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Chapter 14
Dealing with Uncertainty Using Fully 
Probabilistic Risk Assessment 
for Decision-Making

Gabriel A. Bernal, Omar-Darío Cardona, Mabel C. Marulanda, 
and Martha-Liliana Carreño

Abstract  Risk identification is the first step on a comprehensive disaster risk man-
agement strategy, and nowadays, when new open-source tools to conduct those 
analyses are becoming widely available, the interest and need to increase their trans-
parency has increased. Catastrophic risk due to natural hazards should be consid-
ered in a prospective way quantifying the damages and losses before the real event 
occurs, and for that task, it is necessary to consider events that have not yet occurred. 
Since there are uncertainties related to when and where the next hazardous event 
will happen, how severe will it be, and how can it affect the exposed elements, it is 
important to adopt a probabilistic approach that considers those uncertainties and 
propagates them through the damage and loss calculation process following a rigor-
ous methodology. This chapter develops the theoretical catastrophe risk model con-
sidering both retrospective and prospective analyses. In addition, it summarizes the 
methodology for the inclusion of second-order effects (nonphysical risk drivers), 
the approach to rationally incorporate background trends (e.g., climate change), an 
extension of the model to incorporate non-probabilistic uncertainty, and a method-
ology to define management actions that fit resilience targets. The work presented 
herein serves to provide a ground base for the minimum requirements of probabilis-
tic risk assessment models.
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1  �Introduction

A fully probabilistic approach to the risk problem, from an actuarial point of view, 
was first proposed by Filip Lundberg in his famous doctoral thesis of 1903 (Lundberg 
1903). Around 1930, Harald Cramér formalized Lundberg’s theory into what today 
is known as ruin theory (Cramér 1930). Lundberg defined an income-outcome 
model in which an insurance company starts its operation with a certain capital 
amount, which increases over time as premiums are collected. Moreover, losses 
(that the company must cover) occur randomly in time. If due to the payment of 
claims, the capital falls below zero, then the company faces bankruptcy.

Certainly, ruin theory considers (as it is natural) that the occurrence of claims is 
not deterministic. Lundberg proved that the occurrence of losses in time can be 
modeled as a Poisson process. In fact, any renewal process1 is valid within ruin 
theory (Sparre Andersen 1957). A Poisson process is a stochastic point process, 
widely used in multiple applications in science and engineering, which sets the 
occurrence of events in a totally random way. The events, within this context, do not 
refer to hazardous events but to the occurrence of losses, independent from their 
origin. This is the reason why ruin theory is suitable for any phenomenon, natu-
ral or not.

The Poisson process is defined in terms of a unique parameter, its intensity, or 
rate. In risk assessment, this parameter is the loss exceedance rate. It is the inverse 
value of the average time between the occurrences of events that exceed a loss 
amount p. Therefore, when calculating risk on a portfolio of exposed elements (i.e., 
the probability that a certain loss p is exceeded within a time window), its exceed-
ance rate v(p) must be calculated as a function of the probability of occurrence of 
any of the possible hazardous events that will cause the exceedance of p. This con-
figures a Poisson process which enables the estimation of the probability of exceed-
ance of loss p in any time frame.

As expected, the assessment of the exceedance rates v(p) is not limited to a 
unique value of p. Therefore, the loss exceedance curve (LEC) is calculated (i.e., 
v(p) is calculated for any p). The LEC provides an exhaustive quantification of the 
risk problem, in terms of probability. It will never be possible to know the exact 
magnitude of a future disaster (in terms of the loss and consequences that will 
cause), but it is possible with the LEC to know the probability that any loss amount 
will be exceeded within any time frame and use this information to support the 
decision-making process for risk reduction. The LEC is recognized to be the most 
robust tool for representing catastrophe risk (Cardona 1986; Ordaz 2000).

The LEC exhibits well-known limitations, such as implicit stationarity, lack of 
flexibility to incorporate non-probabilistic uncertainty models, description of 
physical and economic impact only, and increased difficulty in communicating risk 

1 A renewal process is a type of time-continuous, increasing, point process in which the inter-event 
times are mutually independent and identically distributed random variables, with an expected 
value equal to the inverse of the mean occurrence rate.
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to nontechnical stakeholders. This chapter provides insights on the way to overcome 
some of these limitations, except for the communication issue. Nowadays there is 
still a severe bias to calculate and communicate disaster risk in deterministic terms, 
through the definition of one or a few large events, for easiness in understanding the 
simulated impacts. This, however, contradicts the very definition of risk in which 
uncertainty plays a major role. Therefore, there is no treatment to deterministic 
analysis of disasters in this chapter.

2  �Assessment of the Loss Exceedance Curve

There is a well-known differentiation between extensive and intensive risk. High-
frequency, low-severity disasters, usually distributed along a wide portion of the 
territory, account for an important segment of the LEC. This segment is best esti-
mated by retrospective analysis, given the impossibility to analytically model many 
complex phenomena when large territories must be covered. On the other hand, 
there are limitations on the amount of data available on previous disasters, leading 
to important underestimations of the impact of high-severity, low-frequency events. 
Prospective risk assessment complements the historical information by the simula-
tion of future disasters which, based on scientific evidence, are likely to occur but 
have not occurred yet. A hybrid model, formed by both retrospective and prospec-
tive analyses, accounts for both extensive and intensive risk (Velásquez et al. 2014). 
As an example, Fig. 14.1 shows a hybrid loss exceedance curve for Nepal.

2.1  �Retrospective Assessment

The purpose is to obtain the best estimation for λ, the parameter of the Poisson pro-
cess associated with a loss amount. The value of λ is equal to the loss exceedance 
rate, for a reference loss amount. For an overview of the Poisson point process, the 
reader is referred to Kirgman (1992) or Soong (2004).

When performing retrospective probabilistic risk assessment, all historical valu-
ated disasters (n in total) are usually arranged in a time-loss plot as shown in 
Fig. 14.2. By setting an arbitrary loss amount p, all the events that exceed p can 
identify from the plot (see Fig. 14.2). Inter-event times are now evident for p. The 
set of observed values (T1, T2, …, Tn) will be used to estimate the parameter λ of the 
exponential distribution that describes the inter-event times, taking advantage of the 
fact that it is the same λ of the Poisson process of interest.

A good estimator for λ is:
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It is unbiased (E{Λ} = λ), consistent (Λ → λ as n → ∞), and sufficient. Though it is 
not of minimum variance,2 it is a good-enough estimator. However, different estima-
tors may be proposed by fitting the variance to the Cramér-Rao lower bound. As 
expected, the coefficient of variation (CoV) of Λ decreases with increasing n. This 
means that high and infrequently exceeded loss amounts will be related to more 
uncertain estimations of λ. For losses exceeded many times in the historical period, 
the assessment of λ will be more precise:

	
CoV �� � �

�

1

2n 	
(14.2)

With the appropriate estimator for the loss exceedance rates, the assessment of the 
LEC is straightforward. The process consists of setting different amounts for the 
reference loss p and computing Λ as an estimator for λ using Eq.  14.1 and the 
observed inter-event times. Figure  14.3 shows a diagram that summarizes this 
process.

As mentioned, the uncertainty of the estimation of the loss exceedance rates 
depends on the number of observed inter-event times from the historical informa-
tion. This translates into a sort of “uncertainty band” that gives information on the 
quality of the assessment. As can be seen in Fig. 14.4, for small losses the assess-
ment is good enough and is logical to rely on the retrospective approach. However, 
for higher losses, the quality of the assessment rapidly decreases. In addition, there 
is a limitation in the historical information related to the maximum observed loss. 

2 Var{Λ} = λ2/(n − 2). The Cramér-Rao Lower Bound CRLB{Λ} = λ2/n.
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This is the reason why, for large losses, the exceedance rates cannot be estimated 
statistically.

2.2  �Prospective Assessment

When undertaking a probabilistic catastrophe risk analysis, the relevant components 
of risk, which include the exposed assets, their physical vulnerability, and the haz-
ard intensities, must be represented in such a way that they can be consistently 
estimated through a rigorous and robust procedure, in both analytical and concep-
tual terms. The probabilistic risk model is comprised of three components:

•	 Hazard assessment: For each of the natural phenomena considered, a set of 
events is defined along with their respective frequencies of occurrence, forming 
an exhaustive representation of hazard. Each scenario contains the spatial distri-
bution of the probability parameters to model the intensities as random variables.

•	 Exposure assessment: An inventory of the exposed assets must be constructed, 
specifying the geographical location of the asset, its replacement value or fiscal 
liability cost, and its building class.

•	 Vulnerability assessment: For each building class, a vulnerability function is 
defined, for each type of hazard. This function characterizes the structural behav-
ior of the asset during the occurrence of the hazard event. Vulnerability functions 
provide the probability distribution of the loss as a function of increasing hazard 
intensity.
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Because the occurrence of hazardous events cannot be predicted, it is common 
practice to use sets of scenarios, obtained as an output of the hazard model. The set 
of scenarios contains all the possible ways in which the hazard phenomenon may 
manifest in terms of both frequency and severity. Event-based probabilistic risk 
assessments have been extensively applied in the past for different hazards at differ-
ent scales (see, for example, Bernal et  al. 2017a, b, Salgado-Gálvez et  al. 2017; 
Salgado-Gálvez et al. 2015; Cardona et al. 2014; Salgado-Gálvez et al. 2014; Wong 
2014; Niño et al. 2015; Quijano et al. 2014; Torres et al. 2013; Jenkins et al. 2012).

2.2.1  �Hazard Representation

Consider a loss event, A, defined within the universe of all possible losses (or sam-
pling space) S (Fig. 14.5). Event A is a subset of S, and it is defined in a completely 
arbitrary way (its definition depends exclusively on what question needs to be 
answered). Once defined, what is required to know about event A is its probability 
of occurrence, denoted P(A).

Consider now a subdivision of the sampling space S into a finite number of mutu-
ally exclusive and collectively exhaustive base events, denoted Bi, as shown in 
Fig. 14.6.
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Fig. 14.4  Retrospective loss exceedance curve. The blue line is the mean estimation of λ and the 
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Given that event A can be defined as the union of its intersections with the base 
events Bi, and making use of the third axiom of probability theory, P(A) can be cal-
culated as:

	
P A P A B P B

i

n

i i� � � � � � � �
�
�

1

|
	

(14.3)

which is one of the simplest expressions of the total probability theorem. In sum-
mary, the definition of the events of interest A is completely arbitrary, so P(A) is 
calculated as a function of the probability of loss base events B. This implies that the 
base events B cannot be defined arbitrarily.

The collection of base events B is constructed from the definition of hazard sce-
narios. Each base event B in the loss dominium corresponds to the loss caused by 
each hazard scenario. These scenarios must be mutually exclusive (i.e., cannot 
occur simultaneously) and collectively exhaustive (i.e., they are all the ways in 
which the hazard may manifest). In addition, each scenario has an annual frequency 
of occurrence (analogous to its probability of occurrence P(B)) and a spatial distri-
bution of the random intensity (i.e., the distribution of its probability moments). The 
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Fig. 14.5  Arbitrary event A within the sampling space S of the loss events
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intensity corresponds to the physical variable representing the local severity of the 
phenomenon. For example, in the case of earthquakes, spectral accelerations are 
commonly used. As will be explained later, a spatial correlation coefficient for the 
intensity is not needed.

Failing to represent mutually exclusive hazard scenarios leads to an incongru-
ence when adopting the Poisson point process to model the occurrence of loss in 
time.3 In the case of hazards that can generate simultaneous intensities associated 
with different effects (i.e., tropical cyclones), a totalizing approach as the one pro-
posed by Ordaz (2014) and Jaimes et al. (2015) is applied to each scenario. On the 
other hand, being the hazard scenarios collectively exhaustive has nothing to do 
with the total number of them. For example, two scenarios may be enough to repre-
sent some hazard in an exhaustive way, if they are known to be the only ones that 
can occur. Similarly, a million scenarios, although seeming like an exceptionally 
large representative number, do not necessarily guarantee the fulfillment of this 
requirement.

Hazard is commonly represented as maps of uniform return period (i.e., uniform 
hazard maps). These maps are obtained by the calculation of the intensity exceed-
ance rates, which are analogous to the loss exceedance rates but provide informa-
tion only about the intensity at a location. The exceedance of intensity a, denoted 
v(a) is calculated as follows:

	
v a P A a F

i

N

i A i� � � �� � � � �
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| Event Event
	

(14.4)

where N is the total number of hazard scenarios and FA(Eventi) is the annual fre-
quency of occurrence of event i while P(A > a | Eventi) is the probability of exceed-
ing a, given that event i occurred. Note that Eq. 14.4 is another form of the total 
probability theorem. By performing this calculation for different intensity levels, it 
is then possible to obtain the intensity exceedance curve (also known as hazard 
curve) that relates different hazard intensities with their associated exceedance rate 
on each calculation site (see Fig. 14.7). If this curve is calculated for several nodes 
on a grid arrangement, by selecting any fixed exceedance rate (or its inverse value, 
the return period), it is possible to obtain hazard maps. Note that, even though haz-
ard maps can be obtained from the set of scenarios, the process is not reversible, 
which means that it is impossible to define the scenarios from uniform hazard maps.

2.2.2  �Exposed Elements

An exposed element is any object susceptible to suffer damage or loss because of 
the occurrence of hazard events. Furthermore, exposed elements have an implicit 
component associated with loss liability. If, for example, the exposed elements are 

3 In particular, the increments of the process will not be independent.

14  Dealing with Uncertainty Using Fully Probabilistic Risk Assessment…



308

dwellings of low socioeconomic income, then the losses add to the fiscal responsi-
bility of the State, given the inability of the homeowners to cope with the situation. 
It is important to determine the liability of losses directly into the definition of the 
exposed elements. For this reason, the exposed elements are grouped in portfolios.

The exposure model is the collection of portfolios of assets (buildings and infra-
structure) that can be affected by the occurrence of natural hazards. It is an essential 
component in risk analysis that determines the resolution (or scale) of the results. 
Highly detailed exposure data is always desirable; however, when detailed informa-
tion is not available, or an estimation over a wide region is intended (e.g., a full 
country), it is necessary to carry out approximate estimations that account for the 
inventory of exposed elements. This is usually referred to as the proxy exposure 
model (see Fig. 14.8).

The description, characterization, and appraisal of the physical inventory of 
exposed elements for a probabilistic risk assessment always present serious chal-
lenges for modeling regardless of scale. Several assumptions are usually made 
which naturally increase the epistemic uncertainty in the risk modeling, even in 
those cases where detailed information is available (e.g., a building-by-building 
inventory; see Fig. 14.9). Fortunately, when quantifying losses for hazard scenarios, 
the aggregation of the losses at individual elements (e.g., buildings) results in a 
progressive reduction of the uncertainty in the total loss (law of large numbers). In 
any case, there are always doubts regarding the accuracy and reliability of exposure 
data. This highlights the importance of modeling the loss as a random variable.
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Fig. 14.7  Example of a hazard curve. Both axes are in logarithmic scale
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2.2.3  �Vulnerability

The vulnerability of exposed elements is defined using mathematical functions that 
relate the intensity to the direct physical impact. Such functions are called vulner-
ability functions, and they must be estimated and assigned for each one of the con-
struction classes identified in the exposure database. Vulnerability functions provide 
the variation of the probability moments of the relative loss with increasing inten-
sity (see Fig. 14.10).

Vulnerability functions are useful to describe the expected behavior of the differ-
ent construction classes. Aspects such as construction quality and the degree to 
which builders complied with local or regional building codes must be considered 
for the different classes of buildings. Figure 14.11 presents an example of flood 
vulnerability functions, showing how the expected damage increases as a function 
of the water depth for each building class.

It is worth mentioning that this type of vulnerability modeling aims to capture 
the general characteristics compatible with the level of resolution used in the expo-
sure database; no specific considerations should be made for any structural system. 
Every single asset identified and included in the database must be associated with a 
vulnerability function.

2.2.4  �Risk Assessment (Calculation of the LEC)

The calculation of the LEC follows the next sequence of steps:

Step 1: Loss in a single exposed element

Fig. 14.8  Example of a 
low-resolution exposure 
model for Bogotá, 
Colombia
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The intensity occurring at the location of an exposed element and the loss caused 
are both random variables. The relationship between hazard (intensity a) and vul-
nerability (loss p given intensity a), for a single exposed element, is modeled by 
applying the total probability theorem, integrating for the complete dominium of the 
intensity:

	
f p f a f p a daP A P� � � � � � � � �

�

�
0

|
	

(14.5)

where fP(p) is the probability density function (pdf) of the loss, fA(a) is the pdf of the 
intensity at the location of the exposed element, and fP(p|a) is the intensity-dependent 
pdf of the loss at the exposed element. Note that the integral covers the full domi-
nium of the intensity, so there is no need to perform simulations of the intensity field 
for each scenario.

Step 2: Scenario loss

Step 1 is repeated for all the elements in the portfolio. If the individual losses of 
the exposed elements were independent, then the pdf of the total loss would simply 
be the successive convolution of the individual loss pdfs (rendering a normal distri-
bution according to the central limit theorem). However, it is recognized that there 
is a certain amount of correlation between the losses for the same scenario. Under 
this condition, the total loss is modeled by adding the probability moments of the 
individual losses:

	
m mP

j

NE

Pj�
�
�

1 	
(14.6)

and,
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where mPj and σ Pj
2  are the mean and variance of the jth exposed element, ρk, j is the 

correlation coefficient of the loss in elements k and j, NE is the total number of 
exposed elements, and mP and σ P

2 are the mean and variance of the total scenario 
loss. There is no general methodology to determine the value of ρ. In practice, each 
modeler chooses its value by observing the coherence of the results. A commonly 
used, blanket value is 0.3. From the probability moments of the total scenario loss, 
a beta distribution is parametrized (see, e.g., ATC-13 1985). The choice to use a beta 
distribution to describe the loss, however arbitrary, is based on three properties that 
make it very convenient for this purpose:

•	 Its dominium is the interval [0,1], i.e., it directly fits into the description of a rela-
tive loss.
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•	 It accommodates multiple shapes, showing different mode locations (left-sided, 
symmetrical, right-sided) and even adopting an exponential-like form (both 
increasing and decreasing).

•	 It is characterized by only two parameters.
•	 Step 3: Totalize the loss

Step 2 is repeated for all hazard scenarios so that a set of loss pdfs is obtained, 
each corresponding to the total loss for a single scenario. To totalize the effect of all 
scenarios, the total probability theorem is used in the same way as Eq. 14.4:

	
� p P P p F

j

N
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1

( )Event Event
	

(14.8)

where v(p) is the rate of exceedance of loss p, N is the total number of hazard sce-
narios, FA(Eventi) is the annual frequency of occurrence of the ith hazard event, and 
P(P > p | Eventi) is the probability of exceeding p, given that event i occurred. The 
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Fig. 14.12  Flowchart of the risk assessment process

14  Dealing with Uncertainty Using Fully Probabilistic Risk Assessment…



314

sum of the equation is made for all hazard scenarios. Figure 14.12 summarizes the 
calculation process.

3  �Risk Metrics

As indicated above, the LEC contains all the information required to characterize 
the process of occurrence of losses. However, it is sometimes impractical to use the 
complete curve. Instead, it is convenient to use specific metrics that allow the risk to 
be expressed by a single number. The most used metrics are described next.

3.1  �Probable Maximum Loss (PML)

This is a loss that does not occur frequently, that is, a loss usually associated with 
long return periods (or, alternatively, a low exceedance rate). The return period is 
the inverse of the exceedance rate (i.e., is the expected value of the inter-event times):

	
Tr p

p
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1

� 	
(14.9)

There is not a single PML value, but a complete curve which is analogous to the 
LEC.  However, it is common practice to define a PML value by fixing a return 
period. There are no universally accepted standards to define what is meant by “not 
very frequently.” In the insurance industry, for example, the return periods used to 
define the PML range from 200 up to 2500 years (Fig. 14.13).
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Fig. 14.13  Risk curves. Left: in terms of the exceedance rate (loss exceedance curve). Right: in 
terms of the return period (PML curve). Note that the value of the PML requires an arbitrary selec-
tion of the return period
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3.2  �Average Annual Loss (AAL)

The average annual loss (AAL) is an important indicator because it integrates into a 
single value the effect, in terms of loss, of the occurrence of hazard scenarios over 
vulnerable exposed elements. It is considered as the most robust risk indicator, not 
only for its ability to resume the loss-time process in a single number but for having 
low sensitivity to the uncertainty.

The AAL corresponds to the expected value of the annual loss and indicates the 
annual value to be paid to compensate in the long term all future losses. In a simple 
insurance scheme, the AAL would be the annual pure premium. It is calculated as 
the integral of the loss exceedance curve:
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(14.10)

From the set of loss events, AAL can be calculated as:
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where E(p|Eventi) is the expected value of the loss given the occurrence of the event 
i. Furthermore, in those cases in which the hazard is not expressed as a set of sce-
narios, but as a collection of uniform hazard maps, despite the impossibility to fully 
assess risk, it is possible to calculate the AAL as:

	
AAL � �

� �
� � � �

�

�

��
i

NE d a

da
E p a da

1 0

1

0�
�

|
	

(14.12)

where the quantity E(p|a) is obtained from the vulnerability functions of the exposed 
elements. The AAL is the only mappable risk metric. Risk maps are a remarkably 
effective communication tool. High-resolution AAL maps, both absolute and rela-
tive (to the exposed value of each asset), are highly desirable outcomes to orient risk 
management. Figure 14.14 presents an example of AAL maps for Bogotá, Colombia.

3.3  �Other Metrics

In addition to the abovementioned metrics, many results may be obtained from the 
LEC by the direct application of the Poisson point process that describes the loss 
occurrence in time.
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3.3.1  �Probability of Ruin

A commonly used metric in insurance is the probability of ruin. It is defined as the 
probability of exceeding a reference PML in an operational period. In general, the 
probability of exceeding a loss amount p at least once in T years is:

	 P P p e v p T�� � � � � � ��1 	 (14.13)

Equation 14.13 has the advantage of being a standard formula. Only by knowing the 
return period of the loss and the operational time window (or exposure time) is it 
possible to calculate its exceedance probability.

3.3.2  �Inter-Event Times

In many risk applications, it is necessary to make inferences on the time between 
loss events. The pdf of the inter-event times is:

	 f t p eT
p t� � � � � � � �� �

	 (14.14)

This is particularly useful when testing the effectiveness of land use or risk manage-
ment plans which are usually executed gradually in the short and medium term.

3.3.3  �Number of Events

In many risk applications, it is necessary to make inferences on the number of loss 
events expected to occur in a fixed time window. The probability mass function of 
the number of events in time window T is:

	
p

p T e

NN

N p T

�
� � �� � � � ��� �

! 	
(14.15)

This is particularly useful when designing risk management instruments that require 
reinstallations. For example, some financial protection instruments, as well as some 
structural protection devices, are commonly designed considering reinstallations.

3.3.4  �Next Event

It is possible to estimate the probability of exceeding loss p in the next event (or any 
randomly selected event):
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Pr P p

p

v
�� � � � �

� �
�

0 	
(14.16)

This result is quite useful for emergency preparedness activities, as well as for quan-
tifying the cost of financial instruments and mitigation strategies.

4  �Incorporating Background Trends

The stationarity of the Poisson point process implies that the mean rate is constant 
in time. Although this is hardly the case, it is widely accepted as the best approxima-
tion due to the difficulty to incorporate time-dependent hazard, exposure and vul-
nerability models, and the large uncertainty arising from incorporating them. 
Nevertheless, in cases in which, to the extent of knowledge, the stationarity condi-
tion is far too unrealistic, and the future dynamics of the risk components are known 
or can be approximated reasonably, it is possible to extend the model to a nonsta-
tionary process.

Consider a LEC resulting from a probabilistic risk assessment. This result is 
expressing the possibility of loss given the incidence of hazard, exposure, and vul-
nerability, as modeled for a specific moment in time. If there is a reasonable way to 
model the future changes of these risk components, it is possible to calculate new 
LECs for different, future dates. Therefore, the loss exceedance rates now exhibit a 
time dependency, transforming the LEC into a loss exceedance surface (LES, see 
Fig. 14.15). The LES, constructed from the LECs of future conditions, contains all 
the v(p,t) functions required to define the occurrence in time of losses greater than p 
as a nonhomogeneous Poisson process.

A nonhomogeneous Poisson process satisfies the same basic properties of a 
homogeneous one, i.e. independent and Poisson distributed increments. The main 
difference is that the rate of the process is a function of time, λ(t). For an overview 
of the nonhomogeneous Poisson process, the reader is referred to Kirgman (1992). 
Note that when assessing disaster risk as an LES, the following properties hold:

•	 The loss occurrence process is still stochastic.
•	 The mean rate of the process changes in time.
•	 All risk metrics (AAL, PML, etc.) are functions of time.

The latter means that single-valued metrics, as the AAL, are no longer single-
valued. This implies losing some of the desirable characteristics of condensed, com-
prehensive metrics. To obtain single-valued metrics, a simple time average is 
required, with an arbitrary choice of its limits.
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4.1  �Incorporating Climate Change

This approach works very well when incorporating climate change into risk calcula-
tions. For example, Figs. 14.16 and 14.17 show time-dependent risk metrics, calcu-
lated from probabilistic risk assessment to Puerto Barrios, Guatemala (due to 
tropical cyclones), and to the wheat stock of Kazakhstan (due to droughts), and 
including the effect of climate change (up to 2050).4 In both cases, the time-
dependent loss exceedance rates v(p,t) were calculated for different moments in 

4 In both cases for RCP 8.5 and selecting the climate model that best fits the historical observations.

( )pv

p

p

( )tpv ,

t

Fig. 14.15  Time dependency added to the loss exceedance rates. Left, loss exceedance curve; 
right, loss exceedance surface
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Fig. 14.16  Time-
dependent PML curves for 
Puerto Barrios, Guatemala, 
due to tropical cyclones 
and the effect of climate 
change. (From Cardona 
et al. 2013)
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time, allowing for an estimation of the time dependency of λ and therefore increas-
ing the applicability of the risk assessment methodology. Furthermore, the inclusion 
of climate change as a background trend of the risk process provides a unique math-
ematical framework for both risk management and climate change adaptation.

Introducing background trends into probabilistic risk assessment requires com-
plex models of the future dynamics of hazard, exposure, and vulnerability. Even 
though these models may exist, they should be introduced with care, keeping in 
mind the additional uncertainty brought into. Such uncertainty is extremely difficult 
to model from the probabilistic point of view, being commonly referred to as deep 
uncertainty. An overview of the treatment of deep uncertainty is presented in the 
next section.

5  �Dealing with Deep Uncertainty

The future characteristics of the built environment, the dynamics of the socio-
technical systems, or the exact conditions of the future climate are desirable inputs 
for risk modeling, useful for designing the actions and policies to anticipate the 
materialization of risk. However, knowing with arbitrary precision how nonstation-
ary natural phenomena, exposed elements, and their vulnerability will change in the 
far, or even near future, is practically impossible. Furthermore, assigning any kind 
of probability model to such dynamic and complex behavior is extremely difficult 
without arbitrariness.

Most of the variables involved in probabilistic risk assessment fit well into prob-
ability models. It is even possible to insert background trends into the calculation, 
keeping the problem within the reach of probability theory. Nevertheless, it must be 
recognized that in the process of building a risk model, many assumptions are made, 
based on expert criteria and common sense, but inevitably rendering a model that is 
not truly “fully probabilistic.” However, within good modeling practice, all the 
assumptions made are sufficiently trustworthy, so, again, the problem fits into a 
fully probabilistic approach.

But what happens when incorporating a new variable from which there cannot be 
made any reasonable point assumptions, there is no observed data (or not enough), 
it is not possible to truly predict its behavior from physical models, and there is no 
bounded consensus on how it will perform? This configures a problem with deep 
uncertainty.

In a broad sense, uncertainty is inherent in any approach to model complex 
dynamical systems. It can be understood as the gap between the outcome of the 
model and the real behavior of the system. This gap is composed by the uncertainty 
on the available observations, the estimation of model parameters, the functional 
form of the model itself (typically simplifying the phenomena), the value of model 
inputs, the transformations of scale (commensurability), and the natural random-
ness. The latter is usually referred to as aleatory uncertainty. All the other men-
tioned sources compose the epistemic uncertainty. It is widely recognized that 
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epistemic uncertainty is reducible as more data or knowledge is added to the prob-
lem. However, deep uncertainty, which holds both aleatory and epistemic uncer-
tainty, is exceedingly difficult to reduce. In practice it would require, for example, 
waiting until the future conditions of the assets at risk are known, which invalidates 
the purpose of risk assessment and overthrows any planning attempt.

Dealing with deep uncertainty in risk assessment requires an expansion of the 
methodological approach. Recently, several authors have proposed innovative 
approaches to deal with problems with deep uncertainty and orient decision-making, 
grouping them under the name Decision Making Under Deep Uncertainty (DMDU). 
For further details, the reader is referred to Marchau et  al. (2019). All DMDU 
approaches share key methodological steps: (1) framing the analysis, (2) simula-
tion, (3) exploration of results, (4) analysis of compensations (trade-offs) of strate-
gies, and (5) iteration and reexamination. In short, DMDU methods recognize that 
it is not possible to achieve robust decision-making without considering the multi-
ple ramifications that define the domain of the future possibilities. But how do we 
reasonably define those ramifications or paths of the risk problem?

Step 2 of DMDU approaches (simulation) is strongly related to risk assessment. 
Its purpose is to explore possible unforeseen or uncertain futures. In other words, 
robust decision-making must be based on the universe of all possible outcomes that 
a problem with deep uncertainty can evolve into, to consider them all when decid-
ing. Probabilistic risk theory follows a similar approach, seeking to quantify the 
consequences of all possible future catastrophic events (without the need to know 
which will be next) to consider those consequences in the decision-making process. 
Therefore, as far as disaster risk management respects, probabilistic risk assessment 
is the most appropriate way to approach step 2, although some expansion of its 
analytical potential is required.

The main limitation of probabilistic risk assessment is precisely that of being 
probabilistic. Nonetheless, regardless of that limitation, it is a robust approach, good 
enough in most risk assessment applications. As models evolve and gain complex-
ity, more variables are added that not necessarily fit into a probabilistic representa-
tion. In the past decades, many mathematical theories have arisen as an attempt to 
formally conceptualize the treatment of non-probabilistic uncertainty problems. In 
the 1960s, Zadeh proposed the fuzzy set theory (Zadeh, 1965) as an approach to deal 
with epistemic uncertainty, allowing the representation of concepts expressed by 
linguistic terms. A few years later, Dempster (1967) develops what today is known 
as Dempster-Shafer evidence theory (formalized by Shafer 1976), seeking the rep-
resentation of epistemic knowledge on probability distributions and, in the process, 
relaxing some of the strong rules of probability theory. In parallel, and within the 
context of stochastic geometry, Kendall (1974) and Matheron (1975) developed the 
foundations of what is nowadays known as the random sets theory. In short, random 
sets theory deals with the properties of set-valued random variables (in contrast to 
point-valued random variables in probability theory). In 1991, Peter Walley intro-
duces the theory of imprecise probabilities, in which sets of probability measures 
are explored as a more general case of the classical probabilistic approach to ran-
dom variables. Other theories to give formal treatment to non-probabilistic 
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uncertainty have appeared recently. It is worth mentioning the theory of hints 
(Kohlas and Monney 1995), the info-gap theory (Ben-Haim 2006), and the theory 
of fuzzy randomness (Möller and Beer 2004).

From the abovementioned approaches, random sets theory excels as the most 
general approach to uncertainty to date, allowing many different types of uncer-
tainty structures (e.g., Dempster-Shaffer bodies of evidence, info-gap structures, 
probability boxes, raw intervals, fuzzy sets, probability distribution functions, 
among others) to be represented as random sets. Alvarez (2008) proved that infinite 
random sets of the indexable type can accommodate all these uncertainty structures. 
Furthermore, he developed a general method to sample values from all these types 
of uncertainty structures indistinctively. Therefore, the theory of random sets, and 
particularly the methods developed by Alvarez (2008) for infinite random sets, pro-
vides a mathematically sound framework for the simulation of the ramifications or 
unforeseen futures in problems with deep uncertainty.

5.1  �Random Sets

Consider the probability space (Ω, σΩ, PΩ) and a universal non-empty set X with a 
power set ℘(X). Let  ,�� � be a measurable space such that  ��� �X . A random 
set Γ is a � �� �� �   – measurable mapping such that � �� � � � ,� � . Every 
Γ(α) is a focal element in the focal set  .

If all elements in   are singletons (points), then Γ is a random variable, and 
therefore the probability of any event F in   is calculable via classic probability 
theory. Such focal set   is called specific. However, when   is nonspecific, the 
probability of event F cannot be precisely calculated, but only its upper and lower 
bounds, giving as result an imprecise probability measure. Upper (UP) and lower 
(LP) probabilities for event F are given by:

	 LP F P F� � � � � � � � � �� �� � �� � �: , 	 (14.17)

	 UP F P F� � � � �� � �� �� �� �: 	 (14.18)

which means that the lower probability LP is the totalization of the probability or 
mass assignments of all the elements in Γ(α) contained in F, i.e., those that imply 
the occurrence of F. Upper probability UP is the total probability of the elements in 
Γ(α) that share at least one element with F, i.e., those that may or may not imply the 
occurrence of F. A complete overview of random sets can be found in 
Molchanov (2005).

14  Dealing with Uncertainty Using Fully Probabilistic Risk Assessment…



324

5.2  �Simulation

The process of simulation is performed by means of a Monte Carlo approach. Every 
variable is represented as a random set in the real line. Each may have a different 
treatment of the uncertainty, enabling the combination of random variables, fuzzy 
sets, bodies of evidence, intervals, etc. This may be the more general simulation 
approach to date.

Sampling from a random set is to randomly obtain focal elements from it, regard-
less of the type of uncertainty. To enable this process, an indexing procedure must 
be applied previously, so that the diversity of mathematical structures can be treated 
equally (α-indexation; see Alvarez 2008). Once indexed, it is possible to sample 
focal elements. Figure 14.18 shows an illustration of this process.

Note that Γ(α) is an interval in the dominium of X. If there are many variables 
involved in the problem, the same process can be applied to a coupled combination 
of the variables. Let X be the vector of all variables, and then α becomes a space (the 
α-space). In such space, the dependence between variables is modeled by a couple, 
and the quasi-inverse sampling methods for couples can be used to sample the mul-
tidimensional focal elements (see Nelsen 1999 for a comprehensive guide of cou-
pled simulation techniques). Figure 14.19 shows an illustration of sampled focal 
elements in both the X-space and the α-space for the two-dimensional case (two 
variables). Note that in the X-space, the focal elements are multidimensional boxes, 

1

0 X

1

0 X

1

0
m(A1)

m(A2)
m(A3)

m(A4)

m(A5)

X

1

0 X

α

Γ(α)

α
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Fig. 14.18  Sampling from α-indexed random sets. Upper left: probability box. Upper right: pos-
sibility distribution. Lower left: Dempster-Shafer body of evidence made of raw intervals. Lower 
right: cumulative distribution function. (Reproduced from Alvarez 2008)
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while in the α-space they are always points, regardless of the number of variables 
(dimensions).

5.3  �Functional Propagation

Once the full set of focal elements is sampled, the response of the system must be 
evaluated. This is to calculate the image of the focal elements by applying on them 
a function describing the system response, i.e., to propagate the random focal set. 
This is achieved by applying the extension principle5 which states that given a func-
tion g : X → Y (the system response) and a random set  ,m� �, the image of  ,m� � 
through g, denoted here as � �,� �, is:

	 � � � � � �� �R g A Aj i i:  	 (14.19)

	
� R I R g A m Aj

i

n

j i i� � � � � ��� �� � �
�
�

1 	
(14.20)

where I[∙] is the indicator function.6 Ai is a d-dimensional box in ℝd with 2d vertices 
obtained as the Cartesian product of the finite intervals sampled from each variable 
in the X-space. For those systems in which there is not an explicit functional form 
for g (e.g., risk assessment), the extension principle can be sequentially applied as 
the process of calculation moves forward.

5 See Alvarez (2008) for a summary of techniques to practically apply the extension principle.
6 I[∙] = 1 if ∙ is true and I[∙] = 0 if ∙ is false.

X1

X2

α1

α2

Fig. 14.19  Focal elements for the two-dimensional case in the X-space and in the α-space. 
(Reproduced from Alvarez 2008)
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5.4  �Calculation of the Loss

Each focal element contains a sampling of the input variables in a stage of the cal-
culation. Getting to assess the loss requires a series of steps that are presented here. 
Note that these steps are the most general sequence for risk assessment. None of the 
particularities of, for example, hazard modeling, are included here because they are 
different for each hazard for obvious reasons. Nonetheless, each hazard model (and 
in general each component of the risk problem) would require similar approaches 
for the whole process to be consistent.

	1.	 Sample the occurrence of the event.
	2.	 Sample the intensity field. In some cases (e.g., earthquake hazard), this would 

require the definition of correlation parameters.

	2.1.	 At the location of the exposed elements, sample the focal elements of the 
local intensity.

	2.2.	 From the vulnerability function of each element, sample the loss caused by 
each focal element of the intensity.

•	 This requires coupled sampling of the intensity and loss (steps 2.1 and 2.2). 
An independence couple should suffice in most cases.

	2.3.	 Repeat for all exposed elements and add their individual losses using the 
extension principle.

	3.	 Repeat for all the intensity field simulations.
	4.	 Repeat for all events.

Note that this approach requires many simulations, making it costly in terms of 
computational resources. It is recommended to apply any of the many sampling 
optimization techniques usually implemented when performing Monte Carlo 
simulations.

Let ,� � be the random set containing all the images of the loss calculations. 
Then  is the collection of loss focal elements (intervals), and ℓ (Li) for Li ∈ is the 
mass assignment, i.e., the probability of occurrence of the event that generated the 
loss focal element. This representation requires a relaxation of the rules applied to 
mass assignments (rules established in evidence theory and usually transferred to 
random sets). Given that ℓ (Li) is representing the annual occurrence frequency of 
the event that generated the focal element Li, then the sum of mass assignments is 
not necessarily 1. In practice, this condition can be forced into ℓ (Li) if required and 
for the sake of coherence; however, it seems unnecessary and may have no practical 
effect on the final outcomes. In any case, this is an issue that requires further 
analysis.

Let F be the event where the loss P exceeds the amount p (i.e., F = {P : P ≥ p}), 
and then by rewriting Eq. 14.8, upper and lower loss exceedance rates are obtained, 
i.e., the LEC is transformed into two complementary curves LECL (Eq. 14.21) and 
LECU (Eq.14.22) that may be interpreted as an imprecise loss exceedance curve:
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(14.22)

where n is the total number of focal elements in . Figure 14.20 shows an illustra-
tion of an imprecise loss exceedance curve. Note that all risk metrics now become 
imprecise. Background trends can still be incorporated by obtaining for every 
moment in time both LECU and LECL curves, i.e., rendering an imprecise loss 
exceedance surface.

6  �Incorporating Second-Order Effects

Risk addressed from a physical point of view is the starting point to analyze the 
subsequent impacts of a disaster on society. Disasters resulting from natural events 
damage the built environment, affecting people and their activities in different ways. 
It is widely recognized that the development level of the society usually determines 
the severity of the consequences derived from disasters. Cardona (2001) developed 
the Holistic Risk Assessment methodology, as an attempt to incorporate context 
variables into risk assessment, with the objective to account for social, economic, 
institutional, environmental, governance, and cultural issues, among others, that set 
the foundations for underdevelopment, unsafety, poverty, social injustice, and many 
other problems widely recognized as risk drivers.

Holistic evaluations have been performed in recent years for different cities 
worldwide (Birkman et  al. 2013; Carreño et  al. 2007; Jaramillo et  al. 2016; 

( )pv

p

LECL

LECU

Fig. 14.20  Illustration of an imprecise loss exceedance curve composed by curves LECL and LECU
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Marulanda et  al. 2013; Salgado-Gálvez et  al. 2016) as well as at country level 
(Burton and Silva 2014) and have proven to be a useful way to evaluate, compare, 
and communicate risk while promoting effective actions toward the intervention of 
vulnerability conditions measured at its different dimensions. It has also been inte-
grated into toolkits, guidebooks, and databases for earthquake risk assessment 
(Khazai et al. 2014, 2015; Burton et al. 2014).

The holistic evaluation approach states that to reduce existing risk or to prevent 
the generation of new risk, it is required a comprehensive risk management system, 
based on an institutional structure accompanied by the implementation of policies 
and strategies to intervene vulnerable elements and also diverse factors of the soci-
ety that create or increase risk. In the same way, in the case a hazard event is mate-
rialized resulting in a disaster, emergency response and recovery actions should be 
conducted as part of the risk management framework. Figure 14.21 shows the con-
ceptual framework of the holistic risk approach.

The physical component in the evaluation is provided by the probabilistic risk 
assessment as presented in the previous section. The aggravating factors are chosen 
considering their capability to capture important dimensions of society, as well as 
the coverage and availability of the data. Furthermore, these variables are sought to 
cover a wide spectrum of issues that underlie the notion of risk in terms of predomi-
nating vulnerability conditions beyond the physical susceptibility, that is, factors 
related to social fragility and lack of resilience that favor indirect and intangible 
impacts, affecting the capacity of the society to cope with disasters, increasing the 
incapability to absorb consequences, to respond efficiently, and to recover from the 
impact. Figure  14.22 shows, as an example, the aggravating factors used in the 
global holistic evaluation of disaster risk for the UNISDR GAR ATLAS (2017).

6.1  �Holistic Risk Assessment Methodology

According to Cardona (2001) and Carreño et al. (2007), the holistic risk assessment 
index or total risk (RT) is calculated as:

	 RT RF� �� �1 F 	 (14.23)

This expression, known in the literature as Moncho’s equation, is defined as a com-
bination of a physical risk index, RF, and an aggravating coefficient, F, both being 
composite indicators (Carreño et al. 2007). RF is obtained as a nonlinear normaliza-
tion of a probabilistic risk metric (commonly a robust metric such as the AAL, 
whether precise, imprecise, or time-dependent), while F, which accounts for the 
socioeconomic fragility and lack of resilience of the area under analysis, is obtained 
from available data regarding political, institutional, and community organization.

It is assumed that total risk (RT) can be, at most, two times the physical risk of 
the affected area. It means that, in a hypothetical case where socioeconomic charac-
teristics are optimal and there is neither fragility nor lack of resilience, the 
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aggravating factors would be zero and then the total risk would be the same as the 
physical risk. However, if the societal characteristics render the maximum value of 
the aggravating coefficient (1.0), the total risk would be twice the physical risk 
value. This assumption, though arbitrary, is made to reflect how socioeconomic 
characteristics can influence the impact of a disaster. The aggravating coefficient, F, 
is calculated as follows:

	
F F W F W

i

m

SF SF
j

n

LR LRi i i i
� � � �

� �
� �

1 1 	
(14.24)

where FSFi and FLRj are the aggravating factors, WSFi and WLRj are the associated 
weights, and m and n are the total number of factors for social fragility and lack of 
resilience, respectively. Weights WSFi and WLRj are defined to set the importance of 
each of the factors on the index calculation, i.e., the contribution of each indicator 
in the characterization of the dynamics of the society.

The factors used in the calculation of the total risk (RT) capture different aspects 
of society, usually quantified and reported in different units. For this reason, normal-
izing procedures are needed to standardize the values of each descriptor and ensure 
commensurability. A common practice is to standardize them by using transforma-
tion functions (see Fig. 14.23). The shape and characteristics of the functions vary 
depending on the nature of the descriptor. Functions related to descriptors of social 
fragility have an increasing shape, while those related to resilience have a decreas-
ing one. Thus, in the first case, a high value of an indicator means a greater 

Fig. 14.22  Structure of indicators used in the holistic evaluation of risk at a global scale

G. A. Bernal et al.



331

contribution to aggravation (e.g., corruption: if high, it will contribute more to 
aggravate conditions to cope with an adverse situation). In the second case, a high 
value of the indicator means a lower negative influence on the aggravation (e.g., 
access to education: a high value is a positive characteristic for more resilient societ-
ies; therefore, it will contribute less to aggravate risk). The transformation functions 
can be understood as fuzzy membership functions of the linguistic benchmarking 
(“high,” “low”) of aggravation.

In all cases, the transformed variables have as dominium the interval [0,1]. Given 
that transformation functions are fuzzy membership functions, a value of 0.0 means 
no contribution, while the value of 1.0 means a full contribution to the aggravating 
coefficient.

7  �Incorporating Risk Management Strategies

There is a wide range of possibilities to reduce risk. For example, in flood risk prob-
lems, the use of flood defenses is common practice. Nevertheless, it is not the only 
available possibility (see, e.g., Yousefi et al. 2015). The best combination of risk 
reduction alternatives is, in general, quite difficult to obtain without arbitrariness.

The LEC, among many interesting properties, can be stratified to define a set of 
interventions to reduce risk (Fig. 14.24). Each intervention affects the curve in a 
different way, building up a risk management strategy. The risk landscape is modi-
fied when a mitigation strategy is applied. The best way to define if a strategy is 
good enough to reduce risk is to perform the risk assessment including its effect. 
The objective is to identify a set of risk management alternatives that are highly 
efficient in reducing risk. This is achieved by applying risk control engineer-
ing (RCE).

RCE is a methodological framework specifically designed to help governments, 
institutions, and private sector stakeholders meet resilience targets by identifying 
the set of risk management alternatives that are more efficient in reducing risk up to 
a predefined expected level. The RCE process is summarized in Fig. 14.25. Note 
that RCE can be applied indistinctively on LECs, LESs, or imprecise LECs, even 

Fig. 14.23  Examples of transformation functions
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incorporating second other effects. The RCE process is illustrated with a single LEC 
for easiness. In addition, it is worth mentioning that RCE matches the purpose of 
steps 3, 4, and 5 of DMDU.

The resilience target is defined as the expected reduction of risk after the applica-
tion of several risk management alternatives. This means that a resilience target is a 
new LEC, reduced from the real risk result to an acceptable risk level (see Fig. 14.26).

A resilience target may be achieved by a combination of many risk management 
alternatives. The available alternatives include, among others, definition of con-
struction standards for new buildings and infrastructure, implementation of hazard-
control or vulnerability-reduction mitigation works, risk-based land-use planning, 
financial protection, emergency response plans, and early warning systems. The 
implementation of any of these alternatives will modify the risk, in a way that can 
only be known by incorporating it into the hazard and risk models and obtaining the 
results again. For example, Fig. 14.27 shows risk maps (in terms of building-by-
building AAL) for Santa Fe, Argentina, with and without any retrofitting of the city 
perimeter flood defenses. The black lines in the figure show the location of the 
defense dikes.

A combination of alternatives is defined in terms of (i) the alternatives consid-
ered, (ii) the risk reduction capabilities of each alternative, (iii) the cost of imple-
mentation of the combination, and (iv) the impact it has on reducing risk. 
Figure 14.28 exemplifies a combination of alternatives over a LEC.

Many combinations are created to identify possible strategies that meet the same 
target at different costs. The best alternatives are selected from an optimization pro-
cess in which the combinations that best meet the resilience target, at the lowest cost 
(i.e., best cost/benefit ratios), are selected as champions. The optimization process 
implemented within the RCE framework, which is based on evolutionary program-
ming (genetic algorithms), is summarized next.

	1.	 Combinations of alternatives are randomly created to populate the first genera-
tion. Each combination is considered an individual. The genotype of an individ-
ual is the set of alternatives (see Fig.  14.29). Note that each individual has a 
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Fig. 14.27  Illustration of the effect of retrofitted flood dikes in central Santa Fe, Argentina. Left: 
AAL map with current-state dikes. Right: AAL map with retrofitted dikes
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different capacity to meet the resilience target. The one that best meets the target 
is considered the champion.

	2.	 The evolutionary process starts so that new combinations of alternatives are cre-
ated randomly as a result of crossing and mutating the individuals of the previous 
generation (Fig. 14.30).

The champion of the last generation holds the combination of risk reduction 
alternatives that best fit the resilience target. This combination is a strong candidate 
to become the risk reduction strategy to be undertaken.

8  �Summary and Conclusions

A first step toward building a solid political and economic imperative to manage and 
reduce disaster risk is to estimate probable future disaster losses. Unless govern-
ments can measure their levels of risk, they are unlikely to find incentives to manage 
disaster risk. Risk estimations can provide those incentives and, in addition, allow 
governments to identify what are the most effective strategies to manage and reduce 
risks. Effective public policies in disaster risk reduction and sustainable develop-
ment, ranging from financial protection, risk-informed public investment, resilient 
infrastructure, territorial planning, and impact-based early warning, all can benefit 
from appropriate estimations and layering of risk.

Probabilistic risk assessment provides a robust mathematical framework for esti-
mating the consequences of future disasters considering the random nature of both 
hazard and vulnerability and rationally incorporating that uncertainty into the result. 
It provides a set of metrics that fully represent the loss occurrence process and 
allows the incorporation of risk management strategies, second-order effects, back-
ground trends, and modeling under deep uncertainty into a sound mathematical 
framework, making it a versatile tool for decision-making.

G. A. Bernal et al.
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