16 − ix17

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where xi are real symbols. We refer to the original paper for more details on the
explicit construction. The algebraic structure of this code allows to remove 5 levels
from the sphere decoding tree. In particular, the decoding complexity order is k′ =
12, resulting in a reduction in decoding complexity of ∼30%.

3.4.1.3 Block Orthogonal Codes

The last family of fast-decodable codes that we treat are block orthogonal codes.
We define this family by means of the structure of the associated R-matrix.
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Definition 3.20 Let X be a space–time code. The code is said to be g-block
orthogonal if the associated R-matrix has the structure

R =

⎡

⎢
⎢
⎢
⎣

R1 B12 · · · B1g

R2 · · · B2g
. . .

...

Rg

⎤

⎥
⎥
⎥
⎦
,

where the empty spaces are filled with zeros and the matrices Bij are non-zero
rectangular matrices. Further, the matrices Ri are block diagonal matrices of the
form

Ri =
⎡

⎢
⎣

Ui,1
. . .

Ui,ki

⎤

⎥
⎦ ,

with each of the blocks Ui,j is a square upper triangular matrix.

Assuming that each of the matrices Ri has the same number of blocks k, we can
determine a block orthogonal code by the three parameters (g, k, p), where g is the
number of matrices Ri, k denotes the number of block matrices which compose
each matrix Ri and p is the number of diagonal entries in the block matrices Ui,j .

Example 3.18 The aforementioned Golden code is a (2, 2, 2) block orthogonal
code. However, as its decoding complexity order is k′ = 6 < 8 = k, it is not
fast-decodable by the requirement of a strict inequality as per Definition 3.16.

As an example of a fast-decodable block orthogonal code, we consider the
(2, 4, 2) block orthogonal code from [21]. For a signalling vector (s1, . . . , s16), a
codeword is of the form

X = X′(s1, . . . , s8)+

⎡

⎢
⎢
⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥
⎥
⎦
X′(s9, . . . , s16),

where

X′(s1, . . . , s8) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(s1 − s2)+ i(s3 − s4) 0 (s7 − s8)+ i(s5 − s6) 0

0 (s1 − s2)+ i(s4 − s3) 0 (s8 − s7)+ i(s6 − s5)
−(s7 + s8)+ i(s5 + s6) 0 (s1 + s2)− i(s3 + s4) 0

0 (s7 + s8)− i(s5 + s6) 0 (s1 + s2)+ i(s3 + s4)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Remark 3.3 Recall that the property of fast decodability relates to the reduction
in decoding complexity without resorting to suboptimal decoding methods. By
modifying the decoding algorithm used, the decoding complexity of certain codes
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can be lowered. For example, the main algorithm of [35] reduces the complexity
order of the Golden code from k = 6, corresponding to the complexity of ML-
decoding, to k′ = 4, while maintaining nearly-ML performance. The algorithm is
specific to the Golden code, but has been generalized to the 3× 3 and 4× 4 perfect
codes in, respectively, [2, 17].

In contrast to the previously introduced families, the approach via the Hurwitz-
Radon quadratic form does not capture the complexity reduction for block orthogo-
nal codes. This was recently addressed in [26], where relaxed conditions are derived
for classifying codes into the here treated families of fast-decodable codes. More
precisely, for block orthogonal codes we do not have an analogue of Proposition 3.3
or 3.4 relating the matrix M of the quadratic form to the R-matrix in the QR
decomposition of BH .

3.4.2 Inheriting Fast Decodability

Crucial for space–time codes to exhibit desirable properties is the underlying
algebraic framework. Constructing codes for larger number of antennas means
dealing with higher degree field extensions and algebras, which are harder to handle.
We briefly recall an iterative space–time code construction proposed in [25] which,
starting with an n × n space–time code, results in a new 2n × 2n space–time code
with the same code rate and double (lattice) rank. The advantage of this construction
is that when applied carefully, the resulting codes inherit good properties from the
original space–time codes.

As the general setup, consider the tower of extensions depicted in Fig. 3.2.
The cyclic Galois group of L/K is generated by σ , i.e., Gal(L/K) = 〈σ 〉, and

we denote the left-regular representation by ρ : C→ Mat(n, L). Let τ ∈ Aut(L) be
an automorphism of L, and make the following assumptions:

τ (γ ) = γ ; τσ = στ. (3.4)

Fig. 3.2 Tower of extensions
for the MIMO example code C = (L/K, σ, γ)

L

n

K

nCyclic Galois

Q

Finite Galois
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By the above assumptions we have τρ = ρτ . Moreover, τ can be extended to an
automorphism of C and ρ(C), respectively, by

τ

(
n−1
∑

i=0

eixi

)

=
n−1
∑

i=0

eiτ (xi); τ
(

(aij )i,j
) = (τ (aij )

)

i,j
.

We can now fix an element θ ∈ C, as well as a Q-automorphism of L, τ ∈
AutQ(L), and have the following important definition.

Definition 3.21 Let K be a finite Galois extension of Q and C = (L/K, σ, γ ) be a
cyclic division algebra of degree n. Fix θ ∈ C and τ ∈ AutQ(L) as above.

(a) Define the function

ατ,θ : Mat(n, L)×Mat(n, L)→ Mat(2n,L)

(X, Y ) �→
[

X θτ(Y )

Y τ(X)

]

.

(b) If θ = ζ θ ′ is totally real or totally imaginary, θ ′ > 0 and ζ ∈ {±1,±i}, define
the alike function

α̃τ,θ : Mat(n, L) ×Mat(n, L)→ Mat(2n,L)

(X, Y ) �→
[

X ζ
√
θ ′τ (Y )√

θ ′Y τ(X)

]

.

The defined maps restrict to C × C → Mat(2,C) by identifying x, y ∈ C with
their representationX = ρ(x), Y = ρ(y).

Suppose that the algebra C gives rise to a rank-k space–time code X defined
via matrices {Bi}ki=1. Then, the matrices

{

ατ,θ (Bi, 0), ατ,θ (0, Bi)
}k

i=1 (or applying
α̃τ,θ (·, ·), respectively) define a rank-2k code

Xit =
{

k
∑

i=1

[

siατ,θ (Bi, 0)+ sk+iατ,θ (0, Bi)
]

∣
∣
∣
∣
∣
si ∈ S

}

.

We summarise the main results of [25] in the following proposition.

Proposition 3.5 ([25, Thm. 1, Thm. 2]) Let C = (L/K, σ, γ ) be a cyclic division
algebra giving rise to a rank-k space–time code X defined by the matrices {Bi}ki=1.
Assume that τ ∈ AutQ(L) commutes with σ and complex conjugation, and further
τ (γ ) = γ, τ 2 = id. Fix θ ∈ K〈τ 〉, where K〈τ 〉 is the subfield of K fixed by τ .
Identifying an element of C with its left-regular representation ρ, we have:

(i) The image I = ατ,θ (C,C) is an algebra and is division if and only if θ �= zτ(z)
for all z ∈ C. Moreover, for any ατ,θ (x, y) ∈ I, we have det(ατ,θ (x, y)) ∈
K〈τ 〉.
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(ii) If in addition θ = ζ θ ′ is totally real or totally imaginary, the image
Ĩ = α̃θ (C,C) retains both the full-diversity and non-vanishing determinant
property. If for some i, j, BiB

†
j + BjB†

i = 0, we have

α̃τ,θ (Bi, 0)α̃τ,θ (Bj , 0)† + α̃τ,θ (Bj , 0)α̃τ,θ (Bi, 0)† = 0 ,

α̃τ,θ (0, Bi)α̃τ,θ (0, Bj )† + α̃τ,θ (0, Bj )α̃τ,θ (0, Bi)† = 0.

The second part of Proposition 3.5, in particular, states that under appropriate
conditions, fast decodability is inherited from the rank-k space–time code X to the
iterated code Xit.

3.5 Explicit Constructions

All the notions and concepts introduced in the previous sections lead to this last
part. To conclude the chapter, we focus on explicit construction methods for fast-
decodable space–time codes.

Throughout this chapter, we have provided multiple examples of space–time
codes with reduced ML decoding complexity. Such examples can sometimes be
found by chance, but most often a clever design gives rise to infinite families of
codes with reduced decoding complexity. In the following, we turn our attention
to communication setups for which such general results are known. To the best of
the authors’ knowledge, the constructions presented here are the only general fast-
decodable algebraic constructions found in literature.

3.5.1 Asymmetric Space–Time Codes

Above we have exemplified the 4× 2 Srinath-Rajan code, the best performing code
for this channel among codes with the same complexity order. Here, we discuss
a methodology for constructing well-performing fast-decodable space–time codes
for the 4× 2 MIMO channel, offering a reduction in decoding complexity of up to
37.5%.

The motivation behind the following construction is the structure of the Alamouti
code (cf. Example 3.13). As we have seen, the decoding complexity of the Alamouti
code equals the size of the employed real signaling alphabet, D(S) = |S| (or more
precisely D(S) = 4|S| as we are decoding each of the 4 real symbols in parallel).
Motivated by this observation, it is of interest to study space–time codes which are
subsets of the rings Mat(k,H). This motivates the next result.
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Theorem 3.10 ([40]) Let C be a cyclic division algebra of degree n, with center K
of signature (r, s), r + 2s = m. There exists an injection

ψ : C ↪→ diag
(

Mat(n/2,H)w ×Mat(n,R)r−w ×Mat(n,C)s
)

,

where each n× n block is mapped to the corresponding diagonal block of a matrix
in Mat(mn,C). Here, w is the number of places which ramify in C.

In particular, C can be embedded into Mat(n/2,H) if

(i) The centerK is totally real, i.e., r = m.
(ii) The infinite places of K are ramified in C.

The ramification assumptions of places in the considered algebra are rather
technical, and the interested reader is referred to [40] for further details.

While the above result guarantees the existence of an injection into Mat(n/2,H)
when the conditions are satisfied, it does not make the embedding explicit. This is
achieved in the following result.

Theorem 3.11 ([40, Prop. 11.1]) Let C = (L/Q, σ, γ ) be a cyclic division algebra
satisfying the requirements from Theorem 3.10. Given for x ∈ C an element X =
ρ(x) ∈ X, where X is a space–time code arising from the algebra C, we have an
explicit map

ψ : C→ Mat(nt /2,H)

X �→ BPX(BP)−1,

where P = (pij )i,j is a permutation matrix with entries

pij =

⎧

⎪⎪⎨

⎪⎪⎩

1 if 2 � i and j = i+1
2 ,

1 if 2 | i and j = i+nt
2 ,

0 otherwise,

and B = diag(
√|γ |, |γ |, . . . ,√|γ |, |γ |).

We now turn our attention to the 4 × 2 MIMO channel. Given the results
inroduced above, we recall a construction method for fast-decodable space–time
codes for this channel.

Theorem 3.12 ([40]) Let C = (K/Q, σ, γ ) be a division algebra of index 4, where
K is a totally complex field containing a totally real field of index 2. Assume that

(i) [K : Q] = 4,
(ii) γ, γ 2 �∈ NmK/Q

(

K×
)

,
(iii) Gal(K/Q) = 〈σ 〉 with σ 2 complex conjugation,
(iv) γ < 0.
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Let OK = Zw1 + Zw2 + Zw3 + Zw4 be the ring of integers of K , and consider
the left regular representation ρ of x ∈ C, which under the above assumptions can
be written as

ρ : x �→

⎡

⎢
⎢
⎣

x1 γ σ(x4) γ x
∗
3 γ σ(x2)

∗
x2 σ(x1) γ x

∗
4 γ σ(x3)

∗
x3 σ(x2) x∗1 γ σ(x4)

∗
x4 σ(x3) x∗2 σ(x1)

∗

⎤

⎥
⎥
⎦

Here, xi = g4i−3w1 + g4i−2w2 + g4i−1w3 + g4iw4 for i = 1, . . . , 4 with gj ∈ Q

for all j , and ∗ denotes complex conjugation.
For ψ the explicit map given in Theorem 3.11, ψ(�) is a lattice of dimension 16

in Mat(4,C) with the non-vanishing determinant property. For a signaling alphabet
S, codes arising from this construction have a decoding complexity order of 10 ≤
k′ ≤ 16, that is, enjoy a reduction in decoding complexity of up to 37.5%.

Example 3.19 The MIDOA4 code is a space–time code constructed in [40]. It is in
fact a (2, 2, 4) block orthogonal code, constructed from an algebra over the fifth
cyclotomic field Q(ζ5). Consider the cyclic division algebra

C =
(

Q(ζ5)/Q, σ,−8

9

)

,

where σ : ζ5 �→ ζ 3
5 .

Fix the Z-basis
{

1− ζ5, ζ5 − ζ 2
5 , ζ

2
5 − ζ 3

5 , ζ
3
5 − ζ 4

5

}

of OK . Consider a maximal
order � of C, andψ the conjugation given in Theorem 3.11. Under this conjugation,
codewords are of the form

X(x1, . . . , x4) =

⎡

⎢
⎢
⎣

x1 −r2x∗1 −r3σ(x4) −rσ (x3)
∗

r2x2 x∗1 rσ (x3) −r3σ(x4)
∗

rx3 −r3x∗3 σ(x1) −r2σ(x2)
∗

r3x3 rx∗2 r2σ(x1) σ (x1)
∗

⎤

⎥
⎥
⎦
,

where r =
(

8
9

)1/4
and

xi = g4i−3(1− ζ5)+ g4i−2(ζ5 − ζ 2
5 )+ g4i−1(ζ

2
5 − ζ 3

5 )+ g4i (ζ
3
5 − ζ 4

5 ),

σ (xi) = g4i−3(1− ζ 3
5 )+ g4i−2(ζ

3
5 − ζ5)+ g4i−1(ζ5 − ζ 4

5 )+ g4i (ζ
4
5 − ζ 2

5 ).

The decoding complexity order of this code is k′ = 12, resulting in a reduction
in decoding complexity of 25%.

By choosing the basis

{

1,
ζ5+ζ−1

5
2 ,

ζ5−ζ−1
5

2 ,
ζ 2

5−ζ−2
5

4

}

of OK instead, the decoding

complexity can be further reduced. However, this is no longer an integral basis,
and the price to pay is a smaller minimum determinant, yielding a slightly worse
performance.
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3.5.2 Distributed Space–Time Codes

The second setting we consider is a cooperative communications scenario. More
concretely, we consider the communication of (M + 1) users with a single
destination, where every user as well as the destination can be equipped with either
a single antenna or multiple antennas. In this scenario, enabling cooperation and
dividing the allocated transmission time allows for the M inactive users to aid
the active source in communicating with the destination by acting as intermediate
relays. For more details on the transmission model we refer to [3, 42]. While this
is a more involved transmission scheme, from the destinations point of view it can
be modeled as a virtual MIMO channel. Assume that the destination is equipped
with nr receive antennas. Setting T = n := 2Mnt , where nt is the number
of transmit antennas available at each transmitter, we get the familiar channel
equation Y = HX + N , where X ∈ Mat(n,C) and Y ∈ Mat(nr × n,C) are the
(overall) transmitted and received signals, and the structure of the channel matrix
H ∈ Mat(nr × n,C) is determined by the different relay paths.6

Furthermore, it is discussed in [42] that for this channel model, block-diagonal
space–time codes, that is, where each X ∈ X takes the form

X = diag (Xm)m =
⎡

⎢
⎣

X1
. . .

XM

⎤

⎥
⎦

withXm ∈ Mat(2nt ,C) are good choices for this channel if they additionally respect
the usual design criteria such as non-vanishing determinants. To achieve this block
structure, the following function is crucial.

Definition 3.22 Consider an M-relay channel as discussed above. Given a space–
time code X ⊂ Mat(2nt ,C) and a suitable function η of orderM (i.e., ηM(X) = X),
define the function

�η,M : X→ Mat(2ntM,C)

X �→ diag
{

ηi(X)
}M−1

i=0
=
⎡

⎢
⎣

X

.. .

ηM−1(X)

⎤

⎥
⎦ .

We begin with the case where nt = 1 and nr ≥ 2. Consider the tower of
extensions depicted in Fig. 3.3, where ξ is taken to be totally real, m ∈ Z≥1 and
a ∈ Z\ {0} are square-free.

6As remarked in Sect. 3.4.1, the property of fast decodability is independent of the channel. Hence,
we omit details on the structure of the effective channel.



136 A. Barreal and C. Hollanti

Fig. 3.3 Tower of extensions
for the SIMO code
construction

C = (a, γ)K
∼= (L/K, σ a − a, γ)

L = K(
√√

a)

2

K = F (ξ)

2

F = Q(
√√−m)

M

Q

2

Q(
√√

a)

2M

2

Assume that C is division. Let σ be the generator of Gal(L/K), and fix a
generator η of Gal(K/F).

To have balanced energy and good decodability, it is necessary to slightly modify
the matrix representation of the elements in C, thus for � ⊂ C an order, instead
of representing x = x0 + √γ x1 ∈ � by its left-regular representation ρ(x), we
define the following similar and commonly used function that maintains the original
determinant,

ρ̃ : x �→
[

x0 −√−γ σ(x1)√−γx1 σ(x0)

]

. (3.5)

Theorem 3.13 ([3, Thm. 1]) Arising from the algebraic setup in Fig. 3.3 with a <
0, γ < 0, define the set

X = {�η,M(X)
}

X∈ρ̃(�) =
{

diag
(

ηi(X)
)M−1

i=0

∣
∣
∣
∣
X ∈ ρ̃(�)

}

.

The code X is of rank 8M , rate R = 4 real symbols per channel use and has
the non-vanishing determinant property. It is full-rate if nr = 2. Moreover, X is
conditionally 4-group decodable, and its decoding complexity order can be reduced
from k = 8M to k′ = 5M , resulting in a complexity reduction of 37.5%.

Example 3.20 For M = 2 relays and ξ = √5, consider the tower of extensions in
Fig. 3.4. The algebra C is division [3, Exp. 1].

Let x = x0 + √−γ x1 with x0, x1 ∈ OL and X = ρ̃(x). For 〈η〉 = �(K/F),
define the 2-relay code

X = {�η,2(X)
}

X∈ρ̃(OL) =
{

diag
(

ηi(X)
)1

i=0
=
[

X

η(X)

]∣
∣
∣
∣
X ∈ ρ̃(OL)

}

.
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C = −3, − 2√√
5 K

∼= L/K, σ : −3 − −3, − 2√√
5

L = K(
√√−3)

2

K = Q(i, ξ)

2

F = Q(i)

2

Q

2

Q(
√√−3)

4

2

Fig. 3.4 Tower of extensions for the SIMO example code

The resulting code is a fully diverse code of rank 16 with non-vanishing determi-
nants, which is conditionally 4-group decodable having decoding complexity order
k′ = 10 in contrast to k = 16.

We move on to the case where the transmitter and each relay is now equipped
with nt ≥ 1 antennas. We require that the number of relays is expressible as M =
(p − 1)/2, with p ≥ 5 prime. Let henceforth nt = 2. Assume further a single
destination with nr ≥ 1 antennas, and consider the tower of extensions in Fig. 3.5,
where K = Q(ξ) = Q

+(ζp) ⊂ Q(ζp) is the maximal real subfield of the pth
cyclotomic field, that is, ξ = ζp + ζ−1

p , and a ∈ Z\ {0} is square-free. Let 〈σ 〉 =
Gal(L/K) and 〈η〉 = Gal(L/F).

C a, γ K
∼= L/K, σ a − a, γ

L = K(
√√

a)

2

K = Q(ξ)

2

Q

MF = Q(
√√

a)

M

2

Fig. 3.5 Tower of extensions for the MIMO code construction
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Theorem 3.14 ([3, Thm. 2]) In the setup as in Fig. 3.5, choose a ∈ Z<0 such that
p = aOK is a prime ideal. Fix further γ < 0 and θ ∈ OK ∩ R

× = Z[ξ ] ∩ R
× such

that

• γ and θ are both non-square mod p,
• the quadratic form 〈γ,−θ〉L := l1γ − l2θ with l1, l2 ∈ L is anisotropic, i.e.,

evaluates to zero if and only if γ = θ = 0,

and further let τ = σ . Then, if � ⊂ C is an order, the distributed space–time code

X =
{

�η,M(α̃τ,θ (X, Y )) = diag
(

ηi(α̃τ,θ (X, Y ))
)M−1

i=0

∣
∣
∣
∣
X,Y ∈ ρ̃(�)

}

is a full-diversity space–time code of rank 8M , rateR = 2 real symbols per channel
use (hence full-rate for nr = 1), exhibits the non-vanishing determinant property
and is g-group decodable, with g ∈ {2, 4}. Its decoding complexity order is

k′ =
{

4M if a ≡ 1 mod 4,

2M if a �≡ 1 mod 4,

resulting in a reduction in complexity of 50% and 75%, respectively.

Example 3.21 We construct a 4-group decodable code for M = 3 relays, arising
from the tower of extensions depicted in Fig. 3.6, where ξ = ζ7 + ζ−1

7 and γ =
− 2

1+ξ .

In the following, let τ = σ and 〈η : ξ �→ ξ2 − 2〉 = � (L/F). Choose further
θ = 3(1− ξ) = ζ θ ′, with ζ = −1 and θ ′ ∈ R>0, and let pmin(x, ξ) be the minimal
polynomial of ξ . With these choice of elements, the conditions from Theorem 3.14
are satisfied.

Fig. 3.6 Tower of extensions
for the MIMO example code C = L/K, σ : −5 − −5, − 2

1+ξ

L = Q(
√√−5, ξ)

2

K = Q(ξ)

2

Q

3F = Q(
√√−5)

3

2
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Let x ∈ � ⊂ C, and set ω = √−5. We define a space–time code X0 consisting
of codewords of the form

X = ρ̃(x) =
[

x1 + x2ω −√−γ (x3 + x4σ(ω))√−γ (x3 + x4ω) x1 + x2σ(ω)

]

,

where xi ∈ OK, 1 ≤ i ≤ 4. Next, we iterate X0 with the help of α̃(·, ·) to obtain
the set

Xit
0 =

{

α̃τ,θ (X, Y ) =
[

X ζ
√
θ ′τ (Y )√

θ ′Y τ(X)

]∣
∣
∣
∣
X,Y ∈ ρ̃(�)

}

and finally adapt the iterated code to the 3-relay channel by applying the map η,
resulting in distributed space–time code

X =
{

�η,3(α̃τ,θ (X, Y )) = diag
(

ηj (α̃τ,θ (X, Y ))
)2

j=0

∣
∣
∣
∣
X,Y ∈ ρ̃(�)

}

The resulting relay code is fully diverse, exhibit the non-vanishing determinant
property and are fast-decodable. More concretely, X is 4-group decodable with
decoding complexity order k′ = 6 in contrast to k = 24, resulting in a complexity
reduction of 75%.

3.6 Conclusions

In this chapter, we have given an overview on the topic of fast decodability of
algebraic space–time codes. Traditionally, space–time codes have been developed
in the context of point-to-point MIMO communications. However, with the devel-
opment of new communication protocols in order to accommodate different types of
applications and devices in modern wireless networks, so-called distributed space–
time codes have recently become a popular subject of research. Due to the nature
of the underlying communication protocols, such codes often exhibit a too high
decoding complexity for practical use. Following the ideas of fast-decodability
of more traditional space–time codes, this chapter aimed at giving an overview
on the subdivision of space–time codes into different families of so-called fast-
decodable codes. Moreover, we were particularly interested in the specific reduction
in decoding complexity offered by these codes.

While crucial for practical implementation, only few explicit construction meth-
ods of fast-decodable space–time codes can be found in literature. In this chapter,
we further recalled explicit constructions of asymmetric and distributed space–
time codes with reduced decoding complexity, accompanied by example codes to
illustrate the presented methods.

With the upcoming fifth generation (5G) wireless systems in mind, the develop-
ment of new constructions of suitable well-performing space–time codes offering



140 A. Barreal and C. Hollanti

complexity reduction is crucial for many applications, and opens up an interdisci-
plinary and rich research direction for future work.
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Chapter 4
Random Algebraic Lattices and Codes
for Wireless Communications

Antonio Campello and Cong Ling

Abstract In this chapter we will review classical and recent advances on “proba-
bilistic” constructions for Euclidean lattices. We will then show recent refinements
of these techniques using algebraic number theory. The interest in algebraic lattices
is twofold: on the one hand, they are key elements for the construction of sphere
packings with the best known asymptotic density; on the other hand, they provide
effective solutions to a number of wireless communication problems. We will
focus on applications to fading channels, multiple-input-multiple-output (MIMO)
channels and to information-theoretic security.

4.1 Introduction

The problem of finding the densest arrangement of spheres in R
n is a central subject

in the Geometry of Numbers, with a variety of well-established connections to
Coding Theory. Let �n denote the best possible sphere packing density achievable
by a Euclidean lattice of rank n. The celebrated Minkowski-Hlawka theorem (or
lower bound), e.g. [7, 10] asserts the existence of lattices with density

�n ≥ ζ(n)/2n−1 (4.1)

for all n ≥ 2, where ζ(n) = 1 + 1/2n + 1/3n + . . . is the Riemann zeta function.
Up to very modest asymptotic improvements, to date this is the best known lower
bound for �n in high dimensions.

No explicit construction of lattices achieving the lower bound is known. Typical
methods for establishing the result rely on random ensembles of lattices and on
mean-value arguments [11, 23]. Rush [20] and Loeliger [14] obtained the lower
bound from integer lattices constructed from linear codes in F

n
p, in the limit when
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p → ∞. A method due to Rogers [19] shows how to obtain packings which
provide an improvement to (4.1) by a linear factor. More recent improvements
entail the construction of lattices with additional (algebraic) structure. For instance,
Vance [25] showed that the best quaternionic lattice improves linearly on (4.1), and
Venkatesh [26] resorted to cyclotomic number fields lattices in order to obtain a
super-linear improvement on the bound.

In the context of communications, the companion problem to sphere-packings is
the one of reliably transmitting information over a Gaussian (AWGN) channel. The
related “unconstrained” lattice problem can be stated as follows: Given a normal
random vector z with entries distributed according to N(0, σ 2), what is the unit
volume lattice that minimizes the “probability of error”, i.e., the probability that z
leaves the Voronoi cell of �? See Fig. 4.1b for an illustration. When σ is small,
both problems coincide and dense lattices in low dimensions are also good in terms
of probability of error. In high dimensions, the connection is also understood to
some extent: the same random ensembles used to produce lattices satisfying the

Fig. 4.1 Sphere packing in
two dimensions (a) and an
illustration of error and
“no-error” events (b)
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Minkoswki-Hlawka lower bound can be used to construct optimal lattice codes with
vanishing probability of error.

Modern communications, on the other hand, go beyond the Gaussian channel and
entails sending information propagated over different media (e.g., fading channels),
using multiple antennas (e.g., MIMO channels) and to various users (e.g., relay
networks). For such applications, it is desirable to enrich the lattices with some
algebraic (multiplicative) structure, often inherited by the properties of number
fields. Interestingly, lattices with precisely the same structure as the ones in the
works of Vance [25] and Venkatesh [26] play a crucial role in some of these
applications. There has been a recent increase in the literature on this relation
and the applications of high dimensional algebraic lattices to various problems. In
this text we provide a glimpse of some of these relations, showing how algebraic
constructions can be advantageous from a mathematical and applications point of
view.

4.1.1 Structure

The objective of this chapter is twofold. In the first part we provide a self-contained
exposition of random lattices and their packing density. In the second part, we
show how such lattices can be applied to building effective reliable and secure
transmission schemes for wireless communications. We will focus on reliable and
secure communications over block-fading and MIMO channels.

The content of Sect. 4.2 is fairly classical. We exhibit the original “analytical”
method of finding dense lattices due to Davenport and Rogers, and Rogers’
argument for obtaining the linear improvements depicted in Table 4.1. Further infor-
mation on these and related results can be found individually in excellent references
in the literature, e.g. [7, 19] or [10]. For a more “modern” and “information-
theoretic” treatment on the analysis of random ensembles from codes, one can
consult [28, Chapter 7].

The improvements in Sect. 4.3 are more recent and are not present in textbooks.
We have thus attempted to include them in a general framework so as to pro-
vide a self-contained description. A suitable framework is based on “generalized
reductions”, as recently defined in [4]. In particular, this allows us to recover

Table 4.1 Best
improvements on the lower
bound

Dimension r(n) Reference

n ∈ N 2 [11]

n ∈ N log(2(e − e−1)−1n) [19]

n = 4m log(24e−1m) [25]

n = 2φ(m) log(2m) [26]

n large 65,963.8n [26]
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“coding-theoretic” versions of the results in Vance [25] for Hurwitz lattices and
Venkatesh [26] for cyclotomic lattices.

Sections 4.4 and 4.5 are mainly based on [5] and [13]. The objective of these
sections is to provide a glimpse of how random algebraic lattices can be used in
applications to information security of wireless communications.

4.1.2 Summary of Results

Since the work of Hlawka that established (4.4), there have been many attempts to
refine the lower bound, by establishing that

log2�n ≥ −n+ r(n), (4.2)

where r(n) ≥ 0 is an “improvement” term (see Table 4.1). For all known
improvements r(n) = O(logn), with the bound in [26] being slightly better than
previous results (it can produce an extra O(log log logn) term in r(n)). These
improvements are very modest in comparison to (4.1). On the other hand, there
is no known upper bound of the form r(n) = o(n), as one could expect. The
best available bound on the literature is r(n) ≤ 0.41n for large n. Furthermore,
if one considers more general (non-lattice) packings, there is experimental evidence
that linear ( (n)) improvements in log�n (i.e. exponential improvements on the
density) are possible.

For the communications problem, the asymptotic behavior of lattices (and even
non-lattices) as n → ∞ is much better understood. A result due to Poltyrev
[18] shows that any sequence of lattices �1,�2, . . . of increasing dimension and
vanishing probability of error must satisfy

lim
n→∞ sup logV (�)1/n > log(2πeσ 2), (4.3)

and the bound is achieved by random lattices [14]. Explicit constructions that
achieve the bound have been recently found [27]. It is perhaps surprising that,
in terms of packing density, these construction are very far from the Minkowski-
Hlawka lower bound.

4.1.3 Notation

The Euclidean norm of a vector x ∈ R
n is denoted by ‖x‖ = (x2

1 + . . . + x2
n)

1/2.

The ball of radius r in R
n is denoted by Bnr = {x ∈ R

n : ‖x‖ ≤ r}. A lattice �
is a discrete additive subgroup of Rn. Denote by span � the minimal subspace of
R
n that contains �. The rank of � is defined to be the dimension of span �. The
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quotient (span �)/� is compact, and its volume, denoted by V (�), is said to be the
volume of �. It is also the volume of the Voronoi cell

V� = {x ∈ span � : ‖x‖ ≤ ‖x− y‖ for all y ∈ �} .

The first minimum λ1(�) of� is the shortest Euclidean norm of non-zero vectors
in �. In general, the i-th minima of � are defined as

λi(�) = min
{

r : dim
(

span
{

Bnr ∩�
}) = i} .

The packing density of a rankm lattice � is defined as

�(�) = vol Bmλ1/2

V (�)
.

In general, if � can pack a measurable set S (i.e., the translates of S by vectors of
� are disjoint), then its packing density or efficiency can be defined as the ratio

vol S

V (�)
.

4.2 Classical Methods

According to a translation due to Gruber [10], Hlawka described his proof of the
lower bound as follows: “(...) consider the problem of catching fish of given length
from a pond. Making one haul, one may catch such a fish only by chance. For this
reason it makes sense to catch many fish, hoping that a fish of the desired length is
among them. In probability theory this is called a random sample.”

This description refers to the probabilistic method of analysing a random
ensemble of lattices rather than individual instances. The method is nowadays
well-established and widely used for a variety of discrete problems, including
sphere-packing. Four years after the publication of Hlawka’s proof, Shannon [22]
used the probabilistic method, or “random coding” in the information theory jargon,
to establish the existence of capacity-achieving codes. The resemblance is not
incidental: as observed later by several authors [14, 18], and as we will see later, the
Minkowski-Hlawka random argument essentially implies the existence of capacity-
achieving codes for the Gaussian channel.
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4.2.1 Random Lattices

4.2.1.1 Overview

In a nutshell, the analysis of the packing density is done indirectly by analyzing the
lattice point enumerator. Suppose S is a convex set (for example, a ball), and let

NS(�) = #(�\ {0} ∩ S)

be the number of non-zero lattice points in S. If NS(�) = 0, then the translations
of the set S/2 = {x/2 : x ∈ S} by points of� are disjoint or, in other words, � can
pack S/2. This packing has density

vol S/2

V (�)
= vol S

2nV (�)
.

However, finding a lattice with small (or zero) NS(�) is usually hard. Therefore,
we opt to analyse the average behaviour of NS(�) over a sufficiently large family
of lattices, say L, and guarantee that EL[NS(�)] is small.

These are the essential ideas for the establishment of the bound (4.1). The main
differences between the various proofs in the literature is in the way of constructing
L. We present below a method due to Davenport-Rogers, which can be found in
classical textbooks like [7]. An ensemble proposed by Loeliger [14] is particularly
popular in applications, due to its relation to classical error-correcting codes. We
will describe it in a generalized way in Sect. 4.3.4.

In what follows, we adopt the “information-theoretic” terminology in [28, Ch. 7]
for random lattices. We say that a collection of lattices L of the same volume V > 0
is a Minkowski-Hlawka-Siegel (MHS) ensemble if:

EL [NS(�)] = vol S

V
, (4.4)

for any measurable set S (in the sense of Jordan). Such an average implies the lower
bound 1/2n−1 in the following way. From (4.4), it follows that it must exist at least
one� ∈ L such that N�(r) ≤ (ζ(m)V )−1vol Br , where Br denotes a ball of radius
r . Now if we force the right-hand side to be equal to 2(1−ε), for some small ε > 0,
then, since a lattice has at least two minimum vectors, we must have N�(r) = 0.
Therefore� can pack balls of radius r/2; rearranging the terms gives us density:

� = 2(1− ε)
2n−1 .

which is, up to ε, the Minkowski-Hlawka bound. If � is a lattice with a guaranteed
number of minimum vectors (say, L) we can, by similar arguments, achieve density
L(1− ε)/2nt .
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Rogers-Davenport Proof Before stating the proof, we recall some facts about
measurable sets. Notice that if S ⊂ R

n is a measurable set (in the sense of Jordan),
then its volume can be calculated by discretizing it with fine scalings of the Z

n

lattice, which gives us the formula:

vol S = lim
β→∞

(

NS(β−1
Z
n)β−n

)

. (4.5)

Also notice that we can calculate the volume of S by slicing it into parallel
hyperplanes and making the distance between successive hyperplanes tend to zero.
For instance, consider

H = {(x1, . . . , xn) ∈ R
n : xn = 0

}

,

with normal vector en = (0, . . . , 0, 1). We have:

vol S = lim
ρ→∞

∑

z∈ρ−1Z\{0}
ρ−1vol n−1(S ∩ (H + zen)), (4.6)

where vol n−1(S ∩ (H + zen) denotes the volume of the (n − 1)-dimensional sets
S ∩ (H + zen) (i.e., its (n− 1)-dimensional Jordan measure in the space H + zen).

With the above facts in mind, Rogers-Davenport construct the random ensembles
Lρ , ρ > 0, as follows. For a number ρ > 0 and a vector u ∈ R

n−1 in the cube
[0, ρ1/n−1)n−1, define the lattice

�(u, ρ) = V −1/n
{

ρ1/n(x, 0)+ l(u, ρ−1) : (x, l) ∈ Z
n−1
}

.

In other words, �(u, ρ) is the lattice generated by the columns of

V−1/n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ
1
n−1 0 0 . . . 0 0

0 ρ
1
n−1 0 . . . 0 0

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 0 . . . ρ
1
n−1 0

u1 u2 u3 . . . un−1 ρ
−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We then define the ensemble

Lρ =
{

�(u, ρ) : ui ∈ [0, ρ1/n) for i = 1, . . . , n− 1
}

. (4.7)
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Suppose a lattice in Lp is chosen by picking a point u in the cube uniformly at
random. We have the following:

Theorem 4.1 The ensemble defined in (4.7) satisfies

lim
ρ→∞ELρ [NS(�)] =

vol S

V
. (4.8)

Proof By scaling � appropriately we can suppose without loss of generality that
V = 1. LetCρ = [0, ρ1/(n−1))n−1 be the cube with side-length ρ1/(n−1) and volume
ρ. For ρ sufficiently large, since S is bounded, there is no point in S of the form
(ρ1/(n−1)x, z), with x ∈ Z

n−1\ {0}. The average of NS over the ensemble is thus
given by:

1

ρ

∫

Cρ

NS(�(u, ρ))du =
∑

z∈Z\{0}

1

ρ

∫

Cρ

NS∩(H+ρzen)(�(u, ρ))du

=
∑

z∈Z\{0}

1

ρ

∫

Cρ

NS∩(H+ρzen)−ρzen(�(u, ρ))du

=
∑

z∈Z\{0}
ρ−1vol n−1((S ∩ (H + ρzen))− ρzen)

=
∑

z∈Z\{0}
ρ−1vol n−1((S ∩ (H + ρzen))).

From (4.6), the last equation tends to S as ρ →∞, finishing the proof. 
�
The limit in Theorem 4.1 is slightly weaker than Eq. (4.4), and it allows us to

recover the Minkowski-Hlawka lower bound (4.1) up to a factor (say) (1− ε) in the
numerator, for any small (but positive) ε. To obtain the bound with ε = 0, we can
resort to a compactness argument due to Mahler [7]. We omit the details.

Note that the lattice point enumerator

NS(�) =
∑

x∈�\{0}
1S(x) (4.9)

can be replaced by the sum of any integrable function (in the sense of Riemann)
that vanishes outside a compact set, with essentially the same proof. In this case we
obtain

ELρ [
∑

x∈�\{0}
f (x)] = V −1

∫

Rn

f (x)dx. (4.10)

As observed by Siegel [23, Rmk. 1, p. 346], the theorem can be further
generalized to integrable functions that decay sufficiently fast with the norm of
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x. A sufficient condition is that f (x) decays faster than the harmonic series, i.e.
f (x) ≤ c/(1 + ‖x‖)n+δ , for constants c, δ > 0. A function of particular interest
satisfying this condition is f (x) = e−τ‖x‖2

for τ > 0, for which the sum over a
lattice is known as its theta series

 �(τ) =
∑

x∈�
e−τ‖x‖2

.

The average behavior of the theta series becomes

EL [ �(τ)] = V−1
(π

τ

)n/2 + 1. (4.11)

As the dimension increases, for a fixed volume V , the point τ = π corresponds to
a phase transition. If τ > π the theta series vanishes when the dimension increases,
whereas for τ < π grows unboundedly.

4.2.2 Primitive Points

The extra term ζ(n) in the enumerator of (4.1) is obtained by considering primitive
lattice points. A lattice point x ∈ � is said to be primitive if the equivalent
conditions hold:

1. x is part of a basis for �
2. x is visible from the origin, i.e. the line segment {λx : λ ∈ (0, 1)} contains no

point of �.
3. The greatest common divisor of the coefficients of x when written as a linear

combination of a basis for� is equal to one.

An illustration of Condition 2 for the Eisenstein lattice (cf. Sect. 4.3.1) is given
in Fig. 4.2. It is perhaps surprising that the “fraction” of primitive vectors of a lattice
is very close to 1, even for small dimensions (the precise number is 1/ζ(n), which
tends to 1 very quickly as n → ∞). Loosely speaking, in high dimensions almost
any lattice point can be extended to a basis for �.

Statements on the sum of non-zero lattice points can usually be translated into
statements for primitive points by means of the so-called Möbius inversion, namely:

∑

x∈�′
f (x) =

∞
∑

r=1

μ(r)

rn

∑

x∈�\{0}
r−nf (rx),

where μ is the Möbius function (cf. [7]) that satisfies the identity

∞∑

r=1

μ(r)

rn
= 1

ζ(n)
.
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Fig. 4.2 Primitive (black)
points in the Eisenstein
lattice. Non-primitive points
are depicted in red. Black
points are visible from the
origin, whereas red points
have at least one other lattice
point blocking the view

For simplicity of the statements, and in order to highlight the main ideas of the
theorems, we omit the analysis of primitive points.

4.2.3 Linear Improvement

Rogers was the first author to obtain a linear improvement on the Minkowski-
Hlawka theorem [19]. Instead of only looking at the packing radius directly, a new
insight in Rogers’ method is that the Minkowski-Hlawka theorem actually tells us
more information about the successive minima of a lattice.

Let us define the successive densities of a lattice as

�i(�) =
vol Bnλi(�)/2
V (�)

, i = 1, . . . , n, (4.12)

where λi(�) are its successive minima. Notice that �i(�) is not strictly speaking a
“density” and it may in principle be greater than 1 for i ≥ 2. However the following
lemma (which we refer to as Minkowski’s lemma), states that from a lattice with
good average i-th densities we can construct a lattice with good density. We present
a “matrix-based” proof below.

Lemma 4.1 (Minkowski) Let � be a rank n-lattice with

(
n
∏

i=1

�i(�)

)1/n

= δ. (4.13)

Then there exists another rank-n lattice �̃ with packing density �(�̃) =
�1(�̃) = δ.
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Proof Let v1, . . . , vn ∈ � be linearly independent vectors that achieve the
successive minima (‖vi‖ = λi(�)). Let Q be the matrix whose columns are the
Gram-Schmidt orthogonalization of the vectors vi and D = diag(1/λ1, . . . , 1/λn).
We claim that

�̃ = {y = QtDQx : x ∈ �} (4.14)

satisfies the conditions of the theorem. To calculate the first minimum of �̃, we first
write

‖y‖2 = xtQtD2Qx = wtD2w ≥ ‖w‖2 λ−2
k ,

where w = Qx and k is the smallest index such that wk �= 0 and wj = 0 for
j > k. Notice that by construction x is linearly independent of v1, . . . , vk−1 and
thus ‖x‖ ≥ λk . Therefore λ1(�̃) ≥ 1, with equality achieved by y = QtDQv1 ∈ �.
The density of �̃ is thus:

�(�̃) = vol Bλ1(�̃)/2

V (�̃)
= (λ1(�) . . . λn(�))

vol B1/2

V (�)
= δ.


�
Theorem 4.2 For any ε > 0, there exists a lattice � with

(
n
∏

i=1

�i(�)

)1/n

≥ 2nζ(n)(1− ε)
e(1− e−n) . (4.15)

Proof Consider the radial function f : Rn→ R,

f (x) =

⎧

⎪⎨

⎪⎩

1 if ‖x‖ ≤ re(1−n)/n
1
n
− log

( ‖x‖
r

)

if ‖x‖ ∈ (re(1−n)/n, re1/n ]

0 otherwise

Let v1, . . . , vn be vectors achieving the successive minima. Notice that if we
guarantee that vi are in the spherical-shell given by Condition 2 in the definition
of f , then

n
∑

i=1

f (vi ) = 1− log

(∏n
i=1 λi

rn

)

,

therefore upper-bounding f is the same as lower bounding the product of the
minima (and consequently the successive densities). That is precisely the proof
strategy we will follow.
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Integrating f using hyperspherical coordinates, we get

∫

Rn

f (x)dx = rnVn e(1− e
−n)

n
. (4.16)

From Theorem 4.2, there exists � such that

n
∑

i=1

f (vi) = 2
n
∑

i=1

f (vi) <
∑

x∈�\{0}
f (x) ≤

∫

Rn

f (x)d(x). (4.17)

Now if we choose r such that the right-hand side of (4.16) is lesser or equal than
2(1− ε), we conclude that

n∑

i=1

f (vi ) = 1− log

(∏n
i=1 λi

rn

)

≤ 1,

therefore λ1 . . . λn > rn. Rearranging the terms and using the definition of
successive minima gives us the bound. 
�

Again, we can remove the factor (1 − ε) in the above Theorem by a compacity
result due to Mahler. In the proof of Rogers notice that Eq. (4.17) uses the fact that
� is closed under reflexion in the origin, i.e., under the action of the multiplicative
group {1,−1} ∼ C2. This raises the natural question whether lattices with a
larger symmetry group could improve the bound. This is precisely the nature of
the improvements of [25] given in the next section.

4.3 Random Algebraic Lattices

In what follows we describe three examples of important families of lattices and
their sublattices.

4.3.1 Eisenstein Integers Z[ω]

As an illustrative example, consider the ring of Eisenstein integers

Z[ω] = {a + bω : a, b ∈ Z[ω]} ,
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where ω = (−1 + i√3)/2. It has the largest unit group U among all complex
quadratic ring of integers. Indeed, U is the cyclic group of order 6 given by

U =
{

±1,±ω,±ω2
}

,

with primitive elements −ω and −ω2 = ω + 1. We have Z[ω]Q = Q(
√−3) ⊂ C.

A Z[ω]-lattice is a free Z[ω] sub-module of Cn with a free basis {b1, . . . , bn} which
generates Cn as a vector space over C. A Z[ω]-lattice is closed under multiplication
by Eisenstein integers and, in particular by elements of U. Indeed, the group U acts
freely on the set of elements of the same norm, which means that each “layer” of a
Z[ω]-lattice contains at least 6 vectors.

The trace form tr(x, y) = xy induces a Hermitian inner product in the complex
space C

n, where y stands for the conjugate of y. We define the k-th complex
minimum of an Eisenstein lattice as

λCk (�) = min
{

r : dimC span
{

x ∈ � : √tr(〈x, x〉) ≤ r
}

= k
}

.

In other words, λCk is the minimum value such that the ball of radius r contains k
linearly independent vectors over C.

Example 4.1 The exceptional lattice E6 [8, p. 126] produces the densest packing in
R

6 [3]. It is generated by the vectors (θ, 0, 0), (0, θ, 0) and (1, 1, 1) in C
3, where

θ = i√3 = ω − ω̄. Its three complex minima are equal to
√

3 and achieved by the
basis vectors.

Sub-lattices Ideals p ⊂ Z[ω] produce complex sub-lattices of Z[ω]. For instance if
a ∈ Z[ω] with N(a) = aa = p a rational prime, then the quotient Z[ω]/ 〈a〉 ∼ Fp.

4.3.2 Cyclotomic Lattices

Let K = Q(ζ ) be the cyclotomic field of degree n = φ(m), where ζ is a n-th
root of unity. A cyclotomic lattice in Kt is a Z[ζ ]-module. It can be embedded in
R
n from the cyclotomic embeddings σi(ζ ) = ζ i . Multiplication by elements of

Z[ζ ] translates into multiplication by a diagonal matrix in R
n. Indeed, if � is a

cyclotomic lattice, u ∈ � and a ∈ Z[ζ ], then

σ(au) = (Da ⊗ It )σ (u) =

⎛

⎜
⎜
⎜
⎝

Da

Da
. . .

Da

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

σ(u1)

σ (u2)
...

σ (ut )

⎞

⎟
⎟
⎟
⎠
,

whereDa is the diagonal matrix with elements σ1(a), . . . , σn(a).
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The following simple observation is key to the results of Venkatesh [26].

Proposition 4.1 A cyclotomic lattice of degree n = φ(m) has at least m distinct
shortest vectors.

Proof Let u ∈ � be a vector of Euclidean norm r , where � is a Z[ζ ]-lattice. The
vectors ui = ζ iu, i = 0, . . . ,m− 1 belong to � and have Euclidean norm:

‖σ(ui )‖2 =
n
∑

j=1

∥
∥
∥σj (ζ

iu)
∥
∥
∥

2 =
n
∑

j=1

|σj (ζ i)|2
∥
∥σj (u)

∥
∥2

=
n
∑

j=1

∥
∥σj (u)

∥
∥2 = ‖σ(u)‖2 = r2.

This shows that the group of cyclotomic units acts freely on the “layers” of � and
proves the assertion of the proposition. 
�

Indeed, φ(m) of such vectors (corresponding to the distinct primitive roots of
unity) are linearly independent over R, i.e., the set of vectors of minimum norm of
a cyclotomic lattice generate R

tn. This property is referred in the literature to as
well-roundness.

Example 4.2 If ζ is a p-th root of unity, and bi = (1−ζ )iZ[ζ ] is the ideal generated
by (1 − ζ )i , the lattice obtained by embedding bi in R

p−1 is called Craig’s lattice,
denoted by A(i)p−1. If i is choosen to be l = �n/2 log(n+ 1)#, a Craig’s lattice has

ratio:1

λ1(�)

V (�)1/(p+1)
≥
√

2π

logn

(√

n

2πe
+ o(1)

)

.

From this we obtain

log2� � −(1/2) log logn.

This is considerably weaker than (4.2) for high dimensions, but impressive for such
a simple construction.

Sublattices Similarly to the Eisenstein lattices, one can construct ideal lattices with
quotient equivalent to Fp as follows. Let p ≡ 1 (mod φ(m)). The ideal pZ[ζ ] can
be factorized into φ(m) distinct prime ideals p1, . . . , pφ(m). For instance, a prime
can be factorized from the factorization of the corresponding cyclotomic polynomial
modulo p. For any of these ideals we have Z[ζ ]/pi ∼ Fp.

1The square of this number is known as the Hermite constant.
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Remark 4.1 This construction can be generalized to any (totally real or CM) field
K , by considering its ring of integers OK and a prime ideal p above a prime that
splits.

4.3.3 Lipschitz and Hurwitz Lattices

The quaternion skew-field H is given by

H = {a + bi + cj + dk : a, b, c, d ∈ R} ,

with the usual relations k = ij , i2 = j2 = −1 and ij = −j i. It has
an Hermitian structure by considering the inner product 〈x, y〉 = xy, where
a + bi + (c + di)j = a − bi − cj − dk. The skew-field of quaternions can be
identified with R

4 under the natural mapping

σ(a + bi + cj + dk) = (a, b, c, d) ∈ R
4, (4.18)

with usual inner product. Lattices in H
n can be constructed from orders in H.

An order in H is a Z-lattice which is also a subring of H. A “natural way” of
constructing an order in H is by taking

L = {a + bi + cj + dk : a, b, c, d ∈ Z} .

This corresponds to the set of Lipschitz integers. This order is, however, not
maximal, i.e., it is strictly contained in a bigger order. The Hurwitz order H is the
maximal quaternionic order defined by:

H = {a + bi + cj + d(−1+ i + j + ij )/2 : a, b, c, d ∈ Z} .

By considering the mapping (4.18), the orders L and H correspond to Z-lattices
in R

4. Indeed, σ(L) = Z
4, whereas σ(H) = D4 is the checkerboard lattice in

dimension four [8, Sec. 7.2]. The Lipschitz order L has index 2 over the Hurwitz
order H.

A lattice in H
m is called a Hurwitz (resp. Lipschitz) lattice if it is a H left-module

(resp. L-module). Hurwitz lattices are, in particular, invariant under multiplication
by elements of the Hurwitz unit group

H× = {±1,±i,±j,±k, (±1± i ± j ± k)/2} ,

which has order 24. Similarly to cyclotomic lattices, the units H× acts freely in the
set of vectors of the same norm of a Hurwitz lattice� ∈ H, meaning that each shell
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has at least 24 vectors. The matrix-representation of a quaternion x + yj , x, y ∈ C

is given by

(

x −y
y x

)

.

The reduced norm nrd of a quaternion is the discriminant of the corresponding
matrix. We have

nrd(a + bi + cj + dk) = a2 + b2 + c2 + d2.

Sublattices One can consider (left) ideals in H to construct sub-lattices. For
instance the sublattice corresponding to pH, where p is a prime, has index p4 in H
and

H/pH ∼ M2(Fp),

where M2(Fp) is the ring of matrices with entries in Fp. A possible ring isomor-
phism is obtained by setting

φ(1) =
(

1 0
0 1

)

, φ(i) =
(

0 −1
1 0

)

and φ(j) =
(

a b

beta −a
)

,

where a and b are two integers such that a2 + b2 ≡ −1 (mod p). Notice that such
an isomorphism preserves the residue class of the reduced norm, i.e. nrd(x) =
detφ(x) (mod p), for any x ∈ H.

4.3.4 A General Construction

It is possible to define a general construction that may be specialized in various
ways and subsumes a number of constructions in the literature. We first recall the
definition of a linear code.

Definition 4.1 Let Fp be a field with p elements, where p is a prime or a prime
power. A k-dimensional vector subspace C ⊂ F

n
p is called a (linear) code with

parameters (n, k, p) (or simply an (n, k, p)-code).

Let � be a rank m lattice and let n ≤ m be an integer. We define a reduction as
follows:

Definition 4.2 Let φp : � → F
n
p be a surjective homomorphism. Given a linear

code C, its associated lattice via φp is defined as

�p(C) � φ−1
p (C).
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It is not hard to see from the above definition that �p(C) is indeed a rank-m
lattice. The reduction nests �p(C) between the base (fine) lattice � and the kernel
(coarse) lattice�p = kerφp. This definition generalizes the idea of lifting a code to
the Euclidean space by shifting the codewords through vectors of pZn, the so-called
Construction A.

Example 4.3 By considering � = Z
n, �p = pZn and φp the componentwise

reduction modulo p we recover the so-called Construction A, which was used by
Rush [20] and Loeliger [14] to construct dense packings. Various important lattices
can be built via Construction A. Most of the works on applications of lattices to
communications hugely rely on Construction A [28]. See Fig. 4.3a for an illustration
of φ3.

Example 4.4 By replacing the ring Z by the ring of integers of a number field, we
enable a number of different constructions. As an illustration, let Q[√13] be the
quadratic field with ring of integers Z [μ] , where μ = 1+√13

2 . The rational prime
3 = −μμ̄ splits and the ideal p = μZ[μ] is such that Z[μ]/p ∼ F3. With a slight
abuse of notation, define

φp(x) = (x (mod μ), x (mod μ)),

where the modulo-μ operation identifies a point with its representative in Z[μ]/p,
which can be chosen to be in {−1, 0, 1}.

We have kerφp = 3Z[μ]. Let σ(x) = (x, x) be the embedding of x in R
2. One

possible full set of representatives for the quotient Z[μ]/3Z[μ] ∼ F
2
3 is

0
σ→ (0, 0)

φp−→ (0, 0), 1
σ→ (1, 1)

φp−→ (1, 1),−1
σ→ −(1, 1) φp−→ −(1, 1),

μ
σ→ (μ,μ)

φp−→ (0, 1), (μ+ 1)
σ→ (μ+ 1, μ+ 1)

φp−→ (1,−1),

μ̄
σ→ (μ,μ)

φp−→ (1, 0), (μ− 1)
σ→ (μ− 1, μ− 1)

φp−→ (0,−1),

(μ− 1)
σ→ (μ− 1, μ− 1)

φp−→ (−1, 0), (−μ− 1)
σ→ (μ− 1, μ− 1)

φp−→ (−1, 1).

The pre-image by φ3 of a code spreads its corresponding representatives along R
2

(Fig. 4.3b).

Example 4.5 (Natural Reductions) In general, from any starting lattice � we can
find a “natural” reduction to F

n
p as follows. Given a basis x1, . . . , xn for �, take φp

to be the linear mapping defined by φp(xi ) = ei ∈ F
n
p, where ei is the i-th canonical

vector (0, . . . , 0, 1, 0, . . . , 0) ∈ F
n
p. It is clear that φ is surjective and kerφp = p�,

therefore the associated sequence of reductions is non-degenerate. This provides a
systematic way of constructing good sublattices of a given lattice.
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Fig. 4.3 Constructions from different base lattices and φ3. Blue dots represent the fine lattice �
and red dots represent the coarse lattice ker φ3. (a) Z-lattices (Example 4.3). (b) Z[μ]-lattices
(Example 4.4)

The advantage of a reduction is that we can exploit properties of linear codes
over F

n
p and, as it turns out, random codes over Fp are well behaved. This was

recognized by Rush [20] and Loeliger [14], that showed from two different methods
that the existence of certain codes over Fp implies the existence of good lattices.

Let g : Fnp → R
+ be a function and define g∗(S) as the sum of g over all non-

zero points of S. Let C be a code chosen at random from all codes of dimension k. It
was proven in [14], from a simple counting argument, that the average of g assumes
the simple form

E[g∗(C)] = (pk − 1)/(pn − 1)g∗(Fnp). (4.19)

Now let

Lp =
{

β�p(C) : C is an (n, k, p) − code
}

(4.20)

be the ensemble of all lattices associated to codes of dimension k, normalized to
volume V (i.e., β = V 1/m/(pn−kV (�)1/m). The uniform distribution on the set of
codes induces a uniform distribution on Lp. In order to push Eq. (4.20) from codes
to lattices, we need to impose some restrictions on the reductions.

Definition 4.3 A sequence of reductions (φpj )
∞
j=1, φj : �→ F

n
pj

, with increasing
primes p1 < p2 < · · · is said to be non-degenerate if

λ(�pj ) ≥ cp
n
m

j ,



4 Random Algebraic Lattices and Codes for Wireless Communications 161

for all j some constants c, α > 0. Similarly, the sequence of associated ensembles
(Eq. (4.20)) is said to be non-degenerate.

Non degeneracy is indeed very mild and can be satisfied by the “natural”
reduction in the previous examples. For the following theorem, let P be an infinite
subset of the prime numbers.

Theorem 4.3 If (φp)p∈P is a non-degenerate sequence of reductions and Lp are
the corresponding ensembles, then

lim
p→∞ELp [NBr (�)] = V −1vol Br.

Proof

E
[

NBr (β�)
] = E

[

NBr (β�p)
]+ E

[

NBr (β�p(C)\β�p)
]

.

Under the hypothesis, the first term tends to zero as p → ∞. The second term,
using Eq. (4.19) for g(x) = 1Br (φ

−1
p ({x})), is equal to

E
[

NBr (�p(C)\�p)
] = (pk − 1)/(pn − 1)NBr (β�)→

vol Br
V

,

where the last limit is obtained by applying a linear transformation to Eq. (4.5). 
�
From the above theorem and standard arguments, viz. Section 4.2, one can

establish the existence of lattices constructed from any reduction φp approaching
the lower bound.

Matrix Rings For the case of Hurwitz lattices (and more general orders over
Division Algebras), as seen in Sect. 4.3, the “natural” underlying alphabet in the
reduction is the ring Mn(Fp) of n × n matrices with entries in Fp. In these cases,
a version of Theorem 4.3 over matrix rings is preferred. Such a theorem can be
derived from the following Lemma 4.2 on random codes over matrix rings. Let R
be a finite ring and R∗ its units. Denote by (Rn)∗ the set of vectors in Rn such that at
least one coordinate is a unit. A linear code in C ⊂ R

n is a free R-submodule of Rn
(with the natural scalar multiplication). Let g : Rn→ R

+ be non-negative function.
For a code C, we define g∗(C) =∑c∈C∩(Rn)∗ g(c).

Lemma 4.2 ([4]) If Cb is the set of all codes of rank k, and a code is chosen in C
uniformly at random, then

E
[

g∗(C)
] ≤ |R|k

∣
∣(Rn)∗

∣
∣
g∗(Rn).
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From this construction, and from a Rogers-like argument [25], it is possible to
show the existence of Hurwitz lattices with real dimension 4m and density �4m ≥
24m/e24m, improving the results in Sect. 4.2.3.

4.4 A Glance at Applications to Wireless Communications

Up to now, we have only considered the problem of finding dense sphere-packings.
As briefly described in the introduction, this problem is related to the one of finding
good codes for the transmission of information over wireless media. This relation is
well-established and can be interpreted via the Minkowski-Hlawka theorem.

In this second part of the chapter, we will show how the techniques considered
previously, and the lattices constructed in Sects. 4.2 and 4.3 can be used in
applications to wireless communications. In particular, we will show how algebraic
lattices can be used to achieve the capacity of several communication channels.

Readers are referred to [24] for background of wireless communications. Prac-
tical design and applications of the proposed codes require more research in the
future. See [6] for a code design based on a combination of algebraic lattices and
polar codes.

4.4.1 Infinite Constellations

4.4.1.1 Classic AWGN Channel

The Gaussian channel problem can be described as follows. A signal, represented by
a vector x ∈ C

T is to be sent to a receiver through a noisy channel. One of the most
fundamental way of modeling the noise is by supposing that it is additive and each
entry is independent distributed according to a Gaussian distribution. The observed
vector by a receiver after T slots of transmission (or “channel uses”) is given by:

y = x+ w,

where w is a noise component, whose entries are iid, circularly symmetric Gaussian
with variance σ 2

w per complex dimensions. The objective of the receiver is to recover
x with high probability, given the observation y.

Infinite Constellation Problem First assume that the possible transmitted signals
can be any point in a lattice2 � ⊂ C

T . One possible strategy is to find the closest
lattice point to y and declare it as our estimate. This decoding strategy is usually

2Notice that in this part we consider complex lattices, since C
T is the typical ambient space in

applications to wireless. The results in the previous sections can be “adapted” to complex lattices
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known as lattice decoding. The probability of error of lattice decoding is given by

Pe(�) = P(w /∈ V�), (4.21)

where V� is the Voronoi cell of � (we recall Fig. 4.5a in the introduction for an
illustration). If the volume of V� is sufficiently large and its points are sufficiently
separated apart (in comparison to the noise variance σ 2

w) we can clearly distinguish
between each signal. However this strategy wastes too much volume. A more
significant problem is the following: Given a target probability of error Pe what
is the lattice that achieves Pe with the minimum possible volume? Conversely, one
can ask, for a fixed a volume, what is the lattice that minimizes Pe(�)?

Another possible decoding strategy is to only decode points which are uniquely
contained in a sphere of radius r (a threshold radius to be determined later). This
strategy unveils the relation between the probability of error of a “random” lattice
and the Minkowski-Hlawka theorem 4.1.

Proposition 4.2 (Lemma 7.7.1, [28]) Let S be a sphere of radius r . The probability
of error of a lattice is upper bounded by

Pe(�) ≤ P(w /∈ S)+ Ew [NS+w(�)] ,

whereNS+w(�) is the lattice point enumerator (4.9).

Therefore, a bound on the probability of error can by obtained by bounding the
lattice point enumerator. But the average behavior of NS+w(�) over an ensemble of
lattices L is well-known from Theorems 4.1 and 4.3. The radius r can be choosen
to be slightly greater than

√
T σ 2, which guarantees that the probability that w /∈ S

vanishes as the dimension increases.
We are particularly interested in high-dimensional signals, i.e., when T →∞ is

large. In this case, from the above proposition we can deduce a result firstly proved
by Poltyrev [18] that establishes that a vanishing probability of error is possible for
a sequence of lattices �1,�2, . . . with

lim
T→∞ sup logV (�T )

1/T ≥ log(πeσ 2).

Notice the slight difference between the above equation and (4.3), due the use of
complex dimensions.

We will say that �1,�2, . . . , is AWGN-good if its probability of error vanishes
with logV (�)1/T → log(πeσ 2). The quantity

γ�(σ) = V (�)1/T /σ 2 (4.22)

in a natural way. For instance, a complex full-rank lattice in C
T can be naturally identified with a

lattice in R
n, for n = 2T .
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is usually called the volume-to-noise ratio (VNR) of a lattice, with respect to noise
σ . Poltyrev’s result can then be re-written as log γ�(σ)→ logπe.

4.4.1.2 Compound Channel Model

Another, more general communication scenario arises when transmitting informa-
tion using multiple antennas, through an unknown channel. After one channel use,
the vector observed by a receiver can be modeled as follows

y = Hx+ w, (4.23)

where H is a fixed matrix with dimensions n × m, and w is again a circularly
symmetric Gaussian noise. In typical applications, the channel matrix H is known
to the receiver but not known to the transmitter. After T channel uses, the channel
equation can be written as:

Y
︸︷︷︸

n×T
= H
︸︷︷︸

n×m
X
︸︷︷︸

m×T
+ W
︸︷︷︸

n×T
(4.24)

or in vectorized form

y
︸︷︷︸

n×1

= H
︸︷︷︸

n×mT
x
︸︷︷︸

mT×1

+ w
︸︷︷︸

nT×1

, (4.25)

where

H = IT ⊗H =

⎛

⎜
⎜
⎜
⎝

H
H
. . .

H

⎞

⎟
⎟
⎟
⎠
.

is a block-diagonal matrix.

Infinite Compound Channel Model Again let us suppose that the transmitted
signal x is in a lattice � ⊂ C

nT . The probability of error is denoted by Pe(�,H),
and corresponds to the probability that w leaves the Voronoi cell of the transformed
lattice H�.

If H were known by both the transmitter and receiver, it would be possible
to design the lattice H−1�, that completely ignores the effect of �. However
multiplication by H−1 changes the volume of � to

vol H−1� = D× vol �,
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where D = √detH†H and H† is the Hermitian transpose of H. Therefore it follows
that with this strategy, according to the Poltyrev limit, the smallest possible volume
for a lattice to have vanishing probability of error can be calculated as:

logV (H−1�)1/nT = log detD1/nT + logV (�)1/nT

≥ log(πeσ 2)− 1

nT
logD.

(4.26)

However, the assumption that H is known by a transmitter is very strong. It is
perhaps surprising that even without this assumption, it is possible to design a
sequence of lattices achieve the bound (4.26). In what follows, we will explain
a construction with vanishing probability of error for any matrix H with fixed
determinant D = √detH†H.

4.4.1.3 Block Fading Channel

In the block-fading channel, the channel matrix H in Eq. (4.24) is diagonal, with
dimension n × n. Note that here “block fading” means n parallel channels, all of
which are fixed during a time interval of length T . Our objective is to design a
lattice � ⊂ C

nT so that the probability of error Pe(�,H) vanishes simultaneously
for all H of the same determinant. For the following definition we recall that, from
the definition of the volume-to-noise ratio (VNR) we have

γH�(σw) = |detH|1/nV (�)1/nT
σ 2
w

.

Definition 4.4 (Fading-Good Lattices [5]) We say that a sequence of lattices �
of increasing dimension nT is universally good for the block-fading channel if
Pe(�,H)→ 0 as T →∞ for any VNR

γ(IT⊗H)�(σw) > πe

and all H with |detH| = D
In order to build lattices for the block fading channel, we resort to the generalized

Construction A over OK , as in Sect. 4.3.2 (see also the remark at the end of the
section). In this case, we choose a totally complex (CM) number field K/Q(i)
(or any other quadratic base field), of degree equal to n matching the number of
rows/columns of matrix H.

Let p ⊂ OK be a prime ideal abovep with norm p�. Then OK/p $ Fp� . The OK -
lattice � associated to a linear code C ⊂ F

T
p�

can be described using a convenient
notation as:

�K(C) = C+ pT . (4.27)
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Fig. 4.4 Handling an
ill-conditioned channel
realization by the
quantization of the channel
space

The associated real lattice �(C) will be then obtained by applying the embeddings
of K in �K(C). Notice that this construction suits the generalised reductions as in
Sect. 4.3.4, and therefore can generate lattices which satisfy the Minkowski-Hlawka
theorem. One advantage of the following construction is that it can “compactify”
the set of possible matrices with fixed discriminant H due the group of units of
K and a theorem of Dirichlet. In other, words, for any matrix H with discriminant
D it is possible to find E and U such that EU = H and �(C) is invariant under
multiplication by U, i.e., U�(C). An illustration of this process is in Fig. 4.4.

Using this property, and the Minkowski-Hlawka theorem, the existence of a
universal lattice for the block-fading channel can be proven by averaging the
aforementioned construction over random codes C (with p→∞) [5], as T →∞.

4.4.2 Power-Constrained General Model

4.4.2.1 Shaping

For practical applications, it is not possible to suppose that all lattice points are
available for transmission. Due to physical limitations of the transmission devices,
the power of the signal is usually constrained, and one can only send signals that
satisfy

1

T
E

[

|x1|2 + |x2|2 + . . .+ |xT |2
]

≤ P,

where P > 0 is a given power parameter. One way of satisfying the power
constraint, is to choose lattice points inside a sphere of radius

√
T P . We will explain

next another technique, called probabilistic shaping, where the entire lattice is used,
but the points are not picked uniformly, but chosen according to a discrete Gaussian
distribution. In the power constrained case the normalized entropy of the signals

1

n
H(x) = −1

n

∑

x∈�
P(x) logP(x),
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measures the communication rate of a scheme, where P(x) denotes the probability
(mass) of the sent point x.

4.4.3 Lattice Gaussian Distribution

In order to deal with power constraints, we have to shape the infinite lattice
constellation �. In this subsection, we define the lattice Gaussian distribution for
Z[i]-lattices. The definitions here are formally the same as for its real counterpart
explained in [13], and the difference is a factor 2 in most cases.

Recall that an n-dimensional Z[i]-lattice � in the Euclidean space C
n is defined

as

� = L (B) = {Bx : x ∈ Z[i]n}

where B ∈ C
n×n is the generator matrix. The dual lattice �∗ of a lattice � is

defined as the set of vectors v ∈ C
n such that 〈v,λ〉 = v†λ ∈ Z[i], for all λ ∈ �.

The volume of � is defined as that of its real equivalent: V (�) = |detB|2.
For σ > 0 and c ∈ C

n, the continuous Gaussian distribution of covariance matrix
� centered at c is given by

f√�,c(x) =
1

πndet(�)
e−(x−c)†�−1(x−c),

for x ∈ C
n. For convenience, we write f√�(x) = f√�,0(x).

Consider the �-periodic function (see Fig. 4.5a)

f√�,�(x) =
∑

λ∈�
f√�,λ(x) =

1

πndet(�)

∑

λ∈�
e−(x−c)†�−1(x−c), (4.28)
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for all x ∈ C
n. Observe that fσ,� restricted to a fundamental region R(�) is a

probability density. We define the discrete Gaussian distribution over� centered at
c ∈ C

n as the following discrete distribution taking values in λ ∈ �:

D�,
√
�,c(λ) =

f√�,c(λ)
f√�,c(�)

, ∀λ ∈ �,

where f√�,c(�) �
∑

λ∈� f√�,c(λ) = f√�,�(c). Again for convenience, we write
D�,

√
� = D�,

√
�,0. Figure 4.5b illustrates the discrete Gaussian distribution. As

can be seen, it resembles a continuous Gaussian distribution, but is only defined
over a lattice.

The flatness factor of a lattice � quantifies the maximum variation of f√�,�(x)
for x ∈ C

n.

Definition 4.5 (Flatness Factor) For a lattice � and for covariance matrix
√
�,

the flatness factor is defined by:

ε�(
√
�) � max

x∈R(�)

∣
∣
∣V (�)f√�,�(x)− 1

∣
∣
∣ .

In words,
f√
�,�
(x)

1/V (�) , the ratio between f√�,�(x) and the uniform distribution

over R(�), is within the range [1− ε�(
√
�), 1+ ε�(

√
�)].

Proposition 4.3 (Expression of ε�(
√
�)) We have:

ε�(
√
�) = V (�)

πndet(�)

∑

λ∈�
e−λ†�−1λ

=
∑

λ∗∈�∗
e−π2λ†�−1λ − 1

In particular, if � = σ 2I, then

ε�(σ) =
(
γ�(σ)

π

)n

 �

(
1

πσ 2

)

− 1

=  �∗
(

πσ 2
)

− 1

where γ�(σ) = V (�)1/n

σ 2 is the volume-to-noise ratio (VNR), and  �(τ) =
∑

λ∈� e−πτ‖λ‖
2
is the theta series.

A consequence of the Minkowski-Hlawka theorem of Sect. 4.2 applied to the
theta series (see also the remark before Sect. 4.2.2) is the existence of sequences of
lattices with vanishing flatness factor.
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Theorem 4.4 (Minkowski-Hlawka) ∀σ > 0 and ∀δ > 0, there exists a sequence
of lattices �(n) such that

ε�(n) (σ ) ≤ (1+ δ) ·
(
γ�(n) (σ )

π

)n

, (4.29)

i.e., the flatness factor can go to zero exponentially for any fixed VNR γ�(n) (σ ) < π .

More generally, ε�(
√
�)→ 0 if the generalized VNR γ�(n) (

√
�) = V (�)1/n

det(�)1/n
< π .

The significance of a small flatness factor is twofold. Firstly, it ensures that the
“folded” distribution f√�,�(x) is flat; secondly, it implies the discrete Gaussian
distributionD�,

√
�,c is “smooth”. We refer the reader to [12, 13] for more details.

The following lemma is particularly useful for communications and security [16].

Lemma 4.3 Given x1 sampled from discrete Gaussian distribution D�+c,
√
�1

and
x2 sampled from continuous Gaussian distribution f√�2

. Let�0 = �1+�2 and let

�−1
3 = �−1

1 +�−1
2 . If ε�(

√
�3) ≤ ε ≤ 1

2 , then the distribution g of x = x1+ x2 is
close to f√�0

:

g(x) ∈ f√�0
(x) [1− 4ε, 1+ 4ε] .

This lemma has profound implications. On one hand, it implies capacity, i.e.,
the discrete Gaussian distribution over a lattice is almost capacity-achieving if the
flatness factor is small [12]. On the other hand, it implies security, i.e., Alice’s signal
received by Eve is indistinguishable from a continuous Gaussian distribution.

4.5 Achieving Channel Capacity

4.5.1 AWGN Channel

Consider the classic AWGN channel

y = x+ w

where the vectors have dimension T , the codeword length.
In [12], a new coding scheme based on the lattice Gaussian distribution was

proposed. Let � be an AWGN-good lattice in C
T of dimension T , whose error

probability vanishes if the VNR V (�)1/T

σ 2
w

> πe. The encoder maps the information

bits to points in �, which obey the lattice Gaussian distribution (cf. Fig. 4.5b)

x ∼ D�,σs .
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Since the continuous Gaussian distribution is capacity-achieving, we want the
lattice Gaussian distribution to behave like the continuous Gaussian distribution (in
particular P ≈ σ 2

s ). This can be assured by a small flatness factor. Thus, while we
are concerned with the discrete distributionD�,σs , we in fact require the associated
periodic distribution fσs,� to be flat.

Since the lattice points are not equally probable a priori in the lattice Gaussian
coding, we will use maximum-a-posteriori (MAP) decoding. In [13], it was shown
that MAP decoding is equivalent to Euclidean lattice decoding of � using a scaling

coefficient α = σ 2
s

σ 2
s +σ 2

w
, which is asymptotically equal to the MMSE coefficient

P

P+σ 2
w

. In fact, the error probability of the proposed scheme under MMSE lattice

decoding admits almost the same expression as that of Poltyrev [18], with σw
replaced by σ̃w = σsσw√

σ 2
s +σ 2

w

. To satisfy the sphere bound, we choose the fundamental

volume V (�) such that

V (�)1/T > πeσ̃ 2
w. (4.30)

Meanwhile, the rate of the scheme is given by the entropy of the lattice Gaussian
distribution:

1

n
H(x) = R→ log(πeσ 2

s )−
1

T
logV (�)

< log(πeσ 2
s )− log

(

πe
σ 2
s σ

2
w

σ 2
s + σ 2

w

)

= log

(

1+ σ
2
s

σ 2
w

)

→ log (1+ SNR).

Combining these results, we arrive at the following theorem.

Theorem 4.5 (Coding Theorem) Consider a lattice code whose codewords are
drawn from the discrete Gaussian distribution D�,σs for an AWGN-good lattice �.
Any rate up to the channel capacity log (1+ SNR) is achievable, while the error
probability of MMSE lattice decoding vanishes exponentially fast.

4.5.2 Compound Block Fading Channel

In the general form, our framework is able to tackle the compound MIMO channel;
specializing this model we will obtain the block fading channel and the AWGN
channel. More precisely, we consider an n × n MIMO channel described by the
equation

y = Hx+ w, (4.31)
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where H ∈ C
n×n is the channel matrix, and x ∈ C

n is the input subject to the
power constraint E[x†x] ≤ nP . The noise entries of w are circularly symmetric
complex Gaussian with zero-mean and variance σ 2

w . The signal-to-noise ratio (SNR)
per receive antenna is defined by SNR = nP/σ 2

w . Assume that the receiver has
complete knowledge of H (but the transmitter does not have CSIT), which is fixed
during a whole transmission block. The (white input) achievable rate of this channel
is

C = log det
(

I+ SNR H†H
)

. (4.32)

Consider the set H of all channel matrices with fixed white-input capacity C:

H = {H ∈ C
n×n : log det

(

I+ SNR H†H
)

= C} . (4.33)

This can be viewed as a compound channel with capacityC. The compound channel
model (4.33) arises in several important scenarios in communications, such as the
outage formulation in the open-loop mode and broadcast [17].

The compound channel demands a universal code that achieves the capacity for
all members H ∈ H. This represents one of the most difficult problems in coding
theory. Note that (4.33) reduces to a compound block fading channel if H is diagonal
(here n denotes the number of blocks), and to the AWGN channel if H = I.

Applying the “unconstrained” construction described in Sect. 4.4.1.3 along with
Gaussian shaping, it can be shown that the average error probability E�[Pe(�)]
vanishes as long as the VNR > πe (as T →∞):

|I+ SNR H†H| 1
n V (�)

1
nT

σ 2
s

> πe. (4.34)

Thus, any rate

R→ n log(πeσ 2
s )−

1

T
log(V (�)) < log |I+ SNR HTH| = C

is achievable. Note that the achievable rate only depends on H through determinant
|I + SNR H†H|. Therefore, there exists a lattice � achieving capacity C of the
compound channel.

4.5.3 MIMO Fading Channel

The case of MIMO channels is more technical due to non-commutativity of the
underlying algebra. Let O be the natural order of cyclic division algebra A. Take
a two-sided ideal J of O and consider the quotient ring O/J. Define a reduction
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β : O → O/J. For a linear code C over O/J, β−1(C) is a lattice � (in C
n2T ).

However, the quotient ring O/J is non-commutative in general, e.g., a matrix
ring, skew polynomial ring etc. Nevertheless, as we have seen in Sect. 4.3.4 it
is still possible to prove the Minkowski-Hlawka theorem using codes over rings.
Thus, there exists a sequence of lattices universally good for MIMO fading, hence
achieving the capacity of compound MIMO channels. Note that recently [17] and
[15] have achieved a constant gap to the capacity of compound MIMO channels.

4.5.4 Approaching Secrecy Capacity

4.5.4.1 Gaussian Wiretap Channel

Now consider the Gaussian wiretap channel where Alice and Bob are the legitimate
users, while Eve is an eavesdropper. The outputs y and z at Bob and Eve’s ends are
respectively given by

{

y = x+ wb,

z = x+ we,
(4.35)

where wb, we are T -dimensional Gaussian noise vectors with zero mean and
variance σ 2

b , σ 2
e respectively.

For secrecy rate Rs , we use coset coding induced by a lattice partition�e ⊂ �b
such that

1

T
log |�b/�e| = Rs.

The fine lattice �b is the usual coding lattice for Bob, i.e., it is an AWGN-good
lattice. The coarse lattice �e is new, and turns out to be a secrecy-good lattice. To
encode, Alice uses the secret bits to select one coset of �e and transmits a random
point inside this coset.

Let us discuss intuitively why this scheme is secure. Informally, given message
m, Alice samples a lattice point uniformly at random from a coset �e + λm (this
corresponds to Poltyrev’s setting of infinite lattice coding [18]). Due to the channel
noise, Eve observes the periodic distribution

1

(πσ 2
e )
T

∑

λ∈�+λm

e
−‖z−λ‖2

σ2
e .

If the flatness factor ε�e (σe) is small, it will be close to a uniform distribution,
regardless of messagem. Then Eve would not be able to distinguish which message
Alice has sent. With a careful design of �e, this is possible, because Eve’s channel
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is noisier. Of course, the technical difficulty here is that one cannot really sample a
lattice point uniformly from a lattice or its coset.

Now we describe the wiretap coding scheme more formally. Consider a message
set M = {1, . . . , eT R}, and a one-to-one function φ : M → �b/�e which
associates each message m ∈ M to a coset λ̃m ∈ �b/�e. One could choose the
coset representative λm ∈ �b ∩ R(�e) for any fundamental region R(�e). In order
to encode the message m ∈ M, Alice actually samples xm from lattice Gaussian
distribution

xm ∼ D�e+λm,σs .

equivalently, Alice transmits λ+ λm where λ ∼ D�e,σs,−λm . Let σ̃e = σsσe√
σ 2
s +σ 2

e

and

σ ′s =
√

σ 2
s + σ 2

e . Regev’s Lemma (cf. Lemma 4.3) implies that if ε�e (σ̃e) <
1
2 ,

then:

V
(

pZ|M(·|m), fσ ′s
) ≤ 4ε�e (σ̃e) .

We see that the received signals converge to the same Gaussian distribution fσ ′s .
This already gives distinguishing security, which means that, asymptotically, the
channel outputs are indistinguishable for different input messages.

An upper bound on the amount of leaked information then follows.

Theorem 4.6 (Information Leakage [13]) Suppose that the wiretap coding
scheme described above is employed on the Gaussian wiretap channel (4.35),
and let εT = ε�e (σ̃e). Assume that εT < 1

2 for all T . Then the mutual information
between the confidential message and the eavesdropper’s signal is bounded as
follows:

i(M;Z) ≤ 8εT T R − 8εT log 8εT . (4.36)

A wiretap coding scheme is secure in the sense of strong secrecy if
limT→∞ i(M;Z) = 0. From (4.36), a flatness factor εT = o( 1

T
) would be enough.

In practice, an exponential decay of the information leakage is desired, and this
motivates the notion of secrecy-good lattices:

Definition 4.6 (Secrecy-Good Lattices) A sequence of lattices �(T ) is secrecy-
good if

ε�(n) (σ ) = e−!(T ), ∀γ�(T ) (σ ) < π. (4.37)

In the notion of strong secrecy, plaintext messages are often assumed to be
random and uniformly distributed in M. This assumption is deemed problematic
from the cryptographic perspective, since in many setups plaintext messages are
not random. This issue can be resolved by using the standard notion of semantic
security [9] which means that, asymptotically, it is impossible to estimate any
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function of the message better than to guess it without considering Z at all.
The relation between strong secrecy and semantic security was recently revealed
in [2, 13], namely, achieving strong secrecy for all distributions of the plaintext
messages is equivalent to achieving semantic security. Since in our scheme we make
no a priori assumption on the distribution of m, it achieves semantic security.

It can be shown that, under mild conditions (similar to those in [13]), the secrecy
rate

R < log(1+ SNRb)− log(1+ SNRe)− 1 (4.38)

is achievable, which is within 1 nat from the secrecy capacity. It is worth mentioning
that this small gap may be fictitious, due to our proof technique.

4.5.4.2 Fading Wiretap Channel

The channels for Bob and for Eve are given by

y = Hbx+ wb, z = Hex+ we,

respectively. We fix the capacity Ce of Eve’s compound channel with white inputs

He =
{

He ∈ C
n×n : log det

(

I+ SNR H†
eHe

)

= Ce} . (4.39)

as well as the capacity Cb of Bob’s compound channel. The secrecy capacity of
compound MIMO wiretap channels with white inputs is given by Schaefer and
Loyka[21]:

Cs = Cb − Ce. (4.40)

Similarly to lattice coding over the Gaussian wiretap channel, we use a pair of
nested lattices �b ⊂ �e. These lattices are built in the same manner as above:

�b = Cb + pT (4.41)

�e = Ce + pT (4.42)

where the codes satisfy Ce ⊆ Cb.
In order to encode the message m ∈ M, Alice samples xm from distribution

D�e+λm,σs . Similarly to (4.25), let He = IT ⊗He of size nT . Eve observes a discrete
Gaussian distribution DHe(�e+λm),Heσs , contaminated by i.i.d. Gaussian noise of
standard deviation σe. We would like this to be indistinguishable from a continuous
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Gaussian distribution of covariance matrix �0 = σ 2
s HeH

†
e + σ 2

e I, regardless of m.
By Lemma 4.3, we need

ε√�3
(He�e)→ 0

where �−1
3 = σ−2

s (HeH†
e)
−1 + σ−2

e I. In other words, we want the flatness factor
εHe�e(

√
�3) = εT to vanish with T .

We derive the expression

εHe�e (
√

�3) = V (He�e)
πnT det(�3)

∑

λ∈He�e
e−λT �−1

3 λ − 1

= V (He�e)
πnT det(�3)

∑

λ∈�e
e−

λT H†
e�
−1
3 Heλ

2 − 1

= V (�e)

πnT
det(σ−2

s I+ σ−2
e H†

eHe)×
∑

λ∈�e
e−

λT
(

σ
−2
s I+σ−2

e H†
eHe

)

λ

2 − 1.

It is worth mentioning that this expression shares the same form of Eve’s correct
decoding probability given in [1, (13)] except the MMSE correction term σ−2

s I.
Applying Minkowski-Hlawka, we obtain

E�e [εHe�e (
√

�3)]

= V (�e)
πnT

det(σ−2
s I+ σ−2

e H†
eHe)

= V (�e)

(πσ 2
s )
nT

det(I+ ρeH†
eHe)

T .

Now we calculate the information leakage to Eve. If we slightly reduce the VNR
of �e, E�e [εHe�e(

√
�3)] in (4.43) will vanish exponentially with T . Similar to the

Gaussian wiretap channel (4.36), the mutual information between Alice and Eve is
bounded for any Hb, He as

i(M;Z) ≤ 8εT T Rs − 8εT log(8εT ). (4.43)

Again, it is tricky to exhibit the existence of a universal code for all Hb, He.
Fortunately, thanks to the unit groups, this can be resolved by quantizing the
channels in the same manner as for capacity [21].
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For a vanishing flatness factor, we need the condition

det(I+ SNRe H†
eHe)1/nV (�e)

1
nT

σ 2
s

< π. (4.44)

From (4.34) and (4.44), we obtain the secrecy rate

Rs < log

∣
∣
∣I+ SNRb H†

bHb
∣
∣
∣

∣
∣
∣I+ SNRe H†

eHe
∣
∣
∣

− n = Cb − Ce − n,

which is the secrecy capacity to within a constant gap of n nats. Again, this gap may
well be fictitious.

Then one may claim the existence of a universal lattice code which achieves the
secrecy capacity to within n nats, under semantic security. Extensions to the MIMO
wiretap channel are also possible, using cyclic division algebras. The security proof
is very much the same, except that Hb and He are full matrices.
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Chapter 5
Algebraic Lattice Codes for Linear
Fading Channels

Roope Vehkalahti and Laura Luzzi

Abstract There exists an old and well established connection between lattice code
design for the additive white Gaussian noise (AWGN) channel and the mathematical
theory of lattices. Code design principles can be translated into the language of
geometry of numbers and are related to the most central problems in classical lattice
theory. These connections appear both in the practical design of short lattice codes,
and also in the asymptotic regime when designing codes that perform well from the
capacity point of view. However, when considering modern wireless channels, one
must take into account new features such as time or frequency selective fading and
multiple antennas. Such channels can not be abstracted into a simple AWGN model,
and require a different coding strategy. While in recent years plenty of research
has been done on code design for fading channels, few works have focused on
the problem of approaching capacity. In this survey, we review and generalize our
recent works and show how it is possible to perform code design for a large class
of different fading channels from a unified perspective and how this approach can
be used to build very robust lattice codes that perform within a constant gap from
the corresponding capacity. Our approach can be seen as a generalization to fading
channels of the classical connection between sphere packing problems and design
of capacity approaching lattice codes.

5.1 Introduction

In the decades following Shannon’s seminal work, the quest to design codes for
the additive white Gaussian noise (AWGN) channel led to the development of a rich
theory, revealing a number of beautiful connections between information theory and
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geometry of numbers. One of the most striking examples is the connection between
classical lattice sphere packing and the capacity of the AWGN channel. The main
result states that any family of lattice codes with linearly growing Hermite invariant
achieves a constant gap to capacity. These classical results and many more can be
found in the comprehensive book by Conway and Sloane [5].

The early sphere packing results suggested that lattice codes could achieve the
capacity of the AWGN channel and led to a series of works trying to prove this,
beginning with [6] and finally completed in [7]. Thus, while there are still plenty
of interesting questions to consider, the theory of lattice codes for the single user
AWGN channel is now well-established.

However, although the AWGN channel is a good model for deep-space or
satellite links, modern wireless communications call for more general channel
models which include time or frequency varying fading and possibly multiple
transmit and receive antennas. Therefore, in the last 20 years, coding theorists
have focused on the design of lattice codes for multiple and single antenna fading
channels [3, 23].

Yet the question of whether lattice codes can achieve capacity in fading channels
has only been addressed recently. The first work that we are aware of is due
to S. Vituri [25, Section 4.5], and gives a proof of existence of lattice codes
achieving a constant gap to capacity for i.i.d SISO channels. It seems that with minor
modifications this proof is enough to guarantee the existence of capacity achieving
lattices. In the single antenna i.i.d fading channels, this problem was considered also
in [10] and in our paper [24].

In [13], it was shown that polar lattices achieve capacity in single antenna i.i.d
fading channels. This is not only an existence result, it also gives an explicit code
construction. In [4], the authors prove existence of lattice codes achieving capacity
for the compound MIMO channel, where the fading is random during the first s time
units, but then gets repeated in blocks of length s. This work is most closely related
to [20], which was considering a similar question.

In [14, 15], we proved that lattice codes derived from number fields and division
algebras do achieve a constant gap to capacity over single and multiple antenna
fading channels. As far as we know, this was the first result achieving constant gap
to MIMO capacity with lattice codes. In [11], the authors corrected and generalized
[10] and improved on our gap in the case of Rayleigh fading MIMO channels.

However, while in our work [15], the gap to capacity is relatively large, our code
construction is almost universal in the sense that a single code achieves a constant
gap to capacity for all stationary ergodic fading channel models satisfying a certain
condition for fading (5.9). With some limitations, this gap is also uniform for all
such channels (see Remark 5.4).

In this work, we are revisiting some of the results in [15] and presenting them
from a slightly different and more general perspective. Our approach is based on
generalizing the classical sphere packing approach to fading channels. In [15], we
introduced the concept of reduced Hermite invariant of a lattice with respect to a
linear group of block fading matrices. As a generalization of the classical result
for AWGN channels, we proved that if a family of lattices has linearly growing
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reduced Hermite invariant, it achieves a constant gap to capacity in the block fading
MIMO channel. In this work, we extend this result and show that given any linearly
fading channel model we can define a corresponding notion of reduced Hermite
invariant. We also prove that in some cases the reduced Hermite invariant of a lattice
is actually a homogeneous minimum with respect to a homogeneous form (which
depends on the fading model). From this perspective, the classical sphere packing
result [5, Chapter 3] is just one example of the general connection between linear
fading channels and the homogeneous minima of the corresponding forms.

In Sect. 5.2, we begin by defining a general linear fading model, which captures
several channels of interest for practical applications. In Sect. 5.3, we recall how to
obtain a finite signal constellation from an infinite lattice under an average power
constraint. In Sect. 5.4, we review how the classical Hermite invariant can be used as
a design criterion to build capacity approaching lattice codes in AWGN channels. In
Sect. 5.5, we generalize the concept of Hermite invariant to linear fading channels by
introducing the reduced Hermite invariant. We also show that replacing the Hermite
invariant with the reduced one as a code design criterion leads to an analogous
capacity result in linear fading channels.

In Sect. 5.6, we focus on channels where the fading matrices are diagonal.
This brings us to consider ergodic fading single antenna channels. Following [15],
we show how lattice constructions from algebraic number fields can be used to
approach capacity in such channels. We begin by considering lattices arising from
the canonical embedding of the ring of algebraic integers, then examine the question
of improving the gap to capacity using non-principal ideals of number fields [24].1

In particular, we show that our information-theoretic problem is actually equivalent
to a certain classical problem in algebraic number theory.

Finally, in Sect. 5.7, we extend the results in [15] and show that in many relevant
channel models the reduced Hermite invariant of a lattice is actually a homogeneous
minimum of a certain form.

5.2 General Linear Fading Channel

In this work, we consider complex vector-valued channels, where the transmitted
(and received) elements are vectors in C

k. A code C is a finite set of elements in C
k .

We assume that both the receiver and the transmitter know the code.
Given a matrix H ∈ Mk(C) and a row vector x ∈ C

k , in order to hold on the
tradition that a transmitted vector is a row, we introduce the notation

H [x] = (H(xT ))T .

1More precisely, the ideal lattice construction was considered in the extended version of [24],
available at http://arxiv.org/abs/1411.4591v2.

http://arxiv.org/abs/1411.4591v2
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Let us assume we have an infinite sequence of random matrices Hk, k =
1, 2 . . . ,∞, where for every k,Hk is a k×k matrix. Given such sequence of matrices
we can define a corresponding channel. Given an input x = (x1, . . . , xk), we will
write the channel output as

y = Hk[x] +w, (5.1)

where w is a length k random vector, with i.i.d complex Gaussian entries with
variance 1 and zero mean, and the random matrix Hk represents fading. We assume
that the receiver always knows the channel realization of Hk and is trying to guess
which was the transmitted codeword x based on y and Hk . This set-up defines a
linear fading channel (with channel state information at the receiver), where the
term “linear” simply refers to the fact that the fading can be represented as the
action of a linear transform on the transmitted codeword. This type of channel (but
without channel state information) has been considered before in [26].

In the following sections, we consider the problem of designing codes for this
type of channels. In the remainder of the paper, we will assume the extra condition
that the determinant of the random matrices Hk is non-zero with probability one.
The channel model under consideration captures many communication channels of
practical significance. For example, when Hk is the identity matrix, we have the
classical additive Gaussian channel. Furthermore, if Hk is a diagonal matrix with
i.i.d Gaussian random elements with zero mean, we obtain the Rayleigh fast fading
channel. Finally, if Hk is a block diagonal matrix, we obtain a block fading MIMO
channel.

5.3 Lattices and Finite Codes

As mentioned previously, our finite codes C are simply subsets of elements in C
k .

We consider the ambient space C
k as a metric space with the Euclidean norm.

Definition 5.1 Let v = (v1, . . . , vk) be a vector in C
k . The Euclidean norm of v is

||v|| =
√
∑k
i=1 |vi |2.

Given a transmission power P , we require that every codeword x ∈ C ⊂ C
k

satisfies the average power constraint

1

k
‖x‖2 ≤ P. (5.2)

The rate of the code is given by R = log2|C|
k

.
In this work we focus on finite codes C that are derived from lattices.
A full lattice L ⊂ C

k has the form L = Zb1 ⊕ Zb2 ⊕ · · · ⊕ Zb2k , where the
vectors b1, . . . , b2k are linearly independent over R, i.e., form a lattice basis.
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Given an average power constraintP , the following lemma suggests that by shift-
ing a lattice and considering its intersection with the 2k-dimensional ball B(

√
kP )

of radius
√
kP , we can have codes having roughly Vol(B(

√
kP )) elements, where

the notation Vol stands for the volume.

Lemma 5.1 (See [8]) Suppose that L is a full lattice in C
k and S is a Jordan-

measurable bounded subset of Ck . Then there exists x ∈ C
k such that

|(L+ x) ∩ S| ≥ Vol(S)

Vol(L)
.

Let α be an energy normalization constant and L a 2k-dimensional lattice in
C
k satisfying Vol(L) = 1. According to Lemma 5.1, we can choose an element
xR ∈ C

k such that for the code

C = B(√kP ) ∩ (xR + αL) (5.3)

we have the cardinality bound

|C| ≥ Vol(B(
√
kP ))

Vol(αL)
= CkP

k

α2k , (5.4)

where Ck = (πk)k

k! . We can now see that given a lattice L with Vol(L) = 1, the
number of codewords we are guaranteed to get only depends on the size of α.

From now on, given a lattice L and power limit P , the finite codes we are
considering will always satisfy (5.4). We note that while the finite codes are not
subsets of the scaled lattice αL, they inherit many properties from the underlying
lattice.

5.4 Hermite Invariant in the AWGN Channel

In this section, we will present the classical Hermite invariant approach to build
capacity approaching codes for the AWGN channel [5, Chapter 3]. We remark that
this channel can be seen as an example of our general set-up (5.1) by assuming that
for every k the random matrix Hk is a k × k identity matrix with probability one.
The channel equation can now be written as

y = x +w,

where x ∈ C ⊂ C
k is the transmitted codeword and w is the Gaussian noise vector.
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After the transmission, the receiver tries to guess which was the transmitted
codeword x by performing maximum likelihood (ML) decoding, and outputs

x̂ = arg min
x̄∈C

‖y − x̄‖ = arg min
x̄∈C

‖x − x̄ +w‖ .

This suggests a simple code design criterion to minimize the error probability.
Given a power limit P , the codewords of C should be as far apart as possible. As the
properties of the finite code C are inherited from the underlying lattice, we should
give a reasonable definition of what it means that lattice points are far apart.

Definition 5.2 The Hermite invariant of a 2k-dimensional lattice Lk ⊂ C
k is

defined as

h(Lk) = inf{ ||x||2 | x ∈ Lk, x �= 0}
Vol(Lk)1/k

,

where Vol(Lk) is the volume of the fundamental parallelotope of the lattice Lk .

Theorem 5.1 Let Lk ⊂ C
k be a family of 2k-dimensional lattice codes satisfying

h(Lk) ≥ 2kc, where c is a positive constant. Then any rate

R < log2 P − log2
2

πec

is achievable using the lattices Lk with ML decoding.

Proof Given a power limit P , recall that the finite codes we are considering are of
the form C = B(√kP ) ∩ (xR + αLk). Without loss of generality, we can assume
that Vol(Lk) = 1. Here α is a power normalization constant that we will soon solve
and which will define the achievable rate. The minimum distance in the received
constellation is

d = min
x,x̄∈C
x �=x̄

‖x − x̄‖ .

The error probability is upper bounded by

Pe ≤ P

{

‖w‖2 ≥
(
d

2

)2
}

.

Note that we can lower bound the minimum distance as follows:

d2 ≥ α2 min
x∈Lk\{0}

‖x‖2 ≥ α2h(Lk) ≥ α22ck.
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Therefore we have the upper bound

Pe ≤ P

{

‖w‖2 ≥ α
2ck

2

}

. (5.5)

Let ε > 0. Since 2 ‖w‖2 is a χ2 random variable with 2k degrees of freedom, due
to the law of large numbers,

lim
k→∞P

{

‖w‖2

k
≥ 1+ ε

}

= lim
k→∞P

{

2 ‖w‖2

2k
≥ 1+ ε

}

→ 0 (5.6)

Assuming α2 = 2(1+ε)
c

, we then have thatPe → 0 when k→∞, and the cardinality
bound (5.4) implies that

|C| ≥ CkP
k

α2k
= CkP

kck

2k(1+ ε)k .

For large k, Ck ≈ (πe)k√
2πk

using Stirling’s approximation.

It follows that ∀ε > 0 we can achieve the rate

R = log2 P − log2
2(1+ ε)
πec

.

Since ε is arbitrary, this concludes the proof. 
�
Remark 5.1 There exist several methods to find families of lattices satisfying the
condition of Theorem 5.1. For example the Minkowski-Hlawka theorem provides a
non-constructive proof of the existence of 2k-dimensional lattices Lk ⊂ C

k having
Hermite invariants h(Lk) ∼ k

πe
[5].

5.5 Hermite Invariant in General Linear Fading Models

In the previous section, we saw how the Hermite invariant can be used as a design
criterion to build capacity approaching codes in the AWGN channel. Let us now
define a generalization of this invariant for linear fading channels.

Suppose we have an infinite sequence of random matrices Hk , k = 1, 2 . . . ,∞,
where Hk is a k × k matrix. Given an input x = (x1, . . . , xk), we will write the
channel output as

y = Hk[x] +w,
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where w is a length k random vector, with i.i.d complex Gaussian entries with vari-
ance 1 per complex dimension. We assume that the receiver knows the realization
of H .

Given a channel realization H , the receiver outputs the ML estimate

x̂ = arg min
x̄∈C

‖H [x] +w −H [x̄]‖ .

From the receiver’s perspective this is equivalent to decoding the code

H [C] = {H [x] | x ∈ C}

over an AWGN channel.
As we assumed that the finite codes are of the form (5.3), we have

H [C] ⊂ {H [x] | x ∈ xR + αL} = {z | z ∈ H [xR] + αH [L]},

where

H [L] = {H [x] | x ∈ L}.

We can now see that the properties of H [C] are inherited from the set H [L].
If we assume that the matrix H has full rank with probability 1, then the linear

mapping x �→ H [x] is a bijection of Ck onto itself with probability 1.
Assuming that Lk ⊂ C

k has basis {b1, . . . , b2k} we have that

H [Lk] = {H [x] | x ∈ Lk} = ZH [b1] ⊕ · · · ⊕ ZH [b2k],

is a full-rank lattice with basis {H [b1], . . . , H [b2k]}. Since it is full-rank, we know
that h(H [Lk]) > 0, but is it possible to choose Lk in such a way that h(H [Lk])
would be non-zero irrespective of the channel realization H ? Let us now try to
formalize this idea.

We can write the random matrix Hk in the form

Hk = |det(Hk)|1/kH ′k
where |det(Hk ′)| = 1. Clearly, if the term |det(Hk)|1/k happens to be small, it will
crush the Euclidean distances of points in H [Lk]. However, we will show that if the
random matrices Hk are “well behaving”, then it is possible to design lattices that
are robust against fading.

Definition 5.3 Let A be a set of invertible matrices such that ∀A ∈ A, |det(A)| =
1. The reduced Hermite invariant [15] of a 2k-dimensional lattice L ⊂ C

k with
respect to A is defined as

rhA(L) = inf
A∈A{h(A[L])}.
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It is easy to see that

inf
A∈A

{

inf
x∈L, x �=0

||A[x]||2
}

= inf
x∈L, x �=0

{

inf
A∈A||A[x]||

2
}

. (5.7)

This observation suggests the following definition.

Definition 5.4 We call

||x||A = inf{ ||A[x]|| | A ∈ A},

the reduced norm of the vector x with respect to the set A.

With this observation we realize that

rhA(L) = inf{ ||x||2A | x ∈ L, x �= 0}
Vol(L)1/k

. (5.8)

If the set A includes the identity matrix, we obviously have

rhA(L) ≤ h(L).

Suppose that {Hk}k∈N+ is a fading process such that Hk ∈ Mk×k(C) is full-rank
with probability 1, and suppose that the weak law of large numbers holds for the
random variables {log det(HkH

†
k )}, i.e. ∃μ > 0 such that ∀ε > 0,

lim
k→∞P

{∣
∣
∣
∣

1

k
log det(HkH

†
k )− μ

∣
∣
∣
∣
> ε

}

= 0. (5.9)

We denote the set of all invertible realizations of Hk with A∗
k . Then define

Ak = {|det(A)|−1/kA | A ∈ A∗
k}. (5.10)

Theorem 5.2 Let Lk ⊂ C
k be a family of 2k-dimensional lattice codes satisfying

rhAk (Lk) ≥ 2kc for some positive constant c, and suppose that the channel satisfies
(5.9). Then any rate

R < log2 P + μ− log2
2

πec

is achievable using the codes Lk with ML decoding.

Proof Given a power constraint P , recall that we are considering finite codes of the
form (5.3), where α is a power normalization constant that we will soon solve.
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The minimum distance in the received constellation is

dH = min
x,x̄∈C
x �=x̄

‖H [x − x̄]‖ ≥ min
x∈Lk
x �=0

‖H [αx]‖ ,

and by the hypothesis on the reduced Hermite invariant,

d2
H ≥ α2 min

x∈Lk\{0}
‖H [x]‖2 ≥ α2det(HH †)1/krhAk (Lk) ≥ α2det(HH †)1/k2ck.

The ML error probability is bounded by

Pe ≤ P

{

‖w‖2 ≥
(
dH

2

)2
}

.

Fixing ε > 0, the law of total probability implies that

Pe ≤ P

{

d2
H

4k
≥ 1+ ε

}

P

{

‖w‖2 ≥ d
2
H

4

∣
∣
∣

d2
H

4k
≥ 1+ ε

}

+ P

{

d2
H

4k
< 1+ ε

}

≤ P

{

‖w‖2

k
≥ 1+ ε

}

+ P

{

d2
H

4k
< 1+ ε

}

≤ P

{

‖w‖2

k
≥ 1+ ε

}

+ P

{
α2cdet(HH †)1/k

2
< 1+ ε

}

Recall that the first term tends to zero when k →∞ due to (5.6). The second term
will tend to zero as well if we choose

log2

(
2(1+ ε)
α2c

)

= μ− δ

for some δ > 0. Equation (5.4) gives us that

R = 1

k
log2 |C| ≤ log2 P − log2

α2

Ck

For large k, Ck ≈ (πe)k√
2πk

. It follows that we can achieve rate

R = log2 P + μ− δ − log2
2(1+ ε)
πec

.
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Since ε and δ are arbitrary, any rate

R < log2 P + μ− log2
2

πec

is achievable. 
�
Remark 5.2 In the case of the classical Hermite invariant, there exist several
methods to build lattices with large Hermite invariant. In fact, one can prove that
on average (with respect to a certain probability measure), random lattices have
large Hermite invariants.

However, in the case of the reduced Hermite invariant the situation is quite
different. Given a set of matrices Ak ⊂ Mk(C), it might be impossible to find even
a single lattice for which rhAk (L) > 0. Even if we know that such lattices do exist,
it might be very hard to find them. Even harder (if possible) it is to find a family of
lattices satisfying the conditions of Theorem 5.2 for any c. In the following section,
we will give some examples of sets Ak for which this is possible.

Remark 5.3 Analysing the proof of Theorem 5.2, one can see that maximizing
the reduced Hermite invariant can be used as a code design criterion for the
corresponding fading channel. In particular, a fixed code satisfying this criterion
achieves the same rate under different fading channel statistics.

5.6 Code Design for Diagonal Fading Channels

Let us now consider a fading channel where for every k we have Hk =
diag[h1, h2, . . . , hk]. Assume that each hi is non-zero with probability 1 and that
{hi} forms an ergodic stationary random process. In this model, sending a single
symbol xi during the ith time unit leads to the channel equation

yi = hi · xi +wi, (5.11)

where wi is a zero-mean Gaussian complex random variable with variance 1.
The corresponding set of matrices Ak in (5.10) is a subset of the set of diagonal

matrices inMk(C) having determinant with absolute value 1.
The assumption that the process {hi} is ergodic and stationary implies that each

of the random variables hi has equal statistics. Therefore we can simply use h to
refer to the statistics of all hi . Assuming now also that

∑k
i=1

1
k

log |hi |2 converges
in probability to some constant, we have the following.

Corollary 5.1 Suppose that we have a family of lattices Lk ⊂ C
k , where

rhAk (Lk) ≥ 2kc for some positive constant c. Then any rate

R < Eh

[

log2 P |h|2
]

− log2
2

πec

is achievable with the family Lk over the fading channel (5.11).
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Proof This statement follows immediately from Theorem 5.2, where μ =
Eh

[

log2 |h|2
]

. 
�
Given two sets A′

k ⊆ Ak , we have for any lattice L that

rhA′k (L) ≥ rhAk (L).

From now on, we will fix Ak to be the set of all diagonal matrices inMk(C) having
determinant with absolute value 1. Note that with this choice, if rhAk (Lk) ≥ 2kc
then Corollary 5.1 holds for any channel of the form (5.11).

Let (x1, x2, . . . , xk) ∈ C
k . According to [15, Proposition 8] we have2

||(x1, . . . , xk)||2Ak = k|x1 · · · xk|2/k. (5.12)

We can now see that a lattice with large reduced Hermite invariant must have the
property that the product of the coordinates of any non-zero element of the lattice is
large.

Definition 5.5 Given x = (x1, . . . , xk) ∈ C
k , we define its product norm as

n(x) =∏ki=1 |xi |.
Definition 5.6 Then the normalized product distance of Lk is

Ndp,min(Lk) = inf
x∈Lk\{0}

n(x)

Vol(Lk)
1
2

. (5.13)

Combining (5.12), (5.8) and (5.13) we have that

rhAk (Lk) = k(Ndp,min(Lk))
2/k. (5.14)

This result gives us a more concrete characterization of the reduced Hermite
invariant and suggests possible candidates for good lattices.

5.6.1 Codes from Algebraic Number Fields

The product distance criterion in the previous section had already been derived in
[3] by analyzing the pairwise error probability in the special case where the process
{hi} is i.i.d Gaussian. The authors also pointed out that lattices that are derived
from number fields have large product distance. We will now shortly present this
classical construction and then study how close to the capacity we can get using

2More precisely, this result is slightly stronger than the statement of Proposition 8, but it is clear
from its proof.
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number fields. For the relevant background on algebraic number theory we refer the
reader to [17].

Let K/Q be a totally complex extension of degree 2k and {σ1, . . . , σk} be a set
of Q-embeddings, such that we have chosen one from each complex conjugate pair.
Then we can define a relative canonical embedding ofK into C

k by

ψ(x) = (σ1(x), . . . , σk(x)).

The following lemma is a basic result from algebraic number theory.

Lemma 5.2 The ring of algebraic integers OK has a Z-basis W = {w1, . . . , w2k}
and {ψ(w1), . . . , ψ(w2k)} is a Z-basis for the full lattice ψ(OK) in Ck .

For our purposes, the key property of the lattices ψ(OK) is that for any non-zero
element ψ(x) = (σ1(x), . . . , σk(x)) ∈ ψ(OK), we have that

∣
∣
∣

k
∏

i=1

σi(x)

∣
∣
∣

2 = nrK/Q(x) ∈ Z,

where nrK/Q(x) is the algebraic norm of the element x. In particular, it follows that
|∏ki=1 σi(x)| ≥ 1.

We now know that ψ(OK) is a 2k-dimensional lattice in C
k with the property

that Ndp,min(ψ(OK)) �= 0 and therefore rhAk (ψ(OK)) �= 0. This is true for any
totally complex number field. Let us now show how the value of rhAk (ψ(OK)) is
related to an algebraic invariant of the field K .

We will denote the discriminant of a number field K with dK . For every number
field, it is a non-zero integer.

The following lemma states some well-known results from algebraic number
theory and a translation of these results into our coding-theoretic language.

Lemma 5.3 Let K/Q be a totally complex extension of degree 2k and let ψ be the
relative canonical embedding. Then

Vol(ψ(OK)) = 2−k
√|dK |,

Ndp,min(ψ(OK)) = 2
k
2

|dK | 1
4

and rhAk (ψ(OK)) =
2k

|dK |1/2k .

We have now translated the question of finding algebraic lattices with the largest
reduced Hermite invariants into the task of finding the totally complex number fields
with the smallest discriminant. Luckily this is a well-known mathematical problem
with a tradition of almost a 100 years.
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In [16], J. Martinet proved the existence of an infinite tower of totally complex
number fields {Kk} of degree 2k, where 2k = 5 · 2t , such that

∣
∣dKk

∣
∣

1
k = G2, (5.15)

forG ≈ 92.368. For such fields Kk we have that

Ndp,min(ψ(OKk)) =
(

2

G

) k
2

and rhAk (ψ(OKk)) =
2k

G
.

Specializing Corollary 5.1 to the family of lattices Lk = ψ(OKk) derived from
Martinet’s tower, which satisfy the hypothesis with c = 1/G, we then have the
following result:

Proposition 5.1 Finite codes drawn from the latticesLk achieve any rate satisfying

R < Eh

[

log2 P |h|2
]

− log2
2G

πe
.

Remark 5.4 We note that given a stationary and ergodic fading process {hi} the
capacity of the corresponding channel is

C = Eh

[

log2(1+ P |h|2)
]

.

It is easy to prove that the rate achieved in Proposition 5.1 is a constant gap from
the capacity. This gap is also universal in the following sense. Let us consider all
ergodic stationary channels with the same first order statistics for |h|2. Then the
same sequence of finite codes achieve the same gap to capacity in all the channels
simultaneously.

Remark 5.5 We note that the number field towers we used are not the best known
possible. It was shown in [9] that one can construct a family of totally complex fields
such thatG < 82.2, but this choice would add some notational complications.

Remark 5.6 The families of number fields on which our constructions are based
were first brought to coding theory in [12], where the authors pointed out that the
corresponding lattices have linearly growing Hermite constant. This directly implies
that they are only a constant gap from the AWGN capacity. C. Xing in [27] remarked
that these families of number fields provide the best known normalized product
distance. Overall number field lattices in fading channels have been well-studied in
the literature. However, to the best of our knowledge we were the first to prove that
they actually do achieve a constant gap to capacity over fading channels.
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5.6.2 Codes from Ideals

As seen in the previous section, lattice codes arising from the rings of algebraic inte-
gers of number fields with constant root discriminants will achieve a constant gap to
capacity over fading channels. However, known lower bounds for discriminants [18]
imply that no matter which number fields we use, the gap cannot be reduced beyond
a certain threshold (at least when using our current approach to bound the error
probability). It is then natural to ask whether other lattice constructions could lead us
closer to capacity. The most obvious generalization is to consider additive subgroups
of OK and in particular ideals of OK , which will have non-zero reduced Hermite
invariant. Most works concerning lattice codes from number fields focused on either
the ring OK or a principal ideal aOK ; a more general setting was considered in
[1] and [19], which addressed the question of increasing the normalized product
distance using non-principal ideals I .

The problem with this approach is that while finding the reduced Hermite
invariant of lattices ψ(OK) or ψ(aOK) is an easy task, the same is not true forψ(I)
when I is non-principal. We will now show how this problem can be reduced to
another well-known problem in algebraic number theory and how it can be used to
study the performance limits of the lattices ψ(I). Here we will follow the extended
arXiv version of [24].

We note that number theoretic proofs are easier when using the equivalent
product distance notation rather than the reduced Hermite invariant. Therefore, we
will mostly focus on the product distance in this section.

Let K be a totally complex field of degree 2k. We will use the notation N(I) =
[OK : I ] for the norm of an ideal I . From classical algebraic number theory, we
have that N(aOK) = |nrK/Q(a)| and N(AB) = N(A)N(B).
Lemma 5.4 Suppose thatK is a totally complex field of degree 2k and that I is an
integral ideal in K . Then ψ(I) is a 2k-dimensional lattice in Ck and

Vol (ψ(I)) = [OK : I ]2−k
√|dK |.

This well-known result allows us to compute the volume of an ideal, but computing
its normalized product distance is a more complicated issue. In [1, Theorem 3.1],
the authors stated the analogue of the following result for the totally real case. It is
simply a restatement of the definitions.

Proposition 5.2 Let us suppose that K is a totally complex field of degree 2k and
that I is an integral ideal of K . We then have that

Ndp,min(ψ(I)) = 2
k
2

|dK | 1
4

min(I), (5.16)

where min(I) := min
x∈I\{0}

√ |nrK/Q(x)|
N(I ) .
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Proof This result follows from Lemma 5.4, the definition of the normalized product
distance and from noticing that

√|nrK/Q(x)| = |n(ψ(x))|. 
�
Due to the basic ideal theory of algebraic numbers, min(I) is always larger or

equal to 1. If I is not a principal ideal, then we have that min(I) ≥ √2. Comparing
this to Lemma 5.3 we find that, given a non principal ideal domain OK , in order to
maximize the product distance we should use an ideal I which is not principal. Now
there are two obvious questions. Given a non principal ideal domainOK , which ideal
I should we use and how much can we gain? Before answering these questions, we
need the following.

Lemma 5.5 ([1]) For any non-zero element x ∈ K ,

Ndp,min(ψ(xI)) = Ndp,min(ψ(I)).

This result proves that every ideal in a given ideal class has the same normalized
product distance. It follows that given a ring of integers OK , it is enough to consider
one ideal from every ideal class. Given an ideal I we will denote with [I ] the ideal
class to which I belongs.

Let us denote with Nmin(K) the norm of an ideal A in K with the property that
every ideal class of K contains an integral ideal with norm N(A) or smaller. The
question of finding the size of Nmin(K) is a classical problem in algebraic number
theory. We refer the reader to [28] for further reading. The following result is from
the extended arXiv version of [24].

Proposition 5.3 Let us suppose that K is a totally complex number field of degree
2k and that I is an ideal that maximizes the normalized product distance over all
ideals in K . We then have that

Ndp,min(ψ(I)) = 2k/2
√
Nmin(K)

|dK | 1
4

and rhAk (ψ(I)) =
2k(Nmin(K))

1/k

|dK | 1
2k

.

Proof Let L be any ideal in K , and suppose that A is an integral ideal in the class
[L]−1 with the smallest norm. Then there exists an element y ∈ OK such that
yOK = AL. As n(ψ(y)) = √

N(L)N(A) and N(A) ≤ Nmin(K) we have that

dp,min(L) ≤ √N(L)Nmin(K) and Ndp,min(ψ(L)) ≤
√
Nmin(K)2k/2

|dK |1/4 .
Assume that S is an ideal such thatN(S) = Nmin(K) and choose I as an element

from the class [S]−1. For any non-zero element x ∈ I , we then have that xOK = IC,
for some ideal C that belongs to the class [S]. Therefore, we have that n(ψ(x)) ≥√
N(I)N(C). 
�
This result translates the question of finding the product distance of an ideal into

a well-known problem in algebraic number theory. It also suggests which ideal class
we should use in order to maximize the product distance.
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Denote with K2k the set of totally complex number fields of degree 2k. Then the
optimal normalized product distance over all complex fields of degree 2k and all
ideals I is

max
K∈K2k

2k/2
√
Nmin(K)

|dK | 1
4

. (5.17)

As far as we know, it is an open question whether the maximum in (5.17) is
always achieved when K is a principal ideal domain. Some preliminary data can be
found in [1]. We point out that Proposition 5.3 makes this problem computationally
much more accessible.

5.7 Reduced Hermite Invariants as Homogeneous Forms

Let us now see how different linear channels define different sets Ak and how
the corresponding reduced norms can be seen as different homogeneous forms.
For simplicity, we will study the case when we transmit four information symbols
(x1, x2, x3, x4).

In the AWGN channel, the receiver sees

(x1, x2, x3, x4)+ (w1, w2, w3, w4),

where wi are Gaussian random variables. Here the set A(1)4 simply consists of a
single element, the 4× 4 identity matrix. Therefore we obviously have

||(x1, x2, x3, x4)||2A(1)4
= |x1|2 + |x2|2 + |x3|2 + |x4|2.

Let us then consider a channel where the fading stays stable for 2 time units and
then changes. Then the received signal will be of the form

(h1x1, h1x2, h2x3, h2x4)+ (w1, w2, w3, w4).

Assuming that hi are non-zero with probability 1, we can see that

A(2)4 = {diag[a1, a1, a2, a2] | |a1 · a2| = 1, ai ∈ C}.

Following the proof of [15, Proposition 8], we get the following result

||(x1, x2, x3, x4)||2A(2)4
= 2
√

(|x1|2 + |x2|2) · (|x3|2 + |x4|2). (5.18)
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Earlier we considered the fast fading channel in which the channel can change
during every time unit giving us the following received vector:

(h1x1, h2x2, h3x3, h4x4)+ (w1, w2, w3, w4).

In this case, we have that

A(3)4 = {diag[a1, a2, a3, a4] | |a1 · a2 · a3 · a4| = 1, ai ∈ C}. (5.19)

and that

||(x1, x2, x3, x4)||2A(3)4
= 4|x1x2x3x4|1/2. (5.20)

In all the previous examples, the channel could be represented as a diagonal
action. On the other hand, for a 2 × 2 MIMO system, the channel matrix will have
a block diagonal structure. In this case, the received vector can be written as

(h1x1 + h2x2, h3x1 + h4x2, h1x3 + h2x4, h3x3 + h4x4)+ (w1, w2, w3, w4).

Here the set A(4)4 consists of matrices

⎧

⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

h1 h2 0 0
h3 h4 0 0
0 0 h1 h2

0 0 h3 h4

⎞

⎟
⎟
⎠
| det

∣
∣
∣
∣

(

h1 h2

h3 h4

)∣
∣
∣
∣
= 1

⎫

⎪⎪⎬

⎪⎪⎭

According to [15, Proposition 8], we have that

||(x1, x2, x3, x4)||2A(4)4
= 2|(x1x2 − x3x4)|. (5.21)

We immediately note that all the reduced norms share common characteristics.

Definition 5.7 A continuous function F : Ck → R is called a homogeneous form of
degree σ > 0 if it satisfies the relation

|F(αx)| = |α|σ |F(x)| (∀α ∈ R,∀x ∈ C
k).

Given a full lattice L ∈ C
k and assuming that Vol(L) = 1, we can define the

homogeneous minimum of the form F as

λ(F,L) = inf
x∈L\{0}

|F(x)| .
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Setting || ||2
A
(i)
4

= FA(i)4
, we can see that each of the squared reduced norms

defined previously are homogeneous forms of degree 2.
As we saw in Theorem 5.2, given a sequence of random matricesHk of size k×k

and the corresponding sets Ak in (5.10), we can use rhAk as a design criterion for
building capacity-approaching lattice codes. In many cases of interest, ‖ ‖2

Ak = FAk
will be a homogeneous form and rhAk (L) = λ(F,L). For instance, this is the case
if we extend the previous examples to general size k and define

A(1)k = Ik,
A(2)2k = {diag[a1, a1, a2, a2, . . . , ak, ak] | |a1a2 · · · ak| = 1, ai ∈ C},
A(3)k = {diag[a1, a2, . . . , ak] | |a1a2 · · · ak| = 1, ai ∈ C}.

In the case whereAk = {Ik}, we have recovered the classical connection between
sphere packing and AWGN capacity, but we also proved that there exist similar
connections between different channel models and the corresponding homogeneous
forms.

A natural question is now how close to capacity we can get with these methods by
taking the best possible lattice sequences in terms of their homogeneous minimum.
We will denote with Lk the set of all the lattices L in C

k having Vol(L) = 1. This
leads us to the concept of absolute homogeneous minimum

λ(F ) = sup
L∈Lk

λ(F,L).

Finding the value of absolute homogeneous minima is one of the central problems
in geometry of numbers. As we saw earlier it is a central problem also in the theory
of linear fading channels.

In the case Ak = {Ik}, λ(FAk ) is the Hermite constant γk . The value of the
Hermite constant for different values of k has been studied in mathematics for
hundreds of years and there exists an extensive literature on the topic. In particular
good upper and lower bounds are available and it has been proven that we can get
quite close to Gaussian capacity with this approach [5, Chapter 3].

In the case of FA(3)k
, the problem of finding homogeneous minima has been

considered in the context of algebraic number fields and some upper bounds
have been provided. Similarly, for FA(2)k

, there exists considerable literature. These

and related results can be found in [8]. However, for the case of homogeneous
forms arising from block diagonal structures, there seems to be very little previous
research. As far as we know, the best asymptotic lower bounds are given in [15].
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Remark 5.7 We note that the reduced norms in our examples are not only homo-
geneous forms, but multivariate polynomials and the sets A(i)k are groups. As we
obviously have that

||A(x)||2
A(i)k

= ||x||2
A(i)k
,

for anyA ∈ A(i)k , we can see that || ||2
A(i)k

is actually a classical polynomial invariant

of the group A(i)k . At the moment, we do not know what conditions a matrix group
Ak should satisfy so that the corresponding reduced norm would be a homogeneous
form. Just as well we do not know when some power of the reduced norm is a
polynomial.

This is a nice standalone problem in mathematics but it is also an essential
question from the coding theory point of view. Let us elaborate on this. While
we have throughout this paper concentrated on asymptotic results and capacity
questions, maximizing the reduced Hermite invariant can also be used as a code
design criterion for short block lengths. In particular, codes based on this code
design principle can be expected to be particularly robust. For example, the lattice
that has the largest known reduced Hermite invariant rhA(4)4

in [22] also has

the best known performance in 2 × 2 quasi-static MIMO channel for most data
rates. Similarly, the number fields maximizing the corresponding reduced Hermite
invariant have the best performance in the fast fading SISO channel. In order to find
such lattice codes, it is essential to be able to describe the reduced norm in a simple
form.

Remark 5.8 We also point out that interestingly all the code constructions that
maximize the reduced Hermite invariant are based on algebraic structures. For
example, the lattices that maximize rhA(4)4

are based on division algebras. The

lattices maximizing rhA(3)4
on the other hand are built using number fields, as seen in

the previous section. We clearly see that A(2)4 ⊂ A(3)4 and A(2)4 ⊂ A(4)4 . Therefore
for any lattice L ⊂ C

4 we have that rhA(3)4
(L) ≤ rhA(2)4

(L) and rhA(4)4
(L) ≤

rhA(2)4
(L). It follows that both the division algebra and number field construction

can also be used for the block fading SISO channel.

Remark 5.9 While the definition of the reduced Hermite invariant is very natural,
we have found very few previous works considering similar concepts. The first
reference we have been able to locate is [21]. There the author considered matrices
of type (5.19) and proved (5.12) in this special case. Our results can therefore be
seen as a natural generalization of this work. The other relevant reference is [2]
where the authors defined the Hermite invariant for generalized ideals in division
algebras in the spirit of Arakelov theory. Again their definition is analogous to ours
in certain special cases.
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Chapter 6
Multilevel Lattices for
Compute-and-Forward and Lattice
Network Coding

Yi Wang, Yu-Chih Huang, Alister G. Burr, and Krishna R. Narayanan

Abstract This work surveys the recent progresses in construction of multilevel
lattices for compute-and-forward (C&F) and lattice network coding (LNC). This
includes Construction πA and elementary divisor construction (a.k.a. Construction
πD). Some important properties such as kissing numbers, nominal coding gains,
goodness of channel coding, and efficient decoding algorithms of these construc-
tions are also discussed. We then present a multilevel framework of C&F where each
user adopts the same nested lattice codes from Construction πA. The achievable
computation rate of the proposed multilevel nested lattice codes under multistage
decoding is analyzed. We also study the multilevel structure of LNC, which serves as
the theoretical basis for solving the ring-based LNC problem in practice. Simulation
results show the large potential of using iterative multistage decoding to approach
the capacity.

6.1 Introduction

There has recently been a resurgence in research on lattice codes. Erez and
Zamir [5] have shown that lattice codes can achieve the channel capacity with
nested lattice shaping and an MMSE estimator at the receiver. This is indeed
an inspiration for researchers to explore lattice code in the area of network and
wireless communications. The random ensemble of nested lattice codes is capable of
producing capacity-achieving lattice codes, and its structure is in particular suitable
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for many problems within network communications, which opens the window in
exploiting the structure gain induced by the channels.

The use of nested lattice codes in physical layer network coding was first
proposed by Nazer and Gastpar, who developed the compute-and-forward (C&F)
relaying strategy as a compelling information-transmission scheme in Gaussian
relay networks. Two key features of C&F have made the scheme attractive in
network communications: (1) the relay computes a set of linearly independent
equations instead of directly decoding/amplifying the source messages/received
signals. (2) no channel state information (CSI) is required at the transmitters
and no global channel-gain information is required at the destination. Feng et al.
formulated a generic algebraic framework, namely lattice network coding (LNC)
which employs algebraic approach to reinterpret C&F and make a direct connection
between LNC and C&F. In particular, the LNC makes no assumptions on the
underlying nested lattice codes, and induces an end-to-end linear network coding
channel over modules.

This chapter places the fundamental theories behind LNC, which provides the
design guidelines of lattice-based network coding from the aspect of practical
implementation. The use of Construction A lattices provides a feasible way to
implement LNC networks. However, the decoding complexity of a Construction
A lattice closely relies on the underlying linear code over a prime field. When the
size of the prime field increases, decoding these lattice codes within LNC networks
is typically infeasible due to the exponential increase of the computational cost.

This chapter induces the concepts of multilevel lattices and correspondingly the
multilevel lattice network coding (MLNC) strategy, which resolves the complexity
problem and retains the property of LNC in the meantime. The theory leads to a new
lattice construction approach, namely the elementary divisor construction, which
is a reinterpretation of multilevel lattices construction approaches—Construction
πA and Construction πD (introduced in the next few sections). These multilevel
lattices construction methods developed subsume most of the existing construction
methods, e.g. Construction A and Construction D.

Multi-stage lattice decoding, especially iteration-aided multi-stage lattice decod-
ing, is therefore proposed in the next few sections. The simulation results reveal that
with the aid of iterative decoding, the system performance is greatly improved with
significantly reduced computational costs.

MLNC, multilevel lattices and multi-stage lattice decoding resolve the problem
of decoding lattice codes based on fields or rings constituting a large message space,
where the multilevel lattices based on these can readily be partitioned into a set of
primary sublattices based on much smaller message spaces following the theory
developed, so that multistage lattice decoding may be used for decoding. Note that
MLNC provides the theoretical basis of a practical implementation strategy when
using lattice codes within Gaussian relay networks. It is therefore a generic theory
which is suitable not just for lattices constructed from channel codes, but for any
lattice codes, e.g. complex low density lattice codes or signal codes.
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6.2 Problem Statement

We consider the compute-and-forward relay network introduced by Nazer and
Gastpar [21] which consists of L source nodes and M destination nodes as shown
in Fig 6.1. Each source node has a message w� ∈ {1, 2, . . . ,W }, � ∈ {1, . . . , L}
which can alternatively be expressed by a length-N ′ vector over some finite field,
i.e., w� ∈ Z

N ′
q where q ∈ N withW = qN ′ . This message is fed into an encoder EN�

whose output is a length-N codeword x� ∈ C
N . The transmitted signal is subject to

an average power constraint given by

E[X2] ≤ P. (6.1)

The signal observed at the destinationm is given by

ym[n] =
L
∑

�=1

hm�x�[n] + zm[n], n ∈ {1, . . . , N}, (6.2)

where hm� ∈ C is the channel coefficient between the source node � and destination
m, and zm[n] ∼ CN(0, 1). Collectively, one can also define the channel model for
using the channel N times as

ym =
L
∑

�=1

hm�x� + zm. (6.3)

Fig. 6.1 A compute-and-forward relay network where S1, . . . , SL are source nodes and
D1, . . . ,DM are destination nodes



204 Y. Wang et al.

Instead of individual messages, each destination node is only interested in comput-
ing a function of messages

um = fm(w1, . . . , wL). (6.4)

Upon observing ym, the destination nodem forms ûm = GNm(ym) an estimate of um.
These functions are then forwarded to the central destination which can recover all
the messages given sufficiently many functions.

Definition 6.1 (Computation Codes) For a given set of functions f1, . . . , fM , a
(N,N ′) computation code consists of a sequence of encoding/decoding functions
(EN1 , . . . ,E

N
L )/(G

N
1 , . . . ,G

N
M) described above and an error probability given by

P (N)e,m � Pe
({

ûm �= um
})

. (6.5)

Definition 6.2 (Computation Rate at the Relay m) For a given channel vector
hm � [hm1, . . . , hmL]T and a given function fm, a computation rate R(hm, fm) is
achievable at the relaym if for any ε > 0 there is an (N,N ′) computation code such
that

N ′ ≥ NR(hm, fm)/ log(q) and P (N)e,m ≤ ε. (6.6)

Note that the first condition is equivalent to saying thatW ≥ 2NR(hm,fm).

Throughout the paper, we consider equal power constraints and assume all the
transmitters transmit at a same rate. However, similar to [20], the proposed
framework can be extended to the unequal power constraint and/or unequal rate
cases.

In practice, since no cooperation among the relays is assumed, a greedy protocol
which mimics the behavior of random linear network coding is adopted in [21]
where each relay computes and forwards the function with the highest computation
rate. After that, if given those functions, the central destination is able to recover
all the messages, then decoding is successful. Otherwise, the central destination
declares failure. The achievable computation rate for the transmitters is then equal
to minm R(hm, fm).

6.3 Background

6.3.1 Algebra

6.3.1.1 Ideal and Principal Ideal Domain

Let S be a commutative ring with identity 1, and S∗ = S\0. The set of units U(S)
in S refers to any element x in S such that xs = sx = 1 for some s ∈ S. Any root of
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unity in a ring S is a unit. The set of zero divisorsZ(S) in S refers to any element x
in S if xs = sx = 0 for some s ∈ S∗. An element p ∈ S, p /∈ Z(S), p /∈ U(S), is
called a prime in S when p | ab for some a, b ∈ S∗, implies either p | a or p | b.

An ideal I of R is a non-empty subset of R that is closed under subtraction
(which implies that I is a group under addition), and is defined by:

1. ∀a, b ∈ I, a − b ∈ I.
2. ∀a ∈ I, ∀s ∈ S, then as ∈ I and sa ∈ I.

If A = {a1, · · · , am} is a finite non-empty subset of S, we use 〈a1, · · · , am〉 to
represent the ideal generated by A, i.e.

〈a1, · · · , am〉 = {a1s1 + · · · + amsm : s1, · · · , sm ∈ S}

Note that S has at least two ideals {0} and {S}.
An ideal I of S is said to be proper if and only if 1 /∈ I. An ideal Imax is said to

be maximal if Imax is a proper ideal and the only ideals that include Imax are S and
Imax itself. We say that an equivalence relation a ∼ b on the set S is defined by I
if and only if a − b ∈ I.

An ideal I of S is principal if I is generated by a single element a ∈ I, written
as I = 〈a〉. A principal ideal ring is a ring whose every ideal is principal. If S
is a principal ideal ring without zero divisors, then R forms an ideal domain, and
more precisely, a principal ideal domain (PID). Examples of PIDs include the ring
of integers, the ring of Gaussian integers Z[i] and the ring of Eisenstein integers
Z[ω].

6.3.1.2 Modules Over PID

Again, let S be a commutative ring with identity 1. An S-module M over S is an
abelian group (M,+) under a binary operation +, together with a function F :
S ×M �−→ M which satisfies the same conditions as those for vector space. Note
that modules over a field are the same as vector spaces. An S-submodule ofM is a
subgroup N of M which is closed under the action of ring elements, and hence the
submoduleN forms also an S-module under the restricted operations.

An S-module is said to be finitely generated (f.g.) if M has a finite spanning set
{m1, · · · ,mn} such that

∑

i Rmi = M .
The annihilator AnnS(m) of an elementm ∈ M is the set of elements s ∈ S such

that sm = 0, which forms an ideal. The annihilator ofM is the elements s ∈ S such
that {sm = 0|∀m ∈ M}, denoted by AnnS(M) = ⋂{AnnS(m)|m ∈ M}. If M is a
free S-module, then AnnS(M) = 〈0〉.

We define an action of S satisfying ∀s ∈ S, ∀m ∈ M , and for allm+N ∈ M/N ,

s(m+N) = sm+ N,

thenM/N is referred to as a quotient S-module.
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The torsion submoduleMTor ofM is defined by:

MTor = {m ∈ M : AnnS(m) �= {0}}

A torsion free module is trivial.
Let M and N be two S-modules. An S-module homomorphism is a map φ :

(M,+, ·) �−→ (N,�,&), which respects the S-module structures ofM andN , i.e.,

φ(s1m1 + s2m2) = s1φ(m1)� s2φ(m2)

φ(s1m1 · s2m2) = s1φ(m1)& s2φ(m2)

∀s1, s2 ∈ S, ∀m1,m2 ∈ M . An S-module homomorphism φ : M �−→ N is called
an S-module isomorphism if it is both injective and surjective, which is denoted by
M ∼= N . The kernel of φ denotes the elements in M which makes the image of φ
equal to zero.

6.3.2 Lattices and Lattice Codes

Lattices defined within R are explained as follows: An N-dimensional lattice �N is
a discrete subgroup of RN which satisfies λ1 + λ2 ∈ �N and −λ1 ∈ �N whenever
λ1,λ2 ∈ �N . One way to express a lattice is through its generator matrix G� ∈
R
N×N as

� =
{

G�b : b ∈ Z
N
}

. (6.7)

For any vector x ∈ R
N , a nearest neighbor quantizer associated with � quantizes x

to the nearest element in �. That is,

Q�(x) � argmin
λ∈�‖x− λ‖, (6.8)

where ‖.‖ denotes the L2-norm and the ties are broken systematically. The
fundamental Voronoi region V� is the collection of all x ∈ R

N that result in
Q�(x) = 0. i.e.,

V� � {x ∈ R
N : Q�(x) = 0}. (6.9)

If G is full rank, the volume of V�, which we denote by Vol(V�), can be easily
computed as Vol(V�) = |det(G)|. The mod � operation returns the quantization
error with respect to �. Mathematically, it is given by

x mod � = x−Q�(x). (6.10)
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Alternatively, this can be thought of as mapping x to the element of the coset x+�
within V�. We shall refer x mod � to as the coset leader of x+�.

Let us now consider the problem of transmission over an additive white Gaussian
noise channel without any power constraint. We adopt a lattice� as our transmission
scheme and every lattice point can be sent since there is no power constraint. The
signal model is given by

y = x+ z, (6.11)

where x ∈ � is the transmitted signal, y is the received signal, and z is the additive
noise whose elements are drawn i.i.d. from N(0, σ 2). One attempts to form x̂ an
estimate of x based on the received y. The decoding probability is defined as pe �
P
{

x̂ �= x
}

. A sequence of lattices� is said to be good for channel coding if pe → 0
in the limit as n→∞ as long as the volume of V� is larger than the volume of the
typical noise ball, i.e.,

σ 2 <
Vol(V�)

2
N

2πe
. (6.12)

6.3.3 Construction A

Here, we briefly review one of the most famous constructions, namely Construction
A. Construction A[3, 16]: Let p be a prime and C be a linear code of length N and
dimension r over Fp, i.e., C is a r-dimensional subspace of the vector space F

N
p .

The Construction A lattice associated with C is given by

� =
{

λ ∈ Z
N : λ mod p ∈ C

}

. (6.13)

An alternative and constructive way to describe this lattice construction is as
follows. Let M be the natural mapping from Fp onto the coset leaders of Z/pZ. We
denote by MN : FNp → (Z/pZ)N that performs M elementwisely. Construction
A “lifts" C to the Euclidean space R

N by taking the union of all the cosets
MN(c)+ pZN , c ∈ C, which forms

� =
⋃

c∈C

(

MN(c)+ pZN
)

=MN(C)+ pZN , (6.14)

where+ above is the Minkowski sum. The fact that Construction A always produces
lattices is due to the linearity of C and the isomorphism nature of the natural
mapping M.

Construction A lattices have been popular for decades due to the tight connection
between lattices generated and their underlying linear codes. In [18], Loeliger
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exploits the close connection between Construction A lattices and their underlying
linear codes. He then uses “random coding argument" to show that Construction A
can produce lattices that are good for channel coding. Erez et al. in [4] show that
Construction A can produce lattices that are good in many senses simultaneously
including packing, shaping, channel coding and MSE quantization. In [5], an
ensemble of nested lattice codes carved from Construction A lattices is proposed
and is shown to achieve the AWGN channel capacity. Ordentlich and Erez later
simplify the proof of the capacity-achieving property in [22] by introducing a new
ensemble of nested lattice codes which preserve the tight connection between the
lattice codes and the linear codes. In this article, we will consider several multilevel
lattice constructions evolved from Construction A.

6.4 Compute-and-Forward and Lattice Network Coding

In this section, we briefly review the compute-and-forward paradigm [21] and
the lattice network coding framework [8]. It should be noted that although lattice
network coding subsumes every lattice-based scheme (including compute-and-
forward in [21]) as a special instance, we review both the frameworks. It is mainly
because lattice network coding is a general framework and as a consequence, it
is hard to prove the achievable computation rates as well as to construct optimal
coding schemes. In contrast, compute-and-forward specifically uses nested lattice
codes from Construction A lattices and thus its achievable computation rates can be
derived.

6.4.1 Compute-and-Forward

In [21], the destination m aims at computing a function of the form

um = am1w1 ⊕ . . .⊕ amLwL, (6.15)

where w� is the p-ary expansion of w� and am� ∈ Fp. It first computes the
linear combinations of codewords whose coefficients are Gaussian integers am =
[am1, . . . , amL] and then maps this integer combination back to linear combinations
of messages in (6.15) where bm� � σ(am�) with σ(.) being the ring homomorphism
used in Construction A for generating the underlying lattice [3, 16]. In this scenario,
the function fm is completely characterized by the coefficients am and thus the
achievable computation rate is denoted as R(hm, am).
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Each source node adopts an identical nested lattice code (�f ,�c) of Erez and
Zamir [5]. The source node � first bijectively maps its message w� to a lattice
codeword t� ∈ �f ∩V�c and sends a dithered version

x� = (t� − u�) mod �c. (6.16)

Given am = [am1, . . . , amL]T , the relay m scales the received signal by the
MMSE estimator αm and adds the dithers back to form

y′m =
(

αmym +
L
∑

�=1

am�u�

)

mod �c (6.17)

= (teq,m + zeq,m) mod �c, (6.18)

where

teq,m =
K
∑

�=1

am�tm� mod �c, (6.19)

and

zeq,m =
(

αmzm +
L
∑

�=1

(αmhmL − amL)x�
)

, (6.20)

with

σ 2
eq,m � 1

n
E‖zeq,m‖2

= |α2
m| + P‖αmhm − am‖2. (6.21)

Due to the linearity of lattice codes, teq,m is a codeword in �f ∩ V�c and hence
one can directly compute this function at the relay m. Intuitively speaking, one can
arbitrarily rotate and scale the received signals by αm such that the resulting channel
coefficients would be arbitrarily close to the Gaussian integer vector am; however,
one might also cause uncontrolled noise enhancement. It turns out that the optimal
choice of αm is the linear MMSE estimator given by

αMMSE,m = Ph∗mam
1+ P‖hm‖2 . (6.22)

This leads us to the main result of [21] as follows.



210 Y. Wang et al.

Theorem 6.1 (Nazer-Gastpar) For given channel coefficients hm and Gaussian
integer vector am, the following computation rate is achievable at the relay m.

R(hm, am) = log+
((

‖am‖2 − P |h∗mam|2
1+ P‖hm‖2

)−1)

, (6.23)

where log+(.) � max{0, log(.)}.
After computing teq,m, the relay m can recover the function um in (6.15). At the
central destination, one can invert the matrix B = [b1, . . . ,bM ] to recover all the
messages if the matrix is invertible.

Remark 6.1 The coding scheme in [21] in fact transmits signals in the real and
the imaginary parts separately and independently. Here, we describe the scheme
by directly looking at the complex field and Gaussian integers. This perspective
has motivated the generalization of the compute-and-forward paradigm to the ring
of Eisenstein integers in [25, 26] and other rings of imaginary quadratic integers in
[15] where am in (6.23) is chosen from Z[ω] and other imaginary quadratic integers,
respectively, instead of Z[i].

6.4.2 Lattice Network Coding

Feng et al. formulated a general algebraic framework for lattice network coding
(LNC) [9], giving practical design guidelines for compute-and-forward. LNC is
based on a finite lattice quotient, in which each transmitter sends an information-
embedding coset through a coset representative. LNC scheme serves as a direct
connection between C&F and module theory (in abstract algebra). In particular, a
generic LNC makes no assumptions on the structure of the underlying nested lattice
code, which makes a variety of code-design techniques available.

The key aspect of LNC is the so-called linear labelling of the points in a
nested lattice code which produces a beneficial compatibility between the arithmetic
operations and the linear operations in the message space that used for linear
network coding. The linear labellings induces a noncoherent network coding
channel with a message space having the module-theoretic algebraic structure. This
provides the theoretical basis for achieving network coding over general Gaussian
relay networks.

LNC specifies a map ϕ : � → W from lattice points in � to messages in the
message spaceW to facilitate practical implementation of linear labelling. The map
ϕ satisfies two conditions,

1. for any two points λ1, λ2 ∈ � with λ1 − λ2 ∈ �′, ϕ(λ1) = ϕ(λ2);
2. ϕ(s1λ1 + s2λ2) = s1ϕ(λ1)+ s2ϕ(λ2), ∀s1, s2 ∈ S and ∀λ1, λ2 ∈ �.
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As discussed above, C&F is specifically implemented by constructing lattices
with Construction A. LNC generalises this and allows more powerful lattice codes
to be used, e.g. low density lattice codes [29] and signal codes [7] which provides
high coding gain.

Previous work, e.g. in [8, 24, 27], has given LNC design guidelines when quotient
lattices are constructed from existing channel codes using complex construction A.
In this book chapter, we consider a multilevel structure for lattice network coding,
which provides a practical solution to the ring-based network coding problem. We
also show an efficient lattice construction approach (which we term the elementary
divisor construction (EDC)) based on the theorems developed, which also subsumes
the most important previous lattice constructions.

6.5 Multilevel Lattices Evolved from Construction A

In this section, we review some multilevel lattices evolved from Construction
A lattices including Construction D, Construction πA, and elementary divisor
construction (a.k.a. Construction πD). Efficient decoding algorithms for these
lattices are also discussed. These multilevel lattices will enable multistage compute-
and-forward presented in Sect. 6.6.

6.5.1 Construction D

Construction D [1] [3, Page 232] is a multilevel lattice construction that constructs a
lattice from a sequence of nested linear codes. Consider a sequence of nested linear
codes constructed over Fp, namely C1 ⊆ C2 ⊆ . . . ⊆ Cγ+1. In this sequence of
codes, Cγ+1 is the trivial (N,N)-code and Cl is a (N, rl)-code for l ∈ {1, 2, . . . γ }
with r1 ≤ . . . ≤ rγ . One way to generate such a sequence of codes is to first choose
{g1, . . . , gN } that spans Cγ+1 and then use only the subset of the first rl vectors
{g1, . . . , grl } to generate Cl . The procedure of Construction D is given as follows.

A multilevel lattice �D with γ + 1 is given by

�D =
⋃

⎧

⎨

⎩
pγZN +

∑

1≤l≤γ
pl−1

∑

1≤i≤rl
aligi|ali ∈ {0, 1, . . . , p − 1}

⎫

⎬

⎭
, (6.24)

where all the operations are over R
N . In [6], an alternative presentation of

Construction D is given as a extension of Construction A with coding over a finite
chain ring. This is done by relating the nested linear codes with a single linear code
C over Zpγ . Let M : Zpγ → Z/pγZ be a ring isomorphism. A Construction D
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lattice associated with C can be alternatively represented as

�D =Mn(C)+ pγZn. (6.25)

Construction D has been shown to be able to produce lattices that are good for
channel coding [11]. Recently in [32], a lattice ensemble called polar lattices has
been proposed which use the Construction D procedure with nested polar codes as
the underlying linear codes. Thanks to the explicitness of the construction of good
polar codes, polar lattices have provided an explicit construction of lattices that
are good for channel coding. Later in [17], polar lattices have also been shown to
achieve the rate distortion bound of memoryless Gaussian source.

6.5.2 Construction πA

We now present Construction πA in two different ways that are equivalent to each
other: The first presentation is to regard it as a generalization of Construction A to
allow the underlying codes being over Zq where q is a positive squarefree integer
(A number is said to be squarefree if its prime decomposition contains no repeated
factors.). The second one is to think of it as a generalization of Construction A to
multilevel codes in which each level’s code is over a different prime field.

Construction πA constructs lattices from linear codes over finite rings Zq , where
q ∈ N is chosen to be squarefree and hence can be factorized into a product of
primes as q = p1 · . . . · pL. Let C be a linear code over Zq . The Construction πA
lattice associated with C is given by

�πA =
{

λ ∈ Z
N : λ mod ∈ C

}

(6.26)

Let G be a generator matrix of C. From the Chinese remainder theorem, C can
be uniquely decomposed into K linear codes C1, . . . , CK where Gl = G mod pl
is a generator matrix of Cl . Evidently, Cl is a linear code over the prime field Fpl .

An alternative and constructive way to describe Construction πA is as follows.
Let p1, . . . , pK be K distinct primes and let q = p1 · . . . · pK . From Chinese
remainder theorem, there exists a ring isomorphism

M : Fp1 × . . .× FpK → Z/qZ. (6.27)

We start with K linear codes. Let Cl , l ∈ {1, . . . ,K}, be a (N, rl) linear code
constructed over Fpl . We map the codewords in C1 × . . .× CK to �∗ ∈ (Z/qZ)N
by applying M element-wise. We again denote by MN for this function that maps
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elements in (Fp1 × . . .×FpL)
N to (Z/qZ)N element-wise. After this, we tile�∗ to

R
N . Overall, we obtain

�πA =MN(C1, . . . , CL)+ qZN

=
{

λ ∈ Z
N : σ(λ) ∈ C1 × . . .× CL

}

, (6.28)

where σ � M−1 ◦ mod q is a ring homomorphism. It has been shown in [13] that
there exists a sequence of Construction πA lattices that is good for channel coding.

6.5.3 Multilevel Lattice Network Coding

We assume S is a PID over C. Briefly if there is a matrix G� ∈ C
n′×n, n′ ≤ n such

that all its n′ row vectors g�,1, · · · , g�,n′ ∈ C
n are linearly independent, the set of

all S-linear combinations of g�,1, · · · , g�,n′ forms an S-lattice � ∈ C
n, written by,

� = {sG� : s ∈ Sn′ }, where G� is called the lattice generator.
Following the explanation in Sect. 6.3.1.2, an n-dimensional S-lattice is precisely

an S-module, and similarly the sublattice �′ in � forms a S-submodule. The
partition of the S-lattice, denoted by �/�′ represents |� : �′| < ∞ (the index
of �′) equivalence classes.

Theorem 6.2 Let� and�′ be S-lattices and S-sublattices,�′ ⊆ �, |� : �′| <∞
such that �/�′ has nonzero annihilators. Then �/�′ is the direct sum of a finite
number of quotient sublattices,

�/�′ = �p1/�
′
p1
⊕�p2/�

′
p2
⊕ · · · ⊕�pm/�′pm (6.29)

where �pi/�
′
pi

� {λ ∈ �/�′ : pγi λ = 0} for some γ � 1, and every pi , i =
1, 2, · · · ,m is a distinct prime over S.

Theorem 6.2 proves that �/�′ can be decomposed into the direct sum of m
sublattices �pi/�

′
pi

(the primary sublattices) which itself forms a new lattice
system. Hence �/�′ can be regarded as an m layer quotient lattice.

Theorem 6.3 Every primary sublattice �pi/�
′
pi

is isomorphic to a direct sum of
cyclic pi -torsion modules:

�pi /�
′
pi
∼= S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕ S/〈pθti 〉 (6.30)

for some integers 1 ≤ θ1 ≤ θ2 ≤ · · · ≤ θt which are uniquely determined by
�pi/�

′
pi
.
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Theorem 6.3 implies that the quotient primary S-sublattice system �pi/�
′
pi

is
isomorphic to a cyclic pi-torsion module. The right-hand side of (6.30) can be
viewed as the message space of�pi /�

′
pi

which is detailed in Lemma 6.1.

Lemma 6.1 There exists a map:

φi : �pi �−→
⊕

j

S/〈pθji 〉 (6.31)

which is a surjective S-module homomorphism with kernel K(φi) = �′pi . To ease
the abstract representation, we consider�′pi = �′ in the sequel. Thus,K(φi) = �′
for i = 1, 2, · · · ,m. If the message space is taken as the canonical decomposition

of (6.30), i.e. wi = ⊕

j S/〈pθji 〉, there exists a surjective homomorphism φ :
(�; +, ·) �−→ (

w1 ⊕ · · · ⊕ wm;�,&) and also an injective map φ̃ : (w1 ⊕ · · · ⊕
wm) �−→ � such that

φ(φ̃(w1 ⊕ · · · ⊕ wm)) = w1 ⊕ · · · ⊕ wm (6.32)

Lemma 6.2 The generator matrix of the S-sublattice �pi at the ith layer can be
expressed in the form of:

G�pi =
⎡

⎢
⎣

Diag(pξ11 · · · pξi−1
i−1 , It ,p

ξi+1
i+1 · · · pξmm

︸ ︷︷ ︸

k

) 0

0 In−k

⎤

⎥
⎦G� (6.33)

and

φi(wG�pi ) =
(

wi,1 + 〈pθ1i 〉, · · · , wi,t + 〈pθti 〉
)

(6.34)

where wi,t ∈ S/〈pθti 〉 and w ∈ w1 ⊕ · · · ⊕ wm. G� is the generator matrix of the

fine lattice �, p
ξj
j , j = 1, 2, · · · ,m is a vector, with all elements being the same

elementary divisor p
θj
j over S, and t = dim(�pi /�

′).

Lemma 6.2 shows a way to produce the quotient S-sublattice of each layer
defined in Theorem 6.2.�pi/�

′ forms an independent lattice system, and the direct
sum of all �pi/�

′, i = 1, 2, · · · ,m is equal to �/�′.

6.5.4 Elementary Divisor Construction

Theorems and Lemmas developed above provide good theoretical basis for creating
a general lattice construction method, namely elementary divisor construction,
which is also described in another form named construction πD [13].
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Lemma 6.3 Let � and �′ be S-lattices and S-sublattices, �′ ⊆ �, |� : �′| <∞
such that �/�′ has a nonzero annihilator# which can be uniquely factorised into
distinct powers of primes in S, # = U(S)pγ1

1 p
γ2
2 · · ·pγmm . Then �/�′ is the direct

sum of a finite number of quotient sublattices, �pi /�
′ = {λ ∈ �/�′ : pγii λ = 0},

i = 1, 2, · · · ,m, and given by,

�/�′ = �p1/�
′ ⊕�p2/�

′ ⊕ · · · ⊕�pm/�′ (6.35)

Elementary Divisor Construction (EDC) Let p1, p2, · · · , pm be some distinct
primes in a PID S, and # = U(S)pγ1

1 p
γ2
2 · · ·pγmm is a unique factorisation, γi ≥ 1.

Let C1,C2, · · · ,Cm bem [n, ki] linear codes over S/〈pγ1
1 〉, S/〈pγmm 〉, · · · , S/〈pγmm 〉,

respectively. The elementary divisor construction lattice is defined by:

� � {λ ∈ Sn : σ̃ (λ) ∈ C1 ⊕ C2 ⊕ · · · ⊕ Cm} (6.36)

and the sublattice is:

�′ � {#λ : λ ∈ Sn}

where σ̃ : Sn �−→ (S/〈pγ1
1 〉)n ⊕ (S/〈pγ2

2 〉)n ⊕ · · · ⊕ (S/〈pγmm 〉)n is a natural map
obtained by extending the ring homomorphism σ : S �−→ S/〈pγ1

1 〉 × S/〈pγ2
2 〉 ×· · · × S/〈pγmm 〉 to multiple dimensions. Apparently �′ ⊆ �. The message space

under EDC is

W = (S/〈pγ1
1 〉)k1 ⊕ · · · ⊕ (S/〈pγmm 〉)km (6.37)

where ki is the message length of the ith layer which sums up to k =∑m
j=1 kj .

The elementary divisor construction is a straightforward extension of Lemma 6.5,
which defines a class of lattices constructed by m linear codes, with each operating
over either a finite field or a finite chain ring. Hence the quotient�/�′ must consist
of m primary sublattices �pi /�

′, with each constructed by the ith linear code. The
primary sublattices �pi of the ith layer is defined by:

�pi � {λpi ∈ δiS : σ̃i (λpi ) ∈ Ci)} (6.38)

where σ̃i is a natural map:

σ̃i : (δiS)n �−→ (δiS/p
γi
i δiS)

n ∼= (S/〈pγii 〉)ki (6.39)

obtained by extending the ring homomorphism σi : δiS �−→ δiS/〈pγii δiS〉 to
multiple dimensions. The scaling factor δi = #

p
γi
i

can be proved in terms of the

proof in Theorem 6.2.
We consider three scenarios based on different algebraic fields which the linear

codes may belong to.
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Scenario 1 Assume that the primary sublattice at each layer is constructed by
a linear code over a finite field, thus, γ1 = γ2 = · · · = γm = 1. Then,
Ci ∈ (δiS/〈piδi〉)n. This group of lattices corresponds to the lattices constructed
from Construction πA in Sect. 6.5.2. Since the coarse lattice �′ is generated by a
single element# , �/�′ forms a cyclic torsion module which allows us to produce
the generator matrix of the ith layer lattice �pi . It will have a form described in
Lemma 6.2, given by:

G�pi =
[

Diag
(

p(k1)
1 · · · p(ki−1)

i−1 , Iki ,p
(ki+1)

i+1 · · · p(km)m

)

0

0 Imn−k

]

G (6.40)

where p(ki)i is a length-ki vector with each element pi . G�pi in (6.40) gives the
generator matrix for the ith layer lattices, when the message input

w = [w1,w2, · · · ,wm, d̃1 · · · d̃m
︸ ︷︷ ︸

mn−k
] (6.41)

where wi ∈ (δiS/〈piδi〉)ki , d̃i ∈ Sn−ki .
Since EDC lattices are constructed by some linear codes, the matrix G must

include the generator matrix of each linear code Ci . Let σ̃i([Iki Biki×(n−ki )]) be a

generator matrix for a linear code Ci (without loss of generality, we consider that
the linear code is systematic in this case.), then G is anmn×nmatrix defined below,

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ik1 B1
k1×(n−k1)

Ik2 B2
k2×(n−k2)

...
...

Ikm Bmkm×(n−km)
0 # In−k1
...

...

0 # In−km

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.42)

Equation (6.42) follows from Lemma 6.5 and part of the proof of Theorem 6.2.
The generator matrix of the coarse lattice �′ is therefore given by,

G�′ =
⎡

⎣
Diag

(

I∑i−1
j=1 kj

,p(ki)i , I∑m
j=i+1 kj

)

0

0 Imn−k

⎤

⎦G�pi (6.43)

It can be easily observed that these generator matrices are consistent with the
Theorems and Lemmas proposed earlier. Note that the generator matrix for linear
codeCi is σ̃i([Iki Biki×(n−ki )])where σ̃i is defined in (6.39). Theorem 6.4 establishes
the theoretic fundamental for low-complexity lattice decoding (i.e. layered integer
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forcing) of MLNC, and states that there exists a surjective S-module homomorphism
ϕi which satisfies Lemma 6.4, with kernel K(ϕi) = �′i , which plays a key role in
decoding the ith layer linearly combined messages. Its generator matrix has a form:

G�′i =
⎡

⎢
⎣

Diag(I,p(ki )i , I
︸ ︷︷ ︸

k

) 0

0 Imn−k

⎤

⎥
⎦G (6.44)

We can easily verify�/�′i ∼= (S/〈pi 〉)ki in terms of these generator matrices.
Figure 6.2 depicts the structure of a 2-layer EDC lattice based on scenario 1 and

Eisenstein integers, where p1 = 1 + 2ω and p2 = 2. The primary sublattice of
layer-1 can be represented as λp1 ∈ δ1S = 2S and these sublattices are marked as

green points in Fig. 6.2a. It is clear that in this case C1 ∈ (2S/〈2(1+ 2ω)〉)n ∼= F
k1
3 .

Similarly, the primary sublattice of layer-2 can be represented as λp2 ∈ δ2S =
(1 + 2ω)S and in this case C2 ∈ ((1 + 2ω)S)/〈2(1 + 2ω)〉)n ∼= F

k2
22 . The Voronoi

region of �′i for the ith layer is illustrated by the blue line. The red line represents
the Voronoi region of coarse lattice �′.

Scenario 2 When ∀i = 1, 2, · · · ,m, γi �= 1, the primary sublattice �pi at each
layer is constructed by a linear code over a finite chain ring T = δiS/〈pγii δi〉 [10].
A finite chain ring is a finite local principal ideal ring, and the most remarkable
characteristic of a finite chain ring is that its every ideal (including 〈0〉) is generated
by the maximal ideal, which can be linearly ordered by inclusion, and hence, forms
a chain. The finite chain ring T has a unique maximal ideal and hence the resultant
residue field is Q = δiS/〈piδi〉 with size q = |δiS/〈piδi〉|. The chain length of the
ideals is indeed the nil-potency index of pi which is, in this case γi . We refer to T a
(q, γi) chain ring.

At the ith layer, the generator matrix GiFCR of a linear code over T has a standard
form given in (6.45), where Ik′i,t denotes an identity matrix with dimension k′i,t ,1

i = 1, 2, · · · ,m and t = 0, 1, · · · , γi − 1. Hence GiFCR has a dimension k′i × n
where k′i =

∑γi−1
t=0 k

′
i,t . Here Zt,l , l = t + 1, 2, · · · , γi , denotes a k′i,t × k′i,t+1

(k′i,γi = n − k′i) matrix which is unique modulo pγi−ti [19]. In (6.45), I∗
p
γi
i

is an

upper triangular matrix with dimension k′i × k′i , and Bk′i ,n−k′i has a dimension of

k′i × (n− k′i ). Note that the codeword is row spanned by GiFCR and all rows of GiFCR
are linearly independent.

To study the message space of the linear codes over the finite chain ring, we
first examine the kernel of the generator matrix GiFCR. This is equivalent to finding
the null space for the encoder Ei : wi �−→ Ci , where Ei (wi ) � wiGiFCH and
wi = [wk′i,0 ,wk′i,1 , · · · ,wk′i,γi−1

]. Here wi is grouped into blocks of size wk′i,t which

1Here, the index i used in k′i,t is the indicator of layer.
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Fig. 6.2 Layer structure of a 2-layer EDC lattice. The green points and blue lines represent the
primary sublattices and Voronoi region of V�′

i
for the corresponding layers, respectively. Dotted

lines represent the Voronoi region of the fine lattice. (a) Layer 1. (b) Layer 2
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corresponds to the row blocks defined in (6.45). In order to obtain the all-zero
codeword Ci = 0, we solve the homogeneous system wiGiFCH = 0, which gives

wk′i,t ∈ p
γi−t
i T

k′i,t , t = 0, 1, · · · , γi − 1. This result is based on the fact that if

d ∈ T n, then pti d = 0 (⇒ d ∈ pγi−ti T n. The null space of the encoder Ei is
therefore:

GiFCR =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ik′i,0 Zi0,1 Zi0,2 · · · Zi0,γi−1
Zi0,γi

0 piIk′i,1 piZ
i
1,2 · · · piZi1,γi−1

piZ
i
1,γi

0 0 p2
i Ik′i,2 · · · p2

i Z
i
2,γi−1

p2
i Z
i
2,γi

...
...

... · · · ...
...

0 0 0 · · · pγi−1
i Ik′i,γi−1

p
γi−1
i Ziγi−1,γi

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
[

I∗
p
γi
i

Bk′i ,n−k′i
]

(6.45)

w′ = [pγii T k
′
i,0 , · · · , piT k

′
i,γi−1] (6.46)

According to the first isomorphism theorem, the codeword Ci is isomorphic to a
direct summation:

Ci ∼= (T /pγii T )k
′
i,0 ⊕ (T /pγi−1

i T )
k′i,1 ⊕ · · · ⊕ (T /piT )k

′
i,γi−1

∼= (δiS/〈pγii δi〉)k
′
i,0 ⊕ (δiS/〈pγi−1

i δi〉)k′i,1 ⊕ · · · ⊕ (δiS/〈piδi〉)k
′
i,γi−1 (6.47)

The right-hand side of (6.47) denotes the message space W i of the linear code
over the finite chain ring T in terms of the generator matrix GiFCR. Note that each
component in the direct sum of (6.47) forms another module or vector space, and
the size of the tth component is q(γi−t )k

′
i,t . This leads to the overall message size

|C| = q
∑γi−1
t=0 (γi−t )k′i,t . Of course, we can obtain this result directly from the kernel

of GiFCR, thus, |C| =∏γi−1
t=0 (p

t
i T )

k′i,t which gives the same result.
Let p̃

γi
i be a length-k′i vector:

p̃
γi
i � [pγi

i,(k′i,0)
,pγi−1
i,(k′i,1)

, · · · ,pi,(k′i,γi−1)
]

where pγi
i,(k′i,0)

denotes a length-k′i,0 vector, with each component being pγii . Note

that p̃
γi
i is closely related to (6.46). Following Lemma 6.2, the generator matrix of

the primary sublattice �pi of the ith layer in this scenario has a form:

G�pi =
[

Diag
(

p̃
γ1
1 · · · p̃γi−1

i−1 , Ik′i , p̃
γi+1
i+1 · · · p̃γmm

)

0

0 Imn−k′

]

G (6.48)
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where k′ = ∑m
i=1 k

′
i . The EDC lattices in this scenario are constructed by some

linear codes over different finite chain rings, and the matrix G must be associated
with the generator matrix of each linear code Ci over the finite chain ring. Let σ̃i(d ·
[Ĩ∗pγii B̃k′i ,n−k′i ]) be the codeword of Ci = wiGiFCR over the finite chain ring T ,

d ∈ δiSk′i . Then, G in (6.48) is an mn× n matrix defined below:

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ĩ∗pγ11
B̃k′1,n−k′1

Ĩ∗pγ22
B̃k′2,n−k′2

...
...

Ĩ∗pγmm B̃k′m,n−k′m
0 # In−k′1
...

...

0 # In−k′m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.49)

Hence, we are able to construct�pi and hence the EDC lattice� for this scenario
based on the generator matrices presented above. Note that message space of each
layer follows from (6.47), and k′i,t should be selected such that

γiki =
γi−1
∑

t=0

(γi − t)k′i,t (6.50)

in order to guarantee the consistency to the message size of the ith layer EDC lattices
defined in (6.37). It is easy to prove that there exists k′i,t ∈ Z

+, ∀t = 0, 1, · · · , γi−1,
satisfying (6.50).

The generator matrix of the coarse lattice �′ is given by,

G�′ =
⎡

⎣
Diag

(

I∑i−1
j=1 k

′
j
, p̃
γi
i , I

∑m
j=i+1 k

′
j

)

0

0 Imn−k

⎤

⎦G�pi (6.51)

Following (6.51), it is obvious that �/�′ ∼= W 1 ⊕ · · · ⊕ Wm. The generator
matrix for �′i has a form:

G�′i =
⎡

⎣
Diag

(

I∑i−1
j=1 k

′
j
, p̃
γi
i , I

∑m
j=i+1 k

′
j

)

0

0 Imn−k

⎤

⎦G (6.52)

which will be used for layered integer forcing detection.
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Every ideal of T is generated by the maximal ideal, which forms a chain with
chain length γi . Hence the residue field Q plays an important role in producing the
linear codes over T . We now consider a matrix in the form of:

GiD = Diag

(

p0
i,(k′i,0)

, · · · ,pγi−1
i,(k′i,γi−1)

)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

gi
k′i,0

gi
k′i,1
...

gi
k′i,γi−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6.53)

where gi
k′i,t
∈ Q∗

k′i,t×n, andQ∗
k′i,t×n is a k′i,t × n matrix with each entry over the coset

representative of the residue field Q = δiS/〈piδi〉. Each row of GiD must satisfy
the condition that none of its rows are linear combinations of the other rows. The
message space of GiD could be partitioned into γi−1 levels. We first define the vector

β
(j)

k′i,t
= [β(j)1 , β

(j)

2 , · · · , β(j)
k′i,t
], when t = 0, where j = 0, 1, · · · γi − 1, is the level

indicator, and β
(j)

k′i,t
= [β(j)

k′i,t−1+1, β
(j)

k′i,t−1+2, · · · , β
(j)

k′i,t
] when t = 1, 2, · · · , γi − 1.

Accurately β
(j)

k′i,t
represents a length-k′i,t segment of the j th level message over the

vector spaceQk
′
i,t . The full message space of the j th level is given by,

β(j) = [pji β(j)k′i,0 , p
j−1
i β

(j)

k′i,1
, p
j−2
i β

(j)

k′i,2
, 0 · · · 0
︸ ︷︷ ︸

k′i−
∑j
t=0 k

′
i,t

] (6.54)

where the powers of pi can not be negative integers. Hence the message space of
GiD isWi = β(0) + β(1) + · · · + β(γi−1). The codewords Ci can be produced by

Ci = WiGiD =
(

β(0) + β(1) + · · · + β(γi−1)
)

GiD

= ci0 + ci1pi + · · · + ciγi−1p
γi−1
i (6.55)

Since none of the rows of GiD are linear combinations of the other rows, cit is
therefore row spanned by

gcit
=
[

gi
k′i,0
; gi
k′i,1
; · · · ; gi

k′i,t

]

(6.56)

It is obvious that cit , t = 0, 1, · · · , γi − 1 forms a set of nested codes ci0 ⊆ ci1 ⊆
· · · ⊆ ciγi−1 over Q∗. Following the Q-adic decompostion theorem of finite chain

ring [10, 19], we assert that the codeword Ci in (6.55) generated by GiD is indeed
over T .
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In terms of (6.53) and (6.54), the message space corresponding to gi
k′i,t

should be

written as:

Wi
t =

γi−1
∑

j=t
p
j−t
i β

(j)

k′i,t
(6.57)

this complies with theQ-adic decomposition and leads to the result that the message
space corresponding to gi

k′i,t
is (T /〈pγi−ti 〉)k′i,t . This implies that the right-hand

side of (6.47) is precisely the message space of GiD. Mathematically the primary
sublattices�pi can also be represented in the form below:

�pi =
⋃

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γi−1
∑

j=0

K i
j

∑

�=1

p
j
i β
(j)
� gi�

︸ ︷︷ ︸

(52)

+pγii Sn|gi� ∈ Q1×n

⎫

⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.58)

whereK i
j = k′i,0+· · ·+k′i,j . It is interesting to see that (6.58) has the same structure

as complex construction D. Now we conclude that the primary S-sublattices
constructed by a linear code over a finite chain ring subsumes construction D.

Based on this result, we may now construct EDC lattices for this scenario using a
set of nested linear codes over a finite field. Let gi

(n−k′i ) ∈ Q
∗
n−k′i×n be an (n−k′i)×n

matrix, then the G matrix is:

G =
[

G1
D
T
, · · · , GmD

T , #g1
(n−k′i )

T
, · · · , #gm

(n−k′i )
T
]T

(6.59)

Scenario 3 This corresponds to a hybrid case of scenario 1 and 2, and we give the
following summaries:

1. m = 1, γ1 = 1, then the EDC lattice in (6.36) is a complex construction A lattice
which is indecomposable.

2. m = 1, γ1 > 1, γ1 ∈ Z
+ then the EDC lattice in (6.36) is a complex construction

D lattice which is indecomposable.
3. m > 1, γi ∈ Z

+, i = 1, 2, · · · ,m, then the EDC lattice in (6.36) is decom-
posable, and consists of some sublattices constructed by either construction A
or D.

Note that in (3), a new class of lattices over S is generated by a number of linear
codes over either finite field or chain ring, which generalises the scenario 1 and 2.
Scenario 3 suggests that the design of EDC lattices is very flexible, and we also
give more detailed discussion about why EDC lattices are good at low-complexity
decoding and throughput improvement for PNC in the next sections.
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6.5.5 Nominal Coding Gain and Kissing Number

The nominal coding gain and kissing number of the EDC lattices are described in
this section for all three scenarios. The definition such as the minimum-norm coset
leaders and minimum Euclidean weight of the codeword follows from [9].

Scenario 1 We first study the nominal coding gain and kissing number of the ith
layer primary sublattices in this scenario. Following (6.38) and (6.39), we know
that Ci is a linear code of length n over δiS/piδiS. Thus, ci = (ci1+〈# 〉, · · · , cin+
〈# 〉) ∈ Ci . We denote ω(i)(ci ) the Euclidean weight of a codeword ci in Ci , and
ω
(i)
min(C

i ) the minimum Euclidean weight of non-zero codewords in Ci . Let ϑ be a

scaling factor depending on which PID is used, and N(ω(i)min(C
i )) be the number of

codewords in Ci with the minimum Euclidean weight ω(i)min(C
i ).

Proposition 6.1 Let Ci be a linear code over δiS/piδiS, and �pi /�
′ the primary

quotient lattice system of the ith layer constructed by Ci , �pi ⊇ �′, then the
nominal coding gain is given by:

%(�pi /�
′) = ω

(i)
min(C

i )

ϑ|pi |2(1−
ki
n
)|δi |2

(6.60)

and the kissing number is:

K(�pi /�
′) =

⎧

⎪⎨

⎪⎩

N(ω
(i)
min(C

i ))
(

NU(S)
|pi |2−1

)ω
(i)
min(C

i )

|δi |2 , |pi |2 − 1 ≤ NU(S)

N(ω
(i)
min(C

i )), Otherwise

(6.61)

Here NU(S) represents the number of units in S.
It is of interest to study the nominal coding gain and kissing number of �/�′

in terms of the m linear codes Ci . Following the proof of Theorem 6.2, and the
descriptions in prior sections, c̃ = c1 + c2 + · · · + cm, c̃ ∈ C̃ and C̃ ∈ (S/〈# 〉)n.
Thus, the nominal coding gain of EDC lattices is determined by the m linear codes
Ci over δiS/piδiS, i = 1, 2, · · · ,m.

Proposition 6.2 Let C1, · · · ,Cm be m linear codes over δiS/piδiS, i =
1, 2, · · · ,m, respectively. Let c̃ = c1 + c2 + · · · + cm, c̃ ∈ C̃ and ci ∈ Ci .
The nominal coding gain of the EDC lattices �/�′ in scenario 1 is given by

%(�/�′) = ωmin(C̃)
∏m
�=2 |pj |

2(k�−k1)
n

ϑ|p1|2(1−
k1
n )|δ1|2

(6.62)

where k1 ≤ k2 ≤ · · · ≤ km.
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Scenario 2 This corresponds to the case where γi > 1, γi ∈ Z for i = 1, 2, · · · ,m.
The primary sublattice of the ith layer can be constructed by a linear code Ci over
a finite chain ring δiS/〈# 〉, where δi = #

p
γi
i

. This follows immediately from (6.38)

and (6.39). Here, we are more concerned with the nominal coding gain and kissing
number when the ith primary sublattice is constructed by a set of nested linear codes
over the residue fieldQ, since the linear code over a finite field is easier to generate.
Let Ci,0 ⊆ · · · ⊆ Ci,γi−1 be nested linear codes of length-n over Q, where Ci,t is
an [n,∑t

�=0 k
′
i,�] linear code for the tth nested code at the ith layer, and we denote

ω
(i,t)
min (C

i,t ) the minimum Euclidean weight of non-zero codewords in Ci,t . We have:

Proposition 6.3 Let Ci,0 ⊆ · · · ⊆ Ci,γi−1 be γi nested linear codes of length-n over
Q, and�pi /�

′ be the primary quotient lattice of the ith layer constructed from Ci,t ,
t = 0, 1, · · · , γi−1, then the nominal coding gain of the ith layer is lower bounded
by

%(�pi /�
′) ≥ |pi |

2
n

∑γi−1
t=0 (γi−t )k′i,t min0≤t≤γi−1{|pi|2tω(i,t)min (C

i,t )}
ϑ|# |2 (6.63)

and the kissing number is upper bounded by:

K(�pi /�
′) ≤

⎧

⎪⎨

⎪⎩

∑γi−1
t=0 Nt(ω

(i,t)
min (C

i,t ))
(

NU(S)
|pi |2−1

)ω
(i,t)
min (C

i,t )

|δi |2 , |pi |2 − 1 ≤ NU(S)
∑γi−1
t=0 Nt(ω

(i,t)
min (C

i,t )), Otherwise
(6.64)

It is of interest to study the nominal coding gain of�/�′ in this scenario. If each
primary sublattice is constructed via a set of nested linear codes over a finite field
Q = δiS/〈piδi〉 for the ith layer, the nominal coding gain %(�/�′) will be related
to overall

∑m
i=1 γi linear codes since there are γi nested linear codes for each i. Let

C̃ be a composite code such that c̃ = c1 + · · · + cm where ci = ci,0 + pici,1 +
· · · + pγi−1

i ci,γi−1. Hence Ci ∈ δiS/〈# 〉 and C̃ ∈ S/〈# 〉. We denote ωmin(C̃) the
minimum Euclidean weight of non-zero codewords in C̃, then:

Proposition 6.4 Let Ci,0 ⊆ · · · ⊆ Ci,γi−1 be γi nested linear codes of length-
n over Q, and let C̃ be a composite code such that c̃ = c1 + · · · + cm where
ci = ci,0 + pici,1 + · · · + pγi−1

i ci,γi−1. The nominal coding gain for �/�′ in
scenario 2 is given by:

%(�/�′) = ωmin(C̃)

(V (V(�)))
1
n

= ωmin(C̃)
∏m
i=1 |pi |2

∑γi−1
t=0 (γi−t )

k′
i,t
n

ϑ|# |2 (6.65)
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Scenario 3 As explained in the preceding section, in this case, γi ≥ 1, γi ∈ Z,
and hence the EDC lattice consists of a number of primary sublattices which can be
constructed by linear codes over either finite field or finite chain ring. The nominal
coding gain and kissing number of the primary sublattices in each case have been
derived in Propositions 6.1 and 6.3. We are more interested in the nominal coding
gain of�/�′ in this scenario. Again, we consider the primary sublattices of scenario
2 is constructed over a set of nested linear codes. Let C̃ be a composite code such
that c̃ = c1 + · · · + cm where

ci =
{

ci , Ci ∈ δiS/piδiS, γi = 1

ci,0 + pici,1 + · · · + pγi−1
i ci,γi−1; Ci,t ∈ Q, γi > 1

We can easily prove that %(�/�′) has similar form as (6.65) if we set k′i,0 = ki for
γi = 1.

6.6 Multistage Compute-and-Forward Over Finite Rings

In this section, we discuss the extension of the schemes in Sect. 6.4 to the multilevel
setting. We first present multistage compute-and-forward [14], a generalization of
compute-and-forward in [21]. We then discuss multilevel lattice network coding,
a generalization of lattice network coding in [8]. Similar to their single-level
counterparts in Sect. 6.4, while multilevel lattice network coding is a general
framework and subsumes multistage compute-and-forward as a special case, the
latter specifically narrows the codes to be those from Construction πA lattices in
Sect. 6.5.2 and thus the achievable computation rate can be analyzed.

6.6.1 Multistage Compute-and-Forward

In this subsection, we consider only the ring of integers Z and the real channel
coefficients (where the complex channel coefficients will be discussed in the
subsequent sections), i.e., hj� ∈ R. The results for the complex case can be similarly
obtained by considering either Z[i], Z[ω], or other rings of imaginary quadratic
integers as the underlying ring of integers. In what follows, similar to compute-
and-forward [21], we consider the asymptotic regime where we would like to know
under which rates, the probability of error would vanish as the blocklength becomes
large.

Let p1, . . . , pm be distinct primes. From the Chinese Remainder Theorem,
there exists M : ×mi=1Fpi → Z/&mi=1piZ a ring isomorphism, which can be
easily obtained by solving the Bézout’s identity. The key enabler of our multistage
compute-and-forward is to recognize the fact that from CRT, each integer aj� ∈ Z
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can be uniquely represented as

aj� = āj� +&mi=1pi ãj�, (6.66)

with ãj� ∈ Z and āj� ∈ Z/&mi=1piZ which itself can be uniquely represented by
its coordinate in ×mi=1Fpi as

āj� =M(b1
j�, . . . , b

m
j�). (6.67)

With the above relationship, we can collectively write aj = āj +&mi=1pi ãj where
āj = M(b1

j , . . . ,b
m
j ). In our proposed scheme, each transmitter decomposes the

message w� into m sub-messages and represent each sub-message by its pi -ary
expansion wij ∈ F

N ′
pi

for i ∈ {1, . . . ,m}. The functions we aim to compute at the
relay j are given by

uij � bij1 &wi1 ⊕ . . .⊕ bij� & wiL, (6.68)

for i ∈ {1, . . . ,m}.
The proposed multistage compute-and-forward scheme is based on the multilevel

nested lattice codes from Construction πA lattices recently proposed in [13]. To use
the proposed multilevel lattices for transmission over a power-constrained system,
a multilevel nested lattice code construction is proposed in [13], which tailors
the nested lattice code construction of Ordentlich and Erez [22] specifically for
Construction πA lattices. In this construction, two lattices, namely the coarse and
fine lattices, are constructed in such a way that the coarse lattice is a sub-lattice of
the fine one. The code then consists of all the fine lattice points lying inside the
fundamental Voronoi region of the coarse lattice. To this end, we first construct
two sets of linear codes C1

f , . . . , C
m
f and C1

c , . . . , C
m
c that will later be used for

constructing the fine and coarse lattices, respectively. Specifically, let

Cic = {Gic & wi |wi ∈ F
mic
pi }, (6.69)

Cif = {Gif & wi |wi ∈ F
mif
pi }, (6.70)

where Gic is a n × mic matrix and Gif =
[

Gic G̃i
]

, where G̃i is a n × (mif − mic)
matrix. We then use Construction πA with these codes to generate

�f � γ
(

&mi=1pi
)−1 M(C1

f , . . . , C
m
f )+ γZn,

�c � γ
(

&mi=1pi
)−1 M(C1

c , . . . , C
m
c )+ γZn, (6.71)

where γ is for the power constraint. Clearly, Cic ⊂ Cif , i ∈ {1, . . . ,m} and thus
�c ⊂ �f . We then form the nested lattice code corresponding to �f /�c by
selecting a complete set of coset leaders with the minimum energy as codewords.
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Mathematically, the multilevel nested lattice codes is given by�f∩V�c . The design
rate is given by

Rdesign =
m
∑

i=1

mlf −mic
n

log(pi). (6.72)

The design rate becomes the actual rate if every Gif is full-rank which will be
fulfilled with high probability.

The transmitter � first decomposes the message w� into (w1
�, . . . ,w

m
� ), where

wi� is a length (mif − mic) vector over Fpi , and pads mic 0 in front of wi� to get

vi� =
[

0
wi�

]

, i ∈ {1, . . . ,m}, is then encoded via Ci to get ci� = Gif & vi�. The

codeword t� ∈ �f ∩V�c is formed as

t� =
(

γ
(

&mi=1pi
)−1 M(c1

�, . . . , c
m
� )+ γ ζ �

)

mod �c, (6.73)

with ζ � ∈ Z
N . It then sends a dithered version

x� = (t� − u�) mod �c. (6.74)

At the receiver j , by scaling the received signal by αj and adding the dithers back,
one obtains y′j in (6.17). Moreover, with the relationship aj� = āj� + &mi=1pi ãj�,
one can further rewrite teq,j in (6.19) as

teq,j =
(
L
∑

�=1

(āj� +&mi=1piãj�)t�

)

mod �c

=
(

γ (&mi=1pi)
−1

L
∑

�=1

M(b1
j�, . . . , b

m
j�)M(c

1
�, . . . , c

m
� )

+γ
L
∑

�=1

ζ � + γ
L
∑

�=1

ãj�
&mi=1pi

γ
t�

)

mod �c

(a)=
(

γ (&mi=1pi)
−1M

(
L
⊕

�=1

b1
j� & c1

�, . . . ,

L
⊕

�=1

bmj� & cm�

)

+ γ ζ j

)

mod �c,

(6.75)

where ζ j ∈ Z
N and (a) holds because M(.) is a ring isomorphism and

&mi=1pi/γ t� ∈ Z
N . One can then decode the fine lattice point corresponding to

teq,j by decoding the equivalent codeword
⊕L
�=1 b

i
j� & ci�, which corresponds to
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the message
⊕L
�=1 b

i
j� & vi�, level by level. This in turn gives an estimate of uij

for i ∈ {1, . . . ,m}. Let Z∗eq,j be a zero-mean Gaussian random variable having a
same second moment with Zeq,j . Similar to [13], one can show that there exists a
sequence of �f whose error probability under multistage decoding can be made
arbitrarily small whenever

Vol(�f )
2
n > 2π exp(1)σ 2

eq,j2
− 2
nD(Zeq,j ‖Z∗eq,j ). (6.76)

This leads to reliable computation under multistage decoding whenever

R = 1

n
log

(
Vol(�c)

Vol(�f )

)

= 1

n
log(Vol(�c))− 1

n
log(Vol(�f ))

<
1

2
log

P

G(�c)
− 1

2
log 2πeσ 2

eq2−
2
n
D(Zeq‖Z∗eq)

= 1

2
log+

⎛

⎝

(

‖aj‖2 − P |h∗jaj |2
1+ P‖hj‖2

)−1
⎞

⎠− 1

2
log(2πeG(�c))+ 1

n
D(Zeq ||Z∗eq ),

(6.77)

in the limit as N →∞.
Note that if �c is good for MSE quantization, then G(�c) → ∞ and

1
n
D(Zeq ||Z∗eq) → 0 [34]; thus, (6.77) becomes the achievable computation rate

of Nazer and Gastpar in Theorem 6.1. However, this will require a sequence of
Construction πA lattices that is good for MSE quantization, whose existence has
not been proved yet. We also note that for the hypercubic shaping, i.e., �c = γZn,
G(�c) = 1/12 and thus,

R >
1

2
log+

⎛

⎝

(

‖aj‖2 − P |h∗jaj |2
1+ P‖hj ‖2

)−1
⎞

⎠− 1

2
log
(πe

6

)

, (6.78)

which is 1.53 dB away to the achievable computation rate in Theorem 6.1 in the
high signal-to-noise ratio (SNR) regime.

6.6.2 Layered Integer Forcing

Based on the Theorems developed above, we show in this section an efficient way
of decoding the linear combination of the multi-source messages within multilevel
network decoding, named layered integer forcing (LIF), with greatly reduced
complexity. The traditional layered integer forcing can be found by papers e.g. [35].
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Fig. 6.3 System diagram of the multilevel lattice network coding and multistage decoding. The
right-hand side of H represents the decoding for a single relay

Traditional Approach Theorems 6.2, 6.3, and Lemma 6.1 imply that the message
space with large cardinality may be expressed as a set of smaller message spaces
over the hybrid finite field and finite chain ring. Figure 6.3 depicts a multilevel lattice
network coding architecture, with L sources and a single relay. The encoder E� at
the �th source maps the original message w� = w1

�⊕· · ·⊕wm� to a fine lattice point
� (assuming n-dimension) via the injective map φ̃ defined in Lemma 6.1. Then we
add a dither d� ∈ C

n which is uniformly distributed over the fundamental Voronoi
region V�′ of �′. The dithered lattices pass through a nested shaping operator
in order to restrain the power consumption. This operation is performed via the
sublattice quantization:

λ′� = Q�′(φ̃(w1
� ⊕ · · · ⊕ wm� )+ d�) (6.79)

where λ′� ∈ �′, and Q�′(·) : Cn �−→ �′ is a coarse lattice quantizer. The output of
the �th source is given by:

x� = E�(w1
� ⊕ · · · ⊕ wm� )

= φ̃(w1
� ⊕ · · · ⊕ wm� )+ d� − λ′� (6.80)

Note that x� is uniformly distributed over V�′ due to the effect of the dither. The
average power of the transmitted signal x� is given by:

P = 1

nVol(V�′)

∫

V�′
‖ x� ‖2 dx� (6.81)

which is the second moment per dimension of x� over V�′ . The message space at
each source consists of a direct sum of m small message spaces (assuming there
are m levels ) over different finite fields or chain rings. The encoder E� constructs a
one-to-one relation between the message space and the coset system �/�′.
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At the relay, given the received signals y and an S-integer vector ã =
[ã1, ã2, · · · , ãL]T ∈ SL, the decoder aims at computing a new lattice point which
is regarded as an S-linear combination of transmitted lattice points from all sources.
The homomorphism designed for the coset system will be used for decoding the
lattice point to a linear combination of the original messages. We assume in this
paper that the fading coefficients h = [h1, h2, · · · , hL], and dithers are perfectly
known at the relay. The decoder can be described, generally, by:

D : (Cn,CL, SL,C) �−→ W, û = D(y|h, ã, α,d) (6.82)

Thus, the output of D(y|h, ã, α,d) is the estimates of the linear combination of the
original messages of each source. Here α is a scaling factor [21] which maximises
the computation rate. Note that the aforementioned decoder (6.82) may vary
according to the specific problem. There may be additional information available
to the decoder, and the decoder may also have extra outputs. However, basically the
core idea for the decoding remains the same. Based on the quotient lattice �/�′,
we have:

û = D(y|h, a, α,d)

(a)= φ
(

Q�
(

αy−
L
∑

�=1

ã�d�

))

(6.83)

(b)= φ
(

Q�
( L
∑

�=1

ã�
(

φ̃(w�)− λ′�
)+ neff

))

(6.84)

(c)= φ
( L
∑

�=1

ã�φ̃(w�)+ Q�(neff)

)

(6.85)

(d)=
L
⊕

�=1

a�w� � φ (Q�(neff)) (6.86)

where (a) follows from the fact that we expect to quantize a set of scaled received
signals which are subtracted from the corresponding dithers. (b) follows from the
manipulation of:

αy =
L
∑

�=1

ã�x� +
L
∑

�=1

ã�d� +

neff
︷ ︸︸ ︷

L
∑

�=1

(αh� − ã�)x� + αz (6.87)

(c) follows from the definition of the lattice quantizer, and (d) follows from the
properties of a surjective module homomorphism, and also Lemma 6.1. Note that
here φ(ã�) = a� ∈ w1 ⊕ · · · ⊕ wm.
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Equations (6.83)–(6.86) reveal the decoding operations for the traditional lattice-
based PNC. We are able to decode a linear combination of messages

⊕L
�=1 a�w�

over all sources without errors provided that φ (Q�(neff)) = 0. Thus, the successful
decoding is guaranteed if and only if the effective noise is quantized to the kernel of
φ, K(φ).

The problems left unsolved are: (1) how to exploit rich ring features in order
to make it practically applicable in lattice-based network coding. (2) when the
cardinality (the coset representatives) of�/�′ is large, the complexity of the lattice
quantizer becomes unmanageable, which restricts the application of LNC. What
is the practical lattice network decoding approach that could greatly relieves the
decoding load in LNC. We study a new decoding solution which is specifically
designed in terms of MLNC, and which relaxes the two problems mentioned.

Layered Integer Forcing The breakthrough of MLNC (based on Theorems and
Lemmas developed) is that

• The original message space over �/�′ can be decomposed into a direct sum of
m smaller message spaces in terms of �pi /�

′, i = 1, 2, · · · ,m.
• The relay can decode each layer independently; thus the decoder tries to infer

and forward a linear combination of messages of each layer separately over the
message subspace defined in Theorem 6.3.

Let us recall the traditional decoding operations explained in (6.83)–(6.86). If we
are only concerned with the linear combination of a particular layer, the quantization
of the effective noise need not necessarily be the kernel of φ. There must exist other
lattice points in�/�′ such that the homomorphism of these points does not interfere
with the linear combination of that layer following the aforementioned theorems.

Theorem 6.4 There exists a quotient S-lattice �/�′i with generator matrices G�
for�, and G�′i for�

′
i , which satisfies:

G�′i =
⎡

⎢
⎣

Diag(I, pθ1i , · · · , pθti , I
︸ ︷︷ ︸

k

) 0

0 In−k

⎤

⎥
⎦G� (6.88)

and there is a surjective S-module homomorphism ϕi:

ϕi : � �−→ S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕ S/〈pθti 〉 (6.89)

whose kernel K(ϕi) = �′i . The quotient S-lattice �/�′i is isomorphic to the direct
sum of cyclic modules:

�/�′i ∼= S/〈pθ1i 〉 ⊕ S/〈pθ2i 〉 ⊕ · · · ⊕ S/〈pθti 〉 (6.90)
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Note that although both�pi/�
′ and�/�′i are isomorphic to S/〈pθ1i 〉⊕S/〈pθ2i 〉⊕

· · · ⊕ S/〈pθti 〉, they belong to different coset systems. �pi /�
′ is related to the

construction of lattices that have multilevel structure, whereas �/�′i is related to
the decoding issues, i.e. LIF.

Theorem 6.4 defines a new sublattice �′i which plays a key role in decoding
MLNC, as it is the kernel of the quotient S-lattice that possesses a surjective
homomorphism ϕi for the ith layer. Hence it is possible to decode an S-linear
combination of fine lattice points to an S-linear combination of the original
messages of the ith layer. This is explained in Lemma 6.3.

Lemma 6.4 Given the embedding injective map φ̃ : (w1, · · · ,wm) �−→ �, there
exists a surjective S-module homomorphism ϕi , i = 1, 2, · · · ,m, defined in (6.89),
satisfying:

ϕi
(

φ̃(w1 ⊕ · · · ⊕ wm)
) =

{

wi ,wi /∈ 〈pθ1i 〉 ⊕ · · · ⊕ 〈pθti 〉
0, wi ∈ 〈pθ1i 〉 ⊕ · · · ⊕ 〈pθti 〉

(6.91)

Based on Lemma 6.3, it is now possible to decode the linear combination of the
messages of each layer separately and independently. Assuming the messages at the
ith layer is of interest, the relay computes:

ûi = Di (y|h, ai , αi ,d) (6.92)

= ϕi
(

Q�
(

αiy−
L
∑

�=1

ãi�d�

))

(6.93)

where

Di : (Cn,CL, SL,C,Cn×L) �−→ Wi (6.94)

and αi ∈ C and ai are the scaling parameter and S-integer coefficients of the ith
layer, respectively, which are determined by some optimisation criterion in terms of
the quotient S-lattice �/�′i .

Theorem 6.4 and Lemma 6.4 lay the foundation of the layered integer forcing.
The linear combination of ûi can be recovered in terms of LIF by:

ûi
(d)= ϕi

(

Q�
( L
∑

�=1

ãi�
(

φ̃(w1
� ⊕ · · · ⊕ wm� )− λ′�

)+ neff

))

(e)= ϕi
( L
∑

�=1

ãi�φ̃(w
1
� ⊕ · · · ⊕ wm� )− λ′� − λ′i,� + Q�(neff)

)
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(f )= ϕi

( L
∑

�=1

ãi�φ̃(w
1
� ⊕ · · · ⊕wm� )

)

� ϕi
(

Q�(neff)

)

(g)=
L
⊕

�=1

ai�w
i
� � ϕi

(

Q�(neff)

)

(6.95)

where (d) follows from (6.80) and basic arithmetic manipulations; (e) follows from
the definition of the lattice quantizer Q�, and also the S-linear combination of the
lattice points is restricted in V�′i ; (f) follows from the property of a surjective S-
module homomorphism, and also the fact that λ′ ⊆ λ′i and K(ϕi) = λ′i . (g) follows
from Lemma 6.3, and note that ϕi(ãi�) = ai� ∈ Wi .

Lemma 6.5 The linear combination of the messages at the ith layer ûi =
⊕L
�=1 a

i
�w
i
� can be recovered if and only if Q�(neff) ∈ �′i . Thus, Pr(ûi �= ui ) =

Pr(Q�(neff) /∈ �′i ).
Lemma 6.5 reveals that the lattice �′i defined in Theorem 6.4 plays a key role in

decoding the messages of the ith layer.

6.6.3 Multistage Iterative Decoding Algorithm for EDC
Lattices

In this section, we present an iteration-aided multistage decoding approach specif-
ically designed for EDC, which provides a feasible way of improving the perfor-
mance of decoding the linear combinations, and also of increasing the overall rate
with low decoding-complexity. We consider S to be a ring of Eisenstein integers
Z[ω] in the sequel.

We have clearly revealed the possible encoding structure for EDC. Recalling the
definition for EDC, we know that the map σ̃ : Sn �−→ (S/〈pγ1

1 〉)n ⊕ (S/〈pγ2
2 〉)n ⊕· · · ⊕ (S/〈pγmm 〉)n is a natural projection of a surjective ring homomorphism σ :

S �−→ S/〈pγ1
1 〉 × S/〈pγ2

2 〉 × · · · × S/〈pγmm 〉 ←→ Fp̃1 × · · · × Fp̃m by applying it
element-wise [3] (γi = 1, ∀i = 1, 2, · · · ,m). Note that in this case, σ is actually an
f.g. abelian group homomorphism. It is easy to see that each level S/〈pi〉 is coded
by an [n, ki ] linear code Ci over Fp̃i (a finite field or finite chain ring determined by
p̃i).

6.6.3.1 Soft Detector for EDC

A general decoding method LIF for MLNC has been developed in the prior sections,
based on the optimised scaling factor α, S-integer coefficient vectors ãi , and a good
EDC lattice quantizer, e.g. a Viterbi decoder with modified metrics (see appendix).
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Thus, when EDC is employed in MLNC, LIF is also feasible. In this section, we
explore another detection approach designed specifically for the EDC-based MLNC
( which follows from the structure of the EDC lattices). Especially an iterative
detector is developed, which exploits the multilevel structure gain of EDC by using
multistage decoding.

First, we consider the non-iterative multistage decoding. The detector tries to
decode the linear function of each level stage-by-stage, with the aid of the a priori
information from the preceding layers. The detection structure is similar to the
point-to-point multilevel codes, e.g. [2, 28] whereas here the a priori information
is the soft estimation. We develop a layered soft detector (LSD) which calculates
the posteriori L-vector (a vector of Log-likelihood ratio) for each layer with the aid
of the multiple a priori L-vectors.

The LSD decodes the linear function of each layer over the corresponding non-
binary finite field, and hence the a priori information of each layer is no longer a
scalar value. We define the a priori information Ai to be a vector-based random
variable with realization:

ai =
[

log

(

Pr(ξ |V i = vi1)
Pr(ξ |V i = 0)

)

· · · log

(

Pr(ξ |V i = vi
p̃i−1)

Pr(ξ |V i = 0)

)]

(6.96)

where V i denotes the possible linear combinations at the ith level, which is a
uniformly distributed random variable whose kth realization is vik ∈ Fp̃i , k =
1, 2, · · · , p̃i − 1. Pr(ξ |V i = vik) is the probability of the a priori channel outputs
� = ξ given the event V i = vik . Assume that wij ∈ Fp̃i , i = 1, 2, · · · ,m,
j = 1, 2, · · · , L to be the message of the ith level and the j th source, the linear
function is defined by f i(wi1, · · · , wiL) =

⊕L
�=1 a

i
�w
i
� over Fp̃i . Note that the

integer coefficient ai� can be determined either by the lattice reduction approach as
introduced in [9, 12] over the ith quotient lattice �/�′i as defined in Theorem 6.4,
or by the maximum mutual information criterion as described later.

In the multistage iterative decoding, the proposed LSD outputs the extrinsic L-
vector ei for the ith level, based on the a priori L-vector aj , j ∈ {1, · · · ,m}, j �= i.
Assume that there is a two level EDC and the decoding proceeds from layer 1 (which
is regarded as the first stage decoding) to layer 2 (the second stage decoding). The
extrinsic outputs of layer 1 feed into layer 2 to assist the second stage decoding.
With the aid of the a priori L-value, layer 2 estimates and forwards the extrinsic
information (which serves as the a priori information of layer 1) to layer 1. The
process is repeated and all layers are activated in turn for the second and subsequent
iterations. We refer to this approach as the iterative MSD (IMSD) scheme for
MLNC. The detection process is similar to iterative decoding of multilevel codes,
e.g. [30] whereas the nature of the detection is different. As the iteration proceeds,
each layer will produce more reliable extrinsic L-vector ei which also serves as the
a priori information of the soft-in soft-out non-binary decoder for the corresponding
Ci . Figure 6.4 illustrates the multistage iterative decoding with two stages.
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Fig. 6.4 Two-stage LSD
iterative decoding model.
Interleaver and de-interleaver
are not shown

y

Lattice DEC 1

L-vector

û1, û2

Lattice DEC 2

L-vector

After max iterations

Table 6.1 Code type and
code rate assigned for each
level

i g(D)

1 [−2ω2 + 2ω2D3, 2ω2 + (−2ω2)D + 2ω2D3]

2

[

−2+ (1− ω)D2 + (−2)D3

−2+ (−2)D + (−2)D2 + (1− ω2)D3

]

It is seen that the maximum achievable rates for the network coded linear
combinations are R(1) = log2 3 and R(2) = log2 4 for level 1 and 2. The allowable
rate at a certain level is higher when the a priori information from another layer is
available. We assume two memory 3, 1/2-rate convolutional codes are used at both
levels (over F3 and F22 respectively). EDC lattices achieve overall rate 1

2 log2(12),
with the number of trellis states 27 and 64 at the corresponding levels. However, a
single convolutional code over ring R12 needs 1728 trellis states. The complexity
reduction is obvious.

6.6.4 Simulation Results

We focus mainly on the applications of EDC lattices in MLNC. Note that MLNC
design applies in principle to any lattice codes (e.g. complex low density lattice
codes [31, 33], Signal codes [23]) but we use EDC lattices to verify the theory
developed and decoding performance.

We are mainly concerned with the performance of the multiple access channel
(MAC) such as the two-way relay channel (TWRC), which can be viewed as the
building block for more complicated network topologies. All simulations are based
on a two-layer EDC lattice which has the same configuration. Thus, the two layers
are constructed via linear codes C1 ∈ F3 and C2 ∈ F22 . The linear codes at both
layers are non-binary convolutional codes, with their generator polynomials defined
in Table 6.1. Note that the decoder of the non-binary convolutional codes is based on
the maximum a posterior (MAP) probability criteria and modified BCJR algorithm,
where the soft output of the component symbols is produced.
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We examine the performance of MSD based on the asymmetric coding rates over
each level, where the rate of layer 2 is set to R(2) = 3

4 and layer 1 is set to R(1) = 1
2 .

Thus, the sublattice �p2 is constructed via a higher rate linear code. The overall
message rate is given by

Rmes ≈ 1

2
log2 3+ 3

4
log2 4 bits/symbol

Note that the SER curve of level 1 (red dashed circle) without MSD should closely
match that with MSD (red solid circle) when multistage decoding is used in layer
1. Simulations in Fig. 6.5 confirm this. Based on the increased coding rate, we are
more concerned with the SER performance of layer 2. It is observed from Fig. 6.5
that the SER performance of layer 2 is greatly degraded if MSD is not employed,
with approximately 3 dB loss at 10−5 compared to the half-rate code used at this
level. However, when MSD is used, the SER (blue solid square) of layer 2 has more
than 3 dB gain over the non-MSD case (blue dashed square) as a result of the reliable
a priori feedback from layer 1. The overall performance of MSD-based detection is
determined mainly by layer 1, whereas for non-MSD-based detection, the overall
performance is dominated by layer 2. That is the reason why the overall SER of
the MSD-based scheme performs better than the non-MSD scenario, with 2 dB gain
obtained at 10−5. It is interesting to note that when the decoding of the �pi/�

′
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which is constructed from a higher rate linear code occurs at a later stage of MSD,
the overall SER performance of MSD over non-MSD performs better. Hence, MSD
is particularly suitable for the detection of EDC lattices in terms of MLNC design,
since each layer of EDC operates over an asymmetric finite field or finite chain ring.
Now the overall SER is 4.5 dB from the capacity. Note that the measure of SER
is based on the correct recovery of the linear combinations of original messages at
each source over the respective algebraic field.

Iterative Multistage Decoding We believe that there is room to improve SER and
FER performance further. Based on the soft detector developed, and also the soft
decoder developed for the non-binary convolutional codes, we propose to apply the
iterative technique to EDC-lattice-based MLNC. Note that a pair of pseudorandom
interleaver and de-interleaver has been employed in the iterative systems.

Figure 6.5 depicts the result when IMSD is used. It is observed that with 5
iterations, the SER curve (black solid thick line) has a sharp turbo cliff reaching
SER = 10−5 at 10 dB, which is only 1.4 dB from the capacity. Thus, iterative
decoding gives 3.3 dB gain over the traditional MSD decoding, and 5.3 dB gain
over non-MSD decoding, as shown in the figure. When sufficient iterations are
given, the L-value outputs from the soft detector at both layers are sufficiently
reliable that the decoder can make the estimation with small probability of error. The
simulation result also validates the soft detector algorithm specifically developed for
EDC-based MLNC, and implies that there is large potential in employing iterative
decoding in the multilevel lattice network coding.

In Fig. 6.6, we also show the performance of the LSD when the fixed fading
is considered. The channel fading vector is set to h = [−1.17 + 2.15i, 1.25 −
1.63i], which is the same as the fading vector used in scenario 1 of [23]. We employ
a half-rate code for layer 1, and 3

4 -rate code for layer 2. We employ multistage
decoding with 5 iterations between the two layers. A sharp turbo cliff occurs, which
reaches SER = 10−5 at 3.9 dB, approximately 1.7 dB from the capacity. When no
iteration is employed, there is more than 5 dB loss. This implies that small number of
additional iterations to generate more reliable values is worthwhile in improving the
overall SER performance. The iterative multistage soft detection for EDC lattices
achieves the overall rate of Rmes ≈ 2.29 bits/symbol at 3.9 dB. This demonstrates
the potential of iterative decoding in improving the performance of physical layer
network coding.

6.7 Conclusions

In this chapter, we have reviewed the recent progresses in using structured codes
for harnessing interference. Our focus was mainly on reducing the complexity of
compute-and-forward. Two frameworks have been reviewed, namely multi-stage
compute-and-forward and the multilevel lattice network coding. For the multi-stage
compute-and-forward, the achievable computation rate under multi-stage decoding
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has been analysed. EDC lattices are proposed based on the multilevel lattice network
coding theory and reinterprets the Construction πA and Construction πD whose
goodness is discussed. Some useful properties for the lattices such as generator
matrix, kissing numbers and nominal coding gains have been discussed. Low-
complex decoding algorithms of these two frameworks have also been discussed and
iterative detection is used to support the decoding performance. The performance of
these algorithms have been evaluated through computer simulations.

Appendix: LIF Quantizer

We show here a LIF quantizer Q(i)LIF implemented via a modified Viterbi decoder.
The quantization problem for the ith layer can be mathematically expressed as:

arg min
ci
||αiy− (σ̃−1(ci )+ λ′i )||2 (6.97)

=arg min
ci
||(αiy− σ̃−1(ci ))− Q�′i ((α

iy− σ̃−1(ci ))||2 (6.98)

subject to: ci ∈ Ci , λ′i ∈ �′i , (6.99)

σ̃ (λ) ∈ C1 ⊕ · · · ⊕ (Ci = ci )⊕ · · ·Cm (6.100)
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where Q�′i (x) is the coarse lattice quantizer for the ith layer and can be expressed

as a modulo operation x mod �′i (as defined in Theorem 6.4). σ̃−1(·) is the inverse
operation of σ̃ which produces a set of lattice points λ.

We can construct a trellis for the non-binary convolutional code Ci . Assume that
the states of the kth and (k + 1)th time slots are sk and sk+1, respectively. The code
corresponding to the branch that exists from sk and arrives at sk+1 is denoted as
cisk→sk+1

. The metric for each branch is given by

||(αiy− σ−1(cisk→sk+1
))− Q�′i ((α

iy− σ−1(cisk→sk+1
))||2 (6.101)

where σ−1(·) is the inverse operation of σ(·). We employ the Viterbi algorithm to
estimate the best possible outcome ci . This implements the LIF quantizer Q(i)LIF for
EDC-based MLNC.
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Chapter 7
Nested Linear/Lattice Codes Revisited

Renming Qi and Chen Feng

Abstract Random nested linear/lattice codes have played an important role in
network information theory. However, the proofs associated with these codes are
sometimes involved, making them less accessible than conventional random codes.
Recently, several attempts have been made towards simplifying the proofs related
to nested linear/lattice codes. In this chapter, we review these recent developments
with a particular focus on presenting a unified approach.

7.1 Introduction

In 1948, Claude E. Shannon established the maximum rate at which information can
be transmitted reliably over a noisy channel [41]. The mathematical setup is shown
in Fig. 7.1, where the channel is modeled as a probabilistic mapping from the input
to the output, and the encoder and decoder are to be designed. Under this setup,
Shannon proved a remarkable “phase transition” result: There is a fundamental rate
limit—referred to as the channel capacity—under which one can design the encoder
and decoder to achieve an arbitrarily small probability of error, but above which the
probability of error is bounded away from zero (i.e., it cannot be made arbitrarily
small no matter how we design the encoder and decoder) [41].

Shannon’s channel coding theorem consists of two parts. The achievability part
says that the probability of error can be made arbitrarily small for any rate below the
channel capacity. The converse part states that the probability of error is bounded
away from zero for any rate above the capacity. While the converse part applies to
any decoder, the achievability part often involves several specific decoders, such as
the maximum-likelihood (ML) decoder [14, p.37] and the joint typicality decoder
[41][4, p.199]. These decoders, together with a random coding argument where
the encoder generates independent and identically distributed (i.i.d.) codewords
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Encoder Channel Decoder
m m̂

Fig. 7.1 Model of a point-to-point communication system

according to some codeword distribution, are used to prove the existence of good
codes (without explicitly constructing them).

Practical communication systems are subject to complexity constraint. To control
the computational complexity of encoding and decoding operations, codes with
(algebraic) structures are used in practice. This motivates a study of structured
codes, such as linear codes [2] and lattice codes [12, 13, 53]. In the sequel, we
formally present the system setup and then discuss the use of structured codes in
this setup.

7.1.1 System Setup

Here we describe Shannon’s mathematical model of a point-to-point communication
system depicted in Fig. 7.1. Let X and Y denote the input and output alphabets,
respectively. The channel maps an input sequence (of length n) x = (x1, . . . , xn) to
an output sequence (of length n) y = (y1, . . . , yn) in a symbol-by-symbol manner.
For example, when X and Y are finite, the conditional probability for the channel to
output y ∈ Yn given x ∈ Xn is

p(y|x) =
n
∏

i=1

p(yi |xi),

where p(y|x) is a conditional probability mass function (pmf). This channel model
is called a discrete memoryless channel (DMC). When X and Y are continuous
alphabets, the conditional probability density function (pdf) f (y|x) should be used
instead of p(y|x). In particular, when

f (y|x) = 1√
2πσ 2

e
− (y−x)2

2σ2 ,

the corresponding channel model is called an additive white Gaussian noise
(AWGN) channel.

The encoder maps a message m ∈ {1, . . . ,M} to its corresponding codeword
x(m) from a codebook C = {x(1), . . . , x(M)}. The decoder receives an output
sequence y from the channel, and finds an “estimate” m̂ of m according to certain
decoding rule (such as ML decoding or joint typicality decoding).
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We say an error occurs if m̂ �= m and denote this error probability as

Pe(m;C) � P(m̂ �= m),

where the randomness comes from the channel noise. We define the average error
probability as

Pe(C) �
1

M

M
∑

m=1

Pe(m;C).

A rate R is said to be achievable if there exists a sequence of codebooks C(n)

of length n and size M(n) such that M(n) ≥ 2nR and Pe
(

C(n)
) → 0 as n → ∞.

Achievable rates are often derived using a random coding argument. For a DMC
with p(y|x), we can fix a pmf p(x) and construct a random i.i.d. ensemble in which
each symbol of each codeword is generated independently according to p(x). More
specifically, we randomly and independently generate M(n) = ,2nR# codewords
x(m) for m ∈ {1, . . . ,M(n)}, each according to p(x) = ∏n

i=1 p(xi). Hence, the
probability of generating a particular codebook C(n) in the ensemble is

p
(

C(n)
)

=
M(n)
∏

m=1

p (x(m)) .

The key idea behind Shannon’s random coding argument is the following.
Although the error probability Pe

(

C(n)
)

for a particular codebook C(n) is often
hard to evaluate, the expected error probability averaged over all the codebooks
in the ensemble is much simpler to analyze. In other words, the random coding
argument is an instance of the probabilistic method [1]. Using the random coding
argument, Shannon proved that random i.i.d. ensembles achieve both DMC capacity
and AWGN channel capacity under joint typicality decoding in his 1948 paper [41].

7.1.2 Structured Codes

Instead of random i.i.d. ensembles, we can make use of random structured ensem-
bles (such as random linear codes and random lattice codes) for the achievability
proof. For example, Elias used random linear codes to establish the achievable
rate for the binary symmetric channel (which is a special case of the DMC) in
1955 [10]. Perhaps surprisingly, in their seminal work [17], Körner and Marton
demonstrated that random linear codes yield better achievable rates than random
i.i.d. ensembles for a multi-user source coding problem. Modern developments
along this direction include coding problems from relay networks [16, 28, 29, 31, 40,
44, 49], interference channels [3, 26, 30, 32, 34, 37, 42], distributed source coding
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[18, 19, 45, 48, 51], and physical-layer secrecy [15, 47, 50], where random structured
codes achieve better rates than random i.i.d. codes.

The use of random structured codes is also of practical value. For instance, ran-
dom linear codes allow for computationally efficient encoding (since the encoding
operation is essentially a matrix-vector multiplication), and random lattice codes
allow for lattice decoding (which enjoys lower complexity than ML decoding and
joint typicality decoding). Hence, the following two questions naturally arise

1. Can random linear codes achieve the DMC capacity?
2. Can random lattice codes achieve the AWGN channel capacity?

Unlike random i.i.d. codes, random structured codes are much less well under-
stood. For example, it is only recently that Padakandla and Pradhan have demon-
strated nested linear code ensembles that achieve DMC capacity under joint
typicality encoding and decoding [35–37]. In an independent work, Miyake and
Muramatsu showed that nested linear code ensembles with special structures based
on sparse matrices can also achieve DMC capacity under ML decoding [24, 25, 27].
In 2004, Erez and Zamir showed that nested lattice code ensembles achieve
the AWGN channel capacity under lattice encoding and decoding [11]. See [5–
7, 11, 21–23, 38, 46] for a history of this long standing problem and Zamir’s book
[52] for a survey of recent results.

Despite these exciting developments, the achievability proofs associated with
random structured codes are sometimes involved, making them much less accessible
than their counterparts—random i.i.d. codes. Very recently, several attempts have
been made towards simplifying the proofs related to random nested linear/lattice
codes [20, 33, 39]. In this chapter, we will review these new developments and
simplifications, with a particular focus on presenting a unified approach based on
elementary probability, linear algebra, and number theory.

Here, we would like to point out that this chapter is written for a broad audience
including those who are less familiar with information theory. Those who are
already familiar with information theory can skip many parts in Sects. 7.2 and 7.3.

7.1.3 Notations

We closely follow the notations in [9]. We use the notation F,R,Fq to denote a
(general) field, the real numbers, and the field of order q, respectively. We use X,Y
to denote the alphabets. We use lowercase letters x, y, ... to denote constants. We use
bold lowercase letters x, y, ... to denote constant row vectors. The i-th component
of x is denoted as xi . An all-zero vector (0, . . . , 0) with a specified dimension is
denoted as 0. The i-th unit vector is denoted as ei . We use uppercase, sans-serif font
letters to denote constant matrix and codebooks, e.g., a linear code C, and a matrix
G ∈ F

k×n
q . We use uppercase letters X,Y, . . . to denote random variables. We use

bold uppercase letters X,Y to denote random row vectors. The i-th component of
X is denoted asXi . We use bold, uppercase, sans-serif font letters to denote random
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Table 7.1 Summary of key notations

Notation Definition

F,R,Fq A field, the real numbers and a field of order q, respectively

X,Y The alphabets

x,X Constant and random variable, respectively

x,X Constant and random row vector, respectively

C,C Constant and random linear code, respectively

�,� Constant and random lattices, respectively

V(�), V (�) The Voronoi region of lattice � and the volume of V(�), respectively

G,G Constant and random matrice, respectively

B(s, r) The ball centered at s with radius r

I(·) The indicator function

pX(·),E(X),Var(X) The pmf, expectation and variance of X

π(x | x) The empirical pmf of x

H(·) The entropy

I (X; Y) The mutual information between X and Y

T(n)ε (X) The typical set

T(n)ε (X, Y ) The joint typical set

T(n)ε (X | y) The conditional typical set

Q�(·) The nearest neighbor quantizer with respect to�

matrix, e.g., a random linear code C and a random matrix G. A summary of our key
notations is provided in Table 7.1.

7.2 Preliminaries

7.2.1 Nested Linear Codes

An (n, k) linear code over Fq is a k-dimensional subspace of the vector space F
n
q.

Such a code can be expressed as

C = {aG : a ∈ F
k
q}

for some full-rank matrix G ∈ F
k×n
q (called a generator matrix of C).

A nested linear code is a pair of linear codes (Cf ,Cc) such that Cc ⊂ Cf , i.e.,
each codeword of Cc is also a codeword of Cf . For convenience, Cf is called the
fine code and Cc is called the coarse code. A coset of Cc in Cf is defined as

cf + Cc = {cf + c : c ∈ Cc},
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where cf is some codeword of Cf . Two cosets are either identical or disjoint [8].
The number of (distinct) cosets of Cc in Cf is called the index of Cc in Cf and is
denoted by [Cf : Cc]. By Lagrange’s theorem [8],

[Cf : Cc] = |Cf ||Cc| ,

where |Cf | and |Cc| denote the cardinalities of Cf and Cc, respectively.
Suppose that a nested linear code consists of an (n, kf ) fine code Cf and an

(n, kc) coarse code Cc. Then the index [Cf : Cc] is qkf−kc , since |Cf | = qkf

and |Cc| = qkc . Moreover, there exist two generator matrices Gf ∈ F
kf×n
q and

Gc ∈ F
kc×n
q for Cf and Cc, respectively, such that

Gf =
[

Gc
G′
]

,

where G′ is a matrix of size (kf − kc)× n.

7.2.2 Nested Lattice Codes

A lattice is a discrete subgroup (under vector addition) of Rn. Any (full-rank) lattice
� in R

n can be expressed in terms of some (full-rank) n×n generator matrix G� ∈
R
n×n as

� = {aG� : a ∈ Z
n}.

That is, � is the set of all integer combinations of the rows of G�.
A nearest neighbour quantizerQ� : Rn→ � associated with the lattice�maps

a vector in R
n to the closest lattice point

Q�(x) = arg min
λ∈� ‖x − λ‖, (7.1)

where ties in (7.1) are broken systematically. The Voronoi region of �, denoted by
V(�), is the set of all vectors in R

n which are quantized to 0, i.e., V(�) = {x ∈
R
n : Q�(x) = 0}. The volume of the Voronoi region is denoted by V (�).
A nested lattice is a pair of lattices (�c,�f ) such that �c ⊂ �f . Similar to

nested linear codes, �f is called the fine lattice and �c is called the coarse lattice.
A coset of �c in �f is defined as

λf +�c = {λf + λ : λ ∈ �c}.
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A nested lattice code L(�c,�f ) consists of the lattice points of �f in the
Voronoi region V(�c), i.e.,

L(�c,�f ) = �f ∩V(�c).

For this reason, L(�c,�f ) is also known as a Voronoi codebook. The number of
codewords in L(�c,�f ) is

|L(�c,�f )| = V (�c)

V (�f )
.

Intuitively, each lattice point of�f “occupies” a Voronoi region of volume V (�f ),
and so the number of lattice points inside V(�c) is V (�c)/V (�f ).

There is an alternative characterization of nested lattice codes: L(�c,�f )
consists of the shortest vectors of distinct cosets. To see this, for each coset λf +�c,
let us take a particular coset representative λf − Q�c(λf ). First, λf − Q�c(λf )
is the shortest vector in the coset λf + �c by the definition of Q�c(·). Second,
λf −Q�c(λf ) is in the Voronoi region V(�c) of �c (Fig. 7.2).

Fig. 7.2 Black (grey) points belong to the fine (coarse) lattice. The small (large) hexagon area
is the Voronoi region of the fine (coarse) lattice. The lattice points inside the large hexagon form
the Voronoi codebook (the ties on the boundaries are broken systematically). There are 16 lattice
points in the codebook due to the tie breaking. Also note that the volume of the large hexagon is
16 times the volume of the small one
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7.2.3 Nested Construction A

A nested lattice code can be constructed from a nested linear code. Consider two
linear codes C1 and C2 over the field Zp = {0, 1, . . . ,p − 1}, where each code Ci
is determined by a (full-rank) ki × n generator matrix Gi for i = 1, 2. Suppose that
the generator matrices are related as

G1 =
[

G2

G′
]

, (7.2)

where G′ is a matrix of size (k1 − k2) × n. Clearly, we have C2 ⊂ C1 ⊂ Z
n
p. By

“lifting” these linear codes to Z
n via Construction A, we obtain two lattices

�1 = {x ∈ Z
n : x mod p ∈ C1}

and

�2 = {x ∈ Z
n : x mod p ∈ C2}

with �2 ⊂ �1 ⊂ Z
n.

Finally, we apply some positive scaling factor γ to obtain a fine lattice

�f = γ�1 � {γλ : λ ∈ �1}

and a coarse lattice

�c = γ�2 � {γλ : λ ∈ �2}

with �c ⊂ �f ⊂ γZn. The volumes of the Voronoi regions of �f and �c are
V (�f ) = γ npn−k1 and V (�c) = γ npn−k2 , respectively.

To facilitate encoding and decoding operations, we “label” each (discrete) point
of γZn as follows. Let ϕ : γZn → Z

n
P

be a map from points in γZn to vectors in
Z
n
P

given by

ϕ(x) = 1

γ
x mod p.

Clearly, a point x is in �f (or �c, respectively) if and only if its label ϕ(x) is a
codeword in C1 (or C2, respectively). Moreover, the map ϕ is homomorphic, i.e.,

∀x, y ∈ γZn, ϕ(x + y) = ϕ(x)+ ϕ(y).

It is also convenient to define an inverse operation that maps a vector in Z
n
P

to
a point in γZn. This can be done through an embedding map ϕ̃ : Zn

P
→ γZn: for
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Fig. 7.3 A visualization of ϕ(·) when p = 5. The labels of the points in γZn can be obtained by
periodically shifting the labels in the rectangle

any c in Z
n
P

, we choose a point x in γZn of the shortest Euclidean norm such that
ϕ(x) = c. Clearly, such a point x = ϕ̃(c) must live in the grid γZn ∩ [− γp2 , γp2 ]n
(Fig. 7.3).

In fact, the embedding map ϕ̃ can be viewed as a Euclidean embedding for the
vector space Z

n
P

, which connects the nested lattice codes with the underling nested
linear codes.

7.2.4 Results from Number Theory

Several results from number theory will be used in this chapter and they are listed
below.

Let G be a random matrix uniform over Zk×n
P

, i.e., each entry of G is drawn
uniformly and independently from ZP.

Lemma 7.1 (Uniformity) For any fixed non-zero vector a, aG is uniform over Zn
P
.

Proof We leave it as an exercise to our readers. 
�



250 R. Qi and C. Feng

Lemma 7.2 (Linear Independence ⇒ Statistical Independence) For any lin-
early independent vectors a and b, the random vectors aG and bG are statistically
independent.

Proof Since a and b are linearly independent, there exists a full rank matrix
A ∈ Z

k×n
P

whose first row vector is a, and the second row vector is b, i.e.,
e1A = a, e2A = b. For any fixed vectors c1, c2 ∈ Z

k
P

, e1AG = aG = c1 and
e2AG = bG = c2, if and only if the first and second row vector of AG are c1 and
c2. Let Sc1,c2 = {B ∈ Z

k×n
P

| e1B = c1, e2B = c2}, then |Sc1,c2 | = p(k−2)n. Hence

P(aG = c1, bG = c2) =
∑

B∈Sc1,c2

P(G = A−1B) = 1

p2n

Hence, P(aG = c1, bG = c2) = P(aG = c1)P(bG = c2), which means aG
and bG are statistically independent. 
�
Lemma 7.3 (Crypto Lemma) Let � be a lattice. Let D be a random variable
uniformly distributed over V(�). Let T be a random variable over V(�), and is
independent from D, then X = D + T mod � is uniformly distributed overV(�),
and is independent from T .

Remark 7.1 This lemma is a discrete parallel of [11, Lemma 1].

Proof Note that P(X = x | T = t) = P(D = [x − t] mod � | T = t). By
the fact that D and T are independent, we obtain P(X = x | T = t) = P(D =
[x − t] mod �). Since D is uniform over V(�), P(X = x | T = t) is constant for
all possible combinations of x and t . Hence, X is uniformly distributed over V(�),
and is independent from T . 
�

Let B (s, r) denote a ball of radius r > 0 centered at the point s ∈ R
n, i.e.,

B (s, r) is the set {x ∈ R
n : ‖x − s‖ ≤ r}. For convenience, we denote B (0, r) as

B (r). The volume of B(r) is given by rnVn, where Vn is the volume of the unit-
radius ball.

Lemma 7.4 (Integer Points Inside a Ball [33, Lemma 1]) For any s ∈ R
n, the

number of points of Zn inside s + B(r) can be bounded as

Vn

(

max

{

r −
√
n

2
, 0

})n

≤ |Zn ∩ B (s, r) | ≤ Vn
(

r +
√
n

2

)n

.

Lemma 7.5 (Bertrand’s Postulate [43]) For any integer n that is larger than 3,
there exists a prime p such that n < p < 2n− 2.
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7.3 Achievable Rate of Nested Linear Codes

7.3.1 Performance Analysis of a Nested Linear Code

We begin with the analysis of a (pre-determined) nested linear code.

Codebook Generation Given a pair of linear codes (Cf ,Cc) and a dither vector
d ∈ F

n
q, we construct a codebook whose codewords are shifted cosets of the form

{cf + d + Cc : cf ∈ Cf }. The number of (distinct) codewords is [Cf : Cc], which
does not depend on the dither vector d . These codewords can be expressed using
generator matrices as follows.

Let Gf ∈ F
kf×n
q and Gc ∈ F

kc×n
q be two generator matrices for Cf and Cc,

respectively, such that

Gf =
[

Gc
G′
]

.

Then all the codewords (i.e., the shifted cosets) can be expressed as

{

mG′ + d + Cc : m ∈ F
kf−kc
q

}

.

Note that there is a one-to-one correspondence between the vectors in F
kf−kc
q and

the shifted cosets of Cc. Hence, m can be viewed as the “index” of the shifted coset
mG′ + d + Cc, and the codebook contains qkf−kc (distinct) codewords.

Encoding To send a message vector m ∈ F
kf−kc
q , the encoder first finds an

“information-carrying” shifted coset mG′ + d + Cc. The encoder then checks the
intersection

mG′ + d + Cc ∩ T(n)
ε′ (X).

If the intersection is nonempty, the encoder transmits a vector x ∈ F
n
q chosen

uniformly at random from the intersection. Otherwise, the encoder declares a failure
and then transmits a vector x ∈ F

n
q chosen uniformly at random from the shifted

coset mG′ + d + Cc (which is not in T(n)
ε′ (X)).

Decoding Upon receiving y ∈ F
n
q, the decoder searches for a unique index m̂ ∈

F
kf−kc
q such that the corresponding shifted coset

m̂G′ + d + Cc ∩ T(n)ε (X | y) �= ∅.

If there is none or more than one such vector, the decoder declares a failure.
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Analysis For any given message vector m, we say the decoding is successful if the
unique index m̂ = m. This occurs if all of the following events happen

• mG′ +D + Cc ∩ T(n)
ε′ (X) �= ∅;

• (x, y) ∈ T(n)ε (X, Y ) (which implies that mG′ + d + Cc ∩ T(n)ε (X | y) �= ∅);
• ∀m′ �= m : m′G′ + d + Cc ∩ T(n)ε (X | y) = ∅.

7.3.2 Average Performance Analysis of Nested Linear Codes

We then proceed to the average performance analysis, which allows us to apply the
probabilistic method.

Random Codebook Generation Randomly generate a matrix Gf ∈ F
kf×n
q and a

vector D ∈ F
n
q where each entry of Gf and D is drawn independently and uniformly

from Fq. As before, let

Gf =
[

Gc
G′
]

.

If Gf is full rank, then Gc is also full rank and, in particular, they are valid generator
matrices. In this case, the codebook consists of qkf−kc shifted cosets of the form

{

mG′ +D + Cc : m ∈ F
kf−kc
q

}

.

If Gf is not full rank, we declare a codebook failure.

Encoding The same as before.

Decoding The same as before.

Analysis of the Probability of Error For any given message vector m, successful
decoding occurs upon receiving Y if all of the following events happen

• Gf is full rank;

• mG′ +D + Cc ∩ T(n)
ε′ (X) �= ∅;

• (X,Y ) ∈ T(n)ε (X,Y );
• ∀m′ �= m, l : (m′G′ +D + lGc,Y ) /∈ T(n)ε (X, Y ).

To conduct the error analysis, we define the following events

• E1 = {Gf is not full rank};
• E2(m) = {mG′ +D + Cc ∩ T(n)

ε′ (X) = ∅};
• E3(m) = {(X,Y ) /∈ T(n)ε (X, Y )};
• E4(m) = {∃m′ �= m, l : (m′G′ +D + lGc,Y ) ∈ T(n)ε (X, Y )}.
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Let Pe(m) be the error probability for message m. Then, by the union bound, we
have

Pe(m) ≤ P(E1)+ P(E2(m))+ P(E3(m))+ P(E4(m)).

7.3.2.1 Bounding P(E1)

Note that Gf is full rank if and only if the rows of Gf are linearly independent.
Hence, we have

P(E1) = 1−
kf−1
∏

i=0

(

1− qi

qn

)

.

Moreover, we have

kf−1
∏

i=0

(

1− qi

qn

)

≥ 1−
kf−1
∑

i=0

qi

qn

= 1− 1

qn
qkf − 1

q− 1

≥ 1− 1

q− 1

1

qn−kf
.

This implies that P(E1) ≤ 1
q−1

1
qn−kf

. Hence, P(E1)→ 0 as p→∞ or (n− kf )→
∞.

7.3.2.2 Bounding P(E2(m))

Note that E2(m) is equivalent to

∑

l∈Fkcq
I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

)

= 0.

Since mG′ +D + lGc is uniformly distributed over Fnq, we have

E
(

I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

))

= |T(n)
ε′ (X)|
qn
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and

Var
(

I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

))

= |T(n)
ε′ (X)|
qn

(

1− |T
(n)

ε′ (X)|
qn

)

.

Note that for any l′ �= l, mG′ + D + l′Gc and mG′ + D + lGc are independent.
Hence,

E

⎛

⎜
⎝

∑

l∈Fkcq
I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

)

⎞

⎟
⎠ = qkc

|T(n)
ε′ (X)|
qn

and

Var

⎛

⎜
⎝

∑

l∈Fkcq
I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

)

⎞

⎟
⎠ = |T(n)

ε′ (X)|
qn

qkc
(

1− |T
(n)

ε′ (X)|
qn

)

.

Finally, by Chebyshev’s inequality, we have

P(E2(m)) = P

⎛

⎜
⎝

∑

l∈Fkcq
I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

)

= 0

⎞

⎟
⎠

≤
Var
(
∑

l∈Fkcq I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

))

E
(
∑

l∈Fkcq I

(

mG′ +D + lGc ∈ T(n)
ε′ (X)

))2

≤ qn−kc

|T(n)
ε′ (X)|

.

7.3.2.3 Bounding P(E3(m))

By the law of total probability, we have

P
(

(X,Y ) /∈ T(n)ε (X, Y )
)

= P(X ∈ T(n)
ε′ (X))P((X,Y ) /∈ T(n)ε (X, Y )|X ∈ T(n)

ε′ (X))

+ P(X /∈ T(n)
ε′ (X))P((X,Y ) /∈ T(n)ε (X, Y )|X /∈ T(n)

ε′ (X))

≤ P((X,Y ) /∈ T(n)ε (X, Y )|X ∈ T(n)
ε′ (X))+ P(X /∈ T(n)

ε′ (X)).
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By the conditional typicality lemma [9, p. 27], P((X,Y ) /∈ T(n)ε (X, Y )|X ∈
T(n)
ε′ (X))→ 0, as n→∞. Finally, note that X /∈ T(n)

ε′ (X) is equivalent to the event
E2(m). Hence, we obtain P

(

(X,Y ) /∈ T(n)ε (X, Y )
)→ 0, as long as P(E2(m))→ 0.

7.3.2.4 Bounding P(E4(m))

By the union of events bound, we have

P(E4(m)) ≤
∑

m′ �=m

∑

l

P((m′G′ +D + lGc,Y ) ∈ T(n)ε (X, Y )).

For each term, by the law of total probability, we have

P((m′G′ +D + lGc,Y ) ∈ T(n)ε (X, Y )) =
∑

y

P(Y

= y)P
(

m′G′ +D + lGc ∈ T(n)ε (X | y)
∣
∣
∣Y = y

)

.

Note that, for any m′ �= m and any l, the random vector m′G′ + D + lGc
is independent of the random shifted coset mG′ + D + Cc. This implies that
m′G′ +D + lGc is independent of Y . Hence,

P(m′G′ +D + lGc ∈ T(n)ε (X | y)|Y = y) = P(m′G′ +D + lGc ∈ T(n)ε (X | y)).

Since P(m′G′ +D + lGc ∈ T(n)ε (X | y)) = |T(n)ε (X|y)|
qn , we have

P(E4(m) | Y = y) ≤
(

qkf−kc − 1
)

qkc
|T(n)ε (X | y)|

qn

< qkf
|T(n)ε (X | y)|

qn
.

Hence, we have

P(E4(m)) ≤
∑

y

P(Y = y)
|T(n)ε (X | y)|

qn−kf
.
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7.3.2.5 Putting Everything Together

Our goal is to select kc and kf (as functions of n) such that

n− kf →∞ (7.3)

qn−kc

|T(n)
ε′ (X)|

→ 0 (7.4)

∀y : |T
(n)
ε (X | y)|
qn−kf

→ 0. (7.5)

Let δ > 0 be some constant. We choose qn−kc = 2n(1−ε′−δ)H(X) and qn−kf =
2n(1+ε+δ)H(X|Y ). More precisely, we choose

kc =
⌈

n− (1− ε
′ − δ)H(X)
log2 q

n

⌉

and

kf =
⌊

n− (1+ ε + δ)H(X|Y )
log2 q

n

⌋

.

We can easily verify that conditions (7.3), (7.4) are satisfied. The inequality (7.5)
is also satisfied by (A.1) in Appendix 2. Finally, we calculate the achievable rate

1

n
log2 q

kf−kc ≥ I (X; Y )− (ε′ + δ)H(X)− (ε + δ)H(X|Y )− 2
log2 q
n

.

Since ε, ε′ and δ can be arbitrarily small, any rate below I (X; Y ) is achievable as
n→∞.

7.4 Achievable Rate of Nested Lattice Codes

7.4.1 Performance Analysis of a Nested Lattice Code

Codebook Generation Given a pair of lattice codes (�f ,�c) and a dither vector
u ∈ R

n, we construct a codebook whose codewords are shifted cosets of the form
{λf +u+�c : λf ∈ �c}. The number of codewords is V (�c)/V (�f ), which does
not depend on the dither vector u.
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Suppose that the pair (�f ,�c) is constructed via Nested Construction A using
generating matrices (Gf ,Gc) and a scaling factor γ . Then all the codewords (i.e.,
the shifted cosets) can be expressed as

{

ϕ̃(mG′)+ u+�c : m ∈ F
kf−kc
p

}

.

Note that there is a one-to-one correspondence between the vectors in F
kf−kc
p and

the shifted cosets of�c. Hence, m can be viewed as the “index” of the shifted coset
ϕ̃(mG′)+ u +�c, and the codebook contains pkf−kc (distinct) codewords.

Encoding To send a message vector m ∈ F
kf−kc
p , the encoder first finds an

“information-carrying” shifted coset ϕ̃(mG′)+u+�c. The encoder then transmits
a shortest vector x ∈ R

n in the shifted coset, i.e.,

x = ϕ̃(mG′)+ u mod �c.

Decoding Upon receiving y ∈ R
n, the decoder searches for a unique index m̂ ∈

F
kf−kc
p such that the distance between its corresponding shifted coset ϕ̃(m̂G′)+u+
�c and αy is the shortest among all the shifted cosets, where α = P

P+N is some
scaling factor (whose role will be explained later). P and N are the average power
of the codeword and the noise per dimension, respectively. That is,

m̂ = arg min
m

d
(

ϕ̃(mG′)+ u+�c, αy
)

.

In fact, one can easily show that the unique shifted coset with the shortest distance
is given byQ�f (αy − u)+ u+�c (Fig. 7.4).

Analysis For any given message vector m, the average power constraint is satisfied
if

• ϕ̃(mG′)+ u+�c ∩ B
(√
nP
)

�= ∅;

The decoding is successful if

• ∀m′ �= m : d
(

ϕ̃(m′G′)+ u+�c, αy
)

> d
(

ϕ̃(mG′)+ u+�c, αy
)

.

7.4.2 Average Performance Analysis of a Nested Lattice Codes

We then proceed to the average performance analysis, which also allows us to apply
probabilistic methods.
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Fig. 7.4 The transmitted vector is x, which is then “shifted” by the Gaussian noise z to y. The
received signal y is scaled by α to αy. The decoder will find the nearest coset to αy. In this
example, the nearest coset to αy is the coset containing x̂ (the star points) instead of the one
containing x (the rectangle points). Hence, a decoding failure happens

Random Codebook Generation Randomly generate a matrix Gf ∈ Z
kf×n
P

and a
vector U ∈ Z

n
P

where each entry of Gf and U is drawn independently and uniformly
over ZP. As before, let

Gf =
[

Gc
G′
]

,

and if Gf is full rank, so is Gc. In this case, the codebook consists of pkf−kc shifted
cosets of the form

{

ϕ̃(mG′)+ ϕ̃(U )+�c : m ∈ F
kf−kc
p

}

.

If Gf is not full rank, we declare a codebook failure.

Encoding The same as before.

Decoding The same as before.

Analysis of the Codebook Failure Let E1 = {Gf is not full rank}. As before

P(E1) ≤ 1

p− 1

1

pn−kf
.

Hence, P(E1)→ 0, as p→∞ or (n− kf )→∞.
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Analysis of Encoding Failure Recall that ‖X‖2 ≤ nP if and only if ϕ̃(mG′) +
ϕ̃(U)+�c ∩B

(√
nP
)

�= ∅, where B
(√
nP
)

is the ball centred at the origin with

radius
√
nP . Let

E2(m) = {ϕ̃(mG′)+ ϕ̃(U )+�c ∩ B
(√
nP
)

= ∅}.

We will show that P(E2(m))→ 0 under certain condition.

Note that when B
(√
nP
)

⊂ [− γp2 , γp2 ]n, E2(m) is equivalent to

∑

l∈Zkc
P

I

(

ϕ̃(mG′ + u+ lGc) ∈ B
(√
nP
))

= 0,

because the set {ϕ̃ (mG′ + u+ lGc
) : l ∈ Z

kc
P
} generates all the points of ϕ̃(mG′)+

ϕ̃(U)+�c inside the cube [− γp2 , γp2 ]n.
Since ϕ̃

(

mG′ + u+ lGc
)

is uniformly distributed over the grid γZn ∩
[− γp2 , γp2 ]n, we have

E
(

I

(

ϕ̃(mG′ + u+ lGc) ∈ B
(√
nP
)))

=
|γZn ∩ B

(√
nP
)

|
pn

and

Var
(

I

(

ϕ̃(mG′ + u+ lGc) ∈ B
(√
nP
)))

=
|γZn ∩ B

(√
nP
)

|
pn

⎛

⎝1−
|γZn ∩ B

(√
nP
)

|
pn

⎞

⎠ .

Similar to the case of nested linear codes, we have

P(E2(m)) ≤ pn−kc

|γZn ∩ B
(√
nP
)

|
. (7.6)

Analysis of the Decoding Failure Recall that successful decoding occurs upon
receiving Y if

∀m′ �= m : d
(

ϕ̃(m′G′)+ ϕ̃(U )+�c, αY
)

> d
(

ϕ̃(mG′)+ ϕ̃(U)+�c, αY
)

.
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Let

E3(m) = {∃m′ �= m : d
(

ϕ̃(m′G′)+ ϕ̃(U)+�c, αY
)

≤ d
(

ϕ̃(mG′)+ ϕ̃(U )+�c, αY
)}.

Recall that X = ϕ̃(mG′) + ϕ̃(U) mod �c, and, in particular, X ∈ ϕ̃(mG′) +
ϕ̃(U)+�c. Hence,

d
(

ϕ̃(mG′)+ ϕ̃(U)+�c, αY
) ≤ ‖X − αY‖ = ‖(α − 1)X + αZ‖.

Let W = (α − 1)X + αZ be the “effective noise”. By the Total Probability
Theorem, we have

P(E3(m)|Gc = Gc)

≤ P(W /∈ B (re) |Gc = Gc)

+ P(W ∈ B (re) |Gc = Gc)P(E3(m)|W ∈ B (re) ,Gc = Gc),

where B (re) is the “typical ball” for the effective noise W with radius re. It will be
specified in Sect. 7.4.2.1. It follows that

P(E3(m)) ≤ P(W /∈ B (re))

+
∑

Gc

P(W ∈ B (re) ,Gc = Gc)P(E3(m)|W ∈ B (re) ,Gc = Gc).

7.4.2.1 Bounding P(W /∈ B (re))

Let ε be a small positive constant. We set α = P
P+N and set the radius

re =
√

(1+ ε)n((α − 1)2P + α2N)

=
√

(1+ ε) nPN
P +N .

Let

EX = {‖X‖ >
√
nP },

EZ = {‖Z‖ >
√

(1+ ε/2)nN ],
EP = {‖XZT ‖ > n 1

4
√
nPN }.
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It is clear that when n is large, EcX ∩ EcZ ∩ EcP implies ‖W‖ ≤ re. Hence,

P(W /∈ B (re)) ≤ P(EX)+ P(EZ)+ P(EP ).

Note that EX is the same event as E2, which is bounded via (7.6). Since Z ∼
N(0, NIn), we obtain P(EZ) ≤ 8ε2n−1 by Chebyshev’s inequality. EP represents
the event that X and Z are “almost orthogonal”. We bound its probability by

P(EP ) ≤ P(EP | ‖X‖ ≤
√
nP )+ P(‖X‖ > √nP )

= P(‖XZT ‖2 > n
3
2PN | ‖X‖ ≤ √nP )+ P(E2)

≤ E(‖XZT ‖2 | ‖X‖ ≤ √nP )
n

3
2PN

+ P(E2)

where the last inequality follows from the Markov’s inequality. Note that for any
given X = x with ‖x‖ ≤ √nP , xZT ∼ N(0, ‖x‖2N), we then obtain E(‖XZT ‖2 |
‖X‖ ≤ √nP ) ≤ nPN . Hence,

P(EP ) ≤ n− 1
2 + P(E2).

Therefore,

P(W /∈ B (re)) ≤ 8ε2n−1 + n− 1
2 + 2× pn−kc

|γZn ∩B
(√
nP
)

|
.

7.4.2.2 Bounding P(E3(m) | W ∈ B (re) ,Gc = Gc)

Note that

P(E3(m) |W ∈ B (re) ,Gc = Gc)

≤ P
(∃m′ �= m : d

(

ϕ̃(m′G′)+ ϕ̃(U)+�c, αY
) ≤ ‖W‖ | W ∈ B (re) ,Gc = Gc

)

≤
∑

m′ �=m

P
(

d
(

ϕ̃(m′G′)+ ϕ̃(U )+�c, αY
) ≤ ‖W‖ | W ∈ B (re) ,Gc = Gc

)

.

Note also that

d
(

ϕ̃(m′G′)+ ϕ̃(U)+�c, αY
)

= d
(

ϕ̃(m′G′)+ ϕ̃(U )+�c,X + (α − 1)X + αZ)

= d
(

ϕ̃(m′G′)+ ϕ̃(U )+�c,X +W
)

= d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,W
)

.
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Hence,

P(E3(m)|W ∈ B (re) ,Gc = Gc)

≤
∑

m′ �=m

P
(

d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,W
) ≤ ‖W‖ |W ∈ B (re) ,Gc = Gc

)

≤
∑

m′ �=m

P
(

d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,W
) ≤ re | W ∈ B (re) ,Gc = Gc

)

.

Next, we observe that G′ and W = (α−1)X+αZ are conditionally independent
when givenGc = Gc. To see this, note that conditioned on Gc = Gc, X is uniformly
distributed over γZn ∩V(�c) and is independent of G′ by Lemma 7.3. By the total
probability theorem, we have

P
(

d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,W
) ≤ re|W ∈ B (re) ,Gc = Gc

)

=
∫

w∈B(re)
f̃W |Gc (w | Gc)P

(

d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,w
) ≤ re|Gc = Gc

)

dw

where

f̃W |Gc (w | Gc) =
fW |Gc (w | Gc)

P(W ∈ B (re) | Gc = Gc)
.

It turns out that the term P
(

d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,w
) ≤ re|Gc = Gc

)

can
be bounded following Loeliger’s approach [23].

Since d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,w
) ≤ re implies

[ϕ̃(m′G′)− ϕ̃(mG′)] mod �c ∈ [w + B (re)] mod �c,

we have

P
(

d
(

ϕ̃(m′G′)− ϕ̃(mG′)+�c,w
) ≤ re|Gc = Gc

)

≤ P
([ϕ̃(m′G′)− ϕ̃(mG′)] mod �c ∈ [w + B (re)] mod �c | Gc = Gc

)

.

On the other hand, ([ϕ̃(m′G′)− ϕ̃(mG′)] mod �c) is uniformly distributed over
γZn ∩V(�c), and so

P
([ϕ̃(m′G′)− ϕ̃(mG′)] mod �c ∈ ([w + B (re)] mod �c)|Gc = Gc

)

= |γZn ∩V(�c) ∩ (w + B (re))|
pn−kc

≤ |γZ
n ∩ (w + B (re))|

pn−kc
.
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Therefore,

P
(

d
(

ϕ̃(m′G′)+ ϕ̃(U)+�c, αY
) ≤ ‖W‖ | W ∈ B (re) ,Gc = Gc

)

≤ max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kc

and

P(E3(m)|W ∈ B (re) ,Gc = Gc) ≤ pkf−kc max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kc

≤ max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kf

.

7.4.3 Putting Everything Together

By the union bound, the error probability Pe of the coding scheme is bounded by

P ≤ P(E1)+ P(E2)+ Pe(E3), (7.7)

because the decoding is successful if Gc is full rank, ‖X‖2 ≤ nP , and the shifted
coset containing ϕ̃(mG′)+ ϕ̃(U ) is the closest coset to αY . In Sect. 7.4.3.2, we will
show that, for any ε > 0, we can select parameters kf , kc,p, γ as functions of n
such that a rate of

R = 1

2
log2

(
1+ P/N

1+ ε
)

is achievable with error probability Pe → 0 as n→∞.
However, the above result does not imply that our random ensemble achieves

the AWGN capacity, because the power constraint is not always satisfied. In fact,
the power constraint is violated with probability P(E2). To address this issue, we
introduce a spherical shaping strategy, which is in parallel with the minor change
introduced in [9, p.47] for proving the channel coding theorem with input cost
constraint.

7.4.3.1 Spherical Shaping

We apply a “truncated” spherical shaping to X as follows

XS =
{

X, if ‖X‖ ≤ nP,
0, otherwise.
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Clearly, the power constraint is always satisfied for the new coding scheme. Note
that the error probability for the new coding scheme is still bounded by P(E1) +
P(E2)+ P(E3), because the spherical shaping “converts”İ an encoding failure to a
decoding failure.

7.4.3.2 The Selection of Parameters

To complete the proof that our random ensemble achieves the AWGN capacity with
lattice encoding and decoding, we carefully select the values of kf , kc,p, γ so that
Pe goes to zero and the rate of our coding scheme goes to the AWGN capacity as n
goes to infinity.

We have already bounded the error probability as

Pe ≤ P(E1)+ P(E2)+ P(E3)

≤ 1

p− 1

1

pn−kf
+ 8ε2n−1 + n− 1

2 + 3× pn−kc

|γZn ∩ B
(√
nP
)

|

+ max
w∈B(re)

|γZn ∩ (w + B (re))|
pn−kf

.

Using Lemma 7.4, we obtain

Pe ≤ 1

p− 1

1

pn−kf
+ 8ε2n−1 + n− 1

2

+ 3× pn−kc
(

max
{√

nP
γ
−
√
n

2 , 0
})n

Vn

+
(
re
γ
+
√
n

2

)n

Vn

pn−kf
.

Now our goal is to select p, γ , kc and kf (as functions of n) such that

1

p− 1

1

pn−kf
→ 0 (7.8)

pn−kc
(

max
{√

nP
γ
−
√
n

2 , 0
})n

Vn

→ 0 (7.9)

(
re
γ
+
√
n

2

)n

Vn

pn−kf
→ 0 (7.10)
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Under the constraint B
(√
nP
)

⊂ [− γp2 , γp2 ]n, which is equivalent to

γp ≥ 2
√
nP . (7.11)

Let η > 0 and δ ∈ (0, 1) be two constants. Then let γ = n− 1
2 η and let p

be the smallest prime number satisfying p ≥ n 1
2+η. By Bertrand’s Postulate [43],

p ≤ 2n
1
2+η. Hence, we can denote p = μn 1

2+η, where μ ∈ [1, 2]. We then assign

kc =
⎡

⎢
⎢
⎢

n

⎛

⎝1− 2 log2(
√
Pn

1
2 η − 1

2 )+ log2((1− δ)nV
2
n
n )

(1+ 2η) log2 n+ 2 log2 μ

⎞

⎠

⎤

⎥
⎥
⎥

,

and

kf =

⎢
⎢
⎢
⎢
⎣n

⎛

⎜
⎝1−

2 log2(

√

1
n
r2
e n

1
2η + 1

2 )+ log2(
1

1−δ nV
2
n
n )

(1+ 2η) log2 n+ 2 log2 μ

⎞

⎟
⎠

⎥
⎥
⎥
⎥
⎦ .

Since γp ≥ n
1
2+ 1

2 η, it grows faster than n
1
2 and then the constraint (7.11) is

met when n is large. By the facts that limn→∞ nV
2
n
n = 2πe from [33, (2)] and that

1
n
r2
e < P for small ε, one can verify that 1 ≤ kc < kf < n when n is large. We now

substitute p, k1 and k2 into (7.8),(7.9) and (7.10). It is clear (7.8),(7.9) and (7.10)
vanish as n→∞.

Finally, we calculate the achievable rate

lim
n→∞

1

n
log2 p

kf−kc = lim
n→∞

1

2
log2

(
nP

r2
e

)

= 1

2
log2

(
1+ P/N

1+ ε
)

,

where ε can be arbitrarily small.

7.5 Conclusions

In this chapter, we review the recent developments towards simplifying the achiev-
ability proofs related to nested linear/lattice codes. In Sect. 7.1, we introduce the
model of the communication system and the motivation of using nested linear/lattice
codes. In Sect. 7.2, we present definitions related to nested linear/lattice codes and
introduce several elementary results from number theory that we use in our proofs.
In Sect. 7.3, we prove that nested linear codes achieve the DMC channel capacity.
In Sect. 7.4, we prove that nested lattice codes achieve the AWGN channel capacity.
We make a particular effort in keeping these two proofs in parallel. Potential future
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work includes optimizing the exponent of the growth rate of the prime p as a
function of n, extending the results to the multi-user setting such as compute-and-
forward, as well as providing achievability proofs without the random dither.

Appendix 1: Entropy

We briefly introduce various definitions related to entropy.

Entropy LetX be a discrete random variable with probability mass function (pmf)
p(x). The “uncertainty” about the outcome of X is measured by its entropy

H(X) = −EX(logp(X)).

Conditional Entropy LetX,Y be two discrete random variables. Since p(y|x) is a
pmf, we can defineH(Y |X = x) for every x. The conditional entropy is the average
of H(Y |X = x) over every X, i.e.,

H(Y |X) =
∑

x

H(Y |x)p(x) = −EX,Y (log(p(Y |X))).

Joint Entropy Let (X, Y ) be a pair of discrete random variables with pmf p(x, y).
The joint entropy is

H(X, Y ) = −E(logp(X, Y )).

Mutual Information The mutual information between X and Y is

I (X; Y ) =
∑

x,y

p(x, y) log
p(x, y

p(x)p(y)
.

It can be shown

I (X; Y ) = H(X)−H(X|Y ) = H(Y)−H(Y |X) = H(X)+H(Y)−H(X, Y ).

Appendix 2: Typical Sequences

Let X be a discrete alphabet. For a vector x = (x1, x2, . . . , xn) ∈ Xn, we define its
empirical pmf as

π(x | x) = |{i : xi = x}|
n

for x ∈ X.
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For X ∈ X ∼ pX(xi) and ε ∈ (0, 1), define the set of ε-typical n-sequences x ∈ Xn
(or the typical set in short) as

T(n)ε (X) = {x : |π(x | x)− pX(x)| ≤ εpX(x) for all x ∈ X}.

Let X = (X1,X2, . . . , Xn) be a random vector in Xn whose elements are i.i.d.
random variables with each element xi ∼ pX(xi), i ∈ [1, n]. Then by the weak law
of large numbers, for each x ∈ X,

π(x | X)→ pX(x) in probability.

Hence,

lim
n→∞P(X ∈ T(n)ε (X)) = 1.

Intuitively, for any x ∈ T(n)ε (X), the empirical average 1
n

∑n
i=1 xi should be close

to the expectation E(X). In fact, we have a more general result as follows.

Lemma G.6 (Typical Average Lemma) Let x ∈ T(n)ε (X). Then for any non-
negative function g(·) on X,

(1− ε)E(g(X)) ≤ 1

n

n
∑

i=1

g(xi) ≤ (1+ ε)E(g(X)).

The proof is direct by noting 1
n

∑n
i=1 g(xi) =

∑

x∈X π(x | x)g(x). Let g(x) =
− logpX(x) and note that E(− logpX(x)) = H(X), we obtain

2−n(1+ε)H(X) ≤ pX(x) ≤ 2−n(1−ε)H(X).

Equipped with this, we can bound the size of T(n)ε (X). Note that the
∑

x∈T(n)ε (X) pX(x) ≤ 1, we obtain

|T(n)ε (X)| ≤ 2n(1+ε)H(X).

Also note that by the law of large numbers,

lim
n→∞P(X ∈ T(n)ε (X)) = 1.

That is to say when n is sufficiently large, P(X ∈ T(n)ε (X)) ≥ 1− ε. Hence,

|T(n)ε (X)| ≥ (1− ε)2n(1−ε)H(X).
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The notion of the typical set can be extended to multiple random variables. For
(x, y) ∈ Xn ×Yn, define their joint empirical pmf as

π(x, y | x, y) = |{i : (xi, yi) = (x, y)}|
n

for (x, y) ∈ X×Y.

Let (X, Y ) ∼ pX,Y (x, y). The set of jointly ε-typical n-sequences is defined as

T(n)ε (X, Y )

= {(x, y) : |π(x, y | x, y)− pX,Y (x, y)| ≤ εpX,Y (x, y) for all (x, y) ∈ X×Y}.

Also define the set of conditionally ε-typical n-sequences as

T(n)ε (X | y) = {x : (x, y) ∈ T(n)ε (X, Y )}.

It can be shown that for sufficiently large n,

∀y ∈ Yn : |T(n)ε (X | y)| ≤ 2n(1+ε)H(X|Y ). (A.1)
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