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15.1  Introduction

Crop production plays a critical role in an agricultural-based economy like India. 
The agriculture sector still decides the fate of 70% of its rural population (FAO 
2015). Apart from cereal crops, India is a major exporter of crops with commercial 
standards. Presently, various innovative methods for crop enhancement are being 
sought to meet the rising demand of exponentially growing population. Fertilizers, 
PGRs, minerals and metal nanoparticles have proved their elicitor effect on various 
crops (Tripathi et al. 2016; Ahmad et al. 2019). However, their side effects and tox-
icity have always been a concern. Therefore, much recent research has been directed 
to explore some more sustainable and eco-friendly growth elicitors. Natural poly-
saccharides (NPs), besides being growth enhancers, are also antimicrobial, non- 
toxic, biocompatible and cheaper with no negligible side effects (Hu et al. 2005; 
Campo et al. 2009; Yan and Chen 2015). This makes NPs farmer-friendlier and a 
more sustainable option. Moreover, due to its greater biocompatibility, NPs legend 
with cell membrane and regulate membrane permeability. Various sources have 
asserted their eliciting effect on various crops with ample data to support (El-Mohdy 
2017; Rabêlo et al. 2019; Saucedo et al. 2019). Figure 15.1 indicates different natu-
ral polysaccharides, i.e. chitosan, carrageenan and sodium alginate, and their 
growth-regulating attributes besides their biological properties.
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15.2  Chitosan

Chitin [(1,4)-2-acetamido-2-deoxy-β-D-glucan] is the second most abundant mol-
ecule in nature (Yan and Chen 2015) and is found primarily in crustacean shells, 
insects and fungi (Yan and Chen 2015; Jia et al. 2016; Turk 2019). Chitosan is a 
deacetylated chitin polymer that contains β-(1 →  4)-linked D-glucosamine and 
N-acetyl-D-glucosamine subunits (Malerba and Cerana 2016). Chitosan and its 
derivatives can further enrich chitosan properties due to their different physico-
chemical properties (size, density, surface area, etc.) enabling them to cross-talk 
with the cell wall and membrane more efficiently (Kim and Rajapakse 2005; Muley 
et al. 2019a). Multiples studies have reported that chitosan imparts a general trend 
of positive influence on plant growth and overall productivity (Pichyangkura and 
Chadchawan 2015; Malerba and Cerana 2016; Rabêlo et  al. 2019). Figure  15.2 

Fig. 15.1 Pictorial representation of the commercial applications of carrageenan, chitosan and 
sodium alginate along with their effect on plants
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traces the primary source of chitosan as well as induced responses in the biological 
systems.

15.2.1  Biological Activities of Chitosan

Chitosan has been reported to encompass a wide array of biological activities 
including antimicrobial, antitumor, antidiabetic, immunity-enhancing and wound- 
healing properties (Hayashi and Ito 2002; Xing et  al. 2008; Zeng et  al. 2008). 
Antimicrobial activities of chitosan chiefly comprise its antifungal and antibacterial 
properties (Xing et al. 2008; Meng et al. 2010). These properties, however, depend 
on multiple factors such as species of the microbe, concentration, deacetylation rate 
and molecular weight of chitosan or the pH of the solution itself (Xu et al. 2007; 
Xing et al. 2008; Yen et al. 2009). Chitosan can also constrain the formation of fun-
gal spore, germ tube as well as mycelia (Meng et al. 2010). Various studies have 
suggested that chitosan can be used in food preservation and packaging industry 
given its antimicrobial potential (Chien and Chou 2006). Moreover, chitosan is 
cheaper, biocompatible, biodegradable and non-toxic and thus can be used in diverse 
fields including preservation and packaging of edible items (Chien and Chou 2006; 
García et al. 2015). Chitosan has been found effective against various economically 
important fungal strains including Alternaria, Fusarium, Penicillium, Phytophthora 
as well as Botrytis ((Meng et al. 2010) and the references therein). Therefore, chito-
san can also be used as food preserver. Chitosan can keep food products away from 
fungal spoilage and thus elongate their shelf life (Liu et al. 2007), a decisive step in 
global food security itself.

Chitosan has been found effective against numerous bacteria as well (Du et al. 
2009; Badawy et al. 2014). Chitosan solution has antipathogenic activity against the 

Fig. 15.2 Chitosan and its accompanied biological properties
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spread of many crop-threatening bacterial strains including Xanthomonas (Li et al. 
2008). Keeping in view its action against fungi, it could be hypothesized that chito-
san might inhibit bacterial biofilm formation and its further development by inter-
acting with lipid bilayer and destabilizing bacterial membrane. As chitosan solution 
is generally prepared in acids given its low solubility in neutral or basic media, it 
can be argued that these properties might perhaps be more associated with acidic 
solvents. Thus, the extent of chitosan efficacy against such microbes is debatable. 
Recently, few chitosan derivatives with higher solubility in water were prepared and 
checked for various activities (Badawy and Rabea 2012; Tan et al. 2013; Badawy 
et al. 2014). It seemed more plausible that antimicrobial properties are to be more 
attributed to chitosan rather than the acidic solvent itself.

15.2.2  Role of Chitosan in Plant Growth Regulation

Chitosan has been reported as a growth promoter and signalling molecule in plants 
(Wang et al. 2015; Malerba and Cerana 2016; Muley et al. 2019b). Chitosan may 
also indulge in a complicated cascade of signal transduction that results in positive 
modulation of photosynthesis and multiple other related phenomena (Zhang et al. 
2018). Chitosan being an important plant signalling molecule may target the nucleus 
and chloroplast (Pichyangkura and Chadchawan 2015; Rabêlo et al. 2019). Multiple 
genes associated with light reaction including those encoding for chlorophyll a/b 
binding protein and oxygen-evolving protein complex could be enhanced with chi-
tosan application (Chamnanmanoontham et al. 2014). This might stabilize photo-
system II and increased its efficiency and result in enhanced photosynthetic 
productivity. Similar regulatory effect was demonstrated in maize (Rabêlo et  al. 
2019), mint (Ahmad et  al. 2019), potato (Muley et  al. 2019b) and wheat (Zou 
et al. 2015).

Chlorophyllase is a crucial enzyme that catalyses the degradation of chlorophyll. 
Chitosan can suppress the expression level of the genes encoding for chlorophyllase 
resulting in increased photopigment content (Zhang et al. 2018). Chitosan is also 
capable of upregulating the translation of transcripts associated with photosynthesis 
as well as of those pertaining to the metabolism of carbon, nitrogen and amino acid 
(Zhang et al. 2018). Increased C- and N-assimilation plays a crucial role in source- 
sink potential and in the biosynthesis of growth- and yield-related molecules such 
as proteins and phenols (Chamnanmanoontham et al. 2014).

Plant mitochondria and chloroplasts produce different kinds of reactive oxygen 
species (ROS) and reactive nitrogen species (RNS) including peroxides and super-
oxides during various physiological processes under normal environment (Turk 
2019). These compounds, collectively known as oxidants, have the tendency to 
damage lipid membrane via lipid peroxidation or alter membrane permeability via 
electrolyte leakage (Gupta et al. 2018; Zehra et al. 2020). Antioxidants are a group 
of compounds produced by plants as a counter-mechanism to regulate such phe-
nomena. This cross-talk between oxidant and antioxidant signalling cascades 

M. Mukarram et al.



339

contributes to ROS pathway and is directly linked with plant innate immunity (Rı 
et al. 2002; Gupta et al. 2018; Kohli et al. 2019).

Multiple studies (El-tantawy 2009; Chatelain et  al. 2014; Wang et  al. 2015; 
Ahmad et al. 2019; Muley et al. 2019b) have established that chitosan in different 
forms could enhance overall growth and yield in various crops. Chitosan also influ-
ences expression level of multiple glycolysis-related enzymes that might provide 
more energy to the plant (Chamnanmanoontham et al. 2014). However, chitosan 
might also exhibit some other different responses in different plants due to the fact 
that these responses chiefly depend on plant species and the concentration of chito-
san used (Pongprayoon et al. 2013). As a general spectrum of chitosan effect on 
various plant phenomena, it has been reported to improve the biosynthesis of pho-
tosynthetic pigments, i.e. chlorophyll and carotenoids (Ahmad et al. 2017). Similar 
eliciting effects are also exhibited by source-sink potential through providing more 
efficient mineral uptake and their assimilation (Ahmad et al. 2017). Chitosan also 
plays a decisive role in plants during adverse environmental conditions. It upregu-
lates antioxidant metabolism and ROS pathway and assists in enhanced production 
for various enzymatic as well as non-enzymatic antioxidants to resist the cellular 
damage (Chandra et al. 2015). These regulations, ultimately, help the plant to exhibit 
enhanced growth and overall production and also to survive in a stressful environ-
ment (Muley et al. 2019b; Rabêlo et al. 2019). Table 15.1 emphasizes on particular 

Table 15.1 Eliciting effects of chitosan and its derivatives on various plant species

Plant Eliciting effects on Reference

Tomato Plant height, fresh and dry weight, number of branches 
and leaves and marketable yield

El-tantawy (2009)

Coffee Photosynthetic pigments, mineral nutrients (N, P, K, Ca 
and mg), overall growth and productivity

N. A. Dzung et al. (2011)

Maize Root and shoot growth, antioxidant metabolism, leaf 
number, ear length and grain yield

Choudhary et al. (2017)

Chilli Shoot biomass, chlorophyll content, fruit number and 
fruit weight

P. D. Dzung et al. (2017)

Common 
bean

Plant height, number of leaves and branches, leaf area, 
fresh and dry biomass, content of mineral nutrient (N, P, 
K), total carbohydrate and protein and productivity

Abu-Muriefah (2013)

Mint Plant biomass, chlorophyll and carotenoid contents, 
activities of CA and NR enzymes, mineral nutrient (N, 
P and K) status and oil yield

Ahmad et al. (2017)

Rice Expression level of genes pertaining to various 
physiological phenomena, overall plant growth and 
productivity

Chamnanmanoontham 
et al. (2014)

Tea Antioxidant metabolism and plant immunity Chandra et al. (2015)
Soybean Photosynthetic modules, e.g. net photosynthetic rate 

and stomatal conductance
W. M. Khan et al. (2002)

Wheat Overall plant growth, antioxidant capacity, sucrose and 
starch content and regulation of miRNA and mRNA 
expression profiles

Zhang et al. (2018)
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phenomena that were associated with application of chitosan and its derivatives in 
different plants of economic importance.

15.3  Carrageenan

Carrageenan is generic name for the water-soluble and sulphated linear polysac-
charides mainly found in the cell walls of various red algae (Mercier et al. 2001). It 
is composed of D-galactose and 3,6-anydrogalactose units joined through α-1,3 and 
β-1,4-glycosidic linkage (Di Rosa 1972; Necas and Bartosikova 2013). Carrageenan 
can however vary based on the number and position of the sulphate groups and the 
content of 3,6-anhydrogalactose units (Hashmi et al. 2012; Necas and Bartosikova 
2013). Kappa (one sulphate group), iota (two sulphate groups) and lambda (three 
sulphate groups) are three such commercially utilized carrageenan variants (De 
Ruiter and Rudolph 1997). Higher sulphate ester levels confer lower solubility tem-
perature and thus weaker gel strength (Necas and Bartosikova 2013). These sul-
phate groups make carrageenan chemically active, giving it various biological 
properties. Figure 15.3 unfolds carrageenan from its primary source along with its 
interaction with multiple plant phenomena.

Fig. 15.3 Carrageenan and its accompanied biological properties
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15.3.1  Biological Activities of Carrageenan

Carrageenans (CGs) consist of numerous biological properties including induction 
of experimental inflammation and inflammatory pain. Aside from these functions, 
they found to have several potential pharmaceutical formulations including antitu-
mour, antihyperlipidemic, immunomodulatory and anticoagulant activities (Morris 
2003; Zhou et al. 2004; Campo et al. 2009). Recent researches have demonstrated 
that carrageenan is an extraordinarily potent infection inhibitor of a wide range of 
genital human papillomaviruses (HPVs), and it is also indicated that HPV transmis-
sion may be cured by carrageenan-based sexual lubricant gels (Buck et al. 2006). 
However, questions about the safety of CG uses as food additive and pharmaceutical 
adjuvant have been raised. Besides, its long-term safety is a major concern as CG is 
used as an inducer of inflammatory responses in laboratory animals for the investi-
gation of anti-inflammatory drugs (Li et al. 2014).

Several research studies also mentioned the anti-HIV properties of CG, but their 
usual mode of action in anticoagulant is considered to be an adverse reaction when 
used as a therapeutic drug for AIDS (Necas and Bartosikova 2013). Although all 
kinds of CGs possess antioxidant activity, λ carrageenan exhibited the highest anti-
oxidant and free radical scavenging activity. A positive correlation has been observed 
between sulphate content and antioxidant activity (Rocha De Souza et al. 2007). A 
few CGs are found to affect strong macrophage activation, while some restrict mac-
rophage functions. An experiment conducted on Fischer 344 rats, feeding on foods 
containing 15% kappa/lambda CGs from Gahnia radula, showed a cholesterol- 
reducing effect (Zia et al. 2017).

15.3.2  Role of Carrageenan in Plant Growth Regulation

To achieve crop protection, by activating or eliciting their natural defence system to 
introduce desired resistance, is the most effective way and an environmentally safer 
approach to the problem. The strong elicitors narrated in literature are diverse in 
nature including oligosaccharides, polysaccharides, peptides, proteins and lipids, 
and it has been confirmed that polysaccharides purified from seaweeds as well as 
derived oligosaccharides play a significant role in plant defence responses (Bi et al. 
2011). Carrageenans are considered to play a significant role in plant signalling and 
defence under several adverse environmental conditions (Mercier et  al. 2001). 
Several experiments have been conducted to scrutinize the elicitor activity of car-
rageenans. Hypnea musciformis, a rich source to obtain kappa carrageenan, has 
been evaluated as an elicitor or inducer of plant defence responses in terms of phy-
toalexin synthesis and induced browning and resulted as a potent plant protector as 
well as growth-promoting agent in plants (Arman and Qader 2012). Carrageenans 
and their oligomeric form, the oligocarrageenans (OCs), modulate the activity of 
different plant defence pathways, including jasmonate, salicylate and ethylene 
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signalling pathways which in turn induce plant defence responses against viruses, 
viroids, bacteria, fungi and insects (Shukla et al. 2016).

Various endogenous and environmental factors such as light, hormones, tem-
perature and nutrient availability affect plant growth and development. Moreover, it 
has been observed that marine algae oligosaccharides stimulate plant growth. 
Various treatments of oligocarrageenans K, L and I exhibited increased growth of 
commercial tobacco plants by enhancing photosynthesis, basal metabolism, nitro-
gen assimilation and cell division, as well as that of other plants of commercial 
interest, and enhanced protection against tobacco mosaic virus (TMV) infection in 
tobacco plants (Castro et al. 2012). In addition, accumulation of several phenylpro-
panoid compounds (PPCs) with microbial activity increased by oligocarrageenans 
improves protection against viral, fungal and bacterial infections in tobacco plants. 
Moreover, OCs induce the level of essential oil and increase cellulose content and 
some PPCs with antimicrobial activities, indicating that defence against pathogen 
may also be cured (González et al. 2013). A red macroalga, Kappaphycus alvarezii, 
has a great economic importance due to its production of kappa carrageenan. It 
produces and accumulates photoprotective compounds such as carotenoids and 
mycosporin-like amino acids (MAAs), which absorb UVR energy directly or indi-
rectly (Schmidt et al. 2010).

Liquid extracts of seaweeds have been reported to enhance the growth of plants, 
increase yield and quality, improve resistance to disease and pest, increase mineral 
uptake from soil and antioxidant properties and amend resistance to abiotic stresses 
(salinity, drought, heavy metal stress and extreme temperatures). Carrageenans are 
the best characterized seaweed elicitors that have the potential to activate disease 
resistance in plants and animals (Mousavi et al. 2018). OC kappa enhances C-, N- 
and S-assimilation and improves growth-promoting hormone content and growth in 
pine trees; therefore, it may account for useful biotechnological tool to increase 
growth in pine forests (Saucedo et  al. 2015). Several research experiments have 
been conducted and analysed the effects of carrageenan on growth and secondary 
metabolite status in plants. Several physiological and biological activities such as 
plant growth, physiological attributes, herbage yield and content and yield of alka-
loids (vincristine, vinblastine) of periwinkle and the content and yield of essential 
oil in mint improved after foliar application of the degraded marine polysaccharides 
(Naeem et al. 2012a, 2015a).

It is well studied that growth and development in plants, algae, mammals and 
nematodes is controlled by the kinase target of rapamycin (TOR). It is a key regula-
tory kinase of the TOR pathway and is a phosphoinositol-related kinase (PIK) hav-
ing protein serine/threonine protein kinase activity. In E. globulus trees, the 
stimulation of growth induced by OC kappa, by the activation of TOR pathway and 
increased expression of genes encoding protein involved in photosynthesis and 
enzymes of basal metabolism, has been reported (Saucedo et al. 2019). Table 15.2 
weights on the eliciting effects of carrageenan and its derivatives on growth and 
physiology of various crops.
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15.4  Sodium Alginate

Alginates are natural polysaccharides chiefly derived from marine brown algae 
(Phaeophyceae) (Mollah et  al. 2009; Khan et  al. 2011). Commercial varieties of 
alginate are extracted from seaweed, including giant kelp Macrocystis pyrifera, 
Ascophyllum nodosum, Ecklonia maxima, Sargassum sinicola and various types of 
Laminaria (Hernández-Carmona et al. 2013). Sodium alginate (NaC6H7O6) is the 
sodium salt of alginic acid and is composed of poly-β-(1, 4) D-mannuronic acid and 
poly-α-(1, 4) L-guluronic acid (Xu et  al. 2006; El-Mohdy 2017). It ranges from 
white to yellowish brown and have filamentous, granular and powdered forms and 
is widely used in pharmaceutical, biotechnological and food sectors (Mollah et al. 
2009; Khan et al. 2011). Annexed Fig. 15.4 represents sodium alginate and its chief 
source. Consecutive effects of sodium alginate and its derivatives on various plants 
and microbes are also illustrated in the same figure.

Table 15.2 Eliciting effects of carrageenan and its derivatives on various plant species

Plant Eliciting effects on Reference

Mung bean Disease resistance and marketable yield Gatan et al. 
(2019)

Fennel Shoot length, plant biomass, photosynthetic pigments, 
activities of CA and NR enzymes, contents of N and P, 
overall productivity

Hashmi et al. 
(2012)

Maize Plant length; number of pods, branches and leaves; and 
secondary metabolism

Bi et al. (2011)

Pine Assimilation of carbon, nitrogen and Sulphur, contents of 
auxin and gibberellin and basal metabolism

Saucedo et al. 
(2015)

Peanut Seed germination, flowering, plant height, pod length and 
number, seed weight and total yield

Abad et al. 
(2018)

Tobacco Photosynthesis, basal metabolism and overall productivity Castro et al. 
(2012)

Basil Shoot length, leaf area, phenolic and antioxidant content and 
defence system

Mousavi et al. 
(2018)

Tasmanian 
blue gum

Plant height, photosynthesis, levels of sugar and trehalose, 
expression of transcripts pertaining to glucose, basal and 
secondary metabolism

Saucedo et al. 
(2019)

Lemongrass Photosynthetic pigment, osmotic and turgor potential, 
antioxidant metabolism, overall growth and oil yield

Singh et al. 
(2017)

Chickpea Defence system and overall growth promotion Arman and 
Qader (2012)
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15.4.1  Biological Activities of Sodium Alginate

Sodium alginate plays a major role in the structural component of the cell wall and 
intercellular matrix in organisms from Phaeophyceae and Laminaria (Hernández- 
Carmona et al. 2013). This marine polysaccharide consists of residues of mannu-
ronic acid (M-block) and guluronic acid (G-block) (El-Mohdy 2017). Monomers 
are arranged in three types of block structure. These blocks may be homopolymeric 
block (M-block, G-block) or heteropolymeric block (MG-block). MG-block is 
known for its most flexible chain formation while M-block for its strong immuno- 
stimulating property (Pegg 2012). The fraction of mannuronic acid (M-block) and 
guluronic acid (G-block) of sodium alginate showed antibacterial activity against 
Escherichia coli, Staphylococcus aureus and Bacillus subtilis (Hu et al. 2005).

Marine polysaccharides are highly reactive and peculiar compounds  with 
thermo-reversible gel formation ability and have widespread use in pharmaceutical 
industry and bioengineering products (Hien et al. 2000; Aftab et al. 2014). Alginates 
are also exploited in drug delivery and as hydrogels for immobilizing cells and 
enzymes due to their mild conditions of cross-linking through bivalent cations 
(Ca2+) (Russo et al. 2007; Liu and Li 2016). These characteristics can also be further 
altered by chemical modification, blending and integrating biodegradable additives 
which allows to tailor the final properties of the polysaccharides and opens the 
doors to wider applications, particularly in pharmaceutical area (Gomez d’Ayala 
et al. 2007).

Commercially, sodium alginates are also exploited in gel formation given their 
efficient and rapid water-absorbing property, sometimes absorbing multiple times 
of its own weight in water (Jamaludin et al. 2017). Moreover, carbohydrates like 
sodium alginate, chitosan, carrageenan, cellulose and pectin help in recycling bio- 
resources and reducing environmental pollution. These carbohydrates in various 

Fig. 15.4 Sodium alginate and its accompanied biological properties
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forms can induce different kinds of biological activities including antimicrobial 
activity and phytoalexin induction (Kume et al. 2002).

15.4.2  Role of Sodium Alginate in Plant Growth Regulation

Sodium alginate in various forms and concentrations can impart a general trend of 
improved overall vegetative growth in different crops. SA has the potential to 
enhance plant height, biomass (both fresh and dry weight), number of tillers and 
leaves as well as leaf area (Hien et al. 2000; Iwasaki and Matsubara 2000; Kume 
et al. 2002; Hu et al. 2004; Hegazy et al. 2009; Mollah et al. 2009; Qureshi 2010; 
Sarfaraz et al. 2011; Naeem et al. 2015b). In addition to overall growth, sodium 
alginate renders stimulating effects on seed germination as well (Jamsheer 2010; 
Khan et al. 2011). The effect of alginate-derived oligosaccharide concentration on 
α- and β-amylase activities in different germination stages of maize seeds enhanced 
the seed germination by increasing the activities of several enzymes beneficial for 
germination (Hu et al. 2004). These SA-induced effects could also be attributed to 
the sodium alginate’s interaction with plant cell signalling and its perceived regula-
tion of gene expression (Khan et al. 2011).

These SA-induced responses can be understood by the fact that application of 
SA can induce multiple physiological and biochemical changes in plants. On a 
molecular level, SA is capable of regulating the biosynthesis of various enzymes 
(Ma et al. 2010; Khan et al. 2011) and the references therein) including those per-
taining to nitrogen and carbon metabolism. Nitrate reductase (NR) is a key enzyme 
in nitrogen metabolism that assists in the first step of nitrogen assimilation in plant 
system through conversion of nitrate into nitrite. Thus, an efficient NR enzyme pro-
vides enough raw materials for the synthesis of various structural and functional 
biomolecules including amino acids and lipids. Various studies reported the direct 
influence of SA on the NR activity where it was found that SA can significantly 
(p ≤  0.05) upregulate the activity of NR enzyme in various crops of economic 
importance, e.g. fennel (Sarfaraz et al. 2011), lemongrass (Idrees et al. 2012) and 
mint (Naeem et al. 2012b). As a result, SA assist in maintaining a higher nitrogen 
content that ultimately influences the content of photosynthetic pigments (i.e. chlo-
rophyll and carotenoid) through amino acid, protein and lipid biosynthesis (Idrees 
et al. 2012). Another key enzyme in carbon metabolism is carbonic anhydrase (CA). 
SA has also been reported to upregulate the CA activity in different crops (Luan 
et al. 2003; Khan et al. 2011; Naeem et al. 2015b).

Another aspect of SA-induced physiological response can be observed on plant 
gas exchange modules. Net photosynthetic rate (PN) and stomatal conductance (gs) 
can play a decisive role in determining overall plant growth and productivity. SA 
positively influence both PN (Luan et al. 2003) and gs (Naeem et al. 2015b) possibly 
because of the SA-induced photosynthetic pigment content (Mollah et  al. 2009; 
Sarfaraz et al. 2011) and enhanced membrane permeability (Khan and Srivastava 
1998). Due to its regulating effects on membrane permeability as well as on 
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protoplast formation, alginate and its derivatives have also been labelled as endog-
enous elicitors (Akimoto et al. 1999). Similar regulating effects of SA on secondary 
metabolism were noted otherwise where the content of secondary metabolites 
exhibited positive correlation with sodium alginate application (Idrees et al. 2011; 
Khan et al. 2011; Naeem et al. 2015b).

Some other miscellaneous SA-induced effects on plant system includes enhanced 
water-use efficiency (Idrees et al. 2011); phosphoenolpyruvate (PEP) carboxylase 
activity and protein content (Idrees et al. 2012); content of nitrogen, phosphorus and 
potassium (leaf NPK); and phytoalexin induction (Mollah et al. 2009; Khan et al. 
2011; Sarfaraz et al. 2011; Idrees et al. 2012). Sodium alginate has also been attrib-
uted to provide resistance against various disease and adverse environmental condi-
tions, thus contributing in plant defence system by ameliorating antioxidant 
metabolism and reactive oxygen species pathway (Hien et al. 2000; Liu et al. 2009; 
Ali et al. 2014). The combination of Alteromonas macleodii (common marine bac-
terium), as exogenous elicitor, and alginate oligomers, acting as both endogenous 
elicitor and scavenger of active oxygen species, reportedly minimized the cell 
growth inhibition and enhanced 5′-phosphodiesterase production in periwinkle 
(Aoyagi et al. 2006).

Various researches have demonstrated that SA is significantly potent in impart-
ing an eliciting effect on the overall productivity and plant yield. SA can enhance 
the weights of seed and capsule in opium (Khan et al. 2011), oil production in lem-
ongrass (Idrees et al. 2012) and herbage yield in periwinkle (Naeem et al. 2015b) 
along with the productivity of barley, carrot, cabbage, maize, peanut rice, tea and 
tomato (Hien et  al. 2000; Hu et  al. 2004; Hegazy et  al. 2009; Liu et  al. 2009). 
Table 15.3 represents plant growth, productivity and immunity promotion in differ-
ent crops by sodium alginate and its derivatives.

Similar to chitosan and carrageenan, sodium alginate is also an efficient plant 
growth regulator which not only hampers yield loss during adverse environment but 
also promotes overall plant growth and productivity. Although the exact mechanism 
for these effects is not yet fully known, in the light of current advancements, we can 
assume that these NPs interact extensively with various vital physiological pro-
cesses which play a decisive role in determining the fate of overall plant growth and 
productivity (Chamnanmanoontham et al. 2014). A general idea for this mechanism 
can be understood by annexed Fig. 15.5., where a hypothetical model for oligomeric 
action of chitosan, carrageenan and sodium alginate in plants is portrayed.

15.5  Conclusion and Future Prospective

Marine polysaccharides (chitosan, carrageenan and sodium alginate) in various 
forms seem to enhance overall plant growth and productivity. It is now known that 
these marine polysaccharides can act as a signalling molecule which interact with 
plant physiology in a complex cascade mechanism and produce these favourable 
effects (Mercier et al. 2001; Khan et al. 2011; Shukla et al. 2016). While all the three 
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reviewed polysaccharides, i.e. chitosan, carrageenan and sodium alginate, have a 
general positive influence on plant overall growth and productivity, they possess few 
attributes that make a distinction among them. While chitosan can be used in pres-
ervation and safety of food and dairy products, sodium alginate can be exploited as 
a gelling or hydrating agent (Piculell 1995; Chien and Chou 2006; Liu et al. 2007). 
Similarly, carrageenan can be extensively used in pharmaceutical and drug develop-
ment industries.

Although this review assessed the role of chitosan, carrageenan and sodium algi-
nate on plant biology, there are few questions still left to be answered. Further inves-
tigations could reveal important insights about the exact mechanism responsible for 
such NP-induced responses in various crops. Additionally, critical evaluation of 
such responses through transcriptomics, epigenetics, radiation biology and bioin-
formatics might give us a better understanding of the cross-talk of NPs with other 
signalling pathways in various crops.

Table 15.3 Eliciting effects of sodium alginate and its derivatives on various plant species

Plant Eliciting effects on Reference

Maize Seed germination, α- and β-amylase activity, overall 
growth and productivity

Hegazy et al. 
(2009), Hu et al. 
(2004)

Peanut Shoot growth, plant biomass and defence mechanism Hien et al. (2000)
Mint Shoot growth, biomass and essential oil yield Naeem et al. 

(2012b)
Periwinkle Plant height, leaf area index, fresh weight and dry weight, 

increased enzyme activities and photosynthetic rate
Luan et al. 
(2003)

Red amaranth Shoot growth, leaf number, leaf area, dry weight, 
chlorophyll and carotenoid contents and phytoalexin 
induction

Mollah et al. 
(2009)

Opium poppy Plant length; dry weight; chlorophyll and carotenoid 
contents; activities of CA and NR enzymes; cell signalling; 
weights of seeds, capsule and crude opium; and alkaloid 
content

Khan et al. 
(2011)

Fennel Contents of chlorophyll and carotenoid, efficiency of 
carbon and nitrogen assimilatory enzymes, leaf NPK 
content, plant height, leaf size, biomass and overall plant 
productivity

Sarfaraz et al. 
(2011)

Lemon-scented 
eucalyptus

Plant growth, fresh and dry weight, leaf number and size, 
photosynthetic pigments, leaf NPK and essential oil 
production

Ali et al. (2014)

Faba bean Biomass, germination, plant height, leaf width and seed 
yield

El-Mohdy (2017)

Lemongrass Shoot growth; leaf and tiller number; dry weight; 
photosynthetic pigments; leaf NPK content; activities of 
CA, NR and PEP carboxylase; protein content; and 
essential oil yield

Idrees et al. 
(2012)
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