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Abstract. Discovering communities that naturally exist as groups of
fine-connected users is one the most important tasks for network data
analytics and has tremendous real applications. In recent year, commu-
nity search in attributed graphs has begun to attract attention, which
aims to find communities that are both structure and attribute cohesive.
Whereas, searching a community that is structure cohesive but attribute
diversified, denoted as attribute diversified community search, is still at
preliminary stage. In this paper, we introduce our recent effort for dis-
covering attribute diversified community. In fact, for different applica-
tions, the needs of attribute diversification for modelling the community
are quite different. We introduce three attribute diversified community
models in which attribute diversification takes different roles for present-
ing objective, query requirement, and constraint. We also discuss major
techniques for speeding up the attribute diversified community search.

1 Introduction

Graphs have emerged as a powerful model for representing different types of
data, such as social networks and collaboration networks. In these graphs, dis-
covering communities that naturally exist as groups of fine-connected users is one
the most important tasks for network data analytics and has tremendous real
applications. Nevertheless, most of the previous studies [1,4,5,10,24,29] have
focused on finding communities from a graph without considering attributes.
As such, the returned communities may miss out important attributes describ-
ing a variety of features of real applications. Recently, community search in
graphs having attributes called attributed graphs has begun to attract atten-
tion [6,7,11,15,20,28]. These works endeavour to find communities that are both
structure and attribute cohesive. Besides, there are also a few works [18] that
aim to find communities which are attribute diversified among them. However,
a study for community search that takes serious consideration of structure cohe-
siveness but attribute diversification within a community is still at preliminary
stage.

In this paper we focus on introducing our recent works for attribute diversi-
fied community search, including three attribute diversified community models
in which the attribute diversification takes different roles for presenting an objec-
tive, a query requirement, and a constraint.
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Maximizing Attribute Diversification. Discovering a community with mem-
bers as diversified as possible has numerous applications. One example is building
a team for group brainstorming to address a cognitive bottleneck of idea gen-
eration. Group brainstorming shall engage diversified individuals to collaborate
by communicating and sharing ideas in groups, where diversified individuals
can substantially broaden the knowledge base available for idea generation and
the social engagements among the individuals allow the creative effort to be
aggregated. Other examples are: gathering socially connected experts of differ-
ent marketing fields to brainstorm a marketing session of different new products,
selecting a panel of concerted engineers with different technological expertise for
reviewing and testing different products to show the collective information pool
of the panel, etc. For these applications, since they target community members
for innovations and there are evidences that maximizing diversity leads to cre-
ativity [22], the desired community would be preferred to maximise the attribute
diversity of its members [9].

Attribute Diversification with Specific Requirement. For some applica-
tions, the diversification requirements could be specific. Let us consider a real
event happened in 2019. A small town in Australia was devastated by the severe
bushfire, which results in at least 11 damaged properties and 33 people injured.
The town needs community spirit to rebuild. This naturally arises the needs of
several activities with diverse demands. A group needs to be formed urgently
to react on the disaster, with at least 3 members having expertise in building
temporary accommodations, 5 doctors, 4 psychologists, 2 members having the
expertise in community support, etc. Each member may contribute to as many
skills as possible in this kind of group. Due to damaged properties, a construction
team also needs to be built for rebuilding these properties, with members having
different skills, such as at least 2 architects, 11 members handling masonry, 5
members dealing with welding, etc. Due to the intensive labouring, each mem-
ber may contribute at most 2 skills in this kind of construction teams since
multi-tasking may lead to multi-failing. Due to the disaster, people may suffer
a lot mentally. To help relief psychological pressure from these people, it would
be great to organize an improvised music show to soothe them, which needs to
discover musicians to form a band. The found musicians may be able to play
multiple instruments. However, since they perform as a band, each of them shall
focus on a single instrument. From these examples, it is clear that, apart from
social cohesiveness and spatial closeness requirements, an effective community
model for impromptu activities with diverse demands should allow people to
express specific diversification requirements including: 1) collective capabilities
of the group w.r.t. a particular skill, e.g., at least 3 members have expertise in
building temporary accommodation; and 2) capacity of each member on maxi-
mum contribution the member can make, e.g., at most 2 skills in a construction
team. This motivates us to study how to find an attribute diversified geo-social
group with specific diversification requirements [8].

Attribute Diversification as Constraint. Some applications would like to
find a community that exhibits certain level of attribute diversification but has
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members with social relationships as cohesive as possible. For instance, assume
that we need to find a group of organisers for organising a conference. To make
the organisation smooth, the organisers are expected to communicate and col-
laborate with each other extensively. The more that organisers identify with each
other, the more likely they are to believe that they hold similar goals for suc-
cessfully organising the conference. On the other hand, to make the conference
accept various ideas, we also expect that the organisers would jointly share a
variety of domains. Similar applications include promoting a product through
commonly associated experts of difference domains, team formations for max-
imising productivity, etc. Motivated by these applications, we introduce a novel
community model that considers attribute diversification as a constraint while
maximising the structure cohesiveness as the primary searching objective.

Road Map. The rest of this paper is organized as follows. In Sect. 2, we intro-
duce and discuss basics for attributed graphs. In Sects. 3, 4, and 5 we discuss our
recent attribute diversification community search works. We discuss the related
works and conclude this paper in Sects. 6 and 7.

2 Preliminaries

In this section, we first formally introduce the commonly used community cohe-
siveness metrics and attributes diversification metrics.

An attributed graph is denoted as G = (V,E,A), where V (G), E(G), A
denote the set of vertices in G, the set of edges in G, and the set of attributes
in terms of keywords respectively. Each vertex v ∈ V (G) is attached with a set
of attributes A(v) ⊆ A. Given v ∈ V (G), deg(v,G) denotes the degree of v in
G and N(v,G) denotes the neighbours of v in G. A triangle in G is a cycle of
length 3. A triangle induced on vertices u, v, w ∈ V (G) is denoted as �uvw and
when these vertices are not specified we omit the subscript. Given a subgraph
H ⊆ G, Tri(H) denotes the set of triangles in H.

2.1 Social Cohesiveness Metrics

Coreness. Coreness is defined according to the degree of every vertex.

Definition 1. k-core subgraph. Given a subgraph H ⊆ G, an integer k, H is
called k-core subgraph if for every v ∈ V (H), deg(v,H) ≥ k and such maximum
k is called the coreness of H.

Intuitively, a k-core is a subgraph in which vertex has at least k neighbours.
A k-core with a large value k indicates strong internal connections over vertices.
A k-core is maximal if it cannot be extended.

Trussness. Trussness is defined based on the number of triangles each edge is
involved in a graph. In general, given a subgraph H ⊆ G, we use �uvw to denote
a triangle, a cycle with length of 3, consisting of vertices u, v, w ∈ V (H).
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Support. The support of an edge e(u, v) ∈ E(H), denoted by sup(e,H), is the
number of triangles containing e, i.e., sup(e,H) = |{�uvw : w ∈ N(v,H) ∩
N(u,H)}|, where N(v,H) and N(u,H) are the neighbours of u, v in H corre-
spondingly.

Minimum Subgraph Trussness. The trussness for a subgraph H is defined as an
integer k that is 2 plus the minimum possible support for edges in E(H). That
is, the minimum subgraph trussness defines that for every edge e ∈ E(H), the
number of triangles in which e participates shall be no less than k - 2.

Definition 2. c-truss constraint. A subgraph H satisfies c-truss constraint if
the trussness of H is c, and c is connected.

Intuitively, if H satisfies c-truss constraint, the vertices of an edge in H
have at least c-2 common neighbours in H, every vertex in H has no less than
c-1 neighbours and at least c-1 edges have to be deleted in order to make H

disconnected. The communication cost of H is at most � 2|V (H)|−2
c �. A H with a

large value c indicates strong internal social relationships over vertices.

2.2 Attribute Diversification Metrics

Diversity for Two Vertices. Given a pair of vertices, u, v ∈ V (G) with
attributes A(u) and A(v), a diversity function is defined as div((u, v)) =
1 − |A(u)∩A(c)|

|A(u)∪A(v)| .

Average Based Diversity. Given H, the attribute diversification of H is mea-
sured by avgDiv(H) =

∑
(u,v)∈H div((u,v))

|V (H)| .
We will introduce detailed attribute diversification metrics when introducing

the specific models.

3 Discovering a Community Maximizing Attribute
Diversity

In this section, we introduce an attribute diversified community search work [9]
that aims to find a community maximizing the attribute diversity. We first intro-
duce the community model and search problem, then discuss the search frame-
work and optimizations, respectively.
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Algorithm 1: basicADC(H)
1 H∗ ← φ;
2 basicEnum (H);
3 return H∗;
4 Procedure basicEnum (H)
5 H ′ ← k-core(H);
6 let H′ be the set of connected component in H ′;
7 foreach h ∈ H′ do
8 if avgDiv(h) > avgDiv(H∗) then
9 H∗ ← h;

10 foreach h ∈ H′ do
11 foreach v ∈ V (h) do
12 basicEnum (h \ {v});

3.1 Problem Definition

Attribute Diversified Community. We propose the attribute diversified com-
munity model, using k-core and average based diversification metric.

Definition 3. Attribute diversified community. Given a subgraph H ⊆ G,
an integer k, H is defined as an attribute diversified community if H satisfies
the following constraints simultaneously:

– Connectivity: H is connected;
– Structure Cohesiveness: H is a k-core subgraph;
– Maximizing Average Diversity: for avgDiv(H), H is argmaxH′

{avgDiv(H ′)|H ′ ⊆ G};
Accordingly, given G and an integer k, the research problem we focus on in

this paper is as follows.

Research Problem. Find the subgraph H ⊆ G that maximises avgDiv(H).

Example 1. To briefly show the results of the above problem, we discuss the
example shown in Fig. 1. For the attribute diversified community search problem
with k = 2, the result is the {B,C, F,G,H, I, J, L,M} induced subgraph with
diversity of 1.44.

3.2 Search Framework

For ease of understanding, we first show the basic enumeration used in the branch
and bound algorithm. Algorithm1 shows the basic enumeration that derives
the optimum result. Initially the input of the algorithm is G. By recursively
calling itself, Algorithm1 tries all possible subgraphs of G if the subgraphs may
contain the optimum result and checks if there is a feasible solution in the current
recursion. If there is a feasible solution h in the recursion and the feasible solution
is greater than the current optimum one H∗, H∗ is updated to h.
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Search Space Reduction. Algorithm 1 also applies space reduction optimisa-
tions based on the observations as follows.

Observation 1. The optimum result can only be contained in a connected k-
core of G if it exists when the enumeration starts.

Observation 2. During the recursion with an input H, the optimum result can
only be contained in a connected k-core of H.

With the observations, when a recursion starts, Algorithm1 first reduces the
input to the maximal k-core, which would transform the input into a set of max-
imal connected k-cores. Algorithm 1 only tries combinations in each connected
k-core. As such, the search space can be reduced significantly.

3.3 Optimisations

Upper Bound Based Pruning. The idea is that we estimate the upper bound
of the average edge diversity of the current search branch. If the upper bound is
smaller than the diversity of the optimum result found so far, we terminate the
search branch.

Next, we will propose three upper bounds.

Upper Bound Based on Core Property. We firstly show an upper bound
for a connected k-core based on core property. The upper bound for h is defined
as follows.

ubcore(h) =

∑
(u,v)∈E(h) div((u, v))

k + 1
(1)

The upper bound based on core property would only be tight when h contains
an optimum result with size close to k + 1. However, it has limited pruning
effectiveness when h contains large-size results. Next we study tight bounds for
arbitrary h.

Maximum Average Diversity in a Core. Given a connected k-core h, this
bound is defined as follows.

ubavg(h) = max{avgDiv(h′)|h′ ⊆ h} (2)

Lemma 1. ubavg(h) is an upper bound for h.

Approximate Maximum Average Diversity in a Core. The computational
cost of ubavg(h) is high. It would take O(|V (h)|3) if using the algorithm in [13].
However, there is a simple but effective approximate algorithm [3] that can
achieve 1

2 -approximation with complexity O(|E(h)|). As such we can use the
approximation algorithm to get an at least 1

2 ubavg(h) value first and then
multiple it by 2 to derive a slightly loose bound, denoted as apxubavg(h). In
implementation, ubcore(h) and apxubavg(h) are prioritised as they are cheap.
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(a) Spatial distribution (b) H≤d1 and H≤d∗

Fig. 2. Running example

Search Order. For each connected k-cores that cannot be pruned, we sort them
in non-increasing order according to their upper bounds. By doing this, we can
heuristically find communities with large average diversity as early as possible.
This would make the upper bound based pruning more effective.

4 Discovering Attribute Diversified Geo-Social Group
with Specific Requirement

In this section, we tackle the problem of finding an attribute diversified geo-social
group with the given specific diversification requirements [8]. We first introduce
the query, model and search problem. Then the novel search framework is dis-
cussed. After that, the optimizations for speeding up the search are introduced.

4.1 Problem Formulation

Data. We consider an undirected graph data G = (V,E) with network structure,
spatial attribute and textual attributes. For each vertex v ∈ V (G), v has a piece
of location information expressed as latitude and longitude denoted as (v.x, v.y),
and has a set of keyword attributes denoted as v.A.

Since our proposed group model would satisfy minimum keyword, capacity
and social constraints while optimizing spatial closeness, we name the proposed
model as MKCSSG. Our proposed geo-social model is introduced as follows.

We formally define the query for searching MKCSSG.

Query for MKCSSG. The query Q for MKCSSG consists of a social parameter
c (an integer), a set of keywords ϕ, keyword parameters P (a set of integers), r
(an integer), and a location λ (latitude and longitude).

Minimum Keyword and Capacity Constraints. Given a set of query key-
words ϕ = {k1, . . . , k|ϕ|}, P = {ρ1, . . . , ρ|ϕ|}, r, and S, MKCC is defined below.
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Definition 4. Minimum keyword and capacity constraints, MKCC. S
satisfies MKCC if there is a v.A′ ⊆ ϕ ∩ v.A for every v ∈ V (S) such that:

– Capacity constraint: |v.A′| ≤ r,
– Minimum keyword constraint (MKC): ∀ ki ∈ ϕ, |V (Ski

)| ≥ ρi, where V (Ski
)

is the set of vertices such that for each v ∈ V (Ski
), v.A′ contains ki ∈ ϕ.

Searching Objective. Now, we formalize the spatial closeness for MKCSSG and
the research problem.

Spatial Closeness. Given a query location λ, we consider a distance function to
measure the closeness between λ and an MKCSSG S as:

Definition 5. Spatial closeness. dist(λ, S) = max{‖λ − v‖|v ∈ V (S)},
where ‖λ − v‖ denotes Euclidean distance between v and λ.

Definition 6. (P, c, r, d)-truss. Given Q = {λ, P, ϕ, c, r} and a distance thresh-
old d, a subgraph S ⊆ G is a (P, c, r, d)-truss, if it satisfies all the conditions: 1)
S satisfies MKCC, 2) S satisfies c-truss constraint, 3) dist(λ, S) ≤ d.

Research Problem. MKCSSG search. Given Q = {λ, P ϕ, c, r} and G,
return (P, c, r, d)-truss S∗ so that there is no (P, c, r, d′)-truss S′ with d′ ≤ d.

Example 2. An example dataset is shown in Fig. 2, where Fig. 2(a) shows loca-
tions for vertices of graph data in Fig. 2(b). Let the query be: Q = {λ,
P = {2, 2, 2}, ϕ = {k1, k2, k3}, c = 4, r = 1}. {d, e, f, g, h, i} induced subgraph
S∗ is the optimum result for Q for this dataset. S∗ satisfies social constraint, i.e.,
every edge in E(S∗) involves no less than 2 triangles. S∗ satisfies MKCC. That
is, it firstly satisfies capacity constraint, i.e., every vertex contributes to at most
one keyword in ϕ, where d.A′ = {k1}, e.A′ = {k2}, f.A′ = {k3}, g.A

′
= {k1},

h.A′ = {k2}, i.A′ = {k3}. Then it satisfies MKC, i.e., with the A′ for each vertex
(those underlined), the keyword vertex frequency for every query keyword is no
less than 2. Last but not least, among all groups satisfying the constraints, S∗

is the closest one to λ and the most distant vertex (to λ) in S∗ is f .

4.2 Search Framework

We firstly introduce some definitions.

Definition 7. d radius bounded graph. Given a query location λ, a subgraph
H and a distance threshold d, d radius bounded graph, denoted as H≤d, is the
subgraph of H induced by vertices of H with distance to λ no greater than d.

We would like to highlight an instance of d radius bounded graph, d∗ radius
bounded graph, H≤d∗ . H≤d∗ has the property below. There is no H≤d′ such that
H≤d′ contains MKCSSG and d′ < d∗.
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Optimum Search Space. We refer H≤d∗ as optimum search space since it is
just large enough to contain MKCSSG for the query.

The Framework. MKCSSG search framework consists of two stages: expanding
stage and reducing stage. During the expanding stage, it intends to quickly
identify H≤d that is just sufficiently large to contain the optimum search space
H≤d∗ by exploring H≤d that progressively gets larger, in which it determines
the existence of a subgraph satisfying all constraints. For the reducing stage, to
get the optimum result, it attempts to progressively remove the vertex that is
the most distant to λ in S∗. The last survived (ρ, c)-truss during the vertices
removing process is the optimum result.

4.3 Optimizations for Expanding Stage

Expanding Strategy. We first define an expanding invariant as follows.

Definition 8. Δ size invariant. Let {d1, d2, . . . , di} be the series of radius for
defining d radius graphs, for any two consecutive d, d′, we define Δ invariant as
Δ = |E(H≤d′ )|

|E(H≤d)| , in which Δ > 1 must hold.

The Strategy. The strategy applied for the expanding stage is to maintain Δ size
invariant over any two consecutively evaluated H≤d, H≤d′ . Applying Δ invariant
for expanding stage guarantees two nice properties below. Now, let us show the
tight bound that is guaranteed by applying the proposed expanding strategy.

Initial Expanding Range. Intuitively, if the initial search range is close to d∗,
the total amount of subgraphs that has to be evaluated to approaching H≤d∗ is
less. This motivates us to study a lower bound of d radius subgraph.

Definition 9. H≤d. A subgraph H≤d of H is a lower bound d radius subgraph of
H≤d∗ if it satisfies conditions: 1) H≤d is connected, 2) H≤d satisfies minimum
keyword constraint and 3) there is no H ′ ⊆ H≤d such that H ′ satisfies the first
two constraints and dist(λ,H ′) < dist(λ, H≤d).

Checking (ρ, c)-truss in d Radius Subgraph. To simplify the discussion,
for any two consecutive H≤d and H≤d′ with |H≤d′ |

|H≤d| = Δ, let us introduce a new
notation Hd′\d to denote the subgraph of H≤d′ induced by vertices appearing in
edges of E(H≤d′) \ E(H≤d).

We propose two techniques to speed up (ρ, c)-truss checking below.
Lazy (ρ, c)-truss checking strategy . Given H≤d, we only apply (ρ, c)-truss check-
ing on any subgraph potentially containing (ρ, c)-truss, defined as ρ potential
subgraph below.

ρ potential subgraph P≤d. A subgraph P≤d ⊆ H≤d is defined as ρ potential
subgraph if it is connected, satisfies minimum keyword constraint and is maximal
within H≤d.
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The Strategy. Since a (ρ, c)-truss should reside in P≤d, we propose lazy (ρ, c)-
truss checking strategy that applies (ρ, c)-truss constraint checking on every P≤d

in H≤d only instead of the entire H≤d.

Union with Existing Truss. To avoid graph traversing for checking minimum key-
word constraint and connectivity after updating trussness, we propose a solution
below. Firstly, we maintain every maximal connected c truss subgraph in every
P≤d, each of which is attached with keyword vertex frequency. Secondly, after
P≤d is expanded to P≤d′ , we update the maintained c-truss subgraphs if applica-
ble. Although this approach cannot update trussness for existing truss subgraphs
precisely, it is sufficient and efficient to check the existence of (ρ, c)-truss in P≤d′ .
As such, minimum keyword constraint and connectivity checking for truss sub-
graphs can be performed simultaneously and incrementally.

4.4 Optimizations for Reducing Stage

We will maintain a minimum spanning forest for S (the result of the expanding
stage) augmented with aggregated keyword vertex frequency. Notice that ini-
tially, every spanning tree in the forest satisfies minimum keyword constraint.
After an edge is deleted from S, one of the two cases below may happen.

Case 1: the deleted edge is not in the forest. The remaining subgraphs are still
connected and each connected subgraph still satisfies minimum keyword con-
straint.

Case 2: the deleted edge is in the forest. In this case, one of the tree in the mini-
mum spanning forest is cut into two trees, which may lead to one of the following
subcases.

Subcase 1: cannot link the cut trees. We cannot find a replacement edge from
the remaining S to link the two trees, which means the subgraph referred by the
two trees becomes two disjoint subgraphs. We update keyword vertex frequency
for each of the cut tree. After the update, we safely prune the cut tree from the
maintained spanning forest if it does not satisfy minimum keyword constraint
since they cannot contribute to MKCSSG.

Subcase 2: can link the cut trees. If we can find a replacement edge, the sub-
graph referred by two cut trees is still connected. We link the two trees with the
replacement edge. Keyword vertex frequency remains the same.

To efficiently maintain the above index, we borrow the idea from [14]. Given
S, every edge in E(S) is associated with a level progressively increased as edges
are deleted, which is equivalent to progressively partitioning S hierarchically.
Edges with high level refer to a more restricted part of S. In contrast, edges
with low level refer to a more general part of S (super graphs of the high level
subgraphs). As such when deleting an edge with a certain level, we do not need
to consider any edge with lower level as a replacement edge, which elegantly
reduces the search space for finding a replacement edge.
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4.5 Optimizations for Keyword Constraint Checking

We will show that MKCC checking for a set of vertices S, query keywords ϕ =
{k1, . . . , k|ϕ|}, P = {ρ1, . . . , ρ|ϕ|} and r can be reduced to an instance of the min
cut problem.

The Instance of Maximum Flow Problem. We construct the flow network
N based on ϕ, P , r and S. N consists of different types of nodes below. For each
keyword in ϕ, we create a keyword node. For each vertex in S, we create a vertex
node. Additionally, we create a source node s and a sink node t. The edges and
capacities for N are as follows. For each vertex node n, we create an edge from
s to n with capacity of r. For each keyword node n′ representing ki, we create
an edge from n′ to t with capacity of ρi. In addition, there is an edge between
a vertex node n and a keyword node n′ (from n to n′) if the keyword attributes
of n representing vertex contain the query keyword represented by n′, and the
capacity between n and n′ is set to ∞.

Lemma 2. S satisfies MKCC if there exists a min cut for N whose T part
contains the node t only.

We adopt preflow–push (push-relabel) algorithm to solve the min cut prob-
lem. As such, the time complexity of MKCC checking for MKCSSG search is
shown below.

MKCC checking complexity for the expanding stage. This part can be
bounded by O ((1 + Δ3 + 1

Δ3−1 ) × |V (H≤d∗)|3), assuming |ϕ| 
 |V (H≤d∗)|.
As discussed previously, by letting Δ = 2, the time complexity becomes the
minimum, O (|V (H≤d∗)|3).
MKCC checking complexity for the reducing stage. This part can be
bounded by O (|V (H≤d∗)|3) as well, by taking advantage of the preflow-push
algorithm.

5 Discovering a Community with Attribute
Diversification Constraint

In this section we introduce an attribute diversified community search work that
focuses on finding a community maximizing the structure cohesiveness while
maintaining the attribute diversity to a certain level. The community model is
discussed firstly. Then the solution vision is introduced.

5.1 Problem Formulation

We formally define the subgraph diversity below.

Definition 10. Subgraph diversity. Given a subgraph H ⊆ G, we define its
subgraph diversity as:

τ(H) = min{div(u, v)|∀u, v ∈ V (H), u �= v}
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Definition 11. (k, τ)-core. Given a subgraph H ⊆ G, a pairwise vertex diver-
sity threshold τ , H is a (k, τ)-core if H satisfies the following constraints simul-
taneously: 1) H is connected, 2) ∀v ∈ V (H), deg(v) ≥ k, 3) τ(H) ≥ τ .

Research Problem. Most cohesive diversified community search . Given
an attributed graph G, a user given attribute diversity threshold τ , find a (k, τ)-
core H ⊆ G such that there is no (k′, τ)-core H ′ with k′ greater than k.

5.2 Solution Vision

We introduce a definition and an observation as follows.

Definition 12. Diversity Subgraph. Given a subgraph diversity threshold τ ,
let D denote a new graph named as diversity graph with V (D) = V (G) and
E(D) = {(u, v) | div(u, v) ≥ τ and u, v ∈ V (G)}.
Observation 3. Given a (k, τ)-core H, the V (H) induced subgraph of D is a
complete subgraph (i.e., a clique).

We are ready to discuss the vision of our proposed algorithms.
Baseline. The baseline algorithm enumerates all maximal cliques of D using
the state-of-the-art clique enumeration algorithm. When a maximal clique C
is generated, it runs core decomposition for G(C). If the largest core number
of G(C) is greater than the largest k of the (k, τ)-core found so far, then G(C)
contains the best (k, τ)-core found so far. After evaluating all the maximal cliques
in D, the optimum result is found. The correctness of the baseline algorithm is
clear since the vertices in a most cohesive (k, τ)-core must be resident at one of
the maximal cliques in D.

Core Based Heuristic. To speed up the baseline, we consider a core based heuris-
tic: vertices in a large core will be considered prior to the vertices in a small core.
Using this heuristic, we may terminate the search quite early, i.e., let k be the
largest k for (k, τ)-core found so far, if the core number of the current explored
vertex is smaller than k, then we can terminate the search.

Advanced Heuristic. The core based heuristic just considers prioritising vertices
that are structurally promising. Since the definition of the (k, τ)-core considers
both the structure and the attribute properties, a heuristic that prioritises ver-
tices that are promising from both structure cohesive and attribute diversified
perspectives would be better. We propose a novel index denoted as KD-Index to
help us identify the vertices that are promising from both the structure cohesive
and the attribute diversified perspectives. To make the index general for different
τ , we pre-compute promising vertices for different diversity thresholds. When a
query τ is given, we evaluate the precomputed index that is just smaller than τ
for speeding up the search.

Better Local Enumeration Order. The advanced heuristic provides an overall
search order. However, when evaluating each promising subgraph, the local
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search order can be further optimised for speeding up the search. We propose
to use the degeneracy order when evaluating vertices in a promising subgraph,
which can nicely bound the search depth of the promising subgraph to the degen-
eracy of the subgraph. The degeneracy of the subgraph is much smaller than the
total number of vertices contained in the subgraph.

6 Related Work

Community Search in Attributed Graph. In [18], Li et al. propose a sky-
line community model for searching communities in attributed graph. Zhang
et al. propose (k, r)-core community model that considers k-core and pairwise
vertex similarity [28]. Fang et al. propose a community model that is sensi-
tive to query attributes. In [16], an attributed community model is proposed
by using k-truss for capturing social cohesiveness and the resultant community
shall contain attributes similar with query attributes. In [12,23], community
models considering spatial closeness are studied. The works above would find
communities with users having similar attributes while our work find communi-
ties with users having diversified attributes. In [6], a parameter-free contextual
community model is studied. Community models considering influence are stud-
ied in [2,17,19]. In [2,19], the authors use max-min objective function, which
aims to find influential communities where scores are defined on vertices.

Community Detection in Attributed Graph. Works including [21] con-
sider graph structure with LDA model to detect attributed communities. Uni-
fied distance [30] is also considered for detecting attributed communities. In [30],
attributed communities are detected by using proposed structural/attribute clus-
tering methods, in which structural distance is unified by attribute weighted
edges. Xu et al. [26] propose a Bayesian based model. In [15], Huang et al.
propose a community model considering attributes based on an entropy-based
model. Recently, Wu et al. propose an attributed community model [25] based
on an attributed refined fitness model. Yang et al. [27] propose a model using
probabilistic generative model.

7 Conclusion and Open Problems

In this paper, we introduce our recent works on attribute diversified community
search. Based on the detailed real application scenarios, different attribute diver-
sified community models are introduced where the attribute diversification takes
the roles of objective, query requirement and constraint. For each of the com-
munity model, the search framework as well as major optimizations for speeding
up the search are discussed in great detail.

Although we have made a fair effort for discovering attribute diversified com-
munities, however the study is still at preliminary stage. We conclude by intro-
ducing an open problem for attribute diversified community search.

How to effectively model and efficiently search top-r attribute diversified
community considering both inter and intra attribute diversifications?
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