
Utilizing Python for Agent-Based Modeling: The
Mesa Framework

Jackie Kazil1,2(B) , David Masad1, and Andrew Crooks1

1 George Mason University, Fairfax, VA 22020, USA
{jkazil,dmasad,acrooks2}@gmu.edu

2 Rebellion Defense, Washington DC 20001, USA

Abstract. Mesa is an agent-based modeling framework written in Python. Origi-
nally started in 2013, it was created to be the go-to tool in for researcherswishing to
build agent-basedmodelswith Python.Within this paperwe presentMesa’s design
goals, along with its underlying architecture. This includes its core components:
1) the model (Model, Agent, Schedule, and Space), 2) analysis (Data Collector
and Batch Runner) and the visualization (Visualization Server and Visualization
Browser Page). We then discuss how agent-based models can be created in Mesa.
This is followedby a discussion of applications and extensions by other researchers
to demonstrate how Mesa design is decoupled and extensible and thus creating
the opportunity for a larger decentralized ecosystem of packages that people can
share and reuse for their own needs. Finally, the paper concludes with a summary
and discussion of future development areas for Mesa.

Keywords: Agent-based modeling · Python · Framework · Complex systems

1 Introduction

Agent-based modeling (ABM) is a way to simulate the behaviors and interactions of
many autonomous entities, or agents, over time. Such a methodology has many advan-
tages over other mathematical approaches to studying complex systems including the
ability to capture the temporal paths, the spatial paths, and their end states as well as
the ability to study the dynamics of a system and the impact of individual actions and
reactions (Crooks et al. 2019). One of the most novel aspects of ABM is its ability
to explore “transient, non-equilibrium, non-stationary behavior” of a system and along
with that ability, to computationally trace it (Epstein and Axtell 1996). ABMs have seen
tremendous growth over the last 20 years (Crooks et al. 2019), leading a growth of
ABM frameworks (which we further discuss below). However, there also was a void.
There was no framework for easily building a model in Python, as well as no ability to
serve a model over Hypertext Transfer Protocol (HTTP) which takes advantage of mod-
ern browser-based technologies. In response to this, we created Mesa1, an open source

1 We chose the name Mesa for three weak reasons: (1) It sounded like Mason, (2) It evoked the
mesas around Santa Fe, the location of the Santa Fe Institute and home to much complexity
research, and (3) It was a short and memorable name that was available on the Python Package
Index (PyPI).

© Springer Nature Switzerland AG 2020
R. Thomson et al. (Eds.): SBP-BRiMS 2020, LNCS 12268, pp. 308–317, 2020.
https://doi.org/10.1007/978-3-030-61255-9_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61255-9_30&domain=pdf
http://orcid.org/0000-0002-8300-7384
http://orcid.org/0000-0002-5034-6654
https://doi.org/10.1007/978-3-030-61255-9_30


Utilizing Python for Agent-Based Modeling: The Mesa Framework 309

framework for creating agent-based models in Python. Mesa was released under Apache
2 (“Apache License, Version 2.0” 2004) in order to be flexible both for academia and
private sector use.Mesa can be installed directly by “pip install mesa” or by downloading
it from Github: https://github.com/projectmesa/mesa.

To create and study complex systems from the bottom up, a number of open source
frameworks have been developed (see Crooks et al. 2019 for a review). The most widely
used one being NetLogo (Wilensky 1999) which made agent-based models accessi-
ble for non-professional programmers. In an analysis of comses.net (formally known
as openabm.org) which allows researchers to share their agent-based models McCabe
(2016) found that approximately 60% of the models created were NetLogo. However,
NetLogo does not scale (i.e., in terms of numbers of agents) (North et al. 2013), nor does
it have the same execution speed of Mason (Luke et al. 2005) as noted by Railsback
et al. (2006). Despite the plethora of frameworks to build agent-based models until the
creation of Mesa there was not one utilizing Python. In the remainder of this paper we
discuss Mesa’s design goals (Sect. 1.1) before introducing its architecture and usage in
Sect. 2. In, Sect. 3 we provide insight into applications and extensions to Mesa from
its user community, while Sect. 4 provides a summary of the paper and outlines future
development directions.

1.1 Mesa’s Design Goals

Mesa’s design goals go beyond building agent-based models rapidly in Python, headless
or displaying them in the browser. Mesa has a permissive license (i.e., Apache 2) and
was built to be accessible to a wide range of users, similar to NetLogo, but extensible,
like Mason. Similar to other frameworks, Mesa is focused on the core functionality
that is needed when building agent-based models (e.g., reusable objects, scheduling,
and graphical user interfaces), thus allowing modelers to focus on the development of
models rather than parts of the simulation that are not content specific (e.g., the display
of the model). Mesa is intended to be extensible, which allows users to easily develop
and share their own components through open source ecosystems such as Gitlab and
Github. However, it should be noted that Mesa is not intended to be an all-encompassing
toolbox; we believe specialized components should be offered as separate packages,
similar to how GeoMason (Sullivan et al. 2010) is an extension of Mason. Lastly, Mesa
was built to take advantage of the Python and JavaScript ecosystems. Our rationale for
using Python was that it is a rapidly growing programing language used throughout
academia and industry (Robinson 2017). Furthermore, it seamlessly integrates with
popular data science tools such as Jupyter notebooks and Pandas for ease of analysis of
data. For example, the continuous space module in Mesa uses the NumPy arrays in the
background to speed up neighborhood lookups.

Generally, the approach for Mesa has followed the well-known programming phi-
losophy: “Make it work. Make it right. Make it fast.” Mesa was not intended to be a
high-performance tool when it was first designed, although over time, some contribu-
tions have beenmade to improve performance, such as the addition of amulti-processing
batch runner, which allows formultiple cores to be used to runmultiple simulations at the
same time. Moreover, we have prioritized accessibility over performance in the building
of Mesa. This decision was a part of exercising core Python principles such as simplicity

https://github.com/projectmesa/mesa


310 J. Kazil et al.

and reliability. In addition to this, Mesa was written to run on a single core. Multicore
processing is was not an initial priority, because of its complexity, but we haven’t ruled
this out as possible future development. In comparison to other well adopted ABM tools,
Mesa has two major advantages. The first is that it is written in Python, which is acces-
sible and integrates well with a many of open data science tools (e.g., Jupyter notebooks
and Pandas). The second is the architecture ofMesa, which allows users to easily replace
components, which is what we turn to next.

2 Architecture and Usage

Mesa is written in Python and has a front end that takes advantage of front-end browser-
based technologies. The underlying structure for howMesa is laid and designed is influ-
enced byDjango (2013), a web framework written in Python. Django’s design decouples
the models, views, and controller architecture. In a similar fashion, we decoupled the
components of Mesa to be easily replaceable and in the case of the model, could be used
independent of the other components. There are three major components which make
up Mesa from a user perspective. These are the model (Model, Agent, Schedule, and
Space), analysis (Data Collector and Batch Runner) and the visualization (Visualization
Server and Visualization Browser Page) and the relationship of these components can
be seen in Fig. 1.

Fig. 1. Mesa model components: model, analysis and visualization.

2.1 The Model

The model is the core of Mesa and the other two components, analysis and visualization
would not exist without it. However, the model can stand alone without the other two
components. The model as it is referred to here contains the major components of what
it means to be an ABM: agents, the space they exist within, and the time and activation



Utilizing Python for Agent-Based Modeling: The Mesa Framework 311

controllers. Separately from what is called “the model”, there is a Model class, which is
the core class for creating a model. In this class, the user defines the initial state of the
model, what happens when the model runs, what occurs each step for the environment,
and also the space the agents inhabit. In addition to the model class, there is also the
Agent class, which is the object that is subclassed when defining the agents. The default
Mesa package comeswith predefined spaces (whichwe discuss further below),which are
located in the spacemodule. Thismodule provides the following space types: continuous,
single grid, multiple grids, hexagonal grid, or a network grid. The default Mesa package
also comeswith a timemodulewhich contains schedules,which handles agent activation.
Due to the complexity and nuances of the space and schedule (i.e., time) modules, we
will go into depth into those next.

The Scheduler. Special attention was placed into the functionality ofMesa’s scheduler.
Generally, speaking, most agent-based models are discrete-event simulations and rarely
are they continuous (Masad and Kazil 2015). As a result, the activation order of agents
can significantly impact the behavior and results of a simulation (Comer 2014). Mesa
takes this into account and offers a variety of methods to implement the activation of
agents. In comparison to other ABM frameworks, this is a unique feature to Mesa. Each
model step, or “a tick”, results in the activation of one ormore agents. There aremany dif-
ferent approaches to scheduling agent activation including synchronous or simultaneous
activation, uniform activation, random activation, random interval activation, and more
complex activation regimes (Masad and Kazil 2015). It was Comer’s (2014) research
and impact of different approaches to scheduling that led to the design of the scheduler
in Mesa. The simplest scheduler is in BaseScheduler class which is a uniform activation
and was created with the intent to replicate the scheduler in Mason. In addition to the
BaseScheduler, there is also the RandomActivation class, which behaviors similar to
the scheduler in NetLogo, the SimultaneousActivation class, and the StagedActivation
class. More details on these activation schedulers are found in Table 1. To understand
the impact of various scheduling routines, see Fig. 2, where we show three different
activation schemes (i.e., sequential, random, and simultaneous) for the same step even
when the initial model configuration was the same.

Table 1. Activation schedules within Mesa

Activation Agent activation details

BaseScheduler Agents are activated one at a time, in the order they were added to
the scheduler (i.e., sequential activation)

RandomActivation Agents are activated one at time, once per step, in random order.
Reshuffled every time tick

SimultaneousActivation Each agent’s actions are queued based on the state of the model at the
end of the previous step. Then all agents advance at the same time

StagedActivation Allows agent activation to be divided into several stages instead of a
single step. All agents execute one stage before moving on to the
next. This scheduler tracks steps and time separately



312 J. Kazil et al.

Fig. 2. An illustration of how different activation schemes impact a model, in this case the Pris-
oner’s Dilemma. Defecting agents are in red and cooperating agents are in blue. Each image is
from the same step, but different activation schemes are used. (Color figure online)

Space. While the concept of space is not required for all agent-based models (e.g., the
Zero Intelligence Traders model (Gode and Sunder 1993)), an ABM framework would
be incomplete without a spatial component. Mesa has three general space definitions:
continuous, grid, and networks (which are also common in MASON and Repast). Both
the continuous and grid spaces have a method, which allows users to designate whether
the space is toroidal or not. All the classes have a similar set of methods which allow
the user to get information on the agent’s position and location, move the agent, and get
information on the agent’s neighbors.

Neighborhood identification is handled slightly differently in the general space cat-
egories. In the continuous space, neighbors are determined by a defined radius. In the
grid space, neighborhoods can be defined as Moore neighborhoods (includes diagonal
neighbors) or von Neumann neighborhoods (excludes diagonals), except in the case of
a hexagonal grid, which provides access to neighbors on each of the six sides of the
hexagon. Lastly, neighbors in networks are provided by adjacent nodes.

Each class of spaces works slightly differently. The ContinuousSpace class, agents
have an (x, y) position, while all of the grid classes are discrete spaces. The most basic
grid class, which all other grid classes are based off of, represents cells as rectangular
spaces. The SingleGrid class limits cells to only have one object per cell, while the
MultiGrid class allows for a set of objects per cell. The last extension of the Grid class is
the HexGrid class. At the time of this paper, agents placed on the HexGrid grid have an
(x, y) position, but it is possible for this class to be extended to offer a (x, y, z) position
and offer a 3D-like modeling grid (Patel 2019). Finally, the NetworkGrid has nodes that
hold zero or more agents. The NetworkGrid requires a graph object as an argument that
is created with the Python library NetworkX (Hagberg et al. 2008). By using NetworkX,
Mesa is able to take advantage of all the graph metrics and operations that the NetworkX
library provides. It is also possible to createmultilayer networks by instantiatingmultiple
graphs. Space would be incomplete without mentioning geospatial models. Similar to
the early development of other frameworks (e.g., NetLogo and MASON), the current
version of Mesa does not have specific support for geospatial data. However, it allows
for importation of text files to create artificial landscapes so in a way it does allow for
raster data to be added to models like in Sugarscape. Our rationale for not including GIS
support into core Mesa is its dependencies on many third-party packages for importing
and exporting data etc. However, this is one area we plan on exploring in the future. If



Utilizing Python for Agent-Based Modeling: The Mesa Framework 313

readers of this paper want to use geospatial data with Mesa, a core contributor known
as Corvince, has created a package which offers this functionality entitled Mesa-Geo
(https://github.com/Corvince/mesa-geo).

2.2 Model Analysis

Data Collection. While agent-based models can be interesting to run, it is difficult
to gain insights into the model without gathering data and conducting an analysis. To
address this issue, Mesa provides the DataCollector class which records, stores, and
exports data from the model and agents as well as data that isn’t covered in model or
agent data abstractions. The DataCollector is initiated with model and agent variables
and their respective collection functions. The collector will return the computed value
of the model and agent collector at their current state. Data not covered by model or
agents can be stored by passing a dictionary object for a table row. One use case might
be to log model events or state as the model progresses. These types of data points do not
occur at regular intervals. The DataCollector makes data exports easy as well, by using
dictionaries and lists to store the data, it makes it easy to export to common data formats
such as Pandas DataFrames, JSON, or CSV. By doing this we can take the data out of
Mesa and into a popular browser-based workbook-like tool called Jupyter Notebooks,
which is used by data scientists for analysis and storytelling with data.

Batch Runner. While it is possible to collect data for individual model runs, this is
not the most efficient use of time. Researchers carry out parameter sweeps in order
to get a more representative picture of the potential outcomes of a model. To do this,
Mesa provides the BatchRunner class. The BatchRunner is instantiated with model and
agent-level reporters which are dictionaries with a variable name and function mapping.
This class works by generating runs for all possible combinations of values that the user
passed to the runner. The iterations argument in the BatchRunner allows user to define
howmany times they want to run a particular combination of settings in order to account
for the stochasticity of their model. Each run terminates after a set number of steps or
until the model terminates. At that time, the Batchrunner will collect the reporters. By
default, the BatchRunner only collects at the end of a run, but it can be set to collect the
whole run by storing the whole DataCollector object.

2.3 Model Visualization

While models can be run headless in Mesa (i.e., no visualization), Mesa also provides a
front-end browser-based visualization. We choose a browser-based visualization system
over a desktop-based graphical user interface (GUI) for two reasons. First, desktop GUIs
lack flexibility in sharing models. By making a model browser based, users can run a
model locally on their personal computer or make it accessible to the others to run via
the Internet and web browser. Secondly, browser-based front-end technologies develop
more rapidly with the changing nature of web application design. Since the creation
of Mesa, the front end has been rewritten completely once and changes more rapidly
with improvements than the more stable back end. At the time of this publication, the

https://github.com/Corvince/mesa-geo


314 J. Kazil et al.

front-end technologies used are HTML5, Bootstrap, D3, JQuery, Sigma.js for displaying
networks, and various charting libraries. A screenshot of the front end of two models
created with Mesa can be found in Fig. 3.

BA

Fig. 3. Model visualization of two Mesa applications within a web browser: (A) Wolf-sheep
predation Model. (B) Virus on a network (Source: https://github.com/projectmesa).

Models built in Mesa are served to the browser using Tornado, a Python based web
server. Mesa uses Tornado’s coroutines to ensure that the model does not block the front
end from being served. In the browser, the user can control the model run with the
expected tooling such “start,” “stop,” and “step” as well as any controls that they have
defined. The commands in the browser trigger the back end. The ModularServer class
is what handles the passing of the model and visualizations to the front end. At the end
of each step, data in JSON form is sent to front end via a WebSocket connection. This
data is then displayed to show the current form of the model and to update any charts or
counts that the user also defined to be displayed. When launched locally, the front end
can be accessed in any browser window at http://127.0.0.1:8521/.

The user defines which data from the DataCollector is passed to the browser and
in what form. Mesa will then render the page for them, so the user does not have to
think about styling of the page. To do this, Mesa offers a few preset visualization models
and controls. Each visualization module in Mesa has a component on the client-side,
in JavaScript, and server-side, in Python. The two of these are developed in tandem,
because one does not work with other. When a model is being written, the user passes
the visualization objects and the model to the ModularServer to pass them to the front
end.

Visualizations provided correlate with the offerings in the space module on the back
end, which include a CanvasGridVisualization, used to visual the grid objects from the
back end, a HexGridVisualization for hexagonal grids, and a NetworkVisualization to
display networks. There are also charting modules to render line charts, bar charts, and
pie charts. Lastly, there is a TextVisualization, which renders text, such as count values
on the front end. All of these modules update when the model is running. By providing
these modules, users only have to consider what values they want displayed.

https://github.com/projectmesa
http://127.0.0.1:8521/


Utilizing Python for Agent-Based Modeling: The Mesa Framework 315

2.4 Creating a Model

While the act of writing code brings a lot of freedom, it can create inconsistencies from
one model to another. One example is file organization and layouts. In a framework like
NetLogo, there is only one place to write code (i.e., the code tab), but in Mesa, without
guidance you can place your code in one file or in twenty files. As a result, we and
members of the community converged on standards. To explain the standards, we will
use the Wolf-Sheep Predation Model found in the examples folder (http://bit.ly/projec
tmesa-examples) in Mesa code repository (see http://bit.ly/WolfSheepMesa). At the top
level, a model should be laid out with a Readme.md, a requirements.txt, a run.py, and
a folder named after the model using Python naming conventions PEP 8. For the Wolf-
Sheep model, the folder is called ‘wolf_sheep’. The Readme.md describes the model
and is similar to the “Info” tab in NetLogo. The requirements.txt is a Python standard
that holds information on the dependencies for a project. Every model will have ‘mesa’
as one of its dependencies. When building models, it is important to be explicit about
which version of Mesa, i.e., ‘mesa == 0.8.6’, so when core Mesa updates, the model
that depends on a certain version of Mesa still continues to function properly. Lastly, the
run.py is what launches the server if you are using the front end.

Inside a model folder there should be at least three files: agents.py, model.py, and
server.py. In some cases, there may be a schedule.py or other files that are used in the
model (e.g., the Wolf-Sheep example). Agents.py house agents, model.py houses the
model, and the visualization server details such as charts and grids are in the server.py.
When a user launches a model, it looks for the details that define how the server should
behave. We tried to make adhering to the standards as easy as possible, so we built a
command line tool into Mesa. To start a new project, which lays out all the base files,
objects, and text, a user only has to type ‘mesa startproject’ on the command line in
an environment where Mesa is installed. This will prompt a few questions, which after
answering will generates the files. In addition to ‘mesa startproject’ the command line
tool will also run the server from inside a model by running ‘mesa runserver’.

In addition to the tools and prescriptions we provide, we also encourage users of
Mesa to share their models openly so others can learn from them, as well as to isolate
development environments by using Virtualenv or something similar in order to make
sure dependencies don’t come into conflict when building a lot of models, and finally
use tools like Flake8 and Black to keep the model code well formatted and clean of
extra variables. The purpose of the standards in this section is to make models easy to
understand.

3 Applications and Extensions of Mesa

While above, we have introduced Mesa, since its initial release numerous social scien-
tists and researchers have utilized it in a wide range of applications. Over 50 published
papers have cited Mesa (Google Scholar 2020) and more than 250 code repositories on
GitHub haveMesa as a requirement, which crossmany domains such as economics, biol-
ogy, infrastructure, workplace dynamics etc. (e.g., Pires et al. 2017; Neves et al. 2019).
For further applications areas where Mesa has been used see: bit.ly/mesa-publications.

http://bit.ly/projectmesa-examples
http://bit.ly/WolfSheepMesa


316 J. Kazil et al.

Turning to extensions, as discussed in Sect. 1.1, one of the goals of Mesa is to be exten-
sible and to have interchangeable parts, which allows people to easily integrate specific
functionality that might not be a part of the coreMesa package (such asMesa-Geo). That
is not the only geo-spatial modification we found. For example, Heinz (2017) created
a modified version which took a simulation server and embedded it into a Django-
Channels application and to create a front end with leaflet maps. Another is an open
source package called Simulation Occupancy based Agents (SOBA, https://github.com/
gsi-upm/soba) which simulates the occupancy of agents in buildings (Delgado 2017).
The SOBA project has led to the creation of the simulation tool of building evacuations
(Escobar 2017). Lastly, Pike (2018), has created two extensions, Bilateral Shapley and
Multi-level Mesa (https://github.com/tpike3/).

4 Conclusion

Motivated by the lack of a Python framework for agent-based modeling, this paper has
introduced Mesa. Specially its design goals, the model architecture (along with its key
components), how to use it, and some examples of usage and extensions. The success
of this framework was highlighted in Sect. 3 with respect to how the Python and agent-
based modeling community are utilizing and extending it to meet their modeling needs.
However, Mesa is a community effort, and we belief Mesa will continue to evolve to
meet the needs of the researchers with the help of the community. For example, as noted
in Sect. 1, Mesa only allows for single core processing, however, as multiple cores in
machines are becoming the norm, efforts need to be made to explore multithreading and
distributed processing. Additional areas of opportunity in core Mesa include the scaling
of the data collector by using check pointing, increasing the front-end modules and
controls, along with exploring the addition of 3D grids. Beyond Mesa, we look forward
to a community of Mesa packages, which extend functionality not offered in core like
Mesa-Geo and domain specific extensions that extend the model and agent objects like
SOBA.

Acknowledgements. While originally developed by Jackie Kazil and David Masad, Mesa has
had over 70 contributors. A special thank you to Corvince, rht, Taylor Mulch, and Tom Pike for
their contributions or continuing support to Mesa.

References

Apache License, Version 2.0 (2004). https://www.apache.org/licenses/LICENSE-2.0. Accessed
28 Feb 2020

Comer, K.W.: Who goes first? An examination of the impact of activation on outcome behavior
in agent-based models. Ph.D. dissertation, George Mason University, Fairfax, VA (2014)

Crooks, A.T.,Malleson, N.,Manley, E., Heppenstall, A.J.: Agent-BasedModelling andGeograph-
ical Information Systems: A Practical Primer. Sage, London, UK (2019)

Delgado, P.A.: design and development of an agent-based social simulation visualization tool for
indoor crowdanalytics based on the libraryThree.Js. Ph.D. dissertation,UniversidadPolitecnica
De Madrid, Madrid, Spain (2017)

https://github.com/gsi-upm/soba
https://github.com/tpike3/
https://www.apache.org/licenses/LICENSE-2.0


Utilizing Python for Agent-Based Modeling: The Mesa Framework 317

Django: Django (version 1.5) (2013). https://www.djangoproject.com/. Accessed 28 Feb 2020
Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the Bottom Up. MIT

Press, Cambridge (1996)
Escobar, G.F.: Design and implementation of an agent-based crowd simulation model for evac-

uation of university buildings using Python. Ph.D. dissertation, Universidad Politecnica De
Madrid, Madrid, Spain (2017)

Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders: market as
a partial substitute for individual rationality. J. Polit. Econ. 101, 119–137 (1993)

Google Scholar. Papers Citing Mesa (2020). bit.ly/GScholarMesa. Accessed 28 Feb 2020
Hagberg, A., Swart, P., Chult, D.S.: Exploring Network Structure, Dynamics, and Function using

NetworkX, Los Alamos National Lab (No. LA-UR-08-05495; LA-UR-08-5495), Los Alamos,
NM (2008)

Heinz, T.: Location-based game design pattern exploration through agent-based simulation. In:
AGILE 2017 Workshop on Geogames and Geoplay, Wageningen, Netherlands (2017)

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-agent simulation
environment. Simulation 81(7), 517–527 (2005)

Masad, D., Kazil, J.: Mesa: an agent-based modeling framework. In: Huff, K., Bergstra, J. (eds.)
Proceedings of the 14th Python in Science Conference, Austin, TX, pp. 53–60 (2015)

McCabe, S.: Communicating sequential agents: an analysis of concurrent agent scheduling. MA
thesis, George Mason University, Fairfax, VA (2016)

Neves, F., Campos, P., Silva, S.: Innovation and employment: an agent-based approach. J. Artif.
Soc. Soc. Simul. 22(1), 8 (2019)

North, M.J., et al.: Complex adaptive systems modeling with repast simphony. Complex Adapt.
Syst. Model. 1(1) (2013). https://doi.org/10.1186/2194-3206-1-3

Patel, A.: Red Blob Games: Hexagonal Grids (2019). https://www.redblobgames.com/grids/hex
agons/. Accessed 28 Feb 2020

Pike, T.: Integrating computational tools into foreign policy: introducing mesa packages with a
coalition algorithm. J. Policy Complex Syst. 4(2) (2018). https://doi.org/10.18278/jpcs.4.2.5

Pires, B., Goldstein, J., Molfino, E., Ziemer, K.S.: Knowledge sharing in a dynamic, multi-level
organization: exploring cascade and threshold models of diffusion. In: Proceedings of the 2017
International Conference of the Computational Social Science Society of the Americas Santa
Fe, NM (2017)

Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based simulation platforms: review and
development recommendations. Simulation 82(9), 609–623 (2006)

Robinson, D.: Why Is Python Growing So Quickly? (2017). https://stackoverflow.blog/2017/09/
14/python-growing-quickly/. Accessed 28 Feb 2020

Sullivan, K., Coletti, M., Luke, S.: GeoMason: GeoSpatial Support for MASON, Department of
Computer Science, George Mason University, Technical Report Series, Fairfax, VA (2010)

Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, North-
western University, Evanston, IL (1999). http://ccl.northwestern.edu/netlogo

https://www.djangoproject.com/
https://doi.org/10.1186/2194-3206-1-3
https://www.redblobgames.com/grids/hexagons/
https://doi.org/10.18278/jpcs.4.2.5
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
http://ccl.northwestern.edu/netlogo

	Utilizing Python for Agent-Based Modeling: The Mesa Framework
	1 Introduction
	1.1 Mesa’s Design Goals

	2 Architecture and Usage
	2.1 The Model
	2.2 Model Analysis
	2.3 Model Visualization
	2.4 Creating a Model

	3 Applications and Extensions of Mesa
	4 Conclusion
	References




