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Abstract. With the spiraling pandemic of the Coronavirus Disease 2019
(COVID-19), it has becoming inherently important to disseminate accu-
rate and timely information about the disease. Due to the ubiquity of
Internet connectivity and smart devices, social sensing is emerging as
a dynamic sensing paradigm to collect real-time contacts between both
people and places. For example, we can rely on the Bluetooth signals
that smartphones can both send out and receive to collect the real-time
user contacts data. Based on the contacts data, in this paper, we inves-
tigate to propose an efficient approach to calculate the risk level of each
person to have COVID-19. It can help pinpoint the people who need to
be isolated. (1) We model the real-time contact data between people as
a straming graph, which is a constantly growing sequence of edges. (2)
We provide a risk alerting model to find the people who came in con-
tact with someone having COVID-19. (3) In addition, we design efficient
algorithms to calculate the risk level of each person and update the lev-
els in real time. (4) Extensive experiments verify the effectiveness and
efficiency of our approach.

1 Introduction

Public health experts say tracing who people infected with the coronavirus have
been in contact with is a critical step in easing social distancing restrictions.
Thanks to the pervasion of smart devices, some softwares, i.e., TWS1 and Trace-
Together2, have been designed for collecting the real-time contact data between
people. The technologies used in them rely on the Bluetooth signals that smart-
phones can both send out and receive. Using Bluetooth signals can capture the
contact records between users and each contact record is used to answer the
question “was user A in contact with user B at time T?” Time is important
since there maybe multi-times contacts between two users. Based on the col-
lected data, we design efficient algorithms to find the potential users who may
have COVID-19.

1 http://easytws.com/.
2 https://www.tracetogether.gov.sg/.
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From the perspective of data management, there may exist two types of
solutions—relational and graph-based—to the user-contact data. Using rela-
tional databases does not always offer an elegant solution towards efficiently
searching, and still lacks best practices currently. In this paper, we design a
graph-based solution, attributed to the fact that the user-contact data is a uni-
versal graph model of data. As a result, we model the use-contact data as a
streaming graph G, which is a constantly growing of edges {σ1, σ2, . . . , σx} where
each σi arrives a particular time ti. Note that, σi may have multi-timestamps
since σi will appear multi-times in G. Specially, we only collect each user’s con-
tact data in the prior 14 days. This is because the incubation period of COVID-19
is 1∼14 days.

In order to find the users who came in contact with someone having COVID-
19, we propose a risk alerting model to assign each user a risk-level, denoted
as RL. That is, when a user tests positive for COVID-19, we assign RL–1, RL–
2 and RL–3 to the users who are one-hop, two-hops and three-hops neighbors,
respectively. Furthermore, if a user does not have COVID-19 after 14 days or
all the neighbors of the user have no risk-level, we can remove the user’s risk-
level directly. Note that, the time constraints are important in this model, more
details will described in Sect. 3.

To achieve real-time responsiveness is the foremost problem we need to face
when updating the risk-levels over the streaming graph G; if not, we cannot get
efficient updating results over a time span. A näıve method to solve this problem
is to recompute risk-levels for the users who have COVID-19. However, it can be
prohibitively costly, and we will redo the work. Instead, we design an incremental
updating algorithm to calculate the risk-level for each new user-contact record
and update the risk-levels for corresponding users only from the newly user who
tests positive.

Contributions. In short, we make the following contributions:

– We model the user-contact records collected from the Bluetooth signals of
corresponding users’ smartphones as a streaming graph.

– Based on the streaming graph, we design a risk alerting model which help
to trace the people have been in contact with someone infected with the
coronavirus.

– We propose an incremental updating algorithm to update the risk-levels for
corresponding users.

Experiment results demonstrate the effectiveness and efficiency of our tech-
niques.

2 Preliminaries

A typical data schema for the topology of user-contact records consists of a
number of vertices representing users, and links between the nodes representing
contacts between them. This schema naturally translates to a vertex-labeled
undirected graph g = (V,E,L).
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Definition 1 (Streaming graph). A Streaming graph G is a constantly grow-
ing sequence of undirected edges {σ1, σ2, . . . , σx} where each σi arrives at a par-
ticular time ti (ti < tj when i < j). ti is also referred to as the timestamp of σi.
Each edge σi has two labelled vertices and two edges are connected if and only if
they share one common endpoint.

Since two users may have multiple contacts with each other, there may be
multi-edges between two vertices in G representing contact records between them
in different timestamps. For each user’s contact records, we use the time-based
sliding window model, where a sliding window W defines a timespan with fixed
duration |W |. Here, we set |W | = 14 since the incubation period of COVID-19 is
1 ∼ 14 days. An example of a streaming graph G is shown in Fig. 1(a). For each
vertex, i.e., v1 or v2, we record the corresponding edges within 14 days.

Fig. 1. An example of the streaming graph

Definition 2 (A Snapshot of a Streaming Graph). Given a streaming
graph G at current time point t, the current snapshot of G is a graph Gt =
(Vt,Et) where Et is the set of edges that occurs on each vertex at time t.

Figure 1(b) shows the snapshot of Fig. 1(a) at time point σ1.

3 Risk Alerting Model

In this section, we design a risk alerting model for COVID-19 spread, namely,
RAMC, to trace the people who have been in contact with someone infected
with the coronavirus. The model consists of two steps: (1) assign each user in
the streaming graph a risk-level according to the users who have COVID-19; (2)
eliminate the risk-level of a user whose status becomes safe.

3.1 Risk-Level Assignment

We rely on the BFS search algorithm to assign each user who has been in contact
with someone infected with the coronavirus directly or indirectly a risk-level.
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Fig. 2. Risk alerting model

Given a vertex V in G that represents a user who tests positive for COVID-19
at timepoint T, we can obtain corresponding contact records of V from T-1 to
T-14. Here, we only assign the risk-levels for 1-hop to 3-hops neighbors of V. In
detail, for each neighbor V ′ of V, we first set RL(V ′) = 1 where RL(V ′) represents
the risk-level of V ′. Note that, there may be multi-edges between V and V ′ with
different timepoints. The earliest timestamp, denoted as ET(V ′), will be used
in the BFS process to calculate the risk-levels for other vertices. Then for each
unvisited neighbor V ′′ of V ′, we check whether there is an edge 〈V ′,V ′′〉 with
timestamp tv′′ such that tv′′ ≥ ET(V ′); if so, we set RL(V ′′) = 2. What’s more,
we set ET(V ′′) = tv′′ if tv′′ is the earliest timestamp that can confirm above
condition. Specially, there may be another neighbor V∗ of V ′′ and RL(V∗) = 1.
As a result, we need also calculate another value for ET(V ′′) based on the edges
between V ′′ and V∗. In this case, we set ET(V ′′) as the smallest value between
all the values. Finally, we calculate the risk-levels for the 3-hops neighbors of V
in a similar manner. Omitted in the interest of space, we do not describe here.

Figure 3(a) gives the example to calculate corresponding users’ risk-levels
when the user A tests positive for COVID-19 at time T.

3.2 Risk-Level Elimination

In our model, a user’s risk-level will be eliminated if we can make sure the status
of the user is safe.

For each vertex V in G with its RL(V) = 1 at timestamp T, if (1) the user
represented by the vertex V has no symptoms of COVID-19 at timestamp T+14;
and (2) there is no user represented by the neighbor of V who tests positive for
COVID-19 between time T and T+14, we can eliminate the risk-level of V. As
for other vertices {V ′}, we check whether (1) there exists a neighbor V ′′ with
its RL(V ′′) > RL(V ′); and (2) there is an edge 〈V ′,V ′′〉 with its timestamp later
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than ET(V ′′). If not, we can eliminate the risk-level of V ′. Figure 3(b) shows the
elimination process when the status of becomes safe.

4 Incremental Algorithms

In this section, we propose an effective algorithm, namely, updateRL, to update
the risk-levels of corresponding users when a new contact record is added into
the streaming graph G.

Now we explain updateRL, which is invoked for each edge insertion 〈v, v′〉 with
timestamp t1. Firstly, updateRL checks the risk-levels of v and v′, respectively.
Note that, each user who tests positive for COVID-19 will not have new contact
record. As a result, we have the following two cases that may cause the update
of the risk-levels.

1© From RL -3 to RL -2. Suppose that RL(v′) = 3 and RL(v) = 1. If t1 > ET(v),
updateRL transits RL(v′) from 3 to 2 and sets ET(v′) = t1.

2© From safety to RL -2 (or RL -3). Suppose that the status of v′ is safety
and RL(v) = 1 (or RL(v) = 2). If t1 > ET(v), updateRL sets RL(v′) = 2 (or
RL(v′) = 3) and sets ET(v′) = t1.

5 Experiments

In this section, we report experiment results and analyses.

5.1 Experiment Setup

The proposed algorithms were implemented using C++, running on a Linux
machine with two Core Intel Xeon CPU 2.2 Ghz and 32 GB main memory. Par-
ticularly, three algorithms were implemented: (1) RAMC, our algorithm to assign
and eliminate corresponding users’ risk levels; (2) updateRL, our update algo-
rithm for newly added contact record; (3) updateRL-R, our algorithm that recom-
putes the users’ risk-levels from the uses who have COVID-19.

Fig. 3. The mainly process of RAMC

Since we do not have the real-life user-contact records, we use two human
contact temporal networks, i.e., HS [1] and PS [1] to simulate the user-contact
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records. HS contains 2,367,984 triples while the edge insertions consist of 225,124
triples. PS contains 1,254,132 triples while the edge insertions consists of 112,607
triples. We also use a synthetic streaming social graph data LSBench which
contains 23,549,621 triples.

5.2 Evaluating the Effectiveness of RAMC

In this subsection, we evaluate the effectiveness of our proposed risk alerting
model. We ran experiments on HS and PS and randomly set 1000 vertices as
the users who test positive for COVID-19 on both datasets. According to the
experiment results, we find that the risk-levels of corresponding users can be
efficient calculated within 600ms on both datasets. Figure 3 shows the partial
visualization results in our experiment by using HS dataset. In detail, the first
picture shows the partial initial graph; the second picture shows some users who
have COVID-19 are emerged in the graph; the third graph shows the risk-level
assignment process and the last picture shows the risk-level elimination process.

5.3 Varying the Edge Insertion Size

In this subsection, we evaluate the impact of edge insertions on the performance
of updateRL and updateRL-R. We vary the number newly-inserted triples from
25K (= 25 × 103) 100K in 25K increments on both datasets. Figure 4(1) and
Fig. 4(2) shows the processing time for each algorithm. We see that updateRL
has consistently better performance than updateRL-R. What’s more, the figure
reads a non-exponential increase as edge insertion size grows. Specially, updateRL
outperforms updateRL-R by up to 42.78 times.
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Fig. 4. Experiment results

5.4 Varying Data Sizes

We evaluate the scalability of updateRL on LSBench dataset. We randomly sam-
pled about 20% to 100% from the LSBench dataset so that the data and result
distribution remain approximately the same with the whole dataset. Figure 4(3)
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reads a non-exponential increase as data size grows. In generally, the process-
ing time grows at no more than twice the speed of growth in the size of the
dataset. The scalability suggests that updateRL can handle reasonably large real-
life graphs as those existing algorithms for deterministic graphs.

6 Related Work

Representative algorithms for pattern matching/search from the streaming graph
include TurFlux [2] and TreeMat [3], etc. However, these work are about con-
tinuous subgraph matching and cannot be used in our model. To the best of our
knowledge, this is among the first attempts to design a risk alerting for COVID-
19 spread based on a graph search algorithm. We believe that this work will
benefit for fighting COVID-19.

7 Conclusion

In this paper, we have investigated a systematic graph-based approach to risk
alerting for COVID-19 spread. We design a risk alerting model to help trace the
people who have been in contact with someone infected with the coronavirus
and propose an incremental updating algorithm to update the risk-levels.
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