
Enzo Rucci
Marcelo Naiouf
Franco Chichizola
Laura De Giusti (Eds.)

8th Conference, JCC-BD&ET 2020
La Plata, Argentina, September 8–10, 2020
Proceedings

Cloud Computing,
Big Data & Emerging
Topics

Communications in Computer and Information Science 1291

Communications
in Computer and Information Science 1291

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Enzo Rucci • Marcelo Naiouf •

Franco Chichizola • Laura De Giusti (Eds.)

Cloud Computing,
Big Data & Emerging
Topics
8th Conference, JCC-BD&ET 2020
La Plata, Argentina, September 8–10, 2020
Proceedings

123

Editors
Enzo Rucci
III-LIDI, Facultad de Informatica
Universidad Nacional de La Plata
La Plata, Argentina

Marcelo Naiouf
III-LIDI, Facultad de Informática
Universidad Nacional de La Plata
La Plata, Argentina

Franco Chichizola
III-LIDI, Facultad de Informática
Universidad Nacional de La Plata
La Plata, Argentina

Laura De Giusti
III-LIDI, Facultad de Informática
Universidad Nacional de La Plata and CIC
La Plata, Argentina

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-61217-7 ISBN 978-3-030-61218-4 (eBook)
https://doi.org/10.1007/978-3-030-61218-4

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6736-7358
https://orcid.org/0000-0001-9127-3212
https://orcid.org/0000-0001-8857-6343
https://orcid.org/0000-0003-2850-801X
https://doi.org/10.1007/978-3-030-61218-4

Preface

Welcome to the proceedings of the 8th Conference on Cloud Computing, Big Data &
Emerging Topics (JCC-BD&ET 2020), held in an interactive, live online setting due to
the COVID-19 situation. JCC-BD&ET 2020 was organized by the III-LIDI and the
Postgraduate Office, both from the School of Computer Science of the National
University of La Plata, Argentina.

Since 2013, this event has been an annual meeting where ideas, projects, scientific
results, and applications in cloud computing, big data, and other related areas are
exchanged and disseminated. The conference focuses on the topics that allow inter-
action between academia, industry, and other interested parties.

JCC-BD&ET 2020 covered the following topics: cloud, edge, fog, accelerator,
green, and mobile computing; cloud infrastructure and virtualization; data analytics,
data intelligence, and data visualization; machine and deep learning; and special topics
related to emerging technologies. In addition, special activities were also carried out,
including one plenary lecture and one discussion panel.

In this edition, the conference received 36 submissions. All the accepted papers
were peer-reviewed by at least three referees (single-blind review) and evaluated on the
basis of technical quality, relevance, significance, and clarity. According to the rec-
ommendations of the reviewers, 11 of them were selected for this book (31% accep-
tance rate). We hope readers will find these contributions useful and inspiring for their
future research.

Special thanks to all the people who contributed to the conference success: Program
and Organizing Committees, reviewers, speakers, authors, and all conference attendees.
Finally, we want to thank Springer for their support in publishing this book.

September 2020 Marcelo Naiouf
Franco Chichizola
Laura De Giusti

Enzo Rucci

The original version of the book was revised: Three modifications in the editors’
affiliations have been made. The correction to the book is available at
https://doi.org/10.1007/978-3-030-61218-4_12

https://doi.org/10.1007/978-3-030-61218-4_12

Organization

General Chair

Armando De Giusti Universidad Nacional de La Plata and CONICET,
Argentina

Program Committee Chairs

Marcelo Naiouf Universidad Nacional de La Plata, Argentina
Franco Chichizola Universidad Nacional de La Plata, Argentina
Laura De Giusti Universidad Nacional de La Plata and CIC, Argentina
Enzo Rucci Universidad Nacional de La Plata, Argentina

Program Committee

María José Abásolo Universidad Nacional de La Plata and CIC, Argentina
José Aguilar Universidad de Los Andes, Venezuela
Jorge Ardenghi Universidad Nacional del Sur, Argentina
Javier Balladini Universidad Nacional del Comahue, Argentina
Oscar Bria Universidad Nacional de La Plata and INVAP,

Argentina
Silvia Castro Universidad Nacional del Sur, Argentina
Laura De Giusti Universidad Nacional de La Plata and CIC, Argentina
Mónica Denham Universidad Nacional de Río Negro and CONICET,

Argentina
Javier Diaz Universidad Nacional de La Plata, Argentina
Ramón Doallo Universidade da Coruña, Spain
Marcelo Errecalde Universidad Nacional de San Luis, Argentina
Elsa Estevez Universidad Nacional del Sur and CONICET,

Argentina
Aurelio Fernandez Bariviera Universitat Rovira i Virgili, Spain
Fernando Emmanuel Frati Universidad Nacional de Chilecito, Argentina
Carlos Garcia Garino Universidad Nacional de Cuyo, Argentina
Adriana Angélica Gaudiani Universidad Nacional de General Sarmiento, Argentina
Graciela Verónica Gil Costa Universidad Nacional de San Luis and CONICET,

Argentina
Roberto Guerrero Universidad Nacional de San Luis, Argentina
Waldo Hasperué Universidad Nacional de La Plata and CIC, Argentina
Francisco Daniel Igual Peña Universidad Complutense de Madrid, Spain
Tomasz Janowski Gdansk University of Technology, Poland
Laura Lanzarini Universidad Nacional de La Plata, Argentina
Guillermo Leguizamón Universidad Nacional de San Luis, Argentina

Edimara Luciano Pontificia Universidade Católica do Rio Grande do Sul,
Brazil

Emilio Luque Fadón Universidad Autónoma de Barcelona, Spain
Mauricio Marín Universidad de Santiago de Chile, Chile
Luis Marrone Universidad Nacional de La Plata, Argentina
Katzalin Olcoz Herrero Universidad Complutense de Madrid, Spain
José Angel Olivas Varela Universidad de Castilla La Mancha, Spain
Xoan Pardo Universidade da Coruña, Spain
María Fabiana Piccoli Universidad Nacional de San Luis, Argentina
Luis Piñuel Universidad Complutense de Madrid, Spain
Adrian Pousa Universidad Nacional de La Plata, Argentina
Marcela Printista Universidad Nacional de San Luis, Argentina
Dolores Isabel Rexachs

del Rosario
Universidad Autónoma de Barcelona, Spain

Nelson Rodríguez Universidad Nacional de San Juan, Argentina
Juan Carlos Saez Alcaide Universidad Complutense de Madrid, Spain
Aurora Sánchez Universidad Católica del Norte, Chile
Victoria Sanz Universidad Nacional de La Plata, Argentina
Remo Suppi Universidad Autónoma de Barcelona, Spain
Francisco Tirado Fernández Universidad Complutense de Madrid, Spain
Juan Touriño Dominguez Universidade da Coruña, Spain
Viale Pereira, Gabriela Danube University Krems, Austria
Gonzalo Zarza Globant, Argentina

Additional Reviewers

Nelson Acosta
Pedro Alvarez
Carlos Alvez
Javier Bazzocco
Cecilia Challiol
Leonardo Corbalán
Marcelo De Vicenzi
Mónica Denham
Saúl Domínguez-Isidro
Marcelo A. Falappa
Alberto Fernández
Alejandro Fernandez
María Luján Ganuza
Jorge Ierache
Martín Larrea
Xaviera Lopez Cortez

Ana Maguitman
Cristina Manresa-Yee
Diego César Martínez
Claudia F. Pons
Facundo Quiroga
Hugo Ramón
Ismael Pablo Rodríguez
Fernando Romero
Franco Ronchetti
Alejandro Rosete-Suárez
Gustavo Rossi
Cecilia Sanz
Pablo J. Thomas
Fernando G. Tinetti
Augusto Villa Monte
Álvaro Wong

viii Organization

Sponsors

Sistema Nacional
de Computación de Alto
Desempeño

Agencia Nacional de Promoción
Científica y Tecnológica

Red de Universidades Nacionales
con Carreras de Informática

Organization ix

Contents

Cloud, Edge and High-Performance Computing

Cloud Robotics for Industry 4.0 - A Literature Review 3
Nancy Velásquez Villagrán, Patricia Pesado, and Elsa Estevez

An Edge Focused Distributed Shared Memory . 16
Matías Teragni, Ricardo Moran, and Gonzalo Zabala

Towards a Malleable Tensorflow Implementation . 30
Leandro Ariel Libutti, Francisco D. Igual, Luis Piñuel, Laura De Giusti,
and Marcelo Naiouf

Viral Diseases Propagation Analysis in Short Time 41
Maximiliano Lucero, Natalia Miranda, and Fabiana Piccoli

Architectural Design Criteria for Evolvable Data-Intensive Machine
Learning Platforms . 58

Gonzalo Zarza and Juan José López Murphy

Big Data

Harmonizing Big Data with a Knowledge Graph: OceanGraph KG
Uses Case . 81

Marcos Zárate, Carlos Buckle, Renato Mazzanti, Mirtha Lewis,
Pablo Fillottrani, and Claudio Delrieux

Data Management Optimization in a Real-Time Big Data Analysis System
for Intensive Care . 93

Rodrigo Cañibano, Claudia Rozas, Cristina Orlandi,
and Javier Balladini

Machine and Deep Learning

Reddening-Free Q Indices to Identify Be Star Candidates. 111
Yael Aidelman, Carlos Escudero, Franco Ronchetti, Facundo Quiroga,
and Laura Lanzarini

A Web System Based on Spotify for the automatic generation
of affective playlists . 124

Pedro Álvarez, Jorge García de Quirós, and Sandra Baldassarri

Classification of Summer Crops Using Active Learning Techniques
on Landsat Images in the Northwest of the Province of Buenos Aires 138

Lucas Benjamin Cicerchia, María José Abasolo,
and Claudia Cecilia Russo

Trainable Windowing Coefficients in DNN for Raw Audio Classification . . . 153
Mario Alejandro García, Eduardo Atilio Destéfanis,
and Ana Lorena Rosset

Correction to: Cloud Computing, Big Data & Emerging Topics C1
Enzo Rucci, Marcelo Naiouf, Franco Chichizola, and Laura De Giusti

Author Index . 167

xii Contents

Cloud, Edge and High-Performance
Computing

Cloud Robotics for Industry 4.0 - A Literature
Review

Nancy Velásquez Villagrán1(B) , Patricia Pesado1, and Elsa Estevez2,3

1 Facultad de Informática, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
ngvelasquezv@gmail.com, ppesado@lidi.info.unlp.edu.ar

2 Departamento de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur
(UNS), Bahía Blanca, Argentina

ece@cs.uns.edu.ar
3 Instituto de Ciencias e Ingeniería de la Computación, UNS-CONICET, Bahía Blanca,

Argentina

Abstract. Robots in the industry have been used for decades, much before the
so-called Fourth Industrial Revolution. They have been incorporated into indus-
trial processes in various ways, for example, with mechanic arms, in assembly
processes, welding, and painting, among others. Industrial robots are located in
restricted access sites and their space is delimited by means of physical barriers
and security measures. In recent years, Industry 4.0 proposes the use robots, able
to collaborate with persons, known as collaborative robots or “cobots”. Cobots are
characterized by cooperating with human work, sharing the same workspace, and
able to respond to simple human-machine interactions. In addition, given the ben-
efits of applying cloud computing in Industry 4.0, research has been conducted in
applying such technologies to robots. The approach is known as “cloud robotics”
and appears as an emerging topic. The objective of this work is to carry out a sys-
tematic literature review of cloud robotics for Industry 4.0, in an attempt to present
the state of the art in this field and identify opportunities for future research. From
the analysis of the results, we observe an emerging interest in this area, and we
identifymain technologies applied, research themes, and application areas, as well
as a special interest on security and safety aspects.

Keywords: Industry 4.0 · Industrial Internet of Things (IIoT) · Internet of
Robotics Things (IoRT) · Cloud robotics · Big data · Machine learning · Mobile
robots←

1 Introduction

Industry 4.0 was announced by the German Government in 2011. It is also called the
Fourth Industrial Revolution and is characterized for promoting the transformation of
the traditional way of producing towards digitization, providing flexibility to produc-
tive value chains [1]. In such context, the concepts of smart factory and smart product
emerge. In a smart factory, people and machines communicate naturally to produce

© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-61218-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_1&domain=pdf
http://orcid.org/0000-0001-7331-368X
https://doi.org/10.1007/978-3-030-61218-4_1

4 N. Velásquez Villagrán et al.

more customized products [2]. Kumar et al. explain that Industry 4.0 integrates vari-
ous technologies, especially Information Technology and robotics, in the automation
and control of manufacturing systems [3]. However, several authors agree that the tech-
nologies associated with Industry 4.0 are Internet of Things (IoT), Cloud Computing,
Big Data Analytics, Blockchain, Cybersecurity, Augmented Reality, Automation and
Industrial Robots, Additive Manufacturing, Simulation and Modeling, Cyber-Physical
Systems, Semantic Technologies [4], real-time communication, advanced computing,
and Information Technology (IT) in manufacturing systems [3].

Together, automation and industrial robotics are growing and multiple benefits are
recognized, such as: lower defect rate, higher quality and reliability, less waste, and
better use of factory space. Robots have been used in industry and their use has increased
annually [5]. Industrial robots are installed in restricted spaces and their tasks are pre-
programmed for specific tasks. For changes, each robot must be reprogrammed and they
are limited to their own computing capacity.

Robots play an important role in Industry 4.0, and robotics will allow manufacturers
to attain customized mass production. In particular, second generation industrial robots
are used in Industry 4.0. They are called “collaborative robots or cobots”, and present
a number of advantages over their predecessors, including being more productive and
flexible [6].Cobots allow tasks betweenworkers andmachines to complement eachother,
they share the same workspace and can be used in different activities, such as: mobile
robots for transport automation in the automotive industry, service robots for logistics in
production processes [7], exoskeletons to replace the physical work of people, handling
heavy loads, and automate repetitive tasks, among others [8].

Currently, the so-called “cloud robotics” enable robots to connect to the cloud to
obtain computing, storage and communication capacity. Robots connected to the cloud
are less expensive andmore versatile than cobots. They can be programmed by accessing
the cloud, communicate with other robots and share knowledge. Additionally, this robots
benefit from the cloud computing infrastructure existing for Industry 4.0.

In recent years, researchers have become increasingly interested in cloud robotics.
This claim is based on the increasing number of scientific publications. However, a
paper on the state of the art of cloud robotics for Industry 4.0 could not be identified.
Only Aissam presents a specific study on “Cloud Robotics and Industry 4.0” [10]. Some
studies argue that a barrier to the implementation of Industry 4.0 is the need of a high
investment [9], and thus, cloud robotics could be an approach to lower the costs. Despite
these initial observations, additional studies are needed to understand the development
and current trends of cloud robotics for Industry 4.0.

The aim of this article is to identify and analyze the state of the art on cloud robotics
for Industry. 4.0. For this, we conducted a systematic literature review (SLR) to identify
opportunities and gaps in the field, as well as to determine areas of interest for future
work. Among the main contributions of this study, the IoT, IoRT, CPS, mobile cloud, as
well as artificial intelligence, machine learning and neural networks were identified as
the technologies applied in this field, and clearly, security aspects came up as a critical
aspect as well as a priority to explore in more depth.

Cloud Robotics for Industry 4.0 - A Literature Review 5

The rest of this paper is structured as follows, Sect. 2 presents the research method-
ology. In Sect. 3, we introduce the literature review; while in Sect. 4, we explain the
results obtained. Finally, in Sect. 5 we discuss conclusions and outline possible research
lines for future work.

2 Research Methodology

Our aim was to conduct an exploratory research to assess the state of the art of cloud
robotics for Industry 4.0. We followed the approach suggested by Kitchenham [9], to
identify, analyze and interpret the relevant studies. Thus, the research methodology
applied comprises three phases, as shown in Fig. 1.

Phase 1
Planning the review

Phase 2
Conducting the review

Phase 3
Reporting the review

Fig. 1. Research Methodology

In phase 1, the goal was to establish a review protocol for searching and selecting
papers. In phase 2, the purposewas to identify and choose the relevant studies, extract and
synthesize the information. In phase 3, the results obtained are presented. To guide the
researchwork,we formulate two research questions: Q1)What are themain technologies
associated with cloud robotics for Industry 4.0 that are being investigated?; and Q2)
Which are the areas of interest for researchers?

According to the research questions, we define the following keywords for conduct-
ing the searches: “cloud robotics” AND “industry 4.0”. Considering that “Industry 4.0”
is a “collective term” [10], we rely on the study conducted by Muhuri et al. in 2019,
publishing an extensive bibliometric study of the state of the art of Industry 4.0 [11]
and identified the most popular keywords for Industry 4.0. These words, enumerated in
Table 1 were taken as alternative search terms. The table also shows the libraries used for
the searches, i.e. Scopus andWeb of Science (WoS). Both libraries were selected because
they contain recognized journal publications and proceedings of academic conferences,
and are well recognized in the fields of Engineering and Computer Science.

Based on the above, we used the keywords previously mentioned combined with all
alternative terms, as follows - “cloud robotics” AND “industry 4.0” OR �alternative
term�. In addition, we define the following criteria for selecting publications.

Inclusion criteria: Articles written in English, full papers, peer reviewed, containing the
keywords in their titles, abstracts or keywords.

Exclusion criteria: Non-academic papers, without references, or just presentations.

The search in Scopus found 44 papers, and the one conducted in WOS, 33. For
selecting relevant and non-duplicate papers, we apply the PRISMA methodology [12]
with its four phases: identification, screening, eligibility and inclusion. In total, 41 papers
were selected.

6 N. Velásquez Villagrán et al.

Table 1. Alternative terms used for the literature review

Main terms Alternative terms in Scopus Alternative terms in WoS

Cloud Robotics cloud robotics cloud robotics

Industry 4.0 industry 4.0 industry 4.0

industrie 4.0 industrie 4.0

smart factory smart factory

smart manufacturing smart manufacturing

industrial internet digital factory

intelligent manufacturing

To have a broader picture of the relevance of cloud robotics in Industry 4.0, we
conducted searches using only the keywords “cloud robotics” in both libraries. We
obtained 364 publications in Scopus, and 89 in WoS. Thus, from 453 publications in
cloud robotics, 41 refer more specifically to Industry 4.0 and are of interest to this study.
The systematic review of the literature was carried out with the first 41 papers.

3 Literature Review

After analyzing the literature, it was possible to find different types of studies about
cloud robotics for Industry 4.0. Some of them claim that cloud robotics is an emerging
and evolving field of robotics. The kind of robots applied in this field appear from the
union of cloud computing and service robotics, they are characterized by obtaining the
computing power, memory and storage space of the cloud, as well as, they connect to
each other through the cloud to exchange information between them [13]. The use of
cloud computing with the robots allows to save energy, physical space and data storage.
It facilitates the utilization of big data and artificial intelligence [14].

Someof the studies describe the open source operating system for robots calledRobot
Operative Systems (ROS) [13], [15], OpenRAVE architecture [16] and the architecture
of the global network for robots RoboEarth [17]. Santhosh et al. present a cloud robot
used in industrial and manufacturing environments, it works on a ROS platform [18].
Chibani et al. present an overview of the cloud robotics concept and projects [19]. Yan
et al. analyze the cloud robotics from different viewpoints, such as cloud computing,
big data, applications, and the current problems and challenges [20]. Chaâri presents the
potential use of cloud computing to promote cyber physical application [21]. Toquica
et al. propose an open source program for the teleoperation of an industrial robot with
the socket communication method [22]. Tang et al. underpin the evolution from robots
to cloud robotics and presents a system architecture of cloud robotics [15]. Kehoe et al.
present a survey of research on the benefits of cloud computing for robots and include
a website with updated information [23]. Ronzhin et al. propose a conceptual model of
a cyber physical environment for relationship among mobile robots, embedded devices,
mobile client devices, stationary service equipment and cloud computing [24]. Shah
proposes an energy efficient resource management system for mobile cyber physical

Cloud Robotics for Industry 4.0 - A Literature Review 7

system applications as a solution to limited battery power, high latency, and dynamic
network environment [25]. Dinh et al. present a survey of Mobile cloud computing,
including the definition and applications [26]. Russo el at are developing a cloud robotics
architecture for deafblind people [27]. Hong et al. analyze the multi-hop cooperative
communicationmodel in robot swarms [28] andLiu, J et al. design a robot cloud platform
called cloud robotics intelligent cloud platform [29].

Other studies describe the potential of the interaction of cloud computing with
robotics for industry applications and explain how the improvement in the performance
of robots facilitates their adoption in Industry 4.0, for example in: SLAM, grasping and
navigation [30]. Hussnain et al. propose the adoption of cloud robotics in factories to
improve the control and supervision of processes, he presents a scale system to carry out
intelligent material handling and to support the process of handling basic products in the
factory [31]. The author also analyzes the use of cloud robotics in the manufacture of
personalized products, by updating the programming of the robots at runtime, without
reprogramming [32]. Rahman et al. propose the optimization of the maintenance appli-
cation in an oil factory. The results indicate superior performance with minimal resource
consumption for industrial applications [33]. Krishna et al. present a project of a robotic
cloud for supervision and security to be used in the industry. For example, it can be used
to detect gas leaks. It works with ROS platform and Raspberry Pi controller, the data
obtained from the robot is stored in the cloud [18].

Wan et al. introduce Context-Aware Cloud Robotics (CACR) for materials handling
using the cloud for decision-making, location andmapping. CACR is alignedwith indus-
trial production requirements in the context of Industry 4.0 [34]. Lihui Wang, presents
a study of a cyber physical system that connects to the cloud for remote monitoring and
control of a physical robot, and for remote assembly. He argues that cloud robotics allow
better energy efficiency [35].

Duran and Pobil, propose a model of a robotic system that correlates the morphology
and the internal parameters of the model, uses neural networks and presents a case study.
The results of this research can be used in self-configuring robots and cloud robotics
for Industry 4.0 [36]. Anton et al. present a solution for accessing and controlling a
manufacturing system for cloud computing research, development and training purposes,
including system architecture, deployment scenarios, limitations and testing of system
performance [37]. Cardarelli et al. present a cloud robotics architecture for groups of
Automated Guided Vehicles (AGVs) that are used in industrial logistics processes [38].

From the point of view of mobility and autonomous vehicles, Mello et al. present
a case study of cloud robotics to implement the autonomous navigation service in real
time, for unmanned autonomous land vehicles. From the cloud he analyzes the download
of the computing tasks on navigation. In addition, it integrates several test benches
through FUTEBOL, which allows the experimentation with Industry 4.0 applications
[39]. De Mello et al. also present a pilot experiment of a cloud-connected mobility
assisted device, which interacts with users. For this author, robotic devices that employ
small degrees of cloud computing are lighter and less expensive [40]. Okumus and
Kocamaz, propose a cloud-based communication and navigation method for multiple
guided autonomous vehicles, using the ROS operating system and presents the results
carried out on flat surfaces obtained in the laboratory [41]. Dharmasena et al. propose

8 N. Velásquez Villagrán et al.

an automated system to control the optimum growth of plants of a greenhouse. A cloud
robotic platform controls lighting and water supply. This platform contains a robotic
agent, multiple sensors, and a cloud platform using MYSQL to store all the climate data
and robotic communication network [42]. Portaluri et al. propose an open testbed for
Cloud robotics (Open Cloro) [43] and Do Nascimento et al. present the evolution of a
software platform for experimentation of mobile robotics [44].

In addition, other studies refer to the Internet of Robotic Things (IoRT) and Indus-
try.4.0. For instance, the research published by Nayyar et al. conduct a survey and
review the IoRT architecture and technologies required for developing IoRT systems
[45], Simoens et al. conduct a survey on the Internet of Robotic Things (IoRT) for the
analysis of new disruptive services and technological challenges created by the fusion
of IoT and robotics [46]. Harman et al. propose a framework, which aims to improve
a robot´s ability to act in dynamic environments with IoT devices [47]. Horton et al.
developed security best practices and a framework with an open source, for use in a
secure cloud robotics infrastructure [48]. Finally, authors such as: Hussnain et al. [32],
Rogue [49], Chen [50], Wang, X et al. [51] present the study of various applications
and Fosch Villaronga and Millard assessed the key legal and regulatory topics about the
cloud robotics [52].

In the set of publications analyzed, there was none presenting a systematic review
of the literature on cloud robotics for Industry 4.0, which is why we claim that this work
offers a vision of the state of the art in this field.

4 Results

The first publication on cloud robotics referring to Industry 4.0 appeared in 2015, while,
2018 and 2019 are the years with the highest number of publications. We exclude papers
published on 2020, since it is ongoing and not all publications are available yet. Figure 2
shows the number of publication through the years. Results confirm the availability
of studies about cloud robotics for Industry 4.0; and although scarce, the number of
publications is increasing in recent years, and proves that it is an emerging topic.

Fig. 2. Number of publications per year

Cloud Robotics for Industry 4.0 - A Literature Review 9

The analysis of the selected publications highlights the technologies applied in the
field, including big data, Internet of Things, Internet of Robotic Things, cyber-physical
systems, mobile cloud, as well as artificial intelligence (AI), machine learning, neural
networks and even open source technologies. The identified technologies are shown in
Table 2.

Table 2. Technologies and studies in cloud robotics for Industry 4.0

Technology References

Big Data Kehoe et al. [23], Nayyar et al. [45], Tang et al. [15], Wan et al.
[34], Duran and Pobil [36], Chaâri et al. [21], Aissam [13]

Internet of Things Nayyar et al. [45], Dharmasena et al. [42], Portaluri et al. [43],
Simoens et al. [46], Tang et al. [15], Wan et al. [34], Chaâri [21],
Harman et al. [47]

Internet of Robotic Things Nayyar et al. [45], Simoens et al. [46], Harman et al. [47]

Cyber Physical Systems Nayyar et al. [45], Simoens et al. [46], Wan et al. [34], De Mello
et al. [40], Hussnain et al. [31], Okumus and Kocamaz [41],
Wang [35], Ronzhin et al. [24], Chaâri et al. [21]

Mobile Cloud Shah [25], Dinh et al. [26]

Artificial Intelligence Nayyar et al. [45], Aissam et al. [13]

Machine Learning Nayyar et al. [45], Dharmasena et al. [42], Wan et al. [34], Duran
and Pobil [36], Aissam et al. [13]

Neural Network Nayyar et al. [45], Duran and Pobil [36]

Open Source Kehoe et al. [23], Portaluri et al. [43], Tang et al. [15], Wan et al.
[30], Okumus [41], Yan et al. [20], Aissam et al. [13], Toquica
et al. [22]

Through our analysis, we identified major research themes of cloud robotics for
Industry 4.0. As summarized in Table 3, they include autonomous robots, ambient intel-
ligence, Automatic Guided Vehicle (AGV), Context Aware Cloud Robotics, mobile
robots, localization and mapping, service robots and robot swarms. In addition, some of
the application areas, e.g. industrial processes, manufacturing systems, agriculture and
oil, gas industries (see Table 4).

Table 3. Research themes of cloud robotics for Industry 4.0

Research themes References

Autonomous robots/systems Dharmasena et al. [42], Nayyar et al. [45], Simoens et al.
[46], Diankov and Kuffner [16], Aissam et al. [13]

Ambient intelligence Chibani et al. [19], Harman et al. [47]

(continued)

10 N. Velásquez Villagrán et al.

Table 3. (continued)

Research themes References

Automatic guided vehicle Okumus and Kocamaz [41], Cardarelli et al. [38]

Context-Aware Cloud Robotics Wan et al. [34]

Mobile robots Nayyar et al. [45], Simoens et al. [46], Ronzhin et al. [24],
Harman et al. [47], Mello et al. [39], Yan et al. [20], Rahman
et al. [33], Aissam et al. [13], Toquica et al. [22], Do
Nascimento et al. [44]

Localization and mapping Yan et al. [20], Wan et al. [34]

Service robots Liu et al. [29], Russo et al. [27], Chaâri et al. [21],
Fosch-Villaronga and Millard [52]

Robot swarms Hong et al. [28]

Table 4. Application areas of cloud robotics for Industry 4.0

Application Areas References

Industrial processes Hussnain et al. [31], Okumus et al. [41], Cardarelli et al.
[38], Yan et al. [20], Chaâri et al. [21], Anton et al. [37],
Rahman et al. [33], Krishna et al. [18], Fosch-Villaronga
and Millard [52], Aissam et al. [13], Toquica et al. [22]

Manufacturing systems/applications Anton et al. [37], Krishna et al. [18], Aissam et al. [13],
Toquica et al. [22]

Oil factories Rahman et al. [33]

Gas industry Krishna et al. [18]

Agriculture Dharmasena et al. [42], Simoens et al. [46]

Finally, we identified that a major aspect investigated in the field refers to safety and
security. Table 5 identifies the papers addressing such topics.

Table 5. Publications analyzing safety and security aspects

Aspect References

Safety Nayyar et al. [45], De Mello et al. [40], Chibani et al. [19], Cardarelli et al. [38],
Mello et al. [39], Chaâri et al. [21], Anton et al. [37], Fosch Villaronga and Millard
[52], Wang et al. [51]

Security Nayyar et al. [45], Kehoe et al. [23], Wan et al. [34], Tang et al. [15], Wan et al. [34],
Wang et al. [51], Chibani et al. [19], Do Nascimento et al. [44], Yan et al. [20],
Chaâri et al. [21], Dinh et al. [26], Toquica et al. [22], Anton et al. [37], Krishna et al.
[18], Fosch Villaronga and Millard [52], Aissam et al. [13], Horton et al. [48],
Liu et al. [29], Mello et al. [39]

Cloud Robotics for Industry 4.0 - A Literature Review 11

5 Discussion, Conclusions and Future Work

In this paper, we presented a systematic literature review aiming at analyzing the state
of the art of cloud robotics for Industry 4.0. Cloud computing and robots are enabling
technologies for Industry 4.0 [53], and their combination, cloud robotics, leverages their
potential by taking computing, storage and communication resources from the cloud.
Such feature avoids the obsolescence of robots.

Results show that the first publication appeared in 2015 and since then, the num-
ber of publications is slowly increasing, hinting that is an emerging field. Through the
assessment of the state of the art, we were able to identify major technologies applied in
the field, including Internet of Things, Big Data, Cyber Physical Systems [21], Internet
of Robotics Things, mobile cloud, as well as artificial intelligence, machine learning
and neural networks [45]. There are even authors who are working with open source
technologies. We also classified main themes being investigated in relation to cloud
robotics for Industry 4.0 including: autonomous robots/systems, ambient intelligence,
automatic guided vehicles, mobile robots, localization and mapping, service robots and
robot swarms. Similarly,we identified some application areas of cloud robotics for Indus-
try 4.0, including industrial processes, manufacturing systems, agriculture, oil factories
and gas industry.

As shown by the work of many authors, two areas of interest refer to security and
safety. Even more, considering that connecting to a cyberspace requires greater protec-
tion [54], cloud robotics, for its nature based in the cloud, is vulnerable to threats of
cloud computing, e.g. a hacker attacks could interrupt the provided services and damage
to customers or industrial information stored in the cloud and more risky, the attacks
could change the orders that the robots execute

In general, the available publications show that there is interest of the scientific
community in broadening the application of cloud robotics for Industry 4.0. In this line,
future work can be considered in the Internet of Robotic Things and security aspects.
Another important research line to explore is the use of cloud robotics for Industry 4.0
to support production processes in the digital factory.

Finally, a line yet not fully explored is the use of cloud robotics in SMEs [55]
and security [20]. Cloud robotics could help more industries to implement Industry
4.0 at lower costs compared to currently existing robots. SMEs are characterized by
contributing to the local economy and being job generators. They generally react more
quickly to changes in market demand, have a greater diversity of products and are closer
to customers. Thus, robots contributing to SMEs should be versatile, inexpensive, learn
from experience, and relate their work to human workers. With this lens and in this line,
we plan to continue our future work.

The limitation of this study is that the literature revised on cloud robotics for Industry
4.0 comprises scientific publications available in Scopus and WoS databases. Thus, we
do not claim that the review was complete.

12 N. Velásquez Villagrán et al.

References

1. Kagermann, H., Anderl, R., Gausemeier, J., Schuh, G., Wahlster, W.: Industry 4.0 in a Global
Context: Strategies for Cooperating with International Partners (Acatech Study), Munich:
Herbert Utz Verlag (2016)

2. Henning, K., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic
initiative INDUSTRIE 4.0. Final Report of the Industrie 4.0WorkingGroup, Frankfurt (2013)

3. Kumar, S., Suhaib, M., Asjad, M.: Industry 4.0: complex, disruptive, but inevitable. Manag.
Prod. Eng. Rev. 11, 43–51 (2020). https://doi.org/10.24425/mper.2020.132942

4. Ghobakhloo, M.: The future of manufacturing industry: a strategic roadmap toward Industry
40. J. Manuf. Technol. Manag. 29, 910–936 (2018). https://doi.org/10.1108/JMTM-02-2018-
0057

5. Karabegović, I., Karabegović, E.,Mahmić,M., Husak, E.: Implementation of industry 4.0 and
industrial robots in the manufacturing processes. In: Karabegović, I. (ed.) NT 2019. LNNS,
vol. 76, pp. 3–14. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18072-0_1

6. Ferraguti, F., Pertosa, A., Secchi, C., Fantuzzi, C., Bonfè, M.: A methodology for compar-
ative analysis of collaborative robots for Industry 4.0. In: Proceedings of the 2019 Design,
Automation and Test in Europe Conference and Exhibition, DATE 2019, pp. 1070–1075
(2019)

7. Poschmann, H., Brüggemann, H., Goldmann, D.: Disassembly 4.0: a review on using robotics
in disassembly tasks as a way of automation. Chem.-Ing.-Tech. 92, 1–20 (2020). https://doi.
org/10.1002/cite.201900107

8. Bragança, S., Costa, E., Castellucci, I., Arezes, P.M.: A brief overview of the use of collabo-
rative robots in industry 4.0: Human role and safety. Stud. Syst. Decis. Control. 202, 641–650
(2019). https://doi.org/10.1007/978-3-030-14730-3_68

9. Tebes, G., Peppino, D., Becker, P., Olsina, L.: Especificación del modelo de proceso para
una revisión sistemática de literatura. In: XXII Ibero-American Conference on Software
Engineering, CIbSE 2019 (2019)

10. Abraham, A., et al.: Industry 4.0: Quo Vadis? Eng. Appl. Artif. Intell. 87 (2020). https://doi.
org/10.1016/j.engappai.2019.103324

11. Muhuri, P.K., Shukla, A.K., Abraham, A.: Industry 4.0: a bibliometric analysis and detailed
overview. Eng. Appl. Artif. Intell. 78, 218–235 (2019). https://doi.org/10.1016/j.engappai.
2018.11.007

12. Moher, D., Liberati, A., Etzlaff, J., Altman, D.: Preferred reporting items for systematic
reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, 1–2 (2009). https://doi.
org/10.1371/journal.pmed1000097

13. Aissam,M., Benbrahim,M., Kabbaj, M.N.: Cloud robotic: opening a new road to the industry
4.0. Stud. Syst. Decis. Control. 175, 1–20 (2019). https://doi.org/10.1007/978-981-13-221
2-9_1

14. Civera, J., Ciocarlie, M., Aydemir, A., Bekris, K., Sarma, S.: Guest editorial special issue on
cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12, 396–397 (2015). https://
doi.org/10.1109/TASE.2015.2409511

15. Tang, S., Wan, J., Cai, H., Chen, F.: Cloud robotics: Insight and outlook. ICST Inst. Comput.
Sci. Soc. Telecommun. Eng. 173, 94–103 (2016). https://doi.org/10.1007/978-3-319-44350-
8_10

16. Diankov, R., Kuffner, J.: OpenRAVE: a planning architecture for autonomous robotics.
Robotics 1–15 (2008). https://doi.org/CMU-RI-TR-08-34

17. Waibel, M., et al.: Robo earth - a word wide web for robots. IEEE Robot. Autom. Mag. 18,
69–82 (2011). https://doi.org/10.1109/MRA.2011.941632

https://doi.org/10.24425/mper.2020.132942
https://doi.org/10.1108/JMTM-02-2018-0057
https://doi.org/10.1007/978-3-030-18072-0_1
https://doi.org/10.1002/cite.201900107
https://doi.org/10.1007/978-3-030-14730-3_68
https://doi.org/10.1016/j.engappai.2019.103324
https://doi.org/10.1016/j.engappai.2018.11.007
https://doi.org/10.1371/journal.pmed1000097
https://doi.org/10.1007/978-981-13-2212-9_1
https://doi.org/10.1109/TASE.2015.2409511
https://doi.org/10.1007/978-3-319-44350-8_10
https://doi.org/CMU-RI-TR-08-34
https://doi.org/10.1109/MRA.2011.941632

Cloud Robotics for Industry 4.0 - A Literature Review 13

18. Santhosh Krishna, B. V., Oviya, J., Gowri, S., Varshini, M.: Cloud robotics in industry using
Raspberry Pi. In: 2016 2nd International Conference on Science Technology Engineering and
Management, ICONSTEM 2016. pp. 543–547 (2016)

19. Chibani, A., Amirat, Y., Mohammed, S., Matson, E., Hagita, N., Barreto, M.: Ubiquitous
robotics: recent challenges and future trends. Rob. Auton. Syst. 61, 1162–1172 (2013). https://
doi.org/10.1016/j.robot.2013.04.003

20. Yan, H., Hua, Q., Wang, Y., Wei, W., Imran, M.: Cloud robotics in smart manufacturing envi-
ronments: challenges and countermeasures. Comput. Electr. Eng. 63, 56–65 (2017). https://
doi.org/10.1016/j.compeleceng.2017.05.024

21. Chaâri, R., et al.: Cyber-physical systems clouds: a survey. Comput. Networks. 108, 1–63
(2016). https://doi.org/10.1016/j.comnet.2016.08.017

22. Toquica, J.S., Benavides, D., Motta, J.M.S.T.: Web compliant open architecture for teleop-
eration of industrial robots. In: IEEE 15th International Conference on Automation Science
and Engineering (CASE), pp. 1408–1414 (2019)

23. Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and
automation. IEEE Trans. Autom. Sci. Eng. 12, 398–409 (2015). https://doi.org/10.1109/
TASE.2014.2376492

24. Ronzhin, A., Saveliev, A., Basov, O., Solyonyj, S.: Conceptual model of cyberphysical envi-
ronment based on collaborative work of distributed means and mobile robots. In: Ronzhin,
A., Rigoll, G., Meshcheryakov, R. (eds.) ICR 2016. LNCS (LNAI), vol. 9812, pp. 32–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43955-6_5

25. Shah, S.C.: An energy-efficient resource management system for a mobile Ad Hoc Cloud.
IEEE Access. 6, 62898–62914 (2018). https://doi.org/10.1109/ACCESS.2018.2876600

26. Dinh, H.T., Lee, C., Niyato, D., Ping, W.: A survey of mobile cloud computing: architecture,
applications, and approaches. Wirel. Commun. Mob. Comput. 13, 1587–1611 (2011)

27. Russo, L.O., Airò Farulla, G., Geraci, C.: A cloud robotics platform to enable remote com-
munication for deafblind people. In: Miesenberger, K., Kouroupetroglou, G. (eds.) ICCHP
2018. LNCS, vol. 10896, pp. 203–206. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-94277-3_33

28. Hong, Z., Huang, H., Guo, S., Chen, W., Zheng, Z.: QoS-aware cooperative computation
offloading for robot swarms in cloud robotics. IEEE Trans. Veh. Technol. 68, 4027–4041
(2019). https://doi.org/10.1109/TVT.2019.2901761

29. Liu, J., Zhou, F., Yin, L., Wang, Y.: A novel cloud platform for service robots. IEEE Access.
7, 182951–182961 (2019). https://doi.org/10.1109/ACCESS.2019.2927743

30. Wan, J., Tang, S., Yan, H., Li, D., Wang, S., Vasilakos, A.V.: Cloud robotics: current status
and open issues. IEEE Access. 4, 2797–2807 (2016). https://doi.org/10.1109/ACCESS.2016.
2574979

31. Hussnain,A., Ferrer, B.R., Lastra, J.L.M.: Towards the deployment of cloud robotics at factory
shop floors: a prototype for smart material handling. In: Proceedings - 2018 IEEE Industrial
Cyber-Physical Systems, ICPS 2018, pp. 44–50 (2018)

32. Hussnain, A., Ferrer, B.R., Martinez Lastra, J.L.: An application of cloud robotics for enhanc-
ing the flexibility of robotic cells at factory shop floors. In: Proceedings: IECON 2018 - 44th
Annual Conference of the IEEE Industrial Electronics Society, pp. 2963–2970. IEEE (2018)

33. Rahman, A., Jin, J., Cricenti, A.L., Rahman, A., Kulkarni, A.: Communication-aware cloud
robotic task offloading with on-demand mobility for smart factory maintenance. IEEE Trans.
Ind. Inform. 1–12 (2018). https://doi.org/10.1109/tii.2018.2874693

34. Wan, J., Tang, S., Hua, Q., Li, D., Liu, C., Lloret, J.: Context-aware cloud robotics for material
handling in cognitive industrial Internet of Things. IEEE Internet Things J. (2017). https://
doi.org/10.1109/JIOT.2017.2728722

35. Wang, L.: An overview of internet-enabled cloud-based cyber manufacturing. Trans. Inst.
Meas. Control. 39, 388–397 (2017). https://doi.org/10.1177/0142331216687817

https://doi.org/10.1016/j.robot.2013.04.003
https://doi.org/10.1016/j.compeleceng.2017.05.024
https://doi.org/10.1016/j.comnet.2016.08.017
https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.1007/978-3-319-43955-6_5
https://doi.org/10.1109/ACCESS.2018.2876600
https://doi.org/10.1007/978-3-319-94277-3_33
https://doi.org/10.1109/TVT.2019.2901761
https://doi.org/10.1109/ACCESS.2019.2927743
https://doi.org/10.1109/ACCESS.2016.2574979
https://doi.org/10.1109/tii.2018.2874693
https://doi.org/10.1109/JIOT.2017.2728722
https://doi.org/10.1177/0142331216687817

14 N. Velásquez Villagrán et al.

36. Duran, A.J., del Pobil, A.P.: Predicting the internal model of a robotic system from its
morphology. Rob. Auton. Syst. (2018). https://doi.org/10.1016/j.robot.2018.08.014

37. Anton, F., Borangiu, T., Răileanu, S., Anton, S., Ivănescu, N., Iacob, I.: Secure sharing of
robot and manufacturing resources in the cloud for research and development. In: Berns, K.,
Görges, D. (eds.) RAAD 2019. AISC, vol. 980, pp. 535–543. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-19648-6_61

38. Cardarelli, E., Digani, V., Sabattini, L., Secchi, C., Fantuzzi, C.: Cooperative cloud
robotics architecture for the coordination of multi-AGV systems in industrial warehouses.
Mechatronics 45, 1–13 (2017). https://doi.org/10.1016/j.mechatronics.2017.04.005

39. Mello, R., Sierra, S.,Múnera,M., Cifuentes, C., Ribeiro,M., Frizera -Neto,A.: Cloud robotics
experimentation tesbeds: a cloud based navigation case study. In: 2019 IEEE 4th Colombian
Conference on Automatic Control (CCAC). IEEE, Medellin (2019)

40. De Mello, R.C., Jimenez, M.F., Ribeiro, M.R.N., Laiola Guimarães, R., Frizera-Neto, A.: On
human-in-the-loop CPS in healthcare: a cloud-enabled mobility assistance service. Robotica
37, 1477–1493 (2019). https://doi.org/10.1017/s0263574719000079

41. Okumus, F., Kocamaz, A.F.: Cloud based indoor navigation for ros-enabled automated guided
vehicles. In: 2019 International Conference on Artificial Intelligence and Data Processing
Symposium, IDAP 2019. IEEE (2019)

42. Dharmasena, T., De Silva, R., Abhayasingha, N., Abeygunawardhana, P.: Autonomous cloud
robotic system for smart agriculture. In: MERCon 2019 - Proceedings, 5th International
Multidisciplinary Moratuwa Engineering Research Conference, pp. 388–393. IEEE (2019)

43. Portaluri, G., Ojo, M., Giordano, S., Tamburello, M., Caruso, G.: Open CLORO: an open
testbed for cloud robotics. In: IEEE International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks, CAMAD. IEEE (2019)

44. do Nascimento Jr, A., Cardozo, E., Souza, R.S., Guimarães, E.G.: A platform for cloud
robotics. In: IFAC-PapersOnLine, pp. 48–53 (2016)

45. Nayyar, A., Batth, R.S., Nagpal, A.: Internet of robotic things: driving intelligent robotics
of future - concept, architecture, applications and technologies. In: Proceedings - 4th
International Conference on Computing Sciences, ICCS 2018, pp. 151–160. IEEE (2018)

46. Simoens, P., Dragone, M., Saffiotti, A.: The Internet of Robotic Things: a review of concept,
added value and applications. Int. J. Adv. Robot. Syst. 15, 1–11 (2018). https://doi.org/10.
1177/1729881418759424

47. Harman, H., Chintamani, K., Simoens, P.: Robot assistance in dynamic smart environments—
a hierarchical continual planning in the now framework. Sensors (Switzerland) 19, 2–33
(2019). https://doi.org/10.3390/s19224856

48. Horton, M., Samanta, B., Reid, C., Chen, L., Kadlec, C.: Development of a secure, hetero-
geneous cloud robotics infrastructure: implementing a mesh VPN and robotic file system
security practices. In: Conference Proceedings - IEEE SOUTHEASTCON. IEEE (2018)

49. Rogue, R.: Cloud robotics: a review of technologies, developments and applications. Ind.
Robot Int. J. 44 (2017). https://doi.org/10.1108/ir-10-2016-0265

50. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of Industry 4.0: key
technologies, application case, and challenges. IEEE Access. 6, 6505–6519 (2018). https://
doi.org/10.1109/ACCESS.2017.2783682

51. Wang, X.V., Wang, L., Mohammed, A., Givehchi, M.: Ubiquitous manufacturing system
based on cloud: a robotics application. Robot. Comput. Integr. Manuf. (2016). https://doi.org/
10.1016/j.rcim.2016.01.007

52. Fosch-Villaronga, E., Millard, C.: Cloud robotics law and regulation: challenges in the gov-
ernance of complex and dynamic cyber–physical ecosystems. Rob. Auton. Syst. 119, 77–91
(2019). https://doi.org/10.1016/j.robot.2019.06.003

53. Bahrin,M.A.K., Othman,M.F., Azli, N.H.N., Talib,M.F.: Industry 4.0: a review on industrial.
Autom. Robotic. 78, 137–143 (2016)

https://doi.org/10.1016/j.robot.2018.08.014
https://doi.org/10.1007/978-3-030-19648-6_61
https://doi.org/10.1016/j.mechatronics.2017.04.005
https://doi.org/10.1017/s0263574719000079
https://doi.org/10.1177/1729881418759424
https://doi.org/10.3390/s19224856
https://doi.org/10.1108/ir-10-2016-0265
https://doi.org/10.1109/ACCESS.2017.2783682
https://doi.org/10.1016/j.rcim.2016.01.007
https://doi.org/10.1016/j.robot.2019.06.003

Cloud Robotics for Industry 4.0 - A Literature Review 15

54. Lezzi, M., Lazoi, M., Corallo, A.: Cybersecurity for Industry 4.0 in the current literature: a
reference framework. Comput. Ind. 103, 97–110 (2018). https://doi.org/10.1016/j.compind.
2018.09.004

55. Perzylo,A., et al.: SMErobotics: smart robots for flexiblemanufacturing. IEEERobot.Autom.
Mag. 26, 78–90 (2019). https://doi.org/10.1109/MRA.2018.2879747

https://doi.org/10.1016/j.compind.2018.09.004
https://doi.org/10.1109/MRA.2018.2879747

An Edge Focused Distributed Shared Memory

Matías Teragni1(B) , Ricardo Moran1,2 , and Gonzalo Zabala1

1 Universidad Abierta Interamericana, San Juan 983, Buenos Aires, Argentina
{matias.teragni,ricardo.moran,gonzalo.zabala}@uai.edu.ar

2 Comisón de Investigaciones Científicas de la Provincia de Buenos Aires, Calle 526 e/10 y 11,
La Plata, Buenos Aires, Argentina

Abstract. Edge computing proposes access to largely unused computational
resources without the added cost of the latency between the user and the Cloud.
To take advantage of it we designed and implemented an abstraction layer com-
patible with standard JavaScript that builds a distributed shared memory on top
of any existing web browser, like the ones present in smartphones or tablets, and
a cloud server, enabling developers to use existing application code and enhance
it by enabling collaboration between those devices. The synchronization mecha-
nism supports mixed consistency, preferring eventual consistency but providing a
stronger serializability when required, allowing the developers to tune it to their
specific needs.

Keywords: Distributed shared memory · Edge computing · Eventually
consistent

1 Introduction

Cloud computing changed the world by providing a seemingly infinite amount of pro-
cessing power and available memory on demand. But the transmission latencies caused
by the centralized architecture that cloud computing imposes cannot be escaped. Edge
computing is a rising field of interest where the storage and processor usage is moved to
the “edge” of the network, to the devices closest to the user and the data sources [1]. The
implementation of systems that make use of the edge devices is hindered by the inherent
complexity of using heterogeneous devices over untrusted networks. In order to dealwith
these issues, we propose the design and construction of an abstraction layer compatible
with the devices available at the edge of the network, that handles the synchronization
of state between the devices, hiding in the process the geographical distribution, and
simplifying the process of developing these kinds of systems.

A distributed system can be defined as a set of different pieces of software and
hardware that work in unison in a way that, from at least a specific point of view, can
be perceived as a single unit. To implement a distributed system, it results essential
then to have an abstraction that hides the physical distribution of the execution. That
abstraction not only enables the developer to concentrate on the business logic from the
requirements, but it also enables the system to tolerate partitions, resist failures and use
redundancy to balance an excessive workload.

© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 16–29, 2020.
https://doi.org/10.1007/978-3-030-61218-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_2&domain=pdf
http://orcid.org/0000-0002-0994-0619
http://orcid.org/0000-0002-0593-5089
http://orcid.org/0000-0002-2576-7772
https://doi.org/10.1007/978-3-030-61218-4_2

An Edge Focused Distributed Shared Memory 17

The two main paradigms used to provide that abstraction are: the idea of (1) syn-
chronization via message passing [2], where the different sub processes communicate
with each other explicitly and the abstraction is provided in the means of how we find
the receiver of a specific message, for example by using a naming system instead of a
physical address; and the concept of a (2) distributed shared memory [3], where different
sub processes can access some shared state by using virtual addresses, either replicating
the shared state or by acquiring it on demand, avoiding the need of communicating with
each other.

In both cases, the application code to be executed is not tied explicitly to a specific
execution environment, which allows it to be deployed to multiple nodes and to be
relocated when a node fails. Each paradigm can be built on top of the other [4], and
the performance penalty of the distribution is not a consequence of which abstraction is
used but is usually related to cost of accessing remote data.

There are valid arguments to prefer any of these approaches, but as [5] demonstrated,
programming with shared data is a well understood problem, and since most of the
top used programming languages expose this idea, we believe it has a comprehension
advantage to the application developer.

Despite the rapid growth of the Internet of Things (IoT) gadgets, most of the devices
present at the edges of the internet are user-facing like laptops, wearables and smart-
phones, all of which are used to browse the web. Given that every browser available
today contains a JavaScript VM, the web can be used not only to distribute content but
to deliver application code to be executed. In this context, providing the possibility to
build a distributed system on the edge of the network on top of a standard JavaScript
VM enables taking advantage of a largely untapped processing power available today,
without incurring in the extra cost of deploying a network of devices.

This paper is structured as follows. In Sect. 2we discuss the specific requirements that
must be fulfilled by the synchronization layer to be deployable into the target platforms.
In Sect. 3 we define the internal data structure of the distributed shared memory and its
properties. In Sect. 4 we go into how the synchronization operations are integrated into
a standard JavaScript execution. In Sect. 5 we show some functionalities of the working
prototype, and in Sect. 6 we address the limitations of the current proposal, how others
have addressed similar issues, and the next steps of this project.

2 Requirements

In order to access the proposed devices, the abstraction layer that handles the synchro-
nization of the shared state must work on top of the standard JavaScript defined in the
ECMA specification [6], since any change to that would require a specialized browser
or plugin to be installed on the device, effectively narrowing the possible participants of
the distributed system.

On top of that, it should be compliant with JavaScript’s existing idioms and tools,
making it compatible with existing JavaScript code and easing the development process.
We have a flexible definition of what is compatible, we aim to ensure that synchronized
code behaves as a non-synchronized one would, just as an experienced developer could
expect when reading the program. For example, if an existing JavaScript object that

18 M. Teragni et al.

resides on the shared memory is mutated, that mutation must be visible to every node
without explicitly executing extra code to observe the mutations. If an operation of the
abstraction layer is not completed synchronously, it should return a JavaScript Promise
like every other asynchronous operation in the language. Every existing JavaScript code
that can execute on a single node should, in theory, be allowed to run on the shared
environment.

In this way, the provided platform should work as a library, allowing it to extend any
project with its capabilities, instead of a framework that restricts the possible actions
that both the developer and the code can take.

Since the network connecting the devices and the cloud is not reliable, partitionsmust
be tolerated and offline operation has to be supported, and even though the efficiency of
this proposal is not our main concern, it should work well enough to prove the concept,
leaving possible optimizations as future work.

3 Synchronization Mechanism

In order to maximize the data locality, improving performance, and ensuring partition
tolerance, the proposed system imposes an overly optimistic replication [7], allowing
the users to access the shared data in any replica at any time. It is based on the optimistic
presumption that conflicting updates are rare, and that the contents are consistent enough
with those on another replica. The developer can choose what gets shared by explicitly
sharing it, triggering an asynchronous process that saves the complete object subgraph
that is reachable from that instance into the shared memory, and from that point on that
state will be replicated in every connected node. This implies that the data corresponding
to those objectswill always be available in any node that has connected after thatmoment,
and, therefore, the consistency of that data must be relaxed.

Since the application state of a JavaScript program is composed of the alive objects
in the memory heap, and execution specific information (such as instruction pointers,
parameters, return addresses and values, etc.) [6], where each device has its own inde-
pendent execution, the only thing needed to be synchronized is the state of the objects
present in the heap. But synchronizing every object in the memory of every device
increases severely the costs (bandwidth consumption, memory required, etc.), without
providing any benefits because in most cases what needs to be shared is just a small set
of objects. Additionally, and for most applications there is nothing to gain by synchro-
nizing state related to, for example, the user interface, like mouse event handlers. For
these reasons, the synchronization will only take place on a subset of the object graph
(the complete set of alive objects and their relations) explicitly defined by the program-
mer, allowing the developers to fit the synchronization layer to their specific needs. The
proposed architecture is composed of two types of nodes:

A set of client or processor nodes, consisting of a standard web browser (running on
a computer, mobile phone, etc.), where the desired behavior of the system takes place
on the edge of the network by executing JavaScript or web assembly [8] code.

A series of memory nodes, consisting of eventually consistent [9], possibly
distributed, clouddatabase each containing either a shard or the complete sharedmemory.

When a processor accesses the corresponding webpage, it executes its program (JS),
initializing the synchronization layer and loading into the local memory the shared state

An Edge Focused Distributed Shared Memory 19

of the application from the memory node. Every time that the local state is mutated it
queues a notification to be sent asynchronously in the background by the synchronization
layer, propagating the state mutation to the corresponding memory nodes, where an
operation order is established, and from there to the other processor nodes that will
update their local replicas, and resolve any conflict by treating the memory as a series
of last-write-win records.

Internally, the distributed shared memory will be composed exclusively of Conflict-
freeReplicated data types (CRDTs) [10], data structures that by definition or construction
provide eventual consistency by guaranteeing that the operations performed on them are
commutative, and in consequence as long as every update reach every replica, then the
state of the whole distributed system will converge. Usually CRDTs are categorized as
either state based [11], where the update notification carries information about the new
state of the data structure, or operation based [12], where the notification carries the
information required to replicate the operation. The latter tends to be more efficient but
requires knowledge of the specific semantics of the possible operations to design the
CRDT, and since we aim to allow any arbitrary mutation must be discarded.

There has been work to build a CRDT [13] that can represent a JSON file, that is a
serialization of an object graph in the literal object notation provided by the JavaScript
language, handling complex problems like nested conflicts without losing any data, nor
requiring user input. However, that hierarchical tree structure fails to represent the pos-
sible cycles that can take place on an alive object graph, and as such does not have
enough expressiveness to represent correctly in-memory objects. To address these spe-
cific issues, we serialize the object graph in a specially designed tree-like structure where
it is flattened into a list with identifiers, and any reference between objects is represented
using these identifiers, removing in the process the existence of nested conflicts.

The shared structure is composed by combining the following 4 elements:

3.1 Slot

Aslot is defined as a register that contains a tuplewith a value, and its associatedmetadata
like the type information, working in a similar way than a memory cell. The slot can be
internally constructed by using a Last-Write-Win Register [10], a standard CRDTwhere
the eventual convergence holds the last value written to it. The extra metadata added
to the register is used on the clients to correctly rebuild the object graph in their local
memory.

We identify 3 different subtypes of Slots. Those that contain a literal value (like a
string, a number, a Boolean, etc.) that, when encountered on a client, are converted into
the internal values. Those that contain an object, where the value of the slot is a unique
identifier associated with one specific instance in the shared heap and are converted into
a JavaScript object with the corresponding keys and values in the client’s local memory.
And those that contain an Array, where the value is a unique identifier associated with
one specific ordered collection present in the shared heap.

20 M. Teragni et al.

3.2 Array

With array we refer to a sparse representation of an ordered list that uses unsigned
integers as its keys, and a slot as its value. Each array gets converted into a JavaScript
array in the local memory of the clients, and has a unique identifier associated with it in
the object dictionary. This element can be created using a Replicated Growable Array
as described in [14].

3.3 Object

An object works as an associative set that uses strings as its keys, and slots as its values.
Each object in the data structure gets converted into a JavaScript object in the local mem-
ory of the clients, and has a unique identifier associated with it in the object dictionary.
Internally this can be implemented with the set described in [10], or the structure used
in [13].

3.4 ObjectDictionary

The previous data structures are used as components in the shared memory object dic-
tionary, a representation of the complete synchronized heap. This structure is defined as
an associative set that uses unique identifiers as keys, and one of the listed components
as values.

The objects in the shared heap can be either explicitly added by a user, or implic-
itly added by the synchronization layer because they are reachable from an explicitly
added object. This distinction is important because those explicitly added objects can be
requested by other users and can operate as roots in a garbage collection process, that
deletes all the objects that are non-reachable from the roots.

The root objects could be identified simply as an array of unique identifiers, but for
usability’s sake a user defined name will be associated with those identifiers. This allows
the user’s code to request instances from the shared memory using human-readable
identifiers.

This means that the object graph can be constructed using two associative sets, one
that assigns the identifiers to each slot in the shared heap, and a second one that defines
the identifier associated with the root names defined by the programmer.

For example, the following object, described in JavaScript Object Notation can be
serialized into the tree displayed in Fig. 1.

{
foo:{
bar:"baz"},

qux:[3, 5, 7],
zort: false

}

From this, the memory node can be implemented specifically for this purpose, or be
replaced by any open source, or private no-sql database that provides eventual consis-
tency as long as they have a record-like structure, and a public API that can be accessed

An Edge Focused Distributed Shared Memory 21

O
bj

ec
t D

ic
on

ar
y

Id1
type: Object

data

foo
type: Object

value: Id2

qux
type: Array

value: Id3

zort
type: Bool

value: False

Id2
type: Object

data bar
type: String

value: "baz"

Id3
type: Array

data

0
type: Number

value: 3

1
type: Number

value: 5

2
type: Number

value: 7

Fig. 1. Object tree serialization example

from the clients (web browser). In any case the abstraction layer present in the clients
will have to interact with the memory node and, if required, an adapter will have to be
built between them.

3.5 Consistency Guarantee

The PACELC theorem [15] describes the possible behaviors of a replicated data system,
where in the case of a partition the system can either be available or consistent, but not
both, and during the normal operations it can either privilege latency or consistency. In
fact, availability can be seen as a function of the latency, where the lack of availability
equals an infinite latency.

Since performance is greatly impacted by data locality, and the network partitions
are unavoidable in the target context, we decided to embrace the inconsistency, priori-
tizing latency and availability over consistency. This means that, by default the access
to the shared memory will be highly available, and with low latency, since the complete
synchronized heap is copied into the local memory of each client, at the cost of relaxing
the consistency of the data.

With an intelligent design of the internal structure of the synchronized data conflicts
can be avoided, having the access speed of the relaxed consistency without any of the
pitfalls, but that design requires an experienced developer and an application domain
that can be modeled in a conflict-free way, which is rarely the case. In order to allow any
kind of application to be built on top of the synchronization layer proposed, we designed
it to have a mixed consistency level, meaning that in most scenarios it will work with
a relaxed consistency, allowing the existence of execution anomalies, but if required
explicitly by the developer, it will operate with a stronger sequential consistency.

22 M. Teragni et al.

Several programming languages have followed a similar strategy to solve this issue
in the scenario of a multiprocessor computer. In Java, for example, any code executed
in parallel that access the same variables can, and probably will, create anomalies, but
using the keyword “volatile” on a variable declaration or “synchronized” before a block
will cause the compiler to generate locks and fences that ensure the correct propagation
of the data.

In a similar way we provide a specific function, called lock, that receives a shared
object and a function to be executed, and asynchronously performs a compare-and-set
operation into the memory node, executing the provided code if and when the lock can
be guaranteed. To provide this functionality the memory node has to perform an atomic
conditional operation, we used the HTTP conditional requests [16], in particular the If-
Match header stating that the requested operation can only succeed if the provided entity
tag (ETag) represents the current version of the resource on the server, and failing in any
other case. When a lock is requested a Get operation is performed to the memory node
querying about the existing locks for an object identifier, the result carries the current
version of that resource. If no lock is active on that object then a second operation is
emitted that carries the received version, trying to create a lock for that specific identifier.
If the server implements the HTTP standard, then the operation can either succeed,
meaning that the data we had when we requested the lock was still valid, or fail because
between our operations another node had created a lock for the same identifier. In the
latter case the abstraction layer retries the operation after some time and will eventually
have access to the lock if the node holding it releases it.

The final implementation of this process includes some extra logic to handle the
cases of nested locks, even if they are reentrant, and for clarity’s sake we encourage the
reader to inspect the implementation if more details are needed.

4 Integration to JavaScript

Much effort has been devoted to formalizing the behavior of JavaScript [17, 18], and
since we have not changed either the semantics nor the syntax of the language in order to
ensure our compatibility with the existing standard browsers, our synchronization engine
can be built on top of this formalization. Additionally, we added some formalization as a
part of this work because the existing formalization does not represent the current version
of JavaScript, excluding some useful features that are available in modern browsers.

The synchronization mechanism aims to be as transparent as possible to the pro-
grammer, requiring only the explicit addition of an instance to the shared memory to
ensure the synchronization of that complete subgraph. This implies that, if an object
is shared before being used, any existing JavaScript code should work on the shared
instance.

4.1 The Issue of Synchronizing Behavior

JavaScript imposes several restrictions that conditioned the design of this project. First
of all, it lacks a reflection mechanism capable of inspecting the variables captured in a
closure. This means that any function created in runtime cannot be safely synchronized

An Edge Focused Distributed Shared Memory 23

because there is no way of ensuring the correct synchronization of the object subgraph
related to that function, and since the runtime created function are indistinguishable from
the statically created ones, the safest approach is to avoid synchronizing functions. In
consequence, only object state will be shared, not their behavior.

4.2 The Blocking Code Issue

Another peculiarity of JavaScript is that the code executes on a single thread, in a
specific order imposed by an event loop. This means that the code that performs the
synchronization cannot be blocking, because it would stop the user’s code, and if the
user’s code is blocking it might stop the synchronization. For example, the following
codewould prevent the synchronization process while continually mutating some shared
state (obj.x) only for the local user.

let obj={x:1}
while(true)
{
obj.x+=1;

}

To cope with this issue, instead of building a looping function in the background that
handles the synchronization (as proposed in [7]) the only possible alternative that does
not involve a modification of the virtual machine (VM) is to use a feature added to ES6
called Proxies [6, 19]. The idea of this functionality is to create a wrapper of an object
that can intercept certain kinds of operations performed on the wrapped instance, in a
similar way to the decorator pattern. Since it is integrated into the execution environment,
it can intercept operations by their kind without requiring previous knowledge of the
operation’s name or parameters.

When an object is explicitly added or read from the shared memory, a proxy to it is
returned. This proxy can then intercept the calls to the getters and setters of the object,
triggering the functions that synchronize the mutations as required. In this way, any
existing code can be used on top of the proxies, since no special call needs to be made,
and any blocking code will still have a chance to synchronize.

Since [20] targetsES3, it does not formalize this feature sowepropose a formalization
to it that fit our needs, the definition of the semantics of JavaScript’s Proxies presented in
Eqs. 1 through 5 is intentionally incomplete in this article because the synchronization
process only requires to intercept two of the possible operations, and it results trivial to
formalize the rest on top of our definition.

(1)

(2)

(3)

24 M. Teragni et al.

(4)

(5)

From this, if the mutations to the objects are performed via the returned proxy, every
mutation will be correctly propagated. In Eq. 6 we specify a global function (share)
that creates a proxy pointing to a provided object executing a function pull, to acquire
any new data from the corresponding memory node before returning the intercepted get
operations, and calling push to propagate one specific mutation to the memory node
after performing any set operation. Then, since the getting and setting are intercepted
creating a window to synchronize, the case of an infinite loop created by the user’s code
no longer presents a limitation. This can be easily included in existing code bymodifying
the instance creation, either by explicitly calling the share function, or by using a Factory
or some kind of creation pattern.

(6)

By using the share function, the code example presented at the top of this section
can be extended with a call to the share function:

let obj=share({x:1})
while(true){ obj.x+=1; }

Where obj now will point into a proxy wrapping the real instance, and thus the
code is equivalent to the following one, where the proxy is removed and the get and set
operations are expanded.

let obj = {x:1};
while(true)
{
pull();
obj[x]=obj[x]+1;
push((ref(obj), obj));

}

From the expanded code it is clear that the user written code gives the opportunity
to receive new information before accessing any data, and to inform any modification
after it happens.

5 Implementation

The ideas exposed so far have been implemented into a single JavaScript library of
less than 1000 LoC [21], that can be added and used in any modern web browser.

An Edge Focused Distributed Shared Memory 25

Experiences have been built and tested on different operating systems and devices,
including notebooks, smartphones, and cloud hosted virtual machines.

As a memory node, from the plethora of options available today, like CouchDB [22],
MariaDB [23], or Cloudant [24], we chose to use Google’s Firebase [25] because of two
main reasons. First of all, at the time it was the only platform that could inform changes
via Web Sockets [26], a technology that increases the propagation speed, reducing the
latency of our distributed system. The second reason was because for our needs, the free
tier was more than enough, saving us the need to procure the cloud servers needed to
build the memory nodes.

Although the current implementation is designed to work with Firebase, there is
no reason it could not work with another database system as long as it provides the
functionalities exposed in the previous sections.

5.1 Promises, Continuations, and Locks

Every asynchronous operation performed by the synchronization library returns a
JavaScript Promise that can be used to build continuations. The main example of these
operations is the previously discussed Lock, that returns a Promise that can be used to
execute code after the requested operation was executed and lock has been released. In
the following code, for example, one client tries to acquire a lock over a shared instance
obj, generating a mutex with any other node attempting to do the same, if and when
the lock is acquired, the first message is logged into the console, and after it has been
released the second one appears.

hive.lock(obj,()=>{ console.log("Lock Acquired");
}).then(()=>{console.log("Lock Released");})

The final implementation of the locking process also includes a validation of what
locks are assigned to the current node, allowing to execute reentrant locks instantly and
avoiding the performance penalty of performing extra interactions with the memory
node. In the following example the first lock interacts with the memory node to ensure
the mutual exclusion, but the second one is executed immediately.

hive.lock(obj,()=>{ console.log("Lock Acquired");
hive.lock(obj,()=>{ console.log("Reentrant Lock");
})}).then(()=>{console.log("Lock Released");})

Since the code to be executed once the lock is obtained is completely arbitrary, the
developer can require another lock. The semantics of the synchronization layer for nested
locks aim to preserve the intent of the programmer. In the case of a nested lock, no locks
are released until any sub-lock is released. In the following example three shared objects
are used, referenced by the variables A, B and C. The client that executes this code tries
to obtain a lock on A, once it has achieved a mutual exclusion over that resource, tries
to obtain a lock on B, and after that one on C. The code states clearly that the lock on
B depends on also having one on A, and the one on C depends on the other two. The
order of acquisition then becomes A, then B, then C, and nothing gets released until the

26 M. Teragni et al.

innermost code finishes, releasing the three objects in inverse order (first C, then B, then
A) in a single commit to the memory node.

hive.lock(A,()=>{
console.log("Got A");
hive.lock(B,()=>{
console.log("Got B");
hive.lock(C,()=>{console.log("Got C");})

.then(()=>{console.log("Released C");});
}).then(()=>{console.log("Released B");});
}).then(()=>{console.log("Released A");});

5.2 Work Queues

The synchronization library includes some extra functionalities built upon the previ-
ously exposed synchronized object graph and mixed consistency. One of the needs we
encountered more often was to solve a producer-consumer kind of problem, where some
nodes of the distributed system created some data that other nodes required to process.
To simplify the work needed to solve that kind of problems, we added to the object graph
the concept of work queues, where a node can enqueue some specific data into a named
queue (by calling the function “request”) and will receive a Promise representing that
process. The nodes can also try to process work pending on any named queue (by calling
the function “process” and providing the function to be applied to the requested data),
this second method also returns a Promise.

Once the desired operation is completed, its result is injected into both promises
involved in that process, giving to both, the producer and the consumer, the possibility
of doing something with that data. In the following code a node adds into a work queue
named “queue” an object with a long string, and a character to count in it. Once that task
is performed, it logs the result into the console.

hive.request("queue", {count:"a", in:"Lorem ipsum dolor
sit amet, elit, sed..." }).then((r)=>console.log(r))

Any node can execute the following code that tries to obtain an entry from the same
queue and performs a not particularly efficient count of the occurrences of the required
character into the provided long string.

hive.process("queue",(data)=>{
return data.in.split(data.count).length-1;})

There is no guarantee that given any moment in time both roles will be connected,
so this whole process is asynchronous. When a node tries to process a value present in a
queue before something has been put into it, it will wait until there is data available. On
the other hand, if data is put into the queue, and there is no one to process it the producer
will wait until someone process the data.

An Edge Focused Distributed Shared Memory 27

5.3 Initial Benchmark Results

A simple test was built to measure the latency of the synchronization platform, and
therefore the size of the inconsistency window, by using two different nodes to perform
a ping-like operation bymutating a set of two variables with values of a given size.While
using the relaxed consistency mode the first node mutates the first variable and starts a
stopwatch, when the second node receives that information it mutates the second one,
finally when the first node receives the mutation generated by the second node it takes
note of the elapsed time of the roundtrip. It is important to remark that this process is
implemented as user code on top of the synchronization library, reflecting the complete
cost of the synchronization, not just the network propagation. This test was performed
10 k times for two different setups, two computers on the same local area network, and
two computers located several kilometers apart.

Since in both cases the nodes only connect to a cloud server (working as memory
node) the measures of both tests are consistent, and as can be seen in the Fig. 2, even
considering there are a lot of possible optimizations lacking from the prototype in over
80% of the cases the nodes achieved convergence under 300 ms.

Fig. 2. Time to propagate a fixed size load between two nodes

6 Conclusion and Future Work

We have proposed, implemented and exposed a synchronization layer that enables to
build a distributed shared memory on top of standard JavaScript to take advantage of
Edge devices like smartphones and tablets, allowing the construction of a new kind of
massively parallel distributed system that is less impacted by the implicit latency present
in the classical client-server architecture present in Cloud Computing.

28 M. Teragni et al.

This project provides similar benefits to those thatGEMs [27] does,without imposing
the restriction of using only NodeJS, a server-side JavaScript environment, the need of
a special Virtual Machine (VM) called GraalJS, and allowing the use of client-side
execution. In this way [28–30] aim to enable the use of the same network nodes, but
those frameworks only enable the distribution of a functional map-reduce like program
effectively restricting what the programmer can express, while our engine allows any
kind of JavaScript code to be distributed, including the map-reduce style if desired.
Currently the biggest limitation of the present work comes from the inability to inspect
the memory from inside JavaScript, making it risky to synchronize functions since they
can access any variable from their scope and there is noway to traverse that graphwithout
modifying the execution engine. In the future, if the ECMA standard provides a way to
inspect those variables, then this issue can be fixed. The working implementation is to be
regarded as a prototype because there is large room for optimization including building
a distributed garbage collection, improving the memory footprint of the synchronization
layer, and avoiding unnecessary traffic. Despite this, our initial tests and demos have
shown that this mechanism works well in certain kind of applications, and is appealing
to developers, that without incurring in extra costs can build complex systems on top of
existing technology.

References

1. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges. IEEE
Internet Things J. 3(5), 637–646 (2016)

2. Soneoka, T., Ibaraki, T.: Logically instantaneousmessage passing in asynchronous distributed
systems. IEEE Trans. Comput. 43(5), 513–527 (1994)

3. Protic, J., Tomasevic, M., Milutinovic, V.: Distributed shared memory: concepts and systems.
IEEE Parallel Distrib. Technol.: Syst. Appl. 4(2), 63–71 (1996)

4. Nitzberg, B., Lo, V.: Distributed shared memory: a survey of issues and algorithms. IEEE
Comput. 24(8), 52–60 (1991)

5. Vasava, H.D., Rathod, J.M.: A survey of software based Distributed Shared Memory (DSM)
implementation methodologies for multiprocessor environments. Int. J. Innov. Res. Sci. Eng.
Technol. 2(7), 3055–3060 (2013)

6. Standard ECMA-262, ECMAScript Language Specification. http://www.ecma-international.
org/publications/standards/Ecma-262.htm. Accessed 11 Nov 2019

7. Saito,Y., Shapiro,M.:Replication:OptimisticApproaches.HPLabsTechnicalReports (2002)
8. Haas, A., et al.: Bringing the web up to speed withWebAssembly. In: Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Implementation, vol.
52, no. 6, pp. 185–200 (2017)

9. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and beyond. Queue
11(3), 20 (2013)

10. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A Comprehensive Study of Convergent
and Commutative (2011)

11. Almeida, P.S., Shoker, A., Baquero, C.: Efficient state-based CRDTs by delta-mutation. In:
Bouajjani, A., Fauconnier, H. (eds.) NETYS 2015. LNCS, vol. 9466, pp. 62–76. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26850-7_5

12. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based CRDTs operation-based.
In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 126–140. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43352-2_11

http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://doi.org/10.1007/978-3-319-26850-7_5
https://doi.org/10.1007/978-3-662-43352-2_11

An Edge Focused Distributed Shared Memory 29

13. Kleppmann, M., Beresford, A.R.: A conflict-free replicated JSON datatype. IEEE Trans.
Parallel Distrib. Syst. 28(10), 2733–2746 (2017)

14. Roh, H.-G., Jeon, M., Kim, J.-S., Lee, J.: Replicated abstract data types: building blocks for
collaborative applications. J. Parallel Distrib. Comput. 71(3), 354–368 (2011)

15. Patinge, O., Karkhanis, V., Barapatre, A.: Inadequacies of CAP theorem. Int. J. Comput. Appl.
151(10), 18–20 (2016)

16. Fielding, R., Reschke, J.: Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests,
RFC 7232, June, 2014

17. S5: A Semantics for Today’s JavaScript, 11 November 2011. http://blog.brownplt.org/2011/
11/11/s5-javascript-semantics.html. Accessed 5 Feb 2020

18. Loring,M.C.,Marron,M., Leijen, D.: Semantics of asynchronous JavaScript. SIGPLANNot.
52(11), 51–62 (2017)

19. Zakas, N.C.: Understanding ECMAScript 6: The Definitive Guide for JavaScript Develop-
ers (2016). https://amazon.com/understanding-ecmascript-definitive-javascript-developers/
dp/1593277571. Accessed 5 Nov 2019

20. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript, pp. 126–150. arXiv:
Programming Languages (2010)

21. Teragni, M.: Hive project’s Github Repository. https://github.com/HiveProject/hiveproject.
github.io/tree/master/Firebase. Accessed 25 Mar 2020

22. Bhardwaj, N.D.: Comparative study ofCouchDBandMongoDB–NoSQLdocument oriented
databases. Int. J. Comput. Appl. 136(3), 24–26 (2016)

23. MariaDB 10.0.0 Release Notes. https://mariadb.com/kb/en/mariadb/mariadb-1000-release-
notes/. Accessed 25 Mar 2020

24. IBM: Cloudant – Overview. https://www.ibm.com/cloud/cloudant. Accessed 25 Mar 2020
25. Google: Firebase. https://firebase.google.com/. Accessed 25 Mar 2020
26. Soewito, B., Christian, Gunawan, F.E., Diana, Kusuma, I.G.P.:Websocket to support real time

smart home applications. Proc. Comput. Sci. 157, 560–566 (2019)
27. Bonetta, D., Salucci, L., Marr, S., Binder, W.: GEMs: shared-memory parallel programming

for Node.js. In: ACMSIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (2019)

28. Ryza, S., Wall, T.: MRJS: A JavaScript MapReduce Framework for Web Browsers (2010)
29. Constela, J.: “joseconstela/acio-js,” 5 November 2019. https://github.com/joseconstela/aci

o-js
30. Lavoie, E., Hendren, L., Desprez, F., Miguel, C.: Pando: Personal Volunteer Computing in

Browsers. arXiv (2019)

http://blog.brownplt.org/2011/11/11/s5-javascript-semantics.html
https://amazon.com/understanding-ecmascript-definitive-javascript-developers/dp/1593277571
https://github.com/HiveProject/hiveproject.github.io/tree/master/Firebase
https://mariadb.com/kb/en/mariadb/mariadb-1000-release-notes/
https://www.ibm.com/cloud/cloudant
https://firebase.google.com/
https://github.com/joseconstela/acio-js

Towards a Malleable Tensorflow
Implementation

Leandro Ariel Libutti1(B) , Francisco D. Igual2 , Luis Piñuel2 ,
Laura De Giusti1 , and Marcelo Naiouf1

1 Instituto de Investigación en Informática LIDI (III-LIDI) Facultad de Informática,
UNLP-CIC, La Plata, Argentina

{llibutti,ldgiusti,mnaiouf}@lidi.info.unlp.edu.ar
2 Departamento de Arquitectura de Computadores y Automática, Universidad

Complutense de Madrid, Madrid, Spain
{figual,lpinuel}@ucm.es

Abstract. The TensorFlow framework was designed since its inception
to provide multi-thread capabilities, extended with hardware accelerator
support to leverage the potential of modern architectures. The amount
of parallelism in current versions of the framework can be selected at
multiple levels (intra- and inter-paralellism) under demand. However,
this selection is fixed, and cannot vary during the execution of train-
ing/inference sessions. This heavily restricts the flexibility and elasticity
of the framework, especially in scenarios in which multiple TensorFlow
instances co-exist in a parallel architecture. In this work, we propose the
necessary modifications within TensorFlow to support dynamic selection
of threads, in order to provide transparent malleability to the infrastruc-
ture. Experimental results show that this approach is effective in the
variation of parallelism, and paves the road towards future co-scheduling
techniques for multi-TensorFlow scenarios.

Keywords: TensorFlow · Malleability · Containers · Resource
management · Co-scheduling

1 Introdution and Motivation

The exponential growth in the interest of Machine Learning in the last decade is
directly related to three fundamental advances, namely: (i) the development of
better algorithms with direct applications in many fields of science and engineer-
ing; (ii) the availability of massive amounts of data and the feasibility of effi-
ciently storing and analyzing it; and (iii) the appearance of novel hardware archi-
tectures, typically parallel and/or homogeneous, that allow a proper exploitation
of both new algorithms on large datasets in an affordable time.

Actually, the application of High Performance Computing techniques and
architectures has renewed the interest on the application of Machine Learning
on a plethora of problems, including applications to image recognition, segmen-
tation, speech recognition, natural language processing or language translation,
c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 30–40, 2020.
https://doi.org/10.1007/978-3-030-61218-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_3&domain=pdf
http://orcid.org/0000-0001-5541-4997
http://orcid.org/0000-0003-4480-9517
http://orcid.org/0000-0002-3049-828X
http://orcid.org/0000-0003-2850-801X
http://orcid.org/0000-0001-9127-3212
https://doi.org/10.1007/978-3-030-61218-4_3

Towards a Malleable Tensorflow Implementation 31

among many others. Together with new computing architectures, the evolution
of specific-purpose software frameworks has also contributed to the democrati-
zation of Machine Learning, hiding many of the underlying details in order to
attain high-performance implementations. Many of these frameworks consider
parallelism in general, and heterogeneity exploitation in particular, as a nuclear
feature. Tensorflow [1], Caffe [2], Keras [3] or PyTorch [4], to name a few, offer
optimized versions targeting specific hardware architectures, hiding many of the
details to the final user while keeping performance for both training and inference
near the peak of the underlying systems.

Tensorflow is, currently, one of the most extended frameworks targeting both
training and inference. Its design is based on a dataflow-like execution model, in
which users build an execution graph in which nodes represent operations (typ-
ically mathematical transformations), and edges between them denote dataflow
between operations in terms of multi-dimensional arrays (that is, tensors). The
amount of concurrency among operations is dictated by data dependences, while
internally, each operation can be further parallelized in order to boost perfor-
mance. Regarding parallelism, Tensorflow allows a static, a priori selection of
two different levels of parallelism, namely: inter-node parallelism, denoting the
amount of operations that can be executed in parallel at a given execution point
respecting data dependences; and intra-node parallelism, that determine the
amount of internal parallelism per operation. This double degree of parallelism
is, however, static and must be selected by the user or the runtime software prior
to the launch of a graph session; in other words, the parallelism in Tensorflow
is rigid and cannot be reconfigured while an operation is running, opposed to a
malleable nature other software packages.

Experiments have been carried out on the intra-node parallelism and inter-
node parallelism parameters, seeking the definition of the most optimal values
for certain Machine Learning algorithms, running in cpu backend [5]. The quest
of malleability has been previously explored in other fields, mainly in the linear
algebra arena [6–8], with promising results in terms of flexibility, resource usage
and performance. Applied to Machine Learning in general, and Tensorflow in
particular, a fully malleable TensorFlow implementation would allow a dynamic
reconfiguration of the amount and nature of the effective parallelism while a
training session (for example) is on the fly.

This static selection in the degree and type of parallelism allows a proper
exploitation of the underlying hardware by deciding appropriate values for each
parameter depending on the available resources and operation types. However
it is merely static. In scenarios in which multiple TensorFlow instances arise at
any temporal point (e.g. multiple training sessions sharing a common platform),
a flexible and dynamic resource management scheme becomes mandatory; that
is, considering a graph in which inter-parallelism is decided a priori, for example,
the emergence of a second training session needs a re-configuration of the degree
of parallelism in order to properly divide the underlying computing resources.
This feature is, as of today, not possible within TensorFlow.

32 L. A. Libutti et al.

Our final target is a common scenario in which individual TensorFlow
instances are confined inside a container, which is a typical setup on common
cloud services [9]; on shared-resources scenarios, reducing the amount of cores
per container would encompass oversubscription situations provided the Tensor-
Flow instance within is not informed consequently. Our goal, hence, is to inform
the internal TensorFlow instance to reduce/increase the amount of parallelism
according to the reduce/increased amount of resources assigned to the container.

In this paper, we provide the necessary mechanisms and modifications in
TensorFlow to allow malleability, that is, dynamic variation of the number of
threads at any point of the execution. Our approach is general enough to reduce
or expand the level of inter- and intra-parallelism within the framework from
an external entity (e.g. a co-scheduler system software) with no impact for the
user. As of our knowledge, this is the first effort to introduce thread malleability
in the framework, and paves the road towards the development of co-scheduling
schemes that allow an efficient sharing of computing resources in architectures
shared by multiple TensorFlow instances. As far as we are aware, this is the first
effort towards malleability integration within TensorFlow.

The rest of the paper is structured as follows. Section 2 describes the inter-
nal infrastucture of TensorFlow in terms of multithreading support, with special
interest in the deployment of threadpools and queues to support this functional-
ity. Section 3 introduces and deeply describes the necessary modifications within
the framework to support malleability. Section 4 reports execution traces for the
modified malleable TensorFlow implementation. Finally, Sect. 5 closes the paper
with a number of conclusions and future research lines opened by this funda-
mental modification in the framework.

2 Threading Model in Tensorflow

2.1 Execution Components

The computation within Tensorflow is defined by means of a graph composed by
an arbitrary number of compute nodes. Each compute node features zero or more
inputs and outputs, and represents an instance of a kernel operation defined in
the framework, such as a general matrix-matrix multiplication (MatMul). The
values that flow across nodes (input and output values) are called tensors, data
structures of arbitrary dimensions, where the element type is specified at graph
construction time. Additionally, nodes can present dependences that must be
satisfied before the execution of the next node.

Tensorflow defines a client who is responsible for communicating with one
or more workers. Each worker controls a set of devices identified by type and
name. Each device is responsible for handling the execution of ready nodes, that
is, compute nodes whose input dependences have been satisfied.

Hence, the compute nodes of the graph are executed in an order dictated by
their input dependences, following a so-called dataflow execution model. Once
they are fulfilled, the node becomes eligible for execution and it is added to a
ready node queue belonging to a worker, from which it is extracted, scheduled

Towards a Malleable Tensorflow Implementation 33

and finally executed. Upon finishing its execution, the number of dependencies
of the nodes that are linked to it is decreased by one. The ready node queue is
scheduled in an unspecified order, delegating each node to an available computing
worker for execution (itself or another worker).

To handle the execution of the graph nodes, the Tensorflow framework defines
an executor entity in charge of planning and dispatching elements in the task
queues of each thread of a deployed threadpool. Therefore, multiple threads may
be scheduling the tasks of the ready node queue within the executor. Each thread
analyzes whether it can run the nodes by checking various decision criteria. If
they are met, it pushes the node in its own Qinline, which contains all the nodes
that thread can execute. Otherwise, if one of the decision criteria is not met, it
delegates the node to be executed in another thread.

2.2 Thread Behavior

Each thread in the thread pool features two main procedures to (i) schedule
and (ii) execute the nodes of the graph. Specificaly, each thread in the pool
features two different task queues, namely Qready, containing nodes ready to be
scheduled, and Qinline, containing nodes ready to be executed.

Node Scheduling Stage. The scheduling of ready nodes is performed by means
of the following steps:

(STEP 1) Check if Qready is not empty. If it is not empty, proceed to the fol-
lowing step. Otherwise, finish scheduling.

(STEP 2) Get the next node Nnext in Qready.
(STEP 3) If Nnext is not an expensive task (that is, expected execution time is

small) queue in Qinline for its execution. Back to step 1.
(STEP 4) If Nnext is expensive and the current thread already has a node of the

same type ready, assign the node execution to another thread. Back
to step 1.

Figure 1 illustrates the per-thread scheduling process.

Node Execution Stage. Second, the node execution procedure proceeds as follows:

(STEP 1) Check if Qinline is not empty. If it is not empty, perform node plan-
ning. Otherwise, it waits for new nodes to be sent to it or for graph
execution to finish.

(STEP 2) Get the next node Nnext in Qinline.
(STEP 3) Verify that it meets the conditions for execution.
(STEP 4) Run the node using the required kernel implementation.
(STEP 5) Decrement the dependencies of the nodes that depend on the execu-

tion of the current node.
(STEP 6) Check for new nodes to schedule. In case it is fulfilled, call the schedul-

ing procedure.
(STEP 7) Back to step 1.

Figure 2 shows the node execution procedure.

34 L. A. Libutti et al.

2.3 Multi-level Parallelism: Intra- and Inter-parallelism

Tensorflow exposes and exploits two independent levels of parallelism, namely
intra- and inter-parallelism. Both can be exploited in conjunction and under
user request.

Intra-parallelism controls the number of threads to be used for the execu-
tion of a kernel operation (MatMul, ConCat, etc.). Obviously, the underlying
implementation of the kernel –task– must support parallelization to leverage
different degrees of intra-parallelism. On the contrary, inter-parallelism controls
the amount of independent kernel operations that can be concurrently executed,
leveraging the strategies depicted in the previous section.

Intra- and inter-parallelism, hence, can exploit per-task and per-graph par-
allelism, provided it is available. The framework provides simple mechanisms to
determine each level of parallelism through its high-level API; the selected val-
ues, however, are valid across the complete task graph, which make Tensorflow
a rigid piece of software from the threading control perspective.

Regarding implementation details, Tensorflow delegates the handling of inter-
parallelism (also referred as non-blocking parallelism in the literature) to the
implementation of the ThreadPool in the Eigen library [10] leveraging its flexi-
bility and efficiency.

Each thread in the threadpool features a third queue of tasks (Qeigen) that
ultimately includes tasks to be executed by the corresponding thread; under
situations without assigned tasks, work stealing between Qeigen queues is inplace
to improve thread occupancy. Under situations in which there are no available
tasks in Qeigen, the thread spins, and in case of being the only thread awake
without tasks, stalls for a certain time waiting for the arrival of new jobs; after
that time the thread falls asleep waiting for another thread to wake it up for
work.

3 Malleability Integration in Tensorflow

The integration of malleability in the threadpool associated with non-blocking
tasks (that is, inter-parallelism), requires a number of modifications both in the
Tensorflow core and the management of the internal threadpool in the Eigen
framework.

3.1 Required Modifications in the Eigen Threadpool

The Eigen library responsible for managing the threadpool does not allow a
dynamic control of the number of active threads at any arbitrary moment. There-
fore, extra information including status information is required on a per-thread
basis in order to activate/deactivate the normal behavior of the thread exposed
in the previous section, effectively stopping the processing of Qeigen.

In addition, the wait operation performed by the threads also requires mod-
ifications. In our modified version, each thread begins the process of waiting

Towards a Malleable Tensorflow Implementation 35

Fig. 1. Thread task scheduler.

for work by evaluating whether it should remain active or not depending on its
current state (which can be modified externally in an asynchronous fashion).

In case the state is active, the corresponding thread analyzes if it is possible
to continue executing nodes that are in its Qeigen or in the queue of another
thread. If the thread is inactive, it analyzes if it should wake up to another

36 L. A. Libutti et al.

Fig. 2. Execution task procedure.

thread (in case the queue of another thread is not empty and the other threads
are asleep) and if it should not fall asleep because it is the only active thread.
Finally, if tasks are not available (in a proprietary or alien queue), it waits for
another thread to submit work.

3.2 Required Modifications in the Tensorflow Core

The executor entity defined in the core of Tensorflow is in charge of scheduling
and execution of the graph, as stated in the previous Section, and therefore, it
also requires modifications in order to support malleability.

So far, the thread status of the threadpool cannot be controlled from the
executor. Actually, the only possible communication allows delegating the exe-
cution nodes to another thread. To add this type of extra control, the executor
receives information from the thread pool of non-blocking tasks with the possi-
bility of consulting the status of the threads and modifying the number of active
threads.

In our modified TensorFlow version, if the executor receives a change in
the number of active non-blocking threads from an external entity, it invokes a
method of the threadpool so that the number of active threads is increased or
decreased (executing nodes).

Towards a Malleable Tensorflow Implementation 37

In addition, each thread keeps information regarding its activation state
(active or inactive thread). This allows checking whether the thread can run or
delegate new nodes to another thread. All these changes are made in the node
queue scheduling procedure explained in the previous section. Figure 3 depicts
the main steps performed by the new thread task scheduler.

Fig. 3. New thread task scheduler.

4 Experimental Results

Figure 4 report some experimental results obtained on a real malleable Ten-
sorFlow implementation modified to integrate the modifications described in
Sect. 3. These results were extracted on a system based on an Intel Core i7-
8750H processor featuring 6 physical cores (12 logical cores via HyperThread-
ing technology), running at 2.2 GHz of nominal frequency. The system features
32 GBytes of DDR4 RAM memory. From the software perspective, TensorFlow
version 2.0.0 was used as our baseline implementation, running on an Ubuntu
18.04 OS.

The traces report execution timelines (one horizontal line per worker thread)
for a ResNet56 model defined through Keras, trained through 5 epochs, with
20 steps per epoch. Input dataset images were defined for a dimension 32 × 32
and 3 channels. The number of classes is fixed to 10, with a batch size 128.

We report three different scenarios for the aforementioned training process,
namely:

38 L. A. Libutti et al.

– Figure 4a is a typical TensorFlow implementation with 12 worker threads
from the beginning to the end of the execution.

– Figure 4b corresponds to a modified, malleable TensorFlow implementation
in which two different thread count changes are performed: the first one limits
the number of threads to 6 (reducing from the original 12 worker threads),
at the point marked with a vertical red line. Afterwards, worker threads are
again restored to 12, at the point marked with a vertical green line. It is
observed that before the red line, only two threads run. This occurs because
the threads they are running do not delegate operations to others. Operations
are delegated when it is expensive and there are other light operations to
execute. After the green line, thread number 10 does not execute operations
as explained above. It is observed that between the green and red lines, thread
1 becomes inactive and thread 9 begins to run. This is because thread 1 had
no more nodes to run and competes with the other threads to get a new one.
In this case, thread 9 got new nodes, leaving thread 1 idle.

– Figure 4c shows a similar situation, but reducing the number of active threads
to 2 instead of 6, and restoring to full parallelism afterwards. After the green
line, threads 3 and 6 are not activated as explained in the previous trace.

(a) 12 threads.

(b) 12 + 6 threads.

(c) 12 + 2 threads.

Fig. 4. Execution traces for three different threading scenarios. (Color figure online)

Towards a Malleable Tensorflow Implementation 39

Although still general, these results demonstrate the ability of our modi-
fied TensorFlow version to seamlessly achieve malleability, and paves the road
towards the integration or this malleable version with an application co-scheduler
that orchestrates, under demand, the assigned resources to independent Tensor-
Flow implementations.

5 Conclusions and Future Work

In this paper, we have introduced and described the main modifications that
are required to transform a fixed-parallelism TensorFlow implementation into a
malleable implementation, in which the degree of parallelism can be dynamically
selected and varied (reduced or increased) while the application is running.

This functionality is not present nowadays in the default TensorFlow distribu-
tion, and can pave the road towards flexibility and elasticity in shared-resources
scenarios (e.g. cloud servers running multiple TensorFlow instances).

Our work, however, is still a fundamental step towards more advanced func-
tionality proposed as future work, among which we can name:

1. Integration with a co-scheduler. A malleable library/framework infrastruc-
ture only makes real sense when combined with a higher-level resource man-
ager (or co-scheduler), that leverages malleability of the underlying mal-
leability (in this case within TensorFlow) and dynamically modifies the
amount of resources assigned to them in a co-ordinated fashion. We are
working in this type of resource orchestrator to support efficient co-existence
of TensorFlow instances in the same machine.

2. Creation of a malleability API. As of today, the malleability is internally
selected on specific execution points as proof of concepts. Its management,
however, must be transparent and externally selectable, on demand. For that
to happen, an ad-hoc API to select the number of active/inactive threads
will become mandatory, together with an infrastructure to support thread
variation by means of OS signal reception. Both functionalities are in our
roadmap.

3. Management through containers. Containers allow a dynamic reduction of
resources in terms of number of cores, amount of memory and external
devices, among others. However, externally reducing the number of assigned
cores without a proper reduction of internal software threads derives in
a non-acceptable oversubscription effect. As TensorFlow training/inference
processes are usually confined within Docker containers, it is mandatory
to support malleability in the framework. The interaction between per-
container resource management and mallebility in TensorFlow is thus a
primary goal of our research.

4. Intra-task malleability. The introduced techniques only affect inter- paral-
lelism. Malleability within nodes/tasks (intra-) is also of interest for us to
create a completely malleable parallelism. For that to happen, malleable
underlying libraries are mandatory (e.g. malleable BLIS [7] for BLAS tasks
–e.g. MatMul for fully connected layers–).

40 L. A. Libutti et al.

5. Heterogeneity support (use of GPUs). The integration of worker threads
associated with hardware accelerators –mainly GPUs–, and its dynamic acti-
vation/deactivation is also in our roadmap, so that graphics processors can
also be assigned or unassigned to existing TensorFlow instances at runtime.

6. Test with real-world problems. Obviously, the evaluation of the overhead
and benefits introduced by malleable TensorFlow implementations on real
models and workloads is mandatory and will be of interest in the near future.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). Software available from tensorflow.org

2. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22Nd ACM International Conference on Multimedia, MM 2014,
New York, NY, USA, 2014, pp. 675–678. ACM (2014)

3. François Chollet et al. Keras (2015). https://keras.io
4. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning

library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates Inc. (2019)

5. Hasabnis, N.: Auto-tuning tensorflow threading model for CPU backend. In: 2018
IEEE/ACM Machine Learning in HPC Environments (MLHPC), pp. 14–25. IEEE
(2018)

6. Catalán, S., Herrero, J.R., Quintana-Ort́ı, E.S., Rodŕıguez-Sánchez, R., van de
Geijn, R.A.: A case for malleable thread-level linear algebra libraries: the LU fac-
torization with partial pivoting. IEEE Access 7, 17617–17633 (2019)

7. Rodŕıguez-Sánchez, R., Igual, F., Quintana-Orti, E.S.: Integration and exploitation
of intra-routine malleability in blis. J. Supercomput. 11 (2019)

8. Rey, A., Igual, F.D., Prieto-Mat́ıas, M.: Variable intra-task threading for power-
constrained performance and energy optimization in DAG scheduling. J. Super-
compu. 75(3), 1717–1731 (2019). https://doi.org/10.1007/s11227-019-02760-6

9. Xu, P., Shi, S., Chu, X.: Performance evaluation of deep learning tools in docker
containers. In: 3rd International Conference on Big Data Computing and Com-
munications, BIGCOM 2017, Chengdu, China, August 10–11, 2017, pp. 395–403.
IEEE Computer Society (2017)

10. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

https://keras.io
https://doi.org/10.1007/s11227-019-02760-6
http://eigen.tuxfamily.org

Viral Diseases Propagation Analysis
in Short Time

Maximiliano Lucero , Natalia Miranda , and Fabiana Piccoli(B)

LIDIC, Universidad Nacional de San Luis, San Luis, Argentina
{mlucero,ncmiran,mpiccoli}@unsl.edu.ar

Abstract. Studying potentially harmful infectious agents for some pop-
ulation and trying to explain and predicts how the disease evolves in the
time are difficult because many factors interactions. An solution is to
analyse real systems by mean of simulations models. In these cases, Cel-
lular Automata have been used with success, they can recreate a virtual
world take account problem main features and their correlations. We
developed an efficient and portable cellular automata model in Graphic
Processing Units to simulate viral diseases propagation. The achieved
efficiency allows us estimate in a short time the viral disease behaviour
when it is known or not, as well as its associated uncertainty. Besides,
it is suitable to test effects of different measures that tending towards
stop the spread. We describe the solution and evaluate it for two viral
diseases: Seasonal Influenza and COVID-19.

1 Introduction

Making decisions is not simple, even more so when systems are complex, they
have many interrelated factors. A good solution is to analyse them through
simulation techniques.

Permanently, the viral disease diffusion is a great humanity concern. There
were cases where a disease caused entire populations extinction and important
demographic changes (the plague Europe, yellow fever in Buenos Aires, among
others) [14]. On this day, the situation persists, there are many monitored dis-
eases as: malaria, Influenza A, AIDS, and other new as COVID-19. It is impor-
tant and priority their study and control. One way to address the problem is
analysing how each of them is spread in a particular population. The study and
analyses of complex real systems like these can be done through some simulation
models.

Modeling epidemics by means mathematical tools, we would allow to explain
and predict the behavior of infectious agents to human or animal. In 1927 Ker-
mack and McKendrick proposed a SIR (Susceptible-Infected-Recovered) model
that became the basis for modern epidemic modeling [9]. It considers a hypothet-
ical scenario, a disease develops over time and each involved individuals is in one
of three state: Susceptible, Infected and Removed. The SIR model has positively
impacted the epidemic area modelling and control by its simplicity, applicabil-
ity to real data and extensively to other diffusion problems, with more complex
c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 41–57, 2020.
https://doi.org/10.1007/978-3-030-61218-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_4&domain=pdf
http://orcid.org/0000-0003-3491-8955
http://orcid.org/0000-0001-6015-5344
http://orcid.org/0000-0002-3636-7360
https://doi.org/10.1007/978-3-030-61218-4_4

42 M. Lucero et al.

mechanisms. From these states and dynamic of each system, different models
can arise, some of them are: SI (Susceptible-Infected), SIS (Susceptible-Infected-
Susceptible), SEIR (Susceptible-Exposed-Infected-Recovered), and other vari-
ants (SIRS, SEIRS, SEIQR, etc.).

When system is simple, the SIR model (or its variants) and differential equa-
tions allow predict how is disease behaviour in a population. This can not true
to more complex systems (their specifications include many characteristics as
environment, population, interactions, evolution, etc.). For this case, it is rec-
ommended to use simulations. The simulation allows observing the system evo-
lution over time, understanding their behaviour and, perhaps, being able to
predict future events. These systems, generally, use generated data from sensors
or mobile devices, and recreate the reality in a time period. Their results allow to
define, for examples, evacuation strategies (in case forest fires or floods), massive
vaccination or quarantine (to mitigate infectious diseases impact), among others
[2,4,19]. Cellular automata is a good election.

Since its popularization in 1970, when Conway defined Game of Live [3], the
cellular automata (CA) has been successfully used in simulation of diffusion pro-
cess and, it is a valid alternative when we work with discrete dynamic systems
which have complex behaviours from a simple set of evolution rules. In this way,
it is possible to model complex dynamic systems from local specification. CA
behaviour can display graphically the system evolution, allowing an easy com-
prehension of studied dynamics. Besides, it is appropriate to apply high perfor-
mance computing techniques (HPC): each cell can be calculated simultaneously,
i.e. in parallel, to others [12,18]. Particularly, we focus in parallel computing over
Graphic Process Unit (GPU) [6,7].

This work presents parallel simulator of viral diseases propagation using CA
and SEIR model to different GPU. Two diseases are considered: seasonal flu and
COVID-19. The solutions allows to study, in short time, how spread each diseases
in different environments and conditions, considering type of population, its
distribution and other characteristics. From their results, we can take decisions
in health, education, economy, etc.

The paper is organized as follows: the next section describes all the previ-
ous concepts. Sections 3 and 4 sketch our parallel proposal and their empirical
performance. Finally, the conclusions and future works are exposed.

2 Background

In this section, we explain the main concepts to develop this work.

2.1 Cellular Automata

A CA is a mathematical system with discrete values in space, time and state.
John Von Neumann and Stanislaw Ulam were the first in formulate it, but Con-
way proposed the game of life, the most known CA. Among CA characteris-
tics, auto-replication, universal computation capabilities and auto-organisation

Viral Diseases Propagation Analysis in Short Time 43

effects are important [8,20]. CA have been used to simulate different phenomena
as chemical reactions, diffusion processes, hydrodynamic, mechanic, filtration,
chaos theory and others [13].

A CA is defined as a 4-tuple M = <A,Q, δ,N> where:

– A is a D-dimensional array, each component (cell) has associated a finite
automata.

– Q is a finite set of cell states.
– N is the neighbourhood, N ≡ {ci} ∪ Nci such that Nci are ci adjacent cells.
– Let σ ≡ Qn where n = |Nci |. The states transition function, δ : Q × σ → Q, is

a mapping such that if qi ∈ Q is ci state in the time t and qi+1, qi+2, ..., qi+n ∈
σ are adjacent cells state to ci, and δ(qi, qi+1, qi+2, ..., qi+n) = q′

i, is the new
state of ci at the time t + 1.

In some cases, it is possible to specify probabilistic transition rules, where an
arbitrary probability p can be associated to a transition rule.

2.2 SIR Model and Derivated

If some propagation phenomenon is studied, we have to take into account sev-
eral considerations, some important are infectious agents (they are responsible
of disease transmitting and the states that an individual goes through) and
transmission modes (person-to-person, the environment: air, water, etc., food,
some vectors such as insects or agents, or among animals of the same or differ-
ent species). In consequence, as a disease involves many factors, it is impossible
to study them of same way. A good start point is to classify states in that an
diseased individual can be. A possible states set is:

– S: Healthy individuals and Susceptible to be infected.
– E: Exposed individual to disease, infected but not infect others (i.e., the

disease is latent).
– I: Infected individual who contaminates others.
– R: Recovered individuals to diseases (normally, it happens after that a person

recovers from illness or vaccinates).

In a same time, an individual can be in a single disease stage, therefore for
a population of N persons, if we consider the above set of state, the following
equation must be satisfied:

S + E + I + R = N

SIR model consists of three stages: Susceptible, Infected and Recovered. It is eas-
ily written using ordinary differential equations (ODEs), this implies a determin-
istic continuous model. It assumes relationship among infected (I) and suscepti-
ble (S) individuals at a rate proportional to their population. These analytical
techniques are good to address basic problems, but to epidemics (or pandemics)
study, the whole system is more complex, it is necessary realistic solutions and
major detail level during the process.

In next paragraphs, we describe the two viral diseases referenced in this work:
Seasonal Flu and COVID-19. Their main characteristics are:

44 M. Lucero et al.

– Seasonal Flu: There are three types of seasonal influenza: A, B and C. The
influenza virus A and B are the most common, they are classified into sub-
types according to the combination of two proteins in virus surface (H and N).
Influenza affects, primarily, the humans respiratory tract. Usually it accompa-
nied by other symptoms such as sore throat, weakness, dry cough, fever, and
muscle aches, of stomach and head. In some cases, it may be complicated and
derive in fatal pneumonia. This can occur in two age groups: young children
and elderlies.
Virus transmission is done person-to-person, mainly through particles ejected
when a sick person coughs, sneezes or talks. Also, it can be transmitted by
means blood or contact with surfaces or objects contaminated. Besides, flu
virus is resistant to dry and cold environment, this property allows its rapid
spread mainly in autumn and winter, seasons when it becomes epidemic. The
virus can keep its infections level about one week, however, there are patients
that require 15 days. Most people recover without medical treatment.
An infected person with the flu virus goes through an incubation period
(approximately from two to four days). The contagious period begins one
day before that person has symptoms (this person could be spreading the
influenza without knowing that is sick). After a week, the transmission power
is reduced, even it disappears. The Fig. 1 summarizes how the disease evolves
in a person, from he/she is susceptible until his/her recovering or, in the worst
case, death.

Fig. 1. Influenza progression in people

The most effective way to prevent the flu and its consequences is vaccination.
In healthy adults, it can provide reasonable protection, while in elderlies can
reduce its severity, the incidence of complications and deaths. There are vac-
cines for three influenza types, but the vaccination effectiveness depends of
the match between the vaccine virus and surrounding virus. Moreover, a vac-
cine made one year may not be effective to the next by two reasons: the virus
mutates rapidly, and its strains have variable dominance [15].

Viral Diseases Propagation Analysis in Short Time 45

– COVID-19 : Coronaviruses are a large family of viruses which may cause
illness in animals or humans. In humans, several coronaviruses are known to
cause respiratory infections ranging from the common cold to more severe
diseases. The most recently discovered virus, December 2019, causes COVID-
19. It is an infectious disease, its the most common symptoms are fever,
tiredness, and dry cough. Some patients may have aches and pains, nasal
congestion, runny nose, sore throat or diarrhea. These symptoms are usually
mild and begin gradually. Some people become infected but do not develop
symptoms. Most people (about 80%) recover from the disease without needing
special treatment. Around 1 in 6 people who get COVID-19 becomes seriously
ill and develops difficulty breathing. Older people and who with underlying
medical problems like high blood pressure, heart problems or diabetes, are
more likely to develop it serious.
Virus transmission is done person-to-person, mainly through small particles
from nose or mouth which are spread when an infected person coughs, breathes
or exhales. These particles land on objects and surfaces, then other people touch
them, pass their hands by eyes, nose or mouth and catch COVID-19.
An infected person with the COVID-19 goes through an incubation period
(approximately from five to six days). The contagious period starts a few days
before the incubation period ends (this person could be spreading it without
knowing that is sick). After fourteen days from exposure to the virus, the
transmission power is reduced, even it disappears. The Fig. 2 summarizes
how the disease evolves in a person, from he/she is susceptible until his/her
recovering or, in the worst case, death. From the current world situation, the
virus is weather resistant and spreads rapidly any season.

Fig. 2. COVID-19 progression in people

Actually, there are not vaccines or any drugs to prevent it. The only effective
measures are identify infected patients, isolate and optimized care them early.
Daily, new researches and news are communicated, mainly, by WHO [16].

46 M. Lucero et al.

The both diseases behaviour is similar, the main differences are development
period, treatment and prevention measures.

2.3 GPGPU Programming

Mapping general-purpose computation onto GPU implies to use the graphics
hardware to solve any applications, not necessarily of graphic nature. This is
called GPGPU (General-Purpose GPU), GPU computational power is used to
solve general-purpose problems [11,17].

The parallel programming over GPUs has many differences from parallel
programming in typical parallel computer, the most relevant are: The number of
processing units, CPU-GPU memory structure and Multi-threads programming
model. This is the natural form to generate work on GPU: a single CPU process
launches hundreds of threads on GPU. All of them share the same space memory,
and they are able to execute independently and at the same time. The traditional
multi-threading is used to do time-slicing or take advantage of idle time, i.e. while
a thread waits, another could execute.

When the GPU is used as a parallel computer, it necessary taken into account
its own characteristics: processing units, memory structure and programming
model. Today, there are two mainly frameworks: CUDA y OpenCL, and three
GPU makers: NVidia, AMD and Intel.

CUDA was developed by NVidia to own GPU. It provides an essential high-
Level development environment with standard high level programming language.
It defines the GPU architecture and its programming model: parallel-concurrent
threads and the memory hierarchy. Instead, OpenCL is, by definition, an open
multi-platform standard, i.e. you can use the most hardware (CPU, GPU, FPGA,
among others) to execute your OpenCL program. This program is portable.

NVidia and OpenCL have different approach, but they are actually solving
the same problem: how to use the GPU as a general purpose computer. In this
work, we present a simulation system for viral diseases transmission using CA,
SEIR as models and parallel programming techniques on GPU. We consider
different GPU technologies to software and hardware.

3 Parallel Simulation of Viral Diseases

CA have been used with success in simple and complex systems simulations of
different scientific areas, such as chemistry, biochemistry, economy, physics, etc.
[1,5,10]. In this work, we use it to specify and implement a simulation model that
allows to investigate behavioural dynamics for two viral diseases: Seasonal Flu
and COVID-19. Our model applies SEIR epidemiological approach and GPGPU
techniques. Some experimental results about performance and diseases behaviour
are showed.

Viral Diseases Propagation Analysis in Short Time 47

3.1 Diseases Propagation Model

To simulate diseases propagation, we develop D − CA. It has a cellular space
defined by a finite two-dimensional lattice. Each CA cell is a place busy by only
one person. The cellular space represents a social space, two adjacent occupied
cells represent two individual or neighbours in touch. To perform the simulation,
it is necessary to establish the following considerations:

– Neighborhood: We consider the Moore neighborhood: eight cells surround-
ing the central cell define it. Every individual interacts with at most 8 people
by once [13].

– Cell State: A cell is in one Q state, Q = {F, S,EE , ES , IA, II , IW , R,D}
where:

• F : Free Cell, there is not any person and it can be selected to occupy.
• S: The person is susceptible to contract Influenza or COVID-19.
• EE : When the person is in incubation period but not spread.
• ES : The individual is in incubation period and spreads.
• IA: The individual is asymptomatic: he/she is without symptoms but

infected and spreads.
• II : The person is infected and spreads the Influenza or COVID-19.
• IW : The person is infected but does not spread (She/he has low or zero

probability to spread it). The isolated persons can be this case.
• R: When the person is recovered.
• D: Dead person. Generally, the deaths can be by any complication.

The transition through each of the states is shown in Fig. 1 and 2. For
Seasonal Flu, IA and IW not are valid states, they are used for COVID-19.

– Initial Configuration: Before simulation begins, it is necessary to set rele-
vant information such as surface size, population, its distribution, the infected
population percentage and their ages.

– Virtual Clock: Time is discrete, at the simulation beginning, a time interval
is set. During this interval, a person can relate with his/her neighborhood and
moves to free cell. This movement follows some probabilistic pattern.

– Model Evolution Rules: There are two kinds of rules which are: those
related to diseases propagation and the persons movement inside CA. Each
one of rules are:

1. Diffusion and Spread Rules: Influenza A and COVID-19 are two different
viral diseases, in consequence they have nonidentical diffusion and spread
rules. A cell occupied by a person in time t, also could be occupied in time
t + 1. It changes its state according to:

• Seasonal Flu
– If at time t, the central cell is susceptible (S) and some of its adjacent

cells are infected (I). It will be incubating the influenza (EE) at time
t+1. The state change probability is proportional to number of adjacent
cells II (S → EE).

48 M. Lucero et al.

– If the cell is incubating flu (EE) and t is the end of the asymptomatic
period, at time t + 1 the cell will be in infected state II (EE → II).

– After 7 days, an infected cell (II) in time t will pass to state infected
without spread (IW) at time t + 1 (II → IW).

– In time t, an infected cell (II or IW) could become recovered (R) or dead
(D) state (time t + 1). The selection between two stages depends of a
probability function ({II , IW } → {R,D}).

• COVID-19
– If at time t, the central cell is susceptible (S) and, some of its adja-

cent cells are in some of these three state: ES , IA or II , the central cell
will change its state to EE (incubating without spread) at time t + 1,
(S → EE). The probability of state change is proportional to conta-
gious adjacent cells number, disease power and the person susceptibility
(central cell).

– At time t, if a cell was 4 days in state EE , it will pass to state ES at
time t + 1, (EE → ES). It begins to spread.

– If the cell is incubating COVID-19 (ES) and it is end of incubation period
(5 days from it was infected, at time t + 1, the cell will be in one of two
states: II or IA (ES → II/IA).

– At any time, an asymptomatic cell (IA) can start to have symptoms
(IA → II).

– After 2 days, at time t, a cell infected with symptoms (II) has a high
probability to be isolate at time t + 1. From that moment, the person
has medical cares and a new state: IW . The isolation would prevent to
continue with propagation (II → IW).

– At time t, a cell infected (IA, II or IW) could become recovered (R) or
dead (D) state (time t + 1). The new state will be determined by many
factors, among them are disease mortality degree, age and comorbidity
(IA/II/IW → {R,D}).

2. Rules of Person Motion: A person can move to a neighbour cell if it is free
(state F). All free neighbour cells have the same probability to be occupied
(uniform distribution). This assumption simplifies the problem. The model
represents the people interrelation, a movement in the surface is an abstrac-
tion, it can mean that a person moves to speak with other (for example an
work-mate) or, he/she goes to a business and relates with a vendor. A neigh-
bourhood change implies at least two virtual clock periods. The movement is
not physical, it models the interaction between a person and its neighbour-
hood.

Whit this specification, the implementation is easier.

Viral Diseases Propagation Analysis in Short Time 49

3.2 GPGPU Solution

Every GPGPU solution has many basic steps, first the input data transfers to the
graphics card. Once data are in place, many threads/work-items can start with
little overhead (In this text, we use CUDA and OpenCL terminology because
the solution is suitable to both). Each thread/work-item works over its data
and, at the computation end, the results should be copied back to the host
main memory. Algorithm 1 presents the deceases spread simulation core, which
performs a complete simulation on particular environment.

Algorithm 1. CPU-GPU D-CA Main
1: Init environment
2: Set Simulator Parameters
3: Show (Env-Stat-Perf)
4: while time or cell in {EE , IA, II , IW } do
5: GPU-Parallel threads/work-items calculate
6: New Cell State
7: Cell Movement Intention
8: GPU-Parallel threads/work-items: Solve
9: Movement Conflict

10: Update Environment
11: Collect statistics
12: Show (Env-Stat-Perf)
13: end while

At lines 1 and 2, input simulator parameters are initialized, they are environ-
ment, population size, its distribution, each persons characteristic and random
seed (we work with a stochastic system, many variables/states are set random).
Then, lines 4–12, the deceases are propagated. First a GPU threads/work-items
set (CUDA Grid or OpenCL Index Space) is launched to calculate each new
cell state and its movement intention according its neighborhood. Once all these
are done for every cell, other GPU threads/work-items set is launched, in this
case each one solves movement conflicts and sets the new position of its cell. A
thread/work-item is in charge only one cell. Finally, the new situation is estab-
lished (line 10), partial results for statistics are collected (line 11) and some them
are showed, they are:

– Env : CA and the state of every cells. It is possible select how often is displayed:
each 5 periods, one of day, etc.

– Stat : Values to calculate statistics: number of illness, dead, healthy, etc.
– Perf : Simulation times. This values are printing only at the simulation end.

50 M. Lucero et al.

Two steps are necessary on GPU, in the first, if cell is not free and person
lives, each thread/work-item computes own next state and decides if he/she has
intention to move. To determine the next state, the CA rules are applied. Once
established it, the cell can choose to move to one of its free neighbours cells
(When there are two o more, one is random selected). The thread/work-item
adds its cell to the movement intentions list of selected free cell. When this step
finishes, the new CA is obtained and each free cell has an intention list to be
occupied by one of its neighbour.

The second step resolves movement conflicts, only those threads/work-items
work whose cell is free. They take into account its intentions list of its cell and
select randomly one of candidates to move there. Selected cell is moved and its
old position is marked free. In the worst case, the list of intentions will have a
maximum of eight candidates to move (Moore neighbourhood).

These two steps are two different kernels and are executed in strict sequence.
Both launch the same quantity threads/work-items (cells number), but work
over disjointed subset of cells: lives or free, respectively.

The simulation can end when one of these two conditions is achieved: max-
imum simulation time or some stable state, whichever first occurs. Maximum
simulation time can be modified and set. The second condition is possible when
the last sick person is cured or dies, nobody in the current population could
get it. This situation can be occur in small populations or with strict health
measures or high demographic distribution.

The next section some experimental results of this GPGPU D-CA are dis-
played.

4 Experimental Results

In this section, we show and analyse the experimental results to D-CA. Each
reported value is the average of many executions of the corresponding algorithm.
For each simulation, we consider different social scenarios. All of them have in
common the maximum time of simulation: 120 days, and the virtual clock: a
timestep is equivalent to 1 h.

The analysis was made for three GPU, whose characteristics are:,

Architecture Global memory Cores Clock rate

GTX1070 Pascal 8GB 1920 CUDA cores 1683MHz

AMD R7 M260 Topaz 2GB 384 stream processors 980MHz

Iris graphics 6100 Generation 8.0 1.5GB 384 shading processors 1100MHz

CPU Intel i7-7700K 16GB 4 4.20GHz

Viral Diseases Propagation Analysis in Short Time 51

Each social scenarios is defined by a next parameters combination:

– Environment
• Population: 10%, 25%, 50% and 90% of cells of lattice. We consider a

stationary type of population pyramid, each individual has an age between
1 to 90 years and there are three groups of person: Children (Up to
18 years old), Young-Adult (19 to 60 years) and Elder (Greater than
61 years). The degree susceptibility to infection and the mortality rate
is determined according of individual age [15,16] and other pre-existing
diseases.

• Lattice Size: 100, 200, 1500, 5500 and 8500 by side. These lattice size we
can compare with real urban center.

– Disease

Seasonal Flu COVID-19

Disease power 0.6 2.7

Mortality index 0.01 0.057

Initial infected population 0.02%, 2%, 10% 5, 35 and 75 persons

Risk group Children and elder Elder or

person with comorbidity

Isolation probability None 85%

We divide the tests in two groups: Performance and Diseases behaviour. For
the first case, we evaluate if our GPGPU proposals work well and their perfor-
mance are better than sequential solution. The Fig. 3(a) shows the time (in sec-
onds) reached for different simulation scenarios in different technologies: software
(CUDA and OpenCL), and GPU architectures (NVidia, AMD and Intel). There
are some cases that hardware resources are not enough to solve the problem.

The Fig. 3(b) graphs the achieved time for three population scenarios. In all
case, the best performance is reached to NVidia GPU and CUDA. Even more,
if we compare between the CUDA-solution and OpenCL-solution over the same
GPU, the lowest time is reached by CUDA-solution. The difference is small,
but you have to evaluate what do you want: portability or performance. In
this sense, the Fig. 4 shows the spent time for the same surface dimension and
different population amount. The time is similar in most GPUs, although it is
observed influence of population size or disease spread degree, mainly in GPU
with few resources.

52 M. Lucero et al.

Fig. 3. Time of GPGPU D-CA for 50% population and the lowest initial infection.

Fig. 4. Time of GPGPU D-CA for 1500 × 1500 lattice and different population

Viral Diseases Propagation Analysis in Short Time 53

The second tests group is related to diseases behaviour analysis. GPGPU D-
CA would allow us, in a short time, to study how act each disease for different
environments and parameters, for example we can analyse:

– How many active and total case for a population and different number of ini-
tial infected persons. The Fig. 5 shows the Influenza and COVID-19 behaviour
for 8500 lattice, 50% population and two size of initial infections.

– The daily amount of recovered, deaths and active sick persons, see Fig.6.
– Disease behaviour according to population density. In Fig. 7, we show the

same population amount distributed different surface sizes, and in Fig. 8 the
same space with different population densities.

Fig. 5. Active and total cases to the same population and different infection initial

54 M. Lucero et al.

Fig. 6. Number of deaths, recovered and new cases for different scenarios

Fig. 7. Same Population for different densities and initial infection (75 persons)

Viral Diseases Propagation Analysis in Short Time 55

Fig. 8. Same space and initial infection (0.2%), but different densities

Fig. 9. Disease effects by each age group for different surfaces with 50% population

– How each illness affects each age group, for example percentage of Influenza
Infected (Fig. 9(a)), and deaths number by COVID-19 with or without isola-
tion (Fig. 9(b)).

– If health measures have benefits or not. The Fig. 10 displays total and actives
cases of COVID-19 with and without quarantine.

All results, both performance and diseases behaviour, show that GPGPU
D-CA enables, in a short time, to analyse effects of viral diseases propagation.
Their behaviours were checked against the reported by WHO.

56 M. Lucero et al.

Fig. 10. Effects of isolation measure for 50% population and initial infection (5 persons)

5 Conclusions and Future Work

In this work, we have developed an application to viral diseases propagation
simulation using a CA and HPC techniques to GPU. We accomplish with two
goals: study viral diseases behaviour from different view points, and implement
an efficient solution: D-CA. The proposal model uses the CA and SEIR concepts
to analyse the effects of Seasonal Flu and COVID-19 for populations with a
territorial distribution and interactions among people.

All performance and disease behaviour results show that GPGPU D-CA is a
good analysis tools. In short time, it could help us to better understand the dis-
eases spread mechanisms for different population or regions. Beside it is portable
and has good scalability, mainly to problem size.

The next step will be to solve the limitations derived from GPU resources,
mainly memory size. In this direction, there are two alternatives, one is consid-
ering data partition and many GPU steps, and the other is multi-GPU environ-
ments.

Another open lines are, related to improve performance: studying the appli-
cation memory use in order to reduce memory latencies as well as to enhance
memory bandwidth usage; or with the simulator: including a visualization tool
for diseases propagation in OpenGL and a graphic interface to set dynamically
diseases environments and some parameters related with, for examples health
measures: vaccines or comorbidity diseases characteristics.

Viral Diseases Propagation Analysis in Short Time 57

References

1. Beauchemin, C., Samuel, J., Tuszynski, J.: A simple cellular automaton model for
influenza a viral infections. J. Theor. Biol. 232(2), 223–234 (2005)

2. Casares, F., Tissera, P., Piccoli, F.: A parallel proposal for seir model using cellular
automata. In: XXII Congreso Argentino de Ciencias de la Computación (CACIC
2016), pp. 208–219 (2016)

3. Gardner, M.: Mathematical games. Sci. Am. 222(1), 124–127 (1970)
4. Gaudiani, A., Luque, E., Garcia, P., Naiouf, M., De Giusti, A.: Optimización y

computación paralela aplicados a mejorar la predicción de un simulador de cauce
de ŕıos. In: XXII Congreso Argentino de Ciencias de la Computación (CACIC
2016), pp. 179–188 (2016)

5. Gu, Y., Ding, J.: Research on rumors spread based on cellular automata. In: Yang,
Y., Ma, M. (eds.) Proceedings of the 2nd International Conference on Green Com-
munications and Networks 2012 (GCN 2012): Volume 1. Lecture Notes in Electrical
Engineering, vol. 223. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-35419-9 28

6. Han, J., Sharma, B.: Learn CUDA Programming: A Beginner’s Guide to GPU
Programming and Parallel Computing with CUDA 10.x and C/C++. Packt Pub-
lishing, Birmingham (2019)

7. Kaeli, D.R., Mistry, P., Schaa, D., Zhang, D.P.: Heterogeneous Computing with
OpenCL 2.0. Elsevier, Amsterdam (2015)

8. Kauffman, S.: Emergent properties in random complex automata. Phys. D: Non-
linear Phenom. 10(1), 145–156 (1984)

9. Kermack, W., McKendrick, A., Walker, G.: A contribution to the mathematical
theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Char-
acter 115(772), 700–721 (1927)

10. Kier, L.B., Seybold, P.G., Cheng, C.K.: Modeling Chemical Systems Using Cellular
Automata. Springer, Heidelberg (2005). https://doi.org/10.1007/1-4020-3690-6

11. Kirk, D., Hwu, W.: Programming Massively Parallel Processors, A Hands on App-
roach. Morgan Kaufmann, Elsevier, Burlington (2010)

12. Kurgalin, S., Borzunov, S.: Implementation of parallel algorithms. A Practical
Approach to High-Performance Computing, pp. 93–115. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-27558-7 6

13. Li, X., Wu, J., Li, X.: Concluding remarks—looking to the future. Theory of Prac-
tical Cellular Automaton, pp. 323–352. Springer, Singapore (2018). https://doi.
org/10.1007/978-981-10-7497-4 9

14. McMillen, C.W.: Pandemics: A Very Short Introduction. Very Short Introductions.
Oxford University Press, Oxford (2016)

15. World Health Organization: Influenza (seasonal) (2018). Fact sheet
16. World Health Organization: Coronavirus disease (covid-19) (2020). Situation

Report 116
17. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU com-

puting. IEEE 96, 879–899 (2008)
18. Pacheco, P.: An Introduction to Parallel Programming. Elsevier, Amsterdam

(2011)
19. Tissera, P., Castro, A., Printista, A., Luque, E.: Simulating behaviours to face up

an emergency evacuation. CoRR arxiv:1401.5209 (2014)
20. Wolfram, S.: Universality and complexity in cellular automata. Phys. D: Nonlinear

Phenom. 10(1), 1–35 (1984)

https://doi.org/10.1007/978-3-642-35419-9_28
https://doi.org/10.1007/978-3-642-35419-9_28
https://doi.org/10.1007/1-4020-3690-6
https://doi.org/10.1007/978-3-030-27558-7_6
https://doi.org/10.1007/978-981-10-7497-4_9
https://doi.org/10.1007/978-981-10-7497-4_9
http://arxiv.org/abs/1401.5209

Architectural Design Criteria
for Evolvable Data-Intensive Machine

Learning Platforms

Gonzalo Zarza(B) and Juan José López Murphy

Data and Analytics, and Artificial Intelligence Studios,
Globant, Buenos Aires, Argentina

{gonzalo.zarza,juanjose.lopez}@globant.com

Abstract. Recent advances in Artificial Intelligence (AI) have fostered
a widespread adoption of Machine Learning (ML) capabilities within
many products and services. However, most organizations are not well
suited to fully exploit the strategic advantages of AI. Implementing ML
solutions is still a complex endeavor due to the fast-pace evolution and
the intrinsic exploratory nature of state-of-the-art ML techniques. In
many respects, the evolution of data platforms through highly parallel
or high performance technologies have focused on the capacity to mas-
sively process the elements consumed by these ML models. This separate
consideration renders reference architectures to be either suited for ana-
lytics consumption, or for raw storage. There is no joint consideration
for the complete cycle of data management, models development, and
serving with feedback and human-in-the-loop requirements. This paper
introduces design criteria conceived to help organizations to architect
and implement data platforms to effectively exploit their ML capabili-
ties. The main objective of this work is to expedite the development of
data platforms for ML by avoiding common implementation mistakes.
The proposed guideline constitutes the methodical articulation of the
empirical knowledge acquired over the last years designing, developing,
evolving and maintaining a broad spectrum of relevant industry-oriented
Data and AI solutions. We have focused on evaluating our proposal by
assessing the functionality and usability of the architectures and imple-
mentations originated from our design criteria.

Keywords: Data platform · Design criteria · Deep learning · Big data

1 Introduction

Artificial Intelligence (AI) plays a major role in a growing number of services and
products we use and consume everyday, ranging from navigation apps (Waze,
Google Maps) and recommendations systems (Netflix, Amazon, Elsevier) up to
more critical health-support systems including automatic cancer detection and
classification [8,21], and even helping to fasten the diagnosis of patients infected
by the novel COVID-19 [22].
c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 58–77, 2020.
https://doi.org/10.1007/978-3-030-61218-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_5&domain=pdf
http://orcid.org/0000-0003-0795-0933
http://orcid.org/0000-0002-0314-8903
https://doi.org/10.1007/978-3-030-61218-4_5

Architectural Design Criteria for Machine Learning 59

There is a general consensus that such developments have been enabled by
major improvements made in the fields of Machine Learning (ML), and particu-
larly in Deep Learning (DL), over the last few years. This trend implies that ML
and its applications have become a major actor in our day to day routine and will
have a non-stopping and ever-growing impact on our lives in the near future. ML
applications are mostly characterized by being intensive in terms of both data
and computing processing, thus requiring the best of both worlds to be useful
for the users and at the end to the society as a whole: High-Performance Com-
puting (HPC) to support the ever-growing demand for on-line calculations; and
Big Data to enable the extraction of valuable knowledge from both structured
and unstructured massive data sources.

Despite sharing common origins in the research community, conjugating the
best of both spaces to cope with the blended data and computing needs of ML
applications is not an easy task, mainly due to the underlying subtle discrepan-
cies in the solution approach taken by each field of knowledge. On one hand, Big
Data solutions are currently oriented towards providing highly efficient stream-
ing or Near Real-Time (NRT) data processing features and effective knowledge
extraction, while delegating most of the fine-grain computing efficiency techni-
calities on hardware providers –and to some extent, on the major cloud service
providers. On the other hand, HPC solutions are well-known by excelling in com-
puting performance and paying great attention to efficient software-hardware
cohesion and complement. However, given the large-scale and long-haul nature
of computing tasks that run on supercomputers, most HPC systems are highly
optimized to ensure the completion of job executions by providing the necessary
mechanisms to this end (such as fault tolerance and disaster recovery) rather
than on providing support to handling and exploiting data generated from real-
time user interaction and feedback. For instance, most HPC applications have
not being designed to react on-line to data streams being generated in real-time
by end-users, as it happens in large-scale applications based on Participatory
Sensing Systems (PSSs) [5,18] such as Waze or Google Maps.

This paper describes our effort to shorten the aforementioned gap, leverag-
ing the knowledge from both fields to enable efficient interactive data-intensive
ML applications. To address this challenge, we have focused on defining design
criteria to guide the development of efficient yet evolvable system architectures.
The proposed guideline constitutes the methodical articulation of the empiri-
cal knowledge acquired over the last years designing, developing, evolving and
maintaining a broad spectrum of relevant industry-oriented Data and AI solu-
tions for business verticals such as Operations Research Optimization, Industrial
Automation, Investment Banking and Health Care, among others. The design
criteria we present in this paper has two main purposes. First, to facilitate and
expedite the development of effective data platforms to handle the complete life
cycle of ML applications. Second, to help avoid common –and not that common–
mistakes when implementing evolvable data-intensive platforms. The proposed
design criteria have been validated through the successful rapid implementation
and deploy of data-intensive ML platforms for different verticals and industries,

60 G. Zarza and J. J. López Murphy

as well as being used as the main AI platform on Globant’s R&D initiatives.
In our evaluation, we explore scenarios and real cases where the tenets of the
present guidelines are applied to showcase their usage.

This paper is organized as follows. First, a deep discussion about the motiva-
tion of our proposal, together with the review of the most relevant related work
in the literature, are presented in Sect. 2. Then, the proposed design criteria is
described in detail in Sect. 3; and the resulting experiences and observations are
introduced in Sect. 4. Finally, the conclusions are drawn in Sect. 5.

2 Motivation

Large scale AI developments, once a latent research line leveraged almost exclu-
sively by companies such as Google or Facebook, are nowadays available and
strategic for most modern organizations, regardless of their size and budget. This
broader use base has fueled an explosion of interest in this area of knowledge
given that not being well suited for AI implies a major strategic disadvantage for
most industries. Notwithstanding, implementing AI solutions is still a complex
endeavor mainly because of the fast-pace evolution and the intrinsic exploratory
nature of state of the art ML techniques [17]. This complexity also extends to the
platforms that support and serve those developments given that, in general, ML
projects consist of a vast array of separate elements that need to be integrated
with current systems, and also linked with a clear vision on how that adds value
to users, whether internal or external.

The first step to deal with the above-mentioned complexity is to identify
the predominant characteristics that drive ML applications. Identifying their
dominant attributes creates a significant opportunity to define a common set
of building blocks that can be used to design systems and platforms capable
of effectively handling such complexities. We try to seize that opportunity by
defining the design criteria for evolvable data-intensive platforms based on this
analysis, as discussed in Sect. 3. A study of popular ML applications suggests
that there are shared dominant features to most of them:

– Heterogeneous computing. Given the compute-intensive nature of train-
ing DL models, there is a prominent trend towards hardware specialization
to improve performance, given raise to specific processing unit architectures
such as GPUs, TPUs, or the Intel’s Nervana and Habana neural network
processor families. Even though the problem of dealing with computing het-
erogeneity has been widely addressed –and solved– for HPC systems, it is
not very common to be addressed outside the academic and super-computing
spheres. In fact, it still poses huge challenges for small and medium size
companies and organizations that do not rely on extensive experience on
high-performance solutions, and have limited budget compared with large
corporations or research institutions.

– Non-uniform use of resources. The use of resources in ML applications
depends on the stage of their development life-cycle and presents different

Architectural Design Criteria for Machine Learning 61

characteristics, e.g. modeling, training and serving that make them intensive
on the use of different resources. For instance, most ML applications, and
specially DL solutions, are often made of very deep neural networks which
implies that training them for inference takes up a lot of computer power.
A similar bridge can be found between the use and serving of DL models
and data-intensive access patterns. In addition, the access to share resources
(mainly computing) pose new challenges given that the modeling and training
phases of ML developments are characterized by being predominantly inter-
active or even based on try-and-failure, while the serving phase responds to
a more traditional access pattern.

– Deployment and versioning dependencies. A lot of research work has
been devoted in recent years to advance the frontiers of ML, particularly in
DL, fostering the continuous evolution of models due to data changes, new
methods, new training strategies, etc. This situation gives raise to a whole
new set of challenges in terms of efficient identification, checkpointing and
serving of ML models because they need to be updated more frequently than
other types of software applications. It is not uncommon to host a model that
relies on different set of parameters to serve several clients. Or even having
the same client accessing different sets of parameters for the same solution,
e.g. financial services from multinational banks targeting different markets
or countries (thus requiring different network parameters). This dynamism
presents new challenges to the linear branching approach of current versioning
systems.

The aforementioned features pose a narrow solution space for creating man-
ageable and cost effective platforms for ML. Several academic and industrial
organizations made significant investments to develop custom solutions. Some of
the most relevant are the following: Facebook’s AI backbone, FBLearner Flow
[7], optimized to ease the reuse of algorithms and leveraging their own infrastruc-
ture, akin to cloud-based ML services such as Microsoft’s Azure Machine Learn-
ing; Uber’s ML platform, Michelangelo [13], enables internal teams to cover the
end-to-end ML workflow, from building to training, up to deploy and monitor
thousands of models in production across the company; MLflow, the open-source
ML platform from Databricks [24], designed to automate the life cycle of ML
solutions with an open interface to most ML libraries; Google’s platform for
deploying production ML pipelines, TensorFlow Extended (TFX) [4], providing
production-grade support to their ML pipelines with a focus on TensorFlow;
and the Stanford Data Analytics for What’s Next (DAWN) research project [3],
intended to make tools for AI and data product development more efficient and
accessible by working on several research lines, including new interfaces to ML,
end-to-end ML systems, and new substrates for ML.

These solutions emerged in the context of specific angles of the problematic,
with a sizable number of configurations remaining that still pose challenges as
of this writing. There are three main regions or groups of solutions, according
to their scale: Proof of Concepts (POCs), not meant to be productive nor part
of the critical path of most businesses; really massive applications supported

62 G. Zarza and J. J. López Murphy

by well-funded companies such as Google, Amazon or Uber, with a set of spe-
cific requirements addressed by custom-made and highly-scalable solutions, often
open-sourced as in the case of the Hadoop implementation [2,20] based on the
Google’s MapReduce [6] and Google File System (GFS) [11] developments; and
the wide span between the previous two groups, which are not covered by any
existing solution to the best of our knowledge, regardless of representing most
of current and future ML endeavors. Within this group we will find applications
such as Elsevier’s ScienceDirect, medical devices augmented by AI, and even
real-time systems used for security purposes such as automatic license plate
recognition at nerve centers of neuralgic cities such as Buenos Aires.

This wide range of applications laying in the middle of the spectrum, share
common functional requirements and patterns including complex management,
an increased hardware footprint, and data and processing duplication. Currently,
those needs are addressed on an on-demand or ad-hoc manner, but whose solu-
tion has the potential of being standardized. To overcome these issues and pro-
vide more flexibility for future demands, we have first identified and characterized
those requirements by leveraging the experience gained over the last years imple-
menting Data and AI solutions. An effort to incorporate that learning requires
the formulation of design criteria to guide the development of data-intensive
platforms for the wide-range of ML applications that are not properly covered
at this moment. This is the ultimate goal of this work and will be introduced in
detail in the following section.

3 Architectural Design Criteria

Some of the most predominant and difficult problems found on ML installations
have to do with the variety of data, use cases, users, and environments the under-
lying platform must support through the different stages of the ML life cycle.
Such problems tend to be the least glamorous to address but are also among the
most important since they may fundamentally limit the usefulness of the system
as a whole [12]. The typical life cycle of a ML application covers not only the
model development but also the stages of training, inference and serving. Each
stage imposes different requirements to the underlying platform and demands
solutions to address common problems such as neural network modeling, feature
management, data provenance and storage, low-latency serving, etc. This situ-
ation emphasizes the need of unifying design principles and systems architected
to address those requirements.

In the following paragraphs, we introduce and describe in detail the results
of our effort to overcome this situation, leveraging the knowledge from HPC
and Big Data to enable the design and development of efficient data-intensive
ML platforms. First, we elaborate and present the principles of the proposed
architectural design criteria for evolvable ML platforms. Then, we articulate
and describe in detail each unit. We start by analyzing the characteristics of
the data to be handled and maintained in Sect. 3.1. In Sect. 3.2, we focus on the
modules needed to support the most critical functionalities of ML platforms.

Architectural Design Criteria for Machine Learning 63

A technology-agnostic reference platform architecture is introduced in Sect. 3.3.
Relevant examples of custom implementations based on the reference architec-
ture are described in Sect. 3.4.

Our design criteria have been built from the ground up to aid on design-
ing and developing efficient data-intensive ML platforms, taking into account
the issues discussed above. We realize the need of characterizing the dominant
attributes of effective data platforms as the first step in defining useful guide-
lines for the specific needs of ML [14]. Based on our experience implementing
data platforms for many industries, we have identified the following dominant
attributes:

1. Agnosticism. The prevalent uninterrupted evolution of tools and frame-
works –together with their vertiginous blossom and obsolescence– highlights
the importance of designing systems that are independent of specific tech-
nologies. Being technology-agnostic became almost mandatory for modern
platform architectures. An agnostic approach will prevent being held captive
of technology life cycles and feature prioritization, thus avoiding unneces-
sary architecture constraints given by the applicability –or incompatibility–
of particular tools and frameworks, as in some examples in Sect. 2.

2. Evolvability. As stated by Ford et al. [9], changes in software projects are
usually driven by a reevaluation of functionality and/or scope. Therefore,
given the ever-evolving nature of ML systems, where users constantly exper-
iment with new datasets, models, software libraries, parameters, etc., it is
imperative to carefully design platforms to cope with such changes. This has
turned evolvability into a critical feature for effective ML platforms.

3. Modularity. The separation and isolation provided by modular architec-
tures are key to ensure that one component (typically a module) does not
interfere with the behavior of others [1]. Consequently, the design of a proper
modular architecture –to the largest possible extent– will leave room for fur-
ther expansions of the platform by enabling seamless updates, upgrades and
replacements of modules. In addition, relying on a modular architectural
design is paramount to achieve effective evolvability.

4. Data-savviness. Undoubtedly, handling data and user data flows efficiently
is the most challenging and valuable operation to be performed on any mod-
ern ML platform. It is of utmost importance because data is the raw material
that fuels ML and AI initiatives in a broad sense [19]. Many data flows are
generated throughout the life cycle of ML applications, however, correctly
handling them entails significant data challenges for many reasons. First, the
high-throughput and low-latency data reads and writes required in ML. Sec-
ond, their specific processing requirements that often go beyond aggregation
and join operations on the data. Third, the need to combine data –frequently
unstructured or semi-structured– from disparate storage systems and het-
erogeneous sources.

We now turn to describing how the above mentioned building blocks are
materialized in an architecture proposal by following an incremental develop-
ment approach, starting from the analysis of the data and storage needs up to

64 G. Zarza and J. J. López Murphy

implementation blueprints for different reference solutions. Many of these con-
cepts are not new, but rather viewed through a new lens in which these attributes
enable platforms to effectively cope with the prevailing ML application challenges
(introduced in Sect. 2): heterogeneous computing, non-uniform use of resources,
and deployment and versioning dependencies. This is where much of our effort
was devoted, and what makes the proposed criteria a useful guideline for design-
ing data-intensive ML platforms.

3.1 Data-Savviness: Analysis of Data Needs

Nowadays, it is almost a no-brainer noticing the criticality of data to ML. The
theory is solid, but in practice, things became challenging when dealing simulta-
neously with vast amounts of structured, semi-structured and unstructured data
from heterogeneous sources, specially for NRT multi-tenant applications. Under
these circumstances, usual in ML developments, it is imperative to thoroughly
and deeply identify and evaluate each data flow and the specific data operation
requirements for the ML solutions to support. It is possible to identify a number
of relevant data categories by analyzing the operation modes a ML platform
needs to provide support to over its life cycle. The most meaningful groups are:

1. Checkpoints. Commonly large binary files (dozens and even hundreds of
GBs) that maintain a fixed size given a certain model. The file may evolve
into a different file (different hash) if the model parameters change, which
does not imply a variation in size but in content of the file.

2. Training datasets. There are several major groups of datasets currently
being used by ML models, including text and multimedia inputs such as
images, audio, video, etc. The type of data to be stored, and the correspond-
ing requirements, will strictly depend on the use case. The access pattern of
these inputs will be sporadic, however, their retrieve pattern will stress the
storage system since the media will be access as a whole (ideally in parallel)
to generate a specific checkpoint.

3. Metadata. The majority of files stored in the platform will be paired with
their corresponding metadata. Such information will be used as the main
search criteria for datasets. It will be represented by dictionaries with differ-
ent hash codes indicating where to look for the specific data in a stored file
and also which tags are associated with it.

4. Model feedback. Feedback formats will depend on the use case and the
support the models count with to provide it. Frequently, it will be repre-
sented by a simple Yes/No, Agree/Disagree or a reasonably sized JSON
object specifying more details. In other scenarios, users might provide the
correct solution to the original data (e.g. painting the zone of the image
which presents what should have been detected), increasing the feedback
size significantly.

5. Model resolution. Resolution formats will depend on the specific model.
To avoid unnecessary overheads, when dealing with multimedia data, it is
important to design the model –if possible– to provide resolutions based

Architectural Design Criteria for Machine Learning 65

on text files to enhance the media (such as JSONs) instead of re-sending
the resolved media over the network. This is particularly important when
working with audio and video files that tend to be large. However, there will
be some cases in which the same input media data needs to be returned to
the client (as in style transferring models), thus the data pipelines need to
be designed accordingly.

6. Execution feedback. It represents the entire set of data –and information–
obtained during the execution of the platform components, such as message
brokers, APIs, ML models, etc.

The data corresponding to each group can be grouped around relevant data
characteristics, as summarized in Table 1. The data framed on each category
interacts with –and is originated from– diverse data flows that may pose specific
requirements for segregated storage paths due to several reasons, such as:

– Security. Data platforms often handle proprietary data (e.g. industrial, com-
mercial or trade secret data) that should not be accessed nor available to other
clients or entities. For this reason, it may be necessary to set up and provide
segregated access to such assets.

– Confidentiality. Some subset of data, regardless of its category, may be
subject to specific regulations and thus, it will be necessary to either segregate
and restrict access to that data, or even provide a completely isolated (and
potentially replicated) storage.

– Efficiency. Data consumption and use patterns convey highly different
requirements on data storage and retrieval, thus enabling (or demanding) dif-
ferent storage solutions, locations, and technologies. For instance, efficiently
accessing and retrieving non-structured data greatly differs from fetching
binary data.

Additional data topics to be considered are: encryption; replication and fault
tolerance; certified data destruction policies (e.g. medical records); and unique
data identification (crucial to have an effective destruction policy), among others.

3.2 Modularity: Analysis of Requirements

There is no doubt that ML is all about data and that the amount of effort and
rigor it takes to discover, source, manage, and version data is inherently more
complex and different than doing the same with software code [1]. Therefore,
the first step to design a data platform for ML is to accurately identify those
components that can be grouped together and operate as independent parts
with standard interfaces between them. The analysis previously introduced con-
stitutes a solid starting point for the identification of predominant features and
common reusable components to most data platforms.

The main idea underlying modular design is to organize complex systems
as a set of distinct components that can be developed independently and then
plugged together to operate as a cohesive entity [10]. This concept, materialized

66 G. Zarza and J. J. López Murphy

as modular architectures, has become essential to reduce the impact and hassle of
software and technology obsolescence in modern data platforms caused mainly by
the fast-pace evolution of ML models, tools and frameworks. The main modules
are illustrated in Fig. 1(a). Similarly, Fig. 1(b) shows the key functionalities
encapsulated within each module.

Starting from the analysis of data needs, it is possible to identify the need of
two data-focused modules: persistence and exploitation. The data persistence
module is responsible for providing a common abstract layer to persist each data
type to its corresponding storage solution, based on the categories detailed in
Table 1, decoupling the business logic of the platform entities from the under-
lying storage technologies. In addition, the data persistence module typically
includes automated data integration tools to perform basic data transformation
to incoming data flows. The data exploitation module groups together the
tools and frameworks that operate on the system data. It is usually composed
of tools for data visualization, filtering, full-text search and processing.

Taking into account the data handling operations required in ML platforms, it
is evident the need for a third module that would be responsible for securing and
protecting the access and transit, not only of data but also to the entire platform,
together with the administration of users, groups and operation permissions. The
security module groups functionalities compassing the overall security of the
platform, including data governance and access control. At a minimum, this
component should have three sub-modules: data encryption, user management,
and access control (crucial for APIs). Data encryption capabilities are required
to secure and protect data in transit and in storage within the platform. User
management comprises user authentication and authorization tools, and support
for permissions, roles and groups management. The access control sub-module

Table 1. Summary of data from the major groups.

Category Write freq. Read freq. Size Type Queryable Main stages

Checkpoints Low Low to Large, Binary No Training,

medium single files serving

Training Lowa Medium Variable, Text & Nob Training,

datasets many files multimedia serving

Metadata Low High Small, Text Yes Training

many records

Model Medium Low Small, Primarily Yes Serving

feedback to high many records text

Model Medium Low Variable, Text & Nob Serving

resolution to highc many files multimedia

Execution Low to Low Small, Text, Yes N/A

feedback medium many records logs

[a] The write frequency could be higher when applying data transformation models.
[b] Querying capabilities on text files may be required.
[c] Note that resolutions will probably be stored for further analysis.

Architectural Design Criteria for Machine Learning 67

is in charge of securing the external access to critical system interfaces, and to
validate the clearance level required to perform each predefined set of actions
within the platform.

In addition, given the event-based nature of modern data and ML frameworks
and tools, it is necessary to rely on a shared core utilities module that includes
features and mechanisms for event handling. This gives rise to the core utilities
module, intended to standardize the development tools and centralize common
features among all components, including the infrastructure scripts.

The complex and ever-growing nature of modern platforms are not easy to
manage and handling. For this reason, it is crucial to provide platforms with
efficient management and monitoring capabilities based on analytics from the
platform, users and products. The management module comprises two main
sub-modules: analytics and monitoring. The analytics sub-module is responsible
for enabling real-time analytics and monitoring on current traffic, topology status
and APIs activities. It provides usage information for every user and across
users. Usually, it offers users their own analytics as a separate product. The
goal of the monitoring sub-module is to provide services to: prevent incidents,
proactive alerts 24/7, evaluate SLA, prevent service loss or degradation, etc. It
should provide two types of metrics: internal to the platform, and related to the
external usage of the system.

The aforementioned modules are embodied into a technology-agnostic refer-
ence architecture in Sect. 3.3, while specific design blueprints are presented in
Sect. 3.4.

(a) Main modules (b) Sub-modules schematics

Fig. 1. Details of common modules of ML data platforms.

3.3 Agnosticism: Technology-Agnostic Reference Architecture

In the process of designing, implementing and maintaining large-scale data plat-
forms for different business verticals we have gained a lot of useful experience
and learned many lessons. The most important lesson was to keep the architec-
ture designs as clean and simple as possible. One of our main objectives is to
enable systems to keep resources and operational cost low since platforms are

68 G. Zarza and J. J. López Murphy

expected to store and process an ever-increasing amount of data and provide
services to myriads of users.

The architecture illustrated in Fig. 2 depicts the key components of the pro-
posed reference architecture, aimed on providing the general design details which
should be then easily portable to any cloud provider and to on-premise solutions
as well. We have put special attention on avoiding any constraint or depen-
dence on specific technologies during the design of the reference architecture.
Conversely, production-ready platform architectures, together with technology
alternatives for each component, are presented in Sect. 3.4.

In order to describe and clarify the purpose of each component shown in Fig.
2, we will introduce a practical data-flow example. The data platform flow begins
when the user or client app pushes data or feedbacks (analog to the datasets
and model feedback detailed in Sect. 3.1) into the platform. This data enters the
system through a gateway, which will manage authentication, authorization and
data compression, among other features, and is then stored in the corresponding
queuing module topic. An extra pre-processing layer could be optionally included
in between to transform input raw data in real-time before storing it into topics.

Real-time data flow and processing are commonly based on queue manage-
ment systems, comprised of topics which are also split into partitions. Whenever
pushing a new message, a partition key should be specified to increase the sys-
tem performance and ease consumption on later stages, being able to process a
specific client data as an ordered sequence of events. Most data platforms will
typically need three main topics: 1) data topics that will handle raw or pre-
processed input data; 2) model resolution topics, storing the outputs generated
by the corresponding ML applications; and 3) optional feedback or interaction
topics which will handle whenever the user wants/needs to provide some feed-
back such as “the answer was not correct” (e.g., specifying a person presence
within an image where there are just some dogs). In addition, it is possible to
set up a segregated group of topics to provided clients with isolated access to
their own specific model resolutions.

In order to persist the different groups of data detailed in Table 1, a storage
layer must be included. This layer should allow at least structured and unstruc-
tured data and expose an API to consume its content. A versioning strategy
must also be implemented to deal with different versions of datasets, checkpoints,
etc. There are several sources of user and application data to be persisted (tem-
porarily or permanently), identified and numbered in Fig. 2. Since persisted data
may come from different clients, which will probably demand privacy politics,
authentication and authorization are also requirements for this layer. When-
ever possible, compression should also be taken into account to reduce the huge
amount of data that will be handled. Once the above described flow is com-
pleted for an input, it is necessary to provide clients with asynchronous access
to the corresponding model results (e.g., a car image with its license plate high-

Architectural Design Criteria for Machine Learning 69

lighted). Note that external users should not have access to the data stored in
this layer. Instead, they should only be able to connect to their own resolutions
topics/streams.

Fig. 2. High-level agnostic architecture for ML data platforms.

3.4 Evolvability: Design Blueprints for Custom Implementations

Agnosticism was the main driver for the definition of the reference architecture
outlined in the previous section. Here, we introduce the blueprints of tailored
architectures designed for production-ready environments and large-scale data
processing needs. Given that a plethora of organizations have transitioned and
migrated their mission critical operations technology infrastructure to cloud-
based environments, we have favored cloud-based architectures and we share
the implementation details for the most relevant cloud platforms below1.

We introduce two examples of system architecture blueprints in this section
based on the reference architecture outlined in Fig. 2, with some slight imple-
mentation differences. On one hand, the cloud-based architecture design shown
in Fig. 3, built with the cloud computing solutions from Amazon Web Services
(AWS). On the other hand, the container2-based alternative shown in Fig. 4,
designed to be set-up on-premise or on scalable virtualized environments such
as Amazon EC2, Google Compute Engine or Microsoft Container Instances,
among others. This architecture has been designed to be independent of the
underlying hardware configurations (or virtualized environments).

There are three leading services in the Amazon-based implementation of Fig.
3: AWS Lambda, Amazon Kinesis, and Amazon S3. AWS Lambda is a server-
less computing service that has been used to execute specific code in response to
1

The tools and frameworks specified on the blueprints constitute, to the best of our knowledge,
the most mature state-of-the-art alternatives as of this writing.

2
A standard unit of software that packages up code and all its dependencies so the application
runs quickly and reliably from one computing environment to another.

70 G. Zarza and J. J. López Murphy

events/triggers such as gateway calls, data pre and post processing, etc. Kinesis,
Amazon’s data streaming solution, has been used as a temporary data storage
solution and to decouple data flow management and computation. Amazon S3
(Simple Storage Service) has been used to implement the mid and long term
storage system due to it’s security, flexibility and simplicity to interact with
Amazon’s data transfer and compute services. The approach used to design the
Amazon-based architecture has been tailored to create the architectures corre-
sponding to the other two main cloud computing providers, Microsoft Azure and
Google Cloud Platform (GCP). For comparison purposes, Table 2 summarizes
the correspondence between the components of the reference architecture and
the equivalent service for the three main cloud computing providers.

Fig. 3. Cloud-based architecture diagram - AWS implementation.

Fig. 4. Container-based architecture diagram - on-premise implementation.

Architectural Design Criteria for Machine Learning 71

Table 2. Components of reference architecture implementations.

Deployment Gateway Message broker Light processing Persistence

AWS API gateway Kinesis Lambda S3

Azure Azure functions Event hubs Azure functions Blob storage

GCP Cloud endpoints Cloud pub/sub Cloud functions Cloud storage

On-premise OAuth Apache Kafka Python, flask HDFS

4 Results

In this section, we describe the evaluations that have been carried out to val-
idate our work. We have focused on evaluating our proposals by assessing the
functionality and usability of the architectures and implementations originated
from our design criteria. We have chosen not to pursue a direct raw-performance
measurement in this work since the results of such assessment would not con-
tribute significantly to evaluate the suitability of the proposed design criteria.
Conversely, due to the large number of uncontrolled variables impacting the eval-
uation (characteristics of instances, replicas, regions, storage solutions, process-
ing units, etc.), the results would expose the capabilities of each cloud computing
provider and available hardware installations rather than the benefits offered by
the proposed design criteria and the resulting architectures. Notwithstanding, we
are constantly monitoring alternatives to expand the assessment of our proposal,
including the many efforts being devoted to design and evolve ML benchmarks
for different types of processing architectures, as in the preliminary works made
public by Wang et al. [23], Mattson et atl. [15] and Reddi et al. [16].

4.1 Functional Evaluation

In order to assess the capabilities of the guidelines presented above, in this section
we cover how it applies to varying scenarios across three relevant dimensions,
enabling us to examine how the architecture lends itself to adaptation to the
combinations between them.

The first dimension is related to the type of data that AI models can handle,
not to the specific algorithm, as the relevant dimension considers how the data
type needs to flow through the architecture, which includes the following types:

– Binary data. While images represent the most common type for binary data,
other usual cases are video, audio, protocol buffers and common formats such
as PDF files. The specific process applied to this data –including serialization–
is encapsulated in the application, decoupled from the flow of the data in the
architecture. Use cases like computer vision models can leverage queue opti-
mization in order to take advantage of GPU architectures through complex
batches.

72 G. Zarza and J. J. López Murphy

– Sequence data. Commonly text data, ranging from simple strings up to
complex documents in a JSON-like representation. Typically smaller than
binary data, the size of the message can grow as to require custom handling,
e.g. genome sequences. Applications of information retrieval like multi-hop
inference, specially in distractor -like settings, require long spans of text to be
applied meaningfully.

– Structured data. Any tabular-form input that can be handled by tradi-
tional databases is serializable in standard ways, though for most use cases,
structured data would be a final endpoint to register metadata associated
with a combination of the previous types of data, a version of a process, and
more.

These modes can interact, e.g. a binary file (PDF) is processed through OCR
on its image components, the resulting text piped into another algorithm, and
its output registered as structured metadata on a database. The combination
of file-driven storage for binary data, together with document-driven storage for
sequence data, and relational-driven storage for structure data completes the use
case for any AI model.

The second dimension relates to the deployment requirements in terms of the
capacity to access, scale, and control of the architecture deployment, with the
following considerations:

– Cloud agnostic. The highest level of elastic scaling is realized through a
cloud infrastructure, considering usage restrictions depending on the region
that will be served, reliability of network components, or fixed/variable cost
structures. The capacity to transition from, or integrate into, several providers
while maintaining a unique code based requires a set of cloud agnostic com-
ponents to be deployed, orchestrated or called upon by other systems with a
high level of abstraction.

– On premise. There are arguments to be made about leveraging existing
hardware, particularly compute clusters and GPUs, for an already existing
workflow, like deploying a closed-off version of a given ML model that is going
to process private data that cannot be exposed to external networks. Given
the agnosticism of the proposed design criteria, designing different architec-
tures based on the deployment constraints is unnecessary and inefficient.

– Portable. There are many instances where access to significant hardware
components or network infrastructure can be severely limited, whereas on
remote locations like cruises, events on highly securitized areas, traveling
displays, etc. In such cases, being able to deploy a specific instance of the
same architecture (as the ones based on the reference architecture from Fig.
2) means that the decision of architecture deployment is not a prerequisite of
the specific instance of the design, enabling even utilization of low power or
mobile devices as compute options.

The third dimension considers the computing architectures for model execu-
tion: GPU/TPU, CPU, low power/embedded compute solutions and the adap-
tation of the required model components. E.g. when serving events in securitized

Architectural Design Criteria for Machine Learning 73

areas, where given the limitation of network access and hardware deployment,
most compute needs to occur in low power devices, demand will be erratic but
concentrated in rapid bursts, and connective failures are expected. Also in the
development of a service within the company that leverages open-source data
and components, alongside proprietary data that cannot be processed outside
the on-premise hardware facilities. Storage components, versioning strategies,
tenancy and other aspects can be solved following a cloud-oriented approach
(as the one exemplified in Sect. 3.4), while the compute and internal calls will
require to be served through on-premise hardware.

4.2 Real-World Use Cases

In order to demonstrate the adaptability and evolvability of our proposal, this
section analyzes the implementation of custom large scale ML platforms for real-
world use cases. These architectures have been designed following the criteria
detailed along this paper and are currently in-production in a wide range of
business domains such as health care, banking and energy. It is worth noting
that some architecture details have been omitted in order to comply with the
corresponding confidentiality and Non-Disclosure Agreements (NDA).

The fundamentally flexible and customizable design provided by the refer-
ence architecture introduced in Sect. 3.3 makes it possible to materialize many
different implementations. We have taken advantage of that flexibility to over-
come a variety of issues –operational and technical– in the process of building
and deploying the ML platforms for the above mentioned business verticals.

– Global-scale Health Care Institution. This project was intended to
develop a smart assistant tool to aid medical practitioners on real-time evalu-
ation of a specific pathology. It required a delicate balance between enhancing
the work-flow of the physicians, avoiding straight-out diagnosis while guid-
ing the professional in producing them, handling private and sensitive data,
and working in environments where a very low latency was required without
special guarantees of network bandwidth or mobile device power. The ML
algorithms were composed of a Directed Acyclic Graph (DAG) of semantic
segmentation Computer Vision (CV) algorithms, with a multi-task classi-
fication model ensemble outputting a score to inform the diagnosis, while
exposing the outputs of each separate algorithm. The physician can accept
or correct the output from the system. When a patient provides clearance,
the final physician-submitted result is used as a validated new data point,
maintaining the human-in-the-loop, enabling continuing the training of the
algorithms, with the capacity of using different reliability scores on results
accepted “as is” and modified ones. The platform architecture needed to be
flexible to be migrated to different cloud providers, given the world-wide scope
of the project, as each region where the application was meant to be used
could require different privacy regulations (GDPR, SOC 2, HIPAA, etc.),
even when defaulting to the most stringent ones by design. The platform
enabled the on-premise execution of the ML applications to comply with the
sensitive medical data protection regulations.

74 G. Zarza and J. J. López Murphy

– Multinational Investment Bank. A complete re-engineering of the bank’s
international trading systems due to performance and technology obsolesce
problems, the new platform replacing the trading production systems that
fed investment systems on different geographical regions in a phase manner.
The solution consisted on an enhanced version of the on-premise architecture
designed to improve the overall system performance by processing data in
batches rather than following the default step-by-step data stream processing.
This enhancement was crucial to reduce the overhead introduced by strict
real-time stream processing given that the nature of high-trading operations
enabled micro-batch processing without incurring performance penalties. The
resulting architecture, together with the tools and frameworks implemented
on-premises, are depicted in Fig. 5.

– Energy company. A project to reduce the security clearance time to access
corporate facilities through ML-powered facial recognition. Guests are reg-
istered as they accept invitations to events, meetings, etc., and once in the
company facilities, they are recognized by the security system that authorizes
their entry. The ML algorithms needed to account for a large drift in detection
scope, while minimizing full re-trainings, resulting in a moving target in the
recall objective that needs to be updated in real-time, whether on inclusion or
deletion, and a need for NRT responsiveness for effective access management.
A full cloud-based ML platform has been designed based on the architecture
from Fig. 3 but implemented on Microsoft Azure instead of AWS, with a tool
set similar to the one summarized in Table 2. In addition, it was necessary
to orchestrate on-demand asynchronous interactions with external devices,
sensors and other actuators in other to grant physical access to each type
of facility (corporate buildings, physical industrial plants, etc.), following an
approach analog to the API call depicted in the upper part of Fig. 2.

Fig. 5. Schematics of the enhanced on-premise architecture for the financial vertical.

Architectural Design Criteria for Machine Learning 75

5 Conclusions

In this paper, we propose design criteria for architecting evolvable data-intensive
ML platforms. Our work aims to bridge the gap between existing state-of-the-
art ML, HPC and Big Data technologies to efficiently develop interactive data-
intensive ML platforms for complex real-world use cases.

The strongest point and main contribution of our proposal is that it facili-
tates and expedites the development of comprehensive platforms that cover the
entire life cycle of ML solutions for a wide spectrum of often insufficiently served
business verticals. To this end, we have embedded in our proposal the knowledge
and practical learning gathered from an incremental three-stages analysis of the
ML ecosystem. The first stage corresponds to the characterization of dominant
attributes of effective data platforms for ML: agnosticism, evolvability, modular-
ity and data-savviness. The second level of analysis is centered on the prevalent
features of typical ML applications: heterogeneous computing, non-uniform use
of resources, deployment and versioning dependencies. The third stage of analy-
sis covered the most critical asset of ML solutions: data and its characterization.

We have evaluated the functionality of the proposed architecture guideline
through the rapid implementation and deploy of data-intensive ML platforms
for different verticals and industries. In addition, the flexibility of the resulting
architectures have been hard-proved (and stressed to the limit) serving as the
Globant’s main R&D AI platform concurrently running multiple applications
and supporting random user distribution and operation behavior.

With regard to the open lines, there are a number of directions that we would
like to pursue in the future. The strengthening and evolution of standardized
data security and testing solutions for ML platforms constitutes a particularly
interesting example of a constantly growing –and relatively uncovered– research
topic. In addition, the challenges of adapting the ideas behind our proposal
to design even more portable and self-contained architectures still remains a
promising open line. Moreover, it would be interesting to evaluate the extension
of our proposal to cover a broader spectrum of embedded and edge computing
systems for heavy industry applications.

Acknowledgements. We are grateful and would like to thank the engineering team
at Globant that helped us to design and implement the architecture introduced in
this article. In particular, we would like to thank for their invaluable collaboration
Agust́ın Huerta, Alejandro Galeano, Ana Maloberti, Diego Medina, Esteban Lussich,
Fabiana Tamburrini, Haldo Tabaré Sponton, Ilan Rosenfeld, Javier Minhondo, Marcela
Rodŕıguez and Mat́ıas Boix.

References

1. Amershi, S., et al.: Software engineering for machine learning: a case study. In:
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada, May 25–31,
2019, pp. 291–300. IEEE/ACM (2019). https://doi.org/10.1109/ICSE-SEIP.2019.
00042

https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICSE-SEIP.2019.00042

76 G. Zarza and J. J. López Murphy

2. Apache Software Foundation: Hadoop. http://hadoop.apache.org/. Accessed Mar
2020

3. Bailis, P., et al.: Infrastructure for usable machine learning: the Stanford DAWN
project (2017). http://arxiv.org/abs/1705.07538

4. Baylor, D., et al.: TFX: a TensorFlow-based production-scale machine learning
platform. In: Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Halifax, NS, Canada, August 13–17, 2017,
pp. 1387–1395. ACM (2017). https://doi.org/10.1145/3097983.3098021

5. Burke, J., et al.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW
2006): Mobile Device Centric Sensor Networks and Applications (2006)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of the 6th Conference on Symposium on Operating Systems Design
& Implementation, OSDI 2004, vol. 6. USENIX Association (2004). http://dl.acm.
org/citation.cfm?id=1251254.1251264

7. Dunn, J.: Introducing FBLearner flow: Facebook’s AI backbone (May
2016). https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-
s-ai-backbone/. Accessed Mar 2020

8. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep
neural networks. Nature 542(7639), 115–118 (2017). https://doi.org/10.1038/
nature21056

9. Ford, N., et al.: Building Evolutionary Architectures. O’Reilly UK Ltd., UK (2017)
10. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Par-

allel Software Engineering. Addison-Wesley, Reading (1995)
11. Ghemawat, S., et al.: The Google file system. In: ACM SIGOPS Operating Systems

Review, vol. 37, pp. 29–43. ACM (2003)
12. Goodhope, K., et al.: Building LinkedIn’s real-time activity data pipeline.

IEEE Data Eng. Bull. 35(2), 33–45 (2012). http://sites.computer.org/debull/
A12june/pipeline.pdf

13. Hermann, J., Balso, M.D.: Meet Michelangelo: Uber’s machine learning plat-
form (September 2017). https://eng.uber.com/michelangelo-machine-learning-
platform/. Accessed Mar 2020

14. Lopez Murphy, J., Zarza, G.: La ingenieŕıa del Big Data, Cómo trabajar con
datos. Editorial UOC, Barcelona (October 2017). http://www.editorialuoc.cat/la-
ingenieria-del-big-data

15. Mattson, P., et al.: MLPerf training benchmark. CoRR abs/1910.01500 (2019).
http://arxiv.org/abs/1910.01500

16. Reddi, V.J., et al.: MLPerf inference benchmark. CoRR abs/1911.02549 (2019).
http://arxiv.org/abs/1911.02549

17. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Pro-
ceedings of the 28th International Conference on Neural Information Processing
Systems, NIPS 2015, vol. 2, pp. 2503–2511. MIT Press (2015)

18. Silva, Thiago H., de Melo, Pedro O.S.Vaz., Viana, Aline Carneiro., Almeida, Jus-
sara M., Salles, Juliana, Loureiro, Antonio A.F.: Traffic condition is more than
colored lines on a map: characterization of Waze alerts. In: Jatowt, A., et al. (eds.)
SocInfo 2013. LNCS, vol. 8238, pp. 309–318. Springer, Cham (2013). https://doi.
org/10.1007/978-3-319-03260-3 27

19. Lakshmanan, V.: All your data leads to machine learning. In: Conference Keynote,
Converge Buenos Aires 2018 (March 2018). https://converge.globant.com/events/
converge-ba-MAR-2018

http://hadoop.apache.org/
http://arxiv.org/abs/1705.07538
https://doi.org/10.1145/3097983.3098021
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/nature21056
http://sites.computer.org/debull/A12june/pipeline.pdf
http://sites.computer.org/debull/A12june/pipeline.pdf
https://eng.uber.com/michelangelo-machine-learning-platform/
https://eng.uber.com/michelangelo-machine-learning-platform/
http://www.editorialuoc.cat/la-ingenieria-del-big-data
http://www.editorialuoc.cat/la-ingenieria-del-big-data
http://arxiv.org/abs/1910.01500
http://arxiv.org/abs/1911.02549
https://doi.org/10.1007/978-3-319-03260-3_27
https://doi.org/10.1007/978-3-319-03260-3_27
https://converge.globant.com/events/converge-ba-MAR-2018
https://converge.globant.com/events/converge-ba-MAR-2018

Architectural Design Criteria for Machine Learning 77

20. Vavilapalli, V.K., et al.: Apache Hadoop YARN: yet another resource negotiator.
In: Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC 2013.
ACM (2013). https://doi.org/10.1145/2523616.2523633

21. Wang, D., et al.: Deep learning for identifying metastatic breast cancer. CoRR
abs/1606.05718 (2016). http://arxiv.org/abs/1606.05718

22. Wang, L., Wong, A.: COVID-Net: a tailored deep convolutional neural network
design for detection of COVID-19 cases from chest radiography images. [open-
access preprint] (2020). https://arxiv.org/abs/2003.09871

23. Wang, Y., et al.: Benchmarking TPU, GPU, and CPU Platforms for Deep Learning
(2019). http://arxiv.org/abs/1907.10701

24. Zaharia, M., et al.: Accelerating the machine learning lifecycle with MLflow. IEEE
Data Eng. Bull. 41(4), 39–45 (2018)

https://doi.org/10.1145/2523616.2523633
http://arxiv.org/abs/1606.05718
https://arxiv.org/abs/2003.09871
http://arxiv.org/abs/1907.10701

Big Data

Harmonizing Big Data with a Knowledge
Graph: OceanGraph KG Uses Case

Marcos Zárate1,2(B) , Carlos Buckle2 , Renato Mazzanti2,3 ,
Mirtha Lewis1 , Pablo Fillottrani4,5 , and Claudio Delrieux6

1 Centre for the Study of Marine Systems,
Patagonian National Research Centre (CENPAT-CONICET),

Puerto Madryn, Argentina
{zarate,mirtha}@cenpat-conicet.gob.ar

2 Laboratorio de Investigaciones en Informática (LINVI) - Facultad de Ingenieŕıa,
Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB),

Puerto Madryn, Argentina
3 Unidad de Gestión de la Información, (UGI-CENPAT), Puerto Madryn, Argentina

renato@cenpat-conicet.gob.ar
4 Computer Science and Engineering Department,

Universidad Nacional del Sur, (DCIC-UNS), Bah́ıa Blanca, Argentina
prf@cs.uns.edu.ar

5 Comisión de Investigaciones Cient́ıficas, Provincia de Buenos Aires (CICPBA),
Buenos Aires, Argentina

6 Electric and Computer Engineering Department,
Universidad Nacional del Sur (DIEC-UNS), Bah́ıa Blanca, Argentina

cad@uns.edu.ar

Abstract. In this paper we introduce recent efforts carried out by the
OceanGraph KG project to integrate semi-structured or unstructured
content. We present some of the practical applications of OceanGraph
through use cases, and finally summarize the lessons learned during the
development process.

Keywords: Big data integration · Knowledge graph · Linked open
data · OceanGraph KG

1 Introduction and Motivation

The management of data generated in several disciplines, including Oceanogra-
phy and Meteorology, is currently facing great challenges. Among other facts,
this is triggered by the recent exponential increase in its volume and diversity of
sources, due to the growth of technology and advances in remote ocean obser-
vatories [1]. In addition, there is a great diversity in data types that must be
handled together. This includes physicochemical, geological, meteorological and
biological data, which must be integrated, and the analysis/information prod-
ucts for scientific, governmental, and productive purposes must be based on

c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 81–92, 2020.
https://doi.org/10.1007/978-3-030-61218-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_6&domain=pdf
http://orcid.org/0000-0001-8851-8602
http://orcid.org/0000-0003-0722-0949
http://orcid.org/0000-0001-9702-7602
http://orcid.org/0000-0001-6262-6226
http://orcid.org/0000-0003-0906-867X
http://orcid.org/0000-0002-2727-8374
https://doi.org/10.1007/978-3-030-61218-4_6

82 M. Zárate et al.

integrating all of them to be meaningful [2]. Taking into account the defini-
tion of Big Data (BD) [3], both ocean observation and weather data fit within
the “5V” characterization of BD (volume, velocity, value, veracity, and variety).
Therefore, data management in this context can be considered as a typical Big
Data case [4]. In scientific activities, this situation presents both challenges and
opportunities regarding the access and integration of data they need to conduct
novel research activities that may trigger new discoveries enabled by the integra-
tion of multidisciplinary information sources [5,6]. In the context of the Horizon
2020 program (H2020)1 of the European Union, and at the National level in the
strategic plan Argentina Innovadora 2020, established by the Ministry of Sci-
ence, Technology and Innovation (MINCyT) of Argentina, BD and data science
are considered fundamental disciplines to address the complexity and scope of
the issues that require an interdisciplinary approach and a broad projection in
the use of information. In the research activities focused on the South Atlantic,
data collection campaigns are scarce, and an adequate information management
system is not readily available. Therefore, it is necessary to develop systems
capable of managing data integration and delivery, both for the direct and indi-
rect use by the participating research groups and institutions, and for external
users that require information (f.e., governmental, third parties, etc.).

One of the advantageous features of BD is its ability to manage informa-
tion in schema-free formats that are both agnostic with respect to technological
aspects, and that allow further schema-evolution that will be typically be the
case in Natural Sciences. This allows the use of practical internal representa-
tions that facilitate specific purposes, for instance the management of datasets
in graph form. The Semantic Web (SW) [7] provides solutions to these needs by
enabling the Linked Data (LD) Web [8] where data objects are uniquely identi-
fied and the relationships between them are defined explicitly. LD is a powerful
and compelling approach to store, disseminate and consume scientific data from
various disciplines [6,9,10]. LD enables the publication, exchange and connec-
tion of data on the Web and offers a new way of integration and interoperability.
Recently the term knowledge graph (KG) emerged [11], which has been used
in research and business, generally in close association with SW technologies,
LD, large-scale data analysis and cloud computing. The popularity of KGs is
related to the launch of Google Knowledge Graph in 20122, and through the
introduction of other large databases by major technology companies, such as
Yahoo, Microsoft, AirBnB and Facebook, which have created their own KGs to
enhance semantic searches [12]. Not only in the industry there are successful uses
of KGs, in the oceanographic domain and in the Life sciences in general there is
a growing recognition of the advantages of SW technologies [13–18].

Related to these problems, two previous works were developed for the cre-
ation of an Oceanographic linked dataset, both were developed jointly with the
Centro de investigación y transferencia Golfo San Jorge, (CIT-GSJ-CONICET):

1 https://eshorizonte2020.es/.
2 https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-

not.html.

https://eshorizonte2020.es/
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

Harmonizing Big Data with a Knowledge Graph: OceanGraph KG Uses Case 83

the proposal of publication of oceanographic campaign metadata [19], and the
definition of initial steps for the development of an oceanographic KG called
OceanGraph KG [20]. Based on the experience gained in this previous work, a
series of recommendations related to interoperability and information integration
of The Integrated Ocean Observing System (IOOS) [21] was proposed.

This paper describes in a general way the OceanGraph KG and its recent
efforts focused on the integration of heterogeneous oceanographic and meteoro-
logical data. In Sect. 2 we present the underlying idea of OceanGraph KG and its
main features. In Sect. 3 we discuss its usefulness through case studies. Finally,
in Sect. 4 lessons learned and future guidelines are presented.

2 OceanGraph KG Overview

The first version developed to integrate heterogeneous data taking advantage of
a KG was described in [20]. OceanGraph bases its main structure on the rela-
tionships established between the selected datasets. The main classes that we
define and reuse are: campaigns, occurrences, papers, researchers, environmen-
tal variables and positions. If a researcher consults OceanGraph, the expected
results could recover one or more oceanographic campaigns in which she/he was
involved from National Marine Data System (NMDS)3, datasets they collected
(from Global Biodiversity Information Facility (GBIF)4 and Ocean Biogeographic
Information System (OBIS)5, and papers written by themself (from Springer
Nature SciGraph)6. In the same way, the user could query data related to the
occurrence of a species and the KG must retrieve in which campaigns it was
observed, the information of the person who collected it, the exact place and
date and associated variables that may be of importance (e.g., weather or other
environmental conditions during the collection).

2.1 Ontologies and Vocabularies Used

To ensure that our data will be available to multiple scientific communities, the
resource description should adopt well-known standards. Next, we will describe
the main resources related to the oceanographic domain and we will see the
selected standards to model information on agents and organizations. Different
data providers use their own ontologies and reuse existing ones.

- National Environmental Research Council’s (NERC) Vocabulary
Server (NVS) [14] provides access to standardized lists of terms which are
used to facilitate data mark-up, interoperability and discovery in the marine sci-
ence domain. NVS is published as Linked Data on the web using the data model
of the Simple Knowledge Organization System (SKOS)7.
3 http://www.datosdelmar.mincyt.gob.ar/index.php.
4 https://www.gbif.org/.
5 http://www.iobis.org/.
6 https://www.springernature.com/gp/researchers/scigraph.
7 https://www.w3.org/2004/02/skos/.

http://www.datosdelmar.mincyt.gob.ar/index.php
https://www.gbif.org/
http://www.iobis.org/
https://www.springernature.com/gp/researchers/scigraph
https://www.w3.org/2004/02/skos/

84 M. Zárate et al.

- GeoSPARQL [22] defines an ontology that supports geospatial semantics,
developed by the Open Geospatial Consortium (OGC)8. The definition of this
ontology (based on well-known OGC standards) is intended to provide a basis
for the standardized exchange of RDF geospatial data that can offer query capa-
bilities and qualitative spatial reasoning using the W3C standard SPARQL [23].
- Darwin Core Standard [24] provides a stable, direct and flexible structure
for compiling and sharing biodiversity data from different sources. OceanGraph,
uses it to describe properties and concepts related to occurrences of marine
species.
- Geolink [15] dataset includes diverse information, such as port stops made by
oceanographic cruises, physical sample metadata, funding for research projects
and staff. This dataset is based on an ontological design pattern (ODP). This
ODP it is generic enough to adapt it to the modeling needs established by Ocean-
Graph.
- BiGe-Onto [25] is an ontology designed to manage Biodiversity and Marine
Biogeography data. BiGe-Onto uses the idea of occurrence (the observation of
a species in a place at a given time), since the censuses are observations of
SES at a specific time and place, we consider that BiGe-Onto fits to nature of
our data. BiGe-Onto also reuses different appropriate vocabularies to represent
information from these domains. In particular, Darwin Core (DwC) [24] is the
most important thereof, and reuses several classes that will be considered here:
Occurrence, Event, Taxon and Organism. BiGe-Onto also reuses foaf:Person
void:Dataset and dcterms:Location. Our ontology models occurrences that are
related to other concepts through the following relationships.

– bigeonto:associated. Each of the occurrences are described according to the
existence of an organism, which was observed at a specific place and time.
The organism and the taxon are related through bigeonto:belongsTo property.

– bigeonto:has event. The occurrence has a location (since they are species
observations) and they are given by the relation bigeonto:has location, which
belongs to a specific environment bigeonto:caracterizes. The Relations Ontol-
ogy (RO).9 defines the relationships between bigeonto:Environment and the
classes of the Environment Ontology (EnvO) [26].

– dwciri:recordedBy. This property enables non-literal ranges in comparison to
its analog dwc:recordedBy, so it allows to relate URIs that describe people,
groups or organizations involved in the occurrence, e.g. relate a person to
their ORCID.

– dwciri:inDataset. Allows the occurrences to be related to the data set to which
they belong.

- SSN/SOSA [27] To describe the sensors and their oceanographic observa-
tions, we use the Semantic Sensor Network (SSN) ontology, and especially the
Sensor, Observation, Sample and Actuator (SOSA) ontology that describes the
elemental classes and properties, for example (depth, temperature, salinity, etc.).
8 http://www.opengeospatial.org/.
9 https://github.com/oborel/obo-relations.

http://www.opengeospatial.org/
https://github.com/oborel/obo-relations

Harmonizing Big Data with a Knowledge Graph: OceanGraph KG Uses Case 85

Both vocabularies are suitable for a variety of applications, like large-scale scien-
tific monitoring, satellite imagery, among others. The SSN ontology is an OWL
vocabulary developed by the W3C, in collaboration with the Open Geospatial
Consortium (OGC), so its adoption guarantees its reuse in many other applica-
tions.

2.2 Cross-linking

A challenge, in order to improve the discovery of information, is to generate links
between the different URIs of the KG. The interlinking of OceanGraph data sets
was carried out semi-automatically. It is common for people who participated in
an oceanographic campaign, after it, to publish their results in scientific jour-
nals. Even more complex is the case of a person who publishes a datapaper
(scientific paper that describes data), this is made up of the publication itself,
plus the primary data that supports it in OBIS or GBIF. OceanGraph allows
people or species to be linked in different repositories, thus ensuring seman-
tic interoperability between data sets. To generate the links we use the SILK
framework10, which uses the declarative language Silk-LSL (Link Specification
Language) with which the user can establish the type of RDF links that must be
discovered between the different data sets and the conditions that must be met,
e.g. to relate researchers who obtained data from a campaign with the results
published in OBIS or GBIF, the Levenshtein distance is used to disambiguate
entities by calculating the similarity between them.

This operator receives two inputs: dwc:recordedBy11 and foaf:name, if there
is enough match that the people are the same, SILK generates the link between
them using the axiom owl:sameAs. Figure 1 shows the relationships used to
integrate OceanGraph datasets.

2.3 Availability

One of the most important design decisions when developing a KG is the plat-
form that supports it. After several performance comparisons, we decided to use
GraphDB12 since it allows a quick integration of new sources of information,
analyzes structured data in CSV, XLS, JSON, XML or other formats, it allows
to generate data in RDF and store it in a local or remote SPARQL endpoint,
and last but not least, it allows to clean the input data with a generic script
language. GraphDB allows users to explore the hierarchy of RDF classes and its
instances (Class hierarchy menu). In the same way, we can check the relation-
ships between the KG classes and visually explore how many links were created
between different class instances (Class relationship). To access the OceanGraph
dataset, the user must authenticate themselves on http://web.cenpat-conicet.
gob.ar:7200/login, using the following credentials (user: oceangraph password:

10 http://silkframework.org/.
11 https://terms.tdwg.org/wiki/dwc:recordedBy.
12 http://graphdb.ontotext.com/.

http://web.cenpat-conicet.gob.ar:7200/login
http://web.cenpat-conicet.gob.ar:7200/login
http://silkframework.org/
https://terms.tdwg.org/wiki/dwc:recordedBy
http://graphdb.ontotext.com/

86 M. Zárate et al.

ocean.user). OceanGraph KG is also available for download in [28] under CC
BY 4.0 license. Table 1 summarizes the main links to explore the knowledge
graph in various ways.

Table 1. Main features of OceanGraph KG.

Feature URL

Repository name OceanGraph (user: oceangraph password: ocean.user)

Repository URL http://web.cenpat-conicet.gob.ar:7200/login

SPARQL endpoint http://web.cenpat-conicet.gob.ar:7200/OceanGraph

Visual SPARQL endpoint http://web.cenpat-conicet.gob.ar:7200/sparql

Class hierarchy http://web.cenpat-conicet.gob.ar:7200/sparql

Vocabularies 19

No. classes 23

No. properties 50

No. triplet 4.6 M

3 Big Data Use-Cases

As a result of the process described in the previous sections, a set of nodes
and links were created to connect references from the input data to entities and
relationships within the KG. We extended this generic approach to integrate
different functionality modes that are typical in BD contexts.

3.1 Complementing Information with SN SciGraph

As the development and adoption of novel research devices is growing exponen-
tially, it’s getting harder to track all the documents related to a given scien-
tific subject. SciGraph dataset integrates data sources from Springer Nature.
SciGraph collects information about research landscape: research projects, pub-
lications, conferences, funding agencies and others. This dataset [29] includes
around 35 million records and is refreshed on a monthly basis.

It is often necessary to connect researchers or other stakeholders that con-
tribute to the same subject. This is specifically the case in the oceanographic
domain, in which is required to determine researchers who are part of an oceano-
graphic campaign, and connect their subject with other researchers from another
part of the world who are working on the same subjects. In the particular case
study of this paper, the research subject is physical oceanography.

We will explore the instances of the sg:Subject class and their related subjects
using the core#narrower property. As can be seen in Fig. 2, there are five subjects
directly related to physical oceanography (ocean science, marine biology, climate
sciences, etc.)

http://web.cenpat-conicet.gob.ar:7200/login
http://web.cenpat-conicet.gob.ar/repositories/OceanGraph
http://web.cenpat-conicet.gob.ar:7200/sparql
http://web.cenpat-conicet.gob.ar:7200/hierarchy

Harmonizing Big Data with a Knowledge Graph: OceanGraph KG Uses Case 87

F
ig
.
1
.

C
o
n
ce

p
tu

a
l

d
ia

g
ra

m
o
f
O
ce
a
n
G
ra
p
h
K
G

.
F
o
r

si
m

p
li
ci

ty
,

o
n
ly

th
e

m
a
in

o
b
je

ct
p
ro

p
er

ti
es

a
re

sh
ow

n
,

w
h
ic

h
a
ll
ow

re
la

ti
o
n
sh

ip
s

b
et

w
ee

n
th

e
cl

a
ss

es
o
f
ea

ch
d
a
ta

se
t

to
b
e

es
ta

b
li
sh

ed
.

88 M. Zárate et al.

Fig. 2. Exploring terms related to the concept physical oceanography using the
GraphDB visual interface.

3.2 Macroecological Analyzes

A very common requirement of macroecological analyzes, particularly those
that consider the environmental drivers of species distributions, is to match
occurrences of species’ with environmental variables, and how distributions are
expected to shift as the climate changes. This case study shows an example of
how KG information can be exploited using the relationships between occur-
rences with environmental variables, for the example we will use the body of
water temperature as a study variable. In particular, we need to associate the
following variables: (i) the occurrence of a species under study, (ii) the region
of interest, (in our case Golfo Nuevo), (iii) a specific time frame and (iv) the
measurements of the water body temperature.

The first step is to define the region under study, to later and then recover the
occurrences of the chosen species in a specific time frame. To handle temporal
concepts, we use Time Ontology [30]. Since NERC provides URIs for each of the
variables that we need to analyze, we only need to search for the URI of the

Harmonizing Big Data with a Knowledge Graph: OceanGraph KG Uses Case 89

body water temperature, which is defined as: SDN:P01::TEMPCU01. Table 2
shows an RDF fragment that includes the concepts involved in performing the
analysis.

Table 2. RDF serialization of the concepts involved in macroecological analysis.

bigeonto:ExtendedMeasurementOrFact a owl:Class.

bigeonto:mesasurement1 rdf:type bigeonto:ExtendedMeasurementOrFact;
rdfs:label "Medicion de temperatura de la columna de agua";
dwc:MeasurementTypeID http://vocab.nerc.ac.uk/collection/P01/current/TEMPCU01/;
dwc:MeasurementValue 6^^xsd:integer;
dwc:MeasurementUnitID http://vocab.nerc.ac.uk/collection/P06/current/UPAA/;
bigeonto:has_event bigeonto:bioevent/urncatalogcenpat-conicet-peces-p-331
bigeonto:has_occurrence bigeonto:occurrence/urncatalogcenpat-conicet-peces-p-331.

bigeonto:occurrence/urncatalogcenpat-conicet-peces-p-331
rdf:type dwc:Occurrence
dwciri:recordedBy http://www.cenpat-conicet.gob.ar/resource/person/unknown;
dwc:basisOfRecord "HumanObservation"^^xsd:string;
dwc:catalogNumber "CNP-P-331"^^xsd:string;
dwc:collectionCode "CNP-PECES"^^xsd:string .

bigeonto:bioevent/urncatalogcenpat-conicet-peces-p-331
rdf:type bigeonto:BioEvent;
dwc:eventDate "08/02/1983"^^xsd:date;
bigeonto:has_location bigeonto:location/urncatalogcenpat-conicet-peces-p-331

In Listing 1.1, you can see the query that we implemented using SPARQL, it
associates the occurrence of Merluccius hubbsi (a fish species of specific scientific
and productive interest) with the temperature in a particular region. To do this,
we define Golfo Nuevo, as an instance of (geo:Polygon), then look for observations
of Merluccius hubbsi, which has its location associated and are instances of the
class (geo:point). One of the advantages of adopting GeoSPARQL is that we
can perform spatial operations, e.g. to determine if a point is contained within
a polygon, for this we use the provided function (geof:sfWithin). As a last step,
we must obtain the temperature (also georeferenced) and define it by NERC
as TEMPCU01. To execute the query in GraphDB, see the following link13.
This specific example shows how our proposed data integration effort around
KGs, bridges the gap between the sometimes isolated existing data collection
initiatives worldwide, and a centralized and uniform data access that may be
automated. A standardization like the provided by our proposal further enables
the next and more fruitful BD stages, including massive automated data analysis,
online real-time actionable dashboards, and visual analytics.

13 http://web.cenpat-conicet.gob.ar:7200/sparql?savedQueryName=OG-Q001.

http://vocab.nerc.ac.uk/collection/P01/current/TEMPCU01/
http://web.cenpat-conicet.gob.ar:7200/sparql?savedQueryName=OG-Q001

90 M. Zárate et al.

Listing 1.1. Query required to associate observational occurences of a particular
species within a given geographic region and with specific environmental conditions.

PREFIX dwc: <http ://rs.tdwg.org/dwc/terms/>
PREFIX bigeonto: <http ://www.w3id.org/cenpat -gilia/bigeonto/>
PREFIX gl: <http :// schema.geolink.org /1.0/ base/main#>
PREFIX geosparql: <http ://www.opengis.net/ont/geosparql#>
PREFIx geof:<http ://www.opengis.net/def/function/geosparql/>
PREFIX nerc:<http :// vocab.nerc.ac.uk/collection/P01/current/>

SELECT ?occ ?measurement ?PointWKT
WHERE {

?occ a dwc:Occurrence.
?occ bigeonto:associated ?organism.
?organism bigeonto:belongsTo ?taxon.
?taxon dwc:scientificName ?sciname.
?occ bigeonto:memberOf ?dataset.
?dataset gl:hasMeasurementType ?measurement.
?occ bigeonto:has_event ?event.
?event dwc:eventDate ?date.
?event bigeonto:has_location ?location.
?location geosparql:hasGeometry ?point.
?point geosparql:asWKT ?PointWKT.
bigeonto:polygon/golfo -san -matias -polygon geosparql:asWKT ?PWKT.

FILTER (geof:sfWithin (?PointWKT , ?PWKT))
FILTER(regex(str(? measurement), "TEMP"))
FILTER regex(STR(? sciname), "Merluccius hubbsi")
FILTER (?date >= xsd:date("date") && ?date < xsd:date("date "))

}

4 Conclusion

Based on the results of this experience, KGs proved to be powerful and flexible
enough to integrate diverse data sets. However, the integration process required
to correctly map input data into a KG can be exhausting, since automated
techniques have so far been unable to fully understand the semantics of input
data. Through the OceanGraph development process, we learned a few lessons
on how LD can contribute to addressing important BD challenges, especially
within the area of oceanographic data.

First, the amount of linked datasets grows every year and is interrelated over
a growing entanglement of scientific information. This presents new challenges,
which require considering scalability and performance as crucial aspects for any
future facility [31]. Around this issue is where LD needs to incorporate BD
techniques and methodologies, specifically in the data management aspects.

Second, from the BD perspective, it is also a priority to start incorporating
linked data results. Currently only a few large companies are able to take advan-
tage of BD [32], which is unfortunate since individual scientists, small research
groups, nongovernmental agencies, and other stakeholders that are engaged in
potentially relevant activities are in a disadvantageous situation among the large
commercial interest groups. In this foreseeable scenario, some questions that
arose in other contexts begin to be visible. Among others we can mention [33]:
How can particular users delve into BD in a fruitful manner? Having found
useful data, How to make it understandable to laypersons with little or no prior
data science knowledge? How to handle data in a way that grants no privacy
or licensing breaches? How can data generated from different cultures and over
different languages (or even charsets) be rendered useful? What standards for
data and metadata are necessary? How to link data from different repositories?

Harmonizing Big Data with a Knowledge Graph: OceanGraph KG Uses Case 91

What governance standards should be supported or even enforced to grant pri-
vacy, traceability, auditing, and other technical, ethical and legal features that
systems like this must implement?.

BD is doomed to arrive into the realms of worldwide scientific enterprises,
but its value will increase, and all the community will be able to take advantage
of it, only when it becomes transparent and often usable by the largest number
of users [34]. From this perspective, it is necessary to consider that BD, at
least in the context of scientific enterprises, requires multi- and interdisciplinary
integration, and, within such a decentralized scenario, the new challenges are
also associated with meaning.

Acknowledgments. This work is partially funded by project Linked Open Data Plat-
form for Management and Visualization of Primary Data in Marine Science. Supported
by Secretariat of Science and Technology of the National University of Patagonia San
Juan Bosco (UNPSJB). Some of the data used were provided by the Golfo San Jorge
Research and Transfer Center (CIT-GSJ-CONICET).

References

1. Malik, T., Foster, I.: Addressing data access needs of the long-tail distribution of
geoscientists. In: 2012 IEEE International Geoscience and Remote Sensing Sym-
posium (IGARSS), pp. 5348–5351. IEEE (2012)

2. Hardisty, A., Roberts, D.: A decadal view of biodiversity informatics: challenges
and priorities. BMC Ecol. 13(1), 16 (2013). https://doi.org/10.1186/1472-6785-
13-16

3. Beyer, M.A., Laney, D.: The importance of “big data”: a definition, pp. 2014–2018.
Gartner, Stamford, CT (2012)

4. Liu, Y., Qiu, M., Liu, C., Guo, Z.: Big data in ocean observation: opportunities
and challenges. In: Wang, Y., Yu, G., Zhang, Y., Han, Z., Wang, G. (eds.) BigCom
2016. LNCS, vol. 9784, pp. 212–222. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-42553-5 18

5. Campbell, P.: Data’s shameful neglect. Nature 461(7261), 145 (2009)
6. Lomotey, R.K., Deters, R.: Terms extraction from unstructured data silos. In: 2013

8th International Conference on System of Systems Engineering (SoSE), pp. 19–24.
IEEE (2013)

7. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284(5),
28–37 (2001)

8. Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. In: Semantic
Services, Interoperability and Web Applications: Emerging Concepts, pp. 205–227.
IGI Global (2011)

9. Bukhari, S.A.C., Nagy, M.L., Ciccarese, P., Krauthammer, M., Baker, C.J.: iCyrus:
a semantic framework for biomedical image discovery. In: SWAT4LS, pp. 13–22
(2015)

10. Bukhari, S.A.C.: Semantic enrichment and similarity approximation for biomedical
sequence images. Ph.D. thesis, University of New Brunswick (Canada) (2017)

11. Ehrlinger, L.,Wöß, W.: Towards a definition of knowledge graphs. In: SEMANTiCS
(Posters, Demos, SuCCESS), vol. 48 (2016)

12. Ceravolo, P., et al.: Big data semantics. J. Data Semant. 7(2), 65–85 (2018).
https://doi.org/10.1007/s13740-018-0086-2

https://doi.org/10.1186/1472-6785-13-16
https://doi.org/10.1186/1472-6785-13-16
https://doi.org/10.1007/978-3-319-42553-5_18
https://doi.org/10.1007/978-3-319-42553-5_18
https://doi.org/10.1007/s13740-018-0086-2

92 M. Zárate et al.

13. Leadbetter, A., Arko, R., Chandler, C., Shepherd, A., Lowry, R.: Linked data an
oceanographic perspective. J. Ocean Technol. 8(3), 7–12 (2013)

14. Leadbetter, A., Lowry, R., Clements, D.O.: The NERC vocabulary server: version
2.0. In: Geophysical Research Abstracts, vol. 14 (2012)

15. Krisnadhi, A., et al.: An ontology pattern for oceanographic cruises: towards an
oceanographer’s dream of integrated knowledge discovery (2014)

16. Cheatham, M., et al.: The GeoLink knowledge graph. Big Earth Data 2(2), 131–143
(2018)

17. Page, R.D.M.: Ozymandias: a biodiversity knowledge graph. PeerJ 7, e6739 (2019)
18. Springer Nature SciGraph (2018). http://www.springernature.com/gp/

researchers/scigraph. Accessed 24 Jan 2019
19. Zárate, M., Rosales, P., Fillottrani, P., Delrieux, C., Lewis, M.:Oceanographic data

management: towards the publishing of Pampa Azul oceanographic campaigns as
linked data. In: Proceedings of the 12th Alberto Mendelzon International Workshop
on Foundations of Data Management, AMW 2018 (2018)

20. Zárate, M., Rosales, P., Braun, G., Lewis, M., Fillottrani, P.R., Delrieux, C.: Ocean-
Graph: some initial steps toward a oceanographic knowledge graph. In: Villazón-
Terrazas, B., Hidalgo-Delgado, Y. (eds.) KGSWC 2019. CCIS, vol. 1029, pp. 33–40.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21395-4 3

21. The Integrated Ocean Observing System (IOOS) (2013). https://ioos.noaa.gov/.
Accessed 19 July 2019

22. Battle, R., Kolas, D.: Enabling the geospatial semantic web with parliament and
GeoSPARQL. Semant. Web 3(4), 355–370 (2012)

23. SPARQL query language for RDF (2008). https://www.w3.org/TR/rdf-sparql-
protocol/. Accessed 10 Mar 2019

24. Wieczorek, J., et al.: Darwin Core: an evolving community-developed biodiversity
data standard. PLoS One 7(1), e29715 (2012)

25. Zárate, M., Braun, G., Fillottrani, P.R., Delrieux, C., Lewis, M.: BiGe-Onto: an
ontology-based system for managing biodiversity and biogeography data. Appl.
Ontol. J. (2019, accepted paper)

26. Buttigieg, P.L., Pafilis, E., Lewis, S.E., Schildhauer, M.P., Walls, R.L., Mungall,
C.J.: The environment ontology in 2016: bridging domains with increased scope,
semantic density, and interoperation. J. Biomed. Semant. 7, 57 (2016). https://
doi.org/10.1186/s13326-016-0097-6

27. W3C: Semantic Sensor Network Ontology (SSN) W3C Recommendation (2017)
28. Zárate, M., Buckle, C., Mazzanti, R., Fillottrani, P., Delrieux, C., Lewis,

M.: OceanGraph RDF dataset (2020). https://doi.org/10.17632/9t5xkt9wwk.1.
Accessed 18 Mar 2019

29. Michele Pasin and FigShare Admin SN SciGraph. Dataset: Persons, April 2019
30. Time Ontology in OWL W3C Recommendation 19 October 2017 (2017). https://

www.w3.org/TR/owl-time/. Accessed 27 Jan 2020
31. Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data:

a survey of the state of the art. arXiv preprint arXiv:1601.08059 (2016)
32. Hernández-Pérez, T.: In the age of the web of data: first open data, then big data.

El profesional de la información (EPI) 25(4), 517–525 (2016)
33. Hendler, J.: Broad data: exploring the emerging web of data. Big Data 1(1), 18–20

(2013)
34. Manyika, J.: Big data: the next frontier for innovation, competition, and pro-

ductivity (2011). http://www.mckinsey.com/Insights/MGI/Research/Technology
and Innovation/Big data The next frontier for innovation. Accessed 29 Jan 2020

http://www.springernature.com/gp/researchers/scigraph
http://www.springernature.com/gp/researchers/scigraph
https://doi.org/10.1007/978-3-030-21395-4_3
https://ioos.noaa.gov/
https://www.w3.org/TR/rdf-sparql-protocol/
https://www.w3.org/TR/rdf-sparql-protocol/
https://doi.org/10.1186/s13326-016-0097-6
https://doi.org/10.1186/s13326-016-0097-6
https://doi.org/10.17632/9t5xkt9wwk.1
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
http://arxiv.org/abs/1601.08059
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation

Data Management Optimization
in a Real-Time Big Data Analysis System

for Intensive Care

Rodrigo Cañibano1 , Claudia Rozas1 , Cristina Orlandi2,
and Javier Balladini1(B)

1 Universidad Nacional del Comahue,Neuquén, Argentina
{rcanibano,claudia.rozas,javier.balladini}@fi.uncoma.edu.ar

2 Hospital Francisco López Lima, Ŕıo Negro, Argentina
cristina.orlandi@gmail.com

Abstract. Vital signs monitors in intensive and intermediate care units
generate large amounts of data, most of which are not recorded nor taken
advantage of. We propose a computer system that allows the automatic
and early detection of the deterioration of critical patients, through the
real-time processing and analysis of digital health data, including phys-
iological waveform data generated by the medical monitors. Our system
tries to emulate the behavior of an expert intensivist physician, giving
recommendations for clinical decision making to reduce the uncertainty
on diagnosis, treatment options and prognosis. In our previous works, we
presented an real-time Big Data infrastructure built using free software
technologies. In this paper we improve its data management. We present
and evaluate three different data representation models in Apache Kafka.
One of this models outperforms the other two in storage space use and
delivery time of both real-time and historical data. Our results show
that Kafka can be used for historical data storage. This in turn allows us
to eliminate the NoSQL database of our previous system. Unlike other
works, ours attempts to reduce the number of components to lower sys-
tem overhead and administration complexity.

Keywords: Intensive care unit · Clinical decision support system ·
Medical rules processing · Big data

1 Introduction

In Intensive Care Units (ICU), patients’ data are composed of low frequency
clinical data, and high frequency physiological data streams generated by the
medical equipment (from sources such as vital signs monitor). On a typical
ICU, clinical and physiological data are manually recorded through forms by
the nurses. Physiological data are gathered by observing the medical equipment
screens (placed next to the beds) at regular intervals (hourly or a fraction of
an hour) defined by the physician for each patient [18]. The medical equipment

c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 93–107, 2020.
https://doi.org/10.1007/978-3-030-61218-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_7&domain=pdf
http://orcid.org/0000-0001-6992-5421
http://orcid.org/0000-0002-9876-4724
http://orcid.org/0000-0002-9769-7830
https://doi.org/10.1007/978-3-030-61218-4_7

94 R. Cañibano et al.

emits an alert if it detects that the patient’s health is at risk, based on its own
measurements captured via sensors. Physicians will later thoroughly analyze the
data recorded on the forms and will specify the treatment for the patient to the
nurses.

This methodology gives rise to many problems. One of them is that the
management of the information is prone to human errors. The source of this
is related to the errors made by the nurses during the manual gathering of the
data, and the huge quantities of data that physicians must analyze for each
patient (physiological data, x-rays, laboratory data analysis, patient’s clinical
data, etc.) [21]. This can lead to misdiagnosis or inconsistent information that
requires additional staff effort to detect its origin. This methodology also presents
loss of data between nursing records (taken at intervals of several minutes), which
can decrease the accuracy of diagnosis [20,24]. Furthermore, the unavailability
of a complete historical data record does not permit new knowledge extraction
wich would benefit the critical care research [23,25].

Another problem this methodology can be affected by is the late detection of
the patient’s health deterioration. A long time may pass between the recording of
the data by the nurses and the physician’s analysis of them. This situation may
be aggravated by the shortage of intensive care specialists [3,10,22]. Because of
this, most ICUs in Argentina don’t have an intensive care specialist during the
24 hours of the day. This context (caused by a deficient methodology and lack of
intensive care specialists) is prone to late detections of the deterioration of the
patient’s health. This negatively affects their health, increases the risk of death
[9], increases the economic costs of the treatments, and results in longer stays
and therefore less patients treated.

The ICUs can substantially improve its throughput with the capture, auto-
matic analysis, and visualization of vast quantities of data in real time [6]. This
problem, beyond the scope of traditional data collection and analysis methods,
is a Big Data challenge [12]. With the adoption of increasingly affordable tech-
nologies of parallel and distributed computing, and the new advances in data
science and artificial intelligence, it is possible to radically transform the working
methodology of the ICUs.

We propose a computer system that allows the automatic and early detection
of the deterioration of critical patients, through the real-time processing and
analysis of digital health data, including physiological waveform data streams.
Our system strives to emulate the behavior of an expert intensivist physician,
giving recommendations for clinical decision making. Therefore it is possible to
reduce the uncertainty on diagnosis, treatment options and prognosis [14].

Our clinical decision support system (CDSS) can also be used in lower complex-
ity units, like intermediate care units. In these units, patients are monitored via a
vital signs monitor, with permanent nursing staff, meanwhile physician are present
only on demand. Our system can alert the nursing personnel at the increase of the
severity of a patient, reducing the number of unexpected deaths [19].

In this paper, we propose a implemented solution using high performance
free software frameworks: Apache Kafka and Apache Flink. This system allows

Big Data System for Intensive Care 95

the emission of early alerts based on the real time processing of medical rules and
telemedicine to allow the query of the patient’s real-time and historical data. The
main contribution of this work is a simplified architecture of a real-time big data
infrastructure. Compared to our previous original proposal [5,7], we eliminated
the need of Cassandra (a NoSQL database) for the query of historical data. In
its place, we use Kafka’s historical storage.

Experiments are presented to show that Apache Kafka can perform the read-
ing of historical data in a satisfactory way. An evaluation of performance and
required storage space was made for different data representations in Kafka,
both for historical and real-time data access. For the evaluation, we use the
most resource-demanding data streams: physiological waveforms.

The rest of this paper is organized as follows. Section 2 details related works.
Section 3 presents the system overview. Section 4 shows the simplified real-time
big data infrastructure. Section 5 discusses the alternatives for the representation
of physiological waveforms and the design of experiment for its evaluation in
terms of required storage space and performance, and defines the experimental
platform. Section 6 exposes the obtained results. Section 7 shows an analysis of
results. Finally, Sect. 8 presents the conclusions and future works.

2 Related Works

In [12] a high performance waveform storage and retrieval system is proposed,
and the importance of storing the waveforms beyond storing its derived variables
is mentioned. The solution is efficient, but currently does not allow the visual-
ization of real time data, nor the integration with real-time predictive models.
It also does not provide fault tolerance, a characteristic necessary for critical
computer health systems. Similarly, in [18] a system is proposed for the storage
and retrieval of ICU signals, based on an adaptation of a computer system by
McLaren used to continually monitor and analyse the data from F1 racing cars
in real-time. The system can be connected to an analytics software (MATLAB
8.5), although it is not described what type of analysis it would perform. [11]
presents a big data cluster based on the Hadoop ecosystem technology coupled
with ElasticSearch technology that can replace the existing RDBMS-based tech-
nology. This platform was designed to support data from different applications
of big data on the Mayo Clinic, although no CDSS is described. In [8] successful
cases on signal analytics using big data are presented. In [1] a system is presented
for patient monitoring and disease detection in mobile environments using cloud
computing.

Specifically on CDSS in critical care, both concrete systems and infrastruc-
ture frameworks have been presented. In [13], an early framework (designed
before developing the system) for an infrastructure of stream data management,
mining and fusion for monitored patients is proposed. Artemis [4,16] is a CDSS
for neonatal intensive care units that uses InfoSphere Streams middleware sys-
tem of IBM; Artemis might be the most detailed system of all literature. In [2], a
system with a pipeline architecture is presented, which is implemented with free

96 R. Cañibano et al.

software technologies: Apache Kafka (streaming stage), Apache Spark (process
stage) and Apache Hive - HDFS (storage stage). In [15], a framework is described
that follows a pipeline architecture with multiple stages: Data Source, Collect
Data, Process Data, Store Data, Serve Data. The various free software technolo-
gies available for use at each stage are mentioned, but no concrete solution is
presented (a system with specific details on the integration and configuration
of the components). In [17], a system is presented that utilizes Microsoft Azure
services (lambda architecture) to support real-time and batch analytics. Other
systems are commercial and there is no scientific publications about them, like
ehCOS SmartICU1 and Excel Medical2.

Unlike other alternatives, our objective is oriented to the construction of a
multi hospital system (in order to increase the volume of data and consequent
extraction of knowledge) with telemedicine support. Our aim is for the final
system to integrate mature free software components, be efficient in its use of
computing resources, secure, fault tolerant and resilient, and to allow integration
with other health systems.

3 System Overview

Our expert system is based on clinical rules associated with a diagnosis, or
with a prognosis or probability of developing a certain condition. The rules
consist of two parts: an antecedent and a consequent. The antecedent defines
the conditions, relating parameters and values, which must be met to generate
an alert (the consequent of the rule) indicating possible risk, current or future, in
the patient’s health. Each patient can be associated with a specific set of rules.
Rules are continuously evaluated in real time, considering: the most current
values of a parameter, values of a parameter that occur in a time window, or
events that happen in a certain order.

Rules are initially created from experts’ knowledge or clinical guidelines.
Then, once enough data has been collected, it is possible to extract knowledge
to generate new rules.

Our system records the complete physiological waveforms (raw data at 500 Hz
or 1 KHz) so that clinicians or nurses can observe, in real time, the waveforms (for
telemedicine), and for historical storage useful for future research. Each waveform
is processed to obtain derived variables, for example heart rate derived from
electrocardiogram (ECG). Typically, these derived variables are of relatively low
frequency (no more than 1 Hz). These streams of derived variables, along with
non-contiguous data such as clinical, laboratory, radiologic data, and others, are
used by the clinical rules (that is, rules do not use high-frequency stream data).

3.1 High-Level System Architecture

Figure 1 describes the system architecture, divided into two subsystems. A global
subsystem, shared by all hospitals, and a local subsystem to each hospital. The
1 https://www.ehcos.com.
2 http://excel-medical.com.

https://www.ehcos.com
http://excel-medical.com

Big Data System for Intensive Care 97

global subsystem is a centralized database for storing historical data. This
database can be explored for knowledge extraction to generate new clinical
rules. The local subsystem implements the detection and early warning system.
The separation of these two subsystems allow the system to be implemented in
institutions with unreliable Internet access.

Fig. 1. High-level system architecture

The local subsystem includes the following components:

Data Acquisition: this component retrieves data generated by medical equip-
ment and the Health Record (EHR) System, and delivers it to the Real-time
Big Data Infrastructure.

Real-time Big Data Infrastructure: it is responsible for the temporary stor-
age of patient data, which is deleted once they leave the unit. Before deleting
the data, they are copied to the cloud storage. In addition, this component
performs data analysis, which involves signal processing and clinical rules
processing. This component demands the largest computational resources of
the entire system in order to be able to process the large volume of messages
in real time. In case of a fault, the system must recover quickly without losing
information.

User Interface: it allows nurses and physicians to receive alerts, and to visualize
current and retrospective data of patients as raw data (signals, vital signs,
etc.) or statistical processed data (tables, charts, etc.).

98 R. Cañibano et al.

4 Real-Time Big Data Infrastructure: Simplified
Architecture

Figure 2 shows the architecture of the Real-time Big Data Infrastructure. Data
are organized in a central platform, the Streaming Data Platform, which receives
data streams and makes them available to other components to be consumed
in real time. It works as a messaging system or message queue, under the
publication-subscription pattern. This organization of the data allows to sim-
plify the flow of communications between the different components, producing
a low coupling between them.

Fig. 2. Architecture of the real-time big data infrastructure

4.1 Apache Kafka

Kafka [26] is a distributed platform designed for handling large data streams,
generated and consumed by multiple agents. It provides low latency, high avail-
ability, message order unification, and allows scaling to multiple nodes in a clus-
ter.

Communication between consumers and producers is done through subscrip-
tion to topics and consumer groups. Each producer subscribes to a topic to write
messages, while consumers subscribe to a group and topic to read messages.

To increase availability, the message flow is partitioned. Each message is
sent only to one partition, and each partition is assigned to a single consumer
in the group. All partitions are distributed among the consumers in the group
(a consumer can read multiple partitions). If there are more consumers than
partitions, they will be idle consumers. Each message written by a producer on
the topic will be delivered to only one consumer of each group subscribed to the
topic. Since different consumer groups can retrieve messages at different rates,
each “group, partition” pair maintains a pointer to the next message to be read.
This pointer is called “offset”, and the framework provides functions to change
it, if necessary. The number of partitions must be configured before starting the
Kafka cluster.

Big Data System for Intensive Care 99

Each message has four main components:

Topic: name of the specific Kafka stream.
Key: used to determine to which partition the message should be sent. Multiple

messages can have the same key. If the key is “Null” then the partition will
be chosen at random.

Value: contains the data of the message.
Timestamp: indicates the message creation time.

Kafka implements fault tolerance through partition replication. The number
of replicas is configured before starting the Kafka cluster, and they are dis-
tributed among the cluster nodes.

Although the main function of this framework is to communicate producers
and consumers, it allows the retrieval of historical data and is capable of storing
the data volume equivalent to several days of messages. The initial design of
our system included a NoSQL database for temporary historical data storage
(maintained during the patient’s stay). However, the experimentation presented
in this work shows that Apache Kafka can store and retrieve historical data in
a satisfactory way. Thus, we have eliminated the NoSQL database, reducing the
number of components and the complexity of the system.

4.2 Apache Flink

Apache Flink is a distributed processing platform for fault-tolerant and low-
latency data streams processing. The framework was developed to use Apache
Kafka for reading and writing streams, therefore its integration is easy. The main
loop of a program written in Apache Flink consists of reading data from one or
more “data sources”, analyzing the data along with its internal state (this stage
is called transformation), and writing the results to a “data sink”.

Flink works with data in main memory (does not use secondary storage).
It is possible to expand memory capacity by using multiple nodes in a cluster.
Furthermore, Flink has an automatic load balancer to improve its performance
in the parallel computing system.

The framework natively supports failure recovery through a checkpoint-
restart mechanism.

5 Data Representation in Kafka: Impact on Storage
and Performance

5.1 Alternatives for the Representation of Physiological Waveforms

The representation of high frequency physiological data streams is critical
because, in addition to affecting the space required for data storage, it signifi-
cantly affects the performance achieved by the system.

100 R. Cañibano et al.

A waveform sample is identified by the following data: patient, parameter,
creation time and sample value. The latter two data are specific to each sample
(they could even be grouped into small sample groups to store a single time for
a group of uniformly spaced samples). In contrast, the first two data could be
deduced from the context, for example if they are implicitly determined by the
topic.

A topic could be associated with a single patient. Thus, the deletion of a
patient’s data (when he leaves the unit) can be done through the removal of the
topic (or topics); a simple operation with no cost in performance.

If there is only one topic per patient, then each message should contain
explicit information to identify the parameter. In this case, each consumer must
filter the messages on the topic according to the required parameters. However,
if the topic is associated with a «Patient,Parameter » pair, the parameter is also
implicit, and each consumer will be able to directly access the messages of the
required parameters.

Contemplating these variants, we proposed three data representation models
of physiological waveforms in Kafka, shown in Table 1.

Table 1. Data representation models of physiological waveforms in Kafka

Model A Model B Model C

Topic patientID parameter patientID patientID

Key Null parameter Null

Value Sample Sample Parameter, sample

Timestamp Sample creation
time (microseconds)

Sample creation time
(microseconds)

Sample creation
time (microseconds)

5.2 Design of Experiments

Experiments were designed to determine which of the three proposed waveforms
representation models is most appropriate for information storage and process-
ing, and to verify the feasibility of using Apache Kafka for historical data storage.
Three performance measures are used to evaluate the models: storage space per
message, delivery delay of real-time data and delivery delay of historical data.

Storage Space per Message. This metric measures the number of bytes each
message occupies in secondary storage. For each model, an ECG waveform of
1 KHz is produced for 48 h (the system is stopped every hour and disk usage
is measured). Each sample is represented by a single-precision floating-point
number (4 bytes). The average number of bytes per message is calculated from
the total storage space used for the entire waveform. The long duration of the
experiment tries to avoid fluctuations in storage space that could be caused by
temporary management structures created by Kafka.

Big Data System for Intensive Care 101

Delivery Delay of Real-Time Data. It is the time elapsed between the
creation of a sample and its reading by a consumer. For each model, two sce-
narios are analyzed. Scenario 1 has ten patients and a single 1 KHz waveform
per patient with a duration of one hour. Scenario 2 has a single patient with ten
1 KHz waveforms. Each sample is represented by a single-precision floating-point
number (4 bytes).

In all experiments, each waveform is generated by a different producer (there
are always 10 producers), and only one waveform is read by only one consumer.
Note that, for scenario 2, model B and C, all 10 waveforms are stored in a single
topic. Thus, the consumer must read the messages of all the parameters and
discard those that do not belong to the searched parameter. In other cases, as
each of the 10 waveforms are stored in a different topic, no filtering is required.

Delivery Delay of Historical Data. It is the time it takes to locate the newest
sample with time equal to or less than the one indicated, plus the time to recover
that sample. The experiment consists of the production of ten waveforms at
1 KHz for one hour. Later ten thousand searches and retrievals will be performed,
uniformly distributed over the interval. This is done twice, the first starting from
the oldest to the most current sample and then from the most current to the
oldest sample.

The consumer calculates the time from the moment the message search is
started until their data are retrieved. The delivery delay of contiguous data is
not evaluated because, as data are available for reading, this time should be
equal to or less than the delivery delay of real-time data.

To locate a message from a timestamp, the offsets for times and seek func-
tions are used. The function offsets for times returns, for each partition, the
earliest offset whose timestamp is greater than or equal to the given timestamp.
However, our system needs to fetch the message with the latest offset whose
timestamp is less than or equal to the given timestamp. The following strategy
is applied: given a timestamp, the lowest offset whose timestamp is timestamp+1
is searched in each partition. Then, for each partition, the seek function is applied
to locate the message at position offset− 1. Finally, the topic is ready to start
reading the messages sequentially (the data are delivered in order).

In the case of models B and C, consumers should discard messages that do not
belong to the target parameter, going through the message flow in a decreasing
offset direction.

5.3 Experimental Platform

The experiments are conducted on three nodes of a cluster, each with two 10-
core Intel Xeon E5-2650 processors with hyperthreading disabled, and 62 GiB of
main memory. Each node has access to a shared folder via NSF and a local disk
(HDD). The connection network is gigabit Ethernet. The operating system of the
nodes is CentOS 7, running the kernel v3.10.0. The Kafka version is 2.12, running
on Java SE Runtime Environment 1.8.0 211. The consumers and producers were
built using Python-Kafka.

102 R. Cañibano et al.

Two nodes run the Kafka cluster, while the third runs the producers and
consumers. The consumers and producers are located on the same node in order
to measure the difference between creation and reading time more accurately.
Two partitions per topic are used, with two replicas each, the Kafka logs are
stored on the local disk. Data compression is disabled.

6 Experimental Results

6.1 Storage Space per Message

The Fig. 3 shows the average storage required per message at hourly intervals.
On all the three proposed models, the storage space required for the messages is
stabilized after a certain time. Model A’s messages are the smallest, requiring an
average of 154.85 bytes each. Model C’s messages use 166.90 bytes each (about
7,8% more than model A), and Model B’s messages are the largest, using 170.93
bytes each (about 10,4% more than model A).

 154
 156
 158
 160
 162
 164
 166
 168
 170
 172
 174
 176
 178
 180

 0 4 8 12 16 20 24 28 32 36 40 44 48

S
to

ra
ge

 s
pa

ce
 p

er
 m

es
sa

ge
 (b

yt
es

)

Time (hours)

Model A
Model B
Model C

Fig. 3. Storage space per message

6.2 Delivery Delay of Real-Time Data

Table 2 summarizes the maximum and average delivery delay of real-time data
for scenario 1 (ten patients and one waveform per patient) and scenario 2 (one
patient with ten waveforms). Figure 4 shows the creation and reading time of
each message for scenario 1 (subfigure a) and 2 (subfigure b).

Table 2. Maximum and average delivery delay (seconds) of real-time data

Model A Model B Model C

Max Avg Max Avg Max Avg

Scenario 1 0.202 0.023 0.149 0.018 0.16 0.019

Scenario 2 0.2 0.06 2297.32 1424.96 1739.60 924.07

Big Data System for Intensive Care 103

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

D
el

iv
er

y
tim

e
(m

in
ut

es
)

Creation time (minutes)

Model A
Model B
Model C

Real time line

(a) Scenario 1

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

D
el

iv
er

y
tim

e
(m

in
ut

es
)

Creation time (minutes)

Model A
Model B
Model C

Real time line

(b) Scenario 2

Fig. 4. Delivery delay of real-time data

6.3 Delivery Delay of Historical Data

Table 3 summarizes the maximum and average delivery delay of historical data
for each model. Figure 5 shows the maximum delivery delay (solid lines) and
average delay (dashed lines) for each message proportions. For example, 55.39%
of model A’s messages achieved a delivery delay of less than 1 s. The table and
figure only consider the reading of the first message (one sample of the waveform).
However, once the first message has been retrieved, the reading of the following
9,999 messages takes less than 2 ms.

104 R. Cañibano et al.

Table 3. Maximum and average delivery delay (seconds) of historical data

Model A Model B Model C

Max 1.37 4.37 1.71

Avg 0.95 2.59 1.2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70 80 90 100

D
el

iv
er

y
de

la
y

(s
ec

on
ds

)

Messages proportion

Model A
Model B
Model C

Fig. 5. Delivery delay of historical data

7 Analysis of Results

Model A’s messages use the least amount of storage space per message, using
about 155 bytes each (12 bytes of useful data, and 143 of overhead).

The delivery delay of real-time data was evaluated for two scenarios. In the
first scenario (ten patients and a single waveform per patient), all three models
performed well, with non-significant differences. In the second scenario (a single
patient with ten waveforms), model A achieved good performance. However, the
B and C models are unsuitable for use because of their low performance. From
the Fig. 5 it can be seen that, at the beginning of the execution, the delivery delay
is not high, but it grows linearly. This is produced because the time required to
filter the messages of the parameter of interest by the consumer is bigger than
the time of generation of the messages.

Regarding the delivery delay of historical data, the best performance was
obtained with model A, with a maximum time of 1.37 s, and an average of 0.95 s.
It was observed that once the first message of interest is located, the contiguous
messages can be quickly accessed. Due to historical data searches are sporadic,
we consider these results as acceptable.

In all the experiments that involved reading messages from a topic, it was
observed that the filtering of the messages by parameter performed by the con-
sumer, considerably increases the delivery delay of real-time and historical data.
Therefore, it is necessary that consumers only read the messages of the param-

Big Data System for Intensive Care 105

eter they need. This occurs naturally in the case of model A, but by making
some changes to the system, it can also be achieved with model B. For this, it is
necessary to modify the hash function, which is applied to the keys of the mes-
sages to determine the target partition. Thus, it is possible to store messages of
different parameters on different partitions. Then consumers can subscribe only
to the partition of interest. But the amount of partitions and the hash function
must be changed every time the number of parameters changes.

Model A presented the best overall performance of the three data represen-
tation models, and does not require the system modifications that the model B
need in order to achieve similar performance.

8 Conclusions and Future Works

We propose a real-time Big Data infrastructure solution which is implemented
using high performance free software frameworks: Apache Kafka and Apache
Flink. This system allows the emission of early alerts based on the real time
processing of medical rules and telemedicine to allow the query of the real-time
and historical patient’s data. The proposed infrastructure is part of a clinical
decision support system for intensive and intermediate care units.

In this article, we describe the system in general, and in more detail the
proposed infrastructure. The two most complex components that make up the
infrastructure were presented: Apache Flink and Apache Kafka. Emphasis was
placed on the management of the system’s data, which we implemented using
Kafka. We evaluated three different data representation models in Kafka, con-
templating the most resource-demanding data streams: physiological waveforms.
One of this models outperforms the other two in storage space use and delivery
time of both real-time and historical data. The results show that Kafka can be
used for historical data storage, allowing us to eliminate the NoSQL database of
our previous system. Simplifying the system by reducing the number of compo-
nents is key to lower system overhead and administration complexity.

In future work, we will evaluate the performance of the system using data
compression in Kafka using real waveforms. We are also going to evaluate the
simultaneous reading of the total waveforms (which is required to transmit the
data to the public cloud for permanent storage), and increase the number of sam-
ples per message. Once the system has a real and complete workload, the number
of partitions that achieve the best system performance will be determined.

References

1. Agbo, C.C., Mahmoud, Q.H., Eklund, J.M.: An architecture for cloud-assisted
clinical support system for patient monitoring and disease detection in mobile
environments. In: Proceedings of the 12th EAI International Conference on Perva-
sive Computing Technologies for Healthcare, pp. 245–250, PervasiveHealth 2018,
Association for Computing Machinery, New York, NY, USA (2018). https://doi.
org/10.1145/3240925.3240944

https://doi.org/10.1145/3240925.3240944
https://doi.org/10.1145/3240925.3240944

106 R. Cañibano et al.

2. Akhtar, U., Khattak, A.M., Lee, S.: Challenges in managing real-time data in
health information system (HIS). In: Chang, C.K., Chiari, L., Cao, Y., Jin, H.,
Mokhtari, M., Aloulou, H. (eds.) ICOST 2016. LNCS, vol. 9677, pp. 305–313.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39601-9 27

3. Alconada Magliano, J.P., Garćıa, E.F.: La situación de la terapia intensiva y su
contexto. Rev. Argent. de Terapia Intensiva 32(1) (2015). https://revista.sati.org.
ar/index.php/MI/article/view/418

4. Balaji, S., Patil, M., McGregor, C.: A cloud based big data based online health
analytics for rural NICUs and PICUs in India: opportunities and challenges. In:
2017 IEEE 30th International Symposium on Computer-Based Medical Systems
(CBMS), pp. 385–390. IEEE (2017)

5. Balladini, J., Bruno, P., Zurita, R., Orlandi, C.: An automatic and early detection
of the deterioration of patients in intensive and intermediate care units: techno-
logical challenges and solutions. J. Comput. Sci. Technol. 18(03), 218–227 (2018).
https://journal.info.unlp.edu.ar/JCST/article/view/1139

6. Balladini, J., et al.: A tool for improving the delivery of integrated intensive health
care performance. Int. J. Integr. Care 19(4), 222 (2019)

7. Balladini, J., Rozas, C., Frati, F.E., Vicente, N., Orlandi, C.: Big data analytics
in intensive care units: challenges and applicability in an Argentinian hospital. J.
Comput. Sci. Technol. 15(2), 61–67 (2015)

8. Belle, A., Thiagarajan, R., Soroushmehr, S., Navidi, F., Beard, D.A., Najarian, K.:
Big data analytics in healthcare. BioMed Res. Int. 2015 (2015)

9. Blunt, M.C., Burchett, K.R.: Out-of-hours consultant cover and case-mix-adjusted
mortality in intensive care. The Lancet 356(9231), 735–736 (2000)

10. Buchman, T.G., et al.: Innovative interdisciplinary strategies to address the inten-
sivist shortage. Crit. Care Med. 45(2), 298–304 (2017)

11. Chen, D., et al.: Real-time or near real-time persisting daily healthcare data into
HDFS and elasticsearch index inside a big data platform. IEEE Trans. Industr.
Inf. 13(2), 595–606 (2017)

12. Goodwin, A.J., et al.: A practical approach to storage and retrieval of high-
frequency physiological signals. Physiol. Meas. 41(3), 035008 (2020)

13. Han, H., Ryoo, H.C., Patrick, H.: An infrastructure of stream data mining, fusion
and management for monitored patients. In: 19th IEEE Symposium on Computer-
Based Medical Systems (CBMS 2006), pp. 461–468. IEEE (2006)

14. Herasevich, V., Keegan, M.T., Pickering, B.W.: The future of ICU prediction scores
in the era of big data. J. ICU Manage. Pract. 16(2), 112–113 (2016)

15. Kaur, J., Mann, D.K.S.: AI based HealthCare platform for real time, predictive and
prescriptive analytics using reactive programming. In: Journal of Physics: Confer-
ence Series 933, p. 012010, January 2018. https://doi.org/10.1088%2F1742-6596
%2F933%2F1%2F012010

16. Khazaei, H., McGregor, C., Eklund, M., El-Khatib, K., Thommandram, A.:
Toward a big data healthcare analytics system: a mathematical modeling per-
spective. In: 2014 IEEE World Congress on Services, pp. 208–215 (2014)

17. López-Mart́ınez, F., Núñez-Valdez, E.R., Garćıa-Dı́az, V., Bursac, Z.: A case study
for a big data and machine learning platform to improve medical decision support
in population health management. Algorithms 13(4), 102 (2020)

18. Matam, B.R., Duncan, H.: Technical challenges related to implementation of a
formula one real time data acquisition and analysis system in a paediatric intensive
care unit. J. Clin. Monit. Comput. 32(3), 559–569 (2017). https://doi.org/10.1007/
s10877-017-0047-6

https://doi.org/10.1007/978-3-319-39601-9_27
https://revista.sati.org.ar/index.php/MI/article/view/418
https://revista.sati.org.ar/index.php/MI/article/view/418
https://journal.info.unlp.edu.ar/JCST/article/view/1139
https://doi.org/10.1088%2F1742-6596%2F933%2F1%2F012010
https://doi.org/10.1088%2F1742-6596%2F933%2F1%2F012010
https://doi.org/10.1007/s10877-017-0047-6
https://doi.org/10.1007/s10877-017-0047-6

Big Data System for Intensive Care 107

19. Mathukia, C., Fan, W., Vadyak, K., Biege, C., Krishnamurthy, M.: Modified early
warning system improves patient safety and clinical outcomes in an academic com-
munity hospital. J. Community Hosp. Intern. Med. Perspect. 5(2), 26716 (2015)

20. Nemati, S., Holder, A., Razmi, F., Stanley, M.D., Clifford, G.D., Buchman, T.G.:
An interpretable machine learning model for accurate prediction of sepsis in the
ICU. Crit. Care Med. 46(4), 547–553 (2018)

21. Reiz, A.N., de la Hoz, M.A., Garćıa, M.S.: Big data analysis and machine learning
in intensive care units. Medicina Intensiva (English Edition) 43(7), 416–426 (2019)

22. Salomon, G.: The intensivist shortage: is there a way around it? Healthcare.
https://www.healthcareglobal.com/public-health/intensivist-shortage-there-way-
around-it

23. Sanchez-Pinto, L.N., Luo, Y., Churpek, M.M.: Big data and data science in critical
care. Chest 154(5), 1239–1248 (2018)

24. Tegtmeyer, K.: The pediatric intensive care unit of the future: technological
advances in pediatric critical care medicine. In: Wheeler, D., Wong, H., Shan-
ley, T. (eds.) Science and Practice of Pediatric Critical Care Medicine, pp. 1–7.
Springer, London, London (2009). https://doi.org/10.1007/978-1-84800-921-9 14

25. Topol, E.J.: High-performance medicine: the convergence of human and artificial
intelligence. Nat. Med. 25(1), 44–56 (2019). https://doi.org/10.1038/s41591-018-
0300-7

26. Wang, G., et al.: Building a replicated logging system with Apache Kafka.
Proc. VLDB Endow. 8(12), 1654–1655 (2015). https://doi.org/10.14778/2824032.
2824063

https://www.healthcareglobal.com/public-health/intensivist-shortage-there-way-around-it
https://www.healthcareglobal.com/public-health/intensivist-shortage-there-way-around-it
https://doi.org/10.1007/978-1-84800-921-9_14
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.14778/2824032.2824063
https://doi.org/10.14778/2824032.2824063

Machine and Deep Learning

Reddening-Free Q Indices to Identify
Be Star Candidates

Yael Aidelman1,2 , Carlos Escudero2 , Franco Ronchetti3,4 ,
Facundo Quiroga3(B) , and Laura Lanzarini3

1 Departamento de Espectroscoṕıa, Facultad de Ciencias Astronómicas Y Geof́ısicas,
Universidad Nacional de La Plata (UNLP), Paseo Del Bosque S/N,

B1900FWA La Plata, Argentina
2 Instituto de Astrof́ısica La Plata, CCT La Plata, CONICET-UNLP, Paseo Del

Bosque S/N, B1900FWA La Plata, Argentina
3 Instituto de Investigación en Informática LIDI, Facultad de Informática,

Universidad Nacional de La Plata, La Plata, Argentina
fquiroga@lidi.info.unlp.edu.ar

4 Comisión de Investigaciones Cient́ıficas de la Pcia. De Bs. As. (CIC-PBA),
La Plata, Argentina

Abstract. Astronomical databases currently provide high-volume spec-
troscopic and photometric data. While spectroscopic data is better suited
to the analysis of many astronomical objects, photometric data is rela-
tively easier to obtain due to shorter telescope usage time. Therefore,
there is a growing need to use photometric information to automatically
identify objects for further detailed studies, specially Hα emission line
stars such as Be stars. Photometric color-color diagrams (CCDs) are
commonly used to identify this kind of objects. However, their identifi-
cation in CCDs is further complicated by the reddening effect caused by
both the circumstellar and interstellar gas. This effect prevents the gen-
eralization of candidate identification systems. Therefore, in this work we
evaluate the use of neural networks to identify Be star candidates from
a set of OB-type stars. The networks are trained using a labeled subset
of the VPHAS+ and 2MASS databases, with filters u, g, r, Hα, i, J, H,
and K. In order to avoid the reddening effect, we propose and evalu-
ate the use of reddening-free Q indices to enhance the generalization of
the model to other databases and objects. To test the validity of the
approach, we manually labeled a subset of the database, and use it to
evaluate candidate identification models. We also labeled an independent
dataset for cross dataset evaluation. We evaluate the recall of the models
at a 99% precision level on both test sets. Our results show that the pro-
posed features provide a significant improvement over the original filter
magnitudes.

Keywords: Stellar classification · Ob-type stars · Be stars ·
VPHAS+ · 2MASS · IPHAS · SDSS · LAMOST

c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 111–123, 2020.
https://doi.org/10.1007/978-3-030-61218-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_8&domain=pdf
http://orcid.org/0000-0001-5279-0241
http://orcid.org/0000-0002-6056-6247
http://orcid.org/0000-0003-3173-1327
http://orcid.org/0000-0003-4495-4327
http://orcid.org/0000-0001-7027-7564
https://doi.org/10.1007/978-3-030-61218-4_8

112 Y. Aidelman et al.

1 Introduction

In the big data era, free access to databases in different wavelength ranges,
from gamma-rays to radio waves, together with machine-learning methods, has
drastically incremented the possibility to study and identify different types of
peculiar line-emission stars using photometric information (e.g., Vioque et al.,
2019 [30]; Akras et al., 2019 [2]; Pérez-Ortiz et al., 2017 [21]).

While spectroscopic techniques are excellent to perform accurate stellar clas-
sification and deepen into the study of various spectral features, the telescope
time required to obtain such information is longer compared to obtaining pho-
tometric data.

The goal of this work is then to use the potential of photometric data to
search for emission-line star candidates. These can be later observed and be
confirmed spectroscopically as such. Particularly, we are interested in detecting
Be star candidates.

Be stars are emission-line objects that rotate at high speed (Jaschek et al.,
1981 [15]; Struve, O., 1931 [28]) and constitute unique astrophysical laboratories.
They are of interest in various branches of stellar physics dedicated to the study
of mechanisms of mass loss, angular momentum distribution, astroseismology,
among others.

The rest of this section describes Be stars in detail, classical techniques to
detect plausible candidates as well as previous star candidate proposals based
on machine-learning methods.

1.1 Be Stars

Be stars are defined as non-supergiant spectral B-type stars that exhibit, or
have exhibited, one or more hydrogen lines in emission (Jaschek et al., 1981
[15]; Collins, II, G., 1987 [7]), particularly the Hα line. In some cases, it is
also possible to observe the presence of once-ionized helium and metal lines in
emission. Thus, this definition not only applies to B-type stars but also to late
O- and early A-type stars.

The analysis of spectrophotometric observations of Be stars at different
wavelengths, combined with interferometric and polarimetric data (Gies et al.,
2007 [11]; Meilland et al., 2007 [18], among others), indicate that the differ-
ent properties shown by these stars could be interpreted by the existence of
an optically-thin gaseous circumstellar equatorial disk in Keplerian motion (see
Rivinius et al., 2013 [25]). This suggests that the high rotation speed would play
a significant role in the development of the equatorial disk (e.g., Struve, O.,
1931 [28]; Huang, S., 1972 [14]; Quirrenbach, A., 1993 [23]; Quirrenbach et al.,
1994 [24]; Hirata, R., 1995 [13]). However, despite the increasing observational
evidence that Be stars do not rotate at their critical rotational speed (Zorec
et al. 2016 [31], Zorec et al. 2017 [32], Aidelman et al. 2018 [1], Cochetti et al.,
2019 [6]), there is still no consensus on disk formation mechanism(s).

Other observed effects induced by stellar rotation during the main sequence
phase of hot stars, are the development of axi-symmetric winds, the modification

Reddening-Free Q Indices to Identify Be Star Candidates 113

in pulsation modes, changes in metallicity or the presence of magnetic fields (see
Peters et al., 2020 [22]; Rivinius et al., 2013 [25]). These properties make Be
stars perfect stellar laboratories, of interest in different astrophysical topics, as
mentioned above.

In this context, the discovery, classification and analysis of a considerable
sample of Be stars in different environments are necessary to understand their
nature.

1.2 Related Work

To the best of our knowledge, there are no previous works focused on Be stars
that use the reddening-free Q indices as we propose in this work (see Sect. 2.2).
Therefore we briefly summarize work similar to ours.

Pérez-Ortiz et al. (2017 [21]) select Be star candidates using light curves
of the I band obtained from OGLE-IV data (Udalski et al., 2015 [29]). They
train classification trees, random forest, gradient boosted trees, support vector
machines (SVM) and K-nearest neighbours on OGLE-III data. To evaluate the
models, they compare the average f-score from 10-fold cross validation. While
random forests achieve the best scores, most models behave similarly. To improve
the cross-dataset robustness of their models, they employ a custom feature based
on fourier coefficients of the data. They propose 50 new Be star candidates
selected from OGLE-IV data.

Vioque et al., (2019 [30]) use photometric data similar to ours which includes
a passband filter for the Hα wavelength. However, their sources include many
other filters, resulting in 48 variables for each sample. In order to avoid problems
caused by interstellar extinction, they select objects for which the effect of this
phenomena is negligible. They apply Principal Component Analysis (PCA) to
reduce the features to a 12 latent dimensions which contain 99.99% of variability.
Afterwards, they employ a neural network composed of three linear layers to
classify candidates.

Akras et al., (2019 [2]) identify symbiotic stars from other objects. Their
data includes various photometric filters that can detect Hα. They perform a
thorough manual evaluation of color-color1 diagrams (CCDs) to identify feature
combinations which can separate these stars from other kinds of similar objects.
Afterwards, they repeat this approach to classify symbiotic stars into subsets.
Their approach can identify a small subset of previously labeled symbiotic stars
and also proposes 125 new candidates. They employ a combination of k-nearest
neighbours, linear discriminant analysis, and classification trees as models.

1 A color index is defined as the difference of two magnitudes at different wavelengths
(mλ1 − mλ2). Magnitude is a unitless measure of the brightness of an object on a
logarithmic scale in a defined passband. The brighter an object, the more negative
the value of its magnitude.

114 Y. Aidelman et al.

1.3 Proposed Work

One technique commonly used to identify classical Be star candidates relies on
photometric color-color diagrams. These diagrams use differences of apparent
magnitudes between narrow-band filters, such as Hα passband, and broad-band
filters centered at other given wavelengths, such as the filters r or i. However,
these colors are affected by interstellar extinction. Therefore, in this work we
propose to use the reddening-free Q photometric indices, as described in Sect. 2.2.

The construction of the Q indices from different apparent magnitudes opens
up the potential of broad-band and narrow-band photometric data together with
machine-learning techniques to quickly obtain a significant number of Be star
candidates observed in any direction in the sky. Subsequently, this method will
allow us to carry out a rapid and accurate spectroscopic follow-up of these stars
to confirm their classification and properties.

2 Datasets and Features

2.1 Datasets

We use the data published by Mohr-Smith et al. (2017 [20]) on the Carina
Arm region (282◦ ≤ l ≤ 293◦). These authors used data from the VST Photo-
metric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS+; Drew
et al., 2014 [10]) in u, g, r, Hα, i filters (see Fig. 1 bottom panel) combined with
J,H,K magnitudes from the Two Micron All Sky Survey (2MASS; Skrutskie
et al., 2006 [27]). Performing fittings to the spectral energy distribution, Mohr-
Smith et al. grouped the sample of OB-type stars in four groups: emission-line
stars (EM), sub- and over-luminous stars, and normal stars. The features of the
dataset consist of the fluxes at the 8 filters mentioned above. The dataset con-
tains a sample of 5877 OB-type stars labeled with four classes. Since we are only
interested in detecting emission-line stars from the other classes, we group all
non-EM stars into a single set called Normal OB. The resulting class distribution
is shown in Table 1.

To test the inter-database accuracy of the model, we manually labeled a
subset of OB-type stars classified spectroscopically by Liu et al. (2019 [17]).
The photometric data of this subset was obtained from VPHAS+ dr2 (for the
southern hemisphere). Data in filters r, Hα, i were from the INT Photometric Hα
Survey of the Northern Galactic Plane (IPHAS dr2; Barentsen et al., 2014 [4])
while the data in filters u, g were obtained from the Sloan Digital Sky Survey
(SDSS dr12; Alam et a., 2015 [3]), for the northern hemisphere. Additionally,
the data in filters J,H,K for both hemispheres were obtained from the 2MASS.
Spectroscopic data is available from the Large Sky Area Multi-Object Fiber
Spectroscopic Telescope (LAMOST dr5; Cui et al., 2012 [8]).

We selected stars which have both photometric and spectroscopic data.
Among the 22901 OB-stars classified by Liu, only 1113 have measurements for
the same set of 8 filters used by Mohr-Smith et al.

Reddening-Free Q Indices to Identify Be Star Candidates 115

Via visual inspection of the spectra, we were able to label 283 stars (among
1113 OB-stars with photometry). We identified OB-stars that present the Hα
line in emission (see Fig. 1 middle and upper panel). As shown in Table 1, we
identify 98 objects as EM stars.

Table 1. Class distribution of samples.

Dataset Normal OB EM Total

Mohr-Smith et al. (2017 [20]) 5629 248 5877

Liu et al. (2019 [17]) 185 98 283

2.2 Features

As mentioned in Sect. 2.1, the data used corresponds to magnitudes (hereinafter
original features) obtained in seven different broad-band filters: u, g, r, i, J , H,
and K, and in one narrow-band filter, Hα. However, the intrinsic magnitude of
an object can be affected by several factors, such as the distance to the star and
the interstellar extinction. Particularly, in the latter, the interstellar material
(dust and gas) located between the observer and the object absorbs part of its
radiation (mainly ultraviolet light). A priori, neither the amount of interstellar
material in the visual direction nor the distance to the star are known. For these
reasons, the use of magnitudes (available in the databases) as a tool to try to
classify objects of different morphology or characteristics is not enough.

On the other hand, although the color index is independent of distance, it is
still affected by interstellar reddening, as shown in Fig. 2. The left panel shows
the CCD done by Mohr-Smith et al. (2015 [19]) with the stars detected in the
Carina Arm region (gray dots). The blue crosses represent B-type stars whose
location in the diagram is affected by the interstellar extinction.

In particular, as previously mentioned, one technique commonly used to iden-
tify classical Be star candidates is to use CCDs that combine a narrow-band filter
centered at the Hα line and a filter that samples the nearby continuum region.
Figure 2 (right panel) shows (r −Hα) versus (r − i) diagram with the location of
stars with different characteristics (Mohr-Smith et al., 2015 [19]). As seen in this
figure, Be stars (red crosses) are separated from other objects because they show
an excess emission in Hα. However, the presence of other astrophysical sources,
such as Wolf Rayet (WR) and Herbig AeBe (HAeBe) stars, in the same region
can still be observed.

For all the aforementioned, in order to avoid the effects of interstellar extinc-
tion and distance, we propose the use of the reddening-free Q indices (hereinafter
Q features). This index was introduced by Johnson & Morgan, (1955 [16]) and
it is defined as:

116 Y. Aidelman et al.

Fig. 1. Upper and middle panel show two B-type star spectra from LAMOST (Cui
et al., 2012 [8]). The upper panel corresponds to a Be star, while the middle panel to a
typical B-type star. Bottom panel shows the transmission profiles of the filters used by
VPHAS+ (Drew et al., 2014 [10]). The Hα narrow-band filter is shown in red. (Color
figure online)

Q1234 = (mλ1 − mλ2) − rλ1 − rλ2

rλ3 − rλ4

(mλ3 − mλ4)

= (m0
λ1

− m0
λ2

) − rλ1 − rλ2

rλ3 − rλ4

(m0
λ3

− m0
λ4

)
(1)

Reddening-Free Q Indices to Identify Be Star Candidates 117

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

g − r

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

u
−
g MS

R-J

B1V

B3V

1A0

G0V

0.0 0.8 1.6 2.4
r − i

0.0

0.3

0.6

0.9

r
−
H

α

Candidates
OB stars

Sub-luminous

Blue supergiants

Emission-line

Known
OV

OIII

OV+OV

WR

BV

HAeBe

C*

Fig. 2. Color-color diagrams taken from Mohr-Smith et al. (2015 [19]). Left: Location
of B-type stars using u, g, r apparent magnitudes (blue crosses), and their corresponding
location in the main sequence (MS) if they were not affected by interstellar extinction
(black crosses). Right: location of the brightest stars in the Hα passband. (Color figure
online)

where mλi
is the apparent (observed) magnitude and m0

λi
is the apparent mag-

nitude corrected by interstellar extinction effect in four (in some cases three)
different filters centered at given wavelength λi, rλi

= Amλi
/AV , were Amλi

and
AV are the extinction coefficient for λi and for the V 2 filter, respectively. The rλi

values adopted in this work were those calculated by Schlafly et al. (2011 [26])
for a selective absorption coefficient3 RV = 3.1.

3 Experiments

3.1 Metodology

In order to test the suitability of the Q features, we trained and evaluated mod-
els with the original magnitudes and the features, separately. Additionally, we
use Neighborhood Components Analysis (NCA; Goldberg et al., 2005 [12]) to
perform dimensionality reduction to 2 components from the 56 variables of the Q
features (built with the combinations of the 8 original magnitudes taken from 3)
and generate another set of features (see Table 2). The 2-dimensional projection
obtained by NCA can provide diagrams similar to the CCD commonly used in
astronomy, albeit using latent variables (see Section 3.2).

We also compare different models in terms of their relative performances. We
use a simple logistic regression as a baseline, and compare it against Support
2 Filter V corresponds to Johnson’s photometric system.
3 The selective absorption coefficient relates the absorption coefficient in the visual,

Av, with the excess color E(B − V), through the ratio Av = Rv E(B − V).

118 Y. Aidelman et al.

Table 2. Features and their dimensionalities.

Features Description Dimensionality

Originals Magnitudes in u,g,r,Hα,i,J ,H,K filters 8

Q Reddening-free index (Sect. 2.2) 56

NCA Neighborhood Components Analysisa over Q features 2
a Goldberg et al., 2005 [12]

Vector Machines (SVM) with Linear and Gaussian kernels, with C = 10 in both
cases. We also compare Neural Networks with 1 hidden layer with 8 linear units
and tanh activation function.

Given that candidate selection is essentially a binary classification task, the
most natural overall performance metric is the F-score. However, since the goal
of our work is to avoid manual verification of stars with a low probability of being
Be stars, we focus on reducing the number of selected candidates. Therefore, we
prefer to evaluate models in terms of their recall at a 99% level of precision4.
That is, for each model we set a threshold so that its precision is around 99%
and measure the resulting recall.

All models are trained on the Mohr-Smith dataset (see Sect. 2.1). Given the
small sample size of the datasets, we use random subsampling cross validation
with 20 random splits to obtain average values of each measure. We perform a
90/10 split, obtaining train/test sizes of approximately 5000 and 500 samples.
For each split, a model is trained on Mohr-Smith, and evaluated on its test set.
Afterwards, the same model is evaluated on the Liu dataset, using all samples
as a test set. The same threshold used to obtain 99% precision for Mohr-Smith
is also employed when evaluating the Liu dataset.

3.2 Results

Table 3 shows the recall rate for various model and feature combinations. The
best result on the Liu dataset was obtained with Neural Network using Q fea-
tures, obtaining a 25% recall rate. For the Mohr-Smith dataset, all models per-
form similarly.

Linear models, however, don’t generalize as well as non-linear models for Liu.
Nonetheless, a simple linear model with a non-linear dimensionality reduction
such as NCA (Fig. 4) can obtain almost 14% recall in Liu. This indicates that
the classes are not linearly separable even in the 56 dimensional space of the Q
features.

In the case of SVM, results are somewhat erratic (Fig. 3). This may be due
to the fact that calibrating a SVM to output probabilities is usually difficult,
given that the probability estimation model must be fitted on top of the SVM
after the model is trained.

4 We note that Purity and Completeness are commonly used as synonyms for Precision
and Recall, respectively. These terms are more prevalent in astronomy.

Reddening-Free Q Indices to Identify Be Star Candidates 119

Given the recall increment when using Q features (+11.9%) from the best
model using magnitudes (Gaussian SVM) to the best model using Q features
(Neural Network), we can conclude that these features indeed help with the
identification of Hα emitting stars.

Table 3. Recall of models on the Mohr-Smith and Liu datasets, with a threshold set
for 99% precision.

Model Features Mohr-Smith (Recall) Liu (Recall)

Log. Regression Magnitudes 84.2 (±7)% 5.7 (±0.1)%

Log. Regression Q 81.3 (±12)% 5.5 (±10)%

Log. Regression NCA 74.6(±11)% 13.9 (±9)%

SVM (Linear) Magnitudes 82.4(±14)% 0(±0)%

SVM (Linear) Q 85.2(±9)% 9.2 (±11)%

SVM (Gaussian) Magnitudes 85.2(±11)% 13.1 (±2)%

SVM (Gaussian) Q 37.2(±3)% 4.7 (±3)%

Neural Network Magnitudes 84.8(±8)% 9.5(±4)%

Neural Network Q 85.2(±14)% 25 (±8)%

Figure 3 shows precision-recall curves evaluated in Liu dataset for a Neural
Network model using the Q features. As listed in Table 3, the model achieves a
25% recall rate with 100% precision. For larger values of recall, precision rates
drop in an approximately linear fashion, which indicates a good balance between
these two metrics.

Fig. 3. Precision-Recall curves in Liu dataset for a Neural Network trained with Q
features.

120 Y. Aidelman et al.

3.3 Recall Rate Analysis

We plot the 2-dimensional NCA features for both test set of Mohr-Smith and
Liu (Fig. 4). As can be seen in the figure, a significant number of EM stars fall
in the region of normal OB stars, and vice versa. For this reason, we decided to
visually inspect the spectra of some objects in which this situation occurred.

Fig. 4. NCA features for the Mohr-Smith (left) and Liu (right) datasets. The decision
lines corresponds to a Sigmoid function from a Logistic Regression classifier trained on
Mohr-Smith.

The high number of false-negative cases (reflected in the low recall rate)
may be due to the detection limits existing in each observation technique. In
most of the objects classified as false negatives, the Hα line profile is observed
with the wings in emission (absorption) and the nucleus in absorption (emission)
(Catanzaro, G., 2013 [5]; Dimitrov et al., 2018 [9]). However, if the emission is
not intense enough, it is not reflected in the photometry since the values of the
color indices and Q parameters correspond to that of a normal star.

On the other hand, false-negative and false-positive cases may also be due
to the variability of the Be phenomenon. This effect is probably due to a signif-
icant increase in the circumstellar material that intensifies the emission in Hα.
Subsequently, this intensity decreases with time and may disappear completely
(Rivinius et al., 2013 [25]; Dimitrov et al., 2018 [9]). Since the photometric and
spectroscopic data are not simultaneous, it may happen that the photometric
data does not reflect an emission in the Hα passband even if the emission Hα line
in the spectrum is observed. Therefore, for a correct photometric classification
of these stars, it is necessary to carry out spectroscopic follow-up close in time
between both observation modes.

Reddening-Free Q Indices to Identify Be Star Candidates 121

4 Conclusions and Future Work

In this work, we have compared different classification models to distinguish
objects with emission in the Hα line from normal OB stars. The models are
trained with photometric data collected from various sources. Afterward, these
models can be employed to identify Be star candidates, a type of Hα emitting
OB stars.

We also propose the use of the reddening-free Q indices to remove unwanted
variations caused by interstellar extinction effects. Experiments show these fea-
tures improve the cross-dataset performance of the classification models, obtain-
ing up to 25% recall for 99% precision on an unseen dataset. Meanwhile, the
best model trained with the original features obtains at most 13.1% recall at the
same precision level.

In order to test the cross-dataset performance of the models, we manually
labeled samples obtained from different sources to form a new test set. Poste-
rior analysis shows that there is significant variability in the cross-dataset test
samples, which the model cannot learn given the original training data.

The presented models can detect Hα emitting stars, which are good candi-
dates for Be stars. However, confirmation requires spectroscopic follow up. We
plan on expanding the pipeline and train classification models to also identify
different classes of Hα emitting objects, including Be stars, with a higher degree
of automation. We will also focus on expanding the data sources used, in order
to both train a more robust model and test with more variable sets of objects.

Acknowledgements. This work is based on data obtained as part of the INT Hα pho-
tometric study of the northern galactic plane (IPHAS; https://www.iphas.org), VST
Photometric Hα Survey of the Southern Galactic Plane and Bulge (VPHAS+; https://
www.vphasplus.org), Two Micron All Sky Survey (2MASS, https://irsa.ipac.caltech.
edu/Missions/2mass.html), Sloan Digital Sky Survey (SDSS; https://www.sdss.org)
and The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST;
http://www.lamost.org).

YA is grateful to L. Cidale, G. Baume and A. Smith Castelli for their helpful
comments and suggestions.

References

1. Aidelman, Y., Cidale, L.S., Zorec, J., Panei, J.A.: Open clusters. III. Fundamental
parameters of B stars in NGC 6087, NGC 6250, NGC 6383, and NGC 6530 B-type
stars with circumstellar envelopes. A&A 610, A30F(February 2018). https://doi.
org/10.1051/0004-6361/201730995

2. Akras, S., Leal-Ferreira, M.L., Guzman-Ramirez, L., Ramos-Larios, G.: A machine
learning approach for identification and classification of symbiotic stars using
2MASS and WISE. MNRAS 483(4), 5077–5104 (2019). https://doi.org/10.1093/
mnras/sty3359

3. Alam, S., et al.: The eleventh and twelfth data releases of the Sloan digital sky
survey: final data from SDSS-iii. Astrophys. J. Suppl. Ser. 219(1), 12 (2015)

https://www.iphas.org
https://www.vphasplus.org
https://www.vphasplus.org
https://irsa.ipac.caltech.edu/Missions/2mass.html
https://irsa.ipac.caltech.edu/Missions/2mass.html
https://www.sdss.org
http://www.lamost.org
https://doi.org/10.1051/0004-6361/201730995
https://doi.org/10.1051/0004-6361/201730995
https://doi.org/10.1093/mnras/sty3359
https://doi.org/10.1093/mnras/sty3359

122 Y. Aidelman et al.

4. Barentsen, G., et al.: The second data release of the INT photometric hα survey
of the northern galactic plane (IPHAS DR2). Mon. Not. R. Astron. Soc. 444(4),
3230–3257 (2014)

5. Catanzaro, G.: Spectroscopic atlas of Hα and Hβ in a sample of northern Be stars.
A&A 550, A79 (2013). https://doi.org/10.1051/0004-6361/201220357

6. Cochetti, Y.R., Arcos, C., Kanaan, S., Meilland, A., Cidale, L.S., Curé, M.:
Spectro-interferometric observations of a sample of Be stars. Setting limits to the
geometry and kinematics of stable Be disks. A&A 621, A123 (2019). https://doi.
org/10.1051/0004-6361/201833551

7. Collins, II, G.W.: The use of terms and definitions in the study of Be stars. In:
Slettebak, A., Snow, T.P. (eds.) IAU Colloq. 92: Physics of Be Stars, pp. 3–19
(1987)

8. Cui, X.Q., et al.: The large sky area multi-object fiber spectroscopic telescope
(LAMOST). Res. Astron. Astrophys. 12(9), 1197–1242 (2012). https://doi.org/
10.1088/1674-4527/12/9/003

9. Dimitrov, D.P., Kjurkchieva, D.P., Ivanov, E.I.: A study of the Hα variability of
Be stars. AJ 156(2), 61 (2018). https://doi.org/10.3847/1538-3881/aacbd8

10. Drew, J.E., et al.: The VST photometric Hα survey of the southern galactic plane
and bulge (VPHAS+). MNRAS 440(3), 2036–2058 (2014). https://doi.org/10.
1093/mnras/stu394

11. Gies, D.R., et al.: CHARA array K’-band measurements of the angular dimensions
of Be star disks. ApJ 654, 527–543 (2007). https://doi.org/10.1086/509144

12. Goldberger, J., Hinton, G.E., Roweis, S.T., Salakhutdinov, R.R.: Neighbourhood
components analysis. In: Advances in Neural Information Processing Systems, pp.
513–520 (2005)

13. Hirata, R.: Interpretation of the long-term variation in late-type active Be stars.
PASJ 47, 195–218 (1995)

14. Huang, S.S.: Profiles of emission lines in Be stars. ApJ 171, 549 (1972). https://
doi.org/10.1086/151309

15. Jaschek, M., Slettebak, A., Jaschek, C.: Be star terminology. Be Star Newsl. 4,
9–11 (1981)

16. Johnson, H.L., Morgan, W.W.: Some evidence for a regional variation in the law
of interstellar reddening. ApJ 122, 142 (1955). https://doi.org/10.1086/146063

17. Liu, Z., Cui, W., Liu, C., Huang, Y., Zhao, G., Zhang, B.: A catalog of OB stars
from LAMOST spectroscopic survey. ApJs 241(2), 32 (2019). https://doi.org/10.
3847/1538-4365/ab0a0d

18. Meilland, A., et al.: First direct detection of a Keplerian rotating disk around the
Be star α Arae using AMBER/VLTI. A&A 464, 59–71 (2007). https://doi.org/
10.1051/0004-6361:20064848

19. Mohr-Smith, M., et al.: New OB star candidates in the Carina Arm around West-
erlund 2 from VPHAS+. MNRAS 450(4), 3855–3873 (2015). https://doi.org/10.
1093/mnras/stv843

20. Mohr-Smith, M., et al.: The deep OB star population in Carina from the VST
photometric Hα survey (VPHAS+). MNRAS 465(2), 1807–1830 (2017). https://
doi.org/10.1093/mnras/stw2751

21. Pérez-Ortiz, M.F., Garćıa-Varela, A., Quiroz, A.J., Sabogal, B.E., Hernández, J.:
Machine learning techniques to select Be star candidates. An application in the
OGLE-IV Gaia south ecliptic pole field. A&A 605, A123 (2017). https://doi.org/
10.1051/0004-6361/201628937

https://doi.org/10.1051/0004-6361/201220357
https://doi.org/10.1051/0004-6361/201833551
https://doi.org/10.1051/0004-6361/201833551
https://doi.org/10.1088/1674-4527/12/9/003
https://doi.org/10.1088/1674-4527/12/9/003
https://doi.org/10.3847/1538-3881/aacbd8
https://doi.org/10.1093/mnras/stu394
https://doi.org/10.1093/mnras/stu394
https://doi.org/10.1086/509144
https://doi.org/10.1086/151309
https://doi.org/10.1086/151309
https://doi.org/10.1086/146063
https://doi.org/10.3847/1538-4365/ab0a0d
https://doi.org/10.3847/1538-4365/ab0a0d
https://doi.org/10.1051/0004-6361:20064848
https://doi.org/10.1051/0004-6361:20064848
https://doi.org/10.1093/mnras/stv843
https://doi.org/10.1093/mnras/stv843
https://doi.org/10.1093/mnras/stw2751
https://doi.org/10.1093/mnras/stw2751
https://doi.org/10.1051/0004-6361/201628937
https://doi.org/10.1051/0004-6361/201628937

Reddening-Free Q Indices to Identify Be Star Candidates 123

22. Peters, M., et al.: The hubble space telescope advanced camera for surveys emission
line survey of andromeda. I. classical Be stars. AJ 159(3), 119 (2020). https://doi.
org/10.3847/1538-3881/ab6d74

23. Quirrenbach, A.: Seven Be stars resolved by optical interferometry. In: American
Astronomical Society Meeting Abstracts #182. Bulletin of the American Astro-
nomical Society, vol. 25, p. 916 (May 1993)

24. Quirrenbach, A., Buscher, D.F., Mozurkewich, D., Hummel, C.A., Armstrong, J.T.:
Maximum-entropy maps of the Be shell star zeta Tauri from optical long-baseline
interferometry. A&A 283, L13–L16 (1994)

25. Rivinius, T., Carciofi, A.C., Martayan, C.: Classical Be stars. Astron. Astrophys.
Rev. 21(1), 1–86 (2013). https://doi.org/10.1007/s00159-013-0069-0

26. Schlafly, E.F., Finkbeiner, D.P.: Measuring reddening with Sloan digital sky survey
stellar spectra and recalibrating SFD. ApJ 737(2), 103 (2011). https://doi.org/10.
1088/0004-637X/737/2/103

27. Skrutskie, M.F., et al.: The two micron all sky survey (2MASS). AJ 131(2), 1163–
1183 (2006). https://doi.org/10.1086/498708

28. Struve, O.: On the origin of bright lines in spectra of stars of class B. ApJ 73, 94
(1931). https://doi.org/10.1086/143298

29. Udalski, A., Szymański, M., Szymański, G.: Ogle-iv: fourth phase of the optical
gravitational lensing experiment (2015). arXiv preprint arXiv:1504.05966

30. Vioque, M., Oudmaijer, R., Baines, D., Pérez-Mart́ınez, R.: New catalogue of inter-
mediate mass Pre-main sequence objects in Gaia DR2 using machine learning. In:
The Gaia Universe, p. 52 (April 2019). https://doi.org/10.5281/zenodo.3237084

31. Zorec, J., et al.: Critical study of the distribution of rotational velocities of Be stars.
I. Deconvolution methods, effects due to gravity darkening, macroturbulence and
binarity. A&A 595, A132 (2016). https://doi.org/10.1051/0004-6361/201628760

32. Zorec, J., et al.: Critical study of the distribution of rotational velocities of Be stars.
II: Differential rotation and some hidden effects interfering with the interpretation
of the V sin I parameter. A&A 602, A83 (2017). https://doi.org/10.1051/0004-
6361/201628761

https://doi.org/10.3847/1538-3881/ab6d74
https://doi.org/10.3847/1538-3881/ab6d74
https://doi.org/10.1007/s00159-013-0069-0
https://doi.org/10.1088/0004-637X/737/2/103
https://doi.org/10.1088/0004-637X/737/2/103
https://doi.org/10.1086/498708
https://doi.org/10.1086/143298
http://arxiv.org/abs/1504.05966
https://doi.org/10.5281/zenodo.3237084
https://doi.org/10.1051/0004-6361/201628760
https://doi.org/10.1051/0004-6361/201628761
https://doi.org/10.1051/0004-6361/201628761

A Web System Based on Spotify for the
automatic generation of affective playlists

Pedro Álvarez(B) , Jorge Garćıa de Quirós, and Sandra Baldassarri

Computer Science and Systems Engineering Department, Zaragoza University
of Zaragoza, Maŕıa de Luna, 1, Ada Byron Building, Zaragoza, Spain

{alvaper,jgarciaqg,sandra}@unizar.es

Abstract. The online music streaming providers offer powerful person-
alization tools for recommending songs to their registered users. These
tools are usually based on users’ listening histories and tastes, but ignore
other contextual variables that affect users while listening to music, for
example, the user’s mood. In this paper, a Web-based system for gen-
erating affective playlists that regulate the user’s mood is presented.
The system has been implemented integrating resources and data offered
by Spotify through its service platform, and the playlists generated are
directly published in the user’s Spotify account. Internally, the emotions
play a relevant role in the processes of cataloguing songs and making
personalized music recommendations. Novel affective computing solu-
tions are combined with traditional information retrieval and artificial
intelligence techniques in order to solve these complex engineering prob-
lems. Besides, these solutions consider users’ collaboration as a first-class
element in an attempt to improve affective recommendations.

Keywords: Affective playlists · Music recommendations · Web-based
systems · Spotify · Emotions

1 Introduction

The popularization of online music streaming services has promoted a new way
of accessing and listening to songs. Users have at their disposal a wide variety of
songs which makes difficult the process of choosing the music to be consumed at
each moment. Music streaming providers offer their clients different services and
tools for solving this problem, specially, solutions for discovering songs of interest,
creating personalized playlists from these songs and sharing the resulting playlist
with friends and followers. Therefore, playlists become a relevant element in the
field on the online music consumption.

Although users use to manually create their playlists, nowadays, the goal is
the development of technological solutions that automate this task, releasing the
user from the effort involved in the process. The resulting playlist must consider
the user’s musical preferences, convey an emotion and serve for being used during
an activity (such as a travel, a study session or a sport training) or in an event
c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 124–137, 2020.
https://doi.org/10.1007/978-3-030-61218-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_9&domain=pdf
http://orcid.org/0000-0002-6584-7259
http://orcid.org/0000-0002-9315-6391
https://doi.org/10.1007/978-3-030-61218-4_9

A Spotify-based system for generating affective playlist 125

(a party or a wedding, for instance), as it was discussed in [10]. Besides, these
playlists must fulfill a set of desirable properties that guarantee the quality of the
result from the perspective of user perception. [11] summarizes the conclusions of
different studies in order to understand and determine the properties of a good
playlist. Although the automatic generation of these high-quality playlists is still
a complex task, the advances in the fields of Music Information Retrieval and
Music Recommendation Systems have solved some of the challenges involved.

With the intention of creating more personalized playlists, physiological con-
structs have been integrated into the playlist generation systems [26], in par-
ticular, the user’s emotions. These emotions have a strong impact on her/his
short-time music preferences; and, vice-versa, music can produce different effects
on the user’s mood. This influence has promoted a new model of emotion-aware
playlists, called affective playlists [16]. In recent years, some systems able to gen-
erate automatically affective playlists have been developed, as we will review in
Sect. 2. These solutions require to infer the user’s emotional state, to understand
the emotional responses that the songs can produce on the listeners, and to corre-
late these two issues for generating the final playlists. Audio extraction libraries
and a wide variety of artificial intelligence techniques have been combined for
fulfilling these requirements. Nevertheless, some important challenges still need
to be addressed, such as the scalability of systems in order to use large-sized col-
lections of emotionally-annotated songs, the inclusion of the real user’s feedback
in personalization algorithms, the integration of emotional devices that monitor
the evolution of the listener’s mood for improving the future recommendations,
or the definition of benchmarks for evaluating the playlist’s quality, among oth-
ers. The solutions to these challenges will make easier the integration of the
emotional perspective into the online music streaming providers’ services.

In this paper, we propose an Affective Playlist Generation (APG) system
based on Spotify. The system works with the complete catalog of songs pub-
lished by the music streaming provider (more than 30 million of songs), unlike
the existing solutions. As part of the proposal has been needed to develop a
music emotion recognition system able to annotate emotionally all the Spotify
songs. These annotations represent the emotions that the users feel when listen-
ing to the songs. This user-based point of view is a contribution with respect the
existing proposals and requires to combine the knowledge of Spotify users with
machine-learning techniques. The APG system’s goal is to regulate the user’s
mood by applying a cascade hybrid method as strategy for generating playlists
(in accordance to the classification proposed in [11]). The method takes advan-
tage of the different techniques employed for improving the listener’s experi-
ence. These techniques include a emotion-aware music recommendation system,
a set of content-based and collaborative filters that considers users’ feedback and
tastes, and, finally, a procedure for fulfilling the desirable properties of playlist.
This combination guarantees the personalization and the quality of affective
playlists proposed.

The rest of the paper is structured as follows. Section 2 reviews the existing
techniques for generating affective playlists paying attention in those solutions

126 P. Álvarez et al.

that do not require user intervention. Section 3 describes the proposal for gen-
erating playlists, and Sect. 4 presents the software system that implements this
proposal. The most relevant components involved in the generation process are
also detailed. Finally, Sect. 5 discusses the main conclusions obtained and the
future work.

2 State of the Art

Several surveys [7,26,27] present the existing techniques for the automatic gener-
ation of playlists and provide an overview of the most important open challenges.
As it is discussed in these papers, the great challenge is to create more person-
alized recommendations, which requires to combine the user’s preferences with
different contextual and psychological constructs. In this paper, we are specially
interested in the user’s mood and in the emotional effects of music as part of
the generation of playlists. For this reason, the most relevant proposals in the
domain of the affective playlist generation are reviewed in this section.

First of all, we would like to distinguish emotion-based music players from
automatic systems for generating playlists. The former integrates music recom-
mendation systems for determining the next song to be played at each moment.
Although playlists are not explicitly created, the process of selecting the next
song is based on the same techniques as used in the automatic playlist gener-
ation. Besides, in some cases these players take also in account the listener’s
preferences and emotions [2,15,20]. Despite these similarities, the interest of the
paper focuses on the second type of systems.

Most of these systems use audio-based similarity for the automatic generation
of affective playlists [6,8,9,12,16,17]. These proposals begin extracting songs’
audio features and, then, use these features for recognizing the emotion that a
song can produce in the listeners. This recognition can be based on the use of
an intelligent system [17], clustering techniques [6,8,12], or users’ manual anno-
tations [9]. The recognized emotion is mapped to a point in the two-dimensional
space defined by an emotional model (the two most popular dimensional models
are the Russell circumflex model [25] and the Thayer’s mood model [28]). Once
all the songs have been emotionally annotated, the user introduces her/his mood
[12,16,17] or a seed song [6,8] which can be also mapped to an emotion. In both
cases, similarity algorithms are subsequently applied for determining the near-
est songs to the input emotion on the dimensional space, and, then, these songs
are directly used for generating the output playlist. In general, these similarity-
based proposals present some relevant drawbacks: the songs’ audio is necessary
and, therefore, the solutions are usually applied to small-sized music collections;
the resulting playlists may not vary widely because they are composed of simi-
lar songs; the user’s feedback is not considered for improving and personalising
the resulting playlists; and none of the proposals evaluate whether the desirable
properties of playlists are fulfilled.

Other approaches gather data from social networks [14,22] or from listeners’
opinions [3] for classifying songs from an emotional perspective, as an alternative

A Spotify-based system for generating affective playlist 127

to the solutions based on the audio extraction. In these cases, the songs are
usually emotionally classified using some categorical model, such as the musical
genres [14] or the user’s personal perception of music [3,22]. The process of
generating the final playlist is also based on the use of similarity algorithms and,
therefore, these solutions present the same drawbacks as the audio-based ones.

Unlike the proposals based on similarity techniques, other works have the goal
of modifying the user’s mood through the music and explicitly consider as input
parameter the target emotion. [21] presents a system that shifts the listener’s
state towards a positive mood. At the beginning, each song is manually tagged
with a label that defines its (positive/negative) impact in the listener’s mood
(the impression of a song). Then, the authors define abstract patterns of playlists
that consist basically of a ordered list of impression values. The automatic gen-
eration of affective playlists consists of replacing these values for concrete songs
with a similar impact. On the other hand, [18] defines a probabilistic model for
understanding the physiological effects of music on the user. Every time the user
listens to a song, the model learns from her/his responses. This learning takes
also into account the users’ musical preferences and activity. Authors discuss
the possibility of applying the model for generating playlists that change the
user’s mood, but a concrete solution is not published. And, finally, [4,19] repre-
sent a line in the two-dimensional space of an emotional model, from the start
emotion to the desired emotion. Then, they calculate the distance of each song
contained in an emotionally annotated database to the line, and go through the
line selecting the songs closest to it for creating an ordered playlist.

3 Description of the Proposal

Nowadays, Spotify offers more than 30 million of songs and provides different
data services that allow easy access these songs’ metadata and the playlists cre-
ated by registered users. These services have been published for encouraging the
development of new Spotify-based applications. The proposal presented in this
paper consists of using these services for creating a large-size music catalog in
which all Spotify songs are emotionally annotated, and combining recommen-
dation algorithms and content-based and collaborative filtering techniques for
generating affective playlists from these songs. Besides, these playlists will have
to fulfil a set of desirable properties that guarantee their quality.

Figure 1 shows the tasks involved in the generation of affective playlists.
The red rectangles represent interactions with the user; whereas, the white ones
represent internal tasks carried out automatically by the software system that
will implement the process of generation.

At the beginning, the user introduces the mood wanted to be induced through
music. The list of recommended songs will be created from a seed that describes
the characteristics of songs to be included into the playlist. The Generation of the
seed information task is responsible for creating this characterization from the
mood introduced by the user. Then, the Recommendation of candidate songs
task searches a set of songs that fulfills the target characteristics in the best

128 P. Álvarez et al.

Fig. 1. Process of generating a playlist

possible way, using a knowledge database that contains the Spotify songs and
their emotional annotations. These annotations describe the emotions that each
song produces in the users when listen to it, and were previously created from
the Spotify data services (specifically, from the playlists published by registered
users). The result is a list of candidate songs to be included in the final playlist.

Different filtering techniques are subsequently applied for refining the list
of candidate songs. Firstly, the users’ musical preferences, listening histories
and explicit feedback are considered for personalising the results; and, then, the
behaviour similarity between users is analyzed for improving these results. Before
generating the playlist from the filtered list of songs, some extra filters are used
to guarantee the quality of the final playlist. These actions are completed by the
Filtering of songs and the Generation of playlists tasks.

Finally, the Configuration of the final playlist task presents the resulting
playlist to the user. She/he can discard those songs that are not interesting to
her/him. Afterwards, on the one hand, these user decisions (dislikes) are sent
as feedback to the system for improving the future filtering decisions; and, on
the other hand, the final playlist is created and submitted to the Spotify service
platform. This action is carried out by the Creation of the Spotify playlist task.
From this moment the user can play the new playlist in her/his mobile phone.

Once the tasks have been described, some relevant issues involved into the
generation of playlists are discussed in more detail:

– Emotions induced by Spotify songs: Most of the solutions for generating affec-
tive playlists work with a small-size catalogs of songs, as it was previously
commented. In [23] we built a set of machine learning models for annotating
emotionally Spotify songs. These models have been used for creating a large-
size music database that contains the metadata (artist, musical genre, audio

A Spotify-based system for generating affective playlist 129

features, etc.) and the emotional labels of all Spotify songs (more than 30
million of songs). The emotion that the users feel when listening to a song is
represented by a vector of four values, one per each of the Russell quadrants
[25]. These values are the probability that the emotion felt belongs to the
corresponding quadrant. For example, the “I want to hold your hand” song
by “The Beatles” has the following emotional annotation [0.174, 0.765, 0.155,
0.006] which represents that is a happy song with a 0.765 probability (the
sad, angry and relaxed probabilities are 0.174, 0.155 and 0.006, respectively).

– The collaborative role of users: In the proposal the users play a relevant role.
On the one hand, we are using the playlists published by Spotify registered
users for creating the music emotion recognition system that annotates songs.
When an user creates a new playlist, fills some textual metadata (such as the
name and the description of the playlist) that have helped us to understand
the emotions that can produce in the listener and the purpose for which it
was created. On the other hand, users also provide explicit feedback (specif-
ically, the dislikes) to the system before submitting the final playlists to the
streaming provider. This feedback is stored jointly with the user’s listening
histories and her/his musical preferences, allowing us to characterise to each
particular user. Then, similarity algorithms are applied to find users with
similar listening habits and tastes, and to improve the playlist generated by
the system in the future.

– Criteria for the selection of songs: The main purpose of our playlists is the
mood regulation, which is one of the most important reasons why people listen
to music. User emotions change rapidly, but mood changes happen gradually
[24]. As consequence, multiple songs are usually needed for producing these
changes. Traditionally, this type of playlists comprise a sequence of songs
that are as similar as possible in order to guarantee the playlist continuity
(or the ability of reducing the effects between the transitions of songs) [26].
Obviously, this criteria is compatible with applying different strategies for
improving the user’s experience. In view of these issues, we propose a cascade
hybrid method that combines similarity algorithms and collaborative filtering
methods, and refines successively the recommendations of the different rec-
ommenders. Additionally, we have considered as part of the method some of
the most relevant properties that a good playlist must fulfill [11], specifically,
the user’s satisfaction, the popularity and freshness of songs, the homogeneity
and diversity, and the coherence.

4 The System Architecture

Figure 2 shows the different systems programmed for supporting the automatic
generation of affective playlists. At the bottom of the figure are represented the
Music Information Retrieval system (MIR) and the Music Emotion Recognition
system (MER) developed for annotating songs’ emotions. These two systems
interact with the Spotify data services for creating a knowledge database that
contains the metadata and the emotional labels of the songs available in the

130 P. Álvarez et al.

music streaming provider. These songs are subsequently used for the service-
oriented APG system for creating the playlists.

On the other hand, as it is shown at the top of Fig. 2, the APG system
consists of a Web-based application and a Web service. The application allows
users to register their personal profile and to create new affective playlists. When
a user signs up, she/he must specify her/his musical preferences and the Spotify
credentials needed to access to the provider’s services. Once the registration has
been completed, she/he can request a new playlist specifying as input parameter
the target mood. The web application will show the ordered list of recommended
songs and allow the requester to play each song during 30 s. Before generating
the final playlist, the user can remove those songs that are not to her/his liking.
These actions are an interesting feedback for improving future recommendations
and, therefore, are submitted to the service. Finally, the user can accept the
final version of the playlist and, in that case, it will be automatically published
in her/him Spotify account using the corresponding user credential.

The Web service offers all the functionality needed for generating affective
playlists. Internally, it integrates the four components that implement the pro-
cess described in Sect. 3. The Manager of requests creates an internal workflow
for each user request. The workflow controls the sequence of tasks needed to
generate a new playlist and invokes the components responsible for executing
these tasks, specifically, the Analysis of mood component, the Decision maker,
and the Spotify integrator component. The first generates the seed needed for
making the music recommendations. The service’s core is the decision maker.
It processes the seed for creating a list of candidate songs, applies a set of fil-
ters for personalizing the recommendations and, finally, elaborates a proposal of
playlist. This playlist is returned to the user for being improved and, once has
been accepted, the Spotify integrator interacts with the Spotify service platform
for publishing it in the user’s account.

In the following subsections we will explain in detail some of the most relevant
components of the system.

4.1 Music Information Retrieval System

Before starting the system, the database of songs must be created. These songs
have to be annotated by the music emotion recognition system. It is responsible
for determining the emotions that the users feel when listening a song. As it
will be explained in the next subsection, we have built a set of machine learning
models for making the emotional recognition of songs. Nevertheless, a dataset
of emotionally-annotated songs is previously needed for building, training and
validating these models. A Spotify-based MIR system has been programmed for
creating this dataset. Internally, it is composed of two data acquisition processes
that gather the information necessary from the music streaming provider’s data
services.

The music provider offers two Web data services that play a relevant role in
the solution: the Spotify Web API for developers and the Spotify Playlist miner
API. The former allows to access the music database of the provider (list of

A Spotify-based system for generating affective playlist 131

Fig. 2. Architecture of the system

songs) and to get the metadata (author, album, musical genre, etc.) and audio
features of each song; whereas the second aggregates the top songs from the
most popular playlists created by the Spotify ’s users. These aggregations are
created from search criteria based on keywords which are matched with names
and descriptions of published playlists.

Spotify ’s users create their playlists using the Spotify applications. We have
assumed that a song contained into a playlist called “Motivating music for run-
ning” is likely that conveys positive energy and emotions. Therefore, that song
could be annotated as happy or excited. With this in mind, a list of emotions of
interest has been defined to be used as search keywords. The Playlist acquisition

132 P. Álvarez et al.

process interacts with the Spotify miner and uses these keywords for creating the
dataset of annotated songs. In more detail, the acquisition process determines
a search criteria for each input emotion and searches for aggregations that con-
tain songs that could match with that criteria. Then, the results are ranked and
filtered in order to select the songs to be emotionally annotated. Specifically,
10,000 Spotify songs were labelled from the text descriptions created by users
and stored into the intermediate repository. Then, the Metadata acquisition pro-
cess interacts with the Spotify Web API for developers for getting the general
attributes and audio features of the selected songs. These are stored together
with the emotional annotations in the dataset created for building the machine
learning models that will be applied in the recognition process.

4.2 Music Emotion Recognition System

The Music emotion recognition system predicts the emotions that the users feel
when listening the songs. These predictions are made from the songs’ audio
features and the result is represented as an emotional label, particularly, as a
vector of four probabilistic values, as was explained in Sect. 3. Internally, the
system consists of a set of machine learning models responsible for making the
emotional predictions. In [23] we applied a complete machine-learning process
for creating, training and evaluating these models from the dataset generated by
the MIR system. A different model was built for each of the Russell’s dimensional
quadrants (for happy, sad, angry and relaxed quadrants), and validated using
the AcousticBrainz database [1]. The resulting models are the core of the MER
system which has been used for the large-scale annotation of Spotify songs.

Specifically, 3 million of Spotify songs were emotionally annotated and, then,
stored in the database of the APG system. At first, the Emotionally annotation
process gets songs’ audio features from the Spotify Web API for developers, and
invokes the MER system for creating the emotional labels. Internally, this process
has been implemented as a master-slave system for facilitating the parallelism
of annotations. This type of distributed architecture is suitable for this problem
since the recognition of each song is an independent task. Besides, it has been
programmed to be deployed in a private cluster of computer or in a cloud-based
environment. In this particular case, we deployed the system in the Amazon
EC2 infrastructure using a set of homogeneous virtual machines for executing
the slaves nodes.

Once the recognition is completed, the metadata acquisition process interacts
with the Spotify Web API for getting the metadata of interest of annotated
songs. Finally, all these data are stored into the MongoDB database used by the
APG system.

4.3 An Emotion-Aware Music Recommendation System

The music recommendation system (RecSys) is one of the most relevant compo-
nents of the solution. Its implementation is based on a Nearest Neighbor Search
algorithm (NNS). This class of algorithms solve the problem of finding the point

A Spotify-based system for generating affective playlist 133

in a given set that is closest (or most similar) to a given point. Formally, they
are defined from a set of points in a space M and a metric distance that allows
to determine the similarity (or dissimilarity) between these points. In our pro-
posal, each Spotify song has been translated to a point of the space M. Therefore,
the search space of our problem is complex (more than 3 million of songs were
selected and a point is defined for each of these songs). When working with large
size spaces in the field of multimedia recommendation, it is not necessary to
retrieve an exact search result [5]. Therefore, we have decided to use the Annoy
algorithm [13], an approximate NNS algorithm that has provided good results
in this kind of domains. These algorithms are able to retrieve approximate near-
est neighbors much faster than NNS algorithms. Besides, our implementation
of Annoy was internally configured for using the angular distance as similarity
measurement between the points.

Figure 3 shows the internal components of the decision maker. Before starting
the recommendation system, the emotionally-annotated songs have been trans-
lated to points in the search space. The translation function is based on songs’
audio features (loudness, energy, tempo, acousticness, valence, liveness, speech-
iness, instrumentalness, danceability, key, duration, and mode) and emotional
annotations (the vector of probabilities). Then, the analysis mood component
applies a set of rules for determining the seed corresponding to each playlist gen-
eration request. This seed is a search point (in red color) that characterises the
songs to be included into the playlist. The Annoy algorithm processes this point
and returns a list of candidate songs applying similarity criteria. It is important
to remark that, in our approach, these criteria are based on the songs’ audio fea-
ture and the emotions that can produce in the listeners. The number of returned
songs can be easily configured.

Fig. 3. Components of the decision maker (Color figure online)

134 P. Álvarez et al.

4.4 Filtering of the Recommendations

The aim of the filtering components is to personalise the recommendations for
improving the listener’s experience. As shown in Fig. 3, the list of recommended
songs is processed by two different kind of filters: the user-based filter and the
similarity-based filter. The former scores with a value of interest each of the
recommended songs in accordance the target user’s musical preferences, listening
habits and tastes. The second searches users that are similar to the target user
based on similarity of preferences and musical tastes, and, applies collaborative
filtering techniques for refining the songs’ values of interest. Finally, the songs are
ranked in accordance with their values of interest which will be used for deciding
what songs are included into the playlist generated by the decision maker.

The user-based filter uses the knowledge that the system has stored of the
user for making a first assessment of the recommendations. This knowledge
includes the user’s listening habits and explicit feedback provided during the
process of generating playlists. Specifically, the assessment function considers
three factors: the music preferences defined into the user’s profile, the music
genres that the user usually listens to (these are determined from her/his lis-
tening histories by considering the list of genres available in Spotify), and the
characteristics of songs (genre and audio features, mainly) that were disliked by
the user in the past.

On the other hand, the similarity-based filter has been programmed using
collaborative-filtering techniques. This filter work with the user-genre matrix,
that describes the users’ taste ratings according to music genres. These ratings
are calculated from the user’s listening histories (implicit feedback) and dis-
likes (explicit feedback) and provide a measure of the type of music preferred
by users. The filter computes the cosine distance for measuring the similarity
between users, and a nearest neighbour search for finding the most similar users
to the target user. The ratings of these users are subsequently used for refining
the songs’ values of interest. Currently, we are applying matrix factorization for
discovering latent features between the users’ profiles and the songs’ audio fea-
tures listened to them. This factorization reuses the similarity matrix for making
predictions that improve recommendations, and it is a powerful alternative to
the ratings based on music genres.

The result is a ranked list of recommended songs, as shown on the right side
of the figure. Finally, the selection of songs component processes this list for
generating the playlist that will be proposed to the user. It has to fulfill a set
of desirable properties. Following, we explain briefly how the fulfillment of these
properties has been addressed. Firstly, the popularity and freshness of songs were
taken in account when the database of annotated songs was created. It contains
3 million of songs that were selected using certain information provided by the
Spotify data services, specifically, the top artists and songs in accordance to
users’ latest listening histories. Secondly, the playlist coherence (or continuity)
has been guaranteed by applying a similarity-based recommendation. Besides,
the similarity criteria is not only based on songs’ audio features, but it also

A Spotify-based system for generating affective playlist 135

considers the emotions produced in the listeners by these songs. Thirdly, the
playlist generated by the selection component consists mainly of songs with a
high value of interest, but it also includes some songs with medium/low values
(for instance, songs that do not fit the user’s preferences or that she/he has not
listened to them at any time). This selection criteria introduces the requirement
of diversity into the resulting playlists. Finally, once the generation of a playlist
is completed, the user can accept/discard the recommended songs before pub-
lishing the final version in Spotify. These actions are aimed to improve the user’s
satisfaction before playing the final playlist (as future work, we are interesting
in collecting users’ opinions after playing the playlists and using this feedback
for improving future recommendations).

5 Conclusions and Future Work

In this paper, a Web-accessible system for generating affective playlists has been
presented. The playlists are created for regulating the listener’s mood by consid-
ering the emotions that the users feel when listening the songs. Internally, the
system is based on different resources (songs, playlists, users’ listening data, etc.)
provided by Spotify through its platform for developers. These resources have
been used for developing a music emotion recognition system able to annotate
emotionally a large-size music database. These annotations play a relevant role
in the process of selecting candidate songs to be included in playlists. This selec-
tion is based on similarity algorithms and takes in account users’ explicit and
implicit feedback for the improvement of recommendations. The final result is
directly published in the user’s Spotify account. From an implementation point
of view, the systems involved have been mainly programmed combining the Java
technology (the Spring framework) and the Scipy ecosystem.

Currently, we are organizing a set of experiments with real users for evaluat-
ing the suitability and quality of affective playlists generated. The results of these
experiments will help us to improve the filtering and personalization strategies
and to decide which new techniques could be included in the future (for example,
the combination of clustering and matrix factorization applied to songs’ audio
features and users’ profiles). Additionally, as future work, we are also interested
in extending the system to a product that is accessible to any Spotify user, but
some legal issues must be still reviewed by experts. Finally, we would like to
include other contextual variables (such as, the user’s context or activity) as
input parameters in order to introduce new constructs in recommendations.

Acknowledges. This work has been supported by the TIN2017-84796-C2-2-R and
RTI2018-096986-B-C31 projects, granted by the Spanish Ministerio de Economı́a y
Competitividad, and the DisCo-T21-20R and Affective-Lab-T60-20R projects, granted
by the Aragonese Government.

136 P. Álvarez et al.

References

1. AcousticBrainz (2015). http://acousticbrainz.org/
2. Interactive music recommendation based on artists’ mood similarity: moodplay.

Int. J. Hum. Comput. Stud. 121, 142–159 (2019). https://doi.org/10.1016/j.ijhcs.
2018.04.004. advances in Computer-Human Interaction for Recommender Systems

3. Abderrazik, H., et al.: Tagging playlist vibes with colors. In: The 6th Joint Work-
shop on Interfaces and Human Decision Making for Recommender Systems, Co-
located with 13th ACM Conference on Recommender Systems (RecSys) (2019)

4. de Assunção, W.G., de Almeida Neris, V.P.: M-motion: A mobile application for
music recommendation that considers the desired emotion of the user. In: Proceed-
ings of the 18th Brazilian Symposium on Human Factors in Computing Systems,
IHC 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3357155.3358459

5. Aumüller, M., Bernhardsson, E., Faithfull, A.: Ann-benchmarks: a benchmarking
tool for approximate nearest neighbor algorithms. Inf. Syst. 87, 101374 (2020).
https://doi.org/10.1016/j.is.2019.02.006

6. Bakhshizadeh, M., Moeini, A., Latifi, M., Mahmoudi, M.T.: Automated mood
based music playlist generation by clustering the audio features. In: 2019 9th
International Conference on Computer and Knowledge Engineering (ICCKE), pp.
231–237 (2019). https://doi.org/10.1109/ICCKE48569.2019.8965190

7. Bonnin, G., Jannach, D.: Automated generation of music playlists: survey and
experiments. ACM Comput. Surv. 47(2), 1–35 (2014). https://doi.org/10.1145/
2652481

8. Cardoso, L., Panda, R., Paiva, R.P.: Moodetector: a prototype software tool for
mood-based playlist generation. In: INForum 2011, Simpósio de Informática. Coim-
bra, Portugal (2011)

9. Chi, C., Tsai, R.T., Lai, J., Hsu, J.Y.: A reinforcement learning approach to
emotion-based automatic playlist generation. In: 2010 International Conference on
Technologies and Applications of Artificial Intelligence, pp. 60–65 (2010). https://
doi.org/10.1109/TAAI.2010.21

10. Cunningham, S.J., Bainbridge, D., Falconer, A.: More of an art than a science: sup-
porting the creation of playlists and mixes. In: Proceedings of the 7th International
Conference on Music Information Retrieval, pp. 240–245. Victoria (2006)

11. Dias, R., Gonçalves, D., Fonseca, M.J.: From manual to assisted playlist creation:
a survey. Multimedia Tools and Appl. 76(12), 14375–14403 (2016). https://doi.
org/10.1007/s11042-016-3836-x

12. Dittenbach, M., Neumayer, R., Rauber, A.: Playsom : An Alternative Approach
to Track Selection and Playlist Generation in Large Music Collections (2005)

13. Erik Bernhardsson: Annoy (2013). https://github.com/spotify/annoy
14. Gajjar, K., Shah, S.: Mood based playlist generation for Hindi popular music:

a proposed model. Int. J. Comput. Appl. 127, 11–14 (2015). https://doi.org/10.
5120/ijca2015906505

15. Gilda, S., Zafar, H., Soni, C., Waghurdekar, K.: Smart music player integrating
facial emotion recognition and music mood recommendation, pp. 154–158 (2017).
https://doi.org/10.1109/WiSPNET.2017.8299738

16. Griffiths, D., Cunningham, S., Weinel, J.: Automatic music playlist generation
using affective computing technologies (2013)

17. Griffiths, D., Cunningham, S., Weinel, J.: An interactive music playlist generator
that responds to user emotion and context, pp. 275–276 (2016). https://doi.org/
10.14236/ewic/EVA2016.53

http://acousticbrainz.org/
https://doi.org/10.1016/j.ijhcs.2018.04.004
https://doi.org/10.1016/j.ijhcs.2018.04.004
https://doi.org/10.1145/3357155.3358459
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1109/ICCKE48569.2019.8965190
https://doi.org/10.1145/2652481
https://doi.org/10.1145/2652481
https://doi.org/10.1109/TAAI.2010.21
https://doi.org/10.1109/TAAI.2010.21
https://doi.org/10.1007/s11042-016-3836-x
https://doi.org/10.1007/s11042-016-3836-x
https://github.com/spotify/annoy
https://doi.org/10.5120/ijca2015906505
https://doi.org/10.5120/ijca2015906505
https://doi.org/10.1109/WiSPNET.2017.8299738
https://doi.org/10.14236/ewic/EVA2016.53
https://doi.org/10.14236/ewic/EVA2016.53

A Spotify-based system for generating affective playlist 137

18. Janssen, J.H., van den Broek, E.L., Westerink, J.H.D.M.: Personalized affective
music player. In: 2009 3rd International Conference on Affective Computing and
Intelligent Interaction and Workshops, pp. 1–6 (2009). https://doi.org/10.1109/
ACII.2009.5349376

19. Janssen, J., van den Broek, E.L., Westerink, J.: Tune in to your emotions: A robust
personalized affective music player. User Model. User-Adap. Inter. 22, 255–279
(2012). https://doi.org/10.1007/s11257-011-9107-7

20. Nathan, K., Arun, M., Kannan, M.: Emosic - an emotion based music player for
android, pp. 371–276 (2017). https://doi.org/10.1109/ISSPIT.2017.8388671

21. Ogino, A., Uenoyama, Y.: Music playlist generation system for changing a lis-
tener’s mood to a positive state. In: International Symposium on Affective Science
and Engineering, ISASE 2019, pp. 1–4 (2019). https://doi.org/10.5057/isase.2019-
C000020

22. Pichl, M., Zangerle, E., Specht, G.: Understanding playlist creation on music
streaming platforms. In: 2016 IEEE International Symposium on Multimedia
(ISM), pp. 475–480 (2016). https://doi.org/10.1109/ISM.2016.0107

23. de Quirós, J.G., Baldassarri, S., Beltrán, J.R., Guiu, A., Álvarez, P.: An auto-
matic emotion recognition system for annotating Spotify ’s songs. In: Panetto, H.,
Debruyne, C., Hepp, M., Lewis, D., Ardagna, C.A., Meersman, R. (eds.) OTM
2019. LNCS, vol. 11877, pp. 345–362. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-33246-4 23

24. Russell, J.: Core affect and the psychological construction of emotion. Psychol.
Rev. 110, 145–72 (2003). https://doi.org/10.1037//0033-295X.110.1.145

25. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161
(1980)

26. Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., Elahi, M.: Current chal-
lenges and visions in music recommender systems research. Int. J. Multimedia
Inf. Retrieval 7(2), 95–116 (2018). https://doi.org/10.1007/s13735-018-0154-2

27. Sneha, A., Jayarajan, J.: Survey on playlist generation techniques. Int. J. Adv.
Res. Comput. Eng. Technol. 3(2), 437–439 (2014)

28. Thayer, R.: The Biopsychology of Mood and Arousal. Oxford University Press,
New York (1989)

https://doi.org/10.1109/ACII.2009.5349376
https://doi.org/10.1109/ACII.2009.5349376
https://doi.org/10.1007/s11257-011-9107-7
https://doi.org/10.1109/ISSPIT.2017.8388671
https://doi.org/10.5057/isase.2019-C000020
https://doi.org/10.5057/isase.2019-C000020
https://doi.org/10.1109/ISM.2016.0107
https://doi.org/10.1007/978-3-030-33246-4_23
https://doi.org/10.1007/978-3-030-33246-4_23
https://doi.org/10.1037//0033-295X.110.1.145
https://doi.org/10.1007/s13735-018-0154-2

Classification of Summer Crops Using Active
Learning Techniques on Landsat Images

in the Northwest of the Province of Buenos Aires

Lucas Benjamin Cicerchia1,3(B) , María José Abasolo2,4 ,
and Claudia Cecilia Russo1,2

1 Institute of Research and Transfer of Technology (ITT), National University of Norwest of
Buenos Aires Province (UNNOBA), Sarmiento 1169, 6000 Junín, Buenos Aires, Argentina

{lucas.cicerchia,claudia.russo}@itt.unnoba.edu.ar
2 Commission of Scientific Research of the Buenos Aires Province (CICPBA), Buenos Aires,

Argentina
3 Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Buenos Aires,

Argentina
4 III-LIDI, Faculty of Informatics, National University of La Plata (UNLP), 50 and 120 Street,

2nd Floor, 1900 La Plata, Buenos Aires, Argentina
mjabasolo@lidi.info.unlp.edu.ar

Abstract. The present work aims to obtain a classifier for summer crops in the
northwest of Buenos Aires province from Landsat satellite images. Active Learn-
ing (AL)was used as the classification technique since it obtains satisfactory results
using a small set of labeled samples to train the algorithm. The construction of the
training set is iteratively performed by means of a heuristic for the selection of the
unlabeled samples to be classified by an expert. The following heuristics were used
for comparison: Breaking Ties, Multiclass Level Uncertainty, Margin Sampling,
and Random Sampling. The algorithm was also compared with the supervised
technique Support Vector Machine (SVM). The experiments were tested on three
Landsat 8 images from different dates using 6 bands per image and various veg-
etation indices. The results obtained using AL in combination with the different
heuristics do not differ substantially from SVM.

Keywords: Active learning · Cropland classification · Land cover
classification · Remote sensing ·Multispectral image · Big data

1 Introduction

The advance of technology in recent years has covered different disciplines, including
agriculture. The identification of land cover has become an important aspect of moni-
toring, providing information for resource management and decision support. Precision
Agriculture (PA) has begun to apply information and communication technology to
all farming techniques [1]. In this way, it has become a fundamental tool to achieve
an adequate management of the soil and its crops, taking into account their variability

© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 138–152, 2020.
https://doi.org/10.1007/978-3-030-61218-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_10&domain=pdf
http://orcid.org/0000-0003-0316-7896
http://orcid.org/0000-0003-4441-3264
http://orcid.org/0000-0002-0345-4783
https://doi.org/10.1007/978-3-030-61218-4_10

Classification of Summer Crops Using Active Learning Techniques 139

within a lot [2]. It allows adapting to the demands of modern agriculture in the optimal
management of large areas [3].

Remote Sensing (RS) [4], which includes satellite images, generates a great amount
of data (Big Data) for PA. The use ofMachine Learning (ML) techniques may be applied
to all kinds of data, including that generated by RS to obtain information [5, 6].

As can be seen in Lary et al. [4] the application of ML techniques to RS is relatively
new and limited, covering different fields of application and examples [7]. Also, in
D. Marcos et al., it can find the contribution that digital image processing can give to
these two previous one kind of works [8]. Based on ML techniques in RS it can obtain
classification, prediction, selection, and feature extraction maps, among other things
[9–11]. Also, as mentioned by A. Gonzalez-Sanchez et al. [12] and S. Veenadhari et al.
[13], soil, crop, and climate monitoring could be implemented to provide a decision
support system. It may also be able to learn, among other things, how to predict crop
yields or, as indicated by S. Dimitriadis et al. [14] determine crop-specific treatments
such as irrigation, fertilizer, or pesticide application for different parts of the soil.

In Supervised Learning (SL) techniques, such as Support Vector Machine (SVM) all
the samples have to be labeled. Deep Learning (DL) is used in remote agriculture and
remote sensing [15, 16]. The large amount of data generated by remote sensors nowa-
days, given the high spatial and spectral resolution, makes data labeling for Supervised
Learning algorithms a hard task and time-consuming. Besides, in the specific case of
agriculture, it is required that such labeling be performed by experts in the field. DL
as mentioned by Kamilaris & Prenafeta-Boldú [15] in many cases requires large sets
of labeled data or hundreds of images. This problem often means that these algorithms
can be applied to a small data set. Meanwhile, Active Learning (AL) [17] is a Semi-
Supervised Learning (SSL) technique that aims to obtain a satisfactory classification
performance with a smaller number of labeled samples and exploits the continuous
interaction with the classifier [7, 18]. It builds efficient training sets, improving itera-
tively the performance of the model. This allows for constant retraining of the algorithm
and enables the exploitation of the data and reduces the cost of labeling. The samples to
be labeled are selected by a heuristic selection to be representative enough to improve
the model and then they will be labeled by an expert [17].

The present work aims to explore different AL techniques applied to RS in com-
parison with SVM to achieve a classifier of different summer crops in the Northwest of
Buenos Aires province, Argentina. More specifically, the study was carried out on fields
in the districts of Junín, Rojas, and Chacabuco, which are part of the so-called “Humid
Pampa”, one of the most relevant regions in agricultural production and less studied
with this type of techniques. Most of the work found in the literature was performed on
hyperspectral images ormulti-temporal images [19, 20]. In ourwork, itwill be performed
on a single Landsat multispectral image. Also, the classification will be done on two
types of maize crops and two types of soybean crops.

The rest of the article is organized as follows: Sect. 2 presents the problem and
the proposed solution; Sect. 3 presents the results of the tests, and Sect. 4 presents the
conclusion and future work.

140 L. B. Cicerchia et al.

2 Problem and Proposed Solution

2.1 Problem Description

The aim of the present work is the application of AL algorithms to classify summer
crops in the northwest of the province of Buenos Aires by using Landsat 8 images. The
crops cultivated in the region include Maize, Soybean, and Sorghum, where the first two
are the main and most widely planted. The region also has large lakes and rivers that
cross it, which means that some plots are adjacent to these large concentrations of water
and many of them contain lowlands.

The particularity of this development lies in three fundamental aspects; first of all,
it works with Landsat images when many works are done with hyperspectral, multi-
temporal, or multi-source images [21]. When working with Landsat images, there are
fewer data available than in other cases, for example, in [22] it uses hyperspectral images,
where it has about 200 spectral bands that provide information. In contrast to Landsat
8, which only has 6 bands to provide information. In this work, 4 more bands with
vegetation indices were added to these 6 bands. Another aspect to highlight is that it will
be applied to a region where this type of algorithm has not been studied much yet. There
are some works about coverage in our country, but they are applied in other regions
of the country, to different coverage, using multi-temporal images and with different
vegetation indices [23]. And finally, among the crops to be classified, there are varieties
of two of the above-mentioned crops. That is to say that the intention is to classify
maize in three classes: Maize, Late Maize, and Double Crop Maize, and soybean in
two classes: Soybean and Double Crop Soybean, in addition to Sorghum andWater. The
main challenge is that they are variants of the same crops and they have the same spectral
signature.

It is important to note that, in the case of maize, the only difference between Maize
and Late Maize is the planting date, where Late Maize is planted later than the first.
In the case of the Double Crop Maize, it is maize that, like the Late Crop Maize, was
planted at a later date than the Maize and it was also planted after a winter crop. That is,
previously in the same lot therewas awinter crop, in contrast to theMaize andLateMaize,
where during the winter crop date there was bare soil. Concerning soybeans, Soybean,
and Double Crop Soybean just like maize, the planting dates differ, the Double Crop
Soybean was planted at a later date than the Soybean and it was also planted after a
winter crop.

During the first tests, it was detected the difficulty to distinguish the LateMaize from
the Double Crop Maize. Because they are the same crop and can be planted on the same
dates. And, the companies that sell grains carry out genetic modifications in their seeds
(hybrids), which causes that the same type of crop planted on the same date responds,
grows, and develops differently. In the Fig. 1 using false color, where the RGB color
bands are represented by R = B and 4, G = B and 5 and B = B and 3, it can be seen,
inside the yellow box, that a lot with two different Double Crop Maize hybrids planted
on the same date are reflected differently.

From the preliminary tests using an SVMclassifierwith anRBFkernel, the confusion
matrix in Fig. 2 was obtained, which shows the difficulty in differentiating both classes,

Classification of Summer Crops Using Active Learning Techniques 141

Fig. 1. Lot planted on the same date
with two hybrids of Double Crop Maize

Fig. 2. Classification Confusion Matrix for Maize,
Late Maize, and Double Crop Maize using SVM with
an RBF kernel

Late Maize and Double Crop Maize. Because of this difficulty to separate both classes,
it has been decided that these crops should appear unified as a single land cover type.

For the classification tests a single date image was used but within a particular range
of dates. The decision of not usingmulti-temporal images is to prove that a good classifier
can be obtained for these crops with a single image and to try to simplify the subsequent
use of the classifier by the end-user. The optimal range of dates for the detection of
summer crops in this region is from mid-January to the end of February, because of
those dates some crops are going from flowering to senescence. Within this range of
dates, it found 3 Landsat images on which the tests were carried out to observe what
variations exist in the classification.

2.2 Classifiers

Active Learning Algorithm. AL techniques require a 3 part dataset, the training set,
the test set, and the candidate set, that after the application of a heuristic, some of them
will become part of the training set [18].

It takes as a starting point a set of Labeled Data “L”, which will be used to train
the supervised Classifier “C”, which generates Classified Data from that training. The
technique then continues with the set of Unlabeled Candidates “U”, which are the input
data for the Selection Criteria “Q” (heuristic). Those who were selected by the heuristic
must be labeled by the expert user to add to the Labeled Data set and start the process
again. The unlabeled data set not selected will be considered as candidates for selection
by the Selection Criteria in the new iteration, repeating the procedure until the expected
results are achieved. In other words, AL exploits the interaction with the user while
decreasing the error.

Several supervised classifiers can be used to train the model in each iteration. Based
on the literature consulted, it was decided that SVM will be used because it is widely
applied in land cover classification [24], has better results than other techniques [25],
and does not require as much labeling as neural network techniques [26].

142 L. B. Cicerchia et al.

Support Vector Machines (SVM). The AL algorithms that have been implemented
using SVM as a classifier, which was popularized by Vladimir Vapnik in 1992 [27].
They are mainly used to build classifiers, which through supervised learning, distinguish
between different samples.

In order to carry out the classification, there are multiple decision boundaries that
allow the separation of different samples. SVM seeks to find a separation (decision)
boundary that is equidistant from the samples to be classified, in order to minimize
classification error. In other words, it seeks the separation boundary, which is equidistant
to the closest examples of the classes under study.

In cases where the data cannot be separated in a linear manner, it is necessary to use
special functions called kernels [28].

Heuristics. Below are different Selection Criteria Q (heuristics) of candidates that were
implemented. The determination of the heuristics was made based on the consulted
literature [22].

Random Sampling (AL-RS). Random sampling (AL-RS). AL-RS, as its name suggests,
selects candidates at random from the set of candidates. This criterion has been chosen
to have a measure to compare the performance of the other selected AL heuristics.

Margin Sampling (AL-MS). Also called Most Ambiguous (AL-MA), it is a candidate
heuristic selection belonging to the large margin based heuristics family [22], which
tries to incorporate into the training set the samples most susceptible to classification
errors by a trained SVM.

To establish which elements should be incorporated into the training set, the distance
between all samples in the candidate set and the SVM hyperplanes is measured. The
samples that are closest to the decision boundaries (hyperplanes) of the SVMwill be the
most likely to be misclassified. And for that reason, the heuristics will select them to be
classified by an expert and become part of the training set.

Multi-Class Level Uncertainty (AL-MCLU). MCLU also belongs to the large margin
based heuristics family [22] and uses the two most probable classes. It makes the
difference between the distances to the margin for the two most probable classes.

To establish the elements to be incorporated into the training set, it measures the
distance between all samples in the candidate set and the SVM hyper-planes. For each
sample it calculates the difference between the distances of the two most likely classes,
these are the two greater distances, taking those with the least difference to incorporate
to the training set. When the distance between these two classes is lower, the uncertainty
is higher and therefore you are more likely to have classification errors.

Breaking Ties (BT). BT belongs to the Posterior Probability-Based family of algorithms
[22] which uses posterior probability estimation to select a new candidate. Since the
posterior probability gives a reference to the confidence of the class assignment. It
intends to use the conditional probability to predict a certain class for each candidate. In
the literature [22] Platt’s estimate is proposed [29] but in the present development, Wo’s
estimate will be used [30]. Then to establish which elements should be incorporated
into the training set, it calculates, for all samples of the candidate set, the probability of

Classification of Summer Crops Using Active Learning Techniques 143

belonging to each of the classes. For every sample, it calculates the difference between
the two largest probabilities and then it takes those where the difference is smaller. A
smaller difference indicates that the uncertainty of classification is greater and that it is
more prone to error (Fig. 2).

3 Tests and Results

3.1 Dataset and Ground Truth

The images were downloaded from the U.S. Geological Survey website [31] taken from
the Landsat 8 sensor on path 226 and row 084, more specifically by the district of Junín,
Rojas, and Chacabuco. The data set has two parts, the spectral image and an image
of the same size, but with the ground truths (GT) or labels. The spectral image that
covers part of the northwest of the province of Buenos Aires has 2615 by 2519 pixels
and 6 bands of reflectance (blue, green, red, near-infrared, short-wave infrared 1, and
short-wave infrared 2) with 30 m of spatial resolution. Then, some vegetation indices
were analyzed to highlight aspects of the different coverage’s taking into account the
region [23]. The use of four vegetation indices was determined: Normalized Difference
Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation
Index (EVI), and Normalized Difference Moisture Index (NDMI), which were added as
bands to the Landsat image.

The study was based on the summer crops planted during the year 2019; this is
cropped for the season 2019–2020. Since Landsat images have a frequency of 16 days
between images of the same site, 3 images have been obtained in that period. One image
is from January 25, 2020, the other is from February 10, 2020, and the last from February
26, 2020. For the ground truth, 6 local producerswere consulted and a tour of the different
fields was carried out taking note of the planted crop.

Fig. 3. Equalized RGB image with ground truths

144 L. B. Cicerchia et al.

The images contain different land cover, lagoons, lowlands, and buildings. In this
first instance, these buildings were excluded from the classification and identified as
background because it was composed of different elements, not responding to a specific
pattern, making it difficult to classify.

Table 1 shows the 6 classes of land cover used on the ground truth and the number
of samples of each of them. As can be seen in Table 1, the amount of Sorghum crop that
was identified is lower than the rest of the land covers because Sorghum is less frequent
than the rest of the crops in this region.

Table 1. Land cover, code and samples of the ground truth

Land Cover Code Number of Samples

Background BG (Not Class) 6492999

Maize MZ 10088

Soybean SB 16731

Double Crop Soybean DS 13187

Double Crop and Late Maize DM 33108

Sorghum SG 1758

Water WT 19314

Since Landsat images have a frequency of 16 days between images of the same site,
3 images have been obtained in that period. And the images contain different land cover,
lagoons, lowlands, and buildings. In this first instance, these buildings were excluded
from the classification and identified as background.

Table 1 shows the 6 classes of land cover used on the ground truth and the number
of samples of each of them. For the ground truth, local producers were consulted and a
tour of different fields was carried out taking note of the planted crop. As can be seen
in Table 1, the amount of Sorghum crop that was identified is lower than the rest of the
land covers because Sorghum is less frequent than the rest of the crops in this region.
And in the application of the algorithms, the background has been excluded, since it was
composed of different elements, not responding to a specific pattern, making it difficult
to classify.

3.2 Dataset Division and Tests

The spectral image is a cube of dimensions 2519 pixels (row) by 2615 pixels (column)
by 10 bands which have been resized to a matrix of 6587185 pixels (row) by 10 bands
(columns). Of the 6587185 pixels of the dataset, those that were labeled as the back-
ground were discarded, since they do not have a specific class of the object and therefore
contain a spectral signature that can be very varied, making it very difficult to classify
them. These were a total of 6492999 pixels belonging to the background, leaving a
dataset of 94,186 pixels to be used.

Classification of Summer Crops Using Active Learning Techniques 145

For the construction of the initial training set, it was decided to take a certain amount
of pixels from each of the classes to balance the initial classifier. The criterion for the
selection of the initial training set has been to take a certain amount of pixels from
each of the classes to balance the initial classifier. For this purpose, different tests were
carried out, reaching a minimum of 5 pixels per class (about 30 training pixels) to build
the training set. The amount was determined taking into account the objective of the
technique which is to have to tag the least amount of pixels to obtain an optimal result.
Afterward, it was determined that 30% of the total pixels of the dataset would be used in
the training set and the remaining 70% of pixels for the training set and the candidates.

Throughout the work different tests were performed, where the different algorithms
mentioned above, SVM and AL algorithms such as RS, MS, BT, and MCLU were used.
All these were applied to Landsat images from 3 different dates. First, the size of the
initial training set needed by the AL algorithms was defined and then it will be increased
using any particular criteria (heuristics). After different tests, it was determined that a
good starting classifier was obtained by using a minimum of 5 labeled pixels per class.
In other words, with n = 5 it was obtained a classifier that on average has an Overall
Accuracy (OA) of 76%.

When the performance of the algorithmswas evaluated from this n, i = 75 iterations
of the AL algorithm were executed, incorporating through the heuristics first 10 pixels
in each iteration, and then, i = 150 iterations but with 20 pixels in each iteration. With
each of these combinations, a total of 10 instances were executed for each AL algorithm
with its different AL-RS, AL-MS, AL-BT, and AL-MCLU heuristics. All this makes a
total of 50 executions, 10 for AL-RS, 10 for AL-MS, 10 for AL-BT, 10 for AL-MCLU,
and 10 for SVM. But as the dataset had 3 images from different dates, a total of 150 runs
were made.

Another aspect to determine was if a balanced dataset was used or not, that is, if the
algorithms were trained with the same amount of labels for each class or if the classes
were used with the number of labels that were obtained.

In the first test performed, because there were fewer labels from the sorghum crop, it
was decided to balance the number of samples from each class of the dataset. When the
division of the dataset was made, 30% of the test set had the same amount of labels for
all classes. And the same was done with the 70% that included the training set and the
set of possible candidates to be chosen by the heuristic. This reduced the total number
of 94186 pixels labeled to 10548 pixels (1758 pixels, which is the number that Sorghum
has, for the 6 classes), leaving 7383 pixels for the train and candidates, and about 3165
pixels for the test.

The code was written for Python 3 [32] and using libraries like Scikit-learn [33] for
testing the machine learning algorithms.

3.3 Results

The result of the classification of each of the Landsat images of the three selected dates
can be seen in Fig. 4. It shows the tests performed for each date with an initial training
set of 5 pixels per class. Where on the x-axis it shows the amount of samples labeled in
each iteration and on the y-axis the percentage of accuracy obtained for each of these

146 L. B. Cicerchia et al.

sample amounts. It also all the tested variants, looking at what happened at the extremes
of the number of iterations, is to say when i = 75 and when i = 150.

Fig. 4. Overall accuracy for each heuristic with (a) (c) (e) 150 iterations and 10 new pixels per
iteration (b) (d) (f) 75 iterations and 20 new pixels per iteration

From the graphs can be seen that for these i values the result has converged. It can
also be seen that AL-RS in two of the images works better than the rest of the heuristics,
although the difference is not significant. Of the remaining heuristics in general, the
AL-BT and AL-MCLU heuristics work well, and in the image of February 10, 2020,
they are higher than AL-RS. It is also noted that AL-BT is the best performer at low
i values. In general, when there are few labeled pixels, between 100 and 300 pixels,
the performance of AL-BT is better than the rest and then it is matched with AL-RS.

Classification of Summer Crops Using Active Learning Techniques 147

The AL-MS heuristic, contrary to what was observed in the literature [23] is the worst
performer for this dataset.

In addition to this, the matrices in Figs. 5, 6, and 7 shows the accuracy of the
classifier for each of the classes, where the column shows the true label and the row the
predicted labels. Although classifiers have an acceptable OA, here it can be observed
that, depending on the date, the classifier works better in one class than in another or it
is more difficult to classify certain classes.

Fig. 5. Confusion matrix for the January 25, 2020 image with an initial training set of 5 pixels
per class (30 pixels total). (a, c) 150 iterations and 10 new pixels per iteration (b, d) 75 iterations
and 20 new pixels per iteration

Thus, it can be seen that in the image of January 25 it is more complicated to classify
the unified class DM and that in the image of February 26 it is difficult to distinguish the
SB from the DS. It is also observed that in the image of February 11 it classifies better
the classes that had less performance in the previous images and although the accuracy
of the classes is more homogeneous some of these are inferior to the accuracy of the
other images.

Table 2 shows the OA for each classifier in the 3 images for the different dates. It can
be seen that AL-RS and AL-BT show the best results. In addition, the results obtained
from the confusion matrix by applying SVM, AL-RS, AL-BT, and AL-MCLU to each
of the images are shown below. There it is possible to observe the accuracy for each of
the classes and see how well the classifiers for these classes work.

148 L. B. Cicerchia et al.

Fig. 6. Confusion matrix for the February 10, 2020 image with an initial training set of 5 pixels
per class (30 pixels total). (a) 150 iterations and 10 new pixels per iteration (b) 75 iterations and
20 new pixels per iteration

The second test was performed without stratifying the samples, taking all the labeled
pixels fromall the classes. Thus, in the dataset division, 30%of the test set comprises 30%
of each class and the same with 70% comprising the training set and possible candidates.
In this case, the total of 94186 labeled pixels was used without any reduction, leaving
65930 pixels for the train and candidates, and about 28256 pixels for the test. This
configuration was discarded because the results obtained do not differ from the previous
ones with the stratified classes, moreover, in some cases, the results got worse with some
heuristics. With this configuration, an SVM was trained with 65930 labeled pixels and
the average OA was 91.12%. This result is similar to the stratified configuration with a
training set of 7383 pixels which is significantly lower. It can be concluded then that for
this dataset training the algorithm with more labeled pixels does not modify the result.

3.4 Discussion

Classification of land cover using remote sensing data requires the use of a large amount
of labeled data. The challenge of finding a good classifier from a few labeled data that
will facilitate the use of the expert was the reason for this work. Where AL techniques
were used on 3 images from different dates to obtain a good classifier of summer crops
in the Northwest region of the Province of Buenos Aires.

Classification of Summer Crops Using Active Learning Techniques 149

Fig. 7. Confusion matrix for the February 26, 2020 image with an initial training set of 5 pixels
per class (30 pixels total). (a, c) 150 iterations and 10 new pixels per iteration (b, d) 75 iterations
and 20 new pixels per iteration

Table 2. Mean OA for each date with each of the classifiers

Classifier 25 January 2020 10 February 2020 26 February 2020

SVM 92,61% 90,74% 91,29%

AL-RS 91,82% 89,91% 90,51%

AL-BT 91,53% 91,28% 90,45%

AL-MCLU 91,27% 89,91% 90,04%

AL-MS 84,21% 83,43% 84,38%

In the present work it was possible to verify the particularity that, for the used dataset,
AL-RS had a better performance without too much difference with AL-BT in 2 of the
3 images, while in the remaining image AL-BT was which better performance had. In
the case of AL-MS, contrary to the results found for other datasets in the literature, the
performance was at all times worse than the rest of the heuristics. It is also noted that in
the early stages of the algorithm, with few iterations or few labeled pixels, AL-BT has
the best performance and then, as the size of the training set grows, the hit rate becomes
similar to AL-RS or AL-MCLU.

150 L. B. Cicerchia et al.

Analyzing the results, it can be seen that with AL techniques a good performance
is reached in comparison with SVM, observing that in all the cases the percentage
difference between both does not exceed 1%. In addition to this, with AL, the cost of
labeling is reduced since, as can be seen from the tests carried out, a total of 1530 pixels
are needed to obtain good performance against SVM with 7383 pixels in the best of
cases. In other words, with AL a classifier with similar performance to SVM can be
achieved, but with a much lower cost, mainly in terms of the cost of labeling the classes
by the expert. All these things make AL a good alternative for the classification of this
kind of land cover in this region of the country.

4 Conclusions and Future Work

In the present work, different Active Learning algorithms were tested on Landsat images
for land cover classification in the northwest of Buenos Aires province in Argentina.
For these AL techniques, four sample heuristics selection that is, recommended in the
literature for remote sensing applications were analyzed: AL-BT, AL-MS, AL-MCLU,
and AL-RS.

The application of these techniques to Landsat satellite images with different dates
made it possible to obtain a summer crop classifier for this region with accuracy com-
parable to that obtained with SVM. We can conclude that with a few labeled pixels
similar results can be obtained as with the whole image labeled with the particularity
that we were trying to classify varieties of the same crops. Moreover, this is applied to a
single multi-spectral image, which makes it easier in comparison with other techniques
that require multi-temporal images or hyperspectral images. The results obtained allow
doing with less work a precise classifier, being able to become in the future a useful tool
in the decision making for the experts of the sector.

The work performed until now is the beginning of the work in the subject, the initial
kick to continue working on Machine Learning with Remote Sensing on own datasets
with coverage of the region. The objective of future tests is to continue with the study
of techniques and heuristics to achieve some modifications that will improve the results
obtained until now.

In the future, it is expected to carry out tests with more datasets from other years to
study how climate variations and changes in crop planting dates can affect the classifi-
cation. And to study the possibility of incorporating more classes to the dataset, adding
covers like bare soil, forests, constructions or roads.

References

1. Fernández-Quintanilla, C.: César: Agricultura de precisión. Segundas jornadas científicas
sobre medio Ambient. del CCMA-CSIC. 2, 187–194 (2002)

2. Wang, Y., Lee, K., Cui, S., Risch, E., Lian, J.: Agriculture robot and applications. In: Zheng,
D. (ed.) Future Information Engineering and Manufacturing Science : Proceedings of the
2014 InternationalConference onFuture InformationEngineering andManufacturingScience
(FIEMS 2014), pp. 43–46, 26–27 June 2014. CRC Press, Taylor & Francis Group, Beijing
(2015). https://doi.org/10.1201/b18167

https://doi.org/10.1201/b18167

Classification of Summer Crops Using Active Learning Techniques 151

3. Blackmore, S.: The role of yield maps in precision farming (2003)
4. Kiefe, T.M., Lillesand, R.W.: Remote Sensing and Image Interpretation. Wiley, New Jersey

(2015)
5. Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L.: Machine learning in geosciences and

remote sensing. Geosci. Front. 7, 3–10 (2016). https://doi.org/10.1016/j.gsf.2015.07.003
6. Camps-Valls, G.: Machine learning in remote sensing data processing. In: IEEE International

Workshop on Machine Learning Signal Processing, pp. 1–6 (2009). https://doi.org/10.1109/
MLSP.2009.5306233

7. Scheunders, P., Tuia, D., Moser, G.: Contributions of machine learning to remote sensing
data analysis. In: Scheunders, P., Tuia, D., Moser, G. (eds.) Comprehensive Remote Sensing,
pp. 199–243. Elsevier BV (2018)

8. Marcos, D., et al.: Learning deep structured active contours end-to-end. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8877–8885. IEEE, Salt Lake
City, UT (2018). https://doi.org/10.1109/CVPR.2018.00925

9. Maynard, J.J., Levi, M.R.: Hyper-temporal remote sensing for digital soil mapping: Char-
acterizing soil-vegetation response to climatic variability. Geoderma 285 (2017). in press.
https://doi.org/10.1016/j.geoderma.2016.09.024

10. Teluguntla, P., et al.: A 30-m landsat-derived cropland extent product of Australia and China
using random forest machine learning algorithm on Google Earth Engine cloud computing
platform. ISPRS J. Photogramm. Remote Sens. 144, 325–340 (2018). https://doi.org/10.1016/
j.isprsjprs.2018.07.017

11. Song,X., et al.: National-scale soybeanmapping and area estimation in theUnited States using
medium resolution satellite imagery and field survey. Remote Sens. Environ. 190, 383–395
(2017). https://doi.org/10.1016/j.rse.2017.01.008

12. Gonzalez-Sanchez, A., Frausto-Solis, J., Ojeda-Bustamante,W.: Predictive ability ofmachine
learning methods for massive crop yield prediction. Span. J. Agric. Res. 12, 313–328 (2014).
https://doi.org/10.5424/sjar/2014122-4439

13. Veenadhari, S., Misra, B., Singh, C.D.: Machine learning approach for forecasting crop yield
based on climatic parameters. In: 2014 International Conference Computer Communication
Informatics Ushering Technology, Tomorrow, Today, ICCCI 2014, pp. 1–5 (2014). https://
doi.org/10.1109/ICCCI.2014.6921718

14. Dimitriadis, S., Goumopoulos, C.: Applying machine learning to extract new knowledge
in precision agriculture applications. In: Proceedings of the 12th Pan-Hellenic Conference
Informatics, PCI 2008, pp. 100–104 (2008). https://doi.org/10.1109/PCI.2008.30

15. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput.
Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016

16. Zhu, X.X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., Fraundorfer, F.: Deep learning
in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens.
Mag. Press. 60 (2017). https://doi.org/10.1109/MGRS.2017.2762307

17. Settles, B.: Active Learning Literature Survey. University of Wisconsin–Madison (2009)
18. Crawford, M.M., Tuia, D., Yang, H.L.: Active learning: Any value for classification of

remotely senseddata?Proc. IEEE 101, 593–608 (2013). https://doi.org/10.1109/JPROC.2012.
2231951

19. Liu, P., Zhang, H., Eom, K.B.: Active deep learning for classification of hyperspectral images.
IEEE J. Sel. Top. Appl. EARTH Obs. Remote Sens. 10, 712–724 (2016). https://doi.org/10.
1109/JSTARS.2016.2598859

20. Dallaqua, F.B.J.R., Faria, F.A., Fazenda, A.L.: Active learning approaches for deforested area
classification. In: 2018 31st SIBGRAPI Conference Graphics Patterns Images, pp. 48–55
(2019). https://doi.org/10.1109/SIBGRAPI.2018.00013

https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.1109/MLSP.2009.5306233
https://doi.org/10.1109/CVPR.2018.00925
https://doi.org/10.1016/j.geoderma.2016.09.024
https://doi.org/10.1016/j.isprsjprs.2018.07.017
https://doi.org/10.1016/j.rse.2017.01.008
https://doi.org/10.5424/sjar/2014122-4439
https://doi.org/10.1109/ICCCI.2014.6921718
https://doi.org/10.1109/PCI.2008.30
https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1109/JPROC.2012.2231951
https://doi.org/10.1109/JSTARS.2016.2598859
https://doi.org/10.1109/SIBGRAPI.2018.00013

152 L. B. Cicerchia et al.

21. Li, J., Huang, X., Chang, X.: A label-noise robust active learning sample collectionmethod for
multi-temporal urban land-cover classification and change analysis. ISPRS J. Photogramm.
Remote Sens. 163, 1–17 (2020). https://doi.org/10.1016/j.isprsjprs.2020.02.022

22. Tuia, D., Volpi, M., Copa, L., Kanevski, M.,Munoz-Mari, J.: A survey of active learning algo-
rithms for supervised remote sensing image classification. IEEE J. Sel. Top. Signal Process.
5, 606–617 (2011). https://doi.org/10.1109/JSTSP.2011.2139193

23. Brendel, A.S., Ferrelli, F., Piccolo, M.C., Perillo, G.M.E.: Assessment of the effectiveness of
supervised and unsupervised methods: maximizing land-cover classification accuracy with
spectral indices data. J. Appl. Remote Sens. 13, 1 (2019). https://doi.org/10.1117/1.jrs.13.
014503

24. Rudrapal, D., Subhedar, M.: Land cover classification using support vector machine. Int. J.
Eng. Res. 4, 584–588 (2015). https://doi.org/10.17577/ijertv4is090611

25. Thanh Noi, P., Kappas, M.: Comparison of random forest, k-nearest neighbor, and support
vector machine classifiers for land cover classification using sentinel-2 imagery. Sensors
(Basel) 18, 1–20 (2017). https://doi.org/10.3390/s18010018

26. Candade, N., Dixon, B.: Multispectral classification of Landsat images: a comparison of
support vector machine and neural network classifiers. ASPRS Annu. Meet. Proc. 43, 1882–
1889 (2003)

27. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers.
In: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory,
pp. 144–152. ACM Press, New York, USA (1992). https://doi.org/10.1145/130385.130401

28. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond Adaptive Computation and Machine Learning. MIT Press,
Cambridge (2002)

29. Platt, J.C., Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In: Advances in Large Margin Classifiers. pp. 61–74. MIT
Press (1999)

30. Wu, T.-F., Lin, C.-J., Weng, R.C.: Probability estimates for multi-class classification by pair-
wise coupling. J. Mach. Learn. Res. 5, 975–1005 (2004). https://doi.org/10.5555/1005332.
1016791

31. U.S. Geological Survey (2020) ‘Earth Explorer.’ http://earthexplorer.usgs.gov. Accessed 28
Feb 2020

32. Van Rossum, G., Drake Jr., F.L.: Python Tutorial. Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands (1995)

33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–2830 (2011)

https://doi.org/10.1016/j.isprsjprs.2020.02.022
https://doi.org/10.1109/JSTSP.2011.2139193
https://doi.org/10.1117/1.jrs.13.014503
https://doi.org/10.17577/ijertv4is090611
https://doi.org/10.3390/s18010018
https://doi.org/10.1145/130385.130401
https://doi.org/10.5555/1005332.1016791
http://earthexplorer.usgs.gov

Trainable Windowing Coefficients
in DNN for Raw Audio Classification

Mario Alejandro Garćıa1(B) , Eduardo Atilio Destéfanis1, and Ana Lorena
Rosset2

1 Universidad Tecnológica Nacional, Facultar Regional Córdoba, Córdoba, Argentina
mgarcia@frc.utn.edu.ar

2 Universidad Nacional de Córdoba, Córdoba, Argentina

Abstract. An artificial neural network for audio classification is pro-
posed. This includes the windowing operation of raw audio and the
calculation of the power spectrogram. A windowing layer is initialized
with a hann window and its weights are adapted during training. The
non-trainable weights of spectrogram calculation are initialized with the
discrete Fourier transform coefficients. The tests are performed on the
Speech Commands dataset. Results show that adapting the windowing
coefficients produces a moderate accuracy improvement. It is concluded
that the gradient of the error function can be propagated through the
neural calculation of the power spectrum. It is also concluded that the
training of the windowing layer improves the model’s ability to general-
ize.

Keywords: Deep learning · Deep neural network · Speech
recognition · Raw audio

1 Introduction

Audio pattern recognition is applied to a wide range of tasks, such as automatic
speech recognition (ASR) [1–20], speaker recognition [21–25], emotion recogni-
tion [26,27], disease detection [28] and music information retrieval [29–32].

In traditional pattern recognition, building an appropriate feature represen-
tation and designing an appropriate classifier for these features have often been
treated as separate problems. Audio processing is no exception. One drawback
of this approach is that the designed features might not be optimal for the clas-
sification objective at hand. Deep neural networks (DNNs) can be thought of as
performing feature extraction jointly with objective optimization such as classi-
fication. With the larger modeling capacity of deep learning models, there has
been growing interest in building end-to-end trained systems that directly map
the input audio signal to the target [33].

DNNs have also changed the way of extracting features from audio. In tradi-
tional acoustical models mel frequency cepstral coefficients (MFCCs) have been
used as the dominant acoustic feature representation. MFCCs are commonly
c© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, pp. 153–166, 2020.
https://doi.org/10.1007/978-3-030-61218-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_11&domain=pdf
http://orcid.org/0000-0002-3024-6189
http://orcid.org/0000-0003-4172-5502
https://doi.org/10.1007/978-3-030-61218-4_11

154 M. A. Garćıa et al.

derived as follows: the discrete Fourier transform (DFT) of the windowed signal
is taken, the power of the obtained spectrum is filtered with mel filter banks, the
log of the power spectrum is calculated for each mel frequency and finally the
discrete cosine transform is calculated on the mel log powers. In the early days
of deep learning in audio, researchers have found that DNNs work significantly
bettter on filter bank outputs than on MFCCs [34,35].

As Nam et al. explained [36], the features in the first models were the outputs
of the frequency-filter banks, then the output of the windowing and DFT, which
is actually a short-time Fourier transform (STFT), and finally, some models
began to take the raw audio as input. During this evolution, DNNs replace the
operations of the traditional approach with transformations whose parameters
can be learned. The STFT is usually replaced by trainable time-filter banks and
mel filters are replaced by frequency-filter banks. Both filter banks are usually
implemented with convolutional layers.

Although windowing is an important operation in the traditional approach,
no scientific work has been found on the effect of windowing with adaptive coeffi-
cients on raw audio. As well as a designed filter bank is not always guaranteed to
be the best in a statistical framework where the end goal is a particular problem
[26], a designed window does not guarantee to be optimal in the same case.

1.1 Windowing

Windowing is the process of dividing long signals into short frames of N samples.
A frame x = (x0, x1, . . . , xN−1) is obtained by multiplying signal s(n) with
nonzero samples of window sequence w(n).

x(n) = s(n)w(n), n = 0, . . . , N − 1

The simplest window is rectangular window wr = (1, 1, . . . , 1). A rectangular
window does not modify the data frame at all. It only multiplies by 1 inside the
window and by 0 outside.

The DFT of a windowed signal develops non-zero values for nonexistent fre-
quencies in the original signal. This (unwanted) effect is commonly called spec-
tral leakage. The kind of information that can be extracted from the frequency
spectrum depends mainly on the distribution of the lakage over the spectrum.
In turn, the shape of the window function determines the lakage distribution,
therefore the choice of the window depends on the objective of the classification.

Several windows have been designed, some are Hann, Hamming, flat top,
Blackman and Tukey. A detailed description can be seen in [37].

Hann and Hamming windows are the most commonly used in audio pattern
recognition [1,5,9,16–18,24,28,38,39], however some researchers have preferred
to use others, such as Blackman-Harris window [31,32], or to propose new win-
dow functions. Morales-Cordovilla et al [40], Alam et al. [41] and Rozman et al.
[42] proposed asymmetric windows and Sahidullah et al. [43] proposed a new
windowing technique based on windowed DFT derivatives.

Trainable Windowing Coefficients in DNN 155

DNN models that take raw audio as features use rectangular windows.
Learned filters are assumed to include multiplication by another (nonrectan-
gular) window function, which implies a different window for each filter. There
is no analysis on the improvement provided by the separate filters and windows.

1.2 Objectives

In this work, we study the behavior of a DNN for audio commands recognition.
Our neural network is an end-to-end model, which receives raw audio as input
and predicts the spoken word. The first layer of the model multiplies the inputs
(raw audio) by a window whose shape adapts during training.

Research questions:

• Is it possible to adapt the windowing coefficients? To adapt the windowing
weights it is necessary to propagate the gradient of the error function from
the output layer to the windowing layer. As will be seen later, the proposed
DNN calculates the power spectrum internally. So the gradient needs to be
propagated correctly through the power spectrum calculation.

• Does the adaptation of the window function improve the recognition ability
of the model?

In order to answer these questions we have experimented on the Speech
Commands dataset.

1.3 Speech Commands

The Speech Commands dataset is a standard training and evaluation dataset for
a class of simple speech recognition tasks. Its primary goal is to provide a way
to build and test small models that detect when a single word is spoken, from
a set of ten or fewer target words from background noise or unrelated speech.
This task is often known as keyword spotting [44].

The dataset consisted of 105,829 utterances of 35 words (“Backward”, “Bed”,
“Bird”, “Cat”, “Dog”, “Down”, “Eight”, “Five”, “Follow”, “Forward”, “Four”,
“Go”, “Happy”, “House”, “Learn”, “Left”, “Marvin”, “Nine”, “No”, “Off”, “On”,
“One”, “Right”, “Seven”, “Sheila”, “Six”, “Stop”, “Three”, “Tree”, “Two”, “Up”,
“Visual”, “Wow”, “Yes” and “Zero”) spoken by 2,618 speakers and captured
through phone or laptop microphones. Each utterance is stored as a one-second
(or less) WAVE format file with a 16 KHz sample rate.

We chose this dataset in order to facilitate the reproducibility of the exper-
iment. The dataset is freely available and a precise testing protocol is defined
in [44]. We follow this protocol, which is explained in Sect. 4.1. In addition,
the source code of a well-known project that uses Speech Commands dataset is
also available1. This project, called Simple Audio Recognition (SAR), includes
1 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/

speech commands.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/speech_commands
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/speech_commands

156 M. A. Garćıa et al.

data preprocessing functions according to the protocol in Sect. 4.1 and a DNN
model based on [45] to classify Speech Command data. We use these functions
to pre-process the data and also use the neural model as a baseline. The model
we propose is a modification of the baseline model, therefore it is easy for any
researcher to reproduce the results.

2 Related Work

As mentioned before, neural audio classification models that take raw audio as
input use rectangular windows [4,7,8,10–13,15,19,20,23,25–27,29]. These win-
dows are defined by the size of the convolution kernels. However, some researchers
have found ways to include the effect of other windows functions in their models.

Tüske et al. [5] take raw audio as input and initialize the weights of the filter
banks with gammatones. They compare the results with two other features,
MFCC and STFT + Hann window. The best result is obtained with MFCC,
but similar performance is obtained with STFT, whereas with raw audio they
obtain poor results. In this case, the effect of windowing is given by the gamma
distribution of weights amplitude.

In [3] Sainath et al. use gammatone impulse responses to initialize their
time-convolutional layer (filter banks). They find that not training the time-
convolutional layer is slightly worse than training this layer. This shows the
benefit of adapting filters for the objective at hand, rather than using hand-
designed filters.

Tripathi et al. [8] with a rectangular window, random initialization and raw
audio as features got better domain-invariant representations than handcrafted
representations like MFCC.

Guo et al. in [46] work on wake word detection. They use a rectangular win-
dow for a network that internally calculates a complex spectrum as a frequency
representation. Weights are initialized randomly. Except for the window, this
model can be compared with ours by the way of calculating the spectral repre-
sentation. Although implemented with real numbers, our model calculates the
STFT, which involves complex calculations.

Takeda et. al [14] train a complex valued network to speech recognition tasks.
Weights are initialized with Fourier coefficients multiplied by a Hamming win-
dow.

Zeghidour et al. in [16] look for components that can be connected to the
network as a replacement for classic filter banks without modifying the acoustic
model in an ASR problem. They test convolutional layer weights initializing with
random values, gammatones and Gabor filters. The output of the convolutional
layer is multiplied by a square Hann window. In this article window coefficients
are trained, but results are better when not trained. In [17] Zeghidour et al.
presents a similar model with similar results. This is initialized with mel filter
banks and improves reference results, but works better when windowing weights
are not trained.

Trainable Windowing Coefficients in DNN 157

Ravanelli et al. in [21] propose an DNN for speaker recognition. Their network
takes raw audio multiplied by a fixed Hamming window. Then, adapt the filter
banks weights initialized with mel-scale cutoff frequencies.

Millet et al. [28] work on dysarthria detection. They apply a model whose
first layer is initialized with mel filter banks multiplied by a fixed Hann window.
This model has many similarities to ours because it also calculates the modulus
and the square of the spectrogram.

3 Proposed Model

SAR offers different execution modes. The one chosen as baseline for the exper-
iment is the largest model, with complete power spectrogram as input. We pro-
pose a neural network, called wSTFT, that calculates the power spectrogram
from raw audio, also doing the windowing process. By replacing the inputs in
the SAR model with the wSTFT network, the effect of coefficients adaptation on
the windowing process can be analyzed (Fig. 1). In order to calculate the power
spectrogram, wSTFT must multiply the raw audio by the window coefficients,
calculate the STFT and calculate the squared STFT.

Fig. 1. Baseline model (left) vs proposed model (right).

3.1 Windowing with Neural Networks

For a signal s (raw audio) of length L and a window w of width N , the Hadamard
product (or element-wise product) x = w � s′ must be calculated for each
position of w on s, where s′ is the segment of s under the w. Just like in a
convolutional layer, the window moves a fixed number of elements (strides) at
each step and the wi coefficients are the same for each window location (shared
weights). Unlike a convolutional layer, the result of each step is a vector, not
a scalar. There are no standard layers of artificial neural networks with this
behavior. We call it STHadamard layer. In Fig. 2 the operation of the model is
shown highlighting the shared weights. Note that the output is a two-dimensional
vector where each column is a windowed frame.

158 M. A. Garćıa et al.

In the rest of the article, windowing coefficients will also be referred to as
weights of windowing (STHadamard) layer.

Fig. 2. STHadamard calculation for L = 11, N = 5 and strides= 2.

3.2 STFT with Neural Networks

As in [47], the STFT is calculated with a convolutional layer where the weights
are the DFT coefficients. More specifically, the weight matrix is the concatena-
tion of the FC and FS matrices.

FC =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 θ1 θ2 . . . θN−1

1 θ2 θ4 . . . θ2(N−1)

1
...

...
. . .

...
1 θN−1 θ2(N−1) . . . θ(N−1)2

⎤
⎥⎥⎥⎥⎥⎦

FS =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
0 ρ1 ρ2 . . . ρN−1

0 ρ2 ρ4 . . . ρ2(N−1)

0
...

...
. . .

...
0 ρN−1 ρ2(N−1) . . . ρ(N−1)2

⎤
⎥⎥⎥⎥⎥⎦

for

θj = cos(−j i2π
N)

ρj = sin(−j i2π
N)

Trainable Windowing Coefficients in DNN 159

DFT is a linear map with matrix representation X = Fx, where x =[
x0 x1 x2 . . . xN−1

]ᵀ, X =
[
X0 X1 X2 . . . XN−1

]ᵀ and F = FC + iFS . Then,
for each frequency k in spectrum X, power spectrum is

|Xk|2 = (FCx)2k + (FSx)2k (1)

For a more detailed explanation of STFT and power spectrum calculation
with neural networks see [47].

Figure 3 shows the complete model of wSTFT. The last two layers perform
the sum and square of Eq. 1.

Fig. 3. Complete wSTFT model with output size of each layer.

4 Experiments

4.1 Data

As mentioned above, a test protocol was defined in [44]. The protocol specifies
which audio files should be used to train, evaluate and test. Furthermore, it is
defined that only the ten words “Yes”, “No”, “Up”, “Down”, “Left”, “Right”,
“On”, “Off”, “Stop”, and “Go” should be classified, and have one additional spe-
cial label for “Unknown Word”, and another for “Silence” (no speech detected).
The testing is then done by providing equal numbers of examples for each of the
twelve categories, which means each class accounts for approximately 8.3% of the

160 M. A. Garćıa et al.

total. The “Unknown Word” category contains words randomly sampled from
classes that are part of the target set. The “Silence” category has one-second
clips extracted randomly from the background noise audio files provided.

In this work the defined protocol has been followed. In addition, as in the SAR
project, the audios corresponding to words have been mixed with background
noise.

For all the audio files, the power spectrogram was calculated, after multiply-
ing the audio by a Hann window, as in SAR. Spectrograms (size 240 × 98) are
the inputs of the baseline model and raw audio (size 16,000) are the inputs of
the proposed model.

4.2 Baseline

The baseline model layers are shown in Table 1. This is the same as SAR model,
but there are two differences. The first difference is that in SAR model the third
layer is a max pooling layer. The second difference is the value of the padding
parameter in the pooling layers. In the SAR model padding = “SAME”, while
in the proposed model padding = “VALID”. We noted that some columns of
the spectrogram were not used in SAR model. With these changes all inputs are
used and the accuracy was improved by approximately 3%.

Table 1. Layers of baseline model

Layer Output shape Parameters

Reshape (1, 240, 98) 0

Dropout (1, 240, 98) 0

Average pooling 2D (1, 40, 98) 0

Convolution 2D (64, 14, 98) 10304

Dropout (64, 14, 98) 0

Max pooling 2D (64, 7, 49) 0

Convolution 2D (64, 7, 49) 41024

Dropout (64, 7, 49) 0

Flatten (21952) 0

Dense (12) 263436

4.3 Proposed Model

The proposed model is formed by inserting the wSTFT layers to the beginning
of the baseline model. Table 2 shows the wSTFT model.

The weights of convolutional layer in Table 2 are fixed, the only parameters
to train in wSTFT are the STHadamard weights.

The behavior of the proposed model (prop model) and two variants was ana-
lyzed. The variants are:

Trainable Windowing Coefficients in DNN 161

Table 2. Layers of wSTFT model

Layer Output shape Parameters

STHadamard (480, 98) 480

Reshape (1, 480, 98) 0

Convolution 2D (480, 1, 98) 230400

Reshape (2, 240, 98) 0

Square (2, 240, 98) 0

Sum (240, 98) 0

• prop model smooth. A penalty to high frequencies in window weights was
added to the loss function.

• prop model symm. The window is forced to be symmetrical. In this case the
STHadamard layer has N/2 parameters.

4.4 Set up

The weights of the STHadamard layer were initialized with the coefficients of a
Hann window. The weights of the convolutional layer in wSTFT were initialized
with the DFT coefficients. The rest of the weights were randomly initialized.

Adam (Adaptive Moment Estimation) [48] optimization method was used to
train. The training ran for 150 epochs. The first 100 epochs with the parameters
α = 0.001, β1 = 0.9 and β2 = 0.999. In the last 50 epochs α = 0.0001 was
changed. Weights were updated in batchs sized 500.

The calculations were made on a GPU NVIDIA Titan Xp.

5 Results

The training of each model was repeated 30 times with different random
seeds. Table 3 shows mean accuracies and mean relative improvements on test
dataset. Prop model smooth and Prop model symm improvements are not sig-
nificant. Prop model improvement is small, but it is important to highlight that
Prop model was better than baseline model in all 30 trainings.

Table 3. Mean test accuracy and mean test relative improvement of 30 trainings.

Model Accuracy Rel. improvement

Baseline 0.9121 -

Prop model 0.9185 0.7%

Prop model smooth 0.9130 0.1%

Prop model symm 0.9151 0.33%

162 M. A. Garćıa et al.

With training dataset, proposed model and baseline model accuracies are
almost the same (Fig. 4). With validation dataset the difference increases, it is
similar to the difference obtained with test dataset. This means that the proposed
model reduces the overfitting.

Fig. 4. Complete wSTFT model with output size of each layer.

Figure 5 shows the original and trained weights of the STHadamard layer
for prop model. Similar weights were obtained in all the trainings of this model.
The bell becomes higher and some high and medium frequencies are added.
Prop model smooth removes high frequencies from weights, but decreases accu-
racy. This suggests that the added frequency components are useful for classifi-
cation.

Fig. 5. Trained weights vs. original weights in STHadamard layer of prop model.

Trainable Windowing Coefficients in DNN 163

6 Conclusions

First, it is concluded that it is possible to adapt the windowing coefficients
with the proposed model, which implies that the gradient of the error function
propagates correctly through neural calculation of the power spectrum. Second,
it is concluded that the adaptation of the window function can improves the
recognition performance, even in a moderate amount.

Medium and high frequencies appear added to the window in the adapted
coefficients. It is unclear what role these frequencies play. It may be thought that
they are adaptations to classify some particular inputs, but since the proposed
model has improved the ability to generalize (reducing the overfit), it seems more
possible that these added frequencies are really important in the classification
task.

This approach could be applied directly to all models with power spectrum
inputs. The training process is less efficient, but after training, the original model
can be used changing the previous window for the trained window.

We plan to analyze in detail the changes that adaptation produces in the
windowing coefficients and test this approach on other classification problems.

Acknowledgements. We gratefully acknowledge the support of NVIDIA Corpora-
tion through the NVIDIA GPU Grant Program.

References

1. Mohamed, A.R., Hinton, G., Penn, G.: Understanding how deep belief networks
perform acoustic modelling. In: 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 4273–4276. IEEE (2012)

2. Sainath, T.N., Kingsbury, B., Mohamed, A.R., Ramabhadran, B.: Learning fil-
ter banks within a deep neural network framework. In: 2013 IEEE Workshop on
Automatic Speech Recognition and Understanding, pp. 297–302. IEEE (2013)

3. Sainath, T.N., Weiss, R.J., Senior, A., Wilson, K.W., Vinyals, O.: Learning the
speech front-end with raw waveform CLDNNS. In: Sixteenth Annual Conference
of the International Speech Communication Association (2015)

4. Hoshen, Y., Weiss, R.J., Wilson, K.W.: Speech acoustic modeling from raw multi-
channel waveforms. In: 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4624–4628. IEEE (2015)

5. Tüske, Z., Golik, P., Schlüter, R., Ney, H.: Acoustic modeling with deep neural
networks using raw time signal for LVCSR. In: Fifteenth Annual Conference of the
International Speech Communication Association (2014)

6. Ghahremani, P., Hadian, H., Lv, H., Povey, D., Khudanpur, S.: Acoustic modeling
from frequency domain representations of speech. In: Interspeech, pp. 1596–1600
(2018)

7. Palaz, D., Collobert, R., Doss, M.M.: Estimating phoneme class conditional proba-
bilities from raw speech signal using convolutional neural networks. In: Interspeech,
pp. 1766–1770 (2013)

8. Tripathi, A., Mohan, A., Anand, S., Singh, M.: Adversarial learning of raw speech
features for domain invariant speech recognition. In: 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5959–5963.
IEEE (2018)

164 M. A. Garćıa et al.

9. Kim, Y., Kim, M., Goo, J., Kim, H.: Learning self-informed feature contribution
for deep learning-based acoustic modeling. IEEE/ACM Trans. Audio, Speech, and
Lang. Process. 26(11), 2204–2214 (2018)

10. Guo, J., Xu, N., Chen, X., Shi, Y., Xu, K., Alwan, A.: Filter sampling and combi-
nation CNN (FSC-CNN): a compact CNN model for small-footprint ASR acoustic
modeling using raw waveforms. In: Interspeech, pp. 3713–3717 (2018)

11. Menne, T., Tüske, Z., Schlüter, R., Ney, H.: Learning acoustic features from the
raw waveform for automatic speech recognition. In: DEGA, pp. 1533–1536 (2018)

12. von Platen, P., Zhang, C., Woodland, P.: Multi-span acoustic modelling using raw
waveform signals. In: Interspeech, pp. 1393–1397 (2019)

13. Alisamir, S., Ahadi, S.M., Seyedin, S.: An end-to-end deep learning model to rec-
ognize farsi speech from raw input. In: 2018 4th Iranian Conference on Signal
Processing and Intelligent Systems (ICSPIS), pp. 1–5. IEEE (2018)

14. Takeda, R., Nakadai, K., Komatani, K.: Multi-timescale feature-extraction archi-
tecture of deep neural networks for acoustic model training from raw speech signal.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 2503–2510. IEEE (2018)

15. Dubagunta, S.P., Kabil, S.H., Doss, M.M.: Improving children speech recognition
through feature learning from raw speech signal. In: ICASSP 2019–2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5736–5740. IEEE (2019)

16. Zeghidour, N., Usunier, N., Synnaeve, G., Collobert, R., Dupoux, E.: End-to-end
speech recognition from the raw waveform. In: Interspeech, pp. 781–785 (2018)

17. Zeghidour, N., Usunier, N., Kokkinos, I., Schaiz, T., Synnaeve, G., Dupoux, E.:
Learning filterbanks from raw speech for phone recognition. In: 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5509–5513. IEEE (2018)

18. Seki, H., Yamamoto, K., Nakagawa, S.: A deep neural network integrated with
filterbank learning for speech recognition. In: 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5480–5484. IEEE (2017)

19. Sailor, H.B., Patil, H.A.: Novel unsupervised auditory filterbank learning using
convolutional RBM for speech recognition. IEEE/ACM Trans. Audio, Speech, and
Lang. Process. 24(12), 2341–2353 (2016)

20. Zhu, Z., Engel, J.H., Hannun, A.: Learning multiscale features directly from wave-
forms. In: Interspeech, pp. 1305–1309 (2016)

21. Ravanelli, M., Bengio, Y.: Speaker recognition from raw waveform with sincnet. In:
2018 IEEE Spoken Language Technology Workshop (SLT), pp. 1021–1028. IEEE
(2018)

22. Dinkel, H., Chen, N., Qian, Y., Yu, K.: End-to-end spoofing detection with raw
waveform CLDNNS. In: 2017 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 4860–4864. IEEE (2017)

23. Muckenhirn, H., Magimai-Doss, M., Marcel, S.: End-to-end convolutional neural
network-based voice presentation attack detection. In: 2017 IEEE International
Joint Conference on Biometrics (IJCB), pp. 335–341. IEEE (2017)

24. Yu, H., Tan, Z.H., Zhang, Y., Ma, Z., Guo, J.: Dnn filter bank cepstral coefficients
for spoofing detection. IEEE Access 5, 4779–4787 (2017)

25. Muckenhirn, H., Magimai-Doss, M., Marcel, S.: On learning vocal tract system
related speaker discriminative information from raw signal using CNNS. In: Inter-
speech, pp. 1116–1120 (2018)

26. Latif, S., Rana, R., Khalifa, S., Jurdak, R., Epps, J.: Direct modelling of speech
emotion from raw speech. In: Interspeech, pp. 3920–3924 (2019)

Trainable Windowing Coefficients in DNN 165

27. Tzirakis, P., Zhang, J., Schuller, B.W.: End-to-end speech emotion recognition
using deep neural networks. In: 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5089–5093. IEEE (2018)

28. Millet, J., Zeghidour, N.: Learning to detect dysarthria from raw speech. In:
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pp. 5831–5835. IEEE (2019)

29. Dieleman, S., Schrauwen, B.: End-to-end learning for music audio. In: 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6964–6968. IEEE (2014)

30. Pons Puig, J., Nieto Caballero, O., Prockup, M., Schmidt, E.M., Ehmann, A.F.,
Serra, X.: End-to-end learning for music audio tagging at scale. In: ISMIR, pp.
637–644. International Society for Music Information Retrieval (ISMIR) (2018)

31. Chen, N., Wang, S.: High-level music descriptor extraction algorithm based on
combination of multi-channel cnns and LSTM. In: ISMIR, pp. 509–514 (2017)

32. Pons, J., Lidy, T., Serra, X.: Experimenting with musically motivated convolu-
tional neural networks. In: 2016 14th International Workshop on Content-based
Multimedia Indexing (CBMI), pp. 1–6. IEEE (2016)

33. Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.Y., Sainath, T.: Deep
learning for audio signal processing. IEEE J. Selected Top. Signal Process. 13(2),
206–219 (2019)

34. Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning
for speech recognition and related applications: an overview. In: 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 8599–8603.
IEEE (2013)

35. Deng, L., et al.: Recent advances in deep learning for speech research at microsoft.
In: 2013 IEEE International Conference on Acoustics, Speech and Signal Process-
ing, pp. 8604–8608. IEEE (2013)

36. Nam, J., Choi, K., Lee, J., Chou, S.Y., Yang, Y.H.: Deep learning for audio-based
music classification and tagging: teaching computers to distinguish rock from bach.
IEEE Signal Process. Magazine 36(1), 41–51 (2018)

37. Harris, F.J.: On the use of windows for harmonic analysis with the discrete fourier
transform. Proc. IEEE 66(1), 51–83 (1978)

38. Phan, H., Hertel, L., Maass, M., Mertins, A.: Robust audio event recognition with
1-max pooling convolutional neural networks. In: Interspeech, pp. 3653–3657 (2016)

39. Takeda, R., Komatani, K.: Sound source localization based on deep neural networks
with directional activate function exploiting phase information. In: 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 405–409. IEEE (2016)

40. Morales-Cordovilla, J.A., Sánchez, V., Gómez, A.M., Peinado, A.M.: On the use
of asymmetric windows for robust speech recognition. Circuits, Syst. and Signal
Process. 31(2), 727–736 (2012)

41. Alam, M.J., Kenny, P., O’Shaughnessy, D.: On the use of asymmetric-shaped tapers
for speaker verification using i-vectors. In: Odyssey 2012-The Speaker and Lan-
guage Recognition Workshop, pp. 256–262 (2012)

42. Rozman, R., Kodek, D.M.: Using asymmetric windows in automatic speech recog-
nition. Speech Commun. 49(4), 268–276 (2007)

43. Sahidullah, M., Saha, G.: A novel windowing technique for efficient computation of
MFCC for speaker recognition. IEEE Signal Process. Lett. 20(2), 149–152 (2012)

44. Warden, P.: Speech commands: A dataset for limited-vocabulary speech recogni-
tion. arXiv preprint arXiv:1804.03209 (2018)

http://arxiv.org/abs/1804.03209

166 M. A. Garćıa et al.

45. Sainath, T.N., Parada, C.: Convolutional neural networks for small-footprint key-
word spotting. In: Interspeech, pp. 1478–1482 (2015)

46. Guo, J., Kumatani, K., Sun, M., Wu, M., Raju, A., Ström, N., Mandal, A.: Time-
delayed bottleneck highway networks using a dft feature for keyword spotting. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5489–5493. IEEE (2018)

47. Garćıa, M.A., Destéfanis, E.A.: Power cepstrum calculation with convolutional
neural networks. J. Comput. Sci. Technol. 19, 132–142 (2019)

48. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

http://arxiv.org/abs/1412.6980

Correction to: Cloud Computing,
Big Data & Emerging Topics

Enzo Rucci , Marcelo Naiouf , Franco Chichizola ,
and Laura De Giusti

Correction to:
E. Rucci et al. (Eds.): Cloud Computing, Big Data & Emerging
Topics, CCIS 1291, https://doi.org/10.1007/978-3-030-61218-4

Some errors were present in the originally published bookfrontmatter. The following
modifications were made:

The affiliations for editors Enzo Rucci, Marcelo Naiouf, and Franco Chichizola have
been corrected as “III-LIDI, Facultad de Informatica Universidad Nacional de La Plata,
La Plata, Argentina”.

The updated version of the book can be found at
https://doi.org/10.1007/978-3-030-61218-4

© Springer Nature Switzerland AG 2020
E. Rucci et al. (Eds.): JCC-BD&ET 2020, CCIS 1291, p. C1, 2020.
https://doi.org/10.1007/978-3-030-61218-4_12

https://orcid.org/0000-0001-6736-7358
https://orcid.org/0000-0001-9127-3212
https://orcid.org/0000-0001-8857-6343
https://orcid.org/0000-0003-2850-801X
https://doi.org/10.1007/978-3-030-61218-4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61218-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-61218-4
https://doi.org/10.1007/978-3-030-61218-4_12

Author Index

Abasolo, María José 138
Aidelman, Yael 111
Álvarez, Pedro 124

Baldassarri, Sandra 124
Balladini, Javier 93
Buckle, Carlos 81

Cañibano, Rodrigo 93
Cicerchia, Lucas Benjamin 138

De Giusti, Laura 30
Delrieux, Claudio 81
Destéfanis, Eduardo Atilio 153

Escudero, Carlos 111
Estevez, Elsa 3

Fillottrani, Pablo 81

García de Quirós, Jorge 124
García, Mario Alejandro 153

Igual, Francisco D. 30

Lanzarini, Laura 111
Lewis, Mirtha 81
Libutti, Leandro Ariel 30

López Murphy, Juan José 58
Lucero, Maximiliano 41

Mazzanti, Renato 81
Miranda, Natalia 41
Moran, Ricardo 16

Naiouf, Marcelo 30

Orlandi, Cristina 93

Pesado, Patricia 3
Piccoli, Fabiana 41
Piñuel, Luis 30

Quiroga, Facundo 111

Ronchetti, Franco 111
Rosset, Ana Lorena 153
Rozas, Claudia 93
Russo, Claudia Cecilia 138

Teragni, Matías 16

Velásquez Villagrán, Nancy 3

Zabala, Gonzalo 16
Zárate, Marcos 81
Zarza, Gonzalo 58

	Preface
	Organization
	Contents
	Cloud, Edge and High-Performance Computing
	Cloud Robotics for Industry 4.0 - A Literature Review
	1 Introduction
	2 Research Methodology
	3 Literature Review
	4 Results
	5 Discussion, Conclusions and Future Work
	References

	An Edge Focused Distributed Shared Memory
	1 Introduction
	2 Requirements
	3 Synchronization Mechanism
	3.1 Slot
	3.2 Array
	3.3 Object
	3.4 ObjectDictionary
	3.5 Consistency Guarantee

	4 Integration to JavaScript
	4.1 The Issue of Synchronizing Behavior
	4.2 The Blocking Code Issue

	5 Implementation
	5.1 Promises, Continuations, and Locks
	5.2 Work Queues
	5.3 Initial Benchmark Results

	6 Conclusion and Future Work
	References

	Towards a Malleable Tensorflow Implementation
	1 Introdution and Motivation
	2 Threading Model in Tensorflow
	2.1 Execution Components
	2.2 Thread Behavior
	2.3 Multi-level Parallelism: Intra- and Inter-parallelism

	3 Malleability Integration in Tensorflow
	3.1 Required Modifications in the Eigen Threadpool
	3.2 Required Modifications in the Tensorflow Core

	4 Experimental Results
	5 Conclusions and Future Work
	References

	Viral Diseases Propagation Analysis in Short Time
	1 Introduction
	2 Background
	2.1 Cellular Automata
	2.2 SIR Model and Derivated
	2.3 GPGPU Programming

	3 Parallel Simulation of Viral Diseases
	3.1 Diseases Propagation Model
	3.2 GPGPU Solution

	4 Experimental Results
	5 Conclusions and Future Work
	References

	Architectural Design Criteria for Evolvable Data-Intensive Machine Learning Platforms
	1 Introduction
	2 Motivation
	3 Architectural Design Criteria
	3.1 Data-Savviness: Analysis of Data Needs
	3.2 Modularity: Analysis of Requirements
	3.3 Agnosticism: Technology-Agnostic Reference Architecture
	3.4 Evolvability: Design Blueprints for Custom Implementations

	4 Results
	4.1 Functional Evaluation
	4.2 Real-World Use Cases

	5 Conclusions
	References

	Big Data
	Harmonizing Big Data with a Knowledge Graph: OceanGraph KG Uses Case
	1 Introduction and Motivation
	2 OceanGraph KG Overview
	2.1 Ontologies and Vocabularies Used
	2.2 Cross-linking
	2.3 Availability

	3 Big Data Use-Cases
	3.1 Complementing Information with SN SciGraph
	3.2 Macroecological Analyzes

	4 Conclusion
	References

	Data Management Optimization in a Real-Time Big Data Analysis System for Intensive Care
	1 Introduction
	2 Related Works
	3 System Overview
	3.1 High-Level System Architecture

	4 Real-Time Big Data Infrastructure: Simplified Architecture
	4.1 Apache Kafka
	4.2 Apache Flink

	5 Data Representation in Kafka: Impact on Storage and Performance
	5.1 Alternatives for the Representation of Physiological Waveforms
	5.2 Design of Experiments
	5.3 Experimental Platform

	6 Experimental Results
	6.1 Storage Space per Message
	6.2 Delivery Delay of Real-Time Data
	6.3 Delivery Delay of Historical Data

	7 Analysis of Results
	8 Conclusions and Future Works
	References

	Machine and Deep Learning
	Reddening-Free Q Indices to Identify Be Star Candidates
	1 Introduction
	1.1 Be Stars
	1.2 Related Work
	1.3 Proposed Work

	2 Datasets and Features
	2.1 Datasets
	2.2 Features

	3 Experiments
	3.1 Metodology
	3.2 Results
	3.3 Recall Rate Analysis

	4 Conclusions and Future Work
	References

	A Web System Based on Spotify for the automatic generation of affective playlists
	1 Introduction
	2 State of the Art
	3 Description of the Proposal
	4 The System Architecture
	4.1 Music Information Retrieval System
	4.2 Music Emotion Recognition System
	4.3 An Emotion-Aware Music Recommendation System
	4.4 Filtering of the Recommendations

	5 Conclusions and Future Work
	References

	Classification of Summer Crops Using Active Learning Techniques on Landsat Images in the Northwest of the Province of Buenos Aires
	1 Introduction
	2 Problem and Proposed Solution
	2.1 Problem Description
	2.2 Classifiers

	3 Tests and Results
	3.1 Dataset and Ground Truth
	3.2 Dataset Division and Tests
	3.3 Results
	3.4 Discussion

	4 Conclusions and Future Work
	References

	Trainable Windowing Coefficients in DNN for Raw Audio Classification
	1 Introduction
	1.1 Windowing
	1.2 Objectives
	1.3 Speech Commands

	2 Related Work
	3 Proposed Model
	3.1 Windowing with Neural Networks
	3.2 STFT with Neural Networks

	4 Experiments
	4.1 Data
	4.2 Baseline
	4.3 Proposed Model
	4.4 Set up

	5 Results
	6 Conclusions
	References

	Correction to: Cloud Computing, Big Data & Emerging Topics
	Correction to: E. Rucci et al. (Eds.): Cloud Computing, Big Data & Emerging Topics, CCIS 1291, https://doi.org/10.1007/978-3-030-61218-4

	Author Index

