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Abstract. Understanding, monitoring, and predicting the flow of knowledge
between academia and industry is of critical importance for a variety of stakehold-
ers, including governments, funding bodies, researchers, investors, and companies.
To this purpose, we introduce ResearchFlow, an approach that integrates seman-
tic technologies and machine learning to quantifying the diachronic behaviour of
research topics across academia and industry. ResearchFlow exploits the novel
Academia/Industry DynAmics (AIDA) Knowledge Graph in order to character-
ize each topic according to the frequency in time of the related i) publications
from academia, ii) publications from industry, iii) patents from academia, and iv)
patents from industry. This representation is then used to produce several analyt-
ics regarding the academia/industry knowledge flow and to forecast the impact
of research topics on industry. We applied ResearchFlow to a dataset of 3.5M
papers and 2M patents in Computer Science and highlighted several interesting
patterns. We found that 89.8% of the topics first emerge in academic publications,
which typically precede industrial publications by about 5.6 years and industrial
patents by about 6.6 years. However this does not mean that academia always
dictates the research agenda. In fact, our analysis also shows that industrial trends
tend to influence academia more than academic trends affect industry. We evalu-
ated ResearchFlow on the task of forecasting the impact of research topics on the
industrial sector and found that its granular characterization of topics improves
significantly the performance with respect to alternative solutions.

Keywords: Scholarly data · Digital libraries · Knowledge graph · Topic
ontology · Bibliographic data · Topic detection · Science of science

1 Introduction

Understanding,monitoring, and predicting the flowof knowledge between academia and
industry is of primary importance for a variety of stakeholders, such as governments,
funding bodies, researchers, investors, and companies. In particular, government and
funding bodies need accurate tools to measure research impact, while companies may
wish to monitor the flow of knowledge from academia to industry to ensure they stay on
top of the latest scientific and innovation trends.

The complex relationship between academia and industry has been analysed from
several perspectives in the literature, e.g., focusing on the characteristics of direct col-
laborations [1], on the influence of industrial trends on curricula [2], and the quality of
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the knowledge transfer [3]. However, approaches to monitoring and/or predicting the
evolution of research topics typically focus either on academia [4–7] or industry [8, 9].
The few solutions that have tried to take advantage of features from both contexts have
been limited to small-scale datasets, or they have focused on very specific research ques-
tions [10, 11]. Therefore, we still lack large-scale quantitative approaches to monitoring
and predicting the evolution of research topics, which can integrate information from
papers and patents, while also considering their provenance: academia or industry.

In this paper, we introduce ResearchFlow, a new approach for quantifying the
diachronic behaviour of research topics in academia and industry. ResearchFlow builds
on the Academia/Industry DynAmics (AIDA) Knowledge Graph1 [12], a resource that
we recently developed for supporting large scale analyses of academia and industry.
The current version of AIDA describes 14M publications and 8M patents according
to the research topics drawn from the Computer Science Ontology (CSO) [13]. More-
over, 4M publications and 5M patents are characterized according to the type of the
author’s affiliations (e.g., academia, industry, collaborative) and the industrial sectors
(e.g., automotive, financial, energy, electronics).

ResearchFlow represents the evolution of each topic in terms of the relevant i) papers
from academia, ii) papers from industry, iii) patents from academia, and iv) patents
from industry. This semantic characterization takes in account the structure of the topic
taxonomy described inCSO and it is used for a) producing several analytics regarding the
topic evolution and the research flowbetween academy and industry and b) predicting the
impact of research topics on the industrial sector. The resulting knowledge base, which
is available at http://doi.org/10.21954/ou.rd.12805307, describes the trends of 5K topics
in Computer Science over 2.9M papers from academia, 676K papers from industry, 2M
patents from industry, and 46K patents from academia in the period 1990–2018.

The data shows that about 89.8% of the topics first appear in academic publications,
3.0% in industrial publications, and only 7.2% in patents, confirming the leading position
of universities in investigating new research areas.On the average, academic publications
precede industrial publications by about 5.6 years and industrial patents by about 6.6
years. However, this does not mean that academia always dictates the research agenda.
In fact, if we consider only the topics for which the publication trends by academia
and industry sync, after compensating for a delay, the trends from industry appear to
influence academia more than academic trends influence industry. This may be due to
the fact that academia tends to be quite reactive to the rise of a topic in industry (e.g.,
social media), which typically causes a surge of relevant academic publications in the
following years. Conversely, industry appears less receptive to the emergence of topics
in academia, which can be neglected for a variety of reasons – e.g., because the relevant
technologies are not mature enough to support commercial products.

We evaluated ResearchFlow on the task of forecasting the impact of research topics
in the industrial sector by applying several machine learning classifiers on different
combinations of features. We found that the characterization of the topics produced by
ResearchFlow outperforms significantly alternative solutions.

In summary, themain contributions of this paper are: i) a new approach to quantifying
and forecasting the evolution of topics in academia and industry; ii) a new dataset derived

1 Academia/Industry DynAmics Knowledge Graph - http://w3id.org/aida.
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from AIDA which describes the diachronic behaviour of 5K topics across 29 years
(1990–2018); iii) an analysis of the patterns of knowledge flow in the field of Computer
Science; and iv) a gold standard of about 39 K time series that can be used for training
and evaluating approaches to predicting the impact of emerging research topics on the
industrial sector.

The rest of the paper is organised as follows. In Sect. 2, we review the literature on
current approaches to studying the relationship between academia and industry, pointing
out the existing gaps. In Sect. 3, we describe ResearchFlow and in Sect. 4 we provide a
brief overview of the evolution of research topics in Computer Science. Section 5 reports
the evaluation. Finally, in Sect. 6 we summarise the main conclusions and outline future
directions of research.

2 Literature Review

Analysing the relationship between academia and industry allows us to understand
their role within the whole knowledge economy [14]: from production, towards adop-
tion, enrichment, and ultimately deployment as a new commercial product or service.
Academia and industry typically influence each other by exchanging ideas, resources,
and researchers [11]. In some cases, academia and industry engage in collaborations as
an opportunity for a more productive division of tasks: academia focusing on scientific
insights, and industry on commercialisation [10]. A recent book by Stilgoe [15] discusses
the main drivers of scientific innovation and focuses on the central role of the industry
sector in pushing innovation by constantly deploying new technologies. However, it can
be argued that innovation is not simply the result of the development of new technolo-
gies, but it also emerges through a more complex journey, which involves the birth of
a new scientific area, the development of its theoretical framework, and the creation of
innovative products that capitalise on the new knowledge [16].

So far, there has been limited investigation of this relationship. Typically, the two
sectors are either analysed separately [15, 17–20] or together on a small scale [10, 11],
using a limited sample of papers and patents. Most of these analyses rely on knowl-
edge graphs describing research publications, such as Microsoft Academic Graph [21],
Scopus2, Semantic Scholar3, Aminer [22], Core [23], OpenCitations [24], and others.
Other resources, such as Dimensions4, the United States Patent and Trademark Office
corpus5, the PatentScope corpus6 and the European Patent Office dataset7, offer a similar
description of patents. The Semantic Web community has produces several ontologies
for representing these data and the relevant research entities such as SWRC8, BIBO9,

2 Scopus - https://www.scopus.com/.
3 Semantic Scholar - https://www.semanticscholar.org/.
4 Dimensions.ai - https://www.dimensions.ai/.
5 United States Patent and Trademark Office (USPTO) - https://www.uspto.gov/.
6 PatentScope corpus - https://patentscope.wipo.int/.
7 European Patent Office - https://data.epo.org/linked-data/.
8 SWRC - http://ontoware.org/swrc.
9 BIBO - http://bibliontology.com.

https://www.scopus.com/
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SPAR10 [25], ModSci [26], and AI-KG11 [27]. However, current knowledge graphs can-
not be directly used to analyse the research dynamics of academia and industry since
they lack a high quality characterization of research topics and industrial sectors. For
this reason, we recently introduced the AIDA knowledge graph, which characterizes
publications fromMAG and patents from Dimensions according to the topics of CSO12,
the affiliation types of Global Research Identifier Database (GRID)13, and the industrial
sectors of the Industrial Sector Ontology (INDUSO)14.

The relationship between academia and industry has been studied according to both
qualitative and quantitative methods. A good example of the former is the work by
Michaudel et al. [28] in which the authors share their personal experience on how the
collaboration between industry and academia impacted their research program. Simi-
larly, Grimpe et al. [29] performed a survey-based analysis to understand the innovation
performance associated with collaborations between German manufacturers and univer-
sities. We can also find more quantitative approaches, such as Larivière et al. [30], who
employed both research papers and patents to understand the primary interests of both
sides in this symbiosis. Huang et al. [31] analysed 20K research papers and 8K patents in
the area of fuel cells, in order to gain an understanding of the benefits for the two parties,
which derive from industry-academic collaborations. However, all of these approaches
either focus on relatively narrow areas of science or are restricted to a limited number of
research questions. Other approaches focus instead on trend detection [4–6]. Typically,
these methods use statistical techniques to identify, and possibly predict, the evolution
of new significant areas of research. A common limitation of these techniques is that
they do not take into account the types of the publications as we do. In this paper, we
aim to widen the scope of this line of enquiry by developing a novel and comprehensive
approach for monitoring and predicting the diffusion of research topics across academia
and industry.

3 The ResearchFlow Approach

The ResearchFlow approach consists of three main steps: i) generation of AIDA
knowledge graph, ii) data analysis, iii) impact forecasting.

In the first phase, we generate Academia/Industry DynAmics (AIDA) Knowledge
Graph, by integrating the data sources containing information about scientific articles
and patents and then we enrich them by classifying documents according to i) their
research topics and ii) the type of author’s affiliation (academia or industry). This allows
us to represent each topic according to four time series reporting the time frequency of
i) papers from academia, ii) papers from industry, iii) patents from academia, and iv)
patents from industry. In the second phase, we analyse the resulting time series to assess
the topic trends and to identify patterns of knowledge flow. In the third phase, we use a
deep learning forecaster to predict the impact of research topics.

10 SPAR - http://www.sparontologies.net/.
11 AI-KG - http://w3id.org/aikg/.
12 CSO - https://cso.kmi.open.ac.uk/.
13 Global Research Identifier Database - https://www.grid.ac/.
14 INDUSO - http://aida.kmi.open.ac.uk/downloads/induso.ttl.

http://www.sparontologies.net/
http://w3id.org/aikg/
https://cso.kmi.open.ac.uk/
https://www.grid.ac/
http://aida.kmi.open.ac.uk/downloads/induso.ttl
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3.1 Generation of AIDA Knowledge Graph

In order to perform a large-scale analysis of academia and industry, we need four key
elements: papers, patents, research topics, and information about organizations. For this
reason, we developed the AIDA knowledge graph that currently integrates 14M pub-
lications from MAG and 8M patents from Dimensions. These are described according
to the topics drawn from the Computer Science Ontology (CSO) [13] and information
from Global Research Identifier Database (GRID), DBpedia, and INDUSO. AIDA is
generated automatically by a pipeline that is run periodically on new corpora of publi-
cations and patents. This process consists of four main steps: i) selection and integration
of the relevant documents, ii) topic detection, iii) extraction of affiliation types, and iv)
classification of industrial sectors.

First, we download all publications from MAG and all patents from Dimensions.
MAG is a scientific knowledge base containing publication records, citations, authors,
institutions, journals, conferences, and fields of study. It is one of the largest datasets
of scholarly data publicly available, and, as of May 2020, it contains more than 233
million publications. Dimensions is a heterogeneous dataset containing grants, research
publications, citations, clinical trials and patents. The current version includes more
than 39 million patents. We then filter the resulting documents to retain only those in
the field of Computer Science. To achieve this, we select all papers in MAG classified
under “Computer Science” according to their field of science (FoS) [32], which is an in-
house taxonomy of research areas developed by Microsoft. The patents in Dimensions
are instead classified both according to the International Patent Classification (IPC)
and the fields of research (FoR) taxonomy, which is part of the Australian and New
Zealand Standard Research Classification (ANZSRC). To filter the patents in the field
of Computer Science, we retain only the relevant IPC identifiers.

Since both fields of study in MAG and fields of research in Dimensions are too
high level to allow a granular analysis of the knowledge flow, as a second step we
annotate each paper and patent with the research topics from the Computer Science
Ontology (CSO).CSO[13] is a large-scale automatically generated taxonomyof research
topics in Computer Science. The current version (3.2) includes 14K research topics and
159K semantic relationships. The CSO data model is an extension of SKOS15 and the
main semantic relationships are superTopicOf , which is used to define the hierarchical
structure of the Computer Science domain (e.g., <artificial intelligence, superTopicOf,
machine learning>) and relatedEquivalent,which is used to define alternative labels for
the same topic (e.g., <ontology matching, relatedEquivalent, ontology alignment>).
We annotated publications and patents using the CSO Classifier16 [33], an open-source
Python tool for annotating documents with research topics from CSO. This is the same
classifier that powers the Smart Topic Miner [34], which is the application used by
Springer Nature for annotating Proceedings Book in Computer Science. The resulting
set of topics was enriched by including all their super-topics in CSO. For instance, a
paper tagged as neural network was also tagged with machine learning and artificial
intelligence. This solution aims to obtain a better characterization of high-level topics
that are not often directly referred in the documents.

15 SKOS Simple Knowledge Organization System - http://www.w3.org/2004/02/skos.
16 CSO Classifier - https://pypi.org/project/cso-classifier/.

http://www.w3.org/2004/02/skos
https://pypi.org/project/cso-classifier/
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As a third step, we classify papers and patents according to the nature of their
authors’ affiliations in theGRID database. GRID is a publicly available knowledge graph
describing 97K organizations involved in the research. MAG and Dimensions associate
the affiliations of the authors to their ID on GRID and in turn GRID associates each
ID with information such as geographical location, date of establishment, alternative
labels, external links, and type of institution, which consists of values such as Education,
Healthcare, Company, Archive, Nonprofit, Government, Facility, Other. We classify a
document as academia, if all the authors have an affiliation of kind ‘education’ onGRID;
and industry, if all the authors have an affiliation of kind ‘company’. For the purpose
of this work, we focus on these two types and ignore the collaborative efforts which
constitute about 1.4% of the documents. We also do not consider the other types, which
are associated with an even smaller number of documents. We plan to address both in
future work.

Finally, we characterise the industrial papers and patents according to their indus-
trial sectors. Specifically, for each industrial affiliation, we use their Wikipedia URL
in GRID to query DBpedia, which is a project aiming at extracting information from
Wikipedia and publish them as linked data. We exploit the predicates “About:Purpose”
and “About:Industry” to retrieve the industrial sectors of each affiliation. These are then
mapped to 66 main sectors described in INDUSO. Industrial sectors are not used in the
current version of ResearchFlow, but they will be incorporated in the future.

AIDA is available at http://w3id.ord/aida and can be downloaded as a dump or
queried via SPARQL. More details on AIDA are available in Angioni et al. [12].

3.2 Analysis

In order to focus on the main research topics, we select from AIDA only the documents
associated with the most frequent n topics. In this paper we used n = 5,000, resulting
in 3.5M papers and 2M patents. We then associate each topic K with four time series,
or signals: i) research publications from academia (RAK = {

RAK
t ; t ∈ T

}
), ii) research

publications from industry (RIK = {
RIKt ; t ∈ T

}
), iii) patents from academia (PAK ={

PAK
t ; t ∈ T

}
) and iv) patents from industry (PIK = {

PIKt ; t ∈ T
}
), where T is the set

of years considered {1990 . . . 2018}.
We perform three analyses on the resulting signals. First, we study the diachronic

behaviour of topics in order to characterize their trajectory across academia and industry
(Sect. 3.2.1). Second, we compare each pair of signals to understand which one typically
precedes the other and in which order they usually tackle a research topic (Sect. 3.2.2).
Finally, we assess how signals influence each other by identifying pairs of signals that
are highly correlated, after compensating for a time delay (Sect. 3.2.3).

3.2.1 Diachronic Analysis of Topics

This phase aims to quantify the evolution of a topic in previous years according to the
type of documents associated with it (publications or patents) and the authors of these
documents (academia or industry). For instance, we may want to detect which topics are
shifting from a more academic fingerprint to a more industrial one.

http://w3id.ord/aida
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As a first step we need to combine the different time series of a given topic to obtain
the number of research publications (R), patents (P), documents from academia (A) and
documents from industry (I) using the following formula:

RK
t = RAK

t + RIKt ; PK
t = PAK

t + PIKt ;
AK
t = RAK

t + PAK
t ; IKt = RIKt + PIKt ; t ∈ T

For example, given a topic K, its research papers time series (RK = {
RK
t ; t ∈ T

}
) is

obtained by summing the number of papers from academia (RA) and industry (RI).
As second step, each point in time of each time series of each topic is normalised

according to its global value for the whole Computer Science.
Therefore, givenRCS = {

RCS
t ; t ∈ T

}
the time series of research papers in Computer

Science, the normalised time series of research papers R of topic K becomes:

RK
norm =

{
RK
t

RCS
t

; t ∈ T

}

The other time series, i.e. patents (P), documents from academia (A) and documents
from industry (I), are similarly obtained by combining the appropriate signals.

As a third step, we chunk our time-range in a number of time windows. For instance,
if we want to observe how a particular topic changed over a period of 12 years, we may
want to split it in 4 windows of 3 years. Then, for each time windoww and for each topic
K, we sum the contributions of each time series within that time window. For instance,
the contribution of research papers (RK

w ) is given by:

RK
w =

wend∑

t=winit

RK
t

where winit and wend are the years in which the time windows respectively start and end.
Similarly, we can compute the contributions of patents (P), academia (A), and industry
(I).

At this stage, for a given time window, each research topic is represented by four
points: total number of research publications (RK

w ), total number of patents (PK
w ), and

total number of documents from academia (AK
w ) and industry (I

K
w ). Then, for each topic

K and for each window w, we define two indexes:

RPK
w = RK

w − PK
w

RK
w + PK

w
; AIKw = AK

w − IKw
AK
w + IKw

The index RP allows us to observe whether in a particular time window, w, in pro-
portion, a topic tends to be associated with a higher number of publications, if RPK

w > 0,
or patents, if RPK

w < 0. The index AI instead indicates whether, in the same time win-
dow, w, in proportion, the topic is mostly populated by academia (AIKw > 0) or industry
(AIKw < 0). In brief, for a given topic K, we now have a reduced set of time series
RPK = {

RPK
w ;w ∈ W

}
and AIK = {

AIKw ;w ∈ W
}
, where W is the set of windows in

which our initial time-frame has been divided.
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In order to monitor the evolution of a topic, we can now analyse the trends of RP
and AI over time. In particular, we use the least-squares approximation to determine the
linear regression of both time series f (x) = α · x + β. Then, as trends of time series
we take the slopes αRP and αAI of their approximated lines. If αRP is positive, it means
that the values in RP are growing positively over time and thus there are more papers
published. On the other hand, if αRP is negative it means that the number of patents is
increasing in proportion. If αAI is positive, it means that the topic is becoming more
academic over time, whereas, if it is negative, it is becoming more industrial.

3.2.2 Analysis of Topic Emergence

In this phase, we want to asses which signal precedes another in addressing a certain
topic. For instance, the topic gamification emerged in RA in 2008 and only five years
later in RI. In the context of this analysis, we consider a topic as emergent for a certain
signal when it becomes associated with at least n documents (n = 10 in the current
implementation). Therefore, we iterate over the topics and calculate the time elapsed
between the emergence of a topic for each pair of signals. Section 4.2 reports the results
of this analysis on the field of Computer Science.

3.2.3 Trend Analysis

In this phase, we detect the signals that seem to influence each other by checking if they
synchronize after making allowance for their mutual delay. For instance, if we consider
the topic bluetooth, the trends of RI regularly anticipate RA, suggesting that industry is
leading the research efforts for this topic. Indeed, if we align the two signals by shifting
ahead RI by one year, the two signals yield a correlation coefficient ρ = 0.975.

In order to detect this phenomenon,we performpairwise sliding of the time series and
determine when two signals have the maximum correlation. We first normalise the time
series RAK ,RIK ,PIK and PAK using the time series associated to the topic Computer
Science, RACS ,RICS ,PICS and PACS . As a second step, for each pair of time series, we
compute the sliding Pearson’s correlation coefficient on the overlapping part between
the time series. For each couple of signals, such as RA-RI where RA is the first signal
(S1) and RI the second (S2), we can define the sliding Pearson’s correlation coefficient
as:

ρS1−S2
τ = cov(S1, S2(−τ))

σ S1 · σ S2
; −len(S2) + 1 ≤ τ ≤ len(S1) − 1

where S2(−τ) is the time series of the second signal that has been shifted of−τ positions.
Since len(S2) = len(S1), this process produces a list of 2 · len(S1) − 1 Pearson’s
correlation coefficients. Having done this, we can then determine for which τ we have
the highest correlation. If the maximum correlation appears for a negative value of τ ,
e.g. τ = −5, it means that the second signal (S2:RI in the example) anticipates the
first signal (S1:RA). Conversely, if τ is positive, S1 anticipates S2. However, we have
observed that, within the array of correlation coefficients, there can be a number of local
maxima with similar magnitude and selecting the absolute maximum may not be the
appropriate solution. Therefore, to identify the value of τ that synchronises the signals
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we observe for which local maxima of the Pearson’s correlation coefficients the two
signals have also the lowest Euclidean distance.

3.3 Impact Forecasting

In this section, given the limited amount of space in this paper, we will focus specifically
on predicting the impact of a research topic on the industrial landscape. Having said so,
it should be emphasised that the forecaster that we have developed could indeed be used
for predicting the behaviour of any of the four time series.

A good measure of the impact of a topic on industry is the number of relevant
patents granted to companies. For instance, according to our data, the topic wearable
sensors was granted only 2 patents during 2009, after which it experienced a strong
acceleration, ultimately producing 135 patents in 2018. The literature proposes a wide
range of approaches to patent and technology prediction through patents data, using for
instance weighted association rules [9], Bayesian clustering [35], and various statistical
models [36] (e.g., Bass, Gompertz, Logistic, Richards). In the last few years, we saw
also the emergence of several approaches based on Neural Networks [8, 37], which
often yield the most competitive results. However, most of these tools focus only on
patents, and do not integrate research publication data, nor can they distinguish patents
and publications produced by academia or industry.

The ResearchFlow approach can naturally support all these solutions since it pro-
duces a large quantity of granular data that can be used to train and test machine learning
classifiers. Furthermore, we hypothesize that an input which integrates all the informa-
tion about publications and patents should offer a richer set of features and would be
more robust in situations in which patents data are scarce, ultimately yielding a better
performance in comparison to approaches which rely solely on patent data.

In order to train a forecaster, we created a gold standard, in which for each topic
in CSO, we selected all the time-frames of five years in which the topic had not yet
emerged (less than 10 patents). We then labelled each of these samples as True if the
topic produced more than 50 industrial patents (PI) in the following 10 years and False
otherwise. The resulting dataset includes 9,776 labelled samples, each composed of four
time series (RA, RI, PA, PI). We then implemented a neural network forecaster which
uses one Long short-term memory (LSTM) hidden layer of 128 units and one output
layer computing the softmax function. We use binary cross-entropy as loss function and
train the model over 50 epochs. Section 5 reports the evaluation of this architecture
versus alternative approaches.

4 Results from the Analysis of Computer Science

We used ResearchFlow to quantify the trends of 5K topics in Computer Science over
2.9M research papers from academia (RA), 676K research papers from industry (RI),
2M patents from industry (PI), and 46K patents from academia (PA) in the period 1990–
2018. Because of space restrictions, we will focus the discussion only on the main
insights that emerged from our experiments.
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4.1 Diachronic Analysis

Figure 1 shows the distribution of all topics in a 2-dimensional diagram with AI on
the horizontal axis and RP on the vertical axis (computed as described in Sect. 3.2.1).
Interestingly, most topics are tightly distributed around the bisector.

Fig. 1. Top 5,000 topics in computer science according to their RP and AI indexes.

The topicswhich attractmost interest from academiamainly produce research papers
(top-right quadrant). Conversely, the topics which are more interesting for industry tend
to generate prevalently patents (bottom left quadrant). This distribution follows a classic
pattern, consistent with the analysis of Larivière et al. [30], which suggest that academia
is mostly interested on the dissemination of knowledge through scientific articles, while
companies focus more on preserving their intellectual property by producing patents.

In the top-right quadrant we find research topics, such as e-learning systems, schol-
arly communication, smart environment, community detection, decision tree algorithms,
which are mostly populated by academics. In the bottom-left quadrant we tend to find
more applied areas, such as optoelectronic devices, high power lasers, network interface,
flip-flop, optical signals, magnetic disk storage.

We applied the diachronic topic analysis described in Sect. 3.2.1 to highlight the
topics that experienced the most dramatic shift in this space. We focused on the last 12
years (2007–18), using 4 windows of 3 years each. Table 1, Table 2, Table 3, and Table 4
report the top 5 topics that have respectively the strongest trends towards publications
(αRP > 0), patents (αRP < 0), academia (αAI > 0), and industry (αAI < 0). We also
report the values of the two indexes (RP and AI) in the first (2007–2009, RP1 and AI1)
and the last (2016–2018, RP4 and AI4) time windows. Although it is not possible with-
out additional analysis to come to definitive conclusions, these tables provide valuable
information by highlighting areas of relative high/low activity.
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Table 1. Topics with strongest trends towards
publications.

Topic αRP RP1 RP4

Smart grid 27.2 −21.1 65.1

Internet of things 26.6 −8.5 76.8

Energy harvesting 23.3 −58.1 13.8

Matrix factorization 22.2 6.8 72.1

Slot antennas 22.1 −52.5 18.7

Table 2. Topics with strongest trends
towards patents.

Topic αRP RP1 RP4

Long term
evolution (lte)

−31.0 89.0 −0.9

Mode decision
(coding)

−27.7 46 −36.2

3d video −26.9 72.5 −4.1

Overlay
networks

−25.2 81.5 6.8

Hand gesture −23.1 59.1 −6.5

Table 3. Topics with strongest trends towards
academia.

Topic αAI AI1 AI4

Smart grid 26.9 −14.2 68.5

Internet of things 25.2 −6.0 68.9

Encrypted data 24.9 −62.4 9.88

Distribution systems 23.4 −17.9 52.9

Energy harvesting 22.1 −44.9 22.7

Table 4. Topics with strongest trends
towards industry.

Topic αAI AI1 AI4

overlay
networks

−21.8 72.8 7.5

mode
decision
(coding)

−21.5 30.4 −34.5

long term
evolution (lte)

−19.2 52.4 −3.2

wearable
computing

−18.6 72.8 16.08

video encoder −17.1 −14.1 −66.2

Overall, the top five entries which had a strong increment in the direction of academia
and publications (Table 1 and 3) can be categorized in three macro areas: energy pro-
duction (e.g., smart grid, energy harvesting), technologies for telecommunication (e.g.,
internet of things, slot antennas), and data security (e.g., encrypted data). Conversely,
the main entries for industry and patents (Table 2 and 4) focus prevalently on technolo-
gies for telecommunication (e.g., overlay networks, long term evolution, coding mode),
user interfaces (e.g., hand gesture, wearable computing), and image processing (e.g.,
video encoder, 3d video).
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Fig. 2. Trajectories of encrypted data, long term evolution, smart grid and hand gesture. (Color
figure online)

Figure 2 shows as example the trajectories of four topics that exhibited a dramatic
shift in the period 2007–2018: encrypted data, long term evolution (a standard for broad-
band wireless technology), smart grid, and hand gesture. Encrypted data (red line) was
in the left-bottom area, which characterizes prominently industrial topics, counting 178
documents from academia (A) and 560 from industry (I) in the first windows (2007–09),
before being increasingly adopted by academia and moving up to the top-right area,
counting A = 894 and I = 453 in the last window (2016–18). Smart grid (light blue
line) followed a similar trajectory. On the other hand, long term evolution (orange line)
and hand gesture (dark blue line) followed the opposite trajectory. Specifically, in the
first window hand gesture was primarily an academic topic, counting A = 1,107 and I
= 348; it then became more and more industrial over the years, increasing the number
of documents from academia to 2,218, and from industry to 2,133. Similarly, long term
evolution was initially in the top-right quadrant finding more industrial application over
time as it became a well adopted standard.

4.2 Analysis of Topic Emergence

In this section we report the results of the analysis described in Sect. 3.2.2 on the 3,484
topics that according to their four associated signals emerged after 1990, which is the
first year of our dataset.

We found that 89.8% of the topics first emerge in academic publications, 3.0% in
industrial publications, 7.2% in industrial patents, and none in academic patents. On
average, publications from academia (RA) precede publications from industry (RI, see
Fig. 3) by 5.6 ± 5.6 years, and in turn RI precedes patents from industry (PI, see Fig. 4)
by 1.0 ± 5.8 years. RA also precedes by 6.7 ± 7.4 years patents from industry (PI, see
Fig. 5). However, just considering the average would be misleading in this case. Indeed,
as depicted by Fig. 3, in 15.7% of cases the topics emerged in RI only one year later
than RA, and in the 11.7% two years later.
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For the sake of space we do not show the distributions involving PA, that counts
only 1,897 emerging topics. An analysis of this set showed that topics in PA appear on
average 20.4 ± 7.0 years after they emerge in RA, 14.8 ± 7.2 after RI, and 13.7 ± 7.3
after PI. In conclusion, these results confirm that the academia is usually the first to
investigate a topic and suggest that industrial publications are conducive to patents.

Fig. 3. S1:RA - S2:RI Fig. 4. S1:RI - S2:PI Fig. 5. S1:RA - S2:PI.

4.3 Trend Analysis

We performed the analysis described in Sect. 3.2.3 on all the topics and determined the
time delay (τ ) between each pair of time series S1 and S2. The following figures show the
distributions of the delay for the six pairwise comparisons between the four time series.
The x-axis represents the time lag τ , while the y-axis represents the number of topics in
which the maximum Pearson’s correlation coefficient was found in τ . We included only
maxima in which ρ ≥ 0.7, which is traditionally considered a strong direct correlation.
We remind the reader that, as per our convention, the signal S2 is sliding over S1, and a
maximum correlation in a negative τ means that S2 anticipates S1. Conversely, a positive
τ means that S1 anticipates S2.

Fig. 6. S1:RA - S2:RI Fig. 7. S1:RI - S2:PI Fig. 8. S1:RA -S2:PI
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Fig. 9. S1:PA - S2:RA Fig. 10. S1:PA - S2:RI Fig. 11. S1:PA - S2:PI

Figure 6 shows that when we consider only the 327 topics for which RA and RI sync
after compensating for a delay, the trends of RI tend to anticipate the ones of RA by
almost 1.8 years on the average. In other words, an increasing interest of the industrial
sector appears to often trigger a reaction in academia, while the opposite case is less
frequent. A more in depth analysis on the involved topics seems to suggest that this is
due to the fact that academia often reacts to the emergence of a topic in industry (e.g.,
social media, mobile devices, internet of things) by further investigating it. Conversely,
industry tends to be less receptive and in some cases to ignore or react slowly to the
emergence of topics in academia. This asymmetry is an intriguing phenomenon that we
intend to further investigate in future works.

Another interesting dynamics is that the trends of industrial patents (PI) are antic-
ipated by the trends of publications from industry (RI) with a delay of about 2.6 years
(Fig. 7) and by academic publications (RA) by 1 year (Fig. 8). This suggests that both
could be good predictors for patents. Finally, on average patents from academia (PA)
tend to sync with publications from academia with a delay of almost 1.7 years (Fig. 9),
industrial publications by 3.0 years (Fig. 10), and industrial patents by 0.4 year (Fig. 11).

5 Evaluation

In order to verify the hypothesis that a forecaster which integrates all the signals pro-
duced by ResearchFlow will yield better performance than the systems [8, 35–37] that
utilize only the number of publications or patents, we evaluated several models on the
task of predicting if an emergent research topic will have a significant impact on the
industrial sector, producing more than 50 patents in the following 10 years. We thus
trained five machine learning classifiers on the gold standard introduced in Sect. 3.3:
Logistic Regression (LR), Random Forest (RF), AdaBoost (AB), Convoluted Neural
Network (CNN), and Long Short-term Memory Neural Network (LSTM). We ran each
of them on research papers (R), patents (P), and the 15 possible combinations of the
four time series in order to assess which set of features would yield the best results. We
performed a 10-fold cross-validation of the data and measured the performance of the
classifiers by computing the average precision (P), recall (R), and F1 (F). The dataset, the
results of experiments, the parameter and implementation details, and the best models
are available at http://doi.org/10.21954/ou.rd.12805307.

http://doi.org/10.21954/ou.rd.12805307
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Table 5 shows the results of the evaluation. We report all combinations in order to
assess the contributions of the different time series. LSTM outperforms all the other
solutions, yielding the highest F1 for 12 of the 17 feature combinations and the highest
average F1 (73.7%). CNN (72.8%) and AB (72.3%) also produce competitive results.
For the sake of space, here we will focus on the performance of the LSTM models.

As hypothesized, using the full set of features produced by ResearchFlow (RA-RI-
PA-PI) significantly (p< 0.0001) outperforms (F1: 84.6%) the solution which uses only
the number of patents by companies (74.8%). Splitting each of the two main time series
(publications and patents) in its components (academia and industry) also increases
performance: RA-RI (80.7%) significantly (p < 0.0001) outperforms R (68.2%) while
PA-PI (75.2%) is marginally better than P (74.8%). This confirms that the more granular
representation of the document origin can increase the forecaster performance.

When considering the models produced with only one of the time series, we find
that the number of publications from industry (RI) is a significant (p = 0.004) better
indicator than PI, yielding a F1 of 76.9%, followed by RA, and PA. If we zoom on the
models trained on two time series, the best results are obtained by the combinations
RI-PI (81.4%), when considering three, RA-RI-PI yields the best performance (84.7%).

In conclusion, this evaluation substantiates the hypothesis that considering the four
time series separately is conducive to higher quality predictions and suggests that RI and
RA are good indicators for PI.

Table 5. Performance of the five classifiers on 17 combinations of time series. In bold the best
F1 (F) for each combination.
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6 Conclusions and Future Work

In this paper, we introduced ResearchFlow, an approach to analysing and forecasting the
knowledge flows between academia and industry.We applied ResearchFlow on a dataset
of publications and patents in Computer Science, and produced a knowledge base that
described the behaviour of topics across academia and industry. Our analysis indicates
that academia is the first to investigate most of these topics; on the average, academic
publications precede industrial publications by about 5.6 years and industrial patents by
about 6.6 years. However, industrial trends actually appears to influence academia more
often than academic trends affect industry, suggesting that in several cases it is industry
that dictates the research direction. Finally, we showed that quantifying research topics
according to the four time series described in this work can significantly increase the
performance of a forecaster.

We are now working on a more comprehensive analysis of Computer Science which
will include the full range of analytics that we can produce with ResearchFlow and
a more detailed discussion. In particular, we intend to investigate further the specific
mechanisms that allow industry to influence academia and the other way round. We also
intend to analyse documents with mixed affiliations and extend this analysis to other
kinds of organisations, such as healthcare, government, and non-profit.
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