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Preface

This volume gathers the papers presented at the Second International Workshop on
Large Scale Graph Data Analytics (LSGDA 2020) and the 4th Workshop on Software
Foundations for Data Interoperability (SDFI 2020), held in Tokyo, Japan, on
September 4, 2020. The LSGDA and the SFDI workshops continued the series of
annual workshops which have previously been held in Macau, China (2019), Kyoto,
Japan (2018 and 2019), and Fukuoka, Japan (2019), respectively. The Second LSGDA
workshop was organized by the University of New South Wales, Australia, in coop-
eration with the University of Technology Sydney, Australia. The 4th SFDI workshop
was organized by the National Institute of Informatics, Japan, the University of New
South Wales, Australia, and Osaka University, Japan.

Unfortunately, due to the escalation of the COVID-19 pandemic, and the
anti-COVID-19 regulations in Japan and the rest of the world, the planned onsite
conferences in Tokyo had to be reformatted. The workshops were held online as virtual
conferences featuring live and semi-live presentations during the same period of time.

The LSGDA and the SFDI series of workshops have served as international forums
for researchers, practitioners, and PhD students to exchange research findings and ideas
on the crucial matters on large-scale graph data analytics and data interoperability,
respectively. The LSGDA 2020 and the SDFI 2020 workshops continued this tradition
and featured original research and application papers on the development of novel
graph analytics models, scalable graph analytics techniques and systems, data inte-
gration, and data exchange.

The program of the LSGDA 2020 included three invited keynote talks, given by
Prof. Chengfei Liu (Swinburne University of Technology, Australia), Prof. Da Yan
(University of Alabama at Birmingham, USA), and Prof. Weiren Yu (University of
Warwick, UK). The program of SFDI 2020 included three invited keynote talks, given
by Prof. Koiti Hasida (The University of Tokyo and Riken, Japan), Prof. Rui Zhang
(The University of Melbourne, Australia), and Prof. Kazutaka Matsuda (Tohoku
University, Japan). The call for papers for LSGDA 2020 welcomed original unpub-
lished research and application experience papers on graph data model, storage,
indexing and query processing techniques, graph mining techniques, techniques for
distributed graph analytics, graph visualization techniques and system interfaces,
dynamic and streaming graph data analytics, spatial-temporal graph analytics, AI
techniques for graphs, machine learning techniques for graphs, and vision papers to
survey the area of graph data analytics as well as describe the future research directions.
The call for papers for SFDI 2020 welcomed original unpublished research and
application experience papers on software foundations for data interoperability,
including data integration, data exchange, distributed collaborative systems, and
applications in real-world systems such as data markets. The two workshops collec-
tively received 38 submissions with authors coming from 10 countries. Each paper was
evaluated through single-blind review by at least three members of the Program



Committee (PC). The reviewers were assigned after careful consideration of all
potential conflicts. Papers were not assigned to PC members originating from the same
affiliation or having any known conflicting interests. After the review process, papers
with consistent negative evaluations were rejected, whereas papers with mixed ratings
(positive and negative) were additionally evaluated by program chairs prior to the
meeting, in which all the papers and final decisions regarding them were thoroughly
discussed. The evaluation process resulted in the selection of 15 papers (acceptance rate
of 39%), which were accepted for presentation at the conferences and publication in
this joint proceedings.

The original research results presented in this volume concern well-established
fields such as graph data model, storage, indexing and query processing techniques,
graph mining techniques, techniques for distributed graph analytics, graph visualization
techniques and system interfaces, dynamic and streaming graph data analytics,
spatial-temporal graph analytics, AI techniques for graphs, machine learning tech-
niques for graphs, similarity query processing techniques, solutions to data exchange
and data integration, heterogeneous data management, and distributed data manage-
ment. The research results feature vision papers to survey the areas of graph data
analytics and data interoperability as well as describe future research directions. The
volume also includes three papers for the keynote talks of LSGDA 2020.

Finally, we express our deep gratitude to the members of the Program Committees
of the two workshops for their time, comments, and constructive evaluations. We
would like to thank everyone from the Organizing/Steering Committees for their time
and dedication, which helped make the conferences successful. We are also grateful to
the authors and all the participants who truly made the conferences successful, even
within the short time frame we had to reorganize the workshops due to the COVID-19
outbreak, we managed to face the new reality and hold the conferences virtually from a
safe distance.

September 2020 Lu Qin
Wenjie Zhang
Ying Zhang
You Peng

Hiroyuki Kato
Wei Wang

Chuan Xiao
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Attribute Diversified Community Search

Chengfei Liu(B), Lu Chen, Rui Zhou, and Afzal Azeem Chowdhary

Swinburne University of Technology, Melbourne, Australia
{cliu,luchen,rzhou,achowdhary}@swin.edu.au

Abstract. Discovering communities that naturally exist as groups of
fine-connected users is one the most important tasks for network data
analytics and has tremendous real applications. In recent year, commu-
nity search in attributed graphs has begun to attract attention, which
aims to find communities that are both structure and attribute cohesive.
Whereas, searching a community that is structure cohesive but attribute
diversified, denoted as attribute diversified community search, is still at
preliminary stage. In this paper, we introduce our recent effort for dis-
covering attribute diversified community. In fact, for different applica-
tions, the needs of attribute diversification for modelling the community
are quite different. We introduce three attribute diversified community
models in which attribute diversification takes different roles for present-
ing objective, query requirement, and constraint. We also discuss major
techniques for speeding up the attribute diversified community search.

1 Introduction

Graphs have emerged as a powerful model for representing different types of
data, such as social networks and collaboration networks. In these graphs, dis-
covering communities that naturally exist as groups of fine-connected users is one
the most important tasks for network data analytics and has tremendous real
applications. Nevertheless, most of the previous studies [1,4,5,10,24,29] have
focused on finding communities from a graph without considering attributes.
As such, the returned communities may miss out important attributes describ-
ing a variety of features of real applications. Recently, community search in
graphs having attributes called attributed graphs has begun to attract atten-
tion [6,7,11,15,20,28]. These works endeavour to find communities that are both
structure and attribute cohesive. Besides, there are also a few works [18] that
aim to find communities which are attribute diversified among them. However,
a study for community search that takes serious consideration of structure cohe-
siveness but attribute diversification within a community is still at preliminary
stage.

In this paper we focus on introducing our recent works for attribute diversi-
fied community search, including three attribute diversified community models
in which the attribute diversification takes different roles for presenting an objec-
tive, a query requirement, and a constraint.

c© Springer Nature Switzerland AG 2020
L. Qin et al. (Eds.): SFDI 2020/LSGDA 2020, CCIS 1281, pp. 3–17, 2020.
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4 C. Liu et al.

Maximizing Attribute Diversification. Discovering a community with mem-
bers as diversified as possible has numerous applications. One example is building
a team for group brainstorming to address a cognitive bottleneck of idea gen-
eration. Group brainstorming shall engage diversified individuals to collaborate
by communicating and sharing ideas in groups, where diversified individuals
can substantially broaden the knowledge base available for idea generation and
the social engagements among the individuals allow the creative effort to be
aggregated. Other examples are: gathering socially connected experts of differ-
ent marketing fields to brainstorm a marketing session of different new products,
selecting a panel of concerted engineers with different technological expertise for
reviewing and testing different products to show the collective information pool
of the panel, etc. For these applications, since they target community members
for innovations and there are evidences that maximizing diversity leads to cre-
ativity [22], the desired community would be preferred to maximise the attribute
diversity of its members [9].

Attribute Diversification with Specific Requirement. For some applica-
tions, the diversification requirements could be specific. Let us consider a real
event happened in 2019. A small town in Australia was devastated by the severe
bushfire, which results in at least 11 damaged properties and 33 people injured.
The town needs community spirit to rebuild. This naturally arises the needs of
several activities with diverse demands. A group needs to be formed urgently
to react on the disaster, with at least 3 members having expertise in building
temporary accommodations, 5 doctors, 4 psychologists, 2 members having the
expertise in community support, etc. Each member may contribute to as many
skills as possible in this kind of group. Due to damaged properties, a construction
team also needs to be built for rebuilding these properties, with members having
different skills, such as at least 2 architects, 11 members handling masonry, 5
members dealing with welding, etc. Due to the intensive labouring, each mem-
ber may contribute at most 2 skills in this kind of construction teams since
multi-tasking may lead to multi-failing. Due to the disaster, people may suffer
a lot mentally. To help relief psychological pressure from these people, it would
be great to organize an improvised music show to soothe them, which needs to
discover musicians to form a band. The found musicians may be able to play
multiple instruments. However, since they perform as a band, each of them shall
focus on a single instrument. From these examples, it is clear that, apart from
social cohesiveness and spatial closeness requirements, an effective community
model for impromptu activities with diverse demands should allow people to
express specific diversification requirements including: 1) collective capabilities
of the group w.r.t. a particular skill, e.g., at least 3 members have expertise in
building temporary accommodation; and 2) capacity of each member on maxi-
mum contribution the member can make, e.g., at most 2 skills in a construction
team. This motivates us to study how to find an attribute diversified geo-social
group with specific diversification requirements [8].

Attribute Diversification as Constraint. Some applications would like to
find a community that exhibits certain level of attribute diversification but has
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members with social relationships as cohesive as possible. For instance, assume
that we need to find a group of organisers for organising a conference. To make
the organisation smooth, the organisers are expected to communicate and col-
laborate with each other extensively. The more that organisers identify with each
other, the more likely they are to believe that they hold similar goals for suc-
cessfully organising the conference. On the other hand, to make the conference
accept various ideas, we also expect that the organisers would jointly share a
variety of domains. Similar applications include promoting a product through
commonly associated experts of difference domains, team formations for max-
imising productivity, etc. Motivated by these applications, we introduce a novel
community model that considers attribute diversification as a constraint while
maximising the structure cohesiveness as the primary searching objective.

Road Map. The rest of this paper is organized as follows. In Sect. 2, we intro-
duce and discuss basics for attributed graphs. In Sects. 3, 4, and 5 we discuss our
recent attribute diversification community search works. We discuss the related
works and conclude this paper in Sects. 6 and 7.

2 Preliminaries

In this section, we first formally introduce the commonly used community cohe-
siveness metrics and attributes diversification metrics.

An attributed graph is denoted as G = (V,E,A), where V (G), E(G), A
denote the set of vertices in G, the set of edges in G, and the set of attributes
in terms of keywords respectively. Each vertex v ∈ V (G) is attached with a set
of attributes A(v) ⊆ A. Given v ∈ V (G), deg(v,G) denotes the degree of v in
G and N(v,G) denotes the neighbours of v in G. A triangle in G is a cycle of
length 3. A triangle induced on vertices u, v, w ∈ V (G) is denoted as �uvw and
when these vertices are not specified we omit the subscript. Given a subgraph
H ⊆ G, Tri(H) denotes the set of triangles in H.

2.1 Social Cohesiveness Metrics

Coreness. Coreness is defined according to the degree of every vertex.

Definition 1. k-core subgraph. Given a subgraph H ⊆ G, an integer k, H is
called k-core subgraph if for every v ∈ V (H), deg(v,H) ≥ k and such maximum
k is called the coreness of H.

Intuitively, a k-core is a subgraph in which vertex has at least k neighbours.
A k-core with a large value k indicates strong internal connections over vertices.
A k-core is maximal if it cannot be extended.

Trussness. Trussness is defined based on the number of triangles each edge is
involved in a graph. In general, given a subgraph H ⊆ G, we use �uvw to denote
a triangle, a cycle with length of 3, consisting of vertices u, v, w ∈ V (H).
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Support. The support of an edge e(u, v) ∈ E(H), denoted by sup(e,H), is the
number of triangles containing e, i.e., sup(e,H) = |{�uvw : w ∈ N(v,H) ∩
N(u,H)}|, where N(v,H) and N(u,H) are the neighbours of u, v in H corre-
spondingly.

Minimum Subgraph Trussness. The trussness for a subgraph H is defined as an
integer k that is 2 plus the minimum possible support for edges in E(H). That
is, the minimum subgraph trussness defines that for every edge e ∈ E(H), the
number of triangles in which e participates shall be no less than k - 2.

Definition 2. c-truss constraint. A subgraph H satisfies c-truss constraint if
the trussness of H is c, and c is connected.

Intuitively, if H satisfies c-truss constraint, the vertices of an edge in H
have at least c-2 common neighbours in H, every vertex in H has no less than
c-1 neighbours and at least c-1 edges have to be deleted in order to make H

disconnected. The communication cost of H is at most � 2|V (H)|−2
c �. A H with a

large value c indicates strong internal social relationships over vertices.

2.2 Attribute Diversification Metrics

Diversity for Two Vertices. Given a pair of vertices, u, v ∈ V (G) with
attributes A(u) and A(v), a diversity function is defined as div((u, v)) =
1 − |A(u)∩A(c)|

|A(u)∪A(v)| .

Average Based Diversity. Given H, the attribute diversification of H is mea-
sured by avgDiv(H) =

∑
(u,v)∈H div((u,v))

|V (H)| .
We will introduce detailed attribute diversification metrics when introducing

the specific models.

3 Discovering a Community Maximizing Attribute
Diversity

In this section, we introduce an attribute diversified community search work [9]
that aims to find a community maximizing the attribute diversity. We first intro-
duce the community model and search problem, then discuss the search frame-
work and optimizations, respectively.
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Algorithm 1: basicADC(H)
1 H∗ ← φ;
2 basicEnum (H);
3 return H∗;
4 Procedure basicEnum (H)
5 H ′ ← k-core(H);
6 let H′ be the set of connected component in H ′;
7 foreach h ∈ H′ do
8 if avgDiv(h) > avgDiv(H∗) then
9 H∗ ← h;

10 foreach h ∈ H′ do
11 foreach v ∈ V (h) do
12 basicEnum (h \ {v});

3.1 Problem Definition

Attribute Diversified Community. We propose the attribute diversified com-
munity model, using k-core and average based diversification metric.

Definition 3. Attribute diversified community. Given a subgraph H ⊆ G,
an integer k, H is defined as an attribute diversified community if H satisfies
the following constraints simultaneously:

– Connectivity: H is connected;
– Structure Cohesiveness: H is a k-core subgraph;
– Maximizing Average Diversity: for avgDiv(H), H is argmaxH′

{avgDiv(H ′)|H ′ ⊆ G};
Accordingly, given G and an integer k, the research problem we focus on in

this paper is as follows.

Research Problem. Find the subgraph H ⊆ G that maximises avgDiv(H).

Example 1. To briefly show the results of the above problem, we discuss the
example shown in Fig. 1. For the attribute diversified community search problem
with k = 2, the result is the {B,C, F,G,H, I, J, L,M} induced subgraph with
diversity of 1.44.

3.2 Search Framework

For ease of understanding, we first show the basic enumeration used in the branch
and bound algorithm. Algorithm1 shows the basic enumeration that derives
the optimum result. Initially the input of the algorithm is G. By recursively
calling itself, Algorithm1 tries all possible subgraphs of G if the subgraphs may
contain the optimum result and checks if there is a feasible solution in the current
recursion. If there is a feasible solution h in the recursion and the feasible solution
is greater than the current optimum one H∗, H∗ is updated to h.
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Search Space Reduction. Algorithm 1 also applies space reduction optimisa-
tions based on the observations as follows.

Observation 1. The optimum result can only be contained in a connected k-
core of G if it exists when the enumeration starts.

Observation 2. During the recursion with an input H, the optimum result can
only be contained in a connected k-core of H.

With the observations, when a recursion starts, Algorithm1 first reduces the
input to the maximal k-core, which would transform the input into a set of max-
imal connected k-cores. Algorithm 1 only tries combinations in each connected
k-core. As such, the search space can be reduced significantly.

3.3 Optimisations

Upper Bound Based Pruning. The idea is that we estimate the upper bound
of the average edge diversity of the current search branch. If the upper bound is
smaller than the diversity of the optimum result found so far, we terminate the
search branch.

Next, we will propose three upper bounds.

Upper Bound Based on Core Property. We firstly show an upper bound
for a connected k-core based on core property. The upper bound for h is defined
as follows.

ubcore(h) =

∑
(u,v)∈E(h) div((u, v))

k + 1
(1)

The upper bound based on core property would only be tight when h contains
an optimum result with size close to k + 1. However, it has limited pruning
effectiveness when h contains large-size results. Next we study tight bounds for
arbitrary h.

Maximum Average Diversity in a Core. Given a connected k-core h, this
bound is defined as follows.

ubavg(h) = max{avgDiv(h′)|h′ ⊆ h} (2)

Lemma 1. ubavg(h) is an upper bound for h.

Approximate Maximum Average Diversity in a Core. The computational
cost of ubavg(h) is high. It would take O(|V (h)|3) if using the algorithm in [13].
However, there is a simple but effective approximate algorithm [3] that can
achieve 1

2 -approximation with complexity O(|E(h)|). As such we can use the
approximation algorithm to get an at least 1

2 ubavg(h) value first and then
multiple it by 2 to derive a slightly loose bound, denoted as apxubavg(h). In
implementation, ubcore(h) and apxubavg(h) are prioritised as they are cheap.
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(a) Spatial distribution (b) H≤d1 and H≤d∗

Fig. 2. Running example

Search Order. For each connected k-cores that cannot be pruned, we sort them
in non-increasing order according to their upper bounds. By doing this, we can
heuristically find communities with large average diversity as early as possible.
This would make the upper bound based pruning more effective.

4 Discovering Attribute Diversified Geo-Social Group
with Specific Requirement

In this section, we tackle the problem of finding an attribute diversified geo-social
group with the given specific diversification requirements [8]. We first introduce
the query, model and search problem. Then the novel search framework is dis-
cussed. After that, the optimizations for speeding up the search are introduced.

4.1 Problem Formulation

Data. We consider an undirected graph data G = (V,E) with network structure,
spatial attribute and textual attributes. For each vertex v ∈ V (G), v has a piece
of location information expressed as latitude and longitude denoted as (v.x, v.y),
and has a set of keyword attributes denoted as v.A.

Since our proposed group model would satisfy minimum keyword, capacity
and social constraints while optimizing spatial closeness, we name the proposed
model as MKCSSG. Our proposed geo-social model is introduced as follows.

We formally define the query for searching MKCSSG.

Query for MKCSSG. The query Q for MKCSSG consists of a social parameter
c (an integer), a set of keywords ϕ, keyword parameters P (a set of integers), r
(an integer), and a location λ (latitude and longitude).

Minimum Keyword and Capacity Constraints. Given a set of query key-
words ϕ = {k1, . . . , k|ϕ|}, P = {ρ1, . . . , ρ|ϕ|}, r, and S, MKCC is defined below.
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Definition 4. Minimum keyword and capacity constraints, MKCC. S
satisfies MKCC if there is a v.A′ ⊆ ϕ ∩ v.A for every v ∈ V (S) such that:

– Capacity constraint: |v.A′| ≤ r,
– Minimum keyword constraint (MKC): ∀ ki ∈ ϕ, |V (Ski

)| ≥ ρi, where V (Ski
)

is the set of vertices such that for each v ∈ V (Ski
), v.A′ contains ki ∈ ϕ.

Searching Objective. Now, we formalize the spatial closeness for MKCSSG and
the research problem.

Spatial Closeness. Given a query location λ, we consider a distance function to
measure the closeness between λ and an MKCSSG S as:

Definition 5. Spatial closeness. dist(λ, S) = max{‖λ − v‖|v ∈ V (S)},
where ‖λ − v‖ denotes Euclidean distance between v and λ.

Definition 6. (P, c, r, d)-truss. Given Q = {λ, P, ϕ, c, r} and a distance thresh-
old d, a subgraph S ⊆ G is a (P, c, r, d)-truss, if it satisfies all the conditions: 1)
S satisfies MKCC, 2) S satisfies c-truss constraint, 3) dist(λ, S) ≤ d.

Research Problem. MKCSSG search. Given Q = {λ, P ϕ, c, r} and G,
return (P, c, r, d)-truss S∗ so that there is no (P, c, r, d′)-truss S′ with d′ ≤ d.

Example 2. An example dataset is shown in Fig. 2, where Fig. 2(a) shows loca-
tions for vertices of graph data in Fig. 2(b). Let the query be: Q = {λ,
P = {2, 2, 2}, ϕ = {k1, k2, k3}, c = 4, r = 1}. {d, e, f, g, h, i} induced subgraph
S∗ is the optimum result for Q for this dataset. S∗ satisfies social constraint, i.e.,
every edge in E(S∗) involves no less than 2 triangles. S∗ satisfies MKCC. That
is, it firstly satisfies capacity constraint, i.e., every vertex contributes to at most
one keyword in ϕ, where d.A′ = {k1}, e.A′ = {k2}, f.A′ = {k3}, g.A

′
= {k1},

h.A′ = {k2}, i.A′ = {k3}. Then it satisfies MKC, i.e., with the A′ for each vertex
(those underlined), the keyword vertex frequency for every query keyword is no
less than 2. Last but not least, among all groups satisfying the constraints, S∗

is the closest one to λ and the most distant vertex (to λ) in S∗ is f .

4.2 Search Framework

We firstly introduce some definitions.

Definition 7. d radius bounded graph. Given a query location λ, a subgraph
H and a distance threshold d, d radius bounded graph, denoted as H≤d, is the
subgraph of H induced by vertices of H with distance to λ no greater than d.

We would like to highlight an instance of d radius bounded graph, d∗ radius
bounded graph, H≤d∗ . H≤d∗ has the property below. There is no H≤d′ such that
H≤d′ contains MKCSSG and d′ < d∗.
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Optimum Search Space. We refer H≤d∗ as optimum search space since it is
just large enough to contain MKCSSG for the query.

The Framework. MKCSSG search framework consists of two stages: expanding
stage and reducing stage. During the expanding stage, it intends to quickly
identify H≤d that is just sufficiently large to contain the optimum search space
H≤d∗ by exploring H≤d that progressively gets larger, in which it determines
the existence of a subgraph satisfying all constraints. For the reducing stage, to
get the optimum result, it attempts to progressively remove the vertex that is
the most distant to λ in S∗. The last survived (ρ, c)-truss during the vertices
removing process is the optimum result.

4.3 Optimizations for Expanding Stage

Expanding Strategy. We first define an expanding invariant as follows.

Definition 8. Δ size invariant. Let {d1, d2, . . . , di} be the series of radius for
defining d radius graphs, for any two consecutive d, d′, we define Δ invariant as
Δ = |E(H≤d′ )|

|E(H≤d)| , in which Δ > 1 must hold.

The Strategy. The strategy applied for the expanding stage is to maintain Δ size
invariant over any two consecutively evaluated H≤d, H≤d′ . Applying Δ invariant
for expanding stage guarantees two nice properties below. Now, let us show the
tight bound that is guaranteed by applying the proposed expanding strategy.

Initial Expanding Range. Intuitively, if the initial search range is close to d∗,
the total amount of subgraphs that has to be evaluated to approaching H≤d∗ is
less. This motivates us to study a lower bound of d radius subgraph.

Definition 9. H≤d. A subgraph H≤d of H is a lower bound d radius subgraph of
H≤d∗ if it satisfies conditions: 1) H≤d is connected, 2) H≤d satisfies minimum
keyword constraint and 3) there is no H ′ ⊆ H≤d such that H ′ satisfies the first
two constraints and dist(λ,H ′) < dist(λ, H≤d).

Checking (ρ, c)-truss in d Radius Subgraph. To simplify the discussion,
for any two consecutive H≤d and H≤d′ with |H≤d′ |

|H≤d| = Δ, let us introduce a new
notation Hd′\d to denote the subgraph of H≤d′ induced by vertices appearing in
edges of E(H≤d′) \ E(H≤d).

We propose two techniques to speed up (ρ, c)-truss checking below.
Lazy (ρ, c)-truss checking strategy . Given H≤d, we only apply (ρ, c)-truss check-
ing on any subgraph potentially containing (ρ, c)-truss, defined as ρ potential
subgraph below.

ρ potential subgraph P≤d. A subgraph P≤d ⊆ H≤d is defined as ρ potential
subgraph if it is connected, satisfies minimum keyword constraint and is maximal
within H≤d.
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The Strategy. Since a (ρ, c)-truss should reside in P≤d, we propose lazy (ρ, c)-
truss checking strategy that applies (ρ, c)-truss constraint checking on every P≤d

in H≤d only instead of the entire H≤d.

Union with Existing Truss. To avoid graph traversing for checking minimum key-
word constraint and connectivity after updating trussness, we propose a solution
below. Firstly, we maintain every maximal connected c truss subgraph in every
P≤d, each of which is attached with keyword vertex frequency. Secondly, after
P≤d is expanded to P≤d′ , we update the maintained c-truss subgraphs if applica-
ble. Although this approach cannot update trussness for existing truss subgraphs
precisely, it is sufficient and efficient to check the existence of (ρ, c)-truss in P≤d′ .
As such, minimum keyword constraint and connectivity checking for truss sub-
graphs can be performed simultaneously and incrementally.

4.4 Optimizations for Reducing Stage

We will maintain a minimum spanning forest for S (the result of the expanding
stage) augmented with aggregated keyword vertex frequency. Notice that ini-
tially, every spanning tree in the forest satisfies minimum keyword constraint.
After an edge is deleted from S, one of the two cases below may happen.

Case 1: the deleted edge is not in the forest. The remaining subgraphs are still
connected and each connected subgraph still satisfies minimum keyword con-
straint.

Case 2: the deleted edge is in the forest. In this case, one of the tree in the mini-
mum spanning forest is cut into two trees, which may lead to one of the following
subcases.

Subcase 1: cannot link the cut trees. We cannot find a replacement edge from
the remaining S to link the two trees, which means the subgraph referred by the
two trees becomes two disjoint subgraphs. We update keyword vertex frequency
for each of the cut tree. After the update, we safely prune the cut tree from the
maintained spanning forest if it does not satisfy minimum keyword constraint
since they cannot contribute to MKCSSG.

Subcase 2: can link the cut trees. If we can find a replacement edge, the sub-
graph referred by two cut trees is still connected. We link the two trees with the
replacement edge. Keyword vertex frequency remains the same.

To efficiently maintain the above index, we borrow the idea from [14]. Given
S, every edge in E(S) is associated with a level progressively increased as edges
are deleted, which is equivalent to progressively partitioning S hierarchically.
Edges with high level refer to a more restricted part of S. In contrast, edges
with low level refer to a more general part of S (super graphs of the high level
subgraphs). As such when deleting an edge with a certain level, we do not need
to consider any edge with lower level as a replacement edge, which elegantly
reduces the search space for finding a replacement edge.
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4.5 Optimizations for Keyword Constraint Checking

We will show that MKCC checking for a set of vertices S, query keywords ϕ =
{k1, . . . , k|ϕ|}, P = {ρ1, . . . , ρ|ϕ|} and r can be reduced to an instance of the min
cut problem.

The Instance of Maximum Flow Problem. We construct the flow network
N based on ϕ, P , r and S. N consists of different types of nodes below. For each
keyword in ϕ, we create a keyword node. For each vertex in S, we create a vertex
node. Additionally, we create a source node s and a sink node t. The edges and
capacities for N are as follows. For each vertex node n, we create an edge from
s to n with capacity of r. For each keyword node n′ representing ki, we create
an edge from n′ to t with capacity of ρi. In addition, there is an edge between
a vertex node n and a keyword node n′ (from n to n′) if the keyword attributes
of n representing vertex contain the query keyword represented by n′, and the
capacity between n and n′ is set to ∞.

Lemma 2. S satisfies MKCC if there exists a min cut for N whose T part
contains the node t only.

We adopt preflow–push (push-relabel) algorithm to solve the min cut prob-
lem. As such, the time complexity of MKCC checking for MKCSSG search is
shown below.

MKCC checking complexity for the expanding stage. This part can be
bounded by O ((1 + Δ3 + 1

Δ3−1 ) × |V (H≤d∗)|3), assuming |ϕ| 
 |V (H≤d∗)|.
As discussed previously, by letting Δ = 2, the time complexity becomes the
minimum, O (|V (H≤d∗)|3).
MKCC checking complexity for the reducing stage. This part can be
bounded by O (|V (H≤d∗)|3) as well, by taking advantage of the preflow-push
algorithm.

5 Discovering a Community with Attribute
Diversification Constraint

In this section we introduce an attribute diversified community search work that
focuses on finding a community maximizing the structure cohesiveness while
maintaining the attribute diversity to a certain level. The community model is
discussed firstly. Then the solution vision is introduced.

5.1 Problem Formulation

We formally define the subgraph diversity below.

Definition 10. Subgraph diversity. Given a subgraph H ⊆ G, we define its
subgraph diversity as:

τ(H) = min{div(u, v)|∀u, v ∈ V (H), u �= v}
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Definition 11. (k, τ)-core. Given a subgraph H ⊆ G, a pairwise vertex diver-
sity threshold τ , H is a (k, τ)-core if H satisfies the following constraints simul-
taneously: 1) H is connected, 2) ∀v ∈ V (H), deg(v) ≥ k, 3) τ(H) ≥ τ .

Research Problem. Most cohesive diversified community search . Given
an attributed graph G, a user given attribute diversity threshold τ , find a (k, τ)-
core H ⊆ G such that there is no (k′, τ)-core H ′ with k′ greater than k.

5.2 Solution Vision

We introduce a definition and an observation as follows.

Definition 12. Diversity Subgraph. Given a subgraph diversity threshold τ ,
let D denote a new graph named as diversity graph with V (D) = V (G) and
E(D) = {(u, v) | div(u, v) ≥ τ and u, v ∈ V (G)}.
Observation 3. Given a (k, τ)-core H, the V (H) induced subgraph of D is a
complete subgraph (i.e., a clique).

We are ready to discuss the vision of our proposed algorithms.
Baseline. The baseline algorithm enumerates all maximal cliques of D using
the state-of-the-art clique enumeration algorithm. When a maximal clique C
is generated, it runs core decomposition for G(C). If the largest core number
of G(C) is greater than the largest k of the (k, τ)-core found so far, then G(C)
contains the best (k, τ)-core found so far. After evaluating all the maximal cliques
in D, the optimum result is found. The correctness of the baseline algorithm is
clear since the vertices in a most cohesive (k, τ)-core must be resident at one of
the maximal cliques in D.

Core Based Heuristic. To speed up the baseline, we consider a core based heuris-
tic: vertices in a large core will be considered prior to the vertices in a small core.
Using this heuristic, we may terminate the search quite early, i.e., let k be the
largest k for (k, τ)-core found so far, if the core number of the current explored
vertex is smaller than k, then we can terminate the search.

Advanced Heuristic. The core based heuristic just considers prioritising vertices
that are structurally promising. Since the definition of the (k, τ)-core considers
both the structure and the attribute properties, a heuristic that prioritises ver-
tices that are promising from both structure cohesive and attribute diversified
perspectives would be better. We propose a novel index denoted as KD-Index to
help us identify the vertices that are promising from both the structure cohesive
and the attribute diversified perspectives. To make the index general for different
τ , we pre-compute promising vertices for different diversity thresholds. When a
query τ is given, we evaluate the precomputed index that is just smaller than τ
for speeding up the search.

Better Local Enumeration Order. The advanced heuristic provides an overall
search order. However, when evaluating each promising subgraph, the local
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search order can be further optimised for speeding up the search. We propose
to use the degeneracy order when evaluating vertices in a promising subgraph,
which can nicely bound the search depth of the promising subgraph to the degen-
eracy of the subgraph. The degeneracy of the subgraph is much smaller than the
total number of vertices contained in the subgraph.

6 Related Work

Community Search in Attributed Graph. In [18], Li et al. propose a sky-
line community model for searching communities in attributed graph. Zhang
et al. propose (k, r)-core community model that considers k-core and pairwise
vertex similarity [28]. Fang et al. propose a community model that is sensi-
tive to query attributes. In [16], an attributed community model is proposed
by using k-truss for capturing social cohesiveness and the resultant community
shall contain attributes similar with query attributes. In [12,23], community
models considering spatial closeness are studied. The works above would find
communities with users having similar attributes while our work find communi-
ties with users having diversified attributes. In [6], a parameter-free contextual
community model is studied. Community models considering influence are stud-
ied in [2,17,19]. In [2,19], the authors use max-min objective function, which
aims to find influential communities where scores are defined on vertices.

Community Detection in Attributed Graph. Works including [21] con-
sider graph structure with LDA model to detect attributed communities. Uni-
fied distance [30] is also considered for detecting attributed communities. In [30],
attributed communities are detected by using proposed structural/attribute clus-
tering methods, in which structural distance is unified by attribute weighted
edges. Xu et al. [26] propose a Bayesian based model. In [15], Huang et al.
propose a community model considering attributes based on an entropy-based
model. Recently, Wu et al. propose an attributed community model [25] based
on an attributed refined fitness model. Yang et al. [27] propose a model using
probabilistic generative model.

7 Conclusion and Open Problems

In this paper, we introduce our recent works on attribute diversified community
search. Based on the detailed real application scenarios, different attribute diver-
sified community models are introduced where the attribute diversification takes
the roles of objective, query requirement and constraint. For each of the com-
munity model, the search framework as well as major optimizations for speeding
up the search are discussed in great detail.

Although we have made a fair effort for discovering attribute diversified com-
munities, however the study is still at preliminary stage. We conclude by intro-
ducing an open problem for attribute diversified community search.

How to effectively model and efficiently search top-r attribute diversified
community considering both inter and intra attribute diversifications?
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Abstract. Mining frequent subtree patterns in a tree database (or,
forest) is useful in domains such as bioinformatics and mining semi-
structured data. We consider the problem of mining embedded subtrees
in a database of rooted, labeled, and ordered trees. We compare two
existing serial mining algorithms, PrefixTreeSpan and TreeMiner, and
adapt them for parallel execution using PrefixFPM, our general-purpose
framework for frequent pattern mining that is designed to effectively uti-
lize the CPU cores in a multicore machine. Our experiments show that
TreeMiner is faster than its successor PrefixTreeSpan when a limited
number of CPU cores are used, as the total mining workloads is smaller;
however, PrefixTreeSpan has a much higher speedup ratio and can beat
TreeMiner when given enough CPU cores.

Keywords: Tree · Parallel · Frequent pattern mining · Prefix
projection

1 Introduction

Frequent patterns are substructures that appear in a dataset with frequency no
less than a user-specified threshold. A substructure can refer to different struc-
tural forms, such as itemsets, sequences, trees and graphs. Frequent pattern min-
ing (FPM) has been at the core of data mining research for over two decades [3],
and numerous serial mining algorithms have been proposed for various types of
substructure patterns. The mined frequent substructures have also been widely
used in many real applications. For example, FG-index [5] constructs a nested
inverted index based on the set of frequent subgraphs, to speed up the finding of
those graphs in a graph database that contains a query subgraph; while [8] uses
frequent subgraphs as features for classifying labeled graphs modeling real-world
data such as chemical compounds.
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Fig. 1. Embedded subtree pattern illustration

This paper focuses on tree patterns, or more specifically, to mine frequent
“embedded” subtrees in a database of “rooted”, “labeled”, and “ordered” trees.
Here, “rooted” means that the tree root matters, “ordered” means that the
order of children nodes matters, and “embedded” means that the tree edge in a
subtree pattern only needs to capture the ancestor-descendant relationship (i.e.,
can skip nodes in the middle) rather than a direct parent-child edge (the latter
is called “induced”). We illustrate the concept of an embedded subtree pattern
using Fig. 1, which shows a database of three trees. The subtree shown in the box
is considered frequent as it appears in all 3 the trees T1, T2 and T3, obtained by
skipping the “middle” node in each tree, even though the subtree is the induced
subgraph of only T2 alone.

This problem is useful in many applications. In bioinformatics, researchers
have collected vast amounts of RNA structures, which are essentially trees. To get
information about a newly sequenced RNA, they compare it with known RNA
structures, looking for common topological patterns, which provide important
clues to the function of the RNA [10]. In web usage mining [7], given a database
of web access logs at a popular site, one can mine the tree-structured brows-
ing history of users to find frequently accessed subtrees (where nodes are web-
pages) at the site for prioritized investment. In web applications, tree-structured
XML/JSON documents are popular for data transmission and storage, and dis-
covering the commonly occurring subtrees that appear in these documents can
help locate frequent user queries and data responses to be cached for faster
access.

Tree mining has been well studied in the serial algorithm domain by a num-
ber of algorithms such as TreeMiner [13], FREQT [4], CMTreeMiner [6], Chop-
per [11], Xspanner [11] and PrefixTreeSpan [14]. We select PrefixTreeSpan for
parallelization since it was reported to beat all the other algorithms. However,
[14] treats TreeMiner to be an Apriori-like algorithms that check patterns of size-
i only when all patterns of size-(i − 1) are found, while TreeMiner is actually a
PrefixSpan[9]-like similar to PrefixTreeSpan, therefore we also select TreeMiner
for parallelization to compare with PrefixTreeSpan.

We parallelize PrefixTreeSpan and TreeMiner using the PrefixFPM frame-
work [12], which is found to be able to fully utilize the available CPU cores in
a multi-core machine as long as the implemented algorithm provides sufficient
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opportunity for concurrent execution. PrefixFPM is designed for writing a gen-
eral frequent pattern mining algorithm following the prefix-projection paradigm
pioneered by PrefixSpan [9], and PrefixTreeSpan and TreeMiner naturally fit in
this paradigm. The main contributions and insights of this paper are as follows:

– We developed the parallel PrefixFPM algorithms for both PrefixTreeSpan
and TreeMiner, and empirically compared them under different conditions.

– We find that TreeMiner is more effective in reducing the total mining work-
loads and thus faster when using up to only a moderate number of CPU cores.
This is in contrary to the finding in PrefixTreeSpan’s paper [14], which could
be due to [14]’s treating TreeMiner as an Apriori-like algorithm.

– We find that, in contrast, PrefixTreeSpan is more amenable to parallel execu-
tion with a higher speedup ratio, and can beat TreeMiner when given enough
CPU cores. This is a new finding since prior works have not considered parallel
mining, and can shed light on the architecture-aware algorithm choice.

The rest of this paper is organized as follows. Section 2 reviews the related
work including the idea of prefix projection illustrated with the pioneering Pre-
fixSpan algorithm, and the PrefixFPM programming paradigm for parallelizing
a PrefixSpan-like algorithm. Section 3 introduces the PrefixTreeSpan algorithm
and its parallel implementation in PrefixFPM, and Sect. 4 describes the TreeM-
iner algorithm and its parallel implementation in PrefixFPM. Finally, Sect. 5
reports the results of our experimental comparison and Sect. 6 concludes this
paper.

2 Preliminaries

A Tour of PrefixSpan. To understand the idea of prefix projection, let us
first briefly review the pioneering PrefixSpan [9] algorithm for mining frequent
sequential patterns from a sequence database.

We denote αβ to be the sequence resulted from concatenating sequence α
with sequence β. We also use α � s to denote that sequence α occurs as a
subsequence of sequence s in the database. Given a sequential pattern α and a
sequence s, the α-projected sequence s|α is defined to be the suffix γ of s such
that s = βγ with β being the minimal prefix of s satisfying α � s. To highlight
the fact that γ is a suffix, we write it as γ. To illustrate, when α = BC and
s = ABCBC, we have β = ABC and s|α = γ = BC.

Given a sequential pattern α and a sequence database D, the α-projected
database D|α is defined to be the set {s|α | s ∈ D ∧ α � s}. Note that if α �� s,
then the minimal prefix β of s satisfying β � s does not exist, and therefore s is
not considered in D|α.

Consider the sequence database D shown in Fig. 2(a). The projected
databases D|A, D|AB and D|ABC are shown in Fig. 2(b), (c) and (d), respec-
tively. Let us define the support of a pattern α as the number of sequences in
D that contain α as a subsequence, then the support of α is simply the size
of D|α. PrefixSpan finds the frequent patterns (with support at least τsup) by
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Fig. 2. Illustration of PrefixSpan

Fig. 3. Depth-first search space tree

recursively checking the frequentness of patterns with growing lengths. In each
recursion, if the current pattern α is checked to be frequent, it will recurse on
all the possible patterns α′ constructed by appending α with one more element.
PrefixSpan checks whether a pattern α is frequent using the projected database
D|α, which is constructed from the projected database of the previous iteration.
Figure 2 presents one recursion path when τsup = 2, where, for example, s1|ABC

in D|ABC is obtained by removing the element C from s1|AB in D|AB .
We remark that the PrefixSpan algorithm presented here is a simplified ver-

sion where each element in a sequence can be only one item. In general, each
element can be an itemset (e.g., the purchase of multiple goods in one super-
market transaction), and we refer readers to [9] for more details.

Prefix Projection. We can summarize the PrefixSpan algorithm’s pattern
(which is also the prefix) search space by a tree as illustrated in Fig. 3. The
idea actually generalizes to other patterns including the embedded subtrees that
we consider. The key insight is that we can establish a one-to-one correspon-
dence between each subtree pattern and its sequence encoding, so that we can
examine the pattern encodings by a PrefixSpan-style algorithm.

For example, consider the 3 subtrees shown in Fig. 4. We can encode a tree
T by adding vertex labels to the encoding in a depth-first preorder traversal
of T , and by adding a unique label “$” whenever we backtrack from a child
to its parent. For example, the encoding of T1 in Fig. 4 is BAB$D$$B$C$, the
encoding of T2 is BAB$D$$C$B$, while the encoding of T3 is BC$B$AB$D$$.
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If we consider “$” as the smallest label, and combined with the other node
labels in the alphabet where label ordering is defined, then we can check through
the subtree patterns similarly as in Fig. 3, imagining that the sequence encoding
at each node is obtained by the depth-first preorder traversal of its corresponding
subtree pattern. Recall that there is a one-to-one correspondence between a
subtree pattern and its sequence encoding. This is exactly the mining workflow
adopted by PrefixTreeSpan and TreeMiner.

In this case, the root node ∅ in the search tree of Fig. 3 basically finds node
labels that are frequent in the tree database (e.g., A, B and C). Then, at the
next layer node A basically finds frequent edges where the source node is A (e.g.,
AA, AB and AC). In the next layer, node AB (whose pattern only contains one
edge AB) is basically extending the pattern with one more edge, which can give
child-patterns like AB$A$ or ABA$$ that corresponds to different subtrees for
frequentness checking (Fig. 3 is for PrefixSpan so only a sequence ABA is shown).
In a nutshell, each pattern as a node α in the search tree is extended by one
more edge to generate a child-pattern β.

It is not difficult to see that to avoid redundant pattern examination from
different subtrees, we should only extend a pattern using an adjacent edge on its
rightmost path. For example, in Fig. 5, we can only extend the subtree pattern in
the box using an adjacent edge on its rightmost path CDB, since the extension
from vertex A has an encoding CDAx· · · which does not match the pattern
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prefix CDA$B and should have been covered in the other search space subtree
rooted at node CDA (i.e., the child CDAx rather than CDA$B).

In frequent subtree mining, the difference from PrefixSpan lies in the main-
tenance of projected database, where each tree data after prefix projection can
give rise to multiple instances (for example, pattern B-B can map to node pairs
0–2 and 0–4 in T1 of Fig. 4) that lead to different future extension trajecto-
ries; also, special encodings need to be maintained to facilitate the checking of
ancestor-descendant relationship between a matched node in a data tree T and
another node in T to extend the current pattern.

PrefixFPM Review. PrefixFPM associates each pattern α (which corresponds
to a node in the search tree of Fig. 3) with a task tα that checks the frequentness
of α using its projected database D|α, and which grows the pattern by one more
element to generate the children patterns {β} and their projected databases
{D|β} (computed incrementally from D|α rather from the entire D). These chil-
dren patterns give rise to new tasks {tβ} which are added to a shared task queue
for concurrent processing. PrefixFPM runs a number of mining threads that fetch
pattern-tasks from a shared task queue Qtask for concurrent processing. Since
each task tα needs to maintain D|α to compute the projected databases of the
child-patterns grown from α, a depth-first task fetching priority in the pattern
search tree tends to minimize the memory footprint of patterns in processing.
This is because we tend to grow those patterns that have been grown deeper,
which are larger (and thus with smaller projected databases) and are closer to
finishing their growth (due to the support becoming less than τsup).

Since fetching tasks from a shared task queue and adding new child-tasks
to Qtask incur locking overheads, this is only worthwhile if each task contains
sufficient computing workloads such that the locking overhead is negligible. We
therefore only add child-pattern tasks to Qtask if the number of projected data
instances in D|α is above a size threshold τsplit, so that the workloads can be
divided by other computing threads; otherwise, tα is not expensive and the
current computing thread simply processes its entire search space subtree in
depth-first order directly.

PrefixFPM Programming Interface. PrefixFPM is written as a set of C++
header files defining some base classes and their virtual functions for users to
inherit in their subclasses and to specify the application logic. We call these
virtual functions as user-defined functions (UDFs). The base classes also contain
C++ template arguments for users to specify with the proper data types (data
structures) that fit the target FPM application. We refer readers to [12] for the
complete API. Here, we briefly review the key UDFs that users need to specify
in order to implement a parallel mining algorithm.

The most important base class is Task. A Task object tα maintains 2 fields:
a pattern α (along with its relevant data such as D|α), and a children table
children that keeps {D|β}: specifically, children[e] = D|β if β is grown from
α with element e. Task has an internal function run(fout) which executes the
processing logic of the task tα. The behavior of run(.) is specified by Task UDFs
defined by users which are called in run(.), and Fig. 6 shows the details.
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Fig. 6. The run(fout) function of base class Task

Specifically, in Line 2, tα first runs UDF pre check(fout) to see if α is frequent
and if so, to output α to an output file stream fout. If α is frequent and thus not
pruned by pre check(.), Line 4 then runs UDF setChildren(children) to scan D|α
and compute {D|β} into the table field children. In this step, every infrequent
child pattern β should be removed from the table children as a postprocessing
step after {D|β} are constructed.

Line 6 then wraps each child pattern β in table children as a task tβ , and
calls the UDF needSplit() to predict if tβ is time-consuming (e.g., D|β is big). If
so, we add tβ to the task queue Qtask (Lines 8–10) to be fetched by available task
computing threads (Qtask is a global last-in-first-out task stack protected by a
mutex to prioritize depth-first task processing order), which divides the comput-
ing workloads by multithreading. Otherwise, we recursively call tβ ’s run(fout) to
process the entire checking and extension of β by the current thread, which avoids
contention on Qtask. Since needSplit() just estimates if tβ is time-consuming and
could have false negatives that become stragglers, we also count the time elapsed
since tα begins, and if it is larger than a timeout threshold, we also add tβ to
Qtask for concurrent processing as in Lines 8–10.

The other important base class is Worker, which is the main thread that
loads the database and creates the computing threads to process tasks. A Worker
object is responsible for generating the initial tasks into Qtask from the database,
the logic of which is specified by UDF setRoot().

Implementing Worker::setRoot(.) is similar to implementing Task::set
Children(.) (Line 4 of Fig. 6): instead of constructing {D|β} from D|α, we con-
struct {D|e} from D: each seed task te = 〈e,D|e〉 is added to Qtask to initiate
the parallel task computation.
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Fig. 7. Forests after pattern projection

At the beginning of Worker::setRoot(.), we also need to get the element fre-
quency statistics and eliminate infrequent elements (i.e., they are not considered
when growing patterns), which is a common and effective pruning. In frequent
subtree mining, one pass over the database is needed to filter out infrequent edges
(determined by labels of its end-nodes), followed by another pass to (1) delete
data edges that match those infrequent pattern-edges (in terms of end-node
labels) and to (2) count the frequency of pattern-edges.

To summarize, to implement a parallel frequent pattern mining algo-
rithm in PrefixFPM, we need to specify 2 key UDFs: Worker::setRoot(.) and
Task::setChild- ren(children).

3 PrefixTreeSpan in PrefixFPM

Recall from Sect. 2 that the data tree in Fig. 7 can be encoded as BAB$D$$B$C$
following preorder traversal that finally returns back to root B. To facilitate
prefix projection, PrefixTreeSpan encodes this tree instead as:

Here, backtracking is encoded with −1 which is basically the same as $. How-
ever, PrefixTreeSpan lets each node to be paired with a corresponding partner
“−1” in the encoding so that the first B is now also paired with a −1 at last.
The part between a node and its partner is called the node’s scope.

The definition of scope allows a quick checking of ancestor-descendant rela-
tionships. For example, in Fig. 7, after prefix projection by the pattern tree, the
data tree now gets split into a so-called “postfix-forest” with two trees, the node
of which can be used to further extend the current pattern.

To see how this is achieved, PrefixTreeSpan requires the scanning of the data
tree (i.e., its preorder encoding) to be from right after the position that matches
the last node in the pattern subtree. For the example in Fig. 7, we should start
from after “A” at the second position of the above encoding. Based on A’s
scope we can obtain the first tree in the projected forest as shown in Fig. 7,
encoded as B-1D-1 which is hooked to Node 1 in the pattern tree (1 is encoded
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by preorder traversal of the pattern). Continuing the scanning, we will obtain
the second projected postfix-tree encoded as B-1C-1 which is hooked to Node 0
in the pattern tree.

We remark that by scanning the data tree encoding from the last matched
position, we effectively extend a pattern along its rightmost path. For example,
referring to Fig. 5 again, we will not consider extending Node 2 since the last
pattern node matched to a data tree is Node 3.

The implementation of this algorithm in PrefixFPM is straightforward, where
in Task::setChildren(.) each task tα scans its projected postfix-forest database
once to determine the frequent edges (called growth elements) to extend pattern
α, and then scans the projected database for another pass to create the projected
postfix-forest database in children[e] for each frequent edge e. Each child pattern
β that extends α with e is then wrapped as a child task tβ for further processing.

Worker::setRoot(.) is slightly different, where after frequent nodes (in terms of
labels) are identified to create singleton-node patterns, it is only matched to the
so-called “independent-occurrences” of the node in each data tree, i.e., the node
does not have an ancestor that is also matched. This is to avoid redundancy [14].

4 TreeMiner in PrefixFPM

TreeMiner Review. TreeMiner [13] captures the ancestor-descendant relation-
ship among nodes by assigning each node v a so-called scope [�, r], where � is the
rank of v in a preorder traversal of the tree, and r is the rank of the rightmost
node in the subtree rooted at v (i.e., the largest node rank in the subtree). For
example, for tree T0 in Fig. 8, Node 0 has scope [0, 3], Node 1 has [1, 1], and
Node 3 has [3, 3]. Then, the ancestor-descendant relationship can be judged by
the scope containment relationship. For example, Nodes 1 and 3 are both the
descendant of Node 0 since [1, 1], [3, 3] ⊂ [0, 3], but Node 3 is not a child of
Node 1 since [1, 1] ∩ [3, 3] = ∅.
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Since a pattern α can have multiple matches in a data tree, TreeMiner rep-
resents each projected transaction in D|α as a pair (tid, scope) where tid is the
transaction ID of the data tree Ti whose subtree matches α, and scope is the
scope of last matched node in Ti that matches the last extended node in pattern
α. For example, Fig. 8 shows the vertical representation of initial patterns α =
A, B, C, D and E. The rectangle for pattern B, which is called its scope list,
contains 3 matched instances in tree T1, corresponding to Nodes 0, 2 and 4,
respectively.

Recall from Sect. 2 that a tree T is encoded by listing vertex labels in a depth-
first preorder traversal of T , and by adding a unique symbol “$” whenever we
backtrack from a child to its parent. This sequence encoding of T is also called
its horizontal format as shown in Fig. 8.

TreeMiner adopts prefix projection to enumerate patterns by their horizontal
encodings. One way is to always extend a pattern by a frequent edge from its
rightmost path to avoid redundant pattern checking, which is similar to Prefix-
TreeSpan as we have reviewed in Sect. 3.

TreeMiner adopts a different approach called “equivalence class-based exten-
sion”: instead of extending a pattern α with frequent edges, TreeMiner generates
a size-(k + 1) pattern from two size-k patterns that share the same size-(k − 1)
prefix encoding. Obviously, the latter is more selective and thus faster.

This is where the scope-list comes into play. Refer back to Fig. 5 in Sect. 2
again, we have a size-3 prefix encoding P = CDA$B (as there are 3 solid edges),
from which we can grow size-4 patterns (i.e., using each of the 3 valid dashed
edges long the rightmost path). Let each dashed edge be denoted by (i, x) where
i is the hooked node ID in P , and x is a node label. Let us denote the new
pattern extended with (i, x) by β = P i

x, then all {P i
x} constitute an equivalence

class where patterns share the prefix P , denoted by [P ].
To build the equivalence class [P i

x] where patterns share the prefix P i
x, we

can extend P i
x using another edge (j, y) ∈ [P ]. Sleuth keeps a projected database

D|β for each β = P i
x, which is represented as a scope list described before. To

incrementally compute D|γ for the pattern γ obtained by extending P i
x with

(j, y), we can join the scope list of P i
x with the scope list of every P j

y ∈ [P ].
While we refer readers to [13] for the details of the join, the idea is simple:

two scopes (tid1, scope1) and (tid2, scope2) can be joined only if tid1 = tid2 (i.e.,
the match is from the same transaction T ), the matched prefix occurrences (i.e.,
their node IDs in T ) are the same, and y’s matched node in T is a descendant or
cousin of x’s matched node (need to check scope1 and scope2). Since we always
order scope list items by tid, the joining of two scope lists requires only one pass
over the two lists similar to the merge operation in merge sort.

Implementation on PrefixFPM. To adapt the serial TreeMiner algorithm
to PrefixFPM, a task tP now maintains a prefix encoding P along with a list
of extending edges of the form (i, x) ∈ [P ], each associated with the scope list
(i.e., projected database) for P i

x. Note that task object here maintains a list
of projected databases, which is different from the PrefixFPM algorithm for
PrefixTreeSpan where each task object only maintains one project database.
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for each (i, x) [P]
L1 scope list of Px

i

for each (j, y) [P]
if i < j: continue
L2 scope list of Py

j

Qyj join(L1, L2) // note that Q = Pxi

if Qy
j is frequent: children[Q].add(Qy

j)

1:
2:
3:
4:
5:
6:
7:

Fig. 9. Algorithm of TreeMinerTask::setChildren(.) in PrefixFPM

UDF Task::setChildren(.) computes every task object related to Q = P i
x,

including the extending edges (j, y) ∈ [Q] and their scope lists, as detailed in
the algorithm shown in Fig. 9. Note that each children table entry children[Q]
to construct maintains the content a task object tQ, including a list of Qj

y each
associated with its scope list.

In the UDF Task::setChildren(.) of task tP , for each extending edge (i, x)
in [P ] (Line 1), we build [Q] (Q = P i

x) to be added to children[Q] (Line 7).
Specifically, Lines 3–6 join the scope list of Q with the scope list of every P j

y ∈
[P ] to generate the scope list of the new pattern Qj

y, which are then added to
children[Q] one by one (if Qj

y is frequent which is judged using its scope list).
This allows UDF Task::get next child(.) (recall Line 6 of Fig. 6) to then wrap
each children[Q] into a task tQ that processes [Q] (containing {Qj

y}) for further
processing.

One tricky issue is to estimate the cost of task tQ as needed by Line 7 of
Fig. 6 to determine whether to add tQ to Qtask for concurrent processing or to
directly process it recursively. Unlike in PrefixTreeSpan where we simply check
the size of a child-task’s projected database, here, we need to sum the lengths
of the scope lists of [Q] = {Qj

y} to reflect the total task workloads, and if the
sum is above threshold τsplit, the child task tQ is added to Qtask rather than
processed by the current computing thread.

Worker::setRoot(.) first scans D to count label frequencies and remove infre-
quent node labels. Let the set of frequent labels be F1, the UDF then counts
the frequencies of edges e = (X,Y ) with a counter array of size |F1| × |F1|
by scanning D, and only considers frequent (labeled) edges (denoted by F2) for
subsequent edge extension. The UDF then builds the pattern object [X] for each
X ∈ F1, constructs its scope list with all edge-patterns (X,Y ) ∈ F2, and then
wraps them as the set of initial tasks to be added to Qtask.

5 Experiments

Summary of Algorithm Differences. One difference is that TreeMiner joins
the rightmost node (using scope list) of two size-k frequent patterns to generate
a size-(k+1) pattern, which tends to have a smaller candidate set size than if we
extend size-k frequent patterns with one frequent edge, as is done by the encoding
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Fig. 10. Results on the synthetic data

scanning method of PrefixTreeSpan which basically extends the residual forest
along the rightmost matched path. As a result, the total mining workload of
TreeMiner tends to be smaller than that of PrefixTreeSpan.

However, each task tP in TreeMiner is essentially an equivalent class [P ],
or a cluster of prefix projections {P i

x} along with their projected databases.
In contrast, each task tP in PrefixTreeSpan is simply pattern P along with its
projected postfix-forest database, so that task granularity is finer than that of a
task in TreeMiner, making it more amenable to concurrent processing.

Experimental Setup. We evaluate the performance of PrefixTreeSpan and
TreeMiner on top of PrefixFPM, and all our codes are open-sourced at

https://github.com/wenwen-Q/PrefixFPM

To thoroughly test the scale-up capability of both algorithms, we ran our
programs on the BlueBlaze server donated by IBM to UAB CS Department,
which has 160 CPU cores and 1 TB RAM. The CPU model is IBM POWER8
with 3491 MHz. The large number of CPU cores allows us to test the scalability
with 1, 2, 4, 8, 16, 32, 64 and 128 cores, and the 1 TB RAM is more than enough
and we actually only use a tiny fraction.

Results on a Synthetic Dataset. We follow [13] and generate a tree trans-
action database using a synthetic data generator [1] that creates a database of
artificial website browsing behavior: a website browsing “master tree” is first
created based on parameters supplied by the users; then, one can generate ran-
dom subtrees of the master tree as the tree transactions for mining. The details
of data generation can be found in [13].

We use the default parameters for master tree: depth = 5, fan-out factor = 5,
number of labels = 10, and we set the number of nodes in the master tree as 50
to generate 10, 000, 000 subtree transactions. We call this dataset as TreeGen.
We set τsup = 50 and the timeout threshold as 0.01 s.

Figure 10 shows the scalability results where good speedup ratio is achieved
all the way up to 16 threads, but TreeMiner does not show significant fur-
ther improvement and even becomes slower beyond 32 threads. This is because
TreeMiner operates on the big unit of equivalent class [P ] which can only keep
less than 32 cores busy, and using more threads only incurs more lock contention

https://github.com/wenwen-Q/PrefixFPM
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and backfires. PrefixTreeSpan has a better scaleup ratio but due to its larger total
workloads, it cannot beat TreeMiner in all settings in this experiment.

Fig. 11. Results on Treebank (τsup = 30, 000)

Fig. 12. Results on Treebank (τsup = 10, 000)

Results on a Real Dataset. Treebank [2] is a parsed text corpus that anno-
tates syntactic or semantic sentence structure. The XML file contains 52,851
trees. We first set τsup = 30, 000 and the timeout threshold as 0.1s. Since τsup is
large, most patterns will be pruned early leading to limited workload for parallel
mining. Figure 11 shows the scalability results where we can see that TreeM-
iner’s performance saturates with merely 4 CPU cores. PrefixTreeSpan scales
better but the speedup is still quite limited. Interestingly, despite more work-
load, PrefixTreeSpan breaks a tie with TreeMiner when there are 8 CPU cores,
and PrefixTreeSpan beats TreeMiner when the number of CPU cores increases
further, already significantly faster than TreeMiner even when 16 CPU cores are
used. This is thanks to the finer task granularity of PrefixTreeSpan which allows
more CPU cores to be utilized.

We then set τsup = 10, 000 so that most patterns will be valid allowing for
more parallelism. Figure 12 shows the scalability results where we can see that
TreeMiner’s performance now saturates at up to 32 CPU cores thanks to the
more parallelism provided by a lower τsup. PrefixTreeSpan scales even better
and achieves an impressive 52.72× speedup with 128 cores, and ultimately beats
TreeMiner by more than 2.5×.
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To summarize, while the total mining workload of TreeMiner can be much
smaller than that of PrefixTreeSpan due to the scope list join technique, it does
limit TreeMiner’s capability for massively parallel execution due to the larger
task granularity. When there are enough CPU cores, PrefixTreeSpan can be a
better choice that is worth trying out, and can ultimately beat TreeMiner by
several times. We remark that these conclusions are made assuming that the
underlying parallel execution engine is able to utilize as much parallelism as is
available, which is ideally provided by PrefixPFM as explained in [12] which is
recently proposed to overcome the IO-bound execution bottleneck of a few prior
systems and solutions.

6 Conclusion

This paper implemented the parallel versions of two frequent embedded subtree
mining algorithms, PrefixTreeSpan and TreeMiner, on top of the PrefixFPM
system that follows a prefix-projection programming paradigm and that is able
to fully carry out the parallelism potential of the algorithms on top.

A few new insights are obtained: (i) PrefixTreeSpan does not beat TreeMiner
in the serial setting as what was claimed in PrefixTreeSpan’s paper [14], likely
because [14] implemented TreeMiner as an Apriori-like algorithm rather than
a PrefixSpan-like one. However, TreeMiner’s workload optimization requires a
larger task granularity which limits its potential for parallel execution, and could
be beaten by PrefixTreeSpan when enough CPU cores are available.
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Abstract. RoleSim and SimRank are popular graph-theoretic similarity
measures with many applications in, e.g., web search, collaborative fil-
tering, and sociometry. While RoleSim addresses the automorphic (role)
equivalence of pairwise similarity which SimRank lacks, it ignores the
neighboring similarity information out of the automorphically equiva-
lent set. Consequently, two pairs of nodes, which are not automorphi-
cally equivalent by nature, cannot be well distinguished by RoleSim if
the averages of their neighboring similarities over the automorphically
equivalent set are the same.

To alleviate this problem: 1) We propose a novel similarity model,
namely RoleSim*, which accurately evaluates pairwise role similarities in
a more comprehensive manner. RoleSim* not only guarantees the auto-
morphic equivalence that SimRank lacks, but also takes into account the
neighboring similarity information outside the automorphically equiva-
lent sets that are overlooked by RoleSim. 2) We prove the existence and
uniqueness of the RoleSim* solution, and show its three axiomatic prop-
erties (i.e., symmetry, boundedness, and non-increasing monotonicity).
3) We provide a concise bound for iteratively computing RoleSim* for-
mula, and estimate the number of iterations required to attain a desired
accuracy. 4) We induce a distance metric based on RoleSim* similar-
ity, and show that the RoleSim* metric fulfills the triangular inequality,
which implies the sum-transitivity of its similarity scores. Our experi-
mental results on real and synthetic datasets demonstrate that RoleSim*
achieves higher accuracy than its competitors while retaining comparable
computational complexity bounds of RoleSim.

1 Introduction

RoleSim is a role-based similarity measure that quantifies the closeness between
two objects based on graph topology, with a proliferation of real-life applications
[9,10,23] in, e.g., link prediction (social network), co-citation analysis (biblio-
metrics), motif discovery (bioinformatics), and collaborative filtering (informa-
tion retrieval). It recursively follows a SimRank-like reasoning that “two nodes
c© Springer Nature Switzerland AG 2020
L. Qin et al. (Eds.): SFDI 2020/LSGDA 2020, CCIS 1281, pp. 33–48, 2020.
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are assessed as role similar if they interact with automorphically equivalent sets
of in-neighbors”. Intuitively, automorphically equivalent nodes in a graph are
objects having similar roles that can be exchanged with minimum effect on the
graph structure. Similar to the well-known measure SimRank [7], the recursive
nature of RoleSim allows to capture the multi-hop neighboring structures that
are automorphically equivalent in a network. Unlike SimRank that measures the
similarity of two nodes from the paths connecting them, RoleSim quantifies their
similarities through the paths connecting their different roles. As a result, two
nodes that are disconnected each other will not be considered as dissimilar by
RoleSim if they have similar roles. For evaluating similarity score s(a, b) between
nodes a and b, as opposed to SimRank whose similarity s(a, b) takes the aver-
age similarity of all the neighboring pairs of (a, b), RoleSim computes s(a, b) by
averaging only the similarities over the maximum bipartite matching of all the
neighboring pairs of (a, b). This subtle difference enables RoleSim to guaran-
tee the automorphic equivalence, which SimRank lacks, in final scoring results.
Therefore, RoleSim has been demonstrated as an effective similarity measure in
many real applications. We summarize two of these applications below.

Application 1 (Similarity Search on the Web). Discovering web pages
similar to a query page is an important task in information retrieval. In a Web
graph, each node represents a web page, and an edge denotes a hyperlink from
one page to another. RoleSim can be applied to measure the similarity of two
web pages, based on the intuition that “two web pages are role-similar if they
are pointed to by the automorphically equivalent sets of their in-neighboring
pages”. This similarity measure produces more reliable similarity results than
the SimRank model [10].

Application 2 (Social Network De-anonymisation). Social network de-
anonymisation is a method to validate the strength of anonymisation algorithms
that protect a user’s privacy. RoleSim has been applied to de-anonymise node
mappings based on the similarity information between a crawled network and an
anonymised one. Based on the observation that “correct mappings tend to have
higher similarity scores”, RoleSim iteratively evaluates pairwise node similarities
between two networks, and captures the reasoning that “a pair of nodes between
two networks is more likely to be a correct mapping if their neighbors are correct
mappings”. RoleSim has demonstrated superior performance as compared with
other existing de-anonymization algorithms [23].

Despite its popularity in real-world applications, RoleSim has a major limita-
tion: with the aim to achieve automorphic equivalence, its similarity score s(a, b)
only considers the limited information of the average similarity scores over the
automorphically equivalent set (i.e., the maximum bipartite matching) of a’s
and b’s in-neighboring pairs, but neglects the rest of the pairwise in-neighboring
similarity information that is out of the automorphically equivalent set. Con-
sequently, RoleSim does not always produce comprehensive similarity results
because two pairs of nodes, which are not automorphically equivalent by nature,
should be distinguished from each other even though the average values of their
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1 2 3

Pairs RS* RS

(1,2) 0.414 0.426
(1,3) 0.423 0.426
(2,3) 0.495 0.518
(4,7) 0.328 0.360
(4,8) 0.347 0.344
(5,7) 0.328 0.360
(4,10) 0.430 0.488
(5,11) 0.328 0.360

I2︷ ︸︸ ︷
6 7 8

I1

{
4
5

0.488 0.360 0.344
0.360 0.360 0.280

0.488 + 0.360 = 0.848
I3︷ ︸︸ ︷

9 10 11

I1

{
4
5

0.488 0.488 0.488
0.360 0.360 0.360

Fig. 1. Limitation of RoleSim (RS) on a tiny web graph, where node-pairs (1, 2) and
(1, 3) have the same RoleSim score (0.426) since RS aggregates only the in-neighboring
pairs that are automorphically equivalent (colored in green) whose sums are the same
(0.488 + 0.360 = 0.848), while ignoring the remaining pairs. (Color figure online)

in-neighboring similarities over the set of the maximum bipartite matching are
the same, as illustrated in Example 1.

Example 1 (Limitation of RoleSim). Consider the web graph G in Fig. 1, where
each node denotes a web page, and each edge depicts a hyperlink from one page
to another. Using RoleSim, we evaluate pairs of similarities between nodes, as
partially illustrated in the ‘RS’ column of the right table. It is discerned that
node-pairs (1, 2) and (1, 3) have the same RoleSim similarity values, which is
not reasonable. Because node 2 and node 3 are not strictly automorphically
equivalent by nature, their similarities with respect to the same query node 1,
i.e., s(1, 2) and s(1, 3), should not be the same.

We notice that the main reason why s(1, 2) and s(1, 3) are assessed to be
the same by the RoleSim model is that its similarity s(a, b) considers only the
average similarity scores over the maximum bipartite matching, denoted as Ma,b,
of (a, b)’s in-neighboring pairs Ia × Ib, where Ia denotes the in-neighbor set
of node a, and × is the Cartesian product of two sets. Thus, the similarity
information in the remaining in-neighboring pairs of (a, b), i.e., Ia × Ib − Ma,b,
are totally ignored. For example, if unfolding the in-neighboring pairs of (1, 2)
and (1, 3) respectively, we see that, in the gray cells, M1,2 = {(4, 6), (5, 7)}
(resp. M1,3 = {(4, 9), (5, 10)}) is the maximum bipartite matching of (1, 2)’s
(resp. (1, 3)’s) in-neighboring pairs I1×I2 (resp. I1×I3). The sum of the similarity
values over M1,2 is 0.488 + 0.360 = 0.848, which is the same as that over M1,3.
Thus, RoleSim cannot distinguish s(1, 2) from s(1, 3). ��

Example 1 illustrates that, to effectively evaluate s(a, b), relying only on
the in-neighboring-pairs similarities in the maximum bipartite matching Ma,b

(e.g., RoleSim) is not enough. Although RoleSim has the advantage of finding
the most influential pairs Ma,b among all the in-neighboring pairs Ia × Ib for
achieving automorphic equivalence, it completely ignores the similarity informa-
tion outside Ma,b. For instance in Example 1, there are opportunities to take good
advantage of the similarity values in the regions I1×I2−M1,2 and I1×I3−M1,3
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which would be helpful to distinguish s(1, 2) from s(1, 3) further when the aver-
age similarities over M1,2 and M1,3 are the same.

Contributions. Motivated by this, our main contributions are as follows:
1) We first propose a novel similarity model, RoleSim*, which accurately

evaluates pairwise role similarities in a more comprehensive fashion. Compared
with the existing well-known similarity models (e.g., SimRank and RoleSim),
RoleSim* not only guarantees the automorphic equivalence that SimRank lacks,
but also takes into consideration the pairwise similarities outside the automor-
phically equivalent sets that are overlooked by RoleSim. (Sect. 3.1)

2) We prove the existence and uniqueness of the RoleSim* solution, and show
three key axiomatic properties of RoleSim*, i.e., symmetry, boundedness, and
non-increasing monotonicity of its iterative similarity scores. (Sect. 3.2)

3) We derive an iterative formula for computing RoleSim* similarities, and
a concise upper bound is obtained, which can estimate the total number of
iterations required for attaining a desired accuracy. (Sects. 3.3 and 3.4)

4) We induce a distance metric based on our RoleSim* measure, and rig-
orously show that the RoleSim* distance metric fulfills the triangular inequal-
ity which other measures (e.g., cosine distance) lack. This implies the sum-
transitivity of the RoleSim* measure. (Sect. 3.5)

5) We conduct an experimental study to validate the effectiveness of our
RoleSim* model. Our empirical results show that RoleSim* achieves higher accu-
racy than the existing competitors (e.g., RoleSim and SimRank) while entailing
comparable computational complexity bounds of RoleSim. (Sect. 4)

2 Related Work

Graph-based similarity models have been popular since SimRank measure was
proposed by Jeh and Windom [7]. SimRank is a node-pair similarity measure,
which follows the recursive idea that “two nodes are considered as similar if they
are pointed to by similar nodes”. Since then, there have been surges of stud-
ies focusing on optimization problems to accelerate SimRank computation as
the naive SimRank computing method entails quadratic time in the number of
nodes. According to assumptions on data updates, recent results can be divided
into static algorithms [1,4,5,11,15,20,24,27,29,32,37], and dynamic algorithms
on evolving graphs [8,12,18,22,25,31,35]. According to types of queries, these
results are classified into single-source SimRank [8,11,18,24,35], single-pair Sim-
Rank [6,14], all-pairs SimRank [1,19,29,30], and partial-pairs SimRank [20,34].

There are many studies on semantic problems of pairwise similarity measures.
Various SimRank-like measures have come into play, including C-Rank [26], Sim-
Fusion [33], P-Rank [36], RoleSim [9], MatchSim [17], ASCOS [2], SimRank* [32],
CoSimRank [21], SemSim [27]. Among them, RoleSim has stood out as a promis-
ing role-based similarity model, due to its elegant intuition that “if two nodes are
automorphically equivalent, they should share the same role and their role sim-
ilarity should be maximal”. To speed up the RoleSim computation, an approx-
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imate heuristic, named Iceberg RoleSim, was devised to prune small similarity
values below a threshold.

Unlike SimRank that takes the average similarity of all the neighboring pairs
of (a, b), RoleSim computes s(a, b) by averaging only the similarities over the
maximum bipartite matching Ma,b. However, all the similarity information not
included in the matching Ma,b is completely ignored by RoleSim. In contrast,
our RoleSim* model can effectively capture these information while guaranteeing
automorphic equivalence.

There have also been a host of studies on variations of RoleSim [3,13,17,23].
Lin et al. [17] introduced MatchSim whose similarity is defined to be the aver-
age similarity of (a, b)’s maximum matched neighbors. It differs from RoleSim
in that MatchSim initialises s0(a, b) = 1 if a = b, and 0 otherwise, whereas
RoleSim initialises all s0(∗, ∗) = 1. As a result, MatchSim scores do not guar-
antee automorphic equivalence. Li et al. [13] proposed CentSim, a centrality
based role similarity measure, which compares the centrality values of two nodes
to evaluate their similarity. This measure employs several types of centralities
including PageRank, Degree and Closeness for each node, and considers the
weighted average of them for evaluating CentSim scores. Recently, Shao et al. [23]
introduced RoleSim++, an extension of RoleSim, which considers both incom-
ing and outgoing neighbors in a digraph for social network de-anonymisation. It
employs a novel matching algorithm, called NeighborMatch, to find matching for
inner and outer neighbors, respectively. Furthermore, a threshold based version,
α-RoleSim++, is proposed to eliminate tiny scores for speedup further. Most
recently, Chen et al. [3] suggest a scalable model, StructSim, with an efficient
BinCount matching algorithm and present a hierarchical scheme, which achieves
a more efficient role similarity computation.

3 RoleSim*

3.1 RoleSim* Formulation

The central intuition underpinning RoleSim* follows a recursive concept that
“two distinct nodes are assessed to be similar if they

1. mainly interact with the automorphically equivalent sets of in-neighbors, and
2. are in-linked by similar nodes that are out of automorphically equivalent sets.

The starting point for this recursion is to assign each pair of nodes a similarity
score 1, meaning that initially no pairs of nodes are thought of to be more (or
less) similar than others.

Notations. Before illustrating the mathematical definition to reify the RoleSim*
intuition, we introduce the following notations.

Let G = (V,E) be a directed graph with a set of nodes V and a set of edges
E. Let Ia be all in-neighbors of node a, and |Ia| the cardinality of the set Ia. For a
pair of nodes (a, b) in G, we denote by Ia×Ib = {(x, y) | ∀x ∈ Ia and ∀y ∈ Ib} all
in-neighboring pairs of (a, b), and s(a, b) the RoleSim* similarity score between
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Table 1. Description of main symbols

Symbol Description

G Directed graph G = (V, E) with a set nodes V and a set of edges E

Ia All in-neighbors of node a in G

|Ia| Cardinality of the set Ia (i.e., the number of nodes in Ia)

Ma,b Maximum weighted matching in bipartite graph
K|Ia|,|Ib| = (Ia ∪ Ib, Ia × Ib)

s(a, b) RoleSim* similarity score between nodes a and b

β Damping factor (0 < β < 1)

λ Relative weight that balances similarities inside and outside Ma,b

(0 < λ < 1)

K Total number of iterations

nodes a and b. Using Ia × Ib and s(a, b), we define a weighted complete bipartite
graph, denoted by K|Ia|,|Ib| = (Ia ∪ Ib, Ia × Ib), with each edge (x, y) ∈ Ia × Ib

carrying the weight s(a, b). We denoted by Ma,b (⊆ Ia × Ib) the maximum
weighted matching in bipartite graph K|Ia|,|Ib|.

Example 2. Recall digraph G in Fig. 1. For nodes 1 and 2, their in-neighbors
sets are I1 = {4, 5} and I2 = {6, 7, 8}, respectively. The set of all in-neighboring
pairs of (1, 2) is I1×I2 = {(4,6), (4, 7), (4, 8), (5, 6), (5,7), (5, 8)}. The maximum
matching of bipartite graph (I1 ∪ I2, I1 × I2) is M1,2 = {(4, 6), (5, 7)} (bold). ��

Other notations frequently used throughout this paper are listed in Table 1.

RoleSim* Formula. Based on our aforementioned intuition, we formally for-
mulate the RoleSim* model as follows:

s(a, b) = β ×
(

λ ×

Part 1: average similarity over maximum matching Ma,b︷ ︸︸ ︷
1

|Ia| + |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

s(x, y)

+ (1 − λ) × 1
|Ia| × |Ib| − |Ma,b|

∑
(x,y)∈(Ia×Ib)−Ma,b

s(x, y)

︸ ︷︷ ︸
Part 2: average similarity over (Ia × Ib) − Ma,b

)
+ (1 − β)

(1)

In Eq. (1), for every pair of nodes (a, b), the set of their in-neighboring pairs,
Ia × Ib, is split into two subsets: Ia × Ib = Ma,b ∪ (Ia × Ib − Ma,b). As a result,
the definition of RoleSim* consists of two parts: Part 1 is the average similarity
over maximum matching Ma,b, indicating the contribution from (a, b) interacting
with the automorphically equivalent set, Ma,b, of (a, b)’s in-neighbors pairs. Part
2 is the average similarity over (Ia×Ib)−Ma,b, corresponding to the contribution
from (a, b) being pointed to by the rest of (a, b)’s in-neighbors pairs out of auto-
morphically equivalent set Ma,b. The relative weight of Part 1 and 2 is balanced
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by a user-controlled parameter λ ∈ [0, 1]. β is a damping factor between 0 and 1,
which is often set to 0.6 or 0.8, implying that similarity propagation made with
distant in-neighbors is penalised by an attenuation factor β across edges. When
Ia (or Ib) = ∅, which implies the maximum matching Ma,b = ∅, we define Part 1
and Part 2 = 0 in order to avoid the denominators of the fraction in Part 1 and
2 being zeros.

Fixed-Point Iteration. To solve RoleSim* similarity s(a, b) in Eq. (1), we
adopt the following fixed-point iterative scheme:

s0(a, b) = 1 (∀a, b) (2)

sk+1(a, b) = β ×
(

λ

|Ia| + |Ib| − |Ma,b|
∑

(x,y)∈Ma,b

sk(x, y)

+
1 − λ

|Ia| × |Ib| − |Ma,b|
∑

(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)
)

+ (1 − β) (3)

where sk(a, b) denotes the RoleSim* score between nodes a and b at iteration
k. Based on Eqs. (2) and (3), we can iteratively compute all pairs of similarity
scores sk+1(∗, ∗) from those at the last iteration sk(∗, ∗). The fixed-point scheme
in Eqs. (2) and (3) implies an iterative algorithm for RoleSim* computation,
which requires O(K|E|2) time to compute |V |2 node-pairs for K iterations.

Threshold-Based RoleSim*. To accelerate RoleSim* computation, we notice
that there are a significant number of node pairs whose iterative similarity val-
ues sk(∗, ∗) are very close to their convergent scores s(∗, ∗) and thus will not
change much in subsequent iterations. Hence, we propose the following threshold-
based RoleSim* model, where δ is a user-controlled threshold, which is a speed-
accuracy trade-off.

sδ
0(a, b) = 1

sδ
k+1(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

sδ
k(a, b) if sδ

k−1(a, b) − sδ
k(a, b) < δ

1 − β if sδ
k(a, b) < (1 − β) + δ

β ×
(

λ
|Ia|+|Ib|−|Ma,b|

∑
(x,y)∈Ma,b

sδ
k(x, y) otherwise

+ 1−λ
|Ia|×|Ib|−|Ma,b|

∑
(x,y)∈(Ia×Ib)−Ma,b

sδ
k(x, y)

)
+ (1 − β)

3.2 Axiomatic Properties for RoleSim* Iterative Similarity

Based on the definition of iterative similarity sk(a, b) in Eqs. (2) and (3), we next
show three axiomatic properties of RoleSim*, i.e., symmetry, boundedness, and
non-increasing monotonicity, based on the following theorem.

Theorem 1. The iterative RoleSim* {sk(a, b)} in Eqs. (2) and (3) have the
following key properties: for any node pair (a, b) and each iteration k = 0, 1, · · · ,
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1. (Symmetry) sk(a, b) = sk(b, a)
2. (Boundedness) 1 − β ≤ sk(a, b) ≤ 1
3. (Monotonicity) sk+1(a, b) ≤ sk(a, b)

Proof. Please refer to [28] for a detailed proof of all theorems and lemmas.

Theorem 1 indicates that, for every iteration k = 0, 1, 2, · · · , {sk(a, b)} is a
bounded symmetric scoring function. Moreover, as k → ∞, it can be readily ver-
ified that the exact solution s(a, b) also is a bounded symmetric measure, which
is similar to SimRank and RoleSim. In comparison, other measures (e.g., Hitting
Time and Random Walk with Restart) are asymmetric ones.

3.3 Existence and Uniqueness

It is worth mentioning that, as opposed to SimRank whose iterative similarity is
non-decreasing between 0 and 1 w.r.t. k, RoleSim* similarity is non-increasing
between 1 − β and 1. The bounded non-increasing property of RoleSim* guar-
antees the existence and uniqueness of its exact solution s(a, b), as shown below:

Theorem 2 (Existence and Uniqueness). There always exists a unique
solution s(a, b) (i.e., the exact RoleSim score) to Eqs. (2) and (3) such that the
iterative RoleSim similarity {sk(a, b)} converges to it, i.e., limk→∞ sk(a, b) =
s(a, b).

3.4 Accuracy Estimation

Having proved the existence and uniqueness of the exact RoleSim* solution, we
are now ready to investigate the error bound of the difference between the k-th
iterative similarity sk(a, b) and exact one s(a, b). In virtue of the non-increasing
monotonicity of {sk(a, b)}, one can readily show that the exact s(a, b) is the
lower bound of all the iterative similarities {sk(a, b)}, i.e., sk(a, b) ≥ s(a, b) (∀k).
The following theorem further provides a concise upper bound to measure the
closeness between sk(a, b) and s(a, b).

Theorem 3 (Iterative Error Bound). For every iteration number k =
0, 1, 2, · · · , the difference between sk(a, b) and s(a, b) is bounded by

sk(a, b) − s(a, b) ≤ βk+1 (∀a, b) (4)

Theorem 3 derives a concise exponential upper bound for the difference
between the k-th iterative similarity sk(a, b) and exact s(a, b). Combining this
bound with the non-increasing monotonicity sk(a, b) ≥ s(a, b), we can obtain
that the k-th iterative error sk(a, b) − s(a, b) is between 0 and βk+1. Moreover,
Theorem 3 also implies that, given desired accuracy ε > 0, the total number of
iterations required for computing RoleSim* similarity is K = �logβ ε�.
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3.5 “Sum-Transitivity” of RoleSim* Similarity

In this section, we investigate the transitive property of the proposed RoleSim*
similarity measure. Intuitively, when a similarity measure s(∗, ∗) fulfills the tran-
sitive property, it means that, for any three nodes a, b, c in the graph, if a is
similar to b and b is similar to c, it implies that a is likely to be similar to c. The
transitivity feature is useful in many real applications, e.g., for predicting and
recommending links in a graph.

To study the transitive property of RoleSim*, let us induce a distance
d(a, b) := 1 − s(a, b) from the RoleSim* measure. Due to s(∗, ∗) ∈ [1 − β, 1], the
distance d(∗, ∗) is between 0 and β. In what follows, we will show that d(∗, ∗)
satisfies the triangular inequality, which is an indication of s(∗, ∗) transitivity.

We first show the following lemma, which is needed for further proof of
RoleSim* triangular inequality.

Lemma 1. Let sk(∗, ∗) be the k-th iterative RoleSim* similarity to Eqs. (2) and
(3). For any three nodes a, b, c in a graph, if sk(a, b)+sk(b, c)−sk(a, c) ≤ 1 holds
at iteration k, the following inequalities holds:

P1 :=

∑
(x,y)∈Ma,b

sk(x, y)

|Ia| + |Ib| − |Ma,b| +

∑
(y,z)∈Mb,c

sk(y, z)

|Ib| + |Ic| − |Mb,c| −

∑
(x,z)∈Ma,c

sk(x, z)

|Ia| + |Ic| − |Ma,c| ≤ 1 (5)

P2 :=

∑
(x,y)∈(Ia×Ib)−Ma,b

sk(x, y)

|Ia| × |Ib| − |Ma,b| +

∑
(y,z)∈(Ib×Ic)−Mb,c

sk(y, z)

|Ib| × |Ic| − |Mb,c| −

∑
(x,z)∈(Ia×Ic)−Ma,c

sk(x, z)

|Ia| × |Ic| − |Ma,c| ≤ 1 (6)

Leveraging Lemma 1, we are now ready to show the sum-transitivity of the
RoleSim* similarity distance, which is the main result in this subsection:

Theorem 4. The RoleSim* similarity s(a, b) defined by Eq. (1) satisfies the
following “sum-transitive” property: Let d(a, b) := 1 − s(a, b) be the closeness
between nodes a and b. Then, for any three nodes a, b, c in a graph, the following
triangular inequality holds, i.e.,

d(a, b) + d(b, c) ≥ d(a, c) (7)

4 Experimental Evaluation

4.1 Experimental Settings

Datasets. We use both real and synthetic datasets, as illustrated below:
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Datasets Abbr. #Node-Pairs #Nodes #Edges Type

Amazon (AMZ) 25, 867, 396 5, 086 8, 970 Directed

DBLP (DBLP) 5, 626, 384 2, 372 7, 106 Undirected

Synthetic (SYN) 4, 000, 000 2, 000 5, 481 Undirected

– Amazon. A co-purchasing digraph crawled from Customers Who Bought This
Item Also Bought feature of Amazon1. Each node is a product, and edge
i → j means that product j appears in the frequent co-purchasing list of i.

– DBLP. A collaboration (undirected) graph taken from DBLP bibliography.2

We extract a co-authorship subgraph from six top conferences in computer
science (SIGMOD, VLDB, PODS, KDD, SIGIR, ICDE) during 2018–2020.
If two authors (nodes) co-authored a paper, there is an edge between them.

– Synthetic. A random scale-free graph with a power-law degree distribution,
generated by GenRndPowerLaw function in C++ SNAP Library.3

All experiments are conducted on a PC with Intel Core i7-10510U 2.30GHz
CPU and 16 GB RAM, using Windows 8 Professional 64-bit. Each experiment
is repeated 5 times and the average is reported.

Compared Algorithms. We implemented all the following algorithms in
VC++:

Models Abbr. Description

RoleSim* (RS*) Our proposed RoleSim* model in Section 3.1

SimRank (SR) A pairwise similarity model proposed by Jeh and Widom [7]

MatchSim (MS) A similarity model relying on the matched neighbors of node pairs [16]

RoleSim (RS) A model that guarantees the automorphically equivalence of nodes [9]

RoleSim++ (RS++) An enhanced RoleSim that considers both in- and out-neighbors [23]

CentSim (CS) A similarity model that compares the centrality values of node pairs [13]

Parameters. We use the following parameters as default: (a) damping factor
β = 0.8, (b) relative weight λ = 0.7, (c) total number of iterations K = 4.

Semantic Evaluation. We design an unsupervised evaluation setting to quan-
tify the effectiveness of the similarity measures in preserving self-similarity under
different conditions. In particular, we study the effect of sampling the immediate
neighborhood of a query point on similarity scores in RoleSim* compared with
SimRank and RoleSim. Consider a single query node q. In our experiment, we
create a node q′ and add it to the graph. We connect q′ to some proportion (η)
of the total number of neighbors of q, and hereby refer to q′ as the “sampled

1 www.amazon.co.uk.
2 www.informatik.uni-trier.de/∼ley/db/.
3 https://snap.stanford.edu/data/index.html.

www.amazon.co.uk
www.informatik.uni-trier.de/{~}ley/db/
https://snap.stanford.edu/data/index.html
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Fig. 3. Effect of Sampling Ratio (η) and Weight (λ) on Ranking Quality (AMZ)

clone”. The similarity scores of q to all other points in the graph are computed
using SimRank, RoleSim, and RoleSim*. We evaluate how much the relative
similarities are preserved when different measures are used. We vary η in q′

with step size 0.25 (and ensuring no orphaned nodes), and additionally consider
λ = 0.0, 0.3, 0.5, 0.7, 1.0 for RoleSim*. Our results are aggregated over 20 queries
on DBLP and AMZ graphs respectively, where query nodes are chosen as having
high degree of neighbors.

4.2 Experimental Results

Semantic Accuracy. We first count the number of queries where the sampled
clone q′ appears in the top-k (k = 1, 5, 10) similar nodes to query q for RoleSim*.
Intuitively, this studies how much structural information is gleaned about a query
node. Figure 2(a) presents the number of such queries out of 20 on the undirected
DBLP graph, considering top-5 similarity scores. Other top-k plots are omitted,
but show that with increasing k for a given sampling proportion there are more
such queries even at lower λ.
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Table 2. Similarity rankings for “Philip S. Yu” on DBLP co-authorships data

# RS*(λ = 0.6) RS*(λ = 0.8) RS SR

1 Nitesh V. Chawla Xia Hu Xia Hu Yuan Fang

2 Danai Koutra Nitesh V. Chawla Nitesh V. Chawla Chenwei Zhang

3 Yanjie Fu Yanjie Fu Yanjie Fu Nan Du

4 Jure Leskovec Jure Leskovec Huan Liu Wei Fan

5 Haifeng Chen Danai Koutra Jure Leskovec Lichao Sun

6 Xia Hu Haifeng Chen Haifeng Chen Weiran Huang

7 Xing Xie Xing Xie Danai Koutra Jianxin Ma

8 Xiangnan He Xiangnan He Xing Xie Xinyue Liu

9 Di Niu Di Niu Xiangnan He Binbin Hu

10 Jennifer G. Dy Huan Liu Fenglong Ma Daixin Wang

· · · · · · · · · · · · · · ·
28 Huan Liu Dawei Yin Di Wu Ning Wu

· · · · · · · · · · · · · · ·
89 Xiang Li Han Zhu Qinyong Wang Huan Liu

· · · · · · · · · · · · · · ·
350 Mao Yang Houdong Hu Xi (Stephen) Chen Jure Leskovec

Next, we test the impact of sampling η and λ on ranking quality in RoleSim*.
We plot the average ranking quality (normalized discounted cumulative gain
(nDCG)), considering top-100 similar nodes of the sampled clone and comparing
this to the baseline original query. We observe that the trend (with respect to
η) seen in Fig. 2(b) and Fig. 3(b) for λ = 1 resembles that for RoleSim, and the
trend for λ = 0.5 is close to that for SimRank.

Finally, we consider a fixed value of λ = 0.7 and confirm that the RoleSim*
has higher ranking quality compared to SimRank and RoleSim, with respect
to the average nDCG. Figure 2(c) with undirected DBLP graph shows that
RoleSim* produces a more consistent nDCG even with small η. For the directed
AMZ graph in Fig. 3(c) too, RoleSim shows significant improvement at lower
sampling, and the performance of SimRank is negatively affected throughout,
while RoleSim* remains stable.

Qualitative Case Study. Table 2 compares the similarity ranking results from
three algorithms (SR, RS and RS*) for retrieving top-10 most similar authors
w.r.t. query “Philip S. Yu” on DBLP. From the results, we see that the top rank-
ings of RS* are similar to RS, highlighting its capability to effectively capture
automorphic equivalent neighboring information. For instance, “Jure Leskovec”
is top-ranked in RS* list. This is reasonable because he and “Philip S. Yu”
have similar roles - they are both Professors in Computer Science with close
research expertise (e.g., knowledge discovery, recommender systems, common-
sense reasoning). However, the rankings of RS* are different from those of RS.
For example, “Jure Leskovec” is ranked 350th by SR, but 4th by RS* and RS.
This is because SimRank can only capture connected paths between two authors
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Fig. 4. Elapsed time comparison for different threshold-based RS*

while ignoring their automorphic equivalent structure. “Jure Leskovec” has rare
collaborations with “Philip S. Yu”, both direct and indirect, thus leading to a
low SimRank score.

To evaluate RS* further, we choose two different values for λ ∈ {0.6, 0.8} to
show how RS* ranking results are perturbed w.r.t. λ. From the results, we notice
that, when λ is varied from 0.6 to 0.8, nodes with small SR scores (e.g., “Jure
Leskovec”) exhibit a stable position in RS* ranking, whereas nodes having higher
SR scores (e.g., “Huan Liu”) have a substantial change. This conforms with our
intuition because “Huan Liu”’s collaboration with “Philip S. Yu” is closer than
“Jure Leskovec”’s, and RS* is able to capture both connectivity and automorphic
equivalence of two authors using a balanced weight λ.

Computational Time. Figure 4(a) compares the computational time of six
algorithms (RS*, RS, MS, RS++, CS, SR) on various datasets (AMZ, DBLP,
SYN), respectively. We notice that, on each dataset, RS* has comparable com-
putational time to RS and MS. This implies that RS* achieves high accuracy
without sacrificing running speed. In addition, RS*, RS, and MS are 2–4 times
faster than RS++. This is because RS* need to find two maximum bipartite
matchings for both in- and out-neighboring pairs, as opposed to RS* that involves
the computation of only one matching. SR is slightly slower than RS*. This is
consistent with our analysis as SR simply takes the average of all similarities of
the in-neighboring pairs without the need to find the maximum bipartite match-
ing. CS achieves the fastest speed since it simply assesses a node-pair similarity
by aggregating their centrality values, thereby leading to low accuracy.

Figures 4(b) and (c) show the effect of iteration number k and threshold δ on
the running time of RS* on DBLP and AMZ, respectively. For each dataset, we
vary δ from 0 to 0.05. When δ = 0, it reduces to RS* algorithm. From the results
on both datasets, we discern that, for each fixed δ, the running time of threshold-
based RS* increases as k grows. When δ becomes larger, the growth rate of RS*
time tends to be sublinear. For example, when δ = 0.05 on DBLP, only after
k = 5 iterations, the increasing time of threshold-based RS* has leveled off. In
contrast, when δ = 0.01, the time becomes steady after k = 8 iterations. The
reason is that a higher setting of threshold δ implies a larger number of pairs
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to be pruned per iteration, thus leading to the growth rate of the running time
decreasing in an earlier stage during iterations.

5 Conclusion

We propose RoleSim*, a novel similarity model that guarantees automorphic
equivalence and also considers neighboring similarity information beyond auto-
morphically equivalent sets, thereby achieving better performance than both
SimRank and RoleSim. We prove the existence and uniqueness of the RoleSim*
solution, show that iteratively computing RoleSim* is bounded, and induce a
RoleSim* distance obeying sum-transitivity of similarity scores. We also evalu-
ate our model on DBLP, AMZ, and SYN datasets to demonstrate its superior
ranking quality and comparable complexity to competitors.
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Technische Universität Dresden, Nöthnitzer Straße 46, 01187 Dresden, Germany
{alexander.krause,dirk.habich,wolfgang.lehner}@tu-dresden.de

http://wwwdb.tu-dresden.de

Abstract. Graph-structured data can be found in nearly every aspect of
today’s world which contributes to an increasing importance of this data
structure for storing and processing data. From a processing perspective,
finding comprehensive patterns in graph-structured data is a processing
primitive in a variety of applications, such as fraud detection, biologi-
cal engineering or social graph analytics. On the hardware side, multi-
processor systems—consisting of multiple processors in a single scale-up
server—are the next important wave on top of multi-core systems. In
particular, symmetric multiprocessor systems (SMP) are characterized
by the fact, that each processor has the same architecture, e.g., every pro-
cessor is a multi-core and all multiprocessors share a common and huge
main memory space. Moreover, large SMPs will feature a non-uniform
memory access (NUMA), whose impact on the design of efficient data
processing concepts is considerable. In this paper, we give an overview of
NeMeSys, our system for scalable near-memory graph pattern matching
(GPM) on SMPs. NeMeSys is built on a synthesis of well-known con-
cepts of database systems including a set of graph-tailored and hardware-
oriented optimization techniques for scalable GPM on SMPs.

1 Introduction

A resurgence of interest in graph structured data has become evident during the
last decades [1,6,24]. Among others, a major driver behind that is a shift in the
interest of analytics from merely reporting towards data-intensive science and
discovery [7]. In 2017, Sahu, et al. [25] conducted a survey and showed, that the
size of real world graphs ranges from less than 10 k to more than 10 B edges.
Furthermore, they indicated that graphs are used by larger companies, that are
not Google, Facebook or Twitter. This implies that the graph data format is a
valid form of representation, widely used and accepted among industrial com-
panies and research facilities. In our work, we focus on edge-labeled multigraphs
as a general and widely employed graph data model [20,21,23]. An edge-labeled
multigraph is defined as G = 〈V,E, ρ,Σ, λ〉, which consists of a set of vertices V ,
a set of edges E, an incidence function ρ : E → V × V , and a labeling function
λ : E → Σ assigning labels to each edge.
c© Springer Nature Switzerland AG 2020
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(a) A graph pattern query. (b) A simple data graph.

Fig. 1. A graph pattern matching example.

In many application use cases, users are interested in identifying logical con-
nections between vertices of their data graph. Thus, recognizing comprehensive
patterns on large graph-structured data is a common use case and a prerequisite
for a variety of application domains such as fraud detection [23], biomolecular
engineering [20], scientific computing [27], or social network analytics [21], only
to name a few. That means, graph pattern matching (GPM) can be considered
as a crucial processing primitive. GPM queries are usually given as a subgraph
of the queried data graph. Figure 1(a) shows an example, whereby the query
requests all two-sets of entities, that know each other and that both supervise
two distinct other entities. Considering the data graph from Fig. 1(b), the query
would get only one distinct result, namely 〈A, B, D, C〉 which match to the
query vertices 〈K, Y, X, Z〉 respectively. Obviously, the mappings for X and Y
as well as K and Z could be permuted to get additional matches, with the same
data vertices.

Fundamentally, GPM can require a high amount of compute resources,
depending on the size of the underlying data graph as well as the number of
issued queries. To satisfy this demand, symmetric multiprocessor systems (SMP)
are an interesting hardware foundation. SMPs are composed by multiple pro-
cessors (also called nodes or sockets) each with the same architecture, e.g, a
multi-core processor and all multiprocessors share a common and huge main
memory space. Unfortunately, large SMPs will feature a non-uniform memory
access (NUMA), whose impact on the design of efficient data processing con-
cepts is considerable as shown in [11,16,31]. Therefore, we developed NeMeSys,
a novel scalable in-memory graph pattern matching engine specifically designed
for large NUMA-SMPs. In this paper, we give a comprehensive overview about
NeMeSys, which was demonstrated in our previous work [13]. In particular,
we will summarize a set of graph-tailored and hardware-oriented optimization
techniques.

2 NeMeSys System Design

In our work, we target the previously described symmetric multiprocessor sys-
tems as hardware foundation for a scalable GPM execution. Modern systems
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Fig. 2. Architectural overview of NeMeSys.

distinguish between Uniform Memory Access (UMA) and Non-Uniform Mem-
ory Access (NUMA). UMA defines, that the access of any memory address in
the whole address space is performed with equal latencies. In contrast, NUMA
means, that the memory access latency can vary significantly between different
addresses. Considering a mesh-connected four-socket system, we can face up to
two NUMA hops, before the actual memory access can happen. With every hop,
the memory access latency increases, but also the effective memory bandwidth
decreases [10]. Several previous works prove, that considering the NUMA effect is
crucial for competitive performance [11,16,22,31]. This underlines our hardware
focus, since handling a single box NUMA-SMP well will also result in higher
performance, when a compute cluster consists of multiple of such machines.

We built our research prototype called NeMeSys to fully exploit the pro-
vided hardware capacities of SMPs for graph pattern matching. NeMeSys is
based on ERIS, a relational data processing engine [11], from which we bor-
row architectural design principles for superior scalability on SMP systems. In
this paper, we explore possibilities to transport the positive effects of this archi-
tecture from relational to graph processing. The overall NeMeSys architec-
ture is depicted in Fig. 2. Our engine features multiple layers, such as a storage
layer, a processing layer and a communication layer, which we call infrastruc-
ture, and components related to user I/O. Its internal architecture is a synthesis
of four well-known architecture design principles: Shared Everything (SE), Par-
tition Serial Execution (PSE), Delegation and the Data-Oriented Architecture
(DORA) as described by [2]. NeMeSys combines the shared memory for meta-
data from SE, the physical data partitioning from PSE, the message passing
from Delegation and the thread-to-data mapping from DORA to create a highly
scalable architecture for NUMA-SMPs. In detail, every logical core is assigned
with one worker, which runs its own event loop. Among other tasks like process-
ing local partitions, this loop contains a role swap to a socket-local coordinator
that sends and collects the messages from local workers and remote coordina-
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tors. Being an in-memory engine, NeMeSys allows for online data ingestion as
well as online query generation and processing through a terminal based user
interface. Storing a graph on a NUMA system inherently requires data parti-
tioning to cope with the mentioned NUMA effect, as illustrated in Fig. 2. Hence,
we need to dissect the graph into a disjunct set of partitions, which can then be
stored on the individual memory domains. Because of our employed edge-labeled
graph model, we can express a graph’s topology in triples. Thus, a vertex is rep-
resented by a set of [source,target,label] triples, which define its outgoing edges.
Naturally, we store these edges in a triple-table, with an indexed source column
to allow for direct lookup of all edges of a given vertex. After assigning a vertex
to any partition, we store its locality information in the partition manager.

3 NeMeSys Processing Model

In NeMeSys, we pin a dedicated worker thread to all logical cores of every pro-
cessor in the SMP system and limit their access to data partitions of their local
processor. Furthermore, according to the previously mentioned thread-to-data
mapping, there is always only one worker allowed to process a distinct partition
at the same time. Every worker periodically processes incoming messages from
other workers. Each message contains the code of a to-be-executed operator and
some corresponding intermediate results according to the delegation concept.

NeMeSys is designed to process GPM queries given in the form of con-
junctive queries (CQs) [29], i.e., a sequence of logically AND connected edge
predicates, with every edge predicate being a triple, which consists of a source
vertex, a target vertex and an edge label, where labels could also be expressed
as a wildcard using the * character. Reading a query string in triples from front
to back yields an initial binding order and thus known and unknown variable
bindings at a given processing step. We identified that, based on the order of
variables in a query, we can have 0, 1 or 2 bound variables for any given edge
predicate and thus the following three operators are considered to be sufficient
for GPM processing on our target hardware:

Scan Operator. The Scan operator performs a parallel vertex scan over all par-
titions only when the source as well as the target vertex of a CQ triple are
unknown. By specifying a certain edge label predicate, the operator returns
only bindings for vertices, where the connecting edge is labeled accordingly.
The Scan operator is always the first operator in the pattern matching pro-
cess. As a straightforward optimization step, this operator can be fused with
the following operators VB and EB to create a processing pipeline.

Vertex-Bound (VB) Operator. The VB operator takes an intermediate pat-
tern matching result from either the Scan or the EB operator as input and
tries to match new vertices in the query pattern according to the following
CQ triple. The operator has to be only applied when either the source vertex
or target vertex is known in the current processing step and thus bound.
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Fig. 3. Edge predicates for the query from Fig. 1(a).

Edge-Bound (EB) Operator. The EB operator ensures the existence of addi-
tional edge label predicates between known vertex matching candidates for
certain vertices of the CQ. It performs a data lookup with a given source and
target vertex as well as a given edge label. If the lookup fails, both vertices
are eliminated from the matching candidates. Otherwise the matching state
is passed to the next operator or is returned as final result. In this case, both
vertex variables are bound.

Parsing the query pattern from Fig. 1(a) leads to the six edge predicates from
Fig. 3 and thus creates the operator chain Scan → EB → VB → EB → VB →
EB → Result. Operators can be individually instanced by every worker and
consequently executed on their isolated data partitions. During its execution, an
operator matches intermediate results from previous operators according to the
edge predicate, which is assigned to it, and sends out new intermediate states to
the succeeding operator in the chain, until final matching states are formed to
a result. Depending on the available locality information, an operator produces
either a unicast, i.e., a message targeting exactly one partition, or a broadcast,
which is transferred to all partitions in the system. Broadcasts can occur, if the
incoming edge of a vertex is requested, since we only store outgoing edges for
all vertices. If a query requests an incoming edge for a known target vertex, but
the source vertex is a yet unbound variable, then we can only scan the target
column in all partitions of the edge table, which is triggered by the broadcast.
After processing all messages for a given operator chain of a graph pattern, the
collected results are pruned of duplicates.

4 Optimization Techniques

NUMA systems usually provide a sufficient amount of main memory to accom-
modate bigger graphs completely and enable a high degree of parallelism through
many logical processors. In this section, we discuss our measures to optimize
GPM processing on NUMA SMPs. The discussed optimization techniques can
be applied both offline and online, i.e., before or during query execution. We gen-
erated our benchmark graphs using gMark [3], which represent a bibliographical
and a protein network with approx. 6 M edges each and a social network with
36 M edges. The experiments were run on a four socket system with Intel Xeon
Gold 6130 processors and 384 GB of main memory, if not stated otherwise.
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(a) Social Graph (b) Protein Network

Fig. 4. Runtime scalings with increasing worker count on different graphs.

4.1 Eliminating Broadcasts Through Redundancy

Efficient messaging is a key component for Delegation-based systems like
NeMeSys. According to [18], asynchronous computation can usually outper-
form synchronous approaches on CPU-bound problems, whereas the opposite is
true for memory-bound problems. However, the authors state, that due to the
asynchronous execution, the inherent messaging is unable to exploit optimization
techniques like batching. This becomes especially true, if a GPM query contains
several edges that generate broadcasts during evaluation. Therefore, the superior
scalability of the naturally relational architecture of NeMeSys – c.f. [11] – does
not easily carry over to GPM. Despite having large amounts of main memory,
the limiting resource is the size of cpu cache. For efficient processing on a single
SMP box, we want the locality information to be cache resident, which is why we
do not straight up consider state-of-the-art sextuple indexing of traditional RDF
stores like Hexastore [28]. Thus, we investigated the effect of explicit redundancy
in the graph data in [15].

As outlined in Sect. 2, storing the outgoing edges of all vertices mirrors the
graph’s topology. However, adding incoming edges allows for bidirectional graph
traversal. Thus, we allocate a second triple table, which contains all reversed
edges. That is, for every outgoing edge [source,target,label], we create an inverted
edge [target,source,label], which is stored in the incoming edge table. This seem-
ingly trivial adjustment has hidden implications, which we want to highlight.
First, we need to build more index structures, to allow for a direct lookup of all
incoming edges of a given vertex in this second table. Second, we also need a sec-
ond set of locality information in the partition manager, since the incoming edge
table also has to be partitioned and distributed among the sockets. This leads
to the observation, that explicitly adding incoming edges completely eliminates
broadcasts, since we can always lookup either source or target vertices of any
given edge predicate. On the other hand, this leads to doubled infrastructure
cost, since also locality information is doubled. In the worst case, parts of the
locality information could not be hold in the processor cache anymore, which in
turn narrows the positive impact of a redundant graph storage. Figure 4 shows
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Fig. 5. Relative system configuration performance of an SGI UV 3000 for different
partitioning strategies of a social graph.

the runtime of a dummy query, where half of its edge predicates produce broad-
casts, if no redundancy is available. The experiment was performed on a four
socket NUMA machine with 64 logical cores in total. We observe that intuitively,
GPM with broadcasts does not scale. When we enable redundancy, the system
is not only generally more performant, but exhibits an overall better scalability
behavior.

4.2 Partitioning Strategy Selection

Graphs can come in many types, e.g., social, road or bibliographical networks.
Based on its type, a given graph exhibits certain data characteristics. These
can range between sparse and dense graphs, evenly distributed vertex degrees
or general edge distributions like we see them in scale free networks, where the
degrees of the vertices follow a power law distribution. In our previous work [14],
we investigated the influence of different partitioning strategies in combination
with varying system configurations on an SGI UV 3000 server with 768 logical
cores on 64 NUMA nodes.

Partitioning a graph can be done manifoldly, however the graph partition-
ing problem is known to be NP-complete [8] and thus we carefully designed
heuristic approaches. Balanced Edges (BE) and Distributed Skew (DS) both try
to balance the total amount of edges stored in a partition by sorting vertices
descending by their degrees, iterating over them and assigning the next vertex
to the partition with the currently lowest amount of edges. In addition, DS dis-
tributes all edges of a vertex v among all partitions, if the degree of v is larger
than a given threshold, to avoid overloading partitions with a high-degree ver-
tex. Round Robin Vertices (RRV) simply assigns all vertices to their partitions
in the eponymous manner and mutlilevel k-Way (KWay) partitioning was taken
from [9]. We define a system configuration (SC) as a combination of active work-
ers and employed partition count and present the results in Fig. 5. The heat maps
show the relative performance of an SC compared to the local optimum, which is
marked with an X. On this machine, the individually highest performance could
always be achieved, when the worker count equaled the physical core count of
384, since core siblings usually do not provide the same amount of processing
power. However, depending on the partitioning strategy, the optimal number of
partitions varied. Additionally, we can identify the greenish performance islands,
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(a) Social graph (b) Biblio graph

Fig. 6. Influence of Bloom filters vs. redundancy.

which allow us to adapt both worker and partition count, if any constraints on
memory or worker count arise.

4.3 Reducing Messages Through Filtering

Having targeted messaging and the correct partitioning SC in place already helps
with scalable processing. However, the memory footprint of redundancy is not
negligible and thus, we elaborate measures to maintain locality information for
both outgoing and incoming edges, but reducing the memory footprint to a min-
imum in [12]. The main challenge can be reduced to a set containment problem,
where the set is a partition and the elements are edges or vertices, which are
a set of edges. Usually, a hashset is used for fast lookups, however, this would
still use a high amount of memory. We therefore concluded, that a probabilistic
data structure like a Bloom filter [5] could be employed. Bloom filters allow us
to adjust their size, based on a given memory constraint and therefore enable
adaptivity between ranges of assumed false positive rates. As hash functions, we
developed a fast residual class ring based prime number hashing called Prime-
Hash: Hi(x) = y = (ai ·x)∧ (M −1), with ai being the prime number for the ith

hash function and M being the size of the Bloom filter in bits. We instantiate one
Bloom filter per partition with its size M ≈ −1.44N log2(p) [5], with N being
the vertex count per partition and p being the desired false positive rate.

Figure 6 shows the runtime benefits for different Bloom filter sizes, compared
to the standard baseline in red and the runtime with full redundancy in blue on
a bibliographical and a social network. A lower false positive rate (i.e., bigger
Bloom filter) can lead to speedups even beyond the benefit of full redundancy in
Fig. 6(a), due to the prevented additional memory usage. However, we usually
observe the effect of Fig. 6(b), where the resulting performance suffers at first,
due to the general overhead of handling the Bloom filter, but eventually resides
somewhere between the baseline and full redundancy performance.
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4.4 Workload-Driven Partition Placement

As a general rule of thumb, a workload should be as distributed as necessary,
but as local as possible. Thus, reducing messages is not the only way to opti-
mize the GPM performance on a NUMA system. We can also manipulate the
partition placement to enforce utmost local computation, while preserving max-
imum parallelism. However, optimizing the data placement can only be solved
heuristically and not fully enumeratively. Calculating all partition placement
combinations is prohibitively expensive. The amount of possible, equally dis-
tributed combinations ζ for placing n partitions on an s socket system, assum-
ing n is integer divisible by s, can be calculated with the binomial coefficient:
ζ =

∏s−1
i=0

(
n−τ ·i

τ

)
,with τ = n

s . For 64 partitions on a 4 socket system, this
yields ζ ≈ 6.6 × 1035 possible combinations. Thus, to reduce the search space,
we leverage the well known gradient descent optimization technqiue (GDO) [4].
The GDO is an iterative algorithm, which requires us to assess all trivial neigh-
borhoods of a given allocation scheme and use the best scoring allocation schema
as baseline for the next iteration, until no better scoring solution can be found.
Within this paper, best scoring refers to the lowest communication cost.

In NeMeSys, we can represent an allocation schema using a binary s × n
matrix A, where a 1 denotes that the partition with id i at column ni, 0 ≤ i < n is
located on socket sj , 0 ≤ j < s. By default, partitions are allocated to iteratively
fill the available sockets and match the worker count on this socket. A neighbor is
called trivial, if it is created through an atomar change in the original matrix. For
our partition allocation scenario, atomar means to move exactly one partition to
another socket. However, to avoid all partions being eventually moved to a single
socket, we define a trivial change to be swapping one partition of socketx with
one partition of sockety. The communication matrix K is an n × n matrix and
created through message tracing during the query execution. Every row vector ki

of K represents the respective traffic, originating from the ith partition towards
all other partitions, including itself. This model only covers sending messages,
since receiving them is already contained in the cost of the originating sockets.
To calculate the communication cost, we need to estimate the actual cost for
exchanging messages between sockets. In this paper, we leverage the ratio of the
memory bandwidths between the individual sockets and use them as values for
our s × s cost matrix C, with examples given in (1).

A =
( 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

)
K =

(

0 3 9 6 5 7 0 0
0 0 2 1 9 4 6 9
9 5 0 7 0 2 6 0
1 6 0 0 1 8 4 4
5 9 3 3 0 0 5 1
3 9 0 0 2 0 3 2
9 5 4 8 0 5 0 0
1 8 0 9 7 2 6 0

)
C =

( 1.00 6.29 6.29 6.29
6.25 1.00 6.29 6.25
6.31 6.31 1.00 6.31
6.31 6.31 6.31 1.00

)
(1)

With the three matrices A, K and C, we can now calculate the communi-
cation cost per socket i. First, we calculate the communication, that originates
from socket ci with the ith row vector ai of A using aiK. This resets to cost of all
partitions, which are not located on ci, to 0. Then we weight the communication
of all partitions, with the cost vector of socket ci by calculating ciA. Multiplying
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(a) BE, Bloom on (b) HV, Bloom on (c) RRV, Bloom on

Fig. 7. Relative query runtimes for Quad and V query, varying partitionings. Biblio
graph, 64 partitions, Bloom filter active, Redundancy off.

the communication originating from socket ci with the transposed result of the
actual communication of socket ci yields the total communication cost of socket
ci = (aiK)(ciA)T . Thus, the total communication cost γ can be expressed as
the sum of the individual socket cost scores: γ =

∑|sockets|−1
i=0 (aiK)(ciA)T . The

previously created A′ with the cheapest cost is selected as new baseline and fur-
ther optimized, until no cheaper matrix can be found. To avoid local optima, we
perform three targeted restarts with heuristically selected A′′ matrices. Feeding
the example matrices from (1) into our optimizer yields γA = 1308.7. As a final
result, the optimized allocation matrix has γoptimized = 1101.68, i.e., a 16% cost
reduction, for the optimized allocation.

Figure 7 shows the results for two test queries, Quad and V, ran against
the Biblio graph with active Bloom filters. The relative performances of the
optimized executions are only to be considered against the respective baseline,
i.e., the Quad default execution has another query runtime than the V query.
Clearly, colocating partitions does improve the query runtime for the Quad query
in all three cases. The general slowdown for the V query might be an artifact
of the results of our optimizer. Since all partitions are potentially communicat-
ing with each other, we built a 64 × 64 communication matrix, to represent all
possible communication paths. However, not all partitions hold data, which is
relevant for every query and thus do not produce or receive any messages. This
leads to the effect, where we see half of the sockets being filled with all com-
municating and the other half with silent partitions. Despite locally minimized
communication scores, this effect can introduce more overhead. The system is
unable to perform messaging optimizations like batching, when only one parti-
tion on a remote socket is touched. On the machine level, sending a message is a
memcpy operation. Performing many memcpy operations on small chunks of data
is always slower than using memcpy on one large chunk of data. Thus, if only
very few messages are sent to a remote socket, we can face runtime slowdowns.

Figure 8 shows the potential speedups for co-locating partitions with higher
message traffic in a workload scenario. We executed a workload of 100 GPM
queries, for which we performed the message tracing both individually per query
and in workload batches of 10. The optimal placement for single queries can
achieve considerable higher performance gains of up to 80%. However, such fine
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Fig. 8. Speedup variances for scenario dependent partition movement.

granular movement is rarely efficient, because moving the partitions within a
NUMA system can impose a significant cost, depending on how much partitions
have to be moved and if the NUMA system is fully connected or not. The
workload-based optimization still yields performance gains ranging from 5% to
40%, which amortizes the partition movement cost.

During our experiments, we observed partly strong variations of the query
runtimes for all queries and workloads. To isolate the root cause, we repeated
the experiments from Fig. 8 with the same queries and workload configurations
using all combinations of active and inactive Bloom filters and redundancy. The
results are shown in Fig. 9. We also investigated the effect of hot and cold adap-
tion, where cold means, we restart NeMeSys for every measurement and hot
experiments mean, we load the graph once, move the partitions and measure the
query performance for all queries and workloads subsequently. All measurements
were repeated 20 times and we used the average runtime as value per query and
workload to create the individual hot and cold bars. Most surprising are the indi-
vidually huge slowdowns of almost −3 x for a single query in Fig. 9(a). We found,
that mainly short running queries, i.e., around 50 ms, are affected by larger slow-
downs.The same observations hold true for Figs. 9(b) to 9(d). Figure 9(c) has the
same configuration as Fig. 8, yet it also exhibits individual slowdowns for some
queries. We see the inherent asynchronous processing as potential issue, since it
can result in unpredictable runtime behavior. For example, the workers monitor
themselves, if any work has been performed. If not, a worker will put itself to
sleep for a grace period, to avoid infinite polling. If a message arrives just after
starting the sleep cycle, its processing is delayed. We tested the influence of the
sleep cycles with varying sleep times, ranging from 0 ms to 100 ms. Completely
disabling sleeps leads to permanent polling, which in turn produces more pres-
sure on the local message buffers. The permanent checks for messages will then
lead to further decreased performance, since enqueuing messages can only be
done if the buffers are not locked. Thus, on the one hand, sleep cycles can help
to increase the system’s throughput. On the other hand, ill-timed sleep cycles
have varying impacts on the performance of a single query.
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(a) BE, no Bloom, no Red. (b) BE, no Bloom, Red.

(c) BE, Bloom, Red. (d) RRV, Bloom, no Red.

Fig. 9. Speedup variances for different configurations with 64 partitions.

5 Related Work

Graph partitioning is state-of-the-art among many systems, e.g., Ligra [26] or
Galois [19]. However, the reasoning behind the selected partitioning algorithms
is rarely stated. We have shown that using one specific partitioning scheme for all
graphs or workloads is not the optimal solution and may result in huge slowdown
factors, compared to the possibly best system configuration.

Another NUMA-aware graph analytics system was produced by [31] with
the name Polymer. In order to cope with the NUMA effect, they leverage a
novel page allocation method. That is, to alleviate the inherent random memory
access from graph algorithms. Another hardware-conscious optimization is their
hierarchical scheduling, which helps with expensive thread level synchronization
among NUMA-nodes. Like the other authors, we found random memory accesses
and synchronization to be problematic. However, this is already addressed by
the synthesis of the architectural principles, as stated in Sect. 2. Since NeMeSys
works completely asynchronous, we do not need a concrete scheduler. Operators
are always executed, whenever a message arrives and because of the data isola-
tion, no further synchronization is necessary.

A system with vertex centric graph processing is Pregel+ [30]. This system
was considered as the fastest graph engine [17]. They use MPI to realize the inter-
worker communication and replicating a subset of vertices among partitions as
an optimization method for message reduction. However, we showed in Sect. 4.3
that redundancy can be outperformed by an intelligent Bloom filter.
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6 Conclusions

In this paper, we presented NeMeSys, our research prototype for in-memory
graph pattern matching on symmetric multiprocessor systems. We showed that
a scalable graph pattern matching on such servers is possible by leveraging mod-
ern architecture principles. Furthermore, we demonstrated a set of hand-crafted
optimization techniques, which benefit from each other to allow for scalable per-
formance.

We envision to continue our research on more sophisticated optimization
methods, such as an adaptive graph storage or continuous online adaption. Fur-
thermore, we want to develop a more robust asynchronous processing model to
allow for runtime guarantees and more predictable performance.
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Abstract. With the spiraling pandemic of the Coronavirus Disease 2019
(COVID-19), it has becoming inherently important to disseminate accu-
rate and timely information about the disease. Due to the ubiquity of
Internet connectivity and smart devices, social sensing is emerging as
a dynamic sensing paradigm to collect real-time contacts between both
people and places. For example, we can rely on the Bluetooth signals
that smartphones can both send out and receive to collect the real-time
user contacts data. Based on the contacts data, in this paper, we inves-
tigate to propose an efficient approach to calculate the risk level of each
person to have COVID-19. It can help pinpoint the people who need to
be isolated. (1) We model the real-time contact data between people as
a straming graph, which is a constantly growing sequence of edges. (2)
We provide a risk alerting model to find the people who came in con-
tact with someone having COVID-19. (3) In addition, we design efficient
algorithms to calculate the risk level of each person and update the lev-
els in real time. (4) Extensive experiments verify the effectiveness and
efficiency of our approach.

1 Introduction

Public health experts say tracing who people infected with the coronavirus have
been in contact with is a critical step in easing social distancing restrictions.
Thanks to the pervasion of smart devices, some softwares, i.e., TWS1 and Trace-
Together2, have been designed for collecting the real-time contact data between
people. The technologies used in them rely on the Bluetooth signals that smart-
phones can both send out and receive. Using Bluetooth signals can capture the
contact records between users and each contact record is used to answer the
question “was user A in contact with user B at time T?” Time is important
since there maybe multi-times contacts between two users. Based on the col-
lected data, we design efficient algorithms to find the potential users who may
have COVID-19.

1 http://easytws.com/.
2 https://www.tracetogether.gov.sg/.
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From the perspective of data management, there may exist two types of
solutions—relational and graph-based—to the user-contact data. Using rela-
tional databases does not always offer an elegant solution towards efficiently
searching, and still lacks best practices currently. In this paper, we design a
graph-based solution, attributed to the fact that the user-contact data is a uni-
versal graph model of data. As a result, we model the use-contact data as a
streaming graph G, which is a constantly growing of edges {σ1, σ2, . . . , σx} where
each σi arrives a particular time ti. Note that, σi may have multi-timestamps
since σi will appear multi-times in G. Specially, we only collect each user’s con-
tact data in the prior 14 days. This is because the incubation period of COVID-19
is 1∼14 days.

In order to find the users who came in contact with someone having COVID-
19, we propose a risk alerting model to assign each user a risk-level, denoted
as RL. That is, when a user tests positive for COVID-19, we assign RL–1, RL–
2 and RL–3 to the users who are one-hop, two-hops and three-hops neighbors,
respectively. Furthermore, if a user does not have COVID-19 after 14 days or
all the neighbors of the user have no risk-level, we can remove the user’s risk-
level directly. Note that, the time constraints are important in this model, more
details will described in Sect. 3.

To achieve real-time responsiveness is the foremost problem we need to face
when updating the risk-levels over the streaming graph G; if not, we cannot get
efficient updating results over a time span. A näıve method to solve this problem
is to recompute risk-levels for the users who have COVID-19. However, it can be
prohibitively costly, and we will redo the work. Instead, we design an incremental
updating algorithm to calculate the risk-level for each new user-contact record
and update the risk-levels for corresponding users only from the newly user who
tests positive.

Contributions. In short, we make the following contributions:

– We model the user-contact records collected from the Bluetooth signals of
corresponding users’ smartphones as a streaming graph.

– Based on the streaming graph, we design a risk alerting model which help
to trace the people have been in contact with someone infected with the
coronavirus.

– We propose an incremental updating algorithm to update the risk-levels for
corresponding users.

Experiment results demonstrate the effectiveness and efficiency of our tech-
niques.

2 Preliminaries

A typical data schema for the topology of user-contact records consists of a
number of vertices representing users, and links between the nodes representing
contacts between them. This schema naturally translates to a vertex-labeled
undirected graph g = (V,E,L).
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Definition 1 (Streaming graph). A Streaming graph G is a constantly grow-
ing sequence of undirected edges {σ1, σ2, . . . , σx} where each σi arrives at a par-
ticular time ti (ti < tj when i < j). ti is also referred to as the timestamp of σi.
Each edge σi has two labelled vertices and two edges are connected if and only if
they share one common endpoint.

Since two users may have multiple contacts with each other, there may be
multi-edges between two vertices in G representing contact records between them
in different timestamps. For each user’s contact records, we use the time-based
sliding window model, where a sliding window W defines a timespan with fixed
duration |W |. Here, we set |W | = 14 since the incubation period of COVID-19 is
1 ∼ 14 days. An example of a streaming graph G is shown in Fig. 1(a). For each
vertex, i.e., v1 or v2, we record the corresponding edges within 14 days.

Fig. 1. An example of the streaming graph

Definition 2 (A Snapshot of a Streaming Graph). Given a streaming
graph G at current time point t, the current snapshot of G is a graph Gt =
(Vt,Et) where Et is the set of edges that occurs on each vertex at time t.

Figure 1(b) shows the snapshot of Fig. 1(a) at time point σ1.

3 Risk Alerting Model

In this section, we design a risk alerting model for COVID-19 spread, namely,
RAMC, to trace the people who have been in contact with someone infected
with the coronavirus. The model consists of two steps: (1) assign each user in
the streaming graph a risk-level according to the users who have COVID-19; (2)
eliminate the risk-level of a user whose status becomes safe.

3.1 Risk-Level Assignment

We rely on the BFS search algorithm to assign each user who has been in contact
with someone infected with the coronavirus directly or indirectly a risk-level.
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Fig. 2. Risk alerting model

Given a vertex V in G that represents a user who tests positive for COVID-19
at timepoint T, we can obtain corresponding contact records of V from T-1 to
T-14. Here, we only assign the risk-levels for 1-hop to 3-hops neighbors of V. In
detail, for each neighbor V ′ of V, we first set RL(V ′) = 1 where RL(V ′) represents
the risk-level of V ′. Note that, there may be multi-edges between V and V ′ with
different timepoints. The earliest timestamp, denoted as ET(V ′), will be used
in the BFS process to calculate the risk-levels for other vertices. Then for each
unvisited neighbor V ′′ of V ′, we check whether there is an edge 〈V ′,V ′′〉 with
timestamp tv′′ such that tv′′ ≥ ET(V ′); if so, we set RL(V ′′) = 2. What’s more,
we set ET(V ′′) = tv′′ if tv′′ is the earliest timestamp that can confirm above
condition. Specially, there may be another neighbor V∗ of V ′′ and RL(V∗) = 1.
As a result, we need also calculate another value for ET(V ′′) based on the edges
between V ′′ and V∗. In this case, we set ET(V ′′) as the smallest value between
all the values. Finally, we calculate the risk-levels for the 3-hops neighbors of V
in a similar manner. Omitted in the interest of space, we do not describe here.

Figure 3(a) gives the example to calculate corresponding users’ risk-levels
when the user A tests positive for COVID-19 at time T.

3.2 Risk-Level Elimination

In our model, a user’s risk-level will be eliminated if we can make sure the status
of the user is safe.

For each vertex V in G with its RL(V) = 1 at timestamp T, if (1) the user
represented by the vertex V has no symptoms of COVID-19 at timestamp T+14;
and (2) there is no user represented by the neighbor of V who tests positive for
COVID-19 between time T and T+14, we can eliminate the risk-level of V. As
for other vertices {V ′}, we check whether (1) there exists a neighbor V ′′ with
its RL(V ′′) > RL(V ′); and (2) there is an edge 〈V ′,V ′′〉 with its timestamp later
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than ET(V ′′). If not, we can eliminate the risk-level of V ′. Figure 3(b) shows the
elimination process when the status of becomes safe.

4 Incremental Algorithms

In this section, we propose an effective algorithm, namely, updateRL, to update
the risk-levels of corresponding users when a new contact record is added into
the streaming graph G.

Now we explain updateRL, which is invoked for each edge insertion 〈v, v′〉 with
timestamp t1. Firstly, updateRL checks the risk-levels of v and v′, respectively.
Note that, each user who tests positive for COVID-19 will not have new contact
record. As a result, we have the following two cases that may cause the update
of the risk-levels.

1© From RL -3 to RL -2. Suppose that RL(v′) = 3 and RL(v) = 1. If t1 > ET(v),
updateRL transits RL(v′) from 3 to 2 and sets ET(v′) = t1.

2© From safety to RL -2 (or RL -3). Suppose that the status of v′ is safety
and RL(v) = 1 (or RL(v) = 2). If t1 > ET(v), updateRL sets RL(v′) = 2 (or
RL(v′) = 3) and sets ET(v′) = t1.

5 Experiments

In this section, we report experiment results and analyses.

5.1 Experiment Setup

The proposed algorithms were implemented using C++, running on a Linux
machine with two Core Intel Xeon CPU 2.2 Ghz and 32 GB main memory. Par-
ticularly, three algorithms were implemented: (1) RAMC, our algorithm to assign
and eliminate corresponding users’ risk levels; (2) updateRL, our update algo-
rithm for newly added contact record; (3) updateRL-R, our algorithm that recom-
putes the users’ risk-levels from the uses who have COVID-19.

Fig. 3. The mainly process of RAMC

Since we do not have the real-life user-contact records, we use two human
contact temporal networks, i.e., HS [1] and PS [1] to simulate the user-contact
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records. HS contains 2,367,984 triples while the edge insertions consist of 225,124
triples. PS contains 1,254,132 triples while the edge insertions consists of 112,607
triples. We also use a synthetic streaming social graph data LSBench which
contains 23,549,621 triples.

5.2 Evaluating the Effectiveness of RAMC

In this subsection, we evaluate the effectiveness of our proposed risk alerting
model. We ran experiments on HS and PS and randomly set 1000 vertices as
the users who test positive for COVID-19 on both datasets. According to the
experiment results, we find that the risk-levels of corresponding users can be
efficient calculated within 600ms on both datasets. Figure 3 shows the partial
visualization results in our experiment by using HS dataset. In detail, the first
picture shows the partial initial graph; the second picture shows some users who
have COVID-19 are emerged in the graph; the third graph shows the risk-level
assignment process and the last picture shows the risk-level elimination process.

5.3 Varying the Edge Insertion Size

In this subsection, we evaluate the impact of edge insertions on the performance
of updateRL and updateRL-R. We vary the number newly-inserted triples from
25K (= 25 × 103) 100K in 25K increments on both datasets. Figure 4(1) and
Fig. 4(2) shows the processing time for each algorithm. We see that updateRL
has consistently better performance than updateRL-R. What’s more, the figure
reads a non-exponential increase as edge insertion size grows. Specially, updateRL
outperforms updateRL-R by up to 42.78 times.
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Fig. 4. Experiment results

5.4 Varying Data Sizes

We evaluate the scalability of updateRL on LSBench dataset. We randomly sam-
pled about 20% to 100% from the LSBench dataset so that the data and result
distribution remain approximately the same with the whole dataset. Figure 4(3)
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reads a non-exponential increase as data size grows. In generally, the process-
ing time grows at no more than twice the speed of growth in the size of the
dataset. The scalability suggests that updateRL can handle reasonably large real-
life graphs as those existing algorithms for deterministic graphs.

6 Related Work

Representative algorithms for pattern matching/search from the streaming graph
include TurFlux [2] and TreeMat [3], etc. However, these work are about con-
tinuous subgraph matching and cannot be used in our model. To the best of our
knowledge, this is among the first attempts to design a risk alerting for COVID-
19 spread based on a graph search algorithm. We believe that this work will
benefit for fighting COVID-19.

7 Conclusion

In this paper, we have investigated a systematic graph-based approach to risk
alerting for COVID-19 spread. We design a risk alerting model to help trace the
people who have been in contact with someone infected with the coronavirus
and propose an incremental updating algorithm to update the risk-levels.
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Muhammad Imran(B), Gábor E. Gévay, and Volker Markl

Technische Universität Berlin, Berlin, Germany
muhammad.imran@campus.tu-berlin.de

Abstract. Large-scale, parallel graph processing has been in demand
over the past decade. Succinct program structure and efficient execution
are among the essential requirements of graph processing frameworks.
In this paper, we present Cog, which executes Datalog programs on the
Apache Flink distributed dataflow system. We chose Datalog for its com-
pact program structure and Flink for its efficiency. We implemented a
parallel semi-naive evaluation algorithm exploiting Flink’s delta itera-
tion to propagate only the tuples that need to be further processed to
the subsequent iterations. Flink’s delta iteration feature reduces the over-
head present in acyclic dataflow systems, such as Spark, when evaluating
recursive queries, hence making it more efficient. We demonstrated in our
experiments that Cog outperformed BigDatalog, the state-of-the-art dis-
tributed Datalog evaluation system, in most of the tests.

Keywords: Datalog · Recursive queries · Graph processing · Cyclic
dataflows

1 Introduction

Graphs can represent numerous real-world problems. With the advancement of
the web and the vast number of its users, efficiently processing massive graphs
is becoming essential. Efficiency can be achieved by scaling out computations to
a cluster and thereby reducing computation times. Existing state-of-the-art sys-
tems that choose Datalog as their language, such as BigDatalog [18] and Myria
[20], suffer either from significant scheduling overhead or shuffling overhead to
perform each iteration of a graph computation.

From the users’ perspective, having concise programming constructs that are
easy to learn is also an essential factor to consider. Existing large-scale graph
processing systems, such as Gelly [25] of Flink [6], or GraphX [11] of Spark
[21], do not provide conciseness and require significant effort to perform even
simple analytics. These systems are complex and verbose due to their APIs
being embedded in general-purpose languages, such as Java or Scala. In contrast,
Datalog offers more conciseness [13], i.e., shorter programs, and therefore makes
it easier to implement graph-analytics or artificial intelligence algorithms.
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This paper presents Cog, which is a Flink-based evaluation system of posi-
tive Datalog programs that do not contain aggregates. The core feature of Cog is
the efficient evaluation of Datalog’s linear recursive queries by exploiting Flink’s
native delta iterations [8]. Flink is particularly suitable to evaluate Datalog pro-
grams because of its ability to evaluate iterative algorithms efficiently by cyclic
dataflows. From relational queries (i.e., join, union, recursive queries) to graph
processing algorithms (e.g., transitive closure) can conveniently be implemented
in Cog, and executed on a cluster in a scalable way.

Contributions. We made the following contributions:

– We created logical plans for Datalog programs to be executed on a distributed
dataflow engine. The logical plan also includes an explicit representation of
recursive queries.

– We implemented a Datalog query execution engine that exploits Flink’s delta
iteration feature, which we found to be particularly well-suited for the classic
semi-naive Datalog evaluation algorithm.

– We experimentally confirmed that evaluating recursive queries of Datalog
using Flink’s delta iteration performs better than the Spark-based BigDatalog
[18] system, which is the state of the art in scalable Datalog execution.

2 Preliminaries

We will now briefly review Datalog and Apache Flink. We will also show why
Flink’s delta iteration is suitable to evaluate Datalog programs efficiently.

2.1 Datalog

Datalog [7] is a rule-based query language. Each rule is expressed as a function-
free horn clause, such as h :- b1, ..., bn, where h is the head predicate of the rule,
and each bi is a body predicate separated by a comma “,” which represents the
logical AND (∧). A predicate is also known as a relation. A fact is a tuple in a
relation. A Datalog rule is recursive if the head predicate of a rule also appears in
the body of the rule. After evaluating all body predicates, the produced facts are
assigned to the head predicate of the rule. A relation that comes into existence
as a result of a rule execution is called an intensional database (IDB). A stored
relation is called an extensional database (EDB). The transitive closure (TC)
program in Datalog is given in Listing 1 as an example. In the example, the
predicate arc is an EDB, whereas the predicate tc is an IDB. The rule r2 is a
recursive rule as it has the predicate tc in its head and body. A join is created
between tc and arc predicates in rule r2, and the resulting facts are assigned to
the head predicate tc.

r1: tc(X, Y) :- arc(X,Y).

r2: tc(X, Y) :- tc(X,Z),arc(Z,Y).

Listing 1. Transitive Closure (TC) program in Datalog.
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2.2 Apache Flink

Apache Flink [6] is a distributed dataflow system. While nowadays Flink is
mostly known for efficient stream processing, it initially focused on iterative
dataflows in batch computations [8]. In this paper, we rely only on its batch-
processing capabilities for translating Datalog programs to iterative dataflows.

Flink’s batch API is centered around the DataSet class, which represents a
scalable collection of tuples. DataSets offer numerous data processing operators
(such as map, filter, join), which create new DataSets. From a Flink program
written using DataSet operators, Flink creates a dataflow job, a directed graph
where nodes represent data processing operators and edges represent data trans-
fers. Flink executes these dataflow jobs in a scalable way, by parallelizing the
execution of each dataflow node on the available worker machines in a cluster.
Flink executes all operators lazily, i.e., the operator is first only added to the
dataflow job as a node, and then later executed as part of the dataflow job exe-
cution. The dataflow job is executed when Flink encounters an action operator
(such as counting the elements in a DataSet, or printing its elements), or when
the user explicitly triggers the execution of the dataflow job that was built up
so far. Flink provides libraries and APIs to perform relational querying, graph
processing [25], and machine learning.

Iteration APIs. Flink supports two types of iterations: bulk and delta. Bulk
iterations are general-purpose iterations, where the result of each iteration is a
completely new solution set computed from the previous iteration’s solution set
[8]. On the other hand, delta iterations are a form of incremental iterations, which
is suitable for iterative algorithms with sparse computational dependencies, i.e.,
where each iteration’s result differs only partially from the previous iteration.
In the context of Datalog evaluation, the semantics of delta iteration matches
well with the principles of the classic semi-naive evaluation algorithm [3], thus
making it suitable for recursive Datalog program executions: applying a recursive
Datalog rule once often adds only a small number of tuples compared to the total
result size.

Iteration Execution in Cyclic Dataflow Jobs. Flink executes iterative pro-
grams written using the above iteration APIs in a single, cyclic dataflow job,
i.e., where an iteration’s result is fed back as the next iteration’s input through
a backwards dataflow edge. This is in contrast to many other dataflow systems,
such as Apache Spark [21], which execute iterative programs as a series of acyclic
dataflow jobs. Flink’s cyclic dataflows are more efficient for several reasons:

– Having a single dataflow job for all iterations avoids the inherent overhead
of launching a dataflow job on a cluster of machines. The main overhead of
launching a job is the (centralized) scheduling of the constituent tasks of the
job to a large number of machines.

– Operator lifespans can be extended to all iterations. (Whereas in Spark, new
operators are launched for each iteration.) This enables Flink to naturally
perform two optimizations:
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• In the case of a delta iteration, Flink can keep the solution set in the state
of an operator that spans all iterations. Thereby, the solution set does not
need to be newly rebuilt for each iteration, and instead small changes can be
efficiently accommodated by just modifying the existing operator state.

• Loop-invariant datasets, i.e., datasets that are reused without changes in each
iteration (e.g., arc in Listing 1), can be more efficiently handled. For example,
when one input of an equi-join is a loop-invariant dataset, the join operator
can build a hash table of the loop-invariant input only once, and just probe
that same hash table at every iteration.

3 Cog

In this section, we discuss Cog, our system that executes Datalog programs
on Flink. We implemented positive Datalog without aggregation. Cog parses a
Datalog program, converts the parsed program to an intermediate representa-
tion, creates and optimizes a logical plan, and finally creates a Flink plan for
execution. Listing 2 shows an example for writing Datalog programs in Cog.

1 DatalogEnvironment datalogEnv = DatalogEnvironment.create(flinkEnv);

2 String transitiveClos =

3 "tc(X,Y) :- graph(X,Y).\n" +

4 "tc(X,Y) :- tc(X,Z),graph(Z,Y).\n";

5 String query = "tc(X,Y)?";

6 // Read input data using standard Flink operators:

7 DataSet<Tuple2<Integer, Integer>> inputGraph = ...;

8 // Register it for use in Datalog queries:

9 datalogEnv.registerDataSet("graph", inputGraph);

10 // Execute the query:

11 DataSet<Tuple2<Integer, Integer>> result =

12 datalogEnv.executeQuery(transitiveClos, query);

13 // The result is a standard Flink DataSet, which we can further process:

14 System.out.println(result.count());

Listing 2. An implementation of Transitive Closure (TC) program in Cog.

3.1 Query Representation and Planning

Query Representation. A parsed Datalog program is represented in the form
of a predicate connection graph (PCG) [2]. Figure 1 shows the PCG for the TC
query as an example. A PCG is an annotated AND/OR tree, i.e., it has alter-
nating levels of AND and OR nodes. The AND nodes represent head predicates
of rules, and the OR nodes represent body predicates of rules. The root and the
leaves are always OR nodes. The root of the tree represents the query predicate.
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Fig. 1. Predicate Connection Graph (PCG) for Transitive Closure (TC) query.

Logical Plan. We used the algebra module of Apache Calcite [5] to represent
logical plans. Calcite provides numerous operators (such as join, project, union)
to represent a query algebra. To evaluate recursive Datalog queries, the repeat
union operator is an important one. The repeat union operator has two child
nodes: seed and iterative. The seed node represents facts generated by non-
recursive rule(s), whereas the iterative node represents facts generated by the
recursive rule(s). The semantics of the repeat union operator are as follows: it
first evaluates the seed node, whose result will be the input to the first iteration;
then, it repeatedly evaluates the iterative node, using the previous iteration’s
result as input. The evaluation terminates when the result does not change
between two iterations. Figure 2 shows the logical plan created for the TC program
given in Listing 1. The Calcite-based logical plans are then transformed into
Flink’s own logical plans and then to Flink’s DataSet-based plan. During these
transformations, standard relational optimizations are also performed.

Fig. 2. Cog logical plan for Transitive Closure (TC) query.
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Flink Plan. The optimized logical plans are translated into Flink’s DataSet-
based plans. We utilized existing Flink DataSet operators for scans, joins, unions,
filters, and projections. However, we implemented a translation from the repeat
union and transient table scan operators to Flink DataSet operators to enable
the execution of recursive queries, which we discuss in the next subsection.

3.2 Semi-Naive Evaluation in the Flink DataSet API

Semi-naive evaluation [3] is an efficient way to evaluate Datalog programs. With
this technique, each iteration processes only the tuples that were produced by
the previous iteration, and thus redundant work is eliminated. The final result
is obtained by the union of the results produced by each iteration. Algorithm 1
shows the pseudocode of semi-naive evaluation. In the algorithm, seed represents
the non-recursive rule(s) (e.g., r1 in TC), whereas recursive represents one exe-
cution of the recursive rule(s) (e.g., r2 in TC). W represents the differential that
is calculated in each iteration, and S stores the final result at the end.

Algorithm 1
1: function Semi-naive(seed, recursive)
2: S ← seed
3: W ← seed

4: while W �= ∅ do

5: D ← recursive(W ) − S

6: W ← D
7: S ← S ∪ D

Algorithm 2
1: function Flink-delta(S, W, u, δ, key)
2:
3:
4: while W �= ∅ do

5: D ← u(S, W )

6: W ← δ(D, S, W )
7: S = S ∪. D

Compare Algorithm 1 with Algorithm 2, which shows the general template
of a Flink Delta Iteration. There is an initial solution set (S), and an initial
workset (W ), and then each iteration first computes a differential (D), which is
to be merged into the solution set (Line 7), and also computes the workset for the
next iteration. Note that the merging into the solution set is denoted by ∪. , which
means that elements that not yet appear in the solution set should be added, and
elements which have the same key as an element already in the solution set should
override the old element: S ∪. D = D ∪ {s ∈ S : ¬∃d ∈ D|key(d) = key(s)}. We
can see that with the following mapping, a Flink Delta Iteration performs exactly
the semi-naive evaluation of a Datalog query:

S = seed; W = seed; u(S,W ) = recursive(W ) − S; δ(D,S,W ) = D;
key(x) = x. Note that by choosing the key to be the entire tuple, we make
the ∪. behave as a standard union.
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When translating from Cog logical plans, the semi-naive evaluation is imple-
mented to translate the repeat union operator to DataSet operators. Listing 3
presents this translation. We use a CoGroup operation to compute which of the
tuples created in this iteration are not already in the solution set. We also use
this CoGroup operation to eliminate duplicates. The work set propagates the
differential to the next iteration. The solution set accumulates the output of
all iterations. The work set and the solution set are always kept in memory for
efficiency. Note that all the created Flink operators are evaluated lazily upon
the call of a sink operator. Figure 3 shows the Flink plan for the TC query as an
example. The sync task is a special operator inserted by Flink, which waits for
all operators in the iteration body to perform one iteration, and then signals to
the Flink runtime that the next iteration can start.

1 // Evaluate seed node (non-recursive rules).

2 val seedDs = seed.translateToDatasetPlan(tableEnv, queryConfig)

3 val workSet: DataSet[Row] = seedDs

4 val solutionSet: DataSet[Row] = seedDs

5 // Define delta iteration.

6 val iteration = solutionSet.iterateDelta(

7 workSet, // initial workset

8 Int.MaxValue, // max number of iterations

9 seedDs.allFields) // the key is composed of all the fields

10 // Register the work set as a temporary table to the Flink catalog

11 // so that it can be used by the iterative node.

12 updateCatalog(tableEnv, iteration.getWorkset, "workset-temp-table")

13 // Translate the subtree of the iterative node (recursive rules).

14 // The subtree contains a Transient Table Scan operator, which is the

15 // representation of the recursive reference (shown in yellow in Fig. 2.).

16 // We added a rule (not shown here) to translate this as a reference to the

17 // "workset-temp-table", i.e., the DataSet representing the workset.

18 val iterativeDs =

19 iterativeSubplan.translateToDatasetPlan(tableEnv, queryConfig)

20 // Compute the difference between the newly produced tuples

21 // and the solution set by a CoGroup operation. Flink will probe

22 // the hash table that it stores for the solution set throughout

23 // the job execution.

24 val delta = iterativeDs

25 .coGroup(iteration.getSolutionSet)

26 .where("*").equalTo("*") // all fields are included in the key

27 .with(new DeduplicatingMinusCoGroupFunction[Row]())

28 // At the end of each iteration, the delta is used both as

29 // the set of tuples to be added to the solution set (1st argument),

30 // and the next workset (2nd argument).

31 val result = iteration.closeWith(delta, delta)

Listing 3. An implementation of the classic semi-naive Datalog evaluation algorithm
in Flink. We mapped the algorithm to just a few standard Flink API calls.
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Fig. 3. The Flink plan for Transitive Closure (TC) query. Some operators are omit-
ted/combined for clarity. Note that across all the iterations the Join operator keeps
the hash table that it built for the arc dataset.

4 Experiments

4.1 Experimental Setup

Hardware and Software Environment. We performed our experiments on
a cluster of 8 nodes, connected with Gigabit Ethernet. Each worker node has
an IBM PowerPC 48-core CPU. We allocated 48 GB memory to the Flink and
Spark worker processes. We implemented Cog on the current snapshot version
of Flink (on the top of commit 8f8e358).

Benchmark Programs. Thus far, Cog supports positive Datalog with recur-
sion, but without aggregation. We chose the following benchmark queries:

– Transitive Closure (TC): Finds all pairs of vertices in a graph that are
connected by some path. Listing 1 shows TC in Datalog.

– Same Generation (SG): Two nodes are in the Same Generation (SG) if
and only if they are at the same distance from another node in the graph.
Listing 4 shows SG program in Datalog. The program finds all pairs that are
in the same generation.

r1: sg(X, Y):- arc(P, X), arc(P,Y), X!=Y.

r2: sg(X, Y):- arc(A, X), sg(A, B), arc(B, Y).

Listing 4. Same Generation (SG) program in Datalog.

– Single-Source Reachability: Finds all vertices connected by some path to
a given source vertex. Listing 5 shows the Reachability program in Datalog.

r1: reach(X,Y):- arc(X,Y), X=source.

r2: reach(X,Y):- reach(X,Z), arc(Z,Y).

Listing 5. Reachability program in Datalog.



78 M. Imran et al.

Datasets. We used synthetic graph datasets to evaluate and benchmark our
system. These datasets are Tree11, Grid150, and g10K. The same datasets are
also used by Shkapsky et al. [18] for benchmark comparison of BigDatalog with
Myria [20] and Distributed SociaLite [17] systems. Table 1 shows the properties
of the datasets. These graphs have specific structural properties: Tree11 has
11 levels, Grid150 is a grid of 151 by 151, and the G10K graphs are 10k-vertex
random graphs in which each randomly-chosen pair of vertices is connected with
probability 0.001. The last three columns of Table 1 show the output size pro-
duced with these datasets by the benchmark queries. For the Reachability
program, we used graph datasets generated with R-MAT [26] synthetic graph
generator with probabilities a = 0.45, b = 0.25, c = 0.15, d = 0.15. For all the
datasets, we calculated Reachability from vertex 977.

Table 1. Input- and output sizes, and the number of iterations (in parenthesis)

Name Vertices Edges TC SG Reachability

Tree11 71,391 71,390 805,001 (11) 2,086,271,974 (11) -

Grid150 22,801 45,300 131,675,775 (299) 2,295,050 (149) -

G10K 10,000 100,185 100,000,000 (6) 100,000,000 (3) -

R-MAT-1M 1 mill 10 mill - - 523,967 (4)

R-MAT-2M 2 mill 20 mill - - 1,047,937 (4)

R-MAT-4M 4 mill 40 mill - - 2,095,865 (4)

R-MAT-8M 8 mill 80 mill - - 4,191,735 (4)

R-MAT-16M 16 mill 160 mill - - 8,383,418 (5)

R-MAT-32M 32 mill 320 mill - - 16,767,026 (5)

Fig. 4. Evaluation result comparison using TC and SG queries.
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Fig. 5. Evaluation result comparison using Reachability query.

4.2 Results

We ran TC, SG, and Reachability in our system and another state-of-the-art dis-
tributed Datalog system, namely BigDatalog [18]. As BigDatalog demonstrated
its efficiency compared to other distributed Datalog systems (such as Myria [20]
and Distributed SociaLite [17]), our purpose here is to show how Cog performs
w.r.t. BigDatalog. Figure 4 and Fig. 5 show the benchmark comparison of Cog
and BigDatalog. We report the median values in Fig. 4 and Fig. 5.

TC. We used the query shown in Listing 1 for calculating TC. Cog outperformed
BigDatalog for all the graphs. Notably, Cog showed 3x better performance than
BigDatalog for Tree11 and Grid150 graphs. BigDatalog suffers from the over-
head of scheduling caused by the large number of iterations, whereas no such
overhead is present in Cog as it performs iterative programs in a cyclic dataflow
job [10]. However, this overhead is negligible when there is only a small number
of iterations (see Table 1). Cog can suffer performance loss due to data spilling
during the CoGroup operation with the solution set, which is visible in the case
of G10K. With default settings, BigDatalog always crashed due to running out
of memory as it was caching resilient distributed datasets (RDDs) in memory
and clearing lineage in order to avoid stack overflow from long lineages. For TC
queries, we disabled such caching of RDDs to avoid crashes.

SG. We used Listing 4 for calculating SG. We found that Cog is 2x faster than
BigDatalog for Grid150 and G10K graphs, despite RDD caching to memory was
enabled for BigDatalog. Though SG program produces a small number of output
rows when Grid150 is used as input, however, it is clear from the result of G10K
that the scheduling overhead is not the only factor for slow execution speed. Cog
suffered performance loss when executing SG on Tree11 dataset. The reason for
the inefficiency was the fact that the CoGroup operation with the solution set
gets slower when the number of records stored in the solution set increases.
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Single-Source Reachability. We used Listing 5 for calculating Reachability from
a single vertex. Listing 5 shows that Cog outpaced BigDatalog in all the graph
instances we used to evaluate Reachability. The difference in performance
between Cog and BigDatalog gets more prominent with the increase in the size
of the datasets. When running Reachability on BigDatalog with default con-
figuration (e.g., broadcast join), we saw an increase of approximately 1.5x on
each 2x increase in the size of the graphs. Though the overhead of scheduling
did not increase (i.e., the number of iterations for 1M, 2M, 4M datasets was 4).
With default settings, BigDatalog crashed for all the datasets of sizes greater
than 4M. We discovered that BigDatalog uses a broadcast join by default, which
broadcasts the entire graph to all the worker nodes. We believe that this was
the reason for the crash, since a broadcast join works only if one of the inputs
is small enough. Therefore, we changed the configuration to use a repartition
join instead, which performed slightly faster and was able to process all of our
datasets. The running time growth for Cog on all the datasets was small and
steady. Cog was 3.4x faster for the largest dataset we tested.

5 Related Work

There is a large body of work discussing efficient Datalog evaluation [4,9,19]. In
the following discussion we focus on distributed systems.

Distributed Dataflow Systems. Flink [1,6] is a modern dataflow system for
general-purpose data processing, that employs the incremental iteration model
(specifically, delta iterations) [8]. Spark [21] is a scalable, fault-tolerant, dis-
tributed in-memory dataflow engine. In contrast to Flink, it has a considerable
scheduling overhead when used for iterative jobs, as each iteration is scheduled
as a new job. Naiad [15] is a system based on the timely dataflow computational
model that supports structured loops for streaming. The iteration mechanism in
Naiad is similar to that in Flink. Therefore, it would be possible to implement
semi-naive Datalog execution also on Naiad, similarly to how we implemented
it for Cog. The Differential Datalog [16] system goes in this direction, but it
supports only single-machine execution.

Pregel-Like Graph Processing Systems. The think-like-a-vertex paradigm
for graph processing was introduced by Pregel [14], and is used in many large-
scale graph processing systems, such as GraphX [11], Giraph [23], and Gelly
[25]. Contrary to Datalog, the think-like-a-vertex paradigm provides a stateful
computation model, whereas Datalog queries are more declarative. Note that
Pregel-like systems usually support deactivating vertices, and thereby support a
kind of incrementalization, akin to the incremental nature of semi-naive evalua-
tion.
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Datalog Evaluation in Distributed Systems. Several systems implemented
Datalog to be executed on a cluster of machines. BigDatalog [18] implemented
positive Datalog with recursion, non-monotonic aggregations, and aggregation
in recursion with monotonic aggregates on Spark. BigDatalog uses a number of
clever tricks to overcome some of the limitations of Spark in the area of iterative
computations. It added scheduler-aware recursion by adding a specialized Spark
stage (FixPointStage) for recursive queries to avoid the job launching overhead.
Furthermore, reusing Spark tasks within a FixPointStage eliminates the cost
of task scheduling and task creation; however, task reuse can only happen on
so-called decomposable Datalog programs, and only if the joins can be imple-
mented by broadcasting instead of repartitioning, which is not the case for large
graphs. BigDatalog added specialized SetRDD and AggregateRDD to enable
efficient evaluation of recursive queries. BigDatalog also pays special attention
to joins with loop-invariant inputs. It avoids repartitioning the static input of
the join, as well as rebuilding the join’s hash table at every iteration. However,
it does not ensure co-location of the join tasks with the corresponding cached
build-side blocks, and thus cannot always avoid a network transfer of the build-
side. (RaSQL [12] uses the same techniques plus operator code generation and
operator fusion to implement recursive SQL with aggregations on Spark.)

When implementing Cog, we did not need to perform any of the above
optimizations, as Flink has built-in support for efficient iterations with cyclic
dataflow jobs. Having cyclic dataflow jobs means that all of the issues that Big-
Datalog’s optimizations are solving either do not even come up (per-iteration
job-launching overhead and task-scheduling overhead), or already have simple
solutions by keeping operator states across iterations (loop-invariant join inputs,
incremental updates to the solution set). Thus, our view is that relying on Flink’s
native iterations being implemented as a single, cyclic dataflow job is a more nat-
ural way to evaluate Datalog (or recursive SQL) efficiently.

Distributed SociaLite [17], is a system developed for social network analysis
that implemented Datalog with recursive monotone aggregate functions using a
delta stepping method and gives the ability to programmers to specify data dis-
tribution. It uses message passing mechanism for communication among workers.
It shows weaknesses in loading datasets (base relations) and poor shuffling per-
formance on large datasets [18]. Myria [20] is a distributed execution engine that
implemented Datalog with recursive monotonic aggregation function in a share-
nothing engine and supports synchronous and asynchronous iterative models.
Myria, however, suffers from shuffling overhead when running large datasets and
becomes unstable (it often runs out of memory) [18].

GraphRex [22] is a recent distributed graph processing system with a
Datalog-like interface. It focuses on making full use of the characteristics of
modern data center networks, and thus achieves very high performance in such
an environment. In contrast to Cog or BigDatalog, it is a standalone system,
not built on an existing dataflow engine, such as Flink or Spark. Note that
building on an existing dataflow engine has the advantage that declarative Dat-
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alog queries can be seamlessly integrated into larger programs written using the
(typically more general) native API of the dataflow engine.

6 Conclusion and Future Work

In this paper, we presented Cog, which is a Datalog language implementation
for batch processing tasks on Apache Flink. The main advantages of Cog over
other systems from a user perspective are its efficiency and conciseness. Cog exe-
cutes recursive queries of Datalog as a single, cyclic dataflow job, thus avoiding
scheduling overhead that is present in acyclic dataflows. In our experiments, Cog
outperformed BigDatalog, a state-of-the-art large-scale Datalog system, in most
of the test cases. The code and the latest updates of Cog are available at [24].

Future Work. An implementation of negation, non-monotonic aggregations,
and aggregation in recursion for Datalog can be added to the system. Datalog
for Flink stream processing tasks can also be implemented to facilitate analyt-
ics on real-time datasets. We believe that Datalog’s implementation for Flink
stream processing API could surpass Cog’s efficiency because a Flink stream-
ing job would not need a synchronization barrier after each iteration. Another
future direction is to add support to Flink for recursive SQL queries, which are
similar to recursive Datalog queries. Cog already laid the groundwork for this
by translating the recursive logical plans to the Flink DataSet API.
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5. Begoli, E., Camacho-Rodŕıguez, J., Hyde, J., Mior, M.J., Lemire, D.: Apache cal-
cite: a foundational framework for optimized query processing over heterogeneous
data sources. In: Proceedings of the 2018 International Conference on Management
of Data, pp. 221–230 (2018)

6. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink: stream and batch processing in a single engine. Bull. IEEE Com-
put. Soc. Tech. Comm. Data Eng. 36(4), 28–38 (2015)

https://doi.org/10.1007/978-1-4612-4980-1_17


Distributed Graph Analytics with Datalog Queries in Flink 83

7. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog
(and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989)

8. Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast iterative data
flows. Proc. VLDB Endow. 5(11), 1268–1279 (2012)

9. Fan, Z., Zhu, J., Zhang, Z., Albarghouthi, A., Koutris, P., Patel, J.: Scaling-
up in-memory Datalog processing: observations and techniques. arXiv preprint
arXiv:1812.03975 (2018)

10. Gévay, G.E., Rabl, T., Breß, S., Madai-Tahy, L., Markl, V.: Labyrinth: compil-
ing imperative control flow to parallel dataflows. arXiv preprint arXiv:1809.06845
(2018)

11. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
GraphX: graph processing in a distributed dataflow framework. In: 11th USENIX
Symposium on Operating Systems Design and Implementation OSDI 14). pp. 599–
613 (2014)

12. Gu, J., et al.: RaSQL: greater power and performance for big data analytics with
recursive-aggregate-SQL on Spark. In: Proceedings of the 2019 International Con-
ference on Management of Data, pp. 467–484 (2019)

13. Hajiyev, E., Verbaere, M., de Moor, O.: codeQuest : scalable source code queries
with datalog. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 2–27.
Springer, Heidelberg (2006). https://doi.org/10.1007/11785477 2

14. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management of data,
pp. 135–146 (2010)

15. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P., Abadi, M.: Naiad:
a timely dataflow system. In: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pp. 439–455 (2013)

16. Ryzhyk, L., Budiu, M.: Differential datalog. In: Datalog 2.0 - 3rd International
Workshop on the Resurgence of Datalog in Academia and Industry, CEUR-WS
(2019)

17. Seo, J., Park, J., Shin, J., Lam, M.S.: Distributed sociaLite: a datalog-based lan-
guage for large-scale graph analysis. Proc. VLDB Endow. 6(14), 1906–1917 (2013)

18. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big data
analytics with datalog queries on spark. In: SIGMOD, pp. 1135–1149 (2016)
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Abstract. Many graph query languages use, at their core, path queries
that yield node pairs that are connected by a path of interest. For the
end-user, such node pairs only give limited insight as to why this query
result is obtained, as the pair does not directly identify the underlying
path of interest. To address this limitation of path queries, we propose
the single-path semantics, which evaluates path queries to, for each node
pair (m, n), a single path from m to n satisfying the conditions of the
query. To put our proposal in practice, we provide an efficient algorithm
for evaluating context-free path queries, a particular powerful type of path
queries, using the single-path semantics. Additionally, we perform a short
evaluation of our techniques that shows that the single-path semantics
is practically feasible, even when query results grow large.

Keywords: Graph queries · Path results · Context-free path queries

1 Introduction

The graph data model is one of the most versatile and natural data models in
use: graph-structured data is everywhere and examples can be found in family
trees, social networks, process models, gene networks, XML data, and RDF
data [1,2,9,12,30]. As an example, consider the small social network visualized
in Fig. 1 in which nodes represent peoples and edges represent the relationships
between peoples.

A central step in the analysis of such graph data is the ability to query
the data for relationships of interest. For this purpose, many different query
languages have been developed, including XPath for querying XML data [8,
9,11], SPARQL for querying RDF data [19,30], the graph query languages
GXPath [24], Cypher [28], and Gremlin [29], and formal verification lan-
guages such as PDL, KAT, CTL, and LTL [12,22,23]. At their core, these
graph query languages depend on path queries that can be used to express indi-
rect relationships that can be derived from the data [2]. Examples of such path
queries are the well-known regular path queries [5] and the context-free path
queries [18,20,23,31]. Unfortunately, path queries are typically evaluated to only
c© Springer Nature Switzerland AG 2020
L. Qin et al. (Eds.): SFDI 2020/LSGDA 2020, CCIS 1281, pp. 84–98, 2020.
https://doi.org/10.1007/978-3-030-61133-0_7
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a set of node pairs (m,n) that are connected by a path of interest, which gives
little insight in the way pairs (m,n) are obtained, limiting their capabilities for
graph analytics.

Alice

Bob
friendOf

friendOf

Carol
friendOf

friendOf

Dan
friendOf

Eve

friendOf

friendOf

friendOf

Faythe
friendOf

Fig. 1. A typical example of graph data: a social network relating peoples.

Example 1. Let G be the social network visualized in Fig. 1. The path query
indirectFriendOf = friendOf+, expressed by a regular expression, will return the
derived relationship between pairs (m,n) such that m is a friend of n, or a
friend-of-a-friend of n, or a friend-of-a-friend-of-a-friend of n, and so on. The pair
(Alice, Eve) is in the result of evaluating indirectFriendOf on graph G. Unfortu-
nately, Alice cannot use this result to determine whom of her friends can help her
to get in contact with Eve, and Alice will have to further analyze the underlying
graph data.

Example 1 illustrates the need to answer path queries with the underlying
paths of interest inspected by these queries. To address this need, we propose the
single-path semantics for evaluating path queries: using the single-path seman-
tics, a path query will evaluate to a shortest path connecting node pair (m,n)
(for each node pair in the query result).

Example 2. Consider the setting of Example 1. Evaluation of indirectFriendOf
using the single path semantics can result in the path “Alice friendOf
Bob friendOf Eve”, from which Alice can derive a way to contact Eve. As the
single path semantics requires a single and shortest path between node pairs, the
path “Alice friendOf Carol friendOf Dan friendOf Eve” cannot be in the output.

The need for the single-path semantics extends beyond the above toy exam-
ple. Not only can single-path semantics provide more relevant information to
end-users, the single-path semantics can also aid in graph analytics and data
exploration, and can be used to provide data provenance for traditional path
queries [10], this by providing paths that show why a path query includes a cer-
tain node pair in its output. Furthermore, in the large-scale graph data setting
in which many complex path queries are evaluated, there is a need for tools to
support query debugging [21], for which the single-path semantics can also be
of use.

In this paper, we deal with the issues outlined by proposing the single-path
semantics. We focus our study on the context-free path queries, as these are
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a particular powerful type of path queries that cannot only express all typical
path queries (e.g. [5,20]), but also have applications in model checking [23], bio-
informatics [31], and parser construction [17]. In specific, we formalize the single-
path semantics, introduce the algorithm MinimizeSetGG that provides efficient
evaluation of context-free path queries on graphs using the single-path semantics,
and evaluate the performance of MinimizeSetGG in practice. Our results show
promise, as MinimizeSetGG can easily answer queries whose results contains
tens-of-millions of paths, even if these paths have considerable lengths.

2 Preliminaries

First, we introduce the terminology and notation used throughout this paper.
Let Σ be a set of symbols. We call a sequence s = σ1 . . . σn of symbols,

σ1, . . . , σn ∈ Σ, a string over Σ. We write |s| = n to denote the length of s. The
empty string is denoted by ε and we usually treat individual symbols as strings
of length one. The concatenation of two strings s1 and s2 is denoted by s1 ◦ s2.
We denote the set of all strings over Σ by Σ∗. A language over Σ is a (possibly
infinite) set of strings over Σ.

A graph is a triple G = (V, Σ, δ), in which V is a finite set of nodes, Σ is a
finite set of alphabet symbols used as edge labels, and δ ⊆ V × Σ × V is a finite
set of labeled edges. To simplify presentation, we assume that V and Σ do not
overlap (V ∩ Σ = ∅). A path in G is a sequence π = m1 σ1 m2 . . . mn−1 σn−1

mn such that, for every mi σi mi+1 in the sequence, 1 ≤ i < n, we have
(mi, σi,mi+1) ∈ δ. We write m1πmn to indicate that π is a path starting at
node m1 and ending at node mn. We write |π| = n − 1 to denote the length
of π and we write trace(π) = σ1 . . . σn−1 to denote the trace of π, the string
represented by the sequence of edge labels in π.

A path query q is specified by a language L that contains all traces of paths
of interest, e.g., via a regular expression (RPQs) or via a context-free gram-
mar (CFPQs). The evaluation of q on graph G using the standard relational
semantics simply consists of all node pairs that are connected by paths whose
trace is in L. To denote the evaluation of q on G, we write [[q]]G, and we have
[[q]]G = {(m,n) | ∃ path mπn in G with trace(π) ∈ L}.

Example 3. In Example 1, the query indirectFriendOf was expressed by the reg-
ular expression friendOf+. This regular expression represents the language

L = {friendOf, friendOf ◦ friendOf, friendOf ◦ friendOf ◦ friendOf, . . . }.

We have (Alice, Eve) ∈ [[indirectFriendOf]]G, with G the graph in Fig. 1, as there
exists a path π = “Alice friendOf Bob friendOf Eve” with trace(π) ∈ L.

A grammar is a triple C = (N , Σ,P), in which N is a set of non-terminals, Σ
is a finite set of alphabet symbols, and P is a set of production rules. We require
that N and Σ do not overlap (N ∩ Σ = ∅). The set of production rules, P,
consists of production rules of the form a 	→ b c or a 	→ σ, in which a,b,c ∈ N
and σ ∈ Σ.
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Each non-terminal in N represents a language over Σ: the production rules
in P describe how to produce strings out of non-terminals via rewrite steps. To
illustrate this, consider a string s = s1 ◦ a ◦ s2 in which s1, s2 ∈ (N ∪ Σ)∗ and
a ∈ N . If there exists a production rule (a 	→ s′) ∈ P, then we can rewrite s
into s1 ◦ s′ ◦ s2 by applying the rewrite a 	→ s′. We write s →∗

P s′ if s can be
rewritten into s′ using production rules in P, and we write s →+

P s′ if s →∗
P s′

and at least one rewrite step is necessary to rewrite s into s′.
The language of non-terminal a ∈ N is defined by L(C ;a) = {s ∈ Σ∗ |

a →∗
P s}. Given a grammar with non-terminal a, we simply write a to denote

the path query based on the language L(C ;a).

Example 4. Consider the grammar C = (N , Σ,P) in which N = {a}, Σ =
{friendOf}, and P = {a → friendOf,a → a a}. The language L(C ;a) is equiv-
alent to the language L of Example 3. Hence, we have (Alice, Eve) ∈ [[a]]G, in
which G is the graph visualized in Fig. 1.

3 The Single-Path Semantics

In Sect. 2, we already introduced the typical relational semantics of path queries.
Unfortunately, the step toward path-based semantics—in which a path query
yields paths mπn instead of node pairs (m,n)—is not straightforward. Even in
basic situations, the resulting set of paths can already be unbounded in size,
making it impossible to simply evaluate to such a set:

Example 5. Consider Example 1 and the graph G visualized in Fig. 1. This
graph is cyclic, as there is a path “Alice friendOf Carol friendOf Dan friendOf
Eve friendOf Bob friendOf Alice”. Hence, we can make paths of arbitrary lengths
that match the query indirectFriendOf, and the set of all paths matching the
query is unbounded in size.

Restricting the paths considered in the evaluation, e.g., to simple paths,
assures that the set of paths considered is finite. Unfortunately, changing the
paths considered during evaluation defeats the purpose of path-based semantics
as a data provenance and debugging tool for normal path queries. Moreover, it is
well-known that such restrictions make query evaluation prohibitive expensive [2,
3,7,25]. Restricting the number of paths in the result, e.g., to a single path per
node pair, will also assure a finite result. Unfortunately, as Example 5 already
shows, individual paths in such a finite result set can still have a practically
unbounded length. To address these issues, we choose to return a single as-
short-as-possible path for each node-pair (m,n):

Definition 1. Let q be a path query specified by language L and let G be a
graph. The evaluation of q on G using the single-path semantics, denoted by
single(q|G), yields, for every (m,n) ∈ [[q]]G, a single shortest path mπn in G such
that trace(π) ∈ L. (Hence, for every other path mπ′n in G with trace(π′) ∈ L,
we have |π| ≤ |π′|).
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Toward evaluating context-free path queries using the single-path semantics,
we proceed in three steps. First, in Sect. 3.1, we show that all paths of interest of
a context-free path query can be represented by a grammar. Then, in Sect. 3.2,
we propose MinimizeSet, an algorithm for computing a shortest string in a
context-free language. Finally, in Sect. 3.3, we combine these results and show
how to evaluating context-free path queries using the single-path semantics.

3.1 Representing the Paths of Interest of a Path Query

Let G = (V, Σ, δ) be a graph and (m,n) ∈ V a pair of nodes. There is a close cor-
respondence between labeled graphs and finite automata and we can easily inter-
pret (G,m, n) as a finite automata with initial state m and final state n. The lan-
guage of this finite automata is L(G;m,n) = {trace(π) | mπn is a path in G}.
It is well-known that the intersection of a finite automaton and a grammar can
be represented by another context-free grammar:

Lemma 1 (Bar-Hillel et al. [4]). Let C = (N , Σ,P) be a grammar, let G =
(V, Σ, δ) be a graph, let a ∈ N , and let m,n ∈ V. The language L(C ;a) ∩
L(G;m,n) can be represented by a grammar.

Lemma 1 guarantees that there is a finite representation of the set of all
strings in L(C ;a) ∩ L(G;m,n), each such string representing the trace of a
path mπn in G with trace(π) ∈ L(C ;a). Unfortunately, there can be several
paths with the same trace, complicating the derivation of the underlying paths.
To improve on this, we show the existence of graph-annotated grammars that
directly represent the set of paths instead of their traces:

Definition 2. Let C = (N , Σ,P) be a grammar and let G = (V, Σ, δ) be a
graph. We denote triples (a,m, n) ∈ N × V2 by a|mn. An annotated grammar
over (C ,G) is a grammar C |G = (N|G, Σ,P|G) in which

1. N|G = {a|mn ∈ N × V2 | L(C ;a) ∩ L(G;m,n) �= ∅};
2. P|G = PΣ ∪ PN with PΣ = {a|mn 	→ σ | (m,σ, n) ∈ δ ∧ (a 	→ σ) ∈ P} and

PN = {a|mn 	→ b|mo c|on | (a 	→ b c) ∈ P}.
The notation a|mn denotes a node-annotated non-terminal: any string produced
from rewriting this non-terminal is a trace of a path mπn. As rewriting a|mn

eventually leads to rewrite steps using production rules in PΣ , which represent
single edges in G, the path π can be derived by keeping track of these node-
annotations. Notice that |N |G| ≤ |N ||V|2, |PΣ | ≤ |P||δ|, and |PN | ≤ |P||V|3.
We illustrate these annotated grammars with an example:

Example 6. Let G be the graph visualized in Fig. 1 and C the grammar of Exam-
ple 4. We construct the annotated grammar C |G = (N|G, Σ,P|G). For brevity,
we refer to each person by the first letter of their name. We have

N|G = {q|mn | m,n ∈ {A, B, C, D, E}} ∪ {q|Fn | n ∈ {A, B, C, D, E}}.
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We have P|G = PΣ ∪ PN , in which PΣ represents all edges in G and PN rep-
resents all ways in which paths in G can be combined. E.g., q|AB ∈ PΣ , as
(Alice, friendOf, Bob) is and edge in G, and (q|AB 	→ q|AD q|DB) ∈ PN , as there
is a friendOf-labeled path from Alice to Dan and another friendOf-labeled path
from Dan to Bob. To produce a path from Alice to Eve, we use C |G:

q|AliceEve →∗
P|G {Rewrite q|AliceEve 	→ q|AliceCarol q|CarolEve}

q|AliceCarol q|CarolEve →∗
P|G {Rewrite q|CarolEve 	→ q|CarolDan q|DanEve}

q|AliceCarol q|CarolDan q|DanEve →∗
P|G {Rewrite q|AliceCarol 	→ friendOf, . . . }

friendOf ◦ friendOf ◦ friendOf.

The annotations in each node-annotated non-terminal carry information that
can be used to map strings in C |G to paths in the underlying graph G. E.g., in
this rewrite, we derived a path from Alice to Eve in graph G of length three,
namely the path “Alice friendOf Carol friendOf Dan friendOf Eve”.

Using induction, we can prove that graph-annotated grammars can always
be used as illustrated in Example 6:

Proposition 1. Let C = (N , Σ,P) be a grammar, let G = (V, Σ, δ) be a graph,
let C |G = (N|G, Σ,P|G) be the annotated grammar over (C ,G), let mπn be a
path in G, and let a ∈ N be a non-terminal. We have trace(π) ∈ L(C ;a) if and
only if we can derive π from a|mn ∈ N|G.

We note that annotated grammars can, on their own, be used in interactive
data exploration tools in which users can explorer the query results by zooming
in on certain paths in the dataset, e.g., for graph analysis and query debugging.

3.2 Deriving Shortest Strings of a Grammar

Next, we propose an efficient way to compute a shortest string in the language
defined by a grammar. Mclean et al. [27] already proved that a shortest string can
be computed effective given a grammar, but did not provide a practical algorithm
for computing shortest strings. Toward such an algorithm, we introduce rewrites
using simple production rules:

Definition 3. Let P be a set of production rules. We define heads(P) = {a |
(a 	→ s) ∈ P} and we define the set of non-terminals derivable from a using the
production rules in P by 〈a〉P = {b ∈ N | ∃s1∃s2 a →+

P s1 ◦ b ◦ s2}.
A set of production rules P is non-recursive if, for every a ∈ heads(P),

we have a /∈ 〈a〉P . A set of production rules P is deterministic if, for every
a ∈ heads(P), there exists exactly one production rule (a 	→ s) ∈ P. Finally, a
set of production rules P is effective if a ∈ heads(P) implies that there exists a
string s ∈ Σ∗ such that a →∗

P s. We refer to a set of production rules that is
non-recursive, deterministic, and effective as simple.
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A simple set of production rules P over alphabet Σ can be used to rewrite
every non-terminal a ∈ heads(P) into a unique string ustringP(a) over Σ in a
straightforward manner, as P does not provide any choices during such a rewrite.

Example 7. Consider Example 6. For brevity, we restrict ourselves to Alice,
Carol, Dan, and Eve. With respect to these four people, the following set of
production rules in the annotated grammar is deterministic non-recursive:

q|AC 	→ friendOf, q|CA 	→ friendOf, q|CD 	→ friendOf, q|DE 	→ friendOf,

q|AD 	→ q|AC q|CD, q|AE 	→ q|AD q|DE, q|CE 	→ q|CA q|AE.
We can use simple production rules derived from a grammar to represent

shortest strings in that grammar:

Lemma 2. Let C = (N , Σ,P) be a grammar. There exists a simple set of
production rules P ′ ⊆ P such that, for every non-terminal a ∈ N with L(C ;a) �=
∅, ustringP′(a) is a shortest string in L(C ;a).

We say that a set of production rules that satisfies the conditions of Lemma2
is minimizing. Unfortunately, not every simple set of production rules is mini-
mizing:

Example 8. Consider Example 7. The provided simple set of production rules P ′

is not minimizing: we have |ustringP′(q|CE)| = 4, while a shorter string of length
two exists. By replacing the production rule for q|CE in P ′ by q|CE 	→ q|CD q|DE,
we obtain a minimizing set of production rules.

Using a minimizing set of production rules, it is straightforward to produce
shortest strings for a ∈ heads(P). Moreover, the way to obtain these shortest
strings, by rewriting a, also provides complete information on how these short-
est strings can be obtained from the original grammar. Next, we propose the
MinimizeSet algorithm to construct a minimizing set of production rules. The
pseudo-code of this algorithm can be found in Fig. 2, left.

The MinimizeSet algorithm works rather intuitively. Let C = (N , Σ,P)
be a grammar. Production rules of the form (a → σ) ∈ P, σ ∈ Σ, produce
the shortest possible strings: if (a → σ) ∈ P, then σ is a shortest string in
L(C ;a). If such productions rules exist for a, then we choose one of them for
the minimizing set of production rules (Line 3). Next, we process non-terminals
a for which we have determined the length cost[a] of the shortest strings in
L(C ;a). We do so on increasing string length by using a min-priority queue new
(Line 7). We process a by checking, for each production rule (c 	→ a b) ∈ P or
(c 	→ b a) ∈ P, whether using this production rule will allow us to rewrite c
into a shorter string than the currently-found string with length cost[c] (Line 10
and Line 12). We do so by rewriting—in this production rule—a to a string of
length cost[a] (Line 14).

Theorem 1. Let C = (N , Σ,P) be grammar. Execution of MinimizeSet(C )
yields a minimizing set of production rules P ′ for C in O(|N |(|N | log|N |+ |P|)).
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Algorithm MinimizeSet(C = (N , Σ, P)):

1: P′, cost := empty mapping, empty mapping.
2: new is a min-priority queue.
3: for all (a �→ σ) ∈ P do
4: if a /∈ cost then
5: cost[a], P′[a] := 1, (a �→ σ).
6: add a to new with priority 1.
7: while new �= ∅ do
8: Take a with minimum priority in new .
9: Remove A from new .

10: for all (c �→ a b) ∈ P with b ∈ cost do
11: produce(c �→ a b).
12: for all (c �→ b a) ∈ P with b ∈ cost do
13: produce(c �→ b a).
14: return {P′[a] | a ∈ P′}.

Procedure produce(d �→ e f):
15: if d /∈ cost then
16: cost[d] := cost[e] + cost[f].
17: P′[d] := d �→ e f.
18: Add d to new with priority cost[e] + cost[f].
19: else if cost[d] > cost[e] + cost[f] then
20: cost[d] := cost[e] + cost[f].
21: P′[d] := d �→ e f.
22: Lower priority of d ∈ new to cost[e] + cost[f].

Algorithm MinimizeSetGG(C , G):

1: P′, cost := empty mapping, empty mapping.
2: new is a min-priority queue.
3: for all (a �→ σ) ∈ P and (m, σ, n) ∈ δ do
4: if a|mn /∈ cost then
5: cost[a|mn], P′[a|mn] := 1, (a|mn �→ σ).
6: Add a|mn to new with priority 1.
7: while new �= ∅ do
8: Take a|mn with minimum priority in new .
9: Remove A|mn from new .

10: for all (c �→ a b) ∈ P with b|no ∈ cost do
11: produceGG(c|mo �→ a|mn b|no).
12: for all (c �→ b a) ∈ P with b|om ∈ cost do
13: produceGG(c|on �→ b|om a|mn).
14: return {P′[a|mn] | a|mn ∈ P′}.

Procedure produceGG(d|uw �→ e|uv f|vw):
15: if d|uw /∈ cost then
16: cost[d|uw] := cost[e|uv ] + cost[f|vw].
17: P′[d|uw] := d|uw �→ e|uv f|vw.
18: Add d|uw to new with priority cost[e|uv ] + cost[f|vw].
19: else if cost[d|uw] > cost[e|uv ] + cost[f|vw] then
20: cost[d|uw] := cost[e|uv ] + cost[f|vw].
21: P′[d|uw] := d|uw �→ e|uv f|vw

22: Lower priority of d|uw ∈ new to cost[e|uv ] + cost[f|vw].

Fig. 2. On the left, the MinimizeSet algorithm that constructs a minimizing set of
production rules for the grammar C . On the right, the MinimizeSetGG algorithm
that constructs a minimizing set of production rules for the annotated grammar C |G,
of which only the necessary parts are implicitly constructed.

Using P ′, a set R of shortest strings sa in L(C ;a), a ∈ N , can be constructed
in O(L), in which L =

∑{|sa| | sa ∈ R} is the total length of these shortest
strings.

Proof (sketch). The main while-loop maintains the following invariants:

1. The set {P ′[a] | a ∈ P ′} is simple.
2. If a ∈ P ′ and P ′[a] = (a 	→ b c), then cost[a] ≥ cost[b] + cost[c], cost[a] >

cost[b], and cost[a] > cost[c].
3. If a ∈ P ′ and s is a shortest string in L(C ;a), then |s| ≤ cost[a].
4. Let m be the priority of the last element removed from new. No new element

is inserted in new with priority less than or equal to m.
5. Let m be the priority of the last element removed from new. For every a ∈ N

and every shortest string s in L(C ;a) with |s| ≤ m, we have cost[a] = |s|.
As each non-terminal is added to new at most once, the MinimizeSet algorithm
terminates. At termination, Invariants 1–5 guarantee that the resulting set of
production rules is minimizing.

To obtain the stated complexity, we represent costs as an array holding |N |
integers. The costs used in cost and new are integers in the range 1, . . . , 2|N |−1,
which we can represent using log(2|N |) = |N | bits. The initialization steps per-
form O(|P|) steps. The while-loop will, in the worst case, visit every non-terminal
once. For each of these non-terminals, one insertion into and one removal from the
priority queue new is performed. The inner for -loops will visit every production
rule twice, causing at most 2|P| decrease key operations on priority queue new.
When using a Fibonacci heap for a priority queue holding at most e elements,
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Fig. 3. Measurements on the performance of MinimizeSetGG.
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Fig. 4. On the left, the double-cyclic graph: two cycles, one having w−1 edges labeled
with σ1, and one having w edges labeled with σ2. The two cycles are connected via a
shared node c. On the right, the cyclic graph having w nodes labeled with σ.

each insert and removal costs O(log e) and each decrease key operation costs an
amortized O(1) heap operations [16]. Hence, a total of O(|N | log|N |+ |P|) heap
operations are performed. Taking the size of the integers representing priorities
into account, the heap operations cost O(|N |(|N | log|N | + |P|)). ��

3.3 Deriving Shortest Paths for Path Query Results

Using the above results, we can already answer context-free path queries under
the single-path semantics, this by applying MinimizeSet on an annotated gram-
mar. Unfortunately, this approach has high overhead due to the explicit con-
struction and storing of the annotated grammar. Luckily, during the execution
of MinimizeSet, the relevant parts of C |G can be implicitly derived from C
and G. We obtain the MinimizeSetGG algorithm by integrate these implicit
derivation steps into MinimizeSet. The resulting pseudo-code can be found in
Fig. 2, right. We conclude:

Theorem 2. Let C = (N , Σ,P) be a grammar, G = (V, Σ, δ) be a graph,
and a ∈ N a context-free path query. We can evaluate single(a|G) using Mini-
mizeSetGG in O(|N ||V|2(|N ||V|2 log(|N ||V|2) + |P|(|V|3 + |δ|)) + L), in which
L =

∑{|π| | π ∈ single(q|G)} is total length of the shortest paths in the result.

4 Empirical Evaluation

To show that the path-based semantics for context-free path are viable in prac-
tice, we implemented the MinimizeSetGG algorithm of Fig. 2, right, and the
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straightforward path derivation algorithm in C++14. Open-source code of the full
C++14 implementation of the data structures, algorithms, and supporting tool-
ing used can be found at https://www.jhellings.nl/projects/cfpqpaths/. Using
this implementation, we ran three different experiments to study the behavior
of the MinimizeSetGG algorithm. The programs were compiled and run on a
workstation with an Intel Core i5-4670 CPU, running at a maximum of 3.8 GHz,
and with 16 GiB of main memory. In each of our experiments, we test with syn-
thetic graphs that are designed specifically to test extreme-case behavior of the
algorithms. Visualizations of these graphs can be found in Fig. 4.

Cost of the Single-Path Semantics. As the first experiment, we study the cost
of evaluating context-free path queries using the single-path semantics. To put
MinimizeSetGG to the test, we run these experiments with the grammar

q 	→ a q′, q′ 	→ q b, q 	→ a b, a 	→ σ1, b 	→ σ2,

which is context-free and cannot be expressed by a regular language. We use the
double-cyclic graphs of Fig. 4, as this combination of query and graphs produces
very large paths. More specifically, we have proven that, in this case, the longest
shortest paths have a size that is quadratic in the size of the graph, whereas
for all single-symbol grammars and regular grammars the maximum size is only
linear in the size of the graph (details omitted due to space limitations). The
results of the experiment can be found in Fig. 3(a). As is clear from the results,
single-path evaluation is practically feasible: the query q, evaluated on a double-
cyclic graph of 4750 nodes, yields a set of 11 · 106 distinct paths, of which the
longest (non-simple) path has 11 · 106 edges, and the average path has 5.6 · 106

edges. Hence, the query result is large. Still, MinimizeSetGG finished in only
4.3 s and the longest path was constructed in 1.5 s. Hence, even for queries and
graphs that produce very large results, the query costs are reasonable.

Grammars: Bounded vs. Unbounded. In the second experiment, we take a more
in-depth look of the cost of context-free path query evaluation. In practice, many
path queries are bounded in the sense that only paths of a limited length are
inspected in the graph. E.g., to ask for friends-of-friends in a social network,
one only has to inspect paths of length two. Some path queries, however, are
unbounded, as context-free path queries can use recursion. This is of use, e.g., to
query for pairs of indirect friends (Example 1). As unbounded queries can yield
much larger result sets than bounded queries, we inspect the impact of the type
of queries on the running time of MinimizeSetGG. For this experiment, we use
the queries p1 (bounded) and p2 (unbounded):

p1 	→ s b b 	→ s s s 	→ σ;
p2 	→ s p2 p2 	→ σ s 	→ σ.

The language described by p1 is L1 = {σσσ}, and the language described by p2
is L2 = {σk | k ≥ 1}. We use the cycle graphs with w nodes of Fig. 4, on which

https://www.jhellings.nl/projects/cfpqpaths/
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query p1 will evaluate to a very sparse result set of w paths, whereas query p2
will evaluate to a very dense result set of w2 paths. We measured the running
time of MinimizeSetGG for both queries. The results of the experiment can be
found in Fig. 3(b). As is clear from the results, the performance of single-path
evaluation depends largely on the size of the query result. On the one hand,
query evaluation for p1, a bounded query yielding a small result set, finished
within a second on all graphs. On the other hand, query evaluation for p2, an
unbounded query yielding large result sets, produced a result set 22·106 paths on
the larges graph and did so in 22 s. We notice that the size of the result set is the
limiting factor here: in the previous experiment, we already demonstrated that
MinimizeSetGG can easily deal with very large paths constructed by complex
context-free path queries.

Grammars: Unambiguous vs. Ambiguous. In the third and final experiment,
we look at the impact of the design of context-free path queries on the cost of
their evaluation. This experiment is inspired by well-known results from parsing
and compiler construction (see, e.g., [17]): for grammars that are determinis-
tic and unambiguous, e.g., LL(k) or LR(k) grammars, simple high-performance
parsers with a linear running time exist. For non-deterministic and for ambiguous
grammars, such high-performance parsers do not exist, however. The Minimize-
SetGG algorithm we propose works on all grammars, even grammars that are
non-deterministic and ambiguous. This raises the question whether the type of
grammars impacts the overall performance. To answer this question, we con-
struct two equivalent queries q1 (unambiguous) and q2 (ambiguous):

q1 	→ s q1 q1 	→ σ s 	→ σ;
q2 	→ q2 q2 q2 	→ σ.

Both queries specify the language L = {σk | k ≥ 1}. As in the previous experi-
ment, we use cycle graphs. On these cycle graphs, both queries will evaluate to
very dense results sets. We measured the running time of MinimizeSetGG for
both queries. The results of the experiment can be found in Fig. 3(c). As is clear
from the results, evaluation of the unambiguous query q1 is magnitudes faster
than evaluation of the ambiguous query q2, even though MinimizeSetGG does
not yet optimize for deterministic or unambiguous grammars. The reason for this
is simple: for any shortest path in the graph, q2 has many different ways to derive
the trace of this path, whereas q1 only has a single derivation. Consequently,
MinimizeSetGG will have to inspect many more choices while evaluating q2.
Still, we believe that further optimizations for deterministic and unambiguous
grammars are possible, a direction we leave open for future work.

5 Related Work

There is an abundant literature on graph queries, formal languages, and context-
free grammars. There is only limited work toward answering graph queries with
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paths, however. Likewise, there is only limited work on the related problem of
deriving shortest strings from grammars. Next, we give a brief overview.

As stated before, path-based semantics have only gained limited attention.
For the regular expressions, Barceló et al. [6] introduced the extended regular
path queries that have path variables for output. The main focus of Barceló
et al. is, however, on the use of path variables for expressivity purposes, and
path-based results are only studied in limited details. Recent work by Hofman
et al. [21] provides an alternative to use path-based query semantics for debug-
ging: to gain more insight in the behavior of regular path queries with respect to
the expected behavior, Hofman et al. propose a technique based on separability.
Although this approach addresses query debugging, it does not lift the other
limitations of the traditional query semantics used to evaluate path queries. In
practical graph database systems, path-based results can already be used in
some limited settings [2]. E.g., SPARQL can return RDF graphs via CONSTRUCT
queries [19], which can be used to encode fixed-size paths; whereas Gremlin can
enumerate graph traversal steps (which can encode paths) via the .path() step,
which comes at prohibitive high costs [29]. In the setting of model checking using
CTL [12], path-based query semantics are widely used to produce witnesses and
counterexamples that show why the graph does or does not meet the conditions
expressed by the CTL formulae. Unfortunately, model checking languages lack
the expressive power found in most path query languages used to query graph
databases. This sharply contrasts our work, as we show that path-based results
are viable both in theory and in practice, this even for complex context-free path
queries. Hence, to the best of our knowledge, our work is the first to systemati-
cally formalize and study path results for complex graph query languages.

Barrett et al. [7] studies variations of the single-path semantics we propose
in this work. They do so from a complexity-theoretical standpoint, however, by
classifying the complexity of query evaluation using variations of our single-path
semantics. E.g., they show that the single-path semantics is feasible for regular
path queries and context-free path queries, but becomes unfeasible when only
simple paths are to be returned. As their focus is on classifying the complexity of
evaluation, Barret et al. do not provide practical algorithms for the evaluation
of path queries using the single-path semantics. We improve on this work by
providing the algorithm MinimizeSetGG, an efficient algorithm for evaluating
context-free path queries on graphs using the single-path semantics.

Finally, we have shown that the evaluation of context-free path queries on
graphs using the single-path semantics can be reduced to the derivation of a
shortest string from a grammar. Mclean et al. [27] proved that such a short-
est string could be computed effective given a grammar, but failed to give a
practical algorithm for doing so. We improve on these results by providing the
algorithm MinimizeSet, an efficient algorithm for computing the shortest string
in a grammar. Other works, e.g. [13–15,26], provide ways to enumerate strings
in a grammar, but these algorithms cannot effectively be used to quickly find
the shortest such string.
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6 Conclusions and Future Work

To address the limitations of the traditional semantics for evaluating path
queries, such as the regular path queries and the context-free path queries, we
proposed the single-path semantics. This path-based semantics is not only useful
for end-users, but also enables new directions in the design of graph query lan-
guages and enables new tools for graph analytics, data exploration, data prove-
nance, and debugging of complex path queries. To show the practical viability of
the single-path semantics, we also propose algorithms that evaluate context-free
path queries using the single-path semantics. Our initial results are promising:
our experimental evaluation shows that queries can be evaluated using the single-
path semantics with little effort, even in cases where the path-based query results
are very large. Based on our initial results, we see several avenues for the further
study of evaluating queries with path-based semantics:

1. The algorithms in our paper are bottom-up and are tuned toward evaluating
a query over the entire graph. In many practical applications, the end-user is
only interested in a part of the graph, e.g., paths that originate or end at a
certain node. For such applications, we are interested in the development of
top-down and goal-oriented algorithms.

2. Our measurements showed that the cost of evaluating a context-free path
query depends heavily on the structure of the grammar used by the query:
evaluating different grammars that express the same query can have widely
different costs. This raises an interesting query optimization question: can we
automatically optimize grammars to reduce the cost of evaluation?

3. Furthermore, it is open whether simpler, more efficient, query evaluation algo-
rithms exist for restricted classes of context-free grammars (e.g., deterministic
grammars or unambiguous grammars [17]). It is not directly clear if such algo-
rithms exist: deterministic and unambiguous grammars will still face ambi-
guity and non-deterministic choices in their evaluation on graphs, as complex
graphs can have many paths with the same traces.
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Abstract. Query autocompletion (QAC) is an important feature that
automatically completes a query and saves users’ keystrokes. It has been
widely adopted in Web search engines, desktop search, input method
editors, etc. In some applications, especially for mobile devices, typing
accurately is laborious and error-prone. Hence advanced QAC methods
tolerate errors when users are typing. As such, some data integration
tasks also adopt this feature to process string similarity searches. Most
existing work uses edit distance to measure the similarity between the
input and correct strings. These methods overlook the quality of the
suggested completions, and the efficiency needs to be improved. In this
paper, we present NGNC, a framework that supports error-tolerant QAC
in a flexible and efficient way. The framework is designed on the basis
of a noisy channel model which separates the query prediction to two
estimations, one by a language model and the other by an error model.
Many QAC ranking methods and spelling correction methods can be
easily plugged into the framework. To address the efficiency issue, we
devise a neighborhood generation method accompanied with a trie index
to quickly find candidates for the error model, as well as a fast top-k
retrieval method by caching and pruning. We develop a QAC system
based on NGNC. It is able to evaluate the combinations of various rank-
ing and spelling correction methods using query logs and automatically
choose the best combination for online query workloads. We highlight
research challenges, present our solutions, overview the system architec-
ture, and perform an experimental evaluation on a real dataset to show-
case how NGNC improves the state of the art of error-tolerant QAC.
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1 Introduction

Query autocompletion (QAC) is an important feature that guides users to type
the query correctly and efficiently. As a user types the query, it shows top-ranked
suggestions that contain the currently input characters as a prefix, hence to save
keystrokes. Due to the convenience it brings to users, it has become a standard
feature in many applications, including Web search engines, command shells,
input method editors (IMEs) [12], and integrated development environments
(IDEs) [11]. It is well-known that misspelling is a common phenomenon when
users are typing, especially when typing is tedious and error-prone, e.g., with
a mobile phone. Thus, many studies on QAC target the case of error-tolerant
QAC (a.k.a. fuzzy type-ahead search/online spelling correction), i.e., to tolerate
a small number of errors in the input [4,5,7,8,16,17,23,24]. An example is shown
in Fig. 1. As the user types schwatzn, an incorrect prefix of schwarzenegger,
the system still suggests correct completions. As such, it also provides a way of
coping with noise in textual data, and hence can be used for string similarity
search in data integration tasks [22].

Fig. 1. Error-tolerant query autocompletion.

State-of-the-art solutions to error-tolerant QAC can be divided into two cat-
egories. The first category, which includes most studies, uses edit (Levenshtein)
distance to measure the similarity between the user’s input and a correct string’s
prefix [4,5,7,16,17,23,24]. Correct strings whose prefixes are within an edit dis-
tance threshold to the input are produced as candidates for further ranking.
The second category [8] employs the noisy channel model [14], widely adopted
for spelling correction, to estimate the probability of yielding the potentially mis-
spelled query, using the combination of a language model and an error model.
The language model is based on the maximum likelihood estimation of the distri-
bution of queries from the query log. For the error model, the (completion, query)
pair is cut into “transfemes” (the transformation from a substring to another,
e.g., em → an), and then a Markov n-gram model is utilized to estimate the
probability of a sequence of transfemes.
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Despite many error-tolerant QAC solutions proposed in the last decade, two
challenging issues remain. First, most existing work focuses on tolerating errors,
yet it is unclear how the quality of QAC (i.e., accuracy and keystroke saving)
can be improved by choosing QAC ranking methods [2,15] or spelling correc-
tion methods [9,14,19] for the target application. E.g., diversified results [3,6]
are desirable for a search engine; while for an IDE or an IME, users may
want recently chosen suggestions to be ranked higher and thus context-aware
QAC [1,18] is more useful. Second, the efficiency of error-tolerant QAC still
needs improvement. State-of-the-art edit distance-based methods spend around
0.1 s per query to produce candidates within an edit distance threshold of 3
to the input (as the standard setting in most aforementioned studies, also sug-
gested by [19] for spelling correction). Although such speed is acceptable for
single queries, it does not mean the response is efficient when multiple queries
are invoked simultaneously, a common scenario for Web search engines, cloud
IMEs, and online IDEs. Moreover, the candidates need to be ranked (e.g., by a
support vector machine [9]) to present a set of good top-k suggestions to users,
thereby consuming more query processing time. It is unknown how to efficiently
compute top-k results under such ranking1. The Markov n-gram method is even
slower – it spends 0.5 s per query if we seek a 90% recall and the time rapidly
increases when a higher recall is needed [8] – thus less likely to be used for
efficiency-demanding online services.

Seeing the above issues, we present a framework that processes error-tolerant
QAC in a flexible and efficient way. Our framework is based on a weighted noisy
channel model, which consists of a language model and an error model to eval-
uate the suggestions. The weight can be adjusted to reflect which model is more
focused. As such, the framework becomes flexible in the sense that developers are
able to plug in and tune a wide range of QAC ranking methods for the language
model and spelling correction methods for the error model. Hence, an appropri-
ate combination can be chosen to optimize the quality of QAC for the target
application. To generate suggestions, we adopt an edit distance constraint to find
a set of candidates first. To improve the efficiency, unlike existing methods that
directly build a trie to index the strings in a lexicon, we resort to neighborhood
generation and index the deletion neighbors of the strings, thereby obviating
the cause of the inefficiency of existing methods. Then the noisy channel model is
utilized to rank the candidates. To speed up this process, we propose a fast top-k
retrieval method tailored to the noisy channel model. It caches previously com-
puted probabilities and prunes unpromising evaluations. The two acceleration
methods jointly achieve the overall efficiency of query processing.

We built a system based on the proposed framework, named NGNC
(Neighborhood Generation for Noisy Channel). It consists of a module that
evaluates the performances of combinations of different ranking and spelling
correction methods and selects the best one for online query workloads. We

1 Although there have been a few studies [5,7,17,24] on the top-k retrieval by edit
distance ranking or its simple extensions, it was reported that the recall and the
keystroke saving are inferior to learning methods [8].
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evaluated its performance using the DBLP dataset of author names and titles.
We implemented a series of state-of-the-art QAC and spelling correction meth-
ods and integrated them into the system. An experimental evaluation showcases
how the system improves upon existing solutions.

The rest of the paper is organized as follows. Section 2 reviews the noisy chan-
nel model and introduces our NGNC framework, including candidate generation
and top-k retrieval. Section 3 presents the system architecture based on NGNC.
Section 4 reports our experimental results. Section 5 concludes this paper.

2 The NGNC Approach

Given a query string q, an error-tolerant query autocompletion is to return a
list of k suggestions of correct completions, from which the user can select. To
correct misspellings in the query, we assume that a lexicon of correct strings,
denoted by S, is available.

2.1 Noisy Channel Model

The noisy channel model is a kind of Bayesian inference. Let c denote a com-
pletion. Given an observation q, we want to find correctly spelled completions
ranked by descending order of probability P (c|q). By applying Bayes’ rule and
dropping the constant P (q), we have

P (c|q) =
P (q|c)P (c)

P (q)
∝ P (q|c)P (c). (1)

P (c) is computed by a language model that describes the prior probability of c
as the intended completion. P (q|c) is computed by an error model that estimates
the probability of producing the observed input q when the intended completion
is c. Equation 1 refers to a standard model that just multiples the two proba-
bilities, yet often they are not commensurate. A remedy is to weight the two
models. By using a weight λ ∈ [0, 1], we parameterize the right side of Eq. 1 as2

P (q|c)λP (c)1−λ. By taking the log-probability, we have

log P (c|q) ∝ λ log P (q|c) + (1 − λ) log P (c). (2)

The two probabilities can be estimated separately. E.g., we may use Lueck’s
method [20], the winner of Microsoft Speller Challenge 2011, to estimate the
error probability P (q|c). On the other hand, there has been quite some work
on improving the quality of QAC, e.g., by returning context-aware [1,18] or
diversified [3,6] results. They can be plugged in as the language model for P (c).
This setting also enables our framework to process previously unseen queries,
in contrast to the existing noisy channel method [8] that only uses maximum
likelihood estimation on the query log.
2 The weighting scheme in [14], which only assigns weight to P (c), is a special case of

our ranking function.
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Further, we notice that for query spelling correction, the language and error
models are often put together, e.g., in a support vector machine [9] or a hidden
Markov model [19]. To incorporate these models, we generalize the noisy channel
model to the following form:

log P (c|q) ∝
∑

i

μif
EM
i +

∑

j

λjf
LM
j , (3)

where each fEM
i is an error model feature, fLM

j is a language model feature,
and μi and λj are the weights of the two models.

As such, the QAC model becomes flexible as we may integrate any linear
models for error and language, either separately or in a combined way. It can be
seen that the standard noisy channel model (Eq. 1) is a special case such that
there are only one error model feature and one language model feature, whose
weights are both 1; while the improved noisy channel model (Eq. 2) has a weight
λj = λ on the language model.

2.2 Candidate Generation

We use the lexicon S to generate completions. Due to the large size of S, it is
prohibitively expensive to generate completions by considering every string in
S and comparing them with the input. As a result, a common practice is to
generate a set of candidates similar to the input. Edit (Levenshtein) distance is
a good measure for string similarity and has been widely adopted and studied
for error-tolerant QAC. It measures the minimum number of edit operations,
including insertion, deletion, and substitution of a character, to transform one
string to another. It can be computed using dynamic programming.

Suppose n keywords have been input to the query q. Let q[n] denote the
last (partial) keyword of q3. Then the candidate generation is to find the strings
s ∈ S, such that there exists a prefix of s whose edit distance to q[n] is no
greater than a threshold τ . Each string s is then appended to the completions
of previous keywords to produce a candidate completion c.

Existing methods for candidate generation [4,5,7,16,17,24] are mainly based
on a trie index. The strings in S are offline indexed in a tri.e. For online query
processing, they maintain the set of the strings whose prefixes are within edit
distance τ from q[n]. The frontier of these prefixes in the trie are called active
nodes. Whenever a character is appended to q[n], the set of new active nodes is
computed using current active ones. The strings stored under the active nodes
are returned as candidates. The main drawback of these methods is the large
active node size. E.g., consider q[n] = abc and τ = 1. The active nodes include
all the prefixes in the pattern of ?bc, a?c, or ab?. Even for the method [24] that
tries to alleviate this drawback by removing ancestor-descendant relationship
among active nodes, the active node size is still typically 104 for a lexicon of

3 For ease of exposition, we do not consider merging/splitting errors (e.g., power point

for powerpoint) here. This case can be covered by inserting/deleting a space.
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one million strings and theoretically O(|q[n]|τ |Σ|τ ), where |Σ| is the size of the
alphabet, thereby significantly affecting query response time and becoming even
worse for applications with a large alphabet such as Unicode.

To solve the above issue, rather than index original strings, we employ the
neighborhood generation technique and index in a trie the strings’ deletion neigh-
bors, which are generated by deleting at most τ characters from the strings.
When the user inputs a query keyword, its deletion neighbors are also generated
and searched in the trie for matching prefixes. This process can be performed
incrementally (i.e., when a keystroke is input, we do not start from scratch but
compute from existing active nodes) and efficiently by maintaining a small set
of active nodes whose size is insensitive to the alphabet size. To understand how
this works, consider the above example q[n] = abc and τ = 1. All the strings such
as aba, abb, . . . , abz can be represented as a deletion neighbor ab# (# means the
character is deleted) which has an edit distance of 1 to q[n]. We prove that for
the case of prefix match, the edit distance constraint can be equivalently con-
verted to a constraint on deletion neighbors, and thus guarantee the correctness
of the algorithm based on neighborhood generation.

The number of active nodes of our method is typically around 103 and can be
further reduced to the order of 10 by a series of optimizations. Our experiments
show that the time spent on candidate generation can be reduced by up to
two orders of magnitude from existing methods. One may notice that the index
size could be large due to neighborhood generation. Hence, we eliminate various
kinds of redundancy in the index to reduce the size to an acceptable level –
several GB for a lexicon of 1M strings, so the index can fit in main memory for
real applications. We refer readers to our recent work [21] for the details of the
candidate generation algorithm.

2.3 Top-k Retrieval

Given a set of candidate completions that satisfy the edit distance constraint, we
rank them by Eq. 2 and pick the top-k completions. Due to the potentially large
number of candidate completions (e.g., when the query length is 5, the number
of candidate completions that pass the τ = 3 edit distance filter is usually in
the order of 104 for a lexicon of 1M strings), this step needs acceleration as well.
Traditional top-k query processing algorithms that are based on sorted lists, such
as the TA algorithm [10], do not apply here because both P (q|c) and P (c) need
online evaluation, meaning that there is no sorted list available. To address this
problem, we propose a fast top-k retrieval algorithm based on two observations:

Caching. As the user incrementally types characters, given a query q′ which
appends a character to q, many candidate completions may be shared with q. In
Eq. 2, the language model P (c) is independent of the query; i.e., for a completion
c shared by q and q′, the value of P (c) is constant. Thus, we cache the value of
P (c) when processing q, and skip evaluating it again if c is a completion for q′.

Pruning. This is to deal with the case when P (c) is not in the cache. Although
we need both P (q|c) and P (c) to obtain the overall score for ranking, some
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Fig. 2. System architecture.

evaluations can be skipped when c is unpromising. We first compute the model
with the higher weight, say the language model P (c). Since the log-probability of
the error model is in the range of (−∞, 0], by Eq. 2, if (1−λ) log P (c) is less than
the score of the current k-th completion, then we can safely discard c without
computing P (q|c).

So far we have treated both P (q|c) and P (c) as black boxes. The perfor-
mance can be further accelerated for the white box case. For caching, we may
keep the features used for evaluating P (q|c), and reuse them when we evalu-
ate P (q′|c), provided that they share these features. For pruning (suppose the
language model has more weight), we take the difference between the current
k-th completion’s score and (1 − λ) log P (c) as an input of the error model, so
as to achieve early termination when computing P (q|c). E.g., suppose P (q|c) is
a product of two components and both can be upper-bounded. After comput-
ing the first component, we use the upper bound of the second component and
the input difference to check if it is possible to achieve a higher score than the
current k-th completion, and stop if this check fails.

3 System Architecture

Figure 2 shows our system architecture. The system is comprised of two compo-
nents: a front-end user interface that handles user interactions and a back-end
infrastructure that processes input queries.

3.1 Front End

The front end of the system is a user interface similar to a Web search engine.
The user may type in a query in the search box. The system returns a list of
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top suggestions that completes the query and corrects any misspelling. The user
can navigate through the suggestions. The user may also click a suggestion, and
then the system directs to the corresponding result.

3.2 Back End

The back end consists of the following modules: (1) indexing module, (2) candi-
date generation module, (3) top-k retrieval module, (4) language/error evalua-
tion module, (5) query logging module, and (6) online evaluation module.

Indexing Module. This module generates deletion neighbors of each string in
the lexicon and indexes them in a trie in an offline manner. Strings are stored at
the leaf nodes of the trie index, so the lexicon does not have to be loaded again.

Candidate Generation Module. It takes the input query from the front end.
For each (partial) keyword in the query, it finds the indexed strings whose pre-
fixes are within edit distance τ from the keyword. We use the method presented
in Sect. 2.2 to find the strings satisfying the edit distance constraint, and con-
catenate them as candidate completions.

Top-k Retrieval Module. It takes candidate completions as input and inter-
acts with the language/error evaluation module to compute top-k suggestions,
using the method presented in Sect. 2.3. The top-k suggestions are output to the
front end.

Language/Error Evaluation Module. It evaluates the P (c) and P (q|c) prob-
abilities of a candidate completion using the selected language and error models.

Query Logging Module. This is to log the queries that have been input by
the user. The language model can use the log to improve the result quality, e.g.,
by considering search context or user behavior.

Online Evaluation Module. This module evaluates the top-k ranking perfor-
mance of all the combinations of language/error modules to help users tune the
system and find the best one to use for online query workloads. We assume that
users may vary across typing habits and preferences on the query results. So the
online evaluation is based on user-specific query logs. We first extract the query
logs for the user requesting the evaluation and obtain the matched result for each
query, i.e. what is eventually clicked by the user. Then, we process these queries
using all the model combinations and evaluate the quality of their suggestions.
The evaluation results can be used for automatic model selection as well.

4 Experiments

We performed an experimental evaluation on several real datasets. All the mod-
ules in the front and back ends were implemented in Python.
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Table 1. Online evaluation results (DBLP).

MPC +
Lueck

MPC +
Markov

MPC
+ SVM

CA +
Lueck

CA +
Markov

CA +
SVM

Div +
Lueck

Div +
Markov

Div
+SVM

MRR 0.756 0.763 0.765 0.764 0.765 0.767 0.542 0.550 0.545

SK@1 0.733 0.743 0.743 0.750 0.753 0.751 0.483 0.502 0.495

SK@2 0.767 0.770 0.782 0.767 0.770 0.779 0.567 0.567 0.567

SK@3 0.783 0.788 0.788 0.783 0.788 0.788 0.617 0.617 0.617

4.1 Experiment Setup

We choose DBLP, a dataset of author names and titles of computer science
bibliography records from the DBLP website, as the lexicon for evaluation. It
has been used in many studies on error-tolerant QAC [4,5,16,17,23,24]. The
dataset was tokenized into terms using white space and punctuation. When a
term is clicked, the system directs to the corresponding page on DBLP. After
preprocessing, the dataset has 319,690 strings, with an average length of 8.6 and
an alphabet of 38 characters.

Users may experience the QAC quality by interacting with the system. In
addition to quickly completing users’ queries, the system also evaluates the query
response time to reflect the efficiency of our method.

The following settings are available in our experiments:

– Edit distance threshold τ for candidate generation: The available range is
[0, 3], and the default value is 3. A larger τ indicates more errors in the input
are tolerated. Note that when τ = 0, the QAC becomes an exact prefix match.

– The number of suggestions k: The default setting is 5. A list of up to 25
suggestions is available.

– The parameter λ in the noisy channel model: The default setting is 0.5. The
available range is [0, 1].

– Language model: The default language model is most popular completion
(MPC), i.e., the probability is given by the popularity in historical queries.
Users may replace it with context-aware QAC [1] (CA) that memorizes the
suggestions clicked by the user and gives them higher ranks for succeeding
search, or diversified QAC [3] (Div) that returns diversified results.

– Error model: The default model is Lueck’s method [20] (Lueck), which eval-
uates the probability by normalized edit distance. Other options include
Markov n-gram model [8] (Markov) and support vector machine [9] (SVM).

– Online model evaluation: We use k = 2 as the default setting for automatic
model selection. It can be tuned by users.
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Fig. 3. Query results with default setting, q = papadun.

Changing the settings affects not only QAC results but also query processing
time, which can be seen from the front end of the system.

4.2 Experiment Results

Online Evaluation and Automatic Model Selection. The online evaluation
module provides the latest performance metrics of different model combinations
for top-k ranking based on the existing user query log. As shown in Table 1,
we measure the performance on the DBLP dataset via commonly-used quality
metrics, including Mean Reciprocal Rank (MRR) and Success Rate at top-k
(SR@k) [13].
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Fig. 4. Query results with τ = 0 (errors not allowed), q = papadi.

The combination of CA + SVM achieves the highest MRR. For SR@k, the
best competitors are CA + Markov when k = 1 and MPC + SVM when k = 2 or 3.
In general, CA is the best language model for top-1 results because it remembers
what users clicked recently. When we consider results with lower ranks, MPC
becomes the best. For error models, SVM is generally the best option, though
outperformed by Markov in a few cases. Both are better than Lueck because
they consider more factors than the normalized edit distance used in Lueck.
This result has also been witnessed by previous studies [8,9].

Given such results, users can opt for the automatic model selection which
chooses the best model combination that achieves the highest SR@k, though
this feature does not work well in a cold start when the user log is very scarce.
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Fig. 5. Query results with context-aware language model (Dimitris Papadias recently
clicked), q = papadun.

4.3 Query Result Examples

Figure 3 shows the user interface. We use the default setting. Results are shown
in the list for a query papadun.

Figure 4 shows the results of a query papadi if we set τ = 0. It can be seen
that the QAC becomes exact prefix match.

We may use CA as language model. Suppose that Dimitris Papadias was
just clicked by the user. Then for the query papadun, we have the results given
in Fig. 5. Dimitris Papadias is ranked first.
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Fig. 6. Query results with Markov n-gram error model, q = papadun.

By choosing Markov to estimate the error, the results of the query papadun
are given in Fig. 6. Vasilis Papadinas is ranked first because the transfeme i
→ u is more probable due to keyboard adjacency.

Figure 7 shows the results of query papadun with the automatic model selec-
tion. In this scenario, the system automatically selects MPC as language model
and SVM as error model, because they collectively achieve the highest SR@2 for
the current user query log.
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Fig. 7. Query results with automatically selected models, q = papadun.

5 Conclusion

In this paper, we proposed NGNC, a flexible and efficient framework for error-
tolerant QAC. By analyzing existing methods for error-tolerant QAC, we con-
sidered a framework design composed of a noisy channel model which separates
the query prediction to two estimations, one by a language model and the other
by an error model. In consequence, many existing QAC ranking methods and
spelling correction methods can be plugged into the framework. To address the
efficiency issue, we first devised a neighborhood generation method plus a trie
index to find candidates for the error model, and then we proposed a fast top-k
retrieval method through caching and pruning. Based on NGNC, we developed a
QAC system, which is able to evaluate the combinations of various ranking and
spelling correction methods using query logs and automatically choose the best
combination to process online query workloads. We performed experiments on a
real dataset to evaluate NGNC and showed how it improves the state of the art
of error-tolerant QAC.
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Abstract. Syntactic sugar refers to a certain syntactic structure added
to the programming language. This syntactic structure has no effect on
the function of the language, but is more convenient for programmers
to use. Since syntactic sugar will be translated to the basic syntactic
structure of the core language at the compilation stage, the relation-
ship between the source program written with syntactic sugar and the
execution of the core program is masked, and the compiled program
is unfamiliar to programmers. It is not convenient for programmers to
learn and debug source programs written with syntactic sugar. To solve
that problem, this paper adopts the idea of resugaring for automati-
cally transforming the evaluation sequence of the core language into the
evaluation sequence of the surface language, and gives a cheap imple-
mentation using the existing bidirectional transformation tool BIRDS.
The resugaring algorithms for both non-recursive and recursive desugar-
ing transformations are implemented using Datalog, and the solutions to
maintain two important properties of emulation and abstraction in the
process of resugaring are studied.

Keywords: Desugaring · Resugaring · Bidirectional transformation ·
BIRDS

1 Introduction

Syntactic sugar plays an important role in extending a core language to a surface
language with more user-friendly language constructs. The core language may
be a small language with a simple syntactic structure but powerful functions,
and it can be enriched to a surface language with additional syntactic sugars.
A syntactic sugar can be defined by a set of desugaring rules, describing how it
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can be mapped to the core language. For instance, the following desugaring rule
defines the syntax sugar Or, showing how to transform a surface term with Or
to a core term with Let.

Or([x, y, ys...]) → Let([Bind(“t”, x)], [If(Id(“t”), Id(“t”),Or([y, ys...]))])

One problem with syntactic sugars is that after the desugaring, the result-
ing programs (in the core language) become unfamiliar to programmers, and it
obscures the relationship between the user’s source program and the program
being evaluated. To resolve this problem, the resugaring technique was proposed
to lift the core evaluation sequence into one for the surface [17]. Given a sur-
face term which can be desugared to a core term, resugaring is the process of
adding syntactic sugars each step after the reduction of the corresponding desug-
ared core term, in order to obtain an evaluation sequence expressed in surface
language. When applied debugging and comprehension tools to core language
terms resulting from desugaring, their output is also in terms of the core lan-
guage. Resugaring can establish correspondence with the surface language that
the user employs, so as to facilitate the use of those tools on the surface lan-
guage [17]. Resugaring should satisfy the following two properties.

– Emulation. Each term in the generated surface evaluation sequence desugars
into the core term which it is meant to represent.

– Abstraction. Code introduced by desugaring is never revealed in the surface
evaluation sequence, and code originating from the original input program is
never hidden by resugaring.

However, implementation of resugaring needs much effort. We need to imple-
ment both desugaring and resugaring carefully to make sure that they are con-
sistent satisfying the emulation property. As pointed out in [17], this pair of
transformations between terms of the core and the surface languages forms a
bidirectional transformation; taking the surface program as the source and the
core language as the view, then the forward transformation is desugaring, and
the putback transformation is resugaring. This inspired us to consider a direct
use of a bidirectional transformation language to implement resugaring (together
with desugaring) so that the consistency between desugaring and resugaring is
guaranteed for free. Furthermore, if we adopt to use a putback-based bidirec-
tional language, where the forward transformation can be automatically derived
from the putback transformation, by writing a resugaring program, a desugaring
program can be automatically generated.

In this paper, we present a new implementation of resugaring using the
putback-based bidirectional transformation tool called BIRDS (Bidirectional
Transformation for Relational View Update Datalog-based Strategies) [20]. We
use the BIRDS tool to develop the resugaring transformation, and automati-
cally generate the corresponding desugaring transformation. Our main technical
contributions are summarized as follows.

– We present a new implementation of resugaring using BIRDS based on bidi-
rectional transformation. Our method is simpler and only needs to develop
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put

Fig. 1. Bidirectional transformation

and maintain resugaring, which is in sharp contrast to the traditional method
that needs to develop and maintain both desugaring and resugaring. Further-
more, our implementation satisfies the emulation property for free, and meets
the abstraction property.

– We show how syntax trees can be uniformly represented by relational tables,
and how tree transformations (including pattern matching and substitution)
can be efficiently implemented over relational operations in Datalog. This
enables us to use BIRDS to implement a resugaring system, which integrates
rule checking, desugaring and resugaring, and algebraic stepper [5,6].

– Compared to the traditional implementation method, which uses about 1000
lines of codes in Haskell, our new method successfully implements the resug-
aring transformation using less than 200 lines of codes in Datalog for the
same algorithm. Our method is powerful enough to deal with many difficult
cases such as recursive syntactic sugars.

The remainder of this paper is organized as follows. After presenting some
basic notions in Sect. 2, we propose an algorithm for performing resugaring using
a view update strategy in Sect. 3. Section 4 shows how to maintain the emulation
and abstraction in our implementation. Section 5 gives some examples, Sect. 6
summarizes related works, and Sect. 7 concludes this paper.

2 Preliminaries

2.1 Bidirectional Transformation

A bidirectional transformation (BX) [11] is a pair of a forward transformation
get and a backward (putback) transformation put (see Fig. 1). The forward
transformation get is a query over a source S that results in a view V . The
putback transformation put takes the original S and an updated view V ′ as
input to produce a new source S′. To ensure consistency between the source
database and the view, get and put must satisfy the following round-tripping
properties, called GetPut and PutGet:

∀S, put(S, get(S)) = S (GetPut)
∀S, V ′, get(put(S, V ′)) = V ′ (PutGet)
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The GetPut property ensures that unchanged views correspond to unchanged
sources. The PutGet property ensures that all view updates are completely
embedded into the source such that the updated view can be computed again
from the forward transformation get over the updated source.

1 % Schema declaration

2 source s1(‘X’:int, ‘Y’:int).

3 source s2(‘X’:int, ‘Y’:int).

4 view v(‘X’:int, ‘Y’:int).

5 % View update strategy rules

6 -s1(X,Y) :- s1(X,Y), not v(X,Y).

7 -s2(X,Y) :- s2(X,Y), not v(X,Y).

8 +s1(X,Y) :- v(X,Y), not s1(X,Y), not s2(X,Y).

Fig. 2. A program in BIRDS

2.2 Bidirectional Programming with Datalog

We follow [20] and employ the BIRDS framework [1] to use the Datalog
language with extensions for programming putback transformations, i.e. view
update strategies. BIRDS [20] supports putback-based bidirectional program-
ming [10,12,13]. In other words, the framework automatically checks the well-
behavedness of a putback program written by the user and generates the corre-
sponding forward (get) one for free. BIRDS further optimizes the user-written
programs before compiling them into lower-level code.

Consider two base tables s1(X,Y ) and s2(X,Y ) and a view v(X,Y ), which
is expected to be a union over s1 and s2. A program of view update strategy
accepted by BIRDS consists of two essential parts: schema declaration and view
update strategy rules. Figure 2 shows an example of the program, where s1, s2
and v are all binary relations with the same attributes ‘X’ and ‘Y’. The first
two rules (Lines 6 and 7) of the view update strategy say that if a tuple (X,Y )
is in s1 or s2 but not in v, it will be deleted from s1 or s2, respectively. The last
rule says that if a tuple (X,Y ) is in v but in neither s1 nor s2, it will be inserted
to s1. BIRDS will automatically check the validity of the program and generate
a view definition, i.e., forward transformation, as the following.

v(X,Y ) :− s1(X,Y ).
v(X,Y ) :− s2(X,Y ).

3 Resugaring as Putback Transformation

In this section, we shall explain how to write resugaring as a putback trans-
formation (view update strategy), and how to use the BIRDS tool to run it
and to automatically generate the corresponding desugaring program. We have
implemented the complete putback program1 using Datalog.
1 https://github.com/nksezx/ResugaringAsPutback/blob/master/putback.dl.

https://github.com/nksezx/ResugaringAsPutback/blob/master/putback.dl
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3.1 Converting Syntax Trees to Relational Tables

Since BIRDS works only on relational database, the first step to use BIRDS is to
convert syntax trees into relations (tables). This can be done straightforwardly,
because syntax trees can be considered as graphs, and graphs can be naturally
represented by edge tables describing relationship between nodes. In order to
facilitate the traversal and compress tables, we convert each abstract syntax
tree into a binary tree, because the binary tree will have a fixed number of
columns after it is expressed as a relational table.

Fig. 3. Converting syntax trees to relational tables

As shown in Fig. 3, the syntax tree of Or([1,2]) is first converted into a binary
tree. Then, we give each node a unique number and use the relational table to
record the left and right child of each node. In this way, the relational table can
be used to concisely represent syntax trees.

3.2 Designing Source and View Tables

To use BIRDS, we need to design source tables that represent the surface pro-
grams (surface terms) and transformation rules and the view tables that repre-
sent the core programs (core terms). A good relational table design can make
the update strategy easier to write. In our system, we have the following five
tables.

Node. The node table records the information of all nodes in the patterns and
terms. As shown in Table 1, Id is a unique key assigned to the created node in
the semantic analysis. There are three types of nodes: keyword nodes, constant
nodes, and variable nodes. There are three types of nodes in patterns (terms
with variables) and only two in terms, which are keyword nodes and constant
nodes. Name is the value of the node, which is a string. Root means the id of
the root in the syntax tree.
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Table 1. The node table

id:number name:string type:string root:number

1 Or/And/: keyword 1

2 123/Empty/true constant 1

3 x/y/z variable 1

Table 2. The pAst table

par:number lchild:number rchild:number

5 6 −1

6 −1 −1

pAst, sAst and cAst. These three tables are used to record the edge relation-
ships of the syntax tree for patterns, surface syntax trees and core syntax trees.
They are of the same schema as shown in Table 2: Par is the id of the parent
node of each group, while lchild is the id of its left child and rchild is the id of
its right child. -1 means the node is missing.

The pAst table is to store all patterns. Consider the pattern of (Delay x).
It is shown in Fig. 4, where only two nodes Delay and x are included, and the
ids of the two nodes are 1 and 2, respectively. The x node is the left child node
of Delay, so we have (1, 2, −1) and (2, −1, −1) in Table 2. The cAst view and
the sAst source respectively record the edge relationships in the core term and
the generated surface term. And their fields are exactly the same as the pAst
source, which represents the two patterns before and after transformation in all
rules.

Rule. The transformation rules are recorded in the rule table as shown in
Table 3. The id of the root in the syntax tree uniquely represents the corre-
sponding pattern. Let LHS represent the surface syntax pattern on the left side
of the transformation rule, and RHS the core syntax pattern on the right side.
Then, for the rule described in Fig. 5, the id of the LHS is 1, and the id of the
RHS is 5, so we store (1, 5) in rule table in Table 3.

3.3 Non-recursive Resugaring

Resugaring is to turn a core term back to a surface term by reversely applying
transformation rules. Non-recursive resugaring refers to the case where the core
term will be transformed back to at most one syntactic sugar and at most once.

Matching. Matching is to match the core term with the RHSs of the transfor-
mation rules, so as to obtain the rules used in the resugaring and the mapping
relationship between variables in patterns and bindings in the core term.

There are three types of nodes in the pattern, but there are only two types in
the term. Therefore, after a simple combination, there are four cases (in Table 4)
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Fig. 4. A pattern Fig. 5. A transformation rule

Table 3. Rule source

lhs:number rhs:number

1 5

that meet the matching conditions. If the types of the pattern node and the term
node are constants or keywords, then the matching succeeds when the names of
the two are the same. If the pattern node is a variable, then the term node can be
a constant node or a keyword node, because the variable can match a constant
or sub-expression.

The matching algorithm consists of three steps: the first step is to recursively
try to match starting from the root of the core term and the root of all RHS
patterns; the second step is to determine the RHS that the core term completely
matched, thereby we can determine the transformation rule that can be used; the
third step is to extract the information needed for the subsequent substitution
algorithm. Algorithm 1 describes the matching algorithm in detail with a specific
example. The core term and related transformation rule are shown in Fig. 6.

As shown in Fig. 7, when the root of the term matches the root of the RHS,
we will continue matching their left child and right child respectively, so the first
step of matching is a recursive process. In the second step, we found that all
the nodes of the above RHS were successfully matched to the term node in the
first step, so we think that the matching was successful. So in the third step,
we determined the corresponding LHS and the bindings corresponding to the
variables in the LHS, namely {x → 1, y → 2 ys → Empty}.
Substitution. Substitution refers to the process of replacing the variables in
the LHS determined in the matching with the corresponding bindings to obtain
the final surface term.

3.4 Recursive Resugaring

Recursive resugaring refers to the case where the core term will use multiple
syntactic sugars.
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Table 4. Matching conditions

Pattern node Term node

Keyword Keyword

Constant Constant

Variable Keyword

Variable Constant

Algorithm 1. Matching Algorithm

def matching(CoreTerm)
// step 1
foreach RHS in RHSs

PROOT = Root ID of RHS
TROOT = Root ID of CoreTerm
trymatch(PROOT, TROOT)

// step 2
check()
// step 3
insert rule which RHS is ’completely matched’ into ‘state‘
if size of ‘state‘ == 0:

Raise(’match failed!’)
return

foreach (PID, TID, RHS) in ‘matched‘:
if RHS is ’completely matched’ and type of PID is ’variable’

insert (PID, TID) into ‘env‘
foreach TID exists in ‘env‘

insert subtree of TID into ‘value‘

Matching. Sub-term is a collection of partial nodes in the binary tree of the core
term. These nodes can reach each other through their common edges. The meta
term is a special sub-term, and its nodes can be bijective with all the nodes of a
certain pattern. Therefore, the object of recursive resugaring is a core term with
multiple meta terms. The core idea of the recursive transformation algorithm is
to match each sub-term in parallel, so the matching should not only start from
the root of the binary tree of the core term, but should try from each node.
Starting from a certain node, the part of the nodes that successfully matches a
pattern is a meta term.

The following uses an example to explain the recursive resugaring process
in detail. As shown in Fig. 8, The nodes of the three colors of blue, gray and
orange are the meta terms matching three different patterns respectively. We no
longer only match from the root If, but each node of the core term can be used
as the root to match with roots of patterns. From this, we can determine that
the following rules will be used in transformation.
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Fig. 6. A core term and a transformation rule

Fig. 7. Matching

And([x, y, ys ...]) → If(x, And([y, ys ...]), False)
Or([x, y, ys ...]) → Let([Bind(“t”, x)], [If(Id(“t”), Id(“t”), Or([y, ys ...]))])
If(x,y,z) → If(x,y,z) (a special rule, see 4.2)

Expansion. In Matching, we can determine the patterns to be converted from
the patterns which meta terms successfully matched. In the expansion, we com-
bine the determined patterns according to the positional relationship suggested
by the core term into a combined pattern. In the previous example, we combined
the target patterns as shown in Fig. 9.

Substitution. The substitution process here is consistent with non-recursive
resugaring which replaces variables in the combined pattern with bindings.
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Fig. 8. Matching

4 Two Properties

4.1 Checking Transformation Rules for Preserving Emulation

Emulation means that the surface terms obtained by resugaring maintain the
same semantics as the corresponding core terms. In other words, the surface term
obtained after resugaring can be desugared to the corresponding core term again.
In fact, this is also the PutGet property that the bidirectional transformation
program needs to satisfy. Therefore, BIRDS can ensure that a single transfor-
mation rule satisfies emulation, but cannot guarantee the situation of multiple
transformation rules. Some transformation rules will violate the emulation. For
example, we use the following transformation rules to resugar Max([−∞]).

Max([ ]) → Raise(“empty list”);
Max(xs) → MaxAcc(xs,−∞);

The following core language evaluation sequence will be obtained.

MaxAcc([−∞],−∞) ⇒ MaxAcc([ ],−∞)

After adding sugar to them, we will obtain the following surface language eval-
uation sequence:

Max([−∞]) ⇒ Max([ ])

But Max([ ]) should be desugared to the error message, instead of the second step
of the core language evaluation sequence. But with the following transformation
rules, the above problems will not occur.

Max([ ]) → Raise(“empty list”);
Max(x : xs) → MaxAcc([x, xs, ...],−∞)
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Fig. 9. Expansion

Fig. 10. Match the LHSs with each other

Therefore, we need to check whether there is any overlap among the trans-
formation rules. If there is any overlap, the rules are invalid, otherwise they are
valid. In Fig. 10, the first group has overlap, but the second group does not have
any overlap.

4.2 Maintaining Abstraction

Abstraction means that the code obtained by desugaring will not be leaked in
the output surface language program, and at the same time, the program in
the original input cannot be resugared. If the surface term itself uses some core
language syntax, such as “If”:

Let([Bind(“t”, not(false))], [If(Id(“t”), Id(“t”),Or([true]))]).

After reduction, we hope that it will not be converted during resugaring, that
is, Or ([not(true), true]) cannot be obtained.

Our solution is to treat the core syntax rules as special transformation rules
with the same LHS and RHS. We mark the roots that match the core syntax rules
with a “fixed” label, and the stepper will retain the labels during the reduction.
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Fig. 11. Resugaring

In the above example, since this surface language will match core syntax rule of
Let, we add “fixed” tag in front of Let. Then, in resugaring, the marked nodes
will not be used to match with RHSs. That is to say, the above core term will
not match the RHS of Or syntactic sugar, so we can maintain abstraction during
transformation.

5 An Example

We show an example of our resugaring. As shown in Fig. 11, except for the
fourth and sixth steps, other core terms have the corresponding surface terms
after resugaring, and satisfy emulation and abstraction. For example, the second
step of the core language evaluation sequence is the result after not(false) is
evaluated as true. Resugaring adds And and Or syntactic sugar to the second
step of core to get the second step of surface.

6 Related Work

Bidirectional transformation (bx) is a mechanism used to maintain the con-
sistency of two (or more) related sources of information. Researchers from
many different fields, including software engineering [2,18], programming lan-
guages [7,15], databases [3,4] and document engineering, are actively studying
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the use of bx to solve various problems [8]. Our work shows the application of
bx in programming language transformation.

The view update problem is a classical problem that has a long history
in database research. A typical language of the putback-based approach is
BiGUL [12,14], which supports programming putback functions declaratively
while automatically deriving the corresponding unique forward transformation.
Based on BiGUL, Zan et al. [21] design a putback-based Haskell library for bidi-
rectional transformations on relations. But only [20] can run in database envi-
ronments, which provides us with great convenience for language transformation
on relational tables.

Data interoperability addresses the ability of systems and services that create,
exchange and consume data to have clear, shared expectations for the contents,
context and meaning of that data [9]. Because our approach solves the problem of
correlation between the surface language and the core language being executed,
the above problem is a typical problem of maintaining data interoperability.
Many methods have been proposed to solve the problem. One method is to man-
ually redefine the semantics based on the surface language, which undermines
the benefits provided by the small core. The other is to use source tracking [19],
but this is actually not a solution: users will still only see the core language after
desugaring. In addition, creating a one-time solution for a given language is not
suitable for those languages where users can create other syntactic sugar in the
program itself, such as Lisp language [16].

Resugaring [17] is currently the most effective method. The traditional imple-
mentation method is to write two programs, namely, desugaring and resugaring,
and then use string processing to transform the programming language. And we
use the BIRDS [20] to automatically generate the desugaring program through
the resugaring program, and convert the processing of the string into the oper-
ation of the relational table.

7 Conclusions

In this paper, we propose a new implentation method for resugaring, which can
greatly reduce the difficulty of implementation. Not only did we propose to use
the bidirectional transformation tool BIRDS to write the resugaring algorithm,
but also presented a new solution to maintain emulation and abstraction during
the transformation.

In the future, firstly, we intend to generalize the transformation algorithms
on syntax trees by using more general bidirectional transformation on trees.
Secondly, the tree is a special case of graph, and the relational table operation
for the graph pattern and the tree pattern is not much different, so we intend to
generalize the algorithm to the bidirectional transformation of the graph pattern.
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Abstract. We consider a data exchange setting with three kinds of par-
ticipants, where the source has its data publishing policy. We formalize
appropriate policies at the target with respect to the policy at the source.
We also provide a heuristic algorithm to find an appropriate policy.

Keywords: Data exchange · Data publishing policy · Query rewriting

1 Introduction

In usual data exchange settings, participants are only two, namely, the source
and the target. However, in practical situations, there are other participants
to which the source and the target publish the exchanged data. In this paper,
we consider such a data exchange setting. See Fig. 1. There are three kinds
of participants: the primary data provider, secondary data providers, and data
users. The primary data provider supplies a part of its data to each of secondary
data providers and data users, through some mechanism such as views, schema
mappings, etc. Moreover, secondary data providers supply parts of their data,
which are originally supplied from the primary data provider, to their data users.

Example 1. Suppose that a world-wide medical institute (WMI for short) gath-
ers data on some disease all over the world, and supplies the data related to
Japanese people to a Japanese medical institute (JMI for short). WMI publishes
a part of its data to world-wide news media, and JMI does a part of its data to
news media in Japan. In this example, WMI is the primary data provider, JMI
is a secondary data provider, and the news media are data users.

In general, the primary data provider has its data publishing policy to its
users. For instance, in Example 1, WMI may want to hide the information on
patients’ nationality from news media to avoid nationality discrimination. When
secondary data providers publish their data to their users, they should follow
the policy of the primary data provider.

Example 2 (Continued from Example 1). Suppose that WMI has relational data
with its schema S(ID,Age,Gender,Nationality,Severity). Then, data exchange
mechanism M between WMI and JMI will be the following conjunctive query:

M : T (ID,Age,Gen, Sev) :- S(ID,Age,Gen, “JPN”, Sev).
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-61133-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61133-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-61133-0_10


132 Y. Ishihara

Fig. 1. The problem setting. Participants are classified into three secrecy levels.

If WMI wants to hide the information on patients’ nationality as well as ID from
news media, QS will be the following conjunctive query:

QS : V (Age,Gen, Sev) :- S(ID,Age,Gen,Nat, Sev).

Now, suppose that JMI adopts the following conjunctive query QT as its
data publishing policy:

QT : W (Age,Gen, Sev) :- T (ID,Age,Gen, Sev).

At first glance, QT seems an “appropriate” policy in the sense that QT reveals
only the attributes that QS does, namely, Age, Gender, and Severity. However,
QT discloses some information that QS does not. To be specific, data user UT

of JMI can obtain the information on Japanese patients, while data user US of
WMI can obtain patient data all over the world but US cannot identify which
parts of the data are on Japanese patients.

In this paper, we formalize an appropriate data publishing policy QT at the
secondary data provider for given policy QS at the primary data provider and
given data exchange mechanism M, provided that all of M, QS , and QT are
conjunctive queries. Then, we provide a heuristic algorithm to find such QT .

In the context of data integration, naturally there exist three kinds of par-
ticipants, namely, data owners/providers, the data integrator, and data users.
However, in this context, the main concern is often how to preserve the privacy
of data owners, not how to follow their data publishing policies (e.g., [4]). In
the setting of outsourcing network log analysis [3], the policy of the log owner is
often fixed, e.g., the owner does not want the outsourcing company to identify
the connection between network IDs and IP addresses. To the best of our knowl-
edge, there is no research on how to incorporate three-participant model into
data exchange framework, where the source has flexible data publishing policies.
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2 Definitions

A relation schema R[n] consists of a relation name R and its arity n. Fix a
countable set Dom of values. A tuple t over R[n] is an element in Domn. A
relation instance I over R[n] is a finite set of tuples over R[n]. A database schema
R is a finite list 〈R1[n1], . . . , Rk[nk]〉 of relation schemas. A database instance
I over a database schema R = 〈R1[n1], . . . , Rk[nk]〉 is a list 〈I1, . . . , Ik〉, where
each Ii is a relation instance of Ri[ni]. We write Ri(ai, . . . , ani

) ∈ I if the i-th
relation instance of I contains a tuple (ai, . . . , ani

).
Let R = 〈R1[n1], . . . , Rk[nk]〉 be a database schema. Fix a countable set Var

of variables. An atomic formula over R is in the form of Ri(x1, . . . , xni
), where

each xj is in Dom∪Var. A conjunctive formula over R is a possibly empty list of
atomic formulas. The empty conjunctive formula is denoted by �. A conjunctive
query (CQ for short) Q over R is a rule in the following form:

Q : V (y1, . . . , ym) :- ϕ,

where V is a new relation name with arity m not in R, each yj is in Dom∪Var,
and ϕ is a conjunctive formula over R. Q is said to be safe if all of y1,. . . , ym

are in Var and also appear in ϕ. A safe version of Q is a CQ obtained by
eliminating, from its head, all the constants and all the variables not appearing
in its body. Let μ : Var → Dom denote a variable assignment. The answer Q(I)
to Q on I over R is:

Q(I) = {(μ(y1), . . . , μ(ym)) |
Ri(μ(x1), . . . , μ(xni

)) ∈ I for each Ri(x1, . . . , xni
) ∈ ϕ}.

If Q is safe, Q(I) is finite and hence it is a relation instance over V [m]. The
output relation schema of Q refers to the relation schema of Q(I). Similarly, for
a list Q = 〈Q1, . . . , Qk〉 of CQs, the output database schema of Q is the database
schema of 〈Q1(I), . . . , Qk(I)〉.

Let I(R) denote the set of all database instances over R, and Q1 and Q2 be
CQs over R. Q1 is contained in Q2, denoted Q1 ⊆ Q2, if Q1(I) ⊆ Q2(I) for all
I ∈ I(R). Q1 and Q2 are equivalent, denoted Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.

Let Q be a CQ and M be a list of CQs. A CQ-rewriting of Q using M is a
CQ Q′ such that

– the body of Q′ contains only relations in the output schema of M, and
– Q′ ◦ M ≡ Q, where ◦ denotes query composition.

In this paper, we focus on the technique called canonical rewriting [1], which
is used for deciding the existence of a CQ-rewriting. A canonical rewriting Rcan

of Q using M is a CQ such that:

– the head of Rcan is the same as that of Q, and
– the body of Rcan consists of all the answers to M on the body of Q.

If there is a CQ-rewriting of Q using M, then Rcan is a CQ-rewriting [1].
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3 Appropriate Policies

Let QS be a safe CQ representing the data publishing policy at the primary
data provider. Let M be a list of safe CQs representing data exchange mechanism
between primary and secondary data providers. An appropriate policy QT at the
secondary data provider for QS and M is a safe CQ satisfying confidentiality
and availability defined below:

Confidentiality. There is a CQ-rewriting of QT ◦ M using QS .
Availability. QT ◦M gives maximal information with respect to the existence

of CQ-rewriting. That is, for any Q′
T satisfying confidentiality, if there is a

CQ-rewriting of QT using Q′
T , then there is a CQ-rewriting of Q′

T using QT .

Note that the following “information-collapsing” CQ Q⊥ satisfies confidentiality
for any QS and M:

Q⊥ : W () :- �.

Example 3 (Continued from Examples 1 and 2). In this case, the information-
collapsing CQ Q⊥ is the unique, appropriate policy of JMI. As already stated,
Q⊥ always satisfies confidentiality. To see that Q⊥ satisfies availability, we show
that if Q′

T discloses some information, then Q′
T does not satisfy confidentiality.

Suppose that Q′
T discloses some information, i.e., there are instances J1 and

J2 at JMI such that Q′
T (J1) �= Q′

T (J2). Now construct two instances I1 and I2
at WMI as follows:

I1 = {(ID,Age,Gen, “JPN”, Sev) | (ID,Age,Gen, Sev) ∈ J1} ∪
{(ID,Age,Gen, “CHN”, Sev) | (ID,Age,Gen, Sev) ∈ J2},

I2 = {(ID,Age,Gen, “CHN”, Sev) | (ID,Age,Gen, Sev) ∈ J1} ∪
{(ID,Age,Gen, “JPN”, Sev) | (ID,Age,Gen, Sev) ∈ J2}.

Since M(I1) = J1 and M(I2) = J2, we have Q′
T ◦ M(I1) �= Q′

T ◦ M(I2). On the
other hand, we have QS(I1) = QS(I2), and hence, there is no CQ-rewriting of
Q′

T ◦ M using QS .

Example 4. Let R = 〈S1[2], S2[4]〉 be a database schema at the primary data
provider. Suppose that M consists of the following two CQs:

M : T1(A,B) :- S1(A,B) T2(C) :- S2(b, C,D, e).

Also, let QS be the following CQ:

QS : VS(A,C,D,E) :- S1(A, b), S2(b, C,D,E).

Consider the following CQ QT :

QT : VT (A,C) :- T1(A, b), T2(C).



Toward Appropriate Data Publishing in Data Exchange 135

QT satisfies confidentiality because N defined below is a CQ-rewriting of QT ◦M
using QS :

N : W (A,C) :- VS(A,C,D, e).

To see that QT satisfies availability, consider an arbitrary CQ Q′
T such that

there is a CQ-rewriting of QT using Q′
T . Then, a canonical rewriting Rcan of QT

using Q′
T satisfies Rcan ◦ Q′

T ≡ QT . Since Rcan is not information collapsing,
the body of Q′

T must match the body of QT , i.e., each atomic formula in the
body of Q′

T must be one of T1(X,Y ), T1(X, b), T2(Z) or isomorphic to one of
them. Moreover, the head of Q′

T must contain variables X and Z (since they
are corresponding to A and C in QT ), and for Rcan to be safe, the body of Q′

T

must contain these two variables. In summary, Q′
T must be one of the following

form, where ϕ denotes atomic formulas isomorphic to the preceding ones:

1. V ′
T (X,Z) :- T1(X,Y ), T2(Z), ϕ

2. V ′
T (X,Z) :- T1(X, b), T2(Z), ϕ

3. V ′
T (X,Z) :- T1(X,Y ), T1(X, b), T2(Z), ϕ

4. V ′
T (X,Y,Z) :- T1(X,Y ), T2(Z), ϕ

5. V ′
T (X,Y,Z) :- T1(X,Y ), T1(X, b), T2(Z), ϕ

The second and the third are equivalent to QT . We can see that the others do
not satisfy confidentiality.

4 Policy Derivation

In this section, we propose a heuristic algorithm for deriving QT that satisfies
confidentiality. Currently, we have no proof that QT also satisfies availability in
general, but we can see that for the example cases above QT satisfies availability.

A partial instantiation θ of QS with respect to M is a partial mapping that
maps a variable appearing in the head of QS to a constant appearing in the body
of M. The CQ obtained by applying θ to QS is denoted by QSθ. For example,
consider M and QS in Example 4. θ = [E �→ e] is a partial instantiation of QS

with respect to M, and QSθ is:

QSθ : VS(A,C,D, e) :- S1(A, b), S2(b, C,D, e).

θ′ = [B �→ e] is not a partial instantiation because B does not appear in the
head of QS . θ′′ = [E �→ c] is not because c does not appear in the body of M.

Our heuristic algorithm consists of the following three steps:

1. Given M and QS , compute the set Θ of all partial instantiations of QS with
respect to M.

2. For each θ ∈ Θ,
(a) compute a safe version Qθ

can of a canonical rewriting of QSθ using M;
and

(b) decide whether there is a CQ-rewriting of Qθ
can ◦ M using QSθ.
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Let Q be the set of all Qθ
can such that the decision at step (b) is affirmative.

3. Output Q⊥ if Q is empty. Otherwise, output QT ∈ Q such that for any
Q′

T ∈ Q, if there is a CQ-rewriting of QT using Q′
T , then there is a CQ-

rewriting of Q′
T using QT .

Example 5 (Continued from Example 4). We demonstrate the second and third
steps of our algorithm. First, consider the partial instantiation undefined every-
where. A safe version Qcan of a canonical rewriting of QS using M is:

Qcan : VT (A) :- T1(A, b).

We can check that there is no CQ-rewriting of Qcan ◦ M using QS .
Next, consider a partial instantiation θ = [E �→ e]. A safe version Qθ

can of a
canonical rewriting of QSθ using M is:

Qθ
can : VT (A,C) :- T1(A, b), T2(C).

There is a CQ-rewriting N of Qθ
can ◦ M using QS :

N : W (A,C) :- VS(A,C,D, e).

Q is the set of Qθ
can such that θ maps E to e. At the third step, the algorithm

will output Qθ
can with θ = [E �→ e], which has been shown to be appropriate in

Example 4.

The algorithm always finds QT with confidentiality because by step 2(b), Q
contains only CQs that satisfy confidentiality. We are trying to prove that the
output of the algorithm also satisfies availability.

5 Future Work

We are planning to extend M to target generating dependencies (tgds), which
are commonly used in relational data exchange framework [2]. In this case, the
behavior of M becomes nondeterministic because the secondary data providers
can add their data to the supplied data from the primary data provider. We will
have to redefine the appropriateness based on the semantics (e.g., certain answer
semantics) that can handle such nondeterministic behavior.
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Abstract. The co-existence of relational schemas is an important fea-
ture of a database. A schema evolves to new versions, and then these
multiple schema versions concurrently serve to multiple application ver-
sions evolving in the real world. We propose a programming framework
for co-existence of relational schemas. The existing work shows a view
based co-existence of relational schemas by giving a predefined strategy
to propagate view update across schemas for data sharing. A co-existence
strategy consists of a view definition for a new schema and rules of view
update to propagate it from a new schema to an old schema. The exist-
ing work has three problems in practice; limited expressive power for
co-existing strategies, a tricky design of auxiliary tables, and a neces-
sity of global id. To resolve these problems, we propose a language for
describing how an update is propagated across schemas and present a
mechanism to derive auxiliary tables and other all equipment to run on
an existing RDBMS. Our approach can be implemented by using the
existing bidirectional transformation engine, BIRDS.

Keywords: Co-existence of schemas · Bidirectional transformation ·
Data sharing

1 Introduction

The co-existence of relational schemas is an important feature of a database.
Today the information system is continuously evolved to follow ever-changing
demands in the real world. Most of the information systems consist of appli-
cations and relational databases. In an application, its evolution is strongly
supported by the tools, SVN and GIT, which maintain multiple versions of
an application and deploys several versions of them to run concurrently. In a
database, database schema and data are also continuously evolved to multiple
versions [4]. However, the current database management systems do not support
an efficient evolution of a schema and running multiple versions concurrently. As
c© Springer Nature Switzerland AG 2020
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a notable work, Herrmann proposes MSVDB (Multi-Schema-Version Database
Management System) that achieves a co-existence of relational schemas in the
evolutional process of a database [13,14]. MSVDB composes a relational schema
by views on top of shared physical data in one database. It provides a set of
schema modification operations (SMOs) to show how to make an old schema
evolved to a new one. It automatically gives a co-existence strategy for data
sharing between these two schemas, i.e., a strategy for propagating updates
between schemas through physical data. Despite the user-friendly description of
schema evolution and fully automatic mechanism, the MSVDB approach based
on SMO has limited expressive power for users to describe co-existence strategies
between two schemas. It prevents a user from solving many practical problems
in a co-existence of schemas.

– First, in the MSVDB approach, SMO describes a static relationship between
the old and the new schemas, but it does not specify the strategy for data
propagation (or data sharing) between the users of different schemas. The
users may wish to share as many new information as possible even after evo-
lution, or, to the other extreme, to do independently even if the two schemas
co-exist. However, SMO cannot describe such an intended co-existing strat-
egy; rather, it just provides a predefined strategy.

– Second, for the predefined strategy for each SMO given in the MSVDB app-
roach, its implementation requires a tricky design of auxiliary tables that
compensate supplemental information from physical data to an instance of a
view. It lacks a systematical method to design these auxiliary tables, in which
it is challenging to introduce new SMOs or change old SMOs even if we wish.

– Third, the MSVDB approach requires a global id system among schemas
before and after the evolution to record the correspondence among tuples
for traceability. In practice, such a global id system is system-oriented, but
not what the end-users wish to see. Moreover, the management of global id’s
uniqueness would cause performance bottleneck and unfavorable complexity
of information systems.

In this paper, we resolve the above problems by proposing a new framework.
Rather than using SMO to describe static relation between two schemas, we
provide a new view-embedding method to describe both static and dynamic
relationships, use it to specify declaratively intended strategies for co-existence
of relational schemas, and automatically derive necessary auxiliary tables for
strategy implementation. Our technical contributions are summarized as follows.

– We provide, as far as we are aware, the first programming framework for
describing intended strategies for data sharing/reuse between the users of
the co-existing schemas. The description is declarative without global id, and
powerful enough to cover all strategies that SMO provides and can do more.

– We show that all auxiliary tables for implementing the strategies can be done
entirely automatically through a derivation of view definition and ensuring
arbitrary updates on a view.

– We design our framework over BIRDS, a bidirectional relational description
system, and illustrate our system’s usefulness through examples.
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The rest of the paper is organized as follows. After introducing preliminary
in Sect. 2, we show an overview of our framework in Sect. 3. We define a lan-
guage for the co-existence strategy of relational schemas in Sect. 4 and show
implementation of the framework in Sect. 5. Finally, we discuss related work in
Sect. 7 and conclude the paper in Sect. 8.

2 Preliminary

In this section, we briefly review the basic concepts that will serve our approach.

2.1 Co-existence of Relational Schemas

The co-existence of relational schemas is to maintain and run multiple schemas
concurrently in one database. Figure 1 depicts its high-level architecture. A table
in each schema is a view on top of physical data. A source schema (e.g., schema1)
is modified to a target schema (e.g., schema2) by a user for several reasons.
Each schema acts like a regular single-schema database (e.g., DB1 and DB2).
Arbitrary updates from each application (e.g., application1 and application2)
are handled and shared across schemas for needs through forward and backward
transformations against physical data. A co-existence strategy controls how data
is shared/reused by specifying what is propagated across schemas or what is not.
MSVDB approach [13,14] introduces SMO for atomic schema modification, e.g.,
union of tables, paired with one predefined co-existence strategy. To be concrete,
consider the following example borrowed from [13].

Example 1. Suppose schema1 is defined with a view task(id, auth, task, prio) by
giving identity mapping between the view and a base table task base of physical
data. Let us suppose the SMO modifies a view task of schema1 to a view todo(id,
auth, task, prio) of schema2 by selecting those tuples satisfying prio=1. A given
forward transformation realizes this selection by a view definition on RDBMS.
Figure 2(a) shows that it results in a tuple (2,Ann,write paper, 1) in todo.

This SMO accompanies a co-existence strategy which propagates view
updates of schema2 to schema1 through one-to-one mapping of tuples via id.
Figure 2(b) illustrates its behavior of insertions. When a tuple of prio=1, (3,
Ada, clean room, 1), is inserted to todo, a given backward transformation as
trigger on RDBMS propagates it to task as an insertion of a new tuple. Even if
this insertion initially occurs over task, the forward transformation of selection
computes (3, Ada, clean room, 1) of todo from an updated instance of task.
Differently, when a tuple of prio �=1, (4, Ron, buy book, 4), is inserted to todo,
the backward transformation propagates it to both a view task and an auxiliary
table task* of physical data. Even though the forward transformation of selec-
tion does not compute (4, Ron, buy book, 4) from task to todo, another rule
of the forward transformation is prepared to compute it from task* to todo.
Finally, all propagated tuples to task are stored in task base of physical data
by the identity mapping. Figure 2(c) shows a behavior of deletions. Regardless
of either cases of insertion propagation, a deletion of a tuple in a source schema
deletes a corresponding tuple in a target schema, and vice versa. �
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Fig. 1. Co-existence of relational schemas

Note that forward and backward transformations realize an implementation of
SMO and its strategy. Not to cause side effects, transformations must satisfy the
round-tripping property.

(Round-tripping property) Given a target data, transforming it to a
source data by a backward transformation, and retransforming it to a
target data by a forward transformation should return the same target
data. It is the same the other way around.

2.2 Bidirectional Transformation

For the implementation of our idea, we utilize bidirectional transformation (BX
for short). BX [12] is a mature technique synchronizing updates between hetero-
geneous data models. It is applied to a classical view update problem of relational
schema [2,8] in the following manner [3,9,10].

Suppose a source schema in which components are base tables and a target
schema in which components are view tables. BX consists of a pair of forward
and backward transformations between these two schemas. Given an instance of
source schema S (source) and instance of target schema T (target), a forward
transformation get(S) = T accepts source S and produces target T . A backward
transformation put(S, T ′) = S′ accepts the original source S and a changed tar-
get T ′, and produces a changed source S′. Note that we do not need global id
because put is allowed to access the original source. Instead of having one-to-one
correspondence between source and target, put takes the original source in addi-
tion to a changed target and produces a changed source. To ensure consistency
between source and target, BX must satisfy the following round-tripping laws,
called GETPUT and PUTGET:

put(S, get(S)) = S (GETPUT)
get(put(S, T ′)) = T ′ (PUTGET)

The GETPUT ensures an unchanged target corresponds to an unchanged source.
The PUTGET ensures an update of a target is reflected to a source such that the
updated target can be computed again by get giving the updated source.
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Fig. 2. Schema modification and update propagation of Example 1

3 Overview

We present our central idea and relation with the later sections before we discuss
our approach in detail.

3.1 The View-Embedding Methodology

Our goal is to provide a programming framework; a user intentionally describes
a co-existence strategy, and an implementation is automatically derived. We
propose the view-embedding methodology to describe a co-existence strategy. It
describes how to embed a view update on a target schema into a source schema
against a static relationship f (a functional correspondence) from a source to a
target schema. There are four cases.

– Two-way: An insertion to a target schema occurs in the range of f and
is embedded into a source schema in one-way. If this embedding occurs as
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a direct insertion over a source schema, f computes the inserted tuple of a
target schema from a source schema in another one-way. The same behavior
is applied to a deletion.

– One-way: An insertion to a target schema occurs out of range of f and is
embedded into a source schema in one-way. Even if this embedding occurs
as a direct insertion over a source schema, f does not compute the inserted
tuple of a target schema from a source schema. The same behavior is applied
to a deletion. When a deletion directly occurs against an embedded tuple in
a source schema, the inserted tuple in a target schema is not deleted.

– One-way/two-way: A behavior of insertion is the same as the one-way.
However, a behavior of deletion is different from the one-way. When a deletion
directly occurs against an embedded tuple in a source schema, the inserted
tuple in a target schema is deleted in another one-way.

– No-embedding: An insertion to a target schema occurs out of range of f
and is not embedded into a source schema. The same behavior is applied to
a deletion.

In this paper, we describe a co-existence strategy as a combination of view-
embedding classes: the two-way, the one-way/two-way, and the no-embedding.
Since these three cover existing SMO strategies and can design more, we put
view-embedding of the one-way into a future work.

Example 2. From Example 1 and Fig. 2, an insertion/deletion of (3, Ada, clean
room, 1) in which prio=1 corresponds to the two-way because it is in the range
of a static relationship, i.e., selection by prio=1. An insertion/deletion of (4,
Ron,buy book,4) in which prio=4 corresponds to the one-way/two-way because
it is out of range of a static relation and a deletion from a source schema is
reflected to a target schema. There does not exist the no-embedding in Example
1 because view-embedding by the two-way and the one-way/two-way cover all
cases, namely, ensure arbitrary updates on a target schema. �

We assume a source schema has more information than a target schema so that
any update can be embedded. If a source schema has less information than a
target schema, a co-existence strategy can be oppositely described, i.e., from
a source schema to a target schema. In Sect. 4, we introduce a Datalog based
language to describe a co-existence strategy by view-embedding of the two-way
and the one-way/two-way. The no-embedding is complementarily defined from
them by a mechanism mentioned later in Sect. 5.

3.2 Framework Design

We shall realize a co-existence of relational schemas by implementing a co-
existence strategy onto RDBMS. Recall the implementation revealed in Exam-
ple 1 consists of a pair of a forward transformation (as view definition) and a
backward transformation (as trigger) by satisfying the round-tripping property.
We implement them by BX consisting of gettotal and puttotal. Global id is not
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Fig. 3. A framework design

necessary. Without one-to-one correspondence, BX produces consistent instances
of source and target schemas by reflecting updates from each side.

Figure 3 shows a framework design. An input is a user-written co-existence
strategy that describes view-embedding of the two-way and the one-way/two-
way. An output is SQLs representing a BX of gettotal and puttotal that realizes
arbitrary update on a target schema and data sharing with a source schema. We
design a derivation by two steps. The first step is the BX derivation. It derives
a BX from a co-existence strategy by adding auxiliary tables. The derived BX
realizes data sharing with a source schema. The second step is the totalization.
The derived BX is defined for data sharing through the view-embedding. Thus
the BX might be partially defined against arbitrary updates on a target schema,
i.e., updates of the no-embedding are not covered. The second step derives a
totalized BX of gettotal and puttotal from the derived BX by adding another
auxiliary table to cover the no-embedding. Finally, SQLs (view definition, trigger,
and DDL to define auxiliary tables of physical data) are generated from gettotal
and puttotal. In each step, we utilize the bidirectionalization engine, BIRDS [20].
In Sect. 5, we propose a novel mechanism to systematically add auxiliary tables
in the BX derivation step (Sect. 5.1) and the totalization step (Sect. 5.2).

4 Schema Co-existence Strategy Description

Our language is to describe a co-existence strategy by view-embedding method-
ology. The language is similar to BIRDS language which is a fragment of Datalog
and defines put function. Our language follows its syntax and gives more pred-
icates to express view-embedding classes. In the rest of this section, we explain
how a strategy is described.
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4.1 View-Embedding of the Two-Way

We describe a co-existence strategy of the two-way in the same manner as BIRDS
language. Its Datalog form with atoms H,L1, ..., Lj , ..., Lm is as follows:

H :− L1, ..., Lj , ..., Lm. (1)

Suppose view tables s1(X1), ..., si(Xi), ..., sn(Xn) of a source schema and a view
table t(Y ) of a target schema, where Xi and Y are sets of variables representing
attributes. H is a rule head expressing a set of insertion/deletion into a view
si(Xi) denoted by +si(Xi)/−si(Xi). Lj in a rule body takes view tables of a
source schema si(Xi), a view table of a target schema t(Y ), arithmetic compar-
ison predicates (e.g., >, =), or their negation.

Example 3. From Example 1, suppose a view task(auth, task,prio) of the source
schema and a view todo(auth, task, prio) of the target schema by excluding id.
Its co-existence strategy as the two-way is described with predicates +task and
-task as follows:

+task(A, T, P ) :− todo(A, T, P ),¬task(A, T, P ), P = 1. (2)
-task(A, T, P ) :− task(A, T, P ),¬todo(A, T, P ), P = 1. (3)

The rule (2) expresses that tuples existing in todo of the target schema but not
in task of the source schema are insertions over todo and are embedded into
task when the predicate P = 1 is satisfied. The rule (3) oppositely expresses
that tuples which exist in task but not in todo are deletions over todo and are
to be embedded into task when the predicate P = 1 is satisfied. �

4.2 View-Embedding of the One-way/two-way

For this class, we introduce predicates ⊕si(Xi)/�si(Xi) of a rule head to denote
a set of insertions/deletions to si(Xi). A rule body is described in the same
manner as the two-way.

Example 4. From Example 1, an inserted/deleted tuple of prio �= 1 over todo is
embedded to task as the one-way/two-way. Its co-existence strategy is described
with predicates ⊕task and �task as follows:

⊕task(A, T, P ) :− todo(A, T, P ),¬task(A, T, P ), P �= 1. (4)
�task(A, T, P ) :− task(A, T, P ),¬todo(A, T, P ), P �= 1. (5)

They express ⊕task and �task are computed in the same manner as rule (2)
and (3) by replacing the predicate P = 1 to P �= 1. �

5 Implementation

To implement a co-existence strategy as BX, we derive gettotal and puttotal from a
user-written strategy by our language. A derivation process composes two steps:
the BX derivation and the totalization. In this section, we propose a method to
add relevant auxiliary tables systematically in each step.
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5.1 BX Derivation

This step derives a BX of getpartial and putpartial from a co-existence strategy. A
user-written strategy is rewritten to BIRDS language to define putpartial. Then
the bidirectionalization engine, BIRDS, derives getpartial as Datalog program.

The two-way: A rule of this class is written in the same manner with BIRDS
language. Rewriting is not necessary for a rule which head is +si(Xi) or −si(Xi).

The one-way/two-way: A rule which head is ⊕si(Xi) or �si(Xi) is rewritten
to BIRDS language by adding an auxiliary table sone.i(Xi) of physical data.
sone.i(Xi) stores embedded tuples into a view si(Xi) of a source schema so
that insertions/deletions of the one-way/two-way is distinguished from inser-
tions/deletions of the two-way. Suppose rules of this class as following form:

⊕si(Xi) :− L+
i.1, ..., L

+
i.k. (6)

�si(Xi) :− L−
i.1, ..., L

−
i.l. (7)

where L+
i.1, ..., L

+
i.k, L

−
i.1, ..., L

−
i.l are atoms in a rule body taking predicates defined

in Sect. 4.1. Rules are rewritten to consistently embed insertion/deletion into
si(Xi) and sone.i(Xi) as follows:

+si(X) :− L+
i.1, ..., L

+
i.k. (8)

−si(X) :− L−
i.1, ..., L

−
i.l, sone.i(Xi). (9)

+sone.i(Xi) :− L+
i.1, ..., L

+
i.k,¬sone.i(Xi). (10)

−sone.i(Xi) :− L−
i.1, ..., L

−
i.l, sone.i(Xi). (11)

Rewritten rules define putpartial. The bidirectionalization engine derives Dat-
alog program of getpartial from putpartial by satisfying GETPUT and PUTGET.

Example 5. Rewriting of a co-existence strategy from Example 3 and 4 (rules
(2)–(5)) results in a following BIRDS program of putpartial by adding an auxiliary
table, task one(auth, task, prio).

+task(A, T, P ) :− todo(A, T, P ),¬task(A, T, P ), P = 1. (12)
-task(A, T, P ) :− task(A, T, P ),¬todo(A, T, P ), P = 1. (13)
+task(A,T,P) :−todo(A,T,P),¬task(A,T,P), P �=1. (14)
-task(A,T,P) :−task(A,T,P),¬todo(A,T,P), P �=1,task one(A,T,P). (15)

+task one(A,T,P) :−todo(A,T,P),¬task(A,T,P), P �=1,¬task one(A,T,P). (16)
-task one(A,T,P) :−task(A,T,P),¬todo(A,T,P), P �=1,task one(A,T,P). (17)

The bidirectionalization engine derives getpartial of Datalog program from them:

todo(A,T,P ) :− task(A,T,P ), P = 1. (18)
todo(A, T, P ) :− task(A, T, P ), task one(A, T, P ), P �= 1. (19)
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Rule (18) expresses selection of tuples in task by the predicate P =1. Rule (19)
expresses selection of tuples in both task and task one by the predicate P �= 1,
where tuples in task one exist just by a view-embedding of the one-way/two-
way. Thus even when a tuple satisfying the predicate P �= 1 is directly inserted
to task, it is not propagated to todo. �

5.2 Totalization

This step derives gettotal and puttotal from getpartial and putpartial to cover the
no-embedding. We exploit our previous work to make put a total function [18].
To make putpartial total, a new auxiliary table tttl(Y ) of physical data is added.
When a tuple is inserted into a view t(Y ) but rules of putpartial do not compute
an insertion or even a deletion to any views si(Xi) (i = [1, n]) in a source
schema, this insertion to t(Y ) is embedded into the auxiliary table tttl(Y ). When
this tuple is deleted from t(Y ), it is also deleted from tttl(Y ). Rules of the no-
embedding are defined with rule head, +tttl(Y )/−tttl(Y ), expressing a set of
insertions/deletions to tttl(Y ) as follows:

+tttl(Y ) :− +t(Y ),¬+s1(X1), ...,¬+sn(Xn), (20)
¬−s1(X1), ...,¬−sm(Xm), FXj

=Xk.

−tttl(Y ) :− −t(Y ),¬+s′
1(X1), ...,¬+s′

n(Xn), FXj
=Xk. (21)

+t(Y ) :− t(Y ),¬ttmp(Y ). (22)
−t(Y ) :− ¬t(Y ), ttmp(Y ). (23)

ttmp(Y ) :− tget(Y ) (24)
ttmp(Y ) :− tttl(Y ). (25)

where FXj
=Xk is a predicate of foreign key if it exists in a strategy, each +s′

i(Xi)
expresses a rule which body is composed by rule body of +si(Xi) excluded t(Y )
and FXj

=Xk, +t(Y )/−t(Y ) are intermediate tables of insertion/deletion over
t(Y ), tget(Y ) expresses rules of a derived getpartial, and ttmp(Y ) is an intermedi-
ate table expressing a temporary t(Y ). Now combined rules of putpartial and the
no-embedding define puttotal. The bidirectionalization engine derives Datalog
program of gettotal from puttotal by satisfying GETPUT and PUTGET. Because
Example 5 does not have the no-embedding, we show the modified example.

Example 6. Suppose a co-existence strategy of the two-way by rules (2) and (3),
putpartial defined by (12) and (13), and derived getpartial of (18). The rules of
the no-embedding with an auxiliary table todo ttl is defined as follows:

+todo ttl(A, T, P ) :− +todo(A, T, P ),¬+task(A, T, P ),¬-task(A, T, P ). (26)
-todo ttl(A, T, P ) :− -todo(A, T, P ), task(A, T, P ). (27)
-todo ttl(A, T, P ) :− -todo(A, T, P ),¬(P = 1). (28)

+todo(A, T, P ) :− todo(A, T, P ),¬todo tmp(A, T, P ). (29)
-todo(A, T, P ) :− ¬todo(A, T, P ), todo tmp(A, T, P ). (30)
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todo tmp(A, T, P ) :− task(A, T, P ), P = 1. (31)
todo tmp(A, T, P ) :− todo ttl(A, T, P ). (32)

Then rules (14)–(17), (26)-(32) define puttotal. The bidirectionalization engine
derives Datalog program of gettotal as follows:

todo(A, T, P ) :− task(A, T, P ), P = 1. (33)
todo(A, T, P ) :− todo ttl(A, T, P ), P �= 1. (34)
todo(A, T, P ) :− task(A, T, P ), todo ttl(A, T, P ). (35)

Rule (33) expresses getpartial of the two-way. Rules (34) and (35) express the
no-propagation by transform tuples in todo ttl to todo when they satisfy the
predicate P �= 1 or when the same tuples exist in task. �

6 Experimental Evaluation

We have constructed a prototype of the framework in OCaml. It adds auxiliary
tables to a user-written co-existence strategy, invokes BIRDS, derives Datalog
programs of puttotal and gettotal, and generates SQLs as trigger and view defini-
tion. To show effectiveness, we performed two experiments: replicating predefined
strategies of SMOs [13,14] and defining a new strategy. All experiments are run
with PostgresSQL 10.5 on a Core i5 machine 2.3 GHz and 8 GB memory.

6.1 Replication of SMOs Strategies

We perform replication of predefined strategies from three SMOs out of six for
schema modification. SMO consists of a pair with its inverse SMO, e.g., DROP
COLUMN and ADD COLUMN. We experiment strategies of SMOs in which source
schema has more information than target schema because other strategies of
paired SMOs are replicated by describing a strategy oppositely. Table 1 shows
experimental results. In each, source schema is derived by a co-existence strategy
expressing identity mapping between its views and base tables of physical data.
Then a co-existence strategy to replicate SMO’s strategy derives target schema
from source schema. Note that our method replicates inner/outer join on primary
key without totalization to manage key uniqueness between source and target
schema. Outer join on foreign key restricts foreign key as F = B and does not
update s2(F,B) by generating a new key.

The program size of inner/outer join on a primary key by our method is
larger than SMOs’ strategies because of a description of a primary key constraint.
Execution time is measured on write/read of 10,000 tuples over each schema and
shows an average of 10 trials. The results shows writing on target schema costs
than doing on source schema because an update on a view of target schema
updates views of source schema, and then updates base tables of physical data.
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Table 1. Experimental results

SMO Description Source
schema

Target
schema

LOC
(SMO
strategy)

LOC
(co-existence
strategy)

write on
source/read
on target [s]

write on
target/read
on source [s]

Inverse
SMO

DROP

COLUMN

by projection s(A,B) t(A) 4 2 0.87/0.07 2.24/0.01 ADD

COLUMN

MERGE

TABLE

by union (forward)
and selection
(backward)

s1(A,B),
s2(A,B)

t(A,B) 14 10 0.79/0.06 4.91/0.01 PARTITION

TABLE

JOIN

TABLE

by inner join on
primary key

s1(P,A),
s2(P,B)

t(P,A,B) 7 11 0.79/0.03 2.50/0.01 DECOMPOSE

TABLE

by outer join on
primary key

s1(P,A),
s2(P,B)

t(P,A,B) 5 13 0.85/0.11 4.20/0.03

by outer join on
foreign key

s1(A,F ),
s2(F,B)

t(A,B) 11 6 0.97/0.11 1.91/0.09

6.2 A New Strategy

Consider a new strategy modifying Example 1. Suppose one selection condition
of the two-way (B = 1) and another condition of the one-way/two-way (B = 2).
B �= 1 or B �= 2 becomes the no-embedding. A strategy is described as follows:

+s(A,B) :− t(A,B),¬s(A,B), B = 1. (36)
−s(A,B) :− s(A,B),¬t(A,B), B = 1. (37)
⊕s(A,B) :− t(A,B),¬s(A,B), B = 2. (38)
�s(A,B) :− s(A,B),¬t(A,B), B = 2. (39)

where source schema is s(A,B) and target schema is t(A,B). Our framework
derives Datalog program of gettotal as follows:

t(A,B) :− s(A,B), B = 1. (40)
t(A,B) :− s(A,B), sone(A,B), B = 2. (41)
t(A,B) :− tttl(A,B),¬(B = 1),¬(B = 2). (42)
t(A,B) :− tttl(A,B), sone(A,B), s(A,B). (43)
t(A,B) :− tttl(A,B), s(A,B),¬(B = 2). (44)

An experiment is performed in the same manner. Write on source/ read on
target takes 0.77/0.44 [s] and write on target/read on source takes 2.34/0.01
[s]. A result shows that the framework is practical to program not only SMOs
strategy but also a new user-intended strategy.

7 Related Work

The co-existence of relational schemas starts from a demand for high elasticity of
relational schema in a database’s practical problems. The database refactoring [1]
summarizes a design pattern of small changes to define a new schema by SQL
scripts. Flyway [11] and Liquibase [15] are valuable tools to organize a series of



150 J. Tanaka et al.

small changes and sequentially execute SQL scripts. To efficiently support these
manual-based works, a database community has widely researched the schema
evolution [5,17]. Curino et al. [6,7] propose PRISM/PRISM++. They enable
schema modification by SMOs and automatically translate query and update
issued against an old schema to run on a new schema. Moon et al. [16] propose
PRIMA. It also provides SMOs and translates query and update on the latest
schema to access data of legacy schemas. These works set a new database for
a new schema, and data is not shared across schemas. Against this limitation,
Herrmann et al. propose MSVDB [13,14]. It achieves the co-existence of schemas
and data sharing by SMOs and their co-existence strategies. However, strategies
are limited to predefined cases. In contrast, our work proposes a programmable
co-existence strategy which achieves more expressive power.

A co-existence strategy is for data sharing or no sharing between schemas.
Its theoretical background is data transformation between heterogeneous data
models [19]. A database community has treated this topic as the view update
problem [2,8], and a programming language community has studied in the bidi-
rectional transformation. Foster et al. [12] propose the first bidirectional pro-
gramming languages, lenses. It prepares primitive operators of bidirectional
transformation. A large bidirectional transformation is constructed by concate-
nating them. Bohannon et al. [3] propose lenses for view update in relational
database. Its expressive power is limited to the predefined primitive operators.
To overcome this limitation, Tran et al. [20] propose BIRDS to make view
update strategy programmable based on the bidirectional transformation tech-
nique [9,10]. Our prior work [18] proposes to program a co-existence strategy as
bidirectional transformation and make it to handle arbitrary updates on a view of
a target schema. In contrast, this paper proposes a new programming framework
by the view-embedding methodology for three classes. It realizes more express-
ing power than bidirectional transformation. Predefined strategies of SMOs and
a new strategy are programable.

8 Conclusion

In this paper, we present the framework to give full control over deciding how
to propagate updates across schemas for a co-existence strategy of relational
schemas. We propose a language to describe a strategy based on classes of view-
embedding even without global id. By systematically giving auxiliary tables and
utilizing the bidirectionalization engine, BIRDS, all equipments for implementa-
tion are derived. As future works, we consider to work for a class of the one-way,
further foreign key handling, totalization of join, and performance improvement.
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Abstract. In recent years, providers offering similar services have
increasingly formed alliances to increase their opportunities for match-
ing customers. Moreover, it is no longer uncommon for one provider to
participate in multiple alliances. It is important that providers participat-
ing in such multiple alliances integrate their data automatically, easily,
and flexibly. Several view-based data integration architectures have been
proposed, but they nevertheless present difficulties for multiple service
alliances. Actually, two novel view-based data integration architectures
have been developed in recent years to tackle these issues. They are the
Dejima architecture and the BCDS architecture. No work of the relevant
literature has discussed whether these architectures meet the require-
ments of multiple service alliances. The analyses presented herein clarify
this point. First, three models of multiple service alliances using views
are presented. Then these architectures are assessed for their capability
of resolving the issues presented above. Finally, models implementing
these architectures are summarized.

Keywords: Bidirectional transformation · Data integration ·
Distributed data management · Ridesharing · Service alliance

1 Introduction

As development of computer network technology progresses, providers offering
similar services have increasingly formed alliances to increase their opportu-
nities for matching customers. For instance, a marketplace platform such as
e-Bay or Amazon marketplace can be regarded as an alliance of companies pro-
viding shopping services. Companies participating in the alliance can display
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their products to customers through the marketplace platform. A customer can
choose a preferred product among those provided by the participant compa-
nies. Another example is ridesharing alliances. Ridesharing services allow non-
professional drivers to provide taxi services using their vehicles. Each driver (or
vehicle) usually belongs to a single ridesharing company such as Uber or Didi.
As the ridesharing market size increases, several ridesharing service providers
have formed partnerships with other providers to increase chances of match-
ing providers to customers [12]. Actually, Uber and Didi have merged their
China operations. Also, Ola Cabs and GrabTaxi are in talks to join a global
taxi alliance. In fact, in recent years, it is no longer uncommon for one provider
to participate in multiple alliances. For example, several shopping service compa-
nies are listing their products on both Amazon and Rakuten in Japan, although
they also have their own shopping sites on the web.

As Asano et al. [2] have described, even a single alliance can raise distributed
data management issues. A simple method of implementing an alliance is an
applicationroach by which a single representative provider manages global data
of all the participant providers and each provider manages local data by itself. As
one illustration of that idea regarding the Amazon marketplace, Amazon’s global
database manages all products. Each provider sends Amazon relevant product
information. Such an applicationroach might lead to inconsistency between the
global database of Amazon and the local database of each provider if some
provider is unable to write appropriate code for updating its local database
when its product is sold on Amazon.

Multiple alliances present additional severe issues. For example, one can con-
sider a ridesharing service provider publishing data of one vehicle to two alliances.
What will happen when a request to the vehicle from one alliance comes almost
simultaneously as that from the other alliance? This provider must write code
appropriately for controlling concurrency among its local databases and the two
global databases of the alliances, although that would constitute a difficult task
for such a provider. But the related tasks are difficult in other ways: because
this code depends on the provider’s data scheme and the alliance’s data scheme,
slightly different codes must be prepared for each provider and alliance pair.
Therefore, some novel architecture is necessary for integrating such distributed
databases easily and flexibly. Although distributed data integration architec-
tures using views have been studied in the field of databases by Piazza [5,6]
and ORCHESTRA (CDSS) [8,9], they are known to present three difficulties
for integration with distributed databases: (1) read-only view issue, (2) single
global schema issue, and (3) global consistency issue. Section 2 presents details
of these issues. However, Bidirectional Information Systems for Collaborative,
Updatable, Interoperable, and Trusted Sharing (BISCUITS) project1 has tackled
these issues and presented novel architectures based on bidirectional transfor-
mation (BX, for short) techniques over the last several years. One architecture

1 http://www.biscuits.work/.

http://www.biscuits.work/
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is that of Dejima2 proposed by Ishihara et al. [1,7]. That architecture enables a
peer to share data with another peer symmetrically using a view called Dejima.
Section 2 presents a more concrete explanation. Another architecture is Bidi-
rectional Collaborative Data Sharing (BCDS) architecture proposed by Takeichi
[11]. Actually, BCDS enables peers to share data asymmetrically by allowing
each peer to create a view for exporting its data and a view for importing the
data from another peer. Section 2 presents a more concrete explanation.

No report of the relevant literature has described an earlier study addressing
that point sufficiently. Therefore, the objective of this paper is clarification of
whether these architectures meet the requirements of multiple service alliances.
To do so, we must consider models of multiple service alliances using views for
distributed data management. Several questions arise to consider such a model.
For example, what data should be shared in an alliance? Should they be data of
services or data of customers? Who should manage the shared data? Each peer or
a mediator other than peers? To organize these questions, we first present three
models of multiple service alliances: (a) mediator view model, (b) provider view
model, and (c) customer view model. We then discuss whether the Dejima and
BCDS architectures are useful for implementing these models. For this discus-
sion, we specifically address two issues that arise in relation to implementation
of these models: (4) update privilege issue, and (5) virtual view issue. Section 4
presents related details. Then, by examining whether the architectures described
above can resolve these issues, we summarize which models can be implemented
using these architectures. Our discussion is expected to give a perspective on
what the data integration architecture should aim for and how multiple service
alliances should be implemented.

The remainder of this paper is organized as follows. First we summarize fea-
tures of the Dejima and BCDS architectures and their approaches to resolve
issues (1)–(3) in Sect. 2. Then we present the three models of multiple service
alliance in Sect. 3. In Sect. 4, we explain issues (4) and (5), which arise when
considering these models. In addition, by solving the issues (1)–(5), we can elu-
cidate whether the Dejima and BCDS architectures are useful for implementing
multiple service alliances. Important conclusions are presented in Sect. 5.

2 Related Work

View-based data integration architectures have been studied actively, as sum-
marized by Doan, Halevy, and Ives [3]. However, these architectures present
the following issues: (1) They assume that views are read only (i.e. direct
update of views can not be done by just anyone) because of the view update
problem [10]. Although details of the view update problem are not explained
herein, any conventional approach that makes a view for integrating distributed
databases, including these architectures and Extract/Transform/Load (ETL)
2 Dejima was a small, artificial island located in Nagasaki, Japan. All trade between

Japan and foreign countries was conducted through Dejima during 1641–1854. This
architecture is named based on its resemblance to Dejima in terms of functionality.
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Fig. 1. Example of Dejima architecture.

tools, is adversely affected by this shortcoming. For example, one can consider
that a mediator wants to collect data of available vehicles on several ridesharing
service providers and wants to assign a passenger to some vehicle in the collected
data represented as a view. It is preferable that the mediator be able to update
the tuple corresponding to the vehicle on the view and that the update prop-
agate automatically to the local databases of the providers while maintaining
consistency between the view and the local databases. This is impossible, how-
ever, because of the view update problem. (2) Because they usually rely on the
assumption that a single global scheme is shared by all peers [4,14], they are not
sufficiently flexible to address local databases of providers that have mutually
differing schemata. (3) They lack global consistency among local databases of
peers [8,9].

Recently, an architecture named Dejima was proposed to tackle with these
issues [1,7]. Recently, the so-called Dejima architecture was proposed to address
these issues [1,7]. Figure 1 portrays an example of data integration using Dejima.
Peers P1, P2, and P3 have their respective base tables of B1, B2, and B3. They
share view D1, Dejima of them. It is noteworthy that each shared view can have
data extracted from multiple base tables in a peer, whereas we present only a
single table for each peer in the figure for simplicity. For example, a Dejima can
have data of the natural joining of two base tables in a peer.

Each peer can decide which part of its base tables should be published to
their Dejima by writing code in Datalog language. This code actually defines how
base tables should be updated when the corresponding Dejima is updated. For
example, each of P1, P2, and P3 in Fig. 1 should write a code for their Dejima D1.
Then, BX between each base table and the Dejima maintains their consistency;
if some peer updates its base table, then it is propagated to the Dejima. The
update of Dejima is propagated automatically to the base tables of the other
peers. For example, when P1 inserts a tuple into B1, then the tuple might be
inserted into D1; but it might be inserted into B2 and B3 if the codes accept
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Fig. 2. Example of BCDS architecture.

the update. In this way, they form a group of integrated data corresponding to
G1 in the figure. Therefore, the Dejima architecture allows the view update and
solves the read-only view issue (1), in contrast to conventional view-based data
integration architectures.

The code written in Datalog is also used for converting the schema of base
tables into that of the view. In other words, it absorbs the difference between the
local schema and the global schema. Therefore, the Dejima architecture solves
the single global schema issue (2).

Furthermore, this architecture allows a single peer to participate in multiple
groups. For example, P1 publishes its data to two groups G1 and G2 in the figure.
Dejima architecture is intended to support distributed transactions to hold global
consistency between multiple Dejima groups. It is therefore expected to resolve
issue (3) and enable us the data integration of multiple service alliances. We
discuss this expectation further later.

During the last year, Takeichi [11] proposed another architecture, designated
as BCDS, to address the issues presented above. Figure 2 presents an example
of data integration using BCDS. It is noteworthy that each Pi and Bi in this
figure is unrelated to those in Fig. 1. Each peer can create an “OPort” to provide
another peer with a part of its data and can define an “IPort” to receive the
data provided through the OPort of another peer. Each peer can have multiple
OPorts and IPorts to share data with multiple peers. For example, P2 receives
data from P1 through O12 and I12. The OPort of P1 created for P2. The IPort
of P2 defined for P1. Because these ports absorb the difference between the data
schemata of peers, BCDS solves issue (2) above.

Although the Dejima architecture shares data among peers symmetrically
(i.e. peers share the same view as their Dejima), the BCDS architecture shares
data asymmetrically. For example, the data provided by P2 to P3 and the data
provided by P3 to P2 are distinctive in the Figure. The former is represented as
a path using O23 and I23; the latter is represented as a path using O32 and I32.
In this way, the BCDS is able to infer the ownership of each tuple in the shared
data without a complicated provenance analysis.
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In the BCDS architecture, an update is executed on the base table of a peer
propagates to its all OPorts; it also propagates its all IPorts unless the update
is not derived from one of its IPorts. For instance, an update on B1 might
propagate to B2 and B3 along the path using O12, I12, B2, O23, I23, and B3,
whereas the propagated update on B2 does not propagate to I32. In this way, a
peer can update a tuple owned by it and propagate the update to other peers.
Furthermore, according to the policy of the peer, the BCDS enables each peer to
dismiss the update propagated from its OPort. One can consider that P3 updates
a tuple in B3, which is obtained originally from I23. This update propagates to
B2 through O23, although P2 can dismiss the update if it violates its policy.
Such a case might occur frequently if the tuple includes data that were created
originally by P2, and if P2 does not appreciate unintended changes of data. In
this way, each peer can prohibit other peers from updating data owned by the
peer if the update violates its policy. Therefore, BCDS resolves issue (1) above.

Although the BCDS architecture does not support distributed transactions,
it can be useful for data integration for multiple service alliances. We explain
that point later.

Asano et al. [2] describe a similar topic to that addressed herein. They clarify
desired properties for the data integration for a service alliance and propose
an idea for implementing a ridesharing alliance using the Dejima architecture.
They mainly describe a single-service alliance, although they could insufficiently
discuss requirements for various models of multiple service alliances. As described
herein, we specifically examine data integration for multiple service alliances as
claimed above.

3 Models of Multiple Service Alliances

As described above, numerous elements must be considered for models of multi-
ple service alliances. However, herein, we specifically examine who should man-
age the shared data of providers. For elements of other kinds, we adopt decisive
assumptions. For example, whereas several candidates of answers to question
of which data should be shared, we assume that data of services are shared by
providers. Our discussion based on such an assumption would not lose much
generality. Moreover, it is applicable to other kinds of data, including data of
customer requests.

3.1 Concrete Example: Ridesharing

As a concrete example of models of multiple service alliances, we can present
ridesharing alliances as described below. Consequently, the providers are compa-
nies which manage their own vehicles as services. The customers are passengers
who request vehicles. A simple example includes three providers A, B, and C,
with A and B forming Alliance 1 and B and C forming Alliance 2. Figure 4
presents an example of the local databases of these providers. Each table includes
vehicle data of a provider, although their local schemata differ. We first explain
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Provider A
vid location rid
v1 Demachi r1
v2 Kyoto Station r2
v3 Shijo 0

Provider B
vid location rid sharable
v4 Demachi 0 TRUE
v5 Gion r3 TRUE
v6 Kitayama 0 FALSE

Provider C
vid location rid type
v7 Gion 0 sedan
v8 Demachi r4 SUV
v9 Kyoto Station 0 wagon

Fig. 3. Vehicle databases.

their common schema. In each table, vid denotes the ID of each vehicle; rid
denotes the ID of each request that is currently assigned to each vehicle. An
empty vehicle has rid = 0, for illustration, although a NULL value is used
instead of 0 in a DBMS. That is, when the passenger corresponding to a request
gets off a vehicle, rid of the tuple corresponding to the vehicle is updated to 0.
Here we use unique vid and rid among all providers in this example for sim-
plicity, although their uniqueness need only be guaranteed on each provider in
practice. Furthermore, for representative places in Kyoto, we use their names,
although coordinates are used more often in practice, as an attribute location
to denote the current location of the respective vehicles. Next we explain the
schema of each provider’s own. Provider B has an attribute sharable represent-
ing whether each vehicle is available in the alliance to which it belongs. Provider
C has an attribute type of each vehicle. As described above, these schemata
constitute a simplified example. Perhaps some provider has multiple tables to
store vehicle information, and desires to publish the joining of the tables to an
alliance. In actuality, such a case is problematic in conventional view-based data
integration architectures, in contrast to the Dejima and BCDS architectures, as
discussed for issues (1) and (2) in the preceding section.

Figure 4 presents an example of shared data in each alliance. Attribute pid
denotes the provider to which the vehicle corresponding to vid belongs. Pre-
sumably, each provider publishes data of available vehicles to other providers in
the alliance. Although only empty vehicles are currently available, each provider
can ascertain another condition under which its vehicles are available to others.
For example, provider B decides to publish vehicles that are empty and sharable
(i.e. sharable is TRUE) to Alliance 1 and Alliance 2. Then provider C decides
to publish vehicles that are empty and not wagon type (i.e type is not wagon)
to Alliance 2.
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(a) Shared data for Alliance 1
vid location rid pid
v3 Shijo 0 A
v4 Demachi 0 B

(b) Shared data for Alliance 2
vid location rid pid
v4 Demachi 0 B
v7 Gion 0 C

Fig. 4. Shared data for two alliances.

Request

Mediator of
alliance 1

Provider A Provider B

Mediator of
alliance 2

Provider C

Alliance 1 Alliance 2

(a)

Provider A Provider C

Alliance 1

(c)

:shared data using view

Alliance 2

Request

Provider A Provider C

Alliance 1 Alliance 2

(b)

Fig. 5. Models: (a) mediator view, (b) provider view, and (c) customer view.

3.2 Three Models of Multiple Service Alliances

Figure 5 portrays three models that specifically examine who should manage the
shared data as a view. In this subsection, we continue the concrete examples for
ridesharing services above. Using these models, we assess how customers (pas-
sengers) request services (vehicles). Of course, an implementation of ridesharing
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alliances is expected to support operations of several kinds, such as reserva-
tion, canceling requests, and carpooling. However, we specifically examine the
request operation here to clarify important properties for service alliances. Our
discussion is applicable to operations of other kinds.

Mediator View Model. The mediator, assumed to be a trusted third party,
manages the view for its alliance. A passenger requests to the mediator as
presented in Fig. 5(a). Then the mediator ascertains which vehicle should be
assigned to the passenger.

We explain below how a request should be processed using the example given
in Figs. 3 and 4. One can consider a new passenger for whom rid is r5 and who
is close to Shijo. The passenger sends a request to Alliance 1. It is noteworthy
that r5 does not appear in Figs. 3 and 4 because it is a new passenger and is
not assigned to any vehicle. Then, the mediator of the alliance will assign r5
to vehicle v3. The update of the tuple having v3 should be propagated to the
corresponding provider A which has v3.

A salient advantage of this model is that it readily preserves provider and
customer privacy. The passenger request is sent only to the mediator and the
provider who has the assigned vehicle. The vehicle information of a provider
is known only by the mediator and passengers who have been assigned to it.
An important shortcoming is that finding such a mediator for each alliance is
difficult; moreover, the mediator might be able to coerce or persuade providers.

Provider View Model. In this model, every provider in each alliance has a
view for the alliance. A passenger makes a requests to some provider, as presented
in Fig. 5(b). The provider then assigns a vehicle in its local database or the view.

We explain how a request should be processed using the example presented
above. Presumably the current status of vehicle data is given in Figs. 3 and 4.
The request explained for the mediator view model above is not considered. A
new passenger is considered, for whom rid is r6, who is close to Demachi, and
who sends a request to provider A. It is noteworthy that r6 does not appear in
Figs. 3 and 4 because it is a new passenger and is not assigned to any vehicle.
Vehicle v1 of A is full. Therefore, A will assign r6 to vehicle v4 in the view for
Alliance 1. The update of the tuple having v4 should be propagated to B.

This model requires no mediator. Therefore, providers who mutually agree
might be able to form an alliance by themselves. However, because the informa-
tion of requests and vehicles is published to providers in an alliance, it is difficult
to preserve the privacy of providers and customers.

Customer View Model. Current ridesharing providers provide smartphone
applications. By those services, a passenger can send a query to the provider to
find nearby vehicles. The customer view model allows passengers to have a view
corresponding to a query to an alliance, as presented in Fig. 5(c).

Using the example presented above, one can explain how a request should be
processed, assuming that the current status is given in Figs. 3 and 4. A newly
considered passenger, for whom rid is r7, sends a query to Alliance 2 to find
empty vehicles close to Gion. It is noteworthy that r7 does not appear in the
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figures because it is a new passenger and not assigned to any vehicle currently.
Then, only the first tuple having v4 in Fig. 4(b) is received as a view by the
passenger. Consequently, the passenger will assign r7 to v4. This update should
be propagated to the provider C.

Although the request of a passenger is assigned by others (i.e. the mediator
or a provider) in the other models presented above, the passenger can choose a
proper vehicle by changing queries in this model. Application developers might
be able to develop smartphone applications similar to those used for conventional
ridesharing applications. Therefore, this is more convenient than the other mod-
els for passengers and application developers. This model might be more diffi-
cult than other models to be implemented; when the number of providers in the
alliance is fixed, the number of views for an alliance is fixed in the other mod-
els, although the number in this model can be numerous as queries of passengers
increase. Furthermore, preserving the privacy of passengers and providers in this
model is difficult.

4 Discussion of Architectures and Models

All three models described in the previous section require solution of two issues,
(1) read-only view issues and (2) single global schema issues, as described in
Sect. 2. That is, the update of the base table of a provider should be reflected in
the view corresponding to shared data. The base tables of providers might have
mutually different schemata, as shown in Fig. 3. In contrast to conventional archi-
tectures, the Dejima and BCDS architectures have resolved these issues using
BX. For example, the Dejima architecture enables providers to write Datalog
rules [13] for defining an updatable view for shared data in an alliance.

Issue (3) related to global consistency is crucially important for all the models
of the multiple alliances, as explained in Sect. 2. For example, in Fig. 4, a request
to v4 in the Alliance 1 can occur along with one to Alliance 2 almost simultane-
ously because v4 is published to both alliances. One should avoid double-booking
caused by the timing of these requests. Generally speaking, such updates of the
same data on the views on different peers can be propagated to a local database
almost simultaneously. A distributed transaction is desired to control such con-
current updates. The Dejima architecture is going to support distributed trans-
actions. It is expected to solve this issue. The current implementation of the
BCDS architecture does not support distributed transactions. Therefore, strict
concurrency control is not available. However, when a tuple on a view is updated,
the update eventually propagates to the base table of the peer which created the
tuple originally. The peer can determine whether the update is dismissed. There-
fore, double-bookings can be avoided by dismissing a request to a vehicle that
has already been assigned to another request.

Another issue (4) related to update privilege is raised by data sharing in an
alliance. Whereas each peer can manage update privilege on its local database by
DBMS, it might be unable to manage update privilege on a view that includes
its data but which exists on another peer. As a result, an unexpected update on
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Table 1. Issues to be resolved in models for multiple alliances.

(1) (2) (3) (4) (5)

Mediator view � � � - -

Provider view � � � � -

Customer view � � � � �

the view in another peer can be propagated to its local database. The mediator
view model presents a simple solution to this issue. The mediator assumes a
trusted third party. It should have update privilege on the view that collects
service data of providers. Each provider has no view containing data of other
providers. In the provider or customer view models, the issue becomes even
more severe. A view containing data of a provider exists with another provider
or a customer. If they are careless or malicious, then an unexpected update
cannot be prevented in the current implementation of the Dejima architecture.
However, in the BCDS architecture, when a provider (or a customer) attempts
to update data obtained by its IPort from the OPort of another provider that
created the data originally, the update becomes valid only if the latter provider
approves it. Therefore, a careless unexpected update would not be approved. It
would be dismissed. Addressing malicious updates is left as future work for data
integration architectures using views.

We have explained that the customer view model incorporates the assump-
tion of numerous views. These views are created or deleted frequently by user
queries. Therefore, virtual views would be more appropriate than materialized
views for this model. Unfortunately, the Dejima and BCDS architectures assume
materialized views. Data integration through virtual views, designated as issue
(5) in Tables 1 and 2, is left as another subject to be addressed in future work.

Table 2. Issues to be resolved using data integration architectures.

(1) (2) (3) (4) (5)

Conventional - - - - -

Dejima � � � - -

BCDS � � � � -

Tables 1 and 2 present salient points of our discussion above. In these tables,
as one might expect, (1)–(5) denote issues (1)–(5). Table 1 shows issues of
the respective models for multiple service alliances. For example, to implement
the provider view models, issues (1)–(4) must be resolved. Table 2 presents
issues that can be resolved for each architecture. “Conventional” represents
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the conventional architectures described in Sect. 2. The triangle symbol in the
“BCDS” row signifies that the BCDS architecture has a mechanism to solve the
consistency problem for the provider view model, although it does not support
distributed transactions.

5 Conclusion

For this study, have investigated three models of data integration using views for
multiple service alliances. Furthermore, we have discussed how state-of-the-art
data integration architectures based on bidirectional transformation, the Dejima
and BCDS architectures, satisfy the requirements for the three models. Although
we have examined ridesharing alliances herein, the salient features of our discus-
sion are expected to be applicable and useful for implementing service alliances
of other kinds because several essential features are common among them.
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Abstract. We consider a problem of collaborative data sharing among
multiple peers through updatable views each of which provided with the
use of the bidirectional transformation in the peer.

We propose a novel framework Smart Data Sharing for developing
versatile data integration systems based on collaborative data sharing.

1 Introduction

Considerable research for data integration has been carried out from various
viewpoints [4]. Data integration problems in the context of peer data manage-
ment are discussed in Piazza [5,6]. Although most of these research and sys-
tems assume to use data set for sharing with read-only permission, enabling
the shared data set to be updatable, i.e, with read-write mode, enhances the
flexibility of data integration and system interoperability in collaborative data-
sharing systems as in Orchestra [8,9], Dejima [2,3,7], and BCDS Agent [10].
An excellent methodology based on the bidirectional transformation has been
established for the view-updating problem. However, it lacks functions to deal
with view-updating properly across peers in collaborative data sharing.

We propose a novel framework Smart Data Sharing for developing such sys-
tems with the use of the bidirectional transformation in each peer and updatable
views for data exchange between peers. Each view of the peer is produced from
the peer’s source table by the forward transformation and the update on the
view is to be reflected in the source by the backward transformation. These
forward and backward transformations comprise a bidirectional transformation
which maintains consistency between the source table and the view.

2 Preliminaries and Understandings

We first take up a few concepts specific to our Smart Data Sharing and recall
previously developed tools of our interest for use.

This work was partly supported by JSPS Kakenhi 17H06099 and 18H04093.
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Updatable View. A read-only view could be obtained from source tables by
a database query in the same way as in the traditional data integration. As an
extension to this basic scheme, we could consider data sharing through views
where updates of shared data are allowed. This is called collaborative data shar-
ing [8].

In collaborative data sharing, the update of the view in each peer should be
reflected in the corresponding source table. We will refer to these views facing
to each other between peers as updatable views.

We will see later in Sect. 3 how to configure the updatable view.

Bidirectional Transformation. To describe the relationship between the
source S and the view V , we will use the bidirectional transformation comprised
of two functions get : S → V and put : S × V → S.

For every source instance s ∈ S, corresponding view instance v ∈ V is defined
as v = get(s) by the forward transformation get. And this view instance v ∈ V
could be updated by some view-updating operation to yield a new view instance
v′ ∈ V from v, which in turn causes the update of s resulting s′ ∈ S by the
backward transformation. This backward transformation from the view to the
source is defined by put which takes s ∈ S and v′ ∈ V to yield s′ = put(s, v′).
Note that the function put takes the (old) source instance s ∈ S as well as
the updated view v′ ∈ V . Without the source, the backward transformation is
defined only for a limited class of view-updating operations.

Round-Tripping Property. The round-tripping property [1] says that the data
are kept consistent through the trip to and from the source and the view by get
and put. This property is described using two conditions:

GET-PUT Condition For any s ∈ S, put(s, (get(s))) = s holds.
PUT-GET Condition For any s ∈ S and v ∈ V , get(put(s, v)) = v holds.

The condition GET-PUT is the most fundamental one of the bidirectional trans-
formation. And as such any bidirectional transformation must satisfy the GET-
PUT condition; the source remains unchanged unless the update is made on
the view. We might consider that the PUT-GET condition is also appropriate to
most of the bidirectional transformation. This property clarifies whether get and
put are considered well-behaved for our purposes. We assume the round-tripping
property of the bidirectional transformation throughout this paper.

Conformity Between Updatable Views. When talking about view-
updating in general, we presuppose that the round-tripping property holds for
keeping the consistency between the source and the view. In collaborative data
sharing through updatable views, however, the above story goes true only in
each participating peer. We call the updatable views which are facing each other
be conformable if they satisfy the round-tripping condition respectively in each
peer and both share the same superficial view consisting of common values. We
will discuss in Sect. 3 how conformable updatable views are formed for our use.
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Before discussing details about updatable views, let us consider how updates
proceed between these views.

Collaborative Update by Updatable Views. Assume that a peer P and
another peer Q share data of the column A of their source tables Sp and Sq

through the updatable views Vp and Vq. And the peers P and Q produce
instances of updatable views vp = getp(sp) and vq = getq(sq) respectively by
the forward transformation getp and getq as SQL statements

CREATE VIEW Vp AS SELECT A FROM Sp WHERE even(A), and
CREATE VIEW Vq AS SELECT A FROM Sq,

where even is the predicate for the number being even. In short, P expects the
shared data being even while Q permits any (Fig. 1).

Fig. 1. Data Sharing through Updatable Views

How can we make Vp and Vq conformable?
To be concrete, take a case that P and Q share the data set {2, 6, 4} as a

common instance of vp and vq of the updatable views, and consider what happens
if Q makes update on the column A of sq so that vq = getq(sq) becomes {2, 5, 4}.

Our data sharing presupposes that the data instances of Vp and Vq are made
be equal to the newest whenever either of them is updated. Hence, the view
vp ∈ Vp seems to become {2, 5, 4} in our case. But if we observe closely with
conditions, it is not possible for vp to have odd numbers since it should contain
only even numbers of the column A extracted from sp.

If we admit this as a temporary instance of Vp before updating Sp after the
update by Q, another problem comes up in processing the backward transfor-
mation putp of the peer P . This is because the backward transformation may
reject odd numbers in vp ∈ Vp.

If we are more generous to accept odd numbers to update sp ∈ Sp and to get
the final view instance in Vp to be shared with Q, yet another problem arises.
What is the update for the odd number 5? We may ignore the update for the
record corresponding to 5 and make vp become {2, 6, 4} again, or may replacing
the record 6 with 5 in sp and make an instance {2, 4} in Vp.

Any trials of the remedy on the inspiration for these problems have gone
into the definition of the bidirectional transformation. In our collaborative data
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sharing, we expect each peer to work autonomously and independently each
other with its own bidirectional transformation. Moreover, each peer has its own
updating policy on how to deal with the update by the partner peer.

Our Smart Data Sharing solves these problems through reinforcement of the
updating policy.

3 Smart Data Sharing

Even though the round-tripping property of the bidirectional transformation
assures us of consistent view-updating between the view and the source in each
peer, why are we confronted with incompatible updates across peers? The cause
leading to this problem comes from potential differences in data types, or SQL
schemas of the facing updatable views of participating peers.

Types and Values of Updatable View. Consider first the updatable view
Vp in P associated with a type (schema) derived from the type of the source
Sp. As a matter of course, the forward transformation getp takes both types of
Sp and Vp into account. When we do an update on vp ∈ Vp, we have to follow
the type of Vp. Such an updated view v′

p ∈ Vp will be reflected in the source
Sp correctly by the backward transformation putp thanks to the round-tripping
property. We understand that this is true in the peer P .

In collaborative data sharing, if updatable views facing each other always
have the same type, updating either of the views proceeds as above in each peer.
It is impractical, however, in that each peer of our collaborative data-sharing
system behaves autonomously with its policy, and more than that the source
table differs from peer to peer, and so does the view.

Although as they are, updatable views facing each other should be con-
formable to exchange data for sharing. For the views Vp and Vq to be conformable,
they should consist of the same surface values of their supertype T satisfying
Vp ⊆ T and Vq ⊆ T 1. That is, we can have conformable updatable views if we
set up them for the surface value. We sometimes omit to specify the supertype
T when it can be understood from the context. And we do so here in this paper.

In contrast to the surface value of the updatable view, we refer to the original
data of the source S and the view V as deep values when considering in a peer. As
far as surface values concerned, data of the updatable views can be considered to
be equal. However, if we take deep values in each peer, they may be different in
that they consist of different values. Note that the bidirectional transformation
provided in each peer deals with the deep value.

Next we give the process of updating the source upon update on the view in
our Smart Data Sharing instead of redefining the round-tripping property.

1 We do not say anything about the operation associated with the type and use ⊆
instead of <: for the type hierarchy.
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Designing Smart Data Sharing. For the collaborative data-sharing system
with updatable views across peers, our Smart Data Sharing enforces the peer’s
updating policy during the process of view-updating in each peer.

Since our bidirectional transformation takes the deep value as the argument,
we need to extend the function put to deal with exceptional cases for surface
values which are out of the domain of the original functions. We assume that
put produces Maybe values Just a and Nothing2. If the original put gives a value
s ∈ S, this extended put gives Just s. And the extended put gives Nothing when
the original put gives values out-of-range of S. We intentionally overload the
function names put for the extended version. We do not need to extend get.

Assume that the updatable view v ∈ V is updated to v′ ∈ V in surface values
and we are to reflect the update in the source s ∈ S by put to possibly yield
new s′ ∈ S. We may need to confirm that the view instance stays the same
after updating the source by comparing v′′ = get(s′) with v′. After this process
completes, we reach a new state of the source s∗ ∈ S and the view v∗ ∈ V with
the result code Accepted, Rejected, etc. as the reply to the partner peer.

Such an updating task is described as:

(s∗, v∗, reply) =

case put(s, v′) of -- 1© Apply the backward transformation to the updated view

Just s′ -> -- 2© Acceptable as the update of deep values

let v′′=get(s′) in -- 3© Apply the forward transformation to the new source

case v′′ == v′ of -- 4© Is the new view same as the updated view?

True -> (s′, v′, Accepted) -- 5© Round-tripping holds for the update

False -> enforce_policy(s, s′, v, v′, v′′) -- 6© See below

Nothing -> (s, v, Rejected) -- 7© The deep value obtained is out of S

It should be noted that v′′==v′ in 4© compares the view of deep values v′′

and the updatable view of surface values v′.
Consider the example in the previous section: the source table of P is

sp = {2, 1, 6, 4, 3} and getp extracts only even numbers from sp as the view
vp. Updatable views are vp = vq = {2, 6, 4} of type integer and Q is about to
update vq to v′

q = {2, 5, 4}. After the update v′
p shares the surface values of v′

q,
i.e., v′

p = v′
q.

Assume here that putp is defined to accept only even values, then the final
result becomes (sp, vp, Rejected) because v′

p contains an odd value and it falls
in Case 7©.

Otherwise, if putp is defined so that putp(sp, v′
p) = {2, 1, 5, 4, 3} which leads

sp to s′
p = {2, 1, 5, 4, 3}. Then, v′′

p = getp(s′
p) = {2, 4} consisting of deep val-

ues and hence v′
p �= v′′

p , which invokes enforce_policy as Case 6© to give
(s′

p, v
′′
p , Surmised), for example.

2 We follow the notation of Haskell here for conciseness.



170 M. Onizuka et al.

Thus, we could have typical results of the update using putp associated with
enforce_policy as:

– (sp, vp, Rejected): P keeps the old sp and vp, and tells Q that v′
q is rejected.

– (s′
p, v

′′
p , Surmised): P updates instances of Sp and Vp to become s′

p and v′′
p ,

respectively, and tells Q that the update v′
q ∈ Vq is surmised (i.e., partially

accepted) and the new instance v′′
p has been produced to be shared.

The function enforce_policy is a programmable part of Smart Data Sharing
and the returned value may be other than above.

Implementing Peer’s Updating Policy. There would be other opportunities
for responding to the update of the partner peer. Our Smart Data Sharing real-
izes a tool for implementing strategies according to the peer’s updating policy.

Examples of these approaches are:

– Source similarity approach. We introduce a similarity metric between source
tables, and enforce the policy by selecting s∗ among the source tables s′ so
that the similarity between s′ and put(s, v′) is at least given threshold θS .

– View similarity approach. We introduce a similarity metric between views,
and enforces the policy by selecting s∗ among the source tables s′ such that
the similarity between get(s′) and v′ is at least given threshold θV .

– Combined approach. Both source similarity and view similarity are taken into
account, using some weight parameter.

Thus, our Smart Data Sharing generalizes the decisive updating policy of the
peer as in these approaches.

4 Conclusion

We have proposed Smart Data Sharing for collaborative data sharing.
Our Smart Data Sharing enhances the collaborative work by exchanging both

the data to be shared and the reply to the participant peer. This could be used
for enabling the peers to agree on the way with the reply code of their own as
well as default Accepted and Rejected. Although the agreement before starting
data sharing would be preferable, such a static agreement seems impractical in
collaborative systems with autonomous peers that behave independently with
each other. One of the reason has been discussed in Sect. 3 on the type of updat-
able views. Another difficulty of making a static agreement would be the problem
of correct and concise specification of the updating policy. A dynamic agreement
reached by Smart Data Sharing with proper reply code may open the door to
strategic policymaking as examples shown in the last part of Sect. 3. We have to
work further on these topics.
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Abstract. Data scientists spent 80–90% of their efforts in data integra-
tion and there is still no end-to-end automatic integration and wrangling
pipeline working for a large number of data sources. This work proposes
a data integration system that transforms fast-evolving raw data sources
to user desired tables. Based on a set of pre-trained models, a user only
needs to specify the schema of the outcome feature vector as well as a few
examples of rows, the system will automatically generate the outcome
table from the raw data sources. The training process is automatically
injected with provisioned schema evolution so that the model is resis-
tant to data source changes. Our experiments show that the proposed
approach is particularly effective for the integration of data with fast
evolving schemas.

Keywords: Data integration · Schema evolution · Deep learning

1 Introduction

Data scientists spent 80–90% efforts in the data integration and wrangling pro-
cess [7,35,38]. Although there exist a lot of works trying to facilitate or accelerate
this process, including the automation in entity matching [15,21,24,25,30,37,42],
schema discovery and matching [16,17,31,32,43,44], and so on, however there
is still no end-to-end automatic data integration pipeline that directly drives
features from raw data without much human intervention [7,35,38].

Given the vast variety of data integration requirements of different machine
learning applications, it is challenging to provide one end-to-end system for all
heterogeneous data integration problems. While domain-specific systems seem
more reasonable to support automatic data integration, they suffer from the
fast evolution of data schemas, which may easily break an automated pipeline.
Taking the coronavirus disease 2019 (COVID-19) data repository [4] maintained
by the Johns Hopkins University (JHU) for example, not only the data contents
are updated at an hourly basis, the data schema also changes frequently. For
example, their data collected in March, 2020 has used at least five different
formats at different time points of that month [4].

In this paper, we focus on automating the process of driving features from
fast evolving raw data sources. We argue that if the feature vectors required
c© Springer Nature Switzerland AG 2020
L. Qin et al. (Eds.): SFDI 2020/LSGDA 2020, CCIS 1281, pp. 172–186, 2020.
https://doi.org/10.1007/978-3-030-61133-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61133-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-61133-0_14


Integration of Fast-Evolving Data Sources Using a Deep Learning Approach 173

by an application is relatively stable compared to the varieties and dynamics
in both data schemas and contents, a deep learning approach performs better
in accuracy, latency, and storage overhead than a baseline approach that uses
traditional techniques such as locality sensitive hashing (LSH) [18,20].

The targeting use scenario is that given a set of fast evolving data sources for
a data science application, because the data content updates fast, the application
may need to periodically integrate data from the data sources to keep its timeli-
ness. However, because the schema also evolves (e.g. dimension pivoting (Fig. 1),
attribute name changes, attribute addition/removal, key expansion/contraction
(Fig. 2), etc.), it may happen that previous versions of codes that extract feature
vectors from the data sources cannot work correctly anymore. It will incur huge
burden on the data scientist if s/he needs to tweak the data integration code
every time. Next we provide a motivating example as following:

A data scientist wants to train a machine learning model to predict COVID-
19 global outbreak. S/he needs features including date, country/region, subre-
gion, population, confirmed COVID-19 cases, deaths, mobility to grocery, parks,
restaurants, workplaces, and so on. Each time s/he may specify a range of dates
and locations, and the row-keys (i.e. date, country/region/subregion) in the out-
come table can be automatically populated correspondingly. Then the first ques-
tion is that given two initially known and matching data sources, such as the
daily updated Google mobility data [3] and JHU COVID-19 cases data [4], of
which the data is updated at daily basis and the schemas evolve at weekly basis,
how to efficiently fill in the outcome table each time without much human inter-
vention? An extended and more interesting problem is that the users are given
a large set of unknown data sources. Some data sources may be dead, which
were once used for past data integration tasks, but is now outdated for new data
integration requests. In the same time, new data sources are added dynamically.
Then, how to automatically discover relevant data sources and fill in the user
specified outcome table with minimum human manual efforts?

Another motivating example is the internet of things applications where dif-
ferent types of sensors, devices or machines may have diversified schemas and
the data integration process needs to be adaptive to various devices deployed in
different locations or upgraded overtime.

We observe that while a dataset may be represented in different ways at
different time points, we can always map these different representations into
an abstracted key-value based data model. Then if the features required by an
application are relatively stable compared to the data sources, it is feasible to
learn a mapping between the abstract data model and the features. As illustrated
in Fig. 1, in a lot of cases of schema evolution, the mapping from the data model
to the user desired integrated table is constant, and can be easily learned.

Based on above observation, we formalize the data model as a list of quadru-
ples in the form of (key array, key type array, value, value type). We then
train a deep learning model that learns the mapping between the abstract data
model and the user-desired table for each unique data integration request. The
trained model can be used to transform raw data collected from fast-evolving
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Fig. 1. Mappings among source data (with dimension-pivoting applied), abstract data
model and user-desired output table.

sources into user-desired features with good adaptivity to schema evolution.
First, each raw dataset, is decomposed into a stream of quadruples based on
the abstract data model. Second, each quadruples serves as features, for which
the model should predict its position in the outcome table (i.e. column id and
row id), and an aggregation mode that specifies how this value should be aggre-
gated with other values mapped to this table. We support aggregation modes
like +, max, min, replace, concat, discard, and so on. Based on this idea, we
design an end-to-end system that automates the data integration process. The
system provides interfaces for (1) registering new data sources; (2) issuing a data
integration request by specifying the schema of the desired outcome table; (3)
training and managing models. We compare two types of model architecture in
this work. In both types, the first layer is an embedding layer, and the last layer
is a fully connected layer. The difference is that in the first type, we use three
Conv2D and pooling layers in middle, but in the second type, we use long short-
term memory (LSTM) as the second layer. We find in our preliminary results
that the convolutional neural network (CNN)-based model can achieve better
accuracy than the LSTM-based model.

Through experiments, we also observe that compared to a baseline data inte-
gration approach that requires to store LSH signatures for each column, our
proposed approach incurs merely constant storage overheads, which may save
significant amount of storage space, particularly for wide tables. In addition, for
integrating wide and/or sparse datasets, we also observe a computational advan-
tage in the deep learning approach. Additionally, our approach can seamlessly
handle heterogeneous data sources and schema evolution without any additional
LSH computation and storage overheads.
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Usually a major concern over a deep learning approach is that the training
process may take a lot of domain experts’ efforts in labeling data. However, we
argue that in our targeting scenario, the data labeling process can be largely
automated if human experts are able to find a bootstrapping high-level mapping
between the initial data source and the target outcome table. Then, the label-
ing can be fully automated and even the schema changes can be automatically
injected. Once the models are trained, they can handle most of schema evolution
without any human/tool intervention.

We summarize our key contributions as following:

– We propose and formalize a deep-learning approach to address the problem
of end-to-end automatic data integration of the fast-evolving CSV files.

– We share experiences of the system design and model training.
– We implement a prototype of the system and give a preliminary evaluation

with detailed analysis for the proposed approach.

In the rest of the work, we will first introduce related works in Sect. 2.
Then we will formalize the problem in Sect. 3. Following that, we will propose
a baseline approach and a deep learning approach in Sect. 4. Finally, we will
present our preliminary experimental results in Sect. 5 and conclude the paper.

2 Background and Related Works

2.1 Handling Schema Evolutions

Schema evolution in relational database, XML, JSON and ontology has been an
active research area for a long time [14,33]. One major approach is through model
(schema) management [8,9] and to automatically generate executable mapping
between the old and evolved schema [27,39,41]. While this approach greatly
expands the theoretical foundation of relational schema evolution, it requires
application maintenance and may cause undesirable system downtimes [12]. To
address the problem, Prism [12] is proposed to automate the end-to-end schema
modification process by providing database admins (DBAs) a schema modifica-
tion language (SMO) and automatically rewriting users’ legacy queries. However,
Prism requires data migration to the latest schema for each schema evolution,
which may not be practical for today’s Big Data era. Other techniques include
versioning [23,29,34], which avoids the data migration overhead, but incurs ver-
sion management burden and significantly slows down query performance.

Most of these works are mainly targeting at enterprise data integration prob-
lems and require that relational schema must be available for each source dataset.
However the open data sources widely used by today’s data science applications
are often lacking schemas or metadata information [26]. A deep learning model,
once trained, can handle most schema evolution without any human interven-
tion, and does not require any data migration, or version management overhead.
Moreover, today’s data science applications are more tolerant to data errors
compared to traditional enterprise transaction applications, which makes a deep
learning approach promising.
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2.2 Data Discovery

Data discovery is to find related tables in a data lake. Aurum [16] is an automatic
data discovery system that proposes to build enterprise knowledge graph (EKG)
to solve real-world business data integration problems. In EKG, a node represents
a set of attributes/columns, and an edge connects two similar nodes. In addi-
tion, a hyperedge connects any number of nodes that are hierarchically related.
They propose a two-step approach to build EKG using LSH-based and TFIDF-
based signatures. They also provide a data discovery query language SRQL so
that users can efficiently query the relationships among datasets. Aurum [16]
is mainly targeting at enterprise data integration. In recent, numerous works
are proposed to address open data discovery problems, including automatically
discover table unionability [32] and joinability [43,44], based on LSH and similar-
ity measures. Nargesian and et al. [31] propose a Markov approach to optimize
the navigation organization as a DAG for a data lake so that the probability
of finding a table by any of attributes can be maximized. In the DAG, each
node of navigation DAG represents a subset of the attributes in the data lake,
and an edge represents a navigation transition. All of these works provide helpful
insights from an algorithmic perspective and system perspective for general data
discovery problems. Particularly, Fernandez and et al. [17] propose a semantic
matcher based on word embeddings to discover semantic links in the EKG.

Our work proposes to integrate data discovery and schema matching into a
deep learning model inference process. We argue that in our targeting scenario,
the approach we propose can save significant storage overhead as we only need
store data integration models which are significantly smaller than the EKG, and
can also achieve better performance for wide and sparse tables. We will prove
in the paper that the training data generation and labeling process can be fully
automated.

2.3 Schema Matching

Traditionally, to solve the data integration problem for data science applica-
tions, once related datasets are discovered, the programmer will either manually
design queries to integrate these datasets, or leverage a schema matching tool
to automatically discover queries to perform the data integration.

There are numerous prior-arts in schema matching [19,22,27,36], which
mainly match schemas based on metadata (e.g. attribute name) and/or
instances. Entity matching (EM) [11], which is to identify data instances that
refer to the same real-world entity, is also related. Some EM works also employ
a deep learning-based approach [15,21,24,25,30,37,42]. Mudgal and et al. [30]
evaluate and compare the performance of different deep learning models applied
to EM with three types of data: structured data, textual data, and dirty data
(with missing value, inconsistent attributes and/or misplaced values). They find
that deep learning doesn’t outperform existing EM solutions on structured data,
but it outperforms them on textual and dirty data.
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In addition, to apply schema matching to heterogeneous data sources, it is
important to discover schemas from semi-structured or non-structured data. We
proposed a schema discovery mechanism for JSON data [40], among other related
works [13,28].

Our approach proposes a key-value-based data model to unify open CSV
datasets. We train deep learning models to learn the mappings between the data
items in source datasets (key-value pairs) and their positions as well as aggre-
gation modes in the target table. As mentioned, the mappings can be learnt by
parsing and training only a small portion of data items to optimize the online
inference overhead.

2.4 Other Related Works

Thirumuruganathan and et al. [38] discuss various representations for learning
tasks in relational data curation. Cappuzzo and et al. [10] further propose an
algorithm for obtaining local embeddings using a tripartite-graph-based repre-
sentation for data integration tasks such as schema matching, and entity match-
ing on relational database. We are mainly targeting at open data in CSV format
and choose to use a key-value based representation. We will compare different
representations in our future works.

3 Problem Formulation

In this section, we will formalize the data integration problems we are targeting
at.

3.1 Data Model/Representation

Now, we start formalizing the targeting problems by abstracting representations
for the raw data sources. We mainly consider following data models:

Key-Value Representation: Suppose there are m raw datasets stored in the
system to form a data repository, represented as D = {di}(0 ≤ i < m),
each raw dataset is modeled as a set of ni data items (or cells), denoted as
di = {cij}(0 ≤ i < m, 0 ≤ j < ni). We further describe each data item cij ∈ di

as a typed key-value pair, represented as cij = 〈keyT keyij

ij , value
Tvalueij

ij 〉. For a
CSV field, the key is represented as an alphabetically ordered string array of the
file name, column name, row-keys; and the value can be simply the value of the
field. Figure 1 gives an example of CSV files. We can further define a super set to
describe the current state of the entire data repository: C = {cij ∈ di|∀di ∈ D}.
In this work, we mainly use key-value representation.

Column-based Representation: For di in the type of CSV files, we can further
define that di also has pi attributes (i.e. columns), denoted as di = {Ai0, ..., Aipi

}
and each attribute corresponds to a set of values that share the same attribute.
A cell is often relevant with other attributes in the same tuple, and such linking
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gets lost in the column-based representation. So we only use this representation
when defining the baseline solution on structured data as described in Sect. 4.1.
Also compared to the key-value representation, the column-based representation
is more difficult to extend to semi-structured and non-structured data.

Graph representation: Cappuzzo and et al. [10] propose to use a tripartite
graph-based representation to describe relational data and capture all row-
wise, column-wise, and table-wise linkings. While it will be interesting to apply
this representation to describe heterogeneous open data, without the relational
schema information, constructing a heterogeneous graph in open data is very
expensive and challenging. We will leave this to future work.

3.2 Problem Definition

Given a fast evolving data repository D, for the t-th data integration request, the
user input should specify the schema of the expected outcome table represented
as V At×Rt

= {vkl}(0 ≤ k < p, 0 ≤ l < q). The schema includes a list of p
attributes denoted as At = {ak}(0 ≤ k < p), where ak represents the k-th
attribute, as well as a list of q possible row keys, denoted as Rt = {rl}(0 ≤ l < q).
Then we need find a model fD→(At∪{NULL})×(Rt∪{NULL})

t that assigns a label
denoted as (ak, rl), ak ∈ (At ∪{NULL}), rl ∈ (Rt ∪{NULL}) to each data item
cij(0 ≤ i < m, 0 ≤ j < ni). It means that for each data item decomposed from
the candidate raw datasets, the system needs to determine ak ∈ At, and rl ∈ Rt,
so that cij .value

Tvalueij

ij should be put into the cell indexed by the row rl and the
column ak in the outcome table or it doesn’t belong to the outcome table and
should be discarded, for which case we define that rl = NULL and ak = NULL.

4 Solution

In this section, we will first present a baseline approach that applies existing
data discovery techniques for a simplified data integration problem and analyze
its limitations. Then we will propose an end-to-end deep learning approach as
a more general and more automated solution to our targeting data integration
problem.

4.1 A Baseline Data Integration Approach

We first simplify the problem by assuming that all raw datasets are structured
datasets. Then di ∈ D can be represented as a list of columns, denoted as
di = {aik}(0 ≤ k < pi), where aik is the k-th column in di.

For this simplified problem, we can apply existing data discovery tech-
niques [43,44] based on LSH to discover the most similar column in the raw
data repository to each column specified in the user desired output. First, the
algorithm computes locality sensitive hash (LSH) signatures for each column in
the source raw datasets and the user-provided example of the target dataset,
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then it identifies matching columns, and formulates queries over these matching
datasets to create the output integrated dataset.

First, for each column in the structured raw datasets aik ∈ di, we cre-
ate L LSH signatures using a family of L hash functions, denoted as Hs

ik =
(hs

ik1, ..., h
s
ikL) and insert each signature into its corresponding hashmap.

Then, for each column a′
k ∈ At(0 ≤ k′ < p) in the example of the expected

outcome table V At×Rt

) as specified by the user in its data integration request),
we also create L LSH signatures, denoted as Ht

k′ = (ht
k′1, ..., h

t
k′L).

After that, every pair of 〈Hs
ik,H

t
k′〉 for ∀di ∈ D will be compared, if they

match, we insert the pair of target column and source column 〈ak′ , aik〉, into the
hashmap that stores all mapping from target column to candidate columns.

Next, it searches for a minimal subset of raw datasets D′ ⊂ D so that for
∀ak′ ∈ At, ∃di ∈ D, satisfying that 〈ak′ , aik〉 exists in the hashmap.

Finally it performs join and filter operations over D′ to create and output
the outcome integrated table.

Analysis. For the baseline algorithm, the computational overhead is mainly
incurred by generating LSH signatures for all columns in the raw datasets, of
which the complexity is O((p+

∑m
0 pi) ×L), which can be carried out in offline

style. The online overhead mainly includes the matching of all raw columns to
each of the target columns, of which the complexity is O(p × ∑m

0 pi).
In case of schema evolution and data updates, it requires to generate and

store LSH signatures for each updated/newly-added column. This could be a
prohibitive overhead for fast-evolving data sources.

In addition, the baseline algorithm also requires to store (p +
∑m

0 pi) × L
signatures, which could be quite significant if the raw datasets are dominated
by wide tables.

Moreover, because the baseline algorithm is constrained by the simplifying
assumptions that we mentioned earlier, it cannot be easily extended to semi-
structured and unstructured raw datasets, and raw datasets that spread target
feature values as column/attribute names, as illustrated in Fig. 1.

4.2 An End-to-End Deep Learning Approach

To provide a more flexible and efficient solution to handle integration of hetero-
geneous and fast evolving data, we further propose a novel approach based on
deep learning.

1. Feature Representation. For each raw dataset di ∈ D = {cij}, a data item

is modeled as a key-value pair cij = 〈keyT keyij

ij , value
Tvalueij

ij 〉. Therefore, it is
easy to store each raw dataset as a set of quadruples, in the form of (key array,
key type array, value, value type) as illustrated in Fig. 1. Each field in the
quadruple is encoded based on a dictionary and can be decoded based on the
type information. This transformation process that parses raw data into key-
value representation is conducted offline at storage time. We will describe a few
techniques to accelerate this process, such as data scheduling and sampling.
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2. Label Representation. On the other hand, the label to predict is formulated
as a (row key(s), column attribute, aggregation mode) tuple that specifies
the position (ak, rl), ak ∈ At, rl ∈ Rt in the outcome table V At×Rt

as well as
how values assigned to the same cell in the output table should be aggregated.
We support multiple aggregation modes, such as arithmetic addition (+), string
concatenation (concat), replace of the old value using the new value (replace),
keep the old value and discard the new value (discard), and so on. The labeling
process is illustrated in Fig. 2. In our implementation and experiments for this
work, the label is represented as a one-hot vector.
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Fig. 2. Illustration of the labeling process for the schema evolution with key expansions

3. Model Architecture. We propose a three-layer neural network model archi-
tecture to learn the function (i.e. fC→(At∪{NULL})×(Rt∪{NULL})

t ) that maps the
input feature quadruple (cij ∈ di,∀di ∈ D) to its position in the outcome table
((ak, rl), ak ∈ At, rl ∈ Rt). The first layer is a word embedding layer. As advo-
cated in DeepMatcher [30], using an existing character embedding trained with
large corpus like Wikipedia data may improve the accuracy. We will consider
such approach in our future works, and the last layer is a fully connected layer.
For the middle layers, we try both RNN (LSTM) and CNN, and find that due to
the locality (i.e. key array is irrelevant with value) is critical, CNN can achieve
better accuracy. We find that CNN performs better than LSTM in our prelimi-
nary experiments (Sect. 5).

4. Training Data Preparation. To train the data integration model, the
user needs to create a set of labeled training samples. The candidate train-
ing datasets and their mappings to the target outcome table can be manually
determined, or automatically determined by leveraging existing data discovery
and schema matching approaches. But once these are determined, due to the
mappings are usually a finite set of rules, the labeling process can be easily
automated by developing a python script to transform the datasets into a series
of key-value pairs and corresponding labels. In addition, we automatically inject
schema changes into the training data by pivoting dimensions, expanding keys,
changing attribute names and so on. We inject key expansion changes based
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on hierarchical entity relationships, while attribute name changes are injected
based on the synonym entity relationships extracted from the Google knowledge
graph.

5. Model Training Process. We observe that it only takes up to several
seconds’ time for training in commodity hardware with GPU, and the training
process only needs to be performed once. Despite of the schema changes of most
types, a trained model can be reused many times to integrate updated or new
data sources. Therefore, if the application is relatively stable compared to the
data sources, the training overhead gets well amortized over multiple integration
processes.

6. Output Table Assembling. For each prediction, a data dispatcher is
responsible to assemble a triple (row id, column id, value) from it to describe

(ak, rl, value
Tvalueij

ij ), buffer it in local, and dispatch the tuples to users’ regis-
tered deep learning workers once the buffer is full. At each deep learning worker,
a client of our system is responsible to receive tuples and assemble tuples into
tensors. In addition, if user has registered a number of workers to form a dis-
tributed cluster, the output table will be partitioned in a way to guarantee load
balance and ensure the independent identical distribution (i.e. iid) to avoid intro-
ducing bias. Finally, if user hasn’t registered any deep learning workers, the data
will be written to local.

Analysis. For the deep learning approach, the offline overhead includes the
transformation and storage of all raw datasets into key-value pairs, as well as
the training expense. The online overhead is mainly in model inference, which
can be accelerated by advanced hardwares, like GPU, FPGA, and ASIC.

The overall storage overhead is mainly caused by the storage of pre-trained
models, which is linear to the number of different applications. However we find
that the storage overhead for a single model is merely up to several to tens
of kilobytes. One thing to note is that the proposed key-value model can also
significantly reduce intermediate processing overhead for sparse data. In the
future, we may consider to cache the key-value representation for reuse.

Once a data integration model is trained, there is almost no need for human
intervention, despite of newly added or updated data sources, which also distin-
guishes it from the baseline approach and other existing works.

Finally the performance of the deep learning approach can be further opti-
mized by using an early stopping mechanism. Instead of parsing all data items
in the source datasets, we can parse only nk sampled items for each column,
and we will skip the parsing of the rest of the column for testing if most of the
sampled items are discarded. nk is determined by the number of values in the
column.
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5 Preliminary Results

5.1 Environment Setup

We implement the deep learning approach using TensorFlow version 1.14, CUDA
version 10 and python, and the baseline approach also in python using pandas
APIs. We deploy the system in a desktop installing Intel i7 CPU, 32 GB memory,
and Nvidia RTX 2070 Super GPU with 8 GB Memory.

We mainly evaluate our system in two COVID-19 data integration scenarios
that are close to the example in Sect. 3. In the first scenario, we predict COVID-
19 death using daily and regional information regarding number of confirmed
cases and a mobility factor. From a set of raw data sources, we need create a time-
series 2-dimensional array, where each row represents data for a state/province
on a specific date, and each column represents date, state, country, the number
of confirmed cases, and the value of mobility factor, which can be used as inputs
to various curve-fitting techniques [1,2] for COVID-19 death prediction. In the
second scenario, we use regional information including total population, male
population, female population, number of hospitals, number of ICUs and so on
for COVID-19 death prediction.

We assume the user specifies/recommends a small set of initial data sources.
For the first scenario, the user specifies the John Hopkins University’s COVID-
19 github repository [4] and Google mobility data [3]. For the second scenario,
a dataset from Kaiser Health News [6] and a dataset from Harvard dataverse
COVID-19 repository [5] are used. In the first scenario, both of the two source
datasets are updated at daily basis and observed with frequent schema changes.
The statistics about the above source tables are illustrated in Table 1.

For both models, we use 256 neurons for the first layer and the third layer
respectively. For the last layer, we use 512 neurons for LSTM, and for CNN, we
use three conv2D and pooling layers, each of which uses 100 3 × 3, 4 × 4, and
5 × 5 filters respectively and 1 stride. We use learning rate of 0.001 and batch
size of 256.

We then evaluate the accuracy and the end-to-end latency of the trained
models for synthetic data with schema changes applied (we do not consider
column expansion and contraction in preliminary experiments) and data that is
irrelevant with the target tables that are synthesized from real-world COVID-
19 data as illustrated in Table 2. The accuracy of the data integration model is
defined as the ratio of the number of correctly classified data cells to the total
tested classified data cells.

5.2 Testing Accuracy Analysis

The model testing accuracy for the first scenario with time series and regional
information is illustrated in Table 3. In total, the training dataset includes 28751
automatically labeled training samples. We observe that using CNN achieves
significantly higher accuracy in various testing cases, particularly for testing
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Table 1. Statistics of relevant data sources.

numRows numCols

JHU-COVID-19 310 66

Google-Mobility 477322 11

KHN-COVID-19 3142 11

Harvard-COVID-19 3143 459

Table 2. Statistics of open CSV COVID-19 data that we’ve collected in the data
repository.

numFiles avgNumAttributes (Width) avgNumRows (Depth)

2306 65 3422

Table 3. Testing accuracy comparison.

Testing cases LSTM CNN

Relevant data with no schema changes 98.76% 99.29%

Relevant data with schema changes 98.13% 99.92%

Totally irrelevant data 99.96% 99.04%

Partially irrelevant data 67.16% 98.41%

with partially irrelevant data cells. This is mainly because CNN considers the
locality of features while sequence is less important for this case.

For the second scenario with only regional information, we only try the
LSTM model and it can achieve 100% accuracy for relevant data with no schema
changes, and we didn’t test with other cases, which we will leave to future works.

We see an obvious advantage of our proposed deep learning approach com-
pared to the baseline approach. For example, the baseline approach cannot han-
dle the first scenario as illustrated in Fig. 1 where the time-series dimension is
pivoted and can be hardly mapped to any column in the target table. However,
in the second scenario, the baseline approach can correctly identify all related
attributes and map attributes in the source datasets to the target table.

5.3 Latency Analysis

We also test and compare the end-to-end latency including training and testing of
the deep learning approach to the baseline approach. The results are illustrated
in Table 4.

5.4 Storage Overhead Analysis

We find that the deep learning approach has an obvious benefit in saving stor-
age overhead compared to the baseline approach. Each LSTM model has 1000
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Table 4. Latency break-down and comparison (Unit: second).

Latency Measurement details

Data-decomposition-scenario1 7.47 JHU and Google mobility datasets

Training-latency-LSTM-scenario1 11.37 for 28751 training samples

Testing-latency-LSTM-scenario1 6.3 for 30000 testing samples

Training-latency-CNN-scenario1 7.52 for 28751 training samples

Testing-latency-CNN-scenario1 3.66 for 30000 testing samples

Data-decomposition-scenario2 8.14 Harvard and KHN datasets

Training-latency-LSTM-scenario2 6.93 for 5000 training samples

Testing-latency-LSTM-scenario2 0.17 for 1000 testing samples

Baseline-approach-creating-LSH-scenario2 14.65 for 11 columns in KHN data and 459 columns in Harvard data

Baseline-approach-matching-LSH-scenario2 23.21 for 11 columns in KHN data and 459 columns in Harvard data

Baseline-approach-join-scenario2 0.04 using pd.DataFrame.merge()

parameters in total, which is 16 KB in size, and the CNN model has 5500 param-
eters, which is 88 KB. However, for the baseline approach, we store 512 MinHash
LSH signatures [20] for each column and each signature has 4 bytes, so it takes
154 KB for the JHU COVID-19 dataset and the Google mobility dataset in the
first scenario, and 940 KB for the Harvard and KHN COVID-19 datasets in the
second scenario. If consider all 2306 CSV files (Table 2, it requires 300 MB of
storage overhead in total, while the deep learning approach only needs to store
the model that is smaller than 100 KB.

6 Conclusion

In this work, we propose an end-to-end approach based on deep learning for
periodical extraction of user expected tables from fast evolving data sources of
open CSV files. We further propose a relatively stable key-value based represen-
tation to embody the fast-evolving source data and to generate training data
by automatically injecting schema changes (e.g. dimension pivoting, attribute
name changes, attribute addition/removal, key expansion/contraction, etc.). We
formalize the problem and conduct preliminary experiments on open COVID-19
data. The initial results show that our proposed approach can achieve better
accuracy and latency, with significantly reduced storage overhead, compared to
the baseline approach, and that using deep learning to handle schema evolution
is a promising research direction.
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Abstract. Dejima is a peer-based data integration architecture that
peers share their data in updatable views. Since peers in Dejima are
distributedly deployed to manage their database, update in a peer may
propagate to other peers. A transaction management method is necessary
to guarantee global consistency. This paper analyzes the characteristics
of Dejima from the perspective of transaction management and proposes
a transaction management method for efficiency and autonomy of peers.
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1 Introduction

Data integration is the process of providing the user a unified view of data
residing at different databases. Since each user’s schema is designed based on
their purposes, these databases have different schemas. Most of the conventional
frameworks for data integration first gather data from multiple databases and
then provide an integrated view of these data as a single global schema [6].
Recently, as a large amount of generated data increases the cost of transferring
data, the conventional frameworks would be not appropriate. In our preliminary
work, we proposed Dejima [1,2], an architecture for data integration. Dejima
is influenced by ORCHESTRA [5]. It adopts the decentralized structure and
preserves the autonomy of each peer in a peer network. In Dejima, an update
in a peer propagates to other peers through updatable views. One of the big
differences between Dejima and ORCHESTRA is that Dejima guarantees global
consistency.

Dejima needs a transaction management to guarantee global consistency. A
naive solution is locking all the records in all peers at the same time, but this is
not efficient and significantly decreases the throughput. As for recent advances
in distributed transaction management, Spanner [4] applies multi-version two-
phase locking in a distributed environment and uses the true time API to get
the correct timestamps despite the difference between each database server’s
clock; Megastore [3] guarantees global consistency in well-grained partitioned
c© Springer Nature Switzerland AG 2020
L. Qin et al. (Eds.): SFDI 2020/LSGDA 2020, CCIS 1281, pp. 187–193, 2020.
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Fig. 1. An example of the Dejima architecture deployment.

databases; Calvin [7] determines a unique serializable schedule from issued trans-
actions before performing. Since Calvin can handle databases deterministically
(i.e., the orders of transactions are not affected by other elements such as OS
scheduling), it can reduce communication costs because each database can know
the orders of transactions by time stamps. However, these methods were designed
for data replication environments instead of peer-to-peer environments. Hence
we cannot directly adopt these methods to Dejima.

In designing a transaction management method for Dejima, besides effi-
ciency and scalability, another challenge is not to compromise the autonomy of
peers and data propagation. In this paper, we design a transaction management
method for Dejima by taking into consideration the characteristics of the Dejima
architecture. For the sake of efficiency and autonomy of peers, we propose the
concept of family record set and regard federated databases as a single virtual
view. Then we can perform two-phase locking on the virtual view to guarantee
a serializable schedule. We provide an implementation and evaluation plan for
our techniques.

2 Dejima Architecture

We introduce an overview of Dejima. The Dejima architecture consists of two
components: peers and Dejima groups. A peer P represents a client, such as
a company or service, which participates in Dejima to share data. Each peer
has its own database and its local schema. We call the tables in each peer’s
database base tables (denoted by B). A Dejima group G is a set of peers to share
a part of records in their databases. We say that P participates in G if P is
contained by G. In a Dejima group, the peers share a view derived from their base
tables, called Dejima table D. One of the significant differences between Dejima
and other architectures is that Dejima makes view updatable via bidirectional
transformation [8]. In other words, each peer can convert updates in a Dejima
table to the updates in their base tables and vice versa. In doing so, updates in a
peer’s base table can be propagated to the Dejima table and then to other peers’
base tables. We denote updated records of table X as ΔX. We assume that a
Dejima table is defined by four common types of queries: Selection, Projection,
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Join, and Union (SPJU query). Note that although JOIN queries may result in
the ambiguity of view update for Dejima tables, bidirectional transformation [8]
can be utilized to resolve the ambiguity.

We illustrate an example of data integration in Dejima. Figure 1 shows an
example of the Dejima architecture deployment, which consists of four peers and
two Dejima groups. Each peer Pi has its base table Bi. P1 and P2 participate in
G1 and share Dejima table D1. P2, P3 and P4 participate in G2 and share Dejima
table D2. The Black arrows in the figure represent bidirectional transformations.
Consider a query at P1 inserts records to B1. The update ΔB1 is converted
to records inserted into D1 by incremental view maintenance, and then the
ΔD1 is sent to P2. After receiving ΔD1, P2 transforms this update to ΔB2

via bidirectional transformation and updates B2. ΔB2 is converted to ΔD2 and
further propagated to P3 and P4. This example is an insertion case. We can
process deletions in the same way. We can also translate an update with a pair
of insertion and deletion.

We summarize four characteristics of Dejima that we need to consider for
developing distributed transaction management methods.

Autonomy of Peer: Dejima preserves the autonomy of peers because it does
not demand a specific database management system. Each peer may use an
arbitrary database management system and manages its own local schema. Their
local concurrency control methods may also differ. Thus, Dejima requires a trans-
action management method which can prevent any anomalies despite these dif-
ferences. Dejima also integrates databases in a decentralized manner, so it is not
suitable to employ a single global transaction management component.

Deadlock: To guarantee global consistency in Dejima, we can leverage locking
protocols. In Dejima, updates are propagated to other peers, which may cause
deadlocks frequently. When a deadlock happens, we need to abort transactions
to resolve it. Since a transaction incurs communication between peers, abort-
ing transactions renders previous communications of this transaction invalid.
Therefore, we need to reduce deadlocks as much as possible to achieve high
throughput.

Dejima Table Defined with JOIN Query: Dejima table can be defined by
JOIN queries. This poses additional challenges compared to selection, projection,
and union queries. We explain an example to show the difficulty of updates of
Dejima tables by JOIN queries. Consider D, a Dejima table defined by the query
that joins base tables A and B. We express D as D = A �� B. We suppose that
two transactions TA and TB are issued at the same time. Transaction TA inserts
records into A, while TB inserts records into B. To satisfy global consistency,
ΔD after committing two transactions should be ΔD = A �� ΔB + ΔA �� B +
ΔA �� ΔB as if TA and TB are executed serially. If the local concurrency control
prevents transactions from reading uncommitted records by other transactions,
each transaction cannot refer to updates in an opposite ongoing transaction.
Therefore, both of the two transactions cannot acquire ΔA �� ΔB. Inconsistency
occurs in this case. Thus, we need to ensure that ΔA �� ΔB can be obtained
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by either of two transactions for ensuring global consistency. Note that such
inconsistency may occur not only for insertions but also deletions and updates.

Update Propagation via Multiple Paths: When a transaction propagates
to some peer via multiple paths, the databases may become an inconsistent
state because different bidirectional transformations on the paths may convert to
different updated records. There are two cases of propagating via multiple paths:
1) the paths cross at the same peer; 2) a propagated transaction returns to a
peer which the transaction has already gone through. In case 1, the propagated
updates at this peer may be different on each path. In case 2, An inconsistent
propagation cycle may form (e.g., an inserted record is eventually deleted after
the propagation).

Fig. 2. An example of the Dejima with the concept of FRS. Records with the same
lineage belong to the same FRS. An update to a record may propagate to other records
in the same FRS. The update never propagates to other records in a different FRS.

3 Transaction Management in Dejima

We propose a transaction management method for the Dejima architecture. Our
key idea is to regard the whole base tables as a single virtual view. We propose
a concept of Family Record Set (FRS) and perform a Conservative Two-Phase
Locking (C2PL) on this virtual view.
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3.1 Family Record Set

To manage transactions and guarantee global consistency, we find out what
records will be updated by an update and what peers have these records. To
this end, we introduce a concept of FRS, which represents a set of all records
affected by an update. The FRS of an update contains the following records:
(1) original records, which are the records updated in the base tables where the
update occurs, and (2) derived records, which are the records updated through
the update propagation.

Since Dejima tables are defined by SPJU queries, for each update, the FRS
forms an atomic unit for update propagation. We can treat the integrated
databases as a single virtual view. An FRS represents a single record in this
virtual view.

In an FRS, we define the original record set for a particular derived record
as lineage. Since a derived record can be generated by joining multiple records,
the lineage may not be a single original record but a set of records. Figure 2
shows an example of Dejima with the concept of FRS. We express records in
each lineage by (peer ID, base table ID, record ID). We can use each record’s
lineage to distinguish which FRS a record belongs to. Consequently, acquiring
locks of records with a particular lineage is equivalent to obtaining locks of
the corresponding record in the virtual view. Next, we present our transaction
management algorithm.

3.2 Algorithm

A transaction acquires locks before it is executed. So we can reduce the number
of aborts of ongoing transactions and prevent the deadlock. Our algorithm works
as follows.

1. We first obtain the lineages of records that are to be updated.
2. The local transaction acquires shared locks of the records that the transaction

reads.
3. All peers are notified with the lineages obtained in step 1. The transaction

requires exclusive locks of the records whose lineage is obtained at step 1.
(a) If all locks are acquired successfully, the transaction is executed by a

two-phase commit through peers in a tree-formed network structure.
(b) If the transaction cannot acquire all locks, release the locks, and abort

the transaction.

When a transaction includes insertion queries, we shall propagate the trans-
action with the lineages of the inserted records. According to the propagated
lineages, each peer attach the lineages to the derived records.

Since all peers are notified with the requests for exclusive locks, it is sufficient
to acquire shared locks locally at peer P where the transaction is issued. When
another peer requests an exclusive lock for the record, peer P blocks the request.

Communication Tracing Tree Structure Of The Network. Considering
the autonomy of peers in Dejima, we assume that each peer is only aware of the
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peers with which it shares data. Hence the communication in Dejima needs to
be performed in a tree structure of the network.

Combined FRS. Because of the Dejima table may be defined by JOIN queries,
multiple FRSs may be combined and form a new FRS by join operations. Con-
sider two FRSs F and F ′, which contain records R and R′, respectively. If there
is a record derived by joining some record in R and some record R′, this join
record forms a new FRS, which is a joint set of F or F ′. When we require exclu-
sive locks of records in F , we should acquire additional exclusive locks for records
in F ′ to achieve consistent update propagation. This additional exclusive locks
eliminate the situation where a transaction updates records in F and another
transaction updates records in F ′ at the same time. Thus, we can successfully
obtain ΔA �� ΔB mentioned in Sect. 2.

Detection of Update Propagation via Multiple Paths. To detect the prop-
agation via multiple paths, we attach a globally unique ID to every transaction.
This ID is represented as a pair (peer ID, local transaction ID). Propagating
a transaction with this ID enables a peer to detect whether its base table is
updated by the same transaction through multiple paths. When such an update
is detected, the peer aborts the transaction immediately.

4 Implementation and Evaluation Plan

We discuss our implementation and evaluation plan1. We use PostgreSQL for the
local database at each peer. Update propagation is implemented using DBMS
triggers and virtual views. The triggers and the virtual views are generated
via bidirectional transformations, which are implemented using BIRDS [8]. We
first plan to implement our proposal method and evaluate the consistency and
availability of the Dejima for several real-world applications. Then we plan to
evaluate the efficiency by measuring the throughput, latency, and scalability
of the Dejima. The scalability will be investigated by testing workloads with
varying degrees of contention and a varying number of peers or peer groups.
Other transaction management protocols such as optimistic concurrency control
will be compared.

5 Conclusion

We proposed a transaction management method for Dejima. This method han-
dles distributed base tables as a single virtual view with a new concept FRS
and then perform C2PL on this view. C2PL acquires locks before performing a
transaction, reducing the number of aborts of ongoing transactions. As future
work, we plan to implement this method on Dejima and evaluate scalability and
efficiency.

1 The source code is available at https://github.com/ekayim/dejima-prototype.

https://github.com/ekayim/dejima-prototype
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