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Abstract. Frequent service down times and poor system performance
can affect aspects such as the availability, quality of experience and gen-
erate millions of dollars in lost revenue. High Performance Computing
(HPC) environments are often required to comply with performance and
dependability requirements. The CHESS methodology provides support
for the design and the evaluation of dependability and performance sys-
tem attributes. In this paper we extend the CHESS methodology to sup-
port the design and the dependability analysis of HPC environments.
The proposed approach was employed in the Grid’5000, a highly dis-
tributed and I/O intensive HPC environment. The application of the
proposed approach provided key information for demonstrating depend-
ability, deriving project decisions, agreeing on new design choices and
resource allocation strategies.

1 Introduction

Dependability is the ability of a system to operate as intended and to deliver
its services when required and in a trusted manner [17]. It is broken down into
availability, reliability, safety, security and resilience [21]. Fault tolerance relates
to the capability of a system to continue operating as intended, after encounter-
ing a failure [13]. Availability is directly related to fault tolerance and refers to
the ability of a system to operate continuously by either protecting itself against
or quickly recovering from failures [19].

Distributed architectures such as High Performance Computing (HPC) envi-
ronments are often required to attend to performance and dependability require-
ments. In certain domains (e.g.: industrial, military, banking and e-health)
long service response times, failures and momentary service down times can
affect their provided Quality of Experience (QoE) and generate undesirable or
even contribute to catastrophic consequences. Thus, HPC environments must
ensure their dependability, performance and are sometimes required to imple-
ment redundancy, error detection, fault recovery capabilities [6] and provide low
I/O times and data exchange latency [22].
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Analyzing and demonstrating these requirements can prove to be very chal-
lenging when dealing with big and complex distributed HPC environments.
Thus, compositional analysis and simulation techniques are applied when design-
ing these kinds of environments [9]. CHESS is a methodology and toolset that
enables the high level specification (i.e. using UML and SysML constructs) and
analysis of system models [7]. Unlike other model-based design (e.g. Matlab &
Simulink) and compositional analysis (e.g. Hip-Hops [3]) techniques, the CHESS
Toolset is completely free and partially open-source thus, allowing developers
to easily extend and adapt it to their specific needs. Due to its maturity and
technological readiness, the methodology is used in the industry and applied in
domains such as IoT [11], automotive [7] and petroleum [15]. The CHESS Toolset
and its State-Based Analysis extension, provide extensive support for the anal-
ysis of dependability related attributes such as availability and reliability [5] via
the discrete-event simulations of Stochastic Petri Nets (SPN). These results can
be further attached to dependability requirements as evidence for their compli-
ance. Furthermore, the results can also be used as basis for agreeing on project
decisions and achieving satisfactory levels of performance and dependability.
Although SPN-based availability and reliability estimation techniques are con-
stantly applied in the context of distributed architectures [4], most of them do
not provide a general purpose, high level system architecture and error behavior
specification interface like CHESS does.

In previous work [7], we have extended and applied CHESS towards the
generation of safety evidence for the certification of aerospace and automotive
systems. Similarly, in this paper, we extend the CHESS methodology even fur-
ther to support the design and dependability evaluation of HPC environments.
The approach is intended to support engineers on deriving new design and addi-
tional project decisions by considering dependability analysis results and per-
formance attributes. The feasibility of the approach was evaluated considering
the Grid’5000 [2], a highly distributed and I/O intensive HPC environment.
The approach successfully supports the demonstration and evaluation of the
impacts different environment configurations have on dependability and per-
formance. Furthermore, it also effectively contributes with agreeing on design
choices and resource allocation strategies based on dependability, performance
and cost attributes.

The rest of this paper is organized as follows: In Sect. 2 we present the related
work. Section 3 contains the background. A description of the proposed approach
is presented in Sect. 4. Section 5 illustrates the evaluation of the application of
the proposed approach in the Grid’5000. Finally, Sect. 6 presents the concluding
remarks and future work.

2 Related Work

A few authors have in the past applied or extended the CHESS Methodology,
to support the design of systems belonging to various different domains [11].
They have also analyzed the feasibility of the Toolset and of some of its analysis
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capabilities for evaluating and demonstrating compliance with standards and
project-specific dependability requirements [7].

Mazzini et. al. [11] performed a feasibility study of the CHESS Toolset regard-
ing its support for the development, analysis, verification, operation, manage-
ment and monitoring of mission-critical IoT systems. The authors provide an
in depth analysis of the CHESS Toolset capabilities and how they comply with
some of the main development life-cycle activities of mission-critical IoT archi-
tectures. The authors have concluded that the Toolset offers a holistic solution
for the development of IoT environments and provides a meaningful view of the
system and its architecture as a whole through its models and the traceability
among their artifacts.

In previous work [7], we have analyzed the applicability of the CHESS
Methodology for generating certifiable evidence for safety-critical embedded sys-
tems. We present a systematic process to support the use of the CHESS Method-
ology and Toolset. The process covers the production of dependability evi-
dence necessary for the certification of systems of the automotive and aerospace
domains. The approach considers the analysis techniques implemented in the
CHESS Toolset for the production of such evidence and is evaluated through a
realistic automotive Hybrid Braking system. Moreover, we have also provided
a mapping between the requirements within the ISO26262, DO-331 and SAE
ARP 4754A standards and the activities supported by both the approach and
CHESS.

3 Background

3.1 High Performance Computing (HPC)

High Performance Computing (HPC) systems are designed to provide high pro-
cessing power, low communication and data access latency. HPC environments
comprise of complex combinations of hardware, software and large scale dis-
tributed and parallel applications e.g.: computing clusters, grids and supercom-
puters [10].

Due to the need of attending requirements such as low communication and
data access latency, I/O performance is very important in HPC systems. Envi-
ronments such as these are usually divided into computing and storage resources.
The constant and massive movements of data between these layers and the dif-
ferent configuration scenarios implemented by computing and storage devices,
can affect the I/O performance of these systems [18]. Furthermore, different
configurations can also affect dependability attributes such as availability and
reliability. Thus, it is very important to evaluate the impact of design choices on
dependability, performance and costs before implementing them.

3.2 CHESS and the CHESS Dependability Analysis Plugin

The CHESS Toolset provides support for the specification of system models
and the evaluation of their dependability attributes. The Toolset is completely
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free of charge and is available as an Eclipse IDE extension [5]. CHESS is built
upon an open and highly extensible platform thus, allowing developers to easily
extend and adapt it according to their specific needs. Initiatives such as the
AMASS Project [1] for example, have recently integrated the CHESS Toolset
with additional design, validation, certification and dependability assessment
solutions.

The Toolset is built upon the CHESS Methodology [12]. The CHESS Method-
ology enables system design at different levels of abstraction and supports sys-
tem development phases such as the definition of requirements, system and
component level architectural specification and error modeling. CHESS mod-
els are specified using the CHESS Modeling Language (CHESS-ML). CHESS-
ML extends the traditional UML and SysML modeling languages and provides
profiles to enable the specification of high level architectural, error models and
dependability analysis scenarios. CHESS supports the analysis of quantitative
and qualitative dependability properties. Quantitative properties include metrics
such as availability and reliability. Qualitative properties concern aspects such
as fault tolerance. The CHESS-ML language alongside the CHESS Methodology
ensure the traceability between the model elements thus, providing a meaning-
ful overview of the system as a whole: model elements such as components,
requirements, error models, evidence and analysis results can all be traced one
to another.

The State-Based Analysis Plugin (CHESS-SBA) [14,16] gathers the infor-
mation within CHESS models and converts it into Stochastic Petri Nets (SPN).
The analysis considers the architectural model and error information within
UML State Machines. The semantics of these State Machines are based on the
Fault-Error-Failure model and enable the specification of random faults, error
states, error modes propagation and repair times. Additional failure annotation
strategies such as stochastic and Fault Propagation and Transformation Calculus
(FPTC) are also supported by the plugin.

CHESS-SBA calculates dependability metrics such as Availability and Reli-
ability, by performing discrete-event simulations [15]. Reliability describes the
probability a system remains healthy continuously from t = 0 to t = x. Availabil-
ity is divided into instantaneous and averaged. Instantaneous availability gives
the probability a system is healthy at t = x. Averaged availability, denotes the
fraction of time within an interval, a system remains healthy. CHESS-SBA does
not require a complete model of the overall system to perform the analysis. Thus,
models can be specified in different levels of detail according to project needs.

4 The Proposed Approach

This section describes the approach to support the definition and evaluation of
the dependability properties of HPC environments. The proposed approach is
incremental and comprises of activities covering the definition of requirements,
architectural design, error modeling and dependability analysis. Figure 1 shows
the approach steps.
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Fig. 1. The proposed approach.

The first two steps (1,2) of the proposed approach cover the collection of
data regarding system architecture, dependability and performance properties.
Additional data such as component costs and maintenance requirements may
also be recovered during step 2. Such information does not necessarily have to
cover the entire system since different parts of the architecture can be modeled
and analyzed separately if desired.

The system architecture data, includes information such as the devices used
in the architecture and how they communicate with each other e.g.: devices used
in the computation and storage nodes. System dependability information covers
the error information considered during the analysis and it can be gathered in a
couple of different ways. One way to do it is by analyzing the data within system
error logs. Such data requires the system to be up and running and therefore,
must be collected from setups that are similar to the intended one. Informa-
tion such as system up/down times and the number of times a certain piece of
software/hardware has failed throughout a time span can be attached to model
components as dependability information. Dependability information can also be
gathered from device specifications e.g.: Mean Time Between Failures (MTBF)
or experiments. Additional information such as performance, maintenance and
implementation costs can also be gathered and used alongside dependability
information later when agreeing on how to configure the system and allocate its
resources.

Once having all the necessary information collected, the system model can
now be specified using UML, SysML and CHESS-ML constructs. The next cou-
ple of steps cover the specification of the system architecture according to the
CHESS Methodology and the attachment of failure information to model ele-
ments (steps 3 and 4). System specification can be performed in many dif-
ferent ways and abstraction levels. As previously mentioned in Sect. 3.2, the
CHESS Methodology provides means for the definition of architectures on sys-
tem, component and deployment levels. The CHESS-SBA plugin work with mod-
els belonging to all those levels and thus, it is completely up to the system
designer to decide the complexity and the level of detail of their to-be-analyzed
system model.
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The next two steps (5,6) include the analysis of the dependability attributes,
their evaluation and the estimation of the model tweaks necessary to achieve the
desired system requirements. Such requirements can be defined at any stage
of the process and may relate to fault tolerance, availability, reliability, perfor-
mance and costs. System designers can use the dependability information of
different system configurations alongside performance and cost data to estimate
the necessary model optimizations. Increasing dependability is usually costly
and does not always translates into better system performance or an expressive
gain in availability. Therefore, system engineers must analyze all these variables
together and agree upon the tweaks necessary so the considered system satisfies
its requirements. Furthermore, dependability analysis results can be attached to
the model as dependability evidence and used to argue over and agree on project
decisions e.g.: design choices, resource allocation and planned maintenance.

5 Evaluation

In order to analyze how the proposed approach can support the derivation
of project decisions based on its provided information, we have performed an
evaluation aimed towards answering the following research question: RQ: How
does the information provided by the proposed approach can support project
managers on identifying and agreeing upon project decisions based on depend-
ability/performance requirements and analysis results? The evaluation was con-
ducted considering the architectural, performance and dependability information
gathered from the Grid’5000.

5.1 Experimental Environment

The Grid’5000 [2] is a highly distributed and High Performance Computing
environment. It is spread across 8 different locations along France and comprises
of a total of 800 nodes grouped into clusters. These clusters are variant-intensive
and may implement a different set of solutions from each other e.g: CPUs, GPUs,
storage and network communication devices.

In this study we have considered the characteristics of the computation and
storage nodes within the Dahu cluster, located in Grenoble. The considered
group of nodes include Dell PowerEdge C6420 servers, interconnected via a
Gigabit Ethernet network environment. These nodes implement a pair of Intel
Xeon Gold 6130 2.10GHz/16 core CPUs and include a total of 192GB of RAM
each. As for storage solutions, the nodes may contain 240GB/480 GB SATA
SSDs and 4.0 TB SATA HDDs. The nodes are running under CentOS7 (kernel
v3.10.0–957.21.2.el7.x86 64) and use the ext4 file system [18].

5.2 Execution

It is already known for a fact, that Solid State Drives (SSDs) generally provide
better availability, reliability and I/O performance when compared to mechan-
ical Hard Disk Drives (HDDs). This is however, only the tip of the iceberg.
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Different data scheduler choices and storage configurations may also impact on
these attributes. That being said, is it always worth it to adopt a SSD exclu-
sive architecture for both data and meta-data storage? Do the dependability
and performance gains related to the adoption of a SSD exclusive architecture
always justify the extra costs compared to adopting a hybrid storage approach?
When using a hybrid architecture, will certain services still require their data to
be stored exclusively on SSDs due to their specific performance, availability and
reliability needs?

For this evaluation, we have considered a total of 9 different Grid’5000 sce-
nario configurations. Each one implementing a different set of storage device and
I/O scheduler combinations. Three different approaches to store data and meta-
data were considered during the evaluation. In the first scenario, both data and
metadata are stored in HDDs. In a different scenario, data is kept into HDDs
while metadata is stored into SSDs. In the last scenario, both data and meta-
data are stored into SSDs. When it comes to the selection of different Linux
I/O schedulers, different experiments were performed considering the Complete
Fairness Queueing (CFQ), Deadline and Noop schedulers. Dependability prop-
erties such as availability, reliability and fault tolerance can all be evaluated
through the State-Based Analysis (CHESS-SBA) CHESS Plugin. As previously
mentioned in Sect. 3.2, the analysis considers error information specified in UML
State Machines and other types of failure annotations.

Before annotating components with quantitative failure data, we must first
analyze the different scenarios and the failure probabilities for each component
depicted in the model. When it comes to storage devices for example, failures
within them may also affect overall system dependability. Therefore informa-
tion regarding their failure rate distributions are necessary to provide an appro-
priate description of their failure behavior. Such information can be gathered
through previous experiments, system logs or through the device manufacturers
themselves. Since we don’t have data regarding the failure rates or component
up/down times of the storage device arrays within the storage nodes, we will be
relying on the failure rates provided by previously published experiments. Even
though device manufacturers provide metrics such as the Mean Time Between
Failures (MTFB) claiming that their hardware offers an average of five years of
continuous operation, experiments have shown that storage device failure rates
go way beyond that. According to previously published studies [8,20], Hard Disk
failure rates follow a Weibull distribution and can present an annual failure rate
of 5% after 2 years of continuous operation. Such value can go up as high as 10%
after 5 and 18% after 10 years of use. When it comes to SSDs however, the failure
probabilities tend to be constant and lay around 0.10% a year therefore, follow-
ing an Exponential failure distribution. Figure 2 shows the failure information
model describing the failure behavior of Mechanical Hard Disks.

The state machine attached to the HDD component describes its behavior
upon encountering both internal and external faults. As earlier mentioned, the
internal failure rates of mechanical disks follow a Weibull distribution. Therefore,
the distribution wei(0.54,2E6) describes the probability of the component failing
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Fig. 2. Error model state machine describing the failure behavior of the HDD
component.

randomly over time. Once failing, there is a 95% chance that the Hard Drive
failure will be detected by the system and that a redundant backup drive will
kick right into its place. Such automatic detection and device substitution may
take a fraction of time and may cause delays in I/O requests. Furthermore, there
is also a 5% probability that the failure goes undetected. In that case, the Hard
Disk will stop responding to any requests until replaced or fixed manually.

When it comes to performance regarding the Grid’5000, different storage
device/scheduler configurations may generate different average I/O latency val-
ues. Long response times regarding I/O operations can affect not only attributes
related to system performance but also, those related to dependability. Depend-
ing on the application domain, a system might as well be considered unfeasible
if it is not capable to provide its requested services with short time response
delays. Previous experiments regarding the Grid’5000 have analyzed and made
public the average read and write times per storage device/scheduler configura-
tion [18]. Table 1 lists the average read and write times considering the different
scenarios within the Grid’5000.

Table 1. Average I/O times per storage node and scheduler configurations.

Conf CFQ(R) CFQ(W) Deadline(R) Deadline(W) Noop(R) Noop(W)

HDDHDD 0.3543 2.0151 0.3468 2.0183 0.3637 2.2576

HDDSSD 0.2560 2.0871 0.2707 1.9146 0.2493 1.8570

SSDSSD 0.2815 0.6827 0.2841 0.7274 0.3087 0.6839

Once having the availability of the clusters containing different storage node
configurations (i.e.: HDDs, SSDs and SSDs and HDDs), analyzing and comparing
the results obtained through the State-Based Analysis, we were able to observe
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that the cluster that achieved the highest overall availability was the one storing
both data and metadata on SSDs. Figure 3 shows the analysis results for each
considered scenario. The graph shows the fraction of time each configuration has
not failed within a year.

Fig. 3. State-based analysis results.

The obtained availability results however, can be improved by planning recur-
rent system checks and maintenance. Figure 4 shows the impact planned recur-
rent maintenance has on the availability of each configuration.

As an answer to RQ, we can say that, by considering the dependability
data listed on Figs. 3 and 4 and the I/O performance information listed on
Table 1, project managers can evaluate and analyze their options when it comes
to efficiently setting up the environment in many ways. If what they are looking
for is high availability, very short I/O times and the reduced need of recurrent
maintenance, then going for a SSD exclusive architecture and using the storage
nodes with SSDs for both data and metadata and the CFQ scheduler could
be a good idea. If they still need to provide a decent amount of availability
and performance and are limited by costs, then they may be better off with
the hybrid SSD / HDD approach. Even though it is known for a fact that SSDs
generally provide better I/O response times and dependability, investing in 100%
SSD storage architectures may not always the most efficient option especially,
when considering costs. As the results have shown, it is still possible to get pretty
decent I/O times and dependability, through the adoption of a hybrid HDDSSD
storage architecture. Furthermore, a hybrid architecture may also allow a smarter
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Fig. 4. Impact of recurrent maintenance on system availability.

resource allocation according to each service specific needs. If a certain job or
service requires a high availability environment to execute and shorter amounts
of time to perform its I/O operations, then such job, its data and metadata,
could be allocated to SSD storage nodes only. If not, then it might as well have
its data and metadata allocated to HDD and SSD storage nodes respectively.

6 Conclusions and Future Work

This paper has presented an approach to support the design and the dependabil-
ity evaluation of HPC environments. The approach comprises of an extension of
the CHESS methodology and was successfully applied and evaluated considering
a highly distributed and I/O intensive HPC environment, the Grid’5000.

As a result, we observed that the methodology successfully provides support
for the dependability evaluation of distributed systems. It does not only sup-
ports the estimation and demonstration of attributes such as failure behavior,
availability and reliability, but also, the impact project choices may have upon
them. Furthermore, we have also demonstrated how the analysis results can
be combined with additional information such as performance data and provide
assistance for deriving and agreeing upon new project decisions. These combined
results can be used by engineers to derive new project decisions and agree on
new design choices and resource allocation strategies.

As future work, we will gather further information from the Grid’5000, e.g.
its up/down times and failure detection and mitigation mechanisms. This infor-
mation is going to be used to enrich the current Grid’5000 model with more
detailed data about its dependability properties. A more accurate model will
provide us with more precise dependability metrics and help determining new
strategies and requirements regarding risk mitigation and resource allocation.
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Experiments presented in this paper were carried out using the Grid’5000
experimental testbed, developed under the INRIA ALADDIN development
action with the support of several Universities and funding bodies (see https://
www.grid5000.fr for more info). We would also like to thank the Federal Univer-
sity of Juiz de Fora (UFJF), CNPq and CAPES for providing financial support
to this study.
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