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Abstract. The complexity and outsourcing trend of modern System-on-
Chips (SoC) has made Hardware Trojan (HT) a real threat for the SoC
security. In the state-of-the-art, many techniques have been proposed in
order to detect the HT insertion. Side-channel based methods emerge as
a good approach used for the HT detection. They can extract any differ-
ence in the power consumption, electromagnetic (EM) emanation, delay
propagation, etc. caused by the HT insertion/modification in the genuine
design. Therefore, they can be applied to detect the HT even when it
is not activated. However, these methods are evaluated on overly simple
design prototypes such as AES coprocessors. Moreover, the analytical
approach used for these methods is limited by some statistical metrics
such as the direct comparison of EM traces or the T-test coefficients.
In this paper, we propose two new detection methodologies based on
Machine Learning algorithms. The first method consists in applying the
supervised Machine Learning (ML) algorithms on raw EM traces for the
classification and detection of HT. It offers a detection rate close to 90%
and false negative smaller than 5%. For the second method, we propose a
method based on the Outlier/Novelty algorithms. This method combined
with the T-test based signal processing technique, when compared with
state-of-the-art, offers a better performance with a detection rate close
to 100% and a false positive smaller than 1%. We have evaluated the
performance of our method on a complex target design: RISC-V generic
processors. The three HTs with the corresponding sizes of 0.53%, 0.27%
and 0.1% of the RISC-V processors are inserted for the experimentation.
The experimental results show that the inserted HTs, though minimalist,
can be detected using our new methodology.
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1 Introduction

1.1 Hardware Trojan Threat

The semiconductor industry has spread across borders in this time of global-
ization. Different design phases of an Integrated Circuit (IC) may be performed
at geographically dispersed locations. Outsourcing the IC design and fabrica-
tion to increase profitability has become a common trend in the semiconductor
industry. As more and more semiconductor companies are welcoming the out-
sourcing trend to be competitive, they are opening new security loopholes. One
such threat that has come into light over the past few years is that of Hardware
Trojan (HT). A HT is a malicious module inserted in an IC during the design
or fabrication stage. Once inserted, a HT can perform dangerous attacks such as
Denial of Service (DoS), leakage of sensitive data via circuit outputs, etc. [11]. It
can be implemented in ASIC, microprocessor, microcontroller, GPU, DSP and
also in FPGA bitstreams.

HTs can be inserted along the IC design flow from the specification phase to
the assembly and the package phase. Different examples of the presence of HTs
are discovered in different industrial applications. Skorobogatov et al. discov-
ered an undocumented backdoor inserted into the Actel/Microsemi ProASIC3
chips (military grade chip) for accessing FPGA configuration [20] in 2012. Using
this HT, an attacker is able to extract all the configuration data from the chip,
reprogram crypto and access keys, modify low-level silicon features and finally
access to the configuration bitstream or permanently damage the device. In 2014,
the discovery of specific US-made components designed to intercept the satel-
lites communications in France-UAE satellite has been reported in the news on
www.rt.com. Different documents leaked in 2014 by NSA whistleblower Edward
Snowden indicate that the NSA planted back-doors in Cisco routers and hence
had been able to gain access to entire networks and all their users. Routers,
switches, and servers made by Cisco are booby-trapped with surveillance equip-
ment that intercept traffic handled by those devices and copy it to the NSA’s
network. And recently, in October 2018 Bloomberg reported that an attack by
Chinese spies reached almost 30 U.S. companies, including Amazon and Apple,
by compromising America’s supply-chain technology. We can also find many
other examples in the academic works such as in [11,12,16] etc. Because of its
malicious and dangerous natures, a HT can create serious problems in many
critical applications such as military systems, financial infrastructures, health
applications, IoTs etc. Therefore, many national and international projects are
launched to develop the countermeasures such as TRUST & Microsystems Explo-
ration program (in USA), HINT (in Europe), HOMERE & MOOSIC (in France).
This threat is also a big concern for all other countries.

1.2 Related Studies

Since HTs pose serious threats in the IC manufacturing, they have become a very
important and key research topic. Covered areas are: threat analysis, HTs archi-
tecture, prevention and detection methods. Regarding HT detection, numerous

https://www.rt.com/news/france-uae-satellite-deal-220/?utm_source=browser&utm_medium=aplication_chrome&utm_campaign=chrome&goback=.gde_3901854_member_5825947322760052736
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methods and approaches have been proposed in the state-of-the-art. To mention
a few, optical methods [6,22], testing based detection methods [3,10], run-time
based detection [17] or side-channel based detection methods [2,18,21]. Among
these approaches, side-channel based detection methods seem to be the most
suitable approach for various reasons. First of all, side-channel methods are non-
invasive and unlike optical methods they do not require chip chemical prepara-
tion. Second, they can work without the need of additional logic for run-time
detection. Third and most important, efficiency in detection is relatively high.
The side-channel based detection methods can detect HTs even if they are not
activated during the experimental process.

In the state-of-the-art, different works have been proposed to detect pur-
ported HTs using side-channel analysis. In [18], the authors propose an Electro-
Magnetic (EM) cartography detection method. The experiment has been per-
formed on an FPGA and the detection method is based on the visual comparison
of T-test coefficient between the genuine and infected design. In [8], the authors
have used a golden chip-free EM side-channel methodology to detect the HT.
Their technique has been limited to utilize the difference in the response between
the simulated trace and chip’s actual traces from the experiments. In [13], the
authors propose a method based on the integration of sensor matrix used to
measure the supply voltage in the circuit and T-test metric. The test is per-
formed on a 128-bits AES and validated on a HT with an overhead of 3.2% of
the target FPGA. Using the T-test, they obtained a success rate of 80%. In [24],
the authors also propose a detection method based on a Ring Oscillators (ROs)
matrix (used to measure the power) combined with supervised machine learning
(ML) methods such as K-Nearest Neighbors and SVM. With this approach, they
have a success rate greater than 88%.

1.3 Contributions

In this paper, we propose new HT detection methodologies based on the ML algo-
rithms combined with the side-channel measurements. The first method consists
in applying the supervised machine learning algorithms on the raw EM traces
for the HT detection. And the second method consists in combining the Outlier
detection algorithms with the T-test preprocessing technique for the HT detec-
tion. It presents several new advantages in comparison to those in the state-of-
the-art. First, many papers used statistical metrics for the detection or the visual
comparison between the genuine and infected designs [1,18]. However, these met-
rics are dependent on selected samples for the test. They also depend upon the
measurement setups. For example, in the case of EM traces, the position of
the EM probe affects the performance of the statistical metrics. Moreover, they
need to decide manually a threshold for the detection using these metrics. So
the selected samples and threshold can modify significantly the detection rate.
There are also some works that have applied the classification ML methods for
the HTs detection [15]. But the performance of these methods depends upon
the dataset used for the training. With our new method, we can automatically
detect the HTs without the need to pay attention to the selected samples and
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threshold. Moreover, with the second method, we need only one dataset for the
training phase. Then, we can test with all different datasets coming from gen-
uine or HT designs. The method predicts if a test dataset is the same as the
training dataset (Inlier/Genuine) or not (Outliers/HT). This can be very useful
in the case where we have only the genuine dataset (from a genuine design or
from simulation). It can also be applied in the case where we want to detect if
two chip batches are the same or not. It can happen that a supplier ships two
different chip batches for two different countries because of his/her government
order for the goal of security and/or monitoring.

Second, for the HT detection, the detection rate is very important. All the
proposed methods in the state-of-the-art have either no detection rate evalua-
tion or a detection rate smaller than 70% even using the statistical approach.
With our first method using the supervised ML algorithm, we obtain a detection
performance of 90%. And with the second method, we propose to combine the
processing method (T-test) and the outlier detection algorithms to obtain a very
high detection rate (nearly 100%).

Third, all the methods described in the state-of-the-art are tested and eval-
uated only on some cryptographic co-processors such as AES or DES. In this
paper, we show that our new method can be applied successfully on two com-
plex and generic targets: PicoRV and Freedom RISC-V based processors.
Three different HTs with the corresponding sizes of 0.56%, 0.27% and 0.1%
are implemented on the DE1 SoC Cyclone V FPGA and the Arty-7 FPGA for
the experimentation. Different outlier/novelty detection algorithms such as One
Class SVM, Elliptic Envelope, Isolation Forest and Local Outlier Factor are also
applied/evaluated for our methodology. The results have shown a considerable
performance in the HT detection, i.e. with a probability of 100%. It validates the
efficiency of our method for detecting even minuscule HTs (with an overhead of
0.1%).

2 Backgrounds

In this section, we have listed out different techniques that are central to the
detection of HTs after EM measurements. These metrics form a very important
step as they can enhance the reproducibility and robustness of the detection
techniques.

2.1 T-Test Metric

T-test (or Student test) is a metric used in the field of statistics to detect if
the mean of a population has a value specified in a null hypothesis or if the
means of two different populations are equal. For the HT application, the T-test
is already used in the state of the art to determine if the reference dataset and
the dataset under test have the same means (no HT) or not (HT) using the
following formula:

t =
μ0 − μ1√

σ2
0

N0
+ σ2

1
N1
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where μ0 is the genuine sample mean, μ1 is the HT sample mean. σ0 is the
genuine sample variance, σ1 is the HT sample variance. N0 is the cardinality of
genuine set and N1 is the cardinality of HT set. The T-test is also used for the
side-channel analysis to break the cryptography IPs [7]. In this paper, we will
evaluate the performance of the T-test metric based detection method for our
test platform in order to show its limitation and drawback.

2.2 Supervised Machine Learning Method

Supervised learning method is used to map an input to an output based on
known input-output pairs also called training database. Each input-output pair
is composed of an input data and a desired output value. The supervised learning
algorithm analyzes the training database in order to produce a model used for
mapping new test data with the predefined outputs. An optimal trained model
allows for the algorithm to correctly determine the class labels for unseen or
undetected instances. The supervised ML algorithms are widely used for the
classification and detection analysis. Here are some examples of supervised ML
algorithms.

– Support Vector Machine analyzes data used for classification and regres-
sion analysis. Basically, the SVM constructs a hyperplane or a set of hyper-
planes in a high dimensional space which can be used for classification, regres-
sion, or other tasks like outliers detection. During the training phase, the
SVM tries to find the hyperplane that has the largest distance to the nearest
training-data point of any class (so-called functional margin) [9].

– Multi-Layer Perceptron is a class of feed-forward artificial neural network
(ANN). An MLP consists of at least three layers of nodes: an input layer, a
hidden layer and an output layer. Except for the input nodes, each node is a
neuron that uses a non-linear activation function. MLP utilizes a supervised
learning technique called back-propagation for training a multi-layer Percep-
tron. It is a linear function that maps the weighted inputs to the output of
each neuron.

– Decision Tree Classification algorithm creates tree models where the tar-
get variables can take a discrete set of values which are called classification
trees. In these structures, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels.

– K-Nearest Neighbors is a non-parametric method used for classification
and regression. In K-NN classification, the output is a class membership. An
object is classified by a plurality vote of its neighbors, with the object being
assigned to the class most common among its k nearest neighbors (k is a
positive integer, typically small). If k = 1, then the object is simply assigned
to the class of that single nearest neighbor.

In this work, we will evaluate the performance of these methods on our
platform.
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2.3 Outlier/Novelty Detection Method

Outlier/Novelty detection are a sub ML class used to detect abnormal/unusual
observations or data. Outlier detection uses an unsupervised learning process to
detect the outliers and filter the impurities in a dataset. Novelty detection is a
semi-supervised ML method used to form a dense cluster of the data as long as
they are in a low density region of the training data, considered as normal in this
context. For our HT detection method, the genuine datasets are used to train the
model for outlier/Novelty detection algorithms. Once the model is fixed, we can
test it with new data. If the new data is considered as an outlier, it means that
this data is generated from a HT design, else this data is generated from a genuine
design. For our method, the following algorithms have been tested/evaluated:

– One Class SVM this SVM is trained on data that has only one class, which
is the “normal” class. It infers the properties of normal cases and from these
properties, it is able to predict which test cases are unlike the normal case [4].

– Isolation-Forest builds a set of trees for a given data set. These trees are
also known as iTrees form the basis of detection of anomalies. It isolates obser-
vations by randomly selecting a feature and then randomly selecting a split
value between the maximum and minimum values of the selected feature [14].

– Elliptical Envelope models the data as a high dimensional Gaussian dis-
tribution with possible co-variances between feature dimensions. It attempts
to find a boundary ellipse that contains most of the data. Any data outside
of the ellipse is classified as anomalous.

– Local Outlier Factor is an unsupervised anomaly detection method which
computes the local density deviation of a given data point with respect to its
neighbors. It considers the test samples as outliers that have a substantially
lower density than their neighbors [5].

These outlier detection algorithms will be integrated in our new HT detection
methodology. All these 4 algorithms will be tested in order to select the best ones
for the HT detection scenario (Sect. 5.2).

3 Experimentation Platform

3.1 Target Designs

RISC-V processors are used as the reference design which embeds the HT to
show the effectiveness of the detection method. RISC-V is an open-source hard-
ware instruction set architecture defined by the University of Berkeley. In this
project, we select two RISC-V implementations “PicoRV32” [23] and “Freedom
E310” [19] for the experimentation. These two designs are 32-bit RISC-V pro-
cessors. For the experiment, two test boards are also selected. The PicoRV32
processor is implemented and evaluated on the DE1-SoC board with a Cyclone
V FPGA. And the freedom E310 processor is implemented and evaluated on the
Arty-7 FPGA board.
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3.2 Hardware Trojan Designs

As examples, to show the effectiveness of the proposed detection scheme, we
implement different HTs with different sizes in the RISC-V processors. In the
experiments, three HTs (HT1, HT2 and HT3) are inserted in two target designs.
The HT1 and HT2 are inserted in the PicoRV32 design. The triggers of the
HT1 and HT2 are based on specific DIV instructions. Once activated, the two
HTs (HT1 and HT2) are able to modify arbitrarily the program counter of the
processor. These two HTs are inserted at Place & Route level. It means that
the reference design (without HT) and infected design (with HT) have the same
layout except where the HTs are inserted. The overhead of the HT1 and HT2
are respectively 0.53% and 0.27% of the reference design (PicoRV32 processor).

The HT3 is inserted in the Freedom processor. The trigger of the HT3 is
also based on the specific DIV instruction. Once activated, the HT3 modifies
arbitrarily the privileged level of the processor hence performing a privilege
escalation attack. This HT is inserted at the RTL by modifying directly the
HDL code of the design. The overhead of the HT3 is 0.1% of the reference design
(Freedom processor). The Table 1 resumes the 3 HTs used for the experiment.

Table 1. HT designs for the experimentation on RISC-V processors

Target design Insertion phase Trigger Payload Overhead

HT1 PicoRV32 P& R Specific Instruction Modify PC 0.53%

HT2 PicoRV32 P& R Specific Instruction Modify PC 0.27%

HT3 Freedom RTL Specific Instruction Modify privilege level 0.1%

3.3 Measurement Platform

Our detection method is applied and tested on the side-channel informa-
tion/trace by deploying the EM measurement techniques. It measures the EM
emanated trace of a test design and compares it with the reference trace (cap-
tured from a genuine design). Then we extract any difference purportedly created
by the HT insertion. The EM acquisition platform is composed of the EM Langer
probe (for EM signal capture), Langer preamplifier (for amplifying the EM sig-
nal), a 3D axis table (for cartography position) and a KEYSIGHT scope (for
traces acquisition).

For the EM traces acquisition, we capture the EM emanation of the chip
during its operation. In a real HT detection scenario, we cannot know which
program (or which mechanism) is used to activate the HT. Therefore, we just
use a normal test program that does not activate the HT but still we try to
detect it using the EM side-channel analysis. In the test program, we execute
just two sequences of 100 “NOP” and then 100 “incrementation” instructions.
This program is used for traces acquisition and during all the tests—note that
the three HTs are never activated.



10 J. Takahashi et al.

Figure 1 presents the overview of the RISC-V development process and our
cartography setup. We define the RISC-V design using an HDL (Verilog) imple-
mentation, then we synthesize and place-and-route the design to obtain the floor-
plan and finally generate the bitstream. After these design steps, we implement
the bitstream in the corresponding FPGA circuits (Cyclone V for PicoRV32 and
Arty-7 for Freedom).

Fig. 1. Cartography overview

In this experiment, we have used the EM cartography in order to measure the
EM emanations on each area of the FPGA chip (recall Fig. 1). One cartography
consists of performing multiple measurements at several points on the target
circuit. We perform a 2D cartography automated by an XY moving stage. In
order to cover the whole FPGA, we perform Nx steps of 2 mm (for DE1 SoC
board) and 1 mm (for Arty-7 board) along X-axis and Ny steps (2 mm for DE1
SoC and 1 mm for Arty board) along Y-axis. So for one cartography, we have
P = Nx×Ny measurement points. For each measurement point, we have acquired
N EM traces where N is the number of cartographies. Finally, each EM trace
contains T temporal samples.

For the DE1 SoC board, we have performed N = 50 cartographies of size
Nx × Ny where Nx = 13 and Ny = 13 (i.e., P = 169) for each design. The
acquired traces consist in T = 5000 temporal samples. It means that, for each
measurement point (between 169 positions) of cartography, we repeat the mea-
surement 50 times and each time, we will storage an EM trace of 5000 samples.
Figure 4 gives an overview of this dataset (on the left) where N = 50 represents
the number of cartographies, 13 × 13 represents the Nx steps of 2 mm along
X-axis and Ny steps along Y-axis of the cartography and 5000 is the amount of
samples of each EM trace.

And for the Arty board, we performed N = 50 cartographies of size Nx ×Ny

where Nx = 10 and Ny = 10 (i.e., P = 100) for each design. The acquired traces
consist in T = 5000 temporal samples.
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4 Detection Results of State-of-the-Art Methods

Raw EM Traces Comparison. First straightforward approach is comparing
the EM traces of genuine and infected designs and trying to detect visually the
difference created by the HT insertion.

Genuine RISC-V Infected RISC-V

Fig. 2. EM cartography of Genuine PicoRV32 (left) and HT1 Infected RISC-V (right)
for sample 401

Figure 2 presents an example of the EM cartography result for the temporal
sample 401 of the genuine design (PicoRV32 on the left) and of the HT1 infected
design (presented on the right). Here, we can notice that it is not possible to
distinguish the difference created by the HT insertion. The same comparisons
for other temporal samples and for other HTs (HT2 and HT3) give the same
results. In conclusion, we cannot detect the HT inserted in the RISC-V processor
just based on visual comparison of the raw traces.

HTs Detection Based on T-Test Metric. The second approach in the state
of the art is using the T-test metric for the detection (See Sect. 2).

Fig. 3. HTs detection using T-test metric

In order to evaluate the performance of T-test detection methods, we evaluate
its detection rate for different numbers of cartographies which are selected for
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the T-test computation. The detection results of the T-test metric are presented
in Fig. 3. It presents the detection rate and the false positive of the T-test based
detection method for the 3 HTs in function of the number of cartographies used
for the T-test computation. For the detection, we use a parameter c as the
threshold coefficient for the detection. In each case, if the corresponding T-test
value for one selected measurement point and one selected temporal sample is
greater than c = 2.0 times of the reference T-test value, it can be considered
as a HT. We can notice (in Fig. 3) that the detection results for all the 3 HTs
are between 55% and 75% with a very high false positive rate (between 15%
and 30%). So we can infer that the T-test performance is very low. Moreover,
the performance of the T-test metric also depends upon the selected temporal
sample for the test. In some specific samples, we can observe a big difference
between the T-test coefficient of the genuine design and the infected design.
But in many other samples, we cannot see the difference between them. The
measurement point of the cartography can also impact the detection results.

One-Class SVM on EM Raw Traces [15]. This method consists is applying
the One-Class SVM method on the raw power traces for the detection. They
tested this method with the traces acquired from an AES design. In our case,
we reevaluate the performance of this method with our EM traces of RISC-v
design. For the test, we use 40 cartographies of reference RISC-V design for the
training phase. And we use 10 cartographies of reference RISC-V design for the
training phase and 40 cartographies of infected design for the test phase. With
this dataset, we obtain a false positive and false negative of 40%. So for the
moment, this method is not working with our design.

In conclusion, the statistical T-test metric and the One Class SVM based
method have poor performances for the detection of these HTs and it also
depends upon many parameters. In the following sections, we present our new
methods based on ML algorithms to improve the detection rate.

5 New Methods Based on Machine Learning Algorithms

5.1 Supervised Machine Learning Based HT Detection Methods

Methodology. For the first method, we apply directly the supervised machine
learning algorithms for the HT detection using EM raw traces. The methodology
of this method is composed of the following steps:

1. Acquire the EM traces of reference design (EMref ) and HT design (EMHT )
2. Use these EM traces (EMref and EMHT ) to train the supervised machine

learning algorithms
3. Acquire the EM traces of test design EMtest

4. Apply the trained models on EMtest, the models will decide if the test design
is the same than reference or HT design
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Detection Results. Figure 4 presents the data format used for the ML based
method for the HT1 and HT2 on DE1 SoC board. In this figure, N represents
the number of cartographies, 13 × 13 represents the Nx steps of 2 mm along
X-axis and Ny steps along Y-axis of the cartography and 5000 is the amount of
samples of each EM trace. In our method, we have used the cartography of each
sample as the input. Therefore, for one cartography, we have 5000 input vectors
of length 169 (5000× 169) for HT1 & HT2. For the HT3 on Arty board, we have
5000 input vectors of length 100 (5000× 100).

Fig. 4. Data preparation for the machine learning methods

Then we compute the detection results using all 5 supervised ML algo-
rithms: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Decision
Tree Classification (DTC), Linear Regression Classification (LRC) and K-nearest
neighbors classification (KNNC). In order to evaluate the performance of these
methods, we evaluate the detection probability and proportion of false positives
of the methods when we vary the number of cartographies used in the training
phase. It means that we have to select a number of x cartographies amongst the
50 cartographies of genuine dataset and HTs (HT1 & HT2 and HT3) infected
datasets. And the number of cartographies used for the detection phase is 50−x.
For this test, we vary the number of x from 1 to 22 cartographies (amongst the
50 cartographies of each datasets).

The results are presented in Fig. 5. In this test, the detection rate of SVM and
MLP are greater than 90% or even above with varying number of cartographies
in the training phase from 1 to 20 (refer to Fig. 5). And the false positive is
smaller than 4%. (refer to Fig. 5). For the DTC, the detection rates for the HT1
and HT2 are greater than 95% with a false positive smaller than 1%. However,
the detection rate for the HT3 is smaller than 80% with a false positive of 4%.
With the LRC, the detection rate of the HT1 is good (greater than 90%) with
a false positive of 3%. However, the detection results for HT2 and HT3 are
poor (between 50% to 60%) with a false positive of 20%. For the last algorithm
(KNNC), the detection rates of these 3 HTs are greater than 80% with a false
positive smaller than 3%. So, for the moment the SVM and MLP based detection
methods can detect the HTs with a good success compared to the T-test based
method.

One of the drawbacks of the supervised ML based methods is that we need
the dataset of the infected design. In the real case, it could be difficult to have
these HT datasets. And for different HTs with different datasets, the detection



14 J. Takahashi et al.

Fig. 5. HTs detection using supervised machine learning algorithms

results can be different. Each time, when we have a new HT design, we might
need to re-train our model. For this reason, we have applied other detection
methods based on the outliers detection.
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5.2 Outlier Detection Based Method

Methodology. In order to solve the problems of supervised ML based detection
method, we propose a new detection method using the novelty/outliers detection.
The goal of these methods is to detect whether a new observation belongs to the
same distribution as existing observations (an Inlier), or should be considered as
different (an outlier). For the HT detection, we can apply these algorithms for
two scenarios:

– When we want to detect if two different chip batches are the same or not. It
can detect any difference between two chip batches.

– When we want to detect if a test data (from a test chip) belongs to the
same distribution as the reference observations (from the reference chips). If
the test data is detected as an outlier, we can conclude that there is some
modification (HT) on the test chip.

For the first test, we apply the same methodology as the one used by the
first proposed method using the supervised machine learning methods. But in
this time, we replace the supervised methods by the outlier detection methods
(Sect. 2.3). In this case, we use the raw EM values for the training phase and
detection phase as described in Fig. 4. However, using the raw EM values as
input, we obtained a low performance with a false positive and false negative
between 60 to 40% depending on the selected outlier detection algorithms.

In order to increase the performance, we propose a new approach with the
combination of T-test and outlier detection methods. With the raw data, the
EM value of each sample could be very different. But, using the T-test for the
pre-processing, we will evaluate only the variance at each sample therefore the
data in different samples will have the same scale. In this case, we will use the
T-test coefficients instead of raw EM values for the input of our outlier detection
algorithms. The methodology of our method is composed of the following steps:

1. Acquire the EM traces of the reference design
2. Compute the T-test value of the reference design (Tref )
3. Train the Outliers detection algorithms using the T-test value (Tref )
4. Acquire the EM trace of test design
5. Compute the T-test value of the test design (Ttest)
6. Test the trained Outlier detection algorithms with (Ttest) to decide if the test

design is the same (or not) than the reference design

Detection Results. For the test, we evaluate the performance of these algo-
rithms by varying the number of cartographies used for T-test computation from
3 to 22 cartographies (amongst the 50 cartographies of each dataset). Then we
apply 4 outliers detection methods for our experimentation: One-Class SVM,
Elliptical Envelope, Isolation Forest and Local Outlier Factor. The detection
results of the 3 HTs using these methods are presented in Fig. 6. The obtained
results show that the detection rates of all selected algorithms are greater than
95%. Particularly, the detection rate of One-Class SVM, Elliptical Envelope and
Local Outlier Detection are close to 100%. However, the One-Class SVM has
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Fig. 6. HTs detection using outliers detection

a poor false positive rate (between 10% to 30% for HT2 and HT3) compared
to other algorithms (nearly 1%). So the results show that we can detect effec-
tively all these 3 HTs using the Elliptical Envelope and Local Outlier Detection
algorithms. We can also notice that the new detection methods are much more
efficient than T-test and supervised ML based detection methods. Figure 2 shows
the performance comparison of our new method with those in the state of the
art.
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Table 2. Comparison of detection methods

Method Target HT Size (%) Detection rate

State-of-the-art Raw trace comparison [21] RISC-V 0.53, 0.27, 0.1 nc

T-test [1] RISC-V 0.53, 0.27, 0.1 70%

One-Class SVM [15] RISC-V 0.53, 0.27, 0.1 60%

This paper Supervised ML methods RISC-V 0.53, 0.27, 0.1 ≈ 90%

Test & outlier detection methods RISC-V 0.53, 0.27, 0.1 ≈ 100%

6 Discussion and Perspectives

As described in the introduction section, the HT is a big and serious challenge
at the moment. Many methods and techniques are studied and proposed for
the detection, but there is no universal method that can detect all HTs for
the moment. Because of the complexity of the HT, the combination of different
techniques may be required in order to increase the coverage of the detection.

In this paper, we study the HT detection based on the EM traces during the
operation of the circuit or device. This can be useful to detect the HT during
the testing phase. Application of ML is a new trend in the field of security in
general and also in the hardware security. For the moment, the supervised ML
algorithms based method is efficient to detect the HT. However, these algorithms
require the dataset for genuine design and also for all HT designs. It could be
interesting to evaluate the performance of the supervised ML based methods on
new HTs which are not taken into account during the training phase. For the
second method using the Outlier Detection algorithms such as Isolation Forest
and Local Outlier detection, we obtain promising results comparing to those in
the state of the art (Table 2). So a study of the performance of this method
for HT detection could deserve more attention. For the future work, it could be
interesting to test the performance of the outliers detection algorithms using the
simulated traces as the reference for the training phase instead of the real traces
coming from golden chip. We can apply this metric for a large HT database in
order to have a complete evaluation of its performance. We need also to evaluate
our methodology against the process variations.

This method could be very useful to classify and highlight the difference of
two chip batches or to detect if a test dataset belongs to the same distribution as
reference dataset or not. It can be applied to detect the HT that may have been
inserted directly by the chip vendors. In this scenario, the chip vendors produce
different chip versions for different clients because of the pressure coming from
their government. If we can obtain the chips from different clients, we will detect
the difference of these chips. In these scenarios, it raises a great suspicion about
the genuineness of the delivered product, and the buyer may raise complains
towards the provider and in turn require explanation about the dubious quality
of the product. It can be also used as a forensic tool to detect similarities between
two designs from different manufacturers, hence detecting if a manufacturer has
reverse-engineered the design of another company and embedded in their circuit.



18 J. Takahashi et al.

7 Conclusion

In this paper, we have proposed new HT detection methodologies using Machine
Learning algorithms. Our methodology allows having an automatic method
which is independent of the selected test samples. For the first method, we
applied the supervised machine learning algorithms for the HT detection. The
results show that we can obtain a detection rate of 90% with a false positive of
5% (with Support Vector Machine and K-nearest Neighbors) compared to the
T-test (detection rate of 70% and false positive of 30%). For the second method,
we applied the Outliers Detection algorithms combined with the T-test metric
for the HT detection. This method can also detect different HT designs even with
those which are never discovered (or never used for the training phase) unlike
the statistic and supervised machine learning based methods. For this paper, we
apply our methodology on the EM cartography traces and on a generic purpose
processor RISC-V. Three HTs with different sizes of 0.53%, 0.27% and 0.1%
are inserted for the experimentation. The results show that, using the Elliptical
Envelope and Local Outlier Factor algorithms, we can detect the HT with a
detection rate of 100% and a false positive smaller than 1%.
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