
A New General Method of Searching
for Cubes in Cube Attacks

Lin Ding1,2(B), Lei Wang2,3, Dawu Gu2, Chenhui Jin1, and Jie Guan1

1 PLA SSF Information Engineering University, Zhengzhou 450001, China
dinglin cipher@163.com

2 Shanghai Jiao Tong University, Shanghai 200240, China
3 Westone Cryptologic Research Center, Beijing 100000, China

Abstract. Cube attack, proposed by Dinur and Shamir at EURO-
CRYPT 2009, is one of general and powerful cryptanalytic techniques
against symmetric-key cryptosystems. However, it is quite time consum-
ing to search for large cubes using the existing techniques, e.g., random
walk, and practically infeasible to execute the cube attack when the
size of cube exceeds an experimental range, e.g., 50. Thus, how to find
favorite cubes is still an intractable problem. In this paper, a new general
method of searching for cubes in cube attacks, called iterative walk, is
proposed. Iterative walk takes the technique numeric mapping proposed
at CRYPTO 2017 as a tool, which is used to test cubes and find out
the best cubes among them. This new method consists of two concrete
techniques, called incremental iterative walk and decremental iterative
walk, respectively. Both of them split the process of searching for cubes
with large size into several iterative processes, each of which aims at
searching for a ‘best’ set of input variables with small size. After each
iterative process, the input variables in the obtained ‘best’ set are added
to (or dropped from) the cube in incremental (or decremental) iterative
walk. As illustrations, we apply it to the authenticated encryption cipher
ACORN v3, which was selected as one of seven finalists of CAESAR com-
petition. Some new distinguishing attacks on round reduced variants of
ACORN v3 are obtained.

Keywords: Cube attack · Distinguishing attack · ACORN v3 ·
Numeric mapping

1 Introduction

Cube attack on tweakable black box polynomials was introduced by Dinur and
Shamir [1] at EUROCRYPT 2009 and can be seen as a generalization of higher-
order differential attack [2,3] and chosen IV statistical attacks [4,5]. The idea of
cube attack is to tweak the multivariate master polynomial by assigning chosen
values for the public variables, which results in derived polynomials. The set of
assigned public variables is denoted as a cube, and the sum of corresponding
derived polynomials over all values of the cube, denoted as a superpoly, is evalu-
ated. The target of cube attacks is to find a number of linear superpolys in terms
c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 369–385, 2020.
https://doi.org/10.1007/978-3-030-61078-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61078-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-61078-4_21

370 L. Ding et al.

of the common secret variables and recover the secret variables by solving the
resultant system of linear equations. The possibility that a cube yields a linear
equation depends on both its size and the algebraic properties of the cipher.
Since the seminal work of Dinur and Shamir, several variants of cube attacks,
including cube tester [6], dynamic cube attack [7], conditional cube attack [8]
and correlation cube attack [9] were put forward.

Previous Works on Searching for Cubes. A key step to a successful cube
attack is searching for good cubes and the corresponding superpolys during the
offline phase. However, how to find favorite cubes is still an intractable problem.
In the original paper of the cube attack [1], the cryptosystems were regarded as
black-box, and the authors proposed a new technique, which is a variant of the
random walk proposed in [5], to search for cubes experimentally. The basic idea
is to start from a random subset and iteratively test the linearity of superpoly to
decide whether the size of tested subset should be increased or decreased. In this
technique, the authors introduced a linearity test to reveal the structure of the
superpoly. If the linearity test always passes, the Algebraic Normal Form (ANF)
of the superpoly is recovered by assuming that the superpoly is linear. Moreover,
a quadraticity test was introduced in [10], and the ANF of the superpoly is simi-
larly recovered. Note that they are experimental cryptanalysis, and it is possible
that cube attacks do not actually work. For example, if the superpoly is highly
unbalanced function for specific variables, we cannot ignore the probability that
the linearity and quadraticity tests fail.

In [11], an simple evolutionary algorithm was proposed by Aumasson et al.
to find good cubes. By introducing the well known greedy heuristic, a strategy
called Greedy Bit Set Algorithm was presented by Stankovski in [12] to find
cubes. The authors of [13] and [14] both used the union of two subcubes to
generate larger cube candidates. In all these works, the size of a cube is limited
to the experimental range because the attacker has to make 2d encryptions
under the fixed key to compute the sum over a cube of size d. Thus, searching
for large cubes is time consuming, and it is practically infeasible to execute the
cube attack when the size of cube exceeds an experimental range, e.g., 50. This
restricts the capability of the attacker for better cubes.

Numeric Mapping. Recently two works on cube attacks using large cubes of
size greater than 50 were presented in [15,16]. Both of them treat the cryptosys-
tems as non-blackbox polynomials. One is introducing the bit-based division
property into cube attacks on non-blackbox polynomials by Todo et al. [15]
at CRYPTO 2017. More recently, Wang et al. [17,18] further investigated this
attack and presented better key recovery attacks on some NFSR-based stream
ciphers. Nevertheless, in these two works, the recovered secret variables are gen-
erally smaller than 1 bit, while the time complexities are significantly high and
the success probabilities of key recovery are difficult to estimate as their attacks
are based on some assumptions. Another is exploiting a new technique, called
numeric mapping, to present a general framework of iterative estimation of alge-
braic degree for NFSR-based cryptosystems by Liu [16] at CRYPTO 2017. The
key idea of Liu’s work is based on a simple fact. Its advantage is that it has
linear time complexity and needs a negligible amount of memory. Furthermore,

A New General Method of Searching for Cubes in Cube Attacks 371

it is deterministic rather than statistical. As pointed out by Todo et al. [19],
Liu’s method is more efficient, since cube attacks based on division property
need to ask for the help of solvers, e.g., the MILP solver. The high efficiency of
numeric mapping makes it possible to test a large number of large cubes with
limited computational resources. It is important to note that numeric mapping
can give an upper bound on algebraic degree of the output of a given NFSR-
based cryptosystem when the cube is given. However, how to search for cubes
using numeric mapping is not explored in [16]. Later, Zhang et al. [20] further
investigated Liu’s work, and presented some attacks on two variants of Trivium
stream cipher.

Previous Attacks on ACORN v3. ACORN v3 [21] is an authenticated
encryption stream cipher, and was selected as one of seven finalists of CAE-
SAR competition [22] at March 2018. Up to now, several attacks on ACORN
v3 had been published in [23–26]. However, there are no attacks better than
exhaustive key search on ACORN v3 so far. In [27], Ghafari and Hu proposed
a new attack framework based on cube testers and d-monomial test, and gave
a distinguishing attack on 676 initialization rounds of ACORN v3 with a time
complexity of 200 × 233.1 In [29], Ding et al. proposed distinguishing attacks
on 647, 649, 670, 704, and 721 initialization rounds of ACORN v3, which is
the best known distinguishing attack on the round reduced variants of ACORN
v3 so far. At CRYPTO 2017, Todo et al. [15] proposed possible key recovery
attacks on 647, 649 and 704 rounds of ACORN v3, where no more than one bit
of the secret key can be recovered with unknown probability in around 278, 2109

and 2122, respectively. The attack was improved by Wang et al. [17] at CRYPTO
2018, and possible key recovery attacks on 704 and 750 rounds of ACORN v3 are
presented, where no more than one bit of the secret key can be recovered with
unknown probability in around 277.88 and 2120.92, respectively. Recently, two
works [30,31] on constructing distinguishers on ACORN v3 had been published,
which were done independently of our results.

Our Contribution. In this paper, a new general method of searching for cubes
in cube attacks, called iterative walk, is proposed. Iterative walk takes the tech-
nique numeric mapping as a tool, which is used to test cubes and find out the
best cubes among them. It consists of two concrete techniques, called incremen-
tal iterative walk and decremental iterative walk, respectively. Both of these two
techniques split the process of searching for cubes with large size into several
iterative processes, each of which aims at searching for a ‘best’ set of input vari-
ables with small size. After each iterative process, the input variables in the
obtained ‘best’ set are added to (or dropped from) the cube in incremental (or
decremental) iterative walk. As illustrations, we apply it to ACORN v3. Some
new distinguishing attacks on round reduced variants of ACORN v3 we have
obtained are listed in Table 1, and comparisons with previous works are made.
Note that three key recovery attacks on the cipher in [16–18] are also listed in
Table 1. In these attacks, the recovered secret variables are generally no more

1 Only 670 initialization rounds of ACORN v3 was attacked when it was formally
published in [28].

372 L. Ding et al.

than 1 bit, while the time complexities are significantly high. Because of the high
time complexities, these attacks are impractical and can not be verified by exper-
iments, and the success probabilities of key recovery are difficult to estimate as
they are based on some assumptions. Compared with them, our attacks have
significantly better time complexities. Meanwhile, our attacks are deterministic
rather than statistical, that is, our attacks hold with probability 1.

To verify these cryptanalytic results, we make an amount of experiments on
round reduced variants of ACORN v3. The experimental results show that our
distinguishing attacks are always consistent with our evaluated results. They are
strong evidences of high accuracy of our method.

Table 1. Attacks on round reduced variants of ACORN v3

Rounds Attack Time compleixity Reference

647 Key recovery attack 278 [15]

Distinguishing attack 221 [29]

Distinguishing attack 218 Sect. 4.2

649 Key recovery attack 2109 [15]

Distinguishing attack 224 [29]

Distinguishing attack 218 Sect. 4.2

676 Distinguishing attack 200 × 233 ≈ 240.64 [27]

Distinguishing attack 236 [29]

Distinguishing attack 230 Sect. 4.2

704 Key recovery attack 2122 [15]

Key recovery attack 277.88 [17]

Distinguishing attack 261 [29]

Distinguishing attack 250 Sect. 4.2

721 Distinguishing attack 295 [29]

736 Distinguishing attack 295 Sect. 4.2

750 Key recovery attack 2125.71 [18]

750 Key recovery attack 2120.92 [17]

This paper is organized as follows. Some preliminaries are introduced in
Sect. 2. A new general method of searching for cubes in cube attacks is pre-
sented in Sect. 3. In Sect. 4, the method is applied to ACORN v3 to prove the
effectiveness of our new method. The paper is concluded in Sect. 5.

2 Preliminaries

2.1 Cube Attacks and Cube Testers

Cube attack, which can be seen as a generalization of higher order differ-
ential attacks, was introduced by Dinur and Shamir [1] at EUROCRYPT
2009. It treats the output bit of a cipher as an unknown Boolean polynomial

A New General Method of Searching for Cubes in Cube Attacks 373

f (k0, · · · , kn−1, v0, · · · , vm−1) where k0, · · · , kn−1 are secret input variables and
v0, · · · , vm−1 are public input variables. Given any monomial tI which is the
product of variables in I = {i1, · · · , id}, f can be represented as the sum of
terms which are supersets of I and terms which are not supersets of I:

f (k0, · · · , kn−1, v0, · · · , vm−1) = tI · pS(I) + q (k0, · · · , kn−1, v0, · · · , vm−1)

Where pS(I) is called the superpoly of I in f , and the set {vi1 , · · · , vid
} is called

a cube. The idea behind cube attacks is that the sum of the Boolean polynomial
f (k0, · · · , kn−1, v0, · · · , vm−1) over the cube which contains all possible values
for the cube variables is exactly pS(I), while this is a random function for a ran-
dom polynomial. In cube attacks, low-degree superpolys in secret variables are
exploited to recover the key, while cube testers work by distinguishing pS(I) from
a random function. Especially, the superpoly pS(I) is equal to a zero constant, if
the algebraic degree of f in the variables from I is smaller than the size of I.

2.2 Random Walk

As for cube attacks, the basic questions are how to estimate the algebraic degree
of the output polynomial f which is only given as a black box, and how to choose
appropriate cubes if they exist. In [1], a simple technique was proposed, which
is a variant of the random walk proposed in [5]. The basic idea of this technique
is briefly described as follows.

The attacker randomly chooses a size k between 1 and m and a subset I of
k public variables, and computes the value of the superpoly of I by numerically
summing over the cube CI (setting each one of the other public variables to
a static value, usually to zero). If his subset I is too large, the sum will be a
constant value (regardless of the choice of secret variables), and in this case he
has to drop one of the public variables from I and repeat the process. If his
subset I is too small, the corresponding pS(I) is likely to be a nonlinear function
in the secret variables, and in this case he has to add a public variable to I and
repeat the process. The correct choice of I is the borderline between these cases,
and if it does not exist the attacker can restart with a different initial I.

2.3 Numeric Mapping

In [16], Liu presented a general framework of iterative estimation of algebraic
degree for NFSR-based cryptosystems, by exploiting a technique, called numeric
mapping. Denote F

n
2 the n-dimension vector space over F2. Let Bn be the set of

all functions mapping F
n
2 to F2, and let f ∈ Bn. The Algebraic Normal Form

(ANF) of given Boolean function f over variables x1, x2, · · · , xn can be uniquely

expressed as f (x1, x2, · · · , xn) = ⊕
c=(c1,c2,··· ,cn)∈F

n
2

ac

n∏

i=1

xi
ci , where ac’s are coef-

ficients of algebraic normal form of f . The numeric mapping, denoted by DEG,
is defined as

374 L. Ding et al.

DEG : Bn × Zn → Zn,

(f,D) �→ max
ac �=0

{
n∑

i=1

cidi

}

where D = (d1, d2, · · · , dn). For the composite function h = f ◦ G, it defined
the numeric degree of h as DEG (h,deg (G)), denoted DEG (h) for short. The
algebraic degree of h is always less than or equal to the numeric degree of h.
The algebraic degrees of the output bits with respect to the internal states can
be estimated iteratively by using numeric mapping. Based on this technique,
Liu [16] proposed a concrete and efficient algorithm (described as Algorithm 1
in Appendix for more details) to find an upper bound on the algebraic degree
of the output, and then gave a general framework of iterative estimation of
algebraic degree of NFSR-Based Cryptosystems.

3 Iterative Walk: A New General Method of Searching
for Cubes

In Algorithm 1, an upper bound on algebraic degree of the output of a given
NFSR-based cryptosystem after N initialization rounds is obtained as output.
Here, we denote NC the maximum number of rounds of not achieving maximum
degree (i.e., |C|) when taking the variables in the set C as input variables. In
this paper, we are more concerned with the value of NC , which indicates the
maximum number of rounds that efficient distinguishers can be constructed.
Inspired by Algorithm 1, a new algorithm is proposed to estimate the maximum
attacked number of rounds is depicted as Algorithm 2.

Algorithm 2. Estimation of the Maximum Attacked Number of Rounds

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the set of input variables C with size |C|.

1: Set D(0) and E(0) to deg
(
s(0), C

)
;

2: Set NC to 0;
3: For t from 1 to N do:
4: Compute DegEst

(
f,E(t)

)
;

5: If DegEst
(
f,E(t)

)
< |C|, then NC ← t;

6: Compute D(t) = DegEst
(
G,E(t−1)

)
;

7: Set E(t) to
(
D(0),D(1), · · · ,D(t)

)
;

8: Return NC .

A New General Method of Searching for Cubes in Cube Attacks 375

In the algorithm above,
(
s
(0)
1 , s

(0)
2 , · · · , s

(0)
L

)
denotes the internal state at

clock t = 0 with size L, and deg
(
s(0), C

)
=

(
deg

(
s
(0)
1 , C

)
,deg

(
s
(0)
2 , C

)
, · · · ,

deg
(
s
(0)
L , C

))
, where the notation deg

(
s
(0)
i , C

)
denotes the algebraic degree of

s
(0)
i with C as input variables. Especially, deg (0, C) = −∞ and deg (1, C) = 0.

Note that when Algorithm 2 is utilized to search for cubes, the key is taken as
parameter, that is, deg (ki, C) = 0 for any bit ki of the key. This is consistent
with a distinguisher in the setting of fixed and unknown key. DegEst is a pro-
cedure for estimating algebraic degree. For a given NFSR-based cryptosystem,
Algorithm 2 outputs the maximum number of rounds of not achieving maximum
degree when taking a given cube as input variables. Similar to Algorithm 1, Algo-
rithm 2 has linear time complexity of O(N) and needs a negligible amount of
memory. Thanks to the high efficiency of Algorithm 2, checking a large amount
of cubes with limited computational resources becomes feasible.

Based on Algorithm 2, a new general method of searching for cubes, called
iterative walk, is proposed. Iterative walk splits the process of searching for cubes
with large size into several iterative processes, each of which aims at searching
for a ‘best’ cube of input variables with small size. After each iterative pro-
cess, the cube varies according to the corresponding result. In this technique,
Algorithm 2 is utilized as a tool to test given cubes and find out the best cubes
among them. Iterative walk consists of two concrete techniques, called incremen-
tal iterative walk and decremental iterative walk, respectively. Different strategies
are employed in these two techniques to search for cubes, as described in the
following two subsections.

3.1 Incremental Iterative Walk

Incremental iterative walk splits the process of searching for cubes with large
size into several iterative processes, each of which aims at searching for a ‘best’
cube of input variables with small size. After each iterative process, the input
variables in the obtained ‘best’ set are added to the cube until the cube contains
all input variables.

The detailed process of incremental iterative walk is summarized as follows.
The attacker first sets the cube C to the empty set and NC to 0. After that,
he repeats the followings to search for a good cube with large size. He selects
an iterative size r and generates q sets

{
Ωr

1 , Ω
r
2 , · · · , Ωr

q

}
which consists of all

possible sets by choosing r variables from V − C, where q =
(|V −C|

r

)
. For each

set Ωr
i , the attacker takes the key K as parameter and the variables in C ∪ Ωr

i

as input variables, sets the remaining variables in V − (C ∪ Ωr
i) to be zeros,

and then computes NC∪Ωr
i

by implementing Algorithm 2. After implementing
Algorithm 2 for q times, the attacker finds out the value of β which satisfies
NC∪Ωr

β
= max

{
NC∪Ωr

i
, i = 1, 2, · · · , q

}
, sets NC to NC∪Ωr

β
and C to C ∪ Ωr

β ,
and then gives NC and C as outputs in this iterative process.

376 L. Ding et al.

Algorithm 3. Incremental Iterative Walk

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the sets of variables K = (k0, · · · , kn−1)
and V = (v0, · · · , vm−1).

1: Set C to ∅;
2: Set NC to 0;
3: If C ⊂ V , repeat the followings :
4: Select the iterative size r;
5: Set

{
Ωr

1 , Ω
r
2 , · · · , Ωr

q

}
to the set of all possible sets by choosing r variables

from V − C, where q =
(|V −C|

r

)
;

6: Set two intermediate variables α and β to -1;
7: For i from 1 to q do :
8: Take the key K as parameter and the variables in C ∪ Ωr

i as input varia-
bles, set the remaining variables in V − (C ∪ Ωr

i) to be zeros, and then
compute NC∪Ωr

i
by implementing Algorithm 2;

9: If NC∪Ωr
i

> α, then α ← NC∪Ωr
i

and β ← i;
10: Set NC ← α and C ← C ∪ Ωr

β ;
11: Return NC and C.

In Algorithm 3, NC denotes the maximum number of rounds of not achieving
maximum degree |C| when taking the set C as input variables. α and β are two
intermediate variables and utilized to store necessary calculation results. For a
given NFSR-based cryptosystem, Algorithm 3 gives the maximum number of
rounds that efficient distinguishers can be constructed and the corresponding
cube as outputs for each iterative process.

Complexity. Let T0 denotes the time complexity of implementing Algorithm 2
once. Assume that the iterative processes (i.e., Step 4–11 in Algorithm 3) are
executed λ times, with the corresponding iterative sizes r1, · · · , rλ, respectively.
In the first iterative process, Algorithm 2 is executed

(|V −C|
r1

)
times with C = ∅,

which leads to a time complexity of T0 · (
m
r1

)
. In the second iterative process,

Algorithm 2 is executed
(|V −C|

r2

)
times with |C| = r1, which leads to a time

complexity of T0 ·(m−r1
r2

)
. Similarly, the time complexity of all iterative processes

can be calculated easily. Thus, the total time complexity of Algorithm 3 can be
obtained as

T = T0 ·
⎡

⎣
(

m
r1

)

+
(

m − r1
r2

)

+ · · · +

⎛

⎝m −
λ−1∑

i=1

ri

rλ

⎞

⎠

⎤

⎦

A New General Method of Searching for Cubes in Cube Attacks 377

The time complexity of Algorithm 3 mainly depends on the time complexity
of Algorithm 2 (i.e., T0), the IV size m and the selected iterative sizes r1, · · · , rλ.
This algorithm needs a negligible amount of memory.

3.2 Decremental Iterative Walk

Incremental iterative walk searches for a cube with large size, by adding input
variables to the cube gradually. The basic idea of decremental iterative walk
is similar to incremental iterative walk, while a different strategy is employed
to search for cubes in decremental iterative walk. Decremental iterative walk
splits the process of searching for cubes into several iterative processes, each of
which aims at searching for a ‘best’ cube of input variables with small size. After
each iterative process, the input variables in the obtained ‘best’ set are dropped
from the cube until the cube contains no input variables, which is different from
incremental iterative walk, as depicted in Algorithm 4.

Algorithm 4. Decremental Iterative Walk

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the sets of variables K = (k0, · · · , kn−1)
and V = (v0, · · · , vm−1).

1: Set C to V ;
2: Take the key K as parameter and the variables in C as input variables, imp-

lement Algorithm 1 to compute NC ;
3: If C �= ∅, repeat the followings :
4: Select the iterative size r;
5: Set

{
Ωr

1 , Ω
r
2 , · · · , Ωr

q

}
to the set of all possible cube sets by choosing r vari-

ables from C, where q =
(|C|

r

)
;

6: Set two intermediate variables α ← NC and β ← −1;
7: For i from 1 to q do :
8: Take the key K as parameter and the variables in C − Ωr

i as input vari-
ables, set the remaining variables in (V − C) ∪ Ωr

i to be zeros, and then
compute NC−Ωr

i
by implementing Algorithm 2;

9: If NC−Ωr
i

> α, then α ← NC−Ωr
i

and β ← i;
10: Set NC ← α and C ← C − Ωr

β ;
11: Return NC and C.

Similar to Algorithm 3, for a given NFSR-based cryptosystem, Algorithm 4
also gives the maximum number of rounds that efficient distinguishers can be
constructed and the corresponding cube as outputs for each iterative process.

378 L. Ding et al.

However, in Algorithm 4, the cube first contains all input variables, and then
the input variables are dropped from the cube gradually. Let T0 denotes the
time complexity of implementing Algorithm 2 once. Assume that the iterative
processes (i.e., Step 4–11 in Algorithm 4) are executed λ times, with the corre-
sponding iterative sizes r1, · · · , rλ, respectively. Similar to the complexity cal-
culation of Algorithm 3, the total time complexity of Algorithm 4 can be easily
given as

T = T0 ·
⎡

⎣
(

m
r1

)

+
(

m − r1
r2

)

+ · · · +

⎛

⎝m −
λ−1∑

i=1

ri

rλ

⎞

⎠

⎤

⎦

4 Application to ACORN v3

In this section, we first give a brief description of ACORN v3, and then apply
our new method to ACORN v3 to exploit new distinguishing attacks on it.

4.1 A Brief Description of ACORN v3

ACORN v3 is an authenticated encryption stream cipher, and it has been
selected as one of the seven algorithms in the final portfolio of the CAESAR
competition. The structure of ACORN v3 is shown in Fig. 1. The state size of
ACORN v3 is 293 bits, denoted by S(t) = (s(t)0 , s

(t)
1 , · · · , s

(t)
292) at t-th clock. It is

constructed by using 6 LFSRs of different lengths 61, 46, 47, 39, 37, 59 and one
additional register of length 4, and uses a 128-bit key and a 128-bit IV. ACORN
v3 passes through the key-IV initialization phase, associated data processing
phase, encryption/decryption phase and tag generation/verification phase. Since
our work is fully based on the key-IV initialization phase, we present a brief
description of the cipher during this phase. We refer to the original description
of ACORN v3 in [4] for more details.

Fig. 1. The structure of authenticated encryption cipher ACORN v3

At t-th clock, the cipher executes the state update function S(t+1) = State−
Update128(S(t),mt, cat, cbt), which is given as follows.

A New General Method of Searching for Cubes in Cube Attacks 379

Step 1. Linear feedback update:
st,289 ← st,289 ⊕ st,235 ⊕ st,230

st,230 ← st,230 ⊕ st,196 ⊕ st,193

st,193 ← st,193 ⊕ st,160 ⊕ st,154

st,154 ← st,154 ⊕ st,111 ⊕ st,107

st,107 ← st,107 ⊕ st,66 ⊕ st,61

st,61 ← st,61 ⊕ st,23 ⊕ st,0

Step 2. Generate keystream bit:
zt ← st,12 ⊕ st,154 ⊕ st,235 · st,61 ⊕ st,235 · st,193 ⊕ st,61 · st,193

⊕st,230 · st,111 ⊕ (st,230 ⊕ 1) · st,66

Step 3. Generate the nonlinear feedback bit:
ft ← st,0 ⊕ st,107 ⊕ 1 ⊕ st,244 · st,23 ⊕ st,244 · st,160 ⊕ st,23 · st,160

⊕cat · st,230 ⊕ cbt · zt

Step 4. Shift the 293-bit register with the feedback bit ft:
st+1,i ← st,i+1 for i = 0, 1, · · · , 291
st+1,292 ← ft ⊕ mt

The initialization of ACORN v3 consists of loading the key and IV into the
state, and running the cipher for 1792 steps.

1. Initialize the state S−1792 to 0.
2. Let m−1792+t = kt for t = 0 to 127;

Let m−1792+128+t = ivt for t = 0 to 127;
Let m−1792+256 = kt mod 128 ⊕ 1 for t = 0;
Let m−1792+256+t = kt mod 128 for t = 1 to 1535;

3. Let ca−1792+t = 1 for t = 0 to 1791;
Let cb−1792+t = 1 for t = 0 to 1791;

4. For t = −1792 to t = −1, S(t+1) = StateUpdate128(S(t),mt, cat, cbt).

4.2 Results on ACORN v3

In this subsection, we will apply our Algorithm 3 and 4 respectively to ACORN
v3 to search for cubes. A key step to apply them is choosing the iterative sizes.

The Results of Applying Algorithm. 3 to ACORN v3. When applying
Algorithm 3 to ACORN v3, the chosen iterative sizes in the whole iterative
process and the corresponding experimental results are listed in Table 2. In the
i-th iterative process, the iterative size ri is choosed, and then Algorithm 3 gives
NC and C as outputs, where C is obtained by adding the ri input variables listed
in the third column of Table 2 to the outputted cube in the (i − 1)-th iterative
process. NC denotes the maximum number of rounds of not achieving maximum
degree |C| when taking the variables in the set C as input variables. As shown in
Table 2, the best result is found in the 19-th iterative process, which results into

380 L. Ding et al.

Table 2. The results of applying Algorithm 3 to ACORN v3

The i-th iterative process Iterative size ri Added input variables Cube size |C| NC

1 5 117, 121, 122, 125, 127 5 550

2 5 112, 118, 123, 124, 126 10 604

3 5 86, 91, 96, 113, 119 15 625

4 5 95, 104, 107, 116, 120 20 641

5 5 108, 109, 110, 114, 115 25 653

6 5 94, 98, 99, 100, 105 30 669

7 5 82, 87, 89, 90, 103 35 686

8 5 81, 83, 84, 101, 106 40 695

9 5 85, 88, 92, 97, 111 45 695

10 5 76, 77, 79, 93, 102 50 696

11 5 69, 70, 72, 78, 80 55 699

12 5 65, 67, 71, 74, 75 60 708

13 6 60, 61, 62, 63, 64, 73 66 710

14 6 49, 50, 56, 57, 58, 66 72 719

15 6 48, 51, 52, 53, 54, 55 78 719

16 6 42, 43, 44, 45, 46, 47 84 719

17 5 34, 35, 36, 38, 59, 68 90 723

18 6 25, 26, 29, 31, 33, 40 96 730

19 7 16, 20, 21, 22, 24, 28, 37 103 732

20 7 9, 11, 12, 18, 19, 27, 41 110 732

21 7 7, 13, 14, 15, 17, 30, 39 117 725

22 11 0, 1, 2, 3, 4, 5, 6, 8, 10, 23, 32 128 708

a distinguishing attack on 732 rounds of ACORN v3 with a time complexity of
2103. All these results are obtained on a common PC with 2.5 GHz Intel Pentium
4 processor within about two days.

The Results of Applying Algorithm 4 to ACORN v3. When applying
Algorithm 4 to ACORN v3, the chosen iterative sizes in the whole iterative
process and the corresponding experimental results are listed in Table 3. In the
i-th iterative process, the iterative size ri is choosed, and then Algorithm 4 gives
NC and C as outputs, where C is obtained by dropping the ri input variables
listed in the third column of Table 2 from the outputted cube in the (i − 1)-th
iterative process. NC denotes the maximum number of rounds of not achieving
maximum degree |C| when taking the variables in the set C as input variables.
In our experiments, it should be noted that NV = 708 when taking all IV bits as
input variables. As shown in Table 3, the best result is found in the 1-th iterative
process, which results into a distinguishing attack on 731 rounds of ACORN v3
with a time complexity of 2123. All these results are obtained on a common PC
with 2.5 GHz Intel Pentium 4 processor within about two days.

The Improved Results. Since the IV bits of ACORN v3 are sequentially
loaded into the internal state in the second 128 initialization rounds, it is a
nature and reasonable idea that we select the latter IV variables into the cube.

A New General Method of Searching for Cubes in Cube Attacks 381

Table 3. The results of applying Algorithm 4 to ACORN v3

The i-th

iterative process

Iterative

size ri

Dropped input variables Cube size |C| NC

1 5 5, 7, 13, 14, 22 123 731

2 5 6, 15, 16, 24, 31 118 724

3 5 0, 3, 8, 17, 57 113 717

4 5 1, 12, 21, 23, 47 108 714

5 5 4, 20, 29, 42, 48 103 706

6 5 2, 10, 19, 26, 43 98 703

7 5 9, 11, 18, 27, 44 93 695

8 5 25, 28, 30, 32, 45 88 679

9 5 37, 38, 39, 40, 41 78 657

10 5 49, 50, 51, 52, 53 73 650

11 5 54, 55, 56, 58, 59 68 648

12 5 60, 61, 62, 63, 64 63 639

13 5 65, 66, 67, 68, 69 58 630

14 6 70, 71, 72, 73, 74, 75 52 608

15 6 76, 77, 78, 79, 80, 81 46 599

16 7 82, 83, 84, 85, 86, 87, 88 39 588

17 7 89, 90, 91, 92, 93, 94, 95 32 550

18 8 96, 97, 98, 99, 100, 101, 102,

103

24 532

19 9 104, 105, 106, 107, 108, 109,

110, 111, 112

15 481

20 9 113, 114, 115, 116, 117, 118,

119, 120, 121

6 376

21 6 122, 123, 124, 125, 126, 127 0 0

To reduce the search space, we fix the first p IV variables to be zeros, i.e.,
ivi = 0, i = 0, · · · , p − 1, and put the last q(≥ 0) IV variables into the cube.
We consider applying Algorithm 4 when the V is dropped from (v0, · · · , v127)
to (vp, · · · , v127−q). Some better results we have found are listed in Table 4, and
the corresponding cubes are given in Appendix. As for 676 rounds of ACORN
v3, the best result we have found implies DEG (f,X) = 29, which leads to a
practical distinguishing attack on it with a time complexity of 230 and improves
the previous distinguishing attack [29] by a factor of 26. As for 736 rounds of
ACORN v3, the best result we have found implies DEG (f,X) = 94, which
leads to a distinguishing attack on it with a time complexity of 295. This is the
best result we have found.

Experiments. Since 218 and 230 in Table 4 are practical, we verify these results
by carrying out a test for random 100 keys within half a day on a common
PC with 2.5 GHz Intel Pentium 4 processor. All outputs of 647, 649 and 676
rounds of ACORN v3 always sum to 0. This clearly confirms the effectiveness
and accuracy of our method.

382 L. Ding et al.

Table 4. The improved results on ACORN v3

Rounds The values of p and q The iterative size r Time compleixity

647 p = 106, q = 0 4 218

649 p = 104, q = 0 6 218

676 p = 94, q = 0 4 230

704 p = 72, q = 0 6 250

736 p = 21, q = 73 12 295

5 Conclusions

In this paper, we focus on proposing a new general method of searching for cubes in
cube attacks. The new method is called iterative walk, which takes the technique
numeric mapping as a tool. It consists of two concrete techniques, called incre-
mental iterative walk and decremental iterative walk, respectively. Both of them
split the process of searching for cubes with large size into several iterative pro-
cesses, each of which aims at searching for a ‘best’ set of input variables with small
size. After each iterative process, the input variables in the obtained ‘best’ set are
added to (or dropped from) the cube in incremental (or decremental) iterative
walk. The effectiveness and accuracy of our new method is confirmed by applying
it to the authenticated encryption cipher ACORN v3. Hopefully, our new method
can provide a new perspective to search for cubes in cube attacks.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work was supported by the National
Natural Science Foundation of China under Grant 61602514, 61802437, 61272488,
61202491, 61572516, 61272041, 61772547, National Cryptography Development Fund
under Grant MMJJ20170125 and National Postdoctoral Program for Innovative Tal-
ents under Grant BX201700153.

Appendix A

Algorithm 1. [16] Estimation of Degree of NFSR-Based Cryptosystems

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the set of input variables X.

1: Set D(0) and E(0) to deg
(
s(0),X

)
;

2: For t from 1 to N do:
3: Compute D(t) = DegEst

(
G,E(t−1)

)
;

4: Set E(t) to
(
D(0),D(1), · · · ,D(t)

)
;

5: Return DegEst
(
f,E(N)

)

A New General Method of Searching for Cubes in Cube Attacks 383

(See Table 5)

Table 5. The cubes used in Table 4

Rounds The cube size The cube

647 18 107, · · · , 120, 122, 123, 125, 127

649 18 104, 109, · · · , 122, 124, 125, 127

676 30 94, · · · , 116, 119, · · · , 124, 127

704 50 72, 74, 75, 77, 79, · · · , 85, 87, · · · ,
94, 97, · · · , 127

736 95 21, 23, 24, 25, 28, 29, 30, 32, 33, 38,
39, 40, 41, 42, 46, · · · , 51, 53, · · · ,
127

References

1. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

2. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceeding Sym-
posium Communication and Coding Cryptography, pp. 227–233. Kluwer Academic
Publishers (1994)

3. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

4. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen iv statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 20

5. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68164-9 16

6. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 1

7. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

8. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 9

https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-540-77026-8_20
https://doi.org/10.1007/978-3-540-68164-9_16
https://doi.org/10.1007/978-3-540-68164-9_16
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-56614-6_9

384 L. Ding et al.

9. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 23

10. Mroczkowski, P., Szmidt, J.: The cube attack on stream cipher trivium and
quadraticity tests. Fundam. Inf. 114(3–4), 309–318 (2012)

11. Aumasson, J., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA imple-
mentations of high-dimensional cube testers on the stream cipher Grain-128. Cryp-
tology ePrint Archive, Report 2009/218 (2009). https://eprint.iacr.org/2009/218

12. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8 16

13. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-
3 26

14. Liu, M., Lin, D., Wang, W.: Searching cubes for testing Boolean functions and its
application to Trivium. In: IEEE International Symposium on Information Theory
(ISIT 2015), Hong Kong, China, 14–19 June 2015, pp. 496–500. IEEE (2015)

15. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

16. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 8

17. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

18. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division
property based cube attacks exploiting algebraic properties of superpoly (full ver-
sion). Cryptology ePrint Archive, Report 2017/1063 (2017). https://eprint.iacr.
org/2017/1063

19. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polyno-
mials based on division property (full version). Cryptology ePrint Archive, Report
2017/306 (2017). https://eprint.iacr.org/2017/306.pdf

20. Zhang, X., Liu, M., Lin, D.: Conditional cube searching and applications on
Trivium-variant ciphers. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018.
LNCS, vol. 11060, pp. 151–168. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99136-8 9

21. Wu, H.: ACORN: a lightweight authenticated cipher (v3). CAESAR Submission
(2016). http://competitions.cr.yp.to/round3/acornv3.pdf

22. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/index.html

23. Siddhanti, A.A., Maitra, S., Sinha, N.: Certain observations on ACORN v3 and the
implications to TMDTO attacks. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.)
SPACE 2017. LNCS, vol. 10662, pp. 264–280. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71501-8 15

https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-78375-8_23
https://eprint.iacr.org/2009/218
https://doi.org/10.1007/978-3-642-17401-8_16
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_8
https://doi.org/10.1007/978-3-319-96884-1_10
https://eprint.iacr.org/2017/1063
https://eprint.iacr.org/2017/1063
https://eprint.iacr.org/2017/306.pdf
https://doi.org/10.1007/978-3-319-99136-8_9
https://doi.org/10.1007/978-3-319-99136-8_9
http://competitions.cr.yp.to/round3/acornv3.pdf
http://competitions.cr.yp.to/index.html
https://doi.org/10.1007/978-3-319-71501-8_15
https://doi.org/10.1007/978-3-319-71501-8_15

A New General Method of Searching for Cubes in Cube Attacks 385

24. Zhang, X., Lin, D.: Cryptanalysis of acorn in nonce-reuse setting. In: Chen, X.,
Lin, D., Yung, M. (eds.) Inscrypt 2017. LNCS, vol. 10726, pp. 342–361. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75160-3 21

25. Zhang, X., Feng, X., Lin, D.: Fault attack on ACORN v3. Comput. J. 61(8),
1166–1179 (2018)

26. Adomnicai, A., Masson, L., Fournier, J.J.A.: Practical algebraic side-channel
attacks against ACORN. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp.
325–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 20

27. Ghafari, V.A., Hu, H.: A new chosen IV statistical distinguishing framework to
attack symmetric ciphers, and its application to ACORN-v3 and Grain-128a. Cryp-
tology ePrint Archive, Report 2017/1103 (2017). https://eprint.iacr.org/2017/
1103.pdf

28. Ghafari, V.A., Hu, H.: A new chosen IV statistical distinguishing framework to
attack symmetric ciphers, and its application to ACORN-v3 and Grain-128a. J.
Amb. Intel. Hum. Comp. 2018, 1–8 (2018)

29. Ding, L., Wang, L., Gu, D., Jin, C., Guan, J.: Algebraic degree estimation of
ACORN v3 using numeric mapping. Secur. Commun. Netw. 2019, 1–5 (2019).
https://doi.org/10.1155/2019/7429320. Article ID 7429320

30. Yang, Jingchun., Liu, Meicheng, Lin, Dongdai: Cube cryptanalysis of round-
reduced ACORN. In: Lin, Zhiqiang, Papamanthou, Charalampos, Polychronakis,
Michalis (eds.) ISC 2019. LNCS, vol. 11723, pp. 44–64. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30215-3 3

31. Kesarwani, A., Roy, D., Sarkar, S., Meier, W.: New cube distinguishers on NFSR-
based stream ciphers. Des. Codes Cryptogr. 88, 173–199 (2020). https://doi.org/
10.1007/s10623-019-00674-1

https://doi.org/10.1007/978-3-319-75160-3_21
https://doi.org/10.1007/978-3-030-12146-4_20
https://eprint.iacr.org/2017/1103.pdf
https://eprint.iacr.org/2017/1103.pdf
https://doi.org/10.1155/2019/7429320
https://doi.org/10.1007/978-3-030-30215-3_3
https://doi.org/10.1007/s10623-019-00674-1
https://doi.org/10.1007/s10623-019-00674-1

	A New General Method of Searching for Cubes in Cube Attacks
	1 Introduction
	2 Preliminaries
	2.1 Cube Attacks and Cube Testers
	2.2 Random Walk
	2.3 Numeric Mapping

	3 Iterative Walk: A New General Method of Searching for Cubes
	3.1 Incremental Iterative Walk
	3.2 Decremental Iterative Walk

	4 Application to ACORN v3
	4.1 A Brief Description of ACORN v3
	4.2 Results on ACORN v3

	5 Conclusions
	References

