
A Waiting Time Determination Method
to Merge Data on Distributed Sensor

Data Stream Collection

Tomoya Kawakami1(B), Tomoki Yoshihisa2, and Yuuichi Teranishi2,3

1 University of Fukui, Fukui, Japan
tomoya-k@u-fukui.ac.jp

2 Osaka University, Ibaraki, Osaka, Japan
3 National Institute of Information and Communications Technology,

Koganei, Tokyo, Japan

Abstract. We define continuous sensor data with difference cycles as
“sensor data streams” and have proposed methods to collect distributed
sensor data streams. However, it is required to determine the appropriate
waiting time in each processing computer (node) to collect and merge
data efficiently. Therefore, this paper presents a method to determine a
specific waiting time in each node. The simulation results show that the
waiting time affects the loads and processing time to collect the data.

1 Introduction

In the Internet of Things (IoT), various devices (things) including sensors gen-
erate data and publish them via the Internet. We define continuous sensor data
with difference cycles as a sensor data stream and have proposed methods to
collect distributed sensor data streams as a topic-based pub/sub (TBPS) sys-
tem [8]. In addition, we have also proposed a collection system considering phase
differences to avoid concentrating the data collection to the specific time by the
combination of collection cycles [4,5]. These previous methods are based on skip
graphs [1], one of the construction techniques for overlay networks [3,6,7].

In our skip graph-based method considering phase differences, the collection
time is balanced within each collection cycle by the phase differences, and the
probabiity of load concentration to the specific time or processing computer
(node) is decreased. However, it is required to determine the appropriate wait-
ing time in each node to collect and merge data efficiently. Therefore, this paper
presents a method to determine a specific waiting time in each node. The sim-
ulation results show that the waiting time affects the loads and processing time
to collect the data.

c© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
L. Barolli et al. (Eds.): 3PGCIC 2020, LNNS 158, pp. 41–50, 2021.
https://doi.org/10.1007/978-3-030-61105-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61105-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-61105-7_5


42 T. Kawakami et al.

Fig. 1. An example of input setting.

2 Problems Addressed

2.1 Assumed Environment

The purpose of this study is to disperse the communication load in the sensor
stream collections that have different collection cycles. The source nodes have
sensors so as to gain sensor data periodically. The source nodes and collection
node (sink node) of those sensor data construct P2P networks. The sink node
searches source nodes and requires a sensor data stream with those collection
cycles in the P2P network. Upon reception of the query from the sink node, the
source node starts to delivery the sensor data stream via ohter nodes in the P2P
network. The intermediate nodes relay the sensor data stream to the sink node
based on their routing tables.

2.2 Input Setting

The source nodes are denoted as Ni (i = 1, · · · , n), and the sink node of sensor
data is denoted as S. In addition, the collection cycle of Ni is denoted as Ci.

In Fig. 1, each node indicates source nodes or sink node, and the branches
indicate collection paths for the sensor data streams. Concretely, they indicate
communication links in an application layer. The branches are indicated by dot-
ted lines because there is a possibility that the branches may not collect a sensor
data stream depending on the collection method. The sink node S is at the top
and the four source nodes N1, · · · , N4 (n = 4) are at the bottom. The figure
in the vicinity of each source node indicates the collection cycle, and C1 = 1,
C2 = 2, C3 = 2, and C4 = 3. This corresponds to the case where a live camera
acquires an image once every second, and N1 records the image once every sec-
ond, N2 and N3 record the image once every two seconds, and N4 records the
image once every three seconds, for example. Table 1 shows the collection cycle
of each source node and the sensor data to be received in the example in Fig. 1.



A Waiting Time Determination Method to Merge Data 43

Table 1. An example of the sensor data collection.

Time N1 (Cycle: 1) N2 (Cycle: 2) N3 (Cycle: 2) N4 (Cycle: 3)

0 � � � �
1 �
2 � � �
3 � �
4 � � �
5 �
6 � � � �
7 �
... ... ... ... ...

2.3 Definition of a Load

The communication load of the source nodes and sink node is given as the total
of the load due to the reception of the sensor data stream and the load due to
the transmission. The communication load due to the reception is referred to
as the reception load, the reception load of Ni is Ii and the reception load of
S is I0. The communication load due to the transmission is referred to as the
transmission load, the transmission load of Ni is Oi and the transmission load
of S is O0.

In many cases, the reception load and the transmission load are proportional
to the number of sensor data pieces per unit hour of the sensor data stream to
be sent and received. The number of pieces of sensor data per unit hour of the
sensor data stream that is to be delivered by Np to Nq (q �= p; p, q = 1, · · · , n)
is R(p, q), and the number delivered by S to Nq is R(0, q).

13 

13 

21 33 48 75 99 

33 

33 

48 

Level 2 

Level 1 

Level 0 
00 

00 

00 

00 

01 

01 

10 11 11 

21 75 99 
10 11 11 

01 

21 
10 

13 48 
00 00 

75 99 
11 11 

Membership 
vector 

Key1 node

Fig. 2. A structure of a skip graph.



44 T. Kawakami et al.

3 Proposed Method

3.1 Skip Graph-Based Collection Considering Phase Differences

Currently we have proposed a large-scale data collection schema for distributed
TPBS [8]. [8] assumes the overlay network for the skip graph-based TBPS such
as Banno et al [2]. Skip graphs are overlay networks that skip list are applied
in the P2P model [1]. Figure 2 shows the structure of a skip graph. In Fig. 2,
squares show entries of routing tables on peers (nodes), and the number inside
each square shows a key of the peer. The peers are sorted in ascending order by
those keys, and bidirectional links are created among the peers. The numbers
below entries are called “membership vector.” The membership vector is an
integral value and assigned to each peer when the peer joins. Each peer creates
links to other peers on the multiple levels based on the membership vector.

In [8], we employ “Collective Store and Forwarding,” which stores and merges
multiple small size messages into one large message along a multi-hop tree struc-
ture on the structured overlay for TBPS, taking into account the delivery time
constraints. This makes it possible to reduce the overhead of network process
even when a large number of sensor data is published asynchronously. In addi-
tion, we have proposed a collection system considering phase differences [4,5].
In the proposed method, the phase difference of the source node Ni is denoted
as di (0 ≤ di < Ci). In this case, the collection time is represented to Cip + di
(p = 0, 1, 2, ...). Table 2 shows the time to collect data in the case of Fig. 1 where
the collection cycle of each source node is 1, 2, or 3. By considering phase dif-
ferences like Table 2, the collection time is balanced within each collection cycle,
and the probabiity of load concentration to the specific time or node is decreased.
Each node sends sensor data at the time base on his collection cycle and phase
difference, and other nodes relay the sensor data to the sink node. In this paper,
we call considering phase differences “phase shifting (PS).” Fig. 3 shows an exm-
ple of the data forwarding paths on skip graphs with phase shifting (PS).

N2N1 N4 N7N6 D1N5N3

3 3 3 2 2 1 1 Dest. 
node 2 1 0 1 0 0 0

Key
Phase diff.

t = 1

t = 2

t = 0

t = 3

t = 4

t = 5

Fig. 3. Sensor data stream collection considering phase differences.



A Waiting Time Determination Method to Merge Data 45

Table 2. An example of the collection time considering phase differences.

Cycle Phase Diff Collect. Time

1 0 0, 1, 2, 3, 4, ...

2 0 0, 2, 4, 6, 8, ...

1 1, 3, 5, 7, 9, ...

3 0 0, 3, 6, 9, 12, ...

1 1, 4, 7, 10, 13, ...

2 2, 5, 8, 11, 14, ...

3.2 Determination of the Waiting Time

In the collection scheme shown in [4,5] and Fig. 3, more data are efficiently
aggregated on the relay nodes for the destination node if the left side nodes
which have longer cycles send data earlier to the next right side nodes. Hence,
the possibility of data aggregation can be enhanced if the waiting time to send
data is configured longer on the shorter cycle nodes. On the other hand, nodes are
required the specific costs to understand indirectly linked nodes on autonomous
decentralized overlay networks such as skip graphs. The costs depend on the scale
of the overlay networks. Therefore, nodes in the proposed method configure their
own waiting time based on the position on the key space. The position on the
key space is estimated by their own collection cycles and phase differences. In the
processes to determine the waiting time, this paper assumes that all nodes know
the maximum waiting time denoted by wmax. The maximum waiting time is
configured to the shortest cycle node located to the right edge on the key space.
Each node configures its own waiting time based on the estimated position and
the maximum waiting time to send data earlier than the nodes located right
side.

Algorithm 1 shows the flow to determine the waiting time in the proposed
method. From the line 1 to 6, the distance to the maximum waiting time node
is calculated based on the node’s collection cycle and phase difference. From the
line 6 to 9, the maximum distance on the key space is calculated by the values
of the selectable collection cycles. At the line 10, the relative position on the key
space is calculated, and the node’s waiting time is determined to shorten the
waiting time for longer distance nodes.



46 T. Kawakami et al.

Algorithm 1: Determination of the waiting time on each node
Input: C: list of selectable collection cycles, c: node’s collection cycle, d: node’s

phase difference, wmax: max. waiting time
Output: Node’s waiting time

1 p = 0 // Node’s location by its collection cycle and phase

difference

2 for i in C do
3 if c = Ci then
4 break

5 p = p + Ci

6 p = p + d
7 pmax = 0 // Max. value by the selectable collection cycles and phase

differences

8 for i in C do
9 pmax = pmax + Ci

10 return wmax(1 − p/pmax)

4 Evaluation

In this paper, we evaluate the proposed method in simulation.

4.1 Simulation Environments

Table 3 shows the simulation environments. The collection cycle of each source
node denoted by Ci is determined at random between 1 and 10. The simulation
time denoted by t is from 0 to 2519, which length is the least common multiple
of the selectable collection cycles. The number of source nodes is 250, 500, 750,
or 1000. The data from the source nodes are forwarded to one destination node
and aggregated on the relay nodes based on the configured waiting time. The
average communication delay among nodes is 0.005 × 20, 0.005 × 21, 0.005 × 22,
or 0.005 × 23. The communication delay on each node is determined under the
normal distribution which variance σ2 is 0.001. The maximum number of the
aggregated streams on each node is 10 per time.

We execute the simulation for each environment and compare the results
where the maximum waiting time is 0 (no waiting time), 0.5, 0.75, and 1.0. The
default values of the number of nodes and the average communication delay
are 500 and 0.01, respectively. The simulation is executed ten times for each
environment, and the average values of the evaluation indices are calculated as
simulation results. The evaluation indices are the maximum instantaneous load,
the total loads, the average arrival delay from the source nodes to the destination
node, and the maximum arrival delay.



A Waiting Time Determination Method to Merge Data 47

Table 3. Simulation environments.

Item Value

Collection cycles 1, 2, ..., 10 (Determined at random)

The number of destination nodes 1

The number of source nodes 250, 500, 750, 1000

Avg. communic. delay 0.005, 0.01, 0.02, 0.04

Max. waiting time 0 (No waiting time), 0.5, 0.75, 1.0

Max. number of the aggregated streams 10

Simulation count 10

Evaluation indices Max. instantaneous load, total loads,

avg. arrival delay, max. arrival delay

4.2 Results by the Number of Nodes

Figure 4 shows the maximum instantaneous load and the total loads of nodes
when the number of nodes on the lateral axis is from 250 to 1000. The aver-
age communication delay is 0.01. In Fig. 4a, the maximum instantaneous load
decreases by the maximum waiting time because longer waiting time increases
the possibility of data aggregation. However, the falling rate is 9% compared to
the case of no waiting time (the maximum waiting time is 0 and no data aggre-
gation) even if the number of nodes is 1000 and the maximum waiting time is
1.0. In Fig. 4b, also the total loads decreases by the maximum waiting time, and
the falling rate is higher than the result of the maximum instantaneous load.
The maximum falling rate is nearly 30% compared to the case of no waiting
time.

Figure 5 shows the average arrival delay and the maximum arrival delay when
the number of nodes on the lateral axis is from 250 to 1000. The average com-
munication delay is the same, 0.01. In Fig. 5a, the loads become lowest when
the maximum waiting time is 1.0, however, the average arrival delay is over 1.0
and moves to the next time. On the other hand, the maximum of the increased
amount is 0.1 in the case of no waiting time. The influence is not serious if the
application allows a little increase of the arrival delay. In addition, the number
of nodes does not have a large influence on the average arrival delay in this sim-
ulation environment because the proposed method uses skip graphs which can
keep the number of hops nearly log n. On the other hand, Fig. 5b shows that the
maximum arrival delay is more affected by the number of nodes compared to
the average arrival delay. The growth rate is decreased by the maximum waiting
time. When the number of nodes is 1000 and no waiting time, the maximum
arrival delay increases by 34% compared to the case of 250 nodes.



48 T. Kawakami et al.

0
10

0
20

0
30

0
40

0
50

0

The Number of Nodes

M
ax

. I
ns

ta
nt

an
eo

us
 L

oa
d

250 500 750 1000

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(a) The maximum instantaneous load

0
2

4
6

8
10

The Number of Nodes

To
ta

l L
oa

ds
 [1

06 ]

250 500 750 1000

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(b) The total loads

Fig. 4. Loads by the number of nodes.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

The Number of Nodes

A
vg

. A
rr

iv
al

 D
el

ay

250 500 750 1000

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(a) The average delay

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

The Number of Nodes

M
ax

. A
rr

iv
al

 D
el

ay

250 500 750 1000

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(b) The maximum delay

Fig. 5. Arrival delays by the number of nodes.

4.3 Results by the Average Communication Delay

Figure 6 shows the maximum instantaneous load and the total loads of nodes
when the average communication delay on the lateral axis is from 0.005 to
0.004. The number of nodes is 500. In Fig. 6a, the maximum instantaneous
load increases by the average communication delay because longer communi-
cation delay decreases the possibility of data aggregation. In Fig. 6b, also the
total loads increases by the average communication delay, and the growth rate
is higher than the result of the maximum instantaneous load. When the average
communication time is 0.04 and the maximum waiting time is 1.0, the total loads
increase by 43% compared to the case where the average communication time is
0.005.

Figure 7 shows the average arrival delay and the maximum arrival delay when
the average communication delay on the lateral axis is from 0.005 to 0.04. The
number of nodes is the same, 500. Similar to the results by the number of nodes,
the average arrival delay is over 1.0 and moves to the next time when the max-
imum waiting time is 1.0. In addition, the average communication delay affects



A Waiting Time Determination Method to Merge Data 49

0
50

10
0

15
0

20
0

25
0

Avg. Communic. Delay

M
ax

. I
ns

ta
nt

an
eo

us
 L

oa
d

0.005 0.01 0.02 0.04

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(a) The maximum instantaneous load

0
1

2
3

4
5

Avg. Communic. Delay

To
ta

l L
oa

ds
 [1

06 ]

0.005 0.01 0.02 0.04

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(b) The total loads

Fig. 6. Loads by the average communication delay.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Avg. Communic. Delay

A
vg

. A
rr

iv
al

 D
el

ay

0.005 0.01 0.02 0.04

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(a) The average delay

0.
0

0.
5

1.
0

1.
5

Avg. Communic. Delay

M
ax

. A
rr

iv
al

 D
el

ay

0.005 0.01 0.02 0.04

No waiting time
Waiting time: 0.5

Waiting time: 0.75
Waiting time: 1.0

(b) The maximum delay

Fig. 7. Arrival delays by the average communication delay.

the average arrival delay and the maximum arrival delay. When the average com-
munication time is 0.04 and the maximum waiting time is 0 (no waiting time),
the maximum arrival delay increases nearly by four times compared to the case
where the average communication time is 0.005.

5 Conclusion

We have proposed a skip graph-based collection system for sensor data streams
considering phase differences. In this paper, we proposed a method to determine
a specific waiting time in each node. The simulation results show that the waiting
time affects the loads and processing time to collect the data.

In future, we will evaluate the proposed method in various environments such
as another distribution for the communication delays among nodes.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
18K11316, G-7 Scholarship Foundation, and Research Grants from the University of
Fukui.



50 T. Kawakami et al.

References

1. Aspnes, J., Shah, G.: Skip graphs. ACM Trans. Algorithms 3(4), 1–25 (2007)
2. Banno, R., Takeuchi, S., Takemoto, M., Kawano, T., Kambayashi, T., Matsuo, M.:

Designing overlay networks for handling exhaust data in a distributed topic-based
pub/sub architecture. J. Inform. Process. 23(2), 105–116 (2015)

3. Duan, Z., Tian, C., Zhou, M., Wang, X., Zhang, N., Du, H., Wang, L.: Two-layer
hybrid peer-to-peer networks. Peer-to-Peer Netw. Appl. 10, 1304–1322 (2017)

4. Kawakami, T., Yoshihisa, T., Teranishi, Y.: A load distribution method for sensor
data stream collection considering phase differences. In: Proceedings of the 9th
International Workshop on Streaming Media Delivery and Management Systems
(SMDMS 2018), pp. 357–367 (2018)

5. Kawakami, T., Yoshihisa, T., Teranishi, Y.: Evaluation of a distributed sensor data
stream collection method considering phase differences. In: Proceedings of the 10th
International Workshop on Streaming Media Delivery and Management Systems
(SMDMS 2019), pp. 444–453 (2019)

6. Legtchenko, S., Monnet, S., Sens, P., Muller, G.: RelaxDHT: a churn-resilient repli-
cation strategy for peer-to-peer distributed hash-tables. ACM Trans. Auton. Adapt.
Syst. 7(2), 1–18 (2012)

7. Shao, X., Jibiki, M., Teranishi, Y., Nishinaga, N.: A virtual replica node-based flash
crowds alleviation method for sensor overlay networks. J. Netw. Comput. Appl. 75,
374–384 (2016)

8. Teranishi, Y., Kawakami, T., Ishi, Y., Yoshihisa, T.: A large-scale data collection
scheme for distributed topic-based pub/sub. In: Proceedings of the 2017 Interna-
tional Conference on Computing, Networking and Communications (ICNC 2017)
(2017)


	A Waiting Time Determination Method to Merge Data on Distributed Sensor Data Stream Collection
	1 Introduction
	2 Problems Addressed
	2.1 Assumed Environment
	2.2 Input Setting
	2.3 Definition of a Load

	3 Proposed Method
	3.1 Skip Graph-Based Collection Considering Phase Differences
	3.2 Determination of the Waiting Time

	4 Evaluation
	4.1 Simulation Environments
	4.2 Results by the Number of Nodes
	4.3 Results by the Average Communication Delay

	5 Conclusion
	References




