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iMIMIC 2020 Preface

It is our genuine honor and great pleasure to welcome you to the Third Workshop on
Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC 2020),
a satellite event at the 23rd International Conference on Medical Image Computing and
Computer Assisted Intervention (MICCAI 2020). Following in the footsteps of the two
previous successful meetings in Granada, Spain (2018) and Shenzhen, China (2019),
we gathered for this new edition.

iMIMIC is a single-track, half-day workshop consisting of high-quality, previously
unpublished papers, presented either orally or as a poster, intended to act as a forum for
research groups, engineers, and practitioners to present recent algorithmic develop-
ments, new results, and promising future directions in interpretability of machine
intelligence in medical image computing. Machine learning systems are achieving
remarkable performances at the cost of increased complexity. Hence, they become less
interpretable, which may cause distrust, potentially limiting clinical acceptance. As
these systems are pervasively being introduced to critical domains, such as medical
image computing and computer assisted intervention, it becomes imperative to develop
methodologies allowing insight into their decision making. Such methodologies would
help physicians to decide whether they should follow and trust automatic decisions.
Additionally, interpretable machine learning methods could facilitate defining the legal
framework of their clinical deployment. Ultimately, interpretability is closely related to
AI safety in healthcare.

This year’s iMIMIC was held on October 4, 2020, virtually in Lima, Peru, and was
hosted by INESC TEC and the University of Coimbra, with the support of University
of Porto and CISUC, all located in Portgual. There was a very positive response to the
call for papers for iMIMIC 2020. We received 18 full papers from 10 countries and 8
were accepted for presentation at the workshop, where each paper was reviewed by at
least three reviewers. The accepted papers present fresh ideas of Interpretability in
settings such as regression, multiple instance learning, weakly supervised learning,
local annotations, classifier re-training, and model pruning.

The high quality of the scientific program of iMIMIC 2020 was due first to the
authors who submitted excellent contributions and second to the dedicated collabora-
tion of the International Program Committee and the other researchers who reviewed
the papers. We would like to thank all the authors for submitting their contributions and
for sharing their research activities.

We are particularly indebted to the Program Committee members and to all the
reviewers for their precious evaluations, which permitted us to set up this publication.



We were also very pleased to benefit from the participation of the invited speakers
Himabindu Lakkaraju, Harvard University, USA, and Wojciech Samek, Fraunhofer
HHI, Germany. We would like to express our sincere gratitude to these world-
renowned experts.

October 2020 Jaime Cardoso
Pedro Henriques Abreu

Ivana Isgum
Wilson Silva
Ricardo Cruz

Jose Pereira Amorim

The original version of the book was revised: the acronym was corrected to “MIL3ID”
throughout the book. The correction to the book is available at
https://doi.org/10.1007/978-3-030-61166-8_30
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MIL3ID 2020 Preface

Welcome to the Second International Workshop on Medical Image Learning with Less
Labels and Imperfect Data (MIL3ID 2020). The MIL3ID 2020 proceedings contain 11
high-quality papers of 8 pages that were selected through a rigorous peer-review
process.

We hope this workshop will create a forum for discussing best practices in medical
image learning with label scarcity and data imperfection. This forum is urgently needed
because the issues of label noises and data scarcity are highly practical, but largely
under-investigated in the medical image analysis community. Traditional approaches
for dealing with these challenges include transfer learning, active learning, denoising,
and sparse representation. The majority of these algorithms were developed prior to the
recent advances of deep learning and might not benefit from the power of deep
networks. The revision and improvement of these techniques in the new light of deep
learning are long overdue.

This workshop potentially helps answer many important questions. For example,
several recent studies found that deep networks are robust to massive random label
noises but more sensitive to structured label noises. What implication do these findings
have on dealing with noisy medical data? Recent work on Bayesian neural networks
demonstrates the feasibility of estimating uncertainty due to the lack of training data. In
other words, it enables our classifiers to be aware of what they do not know. Such a
framework is important for medical applications where safety is critical. How can
researchers of MICCAI community leverage this approach to improve their systems’
robustness in the case of data scarcity? Our prior work shows that a variant of capsule
networks generalizes better than convolutional neural networks with an order of
magnitude fewer training data. This gives rise to an interesting question: Are there
better classes of networks that intrinsically require less labeled data for learning?
Humans always have an edge over deep networks when it comes to learning with small
amounts of data. However, recent work on one-shot deep learning has surpassed human
in an image recognition task using only a few training samples for each task. Do these
results still hold for medical image analysis tasks?

The proceedings of the workshop are published as a joint LNCS volume alongside
other satellite events organized in conjunction with MICCAI. In addition to the LNCS
volume, to promote transparency, the papers’ reviews and preprints are publicly
available on the workshop website: https://www.hvnguyen.com/lesslabelsimperfect
dataml2020. In addition to the papers, abstracts, slides, and posters presented during
the workshop will be made publicly available on the MIL3ID website.

https://www.hvnguyen.com/lesslabelsimperfectdataml2020
https://www.hvnguyen.com/lesslabelsimperfectdataml2020


We would like to thank all the speakers and authors for joining our workshop, the
Program Committee for their excellent work with the peer reviews, and the workshop
chairs and editors for their help with the organization of the second MIL3ID workshop.

August 2020 Hien Van Nguyen
Vishal Patel

Badri Roysam
Kevin Zhou
Steve Jiang

Ngan Le
Khoa Luu
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LABELS 2020 Preface

This volume contains the proceedings of the 5th International Workshop on Large-
scale Annotation of Biomedical data and Expert Label Synthesis (LABELS 2020),
which was held on October 8, 2020, in conjunction with the 23rd International
Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI 2020), originally planned for Lima, Peru, but ultimately held virtually, due to
the COVID-19 pandemic. The first workshop in the LABELS series was held in 2016
in Athens, Greece. This was followed by workshops in Quebec City, Canada, in 2017,
Granada, Spain, in 2018, and Shenzhen, China, in 2019.

As data-hungry methods continue to drive advancements in medical imaging, the
need for high-quality annotated data to train and validate these methods continues to
grow. Further, with the pressing need to address health disparities and to prevent
learned systems from internalizing biases, there has never been a greater need for
thorough study and discussion of best practices in data collection and annotation. For
the past four years, LABELS has aimed to facilitate exactly this.

Following the success of the previous four LABELS workshops, the fifth workshop
was planned for 2020. This year’s edition of the workshop included invited talks by
Anand Malpani (Johns Hopkins University, USA) and Amber Simpson (Queen’s
University, Canada), as well as several papers and abstracts. After peer review, a total
of 10 papers and 3 abstracts were selected. The papers appear in this volume, and the
abstracts are available on the workshop website: https://miccailabels.org. The research
presented this year ranged from how to quantify and mitigate demographic biases, to
probing the reproducibility of expert labels, to new tools for more efficient annotation
of emerging image modalities. LABELS takes pride in the fact that theoretical novelty
is not a prerequisite for work presented at the workshop, instead the event embraces the
messy, tedious reality of medical image collection and annotation in an effort to expose
and formalize its underlying principles.

We would like to thank all the speakers and authors for joining our workshop, the
Program Committee for their excellent work with the peer reviews, our sponsors –

Retinai and Auris Health – for their support, and the workshop chairs for their help with
the organization of the fifth LABELS workshop.

August 2020 Nicholas Heller
Raphael Sznitman

Veronika Cheplygina
Diana Mateus

Emanuele Trucco
Samaneh Abbasi

https://miccailabels.org
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Assessing Attribution Maps for
Explaining CNN-Based Vertebral

Fracture Classifiers

Eren Bora Yilmaz1,4(B), Alexander Oliver Mader3, Tobias Fricke2,
Jaime Peña1, Claus-Christian Glüer1, and Carsten Meyer3,4,5

1 Section Biomedical Imaging, Department of Radiology and Neuroradiology,
University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany

eren.yilmaz@rad.uni-kiel.de
2 Department of Radiology and Neuroradiology, UKSH, Campus Kiel, Kiel, Germany
3 Institute of Computer Science, Kiel University of Applied Sciences, Kiel, Germany

4 Department of Computer Science, Faculty of Engineering, Kiel University,
Kiel, Germany

5 Department of Digital Imaging, Philips Research, Hamburg, Germany

Abstract. Automated evaluation of vertebral fracture status on com-
puted tomography (CT) scans acquired for various purposes (opportunis-
tic CT) may substantially enhance vertebral fracture detection rate. Con-
volutional neural networks (CNNs) have shown promising performance
in numerous tasks but their black box nature may hinder acceptance by
physicians. We aim (a) to evaluate CNN architectures for osteoporotic
fracture discrimination as part of a pipeline localizing and classifying
vertebrae in CT images and (b) to evaluate the benefit of using attri-
bution maps to explain a network’s decision. Training different model
architectures on 3D patches containing vertebrae, we show that CNNs
permit highly accurate discrimination of the fracture status of individual
vertebrae. Explanations were computed using selected attribution meth-
ods: Gradient, Gradient * Input, Guided BackProp, and SmoothGrad
algorithms. Quantitative and visual tests were conducted to evaluate the
meaningfulness of the explanations (sanity checks). The explanations
were found to depend on the model architecture, the realization of the
parameters, and the precise position of the target object of interest.

Keywords: Explainable AI · Sanity checks · Osteoporosis

1 Introduction

Computed tomography (CT) images are taken for a variety of medical reasons,
including diagnosis of bone fractures, internal bleedings, and tumors. Often CT
scans show the spine or sections of the spine. Even for an experienced radi-
ologist, manually searching for fractured vertebrae in such a CT image is a
time-consuming task, and is often not conducted, unless it was the primary

c© Springer Nature Switzerland AG 2020
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4 E. B. Yilmaz et al.

purpose of the CT scan. Hence, an automated tool identifying fractures in CT
images could indicate vertebral fractures to be checked by a radiologist and con-
sequently uncover otherwise missed vertebral fractures, substantially enhancing
fracture detection rate.

Tomita et al. [17] proposed a CNN/LSTM detection system automated on
patient level, but made strong assumptions regarding the position and visible
section of the spine in the CT image. Husseini et al. [8] combined an unsuper-
vised auto-encoder with a supervised multi-layer perceptron to leverage larger
quantities of unlabeled vertebrae, but require segmentation masks at training
time for all vertebrae. Nicolaes et al. [12] trained a CNN to segment spinal CT
images based on masks that are automatically derived from ground-truth coor-
dinates and annotations of the vertebrae. However, these approaches [8,12,17]
classified fractures based on Genant grading, and ignore whether a deformity is
degenerative or constitutes an osteoporotic fracture. Another possible approach
is an automated pipeline localizing and classifying vertebrae in CT images. For
the localization task, successful methods were recently proposed, e.g. in [11].
In this work, we focus on the vertebral fracture classification task, for which we
evaluate a pre-trained U-Net prefix and a custom CNN architecture1. In combi-
nation with the vertebra localization approach proposed in [11], this constitutes
a fully automatic pipeline.

To improve the trust in the model’s decision, particularly in a clinical context,
it is desirable to shed light on the process how it came to its decision. Attribu-
tion methods—algorithms computing visual explanations (attribution maps) for
interpreting models [3]—pose a step into this direction. A number of attribution
methods has been suggested [3,14–16], but the interpretation of attribution maps
is still under debate [2,3,18]. In order to evaluate the adequacy of attribution
maps, [2] developed sanity checks that compare maps of trained models to (1)
those of models with random weights and (2) those of models trained on random
labels. Young et al. [18] compared attribution maps computed for melanoma clas-
sifiers of similar accuracy. We apply the analyses to the 3D vertebral osteoporotic
fracture classification task, computing attribution maps using a set of selected
attribution methods. Apart from assessing the sanity checks proposed in [2] we
propose two additional checks. First, we compare explanations from independent
training runs with the same architecture to test the dependence of the computed
maps on the specific realization of the learned parameters. Additionally, we test
the equivariance of attribution maps w.r.t. slight translations.

2 Methods

Given a 3D patch of a CT image containing a centered vertebra, the task of
our proposed models is to decide if the vertebra has an osteoporotic fracture
or not. Note that this means not only distinguishing between Genant score 0
and larger than 0, but also distinguishing whether a deformity is degenerative or
1 We also conducted experiments with a 3D ResNet18 variant [7] that are out of scope

for this publication but are in line with the presented results.
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constitutes an osteoporotic fracture, since this is important for an early diagnosis
of osteoporosis and decisions on therapeutic measures that may result from it.

2.1 CNN Architectures

Two architectures are evaluated: (1) A prefix of a 3D U-Net architecture that was
pre-trained for brain tumor segmentation [9] with a classification head trained
on task-related CT data, (2) a custom CNN architecture for 3D images based
on the results of a hyperparameter search.

Each model has three parallel outputs (see Fig. 1 for the custom CNN as
example) to calculate (i) a score between 0 and 1 to indicate the osteoporotic
fracture status, (ii) the Genant score [5] ranging from 0 to 3 and indicating the
severity of the deformity, and (iii) three “deformity percentages”, continuous
measures specifying the relative reduction in vertebral heights.

Output (i) uses the sigmoid activation function and is trained using the
binary cross-entropy loss, outputs (ii) and (iii) use a linear activation function
trained using the mean squared error (MSE) loss. At test time only output
(i), in combination with a threshold value optimized on the validation data, is
used to classify the vertebra. The additional outputs are used for regularization
during training. As different models may require different regularization schemes,
weighting the losses allows to control the influence of the individual outputs.

Although the architectures—as explained in the next sections—are quite dif-
ferent, they are trained in a similar setup. The Adam optimizer [10] is used in
conjunction with Stochastic Weight Averaging (SWA) [13]. SWA averages the
weights that occur after each 160 mini-batches, which we found to improve gener-
alization with little computational overhead. The averaged models are evaluated
on validation data for early stopping. To improve diversity in training data, ran-
dom multiplicative and additive Gaussian noises, shifts by up to two voxels in
each dimension, mirroring on the sagittal plane, rotation on the sagittal plane
by up to 18 degrees and cropping (replacing borders of the input with zeros) are
applied to the vertebral patches as data augmentation, motivated by prior work.

The hyperparameters listed in the following sub-sections were determined in
manual and automatic hyperparameter searches.

2.2 Prefix of Pre-trained U-Net Encoder

As a well-known architecture for semantic segmentation we adopt the U-Net
architecture to our task. Specifically, we use the encoder part of a 3D U-Net
architecture applied to multi-modal MRI scans for the task of brain tumor seg-
mentation [9]: We freeze the pre-trained weights of the first two residual blocks,
omit the remaining layers of the 3D U-Net and instead append a new fully con-
nected layer with 16 units, ReLU activation function and 25% dropout, followed
by the three classification outputs described above. The model is trained on
patches of size 32× 64× 96mm3 (longitudinal × anteroposterior × lateral). The
large size in the lateral direction is required because this U-Net expects input
shapes that are multiples of 32 and a resolution of 3 mm

vx is used in the lateral
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Fig. 1. Custom CNN; (i)–(iii): The outputs as named in Sect. 2.1

direction. A learning rate of 10−4 and a loss weight of 1 is used for all outputs,
i.e., the total loss is the unweighted sum of the losses at all three output nodes.

2.3 Custom CNN

We propose a custom CNN consisting of 4 convolutional layers followed by one
fully connected layer with 128 units and the output layers. The convolutional
layers have a filter size of 3 × 3 × 3 and a stride of 2 × 2 × 2 (more details
in Fig. 1). All convolutional layers use zero-padding, except the first which was
added to reduce the input dimensionality for regularization and memory reasons.
Building a task-specific architecture, the patch size can be changed to 40 × 50 ×
60mm3 = 40 × 50 × 20 vx (longitudinal × anteroposterior × lateral) to better
match the shape of the vertebrae. A learning rate of 5 · 10−4 and loss weights 1,
1, and 100 for outputs (i)–(iii), respectively, were found by the hyperparameter
search.

2.4 Attribution Maps

We select the following attribution methods, based on the realization of imple-
mentation invariance (see below) and on simplicity:

A simple method of highlighting important parts in the image is to compute
the Gradient of the models activation (before sigmoid) w.r.t. the CNN input [3,
4]. Large values indicate regions in the input image where a small change in the
input would have a comparably large effect on the model’s output.

Element-wise multiplication of the gradient with the input (Gradient *
Input) aims to show the contribution of the individual pixels and reduce noise
in the explanations [14].

To highlight only areas that contribute positively to a model’s decision,
Guided BackProp was suggested, setting negative gradients at activation func-
tions to zero during backpropagation [16].

SmoothGrad [15] addresses the issue of noisy gradients by averaging gra-
dients on images that are augmented with random noise. In our experiment we
use a noise level (σ/(xmax − xmin)) of 15% and average across 50 noisy images.



Assessing Attribution Maps for Vertebral Fracture Classifiers 7

When using fixed noise values for SmoothGrad and with the exception of
Guided BackProp, the above methods satisfy implementation invariance: Two
models that compute the same function should, given any fixed input image,
have the same attribution maps.

2.5 Sanity Checks

To assess the quality of the explanations in form of attribution maps, we per-
form a number of sanity checks. Each sanity check compares attribution maps
computed in two different settings (see below). As in [2,18], the similarity is
evaluated using the structural similarity index (SSIM) computed between the
whole 3D attribution maps. The reader is informed that the SSIM is a value
between −1 and 1 where 0 corresponds to no correlation.

As suggested by [2], we compare attribution maps computed for a trained
model to those of a model with re-initialized “Random Weights”. The frozen,
pre-trained weights of the U-Net are not changed. The output layers of the model
are also not re-initialized, since they were originally initialized with zeros leading
to all-zero attribution maps. Strong similarity of the maps would indicate that
learned parameters are independent from the explanations, while—as a result of
learning—they clearly have strong influence on the model’s output.

In the second setting proposed by [2], the attribution maps are compared for
a model trained on “Random Labels” and a correctly trained model. More
precisely, all labels in the training dataset are re-assigned to random vertebrae
before training, preserving class ratio. A strong similarity in this setting indicates
that attribution maps do not reflect task-specific supervision.

As a further check to assess the meaning of the explanations, “Re-Training”,
we compare the explanations computed for two trained models with the same
architecture on the same data, where only the random components during train-
ing vary. This includes the weight initialization, the choice of images in each
mini-batch, dropout, and data augmentation. The total number of mini-batches
applied during training may vary due to early stopping. If weak (or no) similar-
ity is observed, either completely different features were learned—which seems
unlikely—or the attribution maps are not consistent in the visualization of the
learned features.

Finally, we address equivariance of attribution maps w.r.t. slight translations,
“2-Voxel-Shift”: We compute attribution maps on patches of vertebrae that
were translated by 2 voxels and compare them to translated attribution maps
computed on original patches. As translation introduces zeros at the border
of the patches, the respective borders are cropped from the patches and the
explanations, in order to not influence the SSIM values. Since the object of
interest is fully contained in the image patch in both scenarios, we expect both
the model’s output and attribution maps to be similar in both settings.
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3 Experiments

The dataset used in this study contains 159 low-dose CT images of distinct
patients (136 female), typically showing vertebrae T5–L4. The images were
acquired in seven centers participating in the in the Diagnostik Bilanz study
of the BioAsset project [6]. SpineAnalyzerTM [1] was used by a radiologist to
annotate—for each visible vertebra—the Genant score [5], “deformity percent-
ages” indicating height reduction, vertebra centers on a 2D sagittal slice, and a
differential diagnosis indicating if the vertebra shows either a “deformity” (1019
cases), an “osteoporotic fracture” (128 cases), is “unevaluable” (due to noise,
5 cases) or “normal” (802 cases). For the binary classification task, vertebrae
with an “osteoporotic fracture” are labeled 1, “deformity” and “normal” corre-
spond to 0, and “unevaluable” vertebrae were excluded. The lateral coordinate
was computed using a state-of-the-art vertebra localization tool [11] and man-
ually checked for correctness. Centered on these coordinates, for each vertebra,
a 3D patch is extracted of fixed size from the CT image, serving as input for
the respective CNN. As the only preprocessing steps, images were scaled to
a resolution of 1 × 1 × 3 mm3

vx (longitudinal × anteroposterior × lateral) and
Hounsfield-values were divided by 2048. The images were split on patient level
into four subsets defining a 4-fold cross-validation setup. In each run, two data
subsets were used as training data, one as validation data (for early stopping and
choosing the classification threshold) and one subset as test data. To address the
class imbalance, at training time each vertebra in each mini-batch was chosen
randomly, such that with 50% probability a vertebra labeled 1 was chosen. The
data augmentation methods listed in Sect. 2.1 were applied to each vertebra in
each mini-batch.

Table 1. Vertebral fracture discrimination results for the U-Net prefix and the Cus-
tom CNN. Mean and standard deviation are computed across 4 folds. Bold: Best per
column. ROC-AUC: area under the ROC curve. AP: average precision.

Method ROC-AUC (±σ) AP (±σ) Specificity (±σ) Sensitivity (±σ)

U-Net prefix 0.939 (±0.011) 0.703 (±0.042) 0.912 (±0.030) 0.824 (±0.049)

Custom CNN 0.989 (±0.0088) 0.907 (±0.015) 0.958 (±0.024) 0.906 (±0.081)

3.1 Vertebral Fracture Discrimination

Both investigated architectures accurately discriminate osteoporotic fracture sta-
tus of individual vertebrae, with ROC-AUCs of above 0.9 (results in Table 1).
The custom CNN achieved on average a higher ROC-AUC (0.989) and aver-
age precision (0.907) than the U-Net prefix. The Pearson correlation coefficient
of the architectures’ outputs—the scores between 0 and 1—on vertebrae in the
respective test sets was 0.72.
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3.2 Attribution Maps

Some examples for attribution maps created in the different settings are dis-
played in Fig. 2 (top). The lower part of Fig. 2 plots SSIM scores for the sanity
checks, together with the Pearson correlation of the respective models’ output.
The following observations are based on the results displayed in the figure and
manual inspection of explanations for other vertebrae.

Similarly Accurate Models Can Have Different Explanations. Inspect-
ing the Pearson correlation, we found the compared models’ outputs to show
stronger correlation in the settings “Re-Training”, and “2-Voxel-Shift”, than for

Fig. 2. Attribution maps and sanity checks for the U-Net prefix (left) and the Custom
CNN (right). Top: Comparison of the central sagittal slices of attribution maps using
a true positive L3 vertebra as example, where blue, white and red pixels correspond to
negative, near-zero and positive values. The “Baseline” row shows the attribution maps
for a trained instance of the corresponding CNN; the following rows show resulting maps
when performing the described sanity checks. Images were normalized individually by
division with the maximum absolute value. Bottom: A quantitative comparison, where
colored bars display the SSIM values averaged across the vertebrae in the respective
test sets and black bars show the Pearson correlation of the models’ outputs. Error
bars indicate the standard deviation across vertebrae.
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“Random Weights” and “Random Labels”. In contrast, the SSIM of the attri-
bution maps was only slightly larger, if at all (see Fig. 2 and Sect. 3.1).

Gradient * Input Seems to Highlight Input Structures. In our experi-
ments, Gradient * Input visually highlights the vertebra’s outline in most set-
tings, leading to comparably high SSIM values for the performed sanity checks.

Guided BackProp Shows Fracture-Relevant Features When Trained
on Random Labels. While the Guided BackProp explanations for the Custom
CNN seems to highlight fracture-relevant features (vertebral end plates), this is
also the case in the “Random Labels” setting.

The Quantitative Results Do Not Always Match the Qualitative
Impressions. One example is the comparison of “Random Weights” and “Ran-
dom Labels” for the Custom CNN: While visually (inspecting the central sagittal
slice) the similarity seems to be much higher in “Random Labels”, the SSIM is
almost the same in the two settings.

4 Discussion and Conclusions

Automatic vertebral fracture discrimination may help to improve the fracture
detection rate by automatically assessing fracture status in CT scans taken for
various other medical reasons. The investigated CNN architectures were found
to permit highly accurate discrimination of the fracture status of vertebrae.

In contrast to previous publications [8,12], we focus on identifying osteo-
porotic fractures (as opposed to deformities in general). It must be noted that
different authors worked on different datasets with varying size and difficulty,
so results may not be comparable. Still, the quantitative results on our in-house
dataset compare well to previous work: [8] and [12] report specificities of 0.905
and 0.669 and sensitivities of 0.938 and 0.854, respectively. In additional experi-
ments, we combined the vertebra level models with an automatic vertebra local-
ization algorithm [11] to achieve fracture status assessment on a patient level,
achieving ROC-AUC values of 0.876 for the U-Net prefix and 0.940 for the Cus-
tom CNN.

Furthermore, to shed light on the complex decision process of the CNNs,
we have computed attribution maps for the fracture status classification task
on vertebra level. In addition to previously proposed sanity checks [2,18], we
introduced two further tests for explanation methods, namely retraining of a
given model configuration and testing equivariance of attribution maps with
regard to slight translations. In both cases, the computed explanation maps
were quantitatively (SSIM2) less similar than expected. We found that models

2 Other correlation measures (Pearson and Spearman coefficients) lead to similar con-
clusions.
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of similar accuracy can produce different attribution maps, which matches the
results of [18]. Gradient * Input, designed to reduce noise in the explanations,
highlights mostly the outline of the input structure, which was also observed
by [2]. SmoothGrad, also designed to reduce noise, visually and quantitatively
behaved similar to the original gradient.

In conclusion, the explanations exhibit a strong dependence on the model
architecture, the realization of the parameters, and the precise position of the
target object of interest. Since explanations of a model’s decision would be most
helpful to convince physicians that automated approaches perform trustworthy
evaluations, future work should address the implications of these findings for the
clinical practice.
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Abstract. High-dimensional latent representations learned by neural
network classifiers are notoriously hard to interpret. Especially in med-
ical applications, model developers and domain experts desire a better
understanding of how these latent representations relate to the resulting
classification performance. We present Projective Latent Interventions
(PLIs), a technique for retraining classifiers by back-propagating manual
changes made to low-dimensional embeddings of the latent space. The
back-propagation is based on parametric approximations of t-distributed
stochastic neighbourhood embeddings. PLIs allow domain experts to
control the latent decision space in an intuitive way in order to bet-
ter match their expectations. For instance, the performance for specific
pairs of classes can be enhanced by manually separating the class clusters
in the embedding. We evaluate our technique on a real-world scenario in
fetal ultrasound imaging.

Keywords: Latent space · Non-linear embedding · Image classification

1 Introduction

The interpretation of classification models is often difficult due to a high num-
ber of parameters and high-dimensional latent spaces. Dimensionality reduction
techniques are commonly used to visualise and explain latent representations
via low-dimensional embeddings. These embeddings are useful to identify prob-
lematic classes, to visualise the impact of architectural changes, and to compare
new approaches to previous work. However, there is a lot of debate about how
well such mappings represent the actual decision boundaries and the resulting
model performance.

In this work, we aim to change the paradigm of passive observation of map-
pings to active interventions during the training process. We argue that such
interventions can be useful to mentally connect the embedded latent space with
the classification properties of a classifier. We show that in some situations,
such as class-imbalanced problems, the manual interventions can also be used
c© Springer Nature Switzerland AG 2020
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for fine-tuning and targeted performance gains. This means that practitioners
can prioritise the decision boundary for certain classes over the others sim-
ply by manipulating the embedded latent space. The overall idea of our work
is outlined in Fig. 1. We use a neural-network-based parametric implementa-
tion of t-distributed stochastic neighbourhood embeddings (t-SNE) [11,12,15]
to inform the training process by back-propagating the manual manipulations
of the embedded latent space through the classification network.

Fig. 1. PLIs define a desired embedding, which is subsequently used to inform the
training or fine-tuning process of a classification model in an end-to-end way.

Related Work: Low dimensional representations of high dimensional latent
spaces have been subject to scientific research for many decades [12–14,20,22].
Commonly these methods are treated as independent modules and applied to a
selected part of the representation, e.g., the penultimate layer of a discrimina-
tor network. However, these embeddings are often spatially inconsistent during
training from epoch to epoch and cannot inform the training process through
back-propagation. Van der Maaten et al. [11,15] proposed to learn mappings
through a neural network. This approach has the advantage that it can be
directly integrated into an existing network architecture enabling end-to-end
forward and backward updates. While unsupervised dimensionality reduction
techniques have been used as part of deep learning workflows [4,10,19,21] and
for visualising latent spaces [6,18], we are not aware of any previous work that
exploited parametric embeddings for a direct manipulation of learned represen-
tations. This shaping of the latent space relates our approach to metric learn-
ing [2,8]. Metric learning makes use of specific loss functions to automatically
constrain the latent space, but does not allow manual interventions. PLIs are
general enough to be combined with concepts of metric learning.

Contribution: We introduce Projective Latent Interventions (PLIs), a tech-
nique for (a) understanding the relationship between a classifier and its learned
latent representation, and (b) facilitating targeted performance gains by improv-
ing latent space clustering. We discuss an application of PLIs in the context of
anatomical standard plane classification during fetal ultrasound imaging.
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2 Method

Projective Latent Interventions (PLIs) can be applied to any neural network
classifier. Consider a dataset X = {x1, . . . , xN} with N instances belonging to
K classes. A neural network C was trained to predict the ground truth labels
gi of xi, where gi ∈ {γ1, . . . , γK}. Let Cl(xi) be the activations of the network’s
lth layer, and let the network have L layers in total.

Given C, PLIs consist of three steps: (1) training of a secondary network
Ẽ that approximates a given non-linear embedding E = {y1, . . . , yN} for the
outputs Cl(xi) of layer l; (2) modifying the positions yi of embedded points,
yielding new positions y′

i; and (3) retraining C, such that Ẽ(Cl(xi)) ≈ y′
i. In the

following sections, we will discuss these three steps in detail.

2.1 Parametric Embeddings

The embeddings used for PLIs are parametric approximations of t-SNE. For
t-SNE, distances between high-dimensional points zi and zj are converted to
probabilities of neighbourhood pij via Gaussian kernels. The variance of each
kernel is adjusted such that the perplexity of each distribution matches a given
value. This perplexity value is a smooth measure for how many nearest neigh-
bours are covered by the high-dimensional distributions. Then, a set of low-
dimensional points is initialised and likewise converted to probabilities qij , this
time via heavy-tailed t-distributions. The low-dimensional positions are then
adjusted by minimising the Kullback–Leibler divergence KL(pij ||qij) between
the two probability distributions.

Given a set of d-dimensional points zi ∈ R
d, t-SNE yields a set of d′-

dimensional points z′ ∈ R
d′

. However, it does not yield a general function
E : Rd → R

d′
defined for all z ∈ R

d. It is thus impossible to add new points to
existing t-SNEs or to back-propagate gradients through the embeddings.

In order to allow out-of-sample extension, van der Maaten introduced the idea
of approximating t-SNE with neural networks [11]. We adapt van der Maaten’s
approach and introduce two important extensions, based on recent advance-
ments related to t-SNE [17]: (1) PCA initialisation to improve reproducibility
across multiple runs and preserve global structure; and (2) approximate nearest
neighbours [5] for a more efficient calculation of the distance matrix without
noticeable effects on the embedding quality.

Our approach is an unsupervised learning workflow resulting in a neural
network that approximates t-SNE for a set of input vectors {z1, . . . , zN} given
a perplexity value Perp. We only take into account the k approximate nearest
neighbours, where k = min(3 × Perp, N − 1). In contrast to the simple binary
search used by van der Maaten [11], we use Brent’s method [3] for finding correct
variances of the kernels. Optionally, we pre-train the network such that its 2D
output matches the first two principal components of zi. In the actual training
phase, we calculate low-dimensional pairwise probabilities qij for each input
batch, and use the KL-divergence KL(pij ||qij) as a loss function.
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While van der Maaten used a network architecture with three hidden layers
of sizes 500, 500, and 2000 [11], we found that much smaller networks (e.g., two
hidden layers of sizes 300 and 100) are more efficient and yield more reliable
results. The t-SNE-approximating network can be connected to any complex
neural network, such as CNNs for medical image classification.

2.2 Projective Latent Constraints

Once the network Ẽ has been trained to approximate the t-SNE, new constraints
on the embedded latent space can be defined. This is most easily done by visual-
ising the embedded points, yi = E(Cl(xi)), in a scatter plot with points coloured
categorically by their ground truth labels gi. For our applications, we chose only
simple modifications of the embedding space: shifting of entire class clusters1,
and contraction of class clusters towards their centres of mass. The modified
embedding positions y′

i are used as target values for the subsequent regression
learning task.

In this work, we focus on class-level interventions because their effect can be
directly measured via class-level performance metrics and they do not require
domain-specific interactive tools that would lead to additional cognitive load. In
principle, arbitrary alterations of the embedded latent space are possible within
our technique.

2.3 Retraining the Classifier

In the final step, the original classifier is retrained with an adapted loss function
LPLIs based on the modified embedding:

LPLIs(xi, gi, y
′
i) = (1 − λ) Lclass(CL(xi), gi) + λ Lemb(Ẽ(Cl(xi)), y′

i). (1)

The new loss function combines the original classification loss function Lclass,
typically a cross-entropy term, with an additional term Lemb. Minimisation of
Lemb causes the classifier to learn new activations that yield embedded points
similar to y′ (using the given embedding function Ẽ). As Ẽ is simply a neural
network, back-propagation of the loss is straightforward. In our experiments,
we use the squared euclidean distance for Lemb and test different values for the
weighting coefficient λ. We also experiment with only counting the embedding
loss for instances of classes that were altered in the embedding.

3 Experiments

3.1 MNIST and CIFAR

As a proof of concept, we applied PLIs to simple image classifiers: a small MLP
for MNIST [9] images and a simple CNN for CIFAR-10 [7] images. For MNIST,

1 The class cluster for class γj is simply the set of points {yi = E(Cl(xi)) | gi = γj}.
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the embedded latent space after retraining generally preserved the manipulations
well, when class clusters were contracted and/or translated. The classification
accuracy only changed insignificantly (within a few percent over wide ranges of
λ). Typical results for the CIFAR-10 classifier are shown in Fig. 2, where the
goal of the Projective Latent Interventions was to reduce the model’s confusion
between the classes Truck and Auto, by separating the respective class clusters.
When comparing a classifier trained for 5 + 4 epochs with Lclass to one trained for
5 epochs Lclass + 4 epochs LPLIs, the latter showed a relative increase of target-
class-specific F1-scores by around 5 %, with the overall accuracy improving or
staying the same. The embeddings after retraining, as seen in Fig. 2, reflected
the manual interventions well, but not as closely as in the case of MNIST. We
also found that, in the case of CNNs, using the activations of the final dense
layer (l = L) yielded the best results.

Fig. 2. Detail views of the embedded latent space before (left), during (centre) and after
(right) Projective Latent Interventions for classification of CIFAR-10 images, focusing
on the classes Truck and Auto.

3.2 Standard Plane Detection in Ultrasound Images

We tested our approach on a challenging diagnostic view plane classification
task in fetal ultrasound screening. The dataset consists of about 12,000 2D fetal
ultrasound images sampled from 2,694 patient examinations with gestational
ages between 18 and 22 weeks. Eight different ultrasound systems of identical
make and model (GE Voluson E8) were used for the acquisitions to eliminate as
many unknown image acquisition parameters as possible. Anatomical standard
plane image frames were labelled by expert sonographers as defined in the UK
FASP handbook [16]. We selected a subset of images that tend to be confused by
established models [1]: Four Chamber View (4CH), Abdominal, Femur, Spine,
Left Ventricular Outflow Tract (LVOT) and Right Ventricular Outflow Tract
(RVOT)/Three Vessel View (3VV). RVOT and 3VV were combined into a single
class after clinical radiologists confirmed that they are identical. We split the
resulting dataset into 4,777 training and 1,024 test images.

The architecture of our baseline classifier is SonoNet-64 [1]. The network was
trained for 5 epochs with pure classification loss, i.e., L = Lclass. We used Kaim-
ing initialization, a batch size of 100, a learning rate of 0.1, and 0.9 Nesterov
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Fig. 3. Projective Latent Interventions for standard plane classification in fetal ultra-
sound images. Top left: embedding of the baseline network’s output (train) after
5 epochs of classification training (L = Lclass). Top right: altered output embedding
(train) with manually separated cardiac classes. Centre left: Output embedding (test)
after resuming standard classification training for 7 epochs (L = Lclass), starting from
the baseline classifier (top left). Centre right: embedding (test) after resuming training
with an updated loss function (L = LPLIs = 0.9 Lclass + 0.1 Lemb), starting again
from the baseline classifier (top left). For easier comparability, class-specific contour
lines at a density threshold of 1/N are shown, where N is the total number of train or
test images, respectively. Performance measures for the classifiers are given in Table 1.
Bottom: Three example images that were successfully classified after applying PLSD.
For each image, the positions in both embeddings are indicated.
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momentum. During these first five training epochs, we used random affine trans-
formations for data augmentation (±15◦ rotation, ±0.1 shift, 0.7 to 1.3 zoom).

The 6-dimensional final-layer logits for the non-transformed training images
were used as inputs for the training of the parametric t-SNE network. We used a
fully connected network with two hidden layers of sizes 300 and 100. The t-SNE
network was trained for 10 epochs with a learning rate of 0.01, a batch size of 500
and a perplexity of 50. We pre-trained the network for 5 epochs to approximate
a PCA initialisation.

The ultrasound dataset is imbalanced, with 1,866 images in the three cardiac
classes, and 2,911 images in the three non-cardiac classes. There are about twice
as many 4CH images as RVOT/3VV, and three times as many 4CH images
as LVOT. As a result, after five epochs of classification learning, our vanilla
classifier could not properly distinguish between the three cardiac classes. This
is apparent in the baseline embedding shown in Fig. 3 (top left).

We experimented with PLIs to improve the performance for the cardiac
classes, in particular for RVOT/3VV and LVOT. Figure 3 (top right) shows
the case of contracting and shifting the class clusters of RVOT/3VV and LVOT.

Table 1. Global and class-specific performance measures for standard plane classifica-
tion in fetal ultrasound images with and without PLIs, evaluated on the test set. The
last two columns are weighted averages of the values for the three cardiac and the three
non-cardiac classes, respectively. (*The class labelled as RVOT also includes 3VV.)

RVOT* 4CH LVOT Abd. Femur Spine Cardiac Other

Precision Class. only 0.82 0.82 0.42 0.93 0.98 0.97 0.77 0.96

PLIs 0.78 0.85 0.61 0.91 0.97 0.96 0.80 0.95

Recall Class. only 0.38 0.94 0.46 0.96 0.97 0.94 0.76 0.96

PLIs 0.73 0.94 0.28 0.96 0.97 0.94 0.81 0.96

F1-score Class. only 0.56 0.88 0.44 0.95 0.97 0.95 0.75 0.96

PLIs 0.76 0.89 0.41 0.94 0.97 0.95 0.80 0.95

After the latent interventions, training was resumed for 7 epochs with the
mixed loss function defined in Eq. 1. We experimented with different values for λ;
all results given in this section are for λ = 0.1, which was found to be a suitable
value in this application scenario. For a fair comparison, training of the baseline
network was also resumed for 7 epochs with pure classification loss. In both cases,
the remaining training epochs were performed without data augmentation, but
with all other hyperparameters kept the same as for the vanilla classifier.

The outputs were then embedded with the parametric t-SNE learned on
the baseline outputs (see Fig. 3, centre). By resuming the training with included
embedding loss, the clusters for the three cardiac classes assume relative positions
that are closer to those in the altered embedding. The contraction constraint also
led to more convex clusters for the test outputs. Figure 3 (bottom) shows three
exemplary images that were misclassified in case of the pure classification loss
model, but correctly classified after applying PLIs. Further inspection showed
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that most of the images that were correctly classified after PLIs (but not before)
had originally been embedded close to decision boundaries.

Table 1 lists the class-specific precision, recall, and F1-scores for the two dif-
ferent networks. By applying PLIs, the average quality for the cardiac classes
could be improved without negatively affecting the performance for the remain-
ing classes. In some experiments, we observed much larger quality improvements
for individual classes. For example, in one case the F1-score for LVOT improved
by a factor of two. In these extreme cases, however, local improvements were
often accompanied by significant performance drops for other classes.

4 Discussion

The insights gained from PLIs about the relationship between a classifier and
its latent space are based on an assessment of the model’s response to the inter-
ventions. This response can be evaluated on two axes: the embedding response
and the performance response.

Simple classifications tasks, for which the baseline classifier already works
well (e.g., MNIST) often show a considerable embedding response with only
a minor performance response. This means that the desired alterations of the
latent space are well reflected after retraining without strong effects on the clas-
sification performance. Such classifiers are flexible enough to accommodate the
latent manipulations, likely because they are overparameterised. In more com-
plex cases, such as CIFAR, the embedding response is weaker, but often accom-
panied by a more pronounced class-specific performance increase. For these cases,
the learned representation seems to be more rigidly connected with the classifica-
tion performance. Finally, the standard plane detection experiments showed that
sometimes a minimal change in the embedding is accompanied by a considerable
performance increase for the targeted classes. Here, the overall structure of the
embedding seems to be fixed, but the classification accuracy can be redistributed
between classes by injecting additional domain knowledge while allowing non-
targeted classes to move freely.

In general, we found that too severe alterations of the latent space cannot
be preserved well since the embeddings are based on local information. Fur-
thermore, seemingly obvious changes made in the embedding may contradict
the original classification task due to the non-linearity of the embedding. The
strength of PLIs is that a co-evaluation of the two components of the loss function
can reveal these discrepancies. As a result, even when PLIs cannot be used for
improving a classifier’s performance, it can still lead to a better understanding
of the flexibility of the model and/or the trustworthiness of the embedding.

In future work, we would like to experiment with parametric versions of dif-
ferent dimensionality reduction techniques and explore the potential of instance-
level manipulations controlled via an interactive visualisation.
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5 Conclusion

We introduced Projective Latent Interventions, a promising technique to inject
additional information into neural network classifiers by means of constraints
derived from manual interventions in the embedded latent space. PLIs can help
to get a better understanding of the relationship between the latent space and
a classifier’s performance. We applied PLIs successfully to obtain a targeted
improvement in standard plane classification for ultrasound images without neg-
atively affecting the overall performance.
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Abstract. Image scale carries crucial information in medical imaging,
e.g. the size and spatial frequency of local structures, lesions, tumors
and cell nuclei. With feature transfer being a common practice, scale-
invariant features implicitly learned from pretraining on ImageNet tend
to be preferred over scale-covariant features. The pruning strategy in this
paper proposes a way to maintain scale covariance in the transferred fea-
tures. Deep learning interpretability is used to analyze the layer-wise
encoding of scale information for popular architectures such as Incep-
tionV3 and ResNet50. Interestingly, the covariance of scale peaks at cen-
tral layers and decreases close to softmax. Motivated by these results, our
pruning strategy removes the layers where invariance to scale is learned.
The pruning operation leads to marked improvements in the regression
of both nuclei areas and magnification levels of histopathology images.
These are relevant applications to enlarge the existing medical datasets
with open-access images as those of PubMed Central. All experiments are
performed on publicly available data and the code is shared on GitHub.

Keywords: Interpretability · Scale · Histopathology · Transfer

1 Introduction

Transfer learning has become a standard approach in tasks with a limited amount
of training data [35]. In medical imaging, it has led to significant improvements
in various applications in terms of accuracy and speed of convergence [17,21,25,
26]. Scale invariance is required and learned implicitly by Convolutional Neural
Networks (CNNs) in the object recognition task on ImageNet, as they normally
appear at different distances from the observation point. Despite the controlled
viewpoint and the considerable domain shift (i.e. reduced number of classes,
less color, texture and object variety [25]), medical imaging applications often
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reuse basic features from pretraining on natural images, i.e. color, edges and
textures [13,17].

The implicitly learned invariances could have different impacts in medical
imaging. Global and local rotation invariance, for instance, were shown to be rel-
evant [1,31]. The scale invariance, however, could be detrimental. The viewpoint
in medical images is controlled and the pixel (or voxel) size has a corresponding
physical dimension. The size of an object of interest within an image carries rele-
vant information [6,7]. Nuclei size histopathology applications is a clear example
of a discriminant factor of tumor regions [8,14]. Approaches introducing scale
analysis in the sense of either scale covariant networks [33] or multi-scale learn-
ing [3,16,24,32] showed that analyzing tissue at various magnifications bene-
fits from the combination of fine-grained details and global tissue information.
Histopathology is not the only application that benefits from information about
scale. Nodule detection and classification in computed tomography is another
example in the medical domain [16]. From a larger perspective, other applica-
tions can be remote sensing, defect detection, material recognition and biometrics
(e.g. iris recognition) [28]. It is thus relevant to analyze the role of information
about scale in state-of-the-art CNNs that are often used for transfer learning
such as inception-based [27] and residual-learning networks [15].

A key question is how to quantify the degree of scale invariance at each
layer in the network. Taking inspiration from previous research in concept-based
interpretability of CNNs [12,20], we define the layer-wise quantification of scale-
covariance as an interpretability task. Image scale is seen as a concept that
is learned during training. This is analyzed with Regression Concept Vectors
(RCVs) [12]. RCVs extend previous research on binary-expressed concept inter-
pretability (where the concept is either present or not present) [5,20] and were
already used to analyze the effects of transfer in [13]. They are particularly
suited for our task since they allow us to measure scale with continuous values
obtained from the bounding box annotations in the publicly available PASCAL-
VOC dataset. The degree of invariance at each layer is evaluated as a regression
task of the scale measures. Besides, the layer-wise quantification of scale covari-
ance is used to implement a pruning strategy that preserves the scale-covariance
of the features. Differently from the scale-covariant designs that explicitly model
the requirements of specific applications [4,10,19,23,30,33], this pruning can be
applied to state-of-the-art CNNs. In this way, ImageNet pretrained weights1 can
be used without the need of retraining from scratch. Being based on the inter-
pretability analysis, the pruning has an interpretation that promotes its algorith-
mic transparency. It removes, in fact, the layers that introduce scale-invariance
to the features. The experimental results on Estrogen Receptor-positive Breast
Cancer (ERBCA+) images show a marked benefit in the magnification regression
of open-access histopathology images [24]. This can help predicting the magni-
fication range of images where the physical dimension of voxels is unknown, e.g.

1 Downloadable at https://keras.io/api/applications/.

https://keras.io/api/applications/
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the large open-access biomedical data repository PubMed Central2, to extend
existing medical datasets.

2 Methods

2.1 Notations

We consider an input image X ∈ R
w×h, where w is the image width and h is the

height. The function φ(·), defined as φ : Rh×w → R
d maps the input image to a

vector of arbitrary dimension d. For instance, it transforms X into a collection
of d scalars obtained from averaged feature maps at a given intermediate layer.
At the final fully-connected layer, φ(·) transforms X into a set of predictions.
When analyzing scale information, we are interested in covariance3, thus whether
we can find a transformation g′ : R

d → R
d that predicts the transformation

g : Rh×w → R
h×w of the input image X in the feature space obtained by φ(g(X)).

The scaling transformations are expressed as gσ(·), being parameterized by a
scale factor σ.

2.2 Representation of Scale Information

Our interest is in finding a linear transformation g′
σ(·) that is a predictable

transformation of the scaling operation gσ(·). To this end, a regression vector v
can be searched in the feature space to predict the scaling factor σ as4:

σ =
∑

i

viφi(gσ(X)) = v · φ(gσ(X)). (1)

Therefore, g′
σ(·) can be represented as a translation matrix (in R

d) by σ along
v, so that g′

σ(φ(X)) = φ(X) + v · σ.

2.3 Bounding-Box Size vs. Image Size

This section clarifies our definition and measurement of the image scale. Indi-
cations of scale are commonly used to relate the dimensions of two objects. In
design modeling and cartography, the scale is the ratio comparing the length of
the represented segment to the one in the real world (i.e. 1 cm:1000 km). Com-
puter vision and image processing mostly refer to the act of scaling, namely the
transformation that generates a new image with a larger or smaller number of
pixels. If the input size is changed with the scaling, however, the transformation

2 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.
3 Following the same terminology, the equivariance, as opposed to covariance, implies

that the function φ(·) maps an input image to a point in the same domain, i.e.
φ : Rh×w → R

h×w.
4 For simplicity, we omit the intercept. In Eq. (1), the intercept would be v0 with

φ0(gσ(X)) = 1.

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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causes the “train-test” resolution discrepancy in [29] during network inference.
For this reason, it is recommendable to fix the input size to the default model
input size Si = 299×299 when measuring scale information as shown in [22]. By
focusing only on ImageNet-like images that only contain a single object, image
scale can be pragmatically defined as the solid angle of the object in the image,
namely the proportion of the field of view occupied by an object [34]. More
directly, we measure the bounding-box area Sb occupied by the object in the
image. The image has area So = ho × wo, where ho and wo are respectively the
original image width and height. A small bounding box corresponds to a smaller
space in the field of view of the camera, and thus a smaller solid angle. Scale
measures are thus defined as the ratio r = Sb

So
= hb×wb

ho×wo
, where hb and wb are the

bounding box height and width. Figure 1 shows an example of scale measures
on input images from the same class appearing at different scales.

2.4 Network Architectures and Tools

Fig. 1. Scale quantification and network pruning for better transfer in the medical
domain. The bounding boxes for the ImageNet class albatross and the segmentation
masks for the ERBCa+ inputs are overlaid in yellow on the images. The bounding box
ratios r are reported on top of the inputs. Images are shown at magnifications 10X and
40X. The layer evidenced in yellow encodes the most of information about scale. The
pruned network drops the layers after this for solving the medical task. Best seen on
screen. (Color figure online)

ImageNet-Weights Initialization. InceptionV3 [27] and ResNet50 [15] are used
for the analysis with pretrained ImageNet weights.

Regression of Scale. The regression of the scale of multiple objects of the same
class that appear naturally at various scales is sought to approximate g′

σ(·) as
in Eq. 1. This corresponds to computing the RCV representing “scale” [22].
The regression is sought at several layers in the network to compare different
depths. Aggregation is performed on the feature maps in the form of Global
Average Pooling (GAP) as in [11] to obtain the feature vector φ(X) (except
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for the prediction layer which is already pooled). The determination coefficient
R2 is used to evaluate the prediction of the scale ratio r on unseen test data
of the same class5. This evaluation is informative about the scale-covariance of
the features. The R2 is a measure between zero and one when the regression
is evaluated on the training data. The R2, however, could take negative values
when evaluated on the test data (test R2). Differently from what one may think,
this is not due to a bad choice in the evaluation technique but it rather shows
that the prediction on the test samples is far worse than predicting their mean.
To address this issue, a normalization of the test R2 is performed by evaluating
eR2

e . In this way, the performance of the RCV on test data is kept in a [0,1]
range, with values below 1

e evidencing bad performance.

Pruning Strategy. Network pruning is performed by comparing the test R2 to
identify the layer where the scale covariance is the highest. This evaluation is
averaged across different object categories to remove the dependence on the class
of the inputs. The layer with the highest test R2 (the yellow layer in Fig. 1) is
where the scale covariance is the highest. Layers deeper than this one are pruned
off the architecture and a Global Average Pooling operation (GAP) is added to
obtain a vector of the aggregated features.

Transfer and Network Pruning. Transfer is performed from both the original
and pruned architectures. To predict the average nuclei area, a single-unit dense
layer is trained with the mean squared error loss between the true areas and the
predicted ones. The nuclei area is expressed for each image as the average number
of pixels within the segmentation of the nuclei. The regression is evaluated by the
Mean Average Error (MAE). The magnification category (i.e. 5X, 8X, 10X, 15X,
20X, 30X, 40X) is also obtained from the average nuclei areas. The predicted
areas are mapped to the magnification category that has the closest mean average
value of the nuclei areas in the training set. This approach outperformed the
direct classification of the magnification in [24]. Cohen’s kappa coefficient is
used to measure the inter-rater reliability of the magnification prediction. The
networks are implemented in Keras and trained for five epochs with standard
hyperparameters (lr = 1e − 4). The full pipeline is reported in Fig. 1 and the
source code is available on github for reproducibility6.

2.5 Datasets

The experiments in this paper involve two different datasets since the scale
analysis is performed on inputs of natural images and the proposed final archi-
tecture is evaluated on a medical imaging task. For the scale quantification part,
images with manual annotations of bounding boxes are selected from the pub-
licly available PASCAL-VOC dataset [9]. We restrict our analysis to three object

5 We compute R2 =
∑N

i=1(r̂i−r̄)
∑N

i=1 ri−r̄
, were N is the number of test data samples, r̂ is the

ratio predicted by the regression model, r̄ is the mean of the true ratios {ri}N
i=1.

6 https://bit.ly/2N6teMA.

https://bit.ly/2N6teMA
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categories and to images containing a single bounding box, chosen among the
available annotated classes. These are albatross (ID: n02058221, 441 images),
kite (ID: n01608432, 406 images) and racing car (ID: n04037443, 365 images).

The data for the histopathology application consist of 141 whole slide images
of 2K×2K pixels taken at a maximum magnification of 40x ERBCa+ images. In
these, 12, 000 nuclei boundaries were manually annotated [18]. Patch sampling
was performed at 5, 8, 10, 15, 20, 30, and 40x magnification. A total of 69, 019
patches with nuclei segmentation masks were split into training, validation and
test partitions (approximately 60%, 20%, 20% respectively) as shown in Table 1.
The imbalance in the different magnification categories is due to the area covered
by each magnification level, with the least number of patches being extracted
at 5x and 8x. The average nuclei area is extracted for each input image by
computing the average number of pixels in the relative nuclei segmentation mask.
Example images with overlaid segmentation masks are displayed in Fig. 1.

Table 1. Number of ERBCa+ patches extracted per magnification and partition.

Split/# patches 5X 8X 10X 15X 20X 30X 40X Total

Train 94 2,174 4,141 7,293 9,002 10,736 11,638 45,078

Validation 8 588 1,197 2,132 2,604 3,504 3,150 12,733

Test 36 428 900 1,728 2,198 2,802 3,166 11,208

Total 138 3,190 6,238 11,153 13,804 16,592 17,904 69,019

3 Experiments and Results

3.1 Layer-Wise Quantification of Scale Invariance

The layerwise analysis of scale representation in InceptionV3 and ResNet50 is
shown in Fig. 27. The object categories racing-car, albatross and kite are used
for the analysis. For each class, 70% of the available images are used for learning
the regression and the rest for the evaluation of the R2. The evaluation was
performed for ten splits of images. To remove the dependency of the evaluation
on the image selection (by multiple split) and category (by analyzing multiple
classes) we average the 10 repetitions for all classes (a total of 30 evaluations).
The regression of scale in a randomly initialized network (orange line) is com-
pared to a pretrained model (blue line) in Fig. 2. An additional baseline (green
line) shows the performance of regressing random scale measures, i.e. the scale
ratios were shuffled to break the true image-label correspondence. Values of R2

close to one reflect the linear covariance of the intermediate layers to object scale
as defined in Sect. 2.1. Individual results for each class were discussed in [22],
while the generalization on different test classes is further analyzed in [2].
7 Layer names refer to the Keras implementation names.
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(a) InceptionV3 (b) ResNet50

Fig. 2. Regression of scale measures on test data (performance of the RCV) at different
layers. (Color figure online)

3.2 Improvement of Transfer

The performance of the networks predicting average nuclei areas is compared
between the original and pruned versions in Table 2. We report the MAE of
ten repetitions8 and the relative standard deviation. In the same table, we also
report the kappa for the prediction of the magnification category.

Table 2. Mean Average Error (MAE) of the nuclei area regression (in pixels) and
Cohen’s kappa coefficient between the true and predicted magnification categories.
Results are averaged over ten repetitions, the standard deviation is reported in brackets.

Model Layer MAE (std) Kappa (std)

InceptionV3 mixed10 81.85 (11.08) 0.435 (0.02)

Pruned InceptionV3 mixed8 54.93 (4.32) 0.571 (0.05)

ResNet50 add16 70.08 (12.49) 0.610 (0.03)

Pruned ResNet50 add15 54.76 (3.10) 0.623 (0.04)

4 Discussion

The experiments were designed for analyzing the presence of scale-informative
features in state-of-the-art CNNs pretrained on ImageNet. Our results in
Sect. 3.1, particularly highlight the linear covariance of medium-deep lay-
ers, with invariance being learned before the classification layer. The scale of
unseen objects (test data) is regressed with the highest determination coefficient
R2 = 0.85 in InceptionV3 (blue line in Fig. 2a), independently from the object
class being tested. In comparison, the RCV learned from random scale ratios
8 Different seeds were used to initialize the dense connections to the last dense layer.
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cannot predict test data. This sanity check provides a lower bound R2 = −0.58.
For randomly initialized weights (orange line in Fig. 2a), the performance is
around zero in almost all layers. This suggests that architectures with random
weights do not contain linearly covariant representations, that hence must be
learned during training. Similar observations apply to the ResNet50 models in
Fig. 2b.

One important comment is about the low R2 values at early layers of both
architectures. We attribute this result to the limited size of the effective receptive
field, that being at early layers only contains information from a very small frac-
tion of the image. This affects the prediction of the scale ratios. The drop in the
layers before the class prediction, namely in mixed10 (for InceptionV3), add16
(for ResNet50) and in pre softmax (for both architectures), shows that deep net-
work features learn scale invariance to classify image categories. Invariance to
scale is thus achieved gradually in these layers preceding the last layer.

The quantification of scale invariance is applied to the image magnification
regression as described in Sect. 3.2. The pruning strategy drops the layers with
scale-invariant features. For InceptionV3, the pruned features are a result of a
GAP on top of the mixed8 features. As shown in Table 2, the MAE = 54.93 of
the nuclei area regression in mixed8 is markedly lower than the MAE = 81.85
in mixed10. This corresponds to a better prediction of the magnification range,
hence to a higher kappa coefficient.

5 Conclusions and Future Work

This paper proposed the analysis of scale covariance in state-of-the-art CNNs
pretrained on ImageNet and a pruning strategy to mantain such covariance for
better transfer. Feature extraction and finetuning are very diffused techniques,
and the pruned features can lead to improved performances on imaging tasks
where scale carries crucial information, as for example the medical task of nuclei
area regression and scale magnification prediction shown in our application. This
work shows, in addition, that research in deep learning interpretability can be
actively used to improve model development. Other transformations could also
be analyzed, e.g. rotation, to improve the feature extraction process without the
need for explicit equivariant designs. Such analysis could be relevant not only
in other medical imaging tasks, but also in remote sensing, defect detection,
material analysis and biometrics.

A limitation of this work is that the regression only captures linear correla-
tions in the data, whereas nonlinear relationships could be necessary to model
other transformations. In future work, we will investigate non-linear regression
and manifold learning of the feature space to formally address this point.
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Abstract. Cancer predictionmodels, which deeply impact human lives,must pro-
vide explanations for their predictions. We study a simple extension of a cancer
mammogramclassifier, trainedwith image-level annotations, to facilitate the built-
in generation of prediction explanations. This extension also enables the classifier
to learn from local annotations of malignant findings, if such are available. We
tested this extended classifier for different percentages of local annotations in the
training data. We evaluated the generated explanations by their level of agreement
with (i) local annotations of malignant findings, and (ii) perturbation-based expla-
nations, produced by the LIME method, which estimates the effect of each image
segment on the classification score. Our results demonstrate an improvement in
classification performance and explainability when local annotations are added to
the training data. We observe that training with only 20–40% of the local annota-
tions is sufficient to achieve improved performance and explainability comparable
to a classifier trained with the entire set of local annotations.

Keywords: Image classification · Object detection · Explainable Artificial
Intelligence (XAI) · Deep convolutional neural networks · Breast cancer ·
Mammography

1 Introduction

In recent years, artificial intelligence (AI) systems for medical imaging interpretation
have shown tremendous potential to offer a solution to the shortage in the radiologist
workforce. In the context of breast cancer screening,AI systems demonstrated accuracies
comparable to those of human radiologists [1–5]. To gain trust, these AI systems must
provide explanations for the predicted cancers. An expected explanation would be a
visualization that highlights possibly malignant findings. This kind of visualization can
be provided by object detection models, trained with local annotations that specify
the location and extent of malignant findings within mammograms. However, local
annotations are costly, since their generation requires the manual work of a human
expert (e.g., breast imaging specialist), and they are often noisy and subjective. On the
other hand, global annotations that indicate which mammograms have biopsy-proven
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cancers, are reliable and can readily be extracted fromelectronic radiology and pathology
reports.

In this work, we explore a simple yet effective extension to an image classifier archi-
tecture: adding a segmentation branch that shares the same weights as the classifica-
tion branch. This extended architecture builds on previous studies of weakly-supervised
localization, in which object detectors are trained using only global labels [6, 7]. Our
extended classifier allows us to quickly generate heatmap explanations and train the
AI model with local annotations of malignant findings, if such exist. When no local
annotations are available, the modified classifier is identical to the original classifier
in terms of output classification scores. Multi-task architectures, with classification and
segmentation/ detection branches, have been applied in the past to jointly optimize cancer
classification of mammograms and localization of malignant findings [8, 9]. However,
these architectures do not share weights between the two task branches, and therefore
cannot be trained when local annotations are unavailable. In a recent study, Bakalo
et al. [10] presented an architecture for cancer classification and localization that can
be trained in a weakly- or semi-supervised setting, similar to our proposed architecture.
However, the architecture in [10], which is based on the weakly-supervised dual-stream
network of Bilen and Vedaldi [11], is much more complex than the one presented here.

The extensive research on explainable AI has yielded numerous methods for high-
lighting regions in an image that are relevant to its predicted class [12]. In particular,
these methods can be used to generate explanations for mammography classifiers. Basic
sanity checks of such methods include sensitivity to data and model perturbations [13,
14]. Analyzing the effect of input image perturbations on the output score is a common
model-agnostic approach for identifying influential regions in the image. This approach
has been used by the popular LIME [15] and SHAP [16] methods to generate a heatmap
explanation per image. Unfortunately, applying these methods can be very time con-
suming, since they involve running the model on thousands of image perturbations to
create a single explanation.

We analyze the ability of the extended classifier to detect cancerous mammograms
and provide explanations for the predicted cancers. We tested this classifier using dif-
ferent percentages of local annotations in the training data, ranging from no local anno-
tations to fully annotated data. We evaluated the generated heatmap explanations in two
differentmanners. First,we tested the accuracyof thesemapswith respect to ground-truth
local annotations. Second, we measured their agreement with explanations generated by
image perturbations using the LIME method. In our case study, using 20% to 40% of
the local annotations was sufficient to boost both the classification performance and the
explainability of the predictions.

2 Methods

2.1 The Extended Classifier

Our baseline image classifier is a convoluted neural network (CNN) that uses a global
pooling operator such as global-max-pooling (GMP) or global-average-pooling (GAP).
Most image classifiers fit the description of our baseline image classifier, and are based
on common architectures such as ResNet [17], Inception [18], andVGG [19].We refer to
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the network part before the global pooling as the backbone network; and to the network
part following the global pooling as the classification head. We add a new branch to
the backbone network in which the classification head is applied to each position of
the feature map before the global pooling operator. As a result, the extended classifier
produces two outputs: (i) the original (global) classification score, and (ii) a score-map
whose cells localize to regions in the input image and has the dimensions of the final
feature-map before the pooling operator (See Fig. 1).

Fig. 1. Architecture of the extended image classifier. The detection branch shares the weights
of the classification branch

In this study we used an InceptionResNet-V2 architecture [18] as the backbone
network due to its suitable trade-off between accuracy and memory requirements. Nev-
ertheless, in order to fit high-resolution mammograms on a GPU memory, we truncated
the backbone network after 14 (out of 42) Inception blocks. The output feature map of
our backbone network had 384 channels and spatial dimensions that are roughly 1/16 of
the input image dimensions. The classification head consisted of a single hidden layer
of size 256, as the number of channels in the feature-map before the pooling operator.

During training, whenever local annotations were available for an input image, we
created a binary ground truthmap,with the samedimensions as the output score-map, that
depicts the annotated findings. We then compared each position in the score-map to its
corresponding position in the ground truth map and computed the average cross-entropy
loss. Expressed formally, the training loss of the extended model is:

L
(
yglobal, y

∧global
, ylocal - map, y

∧local - map
)

= LCE
(
yglobal, y

∧global
)
+ LCE

(
ylocal - map, y

∧local - map
)

where yglobal is the global label; y
∧global is the predicted cancer score; y

∧local - map is the
output score-map; ylocal - map is a binary ground truth map of the same dimension as
y
∧local - map, indicating positions localized within annotated findings; LCE is the average
cross-entropy loss. When yglobal = 0 or when ylocal - map is unavailable, the second term
in the loss, i.e., the one involving ylocal - map, is ignored. Sharing the weights between
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the two branches allows the extended model to output score-maps even when no local
annotations were used for training.

2.2 Perturbation-Based Explanations

We applied the LIME [15] method with its Python package implementation1 to gener-
ate perturbation-based explanations for the predicted global scores. LIME operates by
running an input image through a black-box model many times, each time randomly
hiding different image segments. Then it learns a sparse linear model, with the image
segments as its features, for locally approximating the model around the prediction. The
output explanation is a heatmap whose cells represent each segment’s contribution to
the global image score: the magnitude of contribution as well as its direction (negative
or positive). Image segments that positively contribute to the global score, correspond
to malignant findings identified by the model. In our experiments, we used a grid of 10
× 5 segments, and ran each image with 1000 perturbations.

2.3 Performance Measures

We used the area under the ROC curve (AUROC) to evaluate and compare classification
performance. We assessed the significance of a difference between two paired AUROCs
using 10,000 paired bootstrap replications. We evaluated the agreement with the local
annotations by applying the following procedure forK= 1, 2, 3,whereK is the number of
predicted regions per score-map. First, we considered only positions of the top 1% scores
in each score-map and zeroed out the rest. Then, we identified the regions corresponding
to non-zero connected components, ranked them by the maximal score within each
region, and selected the K top-scored regions as our predicted regions (or fewer if the
number of connected components was less than K). We scaled the predicted region
scores for each image such that the maximal region score was equal to the global score
from the classification branch. Similar to Ribli et al. [20], we considered a predicted
region as a true positive if its center of mass was contained within a local annotation.
Finally, we calculated the average precision (AP), which is the area under the precision-
recall curve. To evaluate the agreement with LIME explanations, we first resized LIME
maps to the same dimensions as the model’s output score-maps. Then, we defined a
hotspot-match when the maximal-score cells in the predicted score-map coincided with
the maximal-score cell, or its adjacent cells, in the LIME map.

3 Experiments and Results

3.1 Datasets

For our experiments, we used two in-house mammogram datasets: “Data A” and “Data
B”. Data A was gathered from four medical centers and Data B was acquired from a
separate single medical center. We randomly split Data A into patient-disjoint train and
test datasets, Train A and Test A, in an 80:20 ratio. Data B was used only for testing.

1 https://github.com/marcotcr/lime.

https://github.com/marcotcr/lime
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Statistics on the number of images per dataset are given in Table 1. Both Data A and
Data B were globally annotated. Positive images had a confirmed malignant biopsy
during the year following the imaging date. Negative images had a two-year follow-up
with a subsequent normal screening mammogram. Most of the negative images were
identified by radiologists as normal, while the remaining contained suspicious findings
that were found to be benign on a subsequent biopsy. All positive images in Data A were
locally annotated with ground truth contours marked around malignant lesions. Since
our goal was to detect malignant findings, we ignored the local annotations of negative
images and benign findings, if such existed, during the training process. Data B had
no local annotations. All datasets contained a mixture of both craniocaudal (CC) and
mediolateral-oblique (MLO) viewpoints.

Table 1. Number of images in train and test datasets

Negative Positive Total

Normal Benign Malignant

Train A 3555 (45%) 1704 (21%) 2684 (34%) 7943 (100%)

Test A 921 (47%) 430 (22%) 621 (31%) 1972 (100%)

Data B 1560 (78%) 262 (13%) 171 (9%) 1993 (100%)

3.2 Implementation Details

We trained all of our models for 100 epochs using NVIDIA Tesla V100 GPUs. Each
minibatch consisted of 2 mammogram images, 1 positive and 1 negative, with random
oversampling of the smaller positive class. The images were cropped around the breast
area and resized to a resolution of 2200× 1200 while maintaining original aspect ratio.
We added a zero-padding of 60 pixels at each dimension, for a final resolution of 2260×
1260.Wealso applied randomaugmentations during training, both affine transformations
(translation, rotation, flipping and zooming) and color perturbations (contrast, gamma
and intensity value multiplication/addition). We used an Adam optimizer with an initial
learning rate of 10−4,whichwas divided by 10whenever the training loss did not improve
for 5 consecutive epochs.

3.3 Classification Performance

Wecompared the classification performance of our architecture to a baseline architecture
that does not share weights, as in [8, 9]. We evaluated each of the two architectures with
global-max-pooling (GMP) and global-average-pooling (GAP). Since the non-shared
weights architecture requires local annotations in the training process, all models were
trained with the entire set of local annotations. As shown in Table 2, the shared-weights
model with GMP consistently demonstrated higher AUROC on the two test datasets.
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Table 2. Classification performance (AUROC) for the proposed architecture, which shares
weights in the classification and segmentation branches, and the baseline architecture, which
does not share these weights. The two architectures are tested with global max pooling (GMP)
and global average pooling (GAP). All models were trained with complete local annotations

Model Non-shared, GAP Shared, GAP Non-shared, GMP Shared, GMP

AUROC Test A 0.85 0.84 0.86 0.87

AUROC Data B 0.81 0.82 0.83 0.84

To examine the contribution of local annotations to classification performance, we
trained five models with all global labels and varying percentages of local annotations.
As shown in Table 3, the classification performance improved with the addition of local
annotations. The model trained with a complete set of local annotations showed a signif-
icantly higher AUROC than the model trained without local annotations. Nevertheless,
the largest increase was obtained with the addition of 20 to 40% of the local annotations.
The models trained with only 40% to 60% of the local annotations were on a par with
the model trained with the complete set of local annotations.

Table 3. Classification performance when training with varied percentages of local annotations.
P-values for the decrease in AUROC when not training with complete local annotations: *(p <

0.01); **(p < 10−4)

% Local annotations 0% 20% 40% 60% 100%

AUROC Test A 0.83** 0.86 0.86 0.86 0.87

AUROC Data B 0.79* 0.8* 0.83 0.83 0.84

3.4 Agreement with Local Annotations

We tested the agreement between the ground truth local annotations and the score-
maps of the five models trained with various percentages of local annotations. The
agreement was measured by the average precision (AP), using the K top-scored regions
extracted from score-maps, with K = 1, 2, 3. (See Sect. 2.2 for details.) The results
are shown in Table 4. For all values of K, the AP of the model we trained with 100%
local annotations almost doubled itself compared to the model trained without local
annotations. The biggest increase in the AP was achieved for the model trained with
40% of the local annotations. After adding 60% of the local annotations, the accuracy
of detections seemed to be saturated.

3.5 Agreement with Perturbation-Based Explanations

Due to the long running time required for generating perturbation-based explanations,
we analyzed all positive-labeled images but only a random subset of the negative-labeled
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Table 4. Detection performance (average precision, AP) in Test A for different percentages of
locally annotated images

% Local annotations 0% 20% 40% 60% 100%

AP, K = 1 22.5 24.0 35.1 38.3 36.9

AP, K = 2 24.2 26.7 38.7 42.6 40.7

AP, K = 3 24.4 26.9 39.6 43.1 41.8

images.Overall,we analyzed: 621positive, 300benign, and400normal images fromTest
A; and 171 positive, 83 benign, and 110 normal images from Data B. Figure 2 presents
the rate of hotspot-matches between LIME explanations and predicted score-maps for
different ranges of the global score. (See Sect. 2.3 for definition of a hotspot-match). It
is noteworthy that the agreement rate between LIME explanations and the output local
score-maps increases for larger predicted global-scores. Specifically, for the top 10%
of the highest global-score images, the rate of hotspot matches was above 0.9 for all
models. In both Test A and Data B, the models trained with 100% and 40% of the local
annotations exhibited a similar rate of agreement with LIME.

Fig. 2. Agreement with perturbation-based (LIME) explanations. Agreement increases with
the global score.

Figure 3 presents the output score-maps of the five models for two images from
Test A: a cancer image and a benign (negative) image. It appears that with the addition
of more local annotations, the output score-maps become more “focused” on a single
region, with less background noise.

4 Discussion

Thiswork explored a simple yet effective extension of amammogram classifier, enabling
it to generate heatmap explanations, as well as learn from local annotations, if any exist.
The problem of generating these explanations can be viewed as a variant of multiple
instance learning (MIL): each image is a “bag” of regions (“instances”); every region is
represented by a cell in the image explanation heatmap; a positive image indicates at least
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Fig. 3. An example of local-score maps for models trained with various percentage of local
annotations. Local annotations are delineated with red boxes; blue boxes indicate the maximum-
scored regions in the perturbation-based (LIME) explanations. The top row is a cancer positive
image; the bottom row is a cancer negative image with a benign finding (a benign calcification).
Benign findings were not used during the model’s training. (Color figure online)

one positive region (i.e., a malignant finding); a negative image implies all its regions to
be negative. Our extended classifier is motivated by the connection betweenMIL and the
weakly supervised learning of object localization [6]. The pooling layer in the extended
classifier is a complete analog of the pooling operator inMIL. The choice of global-max-
pooling (GMP) rather than the more commonly used global-average-pooling (GAP) can
also be justified by the observation that, unlike typical natural images where the object
of interest occupies a significant part of the image, mammography lesions are much
smaller and frequently occupy less than 5% of the breast area.

Previous weakly-supervised localization studies focused mostly on improving local-
ization accuracy. Conversely, working on a case study of breast cancer screening, our
primary evaluation measure is the accuracy of image classification. Furthermore, in our
data, image-level labels are assumed to be accurate, while local annotations are likely
to be noisy, inconsistent, and even biased. However, we demonstrated that our simple
technique allows image classifiers to also learn from such local annotations and improve
the accuracy of image classification. To evaluate the ability of the output score maps to
explain the predicted global scores, we measured their agreement with the (noisy and
subjective) local annotations, and additionally with perturbation-based, model-agnostic
LIME explanations.

Finally, we showed a cost-effectiveness analysis that implied that annotating lesions
in 20% to 40% of cancer-positive images may be sufficient for improving classification
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performance, and potentially the quality of generated explanations. Our model’s inher-
ent ability to produce score-map explanations for its global predictions eliminates the
need for additional, time-consuming post-hoc analysis for generating such explanations.
Compared to other complex architectures, occasionally customized for specific bench-
marks, our method can be easily be adopted and tested to improve and explain medical
imaging classifiers in other domains.
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2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
said.ladjal@telecom-paristech.fr, isabelle.bloch@telecom-paris.fr

Abstract. Deep learning methods are widely used for medical applica-
tions to assist medical doctors in their daily routines. While performances
reach expert’s level, interpretability (highlight how and what a trained
model learned and why it makes a specific decision) is the next impor-
tant challenge that deep learning methods need to answer to be fully
integrated in the medical field. In this paper, we address the question of
interpretability in the context of whole slide images (WSI) classification.
We formalize the design of WSI classification architectures and propose a
piece-wise interpretability approach, relying on gradient-based methods,
feature visualization and multiple instance learning context. We aim at
explaining how the decision is made based on tile level scoring, how these
tile scores are decided and which features are used and relevant for the
task. After training two WSI classification architectures on Camelyon-16
WSI dataset, highlighting discriminative features learned, and validating
our approach with pathologists, we propose a novel manner of computing
interpretability slide-level heat-maps, based on the extracted features,
that improves tile-level classification performances by more than 29%
for tile level AUC.

Keywords: Histopathology · WSI classification · Explainability ·
Interpretability · Heat-maps

1 Introduction

Since their successful application for image classification [1] on ImageNet [2],
deep learning methods (especially Convolutional Neural Network (CNN) deep
architectures) have been extensively used and adapted to tackle efficiently a wide
range of health issues [3,4].
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Along with these new methods, the recent emergence of Whole Slide Imaging
(WSI), microscopy slides digitized at a high resolution, represents a real oppor-
tunity for the development of efficient Computer-Aided Diagnosis (CAD) tools
to assist pathologists in their work. Indeed, over the last three years, notably due
to the WSI publicly available datasets, such as Camelyon-16 [5] and TCGA [6],
and in spite of the very large size of these images (generally around 10 giga pixels
per slide), deep learning architectures for WSI classification have been developed
and proved to be really efficient.

In this work, we are interested in WSI classification architectures that use
only the global label (e.g. diagnosis) to train and require no intermediate infor-
mation such as cell labeling or tissue segmentation (which are time-consuming
annotations). The training is regularized by introducing prior knowledge by
design in the architectures which, in addition, makes the result interpretable.
But the interpretability beyond the architectural design is still pretty shallow.

However, interpretability (capacity to provide explanations that are relevant
and interpretable by experts in the field) for medical applications are critical
in many ways. (i) For routine tools where useful features are well known and
are subject to a consensus among experts, it is important to show that the
same features are used by the trained model in order to gain confidence of
practitioners. (ii) A good explainability would enable to get the most out of the
architectural interpretability and thus assist more efficiently medical doctors in
their slide reviews. (iii) The ability to train using only slide level supervision
opens a new field we call discovery which consists in predicting, based on easier
access (e.g. less intrusive) data, outputs that generally requires heavy processes
or waiting such as surgery (e.g. prognosis, treatment response). In order to be
able to guide experts towards new discoveries the need for reliable interpretability
is obviously high.

In this work, after formalizing the architectural design of most WSI architec-
tures, we propose a piece-wise interpretability approach, that provides cell-level
features that prove to be highly relevant and interpretable by pathologists. We
also propose a new way of computing explanation slide-level heat-maps based
on cell-level identified features and measure their interpretability relevance.

2 Related Work and Motivations

All successful WSI classification architectures deal with these very large images
by cutting them into tiles, which is close to the workflow of pathologists who
generally analyze these slides at levels of magnification between 5X and 40X.

Recently, as explained in Sect. 1, architectures that are able to learn using
only global slide-level labels have been proposed. They rely on a context of
Multiple Instance Learning (MIL), i.e. slides are represented by bags of tiles with
positive bags containing at least one positive tile and negative bags containing
only negatives tiles. For example, CHOWDER [7] is an extension of WELDON [8]
solution for WSI classification that uses min-max strategy to guide the training
and make the decision. This approach reaches an AUC of 0.858 on Camelyon-
16 and 0.915 on TCGA-lung (subset of TCGA dataset related to lung cancer).
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In [9], an attention module [10] is used instead of a min-max layer. AUC of 0.775
for a breast cancer dataset and 0.968 for a colon cancer dataset were reported.
Recently, more works on large datasets proposed architectures that follow the
same design [11,12]. Heat-maps based on intermediate scores computed in these
architectures are what we call architectural explainability that results from prior
knowledge on WSI problems that is introduced by design in the architecture.
They are of great interest and have proved to be really efficient to the point of
being able to spot cancerous lesions that had been missed by experts (in [11]).
However explanations are relying on a single “medical” score which might limit
the interpretability regarding complex tissue structures that can be found on
these slides.

While interpretability for deep learning CNN models is still at its begin-
ning, some methods arise from the literature. “Feature Visualization” has been
extensively developed in [13]. It consists of methods that aim at outputting visu-
alizations to express in the most interpretable manner features associated with
a single neuron or a group of neurons. It can be used to understand the general
training of a model. For example, the question of transferring features learned
from natural images (ImageNet) to medical images has only recently been inves-
tigated [14] while widely used and yet surprisingly good. It has also been used to
measure how robust a learned feature is [15]. Other explainability methods are
called attribution methods, i.e. methods that output values reflecting, for each
input, its contribution to the prediction. They are performed either through per-
turbation [16] or gradient computation (i.e. measure of the gradient of the output
with respect to the input). This second group of methods is gaining more and
more interest. In [17], the authors show that gradient is a good approximation
of the saliency of a model and even put forward a potential to perform weakly
supervised localization. This work opened a new way of accessing explanations in
deep neural networks and motivated a lot of interesting researches [18–20]. Mixed
together these explanation methods can provide meaningful and complementary
interpretability.

To the best of our knowledge, a lot of explainability is still to be introduced in
WSI classification architectures. In the next section, we present our approach to
improve interpretability of a model trained for WSI classification in histopathol-
ogy. We rely on gradient-based methods to identify and attribute the importance
of features in intermediate descriptors, and on patch visualization for cell-level
feature explanations. We also extend feature explanation to a slide level, thus
drastically improving tumor localization and medical insights.

3 Proposed Methods

As introduced in Sect. 2, WSI classification architectures have a common design
that we formalize here. Let i be the slide index and j the tile index for each
slide. There are four distinct blocks in a typical WSI classification architecture:
1. A feature extractor module fe (typically a CNN architecture) that encodes

each tile xi,j into a descriptor di,j ∈ R
N with N the descriptor size (depending

on the feature extractor): di,j = fe(xi,j);
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2. A tile scoring module fs that, based on each tile descriptor di,j , assigns a
single score per tile si,j ∈ R: si,j = fs(di,j);

3. An aggregation module fa that, based on all tile scores si,j , and some-
times their tile descriptors di,j , computes a slide descriptor Di ∈ R

M

with M the slide descriptor size (depending on the aggregation module):
Di = fa(si,j , di,j);

4. A decision module fcls that, based on the slide descriptor Di, makes a class
prediction Pi ∈ R

C with C the number of classes: Pi = fcls(Di).

Fig. 1. Overview of the proposed method.

Our approach (illustrated in Fig. 1) consists in rewinding explanations from
the decision module to tile information by applying interpretability methods and
by answering successively the following three questions:

1. Which features of slide descriptors are relevant for a class prediction?
2. With regards to the aggregation module, which features of tile descriptors

are responsible for previously identified relevant slide descriptor features?
3. Are these features of tile descriptors relevant medically and representative of

histopathological information?

The first question is answered using attribution vectors Ac ∈ R
M (one for

each class c) computed as the gradient of the component of index c of Pi (noted
Pi,c) with respect to Di. It enables us to identify a set of relevant positions
Kc = {Kc,1, ...,Kc,L} in slide descriptors, i.e. the L (empirically determined)
positions in Ac with highest attributions over the slide predicted in class c:
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Ac =
∑

i∈Ic

| ∂Pi,c

∂Di
|=

∑

i∈Ic

| ∂fcls(Di)c
∂Di

|,

with Ic the set of slides predicted to be in class c.
Then, the second question is also answered using an attribution vector ac ∈

R
N computed as the gradient of tile score si,j with respect to tile descriptor di,j .

This enables to identify features positions kc = {kc,1, ..., kc,l} in tile descriptors,
i.e. the l (empirically determined) tile descriptors that are responsible for high
activation at previously identified Kc positions in slide descriptor:

ac =
∑

(i,j)∈Jc

| ∂si,j
∂di,j

|=
∑

(i,j)∈Jc

| ∂fs(di,j)
∂di,j

|

with Jc the set of tile positions (i, j) that most activate Kc positions in slide
descriptors.

To answer the third question, we rely on feature activation to highlight fea-
tures identified as being discriminative to the task by selecting tiles xi,j that
have the highest activation per feature in kc identified over the whole test set.
Along with these tiles, we display a maximum activation X image obtained by
iteratively tuning pixels values to activate the feature by gradient ascent as fol-
lows: for each k in kc, X is initialized as a uniformly distributed image X0; then
while fe(Xn−1)k increases, iterate over n > 0:

Xn(k) = Xn−1 +
∂fe(Xn−1)k

∂Xn−1
.

Finally, we also propose a new way to compute heat-maps for each slide i.
We note Hc,i the map that highlights regions on slide i that explain what has
been learned to describe class c based on the identified features. For each slide
i and tile j, the heat-map value Hc,i,j is computed as the average of activations
di,j,k (normalized per feature over all tiles of all slides) over identified features
k in kc for class c:

Hc,i,j =
1

|kc| .
∑

k∈kc

di,j,k − mink

maxk −mink

with maxk = maxi,j(di,j,k) and mink = mini,j(di,j,k).
This heat-map values (between 0 and 1) can be considered as a prediction

scoring system, and thus we propose to compute the Area Under the ROC
(Receiver Operating Characteristic) Curve to measure how relevant is the inter-
pretability brought by our automatic feature extraction approach using ground
truth lesion annotations when given. This localization AUC measures the sep-
arability between the class of interest (e.g. “tumor” and other classes using
heat-maps, indeed for a good heat-map we expect tiles that are representative of
the class of interest to have a high score and all other tiles to have a low score.
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4 Experiments and Results

Architectures. We validate our approach on two WSI classification trained
architectures: CHOWDER and Attention-based classification.

CHOWDER [7] uses a 1 × 1 convolution layer to turn each tile descriptor
into a single tile score. These scores are then aggregated using a min-max layer,
that keeps the top-R and bottom-R scores (e.g. empirically R = 5 gives the best
results), to give a slide descriptor (M = 2 × R).

Attention-based architecture [9] uses an attention module (two 1 × 1 con-
volution layers with respectively 128 and 1 channels and a softmax layer) to
compute competitive and normalized (sum to 1) tile scores from tile descriptors.
Then, the slide descriptor is computed as the weighted (by tile scores) sum of
tile descriptors (M = N).

Note that in our experiments the feature extractor is a ResNet-50 [21]
(N = 2048) trained on ImageNet and the decision module is a two layers fully
connected network with 200 and 100 hidden neurons, respectively.

Datasets. We validate our approach using Camelyon-16 dataset that contains
345 WSI divided into 209 “normal” cases and 136 “tumor” cases. This dataset
contains slides digitized at 40X magnification from which we extract, with regard
to a non-overlapping grid, 224×224 pixels at 20X magnification and pre-compute
2048-tile descriptors for each tile (using the ResNet-50 model trained on Ima-
geNet). 216 slides are used to train our models while 129 slides form the test set
to evaluate performances of models.

Results on CHOWDER. Both architectures trained on Camelyon-16 show
similar classification performances (AUC of 0.82 for the CHOWDER model and
0.83 for the Attention-based model). Let us now illustrate and detail the results
of our approach on the CHOWDER model guided by the three questions raised
in Sect. 3.

The first question is “Which slide descriptors features are relevant for a class
prediction?” i.e. for CHOWDER given the M = 10 (R = 5) tile scores given
as slide descriptor (the 5 minimum tile scores and the 5 maximum tile scores),
what is the contribution of each of these values to the prediction?

The distribution of the (5-)min and (5-)max scores w.r.t. predictions over
the whole 129 test slides shows that min scores are the ones that contribute to
discriminate between the two classes (i.e. the lower min scores, the more the
slide is predicted as being “tumor”). A Mann-Whitney U-Test between scores
(min and max independently) distributions reveals that min scores distributions
per predicted class are statistically different (p < 10−3) while max scores are not
(p = 0.23). The attribution of min and max scores distributions validates this
assertion.

After explaining that min scores are the ones describing tumorous regions
and thus that max scores are used for the “normal” class, we are interested in
identifying which features of tile descriptors are mostly responsible for minimum
and maximum scores, i.e. to describe each class. To address this second question,
we use the same gradient-based explanation method.
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Most minimal tile scores are under −5 and most maximal tile scores are
above 11. For each of these groups of tiles, we compute the average attribution
of each of the N = 2048 features in tile descriptors (extracted by a ResNet-50
trained on ImageNet). The distribution of features hence activated allows us to
identify which features are mostly responsible for min and max tile scores, i.e.
highest attribution for min and max scored tiles.

Thus we are able to claim that features (defined by their position in the
descriptor) that are mostly useful for the trained model for each class are: 242,
420, 602, 1154, 1644, 1652 and 1866 for “tumor” class, and 565, 628, 647, 1158
and 1247 for “normal” class.

Interpretability. As exposed in the previous paragraph, based on explanations
on decision blocks, we have been able to identify 7 and 5 features that are
mostly used by the trained CHOWDER model to make decisions (and we did
the same for the attention-based model). Now, we are interested in interpretable
information to return to pathologists so that they can use their expertise to
understand what these features put forward histopathologically speaking. We
benefited from discussions with two experienced pathologists and report their
overall feedback on the interpretable visualization we proposed.

Figure 2 shows the 7 tiles that activate the most (over all tiles) each feature
and the max activation image, that we expect to reveal what the feature reveals
with regards to the histopathological problem it has been trained on.

Fig. 2. Patch-based visualizations obtained for features 242, 1154 and 1652 (for min-
scores features); 565 and 1247 (for max-scores features); tiles and max activation images
(right).

Pathologists agreed that patch-based tiles visualizations are highly inter-
pretable and reveal features that are indeed related to each class [22]. For exam-
ple, feature 1652 tends to trigger spindle-shaped cells that indeed can be a metas-
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tasic tissue organization. For “normal” tissue features, feature 565 describes
mainly clustered lymphocytes that are preponderant in normal tissues.

Coherence between patches exposed for a better interpretability led us to
think about another way to present features to pathologists. Indeed, since tissues
have coherent and somehow organized structure, a relevant feature for histologi-
cal problems would be activated in a coherent and somehow organized way over
slides. Thus, along with patch-based visualization, we propose to access features
activation heat-maps Hc,i over slides as presented in Sect. 3.

Figure 3 illustrates qualitative results. Quantitatively, we report a tile-level
localization AUC of 0.884 for CHOWDER model and 0.739 for Attention-based
model, using this average normalized activation as a “tumor” prediction score
and using lesion annotation provided by Camelyon-16 dataset to get the ground-
truth label per tile. Both AUCs are significantly high, which validates our app-
roach of identifying features that are relevant and of computing heat-maps for
interpretation and explanation. Note that the AUC computed using tile scores
is 0.684 for CHOWDER model and 0.421 for Attention-based model (see Table
1). We can also note that there is a gap in interpretability between CHOWDER
model and Attention-based model while classification performances are compa-
rable. The gap can be explained by the fact that, in the context of Camelyon-16,
identifying one tumorous tile is enough to label a slide as “tumor”, so implicit tile
classification does not need to be exhaustive to provide meaningful information
to the slide level decision module, however if so interpretability will decrease.

Fig. 3. Slide-based visualizations: Heat-maps explaining “tumor” class obtained by
computing average normalized activation over identified features; ground-truth anno-
tations for “tumor” tissue (left); CHOWDER model feature-based heat-maps (middle);
attention-based model feature-based heat-maps (right).
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Table 1. Results: classification and localization AUC using both methods (improve-
ment of localization AUC by 29.2% for CHOWDER and 75.5% for Attention-based
model).

Model Classification AUC Heat-map method Localization AUC

CHOWDER 0.82 Tile scores 0.684

Feature-based (ours) 0.884

Attention-based 0.83 Tile scores 0.421

Feature-based (ours) 0.739

5 Conclusion

In this paper, we presented our interpretability approach and researches for WSI
classification architectures. We proposed a unified design that gathers a large
majority of WSI classification methods relying on MIL learning, and applied a
gradient-based attribution method to identify features that have been learned to
be relevant in intermediate (tile and slide) descriptors. Then we showed the rele-
vance of these features by visualization, and validated it with the help of pathol-
ogists. We finally proposed explainability heat-maps over whole slides taking
into account only identified features. This contribution considerably improved
tile-level classification AUC. Allying patch-based and slide-based visualization
took interpretability to a next level for pathologists to understand histological
meanings of features used by trained models. More generally, this method could
be used to extract meaningful and interpretable information for any medical
application when using a MIL context.
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Abstract. Deep learning based approaches to Computer Aided Diagno-
sis (CAD) typically pose the problem as an image classification (Normal
or Abnormal) problem. These systems achieve high to very high accu-
racy in specific disease detection for which they are trained but lack in
terms of an explanation for the provided decision/classification result.
The activation maps which correspond to decisions do not correlate well
with regions of interest for specific diseases. This paper examines this
problem and proposes an approach which mimics the clinical practice
of looking for an evidence prior to diagnosis. A CAD model is learnt
using a mixed set of information: class labels for the entire training set
of images plus a rough localisation of suspect regions as an extra input
for a smaller subset of training images for guiding the learning. The pro-
posed approach is illustrated with detection of diabetic macular edema
(DME) from OCT slices. Results of testing on a large public dataset
show that with just a third of images with roughly segmented fluid filled
regions, the classification accuracy is on par with state of the art methods
while providing a good explanation in the form of anatomically accurate
heatmap /region of interest. The proposed solution is then adapted to
Breast Cancer detection from mammographic images. Good evaluation
results on public datasets underscores the generalisability of the proposed
solution.

Keywords: CAD · OCT · DME · Breast cancer

1 Introduction

Deep Learning (DL) based prediction systems which are black-boxes lack an
explicit and declarative knowledge representation. Hence, despite their wide use
for classification [1–3], such systems have difficulty in generating the underlying
explanatory structures [4] which consequently impedes clinical adoption. Provid-
ing an evidence which might have led to the decision can mitigate this situation.
In the case of diseases characterised by presence of lesions/abnormalities, assum-
ing only image data is available, a natural option for this evidence is in the form
of predicted regions of interest (ROI) which should be well aligned with locations
of actual lesions/abnormalities (as annotated by experts).
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A common attempt towards explanation has been to use the activations of
the last layer of the network used for the classification (using well known archi-
tectures such as Inception-V3, Resnet, AlexNet etc.) to get a heatmap which
mark those regions in the image which might have led the model to give a par-
ticular prediction [5,6]. Since the focus of such work is on classification, training
is done with only labeled data and the reported evaluation is also of the classifi-
cation accuracy and not of the heatmaps and their explanatory accuracy. Since
these models were trained only on label information, there is no guarantee that
the model will output a clinically accurate heatmap. An approach to get both
class labels and accurate explanation would be to train the model using images
which are annotated at both the image level and pixel/region/local level. This
however poses a logistical challenge in the medical domain as labeled data are
easier to extract from medical records and are available in abundance whereas
region-level annotated data is not readily available to carry out a fully supervised
segmentation.

In this paper, we propose a novel approach to address the above problem.
We propose a neural network architecture which can do both: learn to clas-
sify an image and leverage limited annotations to give an accurate heatmap. A
novel training regime is designed to enable flexibility in the model building to
accommodate and use varying levels of information that may be available.

2 Method

We illustrate our proposed method using Diabetic macular edema image classi-
fication in OCT image.

2.1 Dataset(s)

OCT images (containing speckle noise) of retinal layers are used for DME detec-
tion. The fluid filled regions (FFR) in the retina can vary in size affecting the
layer morphology. A publicly available set [7] was chosen for our experiments.
It has 84,495 OCT slices assigned one of 4 classes (NORMAL, CNV, DME and
DRUSEN). We used the DME and NORMAL classes for our experiments. These
images had no localizations for the fluid filled region. For generating the local-
izations, we trained a UNET model [8] on the other 2 datasets - 2015 BOE Chiu
[9] and RETOUCH [10] having 71 and 935 OCT slices with labelled segmen-
tation maps for fluid filled regions respectively. This trained UNET model was
used to predict the rough segmentation maps for dataset from [7] which was
used later in all our experiments. A total of 16440 OCT slices (B-scans) were
used in our experiments out of which 9332 were NORMAL cases and 7118 were
DME affected. This was divided into Train, Validation and Test sets in the ratio
60:25:15. The normal images had empty segmentation masks while it represented
the fluid filled regions in case of DME images.

Each of the OCT slice was preprocessed to identify the retinal layers which
occupy only a small part of the OCT image. This was done using simple steps:
row sum to vectorise the image and thresholding to extract the layered part.
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2.2 Model

The problem at hand is to build a model that is fully supervised for classification
while also generating anatomically accurate heatmaps as an explanation for the
class outputs using limited region-level annotations. The assumption of limited
availability of annotations constrains the approach to heatmap generation to be
weakly supervised. Our solution is to design a network, that produces class label
as a main output and an auxiliary output in the form of a rough segmentation
map for a given input. Figure 1 shows the proposed network architecture for
achieving this task. It consists of encoder and decoder segments, where the former
is used to produce the classification output while the latter is used to generate the
rough segmentation maps. A novel training methodology described in the next
section ensures that the derived heatmaps using CAM [11] are not only guided
by labels but also by the rough localisations. Fewer filter layers (relative to a
normal encoder) are employed at the end of the encoder for better localisation
of the heatmap. After the last encoder layer (6 × 6 × 16 output), the output is
flattened and a dense layer is added to obtain a class label as the output and
heatmaps are derived using the method described in Sect. 2.4.

2.3 Training

Training of the model was done with images from the training set using P
images with only classification labels and Q < P with both classification label
and segmentation map. Thus, Q : P indicates the proportion of different type
of images used in training. 1:3 indicates that one third of the total number of
training images had both classification label and segmentation map (See Table 1).

Table 1. Public OCT data specifications [7]

Data type Train Validation Test

Normal DME Normal DME Normal DME

Images with segmentation 1866 1425 773 583 468 364

Images without segmentation 3732 2850 1547 1168 936 728

A special training regime is designed for the given task. The model has two
branches (See Fig. 1 with two outputs, namely, the class label and a rough
segmentation map). The left branch (encoder before the classification output)
together with the dense layers is a unit (referred to as ED) whose output is the
class label.

In the first phase, the ED unit is trained for a few (5) epochs following which
the whole model is trained for some (10) epochs. At the end of this phase, the
ED part of the network will learn the features aiding both classification and
segmentation tasks. In the second phase, only the dense layers of ED unit are
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trained keeping all the other weights constant (for 20 epochs). This second phase
forces the model to predict the class label using the features that were learned
during the whole model training for segmentation and classification. This also
serves to boost the classification accuracy of the model. In the third and final
phase of training, the whole model is trained again so that the encoder part
learns more of the features that will be used for segmentation (for 50 epochs).
This phase of training is made to be the longest so that the model is forced to
learn more of the segmentation features so as to get the best heatmaps using the
regime described in Sect. 2.4.

In terms of loss functions, binary cross entropy loss is used while training only
the ED unit of the model whereas while training the entire model, a weighted
sum of dice coefficient loss and binary cross entropy loss is used. The weight is
the hyper-parameter and is taken as 1 during the training phase. Higher weight
for dice coefficient loss will give us better region of interests(heatmaps) but at
the cost of lower classification accuracy.

Fig. 1. Proposed network architecture with 2 outputs - Classification and Auxiliary
Segmentation. Left Branch before Classification output is called ED branch.

2.4 Deriving the Heatmaps

The desired heatmaps (as explanation for the predicted class label) were derived
using the following steps. The dense layers from the ED unit were removed and
a global average pooling layer was added to the final encoder layer (6 × 6 × 16
output) to give a 1×16 feature map. The dense layer was attached finally to give
the classification output. Only the 16 neurons of the dense layer were trained
in this phase and all the other weights were kept constant from the last phase
of the training. Heatmaps were obtained using the Class Activation Mapping
(CAM) [11]. As the convolution layer weights were taken from the last phase of
the training, it had the features which were learned for both segmentation and
classification. In our case, the adapted CAM approach was weakly supervised,
as opposed to the normal CAM where heatmaps are simply an extracted by-
product of the main classification task. Using the adapted CAM, model design
and training methodology, it was ensured that the heatmaps are more accurately
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localised then the normal CAM approach whose results can be seen in the last
column (Mb) and last row of Fig. 2 and Table 2 respectively.

3 Experiments

Several experiments were done to assess the proposed idea for generating explain-
able classification. Here, ED unit upon training with only the classification
labelled data forms the base classification model, i.e. Mb with Q = 0. In the
first experiment, training was done with different values for 1:R, R = 1, 2, 3, 4
to assess the effect of lowering the value of Q on the performance, namely accu-
racy of classification and the generated heatmaps. In the second experiment, we
wished to understand if the degree of accuracy of local annotation affects the
model’s performance. Training was done with 4 types of annotations: roughly
accurate segmentation boundary of each FFR; a bounding box for each FFR;
randomly generated image patches and finally the whole image (i.e. no local-
isation at all). Quantitative assessment of the classification task is done using
Accuracy, Sensitivity, Specificity and AUC. Correctness of ROI prediction for a
particular image is accessed using a method described later and the accuracy of
detection which is the number of images in which ROIs are predicted correctly
to the total number of images is reported in %.

(a) Original (b) ROI 1:1 (c) ROI 1:2 (d) ROI 1:3 (e) ROI Mb

Fig. 2. DME detection. Sample ROI outputs for training with different ratios of labeled
images and local annotation for DME (rows 1, 2) and normal (row 3) cases.
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Table 2. DME detection results with different ratios of local annotation

Training Classification ROI prediction

Data ratio 1:R Accuracy AUC Specificity Sensitivity Total images Images

with

correct

ROIs

Accuracy

of

detection

1:1 91.38 96.56 94.65 87.17 993 951 95.7

1:2 92.06 96.39 95.44 87.72 1004 947 94.3

1:3 97.71 98.95 98.57 96.61 1056 978 92.6

1:4 97.86 98.95 98.6 96.93 1061 610 57.49

Mb 97.83 99.27 97.50 98.26 1061 395 37.2

(a) Original (b) Accurate map (c) Bounding box (d) Whole image

Fig. 3. ROI obtained for training with different types of local annotation.

4 Results

The ROIs derived with models trained using different ratios (1:R) of images
with labels and with labels + localisation annotation are shown for 3 sample test
images in Fig. 2. The results for Mb (last column) are diffuse ROI covering almost
the entire image. With the addition of more and more images with localisation
information during the training phase, the ROIs improve progressively and we
get the best overlap with the FFRs when R reaches 1. The intersection over union
(IOU) metric was used to help quantitatively assess the derived ROIs against
the ground truth for FFR. An IOU threshold of 0.3 is taken to declare correct
detection of ROI. Table 2 lists the number of correctly detected ROIs and the
accuracy of detection(Correct ROIs/Total Images). These results are consistent
with the qualitative results showing an increasing trend in accuracy of detection
as R value approaches 1. Lowest ROI detection accuracy is obtained by Mb due
to lack of information about suspect regions during training.

Next, we present the results of experimenting with different types of local-
ization of suspect regions during training. Figure 3 shows the derived ROIs for 2
sample images. It can be seen that ROI is less and less localised as the precision
with which local annotations used in training data is compromised, which is to
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be expected. Quantitatively, accuracy of classification remains above 90 % for all
types of local annotations used (see Table 3). However, there is a fall in accuracy
of correct ROI predictions for a bounding box type of annotation and a steep
degradation when the whole image or random patches are used as annotations.
More results are shown in Fig. 4 for 1:3 training regime. A comparison of the
classification accuracy of the proposed method with 2 state of the art (SOTA)
methods are given in Table 4. Our method is seen to be almost on par with [12]
for 4 metrics, when tested on the same large dataset [7].

Table 3. DME detection. Results with different types of local annotations.

Annotation Classification ROI Prediction

Type Accuracy AUC Specificity Sensitivity Total images Correct ROIs Accuracy

of

detection

Accurate map 97.71 98.95 98.57 96.61 1056 978 92.6

Bounding box 94.91 99.01 96.86 92.39 1035 803 77.5

Whole image 93.38 98.32 95.01 91.30 1019 345 33.8

Random 92.42 97.49 94.65 90.56 1010 432 42.77

Table 4. DME detection performance comparison with SOTA

Method Dataset Accuracy AUC Specificity Sensitivity

Kermany et al. [12] [7] 98.2 99.87 99.6 96.8

Our method (1:3) [7] 97.71 98.95 98.57 96.61

Srinvasan et al. [13] Duke 93.335 – 93.8 68.8

Fig. 4. Predicted ROI (in green) for DME detection. Ground Truth is in red. (Color
figure online)

The proposed approach was also applied to breast cancer detection (for
screening) from mammograms. Unlike the DME problem, evidence for breast
cancer is not easily discernible to the naked, untrained eye and hence is particu-
larly challenging. The 2 classes of interest were defined to be normal and abnor-
mal. The latter includes benign and malignant cases as discrimination between
these cases is difficult and best done by a specialised model. The ROI prediction
aimed at are suspect regions regardless of whether they are benign or malignant.
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The architecture used for the DME problem was used and patches from the
entire mammogram was fed as input. Training methodology was as described
in Sect. 2.3. The patches (200 × 200) which were classified as positive by the
model acts as the predicted ROI in the large sized mammogram image (around
4000 × 4000 in dimension). The model was assessed on CBIS-DDSM dataset
[14]. A total of 5218 training images (2017 abnormal and 3201 Normal) were
split into train and validation in the ratio of 12:5. A model trained on 1:3 ratio
of annotated images, was evaluated on a test set of 1298 images (709 abnormal
and 589 Normal). The AUC/sensitivity(SN)%/specificity (SP)% attained was
0.98/90/93 respectively. Three sample images with ground truth regions and
model-predicted ROIs (bounding boxes) are shown in Fig. 5. A baseline model
(Mb) was also trained and tested. It achieved a AUC/SN/SP of 0.972/88.2/
91.3 respectively. A recent method [15] that does normal/cancerous classifica-
tion also reports on [14]. It is based on transfer learning with a Resnet50 and
reports AUC/SN/SP to be 0.91/86%/80.1%.

Fig. 5. Breast cancer detection. Green - Predicted ROI, Red - Ground Truth. (Color
figure online)

5 Conclusion and Discussion

The need to make decisions of CAD systems for disease detection more explain-
able was addressed in this paper. It is worth emphasising that the primary
problem here is not segmentation and that the evidence provided are an added
benefit to the main classification task. Using a data set with very limited local
annotations, a lightweight network design was proposed and trained using a novel
methodology to provide classification and an explanation via heatmaps. The app-
roach has been illustrated for DME and breast cancer detection, both employing
different modality. The proposed solution also serves to draw the attention of
the image reader to the areas deemed to be suspect. Results of extensive exper-
iments indicate that a model trained with labeled images where only a third
have basic bounding box type of local annotation, can achieve above 90% clas-
sification accuracy and provide explanation in the form of heatmaps with over
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75% accuracy; the accuracy of heatmaps do improve with more accurate and
abundant local annotation. The proposed solution thus enables an explainable
CAD design with a flexible use of available annotations.
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Maximilian Möller1,2(B), Matthias Kohl1, Stefan Braunewell1,
Florian Kofler2,3, Benedikt Wiestler3, Jan S. Kirschke3, Björn H. Menze2,

and Marie Piraud1,2

1 Konica Minolta Laboratory Europe, München, Germany
maximilian.moeller@tum.de

2 Department of Informatics, Technical University of Munich, München, Germany
3 Department of Neuroradiology, Klinikum rechts der Isar, München, Germany

Abstract. Training convolutional neural networks with image-based
labels leads to black-box image classification results. Saliency maps offer
localization cues of class-relevant patterns, without requiring costly pixel-
based labels. We show a failure mode for recently proposed weakly super-
vised localization models, e.g., models highlight the wrong input region,
but classify correctly across all samples. Subsequently, we tested multiple
architecture modifications, and propose two simple, but effective training
approaches based on two-stage-learning and optional bounding box guid-
ance, that avoid such misleading projections. Our saliency maps localize
pneumonia patterns reliably and significantly better than gradCAM in
terms of localization scores and expert radiologist’s ratings.

Keywords: Weakly-supervised · Visualization · Saliency maps

1 Introduction

Deep Convolutional Neural Networks (DCNNs) reach expert performance on
difficult classification tasks in the medical domain [6]. Unfortunately, we can
not yet understand how DCNNs reach their decisions [5]. However, various visu-
alization approaches create saliency maps that localize class-relevant patterns
in the input image, exploiting deep filter activation maps [15]. Post-hoc meth-
ods, like gradCAM [12], create saliency maps, using filter activations in the
final convolutional layer, their gradients, and converged model parameters. A
popular application of GradCAMs and CAMs [16] is to provide a visual argu-
ment that the classifier learned essential features [9,13]. Though their saliency
maps are of low resolution, do not capture the extent of objects, have diffi-
culties detecting multiple instances, in particular small object instances, and
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sometimes also highlight class-unrelated regions [12]. Despite these shortcom-
ings, gradCAM is the state of the art post-hoc decision visualization technique
that passes saliency map sanity checks [1]. Recently, weakly supervised localiza-
tion approaches allow explicitly learning saliency maps during training instead
of creating saliency maps post-hoc [4,7,14,17]. An encoder-decoder architecture
uses filter activation maps from multiple resolutions to project a class saliency
map. Subsequently, a spatial pooling function reduces the saliency map to a
class score. Yao et al. [14] argue that this learning approach makes the saliency
maps meaningful. We hypothesize that the weak localization constraint in an
end-to-end trained weakly-supervised approach does not strictly enforce mean-
ingful saliency maps. To the best of our knowledge, no previous work compares
weakly supervised localization approaches with gradCAM. We systematically
compare localization performance and stability of saliency maps from different
approaches on the task of pneumonia detection on a large public dataset. We
compare our assessment with the localization ratings of expert radiologists, to
prove their clinical usefulness. Our contribution is twofold:

– We confirm our hypothesis and show a failure mode for end-to-end weakly
supervised localization models. Their saliency maps can systematically high-
light class-irrelevant patterns across all samples, without a drop in classi-
fication performance. Such saliency maps are useless for a radiologist and
misleading for non-experts.

– Based on this observation, we test modifications of saliency map creation
methods with stricter constraints, namely intermediate supervision using
global labels and optional bounding box guidance. Our approaches outper-
form gradCAM, do not exhibit the failure mode, and receive the highest
localization ratings by expert radiologists.

2 Methods

Our methods leverage different training strategies to use global labels, with
optional bounding box guidance to project class-indicative saliency maps. They
share the same architecture shown in Fig. 1, but use different training procedures
and loss functions. The first approach, “Ours-end-to-end” uses end-to-end train-
ing like Yao et al. [14]. Our novel approaches (“Ours-two-stage”, “Ours-oracle”)
offer a weakly supervised, and a bounding-box-guided approach to project stable
and meaningful saliency maps.

In all approaches, we use a truncated U-net [10] (left box) and a localization-
classification head (center box) with a class-specific spatial pooling function,
as proposed by Yao et al. [14]. The encoder is a modified ResNet50 with six
instead of five downsampling operations, that forwards k filter activation maps
F k
r at four isotropic resolutions r = {8, 16, 32, 64}.At the bottleneck, we add

an optional classifier with an average pooling layer (AP), fully connected layer
(FCL), softmax, and negative log-likelihood loss (NLLLoss) to allow for two-
stage-training. The decoder uses 2D-convolutions with ReLU non-linearities and
skip connections as in the standard U-net. The final decoded filter activation
map space Dk=256

r=64 is passed to the localization classification head. There, a 2D-
convolution with a kernel size of 1, followed by a sigmoid activation function,
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projects the 256 filter maps to C class saliency maps Sk=C
r=64, where C denotes the

number of classes. Optionally, Sk=C
r=64 are passed to the bounding box guidance

block, to allow for supervised saliency map creation (oracle). Then we extend
the lower-bounded-adaption of log-sum exp pooling function (LSELBA) [8,14]
to class-specific versions LSELBAc, that pool each class saliency map Sc to its
class score ỹc, preserving the range [0, 1], where c ∈ {1...C}. Normalizing class
scores ỹc creates class probabilities ŷc, which are passed to the classification
loss function. The LSELBAc pooling function (see Eq. 1) learns βc for each
class, allowing the network to interpolate between max (βc → ∞) and average
(βc → −∞) pooling for each class, thereby reducing the size bias. The lower-
bound parameter rl is set to 10 for best performance [13]. w, h denote the spatial
extent of all saliency maps SC

r=h=w=64.

ỹc(S, r) =
1

rl + exp(βc)
log(

1
w × h

w∑

i=1

h∑

j=1

exp([rl + exp(βc)] × Sc(i, j))) (1)
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Fig. 1. Our training approaches use the core architecture in the blue-dotted frames.
Optionally, it can be extended by the bottleneck classifier for “Ours-two-stage” train-
ing, or the bounding box guidance for “Ours-oracle” training. (Color figure online)

Ours-end-to-end approach trains the truncated U-net and the localization- clas-
sification head in end-to-end weakly supervised fashion, using only global labels
and NLLLoss. Additionally, we reproduced the architecture of Yao et al. and
trained it equally for comparison. These end-to-end approaches can fail to local-
ize disease patterns while classifying correctly. We believe that the decoder can
manipulate encoder features to highlight any region and magnify their amplitude
to convey classification relevant information.
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Ours-two-stage follows a two-stage training approach to improve the stability
of predicted saliency maps. It removes the influence of decoder and localization-
classification head on the encoder capacity. We first train the encoder until con-
vergence, using only the bottleneck classifier. Secondly, the encoder is frozen
and the decoder and localization-classification head are trained, using only the
NLLLoss at the tip of the localization-classification head. We further use the
trained encoder to compute gradCAM saliency maps for comparison with our
extracted saliency maps.

Ours-oracle uses bounding boxes annotations Br=64, downsampled to a resolu-
tion of 64 × 64 during training unlike all other approaches. The saliency maps
are guided inside the bounding boxes, assuming that essential underlying disease
patterns are found there. An additional supervised localization loss lloc is com-
puted with Br=64 and Sk=C

r=64 and optimized jointly with the classification loss. lloc
(Eq. 2) is the weighted sum of negative sIoP (see Eq. 3) and sDice (see Eq. 4)
scores. “Ours-oracle(0.01)” and “Ours-oracle(0.1)” denote that α = 0.01 and
α = 0.1 are used for multitask training. Larger α can lead to over-segmentation
due to imperfect bounding box labels during multi-task training.

lloc = −α(sDice + sIoP ) (2)

Evaluation metrics compare ground truth bounding boxes Br=64 and saliency
maps Sr=64 to quantify localization performance. The soft intersection over pre-
dicted saliency map score (sIoP see Eq. 3) qualitatively indicates if Sr=64 lies
within Br=64 [17]. The soft Dice score [2] (sDice see Eq. 4) indicates how much
Sr=64 and Br=64 match.

sIoP (S,B) =

∑h
i=1

∑w
j=1 Si,jBi,j

∑h
i=1

∑w
j=1 Si,j

(3)

sDice(S,B) =
2
∑h

i=1

∑w
j=1 Si,jBi,j

∑h
i=1

∑w
j=1 S2

i,j + B2
i,j

(4)

We aim at maximizing sIoP. sDice is a control metric, which should reach
a range between 0.1 and 0.4. Higher sDice scores indicate that saliency maps
become similar to bounding boxes instead of the underlying pneumonia pat-
terns. Lower scores indicate that models do not capture the extent of underlying
pneumonia patterns. Further, ROC AUC averaged over all classes measures clas-
sification performance. For completeness, we report RSNA detection score in the
supplementary material.
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2.1 Dataset, Preprocessing, Training Parameters

We compare localization approaches on pneumonia detection using the RSNA
Pneumonia Detection dataset [11]. It is a revisited subset of the ChestX-ray14
dataset [13], containing 25684 frontal chest X-ray images with three classes:
31% pneumonia, 40% no pneumonia/other diseases, 29% normal, where bound-
ing boxes for all pneumonia samples are available. Images are down-sampled to
512 × 512 resolution (Ir=512). We created five train/validation splits with 1000
images in the validation set using a stratified shuffle split on unique patient
IDs. Classification scores across the five validation sets reveal no difference.
For localization performance evaluation in Sect. 3, we use a randomly selected
train/validation split and report validation set performance. We apply data aug-
mentation in all training runs. Random horizontal flips, random rotation (±5◦),
translation (±5%) , zoom (±10%), and normalization with ImageNet statistics
are applied during training. We use Adam optimizer [3] with learning rate of
10−3 and set weight decay to 10−5. We train models for 100 epochs and set the
batch size to 32, except for Yao et al. [14], due to large network size.

2.2 Radiologist Survey

For further evaluation of our methods, three expert radiologists rate the local-
ization ability of saliency maps for 20 randomly selected images of pneumo-
nia cases. We pick representative models for gradCAM, “Ours-two-stage” and
“Ours-oracle(0.1)” to test superiority of our methods over gradCAM. Secondly,
we pick the best and worst model of “Ours-end-to-end” to test if models with
failure mode provide meaningful information to radiologists. Image and app-
roach are presented in a randomized order. Saliency maps are overlayed on the
original X-ray image and can be toggled on or off. Radiologists rate the useful-
ness of saliency maps, given a four-star scale: The predicted saliency map does
not (1) /partially (2) /mostly (3) /perfectly (4) indicate underlying pneumonia
patterns.

3 Experiments

The experiments investigate the localization performance and stability of
saliency maps of gradCAM, Yao et al., and our approaches. We train each app-
roach at least ten times, with random parameter initialization and sampling
order. Every training run leads to one model. We compare mean classifica-
tion and localization metrics, and their standard deviation across the models
in Table 1. We use one sided heteroscedastic t-test for significance testing. Then,
in Fig. 2 we plot each trained model as a dot on a 2D-scatter plot, to compare
mean sIoP and mean sDice score and identify models with poor localization
behavior, indicative for the failure mode. We evaluate our findings against the
perception of a radiologist in Fig. 3. Lastly, in Fig. 4 we present some pneumonia
cases with saliency maps that are part of the radiologist survey.
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Table 1. Comparison of gradCAM, Yao et al., “Ours-end-to-end”, “Ours-two-stage”,
and “Ours-oracle”. Mean scores across models are reported with their standard devia-
tions in brackets. Best scores without bounding box guidance are in bold. Fails denotes
the fraction of models with dominantly misleading saliency maps.

Approach Fails ROCAUC sDice sIoP

gradCAM [12] No 0.884 (±0.002) 0.334 (±0.043) 0.367 (±0.052)

Yao et al. [14] 54% 0.87 (±0.005) 0.115 (±0.064) 0.392(± 0.183)

Ours-end-to-end 30% 0.886 (±0.005) 0.168 (±0.066) 0.464 (±0.18)

Ours-two-stage No 0.886 (±0.002) 0.309 (±0.053) 0.485 (±0.061)

Ours-oracle(0.01) No 0.88 (±0.002) 0.248 (±0.069) 0.614 (±0.04)

Ours-oracle(0.1) No 0.881 (±0.002) 0.474 (±0.024) 0.714 (±0.014)

3.1 Results

In Table 1 “Ours-two-stage” approach reaches superior performance over other
previous weakly supervised methods in sIoP, and performs significantly better
than gradCAM (p ≤ 5×10−5). As expected “Ours-oracle” improves localization
performance when α increases from 1% to 10%, and significantly outperforms
all weakly supervised sIoP scores (p ≤ 6 × 10−4). However, using bounding box
guidance significantly degrades classification performance (p ≤ 2 × 10−3).

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

sI
oP

sDice

gradCAM

Yao et al. end-to-end

Ours-end-to-end

Ours-two-stage

Ours-oracle(0.01)

Ours-oracle(0.1)

Misleading saliency maps

Fig. 2. The 2D-Scatter plot compares the average localization scores (sIoP and sDice)
for each trained model of the six approaches. The red box indicates models with mis-
leading saliency maps, e.g. failure mode. Trendlines are plotted for visual guidance.
(Color figure online)
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In Fig. 2, models, represented by different dots, that lie inside the red box
exhibit poor average sIoP and sDice scores and consistently produce pneumonia
unrelated saliency maps across the majority of all samples (see row 5 in Fig. 4
for examples). Notably, only models from Yao et al. (end-to-end) and “Ours-
end-to-end” exhibit this failure mode. The column “fails” in Table 1 denotes the
fraction of models that exhibit the failure mode.

Figure 3 summarizes the results of our expert survey with three participants.
The survey results support our hypothesis; we use the Wilcoxon signed-rank test
for significance testing and report a mixed effect model for further analysis in
the supplemental material.
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Fig. 3. The boxplot summarizes the results from our expert-survey with sixty points
per box plot. Differences in expert star ratings are illustrated per method, and diamonds
depict mean values. “Ours-end-to-end poor” represents a model that exhibits the failure
mode. Yao et al. [14] was not evaluated, because “Ours-end-to-end” performs similar.

Firstly, saliency maps from models that exhibit the failure mode provide no
meaningful information to radiologists (see “Ours-end-to-end poor”). Secondly,
similar to the results in Table 1 our stable weakly supervised approach “Ours-
two-stage” significantly outperforms gradCAM (p ≤ 2 × 10−4). Additionally,
our bounding box guidance extension, “Ours-oracle(0.1)” receives the highest
localization rating.



70 M. Möller et al.

Fig. 4. Columns one to five contain randomly selected chest x-ray images with pneu-
monia. Each row overlays saliency maps indicative for pneumonia, using the denoted
training approach. These saliency maps were evaluated by radiologists. For visualiza-
tion, saliency maps are interpolated bilinearly and normalized across channels. Each
image’s title states the predicted pneumonia probability. Row five shows saliency maps
from “Ours-end-to-end poor” model representing the failure mode, that can appear in
end-to-end training. “Ours-oracle” may lead to over-segmentation.

4 Discussion and Conclusion

The results support our hypothesis. Indeed, end-to-end trained weakly super-
vised models show a failure mode that leads to misleading saliency maps. Such
models seem to learn to project class-relevant activations onto class-irrelevant
background patterns, that we call projection surfaces. While we do not claim
that we fully understand the misleading projective behavior yet, we offer two
avoidance strategies. Two-stage training reduces the incentive to learn such a
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misleading projection by separating the learning objective into two parts. First,
the encoder learns classification-relevant features. Second, the decoder learns
to reconstruct spatial context for classification-relevant features and predicts
saliency maps used for classification. “Ours-oracle” uses bounding box annota-
tions to guide the saliency map creation towards meaningful regions in a multi-
task fashion, with the risk of potentially oversegmenting underlying pneumonia
patterns, in case of imperfect labels. We explain the small drop in classification
score when training with ground-truth bounding boxes with imperfect bounding
box labels that miss some less relevant features for humans. Both approaches do
not provide guarantees for reliable saliency maps, though the extensive testing is
conclusive. Future work will analyze why end-to-end weakly supervised training
can project saliency maps that highlight disease-unrelated patterns. Further, we
hope that “Ours-2-stage” approach is helpful for a variety of advanced classifi-
cation topics such as attention learning and active learning approaches.
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72 M. Möller et al.

13. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8:
hospital-scale chest x-ray database and benchmarks on weakly-supervised classi-
fication and localization of common thorax diseases. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2097–2106 (2017)

14. Yao, L., Prosky, J., Poblenz, E., Covington, B., Lyman, K.: Weakly super-
vised medical diagnosis and localization from multiple resolutions. arXiv preprint
arXiv:1803.07703 (2018)

15. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors
emerge in deep scene CNNs. arXiv preprint arXiv:1412.6856 (2014)

16. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep fea-
tures for discriminative localization. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

17. Zhou, Y., Zhu, Y., Ye, Q., Qiu, Q., Jiao, J.: Weakly supervised instance segmenta-
tion using class peak response. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 3791–3800 (2018)

http://arxiv.org/abs/1803.07703
http://arxiv.org/abs/1412.6856


Explainability for Regression CNN in
Fetal Head Circumference Estimation

from Ultrasound Images

Jing Zhang1(B), Caroline Petitjean1, Florian Yger2, and Samia Ainouz1

1 Normandie Univ, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, Rouen, France
{jing.zhang,samia.ainouz}@insa-rouen.fr, caroline.petitjean@univ-rouen.fr
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Abstract. The measurement of fetal head circumference (HC) is per-
formed throughout the pregnancy to monitor fetus growth using ultra-
sound (US) images. Recently, methods that directly predict biometric
from images, instead of resorting to segmentation, have emerged. In our
previous work, we have proposed such method, based on a regression
convolutional neural network (CNN). If deep learning methods are the
gold standard in most image processing tasks, they are often considered
as black boxes and fail to provide interpretable decisions. In this paper,
we investigate various saliency maps methods, to leverage their ability at
explaining the predicted value of the regression CNN. Since saliency maps
methods have been developed for classification CNN mostly, we provide
an interpretation for regression saliency maps, as well as an adaptation
of a perturbation-based quantitative evaluation of explanation methods.
Results obtained on a public dataset of ultrasound images show that
some saliency maps indeed exhibit the head contour as the most rel-
evant features to assess the head circumference and also that the map
quality depends on the backbone architecture and whether the prediction
error is low or high.

Keywords: Saliency maps · Explanation evaluation · Regression
CNN · Biometric prediction · Medical imaging

1 Introduction

The measurement of fetal head circumference (HC) is performed throughout
the pregnancy as a key biometric to monitor fetus growth and estimate ges-
tational age. In clinical routine, this measurement is performed on ultrasound
(US) images (Fig. 1), via manually tracing the skull contour and fitting it into an
ellipse. Automated segmentation approaches have been proposed, lately based on
CNN in order to solve this tedious task, but these models require large dataset of
manually segmented data. In our previous work [21], we departed from the main-
stream approach of segmentation and instead proposed a regression network, in
order to directly predict the head circumference.
c© Springer Nature Switzerland AG 2020
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Fig. 1. Ultrasound images of fetus head with head circumference in millimeters

Compared to a classification model, the last layer of a regression CNN model
is a linear or sigmoid activation function, instead of the softmax layer. Also, the
regression loss function is metric-inspired, for instance, it can be the Mean Abso-
lute Error (MAE) or the Mean Squared Error (MSE). It is known that the high
accuracy of deep learning methods comes at the cost of a low interpretability, i.e.
the model is seen as a black box, which does not provide explanations along with
the prediction. In this paper, our goal is to investigate how explanation methods
can help us to get some insights on the regression network and to appreciate
its behavior [12]. In classification networks, explanations may take the form of
saliency or sensitivity maps [10], highlighting the areas that particularly con-
tributed to a decision. The saliency maps have been applied on different neural
networks such as CNN, LSTM, and in various tasks, for example classification,
detection and image segmentation [16]. To the best of our knowledge, this paper
is the first interpretation of a regression CNN that is dedicated to the estimation
of biometric from medical images.

In this paper, our contributions are the following: we adapt explanation meth-
ods in regression CNN and provide an interpretation of what a saliency map is,
in the regression case. We are thus able to gain insight into the CNN regression
model for our HC prediction problem, and see what pixels contribute the most
to the estimation of the HC: we expect them to be those of the head contour. We
also address the problem of evaluating the explanation methods, in the regres-
sion case. Adebayo’s sanity checks consist in performing randomization tests,
in the data or in the model, and evaluate the changes in the produced saliency
maps [1]. Another example is Samek’s proposal, that has particularly inspired
us [11], to compare and assess different explanation methods. The principle is to
inject noise gradually in the image, in locations that have been highlighted by
the saliency maps, and see how the prediction is affected by this perturbation.
However, the method is designed for classification networks and requires some
adaptation.

In Sect. 2 we briefly recall the state-of-the-art in saliency maps algorithm
for classification CNN and their meaning in case of a regression network; we
also presented the evaluation methodology used to assess the explanation meth-
ods. Experimental results are presented in Sect. 3 and conclusions are drawn in
Sect. 4.
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2 Saliency Map Methods for Regression CNN

In this section, we briefly describe 8 explanation methods from the state-of-the-
art that are used to produce saliency maps in classification CNN [12,16,22].
Then, we present the evaluation method of perturbation analysis [11] and adapt
it to the regression CNN to evaluate the performance of these methods.

2.1 State-of-the-Art Saliency Maps in CNN

Two categories of saliency maps are generally considered, perturbations-based
or propagation-based. In perturbation-based approaches, the goal is to estimate
how perturbation applied to the input image, such as blurring or injecting noise,
changes the predicted class [5,22]. In propagation-based techniques, the idea
is to backpropagate a relevance signal from the output to the input. In this
paper, we will focus on the latter category of methods that actually encompass
(i) sensitivity (or gradient-based) analysis, (ii) deconvolution methods, and (iii)
Layer-wise Relevance Propagation (LRP) variants.

The sensitivity analysers include the Gradient [14] method, that simply
computes the gradient of the output w.r.t. input image, and expresses how much
the output value changes w.r.t. a small change in input; the SmoothGrad [17],
that averages the gradient over random samples in a neighborhood of the input
with added noise, and which is an improvement of Gradient method that can
sharpen the saliency map; the Input*Gradient [13] technique, that strength-
ens the saliency map by multiplying Gradient with input information; and the
Integrated Gradients [19], that computes the integration of the gradient along
a path from the input to a baseline black image.

Deconvolution methods are the DeConvNet [20] that acts equivalently as
a decoder of CNN models, which reverses the CNN layers, and the Guided
BackProp [18] that combines backpropagation and DeConvNet.

The core idea of Layer-wise Relevance Propagation (LRP) [3] is to com-
pute a relevance score for each input pixel layer by layer in backward direction.
It first forward-passes the image so as to collect activation maps and backprop-
agates the error taking into account the network weights and activations. The
DeepTaylor [9] method identifies the contribution of input features as the first-
order of a Taylor expansion, through Taylor decomposition, then it can estimate
the attribution of each neuron one by one.

In the classification setting, a saliency map provides an estimation of how
much each pixel contributes to the class prediction. In the regression setting, the
saliency map will provide an estimation of how much each pixel is impacting the
model, and is contributing to decrease the prediction error, as measured by the
loss function, that is in general the MAE or MSE.

2.2 Evaluation of Explanation Methods Based on Perturbation

Explanation methods (also called analyzers) perform differently depending on
the model, the task at hand, the data, etc. In order to quantitatively evalu-
ate those analyzers, we build upon the perturbation analysis of [11], originally
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designed to assess explainability methods in classification networks. Let us first
describe the perturbation process and then the evaluation metric.

First, the input image to be analyzed is subsampled by a grid. Each subwin-
dow of the grid is ranked according to its importance w.r.t. to the pixel-wise
saliency scores assigned by the analyzers. Then, the information content of the
image is gradually corrupted by adding perturbation (Gaussian noise) to each
subwindow, starting with the most relevant subwindow, w.r.t. the ranking just
mentioned. The effect of this perturbation on the model performance is mea-
sured with the prediction error. This procedure is repeated for each subwindow.
Generally, the accuracy of model will drop quickly when important informa-
tion is removed and remains largely unaffected when perturbing unimportant
regions. Thus, the analyzers can be compared by measuring how quickly their
performance drops. That is to say, the quicker the model performance drops
after introducing perturbation, the better the analyzer is capable of identifying
the input components responsible for the output of the model.

The quantitative evaluation proposed in [11] for classification network, con-
sists in computing the difference between the score f(x) indicating the certainty
of the presence of an object in the image x, in the presence and in the absence
of perturbation. This difference is called Area over Perturbation Curve (AOPC)
and defined more precisely defined in [11] as:

AOPCAnalyzer =
1
N

N∑

n=0

(f(xn)(0) − 1
K

K∑

k=0

f(xn)(k)) (1)

where N is the number of images, K is the number of perturbation steps, x is
the input image.

Here, we propose to adapt the AOPC to the regression case, and if we denote
by ε(x)(0) the prediction error of initial image evaluated by the analyzer and
ε(xn)(k)(1 ≤ k ≤ K) the prediction error of the perturbed image (xn)(k) at step
k, we can define the AOPCregression

Analyzer as:

AOPCregression
Analyzer =

1
N

N∑

n=0

(ε(xn)(0) − 1
K

K∑

k=0

ε(xn)(k)) (2)

A larger AOPC in absolute value means that an analyzer has a steep decrease
while the perturbation steps is increasing.

3 Experiments

3.1 Experimental Setup

We analyse two regression models that we proposed in our previous work [21],
namely the regression ResNet50 and regression VGG16 (implemented using
Keras). As their names show, the backbone architectures are ResNet50 [6] and
VGG16 [15] resp., and the loss is the mean absolute error. Both models are
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pre-trained on ImageNet; subsequently the last (softmax) layer is replaced by a
linear layer and the network is fully retrained on a public dataset of ultrasound
fetal head images called HC18 [7]. The HC18 dataset contains 999 US images,
along with the corresponding head circumference, that we randomly split into a
training (600), a validation (200) and a test set (199). We augment the data of
the training set to 1800 images, and perform resizing of the images to the size
128 × 128 pixels. With a 5-fold cross validation, the mean absolute errors (MAE)
that we obtained on the test set were 37.34 ± 37.46 pixels (4.78 ± 4.41 mm) in
reg-ResNet50 and 40.17 ± 40.99 pixels (5.46 ± 5.99 mm) in reg-VGG16.

In the following, we will compute the saliency maps on the test set images. We
first show the saliency maps of various explanation methods for our regression
problem, for both architectures Reg-ResNet50 and Reg-VGG16, the quantitative
evaluation of explanation methods, and a more in-depth study of prediction
results, with the best ranked methods, namely Input*Gradient and LRP. We
have used the iNNvestigate toolbox to perform our experiments [2].

Visualization of Explanation Methods. We visualize the saliency maps
provided by the 8 selected explanation methods in Fig. 2. From these images,
we can barely see the features retrieved by explanation method DeConvNet and
Gradient in both models, that is to say these two methods seem somehow insen-
sitive to the models. This may be explained by the gradient shattering problem
[4] for the gradient method. Regarding DeConvNet’s saliency map, it may be
due to the architecture of deconvolution network which reconstructs the con-
volution networks reversely. In addition, for Reg-ResNet50, methods Gradient,
GuidedBackprop and SmoothGrad fail to highlight the head contour. We will
see that these observations are confirmed by the quantitative evaluation.

Quantitative Evaluation of Explanation Methods Based on Perturba-
tion. Here, we compare the explanation methods through perturbation analysis.
In this experiment, the input image of size 128 × 128 pixels is divided into a
grid of 4 ×4 subwindows of size 32 × 32 pixels. Gaussian noise with mean value
0 and standard deviation 0.3 is added to each subwindow, according to their
importance assigned by analyzers during the 16 steps. Figure 3 is an example of
the perturbation process of Gradient analyzer.

In Fig. 4, we show the evolution of the prediction error w.r.t. the quantity of
noise added at each perturbation steps, on first the most significant subwindow
in the analyzer’s sense, to the least significant one. One can observe that consis-
tently, the prediction error is increasing, as the level of noise increases. Methods
with the steepest curve, LRP and Input*gradient, exhibit the largest sensitivity
to perturbations, and as such, should highlight the contributing pixels, in the
sense of this criterion. Interestingly the Integrated gradient analyzer seems to be
relevant for VGG16, but not for Reg-ResNet50. In the future, it will be inter-
esting to vary the subwindow size to see if results are affected. We expect that
a finer grid will be better suited to a thin structure like the head skull.
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Fig. 2. Comparison of different saliency maps with Reg-VGG16 and Reg-ResNet50. P:
predicted HC value, T: ground truth HC value (in pixels).

Table 1. Performance (AOPC scores) of different analysis methods after perturba-
tion, with two regression models. G: Gradient, SG: SmoothGrad, DCN: DeConvNet,
DT: DeepTaylor, GB: GuidedBackprop, I*G: Input*Gradient, IG: IntegratedGradients.
Lower is better. Best scores in bold.

Model G SG DCN DT GB I*G IG LRP

Reg VGG16 −7.312 −7.398 −2.869 −7.401 −1.663 −9.189 −9.490 −9.175

Reg ResNet50 −11.533 −11.841 −9.249 −9.890 −9.717 −14.748 −5.603 −14.577

In Table 1, we compared AOPC scores on regression VGG16 and regression
ResNet50 models respectively. Since the AOPC is the difference between the
prediction error with and without perturbation, we expect that the analyzer that
are indeed perturbed by the noise will return a large AOPC score, in absolute
value. We can see that the regression ResNet50 has higher AOPC score than
regression VGG16 model. Again we can gather from this table that both the
LRP and Input*Gradient methods perform well in those two models.

Note that other explanation methods have inconsistent performance depend-
ing on the model. This highlights the necessity to choose the proper explanation
method before analyzing a specific model.

Comparison of Regression Models. As shown in Fig. 2, both regression
VGG16 and regression ResNet50 are successful in learning the features from
ultrasound images to assess the HC. From Table 1, we can gather that the
regression ResNet50 has slight better performance on the whole, since AOPC
values are larger in absolute value.
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Fig. 3. Perturbation process for the saliency map produced by the Gradient method.
Step 0 is the original input image. From step 1 to step 15, Gaussian noise is added
gradually on the image subwindows. The perturbation order of these subwindows cor-
responds to the saliency scores assigned by the Gradient method analysis, i.e. the most
contributing pixels are perturbed first. Red: noise, blue: original image pixels. (Color
figure online)

Fig. 4. Prediction error (in pixels) of different analyzers during each perturbation step
based on Regression VGG16 and Regression ResNet50 model. The horizontal axis is
the perturbation steps.

Comparison of Saliency Maps for Correct vs Incorrect Prediction. In
this experiment, we arbitrarily pick one of the best performing methods from
the previous results, and thus the use Input*Gradient explanation method to
generate saliency maps from images with small prediction error (Fig. 5(a)), and
with large prediction error (Fig. 5(b)). We can see that the well predicted images
have obvious head contour, at least in the 2 last rows of Fig. 5(a). The models
are able to learn the features from these images, therefore the saliency maps
show key features. However, it is not always the case: the first row shows a small
prediction error, and the head contour are not specifically highlighted. For the
badly predicted images, the saliency maps highlight features that are spread and
not localized into meaningful segments. The models can not learn the features
from these images.
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Fig. 5. Saliency map of Reg-VGG16 and Reg-ResNet50 with Input*Gradient explana-
tion method. P and T: resp. predicted and ground truth HC values (pixels).

4 Conclusion

Understanding whether the model can learn the relevant features in images and
taking the right decision is crucial in the medical domain. Whereas there have
been a wealth of works in classification networks, there is a void for interpret-
ing regression networks. In this paper, we address the problem of estimating
the head circumference in fetal head directly from US images. We use several
post-hoc explanation techniques that produce saliency maps and adapt a per-
turbation based quantitative evaluation method, to assess the relevance of the
saliency maps. The experimental results proved that the regression CNN mod-
els are able to learn the key features from the input ultrasound fetus images,
and in particular, the head circumference. One finding is that for this applica-
tion, Gradient and DeConvNet method are particularly insensitive to different
CNN models or data, and that ResNet50 seem to have better learnt the head
features. Thus so far, we have extended the model property from classification
to regression and explored a specific regression task. Future works also include
investigating the explainability of other regression losses: in this paper, we used
the MAE, but the mean square error or the Huber loss are alternatives, and
there is no heuristic yet to decide which loss is better [8]. This will allow us to
adapt or design new loss functions, that can account for an enhanced learnabil-
ity of the regression CNN, to further improve the HC prediction. In addition
to investigate individual image-wise explanations, we also intend to explore the
generation of meta-explanations by aggregating individual explanations, to gain
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additional insight into the model behavior. Other regression applications will
also be interesting to explore.
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Abstract. Deploying off-the-shelf segmentation networks on biomed-
ical data has become common practice, yet if structures of interest
in an image sequence are visible only temporarily, existing frame-by-
frame methods fail. In this paper, we provide a solution to segmen-
tation of imperfect data through time based on temporal propagation
and uncertainty estimation. We integrate uncertainty estimation into
Mask R-CNN network and propagate motion-corrected segmentation
masks from frames with low uncertainty to those frames with high uncer-
tainty to handle temporary loss of signal for segmentation. We demon-
strate the value of this approach over frame-by-frame segmentation and
regular temporal propagation on data from human embryonic kidney
(HEK293T) cells transiently transfected with a fluorescent protein that
moves in and out of the nucleus over time. The method presented here
will empower microscopic experiments aimed at understanding molecular
and cellular function.

1 Introduction

In the past decades, it has become evident that proteins are very dynamic and
their localization within the cell dictates which function they perform [3]. Cell
biologists carry out time-lapse fluorescence microscopy experiments to study
protein localization and unravel how this affects the protein’s function. Optoge-
netics can be used to control the localization of the protein of interest [18] to
observe the effects of dynamic localization patterns. Take Fig. 1 for an example:
HEK293T cells expressing mCherry fused to the optogenetic tool LINuS [15]
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were observed over time to analyze the effect of blue light on the nuclear import
of the protein. In the absence of blue light, the fusion protein localizes predomi-
nantly in the cytosol. Hence, the nucleus appears dark. However, in presence of
blue light, the fusion protein enters the nucleus making it appear bright and dif-
ficult to distinguish from the cytosol. Giving light repeatedly creates oscillations
of the protein in and out of the nucleus in time.

Learning-based methods, such as U-Net [19] and Mask R-CNN [6], succeed
at segmenting structures in data with clearly visible patterns, but fail when
the visibility deteriorates. When the signal in the nucleus is similar to that in
the cytosol, nuclei segmentation from any network is not reliable. While in a
single image it is not possible to improve these segmentations, past and future
frames in a video provide additional information for refinement. An expert can
play the video back and forth to infer the segmentation of ambiguous nuclei. An
automated segmentation method, too, must (1) automatically identify critical
frames and (2) propagate predictions from neighbouring frames.

In this paper, we address both challenges by (1) equipping Mask R-CNN with
uncertainty estimation to identify erroneous predictions and (2) incorporating
optical flow to improve the identified erroneous predictions by propagating cer-
tain predictions from neighboring frames. Doing so, we introduce the most recent
uncertainty estimation methods in biomedical instance segmentation and solve a
real task commonly experienced in signalling studies which is not yet addressed.
So far, nuclear markers have been employed in the experiments so that the avail-
able automated segmentation tools can be used [4]. However, additional markers
cause unreliable quantification since different proteins bleed-through and inter-
fere with each other. They also limit the channel space needed for other proteins
of interest. The presented method makes the use of a nuclear marker dispensable.

(a) (b)

Fig. 1. (a) Exemplary time-lapse images of HEK293T cells depicting an oscillatory
nuclear signal. (b) Oscillation at time t causing bad nuclei segmentation (up) and the
corrected segmentation of it using our propagation method (down).

2 Related Work

We are the first to address instance segmentation of structures with an oscil-
latory fluorescent signal in biomedical videos. Our work is related to methods
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that benefit from temporal features in their design. Milan et al. [14] and Payer
et al. [17] used Recurrent Neural Network (RNN) to aggregate temporal fea-
tures. Paul et al. [16] incorporated temporal cues for segmentation via optical
flow. Similarly, Jain et al. [9] propagated features instead of segmentation with
flow from key frames. A similar idea was applied to instance segmentation by
Bertasius and Torresani [2]. Although these methods seem close, the task is dif-
ferent: (1) they heavily rely on dense annotation in time to learn interpolations
explicitly while we cannot afford it due to high cost of expert annotation and
difficulty in fine-grained annotation of imperfect frames and (2) they benchmark
only on visible objects, while we are solely interested in objects with limited
visibility.

Fig. 2. Overview of Mask R-CNN with added data uncertainty. Changes to the original
architecture are shown in red (operations) and green (outputs). (Colof figure online )

3 Methods

3.1 Instance-Aware Segmentation with Uncertainty Estimation

We base our model on Mask R-CNN [6] equipped with elastic deformations
of U-Net [19] to create additional biomedically plausible images on-the-fly for
better generalization. We incorporate uncertainty estimation in our Mask R-
CNN architecture to detect erroneous predictions; see Fig. 2. We consider data
uncertainty (aleatoric), model uncertainty (epistemic), and their combination.

Data Uncertainty. For data uncertainty, we use the modified cross-entropy
loss [10] in the mask branch of Mask R-CNN. This models the data uncertainty
as the learned noise scale from the data. To learn both the class scores and their
noise scale, the negative expected log-likelihood is minimized for pixel i as:

L(s) = −
∑

i

log

[
1

T

∑

t

exp(ŝi,t,c′ − log
∑

c

exp(ŝi,t,c))

]
, (1)

where c
′

is the correct class among all classes (c) and ŝ are predicted logits
corrupted by Gaussian noise with standard deviation σ. σ is also learned by the
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network alongside with the logits. Figure 2 shows where this loss is embedded
in the network. At test time, the uncertainty is computed as the entropy of the
class pseudo-probabilities for each pixel as: U(p) = −∑

c p(c) log p(c).

Model Uncertainty. Model uncertainty requires sampling from the model. We
experimented with the latest sampling strategies. Dropout is one of the com-
mon techniques to sample from networks [10]. Ensemble replaces the sampling
by dropout by individually trained networks [11]. SGDR ensemble replaces
the individual trained networks by the pre-converged snapshots of the same
model [7]. Pre-converged models are obtained at the end of each SGDR (SGD
with warm restarts) [12] cycle. WTA (Winner-Takes-All) [8] aims for training
a single network with multiple heads where at each iteration only the head with
the best prediction gets penalized. EWTA (Evolving WTA) [13] is a variant of
WTA which improves the trade-off between diversity and consistency.

3.2 Uncertainty-Based Nuclei Propagation

We base the nuclei propagation on the cell tracker1 by Ronneberger et al. [19].
This overlapping-based tracker is well suited for the data at hand, which does
not show large motion over time. Despite its simplicity, it is one of the top
performing cell trackers in the challenge. After computing the overlapping-based
tracks, we go over all the frames of each track with ascending average nuclei
uncertainty order (without nuclei, uncertainty is set to infinity) and update
the identified uncertain predictions by propagating masks from more certain
neighbours as depicted in Fig. 1. A prediction is marked uncertain if its average
uncertainty is higher than a threshold θ. Neighbours are more certain if they
meet a relative threshold of α in case of a single-side propagation and β in
case of a two-sided propagation as detailed in Algorithm 1. This resembles the
procedure that experts follow to find non-visible nuclei by sliding over time.

3.3 Motion Estimation for Biomedical Videos

Propagation of predictions over time requires motion estimation between frames
to warp the certain predictions onto the less certain ones. One simple way is to
warp by the shift and scaling parameters computed between the not yet updated
and neighbouring nuclei predictions. This approach assumes the shape of the
nuclei does not change over time; however, slight deformations can occur. Opti-
cal flow can provide fine-grained motion. Recent optical flow methods for natural
images are networks [5] trained on synthetic datasets. These methods perform
well on real images, but their performance deteriorates as the gap between real
and synthetic images grows. Our data is very different from existing synthetic
datasets and no synthetic data exists for biomedical data. Therefore, with the
prior knowledge that expected flow in our videos can be well explained by smooth
deformations, and being able to generate them on the fly via deformation aug-
mentations of U-Net, we explicitly train a network to predict these deformations
1 http://celltrackingchallenge.net/.

http://celltrackingchallenge.net/
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Algorithm 1: Uncertainty-Based Nuclei Propagation
Input: instance segmentation masks S, uncertainty maps U , motion per

consecutive frame pairs M, hard threshold θ, relative thresholds: α,β
Output: tracks

1 tracks← IoU-BasedCellTracker(S);
2 for track t in tracks do
3 for frame f in track t do
4 ūt,f ← mean over nuclei(Ut,f , S);

5 order←argsort(ūt);
6 for frame id f in order do
7 if ūt,f ≥ θ and β × ūt,f ≥ ūt,f−1 and β × ūt,f ≥ ūt,f+1 then
8 maskprev ← warp(St,f ,St,f−1,M);
9 masknext ← warp(St,f ,St,f+1,M);

10 St,f ← union(maskprev, masknext);

11 else if ūt,f ≥ θ and α × ūt,f ≥ ūt,f−1 then
12 St,f ← warp(St,f ,St,f−1,M);

13 else if ūt,f ≥ θ and α × ūt,f ≥ ūt,f+1 then
14 St,f ← warp(St,f ,St,f+1,M);

as explored by Sokooti et al. [20]. We warp an image (It+1) backward in time
with randomly generated smooth deformations (ft→t+1) to obtain the previous
image (It). Then we train a FlowNet on the on-the-fly-generated image pairs
and ground-truth flows. Even though the fluorescent signal in the nuclei regu-
larly disappears making the optical flow challenging to estimate, the motion of
the cytosol helps infer the motion of the nuclei.

4 Experiments

Implementation Details. We based our implementation on the Mask R-CNN
by Abdulla [1]. We incorporated publicly available elastic deformations2 for U-
Net [19] as additional augmentation. We used ResNet50-FPN as backbone. We
used softmax cross entropy for the mask head with 3 classes (background, cytosol
and nuclei). We trained the networks from scratch for 12k epochs except the
SGDR ensemble, which was trained for 15k with 3k cycles. We used the last pre-
converged models. The WTA and EWTA models were trained for 11k and then
merged with a network trained for 4k. We used 4 as ensemble size for all methods.
Ensembling was performed over bounding boxes. For nuclei propagation, we used
θ = 0.5, α = 0.7 and β = 0.85. For Mask R-CNN and FlowNet (variant C)
training we used deformations with 3 and 10 control points, respectively and
deformation magnitude of 10. Please see the original papers for more details.
Our code and examplar dataset is publicly available3.
2 https://github.com/fcalvet/image tools.
3 https://lmb.informatik.uni-freiburg.de/Publications/2020/CMB20/.

https://github.com/fcalvet/image_tools
https://lmb.informatik.uni-freiburg.de/Publications/2020/CMB20/
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Data and Annotation. While the challenge we address is common in signalling
studies, there is no public dataset for this purpose. Our data was generated after
24 h of transient transfection of human embryonic kidney (HEK293T) cells with
a construct expressing the fusion protein mCherry-LINuS with a ZEISS LSM780
confocal microscope. MaskRCNN was trained on 82 cropped images from origi-
nal 1800× 1800 images with pixel size 0.11× 0.11 and 6 cells on average in each
and tested on 2 full-sized images with 73 cells in total to validate instance seg-
mentation and uncertainty estimation. We evaluated our propagation algorithm
on an unseen video with 35 full-sized frames with randomly selected 117 cells
annotated by experts. In cases where the nuclei appeared ambiguous experts
interpolated the annotations from past and future frames.

4.1 Instance Segmentation and Uncertainty Estimation Evaluation

We evaluated our instance segmentation by mean average precision (mAP). In
Table 1 we refer to standard mAP as mAP (sm) since it is based on softmax
scores. To further evaluate the quality of the uncertainty estimation, we replaced
the softmax scores by average entropy over the cell and re-computed mAP (mAP
(ent)). This simulates our approach as we rely on averaged uncertainties in our
nuclei propagation. This measure shows how reliable the predicted uncertainties
are at ranking the prediction quality in the precision-recall curves, which are
used commonly to evaluate uncertainty estimation for classification tasks. In
Table 1 we see that WTA merged is the best at 0.5 IoU (Intersection over
Union) threshold and at 0.75 threshold ensemble is the best. In the rest of
our experiments we used the WTA merged with data uncertainty since it is
computationally more efficient than ensemble.

Table 1. Quantitative evaluation for instance segmentation and uncertainty estimation
in mAP (@0.5/@0.75 IoU).

Model uncertainty Combined uncertainty

mAP (sm) mAP (ent) mAP (sm) mAP (ent)

Single 0.77/0.48 0.80/0.49 0.74/0.60 0.83/0.69

Dropout 0.74/0.61 0.78/0.65 0.77/0.61 0.83/0.67

Ensemble 0.82/0.64 0.78/0.61 0.78/0.63 0.83/0.70

SGDR ensemble 0.75/0.54 0.72/0.51 0.71/0.49 0.63/0.44

WTA merged 0.74/0.47 0.82/0.49 0.83/0.56 0.85/0.64

EWTA merged 0.64/0.51 0.73/0.58 0.80/0.64 0.77/0.59

4.2 Nuclei Propagation Evaluation

We report the mean IoU of the nuclei segmentation for all experiments in
Table 2. We use interpolated for nuclei completely missed before our improve-
ment, updated for the nuclei that were segmented but our method decided to
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improve, non-updated for the nuclei that were chosen not to be improved by our
method and all for all the mentioned cases. The first row shows the results before
any propagation algorithm. We present 3 variants of motion used in propaga-
tion (column: warped with). We also explored using the certainties as pixel-wise
weights in fusing segmentations from candidate neighbors and computed the
weighted average to find the final mask. To isolate the gain by our uncertainty-
based error detection, we created a baseline which is identical to our mean-flow
variant, but performs the propagation on all the nuclei over a track. The signif-
icant improvement obtained by all our variants, especially flow variants without
fusion, shows that our method can effectively improve erroneous nuclei predic-
tions. The baseline that propagates to all frames (all) had a lower performance
on the non-updated frames, showing that propagation independent of an uncer-
tainty measure harms nuclei with high confidence (approx. 90% of all nuclei).
For a better understanding of the challenge we tackle and the usefulness of
our proposed method, we provide more qualitative results in the supplementary
material.

Table 2. Quantitative evaluation of uncertainty-based propagation in mean IoU for
all/updated/interpolated/non-updated nuclei with respective nuclei counts.

Update Warp with Mask fusion All (117) Updated (51) Extrapolated (11) Non-updated (55)

None None No 0.62 0.55 0.00 0.80

Uncertain Shift + Scale No 0.71 0.68 0.39 0.80

Uncertain Mean nuclei flow No 0.73 0.71 0.45 0.80

All Mean nuclei flow No 0.69 0.70 0.40 0.74

Uncertain Pixel-wise flow No 0.73 0.72 0.44 0.80

Uncertain Pixel-wise flow Yes 0.72 0.70 0.40 0.80

5 Conclusion

We addressed automated segmentation of image sequences, which cannot be
analyzed frame-by-frame due to temporary uncertainties causing errors in pre-
dictions. First, we estimate uncertainty from Mask R-CNN to identify unreli-
able predictions. Second, we improve the less reliable predictions by propagating
the more certain ones from neighbouring frames. We evaluated our method on
HEK293T cells expressing a protein that oscillates in and out of the nucleus
over time making the nucleus invisible temporarily. Our method improves nuclei
segmentation over several baselines while keeping the cytosol and background
segmentation untouched. We believe that our method will facilitate further time-
series analysis for quantitative biology to understand the effect that the dynamic
localization of the protein has on the cell without additional markers.



92 Ö. Çiçek et al.

Acknowledgments. This project was funded by the German Research Foundation
(DFG) and the German Ministry of Education and Science (BMBF). Gefördert durch
die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzstrategie des
Bundes und der Länder - EXC-2189 - Projektnummer 390939984 und durch das Bun-
desministerium für Bildung und Forschung (BMBF) Projektnummer 01IS18042B und
031L0079.

References

1. Abdulla, W.: Mask R-CNN for object detection and instance segmentation on
Keras and tensorflow. https://github.com/matterport/Mask RCNN (2017)

2. Bertasius, G., Torresani, L.: Classifying, segmenting, and tracking object instances
in video with mask propagation. Technical Report 1912.04573, arXiv (2019)

3. Brami-cherrier, K., et al.: Mechanisms of site-specific functions of focal adhesion
kinase. Biophys. J. 104, 609 (2013)

4. Chen, S.Y., et al.: Optogenetic control reveals differential promoter interpretation
of transcription factor nuclear translocation dynamics. bioRxiv (2019)

5. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks.
In: ICCV (2015)

6. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: ICCV (2017)
7. Huang, G., Li, Y., Pleiss, G.: Snapshot ensembles: train 1, get M for free. In: ICLR

(2017)
8. Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical

flow. In: ECCV (2018)
9. Jain, S., Wang, X., Gonzalez, J.E.: Accel: A corrective fusion network for efficient

semantic segmentation on video. In: CVPR (2019)
10. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for

computer vision? In: NIPS (2017)
11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive

uncertainty estimation using deep ensembles. In: NIPS Workshop (2016)
12. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts.

In: ICLR (2017)
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Abstract. To date, most instance segmentation approaches are based
on supervised learning that requires a considerable amount of annotated
object contours as training ground truth. Here, we propose a framework
that searches for the target object based on a shape prior. The shape
prior model is learned with a variational autoencoder that requires only a
very limited amount of training data: In our experiments, a few dozens of
object shape patches from the target dataset, as well as purely synthetic
shapes, were sufficient to achieve results en par with supervised methods
with full access to training data on two out of three cell segmentation
datasets. Our method with a synthetic shape prior was superior to pre-
trained supervised models with access to limited domain-specific training
data on all three datasets. Since the learning of prior models requires
shape patches, whether real or synthetic data, we call this framework
semi-supervised learning. The code is available to the public (https://
github.com/looooongChen/shape prior seg).

Keywords: Semi-supervised · Instance segmentation · Shape prior ·
Variational autoencoder · Edge loss

1 Introduction

Instance segmentation, where many instances of an object have to be segmented
in one image, is the basis of several practically relevant applications of computer
vision, such as cell tracking [1]. Many approaches [2–4] have been proposed for
instance segmentation, the majority of which are based on supervised learning.
The practical applicability of these methods is often limited by the lack of a large
training dataset with manually outlined objects. Here, we introduce an instance
segmentation approach that only relies on a shape prior which can be learned
from a considerably smaller number of training samples or even synthetic data.
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The shape is one of the most informative cues in object segmentation and
detection tasks. Anatomically constrained neural networks (ACNNs) [5] improve
segmentation results by including a shape prior for model regularization. For
segmentation refinement, a shape prior has been used by [6] as a separate post-
processing step. Segmentations generated by the shape prior model are recon-
structed to the original MRI images through several convolutional layers in [7].
By minimizing the reconstruction error, the segmentation model can be trained
in an unsupervised fashion. All these works report promising results, but are
limited to cases where object position and extent are roughly the same in all
images, such as for the cardiac images in [5], the lung X-ray images in [6] and
the brain MRI scans in [7]. To our knowledge, this is the first work considering
instance segmentation based on a shape prior, i.e. we detect and segment multi-
ple, scattered object instances. Similar to [8], we use the spatial transformer [9]
to localize objects. The main advantage of using the spatial transformer lies in
its differentiability, making the whole framework end-to-end trainable.

The main contributions of this work are: We propose (1) an semi-supervised
instance segmentation approach that searches for target objects based a shape
prior, and (2) a novel loss computing the difference between two gradient maps.
This framework provides a way to achieve instance segmentation with a small
amount of manual annotations, or by utilizing unpaired annotations (where the
correspondence between annotations and images is unknown). We compared our
approach to the state-of-the-art supervised method, Mask R-CNN [2], in different
training scenarios. On three experimental datasets, our approach is proved to be
en par with a Mask R-CNN with full access to training data, while it outperforms
a pre-trained Mask R-CNN with limited access to domain-specific training data.

2 Approach

As shown in Fig. 1, our framework consists of three main parts: 1) the local-
ization network, 2) the spatial transformer [9], and 3) the patch segmentation
network. Based on the localization prediction, the spatial transformer crops local
patches and feeds them to the patch segmentation network. The gradient maps
of segmented patches are then stitched together. The entire model is trained by
minimizing the reconstruction error of the gradient map.

During training, the model learns to predict the object position and to find
the correspondence between the image patch and the segmentation. The shape
prior model (gray part in Fig. 1; fixed during training) is guaranteed to output
a plausible shape, but the correspondence has to be learned by the model itself.

2.1 Localization Network

The localization network consists of 8 convolutional layers and 4 max
pooling layers after every 2 convolutional layers. Given an image of size
(Himg,Wimg), the localization network will spatially divide the image into an
(Himg/Scell,Wimg/Scell) grid of cells, where Scell is the cell size and also the
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Fig. 1. Architecture of our framework: the localization network predicts the object
position and a presence score, based on which object patches are cropped by a spatial
transformer. A variational autoencoder with the decoder part fixed (shape prior) is
responsible for the patch segmentation. At last, the gradient maps of segmented patches
are stitched together. The model is trained by minimizing the reconstruction loss of
the gradient map with the KL-divergence loss as regularization.

downsampling rate. Since 4 pooling layers with stride 2 are used, we have
Scell = 16.

Each cell is responsible to predict the presence of an object Lpresence ∈ [0, 1],
its range described by the bounding box size (Hobj ,Wobj) and the offset with
respect to the cell center (Ox, Oy) (Fig. 2(a)), with the implementation:

Lpresence = sigmoid(fpresence)
Lscale = sigmoid(fscale) · (Smax − Smin) + Smin

Lratio = exp(tanh(fratio) · log(Rmax))
(Lx, Ly) = (0.5 · tanh(fx), 0.5 · tanh(fy))

where f[·] is the corresponding input feature map. sigmoid(·) and tanh(·) denote
the sigmoid and tanh activation function. Smin, Smax and Rmax are hyperparam-
eters, which are the minimal scale, the maximal scale and the maximal aspect
ratio, respectively. The position is parameterized according to:

(Hobj ,Wobj) = (Lscale · Scell/
√

Lratio, Lscale · Scell ·
√

Lratio)
(Ox, Oy) = (Lx · Scell, Ly · Scell)

It is worth mentioning that the maximal offset is 0.5 ·Scell, which means that
an object will be detected by the cell in which its center lies.

2.2 Patch Crop and Stitch

Given the location parameters obtained from the localization network, we use a
spatial transformer to crop local patches. The spatial transformer implements the
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Fig. 2. (a) Demonstration of parameters of a bounding box. (b) Architecture of the
patch segmentation network, which is firstly trained with shape patches. During the
detector training, the decoder part is fixed and plays the role of shape prior.

crop by sampling transformed grid points, which is differentiable, enabling end-
to-end training. The patch crop of the i -th cell can be described by transform:

T i
crop =

⎡

⎣
Wimg/W i

obj 0 Wimg · (Xi
cell + Oi

y)/W i
obj

0 Himg/Hi
obj Himg · (Y i

cell + Oi
x)/Hi

obj

0 0 1

⎤

⎦

where (Xi
cell, Y

i
cell) is the cell center. (Oi

x, Oi
y) and (Hi

obj ,W
i
obj) are the predicted

offset and size of the object. All cropped patches will be rescaled to size Spatch ×
Spatch (Spatch = 32 in this work) and segmented by the patch segmentation
network, as described in Sect. 2.3. After that, the gradient map of segmented
objects will be stitched together by adding up back transformed patches through:

T i
stitch =

⎡

⎣
W i

obj/Spatch 0 Xi
cell + Oi

y

0 Hi
obj/Spatch Y i

cell + Oi
x

0 0 1

⎤

⎦

The gradient map is computed by applying the x- and y-directional Sobel
filter to the image and taking the square root of the summed square. The gradient
map is normalized to range 0 to 1. In this work, we use an input size of 256×256
for all experiments. Considering Scell = 16, 256 patches are cropped in total.

2.3 Shape Prior and Patch Segmentation Network

Similar to [5–7], we employ a variational autoencoder (VAE) as our shape model.
As shown in Fig. 2(b), the model is trained to reconstruct plausible patch seg-
mentation masks with the KL-divergence loss as regularization. Compared to a
standard autoencoder, a VAE learns a more continuous latent space, which is
expected to generate plausible new shapes that do not appear in training data.

In this work, the VAE is trained with 32 × 32 patches. The encoder and
decoder consist of 6 convolutional layers and 3 pooling/upsampling layers,
respectively. Based on our experiments, model training requires only a small
amount of data, especially when the shape variation is small. We train the shape
prior with either annotations from a single image or synthetic data (Sect. 3).
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After training, the decoder part will be used as the shape prior in the detector
(Fig. 1). Its parameters will be fixed during the detector training. The encoder
will be reinitialized and trained together with the localization network.

2.4 Training

The model is trained end-to-end by minimizing the gradient map reconstruc-
tion error with the KL-divergence loss as regularization. In initial experiments,
we found the mean absolute/squared error (MAE/MSE) to be very unstable
during training: The shape prior model tends to generate distorted shapes or
degenerates into empty output. Thus, we propose the following novel loss:

Ledge = 1 −
1
N

∑
i min2(Gi

image, G
i
reconstruction)

1
N

∑
i G

i
reconstruction + α

(1)

where Gimage and Greconstruction indicate the gradient map of the image and
the reconstructed gradient map. N is the number of pixels. The min() operation
are conducted pixelwise. The parameter α prevents the model from pushing
Greconstruction to zero and is set to 0.01 empirically.

Instead of optimizing the value of each pixel, as MSE and MAE, this loss
maximizes the proportion of the reconstructed gradient map under the image
gradient map. In addition, the square operator in the numerator is proved to
be crucial for stable training in our experiments. Our interpretation is that the
square operator modulates the back-propagated gradient with the reconstructed
gradient map, giving more emphasis to positions around the edge.

2.5 Pre- and Post-processing

To reduce the influence of extreme values on the loss, we equalized the image
and the gradient map by clipping and stretching. For all datasets, we truncated
the gradient map at 0.8 times the maximum and normalized the value to the
range 0 to 1. In addition, we also performed image equalization for the Fluo-
N2DH-SIM+ dataset due to the bright spots inside the cell (Fig. 3). The clip
value was set to 1.2 times the image mean.

As post-processing, we first filtered out predictions with Lpresence smaller
than 0.1. Non-max suppression is then performed to eliminate duplicate predic-
tions: An instance mask is compared with another mask, when the overlapping
area is larger than pnon max = 0.1 with respect to its own area. A mask is only
retained if its score is the highest in all comparisons.

3 Experiments and Results

3.1 Datasets and Experiments

We evaluate our approach on three datasets: the BBBC006 dataset1 and two
datasets Fluo-N2DH-SIM+ and PhC-C2DL-PSC from the cell tracking chal-
lenge [1]. In the following, we use BBBC, FLUO and PHC as abbreviations. The
1 https://data.broadinstitute.org/bbbc.

https://data.broadinstitute.org/bbbc
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BBBC dataset contains 768 microscopic images of human U2OS cells, while the
FLUO (HL60 cells with Hoechst staining) and PHC (pancreatic stem cells on a
polystyrene substrate) datasets are smaller with 215 and 202 annotated images.

For comparison, we also report the performance of the supervised method
Mask R-CNN. The following experiments are performed:

Ours-Annotation: We first evaluate our approach with the shape prior learned
from manual annotations. We only took segmentation patches from one image.
Specifically, 67, 8 and 138 object patch masks were used for the BBBC, FLUO
and PHC shape model training. To model small shape changes and object rota-
tion, we performed rotation (in steps of 30◦) and elastic deformation [11] to
augment the training set. The scale range and maximal aspect ratio was set to
2−3/3, 1−2/1.5 and 1−2/3, respectively.

Ours-Synthetic: Since the objects are approximately circular, especially for the
BBBC and FLUO datasets, we could train the shape prior model with synthetic
data consisting of elastically deformed ellipses [11] with random angle and major-
minor axis ratio. The maximal major-minor axis ratio was 2, 1.5 and 3 for the
BBBC, FLUO and PHC dataset, respectively.

MRCNN-Scratch-One/Full: We trained a Mask R-CNN from scratch using
ResNet-50 backbone. The anchor box scale, aspect ratio and non-maximum sup-
pression (NMS) threshold were set to values equivalent to those used in our
approach. Since the Ours-annotation scenario can be considered as one image
training, we also trained a Mask R-CNN with one image for comparison.

MRCNN-Finetune-One/Full: Since the dataset in our experiments is small,
especially for FLUO and PHC, we pretrained the Mask R-CNN on the MS
COCO dataset2. Afterwards, we finetuned the model, with only the head layers
trainable, on the actual target dataset.

For the BBBC and PHC dataset, we cropped images to 256 × 256 and 128 ×
128 for training and test. All images were resized to 256 × 256 for the network
input. For the scenarios using one training image (Ours-annotation, MRCNN-
scratch-one, MRCNN-finetune-one), the images a01 s1, 02/t000, 02/t150 were
used for BBBC, FLUO and PHC, respectively. MRCNN-scratch-full and
MRCNN-finetune-full used a01 s1-b24 s2, 02/t000-t149, 02/t150-t250 for train-
ing. Ours-synthetic requires no manual annotations. All remaining images were
kept for testing.

3.2 Results and Discussion

We report the average precision3 (AP) over a range of IoU (intersection over
union) thresholds from 0.3 to 0.9 as the evaluation score (Table 1). Our approach,
including the evaluation scenarios where the shape prior is learned from one
image annotation and synthetic data, outperforms the Mask R-CNN trained

2 https://cocodataset.org/.
3 https://www.kaggle.com/c/data-science-bowl-2018.

https://cocodataset.org/
https://www.kaggle.com/c/data-science-bowl-2018
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or finetuned with one image, which shows the advantage of our approach in
cases where few or no annotations are available. Furthermore, our approach
achieves comparable results with the Mask R-CNN trained/finetuned with the
full training set on the BBBC and FLUO dataset, while the performance gap is
apparent for the PHC dataset.

While Mask R-CNN achieved the best mean AP (mAP) on the BBBC
dataset, our approach outperformed Mask R-CNN on the FLUO dataset by
a relatively large margin. The main reason is that the FLUO dataset is indeed
a very small one for Mask R-CNN training, even with finetuning. This again
illustrates the advantage of our method on small datasets.

Ground Truth
Ours-

synthetic
Ours-

annotation
MRCNN-

finetune-one
MRCNN-

finetune-full

Fig. 3. Qualitative results: from top to bottom, the rows show the results on the
BBBC006, Fluo-N2DH-SIM+ and PhC-C2DL-PSC datasets, respectively.

On the PHC dataset, neither method performed particularly well. Both meth-
ods tended to detect nearby objects as one if there was no clearly visible edge
between them. The average precision of our method in the low IoU range was
close to or better than that of Mask R-CNN. Figure 3 shows that our method
could detect most objects as well as the Mask R-CNN. However, our method
has been designed to heavily rely on the edge clue, so that the segmentation will
converge to strong edges. For the PHC dataset, the object boundaries do not gen-
erally correspond to the strongest edges. This explains why objects were under-
segmented by our approach (Fig. 3) and why the average precision decreased
rapidly with increasing IoU (Table 1).

The performance improvement through training the shape prior with manu-
ally outlined shapes depends on the nature of the shape. On the FLUO dataset,
annotated data and synthetic data shape priors performed almost equally well,
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while training with manual annotations was superior on the other two datasets,
even though only a few dozen shapes were used.

Table 1. Average precision (AP ) over different IoU for different datasets (the best
two scores in bold). Experiments and abbreviations are introduced in Sect. 3.1.

Dataset IoU 0.3 0.4 0.5 0.6 0.7 0.8 0.9 mAP

BBBC Ours-annotation .8345 .8260 .7977 .7632 .7083 .6100 .2660 .6865

Ours-synthetic .8171 .8012 .7641 .7170 .6525 .5247 .2042 .6401

MRCNN-scratch-one .6386 .5934 .5459 .4769 .3543 .1759 .0294 .4020

MRCNN-scratch-full .7901 .7851 .7708 .7473 .7128 .6296 .3374 .6817

MRCNN-finetune-one .7672 .7524 .7277 .7020 .6608 .5492 .1250 .6121

MRCNN-finetune-full .7997 .7949 .7851 .7720 .7521 .6923 .3485 .7064

FLUO Ours-annotation .9605 .9538 .9312 .8999 .8228 .6777 .1332 .7685

Ours-synthetic .9600 .9497 .9336 .8986 .8324 .6768 .1378 .7698

MRCNN-scratch-one .0458 .0324 .0156 .0018 .0000 .0000 .0000 .0014

MRCNN-scratch-full .9333 .9144 .8703 .7605 .5765 .2556 .01073 .6173

MRCNN-finetune-one .8224 .8133 .7905 .7389 .5909 .2404 .0049 .5716

MRCNN-finetune-full .9361 .9252 .8955 .8467 .7265 .4115 .0197 .6802

PHC Ours-annotation .6840 .6034 .4035 .1468 .0233 .0028 .0000 .2662

Ours-synthetic .6471 .5611 .3605 .1326 .0219 .0027 .0000 .2466

MRCNN-scratch-one .1124 .0991 .0847 .0668 .0353 .0049 .0000 .0576

MRCNN-scratch-full .6332 .6001 .5226 .4467 .2981 .1079 .0023 .3730

MRCNN-finetune-one .1647 .1602 .1460 .1146 .0633 .0108 .0000 .0942

MRCNN-finetune-full .6551 .6380 .5855 .5014 .3425 .1144 .0007 .4053

4 Conclusion and Outlook

We have proposed an instance segmentation framework which searches for tar-
get objects in images based on a shape prior model. In practice, this allows
segmenting instances with a very limited amount of annotations, segmenting
synthesizable shapes without any annotation, as well as reusing object annota-
tions from other datasets.

The main limitation of our approach lies in the dependency on the edge
cues. Images should have a relatively clear background, which is, however, the
case for many biomedical datasets(see Footnote 3). Future work will focus on
including area-based information, which will make our approach applicable to
further datasets, e.g. in cases where edges and object boundaries do not always
coincide.
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Abstract. Zero-shot learning, in spite of its recent popularity, remains
an unexplored area for medical image analysis. We introduce a first-of-
its-kind generalized zero-shot learning (GZSL) framework that utilizes
information from two different imaging modalities (CT and x-ray) for
the diagnosis of chest radiographs. Our model makes use of CT radiology
reports to create a semantic space consisting of signatures correspond-
ing to different chest diseases and conditions. We introduce a CrOss-
Modality Semantic Embedding Ensemble (COMe-SEE) for zero-shot
diagnosis of chest x-rays by relating an input x-ray to a signature in the
semantic space. The ensemble, designed using a novel semantic saliency
preserving autoencoder, utilizes the visual and the semantic saliency to
facilitate GZSL. The use of an ensemble not only helps in dealing with
noise but also makes our model useful across different datasets. Experi-
ments on two publicly available datasets show that the proposed model
can be trained using one dataset and still be applied to data from another
source for zero-shot diagnosis of chest x-rays.

Keywords: Zero-shot learning · Chest x-ray · Semantic saliency ·
Autoencoder · Ensemble

1 Introduction

In radiology diagnosis, it is often difficult to find image instances for all possible
diseases, especially for the rare ones. Diagnosis of such diseases from radiology
images poses a great challenge in clinical practice. If a disease is less common,
radiologists may have to rely on the clinical features available from the descrip-
tions of the disease for its diagnosis. In such a situation, a radiologist may need

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-61166-8 11) contains supplementary material, which is
available to authorized users.
This is a U.S. government work and not under copyright protection in the U.S.;

foreign copyright protection may apply 2020

J. Cardoso et al. (Eds.): iMIMIC 2020/MIL3ID 2020/LABELS 2020, LNCS 12446, pp. 103–111, 2020.

https://doi.org/10.1007/978-3-030-61166-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61166-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-61166-8_11
https://doi.org/10.1007/978-3-030-61166-8_11
https://doi.org/10.1007/978-3-030-61166-8_11


104 A. Paul et al.

to map the visual information from the radiology images to the semantic infor-
mation embedded in the descriptions of the diseases.

Zero-shot learning (ZSL) is the branch of machine learning that attempts to
mimic the human ability to make predictions about the data belonging to the
classes not seen during training. ZSL methods use the knowledge learned from
the classes seen during training (seen classes) to make predictions about classes,
not seen during training (unseen classes) by utilizing some form of auxiliary
information about the classes. ZSL has achieved impressive results for natural
images [5,6,8,11,13].

Generalized zero-shot learning (GZSL) is the branch of ZSL in which test
datasets may contain data from both the seen and the unseen classes. GZSL may
play a key role for automated identification of rare diseases. However, applying
GZSL techniques for medical image diagnosis presents significant challenges due
to noise in the data and labels, multiple regions of interest in each image and
the relative scarcity of auxiliary information to aid the ZSL methods.

We propose a GZSL framework for the diagnosis of chest x-rays by addressing
the above challenges. We use computed tomography (CT) radiology reports to
mine auxiliary information about different diseases in the form of semantic signa-
tures. CT reports are chosen because CT scans and reports contain richer informa-
tion than x-ray images and reports, and may provide higher diagnostic accuracy
for some diseases [3]. To relate x-ray images to these CT-based semantic signa-
tures, we introduce a cross-modality semantic embedding ensemble (COMe-SEE)
which is composed of semantic saliency preserving autoencoders (SSP-AEs). We
utilize visual saliency by letting each SSP-AE in the ensemble to explore a differ-
ent visual subspace and learn a unique mapping to the semantic space. The use of
an ensemble also helps to mitigate the effects of noise and makes the model robust
across datasets. In this work, our contributions are as follows:

– Design of a first-of-its-kind GZSL method for the diagnosis of chest x-rays.
– Introduction of a semantic saliency preserving autoencoder (SSP-AE).
– Design of an ensemble of SSP-AEs that utilizes visual saliency for visual-to-

semantic mapping across two different imaging modalities (x-ray and CT).

2 Methods

To design the GZSL framework for the diagnosis of chest x-rays, we divide the
diseases and conditions of interest into seen classes and unseen classes. During
training, we have access to auxiliary information about both the seen and the
unseen classes in the form of disease-specific semantic signatures alongside the
x-ray images of seen classes. The signatures are generated by a signature genera-
tor from CT radiology reports. We use Intelligent Word Embedding [1] (IWE), a
Word2Vec [12] model trained on CT reports, to generate signatures for the chest
diseases and conditions of interest. Subsequently, we design a semantic embed-
ding ensemble that performs a cross-modality semantic embedding between the
visual characteristics derived from x-ray images of different diseases and the
corresponding semantic signatures. A diagram of the proposed framework is
presented in Fig. 1.
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Fig. 1. The block diagram of the proposed model. Ψ1 to Ψ5: signatures in the semantic
space; H1, ..., HT : projections for the input query x-ray image from different SSP-AEs.

2.1 Cross-modality Semantic Embedding

We take a two-step approach to design the semantic embedding model. In the
first step, we extract features from x-ray images using a feature extractor com-
posed of DenseNet-121 [10]. The output from the penultimate layer of the net-
work is taken as the feature vector for an input x-ray image. Since we train the
feature extractor with x-ray images only from the seen classes, the extracted fea-
tures are likely to be noisy especially for the images of unseen classes at inference
time. In the second step, we perform semantic embedding through the utilization
of visual saliency using autoencoders, well-known for extracting saliency from
noisy feature vectors [9]. Consider an autoencoder that takes an input feature
vector X and reconstructs it (̂X) at the output. A vanilla autoencoder is trained
by minimizing reconstruction loss Lre = ‖̂X − X‖. However, this training does
not guarantee a good semantic embedding. Therefore, we introduce the following
loss terms to design a novel semantic saliency preserving autoencoder (SSP-AE)
for a meaningful semantic embedding.

Semantic Embedding Loss: Let Ψc be the signature of the cth disease that
belongs to the set of seen classes. Also, assume H(n) to be the hidden space
representation of training feature vector X(n) and the true class label of X(n)
be k. Then, we train the hidden space representation H(n) to be close to Ψk,
the semantic signature of its class label. To do this, we use an indicator function
Ic(n) that takes value 1 when c is the true class label of training data X(n) and
−1 otherwise. Consider Ntr to be the number of training data points and CS to
be the set of seen classes. Then we introduce the following semantic embedding
loss

Lse =
Ntr
∑

n=1

∑

∀c∈CS

Ic(n)‖H(n) − Ψc‖, (1)

Minimization of Lse forces the training data of the seen classes to be projected
close to their corresponding signatures in the hidden space (which is also the
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semantic space), helping the autoencoder to learn a visual-to-semantic embed-
ding.

Semantic Saliency Loss: Feature vectors from the seen classes are projected in
the hidden space through the autoencoder, and form a cluster for each seen class.
During training, these clusters should be created as far away from each other as
possible; the farther the clusters are from each other, the better the semantic
saliency is preserved. We define a loss component that exploits this. Let Gi and
Gj be the cluster centers corresponding to seen classes i and j, respectively, in
the hidden (semantic) space of the autoencoder. Then we construct a vector Vij

by vector subtraction of Gj from Gi, given by Vij = Gi − Gj . We want to
maximize Vij . Hence, we formulate the semantic saliency loss as:

Lsal =
∑

∀i,j∈CS

1
(‖Vij‖2 + ε)

, (2)

where ε is a constant of small value to avoid division by zero. The proposed
SSP-AE preserves semantic saliency by minimizing Lsal. Taking into account
the above loss components, the overall loss function for the SSP-AE is:

L = Lre + β1Lse + β2Lsal, (3)

where β1 and β2 are pre-defined constants. For an useful semantic embedding,
we need to utilize the salient features from the noisy feature vectors. Towards
that end, we design an ensemble of SSP-AEs.

2.2 Semantic Embedding Ensemble

We need the ensemble of SSP-AEs to generalize well for the unseen classes at the
test time. This is possible if each SSP-AE is exposed to different training data [2].
For this, we use bootstrap sampling [2] where a random subset of training data
is sampled to train each SSP-AE. Thus each autoencoder is exposed to different
training data. Let B(t) be the bootstrap sample for autoencoder t. Using B(t),
we find a subspace rich in visually salient features for the tth SSP-AE to explore.
Thus each SSP-AE in the ensemble explores a different subspace and learns a
unique semantic mapping. This is achieved through subspace sampling.

Subspace Sampling: The subspace sampling process is semi-deterministic. Let
the dimension of the feature vectors obtained from the feature extractor be d. For
the tth SSP-AE, we first randomly sample M number of d′ dimensional subspaces
from this d dimensional feature space. Consider subspace m. Let Bm(t) be the
projection of B(t) on this subspace. We find the average of inter-cluster distances
(for the clusters corresponding to different seen classes) in this subspace. The
subspace m∗ having the highest average of inter-cluster distances is chosen for
the tth SSP-AE which is trained by Bm∗(t) (projection of B(t) on subspace m∗).
We repeat this process for each SSP-AE in the ensemble.
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Ensemble Training: Training the ensemble involves training each of the SSP-
AEs in the ensemble. Let us consider an ensemble composed of T number of
SSP-AEs. For each SSP-AE, we do the following steps. First, for the tth SSP-
AE, we find the effective training data Bm∗(t). Subsequently, the tth SSP-AE is
trained by minimizing the loss of (3) on Bm∗(t). Note that all the autoencoders
in the ensemble can be trained in parallel. Therefore, in a parallel environment,
the training time of the ensemble is equal to the training time of an individ-
ual autoencoder, leading to faster training. Due to the randomness involved in
subspace sampling, the semantic mapping learned by different SSP-AEs during
training are nonuniform in their usefulness. Therefore, we measure the useful-
ness of the mapping learned by an SSP-AE, and assign a weight to the SSP-AE
based on the usefulness.

Weight Assignment: Let Gc(t) be the cluster center corresponding to seen
class c in the hidden space of the tth SSP-AE after training. For class c in the
set of seen classes CS , a perfect training would cause the cluster center Gc(t)
to fall on the semantic signature of class c (i.e. Ψc). The farther Gc(t) is from
Ψc, the less useful the visual-to-semantic mapping learned by the tth SSP-AE.
Based on this, we assign weights to each trained SSP-AE and use the weights
for decision making during inference. The weight of the tth SSP-AE is:

w(t) = exp

(

−
∑

∀i∈CS

‖Ψc − Gc(t)‖
)

. (4)

2.3 Generalized Zero-Shot Diagnosis of Chest Radiographs

Let a query x-ray image be I. First, the feature extractor extracts a feature
vector X(I) from I. We apply X(I) to the semantic embedding ensemble. Let
the hidden space projection of X(I) by the tth SSP-AE be Ht(I). If the semantic
signature closest to Ht(I) is Ψk, the tth SSP-AE assigns class label k to the query
image I. In this way, every other SSP-AE also assigns a class label to the query
image I. After a weighted voting with the weights of the SSP-AEs (obtained
from (4)), the class label with the highest vote is assigned to the query image I.

2.4 Implementation Details

We use 25, 20, and 20 SSP-AEs to construct the ensembles for NIH, NIH-900, and
Open-i datasets, respectively. The signature generator produces 160-dimensional
signatures for each of the diseases and conditions. Each SSP-AE explores a sub-
space of dimension d′ = 40000 from the feature space of dimension 50176. An
SSP-AE consists of an encoder and a decoder. The encoder of an SSP-AE con-
tains linear layers (each followed by a ReLU activation) mapping the input to
2048, 512 and 160-dimensions (hidden space) respectively. The decoder has the
same linear layers (each followed by a ReLU activation) in the exact opposite
order. Adam optimizer [7] is used with a mini-batch size of 16 and a learning
rate of 0.001 to train each SSP-AE.
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Table 1. Performances of different methods in terms of seen recall (ReS), unseen recall
(ReU ) and harmonic mean of seen and unseen recall (ReH) (bold fonts: best values in
each column). The proposed method and its variants are indicated in italics.

Methods NIH NIH-900 Open-i

ReS ReU ReH ReS ReU ReH ReS ReU ReH

GMN [13] 35.07 5.33 9.25 26.26 1.56 2.94 30.48 1.6 3.4

GDAN [6] 32.14 8.95 14 29.8 6.24 10.32 31.51 4.57 7.98

SAE [8] 29.17 8.63 13.32 29.66 9.61 14.52 29.45 11.42 16.46

ESZSL [11] 34.16 1.80 3.42 32.67 0.00 0.00 45.10 0.00 0.00

DeViSe [5] 41.55 0.03 0.07 14.33 0.00 0.00 21.23 0.00 0.00

Sng. SSP-AE 34.32 13.32 19.19 26.00 5.28 8.78 24.65 8.31 12.43

RandSub 8.21 23.04 12.11 10.33 18.75 13.32 13.01 16.10 14.39

Proposed 12.03 23.01 15.80 17.66 18.26 17.96 26.71 16.10 20.09

3 Experiments and Results

To demonstrate the robustness of our method, we perform experiments on chest
x-ray datasets from two different sources: the NIH chest x-ray dataset [14] and
the Open-i dataset [4]. Note that we train our model only using the training
data from NIH dataset [14] and test the model on both the test sets of NIH [14]
and Open-i. Since the labels for images in the above datasets are extracted using
an automated rule-based approach, the labels may be noisy in some instances.
To see the performance on noiseless labels, we separately test our model on a
manually labeled 900-image subset [15] (NIH-900) from the NIH dataset.

Based on the availability of semantic signatures from CT reports, we consider
nine chest diseases and conditions for our experiments. Those are cardiomegaly,
consolidation, edema, effusion, emphysema, infiltration, nodule, pneumonia and
pneumothorax. Out of these, we randomly select cardiomegaly, edema and
emphysema as unseen classes and take the rest as seen classes.

3.1 Performance Measures and Comparisons

Following the usual practice for ZSL methods [13], we report the results in terms
of recall on seen classes (ReS), recall on unseen classes (ReU ) and the harmonic
mean of the recall values in seen and unseen classes (ReH) [13]. Since our datasets
are multi-label, if the algorithm output matches with one of the ground truth
labels of a test image, we consider the output to be a true positive.

We compare the performance of the proposed method with a number of state-
of-the-art ZSL techniques including GMN [13], GDAN [6], SAE [8], ESZSL [11]
and DeViSe [5]. We use the feature vectors from the feature extractor as inputs
to each of the above competing methods. We compare the performance of a
single SSP-AE (abbreviated as Sng. SSP-AE) to that of the proposed ensemble
as well. The performances of the above methods are presented in Table 1. The
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effect of the proposed method with random subspace sampling (abbreviated as
RandSub) instead of the proposed semi-deterministic sampling is also shown in
Table 1. Results of our method on some example chest x-ray images are presented
in Fig. 2. We run each experiment five times to look into the repeatability of
our method. We find that for every dataset, the standard deviation of ReH is
<0.7. We further perform several ablation studies which are discussed in the
supplementary materials.

Fig. 2. Examples of chest x-ray (CXR) images showing the performance of the proposed
method with ground truth (GT ) and detected (D) labels. Correct (green) detection: D
matches with one of the GT labels (bold); incorrect (red) detection: otherwise. CXR
images of unseen classes are the ones having at least one unseen class as a GT label.
(Color figure online)

3.2 Discussion on Performance

In reviewing Table 1, we first note that the performance of the proposed method
is better than all of its state-of-the-art competitors for both the NIH-900 and
Open-i datasets in terms of the harmonic mean of recall ReH. The single SSP-
AE yields the best performance for NIH dataset. Our proposed method does not
obtain the best results on the seen classes. However, the methods that have the
best performance on seen classes (DeViSe in NIH dataset and ESZSL on the
NIH-900 and Open-i datasets) almost completely fail for the unseen classes.

Second, the consistent values of harmonic mean establishes the robustness
of our method across datasets from different sources. Since our model is trained
using only the NIH dataset, the consistency of results across different test
datasets indicates the generalizability of the training. This fact makes our model
potentially useful in a clinical setup. Although SAE outperforms the proposed
method for the seen classes, the best results in terms of the unseen recall and
harmonic mean of recall for all the datasets are always obtained by either the
proposed method or one of its variants. Furthermore, notice that single SSP-AE
(Sng. SSP-AE) performs quite well for the seen classes. However, it shows poor
performance for the unseen classes. In contrast, our method performs consis-
tently for the unseen classes across all the datasets. This indicates the utility of
the proposed ensemble in providing generalization ability for the unseen classes.
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However, our method does not perform equally well for each of the classes
(see Table 2). For example, the performance of our method in the case of pneu-
mothorax is poor. This may be due to the small size of pneumothorax-affected
regions in x-ray images, making it difficult to find visually salient features. Con-
solidation, infiltration and pneumonia, on the other hand, may cause similar
lung opacity in chest x-rays. Therefore, it is difficult to find visually distinguish-
able features from the chest x-ray for these three classes as well leading to poor
diagnosis.

Table 2. Performance of the proposed method in terms of recall for different unseen
and seen classes from different datasets.

Dataset Unseen classes Seen classes

Cardiomegaly Edema Emphysema Consolidation Effusion Infiltration Nodule Pneumonia Pneumothorax

NIH 8.98 56.07 6.17 1.78 11.86 3.91 18.85 4.79 5.54

NIH-900 16.67 40.74 6.45 2.78 13.41 3.53 25.00 4.65 2.56

Open-i 20.99 10.53 3.53 0.00 12.50 4.55 30.00 6.45 0.00

4 Conclusions

We propose a method for zero-shot diagnosis of chest x-ray images. Through
rigorous experiments on different datasets, we have shown that classification of
both unseen and seen disease classes is possible from chest x-ray images, with
the help of signatures generated from CT reports. To manage the effects of
noise, we pioneer an ensemble-based approach that performs semantic embed-
ding using visually salient features. Experiments show the robustness of our
algorithm across datasets from different sources, making it potentially applica-
ble for the diagnosis of rare diseases in a clinical setup. In the future, we will look
into integrating the signature generation as part of training so that the models
for visual-to-semantic embedding and signature generation may be trained in
concert.
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Abstract. Semi-supervised methods have an increasing impact on computer
vision tasks to make use of scarce labels on large datasets, yet these approaches
have not been well translated to medical imaging. Of particular interest, the Mix-
Match method achieves significant performance improvement over popular semi-
supervised learning methods with scarce labels in the CIFAR-10 dataset. In a
complementary approach, Nullspace Tuning on equivalence classes offers the
potential to leverage multiple subject scans when the ground truth for the subject
is unknown. This work is the first to (1) explore MixMatch with Nullspace Tuning
in the context of medical imaging and (2) characterize the impacts of the meth-
ods with diminishing labels. We consider two distinct medical imaging domains:
skin lesion diagnosis and lung cancer prediction. In both cases we evaluate models
trained with diminishing labeled data using supervised, MixMatch, and Nullspace
Tuning methods as well as MixMatch with Nullspace Tuning together. MixMatch
with Nullspace Tuning together is able to achieve an AUC of 0.755 in lung cancer
diagnosis with only 200 labeled subjects on the National Lung Screening Trial
and a balanced multi-class accuracy of 77% with only 779 labeled examples on
HAM10000. This performance is similar to that of the fully supervised methods
when all labels are available. In advancing data driven methods in medical imag-
ing, it is important to consider the use of current state-of-the-art semi-supervised
learning methods from the greater machine learning community and their impact
on the limitations of data acquisition and annotation.

Keywords: Semi-supervised learning · Skin lesion · Lung cancer

1 Introduction

Semi-supervised learning methods seek to leverage performance in models using infor-
mation extracted from both labeled and unlabeled data [1]. Many forms of semi-
supervised learning and regularization rely on data augmentation as well as the stochas-
ticity of deep learningmodels. In data augmentation, a sample is transformed to introduce
new example variations to which a model should be robust without altering the label of
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the sample. An effective semi-supervised approach is to encourage models to make the
same prediction for two different variants of the same sample [2, 3]. Recent success in
the CIFAR-10 classification task with limited labeled training data has been achieved
through applying Mixup [4] to both labeled and unlabeled data in an algorithm called
MixMatch [3]. However, the variations introduced by data augmentation are typically
dataset specific. This is especially true for medical imaging tasks in which data aug-
mentation must not alter the image outside of what is possible, considering the anatomy
involved and the type of acquisition.

In some tasks, pairs or groups of unlabeled examples can be identified as having the
same label even if the label itself is unknown. This is an advantage in medical imaging
as many studies typically have repeat acquisitions of the same subject. Assuming the
time between acquisitions is not large enough that the anatomy or diagnosis should
change, then we know these same subject acquisitions have the same label. We call this
knowledge partial label information. In prior work, partial label information has been
used to predict fiber orientation distributions in diffusion weighted magnetic resonance
imaging [5] and to detect coronary calcium in non-contrast computer tomography (CT)
[6].

We use the term equivalence class to indicate a subset of unlabeled examples for
which the label is known to be the same. Formally, an equivalence class Q of examples
x in a data subset D under a true but unknown labeling function f is defined as:

Q = {x ∈ D|f (x) = c} (1)

where c is a constant. We use the expression x1 ∼ x2 to indicate a pair of samples such
that x1, x2 ∈ Q. If the labeling function f is a linear function, the difference between a
pair of examples x1 ∼ x2 from Q lies in the nullspace of f :

f (x1) = f (x2) ⇔ f (x1 − x2) = 0 (2)

We abuse the term nullspace by using it to conceptually refer to comparisons between
elements in an equivalence class, even though (2) does not hold for nonlinear functions.
Using the equivalence classes that can be found naturally in medical imaging, we can
help tune a model by encouraging it to make the same predictions for x1 and x2 when
x1 ∼ x2 in a process we call Nullspace Tuning.

The purpose of this work is to show the effectiveness of recent methods MixMatch
and Nullspace Tuning in medical imaging tasks and characterize their performance with
diminishing labeled data. Additionally, we explore how these methods can be used in
tandem to leverage aspects from both methods in training models. We do this for natural
images in the task of skin lesion diagnosis using the HAM10000 skin lesion dataset
[7] and for CT in the task of lung cancer diagnosis using data from the National Lung
Screening Trial (NLST) with follow up confirmed diagnoses [8].

2 Related Work

2.1 Data Augmentation

Data augmentation artificially expands a training dataset by modifying examples using
transformations that are believed not to affect the label. Image deformation and additive
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noise are common examples of such transformations [2, 9, 10]. Natural images can be
effectively augmented using random cropping, mirroring, and color shifting [11]. In
CT, data augmentation can consist of spatial deformations, translations, rotations, and
non-rigid deformations [12]. Effective data augmentation policies can be automatically
selected from a search space of image transformations [2]. Generative adversarial net-
works are also being used to generate anatomically informed data augmentations as well
as completely new data to supplement training [13, 14].

2.2 Equivalence Classes in Labeled Data

Some tasks exist in which the equivalence classes describe the label completely. Signa-
ture verification and facial recognition are two examples. The verification model tunes
the nullspace through minimizing the distance between different signatures or images of
the same person [15, 16]. Contrastive loss extends this concept to learn from the contrast
of two samples whether they are from the same or different classes [17, 18]. Triplet
networks [19] use a similar concept to learn from tuples

(
x, x+, x−)

, where x ∼ x+
and x� x−, and the predicted class probability pairs are encouraged to be near or far,
respectively.

2.3 Semi-supervised Learning

Recent semi-supervised learningmethods constrain themodel through an additional term
in the loss function that is computed over unlabeled data. The goal of these methods is
to extract useful features from unlabeled data that will allow the model to generalize
more effectively to unseen data. This can be done by penalizing the distance in pre-
dictions for two perturbations of the same sample [20, 21], by stabilizing the target for
unlabeled data through obtaining predictions from a moving average of model weights
during training [22], or by using the prediction function to update a guessed label for the
unlabeled data periodically during training [23]. Virtual Adversarial Training approx-
imates a small perturbation which, if added to x, would most significantly change the
resulting prediction without altering the underlying class [24]. Of particular interest is
the method called MixMatch which was developed by taking key aspects of dominant
semi-supervised methods and incorporating them in to a single algorithm [3]. The key
steps are augmenting all examples, guessing low-entropy labels for unlabeled data, and
then applyingMixUp to providemore interpolated examples between labeled, unlabeled,
and augmented data [4].

3 Methods

Nullspace Tuning is a form of contrastive learning, but unlike some semi-supervised
contrastive methods [25], Nullspace Tuning does not rely on data augmentation. Rather
it relies on the natural augmentations that exist between samples that can be identified as
being equivalent in class. This section describes the use of partial labels inNullspaceTun-
ing. First, it is described as a standalone method. Second, we illustrate how to combine
Nullspace Tuning with MixMatch.
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3.1 Nullspace Tuning

To perform Nullspace Tuning, we add a penalty on the distance between predicted
probabilities for known equivalence class pairs to a standard loss function Ls. If we
have labeled data {xi, yi} ε D and unlabeled data

{
x∗
i

}
ε D∗, the new loss function can be

defined using the model’s vector-valued prediction function h and a known equivalence
class paring x∗

j ∼ x∗
k as:

L = Ls(h(xi), yi) + λ‖h
(
x∗
j

)
− h

(
x∗
k

)‖22 (3)

where λ is a hyperparameter weighting the contribution of the nullspace loss term. It is
not necessary to make any assumptions about the relationship between the labeled data
xi and the unlabeled data x∗

j and x∗
k . Additionally, in cases where the equivalency class

has more than two elements, the randomization of chosen pairs within the equivalency
class can provide further data augmentation. We choose cross entropy as the standard
loss function Ls in all experiments contained in this work.

3.2 MixMatchNST

The original MixMatch algorithm uses two forms of data augmentation. The first is
a set of dataset-specific transformations. By averaging the predicted class distribution
function across K augmentations, a guessed label distribution q is assigned to each
unlabeled sample x∗. To reduce entropy, temperature sharpening is applied to q [26].
The second form of data augmentation applies MixUp [4] to the labeled data {xi, yi}
and the unlabeled data

{
x∗
j , qj

}
to produce interpolated data {x̃i, ỹi} and

{
x̃∗
j , q̃j

}
. A

hyperparameter α controls howmuch the examples are altered duringMixUp. To prevent
overfitting, weight decay is applied using an exponential moving average during training
[27, 28].

MixMatchNST modifies the MixMatch loss function with the addition of a
Nullspace-Tuning term. The loss function then becomes a combination of the stan-
dard loss Ls calculated using labeled data, the unlabeled loss term weighted by
hyperparameter λU , and the Nullspace Tuning term weighted by hyperparameter λE :

L = Ls(h(x̃i), ỹi) + λU‖h
(
x̃∗
j

)
− q̃j‖22 + λE‖qj − qk‖22 (4)

where x∗
j is chosen such that x∗

j ∼ x∗
k . The Nullspace Tuning term is calculated using

the guessed labels qj and qk before the MixUp step, whereas the labeled and unlabeled
MixMatch terms are calculated using MixUp interpolated examples.

4 Experiments

We evaluate the benefit of Nullspace Tuning over partial label information as well as the
benefit of MixMatch over unlabeled data in two medical imaging examples. The first
is skin lesion diagnosis in natural images, and the second is lung cancer diagnosis in
CT. We follow the precedent of simulating randomly unlabeled data in these datasets to
characterize these methods as the amount of labeled data diminishes while the amount
of unlabeled data increases [29].
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4.1 Implementation Details

All experiments were implemented in PyTorch 1.0.0 [30] and trained on Nvidia 2080Ti
GPUs. In both datasets there is a class imbalance which must be considered in both
the labeled and in unlabeled data. For the supervised loss, we sample evenly from each
class in the labeled data. For the semi-supervised loss, the average prediction for each
equivalence class is used as a guessed label, and the unlabeled or paired data are sampled
evenly across the guessed labels. Additionally, for each fold, a balanced validation set is
created to evaluate the model during training. The class imbalance is kept in proportion
when splitting the data in to test sets for each fold, so we report balanced multi-class
accuracy andAUC in our evaluation for diminishing amount of labeled. For eachmethod,
we perform a hyperparameter search on the λ loss hyperparameters.

Fig. 1. The difficulty in the skin lesion
diagnosis task is the similarity between classes
and the variation within classes. This can be
seen as especially true for melanoma.

Experiment 1: Using the HAM10000
skin lesion dataset, we train supervised,
Nullspace Tuning, MixMatch, and Mix-
MatchNST models, using varying num-
bers of labeled examples. The super-
vised model ignores unlabeled exam-
ples. The dataset consists of 10,015
color photographs (RGB format, 600
× 450 pixels) of skin lesions cate-
gorized as: melanoma (MEL) (1113
images); melanocytic nevus (NV) (6705
images); basal cell carcinoma (BCC)
(514 images); actinic keratosis and

intraepithelial carcinoma (AKIEC) (327 images); benign keratosis, solar lentigo, and
lichen-planus (BKL) (1099 images); dermatofibroma (DF) (115 images); or vascular
lesions (VASC) (142 images) [7]. Figure 1 shows examples of each class. For the net-
work architecture, we use a DenseNet [31] which was the top performing single model
in the ISIC 2018 challenge which did not use external data [32]. The method is defined
by Li et al. and serves as our baseline. The weights of this model are initialized from a
model pretrained on Imagenet [11]. Unlike the lung cancer data, HAM10000 does not
have natural equivalence classes. We simulate these by randomly pairing the unlabeled
data once at the beginning of training such that there are many unchanging equivalence
classes of size two, where each example in the pair has the same known but withheld
label. Random data affine transforms, mirroring, and color shifting is applied as data
augmentation strategies. Validation is performed using k-fold cross validation (k = 5).

Experiment 2: Here we use the NLST as well as a pretrained model from the top
performing method in the 2017 Data Science Bowl lung cancer diagnosis challenge
[33]. The pretrained model is defined by Liao et al. and was pretrained on a dataset
provided by the National Cancer Institute which included some of the NLST data. From
the NLST, data used consists of 5710 subjects and a total of 16,053 CT scans with
follow-up confirmed diagnoses that successfully passed the preprocessing of Liao et al.
There are 1055 subjects with a positive final diagnosis and 4655 with a negative final
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diagnosis. Most subjects have multiple longitudinal scans which are used as natural
equivalence classes for Nullspace Tuning when a subject is simulated as unlabeled data.
When splitting the data into training, validation, and testing sets as well as into labeled
and unlabeled data, we keep subject data together to avoid bias in the model. We obtain
the feature vectors of the five most likely nodule patches just before the final fully
connected layer in the pretrained model and train a fully connected neural network on
the NLST data as described in Fig. 2. This is similar to the method used by Gao et al.
[34]. For data augmentation, a small amount of random Gaussian noise is applied to the
feature vectors obtained from the pretrained model. Validation is done by repeating 100
rounds of training and testing under 80/20 random splits. The training data is further
split into sets of labeled, unlabeled, and validation data.

Fig. 2. The feature vectors extracted from the top five most likely cancer patches from the Liao
pretrainedmodel are used to train a four-layer FCNNwith approximately 300,000 total parameters.

4.2 Results

Experiment 1: For the skin lesion data, balanced multiclass accuracy is reported for
models trained using from 779 to 6998 labeled examples (Fig. 3). Both MixMatch and
Nullspace tuning show large performance gains over the standard supervised model.
When only 779 samples are labeled in the training set, both methods achieve an increase
in balance multiclass accuracy of over 20%. At the same point, MixMatch achieves an
increase of approximately 7% over the next best method and achieves the best perfor-
mance at all amounts of labeled data (Fig. 3). At 3888 labeled data or approximately 40%
of the original challenge training set, MixMatchNST achieves comparable performance
to the that achieved by the Li et al. in the withheld challenge test set, and comparable
performance to using all 6998 labeled examples in a supervised model. For both meth-
ods, a larger λ which controls the contribution of the loss term generally achieves better
performance when less data is available (Fig. 3).

Experiment 2: TheAUC is reported after training eachmodel with between 40 and 400
labeled subjects (Fig. 4). Here, the baseline represents the AUC from applying the Liao
et al. pretrained model. All other methods train a small fully connected network using
pretrained feature vectors as described by Fig. 2. Other than the baseline, Nullspace Tun-
ing and MixMatchNST achieve the highest AUC at 200 and 400 labeled data whereas
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Fig. 3. For experiment 1 using HAM10000, the mean balanced multiclass accuracy across five
folds is shown for the hyperparameter search for MixMatch (bottom left) and Nullspace Tuning
(top left). The highest performing hyperparameter is used in reporting the final performance (right)
where the baseline is the balanced multiclass accuracy reported by the ISIC 2018 challenge for
the Li method. The shaded region represents the standard error of the mean.

MixMatch achieves nearly the same AUC as the standard supervised approach. In gen-
eral, a λ of 5 achieves the best Nullspace Tuning performance and a λ of 0.1 achieves
the best MixMatch performance.

5 Discussion

Experiment 1 depicts the full extent of the semi-supervised methods’ ability to regu-
larize the model. Even though MixMatch and Nullspace Tuning appear to have similar
performance, the high performance of MixMatchNST suggests that features extracted
or constrained by each method is additive to the generalizability of the model. In exper-
iment 2, we see that even in fine tuning a pretrained model, the scarcity in labeled data
has a large impact on the performance of the model. Here, the semi-supervised learning
methods have a small but distinct advantage when labeled data is limited. It is possible
the MixMatch algorithm is at a disadvantage when data augmentation is limited to the
addition of noise rather than a full suite of randomized transforms. Additionally, the
choice of using longitudinal scans as equivalence classes introduces noise due to only
fine-tuning the diagnosis model without training the detection model at all. Two sets of
patches each from different scans of the same subject then may not belong to the same
class. While this work does not show this method is clinically applicable, it does show
the added value of these semi-supervised methods in medical imaging tasks.

Conclusion: The use of semi-supervised learning methods such as MixMatch can
greatly benefit tasks in which labeled data is scarce or annotations are expensive to
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Fig. 4. For experiment 2 using the NLST, the mean AUC across five folds is shown for the
hyperparameter search for MixMatch (bottom left) and Nullspace Tuning (top left). The highest
performing hyperparameter is used in reporting the final performance (right) where the baseline is
the AUC reported from directly applying the Liao model to the NLST dataset. The shaded region
represents the standard error of the mean.

obtain.We advocate for the adoption of thesemethods tomedical image processing espe-
cially when domain specific data augmentations are available. Additionally, the ability
to acquire partial label information such as equivalence classes should be considered
when full labels are impractical. Incorporating partial label information and unlabeled
information in semi-supervised learning paradigms can largely benefit models used in
medical image processing domains.
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Abstract. Non-contrast CT is often preferred in clinical screening while seg-
mentation of such CT data is more challenging due to the low contrast in tissue
boundaries and scarce supervised training data than contrast-enhanced CT (CTce)
segmentation. To alleviate manual labelling work of radiologists, we generate
training samples for 3D U-Net segmentation network by transforming the exist-
ing CTce liver segmentation dataset to the non-contrast CT styled volumes with
CycleGAN. We validated the performance of CycleGAN in both unsupervised
and hybrid supervised training strategy. The results show that using CycleGAN in
unsupervised segmentation can achieve higher mean Dice coefficients than fully
supervisedmanner in liver segmentation. The hybrid training of generated samples
and the target task samples can improve the generalization ability of segmentation.

Keywords: Non-contrast CT · Liver segmentation · CycleGAN · Data
augmentation · 3D U-Net

1 Introduction

The accurate measurements from CT, including liver volume, shape, and location can
assist doctors in decision making in diagnosis and treatment. In order to reduce the man-
ual labeling work of radiologists, varieties of efficient and accurate methods have been
proposed to segment the liver [1–3]. There also exits a lot of public contrast enhanced
CT (CTce) liver segmentation dataset such as Sliver07 [4], LiTS [5]. Almost all of the
existing liver segmentation were CTce data. In fact, non-contrast CT is often preferred
in clinical screening of the patients as CTce images are scanned by injecting contrast
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agent which may cause some adverse reactions include contrast-induced nephropathy,
hyperthyroidism, and possiblymetformin accumulation [6]. Therefore, the segmentation
from non-contrast CT data has great significance in routine clinical applications.

However, the segmentation of liver from non-contrast CT is more challenging due to
the lowcontrast between the liver and its surrounding tissues, compared to that fromCTce
volume. For the state of the art, fewmethods [7] have been focused on the segmentation of
non-contrast CT data. Besides, there was only one public dataset that can be tracedwhich
named Anatomy3 [8] with only 20 non-contrast CT volumes. Therefore, an obvious idea
is that whether we can segment the non-contrast data which has few labels by using the
existing public CTce dataset.

In the image style transformation area, CycleGAN [9] is among the most popular
method due to its great performance in image to image translation task with unpaired
training set. It has been also commonly applied inmulti-modality medical image transfer
learning. For example, Jiang et al. [10] first exploited CycleGAN to translate CT images
to MRI images in tumor segmentation and then used the generated MRI images and
a few real MRI data for semi-supervised tumor segmentation. Liu et al. [11] proposed
a novel unrolling mechanism that jointly optimizes a generative model and a detector,
in this way it improves the accuracy of nodules’ location. Chen et al. [12] also applied
CycleGAN in image appearance transformation on unsupervised domain adaption task,
and they trained an end-to-end CycleGAN and segmentation network which must be 2D
network due to the memory limitation.

In this study, we also employed CycleGAN to generate more non-contrast CT train-
ing data from the public CTce dataset. To the best of our knowledge, this is the first
paper applying CycleGAN in liver CTce to CT style transformation and cross-modality
segmentation. The focus of this paper was to explore whether the transformation from
CTce to non-contrast CT is useful for non-contrast CT segmentation. Hence, we just
used the general 3D U-Net model as segmentation network. As U-Net model [13] was
not only the basic segmentation network but also an efficient model which has shown
stable performance by the famous nnU-Net (no new U-Net) proposed by Isensee et al.
[14]. They just used the U-Net architecture and achieved the first place in 13 tasks of
the MICCAI 2018 medical image decathlon segmentation challenge. In this paper, we
also used the 3D low resolution version of the nnU-Net for liver segmentation network.

2 Method

We used a two-stage network consisted of CycleGAN and 3DU-Net. As shown in Fig. 1,
in the first stage we trained the 2D CycleGAN to obtain more non-contrast CT training
samples from contrast enhanced CT data. Then the generated slices were stacked to 3D
volume as samples for training the non-contrast CT 3DU-Net model with the framework
of nnU-Net. As we used the original CycleGAN and nnU-Net, in this section we only
described the image processing and training details.

Image Cropping. In the original CT dataset, the whole body was scanned which would
result a very coarse resolution input in z-axis for later 3D U-Net segmentation network.
Therefore, we cropped all images according to the liver range in z-axis whichwere added
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Fig. 1. The pipeline of our CT liver segmentation from public CTce dataset based on CycleGAN
data augmentation

with 20 mm in each side for final cropping. The cropped images will be taken as final
study samples.

Step1-CycleGAN Data Augmentation. Firstly, the gray scale of the selected data was
clipped to the range of−100 HU to 300 HU. Then the intensities were linear mapped to
the range of 0 to 255 that 8-bit PNG images can store. After preprocessing, 14 CT and
10 CTce volumes were random selected for CycleGAN training. Among them 753 CTce
slices and 277 non-contrast CT slices with original size were random selected as training
samples. The resting 241 CTce slices and 98 non-contrast CT slices were validation sets.
The original CycleGAN usedAdam optimizer with learning rate initially set as 2× 10−4

and linearly attenuated. The whole training iterations were 200 times with the learning
rate decayed after 100 iterations. The training GPUmemory and time consumption were
about 4 GB and 20 h (Nvidia Tesla V100), respectively. In the testing stage, all slices
of volumes were input to the network to obtain a slice size of 256 × 256 output. Then
bilinear interpolation is adopted to upsample them to 512 × 512. The grayscales of



Non-contrast CT Liver Segmentation Using CycleGAN Data Augmentation 125

the up-sampled slices were remapped to −100–300. Finally, all post processed slices
were stacked to the original 3D volume format. By doing this, the CTce volume was
transformed to non-contrast CT style data to implement data augmentation.

Step2-3D U-Net Segmentation Network. We used nnU-Net framework which was a
fully automatic image segmentation pipeline including adaptive spacing & intensity
normalization andU-Net architecture generation. It resampled all images to the input size
of the 3D U-Net. Then the median spacing of all resampled images was regarded as final
resampling spacing on the original training images. Then all images were normalized
by clipping to the [0.5, 99.5] percentiles of target organ intensity values, followed by a
z-score normalization based on the mean and standard deviation of all collected organ
intensity values. The 3D network shown in Fig. 1 was also automatically designed by the
nnU-Net. The initial feature map and batch size was set as 30 and 2, respectively. The
optimizer was Adam and the loss was the sum of Dice and cross entropy. The number
of training epochs was about 550 with 250 iterations each. The training consumption of
GPU memory was about 12 GB, and the time required for the whole training was about
50 h. Other parameters and training details can be referred to nnU-Net.

3 Experimental Results

3.1 Datasets

The contrast-enhanced CT segmentation dataset used in this study is from the challenge
of LiTS-ISBI2017 [5] which aims for the liver and liver tumor segmentation. It contains
130 abdomen contrast enhanced CT volumes scanned. In this study, the two labels were
mapped to one label for only the whole liver segmentation. The non-contrast CT dataset
used is named Anatomy3 [8] which comes from the multi-organ segmentation challenge
hold with ISBI 2015. It contains 20 non-contrast enhanced abdomen CT scans from real
patient.

3.2 Experimental Settings

We testified the efficiency of CycleGAN by adopting three training schemas: 1) only
using the original CT data; 2) only using the data from the CTce dataset; 3) using hybrid
training of the original CT and CTce data. For the last two schemas we compared the
training with and without CycleGAN style transformation. All the training models were
testified on all images from non-contrast CT dataset (the test data were not used in
experiment planning and training steps in the nnU-Net framework). For the first and
third schema, we used 15 for training and the other 5 for testing in total of four folds
training and testing. The evaluation metrics were the commonly used Dice similarity
coefficient (DSC) and HD (Hausdorff distance). All experiments were named with the
format of N_X_C/G_Y where N, C and G denotes the original CT dataset, the original
CTce dataset without CycleGAN transformation, and the generated CT dataset from
CTce data using CycleGAN respectively. X and Y denotes the number of the original
CT dataset and the CTce dataset used for training respectively.
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3.3 Results

Figure 2 shows the comparison result of experiments with training samples measured
with DSC and Hausdorff distance. It can be obviously seen that the method using Cycle-
GAN data augmentation is better than the result of directly using the original CTce
data in both unsupervised or hybrid training group. In the unsupervised group (names
started with N_0), directly using the model trained with the original CTce dataset to
segment the non-contrast CT data only obtained a mean DSC value of 0.8826 and
0.9031 in N_0_C_15 and N_0_C_60, much lower than the value of 0.9272 and 0.9420
inN_0_G_15 andN_0_G_60. The segmentation accuracy can be improved by increasing
the number of CycleGAN generated training samples while the trend is contrary when
just using original CTce samples. The smaller standard division value of CycleGAN
domain adaption experiments also indicated its good robustness in the non-contrast CT
liver segmentation. Besides, the unsupervised experiment N_0_G_60 achieved a mean
DSC of 0.9420 which is higher than the value 0.9379 of fully supervised experiment
N_15. The same trends can also be seen from the Handoff distance comparison result.
All of the above results testified the effectiveness of the CycleGAN image appearance
transformation.

The generalization ability is very important as the manual refinement work after the
automatic segmentation result also consumes a lot of time if the DSC is smaller than
0.95. It can be observed that the unsupervised experiment N_0_G_60 had an outlier
case (bad result) was much higher than the outlier of fully supervised experiment N_15.
Figure 2 also proved the good generalization ability of our method using hybrid training
samples of both the target (non-contrast CT) dataset and CycleGAN data augmentation
samples from the public CTce dataset. The experiment N_15_G_60 achieved the best
result with a very small standard division and also no large outliers compared with the
resting experiment training schemas.

Figure 3 shows the performance of CycleGAN on CTce to CT image style transfor-
mation. The generation from CTce to CT presented good intensity transformation while
preserved the original anatomy structure. However, the transformation from CT to CTce
generated CTce style intensities but also some wrong structures. The result conforms to
the fact that CTce contains more information such as vessels and tumors which cannot
be generated.

3.4 Discussions

All of the existing liver CTce segmentation grand challenges [4, 5] have shown that
the automatic segmentation of liver CTce has achieved a very high DSC value and has
good consistency with experts’ manual labelling ground truth based on the deep learning
techniques [2, 3]. In contrast, the segmentation of non-contrast CT gained few attention
and investigation of such topic can only be traced to the literature of [7]. Although in
clinical practice, non-contrast CT is more generally used in regular examination and the
data is more easily accessed, supervised datasets are scarce. Recently, a lot of work have
explored the domain adaption and data augmentation based on GAN especially Cycle-
GANand shownpromising performance to alleviate themanual labellingwork. Based on
the exiting studies, we first investigated the liver segmentation of palin scan CT by using
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(A) Boxplot comparison result measured in DSC

(B) Bar chart of comparison result measured in Hausdorff distance

Fig. 2. Comparison result of all experiments measured with DSC and Hausdorff distance in box-
plot of A and bar chart of B. The first and second number of experiment name denotes the number
of training samples from original non-contrast CT dataset and the CTce dataset respectively. C
and G means data augmentation directly using the original and the generated non-contrast CT
styled data by CycleGAN from the public CTce dataset, respectively, which also represented by
the white and grey box. The red box or line denotes fully supervised result (baseline). (Color figure
online)

the existing supervised liver CTce segmentation dataset through CycleGAN style trans-
formation.We demonstrated the efficiency of CycleGAN by comparing the performance
in an unsupervised/hybrid training strategy. The result shows that using CycleGAN in
an unsupervised approach can achieved better performance than the supervised training.
And the hybrid training can obtain more accurate and generalized segmentation model.
This may assist researchers and experts in labeling work of segmentation task. The
researchers may first use CycleGAN to generate the target task training samples from
existed supervised source domain samples for segmentation in an unsupervised app-
roach. Then partial segmentation results can be refined by the experts and then mixed
up with more generated samples for training a more generalized model.
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Fig. 3. Visualization result of CycleGAN transformation between contrast enhanced CT (CTce)
and non-contrast CT. The left and right image of each group denotes the original image and the
generated image respectively.

One limitation of our work is that we did not investigate the factor of image pre-
processing in nnU-Net on the cross-modality segmentation from CTce to CT. The nnU-
Net used statistical liver intensities of training samples for greyscale normalization. The
intensity mean and standard deviation of CTce dataset may not fit for non-contrast CT,
especially in the unsupervised training experiments. Another limitation is that we tested
the method on only twenty patients.

4 Conclusions

We proposed to use CycleGAN to generate more training samples from supervised
contrast enhanced CT dataset for non-contrast CT segmentation.We validate ourmethod
on two public datasets in unsupervised/supervised/hybrid training manner. Experiments
results demonstrate the effectiveness of our method in alleviating the labelling work and
improving the performance of non-contrast CT liver segmentation.
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Abstract. Atlas-based methods are the standard approaches for auto-
matic targeting of the Anterior Nucleus of the Thalamus (ANT) for Deep
Brain Stimulation (DBS), but these are known to lack robustness when
anatomic differences between atlases and subjects are large. To improve
the localization robustness, we propose a novel two-stage deep learning
(DL) framework, where the first stage identifies and crops the thalamus
regions from the whole brain MRI and the second stage performs per-
voxel regression on the cropped volume to localize the targets at the finest
resolution scale. To address the issue of data scarcity, we train the models
with the pseudo labels which are created based on the available labeled
data using multi-atlas registration. To assess the performance of the pro-
posed framework, we validate two sampling-based uncertainty estimation
techniques namely Monte Carlo Dropout (MCDO) and Test-Time Aug-
mentation (TTA) on the second-stage localization network. Moreover, we
propose a novel uncertainty estimation metric called maximum activa-
tion dispersion (MAD) to estimate the image-wise uncertainty for local-
ization tasks. Our results show that the proposed method achieved more
robust localization performance than the traditional multi-atlas method
and TTA could further improve the robustness. Moreover, the epistemic
and hybrid uncertainty estimated by MAD could be used to detect the
unreliable localizations and the magnitude of the uncertainty estimated
by MAD could reflect the degree of unreliability for the rejected predic-
tions.

Keywords: Deep Brain Stimulation · Anterior nucleus of thalamus ·
Medical image localization · Uncertainty estimation · Pseudo labels

1 Introduction

Epilepsy is one of the most common chronic neurological disorders characterized
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by spontaneous recurrent seizures and affects around 70 million patients
worldwide [1]. Over 30% of the epilepsy patients have refractory seizures which
may carry risks of structural damage to the brain and nervous system, comor-
bidities, and increased mortality [2]. Deep Brain Stimulation (DBS) is a recently
FDA-approved neurostimulation therapy that can effectively reduce the occur-
rences of refractory seizures by delivering electric impulses to a deep brain struc-
ture called the anterior nucleus of the thalamus (ANT). Accurate localization of
the ANT target is however difficult because of the well documented variability
in the ANT size and shape and thalamic atrophy caused by persistent epileptic
seizures [3]. Currently, the standard approach to automate this process is the
atlas-based technique. While popular, atlas-based methods are known to lack
robustness when anatomic differences between atlases and subjects are large.
This is particularly acute for ANT-DBS targets that are close to the ventricles,
which can be severely enlarged in some patients.

Over the past decade, DL-based techniques such as convolutional neural
networks (CNN) have emerged as powerful tools and have achieved unprece-
dented performances in many medical imaging tasks. However, to train suffi-
ciently robust and accurate models, deep learning methods typically require large
amounts of labeled data, which is expensive to collect, especially in the medical
domain. In the case of data scarcity and noisy labels, insufficiently trained models
may fail catastrophically without any indication. Hence, it is extremely desirable
for deep learning models to estimate the uncertainties regarding their outputs
in these scenarios. The predictive uncertainty of neural networks can be catego-
rized into two types: epistemic uncertainty and aleatoric uncertainty. Epistemic
uncertainty, also known as model uncertainty, accounts for the uncertainty in the
model and can be explained away by observing more training data. On the other
hand, the aleatoric uncertainty is the input-dependent uncertainty that captures
the noise and randomness inherent in observations. Recently, uncertainty esti-
mation has also received increasing attention in medical image analysis. Ayhan
et al. [4] proposed to estimate the heteroscedastic aleatoric uncertainty using
TTA for classification task. Nair et al. [5] explored the uncertainty estimation
for lesion detection and segmentation tasks based on MCDO. Wang et al. [6]
proposed a theoretical formulation of TTA and demonstrated its effectiveness in
uncertainty estimation for segmentation task. Nevertheless, uncertainty estima-
tion for localization tasks has not been well studied.

In this work, we developed a novel two-stage deep learning framework aim-
ing at robustly localizing the ANT targets. To the best of our knowledge, this is
the first work to develop a learning-based approach for this task. To overcome
the problem of data scarcity, we train the models with the pseudo labels which
are created based on the available gold-standard annotations using multi-atlas
registration. Moreover, we validate two sampling-based uncertainty estimation
techniques to assess the localization performance of the developed method. We
also propose a novel metric called MAD for sampling-based uncertainty esti-
mation methods in localization tasks. Our experimental results show that the
proposed method achieved more robust localization performance than the tradi-
tional multi-atlas method and TTA could further improve the robustness. Lastly,
we show that the epistemic and hybrid uncertainty estimated by MAD can be
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used to detect the unreliable localizations and the magnitude of MAD can reflect
the degree of unreliability when the predictions are rejected.

2 Materials and Methods

2.1 Data

Our own dataset consists of 230 T1-weighted MRI scans from a database
of patients who underwent a DBS implantation for movement disorders, i.e.,
Parkinson Disease or Essential Tremor at Vanderbilt University. The resolution
of the images varies from 0.4356 × 0.4356 × 1 mm3 to 1 × 1 × 6 mm3. The ground
truth was manually annotated on a different dataset collected by an experienced
neurosurgeon. In this dataset, the 3D coordinates of eight ANT targets (one on
each side) on four MRI scans were identified and the thalamus mask on one of
these volumes was delineated. With the available annotations, we generated the
pseudo labels for the ANT targets and for the thalamus masks using multi and
single-atlas registration [7]. In this study, 200 MRI scans were randomly selected
for training and validation and the remaining 30 images were used for testing.
For preprocessing, we use trilinear interpolation to resample all the images to
isotropic voxel sizes of 1 × 1 × 1 mm3 and rescale the image intensities to [0, 1].

2.2 Proposed Method

Typically, an MRI scan with original resolution cannot be fed to a 3D CNN
directly due to the limitation of computational resource. A common approach
to solve this problem, i.e., using downsampled images, is not appropriate here
because the downsampling operation unavoidably leads to a loss in image reso-
lution. This is a concern in our application because even a few-voxel shift in the
deep brain can lead to target predictions that are unacceptable for clinical use.
To address this issue, we propose a two-stage framework where the first stage
coarsely identifies and crops the thalamus regions from the whole brain MRI
and the second stage performs per-voxel regression on the cropped volume to
localize the targets at the finest resolution scale.

The workflow of the proposed framework is shown in Fig. 1. In this first stage,
we train a 3D U-net [8] using the downsampled 80 × 80 × 80 MRI scans to
coarsely segment the thalamus. The output layer of this network has three chan-
nels corresponding to background, left thalamus and right thalamus respectively.
Once we obtain the segmentation results, we post-process the binary segmenta-
tion from each foreground channel by isolating the largest connected component
and resample the results back to the original resolution. Thereafter, we compute
the bounding box of each isolated component and crop a 64 × 64 × 64 mm3

volume around its center. The cropped volume fully encloses the entire left or
right thalamus as well as its contextual information. Before passing the volumes
to the second stage, we flip the left-thalamus volumes in the left-right direction
so that the inputs of the second stage have consistent orientations. In the sec-
ond stage, we employ another 3D U-net with the same architecture to localize
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Fig. 1. The workflow of the proposed two-stage framework and the 3D U-net architec-
ture we used. The segmentation and localization network share the same architecture.
The number below each encode/decoder unit is the channel number of the 3 × 3 × 3
convolution kernels.

the ANT target by performing per-voxel regression on the cropped volumes.
Since the cropped volumes have the same resolution as the original MRI, there
is no performance degradation in localization due to loss in resolution. To allow
volume-to-volume mapping, we design the ground truth map to be a 3D Gaus-
sian function centered at the pseudo label position with a standard deviation of
1.5 mm. The maximum value is scaled to 1 and any value below 0.05 is set to 0.
During the testing phase, the left-thalamus localization maps are flipped back
to the original orientation and the voxel with the maximum activation in each
localization map is taken as the final prediction.

2.3 Uncertainty Estimation

Epistemic Uncertainty. We estimate the epistemic uncertainty of the local-
ization task using the dropout variational inference. Specifically, we train the
model with dropout (same as the baseline method) and during the testing phase
we perform T stochastic forward passes with dropout to generate Monte Carlo
samples from the approximate posterior. Let y = f(x) be the network map-
ping from input x to output y. Let T be the number of Monte Carlo sam-
ples and Ŵt be the sampled model weights from MCDO. For regression tasks,
the final prediction and the epistemic uncertainty can be estimated by cal-
culating the predictive mean E(y) ≈ 1

T

∑T
t=1 f

Ŵt(x) and variance V ar(y) ≈
1
T

∑T
t=1 f

Ŵt(x)T fŴt(x) − E(y)TE(y) from these samples.

Aleatoric Uncertainty. To estimate the aleatoric uncertainty, we use the TTA
technique which is a simple yet effective approach to study locality of testing sam-
ples. Recently, Wang et al. [6] provided a theoretical formulation for using TTA
to estimate a distribution of prediction by Monte Carlo simulation with prior
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distributions of image transformation and noise parameters in an image acquisi-
tion model. In our image acquisition model, we extend this idea by incorporating
both spatial transformations Ts and intensity transformation Ti to simulate the
variations of spatial orientations and image brightness and contrast respectively.
Our image acquisition model can thus be expressed as: x = Ts(Ti(x0)), where
x is our observed testing image and x0 is the image without transformations
in latent space. During the testing phase, we aim to reduce the bias caused by
transformations in x by leveraging the latent variable x0. Given the prior dis-
tributions of the transformation parameters in Ts and Ti, we can estimate y
by generating N Monte Carlo samples and the nth Monte Carlo sample can be
inferred as: yn = Tsn(y0n) = Tsn(f(x0n)) = Tsn(f(T−1

in
(T−1

sn (xn)))). The final
prediction and aleatoric uncertainty can be obtained by computing the mean
and variance from the Monte Carlo samples.

Maximum Activation Dispersion. For regression tasks, the uncertainty
maps are typically obtained by computing the voxel-wise variance from the
Monte Carlo samples. However, this approach fails to generate useful uncertainty
maps in our application. In our ground truth maps, the non-zero elements, i.e.,
foreground voxels within the Gaussian ball, are very sparse compared to the zero
elements, and thus more difficult to localize and more likely to produce larger
predictive variance. As a result, such uncertainty maps would display higher
uncertainty at the predicted targets even if the targets are correctly localized
(Fig. 2), and thus are not effective for uncertainty estimation regarding the
localization performance. To address this issue, we propose a novel metric called
Maximum Activation Dispersion (MAD) which can be directly applied to any
sampling-based uncertainty estimation technique. This metric measures the con-
sistency of the maximum activation positions of the Monte Carlo samples and
ignores the activation variance at the same position. Note that MAD aims at
estimating the image-wise uncertainty regarding the overall localization perfor-
mance instead of voxel-wise uncertainty produced by uncertainty maps. Let N
be the number of Monte Carlo samples and pn = (xn, yn, zn) be the maximum
activation position of the nth Monte Carlo sample. The maximum activation
dispersion is computed as 1

N

∑N
n=1 ‖pn − p̄‖, where ‖ · ‖ is the L2 norm and

p̄ = 1
N

∑N
n=1 pn is the geometric center of all maximum activation positions.

2.4 Implementation Details

Two five-level 3D U-nets with the same architecture were used in the proposed
two-stage framework (Fig. 1). In the first stage (segmentation), optimization
was performed using the Adam optimizer with a learning rate of 5 × 104, with
Dice loss as the loss function, a batch size of 3, and early stopping based on
validation loss with patience of 10 epochs. In the second stage (localization),
dropout layers were added to allow MCDO. As suggested by Kendall et al.
[9], applying dropout layers to all the encoders and decoders is too strong a
regularizer. To avoid poor training fit, we followed the best dropout configuration
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Fig. 2. Visualization of some Monte Carlo samples (A-L) by TTA, their mean (local-
ization map) and variance (uncertainty map). The uncertainty map displays higher
uncertainties at the correctly localized position and thus is not effective for localiza-
tion uncertainty estimation. (Color figure online)

in [9] by adding dropout layers with a dropout rate of p = 0.5 only at the deepest
half of encoders and decoders. During training, optimization was performed using
the Adam optimizer with a learning rate of 2 × 104, with a batch size of 6, and
early stopping based on validation loss with patience of 5 epochs. A weight decay
of 5× 104 was used. The weighted mean squared error (WMSE) was used as the
loss function to alleviate the class imbalance issue by assigning higher weights to
the sparse non-zero entries. The models with the smallest validation losses were
selected for final evaluation.

During the testing phase, we forward passed the testing image once to the
deterministic network with dropout turned off (baseline). With a given prior
distribution of transformation parameters in image acquisition model, we for-
ward passed the stochastically transformed testing image N = 100 times to
the deterministic network with dropout turned off and transformed the pre-
dictions back to the original orientation. The mean and variance (aleatoric
uncertainty) of the Monte Carlo samples were obtained (baseline + TTA).
In the image acquisition model, the spatial transformations were modeled by
translation and rotation along arbitrary axis. The intensity transformation was
modeled by a smooth and monotonous function called Bézier Curve, which is
generated using two end points P0 and P3 and two control points P1 and P2:
B(t) = (1− t)3P0 +3(1− t)2tP1 +3(1− t)t2P2 + t3P3, t ∈ [0, 1]. In particular, we
set P0 = (0, 0) and P3 = (1, 1) to obtain an increasing function to avoid invalid
transformations. The prior distributions of the spatial and intensity transfor-
mation parameters were modeled by uniform distribution U as s ∼ U(s0, s1),
r ∼ U(r0, r1) and t ∼ U(t0, t1), where s, r and t represent translation (voxels),
rotation angle (degrees) and the fractional value for Bézier Curve. In our exper-
iment, we set s0 = −10, s1 = 10, r0 = −20, r1 = 20, t0 = 0 and t1 = 1. Lastly,
we forward passed the same testing image to the stochastic network T = 100
times with dropout turned on with a rate of p = 0.5 and obtained the mean
and variance (epistemic uncertainty) of the Monte Carlo samples (baseline +
MCDO).

In our experiment, we evaluated the localization performances of the multi-
atlas, baseline, baseline + TTA and baseline + MCDO methods on 30 testing
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images (60 targets). The axial, sagittal and coronal views centered at the targets
predicted by each method were provided to an experienced neurosurgeon to
evaluate whether the predicted targets are acceptable for clinical use (the order
was shuffled and the evaluator was blind to the method used to predict the
target). When the predictions were evaluated as rejected, the evaluator was
asked to provide the reasons for rejection. Furthermore, we analyze the aleatoric,
epistemic and hybrid (aleatoric + epistemic) uncertainties estimated by MAD
on the baseline rejected cases.

3 Experimental Results

Our results show that among a total number of 60 targets, 53, 55, 57 and 55
targets were evaluated as acceptable for the multi-atlas, baseline, baseline + TTA
and baseline + MCDO respectively. In Fig. 3, we show the boxplots of aleatoric,
epistemic and hybrid uncertainties estimated by MAD. It can be observed that
when the rejected predictions are far away from the acceptable positions (red
and blue), their estimated uncertainty correspond to the outliers above the upper
whisker in the boxplots of epistemic and hybrid uncertainty. On the other hand,
when the rejected predictions are close to the acceptable positions (cyan, green
and magenta), their uncertainties fall in the range of upper quartile and the
upper whisker (cyan and green) and the range of lower quartile and median
(magenta), corresponding to their degree of unreliability.

Fig. 3. Boxplots of aleatoric, epistemic and hybrid uncertainties estimated by MAD
on the testing set (60 images). The rejected cases of the baseline method (5 cases) are
shown in color. The axial, sagittal and coronal views of the rejected targets are shown
with the reasons for rejection provided by the evaluator. (Color figure online)

It can be observed that the epistemic and hybrid uncertainty estimated by
MAD could be used to detect unreliable localizations, i.e., the ones that not
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even in thalamus. Moreover, the magnitudes of MAD could reflect the degree
of unreliability when the predictions were rejected. We also observe that even
though the MCDO did not improve the localization robustness compared to the
baseline method, the epistemic uncertainty obtained by this technique has great
value for detecting the unreliable localizations, i.e., the outliers in the boxplot.

4 Conclusion

In this study, we present a two-stage deep learning framework to robustly localize
the ANT-DBS targets in MRI scans. Results show that the proposed method
achieved more robust localization performance than the traditional multi-atlas
method and TTA-based aleatoric uncertainty estimation can further improve the
localization robustness. We also show that the proposed MAD is a more effective
uncertainty estimation metric for localization tasks.
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Abstract. All organs in the human body are susceptible to cancer, and
we now have a growing store of images of lesions in different parts of
the body. This, along with the acknowledged ability of neural-network
methods to analyse image data, would suggest that accurate models for
lesions can now be constructed by a deep neural network. However an
important difficulty arises from the lack of annotated images from var-
ious parts of the body. Our proposed approach to address the issue of
scarce training data for a target organ is to apply a form of transfer
learning : that is, to adapt a model constructed for one organ to another
for which there are minimal or no annotations. After consultation with
medical specialists, we note that there are several discriminating visual
features between malignant and benign lesions that occur consistently
across organs. Therefore, in principle, these features boost the case for
transfer learning on lesion images across organs. However, this has never
been previously investigated. In this paper, we investigate whether lesion
knowledge can be transferred across organs. Specifically, as a case study,
we examine the transfer of a lesion model from the brain to lungs and
lungs to the brain. We evaluate the efficacy of transfer of a brain-lesion
model to the lung, and the transfer of a lung-lesion model to the brain by
comparing against a model constructed: (a) without model-transfer (i.e.
random weights); and (b) using model-transfer from a lesion-agnostic
dataset (ImageNet). In all cases, our lesion models perform substantially
better. These results point to the potential utility of transferring lesion-
knowledge across organs other than those considered here.

Keywords: Transfer learning · Medical imaging · Tumour
classification

1 Introduction

Cancer is one of the deadliest diseases in the world, with tens of millions diagnosed
with some form of cancer annually. Early diagnosis is one of the most important
factors in its control and prevention. Computer-aided detection (CAD) systems,
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specifically deep learning models could potentially help radiologists by detecting
features that can be missed even by the trained eye.

The performance of deep learning models is often heavily dependent on the
data available. Given the extensive expertise required for generating annotated
medical data [13], ethical and privacy concerns around sharing it [3], obtaining
training data for deep models remains a bottleneck. For cancer, this problem is
compounded by the fact that not some organs have sparse data. One approach
to deal with the lack of data, is to draw on techniques of transfer-learning that
exploit a commonality across datasets. If such a commonality exists, then the
parts of the model constructed on a larger dataset (the “source” model) could
be re-used to construct a model for the smaller dataset (the “target” model). In
the case of lesions (tumours), there are clinical reasons to expect some common
visual features in tumours across organs: (a) Malignant tumours across the body
have irregular boundaries, and benign tumours have clear boundaries and sharp
margins; (b) Malignant tumours are often found to have a thickening at the
periphery; and (c) Malignant tumours are generally found to have inhomoge-
nous attenuation, and benign tumours are characterised by homogeneous atten-
uation instead [1]. This suggests that source-models for detecting lesions that are
constructed for one organ should be helpful in constructing a target-model for
detecting tumours in a different organ. The usual approach to transfer-learning
however focuses on the use of large, generic datasets for constructing a source
model: it uses a source-model with pre-trained ImageNet weights. However, it
has been pointed out that the nature of classification in the ImageNet dataset
is far different from medical classification [12]. ImageNet weights are tuned for
tasks in which the subject is prominent in the background, tasks such as cancer
tumour classification involve local features, such as inhomogeneous intensities
and irregular boundaries, and some subtle pattern-based features.

The principal motivation for this paper is provided by the work in [10], where
it is shown that transfer of knowledge is possible across diseases. We are also
inspired by the paper [8], in which the authors note that if the target task is
localisation-sensitive (as it is in our case), the gains of using ImageNet weights
for initialisation are limited to only a reduction in convergence time, without a
big boost in performance.

In this paper, we study the effect of transfer learning from a different organ
versus the standard practice of transfer learning from the ImageNet database. To
the best of our knowledge, this kind of study has not been performed for lesion
classification. We focus on transfer of lesion-knowledge from brain to lungs, and
lungs to the brain. Our results using lesion-specific source data are promising: (1)
Performance improves substantially (importantly, recall over the malignant class
improves); (2) The time taken for model-construction decreases significantly;
(3) Model performance has less variance; and (4) These effects are even more
pronounced when target data is limited.
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2 Note on Transfer Learning

Transfer learning is now a thriving area of application, especially using deep
neural networks [14]. In essence, this consists of using a large source dataset to
identify a deep network structure and weights. This model is then “transferred”
to construct a model for target data, usually by re-estimating using the target
data, the weights associating with higher layers of the network. Since this involves
fewer estimates than the entire model, it can normally be done with lesser data
than would be needed to estimate all weights in the model. For the purposes of
this paper, we take the following high-level view of the transfer learning process:

– We will use “model m” to denote the pair (π, θ), where π denotes the structure
of m (for example, of a deep network) and θ denotes the parameters in m
(for example, the weights in the network). We will assume structures are
drawn from some space Π and parameters from a space Θ, and M = Π × Θ.
Given an instance x from a set of instances X, and a model m, we assume a
function Predict : M × X → Y , where Y is some set of (class) labels. Then,
Predict(x|m), is to be read as “the value of Predict on an instance x given
model m”.

– Let D denote the set of subsets of X × Y . We use the term “model construc-
tion” to mean a function Learn : D → M . Thus, m = Learn(d) is to be
read as “the model m constructed by Learn, using data d”. Using the func-
tion Transfer : D × M → M , by “model transfer from source to a target”,
we will mean the composition Transfer ◦ Learn. That is, given source data
ds, and target data dt, a model transfer from source to target is the model
Transfer(dt|Learn(ds)). Both Learn and Transfer are conditional on the
definition of source-specific and target-specific loss functions. We omit this
detail here.

– Testing model performance will require the implementation of Predict

Given source-data ds and target-data dt, the obvious form of transfer learn-
ing is one that is defined by Transfer(dt|Learn(ds)). Here, a model is first
constructed for the source data, and is then transferred to the target data. How-
ever, the literature suggests that better models for a dataset d may be obtained
by Transfer(d|Learn(dg)), where dg denotes a large generic dataset (like Ima-
geNet). In the following section, we investigate the performance of model transfer
using source-data (ds) from the brain and target-data (dt) from the lung, and
vice versa.

3 Empirical Evaluation of Transferring Lesion Models

3.1 Aim(s)

Given a source-dataset ds, a target-dataset dt, and a (large) generic dataset
dg, we distinguish between the following target models: (a) Baseline, denot-
ing Learn(dt); (b) Lesion-agnostic, denoting Transfer(dt|Learn(dg)); and (c)
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Lesion-augmented , denoting Transfer(dt|Transfer(ds|Learn(dg))). For rea-
sons of space, we will not consider lesion-only models (Transfer(dt|Learn(ds))).

Our aim is to compare the performance of models (a)–(c), using model trans-
fer from brain-to-lung and lung-to-brain. We clarify our definition of performance
in Step 4.

3.2 Materials

The experiments here use the following datasets:

ImageNet data: This constitutes dg, or the generic data used for model trans-
fer. This dataset is a classical collection of images for visual recognition
research [7].

Lung-lesion data: The LIDC-IDRI dataset contains lung CT scans with anno-
tated lesions [6]. The malignancy level for each lesion is annotated in the
range 1–5. The tumours with average malignancy values from 1 to 3 were
considered as benign, and the rest were considered malignant.

Brain-lesion data: The brain tumour dataset [4] contains 3064 T1-weighted
contrast-enhanced images from 233 patients with three kinds of brain tumours
- meningioma (708 slices), glioma (1426 slices) and pituitary tumour (930
slices) along with the corresponding lesion masks. We take meningioma and
pituitary tumours as benign, and glioma tumours as malignant to form a
binary classification problem.

4 Method

To help the model generalise better [2] we process the images by extract the
lesions using the segmentation masks and normalise them. We then perform
image augmentations such as random horizontal and vertical flips, shifts and
rotations using the ImageDataGenerator class available in Keras [5].

Our experiments investigate the transfer of lesion models from brain-to-lung,
and from lung-to-brain. We examine the effect of: (a) varying target training
data size (with a fixed source data size); and (b) varying source data size (with a
fixed target data size). For a given source (brain or lung), we adopt the following
method:

– Let Tet denote an independent sample of test instances for assessing the
performance of the target model

– Fixed source data size: For a given source data set ds and random samples
dt of target data sizes in {High,Medium,Low, V Low}:
1. Construct Baset|s = Learn(dt)
2. Construct LesAgnt|s = Transfer(dt|Learn(dg))
3. Construct LesAugt|s = Transfer(dt|Transfer(ds|Learn(dg)))
4. Compare the performance of Baset|s, LesAgnt|s, and LesAugt|s on Tet

– Fixed target data size: For a given target data set dt and random samples
ds of source data sizes in {High,Medium,Low, V Low}:



142 S. Krishnan et al.

1. Construct Bases|t = Learn(dt)
2. Construct LesAgns|t = Transfer(dt|Learn(dg))
3. Construct LesAugs|t = Transfer(dt|Transfer(ds|Learn(dg)))
4. Compare the performance of Bases|t, LesAgns|t, and LesAugs|t on Tet

The following details are relevant:

– The overall sizes of the brain data and lung data are 3064 and 729 respectively.
The sizes of independent test data is 200 images for both brain-to-lung and
lung-to-brain transfer. In all cases dg refers to ImageNet.

– The size of ds in Step 4 with brain-as-source is 3000 brain images, and ds with
lung-as-source is 700 lung images. In all cases, we use the following target data
sizes dt: 400 (High); 335 (Medium); 250 (Low); and 165 (VLow).

– The size of dt in Step 4 with brain-as-target and lung-as-target is 400
images. For brain-as-source, the sizes of source data ds are: 3000 (High);
2000 (Medium); 1000 (Low); and 500 (VLow). For lung-as-source, the size of
source data ds are: 700 (High); 500 (Medium); 300 (Low); and 100 (VLow).

– In all our experiments, we use the model structure of DenseNet-201 [9] to
construct the lesion classification models (source and target). The final struc-
ture and parameters of models are determined using the Adam optimiser [11]
using a binary cross entropy loss function. Early stopping was used while
monitoring the validation loss.

– The training hyper-parameters for the algorithm and the models are as fol-
lows: the batch size is set to 64, the learning rate is 10−4.

– All the experiments are conducted in Python environment in a machine with
64 GB main memory, 16-core Intel processor and 8 GB NVIDIA P4000 graph-
ics processor.

– We define the performance of a model as the pair (R,P ) where R is an
unbiased estimate of the recall of the model, and P is an unbiased estimate of
the model’s precision.1 The performance of a pair of models will be compared
lexicographically. That is, (R1, P1) is better than (R2, P2) if and only if: R1 >
R2, or if R1 = R2 and P1 > P2.

5 Results

The principal findings of our experiments are these: (a) Target models obtained
using lesion-augmented transfer perform better than those obtained using lesion-
agnostic transfer in most of the cases as seen in Fig. 1; (b) As the lesion-
augmented target data dt decreases, the benefit of lesion-augmented transfer
over lesion-agnostic transfer increases (illustrated more clearly with F2 scores
in Fig. 4, we note that the gap in the score is largest in the regime of very
low target training data); and (c) As the source data ds decreases, the benefit

1 We assume that in lesion-identification, the positive class refers to malignant lesions
and that false-negatives are costlier than false-positives. That is, recall is more impor-
tant than precision.
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of lesion-augmented transfer over lesion-agnostic transfer decreases as seen in
Fig. 2. Surprisingly, we also note that as the source data decreases, sometimes
the model ends up performing worse than the baseline models on the test set.
We now highlight some additional aspects of our study:

Lower Variance of Lesion-Augmented Models: We find that predictions
using lesion-augmented models display a lesser variance than those from lesion-
agnostic models. An example of this is shown in Fig. 3, showing the range of
estimates of recall, precision obtained when performing a 5-fold cross-validation
with |ds| = ‘High’, and |dt| = ‘High’. This suggests that these models depend
less on a particular training instance. The same trend holds in lung-to-brain
transfer, but is less pronounced.

Faster Convergence of Lesion-Augmented models: We note that the gains
of using a lesion-augmented model are twofold: (a) The loss starts from a much
lower value, and (b) The lesion-augmented model converges in a fraction of the
time that either of the other models takes to converge. An example of this is
shown in Fig. 5 with the normalised binary cross-entropy loss. This behaviour
occurs in lung-to-brain transfer as well, and we haven’t shown it here due to
space limitations.

Base LesAgn LesAug
|dt| R P R P R P

High 0.89 0.80 0.93 0.93 0.96 0.94
Med. 0.69 0.77 0.52 0.83 0.88 0.80
Low 0.55 0.73 0.14 0.62 0.71 0.77
VLow 0.02 1.00 0.02 1.00 0.67 0.76

(a) Brain-to-lung

Base LesAgn LesAug
|dt| R P R P R P

High 0.71 0.94 0.68 0.88 0.73 0.83
Med. 0.66 0.82 0.63 0.81 0.71 0.83
Low 0.76 0.84 0.66 0.82 0.71 0.83
VLow 0.56 0.82 0.44 0.82 0.68 0.78

(b) Lung-to-brain

Fig. 1. Recall and Precision scores keeping source data constant. The best performance
pair (R,P ) in each row is in bold.

Base LesAgn LesAug
|ds| R P R P R P

High 0.89 0.80 0.93 0.93 0.96 0.94
Med. 0.89 0.80 0.93 0.93 0.86 0.70
Low 0.89 0.80 0.93 0.93 0.81 0.77
VLow 0.89 0.80 0.93 0.93 0.84 0.79

(a) Brain-to-lung

Base LesAgn LesAug
|ds| R P R P R P

High 0.71 0.94 0.68 0.88 0.73 0.83
Med. 0.71 0.94 0.68 0.88 0.71 0.91
Low 0.71 0.94 0.68 0.88 0.68 0.88
VLow 0.71 0.94 0.68 0.88 0.68 0.77

(b) Lung-to-brain

Fig. 2. Recall and Precision scores keeping target data constant. ‘Base’ and ‘LesAgn’
models have no access to dS , therefore R and P scores are the same across |ds| values.
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Brain-to-lung
(Range)

Lung-to-brain
(Range)

R P R P

LesAgn 0.12–0.82 0.17–1.00 0.67–0.73 0.82–0.87
LesAug 0.94–0.97 0.79–0.99 0.66–0.72 0.84–0.87

Fig. 3. Ranges of recall (R) and precision (P ) in a 5-fold cross-validation

Fig. 4. F2 score vs ds for brain-to-lung
transfer, varying |dt|

Fig. 5. Loss vs epochs for brain-to-lung
transfer, using a “VLow” value of |dt|

6 Conclusion

Transfer learning, especially using deep neural networks, presents one way of
dealing with the problems arising from the lack of sufficient data to build good
models, that is common in problems involving medical images. This is due to
reasons of cost, rarity of disease occurrence, difficulty of annotation, and so on.
Although most routine demonstrations of transfer learning with deep networks
have involved transfer from general datasets to specific ones, it would seem
evident that transfer would be more effective if the source data were in some
way related to the target. In this paper we have investigated this for transfer
of lesion-models from one organ to another. Although the problem of lack of
data persists for lesions for some organs, there are good biological reasons to
believe that lesions from a different organ could be useful in constructing a
model for the target organ. Our results here show how even small amounts
of such lesion-specific source data can make a substantial difference to target
models (the augmentation of a dataset of nearly 14 m images, with at most 5000
lesion images for the source organ). Besides better predictive performance, we
find that the augmentation results in target models that converge faster and
have lower variance.

While our results are largely consistent for both brain-to-lung and lung-to-
brain transfer, there is a difference in the gains resulting from the inclusion
of lesion-specific data. Additional experiments suggest that this is not due to
differences in the quantity or quality of data. There may be some underlying
biological reasons for this difference, which needs to be investigated further. We
think the experiments could also benefit from the use of data available in [13],
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which already has segmented lesions throughout the body. If annotations were
available for even some small part of this data, they could prove more helpful
than using a generic dataset like ImageNet. Additional experiments are also
needed with other pairs of organs, to ensure that the observations here can
be generalised: for the present, the results show that lesion-knowledge can be
transferred usefully from the brain to the lung and vice versa.
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Abstract. Many medical imaging applications require robust capabil-
ities for automated image anomaly detection. Supervised deep learning
approaches can be employed for such tasks, but poses large data collec-
tion and annotation burdens. To address this challenge, recent works have
proposed advanced unsupervised, semi-supervised or transfer learning
based deep learning methods for label-efficient image anomaly detection.
However, these methods often require extensive hyperparameter tuning
to achieve good performance, and have yet to be demonstrated in data-
scarce domain centric applications with nuanced normal-vs-anomaly dis-
tinctions. Here, we propose a practical label-efficient anomaly detec-
tion method that employs fine-tuning of pre-trained model based on a
small target domain dataset. Our approach employs a joint optimization
framework to enhance discriminative power for anomaly detection per-
formance. In evaluations on two benchmark medical image datasets, we
demonstrate (a) strong performance gains over state-of-the-art baselines
and (b) increased label efficiency over standard fine-tuning approaches.
Importantly, our approach reduces the need for large annotated datasets,
requires minimal hyperparameter tuning, and shows stronger perfor-
mance boost for more challenging anomalies (Supplement: http://s000.
tinyupload.com/?file id=24916959421870989415).

Keywords: Label-efficient deep learning · Anomaly detection ·
Transfer learning · Joint optimization

1 Introduction

The ability to automatically detect anomalies in medical images has applica-
tions in disease screening, triaging, automated diagnostic systems, and quality
control in high-throughput laboratory or clinical settings. Recent studies have
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highlighted the potential of deep learning approaches for screening and triaging
applications involving chest X-Rays, retinal images, mammograms, and brain
scans. However, these studies frame the anomaly detection task as a supervised
classification problem, and hence require sizeable labeled datasets. Creation of
these datasets requires laborious and resource-intensive annotation by special-
ized domain experts, and may result in noisy and biased labels due to the dis-
cordant opinions from the experts. Further, it is infeasible to scale collection to
large data volumes in many of the above applications. As such, there is a need
to advance medical image anomaly detection approaches that can address the
annotation burden and data scarcity challenges. Previous works have explored
unsupervised [1–5], semi-supervised [6,7] and transfer learning or fine-tuning
based [8–11] anomaly detection approaches. The un-/semi-supervised methods
commonly employ advanced reconstruction-based frameworks [1,3], generative
adversarial networks [3,7] and deep support vectors [12]. These approaches often
require hyper-parameter tuning and intensive computational resources, thus
hampering use in practice. Furthermore, they do not perform well when applied
to the medical images with subtle anomalies [13]. In the realm of transfer learn-
ing, the focus is to fine-tune representations learned on a large source domain
dataset using a small subset of target domain data. One recent study combined
an unsupervised classifier with transfer-learning based feature selection for medi-
cal image anomaly detection [13], but did not use target domain data to fine-tune
the features or model. Some studies have explored optimal fine-tuning strategies
and loss functions in multi- and one-class settings [8–11]. However, these strate-
gies have not been validated in complex real-world tasks involving detection of
non-apparent anomalies and performance is insufficient for practical deployment.

In this work, we expand upon [10,13] to propose a practical label-efficient
anomaly detection method for challenging medical imaging applications. Specif-
ically, our approach learns the feature representations from a pre-trained Ima-
geNet model by transfer learning, and then fine-tunes these representations based
on a small target domain dataset. For the fine-tuning, we combine an adaptive
approach with a joint optimization for two concurrent objectives: (a) to learn
discriminative features, and (b) to enhance compactness of normal class rep-
resentation for effective anomaly detection. We evaluate our approach on two
medical image benchmark datasets and demonstrate large gains over baselines.

2 Methods

2.1 Network Architecture

The network architecture for the training process in our proposed method is
illustrated in Fig. 1. There are two parts: (a) a feature extractor denoted as Gf

which includes the input layer and all the hidden layers in selected neural network
model; and (b) a classifier, i.e., a fully connected layer. For Gf , we employ a
neural network that is pre-trained on ImageNet for transfer learning. Specifically,
we choose the pre-trained ResNet-26 [9,11] as our base model (although our
method is applicable across choices of pre-trained models). The output from
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Gf informs the calculation of an intra-class variance loss (Liv ) [10] to enforce
compactness of the cluster representation of normal features. The output from
the classifier informs the calculation of a cross-entropy loss (Lce) [14]. These two
losses are jointly optimized in the training process.

Fig. 1. Network architecture of our proposed method. The data batches are sampled
from a balanced dataset and one-class dataset during training. The cross-entropy loss
and intra-class variance loss are calculated and back-propagated simultaneously.

2.2 Construction of Datasets for Training

We consider a training dataset comprising normal samples and a small number of
abnormal samples. We randomly sample a small subset of this training dataset
following the native normal-to-abnormal class ratio in the training data, and
name this subset as the small imbalanced (SI) dataset. We divide SI into two
groups, namely, a “balanced dataset (denoted as Db)” and a “one-class dataset
(denoted as Do)”. Db comprises all abnormal samples in the SI and an equal
number of normal samples. It is used to train the feature extractor and classifier,
and eventually to inform the cross-entropy loss. Do comprises of the remaining
normal samples in SI, which is used to train the feature extractor and eventually
to inform the intra-class variance loss. Db helps to enhance the discriminative
power of the feature extractor, whereas Do helps to enforce compactness of the
feature representation for normal class for improved anomaly detection.

2.3 Joint Optimization

In order to concurrently achieve good discriminative power of the feature extrac-
tor and enhance compactness of the feature representation for normal class, we
employ a joint optimization framework. This framework is based on a dual loss
formulation that combines cross-entropy loss (Lce) and intra-class variance loss
(Liv ). Lce is widely used to characterize the accuracy of a classification model
in relation to ground truth labels [14]. Here we use the small balanced dataset
to fine-tune the pre-trained model directly and characterize fine-tuning perfor-
mance with Lce . The compactness of the feature representation for the nor-
mal samples can be characterized by distance measures. Here, we employ the
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Euclidean distance measure to compute Liv . A low value of Liv indicates that
the features extracted from the normal samples are compact and tightly clus-
tered. This means that abnormal samples falling outside the boundary can be
easily identified. Formally, consider the data sample xi with data label yi. For
each sample from a batch of the one-class data, the distance between the given
sample and the rest of the samples from the same batch is given by

zi = Gf (xi) −mi (1)

where xi and mi are the given sample, and the mean of the features for the rest
of samples, respectively. The intra-class variance loss is the averaged Euclidean
distance, which is given by

Liv =
1
no

no∑

i=1

zT
i zi (2)

where no is the number of one-class samples in the batch and each feature is of
dimension d. Then, the overall loss function is given by

arg min
θ̂

(
∑

xi∈Db

λLce(Gf (xi), θ, yi) +
∑

xi∈Do

(1 − λ)Liv(Gf (xi), θ,mi)) (3)

where λ is the hyper-parameter used to balance the two losses, and θ denotes
the learned parameters.

3 Experimental Procedures

3.1 Datasets

We used two medical imaging datasets (Kaggle Diabetic Retinopathy (DR) chal-
lenge [15] and the RSNA Intracranial Hemorrhage Detection (RSNA-IHD) [16]),
and one natural image dataset (CIFAR-10) for the experimental evaluations.
Figure 2 illustrates examples of the normal and abnormal images in DR and
RSNA-IHD. For DR and CIFAR-10, we use the official train and test sets. For
RSNA-IHD, we use the official train set and randomly split 10,000 images as the
test set. For DR dataset, We consider grade “0” (no diabetic retinopathy) and
“4” (proliferative diabetic retinopathy) as normal and abnormal samples, respec-
tively. Results of “0” vs. “2, 3, 4” are presented in Table 4 of supplementary. For
RSNA-IHD, we designate slices with any anomaly (epidural, intraparenchymal,
intraventricular, subarachnoid and subdural) as abnormal (“1”) and those with-
out any anomaly (“0”) as normal. For CIFAR-10 dataset, we select one of the six
randomly chosen classes as the “normal” class each time, and use data from the
other nine classes as the “abnormal” class. We randomly sample 10 abnormal
and 150 normal images from the above training datasets as our small imbalanced
(SI) dataset to simulate the native normal-to-abnormal class ratio. As discussed
in Sect. 2.2, with the SI dataset, we construct the balanced dataset (Db) and
one-class dataset (Do). Specifically, we use all 10 abnormal images and randomly
sample 10 normal images from SI as Db to train the classifier. The remaining
normal samples from SI are formed as Do.
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Fig. 2. Examples of the normal (upper panel) and abnormal (lower panel) images from:
(a) DR, (b) RSNA-IHD datasets. The differences between abnormal vs. normal images
are highlighted in rectangle.

Table 1. Number of samples used in training

10/150 FTID, UnSpSm, Ours

150/150 FTBD

234/3520 DAGMM, DSEBM, UnSpSm

0/3520 OCSVM

Note: the abnormal/normal samples are
obtained from randomly sampled 5000
images, but to keep the outlier ratio as
ours for DAGMM, DSEBM and UnSpSm

3.2 Baselines and Ablation Study

We compare our proposed method against several baselines: a) a shallow sup-
port vector machines (SVM)-based model [17]; b) two deep anomaly detection
methods based on autoencoders (DAGMM [3], DSEBM [1]); c) an unsuper-
vised anomaly detection approach based on pre-trained ImageNet with features
selected using small labeled datasets (UnSpSm) [13]; d) a supervised baseline
that fine-tunes a pre-trained ImageNet model based on the balanced dataset
(FTBD); e) an ablation study which fine-tunes a pre-trained ImageNet based
on the relevant imbalanced dataset (FTID). To enable rigorous comparison, the
feature selection for UnSpSm employ the same labeled abnormal/normal sam-
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ples as our method. Further, we note that FTID comprises of only cross-entropy
loss and no compactness loss of normal class representation is imposed. Table 1
details the construction of training datasets for the different baselines.

3.3 Training and Testing

During training, the network is initialized with the weights of pre-trained
ResNet-26 model. The weights of the first half of the network layers are frozen.
Two data batches (with batch size 20) generated from the Db and Do are fed to
the input of the network simultaneously. The cross-entropy loss and intra-class
variance loss are computed and summed to compute the composite loss, which is
then back-propagated. The parameters are trained using gradient descent with
learning rate of 0.001. Training is stopped when there is no decrease in the com-
posite loss for 20 epochs. During test phase, all the images are fed to the feature
extractor to extract features, which are then passed to the classifier (i.e., fully
connected layer) to classify the input image as normal or abnormal.

4 Results

We now compare the performance between our proposed method and the base-
lines. We ran five experiments across random seeds, and characterize the per-
formance in terms of mean and standard deviation of the AUROC and AUPRC
across seeds for all the methods, with the results shown in Table 2. First,
our method outperforms the baseline unsupervised anomaly detection methods
(OCSVM, DAGMM and DSEBM) by a large margin. Our method achieves at
least 10% increase in AUROC and far greater increases (over 20%) in AUPRC for
both datasets. In many cases, the baselines require large volumes of normal data,
while our method does not. Second, the FTID ablation study results demon-
strate that the inclusion of compactness loss further increases the AUROC by
2–5%. Third, the method achieves AUROC comparable with the FTBD approach
although FTBD imposes far greater annotation burden. To compare the label-
efficiency of our method and FTBD, we consider a realistic annotation scenario
which involves sampling anomalous images iteratively from the native datasets.
Since the proportions of outliers are 6% and 15.1% in DR and RSNA-IHD, we

Table 2. Performance comparison of our method vs. baselines

Dataset: DR

OCSVM DAGMM DSEBM UnSpSm FTID FTBD Ours

AUROC 38.6 ± 1.2 60.8 ± 2.0 45.8 ± 1.4 79.8 ± 0.6 87.5 ± 1.3 91.2 ± 1.4 89.3 ± 1.3

AUPRC 2.5 ± 0.1 4.9 ± 0.5 2.6 ± 0.2 13.5 ± 1.0 26.3 ± 2.3 38.3 ± 3.6 27.5 ± 2.7

Dataset: RSNA-IHD

OCSVM DAGMM DSEBM UnSpSm FTID FTBD Ours

AUROC 30.1 ± 0.4 45.6 ± 0.6 43.2 ± 3.0 37.0 ± 2.2 71.4 ± 4.6 78.2 ± 2.5 76.6 ± 3.1

AUPRC 10.4 ± 1.2 12.3 ± 0.6 12.3 ± 0.6 11.4 ± 0.4 35.4 ± 3.2 45.3 ± 3.7 36.7 ± 2.4
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need to sample from 167 (proposed) vs. 2500 (FTBD), and 66 (proposed) vs.
993 (FTBD) to obtain the required number of 10 (proposed) and 150 (FTBD)
anomalous training samples for DR and RSNA-IHD, respectively. These numbers
suggest that the annotation burden of our method is about 15 times less than
FTBD (when 10/150 abnormal/normal samples are chosen). We also evaluated
the performance on CIFAR-10. The averaged AUROC (%) of proposed method
is 88.0 ± 4.0, which is comparable to that achieved with FTBD (94.7 ± 2.6),
better than the performance with FTID (85.6 ± 2.7), and far better than unsu-
pervised baseline (UnSpSm) (56.6 ± 2.7). These results demonstrate the general
applicability of our proposed method. Further, the performance gains with our
method are higher for the medical image datasets than for the natural image
CIFAR-10 dataset, suggesting advantages in more challenging applications.

We now evaluate how the proportion of the labelled abnormal data in train
data affects the performance. For this purpose, we vary the number of the
labelled abnormal samples and evaluate the AUROC for the DR dataset. The
results are in Fig. 3. Note that the same number of abnormal/normal samples
are used for all the methods. The performance of AUROC of our method is sig-
nificantly better than the baselines, and performance of our method increases as
the proportion of the abnormal sample increases.

Fig. 3. AUROC for DR dataset as a function of the number of abnormal samples.

5 Conclusions

In this work, we proposed a novel but practical label-efficient anomaly detec-
tion method for challenging medical imaging applications. To address the data
scarcity problem, our method utilizes a very small number of labelled abnormal
and normal samples to fine-tune a pre-trained network, and employs a joint opti-
mization framework to achieve both high discriminative power for classification
and compactness of normal class representation for effective anomaly detection.
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We showed high performance boost on two medical image datasets with anoma-
lies that are difficult to detect. As such, our work offers a practical benchmark
for future work in medical image anomaly detection, and has implications for
a range of domain-centric anomaly detection tasks. Future work will focus on
expanding our approach for 3D medical images, and performing more extensive
evaluations for practical translation.
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Abstract. Deep neural networks have shown exceptional learning capa-
bility and generalizability in the source domain when massive labeled
data is provided. However, the well-trained models often fail in the target
domain due to the domain shift. Unsupervised domain adaptation aims
to improve network performance when applying robust models trained
on medical images from source domains to a new target domain. In this
work, we present an approach based on the Wasserstein distance guided
disentangled representation to achieve 3D multi-domain liver segmenta-
tion. Concretely, we embed images onto a shared content space captur-
ing shared feature-level information across domains and domain-specific
appearance spaces. The existing mutual information-based representa-
tion learning approaches often fail to capture complete representations in
multi-domain medical imaging tasks. To mitigate these issues, we utilize
Wasserstein distance to learn more complete representation, and intro-
duces a content discriminator to further facilitate the representation dis-
entanglement. Experiments demonstrate that our method outperforms
the state-of-the-art on the multi-modality liver segmentation task.

1 Introduction

Accurate and consistent measurements on medical images greatly assist radiolo-
gists in making precise and reliable diagnoses and staging the patients. In clinical
practices, manual segmentation of anatomical structures from 3D medical images
by experienced experts is tedious, time-consuming, and error-prone, which is not
suitable for large-scale studies [3]. Besides, different medical imaging modalities,
such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and
Positron Emission Tomography (PET), provide unique views of tissue features
at different spatial resolutions with functional information. In particular, CT is
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the most common imaging modality for the diagnosis of hepatocellular carci-
noma (HCC), the primary malignant tumor in the human liver. However, the
scan is associated with the radiation dosage and provides low soft-tissue con-
trast, which makes it difficult to visualize tumor boundaries. As a non-invasive
technique, MRI offers higher contrast, but has disadvantages in assessment cost,
acquisition time, and is more prone to artifacts. In clinical practice, the fusion
of multi-modal images allows for capturing more anatomical information and
integrating complementary information to minimize redundancy and enhancing
the diagnostic potential. Thus, it is a rapidly rising demand to segment cross-
modality images for accurate analysis and interpretation.

Fig. 1. Overview of the proposed 3D Wasserstein Distance Guided Domain Adap-
tion Model. With the guidance of the following constraints LWGAN, Lcyc and Lcontent,
we can learn the cross-domain mapping between unpaired CT and Multi-phasic MRI
sequences. The domain discriminators {DX , DY}, and a content discriminator Dc

jointly encourage the model to obtain the well-learned representation disentanglement.

Unsupervised domain adaptation has been widely used for generalizing med-
ical image segmentation models across domains. The major challenge is to miti-
gate domain gaps between different modalities. Several recent efforts have been
made to improve the segmentation performance without label data in the medi-
cal imaging community [2,8,9]. For example, Yang et al. [9] utilized multi-modal
unsupervised image-to-image translation framework (MUNIT) [6] to decompose
image into a shared domain-invariant content space and a domain-specific style
space. Then, the learned content representations are used to train the segmen-
tation network.

In this paper, we present a novel unsupervised cross-modality domain adap-
tation method for medical image segmentation. Our proposed method extends
upon [9] as follows: Firstly, in order to obtain more complete domain invari-
ant representations, we introduce Wasserstein distance [4,11,12] to reduce the
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domain discrepancy instead of the negative log-likelihood used in [7]. Secondly,
medical imaging data is inherently three-dimensional (3D). However, most of
domain adaption methods leverage 2D information. We incorporate 3D volu-
metric information to improve the image quality of reconstructed images by
fully exploiting detailed spatial information along the z dimension. Thirdly, to
facilitate the decomposition of domain-invariant shared information and domain-
specific features, in our work we propose a content discriminator to distinguish
extracted content-level representations between different domains and utilize a
cross-cycle consistency loss to enforce many-to-many mappings. We demonstrate
that our proposed methods are competitive against other state-of-the-art meth-
ods in multi-domain liver segmentation.

2 Method

2.1 Overview

Our goal is to learn a cross-modality mapping between two domains X and Y
without paired training data. We assume that there exists a potentially many-
to-many mapping between two domains. Our approach decomposes images onto
a shared content spaces c ∈ C, and domain-specific space SX and SY [6,7].
Intuitively, the content encoders are used to map the shared information shared
among domains onto C, and the style encoders project the domain-specific infor-
mation onto SX and SY .

2.2 Model

Let x ∈ X and y ∈ Y be images from two different domains, or in our task, two
different imaging modalities. As shown in Fig. 1, Our method deploys 3D CNN
to take advantage of spatial information. Similar to the recent works [6,7], the
overall model consists of several networks: jointly trained content encoders {Ec

X ,
Ec

Y}, style encoders {Es
X , Es

Y}, decoders {GX , GY} and domain discriminators
{DX ,DY}, and a content discriminator Dc. i.e., given the domain X , the con-
tent encoder Ec

X and the style encoder Es
X encode x to a content code zcx in a

shared, domain-invariant content space (C) and a style code zsx in domain-specific
style space (SX ), respectively. The decoders GX reconstruct images conditioned
on both content and style codes. The discriminator DX aims to discriminate
between real images and reconstructed images from the domain X . In addition,
the content discriminator Dc is trained jointly to distinguish the encoded content
features zcx and zcy between two domain.

Latent Reconstruction. To achieve representation disentanglement and pre-
serve maximal information in the representation of each domain, we use the
bidirectional reconstruction loss to encourage the bidirectional mapping which
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includes the self-reconstruction loss and latent reconstruction loss, i.e.,

Lrecon
X = Ex[||GX (Ec

X (x), Es
X (x)) − x||1], (1a)

Llatent
X c = Ex,y[||Ec

Y(GY(zcx, zsy)) − zcx||1], (1b)

Llatent
Ys = Ex,y[||Es

Y(GY(zcx, zsy)) − zsy||1], (1c)

In Domain Reconstruction. In order to facilitate the disentangled content
and attribute representations for cyclic reconstruction, we formulate the cross-
cycle consistency loss as [7]:

Lcyc = Lcyc
X + Lcyc

Y = Ex,y[||GX (Ec
Y(x̂), Es

X (ŷ)) − x||1 (2)
+ ||GY(Ec

X (ŷ), Es
Y(x̂)) − y||1],

where ŷ = GX (Ec
Y(y), Es

X (x)) and x̂ = GY(Ec
X (x), Es

Y(y)), respectively.

Adversarial Loss. First, we introduce WGAN-GP [4,10] to match the distri-
bution of reconstructed images to the target domain. The generator G and two
discriminators DX and DY are trained via alternatively optimizing the corre-
sponding composite loss functions. i.e.:

LWGAN
Y = Ey[DY(y)] − Eŷ[DY(ŷ)] + α · Lgrad

Y , (3)

where DY is a discriminator for domain adaption to distinguish between recon-
structed images ŷ and real images y. The coefficient α is a weighting hyperpa-
rameter. The gradient penalty term is Lgrad

Y = Eỹ[(||∇ỹDY(ỹ) − 1||2)2)], where
ỹ is uniformly sampled between y and ŷ. The discriminator DX and loss LWGAN

X
are defined similarly. Second, we employ a content discriminator DC to match
the distribution of the encoded content features zx and zy of different domains.
We formulate the content adversarial loss [7] as:

Lcontent(Ec
X , Ec

Y , DC) = min
G

max
D

Ex[
1

2
logDC(Ec

X (x)) +
1

2
log(1−DC(Ec

X (x)))] (4)

+Ey [
1

2
logDC(Ec

Y (y)) +
1

2
log(1−DC(Ec

Y (y)))]

Total Loss. We jointly train the encoders, decoders, and discriminators via
optimizing the following objective function.

min
GX ,GY ,EX ,EY

max
DX ,DY ,DC

L(GX , GY , EX , EY , DX , DY , DC) = λWGANLWGAN (5)

+λreconLrecon + λcycLcyc + λlatentLlatent + λcontentLcontent,

where λWGAN, λrecon, λcyc, λlatent, λcontent are weights that control the impor-
tance of each term.
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SegModule. Once disentangled representation is achieved, the content-only
image can be generated given the content code. For both CT and MRI, we
assume that their content codes are embedded onto the shared domain-invariant
latent space that preserve anatomical information but exclude modality-specific
information. We implement DenseNet [5] as the segmentation network. Note that
we tailored the network configuration for our task. To address the inherent class
imbalance between foreground liver part and the background, we combine the
Soft Dice and weighted Cross-Entropy (CE) losses [8] to train the SegModule.

Ground-Truth DenseNets CycleGAN DADR 3D-WDGDA 3D-WDGDAc

Ground-Truth DenseNets CycleGAN DADR 3D-WDGDA 3D-WDGDAc

Fig. 2. Qualitative results of different methods on segmentation. We list the ground-
truth, DenseNets, CycleGAN, DADR, 3D-WDGDA, 3D-WDGDAc (with content dis-
criminater).

Model Implementation. We implement the proposed method in PyTorch,
using NVIDA TITAN XP GPUs. For domain adaption tasks, we build our model
based on [6,7] with changes as discussed in Sect. 2. The network architecture here
includes a VAE with two domain-specific encoders and decoders that is based
on [6]. We utilize the Wasserstein distance with gradient penalty instead of the
negative log-likelihood. The content discriminator adopts the same architecture
as in [7]. We use Adam optimizer with a learning rate of 10−4 and set the
hyperparameter λWGAN, λrecon, λcyc, λlatent, λcontent, and α as 1.0, 10.0, 0.1, 10,
and 10.0. The content discriminator is updated every 3 iterations. At the rest
iterations, other discriminators and generators would be updated jointly, lever-
aging the advantage of content discriminator to align the content code across
different domains.
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Table 1. Comparison over domain adaptation.

Method Dice Jaccard

DenseNets [5] 0.362 ± 0.016 0.325 ± 0.047

CycleGAN [13] 0.753 ± 0.031 0.681 ± 0.083

DADR [9] 0.828 ± 0.072 0.757 ± 0.092

3D-WDGDA 0.837 ± 0.054 0.759 ± 0.065

3D-WDGDAc 0.875 ± 0.039 0.814 ± 0.027

3 Experiments

3.1 Datasets and Training Settings

We used two datasets for validation: 1). LiTS - Liver Tumor Segmentation Chal-
lenge dataset [1]. It consists of 131 contrast-enhanced 3D abdominal CT scans.
2). Multi-phasic MRI scans of 36 local patients with HCC (note that the CT and
MRI scans are unpaired and unmatched). Considering the clinical practise, we
chose CT scans as source domain and MRI scans as target domain. We use 5-fold
cross validation on the CT and MRI datasets, and normalized as zero mean and
unit variance. In both WDGDA and SegModule part, input size of 3D modules
is 256 × 256 × 5, and for 2D modules is 256 × 256. To avoid over-fitting, we used
standard data augmentation methods, including randomly flipping and rotating
along the axial plane. We evaluated two variations of the proposed method: our
proposed 3D Wasserstein Distance Guided Domain Adaptation model without
content discriminator (3D-WDGDA), and 3D-WDGDA with content discrimi-
nator (3D-WDGDAc) (Table 2).

Table 2. Comparison over joint-domain.

CT MRI

Dice Jaccard Dice Jaccard

DenseNets [5] 0.807 ± 0.031 0.793 ± 0.035 0.821 ± 0.017 0.722 ± 0.028

DADR [9] 0.811 ± 0.076 0.780 ± 0.067 0.828 ± 0.022 0.727 ± 0.049

3D-WDGDA 0.885 ± 0.026 0.801 ± 0.058 0.843 ± 0.047 0.735 ± 0.045

3D-WDGDAc 0.904 ± 0.012 0.831 ± 0.041 0.883 ± 0.036 0.802 ± 0.038

In this work, there are three experiment setups: 1). For the domain adaption
part, we use 4 folds of CT and 4 folds of pre-contrast MRI for training. Then
4 folds of content-only CT and 1 fold of pre-contrast MRI are used to train
and test the SegModule, respectively. 2). We follow the same domain adaption
setting in experiment 1, then utilize 4 folds of content-only CT and 4 fold of
pre-contrast MRI as network input to train the SegModule, and 1 fold of pre-
contrast MRI as test dataset. 3). 4 folds of CT and 4 folds of multi-phasic MRI
are used for training. For the segmentation part, we investigate the multi-modal
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target domain by using 4 folds of CT and 4 folds of multi-phasic MRI. Note that
multi-phasic MRIs themselves are multi-modal target domain since they contain
several MRI modalities. We evaluate segmentation performance in terms of two
metrics: Dice and Jaccard.

3.2 Results

Experiment 1: To demonstrate the domain shift problem, we first evaluate
the performance of the unadapted baseline by directly feeding target images to
DenseNets [5]. We further compare our methods with CycleGAN+DenseNet,
DADR [9]. We present two typical results in Fig. 2. The quantitative results are
shown in Table 1. Compared with other methods, the proposed 3D-WDGDAc

improves the segmentation performance, and achieves an average Dice of 0.875
and Jaccard of 0.814.

Experiment 2: To show the robustness of our method for joint training, we
compare our methods with other state-of-the-art methods. As shown in Table 1,
our proposed method 3D-WDGDAc consistently obtains the highest Dice and
Jaccard score over CT and MRI datasets. Visual results of the proposed 3D-
WDGDAc are shown in Fig. 3.

Experiment 3: Multi-phasic MRI are considered as multi-modal target domain
with complex statistics. We therefore analyze the effectiveness of the proposed
method in multi-modal target domain. The quantitative results are shown in
Table 3. i.e., for brevity, CT→MRI denotes that SegModule is trained with
content-only CT images and tested by multi-phasic MRI images. We can see
that our method clearly remains effective with the multi-modal target domain.

CT DADR 3D-WDGDA 3D-WDGDAc MRI

CT DADR 3D-WDGDA 3D-WDGDAc MRI

Fig. 3. Visualization of content-only images by different methods. We list the CT
images, DADR, 3D-WDGDA, 3D-WDGDAc, and the reference MRI images.
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Table 3. Comparison over multi-modal target domain. For brevity, CT→MRI denotes
that SegModule is trained with content-only CT images and tested by multi-phasic
MRI images.

CT→MRI CT→CT

Dice Jaccard Dice Jaccard

DenseNets [5] 0.469 ± 0.005 0.289 ± 0.004 0.896 ± 0.048 0.821 ± 0.002

DADR [9] 0.736 ± 0.034 0.619 ± 0.059 0.893 ± 0.038 0.824 ± 0.048

3D-WDGDA 0.776 ± 0.013 0.677 ± 0.053 0.902 ± 0.056 0.832 ± 0.037

3D-WDGDAc 0.834 ± 0.029 0.707 ± 0.047 0.919 ± 0.044 0.851 ± 0.053

MRI→CT MRI→MRI

Dice Jaccard Dice Jaccard

DenseNets [5] 0.766 ± 0.003 0.631 ± 0.038 0.851 ± 0.015 0.725 ± 0.016

DADR [9] 0.782 ± 0.019 0.674 ± 0.015 0.854 ± 0.022 0.739 ± 0.031

3D-WDGDA 0.796 ± 0.016 0.718 ± 0.035 0.869 ± 0.047 0.740 ± 0.064

3D-WDGDAc 0.807 ± 0.044 0.744 ± 0.057 0.881 ± 0.027 0.786 ± 0.031

4 Conclusions and Discussions

We present a novel 3D unsupervised cross-modality Wasserstein distance
guided domain adaptation method for medical image segmentation, which
would improve clinical decision support systems by leveraging unpaired multi-
parametric MRI and CT data. Our method applies Wasserstein distance for the
adversarial training, and further takes advantage of 3D CNN to capture spatial
information. More importantly, we introduce a content discriminator to encour-
age content features not to carry modality-specific information, and further pre-
serve feature-level anatomical information for the segmentation task. Qualitative
and quantitative results demonstrate the superiority of proposed model over the
multi-modal image reconstruction in clinical domains, which is consistent with
quantitative evaluations in terms of traditional image segmentation measures.
Future work includes improving the efficiency of the proposed methods.
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Abstract. Semi-supervised techniques have removed the barriers of
large scale labelled set by exploiting unlabelled data to improve the
performance of a model. In this paper, we propose a semi-supervised
deep multi-task classification and localization approach HydraMix-Net
in the field of medical imagining where labelling is time consuming and
costly. Firstly, the pseudo labels are generated using the model’s predic-
tion on the augmented set of unlabelled image with averaging. The high
entropy predictions are further sharpened to reduced the entropy and
are then mixed with the labelled set for training. The model is trained
in multi-task learning manner with noise tolerant joint loss for classifi-
cation localization and achieves better performance when given limited
data in contrast to a simple deep model. On DLBCL data it achieves
80% accuracy in contrast to simple CNN achieving 70% accuracy when
given only 100 labelled examples.

1 Introduction

Deep learning (DL) has revolutionized computer vision in recent years and
achieved state-of-the-art performance in various vision-related tasks. The
inevitable fact is that most of the DL success is attributed to availability of
large scale datasets and compute-power available these days. To achieve state-
of-the-art performance, it is incumbent to train models as single-task learning
paradigm on large scale datasets with their associated labels. The costs asso-
ciated with labelling of the datasets is often very high especially for medical
imaging data which involves expert knowledge to collect the ground-truth. In
contrast, semi-supervised learning (SSL) approaches [1] take advantage of the
limited labelled data and leverages readily available unlabelled data to improve
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the model performance. This also alleviates the need for time-consuming and
laborious task of manual annotations and assist training of more complex mod-
els for better performance. Generally, SSL techniques follow a two-step approach
a) predict pseudo labels for unlabelled data from the model trained on limited
labelled data and b) retrain the model on pseudo labels and limited labelled
data to improve the performance. More recently, the trend has been to improve
learning ability of SSL by introducing regularization [2,3] and entropy minimiza-
tion [4] to avoid high-density predictions and train models into an end-to-end
manner.

In this work, we propose a multi-task SSL method to alleviate the need of
time-consuming and laborious task(s) of manual labelling for histology whole-
slide images (WSI). In this regard, we opted to use diffuse large B-cell lymphoma
(DLBCL) data because manual annotation of cell type and nuclei localization
is very hard due to large number of cells present in WSIs. DLBCL malignancy
originates from B-cell lymphocytes and it is the most common high-grade lym-
phoma among the western population with poor disease prognosis [6]. We pro-
pose a novel deep multi-task learning framework, HydraMix-Net, for simultane-
ous detection and classification of cells, enabling end-to-end learning in a semi-
supervised manner. We improve the performance of a semi-supervised approach
by enhancing a single loss term with noisy labels for joint training of multi-
task problem which to our knowledge has not been performed earlier. Our main
contributions are as follows: a) a novel multi-task SSL framework (HydraMix-
Net) for cell detection and classification, and b) combating noisy labels using
symmetric cross-entropy loss function.

2 Related Work

The purpose of semi-supervised task is to learn from unlabelled data during
learning such that it improves the model’s performance. To achieve this goal
these approaches take advantage of different techniques to mitigate the issues
faced during learning e.g., consistency regularization, entropy minimization and
noise reduction etc. Decision boundary passing through high-density regions can
be minimized using entropy minimization techniques like [4] which minimize
entropy with the help of a loss function for the unlabelled data. Consistency
regularization can be achieved using standard augmentation such that the net-
work knows if the input was being altered in some ways e.g., rotation, etc. [2,3].
Semi-supervised approaches also suffer from noisy labels as the pseudo labels
can introduce noise in the training batches which can be handled using noise
reduction methods such as [5]. Using these common approaches there have been
semi-supervised methods for classification of natural images e.g., Berthelot et
al. [7] used simple data augmentation and mixup [3] for consistency regulariza-
tion and used sharping [8] for entropy minimization for semi-supervised training.
Tarvainen et al. [9] improved the temporal ensembling over labels to use mov-
ing average of the weights of student model in teacher model after comparing
students prediction with its teacher’s prediction, which in turn improves learn-
ing of the teacher model. Inspired from all these methods and techniques we
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propose our novel deep multi-task join training framework for end-to-end clas-
sification and detection. Related work regarding fully supervised cell detection
and classification is discussed in the Supplementary Material Sect. 1.

Fig. 1. The schematic diagram of the proposed HydraMix-Net. The unlabelled data ub

is first subjected to k augmentations to generate u′
b,k and then process them from the

model to generate pseudo labels after which the predictions are averaged and sharpened
to minimize entropy in the prediction distribution. Once pseudo labels are assigned,
unlabelled set ub is mixed-up with labelled data xb to help model iteratively learn more
generalized distributions with noise suppression.

3 HydraMix-Net: Cell Detection and Classification

The proposed semi-supervised method HydraMix-Net is a holistic approach con-
sisting of different multi-task and semi-supervised techniques to handle various
learning issues e.g., consistency regularization using standard augmentations
and mixup techniques [3], entropy minimization with the help of sharpening
[8], and handling noisy labels with modified loss terms like symmetric cross
entropy (SCE) loss [5]. The proposed HydraMix-Net jointly optimizes the com-
bined loss function for classification and localization of centroids for the cell
patches. Our proposed multi-task learning framework consists of a backbone
model with three heads responsible for the classification and regression (i.e.,
localization of cell nuclei). The following sections delineate the data augmen-
tation, pseudo label generation, noise handling and training in the proposed
semi-supervised HydraMix-Net model, The schematic diagram of the proposed
model can be seen in the Fig. 1.

3.1 Data Augmentation

During training the model takes an input batch of labelled xb images from
X = {xb}Bb=1 and unlabelled ub images from U = {ub}Bb=1, where B was the
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total number of batches, with known one-hot encoded labels lc and lx, ly rep-
resenting nuclei centroid. To generate the pseudo labels and their centroids
luc, lux, luy using the model, k augmentations like horizontal flip, vertical flip,
random rotate, etc., were applied to ub to yield an augmented batch u′

b as
u′
b,k = augment(k, ub), k ∈ (1, ..,K). xb is also subject to single augmentation

per image such that it generates x′
b as x′

b = augment(k, xb), k = 1.

3.2 Pseudo Label Generation

To generate pseudo labels luc for the batch ub, predictions from the models ϕ
for k augmented images u′

b were averaged out on class distributions. While for
pseudo centroids, prediction on only the original image from the model was used.
This is due to the fact that after various augmentations, the centroids are not
in the same place because of transformations and hence averaging the centroids
of augmentations will lead of incorrect centroids as in Eq. (1).

luc, lx, ly =

⎧
⎨

⎩

1
k

N∑

k=1

ϕ(y′|ub,k; θ), if c =1

ϕ(y′|ub; θ), otherwise
(1)

where ϕ is the model and θ are the corresponding weights yielding the prediction
y′ which was split into patch label luc when c = 1, otherwise centroids lux and
luy.

Pseudo Label Sharpening. The generated pseudo labels luc tend to have
large entropy in the prediction as a result of averaging of different distributions.
Therefore, sharpening [8] was used to reduce or minimize entropy of predictions
by adjusting temperature of the categorical distribution as in Eq. (2).

sharpening(luc, T )i :=
1
T

li

/
L∑

j

1
T

lj (2)

where luc is the categorical distribution of predictions averaged over k augmen-
tations and T temperature is the hyper-parameter which controls the output dis-
tribution. When T approaches to 0 it will produce the one-hot encoded output
meaning lowering the temperature will yield in low entropy output distributions.

3.3 Mixup

To bridge the gap between unseen examples and remove over-fitting and achieve
generalization in semi-supervised approaches mix-up [3] technique was used.
Given a pair of images and their labels as (x1, l1) and (x2, l2). Images were
mixed along with their one-hot encoded labels in an appropriate proportion γ.
However, the centroids were not mixed due to their numeric nature and trans-
formations. Therefore, centroids from x1 were used after fusion as shown in (3).
In our method, we have used the modified mix-up [7] technique where γ was
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extracted from beta distribution and then max between γ and 1 − γ was taken
as γ, this ensures that maximum of the original image was preserved and output
was closer to x1.

γ = max(Beta(α, β), 1 − Beta(α, β))
xm = γx1 + (1 − γ)x2

lm = γl1 + (1 − γ)l2
lmx, lmy = lx1 , ly1

(3)

In order to apply this technique here x′
b and u′

b were concatenated and shuffled
into W and were used for the mix-up. Afterwards, x′

b was mixed-up with W0...|x′
b|

and u′
b was mixed-up with W|x′

b|....N where |x′
b| is the length of the augmented

mixed-up set x′
b and N is the total number of samples in W .

3.4 Noise Reduction

To handle noise, symmetric cross entropy (SCE) loss [5] was used for both
labelled and unlabelled loss instead of just relying on categorical cross-entropy
for labelled loss and mean squared loss for the guessed labels. SCE handles the
noisy labels by incorporating cross-entropy term for labelled loss as well reverse
cross-entropy for predictions loss. This provides a way to learn from model pre-
dictions as well instead of just relying on given labels as in Eq. (4). As with
iterative progressive learning, the model gets more confident in it’s learning and
predictions, which is why for unlabelled loss more weight is assigned to predic-
tions and in labelled loss more weight is assigned to labels.

lsl = δ(−
C∑

c=1

q(c|xm) log p(c|xm)) + ρ(−
C∑

c=1

p(c|xm) log q(c|xm)) (4)

where δ and ρ controls the effect of input labels and models predictions.

3.5 Model Training

The learning mechanism of the HydraMix-Net jointly optimizes the combined
loss function for classification and regression to predict label and location tuple
for labelled and unlabelled batches as in Eq. (5).

ltotal = μ(lc−sce + luc−sce) + (1 − μ)(lrx + lryx + lruy + lry) (5)

where lc−sce represents the symmetric cross-entropy loss for the labelled part
where luc−sce represents the symmetric cross-entropy loss for the unlabelled part,
both coupled together in weight μ which weights the classification head more to
provide more accurate labels. While the lrx and lry are the mean squared error
loss terms for the labelled data whereas the lrux and lruy are the mean squared
error loss terms for the unlabelled data for the regression head being weighted
by the (1 − μ). While calculating loss for regression heads the predictions of the
classification head were multiplied by regression heads in order to avoid the loss
incorporated by background patches which is why the classification head was
given more weight in the loss term.
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4 Results

The data set used for the study is a private data for DLBCL [10]. Patches of size
41 × 41 were extracted from 10 manually annotated WSI’s resulting in 12553
patches and after offline augmentations, 24000 patches were used for this study. 3
WSI’s were selected for the test purposes while 7 WSI’s were used for the training
purposes, splitting on 70–30 basis which resulted in 18000 training patches and
6000 test patches. See Supplementary Material section for the detailed
description of the data set, implementation details, comparative and
ablation study.

4.1 Experimental Settings

The experimental settings used to test the effectiveness of the proposed approach
were i) fully supervised ii) partial data iii) semi-supervised, In the first one all
of the available data was used to train a simple CNN i.e., WideRes-Net [11],
while in partial setting WideRes-Net was trained on partially labelled data.
Lastly, HydraMix-Net used semi-supervised approach for training where both
labelled and unlabelled data were used in a way discussed earlier in the Sect. 3.
Further, for labelled and unlabelled data we tested different configurations from
50 labelled images to 100, 200, 300, 500, 700 and so on.

4.2 Quantitative Results

Table 1 shows the accuracy achieved by the HydraMix-Net in contrast to the
simple CNN on partially labelled data e.g., when provided with the random
50 labelled examples the simple CNN model under-performed by achieving
62% accuracy where the proposed approach leveraged the unlabelled data and
achieved superior performance with 66% accuracy. Similarly, when increased the
data from 50 labelled examples to 100 and 300 the HydraMix-Net achieved higher
performance and reached up to 81% accuracy while simple CNN model trained
on only these labelled examples only gave the best performance of 76% accuracy
which shows higher efficiency of the proposed approach in scarcity of the labelled
examples. Confusion matrix for 100 labelled examples is shown along with the
cell centroid detection in the Fig. 2. Figure 3 shows the actual predictions for the
proposed approach for the 100 labelled training set. When trained with all the
data the highest accuracy achieved is 90% where this threshold is reached by
approx. 3000 labelled data by both the techniques.
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Table 1. Test accuracy of the HydraMix-Net and partial data approaches with various
amount of labelled data provided.

Labelled data 50 100 300 500 700 1000 3000

Simple CNN 0.62 0.70 0.76 0.83 0.85 0.84 0.90

HydraMix-Net w/o SCE 0.66 0.70 0.70 0.35 0.35 0.35 .–

HydraMix-Net 0.66 0.80 0.81 0.85 0.85 0.85 0.88

Fig. 2. (a) Represents the confusion matrix for the HydraMix-Net while (b) Represents
the prediction and distribution of the centroid in the HydraMix-Net trained on 100
labelled instances where the output size is 32 × 32.

Fig. 3. The prediction of labels and distribution of the centroid on a example set where
the HydraMix-Net was trained on 100 labelled examples
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5 Conclusion

In this study, we proposed a novel end-to-end holistic multi-task SSL approach
for simultaneous classification and localization of nuclei in DLBCL. Further, we
plan to extend this work by improving the technique with the help of strong
augmentations and validating the performance of our HydraMix-Net on larger
cohorts from multiple tumour indications. The cell detection and classification
may also be help in performing follow-up analysis like survival prediction and
understanding the spatial arrangement of malignant cells within tumour micro-
environment to predict other clinical outcomes.
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Abstract. To train deep learning models in a supervised fashion, we
need a significant amount of training data, but in most medical imag-
ing scenarios, there is a lack of annotated data available. In this paper,
we compare state-of-the-art semi-supervised classification methods in
a medical imaging scenario. We evaluate the performance of different
approaches in a chest radiograph classification task using the ChestX-
ray14 dataset. We adapted methods based on pseudo-labeling and con-
sistency regularization to perform multi-label classification and to use
a state-of-the-art model architecture in chest radiograph classification.
Our proposed approaches resulted in average AUCs up to 0.6691 with
only 25 labeled samples per class, and an average AUC of 0.7182 when
using only 2% of the labeled data, achieving results superior to previous
approaches on semi-supervised chest radiograph classification.

Keywords: Medical imaging · Semi-supervised learning · Deep
learning

1 Introduction

With the digitization of radiology, computer-aided diagnosis systems can be
integrated into the radiological practice workflow, giving support via automated
diagnosis tools. The development of automated diagnosis methods involves
knowledge from software development, digital image processing, and machine
learning. Automated diagnosis tools might deal with classic computer vision
problems, such as image classification, object detection, and segmentation, which
are usually solved by image feature extraction and classification algorithms.
Some of the methods typically used for medical image classification are deci-
sion trees, linear classifiers, and artificial neural networks [1].

Convolutional neural networks and other deep learning methods are becom-
ing the method of choice for most medical imaging applications in recent
years [9], mostly due to its high performance in image classification when a
large amount of data is available for training. Convolutional neural networks
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and other deep learning methods advanced the state-of-the-art in many data
processing tasks [7], and achieved radiologist-level performance on some medical
imaging tasks, such as detecting pneumonia [12] or hip fractures [5].

To train deep learning models in a supervised fashion, we need a significant
amount of training data. One of the medical imaging tasks with large datasets
available is chest radiography classification. Public datasets provide over 100,000
chest radiographs labeled with the most common findings [15]. These datasets
have automatically extracted labels obtained via natural language processing
algorithms on radiological reports and have been used to build radiologist-level
models [12]. However, in most medical imaging scenarios, there is a lack of anno-
tated data available [9], since, for most tasks, the samples need to be manually
annotated by an expert, which is an expensive and time-consuming task.

Recently, research in semi-supervised learning for image classification had
some considerable progress [11]. These methods use labeled and unlabeled data
to build a machine learning model. Methods based on consistency regularization
such as Mean Teacher [14], Unsupervised Data Augmentation [16], MixMatch
[3], and FixMatch [13] achieved results comparable to supervised training but
with only a fraction of the training samples. For instance, training a model on
the SVHN dataset in a supervised fashion using all training data (73,257 labeled
samples) results in an error rate of 2.59%, whereas training the same model
with the MixMatch approach and only 250 labeled samples achieves an error
of 3.78% [3]. However, these recent methods were still not thoroughly validated
and compared in a medical imaging scenario.

Our objective in this paper is to compare state-of-the-art semi-supervised
classification methods in a medical imaging scenario. We chose chest radiograph
classification since it is a common examination, has a lot of available data, and,
therefore, a strong baseline to compare. We adapt the semi-supervised classifica-
tion methods to a multi-label scenario and compare them to a strong supervised
baseline in chest radiograph classification, the CheXNet architecture [12].

2 Background

2.1 Supervised Learning

In the supervised learning approach, the model learns based on labeled examples.
As the system is presented to input and output variables from the training set, it
seeks to create a model that represents this data distribution. Then, this model
is extrapolated to infer the output variable of an unseen input sample. Formally,
the training data comprises samples {x1, x2 . . . , xn} , xi ∈ X along with their
corresponding labels {y1, y2 . . . , yn} , yi ∈ Y. We use the training set in order to
model the function f(x) : X → Y, where X is the s-dimensional feature space
and Y is the c-dimensional label space. We can use the final model m to predict
the labels of previously unseen samples.
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2.2 Semi-supervised Learning

Semi-supervised learning is a learning paradigm intersecting supervised and
unsupervised learning. In this scenario, besides L = {(x1, y1), (x2, y2) . . . ,
(xn, yn)} we also have unlabeled samples U = {u1, u2 . . . , un} that are also
within the feature space X but whose corresponding labels within label space Y
are unknown. We can use U in the training set alongside L in order to improve
the modeling of the function f(x). Intuitively, the unlabeled samples provide
important clues on the data distribution based on sample similarity, and they
help to add robustness to the model by exploring this distribution [11].

3 Related Work

The work of Rivero et al. [2] aims at reducing the need for annotated data
in medical imaging. They propose GraphXNET , a graph-based semi-supervised
learning approach for X-ray data classification. It is a graph model that contains
all the training samples with only a limited amount of them are labeled. They
tested the approach in the ChestX-ray14 dataset. When using only 20% of the
data, they achieve results close to a fully-supervised model. However, under
extreme minimal supervision (2% labeled data) the model does not perform
well, having an average AUC of 0.53.

Tanan et al. [10] perform semi-supervised classification in skin lesion classi-
fication and thoracic image analysis. The proposed method is called SRC-MT.
It is a semi-supervised classifier based on Mean Teacher [14] and introduces
a sample relation consistency term to the optimization function. This enforces
the consistency based on the relationship information among different samples
instead of individual predictions. They achieve using similar results to GraphX-
NET when using 20% of ChestX-ray14, but when using only 2% of labeled data,
they achieve an average AUC of 0.67.

4 Materials and Methods

4.1 Dataset

ChestX-ray14 [15] from the National Institute of Health contains 112,120 frontal-
view chest radiographs from 32,717 different patients labeled with 14 radiological
findings. In this work we use the official split which contains 78.468 training
samples, 11.219 validation samples and 22.433 test samples.

4.2 Semi-supervised Learning Methods

Pseudo-labeling is a simple semi-supervised approach and used as a semi-
supervised baseline. In this approach, the model is trained with a regular cross-
entropy loss on labeled data, and we also take the top prediction made in unla-
beled data and use it as a pseudo-label, compute the unsupervised loss and add
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it to the combined loss. Our approach was based on the work of Lee [8], since
our task is a multi-label scenario, we use a binary cross-entropy (BCE) loss and
also tested a soft label approach, in which the pseudo-label is the classes score
prediction, and a hard label approach, in which the pseudo-label is a one-hot
vector with the top prediction as one and the rest as zero.

Mean Teacher. [14] consists of using two models with identical architecture,
which are called student and teacher. At every training iteration, both models are
fed the same inputs with different augmentation policies, then, a consistency loss
is computed based on the distance between both models predictions. Finally, the
student weights Θs are updated via loss optimization, and the teacher weights
Θt are updated via an exponential moving average (EMA) of the student weights
after each training step e. A hyperparameter ρ controls the EMA decay rate to
update the teacher’s weights, as in Θt

e = ρΘt
e−1 + (1 − ρ)Θs

e. A combined loss
function Lcomb is used to update the student’s weights. This loss is the sum of the
task loss Ltask with the consistency loss Lcons controlled by a consistency weight
hyperparameter γ as in Lcomb = Ltask + γLcons. The task loss Ltask is a regular
cross-entropy loss between the ground-truth labels y and the predictions of the
student model ms(x), which is only computed on labeled instances. Since our
problem is multi-label we replaced the original cross-entropy loss with a binary
cross-entropy (BCE) loss over all labels as in Ltask = BCE(ms(x), y). The
consistency loss is a mean-squared error of the predictions from the student and
the teacher on unlabeled data u when submitted to two different augmentation
policies φs and φt therefore Lcons = ||ms(φs(u)) − mt(φt(u))||2.
Unsupervised Data Augmentation (UDA). [16] uses advanced data aug-
mentation techniques to input noise on the training data and compute con-
sistency between non-augmented samples. For image classification tasks, the
authors propose using RandAugment [4] as the data augmentation technique.
RandAugment randomly selects transformations for each sample from a col-
lection of transformations. Global parameters m and n control the distortions’
magnitude and the number of augmentations applied in each image. UDA uses
only one model m(·), which is updated by a combined loss similar to Mean
Teacher’s, except that the consistency loss Lcons is a KL divergence between the
predictions for strongly augmented (Φ(u)) and non-augmented (u) unlabeled
data. Since there is usually a limited amount of labeled data, the authors pro-
pose a technique called training signal annealing (TSA) to prevent overfitting
the labeled data and underfitting the unlabeled data. It consists of defining a
confidence threshold for the model’s predictions to use the training signals of
the labeled sample, gradually increasing the threshold T from 1

c to 1 (where c
is the number of classes) according to a schedule. This technique prevents over-
training on easy samples and focuses the initial stage of the training on complex
samples. In our approach, we also replaced the supervised loss with a BCE loss.

MixMatch. [3] is an algorithm that combines techniques from different semi-
supervised learning regularization approaches. It starts by sampling and aug-
menting labeled and unlabeled samples. Each unlabeled sample is augmented Q
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times, and the model computes predictions for each augmented sample. These
predictions are averaged and sharpened to become pseudo-labels ŷ, in order
to force predictions to be closer to a one-hot distribution. Then, the augmented
labeled and unlabeled data form a batch with their respective labels and pseudo-
labels. This batch is shuffled and regularized using the MixUp regularizer [17],
which interpolates data points using values sampled from a beta distribution to
create a smoother training manifold, and the model is trained using the interpo-
lated points x̃ and their interpolated labels ỹ and ˜̂y. The loss function combines
the losses on labeled and unlabeled data controlled by a hyperparameter γ like
the previous approaches. The loss for labeled data is a cross-entropy as the one in
UDA, except that it uses the data points x̃ and labels ỹ generated by MixUp. The
loss for unlabeled data is a mean-squared error between generated pseudo-labels
˜̂y and the predictions on mixed-up unlabeled inputs ũ. In our experiments, we
replaced the sharpen done on the softmax function to one made in the sigmoid
function as in σ(m(.))

1
τ , and also used a BCE loss.

FixMatch. [13] is a simple yet effective approach which holds the state-of-
the-art in many datasets. This approach combines consistency regularization
similar to UDA with pseudo-labeling. It leverages strong and weak augmenta-
tion policies. At first, an input sample ui is weakly augmented with a policy
φ and fed to a model m(·). Its output becomes a pseudo-label for ui using
ŷi = argmax(m(φ(ui))). Then, the input ui is strongly augmented with a policy
Φ, and the model is trained with a regular cross-entropy loss using the previ-
ously generated pseudo-label ŷi. FixMatch optimizes a combined loss of labeled
and unlabeled data controlled by a hyperparameter γ like previous methods.
The task loss Ltask is a cross-entropy between predictions for weakly augmented
inputs φ(xi) and their ground-truth labels yi. The consistency loss Lcons is also
a cross-entropy, but between the strongly-augmented Φ(u) and the pseudo-labels
ŷ that have a confidence score max(m(φ(xi))) higher than a threshold T . In our
approach, we adapted the method to compute a BCE loss with a one-hot vector
containing the top prediction higher than T .

4.3 Experiment Settings

We employ a multi-label classification approach reproducing the CheXNet model
[12], a popular approach that achieved state-of-the-art results in classifying mul-
tiple pathologies using a DenseNet121 convolutional neural network architecture
[6]. We use it as our supervised baseline and also as the model architecture for
the semi-supervised methods. The model is pre-trained on the ImageNet dataset,
and the images are resized to 224×224 pixels and normalized using the ImageNet
mean and standard deviation. We use a learning rate of 0.01, a cosine learning
rate schedule, and a Stochastic Gradient Descent optimizer with 0.9 momentum
and a weight decay of 0.001 and a mini-batch size of 16. In semi-supervised
methods, we use 8 labeled and 8 unlabeled samples for each batch. The weak
augmentations are the same ones performed in the supervised baseline [12], the
strong augmentations are done by RandAugment [4] with n = 2 and m = 10.
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Every method is trained for 20 epochs, as we empirically observed that a longer
training does not show improvement. We use the same model hyperparameters
for supervised training in all methods, varying only the hyperparameters refer-
ring to the semi-supervised training. We use subsets containing 25, 100, and
400 labeled samples per class for each method and leave the rest of the training
set as unlabeled samples, which is a common setup for semi-supervised evalua-
tion. We have three different subsets with different samples used as labeled for
each labeled amount, and we report the mean and standard deviation of the top
performance on the three experiments. We evaluate the models’ performance
computing the area under the receiver operating characteristic curve (AUC) for
each label.

To select better hyperparameters for our objective task, we performed a
random hyperparameter search in each method using a 25 labels subset. We
trained the model with different hyperparameters for 20 epochs and selected
the ones that achieved a higher AUC on the validation set. In all methods, we
searched for a consistency weight between 0.5 and 100. For Pseudo-labeling, we
selected 1 as the unsupervised weight and also searched for two different pseudo-
labeling strategies using soft and hard pseudo-labels and hard pseudo-labels had
the best performance. For the Mean Teacher, we selected a consistency weight of
100, and also searched for an EMA decay rate ρ for the teacher model between
0.8 and 0.99 and selected 0.99. In UDA, we selected a consistency weight of 2
and searched for a TSA schedule using linear, exponential, and logarithmic. The
logarithmic schedule showed the best results, but using none was still better, so
we did not use TSA in our experiments. For MixMatch, we selected a consistency
weight of 10 and also searched for the α of the β(α, α) distribution between 0.1
and 50, we selected 0.1. For FixMatch, we selected a consistency weight of 1,
and also searched for a threshold between 0.7 and 0.95 and selected 0.8. Since in
the original paper, the authors reported that a larger ratio of unlabeled samples
increased the model performance, we also searched for a ratio of 2,3, and 4, but
the ratio of 1 still showed the best results.

5 Results and Discussion

We summarize the results for each label subset in Table 1. Our strongest baseline
is the fully-supervised CheXNet [12], which achieves an average AUC of 0.8414.
The results of all the semi-supervised approaches are very similar, with the most
gain being obtained by Mean Teacher using 400 labels, achieving an average AUC
9% higher than the one obtained by a supervised training. With 25 labels, the
highest average result was obtained from UDA, improving supervised training in
5%, and using 100 labels, the best performance was with Pseudo-label, improving
the baseline in 6%. Comparing to the original baseline results presented by Wang
et al. [15] in ChestX-ray14’s release, our approaches were able to outperform their
fully supervised model using only 400 labeled samples per class and achieved
similar results when using 100.
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Table 1. AUCs of our proposed approaches and baselines using different amounts of
labeled samples on ChestX-ray14.

25 labels 100 labels
Supervised Pseudo-label Mean Teacher MixMatch FixMatch UDA Supervised Pseudo-label Mean Teacher MixMatch FixMatch UDA

Atelectasis 59.87 66.37 66.09 66.65 67.75 67.36 64.64 71.70 71.12 68.33 69.66 71.21
Cardiomegaly 56.82 64.21 62.83 62.70 66.46 66.71 64.89 79.86 76.22 77.91 76.90 77.73
Consolidation 67.53 68.16 68.82 67.71 67.97 69.45 71.17 72.92 72.30 72.22 73.15 73.60
Edema 77.48 80.82 79.53 80.86 79.95 80.43 81.30 83.66 83.78 83.50 82.36 82.89
Effusion 65.87 76.35 75.91 74.64 75.45 74.82 72.25 80.55 80.68 78.70 79.89 80.32
Emphysema 54.47 65.79 68.64 67.61 66.00 65.35 63.81 76.28 77.17 76.63 75.15 78.50
Fibrosis 65.94 65.86 66.87 64.74 63.36 64.78 66.03 68.29 70.35 67.77 69.41 69.76
Hernia 69.92 80.05 81.92 78.51 78.11 81.41 78.34 89.45 88.44 89.23 86.92 87.43
Infiltration 60.99 60.28 60.31 60.42 60.80 59.43 62.68 62.98 63.93 63.14 63.09 62.55
Mass 52.43 53.62 54.95 51.48 55.90 56.47 56.13 62.21 62.83 61.92 62.38 62.35
Nodule 55.12 57.52 56.40 58.26 57.13 55.37 56.48 58.81 58.80 58.28 57.33 58.14
Pleural Thickening 56.50 62.31 63.53 62.48 60.71 62.33 57.97 65.15 65.44 62.58 62.73 64.66
Pneumonia 60.88 63.11 61.44 61.80 62.67 62.61 63.56 66.57 64.95 65.77 66.16 65.52
Pneumothorax 57.99 69.97 69.15 70.18 68.70 70.35 65.61 76.09 76.61 75.12 74.57 77.80
No Finding 59.53 66.81 65.21 65.98 65.53 66.83 64.50 70.30 70.89 69.70 69.68 71.29

Average 61.42 ± 02.91 66.75 ± 01.55 66.77 ± 01.55 66.27 ± 01.95 66.43 ± 01.86 66.91 ± 01.76 65.96 ± 03.00 72.32 ± 00.14 72.23 ± 01.02 71.39 ± 00.45 71.29 ± 01.10 72.25 ± 01.25

400 labels Fully-supervised
Supervised Pseudo-label Mean Teacher MixMatch FixMatch UDA Wang et al. [15] CheXNet [12]

Atelectasis 67.39 74.48 74.89 74.04 74.17 73.43 71.6 80.94
Cardiomegaly 68.84 85.16 86.42 86.39 85.47 85.01 80.7 92.48
Consolidation 72.20 73.67 73.19 74.30 76.13 74.30 70.8 79.01
Edema 81.96 85.36 86.74 86.26 86.13 85.63 83.5 88.78
Effusion 72.82 82.86 83.65 83.49 83.17 82.61 78.4 86.38
Emphysema 67.61 84.15 87.06 84.96 83.82 85.64 81.5 93.71
Fibrosis 68.73 72.49 75.75 75.55 73.85 75.03 76.9 80.47
Hernia 81.25 89.34 89.08 88.41 90.89 88.63 76.7 91.64
Infiltration 63.45 65.06 65.62 64.38 65.80 64.10 60.9 73.45
Mass 59.10 69.09 72.26 70.56 69.87 70.40 70.6 86.76
Nodule 58.93 63.28 65.29 64.39 65.05 64.63 67.1 78.02
Pleural Thickening 60.73 68.59 69.56 67.72 70.42 70.60 70.8 80.62
Pneumonia 63.73 66.51 70.71 67.21 69.19 66.60 63.3 76.8
Pneumothorax 68.89 81.13 81.78 81.20 77.67 81.77 80.6 88.87
No Finding 65.18 73.53 74.18 72.98 73.42 73.38 - -

Average 68.05 ± 06.75 75.65 ± 00.50 77.08 ± 00.13 76.12 ± 00.48 76.34 ± 00.29 76.12 ± 00.65 73.8 84.14

The other two works that performed semi-supervised classification on
ChestX-ray14 [2,10] evaluated their methods using percentages of the training
data as labeled samples. To compare our results with theirs, we trained our best
approach, the Mean Teacher based, in subsets of 2% and 5% of labeled data.
Table 2 shows the results. Our approach shows almost 5% of improvement over
the previous state-of-the art when using 2% labels.

Table 2. Comparison of average AUC of our best approach on different amounts of
labeled data with two previous approaches of semi-supervised classification on ChestX-
ray14. Results as reported on the original papers.

2% 5%

GraphXNET [2] 53 58

SRC-MT [10] 66.95 72.29

Mean Teacher 71.82 74.82

6 Conclusion

In this work, we evaluated different semi-supervised learning methods performing
multi-label classification in a medical imaging scenario and achieved state-of-the-
art results on semi-supervised classification on ChestX-ray14. Most of the trained
methods showed similar results, with Mean Teacher having a slightly better gain
in performance when compared to a supervised baseline. The improvement over
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a supervised baseline is not as high as the ones reported by the original methods
in common computer vision datasets like CIFAR-10, highlighting the need for
semi-supervised approaches specifically designed for medical imaging.
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Abstract. One of the critical challenges in machine learning applica-
tions is to have fair predictions. There are numerous recent examples
in various domains that convincingly show that algorithms trained with
biased datasets can easily lead to erroneous or discriminatory conclu-
sions. This is even more crucial in clinical applications where predictive
algorithms are designed mainly based on a given set of medical images,
and demographic variables such as age, sex and race are not taken into
account. In this work, we conduct a survey of the MICCAI 2018 pro-
ceedings to investigate the common practice in medical image analysis
applications. Surprisingly, we found that papers focusing on diagnosis
rarely describe the demographics of the datasets used, and the diag-
nosis is purely based on images. In order to highlight the importance
of considering the demographics in diagnosis tasks, we used a publicly
available dataset of skin lesions. We then demonstrate that a classifier
with an overall area under the curve (AUC) of 0.83 has variable perfor-
mance between 0.76 and 0.91 on subgroups based on age and sex, even
though the training set was relatively balanced. Moreover, we show that
it is possible to learn unbiased features by explicitly using demographic
variables in an adversarial training setup, which leads to balanced scores
per subgroups. Finally, we discuss the implications of these results and
provide recommendations for further research.

Keywords: Computer-aided diagnosis · Demographic bias ·
Classification parity

1 Introduction

In medical image analysis, machine learning algorithms can be on par with or
even exceed the performance of experts. However, for reliable generalization,
large datasets are needed, that are representative of the population on which
they are ultimately applied. In the medical domain, this is often not the case
[6,15]. A further requirement is that the properties of the training data are sim-
ilar to the test data, which is sometimes overlooked. For example, some patient
c© Springer Nature Switzerland AG 2020
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groups (based on age, sex, ethnicity among others) can be overrepresented in
the data, biasing the model. Besides the notorious discriminatory face recog-
nition example [5], detrimental effects of such bias have been demonstrated in
various domains, varying from predictions of recidivism, to job offers or loan deci-
sions. For medical imaging, the problem seems relatively unexplored, despite the
potentially harmful consequences.

We aim to quantify whether and how bias is addressed in medical imaging
papers focusing on the diagnosis. We first survey proceedings from a recent con-
ference. For selected papers, we report the sample size, whether any demographic
measures are available, whether these are used by the algorithm and whether
demographics/bias are discussed in the paper. Using a dataset of skin lesions,
we then demonstrate that a classifier trained on a relatively balanced dataset
in terms of age and sex already shows biased results on the held-out test set.
In terms of [10], we apply the principle of classification parity, meaning that
we aim at making the predictive performance (AUC in our case) equal across
subgroups defined by so-called protected features (in our case sex and age).
As is also explained by [10], this mitigation strategy is not necessarily synony-
mous with fair machine learning, since equitable and fair decisions are very much
context-dependent. Finally, we provide some guidelines for evaluating algorithms
concerning this important topic.

1.1 Related Work

One form of dataset bias refers to a distribution shift between datasets, such
that models trained on one dataset, show a drop in performance on the other.
This idea has been studied in computer vision [18,31]. In medical imaging, such
drops in performance can be experienced in datasets collected at different cen-
ters [2,25,32]. Such differences are often addressed with transfer learning [6] tech-
niques, which either align the data distributions or learn dataset-independent
representations.

A more specific case of dataset bias is when the bias is based on the demo-
graphics of the training subjects including differences in ages, sexes, diets, habits,
genetics and so on. Collected data often inadvertently encode human preferences.
As an example, it has been demonstrated that face recognition algorithms can
discriminate based on e.g. skin color and perform poorly on under-represented
groups [5]. In medical imaging, similar factors might influence the data, thus
have an impact on the incidence of disease too, as shown in some studies. For
instance, [8,21] show that signs of brain aging as a biomarker of aging can be
predicted from brain and retinal images; or the work by [9] demonstrates the
relation between the human immunodeficiency virus (HIV) and the aging pro-
cess of the brain. A paper published after the first version of ours, shows gender
bias in classification of lung diseases from chest X-ray images [20]. Thus it is
essential to include or at least take into account the demographics in the data
analysis.

Various algorithms to mitigate this type of bias have been proposed. The first
set of approaches focuses on preventing this bias in the first place i.e., creating
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a balanced set in the data preparation step [28]. However, this is not always an
option especially for medical data which is rare and where new acquisitions are
often costly. Therefore, recent studies have focused mainly on learning repre-
sentations that are not only predictive of the actual outputs but also invariant
to the extraneous factors [1,11,26,34]. In most cases, by including the addi-
tional available demographic information during training, their predictive power
is mitigated by an adversarial loss and the features become invariant to them.

Due to the rise of machine learning diagnostic applications in the medi-
cal image analysis domain, we conduct a survey of the published techniques in
MICCAI 2018 [12] to investigate the inclusion of demographics in addition to
the medical images. Our results show that even though the demographics might
impact the outcome of the models, it is not a widely discussed topic in medical
imaging. Most of the datasets do not include the demographic information, and
the proposed techniques rarely propose to correct for potential biases in their
models. Additionally, we use a relatively balanced dataset of skin lesions [7] and
highlight the importance of correction for age and sex biases in this dataset. The
closest study to this analysis is [19], where they show that skin lesion datasets
over-represent lighter skin, but do not find large differences in performance for
different skin types.

2 Methods

2.1 Paper Analysis

We screened the MICCAI 2018 proceedings [12] for papers on diagnosis using
macroscopic images. We, therefore, focused on the chapters “Machine Learning
in Medical Imaging”, “Optical and Histology Applications”, “Cardiac, Chest and
Abdominal Applications” and “Neuroimaging and Brain Segmentation Methods:
Neuroimaging”. Papers were included if they focused on the diagnosis or detec-
tion of abnormalities. For each selected paper, one of the authors quantified the
following: number of public or private datasets used, number of subjects, whether
demographic information was given, and whether demographics were discussed.

2.2 Classifier Analysis

To understand potential differences in the performance of a classifier for different
demographic groups, we set up a baseline binary classification experiment. We
used the ISIC 2017 skin lesion dataset [7] for the diagnosis of melanoma skin
cancer since the age and sex were available for over 75% of the subjects. We
included only the subjects for which both variables were available in our analysis.
Age was provided to the nearest 5 years. To create large enough subgroups for
evaluation, we split the subjects by calculating the median age in the training
set (equal to 60) and using that as a threshold. The numbers of subjects in each
group are provided in Table 1.



186 S. Abbasi-Sureshjani et al.

Table 1. Demographics of the used datasets.

ISIC subset Total Included Male Female <60 ≥60

Train 2000 1744 886 858 1087 657

Validation 150 149 90 59 87 62

Test 600 553 283 270 302 251

Baseline Network. We trained an Inception-v4 [30] network as our baseline
model using the training procedure from [24], which has outperformed the top
result (0.874) from the ISIC 2017 challenge. The network uses data augmentation
based on adjusting the color (saturation, contrast, brightness, hue) and geometry
(affine transformations, flips, random crops) of the image. It is initialized with
ImageNet weights, and then further trained on randomly augmented training
images resized to 299 × 299. Training is then done with stochastic gradient
descent with a momentum factor of 0.9, batch size of 40, and learning rate of
1e−3 which is reduced to 1e−4 after the 10th epoch. Early stopping is used if
the validation area under the curve (AUC) does not improve after 8 epochs.
At test time, an image is randomly augmented 32 times, and the predictions
are averaged. All parameters are used as defined by [24] and not specifically
optimized for the subset of data that we used. We evaluated the classifiers with
AUC for the following groups: all subjects, male, female, young (<60) and old
(≥60).

Bias-Aware Network. To evaluate whether the learned representation has
any relations to the available demographics, we use the method proposed by [1].
Thus we employ an ensemble network with a shared feature encoder (the same
as the baseline model) and two classifier heads. One classifier is in charge of
classifying the skin cancer and it consists of a fully connected layer followed by
average pooling and softmax layers (similar to the baseline model). The other
head is supposed to predict the confounding parameter and it consists of a fully
connected layer followed by an average pooling layer. Parameters of the encoder,
cancer classifier and bias predictor are denoted by θe, θc, θbp respectively. Three
losses are used for training the network. For training the skin cancer classifier
head and encoder a cross-entropy loss (Lc) is used. While for optimizing the
bias predictor head, a bias prediction loss (Lbp) is defined as the negative-squared
Pearson correlation coefficient (−Corr2). By minimizing −Corr2, the correlation
between the predicted and true confounding parameter should increase. Since
sex is a binary parameter, in some experiments we define Lbp as a binary cross-
entropy loss (BCE). The third (bias resilient) loss is defined as Lbr = −λLbp and
is used to optimize the encoder adversarially to reduce the predictive power of
the encoded features for the confounding parameter. λ determines how much the
encoder is penalized for leading to correct predictions of the target demographic
parameter.

The ensemble network is trained iteratively with three main steps: (a) updat-
ing θe and θc based on the Lc loss; (b) updating only the θbp parameters based
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on Lbp loss; (c) and finally updating θe adversarially based on Lbr loss. Note that
the encoder weights are not updated in the second step, and the bias predictor
weights are not updated in the third step. The updates are done one-by-one iter-
atively. The learning rates and optimizers of the three update steps are the same
as the baseline model. It is worth mentioning that for the steps involving the
bias prediction, we only use the control data to make sure that the confounding
parameters are reliably estimated from healthy subjects. Multiple experiments
are performed to see whether it is possible to weaken the potential relationship
between the encoded features from images and the confounding parameters, in
our case age or sex.

3 Results

3.1 Paper Analysis

A total of 65 papers fit our inclusion criteria. Several statistics of the datasets
used, and the inclusion of demographic information by the papers are shown in
Fig. 1. In total there were 52 papers using 1 dataset, 11 papers using 2 datasets,
and 2 papers using 3 or more datasets. Nearly half (32 papers) did not use any
public datasets. The sizes of the datasets varied between 10 subjects and 112K
subjects, with 217 subjects as the median size.

Fig. 1. Number of papers using a certain number of private/public datasets (left), and
including demographic information (right).

In this set of 65 papers, 12 papers described at least age or sex. Notably,
10 of these were neuroimaging papers. Of the 12 papers, only 3 also evaluate or
discuss their results with respect to the demographics. [23] test whether their
glaucoma risk index differs significantly between the healthy and patient groups,
while also checking whether these groups have statistically different age and sex
distributions. [14] stratify their results of detecting brain malformations by age
group (children vs adults). Finally [16] corrects their Alzheimer’s score estima-
tion for brain images, with a factor based on linear regression of cognitively
normal subjects.
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Table 2. An overview of the AUCs obtained in each experiment. The most balanced
performances after correction for the bias are bolded.

Experiment Confounder λ Lbp All Young Old Male Female

1. Baseline N/A N/A N/A 0.83 0.76 0.84 0.76 0.90

2. Ensemble Age 0 −Corr2 0.83 0.78 0.83 0.77 0.90

3. Ensemble Age 5 −Corr2 0.80 0.77 0.80 0.73 0.90

4. Ensemble Sex 0 −Corr2 0.83 0.77 0.84 0.76 0.91

5. Ensemble Sex 5 −Corr2 0.72 0.64 0.75 0.73 0.78

6. Ensemble Sex 0 BCE 0.84 0.77 0.85 0.78 0.90

7. Ensemble Sex 0.5 BCE 0.83 0.78 0.84 0.77 0.91

Fig. 2. Left: The Lbp loss of the ensemble network with λ = 0 (experiments 2 and 4 in
Table 2); right: The Lbp and Lbr/λ losses when λ > 0 (experiments 3 and 5).

3.2 Classifier Analysis

The AUC performances on the test set across different subgroups and all the sub-
jects are shown in Table 2. For each experiment, we have specified the Lbp, demo-
graphic, and λ parameters used during training. The baseline model achieves an
overall AUC of 0.83 that is slightly lower than the AUC of 0.88 reported in [24]
because we only use the subset of subjects with known demographics and we do
only half of the test time augmentations used by [24]. Moreover, the ensemble
networks achieve the same performances as the baseline model when λ is set
to 0 (experiments 2, 4 and 6) because there is no back-propagation from the
bias predictor head to the encoder i.e., Lbr = 0. In these experiments, both sub-
group splits show large differences between them: depending on age, the AUC
varies between 0.76 and 0.85 (9%), and depending on sex, between 0.76 and 0.91
(15%). The obtained Lbp values for experiment 2 and 4 (λ = 0) are also shown
in Fig. 2 (left). As seen in this figure, there exist some correlations between the
predicted and true confounding parameter when the encoder is only optimized
for classifying skin cancer. This correlation is stronger for age than sex.



Bias in Diagnostic Algorithms 189

When we use the ensemble network to predict the age of the control subjects
in an adversarial setting (experiment 3), we see that the differences between
the performances of young and old subgroups decrease (only 3%), while that is
not the case for male/female subgroups. Similarly, when the sex is used as the
confounding parameter (experiment 5), the AUC of male/female subgroups get
closer (5% difference), while the difference between young/old subgroups remains
large (11%). The values of Lbp and Lbr/λ for experiments 3 and 5 are visualized
in Fig. 2 (right). Since the training is a min-max optimization problem, compared
to the left figure, the correlation does not increase during training i.e., Lbp does
not decrease. Additionally, the training stops much earlier resulting in a drop in
the overall AUC of the skin cancer classifier.

Since sex is a binary parameter unlike age, the BCE loss is used in experi-
ments 6 and 7. As depicted by the results, the BCE loss is not as effective as the
−Corr2 and the AUCs are almost the same as the baseline model. Note that λ
is determined heuristically based on the ratio between Lc and Lbp loss in order
to have an effective penalty in updating the encoder weights.

4 Discussion and Conclusions

Our paper analysis showed that demographics are rarely discussed and used in
diagnostic algorithms. This is surprising, given the importance of demograph-
ics in diagnosis. For example, men and women have different distributions of
melanoma subtypes [3], which can affect the final diagnosis.

Our classifier analysis results showed large differences in performance between
male and female subjects, and between different groups of age for the baseline
model. The male/female difference is somewhat surprising, given that the train-
ing data was relatively balanced. This suggests that these factors might influence
how difficult a skin lesion is to diagnose.

Additionally, we demonstrated the possibility to correct for the potential bias
in predictions to some extent by using an adversarial training setting. The same
method was used in [1] to investigate whether diagnosis of HIV based on brain
MRIs is dependent on subjects’ age instead of true HIV markers or not. Their
results suggest that predictions from the baseline may be biased, whereas the
bias-aware network results in a space with no apparent bias to age.

Our results indicate that age, sex and possibly other characteristics might
bias the results differently. There might be some correlations between different
confounders, or a case of Simpson’s paradox [33]. Moreover, there might be addi-
tional unknown factors (for instance the skin color or the hairs on the skin) that
need to be identified and treated appropriately. In general, correction is more
effective, when all confounding parameters are known and used simultaneously
along with training for the main target task. Additionally, we treated the age as
a continuous parameter, but the evaluation was done for two subgroups (young
and old). The fairness of this evaluation strategy needs to be investigated in
future works.

A possible way to address the bias problem would be to standardize what
information about the data or model needs to be included in a research paper.
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This could be inspired by datasheets for datasets [13], which describes the dataset
design and collection procedure, and relatedly model cards [22], which describe
in detail the choices made to train and optimize the model. Enforcing such stan-
dards would require large-scale collaboration between journals and conferences,
but researchers could already include such information to increase awareness in
the community as a whole. Although this type of measure does not remove bias,
it can show that a bias potentially might exist. The exact sources of this bias
could then be quantified, for example following the framework proposed by [29].

A recent interesting approach is the development of tools for assessing and
mitigating the amount of bias and fairness in machine learning models and
datasets. For example, Aequitas [27] is an open source toolkit developed at Cen-
ter for Data Science and Public Policy University of Chicago in order to enable
users to test models for several bias and fairness metrics in relation to multiple
population sub-groups. Another example is the AI Fairness 360 (AIF360) [4]
open source toolkit for checking unwanted bias and moreover mitigating it. This
toolkit developed at IBM focuses on industrial usability and software engineer-
ing. These tools can be helpful for data scientists, researchers, policy makers and
software engineers.

Another important direction is building bias-aware algorithms and removing
the bias in the final predictions. Even though that might be at the expense of
overall model accuracy [17,36]. Thus dataset and model interventions are both
necessary [35]. Once an algorithm is designed to be sensitive to bias, we need
to evaluate whether it is successful at this. Therefore, we need ways to quantify
what performance gap is evidence of bias or not.

In conclusion, we highlighted the importance of bias in medical datasets and
diagnostic algorithms, since ignoring it could affect the generalization across
different demographic subgroups. We believe that this is an important point of
attention for researchers working in medical image analysis community.
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Abstract. Deep Convolutional Neural Networks (CNN) are at the back-
bone of the state–of–the art methods to automatically analyze Whole
Slide Images (WSIs) of digital tissue slides. One challenge to train fully-
supervised CNN models with WSIs is providing the required amount
of costly, manually annotated data. This paper presents a semi-weakly
supervised model for classifying prostate cancer tissue. The approach fol-
lows a teacher-student learning paradigm that allows combining a small
amount of annotated data (tissue microarrays with regions of interest
traced by pathologists) with a large amount of weakly-annotated data
(whole slide images with labels extracted from the diagnostic reports).
The task of the teacher model is to annotate the weakly-annotated
images. The student is trained with the pseudo-labeled images anno-
tated by the teacher and fine-tuned with the small amount of strongly
annotated data. The evaluation of the methods is in the task of classifi-
cation of four Gleason patterns and the Gleason score in prostate cancer
images. Results show that the teacher-student approach improves signi-
ficatively the performance of the fully-supervised CNN, both at the Glea-
son pattern level in tissue microarrays (respectively κ = 0.594 ± 0.022
and κ = 0.559 ± 0.034) and at the Gleason score level in WSIs (respec-
tively κ = 0.403 ± 0.046 and κ = 0.273 ± 0.12). Our approach opens
the possibility of transforming large weakly–annotated (and unlabeled)
datasets into valuable sources of supervision for training robust CNN
models in computational pathology.
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1 Introduction

Prostate cancer (PCa) is the fourth most common cancer worldwide, with 1.2
million new cases in 2018, and it has the second-highest incidence of all cancers
in men. The gold standard for the diagnosis of PCa is the visual inspection of
needle biopsies or tissue samples such as prostatectomies. Currently, the Gleason
score (GS) is the standard grading system used to determine the aggressiveness
of PCa. The GS system is based on the architectural patterns shown in prostate
tissue samples that describe tumor appearance and the presence of alterations in
the glands. The Gleason score results from the sum of the two patterns (Gleason
patterns from 1 to 5) most present in the tissue slide producing a final grade in
the range of 2 to 10. Typical scores range from 6 to 10, where cases with higher
values are more likely to grow and spread faster. The Gleason score system
has been revised in 2016 [5] to propose a simpler system by having a smaller
number of grades (five-groups) with the most significant prognostic differences,
Nevertheless, GS is still commonly used in pathology reports, in conjunction
with the new five-groups classes. Thanks to the recent improvements in digital
microscopy, the diagnosis is increasingly made through the visual inspection of
high-resolution scans of a tissue sample or a Whole-Slide Image (WSI).

One of the current challenges in medical imaging and particularly in compu-
tational pathology (CP), is the lack of datasets with copious region annotations
for training robust supervised deep convolutional neural networks (CNN) [4]. For
example, to train the deep learning models in Nagpal et al. [9], the authors col-
lected 112 million image patches derived from 912 slides, which required approx-
imately 900 pathologist hours to annotate. Such efforts raise the question of
investigating models that minimize this costly labeling effort and reuse publicly
available data to train CNN-based models.

While there is an increasing amount of available raw data, it is well known
that finding reliable annotations accompanying the WSI, which are made of up to
1000002 pixels, is a problem in this field. Examples of valuable, publicly avail-
able datasets are the Camelyon dataset for breast cancer [8] and The Cancer
Genome Atlas datasets, containing up to 500 Whole slide images for individ-
ual organs, including the prostate (TCGA-PRAD)1. The main drawback of the
TCGA datasets is that the repository does not provide region annotations for
the images. The lack of strong labels poses a challenge to use the dataset to train
state–of–the–art supervised CNN models for CP tasks such as the classification
and segmentation of tissue subtypes of PCa. The available strongly annotated
datasets in CP usually contain few images annotated or small regions of larger
images [2], since the annotation of such large slides is a costly process that takes
a considerable amount of time from highly-specialized personnel. In machine

1 https://portal.gdc.cancer.gov/projects/TCGA-PRAD Retrieved 1st of July, 2020.

https://portal.gdc.cancer.gov/projects/TCGA-PRAD
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learning and computer vision, the use of semi-supervised and semi–weakly super-
vised learning has recently shown the potential of leveraging on large unlabeled
and weakly–labeled datasets, reaching better performance than state–of–the–art
supervised models in the classification of the ImageNet dataset [14]. Also, com-
bining few strongly labeled and many weakly labeled images has been proposed
in [11], achieving competitive results on natural image datasets, while requiring
significantly less annotation effort.

Recently in CP, deep CNN approaches using weakly supervision have reached
good performance for automatic Gleason scoring in WSI [10]. Obtaining pseudo-
labeled data that is automatically annotated and that can improve the robustness
against dataset heterogeneity and performance of CNN models is highly valuable,
given a large amount of unlabeled (and weakly annotated) datasets that are
publicly available and the improvement that it can bring to the results.

In this paper, the simple, yet effective, teacher-student approach of fine-
tuning very large pre-trained models to generate pseudo-labeled examples is
explored for the first time in the task of classifying prostate cancer tissue. Our
approach employs a high-capacity (22 million parameters) ResNext-based model
as a teacher. The teacher is pre-trained with a dataset of nearly one billion natu-
ral images retrieved from Instagram and its hashtags, and fine-tuned with both,
weakly–annotated images from TCGA-PRAD, and annotated tissue microar-
rays. The smaller student model, a DenseNet-BC-121 with 7 million parameters,
is then trained with the TCGA-PRAD pseudo-labeled regions annotated by
the teacher and fine-tuned with the tissue microarray strong pixel-wise labels.
Experimental results show that the teacher-student approach improves with
statistical significance the performance of the fully-supervised CNN, both at
the Gleason pattern level in tissue microarrays (respectively κ = 0.594 ± 0.022
and κ = 0.559 ± 0.034) and at the Gleason score level in WSI (respectively
κ = 0.403 ± 0.046 and κ = 0.273 ± 0.12).

2 Experimental Setup

The overall workflow of the proposed semi-weakly supervised approach for clas-
sifying PCa images is summarized in Fig. 1. The details of each step involved
in the training of the models are further explained in Sect. 2.2. The cardinality
and characteristics of the datasets used in the article are described in Sect. 2.1.

2.1 Datasets

The two datasets of prostate images are gathered from two different sources. The
TCGA-PRAD WSI repository and Tissue Microarrays (TMA). TCGA-PRAD
includes WSIs from 19 different medical centers. It implies visual heterogeneity
between dataset content, even though the tissues are stained in both datasets
with the same reagents: hematoxylin and eosin (H&E). The dataset is comprised
of pairs of WSIs, up to 1000002 pixels, scanned at 40x resolution and the corre-
sponding weak labels (one label per WSI) from the diagnostic report of prostate
cancer cases with Gleason scores between 6 and 10.
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Fig. 1. The teacher-student approach: The teacher model is involved in the steps 1 to
4 (yellow background, top) and the student model is steps 5 and 6 (green background
at bottom). The teacher model is first fine-tuned (from the trained model of [14]) to
predict the weak labels of the TCGA-PRAD patches (primary GP) and then fine-tuned
with the strongly-annotated patches from the TMA dataset. The teacher then pseudo-
annotate the TCGA-PRAD patches, and the student is pre-trained using the top-ρ
ranked patches. Finally, the student is fine-tuned with the strongly annotated patches
from the TMA dataset. (Color figure online)

The WSIs are available from The Cancer Genome Atlas (TCGA), which is an
extensive publicly available collection of data including digital pathology images
that contains 500 cases of prostate adenocarcinoma (TCGA-PRAD). The used
WSIs are a subset of the data containing only images used for diagnostic purposes
(no frozen sections). The division of the dataset is the same as in baseline sets
for cross-validation: 171 cases for training, 84 for validation, and 46 for testing.
Each WSI is paired with its global Gleason score. For the task of Gleason pattern
prediction at the patch level, the reported primary Gleason pattern of the WSI is
used as a weak label. The patches are densely extracted only from tissue-regions
of the WSI. For this, the HistoQC tool [7] is used first to generate tissue masks
of the WSIs. Then, the blue-ratio mapping described in Chang et al. [3] is used
to prevent selecting areas without nuclei such as those containing fat, connective
tissue, or background.

The TMA dataset includes pixel-wise annotations, made by pathologists, of
886 prostate TMA cores. Each core is 31002 pixels, scanned at 40x resolution
(0.23 microns per pixel). The training, validation and test sets as well as the
patches are the same as in the study of Arvaniti et al. [2]. The total number of
microarrays, WSIs and patches extracted from them is shown in Table 1.
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Table 1. Left: Number of patches for each Gleason pattern class in the TMA dataset
and for the weakly-annotated patches from TCGA-PRAD, after the semicolon. Right:
Number of microarrays in the TMA dataset and WSI (after the semicolon) for TCGA-
PRAD.

Class Train Val Test

Benign 1830;1710 1260;840 127;460

GP3 5992;28919 1352;15443 1602;4000

GP4 4472;48398 831;22500 2121;13633

GP5 2766;8000 457;4000 387;3000

Total 15060;87027 3900;42783 4237;23093

Class Train Val Test

Benign 61;– 42;– 12;–

GS6 158;13 35;20 79;5

GS7: 3 + 4 47;42 14;10 28;6

GS7: 4 + 3 18;30 11;14 23;11

GS8 119;37 15;12 84;13

GS9 & GS10 105;49 16;28 19;11

Total 508;171 133;84 245;46

2.2 Weakly Semi-supervised Teacher-Student Approach

The hypothesis in the semi-supervised setting is that if one has a dataset with
labeled data and another without, it is possible to train a model that can use
both sources, of which the performance is higher than the one obtained using
only used the labeled samples [15].

The teacher-student paradigm is a semi-supervised strategy where the
teacher’s role is to transform the labels from the relevant examples of the weakly–
annotated (or unlabeled) data. The teacher model output is pseudo–labels for the
unlabeled data (resembling the strong labels) for training the student model with
both sources of supervision, the strong annotations, and the pseudo-annotated
dataset. Formally, if we denote the loss of a model M trained with a dataset X by
LM(X ), then ideally, LM (S) > LM (S ∪ T (U)), where S stand for the strongly-
annotated, and T (U) for a pseudo-labeled set transformed using a mapping T
of the unlabeled (or weakly labeled) dataset U .

The six-steps setup presented bellow resembles the best-performing configu-
ration from the weakly-supervised teacher-student setup originally presented by
Yalniz et al. [14]. In the weakly-supervised setup, the authors exploit the weak
labels and characteristics of the datasets resembling the characteristics in our
application to computational pathology, where it is feasible to use image-level
labels as a weak form of supervision. Our main methodological novelties are the
use of very high resolution and highly heterogeneous images with weak labels
and the student variants, which are specifically designed for the prostate can-
cer image classification problem and not presented in the baseline paper [14].
While our approach might resemble commonly used bootstrapping techniques,
our method differs from them because there is no random sampling involved
since the teacher makes a non-trivial selection of unlabeled samples, and the
models do not use subsets of the same training set to estimate the performance
measures.

1) Weakly Supervised Teacher Fine-tuning: In this first step, the model
is fine-tuned with the TCGA-PRAD dataset to predict the primary Gleason
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pattern label extracted from the reports. The teacher model weights are ini-
tialized from the trained model of [14]. The pre-trained model from Instagram,
a ResNext-50 is a high-capacity model with 22 million parameters, that bet-
ter fits with noisy labels [6]. TCGA-PRAD can be considered a noisy dataset
since only a subset of patches actually contains the relevant pattern reported
as primary Gleason pattern. In this step, the model is trained for ten epochs
with a categorical-cross entropy loss to predict the primary Gleason pattern and
stopped if convergence is reached early.

2) Fine-tuning of the Teacher with Strong Annotations: In this step,
the weights of the model are refined to classify the TMA patches with ground-
truth data. In this case the teacher is also presented with samples from the
benign class. Ten models (with different initialization) are trained for 15 epochs,
as the TMA dataset is not as large as TCGA-PRAD. Then, the model with
the best average performance in the validation TMA partition and validation
TCGA partition is kept to pseudo-annotate the patches in the next step. The
performance of the teacher up to this step is reported in the results section.

3) & 4) Pseudo-labeling and Patch Selection of TCGA-PRAD: In this
step, the previously selected teacher model is used to infer the class-wise prob-
abilities of all the TCGA-PRAD patches. For each class, the ρ highest-ranked
patches per class are selected according to the softmax probability of the output
of the last fully connected layer. The trade-off between performance and ρ is
shown in the results section.

5) Pre-training of the Student Model with Pseudo-labeled Data: The
student model is trained in a supervised fashion using the pseudo-labeled images
annotated by the teacher. The distillation procedure aims at training the student
in such a way that it best reproduces the output of the teacher. This strategy
was shown to be successful for several image recognition tasks [14]. The student
has a smaller architecture than the teacher model because it is more efficient for
evaluation: the student model is the one for which the hyper-parameter selection
and test set evaluations are made. Therefore, it is better to have a smaller, faster
inference architecture. In the fifth step, the student model is pre-trained with
the ρ patches per Gleason pattern that are pseudo-labeled by the teacher. Ten
models are trained in this step for 15 epochs. The best student model is then
selected (i.e., the one that has the best performance in κ-score in the TMA
validation partition).

6) Training of the Student and Variants: In the last step, the best student
is trained with the strongly-annotated TMA patches. Ten model runs are trained
for 15 epochs, selecting the best (the best average run) and reporting the final
performance in the κ-score, both in the TMA and in the TCGA-PRAD test sets.

Four training variants of the student are evaluated. A) Fully-supervised train-
ing: here, only the TMA annotated patches are used for training the student; the
training scheme is similar to the one described in [2]. B) Using only the pseudo-
labeled images: in this case, the student never sees any patch with ground-truth
data from the pathologist annotations, just the pseudo-labeled patches from the
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teacher model. C) Pre-training with pseudo-labeled samples and then fine-tuning
with the strong annotations. D) Combining the pseudo-labeled and strongly
annotated patches in one single training set: this variant is similar to C), with
the difference that all the TMA and TCGA-PRAD patches are mixed at training,
instead of having two training stages. These three ablation experiments results
for the student model, are reported in the results sections Table 2.

2.3 Implementation, Architectures and Hyperparameter Selection

The implementation of all models was done in PyTorch, initialized with the
Instagram/ImageNet pre–trained weights for the teacher and student models,
respectively. Batch sizes of 128 samples were used for the first weakly supervised
pre-training of the teacher (step 1), and the fine-tuning of the teacher was done
with a batch size of 32 TMA patches (step 2). Several CNN models, namely,
DenseNet121, DenseNet161, MobileNet, MobileNetV2, were tested for the stu-
dent. Among these, the one that showed the best performance in the validation
TMA set was DenseNet121. Therefore, this architecture was chosen to train the
four variants of the student. The choice of a pre–trained network is done for
speeding up the convergence of the model, as described for the teacher model.
The CNN parameters were selected using a grid search over the validation sets
of both TCGA and TMA. The best values found on the validation set are the
ones used for training the ten repetitions. Specifically, the values explored for
the learning rate are in the set {10−5, 10−4, 10−3, 10−2}. In each of the student
training variants, the Adam optimizer is used with a learning rate of 0.001 and
a decay rate of 10−6.

3 Results and Analysis

Table 2. Performance measures for the semi–weakly supervised approaches, as evalu-
ated with κ−score. For the TMA test set, the reported measure is at the patch-level
Gleason pattern, while for TCGA-PRAD is at the WSI level. The ‘*’ indicates statis-
tically significant differences with a p-value < 0.05 from the baseline fully supervised
CNN, using a Wilcoxon signed-rank test.

Variant TMA TCGA-PRAD

A) Fully supervised [2] 0.5590 ± 0.0346 0.2732 ± 0.1207

B) Pseudo-labeled 0.5197 ± 0.0407* 0.3648 ± 0.0571

C) Pre-training → fine-tuning 0.5928 ± 0.0178* 0.3748 ± 0.0438

D) Pseudo-labeled ∪ TMA 0.5941 ± 0.0225* 0.4029 ± 0.0450*

Teacher performance 0.5601 ± 0.0440 0.1910 ± 0.1102*

There are two evaluation criteria: patch-level Gleason pattern classification
and image-level GS classification. For the GS classification, the models are eval-
uated using the revised Gleason score as defined by the International Society of
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Urological Pathology. All model performances are measured as the inter-rater
agreement and pathologist ground-truth. A performance measure that is often
used [1,13] is Cohen’s kappa, that is defined as κ = 1−

∑
i,j wi,jOi,j

∑
i,j wi,jEi,j

, wi,j = (i−j)2

(N−1)2

Where i, j are the ordered scores, N = 5 is the total number of Gleason scores
(or N = 4 Gleason pattern classes). Oi,j , is the number of images that were
classified with a score of i by the first rater and j by the second. Ei,j denotes
the expected number of images receiving rating i by the first expert and rating j
by the second. The quadratic term wi,j penalizes the ratings that are not close.
When the predicted Gleason score is far from the ground-truth class, wi,j gets
closer to 1. For obtaining the GS using the patch probabilities, all the predicted
probabilities are combined and a majority voting decides the GS, as in [1].

In Table 2 the test set performance for the four variants of the student models
is shown. The best model is variant four, where both TMA and pseudo-labeled
patches from TCGA-PRAD are mixed in one single training set. The teacher-
student approach improves the performance of the fully-supervised CNN, both
at the Gleason pattern level in tissue microarrays (respectively κ = 0.594±0.022
and κ = 0.559 ± 0.034) as well as in the Gleason score level performance in WSI
(respectively κ = 0.403 ± 0.046 and κ = 0.273 ± 0.12). The results entries with
‘*’ also show that the only student variant performs significantly better than
the baseline in both test sets is the combination of pseudo-labeled and strongly-
annotated samples, despite the other variants showing relative improvements.

Patch-level Gleason pattern classification

Only pseudo-labeled patches
Pseudo-labeled -> strongly ann. finetuning
Pseudo-labeled  U  strongly annotated

Number of pseudo-labeled patches Number of pseudo-labeled patches 

WSI-level Gleason score classification

Fig. 2. Performance of the student model, depending on the number ρ of pseudo-
labeled images presented. The three strategies are displayed, the two of semi-weakly
are better than the fully supervised one.

4 Discussion

An analysis of the optimal ρ for the number of examples presented to the student
is shown in Figure 2. The performance of two of the student variants for Gleason
pattern classification remains flat with respect to the number of pseudo-labeled
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patches, likely because the student saturates with few pseudo-labeled patches.
Similar behavior was shown in the baseline method of Yalniz et al. [11] where
the student reaches a maximum performance with ∼10% of the pseudo-labeled
data and then starts decreasing, probably due to the introduction of many noisy
samples.
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Fig. 3. Example of TCGA-PRAD patches pseudo-labeled by the teacher model: each
class-box has five uniformly sampled patches from the top hundred ranked samples by
the teacher and in the second row five from the hundred lowest ranked for that class.
The probability of each patch belonging to the class is shown on top (first row) and in
the bottom (second row). The Xe-Y is shorthand for X × 10−Y .

In Figure 3, a set of pseudo-labeled patches from the teacher are shown.
Most of the top-ranked patches match the tissue morphology from the strongly-
annotated data. There are a few noisy patches at the lowest probabilities, sug-
gesting that the model is also lowering the relevance of artifacts and other sources
of noise. The top-ranked patches for GP3, GP4, and GP5 are similar and typical
for the class morphology.

The code and datasets generated during the current study are available from
the corresponding author on request. Also, a supplemental document accompa-
nying this paper, details the training of the teacher and each of the three student
variants.

Concurrently to the publication of this work, Shaw et al. [12] extended the
teacher-student model by generating a chain of student models for the appli-
cation of classifying colon cancer regions. The results obtained by the authors
showed that with the chain of students, using only 0.5% of the original labeled
data, is possible to obtain the same performance as using 100% of the anno-
tations, showing the potential for use of this approach in other computational
pathology tasks.
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5 Conclusion

We present a simple yet effective approach for increasing the training dataset size
by obtaining pseudo–labeled regions in the task of prostate cancer classification.
The evaluation of the proposed semi-weakly supervised teacher-student app-
roach yielded better quantitative results than a fully supervised approach in two
highly heterogeneous datasets of PCa. A qualitative assessment also shows how
the annotated images by the teacher follow the same gland morphology patterns
of the strongly annotated data. The assessment of the trade-off between perfor-
mance and the amount of pseudo-labeled data shows that increasing the num-
ber of patches can deteriorate the student performance by introducing noise in
training. We are now working on the semi-supervised approach only, i.e., without
using any weak label, as well as the evaluation of the approach in classification
tasks for other tissues, validating the pseudo-labeled images with pathologists.

Acknowledgements.. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 825292
(ExaMode, https://www.examode.eu). Infrastructure from the SURFsara HPC center
was used to train the CNN models in parallel. Otálora thanks Minciencias through the
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Abstract. Pathologist-defined labels are the gold standard for
histopathological data sets, regardless of well-known limitations in con-
sistency for some tasks. To date, some datasets on mitotic figures are
available and were used for development of promising deep learning-
based algorithms. In order to assess robustness of those algorithms and
reproducibility of their methods it is necessary to test on several inde-
pendent datasets. The influence of different labeling methods of these
available datasets is currently unknown. To tackle this, we present an
alternative set of labels for the images of the auxiliary mitosis dataset of
the TUPAC16 challenge. Additional to manual mitotic figure screen-
ing, we used a novel, algorithm-aided labeling process, that allowed
to minimize the risk of missing rare mitotic figures in the images. All
potential mitotic figures were independently assessed by two patholo-
gists. The novel, publicly available set of labels contains 1,999 mitotic
figures (+28.80%) and additionally includes 10,483 labels of cells with
high similarities to mitotic figures (hard examples). We found significant
difference comparing F1 scores between the original label set (0.549)
and the new alternative label set (0.735) using a standard deep learn-
ing object detection architecture. The models trained on the alternative
set showed higher overall confidence values, suggesting a higher overall
label consistency. Findings of the present study show that pathologists-
defined labels may vary significantly resulting in notable difference in
the model performance. Comparison of deep learning-based algorithms
between independent datasets with different labeling methods should be
done with caution.

Keywords: Breast cancer · Mitotic figures · Computer-aided
annotation · Deep learning
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1 Introduction

Deep learning-based methods have shown to be powerful in the development of
automated image analysis software in digital pathology. This innovative field of
research has been fostered by creation of publicly available data sets of specific
histological structures. One of the most extensively researched cell structures in
current literature are mitotic figures (microscopic appearance of a cell under-
going cell division) in neoplastic tissue. Quantification of the highest density of
mitotic figures is one of the most important histological criteria for assessment
of biological tumor behavior and this pattern has therefore drawn much research
attention for computerized methods.

Manual enumeration of mitotic figures by pathology experts has some lim-
itations including high inter-rater inconsistency of pathologists in classifying
individual cells as mitotic figures as they exhibit a high degree of morphological
variability and similarity to some non-mitotic structures. In previous studies, dis-
agreement of classification occurred in 6.4–35.3% [8], and 68.2% [13] of labels.
This calls for algorithm-assisted approaches in order to increase reproducibil-
ity as it has been proven that algorithms can have substantial agreement with
pathologists on the object level [15]. Poor consistency of expert classification is,
however, also a potential bias for deep learning-based methods, as pathologists
are the current gold standard for assessment of morphological patterns, including
mitotic figures, and creation of histological ground truth datasets. Due to the
high inter-observer discordance of pathologists, we suspect some variability in
assigned labels if images are annotated a second time. The usage of pathologist-
defined labels for machine learning methods are thus somewhat a paradox as
algorithmic methods, which are trained with and tested on these partially noisy
ground truths, aim to overcome cognitive and visual limitations of pathologists.

In order to assess the robustness of algorithms and the reproducibility of
newly developed deep learning-based methods it is necessary to test on several
independent ground truth datasets. For these aspects, images should be indepen-
dent but the ground truth should ideally be consistent throughout the datasets.
To date, several open access datasets are available with labels for mitotic figures
in digitalized microscopy images of human breast cancer [10,11,14] and canine
cutaneous mast cell tumors [5], which have been developed by three research
groups with somewhat variable labeling methods. As several publications have
compared their algorithmic approaches between these publicly available datasets
(for example [1,4,6]), a strong difference in test performance is known for these
datasets. However, the influence of variability in the ground truth labels on train-
ing and test performance is currently unknown. In the present work, we have
developed an alternative ground truth dataset for the largest of those publicly
available images sets and assessed the difference to the original dataset. This was
done using a new labeling methodology, targeted towards improved identification
of mitotic figure events, and supported by the use of deep learning.
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2 Related Work

Most publicly available data sets with annotations for mitotic figures are from
human breast cancer, due to the high prevalence and high prognostic importance
of the mitotic count for this tumor type. Roux et al. were the first to present a
data set, consisting of five cases scanned by two whole slide scanners (and one
multi-spectral scanner) and annotated by a single pathologist (ICPR MITOS
2012, [11]). A year later, the MICCAI AMIDA 13 challenge introduced a new
data set, covering in total 23 cases, which were evenly spread between training
and test set [13]. They were the first to acknowledge potential bias (inter-rater
variance) by a single pathologist and thus perform the task by two pathologists
independently, with a panel of two additional pathologists judging discordant
annotations (see Fig. 1). The following year, the group behind the MITOS 2012
data set introduced an extended data set at ICPR (ICPR MITOS 2014, [10]),
consisting of 16 cases (11 for training and 5 for test), again scanned using two
scanners, but this time including annotations from two pathologists. In case the
pathologists disagreed, a third pathologist decided for the particular cell. The
data sets includes also an expert confidence score for each mitotic figure as well
as for cells probably not mitotic figures (hard negative cells). The most recent
mitotic figure dataset was part of the TUPAC16 challenge [14], incorporating all
23 AMIDA13 cases in the training set in addition to 50 new training cases and
34 new test cases. This dataset comprises the currently the highest number of
mitotic figure labels in human breast cancer.

Data about the agreement of experts in the MITOS 2014 data set can be
extracted from the labels given by the challenge. Out of all 1,014 cells that
were flagged by at least one pathologist as mitosis or probably mitosis, only
317 (31.26%) were agreed by all pathologists to be mitotic figures, but for 749
(73.87%) the expert consensus was mitosis. For the MICCAI AMIDA 13 data
set, Veta et al. reported an agreement in 649 out of 2038 (31.84%) annotated
cells by the two initial readers, and the consensus found 1157 (56.77%) to be
actual mitotic figures [13]. The fact that for both data sets the final consensus
significantly exceeds the initial agreement highlights that spotting of rare mitotic
figure events is a difficult component in the labeling process which might lead
to data set inconsistency.

For data sets, inclusion of real-life variance of stain and tissue quality is an
advantage, as the data is much more representative of a realistic use case. Current
datasets on mitotic figures exhibit some differences in staining and other charac-
teristics causing a certain domain shift [4] and somewhat limiting dataset trans-
ferability/robustness. Of the aforementioned datasets, the TUPAC16 dataset
likely includes the highest variability due to inclusion of currently highest num-
ber of cases that were retrieved from three laboratories and scanned with two
different scanners [14]. The consequence of the higher variability is an increased
difficulty for the pattern recognition task of automatic mitotic figure detection,
as also reflected by lower recognition scores achieved on the data set compared
to the other data sets. However, this variability represents a more realistic use-
case, and is highly beneficial for the development of algorithms to be used in
heterogeneous clinical environments.
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Fig. 1. Annotation workflow in the original AMIDA13/TUPAC16 data sets [13,14].
The images were independently screened by two pathologists. All agreed mitotic figures
were directly accepted as ground truth, while disagreed cases were submitted to a panel
of two additional experts.

3 Materials and Methods

3.1 Development of an Alternative Set of Labels

Due to the relevance of the TUPAC16 dataset (see above), we have decided to use
these images in the present study for assessment of reproducibility of pathologist-
defined labels. Available images from the TUPAC16 test and training set (N =
107 cases [14]) were retrieved from the TUPAC challenge website. Cases from
the AMIDA13 challenge were available as several separate, but often flanking
image sections, which we stitched to single images by utilizing correlation at
the image borders, wherever possible. The alternative dataset was developed in
a similar way as published by Bertram et al. [5]: First, one pathology expert
screened all images twice (see Fig. 2) with an open source software solution with
a guided screening mode [3]. Mitotic figures (MF) and similar structures (hard
negatives, HN) were labeled. The dataset from the first screening of the training
set included 5,833 labels (2,188 MF; 3,645 HN), and from the second screening
7,220 labels (2,218 MF; 5,002 HN).

The dataset was given to a second pathologist, who assigned a second label
(MF or HN) in a blinded manner (label class obscured) supported by the annota-
tion software through automatic presentation of image section with unclassified
objects. The second pathologist assigned the MF label in 2,272 cases and the
HN label in 4,978 cases. Initial agreement for the class MF was found for 1,713
cells (61.69%), the pathologists disagreed on 1,064 cells (14.74% of all cells).
All disagreed cells were re-evaluated by both experts, and the consensus of the
manual dataset contained 1,898 MF and 5,340 HN.

Subsequently, labels from the first expert were used for an algorithmic-aided
pipeline for detection of missed objects with high sensitivity (low number of false
negatives) and low specificity (very high number of false positives), like described
in [5]. The pipeline extracted image patches around additionally detected mitotic
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Fig. 2. Labeling approach used for the creation of the alternative set of labels consisting
of two steps. First, an expert screened the slides twice, and another expert performed
a blind evaluation of all cells. Second, an algorithmic pipeline was used to detect cells
potentially missed by the manual screening. For both steps, disagreed labels were re-
evaluated by both experts in order to find a common consensus.

figure candidates, sorted according to their model score. The algorithm-based
screening additionally found 5,824 objects (mitotic figure candidates), which
were then extracted as 128 × 128 PX image patches centered around the detec-
tion. Two experts assessed (MF or HN) these patches independently and agreed
on all but 142 patches. All agreed objects were assigned to the dataset immedi-
ately and disagreed objects were re-evaluated by joint assessment for consensus.
The final augmented data set contains 1,999 MF (+5.32% by augmentation) and
10,483 HN (+96.31% HN by augmentation). Please note that all numbers are
given only for the training part of the set to not reveal information about the
test set for further usage.

3.2 Automatic Mitosis Detection Methods

We evaluated the alternative labels using a standard, state-of-the-art object
detection approach: We customized RetinaNet [7] based on a pre-trained ResNet-
18 stem with an input size of 512×512 px to have the object detection head only
attached at the 32×32 resolution of the feature pyramid network. We chose four
different sizes (scales) of bounding boxes to enable augmentation by zooming
and rotation, but only used an 1:1 aspect ratio, since the bounding boxes were
defined to be squares. We randomly chose 10 tumor cases to be our validation
set, which was used for model selection based on the mAP metric. After model
selection, we determined the optimum detection threshold on the concatenated
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training and validation set. Models were trained using the same pipeline and
optimization criteria on both, the original TUPAC16 label set and the novel,
alternative set, and evaluated on the respective test sets using F1 as metric.

Additionally, we calculated the model scores for individual cells of the data
sets to assess model confidence. Since the test set of both label sets are not avail-
able publicly, we used a three-fold cross-validation on the training set. For this,
we disabled the threshold normally used within the non-maximum-suppression
of the model post-processing, which enabled us to derive model scores from the
classification head of the model for all cells of our data set. We matched anno-
tations in both data sets under the assumption that all annotations within a
distance of 25 pixels refer to the same object.

The complete training set and all code that was used for the evaluation is
made available online1. We encourage other research groups to use this alterna-
tive dataset for training their algorithms and we will provide evaluation of the
performance of detection results on the augmented test set upon a reasonable
request to the corresponding author.

4 Results

Comparing the original and the new, alternative training label sets, we find that
they agree for 1,239 MF annotations (53.59%), while the two expert groups
disagreed on 1,073 cells (46.41%). As depicted in Fig. 3, 246 of MF identified
in the original TUPAC16 label set were assigned to be hard examples in the
alternative set, while 67 were not annotated at all. Our experts revisited these
67 labels and classified 11 as MF and 56 as HN by consensus. The alternative
set assigned 760 further cells with the label MF, that were not annotated in the
original label set.

Looking at the concatenated model scores from the cross-validation experi-
ment, we can state that the model trained on the alternative set shows an overall
higher confidence for agreed mitotic figures. In contrast, MF labels only present
in the original TUPAC16 dataset had an overall lower model score with a ten-
dency towards higher values in the models trained on the original set (median
values are 0.326 and 0.284). The group of labels newly assigned in the alterna-
tive set shows higher scores for the model trained on the alternative set (median
value of 0.503 vs. 0.266), while the group of hard negatives has a very similar
distribution with low model scores for both training label sets.

The higher model confidence for mitotic figures on the alternative dataset
in Fig. 3 coincides with a generally higher F1 score in model performance on
the test set (see Table 1). We see a small increment for using the data set using
the machine-learning-aided detections for potentially missed cells, related to a
notable increase in precision.

1 https://github.com/DeepPathology/TUPAC16 alternativeLabels.

https://github.com/DeepPathology/TUPAC16_alternativeLabels
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Fig. 3. Comparison of the original TUPAC16 and alternative label sets (training part
only). The two expert teams agreed upon 1,239 mitotic figures, while the new set
contains 760 additional labels for mitotic figures and 246 out 309 disagreed cells were
labeled as hard negatives. The plot shows also the concatenated model scores given by
a RetinaNet-approach trained in three-fold cross-validation on the original (blue) and
alternative (green) label set. (Color figure online)

5 Discussion

Labeled data is the foundation for training and testing of deep learning-based
algorithms. Although a vast diversity of labeling methods have been applied for
mitotic figure dataset development [5,9–11,13,14], the effects of these methods
on algorithmic performance are currently not fully understood. However, with
recent improvements of deep learning methods, the demand for high-quality data
is increasing. The currently highest reported F1 score on the original TUPAC16
dataset is 0.669 [6], which is significantly higher than the value achieved by our
standard RetinaNet approach on the same labels (F1 score: 0.549). Considering
the difference between the present and the state-of-the-art results by Li et al. [6]
on the original TUPAC16 dataset, it seems likely that also the results on the
alternative datasets may be further improved by more advanced methods, which
we encourage as we have made the alternative datasets publicly available. How-
ever, instead of aiming to achieve highest possible performance, we wanted to
assess effects of using different ground truth datasets of the same images with
the same deep learning method and model optimization. The major finding of
the present study was that pathologists-defined labels are not necessarily repro-
ducible even when using annotation protocols that take the consensus of several
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Table 1. Comparison of F1 score, precision and recall achieved on the different label
sets with a customized RetinaNet [7] approach.

Metric Training Test

TUPAC original Alternative (manual) Alternative (augmented)

F1 score TUPAC original 0.549 0.587 0.563

Alternative (augmented) 0.555 0.719 0.735

Precision TUPAC original 0.540 0.682 0.699

Alternative (augmented) 0.477 0.713 0.772

Recall TUPAC original 0.559 0.515 0.471

Alternative (augmented) 0.665 0.725 0.701

experts as the ground truth, and differences may lead to notable variation in per-
formance. In this case, the model trained and tested on the alternative dataset
yielded an higher F1 score (+18.6% points) compared to the same model archi-
tecture trained and tested on the original label set. Both, 1) testing the same
algorithm on different dataset variants and 2) training algorithms with different
dataset variants had notable influence on performance. The present results indi-
cate that comparing model performance between two different datasets should
be done with caution.

We believe that higher label consistency between the training and test set
and decreased numbers of false negatives contributed to higher performance of
the alternative dataset. While the alternative dataset was labeled within a short
period of time by the same experts, different parts of the original dataset were
created for different challenges (AMIDA 13 and TUPAC16) by different experts,
which potentially has contributed to a somewhat higher degree of label inconsis-
tency. Also, the alternative datasets contains 28.80 % more mitotic figure labels
in the training set. Some of these additional mitotic figures have a relatively low
model score, which could question the unambiguous nature of the labels regard-
less of the overall higher F1 score. However, the increased model scores for the
algorithms trained on the alternative data, in comparison to the original data,
indicates a overall higher consistency. Regardless, both datasets include numer-
ous labels with low model score, which could potentially be explained by the high
morphological variability of mitotic figures and availability of very few patches of
some morphological variants for training. Large-scale datasets with even higher
numbers of mitotic figure labels might potentially overcome this limitation. Addi-
tionally, different degrees of inconsistency have been described between pathol-
ogists [8,10,14] and pathologist-defined labels represent a somewhat noisy refer-
ence standard regardless agreement or consensus by several pathologists.

Besides the difficulties in classification of mitotic figures, differences of expert-
defined labels may arise from lack of identifying rare events [15]. The higher
number of mitotic figure labels with presumably high label consistency in the
alternative datasets (see above), suggests that fewer mitotic figures were over-
looked. To avoid bias introduced by the method chosen for generating the aug-
mented missed cells, the labeling method of the alternative dataset follows the
paradigm of Viola and Jones [16], of having an initially highly sensitive detection,
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followed by a secondary classification with high specificity achieved through dual
expert consensus. High sensitivity in detecting potential mitotic figure labels
was achieved by repeated manual screening of the images and an additional
algorithmic augmentation. As the algorithmic detection of missed objects may
potentially introduce a confirmation bias, image patches were reviewed by two
pathologists independently. Final agreement on being mitotic figures was only
obtained for 2.4% of the machine learning-proposed candidate cells, illustrat-
ing the desired high sensitivity/low specificity of this approach for algorithmic
mitotic figure detection. Of note, adding this relatively low number of labels
to the ground truth had a notable effect on performance of up to 1.6% points
(difference of test performance between manual and augmented dataset), consis-
tent with previous findings [5]. As the network architecture for the augmented
labeling method was based on the initial dataset by the first expert, a certain
percentage of true mitotic figure candidates may still be missed. Considering
that the original dataset only contains 15 additional MF, while the alternative
datasets contains 760 additional MF, we assume that amount of false negative
labels in the alternative dataset are negligible.

Algorithmic approaches for dataset development have become more popu-
lar in recent years due to increasing demand on datasets that are difficult to
accomplish with solely manual approaches. As described above, algorithmically
supported identification of missed candidates may improve dataset quality and
requires algorithms with high sensitivity [5]. In contrast, enlargement of datasets
(higher quantity) may be facilitated through algorithmic detections with high
specificity in order to ensured that mainly true positives and only few false
positive labels are generated. This approach can be used for the creation of
datasets with reduced expenditure of expert labor (crowd sourcing [2] or expert-
algorithm-collaboration [9]), or fully automated generation of additional data
without pathologists-defined labels (pseudo-labels) [1]. Tellez et al. [12] recently
investigated another approach, that used an specific staining for mitotic figures
(immunohistochemistry with antibodies against phosphohistone H3) with com-
puterized detection of reference labels and subsequent registration to images of
the same tissue section with standard, non-specific hematoxylin and eosin stain.
Besides requiring minimal manual annotation effort, this methods may eliminate
expert-related inconsistency and inaccuracy.

In conclusion, this study shows considerable variability in pathologists-
defined labels. A subsequent effect was evident on training the models (variation
of model scores) and performance testing (variation of F1 score). This needs
to be considered when robustness of algorithms or reproducibility of developed
deep learning methods are to be tested on independent ground truth datasets
with different labeling methods. Therefore, scores should be interpreted in rela-
tion to reference results on that specific datset. Further studies on reduction of
expert-related inconsistency and inaccuracy are encouraged.
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Abstract. Considerable morphological phenotyping studies in nephrol-
ogy have emerged in the past few years, aiming to discover hidden reg-
ularities between clinical and imaging phenotypes. Such studies have
been largely enabled by deep learning based image analysis to extract
sparsely located targeting objects (e.g., glomeruli) on high-resolution
whole slide images (WSI). However, such methods need to be trained
using labor-intensive high-quality annotations, ideally labeled by pathol-
ogists. Inspired by the recent “human-in-the-loop” strategy, we devel-
oped EasierPath, an open-source tool to integrate human physicians and
deep learning algorithms for efficient large-scale pathological image quan-
tification as a loop. Using EasierPath, physicians are able to (1) opti-
mize the recall and precision of deep learning object detection outcomes
adaptively, (2) seamlessly support deep learning outcomes refining using
either our EasierPath or prevalent ImageScope software without chang-
ing physician’s user habit, and (3) manage and phenotype each object
with user-defined classes. As a user case of EasierPath, we present the
procedure of curating large-scale glomeruli in an efficient human-in-the-
loop fashion (with two loops). From the experiments, the EasierPath
saved 57% of the annotation efforts to curate 8,833 glomeruli during the
second loop. Meanwhile, the average precision of glomerular detection
was leveraged from 0.504 to 0.620. The EasierPath software has been
released as open-source to enable the large-scale glomerular prototyping.
The code can be found in https://github.com/yuankaihuo/EasierPath.

Keywords: Open-source · Human-in-the-loop · Renal pathology ·
Glomerular detection

1 Introduction

In the past decades, the digital image processing algorithms have been widely
applied to digital renal pathology images, especially with advanced deep learning
c© Springer Nature Switzerland AG 2020
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algorithms [1–10,14]. However, one major challenge of employing deep learning
algorithms is the requirement of massive training data with manual annotation.
Moreover, the annotation on pathological images requires extensive professional
knowledge and resources, which is resource-intensive and tedious for pathologists.
To alleviate the human efforts, the human-in-the-loop deep learning strategy
has become a promising direction [11,15], whose aim is to integrate human and
machine intelligence for efficient deep model deployment.

In this paper, we propose an open-source tool EasierPath, which integrates
human physicians and deep learning algorithms, for efficient large-scale object
detection of renal pathology (Fig. 1). Briefly, CircleNet [16] was employed to per-
form automatic glomerular detection. Then, automatic object detection results
are globally curated by adjusting the optimal detection threshold for maximizing
the true positive and minimizing the false positive. Next, pathologists perform
manual quality assurance (QA) and correction upon detection results. The man-
ual QA and correction are not only enabled by using EasierPath, but also seam-
lessly compatible with the most prevalent commercial software ImageScope[12].
Last, glomeruli were extracted, managed, and documented by EasierPath with
customized classification.

Fig. 1. This figure illustrates two different strategies for glomerular annotation. The
upper panel represents the traditional method that the entire dataset is annotated
directly by human doctors. The lower panel represents the proposed human-in-the-loop
framework, enabled by our EasierPath software. Such framework integrates computers
and humans for more efficient data annotation and curation (“GDG” means Global
Disappearing Glomerulosclerosis and “GOG” means Global Obsolescent Glomeru-
losclerosis).
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2 Methods

Figure 2 shows the entire workflow, which consists of deep learning based detec-
tion, filtering, manual QA, and data management.

Fig. 2. This figure illustrates the workflow of the human-in-the-loop annotation
pipeline. Step 1 shows an example of an input WSI. Step 2 is a deep learning based
object detection. Step 3 is the global filtering of detection results. Step 4 is the local
manual QA. Step 5 and 6 show the object extraction as well as the corresponding class
annotation results. The dashed line indicates that the curated data could be used to
retrain the deep learning algorithm as a “loop”.

2.1 Detection Using Deep Learning

The input image of the entire flow is a high-resolution whole slide image
(WSI). Then, the automatic glomerular detection results are achieved from Cir-
cleNet [16]. The detection outcomes are saved in one XML file that contains circle
location, type, and the detection score for each detected object. The detection
score is a score within 0 to 1, where a larger score indicates the stronger confi-
dence to believe the detected object is a glomerulus. The XML format file can
be loaded with the corresponding intensity image in EasierPath, for further QA
and data curation.

2.2 Filtering with Optimal Threshold

After deep learning based detection, we can visualize the results by import-
ing the XML file into the EasierPath software. Using EasierPath, we can alter
the threshold of detection scores to decide which glomeruli should be kept.
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Fig. 3. This figure presents the interface of EasierPath. Toolbox and where each step is
operated. Step 3 provides buttons to control the global false positive and false negative
by filtering the detection score with different thresholds. Then, the local image QA
and curation (step 4) can be performed using our annotation tool. The click on “Save
Patch” in step 5 will automatically extract all the detected objects and save each object
as an individual image.

The threshold is adjusted by clicking the button “Thresh Up” or “Thresh Down”
(Fig. 3). All the circles with detection scores lower than that threshold will dis-
appear for each threshold, leaving behind circles with detection scores higher
than or equal to that threshold. The threshold adjustment allows the global bal-
ance of false positive and false negative to minimize the manual efforts for the
following QA.

2.3 Manual Quality Assurance

After selecting an optimal threshold, doctors can perform manual QA using Eas-
ierPath software. As the most labor intensive step in the pipeline, to leverage
the annotation efficiency for clinicians who would like to use ImageScope (www.
leicabiosystems.com) without changing their user habits, we provide the alterna-
tive option to export the detection results after thresholding as an ImageScope
compatible format(by simply clicking “Save ImageScope” button). It enables
the seamless annotation format conversion between EasierPath and ImageScope.
Using EasierPath or ImageScope, clinicians are able delete false positive, anno-
tate false negative, and correct detection results.

www.leicabiosystems.com
www.leicabiosystems.com
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2.4 Improve the Deep Learning Based Detection as a Loop

Once we get the manually curated dataset, we can use those datasets as addi-
tional training data to leverage the performance of the deep learning algorithm
as a “loop”, which is the crucial idea in the human-in-the-loop design. With
more training data, the performance of the deep learning network will typically
be improved for the next loop. That will further help the following manual QA,
upon the more accurate automatic results. Note that the Step 2 and Step 3 will
not be performed during the first loop, since we don’t have any annotated data
to train the detection model.

Fig. 4. This figure shows the interface of EasierPath for manual class annotation.
(a)–(d) show examples of how to use EasierPath to perform glomerular classification.
The definition of the classes can be easily changed in the configuration file (right panel)
by clinicians without programming skills.

2.5 Object Extraction and Management

After completing the manual QA, all targeting objects have been annotated.
As the histology images are typically high resolution Gigabytes images, while
the objects of interest typically only exhibit small portions of the entire image.
Therefore, we could only extract, manage, and save those meaningful pixels, to
accelerate the following secondary analysis, data retrieval, and model training.

First, all the image patches that contain the targeting objects can be saved
as individual images by a single click (Fig. 4). Then, the cropped patch samples
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can be loaded and labeled efficiently using the same EasierPath software. The
physicians are able to define the categories of labels by editing a configuration file
conveniently without programming skills. Once the configuration is confirmed, all
the image patches can be loaded to the EasierPath and be annotated efficiently
(Fig. 4). After clicking, the annotations will be saved into a json format file. The
json files and the patch files will be saved as a database for future utilization. For
instance, we can efficiently extract all glomeruli from the database with “global
glomerulosclerosis” in the future, we would like to investigate such phenotype or
train a machine learning based classification method.

3 Data

WSI from renal biopsies and human kidney nephrectomy tissues were utilized
for performing the glomerular quantification at the first and second loop respec-
tively. In the first loop, the renal biopsies were quantified, whose kidney biopsy
tissues were routinely processed, paraffin-embedded, and 2µm thickness sections
cut and stained with hematoxylin and eosin (HE), periodic acid-Schiff (PAS)
or Jones. In the second loop, the human nephrectomy tissues were quantified,
whose tissues were routinely processed, paraffin-embedded, and 3µm thickness
sections cut and stained with PAS. The data were de-identified, and studies
were approved by the Institutional Review Board (IRB). After the first loop,
the CircleNet was trained by 704 glomeruli from 42 biopsy samples to perform
initial detection for the second loop. In the second loop, 7,449 glomeruli from 18
human nephrectomy images were curated by using both automatic detection and
manual QA in EasierPath framework. After the second loop, all curated data
are used as training and validation data for retraining the CircleNet. We manu-
ally annotate 1384 glomeruli from five untouched human nephrectomy images as
testing data to evaluate the performance of detection after the first and second
loops.

Table 1. Detection results with CircleNet

Loop AP AP50 AP75 APS APM APL

CircleNet Loop = 1 0.504 0.729 0.511 0.363 0.721 0.625

CircleNet Loop = 2 0.620 0.915 0.602 0.531 0.756 0.668

4 Experiments and Results

4.1 Labor Cost Analysis

In the second loop, we randomly chose one complete human nephrectomy image
to evaluate the labor cost between the two strategies in Fig. 1. Using pure manual
annotation, it took about 7 seconds per glomeruli by a renal pathologist with
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more than 20 years of experience. It took about 3 seconds per glomeruli for
the same pathologists using the proposed EasierPath pipeline with the initial
CircleNet (after the first loop). The temporal gap between the pure manual
annotation and using EasierPath pipeline was more than two weeks to avoid the
annotator remember the same human nephrectomy image. From the test, 57.1%
of the manual efforts are reduced using the proposed framework.

Fig. 5. This figure shows the precision-recall curves from the CircleNet detection after
the first and second loop respectively.

4.2 Detection Performance

1384 glomeruli from five untouched human nephrectomy images were manually
annotated by another independent annotator as testing data to evaluate the
performance of deep learning detection after the first and second loops. We report
average precision (AP) related canonical detection metrics overall Intersection
over Union (IOU) thresholds (Table 1), which shows the result of CircleNet after
the first loop (Loop = 1) and the second loop (Loop = 2).

According to Table 1, CircleNet after the second loop achieved a better accu-
racy for all types of APs. Especially when area = small, average precision for
CircleNet after the second loop was approximately 46.28% higher than the per-
formance after the first loop. When IOU = 0.5, the average precision for Cir-
cleNet achieved approximately 25.51% improvements. Better accuracy indicated
that the performance of CircleNet was leveraged after when performing more
loops.

To visualize the performance, precision-recall curves for CircleNet after the
first and second loops were shown in Fig. 5. Precision, the ratio of TP/(TP +
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FP) [13], was higher for CircleNet with manual annotation for any recall value,
which indicated the performance of CircleNet was leveraged from more training
data with more loops. As recall value represented the ratio of FN/(TN + FN), a
higher recall curve was obtained after the second loop. When the precision rate
was about 0.8, the recall rate for CircleNet (Loop = 1) was approximately 0.68,
while the recall rate for CircleNet (Loop = 2) was about 0.9, which equaled
to about 32.35% improvements. Using human in the loop for only two loops,
CircleNet with manual annotation has provided decent performance on detection
of glomeruli.

5 Conclusion

In this paper, we introduced EasierPath, an efficient large-scale pathological
image quantification tool with human-in-the-loop deep learning of renal pathol-
ogy. The proposed method reduced the 57% labor cost for curating large-scale
target objects in high-resolution pathological WSI. Meanwhile, the performance
of deep learning detection was leveraged after performing each loop. Last, the
EasierPath tool provided a easy-to-adapt function to curate, extract, and man-
age each detected object for future usage.
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Abstract. An Imbalance-Effective Active Learning (IEAL) based deep neural
network algorithm is proposed for the automatic detection of nucleus, lympho-
cyte and plasma cells in hepatitis diagnosis. The active sampling approach
reduces the training sample annotation cost and mitigates extreme imbalances
among the nucleus, lymphocytes and plasma samples. A Bayesian U-net model is
developed by incorporating IEAL with basic U-Net. The testing results obtained
using an in-house dataset consisting of 43 whole slide images (300 256 * 256
images) show that the proposed method achieves an equal or better performance
compared than a basic U-net classifier using less than half the number of
annotated samples.

Keywords: Active learning � Class imbalance � Lymphocyte detection �
Histopathological image � Convolutional neural networks

1 Introduction

Lymphocytes are the main type of immune/inflammatory cells. Infiltrating immune
cells are a host presence in immune reaction and serve as an important indicator in
acute inflammatory response diagnosis and tumor prognosis treatment. Plasma cells are
one of the main lymphocyte subpopulations, and often occur together with lympho-
cytes. The presence of plasma cell-rich mononuclear infiltration may be associated with
an increased risk of autoimmune hepatitis (AIH). Thus, the numbers and distribution of
lymphocytes and plasma cells with respect to liver cells (i.e., nucleus) play an
important role in disease diagnosis and prognosis.

However, in performing the automatic detection of nucleus, lymphocyte and
plasma cells in digital histopathological images, the lack of sufficient annotated sam-
ples is a major concern. Typically, the insufficiency of samples stems from the fact that
the annotation process requires specialty-oriented knowledge and experience, which
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makes crowd leveraging difficult. Moreover, labeling a digital histopathological image
requires extensive manual effort and time since the images usually have a size of
several gigabytes (approximately 50; 000� 50; 000 pixels at 20x) and contain a huge
number of object instances (e.g. cells) to be labeled. Furthermore, some cells only exist
in certain disease conditions, and hence finding these cells in such a large size image
may take a lot of effort and time.

Extreme class imbalance among the nucleus, lymphocytes and plasma cells is also a
major problem. For example, compared to liver cells and lymphocytes, plasma cells are
always only present with an extremely small quantity. Similarly, plasma cell-rich
infiltration, which is one of the main indicators of AIH, only exists in a few cases.
Hence, the situation of extreme class imbalance makes it difficult to find minority
samples; especially, these samples are vital indicators in assisting disease diagnosis.

Active learning (AL) is a promising approach for reducing the labeling workload
through an intelligent sample query strategy. Some of the most widely used criteria for
measuring uncertainty in AL are reported in [1–3]. However, recently, the issue of
model uncertainty (epistemic) has received significant attention. Exactly, Bayesian
network adopts model uncertainty for estimating uncertainty. However, it is not easily
implemented. Thus, Gal et al. [4] showed that dropout at test time can be cast as a
Monte Carlo dropout (i.e. MC Dropout) for getting the Bayesian approximation to
represent the model uncertainty.

The authors in [5, 6] found that AL is innately a good choice for overcoming class
imbalance problems. However, standard AL approaches following the query strategy of
uncertainty sampling disregards the classes. Such an approach cannot solve the extreme
“one-vs-all” class imbalance problem which occurs when the probability of the plasma
cells in the query is virtually zero. That is, the approach cannot ensure that the plasma
cells are adequately queried. Other publications [7, 8] used asymmetric query for online
imbalanced data of a two-class positive and negative samples. [9] measured the
uncertainty through the dropout on fast R-CNN and lowered the classification threshold
of the minority class. These approaches still did not consider the extremely imbalance
in the active learning. Therefore, the present study proposes an Imbalance-Effective
Active Learning (IEAL) algorithm to query a more balanced training dataset to solve
the extreme “one-vs-all” class imbalance problem in plasma cell detection [10–17].

In IEAL, both uncertainty measurement and class type estimation are performed on
the data pool. That is, the selection strategy in IEAL selects the most informative
samples for annotation based not only on their uncertainty values, but also their pre-
dicted class types, and combines under-sampling majority and over sampling minority
across the predicted nucleus, lymphocyte and plasma cells. The over sampling minority
intentionally further adds samples which are predicted to contain minority instances.
IEAL also included minority data augmentation, which flips and hue transforms the
minority data to increase the number of minority samples. In this way, IEAL is more
likely to select samples that truly contain minority instances to resolve the extreme data
imbalance problem.

The IEAL algorithm is embedded into U-Net for the detection of nucleus, lym-
phocytes and plasma cells. To further reduce the data imbalance problem, a modified
dice loss function is used to increase the significance of the minority data. To evaluate
the effectiveness of the IEAL algorithm, the detection results are compared with those
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obtained from U-Net without IEAL. The experimental results show that with less than
50% of the number of annotated samples, U-Net embedded with IEAL achieves an
equal or higher performance than U-Net without IEAL.

The main contributions of this paper are as follows. An improved Imbalance-
Effective Active Learning (IEAL) algorithm is proposed which achieves an effective
annotation of the nucleus, lymphocytes and plasma cells, while simultaneously
addressing the extreme class imbalance problem. Notably, the proposed IEAL algo-
rithm can be used with any deep neural network model to mitigate the extreme data
imbalance problem while still achieving effective annotation.

2 Method

This section describes the proposed IEAL model, which is used to simultaneously
address both annotation loading and extreme data imbalance problem in the detection
and classification of nucleus, lymphocyte, and plasma cells in liver pathology images.
In this paper, the U-Net is adopted as a multi-class semantic segmentation model to
detect and classify the nucleus, lymphocyte and plasma cells. The IEAL algorithm is
combined with U-Net and performs two main operations, namely Make Balanced and
Minority Sampling, in order to reduce the data imbalance problem. The “Make
Balanced” operation applies model uncertainty to query informative samples from each
class, thereby achieving the effect of under-sampling the majority samples. The
“Minority Sampling” operation then further selects samples which are predicted to be
minority-class in order to achieve oversampling of the minority samples. In addition,
data augmentation of the minority-class samples is also conducted. Finally, a minority-
sensitive loss function is used in conjunction with U-Net to increase the contribution of
the minority samples to the final loss. The details of the proposed IEAL algorithm are
described in the following sections.

2.1 Imbalance-Effective Active Learning

In the most widely-used active learning scenario, it is assumed that there exists a small
set of training data L ¼ Xl; Ylð Þf gml¼1 that consists of m labeled image patches and a
large pool of unlabeled patches UL ¼ Xlf g n

l¼mþ 1. In each consecutive iteration, the
trained model is run on the unlabeled dataset UL to select b number of patches for
human labeling. Then, the new labeled patches are moved from UL to L for training.
The process is repeated iteratively in this way until the performance cannot be
improved any further or the update process reaches a preset maximum number of
iterations. In contrast to such standard active learning methods, the selection process in
IEAL is performed within each predicted class. By so designed, selection of patches are
conducted following class pre-estimation. Therefore, boosting on the selection of the
minority class is possible and the imbalance will be alleviated. The details of the
proposed method are described in the following.
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2.2 Make Balanced: Active Candidate Selection

In any AL method, the query strategy is the key to selecting “informative” samples for
further training. In the present study, two query strategies are adopted to reduce the
total labeling cost and solve the extreme class imbalanced problem. Firstly, model
uncertainty measured from each class is used to query the training data; thereby
achieving a better class balanced. When the query is performed in each individual class,
the process can be regarded as under-sampling the majority samples. To increase the
data diversity, randomness is added to the uncertainty sampling process. Secondly,
minority sampling and minority data augmentation are adopted to oversample the
minority samples.

Model Uncertainty Estimation. To perform model uncertainty estimation, this study
uses the method proposed by Gal et al. [4]. The predictive distribution is then sampled
based on Monte Carlo sampling by using dropout at test time to perform K times
stochastic forward passes through the trained network (i.e., MC Dropout). The potential
prediction of a pixel xi can be estimated by the mean of K predictive results, and the
variance of the K predictive results is taken as a measure of the model uncertainty of
pixel xi, shown in Eq. (1) and (2) respectively.

byi ¼ E yijxið Þ � 1
K

XK

t¼1
p yijxi;cxtð Þ ð1Þ

model uncertainty;Ui ¼ 1
K

XK

t¼1
ðp yijxi;cxtð Þ � byiÞ2 ð2Þ

In this study, the pixel uncertainty is calculated using Eq. (2). Furthermore, in the
practical implementation, training is performed on a 4-class model which includes the
background, nucleus, lymphocyte, plasma cells. Thus, the uncertainty computed on
class c, U(c) is measured through the summation of the uncertainties of all the pixels
predicted as class c, as shown in Eq. (3), where N is the total number of pixels in the
patch.

Image uncertaintyclassc; U cð Þ ¼
XN

i¼0
Ui � 1c xið Þ; 1c xið Þ ¼ 1; if xi 2 c

0; if xi 62 c

�
ð3Þ

The 1c xið Þ here the indicator about whether pixel xi is predicted as class c. The total
uncertainty U of an image patch can also be computed through the summation of U(c)
of all of the classes. The is, U ¼ P

c U cð Þ.
Randomness. Randomness is used to increase the selected data diversity and is added
to the query strategy of uncertainty sampling. That is, uncertainty sampling querying R
oracle samples and then randomly selects r (R > r) samples for labeling in each iteration
T. As the learning process continues, the query strategy for the U-Net tends to learn
more informative samples. Thus, the randomness should be decreased to focus more on
the oracle uncertainty samples. Accordingly, in the present study, the value of R is
updated using the following rule: if T = 0, set R equal to an initial value, R0; else if
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T > 0, update R in accordance with R0 � dr � T , where dr is used to control the
randomness decay rate.

Minority Sampling. Although the Make Balanced step queries the uncertainty sam-
ples from each class, it is still very likely that false-positive (FP) minority samples are
selected, since the uncertainty samples imply the more unstable cases, which are likely
to be misclassified. To compensate for this, the IEAL algorithm further uses minority
sampling and minority data augmentation to oversample the minority samples.
Minority sampling intentionally adds the samples predicted to contain the minority
class, here the plasma cells, instead of the high uncertainty samples since these samples
are more likely to include true-positive (TP) samples (i.e., the plasma cells). Thus,
minority sampling prevents the training data from having too many FP samples. On the
other hand, Minority data augmentation is performed to increase the number of
minority samples by horizontal and vertical reflections and transposition. In addition, to
take account of slide-wise stain differences and perform wider generalization, hue-
based and brightness-based data augmentation are also applied to the digital
histopathology dataset. These measures are helpful for learning the invariance. How-
ever, in terms of preserving the original tissue features in the digital histopathology
images, scaling and affine transformation data augmentation are not recommended.

2.3 Minority Sensitive Dice Loss

In addition to the use of the IEAL algorithm, a minority-sensitive loss function is also
employed to increase the contribution of the imbalanced class to the loss during U-Net
training. The modified dice loss is computed for each class separately and is then
averaged in order to increase the minority class contribution, i.e.,

Minority Sensitive Dice loss ¼ 1
C

XC

c¼0
1� DSC P cð Þ;G cð Þ

� �� �
ð4Þ

where DSC P;Gð Þ ¼ 2
PN

i
PiGiPN

i
P2
i þ

PN

i
G2

i

is the dice coefficient. Note that P and G denote

prediction and ground truth, respectively.

2.4 Training

In contrast to standard learning procedures, active learning is a continuous fine-tuning
process, where new data are continually added to the training data. Previous research
has shown that such a continuous fine-tuning learning process is more robust and more
efficient [9]. The training process can be described as follows. Initially, the training data
contain only a few labeled samples from each class and these data are used to pretrain
the network. The training process then includes two training stages as new data are
added. In the early stage, all of the layers are trainable for fine-tuning the new added
data. However, in the later stage, associated with a greater amount of training data, the
training efficiency is reduced and the performance of the model shows only a slight
improvement. Thus, to improve the efficiency, the model focuses only on fine-tuning

Imbalance-Effective Active Learning 227



the parameters of the last two decoder units and the final layer. In other words, the
training data focus only on learning the high-level features. Meanwhile, to prevent
overfitting, early stopping is used when the validating loss ceases to reduce.

The present study employs a classical encoder-decoder model, namely U-Net, since
it shows a good performance for medical images [18, 20–24]. To produce a proba-
bilistic segmentation output, encoder-decoder neural network architectures are gener-
ally modified to Bayesian convolutional neural networks (CNNs), in which dropout is
added to the middle five encoder/decoder units for training and testing purposes.
Figure 1 presents an overview of the training process. During the early update stage,
the model parameters are set as follows: Adam optimization with a learning rate of
10�3, batch size 8, and number of training iterations 3–4k. Moreover, R0 is set to 50,
and Kc, Km are both set to 7. In total, 30 images are added to the training data in each
update step. In the later update step, the learning rate is maintained as 10�3, but the
number of training iterations is increased to 5–7k and Kn is set to 30.

Fig. 1. Algorithm of proposed method
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3 Experimental Results and Discussion

The dataset used in this study contained 764 images with a size of 1024� 1024 pixels
cropped from 43 whole slide images (WSIs) with hematoxylin-and-eosin (H&E) stains
of normal liver tissue. The 764 images were split into an initial training set with 30
images, an evaluation set with 75 images, and an unlabeled set with 659 images. The
ground truth (GT) of each image was pixel-accurately labeled as nucleus, lymphocyte,
plasma cell, or background. (Note that the GTs were confirmed by a skilled patholo-
gist.) During the training procedure, each image was cut into 9 patches with a size of
512� 512 using an overlapping stride of 256 pixels. In the procedure of evaluation and
uncertainty estimation, the images were cut into 4 patches with a size of 512� 512
pixels.

The detection performance was evaluated using three criteria, namely the Precision
(P), the Recall (R) and the F1 score. The aim of the proposed method was to detect the
nucleus, lymphocyte and plasma cells in each patch. Hence, the study separately
assessed the detection performance of each class. In particular, for each class, a
detected cell centroid point was considered to be true-positive (TP) if the point was
located within a 5-pixel radius of the annotated cell centroid; and was considered to be
false-positive (FP) otherwise.

3.1 Performance Evaluation Results

To demonstrate the effectiveness of IEAL, the detection performance was compared
with that achieved when training with all the dataset (AL_ALL) (i.e., the upper bound
performance); classical active learning (AL_UNC); and randomly selected data for
labeling (AL_RAND) (i.e., the lower bound performance).

The F1 scores of the various methods for detecting plasma cells and lymphocytes
are shown in Figs. 2(a) and (b), respectively. As shown in Fig. 2(a), the proposed
IEAL model obviously outperforms the other methods in plasma cell detection.
Notably, it achieves the upper bound performance, AL_ALL, using only 50% of the
number of annotated samples. The plasma cell detection problem involves an extreme
class imbalance problem. Thus, the traditional active learning method (AL_UNC)
cannot be effectively improved after 6 update iterations because the samples queried in
each iteration may not be precisely useful for the imbalanced class. Without active
learning (i.e., AL_RAND), the performance is further degraded.

For the lymphocyte detection problem (see Fig. 2(b), IEAL again achieves the
upper bound performance using only 50% of the number of samples. Furthermore,
IEAL achieves an F1 score of 92%, a number exceeding that obtained when using all
the data for training. In other words, IEAL selects more balanced and informative data
for training purposes.
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3.2 Make Balanced vs. Minority Sampling

This section compares the detection performance when using Make Balanced only
(denoted as AL_MB) and IEAL (using both Make Balanced and Minority Sampling,
denoted as AL_MB_MS) to select minority samples. As shown in Fig. 3,

AL_MB_MS, which additionally adopts
Minority Sampling, achieves a better
performance than AL_MB. In the early
update stage, AL_MB (without Minority
Sampling) has a particularly poor per-
formance since it results in many false
positives. However, Minority Sampling is
beneficial in discovering a greater number
of true positive samples during the early
update iterations, and hence the proposed
IEAL model (based on both MB and MS)
achieves a better performance.

3.3 Performance of High Skew Ratio in Minority Samples

The performance of the various
schemes was investigated for differ-
ent degrees of class imbalance. The
corresponding results are presented
in Table 1, where the skew number
s indicates that the unlabeled dataset
has s majority instances for each
minority instance. In other words, a
larger value of s implies a greater
degree of imbalance. Note that in Table 1, for each skew, each query strategy is trained
for the best performance and the F1 scores of the minority samples are computed.
Furthermore, training is performed 5 times for each method and the mean value is

Fig. 2. F1 scores of various methods for (a) plasma cell detection and (b) lymphocyte detection
in each iteration

Fig. 3. Comparison of AL_MB_MS (IEAL)
and AL_MB

Table 1. Performance (F1 score) of different query
strategies in datasets with different skews

Method Skew
10 20 50

AL_RAND 0.56 0.54 0.46
AL_UNC 0.61 0.58 0.49
AL_MB_MS (IEAL) 0.66 0.63 0.61
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reported in every case. The results presented in Table 1 show that IEAL significantly
outperforms the other strategies at high skews. The performances of AL_UNC and
AL_RAND at high skew values of s = 50 are particularly poor.

4 Conclusions

This paper has presented an Imbalance Effective Active Learning (IEAL) algorithm for
solving the annotation loading problem and mitigating the effects of class imbalance in
automatic nucleus, lymphocyte and plasma detection. Compared to traditional active
learning methods, IEAL selects informative samples based on a consideration of each
individual class. IEAL also incorporates a minority sampling and minority data aug-
mentation approach to further mitigate the class imbalance problem. The experimental
results have shown that the proposed IEAL algorithm significantly outperforms stan-
dard active learning schemes in extreme class imbalance problems. In particular, IEAL
achieves an equal or better performance than these standard methods using less than
50% of the number of annotations.
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Abstract. Medical reports are an essential medium in recording a
patient’s condition throughout a clinical trial. They contain valuable
information that can be extracted to generate a large labeled dataset
needed for the development of clinical tools. However, the majority of
medical reports are stored in an unregularized format, and a trained
human annotator (typically a doctor) must manually assess and label
each case, resulting in an expensive and time consuming procedure.
In this work, we present a framework for developing a multilingual
breast MRI report classifier using a custom-built language representation
called LAMBR. Our proposed method overcomes practical challenges
faced in clinical settings, and we demonstrate improved performance in
extracting labels from medical reports when compared with conventional
approaches.

Keywords: Labeling · Medical reports · Transfer learning · Breast
MRI · LAMBR

1 Introduction

The introduction of the Electronic Medical Record (EMR) has improved conve-
nience in accessing and organizing medical reports. With the increasing demand
for biomedical tools based on deep learning, obtaining large volumes of labeled
data is essential for training an effective model. One major category where such
deep learning models excel is in the area of computer assisted diagnosis (CADx),
and several works (e.g. [1,4,12]) have demonstrated effective utilization of weakly
labeled data to achieve promising performance. Since understanding medical
data requires specialized training, datasets often contain a small subset of all
past exams, that are manually relabeled by doctors for the target task. Not only
is this a labour-intensive process, but the resulting dataset is often too small to
represent the true distribution, resulting in underperforming models.
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In this work, we present a framework for developing multilingual breast MRI
report classifiers by using a customized language representation called LAMBR.
LAMBR is first obtained by pre-training an existing language representation on
a large quantity of breast MRI reports. Fine-tuning is then applied to obtain
separate classifiers that can perform tasks such as: (1) determining whether the
corresponding patient in the report has been suggested to undergo biopsy or
(2) predicting BI-RADS1 score for the reported lesion (see Fig. 1). With such
classifiers, one may avoid the manual labeling required from doctors, and instead,
automatically extract a large number of weak labels from existing medical reports
for training weakly supervised breast MRI CADx models.

Fig. 1. An overview of training stages presented in our framework. Pre-training is
performed on the multilingual BERT with unlabeled breast MRI reports to obtain a
pre-trained LAMBR. The pre-trained LAMBR is then fine-tuned using a small number
of labeled reports to obtain classifiers for specific downstream text classification tasks.

Prior to our work, text classification has been explored extensively by several
studies such as ULMFIT [5] and SiATL [2]. ELMo [9], BERT [3], and XLNet [16]
have also demonstrated adequate approaches towards text classification using the
notion of a generalized language representation. However, the majority of these
approaches require pre-training an encoder on a massive text corpora, and this
is a time consuming and resource intensive procedure that is impractical for a
clinical setting [10]. Moreover, the majority of prior works perform encoder pre-
training on widely available natural language texts which differ greatly from the
scarcely available medical texts.

To overcome the difference in distribution between medical texts and natu-
ral texts, BioBERT [7] introduced a pre-training objective that relied on a large
collection of PubMed abstracts and PMC articles. Although BioBERT demon-
strated improved performance compared with BERT, their method does not
avoid the above resource intensive pre-training. Within English medical reports,
ALARM [14] proposed a simple approach for labeling head MRI reports by uti-
lizing a pre-trained Bio-BERT and this avoids the expensive pre-training often
required. Yet for multilingual medical reports, such Bio-BERT does not exist,
1 Breast Imaging-Reporting and Data System: a score between 0–6 indicating the level

of severity of a breast lesion.
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and in this work, we present a solution based on the multilingual BERT. Our
novel approach introduces an inexpensive pre-training objective that yields favor-
able text classification performance when fine-tuned, and in our experiments, we
demonstrate the robustness of the resulting classifiers even in cases where pars-
ing errors exist (see Fig. 2). The remaining sections of our paper are organized
as follows: the proposed framework is presented in Sect. 2, experimental results
are reported in Sect. 3, and the conclusion is given in Sect. 4.

Fig. 2. Examples of breast MRI reports written in Hebrew and English (read from
right to left). Example 1 is complete report parsed from the EMR, and Example 2 is
missing the final assessments due to incorrect parsing. The patient in Example 1 is
recommended for biopsy, and patient in Example 2 is not required to perform biopsy.

2 Methods

2.1 BERT Recap

BERT is a language representation based on the Transformer-Encoder [13]. The
input to the Transformer-Encoder is a sequence of tokens {xi} generated by
WordPiece Embeddings [15] from a given series of sentences. Special tokens are
inserted and position encodings are added, and the output is a sequence of bi-
directional embeddings that represents each input token [3]. In order to obtain
the BERT language representation, Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP) pre-training objectives were introduced. MLM
applies random masking on the 15% of the input tokens, and BERT is trained to
identify the original token of the masked token by attending to other tokens of
the same sequence. The NSP objective trains BERT in understanding sentence
coherence by randomly replacing the second sentence of an existing sentence
pair, and BERT has to determine whether the pair are neighboring sentences.
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Fig. 3. An example of the tokens generated from breast MRI report using WordPiece
Embeddings. During DS-MLM, a portion of the tokens are augmented and the pre-
training objective is to correctly identify the original token prior to augmentation
(performed only on tokens selected for augmentation).

2.2 Domain-Specific Masked Language Modeling

The Domain-Specific Masked Language Modeling (DS-MLM) we propose is a
modification of the MLM pre-training objective introduced in BERT. The mul-
tilingual BERT was trained using monolingual corpora from 104 languages,
and DS-MLM aims to retrain the multilingual BERT to better model the lan-
guage observed in breast MRI reports written in Hebrew and English. Unlike
BioBert [7], which relies on pre-training over massive biomedical corpora, we
perform DS-MLM solely from the available breast MRI reports stored in the
hospital’s EMR.

For each medical report, tokens are generated using WordPiece Embeddings
(see Fig. 3). The [CLS] and [SEP] tokens are appended to the beginning and the
end of the generated tokens ([SEP] tokens are not added between sentences).
Since the multilingual BERT is already trained on a general domain corpora,
we select 20% of the generated tokens for MLM. Of the selected tokens, 60%
are masked using the [MASK] token, 30% are replaced with existing tokens and
the remaining 10% are left unchanged. In order to expose our model to more
frequent tokens observed in breast MRI reports, of the 30% of tokens selected
for replacement, two thirds are replaced with existing tokens encountered in
breast MRI reports, and one third is replaced with tokens from the complete
vocabulary (may include tokens corresponding to other languages). Dynamic
masking is applied to allow more exposure to a broad range of tokens.

Since most medical reports contain sentences not adhering to a strict flow of
ideas, we do not incorporate NSP into the pre-training objective of our frame-
work. In addition, RoBERTa [8] demonstrated that the removal of NSP may even
improve downstream task performance, and therefore, the pre-training objective
of the LAMBR language representation is simply DS-MLM.

2.3 Text Classification Fine-Tuning

Text Classification Fine-Tuning (TCFT) is a series of techniques to fine-tune
a pre-trained LAMBR for performing text classification. We propose a simple



Labeling of Multilingual Breast MRI Reports 237

classifier head to add on top of the Transformer-Encoder, and we present a
method to fine-tune the complete text classifier (Transformer-Encoder along
with classifier head) using a pre-trained LAMBR (see Fig. 4).

Fig. 4. An illustration of LAMBR encoding a breast MRI report. Tokens {xi} are
generated from the report using WordPiece Embeddings, and the sum of the positional
encoding and the token embedding are input to LAMBR. During TCFT, the learning
rates for each layer are progressively tuned so that higher level features (layers near
0) are updated more compared to lower-level features. The classifier head takes the
average of the token embeddings ẑ, applies an affine transform, and passes it into a
tempered Softmax (σT ) to generate the class probabilities.

Classifier Head. For a given token sequence {xi}, we obtain the output embed-
ding sequence {zi} from the pre-trained LAMBR. The average of the output
token embeddings ẑ is computed and is fed to an affine layer which undergoes
a Tempered Softmax operation (σT ) to obtain the outputs class probabilities p.
Namely:

p = σT (Wẑ + b) ← ẑ =
1
N

N∑

i=1

zi (1)

where ẑ, b ∈ Rd, W ∈ Rc×d, and p ∈ RK .

Progressive Fine-Tuning. Inspired by [5,17], we propose a method for fine-
tuning the complete text classifier. The learning rates are adjusted such that
high-level features will be updated with a higher learning rate compared to
lower level features. Specifically, for a Transformer-Encoder with L encoding
layers {li}L−1

i=0 (l0 indicates the top-most layer), the layer-dependent learning
rate η(l) is formulated as:

η(l) = ηbase · γl (2)
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where ηbase is the base learning rate and γ is the decay factor valued between 0
and 1. Similarly, the classifier head is updated with learning rate ηbase.

Fine-tuning is performed by optimizing the weighted Label Smoothing
Loss [11]:

L(x, y(x)) = −
K∑

c=1

w(c) ·
[
(1 − ε)yc(x) +

ε

K

]
· log(pc(x)) (3)

where w(c) are the weights for every class c ∈ K, ε ∈ [0, 1) is the smoothing
term, yc(x) ∈ {0, 1} is 1 if x belongs to class c, and pc(x) is the probability of x
belonging to class c as computed in Eq. 1.

3 Experiments

In this section, we evaluate the proposed framework on two text classification
tasks: (1) classifying whether the corresponding patient has been suggested to
undergo biopsy and (2) predicting the BI-RADS score for the lesion reported.

The data is a curated list of medical reports from breast MRI examina-
tions carried out at the Sheba Medical Center, Israel. Cases that were initially
diagnosed as containing potential malignant tumors have all been suggested to
undergo biopsy. Breast examinations from the years 2016–2019 were involved,
and a total of 10,529 medical reports were collected. Of the 10,529 breast MRI
reports, 541 reports were labeled with the relevant BI-RADS score for the (sin-
gle) lesion reported, and each case was labeled with whether the patient had
been suggested for biopsy.

3.1 Training Setup

Pre-training. Pre-training was performed using DS-MLM as mentioned in
Sect. 2.2. Of the 9,988 reports used for pre-training, 85% of the reports were
randomly designated as the training set, and the remaining for validation. Cross
Entropy loss was used for DS-MLM pre-training, and the multilingual BERT
was trained for 70 epochs which took approximately 33 h to complete using on
an NVIDIA GTX 1070 8 GB GPU.

Biopsy-Suggested Classification. The goal of this task to identify whether
the patient in the report had been suggested to undergo biopsy or not. We
perform fine-tuning as proposed in Sect. 2.3. Due to dataset imbalance (26.6%
of the cases were suggested for biopsy), class weights were set to the inverse of
the counts per class. Evaluation was performed using 5-fold cross validation, and
stratified sampling was applied to ensure equal class distribution between the
training and validation sets.

Training was performed using the Adam optimizer [6] with a base learning
rate of 1e−4 and a batch size of 8. Decay factor γ was set to 1/4, softmax
temperature T was set to 1, and the smoothing term ε was set to 0. The best
performing model from training for 70 epochs (approx 25 min) was evaluated.



Labeling of Multilingual Breast MRI Reports 239

Masked BI-RADS Prediction. Masked BI-RADS Prediction is a classifica-
tion task to assign the appropriate BI-RADS score given the lesion description
in the report. For reports that were parsed correctly, the BI-RADS score is writ-
ten in the assessments, and a simple keyword-based tagging is often enough to
label the reports with the appropriate score. However, reports might also contain
BI-RADS keywords that refer to previous BI-RADS scores (for the same lesion
or removed lesion), which would lead to incorrect inference if the keyword based
approach was used. In addition, errors encountered during parsing would occa-
sionally miss out sections containing the BI-RADS score, rendering the keyword-
based approach useless. The text classifier we propose in our framework relies on
the report descriptions alone, and is thus robust against such potential obstacles.

Keyword search was performed on all the reports and any revealing BI-RADS
scores (in the reports) were removed. This modified report was then fed into a
pre-trained LAMBR for fine-tuning, and a 5-fold cross validation was performed.
There were a total of 6 classes (no reports with BI-RADS score 5). Class weights
were computed as the inverse of the class counts, and stratified sampling was
performed to ensure equal class distribution between training and validation
sets. Optimization was performed using the Adam optimizer with a base learning
rate of 1e−4 and batch size of 8. The decay factor γ was set to 1/3, Softmax
temperature T was set to

√
2, and the smoothing term ε was set to 1/3. The best

performing model over a training period of 70 epochs was selected for evaluation.

Table 1. Several metrics following the five-fold cross validation for Biopsy Suggested
Classification and Masked BI-RADS Prediction are presented. We compare the perfor-
mance between LAMBR and BERT for both classification tasks (same classification
head design, but different language representations). The baseline for Biopsy Suggested
Classification is a keyword matching algorithm. Notice that in both tasks, LAMBR
consistently outperforms their counterparts.

Fine-tuning tasks (5-fold average) Accuracy ROC-AUC Macro Avg F1 MCC

Biopsy suggested - LAMBR 0.965 0.989 0.935 0.913

Biopsy suggested - BERT 0.949 0.987 0.904 0.8733

Biopsy suggested - Baseline 0.828 – 0.718 0.6035

BI-RADS prediction - LAMBR 0.8576 – 0.7158 0.7594

BI-RADS prediction - BERT 0.795 – 0.572 0.672

3.2 Experimental Results

The experimental results for our proposed framework are listed in Table 1, and
we include a comparison with BERT and a baseline algorithm.

In Biopsy Suggested Classification, the keyword matching algorithm aims to
label each report in accordance with keywords that hint of a potential biopsy sug-
gestion. Of the 541 labeled reports, 90 reports were misparsed, which contributes
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to a 16% drop in accuracy. In contrast, the classifier trained and fine-tuned using
our proposed framework performs consistently across all five folds (see Fig. 5)
despite misparsed reports. We also trained a classifier with the same classifi-
cation head from Sect. 2.3 using a multi-lingual BERT, and we demonstrate a
better classification performance with our approach.

Fig. 5. Detailed visualization of the evaluation metrics for Biopsy Suggested Classifi-
cation following the 5-fold cross validation. Notice the consistent performance across a
5 folds.

In the task of Masked BI-RADS Prediction, the classifier trained using our
framework was able to correctly predict the BI-RADS score for most of the
reports. Unlike the previous task where the BI-RADS score was available, this
task requires the classifier to attend to relevant context clues in the medical
report for prediction (hence, the keyword-tagging algorithm does not work). An
additional comparison was made between LAMBR and the pre-trained multi-
lingual BERT, and the results in Table 1 demonstrate a clear difference the two
language representations partake in training a BI-RADS classifier.

4 Conclusion

In this work, we explore the task of labeling breast MRI reports written pri-
marily in Hebrew with occasional English texts through the use of multilin-
gual language representations. To avoid the expensive pre-training required in
obtaining a generalized language representation, the Domain-Specific Masked
Language Modeling objective pre-trains a multilingual BERT on existing breast
MRI reports alone to obtain the LAMBR language representation. A simple
classification head is integrated onto the Transformer-Encoder, and Progressive
Fine-Tuning is applied to train the classifier for its specific text classification
task.

In our experiments, we train two separate classifiers to perform two classifica-
tion tasks based on breast MRI reports. In the first task, we trained a classifier
to determine whether the patient described in the report has been suggested
to undergo biopsy. When compared with past methods, our approach demon-
strates better classification performance despite parsing errors in a portion of
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the reports. In the second task, we trained a classifier to predict the BI-RADS
score based on the lesion description in the report. Despite the absence of the
BI-RADS score in the report, our classifier was able to infer the correct BI-RADS
score in the majority of the cases.

Future works may include labeling medical reports for additional pathologies
written in different languages. Additional tasks (apart from text classification)
such as named-entity recognition for medical reports and summary generation
for biomedical texts may also be investigated. In this work, we focus on the
task of medical text classification, and we believe our proposed framework may
assist in generating large numbers of labels for weakly supervised training tasks
required for breast MRI CADx development.
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Abstract. Deep learning has led to state-of-the-art results for many
medical imaging tasks, such as segmentation of different anatomical
structures. With the increased numbers of deep learning publications and
openly available code, the approach to choosing a model for a new task
becomes more complicated, while time and (computational) resources
are limited. A possible solution to choosing a model efficiently is meta-
learning, a learning method in which prior performance of a model is
used to predict the performance for new tasks. We investigate meta-
learning for segmentation across ten datasets of different organs and
modalities. We propose four ways to represent each dataset by meta-
features: one based on statistical features of the images and three are
based on deep learning features. We use support vector regression and
deep neural networks to learn the relationship between the meta-features
and prior model performance. On three external test datasets these meth-
ods give Dice scores within 0.10 of the true performance. These results
demonstrate the potential of meta-learning in medical imaging.

Keywords: Meta-learning · Segmentation · Feature extraction

1 Introduction

Deep learning algorithms have become state-of-the-art methods in numerous
medical image analysis tasks [13] and have shown to outperform experts on
many tasks [14]. Different models have been developed, such as various exten-
sions of convolutional neural networks, recurrent neural networks, and generative
adversarial networks, with their respective strengths. Since no model can per-
form the best on all problems [8], for new datasets still new models are being
developed. This has led to a dramatic increase of literature: every day around 30
new papers in this field of study are published. There is therefore a need to gen-
eralize from all this experience, when selecting a good model for a new medical
imaging problem. We propose to do this using meta-learning, a learning method
in which prior performance of a model is used to predict the performance for
new tasks [12,25,27].
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Currently learning from previous experience is largely done through transfer
learning. It is possible to outperform training from scratch by transferring model
weights or re-using a model for a different task, as shown by Tajbakhsh et al. [24]
and Shin et al. [20]. However, the quality of that newly created model can only
be assessed after training and evaluation, which is costly, both in terms of time
and resources. Meta-learning, which has mainly been studied in machine learn-
ing field, offers a potential solution. However, it is largely unknown in medical
imaging. A Google Scholar search1 on “medical imaging” and “deep learning”
shows that only 270 papers - less than 1% - are also related to meta-learning.
This is possibly due to the complexity of the data or limited differences between
datasets. Another reason is data availability - although datasets and models per-
formances are increasingly being shared online, it is only a recent development
that challenges focus on multiple applications, for example [21].

We propose to use meta-learning to predict segmentation scores across ten
datasets of different organs and modalities. We propose four ways to represent
each dataset by meta-features: one based on statistical features of the images
and three are based on deep learning features. We use support vector regression
and a deep neural network to learn the relationship between the meta-features
and prior model performance.

1.1 Related Work

A common application of meta-learning in computer vision is prediction ranking
between methods [6,19,23]. An extension to this is predicting the result of a
model. Guerra et al. predicted the outcome of multi-layer perceptron networks
using regression models as a meta-learner. This was achieved using compressed
representations of datasets, called meta-features. The regression model learns a
relationship between the metafeature and prior performance information. Similar
approaches were followed by Doan et al. [5] for predicted running time of algo-
rithms and Soares et al. for predicting the outcome of clustering algorithms [23].
Gomes et al. [7] and Soares et al. [22] used meta-learning to predict parameter
settings for support vector machines.

Meta-learning has been applied to a small number of problems in medical
imaging. Campos et al. used meta-learning to predict segmentation scores of
photos of wounds [3]. While this was not a typical medical dataset, it showed
the possibilities of meta-learning in the medical domain. Hu et al. created a meta-
learning method which initialised weights for finetuning of classification methods
in medical imaging [9], thus reducing the need for data. Cheplygina et al. char-
acterized medical image segmentation problems in meta-feature space defined
by performances of classical classifiers [4], but only predicted whether datasets
originate from the same source. To the best of our knowledge no attempts have
yet been made to recommend models by predicting the performance of typical
segmentation problems in medical imaging by using meta-learning.

1 Search done in March 2020.
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2 Methods

We assume we are given a collection of datasets {Di}N1 , for example segmentation
tasks of different organs and modalities. We also assume we have a collection
of models {Uj}M1 , for example various U-Net-type architectures, and results
{yij}N,M

i=1,j=1 of these models on the datasets. The challenge is, given a previously
unseen dataset DN+1, to predict the model scores {yN+1,j}Mj=1.

The overall method is illustrated in Fig. 1. First a meta-feature extractor f
summarizes a subset s of each dataset, such that xi = f(Di) is a q-dimensional
feature vector. Using a fixed subset size ensures invariance to dataset size. Then
for the j-th model, a classifier gj is trained on the meta-feature vectors xi and
the meta-labels yij . Predicting the model’s score for an unseen dataset is done
via ŷ = gj(f(DN+1))

Fig. 1. Proposed meta-learning method: training is done on extracted meta-features
and meta-labels (scores of segmentation algorithms). At test time, the trained meta-
learner can predict scores for a previously unseen dataset. For simplicity here we illus-
trate a classification problem, but throughout the paper regression is used.

2.1 Meta-feature Extraction

We investigate three broad types of meta-features, described in more detail
below:

– Classical meta-features, similar to meta-features used in prior work.
– Deep learning based meta-features with three different architectures: VGG16,

ResNet50, MobileNetV1.
– Task-specific meta-features, which provide context about a given segmenta-

tion problem; added to both the classical and deep learning meta-features.
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Classical Meta-features. We used meta-features from classical (non-imaging)
applications of meta-learning. [3,16,25]. Typical examples are mean pixel value,
dataset correlation and entropy. These meta-features will be referred to as clas-
sical meta-features. A selection requirement for each classical meta-feature is
that it should be visually different between datasets. To check whether this cri-
teria has been met a visual inspection of each meta feature will be done. This
selection led to meta-features xi = fCLAS(Di) with xi ∈ R

33 is available in the
Supplementary Material.

Deep Learning Meta-features. Deep learning is successful for feature extrac-
tion at an image level, we therefore also investigated how it can be applied to
extract features at a dataset level. Initial attempts using networks pretrained on
ImageNet without fine-tuning did not lead to distinctive features for datasets
of the same modality. Therefore we added a fine-tuning step with a U-Net-like
encoder-decoder network, where the encoder is the feature extractor and the
decoder is the original U-Net [18]. This encoder-decoder network works as a
binary segmentation network that fine-tunes the weights of the feature extractor
(Fig. 2).

Fig. 2. Deep learning based meta-feature extraction.

An important property of the fine-tuning step is that labels from the test data
cannot be used, since the meta-learning method should be able to generalize to
datasets without ground-truth segmentations. Instead, we introduce an auxiliary
task by thresholding the voxels intensities at the 10-th percentile to create rough
segmentation masks. These masks are not accurate in terms of segmentation, but
provide a good enough estimation of the image structure.
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Using this strategy, we fine-tune three different models, pretrained on Ima-
geNet: VGG16, ResNet50, and MobileNetV1. An intermediate step of these
meta-features xi = fDL(Di)) with xi ∈ R

(z,7,7), z ∈ {512, 2048, 1024} consist of
the output of the last layers of these models, averaged over the number of images
on which the meta-feature is computed. The 7 × 7 feature maps are binarized
yielding final meta-features xi ∈ R

z. This binarization is done by thresholding
using computing feature map correlation across datasets during training time,
with an empirically determined threshold: α = 0.80. To improve the meta-feature
quality univariate feature selection is applied, where the optimal selection thresh-
old is based on SVM classifier weights during training time.

Task-Specific Meta-features. Additionally, we supplement both classical and
deep learning meta-features above with task-specific meta-features which cap-
ture basic properties of the datasets, such as the modality. These meta-features
could be queried from the user, or detected with simple classifiers. For simplicity,
here we have set the following features between 0 and 1 based on exploratory
analysis of each dataset: imaging modality, whether the segmentation is location-
dependent, how sphere-shaped is the segmentation, relative size of the segmen-
tation, and presence of multiple segmentation objects.

2.2 Meta-learner

The meta-learner is a model which relates the meta-features to segmentation
scores. For this meta-learner two methods are used. The first method uses sup-
port vector regression (SVR) [15], a common regression method in machine learn-
ing. Default parameter settings are used. The second method uses a three layer
deep fully connected multi-layer perceptron network (DNN), with ReLu acti-
vated hidden layers of sizes 50 and 30. A dropout rate of 50% is used. The last
layer is sigmoid activated to result in the final prediction.

2.3 Evaluation

The mean absolute error (MAE) is used as the scoring function. This is a common
metric in similar meta-learning methods which use regression methods [7,17], see
Eq. 1:

MAE =
1
n

n∑

i=1

|yi − ŷi|. (1)

Furthermore to assess whether the meta-learner is not simply predicting the
same score for every dataset (prediction towards the mean), we use the nor-
malized mean absolute error (NMAE) [22]. A NMAE (Eq. 2) score of 1 means
performance is equal to always predicting the mean performance of the training
datasets. NMAE values higher than 1 mean that the meta-learners performs
worse than the mean performance prediction. Values lower than 1 are desired.
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Using this metric meta-learners on different problems can be compared.

NMAE =
∑n

i=1 |yi − ŷi|∑n
i=1 |yi − ȳi| . (2)

3 Experiments

For the first part of the experiments, we use data from the Medical Segmenta-
tion Decathlon (MSD) challenge [21]. The goal of this challenge was to develop a
model which could, after a fine-tuning step, segment several distinct segmenta-
tion problems. Ten datasets with varying anatomical regions and imaging modal-
ities (CT and MR) were included. We used these datasets, and performances of
challenge participants, for our meta-learning method. Additionally, we used per-
formances of the winning participant [10] on three public datasets, as held-out
test datasets: LiTS (liver CT) [2], ACDC (heart MR) [1], CHAOS (liver CT)
[11].

3.1 Meta-feature Generation

A meta-feature vector is based on a subset of s = 20 images, sampled from
the dataset. A total of 100 subsets, and thus meta-feature vectors are sampled
from each dataset. We first examined the quality of the different meta-feature
types using the t-stochastic nearest neighbor (t-SNE) embeddings for the MSD
datasets. The results are shown in Fig. 3. The embeddings show that all meta-
features are able to separate the datasets well, but the deep learning meta-
features provide more well-defined separation.

(a) Classical (b) VGG16 (c) ResNet50 (d) MobileNetV1

Fig. 3. t-SNE embeddings of meta-features from MSD datasets and test datasets.

3.2 Cross-validation MSD

We then performed experiments with the MSD datasets to determine the per-
formance of different meta-features and meta-learners. We used cross-validation
with 7 datasets for training and 3 datasets for testing.
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Table 1. Cross-validation result of SVR and DNN meta-learners on MSD data for four
different meta-features. Bold = best result per column.

↓ Feature extractor MAE NMAE

SVR DNN SVR DNN

Task-specific only 0.22 ± 0.13 0.26 ± 0.12 1.13 ± 0.66 1.33 ± 0.61

Statistical 0.21 ± 0.08 0.24 ± 0.10 1.07 ± 0.46 1.19 ± 0.51

VGG16 0.13 ± 0.09 0.14 ± 0.04 0.65 ± 0.46 0.70 ± 0.21

ResNet50 0.12±0.07 0.12±0.03 0.62±0.36 0.62±0.15

MobileNetV1 0.15 ± 0.09 0.14 ±0.03 0.76 ± 0.46 0.70 ±0.15

We show the performances of the different combinations in Table 1. Consis-
tent with the t-SNE embeddings, we see that the deep learning meta-features
lead to lower errors than the classical meta-features. Out of the deep learning
features, ResNet50 leads to the best results. Furthermore, we see that the SVR
and DNN meta-learners perform on par with each other. In general, the lower
the intra-variability of segmentation scores within a dataset, the higher the pre-
dictive accuracy. Results for individual datasets and challenge participants can
be found in the Supplementary Material.

To further examine the behavior of different methods, we plot the predicted
Dice scores against the true Dice scores in Fig. 4. Here we can see that the overall
correlation is positive, but for some datasets the predictions are better than for
others. Datasets with “average” scores consistently yield low prediction errors.

Fig. 4. Examples of results of cross-validation on MSD datasets for classifical and
ResNet50 meta-features, and SVR and DNN meta-learners.
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Table 2. MAE scores of SVR and DNN meta-learners on test datasets for different
types of metafeatures.

↓ Feature extractor Liver (LiTS) Heart (ACDC) Liver (CHAOS) Mean MAE Mean NMAE

SVR DNN SVR DNN SVR DNN SVR DNN SVR DNN

Task-specific only 0.10 0.46 0.17 0.42 0.02 0.44 0.10 0.44 0.61 2.72

Statistical 0.09 0.14 0.16 0.16 0.01 0.04 0.09 0.11 0.54 0.71

VGG16 0.20 0.13 0.22 0.05 0.15 0.01 0.19 0.06 1.19 0.40

ResNet50 0.23 0.50 0.23 0.02 0.15 0.06 0.20 0.19 1.27 1.21

MobileNetV1 0.14 0.01 0.14 0.13 0.07 0.07 0.14 0.07 0.88 0.44

3.3 Held-Out Test Data

We then do a similar experiment as before, but instead of cross-validation on 10
datasets, we train the meta-learners on the MSD data, and test them on three
held-out datasets.

The MAE results are shown in Table 2. Prediction results can be found in the
Supplementary Material. Comparing the meta-features, we see that the classical
meta-features are best for two out of three datasets when SVR is used, and the
three deep learning features are best once when DNN is used. Averaging the
results across the datasets, the DNN meta-learner has the lowest error.

4 Discussion

We investigated whether meta-learners can predict the performance of segmen-
tation algorithms, based on various meta-feature representations of datasets. We
found that the predicted Dice scores are within a 0.10 of the true results, which
is a promising result. While such a method would not help between distinguish-
ing among the top few methods for a particular segmentation problem, it could
eliminate some alternatives that are not suitable.

The proposed study still has some limitations. One issue is that the datasets
are quite sparse, with a low number and large differences between datasets.
We would recommend including more datasets which share either task and/or
modality with the existing datasets.

Furthermore, our method assumes all segmentation methods under consid-
eration have been tested on all the available datasets. This scenario is still lim-
ited to challenges, although a platform where different datasets and models are
shared, such as OpenML [26], could be a possibility in the future. Furthermore,
meta-learners which can be trained with missing data, could also be investigated.

5 Conclusion

Prediction of performance using these meta-features yields promising results.
The error margins of the methods are still too large for decision-making based
on the outcome of this meta-learning method, but is is clearly shown that prior
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performance of methods in combination with dataset characteristics is a predic-
tor of performance and can lead to a more efficient way of development.

Supplementary Materials

A Classical Metafeatures

List of 33 classical features used to compose the classical metafeatures.

Table A.1. Classical Metafeatures used in the Support Vector Regression method.
M = mean, STD = standard deviation, CVAR= coefficient of variation.

Classical metafeatures

Number of instances

Voxel value M

Voxel value STD

Voxel value CVAR

Skew M

STD

Skew CVAR

Kurtosis M

Kurtosis STD

Kurtosis CVAR

Entropy M

Entropy STD

Entropy CVAR

Median M

Median STD

Mutual information M

Mutual information STD

Mutual information CVAR

Mutual information maximum value

Correlation M

Correlation STD

Correlation CVAR

Sparsity M

Sparsity STD

Sparsity CVAR

Slice size M

Slice size STD

Slice size CVAR

Number of slices M

Number of slices STD

Number of slices CVAR

Equivalent number of features

Noise signal ratio
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B Full Results MSD Cross-validation with SVR and
DNN meta-learner

Full results of SVR and DNN meta-learners. Consists of: MAE scores per MSD
dataset and MAE scores per MSD challenge participant.

Table B.1. Total MAE results of cross-validation on MSD datasets per MSD dataset
using different types of meta-features and SVR and DNN meta-learner

MSD datasets ↓ Mean absolute error ↓
Classical VGG16 ResNet50 MobileNetV1

Meta-learner → SVR DNN SVR DNN SVR DNN SVR DNN

1 Braintumor 0.17 ± 0.050.06 ± 0.060.07 ± 0.010.09 ± 0.010.08 ± 0.010.22 ± 0.060.14 ± 0.010.22 ± 0.06

2 Heart 0.07 ± 0.010.18 ± 0.050.06 ± 0.050.09 ± 0.010.14 ± 0.060.05 ± 0.010.15 ± 0.070.11 ± 0.02

3 Liver 0.29 ± 0.150.55 ± 0.250.08 ± 0.170.03 ± 0.000.11 ± 0.100.04 ± 0.000.28 ± 0.150.24 ± 0.06

4 Hippocampus0.07 ± 0.010.09 ± 0.010.04 ± 0.070.07 ± 0.010.08 ± 0.070.10 ± 0.010.06 ± 0.070.07 ± 0.01

5 Prostate 0.14 ± 0.030.27 ± 0.090.09 ± 0.000.21 ± 0.050.05 ± 0.000.07 ± 0.010.04 ± 0.000.05 ± 0.01

6 Lung 0.09 ± 0.010.09 ± 0.010.21 ± 0.110.23 ± 0.060.17 ± 0.070.10 ± 0.020.09 ± 0.090.09 ± 0.02

7 Pancreas 0.19 ± 0.030.07 ± 0.010.10 ± 0.010.09 ± 0.010.06 ± 0.010.09 ± 0.010.05 ± 0.010.16 ± 0.04

8 Hepatic

vessel

0.12 ± 0.010.10 ± 0.050.26 ± 0.030.21 ± 0.060.13 ± 0.040.21 ± 0.050.13 ± 0.060.09 ± 0.02

9 Spleen 0.46 ± 0.180.40 ± 0.180.08 ± 0.140.03 ± 0.000.10 ± 0.110.03 ± 0.000.21 ± 0.100.12 ± 0.02

10Colon 0.54 ± 0.230.56 ± 0.320.31 ± 0.280.34 ± 0.130.31 ± 0.250.33 ± 0.150.36 ± 0.300.25 ± 0.08

Total 0.21 ± 0.080.24 ± 0.090.13 ± 0.090.14 ± 0.040.12 ± 0.070.12 ± 0.030.15 ± 0.090.14 ± 0.03

Table B.2. Total MAE results of cross-validation on MSD datasets per MSD partici-
pant using different types of meta-features and SVR and DNN meta-learners

Participants ↓ Mean absolute error ↓
Classical VGG16 ResNet50 MobileNetV1

Meta-learner →SVR DNN SVR DNN SVR DNN SVR DNN

Participant 1 0.25 ± 0.080.29 ± 0.290.08 ± 0.110.11 ± 0.020.18 ± 0.100.20 ± 0.080.19 ± 0.120.21 ± 0.06

Participant 2 0.18 ± 0.060.19 ± 0.190.11 ± 0.050.11 ± 0.020.10 ± 0.050.12 ± 0.030.13 ± 0.050.13 ± 0.02

Participant 3 0.20 ± 0.050.21 ± 0.070.12 ± 0.060.10 ± 0.020.11 ± 0.050.11 ± 0.020.13 ± 0.060.13 ± 0.03

Participant 4 0.27 ± 0.090.24 ± 0.100.11 ± 0.140.14 ± 0.030.14 ± 0.120.17 ± 0.040.18 ± 0.140.13 ± 0.03

Participant 5 0.19 ± 0.700.21 ± 0.050.12 ± 0.060.12 ± 0.030.11 ± 0.050.09 ± 0.020.12 ± 0.060.11 ± 0.02

Participant 6 0.24 ± 0.100.25 ± 0.110.13 ± 0.090.15 ± 0.030.14 ± 0.080.11 ± 0.020.19 ± 0.100.18 ± 0.04

Participant 7 0.21 ± 0.070.29 ± 0.090.16 ± 0.120.20 ± 0.050.15 ± 0.090.12 ± 0.030.15 ± 0.110.13 ± 0.02

Participant 8 0.15 ± 0.030.16 ± 0.020.07 ± 0.030.07 ± 0.010.09 ± 0.030.07 ± 0.010.12 ± 0.030.11 ± 0.02

Participant 9 0.24 ± 0.100.23 ± 0.080.14 ± 0.080.15 ± 0.030.12 ± 0.070.08 ± 0.010.22 ± 0.080.15 ± 0.04

Participant 10 0.21 ± 0.080.27 ± 0.100.17 ± 0.100.19 ± 0.060.14 ± 0.080.16 ± 0.060.13 ± 0.100.12 ± 0.02

Participant 11 0.24 ± 0.090.26 ± 0.140.17 ± 0.090.18 ± 0.070.14 ± 0.080.16 ± 0.060.15 ± 0.1 0.18 ± 0.05

Participant 12 0.26 ± 0.100.26 ± 0.150.17 ± 0.110.20 ± 0.060.16 ± 0.090.16 ± 0.040.17 ± 0.110.15 ± 0.04

Participant 13 0.18 ± 0.060.23 ± 0.600.11 ± 0.060.11 ± 0.020.01 ± 0.050.12 ± 0.030.14 ± 0.060.15 ± 0.03

Participant 14 0.15 ± 0.040.18 ± 0.030.08 ± 0.040.09 ± 0.010.09 ± 0.030.08 ± 0.010.10 ± 0.040.10 ± 0.02

Participant 15 0.17 ± 0.040.19 ± 0.040.09 ± 0.050.08 ± 0.010.10 ± 0.040.10 ± 0.010.12 ± 0.050.10 ± 0.02

Participant 16 0.22 ± 0.090.26 ± 0.120.15 ± 0.080.14 ± 0.040.12 ± 0.070.12 ± 0.030.14 ± 0.090.13 ± 0.03

Participant 17 0.20 ± 0.080.24 ± 0.090.13 ± 0.080.13 ± 0.040.12 ± 0.070.11 ± 0.030.14 ± 0.080.16 ± 0.04

Participant 18 0.28 ± 0.120.31 ± 0.150.21 ± 0.150.25 ± 0.070.15 ± 0.110.22 ± 0.070.19 ± 0.130.22 ± 0.06

Participant 19 0.22 ± 0.080.25 ± 0.090.16 ± 0.090.15 ± 0.050.12 ± 0.080.11 ± 0.020.14 ± 0.090.13 ± 0.03

Total 0.21 ± 0.080.24 ± 0.100.13 ± 0.090.14 ± 0.040.13 ± 0.070.13 ± 0.030.15 ± 0.090.14 ± 0.03
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C Full Prediction Results Independent Test Datasets

Prediction results of SVR and DNN meta-learners on external test datasets
(LiTS, ACDC and CHAOS) using different types of meta-features.

Table C.1. Prediction result of SVR and DNN meta-learners on test datasets for
different types of meta-features.

True model result −→ ↓Meta-feature extractor Liver (LiTS) Heart (ACDC) Liver (CHAOS)

0.96 0.96 0.89

SVR DNN SVR DNN SVR DNN

Classical 0.87 0.82 0.80 0.8 0.90 0.85

VGG16 0.76 0.83 0.74 0.91 0.74 0.9

ResNet50 0.73 0.46 0.73 0.94 0.74 0.95

MobileNetV1 0.82 0.97 0.75 0.83 0.82 0.96
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Abstract. Natural language processing (NLP) shows promise as a
means to automate the labelling of hospital-scale neuroradiology mag-
netic resonance imaging (MRI) datasets for computer vision applications.
To date, however, there has been no thorough investigation into the
validity of this approach, including determining the accuracy of report
labels compared to image labels as well as examining the performance
of non-specialist labellers. In this work, we draw on the experience of
a team of neuroradiologists who labelled over 5000 MRI neuroradiology
reports as part of a project to build a dedicated deep learning-based neu-
roradiology report classifier. We show that, in our experience, assigning
binary labels (i.e. normal vs abnormal) to images from reports alone is
highly accurate. In contrast to the binary labels, however, the accuracy
of more granular labelling is dependent on the category, and we highlight
reasons for this discrepancy. We also show that downstream model per-
formance is reduced when labelling of training reports is performed by a
non-specialist. To allow other researchers to accelerate their research, we
make our refined abnormality definitions and labelling rules available,
as well as our easy-to-use radiology report labelling tool which helps
streamline this process.
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1 Introduction

Deep learning-based computer vision systems hold promise for a variety of appli-
cations in neuroradiology. However, a rate-limiting step to clinical adoption is
the labelling of large datasets for model training, a laborious task requiring con-
siderable domain knowledge and experience. Following recent breakthroughs in
natural language processing (NLP), it is becoming feasible to automate this task
by training text classification models to derive labels from radiology reports and
to assign these labels to the corresponding images [7,12–14]. To date, however,
there has been no investigation into the general validity of this approach, includ-
ing determining the accuracy of report labels compared to image labels as well
as assessing the performance of non-specialist labellers.

In this work we draw on the experience of a team of neuroradiologists who
labelled over 5000 magnetic resonance imaging (MRI) neuroradiology reports
as part of a project to build a dedicated deep learning-based neuroradiology
report classifier. In particular, we examine several aspects of this process which
have hitherto been neglected, namely (i) the degree to which radiology reports
faithfully reflect image findings (ii) whether the labelling of reports for model
training can be reliably outsourced to clinicians who are not specialists (here
we examined whether the performance of a neurologist or radiology trainee (UK
registrar grade; US resident equivalent) is similar to that of a neuroradiologist)
(iii) the difficulty of creating an exhaustive and consistent set of labelling rules,
and (iv) the extent to which abnormalities labelled on the basis of examination-
level reports are detectable on MRI sequences likely to be available to a computer
vision model.

Overall, our findings support the validity of deriving image labels from neuro-
radiology reports, but with several important caveats. We find that, contrary to
basic assumptions often made for this methodology, radiological reports are often
less accurate than image findings. Indeed, certain categories of neuroradiologi-
cal abnormality are inaccurately reported. We conclude that, in our experience
assigning binary labels (i.e. normal vs abnormal) to images from reports alone
is very accurate. The accuracy of more granular labelling, however, is dependent
on the category, and we highlight reasons for this discrepancy.

We also find that several aspects of model training are more challenging than
is suggested by a review of the literature. For example, designing a complete set
of clinically relevant abnormalities for report labelling, and the rules by which
these were applied, took our team of four neuroradiologists more than six months
to complete with multiple iterations, and involved the preliminary inspection
of over 1,000 radiology reports. To allow other researchers to bypass this step
and accelerate their research, we make our refined abnormality definitions and
labelling rules available. We also make our radiology report labelling tool avail-
able which helps streamline this manual annotation process. Importantly, we
found that even when enabled with the labelling tool and set of abnormalities
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and rules, report annotation for model training must be performed by experi-
enced neuroradiologists, because a considerable reduction in model performance
was seen when labelling was performed by a neurologist or a radiology trainee

2 Related Work

NLP models have previously been employed to assign image labels in the con-
text of training computer vision models for neuroradiology applications using
radiology reports from both computed tomography (CT) [9,12,14] and MRI [13]
examinations. In all cases, classification performance was reported for the pri-
mary objective of labelling reports. However, there was no comparison of either
the predicted or annotated labels with the images. The closest published work to
our paper is therefore a conference abstract highlighting discrepancies between
the findings detailed in chest radiograph reports and the corresponding images
when labelling a limited set of abnormalities [8]. To the best of our knowledge no
such investigation has been performed in the context of neuroradiology, nor have
the challenges of creating an NLP labelling tool for neuroradiology applications
been described.

Previous work has investigated the accuracy of using crowdsourcing to label
images in the context of general [5] as well as medical [4] computer vision tasks.
However, we know of no work in the context of neuroradiology which investi-
gates the level of expertise required for accurate manual annotation of reports.
Although it might seem obvious that experienced neuroradiologists are required
for this task, previous works have instead employed post-graduate radiology and
neurosurgery residents [14] or attending physicians [9,12], without providing any
insight into the possible reduction in labelling accuracy that such delegation may
invite.

Automated brain abnormality detection using either T2-weighted or
diffusion-weighted images (DWI) and employing supervised [10,11] and unsu-
pervised [2] deep learning models has previously been reported. However, in
each case only a limited set of abnormalities were available during training and
testing, and there was no investigation into the range of abnormalities likely to
be detected by the computer vision system using only these sequences. In fact,
to the best of our knowledge no investigation has determined what fraction of
abnormalities are visible to expert neuroradiologists inspecting only a limited
number of sequences. Resolving this point could help narrow the architecture
search space for future deep learning-based abnormality detection systems.

3 Data and Methods

The UK’s National Health Research Authority and Research Ethics Committee
approved this study. 126,556 radiology reports produced by expert neuroradi-
ologists (UK consultant grade; US attending equivalent), consisting of all adult
(>18 years old) MRI head examinations performed at Kings College Hospi-
tal NHS Foundation Trust, London, UK (KCH) between 2008 and 2019, were
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included in this study. The reports were extracted from the Computerised Radi-
ology Information System (CRIS) (Healthcare Software Systems, Mansfield, UK)
and all data was de-identified. Over the course of more than twelve months, 5000
reports were annotated by a team of neuroradiologists to generate reference stan-
dard report labels to train the neuroradiology report classifier described in [13]
(ALARM classifier). Briefly, each unstructured report was typically composed
of 5–10 sentences of image interpretation, and sometimes included information
from the scan protocol, comments regarding the patient’s clinical history, and
recommended actions for the referring doctor. In the current paper, we refer to
these reference standard labels generated on the basis of manual inspection of
radiology reports as “silver reference standard labels”. Prior to manual labelling,
a complete set of clinically relevant categories of neuroradiological abnormality,
as well as the rules by which reports were labelled, were generated following six
months of iterative experiments involving the inspection of over 1000 radiology
reports. The complete set of abnormalities, grouped by category, are presented
in the supplemental material.

Three thousand reports were independently labelled by two neuroradiolo-
gists for the presence or absence of any of these abnormalities. We refer to this
as the ‘coarse dataset’ (i.e. normal vs. abnormal). Agreement between these
two labellers was 94.9%, with a consensus classification decision made with a
third neuroradiologist where there was disagreement. Separately, 2000 reports
were labelled by a team of three neuroradiologists for the presence or absence of
each of 12 more specialised categories of abnormality (mass e.g. tumour; acute
stroke; white matter inflammation; vascular abnormality e.g. aneurysm; damage
e.g. previous brain injury; Fazekas small vessel disease score [6]; supratento-
rial atrophy; infratentorial atrophy; foreign body; haemorrhage; hydrocephalus;
extra-cranial abnormality). We refer to this as the “granular dataset”. There
was unanimous agreement between these three labellers across each category for
95.3% of reports, with a consensus classification decision made with all three
neuroradiologists where there was disagreement.

We manually inspected 500 images (comprising, on average, 6 MRI
sequences) to generate reference standard image labels. We refer to labels gen-
erated in this way as “gold reference standard labels”. 250 images were labelled
for the presence or absence of any abnormality, systematically following the
same criteria as that used to generate the coarse report dataset. Similarly, 250
images were examined and given 12 binary labels corresponding to the presence
or absence of each of the more granular abnormality categories.

Our team designed a complete set of clinically relevant categories capable
of accurately capturing the full range of pathologies which present on brain
MRI scans. The aim here was to try and emulate the behaviour of a radi-
ologist in the real world, guided by the need for clinical intervention for an
abnormal finding. To help other researchers bypass this step, and to encour-
age standardization across research groups of abnormality definitions, we make
our abnormality categories, as well as all clinical rules, available in the supple-
mental material. Our manual labelling campaign was considerably aided by our
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development of a dedicated labelling app. This tool allows easy visualisation
and labelling of reports through a graphical user interface (GUI), and includes
functionality for flagging difficult cases for group consensus/review. Two apps
were developed - one for binary labelling (Fig. 1), and one for more granular
labelling (Fig. 2) - and we make both available to other researchers at https://
github.com/MIDIconsortium/RadReports.

Fig. 1. Binary report labelling tool for the MR Imaging abnormality deep learning
identification (MIDI) study. The example report should be marked as normal.

Fig. 2. Granular report labelling tool for the MIDI study. The correct labels for this
example report have been selected.

https://github.com/MIDIconsortium/RadReports
https://github.com/MIDIconsortium/RadReports
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4 Results

4.1 Impact of Annotator Expertise

To assess the level of expertise required to perform manual annotation of reports
for training a text classification model, two experiments were performed.

First, we compared the coarse labels (i.e. normal vs. abnormal) generated by
a hospital doctor with ten years experience as a stroke physician and neurologist,
who was trained by our team of neuroradiologists over a six month period, with
neuroradiologist-generated labels. The rationale for determining the performance
was twofold. Neurologists and stroke physicians frequently interpret reports held
on the Electronic Patient Record during patient consultations, therefore it is
expected that they would be able to differentiate, and therefore label, normal or
abnormal reports accurately. Moreover, given that there are less neuroradiolo-
gists than neurologists or stroke physicians, with a ratio of 1:4 in the UK, it is
likely to be easier to recruit such physicians to perform such labelling tasks.

We found a reduction in performance of neurologist labelling when compared
to the labels created by an expert neuroradiologist (Table 1). Based on classifica-
tion and evaluation methodology in [13], the state-of-the-art ALARM classifier
was trained using these neurologist-derived labels and, for comparison, labels
generated by a blinded neuroradiologist (Fig. 3). The corresponding reduction
in classification performance on a hold-out test set of silver reference-standard
labels (i.e. reports with consensus) at an arbitrarily fixed sensitivity of 90%
(Table 2) demonstrates the impact of what we have shown to be a sub-optimal
labelling strategy. In summary, there is optimal performance when the classifier
is trained with reports labelled by an experienced neuroradiologist.

Table 1. Labelling performance of a stroke physician and neurologist.

Accuracy (%) Sensitivity (%) Specificity (%)

92.7 77.2 98.9

Table 2. Accuracy, specificity, and F1 score of a neuroradiology report classifier trained
using data labelled by either a neurologist or neuroradiologist operating at a fixed
sensitivity of 90%. Best performance in bold.

Annotator Accuracy (%) Specificity (%) F1 (%)

Neurologist 89.8 89.5 75.8

Neuroradiologist 96.4 97.7 90.3

As a second experiment, a 3rd year radiology trainee who was also trained
by our team over a six month period to label neuroradiology reports, gener-
ated labels for our ‘granular dataset’. There was a reduction in radiology trainee
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Fig. 3. ROC curve for a neuroradiology report classifier trained on labels generated by
a neurologist (cyan) and a neuroradiologist (blue). The area under the curve (AUC) is
shown. (Color figure online)

performance, averaged across all 12 binary labels, when compared to the sil-
ver reference standard labels created by our team of expert neuroradiologists
(Table 3). The sensitivity of these labels is clearly too low to be used for model
training.

Table 3. Labelling performance of a radiology trainee on the ‘granular dataset’, aver-
aged across all 12 binary labels.

Sensitivity (%) Specificity (%) F1 (%)

64.4 98.3 70.8

It is worth highlighting that reliability (inter-rater agreement) and accuracy
(performance) should not be conflated for labelling tasks. We demonstrate this
in a further experiment where the same neurologist previously described also
generated labels for our ‘granular dataset’. The Fleiss κ score for the radiology
trainee and the neurologist averaged over all 12 binary categories was 0.64, which
is above the threshold previously employed to establish neuroradiology label
reliability [14]. Substantial inter-rater agreement (commonly taken as κ > 0.6),
therefore, does not necessarily equate to label accuracy as this experiment has
shown.

4.2 Report Validation

To determine the validity of assigning image labels on the basis of radiology
reports, the granular labels derived from reports (silver reference standard) were
compared to those derived by inspecting the corresponding images (gold refer-
ence standard) for 500 cases (Table 4). Although the false positive rate of report
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labelling is very low for the 12 granular categories of interest, it is clear that the
sensitivity of radiology report labelling is category dependent and can be low.
On further analysis, we found that insensitive labelling for any given category
typically reflects the absence of any reference in the report to that particular
category rather than a discrepancy in interpretation. The categories with low
sensitivity include hydrocephalus, haemorrhage, extra-cranial abnormalities, and
infratentorial atrophy. The reasons for this are discussed below.

Table 4. Accuracy of silver reference standard report labels for granular categories
when compared to the corresponding gold standard image labels. Categories with sen-
sitivity >80% in bold.

Category Sensitivity (%) Specificity (%) F1 (%)

Fazekas 90.5 95.6 93.2

Mass 97.9 93.6 95.9

Vascular 83.3 88.4 86.5

Damage 82.4 92.7 87.8

Acute stroke 94.4 99.5 94.4

Haemorrhage 69.2 99.6 78.3

Hydrocephalus 70.0 99.6 77.8

White matter inflammation 95.6 100 97.7

Foreign body 100.0 99.6 96.6

Extracranial abnormality 60.0 94.7 54.5

Supratentorial atrophy 100 94.6 76.9

Infratentorial atrophy 77.7 94.3 54.5

Macro-average 85.1 96.0 82.8

Importantly, silver standard binary labels indicating the presence or absence
of any abnormality in a report (i.e. normal vs. abnormal) were accurate when
compared to the image (gold reference standard label) (Table 5).

Table 5. Accuracy of silver reference standard report labels for binary categories (i.e.
normal vs abnormal) relative to the corresponding gold standard image labels.

Category Sensitivity (%) Specificity (%) F1 (%)

Normal vs. abnormal 98.7 96.6 98.5

4.3 MRI Sequences and Abnormality Visibility

In another experiment we examined the utility of assigning examination-level
labels derived from radiology reports to different MRI sequences. In general,
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neuroradiology reports detail findings from multi-modality (i.e. multiple MRI
sequences) imaging examinations, with individual sequences providing comple-
mentary information to discriminate specific tissues, anatomies and patholo-
gies. For example, the signal characteristics of blood changes over time, the
rate of which is sequence dependent. Therefore analysis of images from multiple
sequences allows the chronicity of a haemorrhage to be deduced. Assigning the
same label to all images in a multi-modality examination can confound computer
vision classification if a model isn’t optimised to take as its input the individual
sequence from which a particular examination-level label was derived. Therefore,
we wished to determine whether a minimal number of sequences would be suf-
ficient for use with report-derived labels. At our institution, axial T2-weighted
and DWI images are typically obtained for routine image review, with over 78%
of patients receiving both images during an examination. We sought to deter-
mine what fraction of abnormalities are visible to a neuroradiologist inspecting
only the T2-weighted and DWI images. Binary labels (i.e. normal vs. abnormal)
for 250 examinations were generated by inspecting only these sequences, and
compared to labels derived from all available sequences for the same examina-
tions. The agreement between these two labels was 97.8%, showing that these
two sequences would be sufficient for use with report-derived labels for most
abnormality detection tasks. Examples of the wide range of abnormalities iden-
tified on the basis of T2-weighted and DWI imaging appear in the supplemental
material, along with reports describing abnormalities which weren’t visible on
either of these two sequences.

5 Discussion

In this work we have examined several assumptions which are fundamental to
the process of deriving image labels from radiology reports. Overall, our findings
support the validity of deriving image labels from neuroradiology reports. In
particular, assigning binary labels (i.e. normal vs abnormal) to images from
reports alone is highly accurate and therefore acceptable. Until now this has
been assumed but has not been thoroughly investigated. The accuracy of more
granular labelling, however, is dependent on the category. For example, labelling
of acute stroke, mass, neuro-degeneration, and vascular disorders, is shown to
be accurate.

The low labelling accuracy seen in some granular labelling categories is a
result of low sensitivity. Low sensitivity typically reflects the absence of any
reference in the report to that particular category rather than a discrepancy
in interpretation. A qualitative analysis by our team of neuroradiologists has
determined several reasons for low sensitivity in some categories.

First, in the presence of more clinically important findings, neuroradiologists
often omit descriptions of less critical abnormalities which may not necessarily
change the overall conclusion or instigate a change in the patient’s management.
For example, on follow-up imaging of previously resected tumours, we have found
that the pertinent finding as to whether there is any progressive or recurrent
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tumour is invariably commented on. In contrast, the presence of white matter
changes secondary to previous radiotherapy appears less important within this
clinical context. If unchanged from the previous imaging, a statement to the
effect of “otherwise stable intracranial appearances” is typical in these cases.

A second source of low sensitivity is the observation that radiology reports
are often tailored to specific clinical contexts and the referrer. A report aimed
at a neurologist referrer who is specifically enquiring about a neurodegenerative
process in a patient with new onset dementia, for example, may make comments
about subtle parenchymal atrophy. In contrast, parenchymal volumes may not
be scrutinised as closely in the context of someone who has presented with a
vascular abnormality, such as an aneurysm, and a report is aimed at a vascu-
lar neurosurgeon. Both sources of low sensitivity mentioned above often reflect
a “satisfaction of search error” where the radiologist has failed to appreciate
the full gamut of abnormalities. After identifying one or two abnormalities the
task may appear complete and there is less desire to continue to interrogate
the image [1]. It is also noteworthy that abnormalities which are identified by
the neuroradiologist by chance may be judiciously omitted from the report on
a case by case basis when such “incidentalomas” are thought to be of little
consequence. Because of these sources of low sensitivity, labelling categories of
abnormality from radiology reports remains challenging for haemorrhage (note
that acute haemorrhage is typically detected by CT; MRI reports were often
insensitive to those haemorrhages associated with non-critical findings such as
micro-haemorrhages), hydrocephalus, extracranial abnormalities and infratento-
rial atrophy.

In addition to examining the accuracy of radiology reports compared to
image findings, we have also demonstrated that most abnormalities typical of a
real-world triage environment are picked up using only T2-weighted and DWI
sequences. This observation may help narrow the architecture search-space for
future deep learning-based brain abnormality detection systems, and allow a
more accurate comparison of model performance across research groups. How-
ever, there are certain abnormalities which may not be visible on these sequences.
For example, the presence of microhaemorrhages or blood breakdown prod-
ucts (hemosiderin), are sometimes only visible on gradient echo (T∗

2-weighted)
or susceptibility weighted imaging (SWI) [3]. Furthermore, foci of pathologi-
cal enhancement on post contrast T1-weighted imaging can indicate underlying
disease which may not be apparent on other sequences. Therefore, whilst we
have shown that using T2-weighted and DWI sequences alone allows almost all
abnormalities to be identified visually, and that plausibly this will translate to
efficient computer vison training tasks, it is important to be aware that there
are potential limitations.

We briefly discuss several logistical aspects of the report labelling process
which were not covered by our more quantitative investigations. Our team
designed a complete set of clinically relevant categories capable of accurately
capturing the full range of pathologies which present on brain MRI scans. The
aim here was to try and emulate the behaviour of a radiologist in the real world,
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guided by the need for clinical intervention for an abnormal finding. This process,
however, was more onerous than is often presented in the literature, requiring the
inspection of over 1000 radiology reports by our team of experienced neuroradi-
ologists over the course of more than six months before an exhaustive and consis-
tent set of abnormality categories, as well as the rules by which reports were to
be labelled, could be finalised. The rules and definitions constantly evolved dur-
ing the course of the practice labelling experiments. To allow other researchers
to bypass this step and accelerate their research, we make our refined abnor-
mality definitions and labelling rules available as well as our dedicated labelling
easy-to-use app.

6 Conclusion

We conclude that in our experience, assigning binary labels (i.e. normal vs abnor-
mal) to images from reports alone is highly accurate. Importantly, we found that
even when enabled with the labelling tool and set of abnormalities and rules,
annotation of reports for model training must be performed by experienced neu-
roradiologists, because a considerable reduction in model performance was seen
when labelling was performed by a neurologist or a radiology trainee. In contrast
to the binary labels, the accuracy of more granular labelling is dependent on the
category.
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Abstract. The automated recognition of surgical instruments in surgi-
cal videos is an essential factor for the evaluation and analysis of surgery.
The analysis of surgical instrument localization information can help
in analyses related to surgical evaluation and decision making during
surgery. To solve the problem of the localization of surgical instruments,
we used an object detector with bounding box labels to train the local-
ization of the surgical tools shown in a surgical video. In this study, we
propose a semi-supervised learning-based training method to solve the
class imbalance between surgical instruments, which makes it challeng-
ing to train the detectors of the surgical instruments. First, we labeled
gastrectomy videos for gastric cancer performed in 24 cases of robotic
surgery to detect the initial bounding box of the surgical instruments.
Next, a trained instrument detector was used to discern the unlabeled
videos, and new labels were added to the tools causing class imbalance
based on the previously acquired statistics of the labeled videos. We also
performed object tracking-based label generation in the spatio-temporal
domain to obtain accurate label information from the unlabeled videos
in an automated manner. We were able to generate dense labels for the
surgical instruments lacking labels through bidirectional object track-
ing using a single object tracker; thus, we achieved improved instrument
detection in a fully or semi-automated manner.

Keywords: Surgical instrument detection · Semi-supervised learning ·
Class imbalanced problem

1 Introduction

Recently, the improvements in the performance of visual recognition technol-
ogy has led to the widespread use of computer-assisted surgery (CAS). CAS
was mainly used to deliver specific information, such as the location of lesions
required for a surgical procedure. However, in recent times, the concept of CAS
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has been expanded for postoperative feedback through surgical procedures or
behavior analysis. Currently, the localization information of the surgical instru-
ments in the surgical video is essential for understanding the surgical process or
for providing useful information to the surgeon during the surgical process [1].
In particular, as the demand for robotic surgery that can reduce the burden on
the surgeon increases, the need for information technologies, such as the nav-
igation or the analysis of surgical conditions during surgery using recognition
information, that occurs in the surgical process also increases.

With the increase in the need for the automated localization of surgical
instruments, datasets, including instance segmentation labels of instruments for
laparoscopic cholecystectomy [2,3] and robotic surgery using the DaVinci Xi in
abdominal porcine procedures, have been published for the instance segmenta-
tion challenge [4]. However, in the case of both datasets, sufficient label informa-
tion for accurate localization was not provided. In the case of robotic surgery,
only the partial process of the procedure using pigs was included, thereby limiting
the appearance information of the recognizable device. Additionally, a dataset,
including video and kinematic log information for analyzing the motion of robotic
surgical instruments, has been released. However, it does not contain localization
information in actual surgery [5].

We propose a semi-supervised learning-based instrument detection methodol-
ogy to efficiently solve instrument localization problems in robotic surgery while
overcoming the drawbacks of the existing dataset. The localization information of
the surgical tools in the robotic surgery video is a database with an extreme class
imbalance problem, which makes it difficult to train some instruments. Because
some instruments are used only for a specific purpose in the surgical process,
even if a large number of surgical videos are secured, some instruments appear
very rarely depending on the surgical situation or the surgeon’s preference. The
proposed methodology is designed to operate in a fully or semi-automated man-
ner and addresses class imbalance issues while minimizing human intervention
and maximizing the amount of training data that is lacking.

To effectively apply the proposed semi-supervised learning technique to sur-
gical instrument localization, we used an algorithm based on the detection and
tracking strategy [6,7] among the semi-supervised learning techniques for object
detection [6–8]. As demonstrated by [6], the goal was to perform robust tracking
to collect reliable positive examples for utilizing the detection and tracking strat-
egy. In this case, [6] aims to obtain reliable positive examples during training
for a robust classifier; however, the recently proposed CNN (Convolutional Neu-
ral Networks)-based detector [9–12] may not be suitable because it intentionally
manipulates training inputs to obtain difficult positive examples during training.
In the case of a CNN-based detector, positive examples given as input through
data augmentation are transformed to improve the generalization performance.
For automated label generation for CNN-based detectors, we created training
labels for surgical instruments with class imbalance problems using an object
tracker [21] with a balanced performance in terms of speed and accuracy.
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[7] proposed a learning methodology that can efficiently train with sparse
annotations distributed in a video on the premise that there are initial ground
truth bounding boxes for some objects. The case presented by [7] is similar
to the proposed algorithm in that it uses a CNN-based tracking model [21].
However, we generated labels in an automated manner from unlabeled videos
using a trained detector from the initial database. At this time, according to
the statistics of the initial database, the automated annotation was performed
for a specific surgical instrument causing class imbalance, and dense labels for a
specific frame on the surgical video were generated. Figure 1 shows a schematic
flow chart of our proposed detection and tracking based semi-supervised learning
methodology.

CVAT

▫ Gastrectomy
▫ Robotic Surgery
▫ Labeled 24 videos
▫ Unlabeled 10 videos

Instrument detector

Training with 
labeled videos

Object tracker

Detection with 
unlabeled videos

Bidirectional
tracking 

Post-filtering by CVAT

Surgery videos

Fig. 1. Schematic representation of the proposed semi-supervised learning-
based surgical instrument detector. The proposed technique is trained by adding
labels in an automated manner from a trained detector with initial data by CVAT [20].
If the proposed technique follows the red arrow indicated in the flow chart, the training
is done in a fully automated way, and if it follows the blue arrow, human intervention
is required. Even when human intervention is required, using the proposed algorithm
can significantly reduce human intervention.

We used the MMDetection library [15] with PyTorch [14] to verify the per-
formance of instrument detection and performed training using state-of-the-art
(SOTA) models. For performance evaluation, we used Faster R-CNN (Region-
based Convolutional Neural Networks) and Cascade R-CNN, which are two-
stage object detectors based on CNN. At the same time, for a fair comparison,
we used the anchorless detector, FCOS (Fully Convolutional One-Stage detec-
tor) [18], as a representative one-stage detector among other one-stage detectors
[16–18]. Finally, we performed ensembles for the trained detectors to comple-
ment each model’s inference outputs. We applied joint NMS-based ensembles
[19] for effective ensembles and were able to achieve improved instrument detec-
tion performance. The technical contribution of the proposed semi-supervised
learning-based surgical instrument detection methodology is as follows:

– The proposed surgical instrument detection methodology solves the class
imbalance problem by generating labels in an automated manner. A detection
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and tracking scenario is used in semi-supervised learning to obtain a label in
an automated manner, and a specific scenario performs a learning process in
a fully automated manner.

– The proposed technique utilizes a CNN-based SOTA object detector for effec-
tive instrument detection. We evaluated the performance of each object detec-
tor in semi-supervised learning scenarios.

– Ensemble-based test results are provided using trained detectors based on
supervised/semi-supervised learning scenarios to obtain the final perfor-
mance. We were able to achieve the best performance among the proposed
techniques by utilizing the ensemble technique.

Fig. 2. List of instruments to be detected in gastrectomy for gastric cancer
and captured images of the corresponding instruments. There are 14 types
of instruments collected in the instrument detection database, consisting of robotic
surgical instruments, laparoscopic instruments for surgical assistance, and consumables.
The types of instruments are from the top left (a) Harmonic Ace, (b) Maryland Bipolar
Forceps, (c) Cadiere Forceps, (d) Curved Atraumatic Grasper, (e) Stapler, (f) Medium-
Large Clip Applier, (g) Small Clip Applier, (h) Suction-Irrigation, (i) Needle, (j) Needle
Holder, (k) Baxter, (l) Specimen Bag, (m) Drain Tube, and (n) Covidien Ultrasonic.
Each instrument is labeled with a minimum pixel size bounding box that contains the
instrument.

2 Data Collection

We used the original videos of gastrectomy for 24 cases of gastric cancer per-
formed by a skilled specialist to construct an initial training database for robotic
surgical instrument detection. Of the videos included in the initial training data,
14 videos were recorded using the da Vinci Si system, and the remaining ten
videos were recorded using the da Vinci Xi system. The gastrectomy videos
included in the initial database were recorded between a minimum of 1 h 30 min
and 4 h depending on the type of patient and the surgical procedure. For the
surgical instrument labeling, 1f/s sampling was applied to all frames where the
instrument appeared to obtain a label for 1 frame per second on average, and
all annotations were performed by annotators skilled in using the labeling tool.
The Computer Vision Annotation Tool (CVAT) [20] was used as the labeling
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tool, and labeling was conducted by receiving annotation input from multiple
annotators and confirming it from at least one inspector. Each surgical instru-
ment was labeled with a minimum pixel size bounding box containing a visually
identifiable instrument.

3 Statistics of Instrument Detection Database

Figure 2 shows the list of surgical instruments included in the instrument detec-
tion database. There are 14 instruments used in gastrectomy for gastric cancer:
Harmonic Ace, Maryland Bipolar Forceps, Cadiere Forceps, Curved Atraumatic
Grasper, Stapler, Medium-Large Clip Applier, Small Clip Applier, Suction-
Irrigation, Needle, Needle Holder, Baxter, Specimen Bag, Drain Tube, and
Covidien Ultrasonic. The surgical instruments include not only robotic surgi-
cal instruments but also assistive laparoscopic instruments and consumables.
Figure 3 shows the label statistics for each instrument in the initial train-
ing database and the statistics for the increased labels obtained in the semi-
supervised learning process. We constructed evaluation data with a validation
set of three videos that were not included in the training to verify the perfor-
mance of the surgical instrument detector. Figure 4 shows the data statistics for
the validation set.

Fig. 3. Changes in label statistics according to the proposed training sce-
nario. This figure shows the initial distribution of surgical instruments obtained from
24 videos and the distribution of surgical instruments for each model after bidirectional
tracking-based labeling. SSL refers to data that generate labels after bidirectional track-
ing, and Post refers to post-correction with human intervention.

4 Semi-supervised Learning for Instrument Detection

To verify the scenarios using the semi-supervised learning shown in Fig. 1, we
conducted CNN-based object detector training using the MMDetection library
[15]. The model trained to check the baseline performance includes a two-stage
model, Faster R-CNN [9] and Cascade R-CNN [12] as well as an one-stage model,
FCOS [18]. We used SiamMask as a tracker to apply semi-supervised learning
based on detection and tracking. Using the initial bounding box obtained through
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Fig. 4. Instrument label distribution included in a validation set of 3 videos.
To verify the performance of the trained instrument detector, 3 videos were divided
into a validation set in 24 videos. This figure shows the distribution of the number of
labels for each instrument included in the verification video set.

the detector as an input, we performed bidirectional tracking through SiamMask
[13] to acquire additional labels. Algorithm1 shows an automated detection and
tracking algorithm for obtaining additional labels for surgical instruments with
a small number of quantities. Algorithm1 is used in the same way for backward
tracking to complete bidirectional tracking. Figure 5 shows an example of label
information obtained using an automated method through the proposed detec-
tion and tracking based algorithm. Through the proposed method, the additional
labeling for 10 unlabeled videos was performed to obtain additional labels for
class imbalanced surgical instruments.

Detector +
Tracker

(Small Clip 
Applier)

Annotations
after Tracking

Detector +
Tracker

(Harmonic Ace)

........

........

........

Fig. 5. Example of creating dense annotations based on bidirectional track-
ing. The initial detection result for the Small Clip Applier was received as input, and
labels were generated through bidirectional tracking. In order to generate dense labels,
bidirectional tracking of the detected Harmonic Ace was generated in an automated
manner. The blue box shows the case where the tracking is done, and the red box
shows the situation where the tracking ends.
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Algorithm 1: Forward tracking
Input: Action clip (A), pretrained tracking model (T ), a set of bbox for initial
input (BB), threshold of tracking score (ρ1), threshold of IoU between two pair
of tracked bbox (ρ2)
Output: A set of bboxes in Q from T
Initialize an empty queue Q
while bbox bc,o,i with class c and detector o at i-th frame from BB do

Get a list of frames FF in forward from i-th frame in A;
Initialize T with bc,o,i from A;
Initialize a variable pres with a size of bc,o,i to store a size of object from T
at previous frame;
while each frame in FF do

Get a bbox bc,t,k with t index from T at k-th frame;
crnts := a size of bc,t,k;
if IoU(prevs, crnts) ≥ ρ1 and bc,o,k not exists then

prevs := crnts;
Add bc,t,k to Q;

else
break;

end

end

end

5 Experimental Results

Training Details. The training of all detectors and trackers was performed
according to the training parameter settings shown in Table 1. HRNet [21] was
used as the backbone CNN applied for the training of the object detector, and
the structure of the feature pyramid network [22] was used for effective training.

Table 1. Training details of each detector and tracker. lr represents the learning
rate. The learning schedule is indicated as (scheduler, drop rate) [drop epoch1:drop
epoch2:max epoch]. Det-thr and Track-thr are the threshold values for the output
reliability of the detector and tracker, respectively, and Track-IoU is the termination
condition specified in Algorithm 1.

Model BackboneBackbone param. Optimizer (lr)LR scheduler Det-thrTrack-thrTrack-IoU

Cascade R-CNNHRNet V2p-W32 SGD (0.02) (step, 0.1) [16:19:20]0.9 0.75 0.25

Faster R-CNN HRNet V2p-W32-GN-headSGD (0.02) (step, 0.1) [8:11:12] 0.7 0.75 0.25

FCOS HRNet V2p-W32 SGD (0.01) (step, 0.1) [8:11:12] 0.7 0.75 0.25

Data Statistics. Figure 3 shows the change in the amount of training labels
after applying the proposed technique, and Fig. 4 shows the number of labels for
each tool included in the verification set. For all the performance evaluations,
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Table 2. mAP changes according to the proposed training scenarios. mAP
is evaluated under the IoU of [0.5 : 0.05 : 0.95]. The highest-performance detector is
indicated in bold font.

Model Backbone Dataset mAP

Faster R-CNN HRNet Model only 46.5

– HRNet Model+SSL 48.7

Cascade R-CNN HRNet Model only 51.0

– HRNet Model+SSL 49.1

– HRNet Model+SSL+Post 52.3

FCOS HRNet Model only 35.5

– HRNet Model+SSL 38.1

– HRNet Model+SSL+Post 49.1

we calculated the mAP for all classes under the [0.5 : 0.05 : 0.95] IoU value by
referring to the evaluation method of the COCO dataset [23].

Semi-supervised Instrument Detection. Table 2 shows the performance
change according to the semi-supervised learning scenarios. The detectors used
in the proposed learning technique are Cascade R-CNN, Faster R-CNN, and
FCOS with a HRNet backbone, and they are composed of two types of training
scenarios, as shown in Fig. 1. The first is a model that adds labels without human
intervention until learning by performing detection and tracking in a fully auto-
mated manner, which is named model+SSL. The other method is a label applied
with human post-correction on the additionally obtained label, which is named
model+SSL+post. When the proposed method was applied, the faster R-CNN
and FCOS were able to obtain improved results in overall performance without
post-correction. In the case of the Cascade R-CNN detector, when the learning
technique was applied in a fully automated manner, the overall performance was
degraded. However, when post-correction was applied, a significant improvement
in performance was obtained.

Human Intervention. Table 3 shows the level of human intervention required
during the annotation process at the frame level. By applying the proposed
learning methodology, we reduced the level of intervention by more than half
compared to the case of labeling 10 new videos based on 1f/s. In the case of
fully automated semi-supervised learning, an improvement in performance was
achieved for most class imbalanced surgical tools and in some networks, without
any human intervention.

Ensemble and Visualization. Table 4 shows the ensemble performance in the
inference process for models obtained from the proposed learning methodology.
Figure 6 shows the visualization of the final output of the model for each learning
scenario.
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Table 3. Difference between human interventions according to the proposed
training scenario and detector. The intervention ratio was calculated as a percent-
age of the total number of frames collected at 1f/s from the unlabeled videos.

Model Total number of frames with
human intervention

Intervention ratio (%)

Manual labeling (1f/s) 82,412 –

Cascade R-CNN 41,498 50.35

Faster R-CNN 44,441 53.93

FCOS 18,080 21.94

Table 4. Performance evaluation result of model ensemble according to each
learning scenario. As a result of the ensemble of all models, the highest performance
was achieved, and the two-stage model recorded higher performance than the one-stage
model.

Model Backbone Dataset mAP

Faster R-CNN
ensemble

HRNet Model only/Model+SSL 52.3

Cascade R-CNN
ensemble

HRNet Model only/Model+SSL/Model+SSL+Post 54.0

FCOS ensemble HRNet Model only/Model+SSL/Model+SSL+Post 43.8

All ensemble HRNet Model only/Model+SSL/Model+SSL+Post 54.2

FCOS
HRNet V2p
Baseline

FCOS
HRNet V2p
Baseline + 

SSL

FCOS
HRNet V2p
Baseline + 
SSL + Post

FCOS
HRNet V2p
Ensemble

Fig. 6. Visualization of detectors trained with the proposed learning
methodology. This figure shows the visualized results for the output of model only,
model+SSL, model+SSL+post, and ensemble in order from the first row. The threshold
for the output reliability for visualization was set to 0.5.



Semi-supervised Learning for Instrument Detection 275

Per Instrument Analysis. Table 5 shows the change in performance for each
instrument obtained according to the semi-supervised learning scenario. Bold
surgical instruments are tools that cause severe class imbalance problems in
the initial database. If the proposed learning technique is used, performance
improvement can be achieved for most class imbalanced surgical instruments.
At the same time, Table 3 shows the correlation between the increased label
amount and the change in performance for each instrument.

Table 5. Changes of AP for each surgical instrument in the training scenario
using the FCOS detector. The instrument index is shown in Fig. 2. M stands for
Model only, MS stands for Model+SSL, and MSP stands for Model+SSL+Post. The
values in parentheses indicate the performance difference from Model only. In most
cases, the ensembles of all the models demonstrated improved performance.

Model inst. (a) inst. (b) inst. (c) inst. (d) inst. (e) inst. (f) inst. (g)

FCOS M 71.6 71.0 56.6 20.1 60.8 33.4 45.9

FCOS MS 75.5 (+3.9) 69.4 (−1.6) 53.3 (−3.3) 17.7 (−2.4) 57.9 (−2.9) 43.8 (+10.4) 36.1 (−9.8)

FCOS MSP 78.1 (+6.5) 74.6 (+3.6) 66.5 (+9.9) 27.1 (+7.0) 72.4 (+11.6) 35.0 (+1.6) 45.2 (−0.7)

FCOS ensemble77.1 (+5.5) 74.1 (+3.1) 63.0 (+6.4) 23.8 (+3.7) 68.1 (+7.3) 49.4 (+16.0) 50.5 (+4.6)

All ensemble 79.8 (+8.2) 78.1 (+7.1)70.0 (+13.4)33.0 (+12.9)76.4 (+15.6)75.0 (+41.6)79.1 (+33.2)

Model inst. (h) inst. (i) inst. (j) inst. (k) inst. (l) inst. (m) inst. (n)

FCOS M 4.7 2.5 0.2 60.3 35.8 1.0 33.3

FCOS MS 28.2 (+23.5) 2.1 (−0.4) 0.7 (+0.5) 72.8 (+12.5) 28.8 (−7.0) 0.7 (−0.3) 46.3 (+13.0)

FCOS MSP 31.9 (+27.2) 2.9 (+0.4) 0.0 (−0.2) 72.3 (+12.0) 46.6 (+10.8) 11.1 (+10.1) 48.6 (+15.3)

FCOS ensemble30.9 (+26.2) 2.9 (+0.4) 0.6 (+0.4) 74.6 (+14.3) 42.3 (+6.5) 6.2 (+5.2) 49.9 (+16.6)

All ensemble 42.9 (+38.2)12.2 (+9.7)9.6 (+9.4) 83.0 (+22.7)56.9 (+21.1)30.8 (+29.8)32.1 (−1.2)

6 Conclusion

In this study, we proposed a semi-supervised learning-based training methodol-
ogy to solve the problem of surgical instrument localization in robotic surgery.
The proposed methodology was confirmed to successfully alleviate the severe
class imbalance problem caused by the nature of the surgical videos. How-
ever, there was a limitation in that an automated labeling process could not
completely solve the class imbalance problem. It is possible to consider other
parameterization methods, such as approaching the problem by defining it as
pixel-level segmentation and approaching surgical instrument localization as an
object detection problem to ensure improvements in future research. In the cur-
rent experiment scenarios, the results applying to only one cycle among the
scenarios shown in Fig. 1 are reported. However, it is necessary to analyze the
performance and problems of the proposed algorithm in the iterative scenarios.
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Abstract. Training medical image analysis models requires large
amounts of expertly annotated data which is time-consuming and expen-
sive to obtain. Images are often accompanied by free-text radiology
reports which are a rich source of information. In this paper, we tackle
the automated extraction of structured labels from head CT reports for
imaging of suspected stroke patients, using deep learning. Firstly, we
propose a set of 31 labels which correspond to radiographic findings (e.g.
hyperdensity) and clinical impressions (e.g. haemorrhage) related to neu-
rological abnormalities. Secondly, inspired by previous work, we extend
existing state-of-the-art neural network models with a label-dependent
attention mechanism. Using this mechanism and simple synthetic data
augmentation, we are able to robustly extract many labels with a sin-
gle model, classified according to the radiologist’s reporting (positive,
uncertain, negative). This approach can be used in further research to
effectively extract many labels from medical text.

Keywords: NLP · Radiology report labelling · BERT

1 Introduction

Training medical imaging models requires large amounts of expertly annotated
data which is time-consuming and expensive to obtain. Fortunately, medical
images are often accompanied by free-text reports written by radiologists sum-
marising their main findings (what the radiologist sees in the image e.g. “hyper-
density”) and impressions (what the radiologist diagnoses based on the findings
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e.g. “haemorrhage”). This information can be converted to structured labels
which are used to train image analysis algorithms to detect the findings and
to predict the impressions. Image-level labels have previously been provided to
train image analysis algorithms e.g. as part of the RSNA haemorrhage detection
challenge [17] and the CheXpert challenge for automated chest X-Ray interpre-
tation [9]. The task of reading the radiology report and assigning labels is not
trivial and requires a certain degree of medical knowledge on the part of the
human annotator. An alternative is to automatically extract labels, and in this
paper we study the task of automatically labelling head computed tomography
(CT) radiology reports.

Automatic extraction has traditionally been accomplished using expert med-
ical knowledge to engineer a feature extraction and classification pipeline [24];
this was the approach taken by Irvin et al. to label the CheXpert dataset of
Chest X-Rays [9] and by Gorinski et al. in the EdIE-R method for labelling
head CT reports [8]. Such pipelines separate the individual tasks such as named
entity recognition and negation detection.

An alternative approach is to design an end-to-end machine learning model
that will learn to extract the final labels directly from the text. Simple approaches
have been demonstrated using word embeddings or bag of words feature repre-
sentations followed by logistic regression [25] or decision trees [22]. More complex
recurrent neural networks (RNNs) have been shown to be effective for document
classification by many authors [3,23] and Drozdov et al. [7] show that a bidi-
rectional long short term memory (Bi-LSTM) network with a single attention
mechanism also works well for a binary task. However, with recent developments
of transformer natural language processing (NLP) models such as Bidirectional
Encoder Representations from Transformers (BERT) [6], it is easier than ever
before to use existing pre-trained models that have learnt underlying language
patterns and fine-tune them on small domain-specific datasets. This was the
approach taken by Wood et al. in the Automated Labelling using an Attention
model for Radiology reports of MRI scans (ALARM) model for labelling head
magnetic resonance imaging (MRI) reports [21]. Specifically, they use BioBERT
[1] as the base model, which has been pretrained on PubMed abstracts rather
than Wikipedia, to obtain contextualised embeddings for each input token and
then apply a further attention mechanism to this embedding. Wood et al. per-
form a binary classification of normal versus abnormal radiology report, which
is determined by a number of criteria during data annotation. BERT has also
been used for multi-label classification of radiology reports by Smit et al. [19].
They show that BERT can outperform the previous state of the art for labelling
13 different labels on the CheXpert open source dataset [9].

Mullenbach et al. proposed per-label attention in a similar document classifi-
cation task (for clinical coding) in their Convolutional Attention for Multi-Label
classification (CAML) model [15]. In this paper, inspired by [15], we extend
existing state-of-the-art models with a label-dependent attention mechanism.
Our contributions are to:
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– Propose a set of radiographic findings and clinical impressions for labelling
of head CT scans for suspected stroke patients.

– Show that a multi-headed model with per-label attention improves the accu-
racy compared to a simple multi-label softmax output.

– Show that simple synthetic data significantly improves task performance,
especially for classification of rarer labels.

2 Data

Below we describe the three datasets used in this work.

NHS GGC Dataset: Our target dataset contains 230 radiology reports sup-
plied by the NHS Greater Glasgow and Clyde (GGC) Safe Haven. We have the
required ethical approval1 to use this data. A synthetic example report with
similar format to the NHS GGC reports can be seen in Fig. 1.

Fig. 1. Example radiology report. The image (left) shows a slice from an example CT
scan (Case courtesy of Dr David Cuete, Radiopaedia.org, rID: 30225); there is a visible
darker patch indicating an infarct. The synthetic radiology report (middle) has a similar
format to the NHS GGC data. We manually filter relevant sentences, highlighted with
blue background. The boxes (right) indicate which labels are annotated. (Color figure
online)

A list of 31 radiographic findings and clinical impressions found in stroke
radiology reports was collated by a clinical researcher; this is the set of labels that
we aim to classify. Figure 2 shows a complete list of these labels. Each sentence
is labelled for each finding or impression as “positive”, “uncertain”, “negative”
or “not mentioned” - the same certainty classes as used by Smit et al. [19]. The
most common labels such as “haemorrhage”, “infarct” and “hyperdensity” have
between 200–400 mentions (100–200 negative, 0–50 uncertain, 100–200 positive)
while the rarest labels such as “abscess” or “cyst” only occur once in the dataset.

1 iCAIRD project number: 104690; University of St Andrews: CS14871.
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Fig. 2. Label schematic: 13 radiographic findings, 14 clinical impressions and 4
crossover labels (finding→impression links not shown). *These labels fit both the
finding and impression categories. **Haematoma can indicate other pathology (e.g.
trauma). ***Established infarcts indicate brain frailty [10].

During the annotation process, the reports were manually split into sentences
by the clinical researcher, resulting in 1,353 sentences which we split into training
and validation datasets (due to the limited number of annotated reports, we
do not have a separate test set). Each sentence was annotated independently,
however we allocate sentences from the same original radiology report to the
same dataset to avoid data leakage.

Synthetic Dataset: We augment our training dataset by synthesising 5 sen-
tences for each label as follows:

– “There is [label].” → positive
– “There is [label] in the brain.” → positive
– “[Label] is evident in the brain.” → positive
– “There may be [label].” → uncertain
– “There is no [label].” → negative

For the labels “haemorrhage/haematoma/contusion”, “evidence of surgery/
intervention”, “vessel occlusion (embolus/thrombus)”, and “involution/
atrophy”, we synthesise sentences for each variant. There are 180 synthetic sen-
tences total.

MIMIC-III Dataset: To pre-train the word embedding, we use clinical notes
from the MIMIC dataset [11]; in total 2,083,180 documents from 46,146 patients.
The datasets are summarised in Table 1.
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Table 1. Summary statistics for the datasets used in this work.

Dataset #patients #reports #sentences

NHS GGC – Training 138 138 838

NHS GGC – Validation 92 92 515

Synthetic data – – 180

MIMIC-III 46,146 2,083,180 99,718,301

3 Methods

Below we describe the methods which are compared in this paper (implemented
in Python). We denote our set of labels as L and our set of certainty classes as
C, such that the number of labels nL = |L| and the number of certainty classes
nC = |C|. For the NHS GGC dataset, nL = 31 and nC = 4. For all methods,
data is pre-processed by extracting sentences and words using the NLTK library
[13], removing punctuation, and converting to lower case. Hyperparameter search
was performed through manual tuning on the validation set, based on the micro-
averaged F1 metric.

3.1 Simple Machine Learning Approaches

BoW + RF: The Bag of Words + Random Forest (BoW + RF) model uses a
bag of words representation as its input. We train one model per label since this
gives the most accurate results, resulting in 31 random forest classifiers. Random
forest classifiers are quick to train and apply so multiple models are still practical
in a real use case. We use the sci-kit learn library [16] implementation with 100
estimators, a maximum depth of 10, and 200 maximum features.

Word2Vec: The Word2Vec [14] baseline uses a pre-trained word embedding of
size e. The embedding is pre-trained on the MIMIC dataset described in Sect. 2
for 30 epochs using the gensim [18] library; the vocabulary size is 107,497 words.
The word vectors for the input sentence are averaged and passed through a fully
connected single layer neural network mapping to an output layer of size nL×nC .
This network is trained with a constant learning rate of 0.001, batch size of 16
and an embedding size of 200. This and all following models are trained for a
maximum of 200 epochs with early stopping patience of 25 epochs on F1 micro.

3.2 Deep Learning: Per-Label Attention Mechanism

When training neural networks, we find that accuracy can be reduced where
there are many classes. Here we describe the per-label attention mechanism
[2] as seen in Fig. 3, an adaptation of the multi-label attention mechanism in
the CAML model [15]. We can apply this to the output of any given neural
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network subarchitecture. We define the output of the subnetwork as r ∈ R
ntok×h

where ntok is the number of tokens and h is the hidden representation size. The
parameters we learn are the weights W0 ∈ R

h×h and bias b0 ∈ R
h. Furthermore,

for each label l we learn an independent vl ∈ R
h to calculate an attention vector

αl ∈ R
ntok .

u = tanh(W0r + b0)

αl = softmax(vT
l u)

sl =
∑

αlr

The attended output sl ∈ R
h is then passed through nL parallel classification

layers reducing dimensionality from h to nC .

Fig. 3. Simplified model diagram: the subarchitecture is a CNN, Bi-GRU or BERT
variant and maps from input x to a hidden representation r; per-label attention maps
to a separate representation sl for each label before classification.

3.3 Deep Learning: Neural Network Models

We pre-process the data before input to the neural network architectures. Each
input sentence is limited to ntok tokens and padded with zeros to reach this
length if the input is shorter. We choose ntok = 50 as this is larger than the
maximum number of words in any of the sentences in the NHS GGC dataset.
The neural network models all finish with nL softmax classifier outputs, each
with nC classes.

Models are trained using a weighted categorical cross entropy loss and Adam
optimiser [12]. We weight across the labels but not across classes, as this did not
give any improvements. Given a parameter β, the number of sentences n and the
number of “not mentioned” occurrences of a label ol, we calculate the weights
for each label using the training data as follows:

wl,“not mentioned” =
( n

ol

)β

wl,“mentioned” =
( n

n − ol

)β
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CAML: The CAML model follows the implementation by Mullenbach et al.
[15] and uses an embedding that is initialised to the same pre-trained weights
as for the Word2Vec baseline. The embedded input passes through a convo-
lutional layer of graduated filter sizes applied in parallel (see below), followed
by max-pooling operations across each graduated set of filters, to produce our
intermediate representation r. This is then passed through the per-label atten-
tion mechanism introduced by the CAML model. For the convolutional layer, we
chose 512 CNN filter maps with kernel sizes of 2 and 4. The model was trained
with a learning rate of 0.0005 and a batch size of 16.

Bi-GRU: The embedding is initialised to the same pre-trained weights as used
for the Word2Vec baseline. The embedded sentence x passes through a bidirec-
tional GRU (Bi-GRU) network [5] with hidden size of h/2. The outputs from
both directions are concatenated to produce a representation r for each input sen-
tence. For Bi-GRU + single attention, this representation is passed through
a single attention mechanism. For Bi-GRU + per-label attention, this rep-
resentation is passed through the per-label attention mechanism. The model was
trained with a learning rate of 0.0005, batch size of 16 and hidden size h = 1024.

BERT and BioBERT: The BERT model is a standard pre-trained BERT
model, “bert-base-uncased” - weights are available for download online2 - we
use the huggingface [20] implementation. We take the output representation for
the CLS token of size 768 × 1 at position 0 and follow with the nL softmax
outputs. The model was trained with a learning rate of 0.0001 and batch size
of 32. For BioBERT, we use a Bio-/ClinicalBERT model pretrained on both
PubMed abstracts and the MIMIC-III dataset3 with the huggingface BERT
implementation. We use the same training parameters as for BERT (above).

ALARM: Our implementation of the ALARM [21] model uses the BioBERT
model (and training parameters) described above. Following the implementation
details of Wood et al., instead of using a single output vector of size 768 × 1,
we extract the entire learnt representation of size 768 × ntok. For the ALARM
+ softmax model, we pass this through a single attention vector and then
through three fully connected layers to map from 768 to 512 to 256 to the
nL × nC outputs. For ALARM + per-label-attention, we employ nL per-
label attention mechanisms instead of a single shared attention mechanism before
passing through three fully connected layers per label.

4 Results

Tables 2 and 3 show the results. We report the micro-averaged F1 score as our
main metric, calculated across all labels. We also report the macro-averaged F1
2 https://github.com/google-research/bert.
3 https://github.com/th0mi/clinicalBERT.

https://github.com/google-research/bert
https://github.com/th0mi/clinicalBERT
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score; this is F1 score averaged across all labels with equal weighting for each
label. We note that although we used micro F1 as our early stopping criterion,
we do not observe an obvious difference in the scores if F1 macro is used for early
stopping. We exclude the “not mentioned” certainty from our metrics, similar to
the approach used by Smit et al. [19] - we denote C ′ = C\{“not mentioned′′},
so nc′ = nC − 1. When we report our F1 metrics for a single certainty class we
report the usual F1 metric, whereas when we report metrics for all classes and
labels we report an average per certainty class.

For all experiments, we use a machine with NVIDIA GeForce GTX 1080 Ti
GPU (11 GB of VRAM), Intel Xeon CPU E5 v3 (6 physical cores, maximum
clock frequency of 3.401 GHz) and 32 GB of RAM. Training run times range
from 14 s for the Random Forest model to 376 s for the Bi-GRU + per-label
attention model and 1448 s for the ALARM + per-label-attention model. For
details of all run times, see Table 1 in the supplementary material.

Table 2. Micro-averaged F1 results as meanstandard deviation of 5 runs with different
random seeds. “All” combines the classes “negative”, “uncertain” and “positive”. Bold
indicates the best model for each metric.

Model All Negative Uncertain Positive

BoW + RF 0.8710.003 0.9360.003 0.1190.021 0.8890.003

Word2Vec 0.8080.005 0.9000.007 0.3280.023 0.8120.008

CAML [15] 0.8380.005 0.8660.011 0.1350.050 0.8730.001

Bi-GRU 0.8680.009 0.9360.011 0.4880.017 0.8720.009

Bi-GRU + single attention 0.8630.009 0.9240.017 0.4240.032 0.8730.006

Bi-GRU + per-label attention 0.9210.003 0.9700.006 0.5730.011 0.9320.004

BERT 0.9070.003 0.9530.004 0.5850.035 0.9160.002

BioBERT 0.9150.005 0.9590.003 0.6270.040 0.9220.007

ALARM + softmax 0.8990.008 0.9480.002 0.5700.028 0.9090.010

ALARM + per-label attention 0.9280.008 0.9650.004 0.6890.039 0.9360.008

Per-Label Attention: The micro- and macro-averaged F1 scores (Tables 2
and 3) show that for both BioBERT and the Bi-GRU models, adding per-label
attention to the models improves performance consistently over the models with
a single attention mechanism (p-values of < 0.05). We also show the breakdown
in accuracies across certainty classes (negative, uncertain and positive) in our
results tables. It can be seen that the per-label attention provides large gains
in accuracy across all classes. The macro F1 metric amplifies this because all
labels are weighted equally, giving an idea of how the model performs for the
rarer labels, several of which have fewer than 10 training samples each.
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Table 3. Macro-averaged F1 results as meanstandard deviation of 5 runs with different
random seeds. “All” combines the classes “negative”, “uncertain” and “positive”. Bold
indicates the best model for each metric.

Model All Negative Uncertain Positive

BoW + RF 0.4770.013 0.6670.019 0.0520.025 0.7110.001

Word2Vec 0.4550.011 0.5810.034 0.1640.048 0.6190.029

CAML [15] 0.3940.013 0.4350.017 0.0860.050 0.6610.025

Bi-GRU 0.6310.025 0.7180.042 0.4040.051 0.7180.011

Bi-GRU + single attention 0.5220.039 0.6660.065 0.2230.051 0.6770.018

Bi-GRU + per-label attention 0.7080.014 0.7960.027 0.5240.023 0.8030.016

BERT 0.6730.015 0.7730.004 0.4570.050 0.7900.025

BioBERT 0.6730.041 0.7300.038 0.5290.094 0.7610.017

ALARM + softmax 0.6520.025 0.7670.009 0.4410.071 0.7490.007

ALARM + per-label attention 0.7660.028 0.8180.029 0.6610.061 0.8180.021

Fig. 4. Visualisation of attention for (a) per-label attention vectors, (b) a single atten-
tion vector and (c) per-label attention from a model trained without synthetic data.
Model (a) detects congenital (yellow) and haemorrhage (green) separately. Model (b)
detects both keywords in the single attention vector (blue). Model (c) does not detect
the “congenital” keyword. (Color figure online)

Figure 4 compares the attention learnt by a single attention model to per-
label attention models. We see that the single attention vector (Fig. 4b) attends
to the correct words - “congenital” and “haemorrhage” - however the model
incorrectly predicts both labels as “not mentioned”. In comparison, the model
with per-label attention (Fig. 4a) recognises the same keywords separately within
the respective label attention mechanisms, and correctly predicts both labels as
“positive”. This makes sense because the single attention mechanism does not
have separate follow-on sl representations and therefore features for all labels
are entangled in one representation. Finally, the model trained without synthetic
data (Fig. 4c) does not recognise the “congenital” keyword and does not make
the correct prediction for this label.
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Synthetic Data and Importance of Pre-training: To investigate the effect
of the synthetic training data, we train models on only the synthetic data, only
NHS GGC data, and both combined. The results for macro F1 in Fig. 5 clearly
show an improvement when the synthetic data is used alongside the original
data - this is consistent across both of our best models (p-values of < 0.05). For
numerical results see Tables 2 and 3 in the supplementary material.

We also investigated the effect of the embedding pre-training. A model with
randomly initialised embeddings (maintaining the same vocabulary and embed-
ding size) performs 0.028 worse for the micro-averaged F1 compared to a model
using a pre-trained embedding (p-value of < 0.05).

Error Analysis: When investigating the prediction errors of our best model, we
identify that approximately 30% of errors are due to missed labels, 10% are due
to falsely predicted labels, and the remaining 60% are due to confusion between
certainty classes (negative, uncertain, positive). Many of the missed labels are
caused by previously unseen synonyms or subtypes, for instance “arteriovenous
malformation” is an instance of “congenital abnormality” which is a diverse class.
There are also many ways of expressing certainty which are subtly different;
for instance positive might be expressed as “probable”, “likely”, “indicates”,
“suggestive of”, “is consistent with” whereas uncertainty might be expressed as
“possible”, “may represent”, “could indicate”, “is suspicious of” and other subtly
different expressions. Errors might be mitigated with the use of a larger training
dataset and richer data synthesis, potentially by exploiting medical knowledge
bases such as UMLS [4] to augment the synthetic dataset with a rich synonym
set.

Fig. 5. Graph showing effect of synthetic data on micro-averaged F1 (blue) and macro-
averaged F1 (orange). Synthetic data gives consistent improvement. (Color figure
online)
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5 Conclusions and Future Work

We have introduced a set of radiographic findings and clinical impressions that
are relevant for stroke and can be extracted from head CT radiology reports. For
deep learning approaches, we have shown that per-label attention and a simple
synthetic dataset each improve accuracy for our multi-label classification task,
yielding a recipe for scalable learning of many labels. In future work, we intend
to annotate a larger dataset as well as leveraging knowledge bases to create a
richer synthetic dataset. Furthermore, the labels generated by our models should
be used to train an image analysis algorithm on the associated head CT scans.
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