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Chapter 6
Cytokinin-Mediated Signalling During 
Environmental Stress in Plants

Ankur Singh and Aryadeep Roychoudhury

6.1  Introduction

Plants are sessile living organisms which cannot escape unfavourable environment 
by shifting their positions. Harsh environmental conditions are negative factors 
which adversely affect the growth, biomass and yield of plants. Stress faced by 
plants may be due to the invading pathogens or infestations of insects collectively 
known as biotic stress and abiotic stress which occurs due to hostile environmental 
conditions like drought, salinity, extreme temperature or heavy metal toxicity 
(Roychoudhury et al. 2013). Harsh conditions lead to oxidative burst in plant tissues 
which ultimately enhances the formation of reactive oxygen species (ROS) like 
hydrogen peroxide (H2O2), superoxide (.O2

−) and hydroxyl radicals (.OH). These 
ROS lead to cellular membrane damages and formation of toxic products like malo-
ndialdehyde (MDA) and methylglyoxal (Banerjee and Roychoudhury 2018). Plants 
have several mechanisms which help them adapt and survive under unfavourable 
conditions. Production of various endogenous signalling molecules helps to coordi-
nate and enhance the functions of the internal defensive pathways which ultimately 
induce their survival capability under severe environmental conditions.

In addition to the action of other stress hormones such as abscisic acid (ABA), 
jasmonate and salicylic acid, cytokinin (CK) also plays an important role in regulat-
ing the action of protective machineries of plants (Ha et al. 2012). CKs were ini-
tially believed to be only involved in cell division and in the regulation of the cell 
cycle (Schaller et al. 2014), but later it was found that CKs also govern various other 
functions like inhibition of root growth, maintenance of apical dominance, forma-
tion of shoot meristem, growth of lateral buds, expansion and senescence of leaves 
and nitrogen signalling pathways (Frebort et al. 2011; Giulini et al. 2004; Miyawaki 
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et  al. 2004; Nooden et  al. 1990). Analysis of the interactive pathways involved 
between CKs and environmental stress has recently begun and is now well charac-
terised (O’Brien and Benkova 2013; Ha et al. 2012).

CKs are derivatives of adenine residue with a substitution at N6 position by iso-
prenoid or aromatic acid residues (Sakakibara 2006). Based on the reduction or 
hydroxylation of the side chains, a wide variety of derivatives of CKs are found in 
nature such as cis-zeatin, trans-zeatin, isopentenyladenine and dihydrozeatin known 
as isoprenoid CKs. N6-(meta-hydroxybenzyl) adenine is an aromatic CK found in 
less quantity in plants (Faiss et al. 1997). CKs in plants are mostly found in imma-
ture seeds, meristematic regions and young leaves. Endogenous level of CK in 
plants is maintained by the activity of various enzymes which are mainly responsi-
ble for biosynthesis of CKs or alteration of one member of CK family to other 
members (Letham 1994). Expression of targeted genes can be regulated by CK 
through the action of a two-component system where transfer of phosphate unit 
between Asp and His residues helps to transduce the signal which ultimately facili-
tates plants to provide suitable response against stimuli (Huang et al. 2012).

In this chapter, we summarise the emerging role of CKs in plant systems when 
exposed to different stress conditions. We begin with the metabolism and signalling 
pathway of CKs in plants and then cover the different aspects of CKs under various 
abiotic stresses like drought, salinity, extreme temperature, light, nutrient deficiency 
and heavy metal stress. We also provide an overview of protective role of CKs under 
different biotic stresses. For each of these stress conditions, we present an extensive 
analysis on the role of CK signalling pathway and its interaction with other stress 
hormones and metabolites which are involved in enhancing the tolerance limit of 
plants against harsh environmental conditions.

6.2  Metabolic Pathway of CKs

An interesting feature of the CKs is that they are made of purine and differ from 
adenine and other members of CK family by the presence of various chemical 
groups at N6 position which also determines their biological activity, transportation 
and presence in the cells or tissues of plants (Hirose et al. 2008). The two major 
forms of CKs present in Arabidopsis are trans-zeatin and isopentenyladenine (Kiba 
et al. 2013) which shows acropetal and basipetal movement, respectively, during 
long-range transportation (Matsumoto-Kitano et al. 2008). CK receptors also have 
distinctive binding affinity to different CKs involved in the signalling pathway in 
Arabidopsis (Stolz et  al. 2011; Romanov et  al. 2006). Cis-zeatin, an isoform of 
trans-zeatin, is less active and is found in some monocots and dicots, and its expres-
sion is mostly dependent on the growth stage of the plants (Frebort et al. 2011). 
Dihydrozeatin which is formed in Phaseolus vulgaris by the enzymatic action of 
zeatin reductase on trans-zeatin (Martin et al. 1989) was found in apical buds and 
seeds (Mok et al. 1990). In addition, aromatic CKs are also present in plants such as 
tomato (Nandi et al. 1989), Arabidopsis (Tarkowska et al. 2003), pea (Gaudinova 

A. Singh and A. Roychoudhury



135

et al. 2005) and Populus (Strnad 1997) but are less studied, and their presence and 
activity need to be analysed in other crops. Inactive forms of CKs are synthesised by 
de novo pathway, and phosphoribohydrolase activity by Lonely Guy (LOG) enzyme 
is required to make free active base CKs (Sakakibara 2010). Interconversion 
between active and inactive forms of CKs can be done by the application of adenos-
ine kinase (Schoor et  al. 2011). Plants can regulate the activity of N- and 
O-glucosyltransferases which are involved in the glucosylation of CKs, producing 
their bioactive forms (Veach et al. 2003).

It was earlier considered that CKs were formed in the roots of plants and trans-
ported upward to the shoot, but recent studies have shown that CKs are also locally 
synthesised in the plant cells. Different members of CKs are present in different 
plant tissues and in different species which affirms that different CKs have different 
functions (Hirose et al. 2008), for example, members of isopentenyladenine family 
of CKs are more found in the seeds of oil palm (Huntley et al. 2002), whereas dihy-
drozeatin and zeatin are mostly found in soybean seeds (Singh et al. 1988). In addi-
tion, members of trans-zeatin family are mostly found in xylem sap, and the 
members of isopentenyladenine and cis-zeatin family are predominantly present in 
phloem sap (Hirose et al. 2008). The concentration of CKs is also mediated by the 
interaction of plants with extrinsic factors such as biotic and abiotic stress (Schafer 
et al. 2014; Miyawaki et al. 2004; Hashem 2013).

The metabolic pathway of CKs can be divided into three phases: synthesis of 
CKs by isopentenyltransferase (IPT) enzymes, activation of the synthesised inactive 
forms by the activity of LOG enzymes and degradation by CK dehydrogenases 
(CKX). Miyawaki et al. (2004) reported that the presence of AtIPT in Arabidopsis 
is required for the production of tRNA- and ATP/ADP-IPTs. IPT produces isopen-
tenyladenine using AMP, ADP or ATP as isoprenoid acceptors for isopentenylation 
and dimethylallyl pyrophosphate (DMAPP) as the side chain donor generated from 
methylerythritol phosphate and mevalonate pathways (Sakakibara 2006). Synthesis 
of isopentenyladenine is initiated from its nucleoside and nucleotide precursors, 
whereas trans-zeatin are produced either using isopentenyladenine directly or indi-
rectly using the immediate precursors of isopentenyladenine. Sakakibara (2010) 
reported another pathway involved in the synthesis of trans-zeatin by the activity of 
isopentenyltransferase using hydroxylated terpenoid as a side chain donor. 
Isopentenylation of tRNA by AtIP2 and AtIP9 leads to the formation tRNA- IPTs 
(Miyawaki et al. 2006). Decomposition of isopentenylated tRNAs leads to the for-
mation of cis-zeatin in a very low amount due to longer half-life of tRNAs (Klambt 
1992). Bassil et al. (1993) reported that isomerisation of trans-zeatin to cis-zeatin in 
the presence of a catalyst occurs in beans. Members of the dihydrozeatin family are 
synthesised from zeatin by zeatin reductase (Gaudinova et al. 2005).

LOG enzyme plays a major role in the activation of isopentenyladenine and 
trans-zeatin. Phosphoribohydrolase activity of LOG enzymes on the nucleotide 
5′-monophosphates unit of CKs is essential for their function (Frebort et al. 2011). 
CKs may be activated by the LOG-dependent pathway which is considered as the 
major pathway for CK activation or by the two-step pathway which is independent 
of LOG enzyme (Tokunaga et al. 2012). LOG independence is not well character-
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ised, and very few studies have been conducted which can elaborate the mechanism 
of this pathway (Thu et al. 2017). Tokunaga et al. (2012) reported that seven genes 
encoding LOG enzymes are present in Arabidopsis, where most of the functions are 
performed by LOG7 enzymes. Other homologs of LOG enzymes have been recently 
discovered in plants like Prunus persica and Populus trichocarpa (Immanen 
et al. 2013).

Catabolism of CKs takes place by addition of a sugar moiety by glycosyltrans-
ferase reaction or by irreversible dehydrogenation (Zalabak et  al. 2013). CKXs 
cleave the N6 moiety of trans- and cis-zeatin and isopentenyladenine, whereas the 
aromatic side chain of CKs is cleaved at a lower rate; dihydrozeatin are non- 
cleavable by this enzyme (Galuszka et al. 2007). CKXs belong to a small family, 
containing only seven members which are species-specific, and play an essential 
role in maintaining the homeostasis of the cells (Bilyeu et al. 2001). In Arabidopsis, 
cis-zeatin is mostly cleaved by AtCKX 1 and AtCKX 7, whereas AtCKX 2, AtCKX 
3 and AtCKX 4 cannot hydrolyse it (Gajdosova et al. 2011). Another way to main-
tain the level of CKs in the cells is by glycosylation. O-glucosyltransferases and 
O-xylosyltransferases are involved in reversible glycosylation of CK residues to 
O-glucosylated and O-xylosylated forms, respectively. N-glucosyltransferases pro-
duce N9-glucosylated or N7-glucosylated CK residues which cannot be degraded 
by β-glucosidases (Thu et al. 2017).

6.3  CK-Mediated Signalling Pathway and Its Components

6.3.1  Signal Transduction by CKs

CK signalling pathway is a multistep process which involves the phosphorylation of 
histidine kinase (HK) protein acting as a receptor, followed by the transfer of signal 
by histidine phosphotransfer (HP) protein and finally receiving the signal and 
accordingly responding by an ultimate response regulator (RR) (Thu et al. 2017). 
The signalling pathway starts when stimuli leads to the formation of the CK mole-
cules which binds to the cyclase/histidine kinase associated sensory extracellular 
(CHASE) domain of the HK receptor. This binding leads to the transfer a phospho-
ryl group from the histidine residue to the aspartate molecules present in the recep-
tors. The histidine residue present in HP protein then receives the phosphoryl group 
which ultimately transfers the residue to the aspartate residue of the RR which helps 
to initiate the transcription of the targeted genes (Fig. 6.1). The signalling pathway 
is dependent on the HK receptors because it has been reported in Arabidopsis that 
HK receptors are highly specific to the substituted side chain residues of the CKs 
(Hwang et al. 2012).
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6.3.2  Components of the Signalling Pathway

6.3.2.1  Histidine Kinases (HK)

HK are multi-domain complex receptors of CKs. A CHASE domain present at the 
N-terminal acts as a sensor domain for CKs which is followed by two or more trans-
mitter domain and lastly two receiver domains having HK activity (Lomin et al. 
2012). CKs bind to the CHASE domain which leads to the conformation change of 
the sensors that initiate the autophosphorylation of the transmembrane domain and 
finally transferring the phosphoryl group to the receiver domain (Lomin et al. 2012).

Fig. 6.1 Two-component CK signalling system. The HK receptor for CKs which is activated in 
plants due to external stimuli is mainly located on the membrane of cells and endoplasmic reticu-
lum. The pathway is initiated by the binding of CKs to the CHASE domain of HK receptor (1), 
which then gets phosphorylated at the histidine residue and ultimately transfers it to the aspartate 
residue at the C-terminal of HK receptors (2). The phosphate molecule is then transferred to the HP 
protein (3) which enters into the nucleus (4). Within the nucleus, it transfers the phosphate mole-
cule to aspartate residue present on the receiver domain of either type-A or type-B RR (5). Type-A 
RR acts as inhibitor of type-B RR and negatively regulates the HK receptors, whereas type-B RR 
via its effector domain regulates the gene transcription (6) or other responses mediated by CK 
signalling (7)
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6.3.2.2  Histidine Phosphotransfer (HP)

HP proteins are 17 kDa phosphotransmitter proteins which act as a transmitter of 
signal from HK to RR by transferring the phosphate groups (Shi and Rashotte 
2012). Five Arabidopsis HPs have been identified by Suzuki et al. (1998). Imamura 
et al. (2001) reported that HPs are present in cytoplasm and also demonstrated their 
phosphotransfer activity in vitro. Formation of protoxylem is mediated by another 
type of HP which acts as an inhibitor of the CK signalling pathway (Mahonen 
et al. 2006).

6.3.2.3  Response Regulator (RR)

There are 23 RRs present in Arabidopsis which can be categorised under four types, 
type-A, type-B, type-C and pseudo-RRs, based on their domain structure and pro-
tein sequences (Mizuno and Nakamichi 2005). Addition of a phosphate group to 
type-A RR is necessary to stabilise it, whereas phosphorylation of type-B RR is 
required to enhance their binding ability to DNA that ultimately regulates the 
expression of target genes and also induces the stability of type-A RR (To et al. 
2007). Type-A RR negatively regulates the pathway due to the presence of only a 
receiver domain (To et  al. 2004), whereas type-B RR consists of both an output 
domain having a glutamine-rich domain which enables them to bind to DNA and a 
receiver domain (Sakai et  al. 2001). Gupta and Rashotte (2012) reported that in 
Arabidopsis, some of the genes which are targeted by type-B RR are under the regu-
lation of type-A RR which shows that signalling mediated by CKs is 
self-regulated.

6.4  Role of CK Signalling System in Response to Various 
Abiotic Stresses

Researches differ regarding their view about the role of CKs in plants against stress 
conditions. Several studies have shown that CKs act as negative regulators in plants 
in initiating tolerance mechanisms against environmental stress (Ghanem et  al. 
2008; Hansen and Dorffling 2003; Albacete et al. 2008; Kudoyarova et al. 2007), 
whereas several other studies have reported a short-term induction in the level of 
CKs against stress conditions (Alvarez et al. 2008; Pospisilova et al. 2005; Walker 
and Dumbroff 1981). Nishiyama et al. (2011) have reported higher activity of IPT 
in Arabidopsis for 1–2 hours, whereas the activity of CKXs was lowered for 1 hour 
after plants were exposed to salt stress. Overall, it can be concluded that initial 
exposure of plants to stress conditions leads to higher production of CKs which 
again gradually decrease to the normal level in the course of time.
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6.4.1  Drought Stress

Drought stress is experienced by plants due to inadequate or insufficient supply of 
water which leads to chlorophyll degradation and enhanced production of ROS 
resulting in higher membrane damage (Nadeem et al. 2019). In addition, drought 
stress also reduces growth of plants by reducing cell division which results in lower 
turgor pressure caused by limited water uptake from the surrounding environment 
(Bhatt and Rao 2005).

Separate studies have reported that drought stress reduces the endogenous con-
tent of CKs in plants (Todaka et al. 2017; Nishiyama et al. 2011). Similar effect was 
noted in Arabidopsis where drought stress reduces the expression of IPT and induces 
the expression of CKXs (Le et al. 2012; Ramireddy et al. 2014). Lowered formation 
of CKs and thus reduced signalling under drought enhance the formation and sensi-
tivity of plants to ABA (Tran et al. 2007), since ABA is antagonistic to CKs. In 
addition, reduced level of CKs lowered the shoot length (Werner et al. 2003). Higher 
synthesis of ABA and reduced shoot length are two known adaptive responses of 
plants against drought stress (Roychoudhury and Paul 2012).

Plants in which CK signalling pathway was suppressed by mutating the HK 
receptors or lowering the transfer of phosphate group to HP or by lowering the func-
tion of RR showed higher tolerance to drought stress (Nguyen et al. 2016). They 
also reported that CKs also control the transcription of a large number of ABA- 
responsive, drought/dehydration genes which enhances the tolerance capacity of 
plants under water-deficit conditions. Contradictory to these studies, Tran et  al. 
(2007) and Susan et al. (2013) reported that expression of HK in Arabidopsis and 
maize plants, respectively, was upregulated under drought stress. The expression of 
RR6 was also upregulated in response to drought stress or exogenous application of 
CKs, suggesting that RR6 may play an important role in improving the yield of rice 
plants under drought stress (Panda et al. 2018). In addition to the negative role of 
RR22, recent studies have also demonstrated the positive role of RR22 by maintain-
ing the integrity of the cell membrane and enhancing the expression of drought-
responsive gene in Arabidopsis (Kang et al. 2013). Higher expression of IPT gene 
enhances the endogenous content of CKs which reduces the effect of drought stress 
in plants like cotton (Kuppu et al. 2013), tropical maize (Bedada et al. 2016), egg-
plant (Xiao et al. 2017) and bentgrass (Xu et al. 2016). CKs also negatively affect 
the water content of plants by lowering root length and increasing stomatal density 
and conductance. Overexpression of DREB6.2 genes ultimately induces the expres-
sion of CKX4a which reduces the endogenous content of CKs to produce transgenic 
apples which were resistant against drought stress (Liao et al. 2017). Production of 
ROS is one of the major damaging effects of drought stress in plants. Mytinova et al. 
(2011) reported that overexpression of CKX2 from Arabidopsis in tobacco plants 
reduces the endogenous content of CKs in the cells which results in a higher activity 
of superoxide dismutase, glutathione reductase and ascorbate peroxidase lowering 
the level of ROS in transgenic plants. Contradictory results were observed in bent-
grass and eggplants where  overexpression of IPT gene induces the endogenous con-
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tent of CKs which reduces the level of ROS formed in the cells by enhancing the 
activity of superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase 
and catalase (Xu and Huang 2017). Thus, the actual signalling process of CKs var-
ies in different plant species when exposed to water-deficit conditions.

6.4.2  Salinity Stress

High salt concentration in the soil is one of the major abiotic stresses experienced 
by plants. Cell membrane damage reduces the ability to detoxify the ROS content. 
ROS accumulation and nutrient imbalance are some of the initial symptoms 
observed in plants when exposed to salt stress (Rahnama et al. 2010). During salt 
stress, excess deposition of Na+ ions in the tissues of plants affects the ion balance 
which may interfere with signalling process (James et al. 2011; Roychoudhury and 
Chakraborty 2013; Roychoudhury et al. 2013). High salt concentration also inter-
feres with the nutritional uptake from the soil, especially uptake of K+ required for 
growth and productivity of plants.

Salinity stress in plants is mostly regulated by ABA. Since ABA acts antagonisti-
cally to CKs, it can be concluded that CKs act as a negative regulator of salt stress 
in plants (Cortleven et al. 2019). Reduced expression of IPT gene leads to lower 
formation of CKs in Arabidopsis which was able to adapt more efficiently against 
salt-stressed environment as compared to wild-type plants (Nishiyama et al. 2011). 
Plants better adapted against salt stress also showed altered expression of genes 
which were regulated by ABA. Similar observation was also reported by Wang et al. 
(2015), who showed that overexpression of IPT8 gene in Arabidopsis leads to 
higher formation of CKs which ultimately enhances the symptoms of damage in 
plants maintained under high salt concentration. High-affinity K+ transporter 1;1 
(HKT1;1) is present in Arabidopsis which is responsible for removal of Na+ ions 
during salt stress in plants. CKs negatively regulates the activity of HKT1;1. Mason 
et al. (2010) reported that reduced endogenous content of CKs enhanced the expres-
sion of HKT1;1 which removed excess Na+ ions accumulated in the cells during 
salinity stress ultimately improving the survival capability of plants.

Along with the negative role, positive effect of CKs is also reported against salt 
stress. Keshishian et al. (2018) reported that salt stress in tomato plants enhanced 
the formation of CKs which positively affects the tolerance capability of plants. A 
similar effect in tomato was also demonstrated by Aremu et al. (2014) where they 
showed that application of INCYDE which acts as a potent inhibitor of CKX and 
thus increases the CK content of the cells results in better production of flowers and 
also protected the photosynthetic apparatus. Salt-sensitive cultivars of rice lacking 
CKX2 showed higher tolerance against salt stress which was ultimately reflected in 
their grain yield (Joshi et al. 2018).
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6.4.3  Extreme Temperature

Plants require optimum temperature for their growth and maximum productivity. 
Any deviation from this optimal range may cause molecular and physiological dam-
age and can also reduce the yield of plants. Cold stress leads to retardation in devel-
opment, chlorosis and necrosis of cells and also causes sterility of flowers as noted 
in rice plants (Jiang et al. 2002). Low temperature causes shortage of water in plants 
affecting the integrity of plasma membrane (Steponkus et al. 1993). Temperature 
above the optimal range induces the formation of ROS causing oxidative stress in 
plants. Collapse of cellular structure in plants may occur when exposed to very high 
temperature which leads to cell death (Ahuja et al. 2010). High temperature also 
interferes with the metabolic process by altering the protein structures of the 
enzymes (Lobell et al. 2011).

The effect of CKs in plants is still uncertain. Maruyama et al. (2014) reported 
that cold stress decreases the endogenous level of CKs and CK signalling, which 
reduces the size of plants. Arabidopsis containing mutant receptors such as ahk2, 
ahk3 and ahk3 cytokinin response element (cre)1 was highly adapted against cold 
stress, proving that CKs play a negative role during regulation of cold stress 
(Cortleven et al. 2019). Jeon et al. (2010) reported the activation of CK receptors, 
and Jeon and Kim (2012) observed that several HP and RR can be activated in the 
absence of CKs. Higher level of cold tolerance in Arabidopsis having mutant rr5, 
rr6 and rr7 was observed (Jeon et al. 2010). In contrast to the above observation, Shi 
et al. (2012) reported that overexpression of RR genes such as RR22, RR15, RR7 and 
RR5 enhanced the cold adaptability of Arabidopsis plants. Along with the classical 
signal pathway of CKs, several CK response factors (CRFs) have also been linked 
with protection of plants against cold stress. Jeon et al. (2016) reported that CRF2 
expression can initiate the formation of lateral roots which is directly controlled by 
RR1 in Arabidopsis. Zwack et al. (2016) reported that the expression of CRF4 can 
be induced by cold stress, and it acts as a positive regulator of freeze tolerance. 
Thus, from the above observation, it can be concluded that the activation of the two- 
component signalling system either in presence or absence of CKs may play an 
important role in providing protection against cold stress in plants.

Exogenous application of CKs enhances the adaptability of plants against high 
temperature, whereas excess heat reduces the endogenous level of CKs in the cells 
(Cortleven et al. 2019). External application of CKs reduces the effect of heat in 
plants by protecting their photosynthetic machineries (Liu and Huang 2002), 
increasing the thermo-tolerance of the reproductive tissues in plants like rice, pas-
sion fruit and maize (Sobol et al. 2014; Wu et al. 2016; Cheikh and Jones 1994) and 
enhancing the activity of heat shock protein and antioxidative system in bentgrass 
(Xu et al. 2010). Skalak et al. (2016) reported that high temperature induces the 
degradation of endogenous CKs of the cells which helps in the stomatal closure in 
Arabidopsis.
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6.4.4  Light Stress

Light is responsible for the survival of life on earth, but excess light also causes 
damage to the photosynthetic apparatus and bleaching of chlorophyll. Solar radia-
tion is the only source of natural light on earth which can be utilised by plants for 
photosynthesis, but it also contains ultraviolet light which can damage or mutate the 
DNA of the cells (Jansen et al. 1998). Excess light can inhibit photosynthesis which 
leads to excess production of ROS causing damage to the cellular membrane and its 
components.

Recent studies have demonstrated a direct link between CKs and light through 
photoreceptor phy B (Chi et al. 2016; Sweere et al. 2001). Plants having a higher 
level of CKs show better adaptability against light stress and protect the D1 reaction 
centre of photosynthesis which is severely damaged by excess light (Cortleven et al. 
2014). They also reported that CK-mediated signalling system is mostly controlled 
by HK3 and HK2 and type-B RRs such as RR1 and RR12 in Arabidopsis. Other 
investigations observed that the components of antioxidative system protect photo-
synthetic apparatus under different stresses like drought (Rivero et al. 2009). This 
was used as evidence by Cortleven and Schmulling (2015) to support their observa-
tion that CKs can protect photosynthetic apparatus in plants when exposed to high 
light. Low light also acts as a stress stimulus causing an induction in response mech-
anism in plants. In tobacco and Arabidopsis, CKs act as an important signalling 
molecule transported across the xylem tissue which helps plants adapt in low light 
environment (Boonman et  al. 2009). Carabelli et  al. (2007) reported that CKX 
induces the degradation of CKs in plants which inhibits the formation of leaf pri-
mordia, ultimately promoting growth of hypocotyl towards light.

6.4.5  Nutrient Stress

Besides carbon, oxygen and hydrogen which plants easily accumulate from CO2 
and H2O present in the surrounding environment, plants also require several micro-
nutrients (boron, silicon, iron and selenium) and macronutrients (potassium, nitro-
gen and phosphorus) for their normal growth and development. CK plays a pivotal 
role during uptake of these nutrients from the soil.

Boron is an essential micronutrient whose deficiency can lead to the downregula-
tion of genes involved in CK-mediated signalling (Abreu et al. 2014). Pavlu et al. 
(2018) observed that boron transporter (BOR)4, a gene which codes for boron 
transporter, has an expression pattern similar to that of RR1 and LOG7 genes. In 
oilseed rape, a strong correlation was observed between boron concentration and 
formation and activation of CKs (Eggert and von Wiren 2017). Silicon is the major 
soil component, and its deposition leads to enhanced activation of various defensive 
machineries in plants; it also provides structural support to various tissues of plants. 
Markovich et al. (2017) reported that silicon deposition in the tissues of Arabidopsis 
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and sorghum enhanced the synthesis of CKs by upregulating the expression of IPT7 
gene and reduced the process of leaf senescence induced by dark stress via activat-
ing the CK signalling pathway. Selenium induces the stress tolerance capability of 
plants when present in lower concentration (Pilon-Smits et al. 2009). The two major 
forms of selenium, viz. selenite and selenate, are absorbed by plants through phos-
phate and sulphate transporters (Schiavon and Pilon-Smits 2017). Thus, it can be 
said that the pathway responsible for phosphate and sulphate uptake in plants, medi-
ated by CK signalling, acts as a common pathway for the uptake of selenium from 
the soil.

Nitrogen acts as a major element during the synthesis of CKs. In Arabidopsis, 
the enzymatic activity of IPT3 and IPT5 which catalyses the rate-limiting step of 
CK synthesis is controlled by the availability of nitrogen during the production of 
cytochrome P450 and trans-zeatin (Kiba et  al. 2013; Kieber and Schaller 2014). 
CKs transported to the shoot via the root control the nitrate response and key traits 
such as activity-related traits of meristem (Muller et al. 2015) and leaf size (Rahayu 
et al. 2005). The activity of IPT3 is also mediated by the presence of inorganic phos-
phate (Pi), and thus the expression of IPT3 is downregulated in the absence of Pi 
(Hirose et al. 2008). Supply of Pi in plants, after facing a situation of phosphorus 
deficiency, leads to enhanced expression of CRF5, CRF6 and IPT3 (Woo et  al. 
2012) Exogenous application of CKs lowers the uptake and response of Pi defi-
ciency in Arabidopsis and rice (Franco-Zorrilla et al. 2002) by utilising the stored Pi 
from the internal sources which ultimately reduces the Pi deficiency signalling and 
symptoms (Lai et al. 2007). Potassium is one of the major macronutrients for plants, 
and it is added externally in the soil as fertilizer along with nitrogen and phospho-
rus. Potassium deficiency in Arabidopsis lowers the endogenous CK level which 
results in inhibition of CK-mediated signalling system, ultimately reducing the root 
length and inducing potassium uptake from the soil (Nam et al. 2012). They also 
reported that CK deficiency leads to higher accumulation of ROS and enhanced root 
hair growth along with higher expression of HAK5 gene which codes for a trans-
porter involved in the uptake of potassium from the surroundings. Hirose et  al. 
(2008) showed that CK formation by IPT3 is directly associated with sulphur defi-
ciency in soil. They also reported that exogenous application of CK enhanced the 
expression of genes which were regulated by the presence of sulphur, whereas 
Maruyama-Nakashita et al. (2004) reported that the expression of sulphate trans-
porter in roots was downregulated by CKs.

6.4.6  Heavy Metal Stress

Tight regulation is important for transport and absorption of heavy metals, since 
higher deposition of heavy metal in plant tissues damages the cell structure and 
leads to oxidative stress. Along with desired element such as macronutrients and 
micronutrients, plants also uptake several metals and metalloids like mercury, cad-
mium, chromium, arsenic and lead which are toxic for plants. Bruno et al. (2017) 
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and Yang et al. (2017) reported that Arabidopsis adapt themselves against cadmium 
and aluminium toxicity by enhancing the level of CKs along with signalling system 
mediated by CKs which hamper the growth of the roots. Werner et  al. (2010) 
reported that plants which are deficient in CKs accumulate a higher amount of cad-
mium in their tissues, whereas a contrasting result was observed in the case of arse-
nate toxicity where plants were able to tolerate arsenate stress in CK-deficient 
conditions (Mohan et al. 2016). CK enhances the activity of glutathione-S-transfer-
ase (Brenner and Schmulling 2015), which induces the production of thiol com-
pounds which can be utilised by plants against arsenate toxicity (Mohan et al. 2016).

6.4.7  Biotic Stress

Biotic stress in plants is mostly caused by the infection of pathogens like virus, 
fungus and bacteria or by rodent and insects which severely affect the yield of 
plants. In recent times, broad studies have been conducted on the role of CKs with 
regard to such biotic stresses (Albrecht and Argueso 2017). Walters and McRoberts 
(2006) reported that during biotrophic fungal infection, CKs help the pathogens to 
multiply within the infected host. CK helps in the formation of green islands which 
cause the assimilation of nutrition at the infected site and also delay senescence of 
the leaf. Not only that, CK at the infected site also inhibits photosynthetic metabo-
lism by enhancing the activity of invertase. Infection of plants with geminiviruses 
hinders the activity of various adenosine kinases (Baliji et al. 2010). The viral infec-
tion got boosted up due to higher expression of genes involved in primary CK for-
mation. Increased level of CK helps geminiviruses by promoting cell division, 
availability of resources and inhibiting senescence of infected leaves. Radhika et al. 
(2015) reported that Rhodococcus fascians, an actinomycete which produces a wide 
range of methylated CKs, is more stable against plant CKX and helps the pathogen 
grow more quickly by inducing the cell division of host plants. Kind et al. (2018) 
observed that the virulence of Claviceps purpurea can be reduced by expressing the 
CK synthesis and CKX gene in the pathogen. Various other studies conducted by 
several groups such as Siemens et al. (2006), Spallek et al. (2017) and Siddique 
et al. (2015) have also shown the negative effect of CK in plants under different 
biotic stresses.

6.5  Conclusion and Future Perspectives

It is evident from our discussion that CKs play an important role in abiotic and 
biotic stress signalling in plants. Manipulating the signalling process involved dur-
ing stress condition can be beneficial for sustainable growth of plants mostly in the 
case of biotic stress where lower level of CK helps host plants to better inhibit the 
growth of the pathogen infection by either degrading the endogenous content of 
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CKs via enhancing the activity of CKX or by lowering the production of CKs via 
downregulating the activity of the enzymes like IPT. CKs behave differently for dif-
ferent abiotic stresses, and thus it becomes necessary in the near future to further 
elaborate CK pathways for better understanding the role of CKs against harsh envi-
ronmental conditions. Though the interaction of CKs with different stress hormones 
such as ABA or salicylic acid is known, further studies will help to expand our 
knowledge about the interaction between these hormones which can be applied in 
genetic engineering to develop stress-tolerant crop plants with better yield. Thus, it 
can be concluded that CKs are essential signalling molecules which enhance co- 
ordination and interaction among different pathways under various biotic and abi-
otic stresses.
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