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Abstract. Deep Convolutional Neural Networks (CNN) are at the back-
bone of the state–of–the art methods to automatically analyze Whole
Slide Images (WSIs) of digital tissue slides. One challenge to train fully-
supervised CNN models with WSIs is providing the required amount
of costly, manually annotated data. This paper presents a semi-weakly
supervised model for classifying prostate cancer tissue. The approach fol-
lows a teacher-student learning paradigm that allows combining a small
amount of annotated data (tissue microarrays with regions of interest
traced by pathologists) with a large amount of weakly-annotated data
(whole slide images with labels extracted from the diagnostic reports).
The task of the teacher model is to annotate the weakly-annotated
images. The student is trained with the pseudo-labeled images anno-
tated by the teacher and fine-tuned with the small amount of strongly
annotated data. The evaluation of the methods is in the task of classifi-
cation of four Gleason patterns and the Gleason score in prostate cancer
images. Results show that the teacher-student approach improves signi-
ficatively the performance of the fully-supervised CNN, both at the Glea-
son pattern level in tissue microarrays (respectively κ = 0.594 ± 0.022
and κ = 0.559 ± 0.034) and at the Gleason score level in WSIs (respec-
tively κ = 0.403 ± 0.046 and κ = 0.273 ± 0.12). Our approach opens
the possibility of transforming large weakly–annotated (and unlabeled)
datasets into valuable sources of supervision for training robust CNN
models in computational pathology.
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1 Introduction

Prostate cancer (PCa) is the fourth most common cancer worldwide, with 1.2
million new cases in 2018, and it has the second-highest incidence of all cancers
in men. The gold standard for the diagnosis of PCa is the visual inspection of
needle biopsies or tissue samples such as prostatectomies. Currently, the Gleason
score (GS) is the standard grading system used to determine the aggressiveness
of PCa. The GS system is based on the architectural patterns shown in prostate
tissue samples that describe tumor appearance and the presence of alterations in
the glands. The Gleason score results from the sum of the two patterns (Gleason
patterns from 1 to 5) most present in the tissue slide producing a final grade in
the range of 2 to 10. Typical scores range from 6 to 10, where cases with higher
values are more likely to grow and spread faster. The Gleason score system
has been revised in 2016 [5] to propose a simpler system by having a smaller
number of grades (five-groups) with the most significant prognostic differences,
Nevertheless, GS is still commonly used in pathology reports, in conjunction
with the new five-groups classes. Thanks to the recent improvements in digital
microscopy, the diagnosis is increasingly made through the visual inspection of
high-resolution scans of a tissue sample or a Whole-Slide Image (WSI).

One of the current challenges in medical imaging and particularly in compu-
tational pathology (CP), is the lack of datasets with copious region annotations
for training robust supervised deep convolutional neural networks (CNN) [4]. For
example, to train the deep learning models in Nagpal et al. [9], the authors col-
lected 112 million image patches derived from 912 slides, which required approx-
imately 900 pathologist hours to annotate. Such efforts raise the question of
investigating models that minimize this costly labeling effort and reuse publicly
available data to train CNN-based models.

While there is an increasing amount of available raw data, it is well known
that finding reliable annotations accompanying the WSI, which are made of up to
1000002 pixels, is a problem in this field. Examples of valuable, publicly avail-
able datasets are the Camelyon dataset for breast cancer [8] and The Cancer
Genome Atlas datasets, containing up to 500 Whole slide images for individ-
ual organs, including the prostate (TCGA-PRAD)1. The main drawback of the
TCGA datasets is that the repository does not provide region annotations for
the images. The lack of strong labels poses a challenge to use the dataset to train
state–of–the–art supervised CNN models for CP tasks such as the classification
and segmentation of tissue subtypes of PCa. The available strongly annotated
datasets in CP usually contain few images annotated or small regions of larger
images [2], since the annotation of such large slides is a costly process that takes
a considerable amount of time from highly-specialized personnel. In machine

1 https://portal.gdc.cancer.gov/projects/TCGA-PRAD Retrieved 1st of July, 2020.

https://portal.gdc.cancer.gov/projects/TCGA-PRAD
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learning and computer vision, the use of semi-supervised and semi–weakly super-
vised learning has recently shown the potential of leveraging on large unlabeled
and weakly–labeled datasets, reaching better performance than state–of–the–art
supervised models in the classification of the ImageNet dataset [14]. Also, com-
bining few strongly labeled and many weakly labeled images has been proposed
in [11], achieving competitive results on natural image datasets, while requiring
significantly less annotation effort.

Recently in CP, deep CNN approaches using weakly supervision have reached
good performance for automatic Gleason scoring in WSI [10]. Obtaining pseudo-
labeled data that is automatically annotated and that can improve the robustness
against dataset heterogeneity and performance of CNN models is highly valuable,
given a large amount of unlabeled (and weakly annotated) datasets that are
publicly available and the improvement that it can bring to the results.

In this paper, the simple, yet effective, teacher-student approach of fine-
tuning very large pre-trained models to generate pseudo-labeled examples is
explored for the first time in the task of classifying prostate cancer tissue. Our
approach employs a high-capacity (22 million parameters) ResNext-based model
as a teacher. The teacher is pre-trained with a dataset of nearly one billion natu-
ral images retrieved from Instagram and its hashtags, and fine-tuned with both,
weakly–annotated images from TCGA-PRAD, and annotated tissue microar-
rays. The smaller student model, a DenseNet-BC-121 with 7 million parameters,
is then trained with the TCGA-PRAD pseudo-labeled regions annotated by
the teacher and fine-tuned with the tissue microarray strong pixel-wise labels.
Experimental results show that the teacher-student approach improves with
statistical significance the performance of the fully-supervised CNN, both at
the Gleason pattern level in tissue microarrays (respectively κ = 0.594 ± 0.022
and κ = 0.559 ± 0.034) and at the Gleason score level in WSI (respectively
κ = 0.403 ± 0.046 and κ = 0.273 ± 0.12).

2 Experimental Setup

The overall workflow of the proposed semi-weakly supervised approach for clas-
sifying PCa images is summarized in Fig. 1. The details of each step involved
in the training of the models are further explained in Sect. 2.2. The cardinality
and characteristics of the datasets used in the article are described in Sect. 2.1.

2.1 Datasets

The two datasets of prostate images are gathered from two different sources. The
TCGA-PRAD WSI repository and Tissue Microarrays (TMA). TCGA-PRAD
includes WSIs from 19 different medical centers. It implies visual heterogeneity
between dataset content, even though the tissues are stained in both datasets
with the same reagents: hematoxylin and eosin (H&E). The dataset is comprised
of pairs of WSIs, up to 1000002 pixels, scanned at 40x resolution and the corre-
sponding weak labels (one label per WSI) from the diagnostic report of prostate
cancer cases with Gleason scores between 6 and 10.
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Fig. 1. The teacher-student approach: The teacher model is involved in the steps 1 to
4 (yellow background, top) and the student model is steps 5 and 6 (green background
at bottom). The teacher model is first fine-tuned (from the trained model of [14]) to
predict the weak labels of the TCGA-PRAD patches (primary GP) and then fine-tuned
with the strongly-annotated patches from the TMA dataset. The teacher then pseudo-
annotate the TCGA-PRAD patches, and the student is pre-trained using the top-ρ
ranked patches. Finally, the student is fine-tuned with the strongly annotated patches
from the TMA dataset. (Color figure online)

The WSIs are available from The Cancer Genome Atlas (TCGA), which is an
extensive publicly available collection of data including digital pathology images
that contains 500 cases of prostate adenocarcinoma (TCGA-PRAD). The used
WSIs are a subset of the data containing only images used for diagnostic purposes
(no frozen sections). The division of the dataset is the same as in baseline sets
for cross-validation: 171 cases for training, 84 for validation, and 46 for testing.
Each WSI is paired with its global Gleason score. For the task of Gleason pattern
prediction at the patch level, the reported primary Gleason pattern of the WSI is
used as a weak label. The patches are densely extracted only from tissue-regions
of the WSI. For this, the HistoQC tool [7] is used first to generate tissue masks
of the WSIs. Then, the blue-ratio mapping described in Chang et al. [3] is used
to prevent selecting areas without nuclei such as those containing fat, connective
tissue, or background.

The TMA dataset includes pixel-wise annotations, made by pathologists, of
886 prostate TMA cores. Each core is 31002 pixels, scanned at 40x resolution
(0.23 microns per pixel). The training, validation and test sets as well as the
patches are the same as in the study of Arvaniti et al. [2]. The total number of
microarrays, WSIs and patches extracted from them is shown in Table 1.
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Table 1. Left: Number of patches for each Gleason pattern class in the TMA dataset
and for the weakly-annotated patches from TCGA-PRAD, after the semicolon. Right:
Number of microarrays in the TMA dataset and WSI (after the semicolon) for TCGA-
PRAD.

Class Train Val Test

Benign 1830;1710 1260;840 127;460

GP3 5992;28919 1352;15443 1602;4000

GP4 4472;48398 831;22500 2121;13633

GP5 2766;8000 457;4000 387;3000

Total 15060;87027 3900;42783 4237;23093

Class Train Val Test

Benign 61;– 42;– 12;–

GS6 158;13 35;20 79;5

GS7: 3 + 4 47;42 14;10 28;6

GS7: 4 + 3 18;30 11;14 23;11

GS8 119;37 15;12 84;13

GS9 & GS10 105;49 16;28 19;11

Total 508;171 133;84 245;46

2.2 Weakly Semi-supervised Teacher-Student Approach

The hypothesis in the semi-supervised setting is that if one has a dataset with
labeled data and another without, it is possible to train a model that can use
both sources, of which the performance is higher than the one obtained using
only used the labeled samples [15].

The teacher-student paradigm is a semi-supervised strategy where the
teacher’s role is to transform the labels from the relevant examples of the weakly–
annotated (or unlabeled) data. The teacher model output is pseudo–labels for the
unlabeled data (resembling the strong labels) for training the student model with
both sources of supervision, the strong annotations, and the pseudo-annotated
dataset. Formally, if we denote the loss of a model M trained with a dataset X by
LM(X ), then ideally, LM (S) > LM (S ∪ T (U)), where S stand for the strongly-
annotated, and T (U) for a pseudo-labeled set transformed using a mapping T
of the unlabeled (or weakly labeled) dataset U .

The six-steps setup presented bellow resembles the best-performing configu-
ration from the weakly-supervised teacher-student setup originally presented by
Yalniz et al. [14]. In the weakly-supervised setup, the authors exploit the weak
labels and characteristics of the datasets resembling the characteristics in our
application to computational pathology, where it is feasible to use image-level
labels as a weak form of supervision. Our main methodological novelties are the
use of very high resolution and highly heterogeneous images with weak labels
and the student variants, which are specifically designed for the prostate can-
cer image classification problem and not presented in the baseline paper [14].
While our approach might resemble commonly used bootstrapping techniques,
our method differs from them because there is no random sampling involved
since the teacher makes a non-trivial selection of unlabeled samples, and the
models do not use subsets of the same training set to estimate the performance
measures.

1) Weakly Supervised Teacher Fine-tuning: In this first step, the model
is fine-tuned with the TCGA-PRAD dataset to predict the primary Gleason
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pattern label extracted from the reports. The teacher model weights are ini-
tialized from the trained model of [14]. The pre-trained model from Instagram,
a ResNext-50 is a high-capacity model with 22 million parameters, that bet-
ter fits with noisy labels [6]. TCGA-PRAD can be considered a noisy dataset
since only a subset of patches actually contains the relevant pattern reported
as primary Gleason pattern. In this step, the model is trained for ten epochs
with a categorical-cross entropy loss to predict the primary Gleason pattern and
stopped if convergence is reached early.

2) Fine-tuning of the Teacher with Strong Annotations: In this step,
the weights of the model are refined to classify the TMA patches with ground-
truth data. In this case the teacher is also presented with samples from the
benign class. Ten models (with different initialization) are trained for 15 epochs,
as the TMA dataset is not as large as TCGA-PRAD. Then, the model with
the best average performance in the validation TMA partition and validation
TCGA partition is kept to pseudo-annotate the patches in the next step. The
performance of the teacher up to this step is reported in the results section.

3) & 4) Pseudo-labeling and Patch Selection of TCGA-PRAD: In this
step, the previously selected teacher model is used to infer the class-wise prob-
abilities of all the TCGA-PRAD patches. For each class, the ρ highest-ranked
patches per class are selected according to the softmax probability of the output
of the last fully connected layer. The trade-off between performance and ρ is
shown in the results section.

5) Pre-training of the Student Model with Pseudo-labeled Data: The
student model is trained in a supervised fashion using the pseudo-labeled images
annotated by the teacher. The distillation procedure aims at training the student
in such a way that it best reproduces the output of the teacher. This strategy
was shown to be successful for several image recognition tasks [14]. The student
has a smaller architecture than the teacher model because it is more efficient for
evaluation: the student model is the one for which the hyper-parameter selection
and test set evaluations are made. Therefore, it is better to have a smaller, faster
inference architecture. In the fifth step, the student model is pre-trained with
the ρ patches per Gleason pattern that are pseudo-labeled by the teacher. Ten
models are trained in this step for 15 epochs. The best student model is then
selected (i.e., the one that has the best performance in κ-score in the TMA
validation partition).

6) Training of the Student and Variants: In the last step, the best student
is trained with the strongly-annotated TMA patches. Ten model runs are trained
for 15 epochs, selecting the best (the best average run) and reporting the final
performance in the κ-score, both in the TMA and in the TCGA-PRAD test sets.

Four training variants of the student are evaluated. A) Fully-supervised train-
ing: here, only the TMA annotated patches are used for training the student; the
training scheme is similar to the one described in [2]. B) Using only the pseudo-
labeled images: in this case, the student never sees any patch with ground-truth
data from the pathologist annotations, just the pseudo-labeled patches from the
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teacher model. C) Pre-training with pseudo-labeled samples and then fine-tuning
with the strong annotations. D) Combining the pseudo-labeled and strongly
annotated patches in one single training set: this variant is similar to C), with
the difference that all the TMA and TCGA-PRAD patches are mixed at training,
instead of having two training stages. These three ablation experiments results
for the student model, are reported in the results sections Table 2.

2.3 Implementation, Architectures and Hyperparameter Selection

The implementation of all models was done in PyTorch, initialized with the
Instagram/ImageNet pre–trained weights for the teacher and student models,
respectively. Batch sizes of 128 samples were used for the first weakly supervised
pre-training of the teacher (step 1), and the fine-tuning of the teacher was done
with a batch size of 32 TMA patches (step 2). Several CNN models, namely,
DenseNet121, DenseNet161, MobileNet, MobileNetV2, were tested for the stu-
dent. Among these, the one that showed the best performance in the validation
TMA set was DenseNet121. Therefore, this architecture was chosen to train the
four variants of the student. The choice of a pre–trained network is done for
speeding up the convergence of the model, as described for the teacher model.
The CNN parameters were selected using a grid search over the validation sets
of both TCGA and TMA. The best values found on the validation set are the
ones used for training the ten repetitions. Specifically, the values explored for
the learning rate are in the set {10−5, 10−4, 10−3, 10−2}. In each of the student
training variants, the Adam optimizer is used with a learning rate of 0.001 and
a decay rate of 10−6.

3 Results and Analysis

Table 2. Performance measures for the semi–weakly supervised approaches, as evalu-
ated with κ−score. For the TMA test set, the reported measure is at the patch-level
Gleason pattern, while for TCGA-PRAD is at the WSI level. The ‘*’ indicates statis-
tically significant differences with a p-value < 0.05 from the baseline fully supervised
CNN, using a Wilcoxon signed-rank test.

Variant TMA TCGA-PRAD

A) Fully supervised [2] 0.5590 ± 0.0346 0.2732 ± 0.1207

B) Pseudo-labeled 0.5197 ± 0.0407* 0.3648 ± 0.0571

C) Pre-training → fine-tuning 0.5928 ± 0.0178* 0.3748 ± 0.0438

D) Pseudo-labeled ∪ TMA 0.5941 ± 0.0225* 0.4029 ± 0.0450*

Teacher performance 0.5601 ± 0.0440 0.1910 ± 0.1102*

There are two evaluation criteria: patch-level Gleason pattern classification
and image-level GS classification. For the GS classification, the models are eval-
uated using the revised Gleason score as defined by the International Society of
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Urological Pathology. All model performances are measured as the inter-rater
agreement and pathologist ground-truth. A performance measure that is often
used [1,13] is Cohen’s kappa, that is defined as κ = 1−

∑
i,j wi,jOi,j

∑
i,j wi,jEi,j

, wi,j = (i−j)2

(N−1)2

Where i, j are the ordered scores, N = 5 is the total number of Gleason scores
(or N = 4 Gleason pattern classes). Oi,j , is the number of images that were
classified with a score of i by the first rater and j by the second. Ei,j denotes
the expected number of images receiving rating i by the first expert and rating j
by the second. The quadratic term wi,j penalizes the ratings that are not close.
When the predicted Gleason score is far from the ground-truth class, wi,j gets
closer to 1. For obtaining the GS using the patch probabilities, all the predicted
probabilities are combined and a majority voting decides the GS, as in [1].

In Table 2 the test set performance for the four variants of the student models
is shown. The best model is variant four, where both TMA and pseudo-labeled
patches from TCGA-PRAD are mixed in one single training set. The teacher-
student approach improves the performance of the fully-supervised CNN, both
at the Gleason pattern level in tissue microarrays (respectively κ = 0.594±0.022
and κ = 0.559 ± 0.034) as well as in the Gleason score level performance in WSI
(respectively κ = 0.403 ± 0.046 and κ = 0.273 ± 0.12). The results entries with
‘*’ also show that the only student variant performs significantly better than
the baseline in both test sets is the combination of pseudo-labeled and strongly-
annotated samples, despite the other variants showing relative improvements.

Patch-level Gleason pattern classification

Only pseudo-labeled patches
Pseudo-labeled -> strongly ann. finetuning
Pseudo-labeled  U  strongly annotated

Number of pseudo-labeled patches Number of pseudo-labeled patches 

WSI-level Gleason score classification

Fig. 2. Performance of the student model, depending on the number ρ of pseudo-
labeled images presented. The three strategies are displayed, the two of semi-weakly
are better than the fully supervised one.

4 Discussion

An analysis of the optimal ρ for the number of examples presented to the student
is shown in Figure 2. The performance of two of the student variants for Gleason
pattern classification remains flat with respect to the number of pseudo-labeled
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patches, likely because the student saturates with few pseudo-labeled patches.
Similar behavior was shown in the baseline method of Yalniz et al. [11] where
the student reaches a maximum performance with ∼10% of the pseudo-labeled
data and then starts decreasing, probably due to the introduction of many noisy
samples.

: G
P3

: G
P4

: G
P5

: B
en

ig
n

Hi
gh

Lo
w

P(B)=0.999 P(B)=0.997 P(B)=0.989 P(B)=0.984 P(B)=0.976

P(B)=4e-6 P(B)=1e-10 P(B)=4e-8 P(B)=1e-8 P(B)=1e-11

Hi
gh

Lo
w

P(GP3)=0.993 P(GP3)=0.997 P(GP3)=0.997 P(GP3)=0.996 P(GP3)=0.993

P(GP3)=1e-10 P(GP3)=2e-10P(GP3)=2e-10 P(GP3)=1e-9 P(GP3)=1e-8

Hi
gh

Lo
w

P(GP4)=0.971 P(GP4)=0.959 P(GP4)=0.954 P(GP4)=0.937 P(GP4)=0.936

P(GP4)=1e-12 P(GP4)=7e-12P(GP4)=2e-11 P(GP4)=1e-10P(GP4)=4e-10

Hi
gh

Lo
w

P(GP5)=0.988 P(GP5)=0.986 P(GP5)=0.982 P(GP5)=0.977 P(GP5)=0.973

P(GP5)=4e-21 P(GP5)=2e-19P(GP5)=5e-18 P(GP5)=1e-17P(GP5)=1e-16

Fig. 3. Example of TCGA-PRAD patches pseudo-labeled by the teacher model: each
class-box has five uniformly sampled patches from the top hundred ranked samples by
the teacher and in the second row five from the hundred lowest ranked for that class.
The probability of each patch belonging to the class is shown on top (first row) and in
the bottom (second row). The Xe-Y is shorthand for X × 10−Y .

In Figure 3, a set of pseudo-labeled patches from the teacher are shown.
Most of the top-ranked patches match the tissue morphology from the strongly-
annotated data. There are a few noisy patches at the lowest probabilities, sug-
gesting that the model is also lowering the relevance of artifacts and other sources
of noise. The top-ranked patches for GP3, GP4, and GP5 are similar and typical
for the class morphology.

The code and datasets generated during the current study are available from
the corresponding author on request. Also, a supplemental document accompa-
nying this paper, details the training of the teacher and each of the three student
variants.

Concurrently to the publication of this work, Shaw et al. [12] extended the
teacher-student model by generating a chain of student models for the appli-
cation of classifying colon cancer regions. The results obtained by the authors
showed that with the chain of students, using only 0.5% of the original labeled
data, is possible to obtain the same performance as using 100% of the anno-
tations, showing the potential for use of this approach in other computational
pathology tasks.
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5 Conclusion

We present a simple yet effective approach for increasing the training dataset size
by obtaining pseudo–labeled regions in the task of prostate cancer classification.
The evaluation of the proposed semi-weakly supervised teacher-student app-
roach yielded better quantitative results than a fully supervised approach in two
highly heterogeneous datasets of PCa. A qualitative assessment also shows how
the annotated images by the teacher follow the same gland morphology patterns
of the strongly annotated data. The assessment of the trade-off between perfor-
mance and the amount of pseudo-labeled data shows that increasing the num-
ber of patches can deteriorate the student performance by introducing noise in
training. We are now working on the semi-supervised approach only, i.e., without
using any weak label, as well as the evaluation of the approach in classification
tasks for other tissues, validating the pseudo-labeled images with pathologists.
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