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Preface

This volume contains the papers that were selected for presentation and publication at
the 22nd International Conference on Information and Communications Security
(ICICS 2020), which was organized by the Cyber Security Section, Technical
University of Denmark, Denmark, during August 24–26, 2020. ICICS started in 1997
and aims at bringing together leading researchers and practitioners from both academia
and industry to discuss and exchange their experiences, lessons learned, and insights
related to computer and communication security. Due to COVID-19, ICICS was held
online for the first time.

This year’s Program Committee (PC) consisted of 85 members with diverse
background and broad research interests. A total of 139 papers were submitted to the
conference. The review process was double blind, and the papers were evaluated on the
basis of their significance, novelty, and technical quality. Most papers were reviewed
by three or more PC members. The PC meeting was held electronically, with intensive
discussion over more than one week. Finally, 33 papers were selected for presentation
at the conference with an acceptance rate of 23.7%.

After a long discussion among Steering Committee and organization chairs, ICICS
2020 selected two best papers, with a monetary prize generously sponsored by
Springer. The paper “A Symbolic Model for Systematically Analyzing TEE-based
Protocols,” authored by Shiwei Xu, Yizhi Zhao, Zhengwei Ren, Lingjuan Wu, Yan
Tong, and Huanguo Zhang, and the paper “Machine Learning based Hardware Trojan
Detection using Electromagnetic Emanation,” authored by Junko Takahashi, Keiichi
Okabe, Hiroki Itoh, Xuan Thuy Ngo, Sylvain Guilley, Ritu Ranjan Shrivastwa, Mushir
Ahmed, and Patrick Lejoly, shared the Best Paper Award.

ICICS 2020 had two outstanding keynote talks: “Protecting Your Critical Infras-
tructure During a Cyber War,” presented by Prof. Aditya Mathur from Singapore
University of Technology and Design, Singapore, and “End-to-end verifiable e-voting
for real-world elections,” presented by Prof. Feng Hao from University of Warwick,
UK. Our deepest gratitude for their excellent presentations.

For the success of ICICS 2020, we would like to first thank the authors of all
submissions and all the PC members for their great efforts in selecting the papers. We
also thank all the external reviewers for assisting the review process. For the conference
organization, we would like to thank the ICICS Steering Committee, the general chairs,
Christian D. Jensen and Jianying Zhou, the publicity chairs, Joaquin Garcia-Alfaro,
Qingni Shen, and Bo Luo, and the publication chair, Wenjuan Li. Finally, we thank
everyone else, speakers and session chairs, for their contributions to the program of
ICICS 2020.

August 2020 Weizhi Meng
Dieter Gollmann
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Machine Learning Based Hardware
Trojan Detection Using Electromagnetic

Emanation

Junko Takahashi1(B), Keiichi Okabe1, Hiroki Itoh1, Xuan-Thuy Ngo2(B),
Sylvain Guilley2, Ritu-Ranjan Shrivastwa2, Mushir Ahmed2,

and Patrick Lejoly2

1 NTT Secure Platform Laboratories, Tokyo, Japan
junko.takahashi.fc@hco.ntt.co.jp
2 Secure-IC, Cesson-Sevigne, France

thuy.ngo@secure-ic.com

Abstract. The complexity and outsourcing trend of modern System-on-
Chips (SoC) has made Hardware Trojan (HT) a real threat for the SoC
security. In the state-of-the-art, many techniques have been proposed in
order to detect the HT insertion. Side-channel based methods emerge as
a good approach used for the HT detection. They can extract any differ-
ence in the power consumption, electromagnetic (EM) emanation, delay
propagation, etc. caused by the HT insertion/modification in the genuine
design. Therefore, they can be applied to detect the HT even when it
is not activated. However, these methods are evaluated on overly simple
design prototypes such as AES coprocessors. Moreover, the analytical
approach used for these methods is limited by some statistical metrics
such as the direct comparison of EM traces or the T-test coefficients.
In this paper, we propose two new detection methodologies based on
Machine Learning algorithms. The first method consists in applying the
supervised Machine Learning (ML) algorithms on raw EM traces for the
classification and detection of HT. It offers a detection rate close to 90%
and false negative smaller than 5%. For the second method, we propose a
method based on the Outlier/Novelty algorithms. This method combined
with the T-test based signal processing technique, when compared with
state-of-the-art, offers a better performance with a detection rate close
to 100% and a false positive smaller than 1%. We have evaluated the
performance of our method on a complex target design: RISC-V generic
processors. The three HTs with the corresponding sizes of 0.53%, 0.27%
and 0.1% of the RISC-V processors are inserted for the experimentation.
The experimental results show that the inserted HTs, though minimalist,
can be detected using our new methodology.

Keywords: Hardware trojan · Electromagnetic · Side-channel
analysis · Machine learning · Outliers detection

c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-61078-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61078-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-61078-4_1


4 J. Takahashi et al.

1 Introduction

1.1 Hardware Trojan Threat

The semiconductor industry has spread across borders in this time of global-
ization. Different design phases of an Integrated Circuit (IC) may be performed
at geographically dispersed locations. Outsourcing the IC design and fabrica-
tion to increase profitability has become a common trend in the semiconductor
industry. As more and more semiconductor companies are welcoming the out-
sourcing trend to be competitive, they are opening new security loopholes. One
such threat that has come into light over the past few years is that of Hardware
Trojan (HT). A HT is a malicious module inserted in an IC during the design
or fabrication stage. Once inserted, a HT can perform dangerous attacks such as
Denial of Service (DoS), leakage of sensitive data via circuit outputs, etc. [11]. It
can be implemented in ASIC, microprocessor, microcontroller, GPU, DSP and
also in FPGA bitstreams.

HTs can be inserted along the IC design flow from the specification phase to
the assembly and the package phase. Different examples of the presence of HTs
are discovered in different industrial applications. Skorobogatov et al. discov-
ered an undocumented backdoor inserted into the Actel/Microsemi ProASIC3
chips (military grade chip) for accessing FPGA configuration [20] in 2012. Using
this HT, an attacker is able to extract all the configuration data from the chip,
reprogram crypto and access keys, modify low-level silicon features and finally
access to the configuration bitstream or permanently damage the device. In 2014,
the discovery of specific US-made components designed to intercept the satel-
lites communications in France-UAE satellite has been reported in the news on
www.rt.com. Different documents leaked in 2014 by NSA whistleblower Edward
Snowden indicate that the NSA planted back-doors in Cisco routers and hence
had been able to gain access to entire networks and all their users. Routers,
switches, and servers made by Cisco are booby-trapped with surveillance equip-
ment that intercept traffic handled by those devices and copy it to the NSA’s
network. And recently, in October 2018 Bloomberg reported that an attack by
Chinese spies reached almost 30 U.S. companies, including Amazon and Apple,
by compromising America’s supply-chain technology. We can also find many
other examples in the academic works such as in [11,12,16] etc. Because of its
malicious and dangerous natures, a HT can create serious problems in many
critical applications such as military systems, financial infrastructures, health
applications, IoTs etc. Therefore, many national and international projects are
launched to develop the countermeasures such as TRUST & Microsystems Explo-
ration program (in USA), HINT (in Europe), HOMERE & MOOSIC (in France).
This threat is also a big concern for all other countries.

1.2 Related Studies

Since HTs pose serious threats in the IC manufacturing, they have become a very
important and key research topic. Covered areas are: threat analysis, HTs archi-
tecture, prevention and detection methods. Regarding HT detection, numerous

https://www.rt.com/news/france-uae-satellite-deal-220/?utm_source=browser&utm_medium=aplication_chrome&utm_campaign=chrome&goback=.gde_3901854_member_5825947322760052736
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methods and approaches have been proposed in the state-of-the-art. To mention
a few, optical methods [6,22], testing based detection methods [3,10], run-time
based detection [17] or side-channel based detection methods [2,18,21]. Among
these approaches, side-channel based detection methods seem to be the most
suitable approach for various reasons. First of all, side-channel methods are non-
invasive and unlike optical methods they do not require chip chemical prepara-
tion. Second, they can work without the need of additional logic for run-time
detection. Third and most important, efficiency in detection is relatively high.
The side-channel based detection methods can detect HTs even if they are not
activated during the experimental process.

In the state-of-the-art, different works have been proposed to detect pur-
ported HTs using side-channel analysis. In [18], the authors propose an Electro-
Magnetic (EM) cartography detection method. The experiment has been per-
formed on an FPGA and the detection method is based on the visual comparison
of T-test coefficient between the genuine and infected design. In [8], the authors
have used a golden chip-free EM side-channel methodology to detect the HT.
Their technique has been limited to utilize the difference in the response between
the simulated trace and chip’s actual traces from the experiments. In [13], the
authors propose a method based on the integration of sensor matrix used to
measure the supply voltage in the circuit and T-test metric. The test is per-
formed on a 128-bits AES and validated on a HT with an overhead of 3.2% of
the target FPGA. Using the T-test, they obtained a success rate of 80%. In [24],
the authors also propose a detection method based on a Ring Oscillators (ROs)
matrix (used to measure the power) combined with supervised machine learning
(ML) methods such as K-Nearest Neighbors and SVM. With this approach, they
have a success rate greater than 88%.

1.3 Contributions

In this paper, we propose new HT detection methodologies based on the ML algo-
rithms combined with the side-channel measurements. The first method consists
in applying the supervised machine learning algorithms on the raw EM traces
for the HT detection. And the second method consists in combining the Outlier
detection algorithms with the T-test preprocessing technique for the HT detec-
tion. It presents several new advantages in comparison to those in the state-of-
the-art. First, many papers used statistical metrics for the detection or the visual
comparison between the genuine and infected designs [1,18]. However, these met-
rics are dependent on selected samples for the test. They also depend upon the
measurement setups. For example, in the case of EM traces, the position of
the EM probe affects the performance of the statistical metrics. Moreover, they
need to decide manually a threshold for the detection using these metrics. So
the selected samples and threshold can modify significantly the detection rate.
There are also some works that have applied the classification ML methods for
the HTs detection [15]. But the performance of these methods depends upon
the dataset used for the training. With our new method, we can automatically
detect the HTs without the need to pay attention to the selected samples and
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threshold. Moreover, with the second method, we need only one dataset for the
training phase. Then, we can test with all different datasets coming from gen-
uine or HT designs. The method predicts if a test dataset is the same as the
training dataset (Inlier/Genuine) or not (Outliers/HT). This can be very useful
in the case where we have only the genuine dataset (from a genuine design or
from simulation). It can also be applied in the case where we want to detect if
two chip batches are the same or not. It can happen that a supplier ships two
different chip batches for two different countries because of his/her government
order for the goal of security and/or monitoring.

Second, for the HT detection, the detection rate is very important. All the
proposed methods in the state-of-the-art have either no detection rate evalua-
tion or a detection rate smaller than 70% even using the statistical approach.
With our first method using the supervised ML algorithm, we obtain a detection
performance of 90%. And with the second method, we propose to combine the
processing method (T-test) and the outlier detection algorithms to obtain a very
high detection rate (nearly 100%).

Third, all the methods described in the state-of-the-art are tested and eval-
uated only on some cryptographic co-processors such as AES or DES. In this
paper, we show that our new method can be applied successfully on two com-
plex and generic targets: PicoRV and Freedom RISC-V based processors.
Three different HTs with the corresponding sizes of 0.56%, 0.27% and 0.1%
are implemented on the DE1 SoC Cyclone V FPGA and the Arty-7 FPGA for
the experimentation. Different outlier/novelty detection algorithms such as One
Class SVM, Elliptic Envelope, Isolation Forest and Local Outlier Factor are also
applied/evaluated for our methodology. The results have shown a considerable
performance in the HT detection, i.e. with a probability of 100%. It validates the
efficiency of our method for detecting even minuscule HTs (with an overhead of
0.1%).

2 Backgrounds

In this section, we have listed out different techniques that are central to the
detection of HTs after EM measurements. These metrics form a very important
step as they can enhance the reproducibility and robustness of the detection
techniques.

2.1 T-Test Metric

T-test (or Student test) is a metric used in the field of statistics to detect if
the mean of a population has a value specified in a null hypothesis or if the
means of two different populations are equal. For the HT application, the T-test
is already used in the state of the art to determine if the reference dataset and
the dataset under test have the same means (no HT) or not (HT) using the
following formula:

t =
μ0 − μ1√

σ2
0

N0
+ σ2

1
N1
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where μ0 is the genuine sample mean, μ1 is the HT sample mean. σ0 is the
genuine sample variance, σ1 is the HT sample variance. N0 is the cardinality of
genuine set and N1 is the cardinality of HT set. The T-test is also used for the
side-channel analysis to break the cryptography IPs [7]. In this paper, we will
evaluate the performance of the T-test metric based detection method for our
test platform in order to show its limitation and drawback.

2.2 Supervised Machine Learning Method

Supervised learning method is used to map an input to an output based on
known input-output pairs also called training database. Each input-output pair
is composed of an input data and a desired output value. The supervised learning
algorithm analyzes the training database in order to produce a model used for
mapping new test data with the predefined outputs. An optimal trained model
allows for the algorithm to correctly determine the class labels for unseen or
undetected instances. The supervised ML algorithms are widely used for the
classification and detection analysis. Here are some examples of supervised ML
algorithms.

– Support Vector Machine analyzes data used for classification and regres-
sion analysis. Basically, the SVM constructs a hyperplane or a set of hyper-
planes in a high dimensional space which can be used for classification, regres-
sion, or other tasks like outliers detection. During the training phase, the
SVM tries to find the hyperplane that has the largest distance to the nearest
training-data point of any class (so-called functional margin) [9].

– Multi-Layer Perceptron is a class of feed-forward artificial neural network
(ANN). An MLP consists of at least three layers of nodes: an input layer, a
hidden layer and an output layer. Except for the input nodes, each node is a
neuron that uses a non-linear activation function. MLP utilizes a supervised
learning technique called back-propagation for training a multi-layer Percep-
tron. It is a linear function that maps the weighted inputs to the output of
each neuron.

– Decision Tree Classification algorithm creates tree models where the tar-
get variables can take a discrete set of values which are called classification
trees. In these structures, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels.

– K-Nearest Neighbors is a non-parametric method used for classification
and regression. In K-NN classification, the output is a class membership. An
object is classified by a plurality vote of its neighbors, with the object being
assigned to the class most common among its k nearest neighbors (k is a
positive integer, typically small). If k = 1, then the object is simply assigned
to the class of that single nearest neighbor.

In this work, we will evaluate the performance of these methods on our
platform.
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2.3 Outlier/Novelty Detection Method

Outlier/Novelty detection are a sub ML class used to detect abnormal/unusual
observations or data. Outlier detection uses an unsupervised learning process to
detect the outliers and filter the impurities in a dataset. Novelty detection is a
semi-supervised ML method used to form a dense cluster of the data as long as
they are in a low density region of the training data, considered as normal in this
context. For our HT detection method, the genuine datasets are used to train the
model for outlier/Novelty detection algorithms. Once the model is fixed, we can
test it with new data. If the new data is considered as an outlier, it means that
this data is generated from a HT design, else this data is generated from a genuine
design. For our method, the following algorithms have been tested/evaluated:

– One Class SVM this SVM is trained on data that has only one class, which
is the “normal” class. It infers the properties of normal cases and from these
properties, it is able to predict which test cases are unlike the normal case [4].

– Isolation-Forest builds a set of trees for a given data set. These trees are
also known as iTrees form the basis of detection of anomalies. It isolates obser-
vations by randomly selecting a feature and then randomly selecting a split
value between the maximum and minimum values of the selected feature [14].

– Elliptical Envelope models the data as a high dimensional Gaussian dis-
tribution with possible co-variances between feature dimensions. It attempts
to find a boundary ellipse that contains most of the data. Any data outside
of the ellipse is classified as anomalous.

– Local Outlier Factor is an unsupervised anomaly detection method which
computes the local density deviation of a given data point with respect to its
neighbors. It considers the test samples as outliers that have a substantially
lower density than their neighbors [5].

These outlier detection algorithms will be integrated in our new HT detection
methodology. All these 4 algorithms will be tested in order to select the best ones
for the HT detection scenario (Sect. 5.2).

3 Experimentation Platform

3.1 Target Designs

RISC-V processors are used as the reference design which embeds the HT to
show the effectiveness of the detection method. RISC-V is an open-source hard-
ware instruction set architecture defined by the University of Berkeley. In this
project, we select two RISC-V implementations “PicoRV32” [23] and “Freedom
E310” [19] for the experimentation. These two designs are 32-bit RISC-V pro-
cessors. For the experiment, two test boards are also selected. The PicoRV32
processor is implemented and evaluated on the DE1-SoC board with a Cyclone
V FPGA. And the freedom E310 processor is implemented and evaluated on the
Arty-7 FPGA board.
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3.2 Hardware Trojan Designs

As examples, to show the effectiveness of the proposed detection scheme, we
implement different HTs with different sizes in the RISC-V processors. In the
experiments, three HTs (HT1, HT2 and HT3) are inserted in two target designs.
The HT1 and HT2 are inserted in the PicoRV32 design. The triggers of the
HT1 and HT2 are based on specific DIV instructions. Once activated, the two
HTs (HT1 and HT2) are able to modify arbitrarily the program counter of the
processor. These two HTs are inserted at Place & Route level. It means that
the reference design (without HT) and infected design (with HT) have the same
layout except where the HTs are inserted. The overhead of the HT1 and HT2
are respectively 0.53% and 0.27% of the reference design (PicoRV32 processor).

The HT3 is inserted in the Freedom processor. The trigger of the HT3 is
also based on the specific DIV instruction. Once activated, the HT3 modifies
arbitrarily the privileged level of the processor hence performing a privilege
escalation attack. This HT is inserted at the RTL by modifying directly the
HDL code of the design. The overhead of the HT3 is 0.1% of the reference design
(Freedom processor). The Table 1 resumes the 3 HTs used for the experiment.

Table 1. HT designs for the experimentation on RISC-V processors

Target design Insertion phase Trigger Payload Overhead

HT1 PicoRV32 P& R Specific Instruction Modify PC 0.53%

HT2 PicoRV32 P& R Specific Instruction Modify PC 0.27%

HT3 Freedom RTL Specific Instruction Modify privilege level 0.1%

3.3 Measurement Platform

Our detection method is applied and tested on the side-channel informa-
tion/trace by deploying the EM measurement techniques. It measures the EM
emanated trace of a test design and compares it with the reference trace (cap-
tured from a genuine design). Then we extract any difference purportedly created
by the HT insertion. The EM acquisition platform is composed of the EM Langer
probe (for EM signal capture), Langer preamplifier (for amplifying the EM sig-
nal), a 3D axis table (for cartography position) and a KEYSIGHT scope (for
traces acquisition).

For the EM traces acquisition, we capture the EM emanation of the chip
during its operation. In a real HT detection scenario, we cannot know which
program (or which mechanism) is used to activate the HT. Therefore, we just
use a normal test program that does not activate the HT but still we try to
detect it using the EM side-channel analysis. In the test program, we execute
just two sequences of 100 “NOP” and then 100 “incrementation” instructions.
This program is used for traces acquisition and during all the tests—note that
the three HTs are never activated.
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Figure 1 presents the overview of the RISC-V development process and our
cartography setup. We define the RISC-V design using an HDL (Verilog) imple-
mentation, then we synthesize and place-and-route the design to obtain the floor-
plan and finally generate the bitstream. After these design steps, we implement
the bitstream in the corresponding FPGA circuits (Cyclone V for PicoRV32 and
Arty-7 for Freedom).

Fig. 1. Cartography overview

In this experiment, we have used the EM cartography in order to measure the
EM emanations on each area of the FPGA chip (recall Fig. 1). One cartography
consists of performing multiple measurements at several points on the target
circuit. We perform a 2D cartography automated by an XY moving stage. In
order to cover the whole FPGA, we perform Nx steps of 2 mm (for DE1 SoC
board) and 1 mm (for Arty-7 board) along X-axis and Ny steps (2 mm for DE1
SoC and 1 mm for Arty board) along Y-axis. So for one cartography, we have
P = Nx×Ny measurement points. For each measurement point, we have acquired
N EM traces where N is the number of cartographies. Finally, each EM trace
contains T temporal samples.

For the DE1 SoC board, we have performed N = 50 cartographies of size
Nx × Ny where Nx = 13 and Ny = 13 (i.e., P = 169) for each design. The
acquired traces consist in T = 5000 temporal samples. It means that, for each
measurement point (between 169 positions) of cartography, we repeat the mea-
surement 50 times and each time, we will storage an EM trace of 5000 samples.
Figure 4 gives an overview of this dataset (on the left) where N = 50 represents
the number of cartographies, 13 × 13 represents the Nx steps of 2 mm along
X-axis and Ny steps along Y-axis of the cartography and 5000 is the amount of
samples of each EM trace.

And for the Arty board, we performed N = 50 cartographies of size Nx ×Ny

where Nx = 10 and Ny = 10 (i.e., P = 100) for each design. The acquired traces
consist in T = 5000 temporal samples.
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4 Detection Results of State-of-the-Art Methods

Raw EM Traces Comparison. First straightforward approach is comparing
the EM traces of genuine and infected designs and trying to detect visually the
difference created by the HT insertion.

Genuine RISC-V Infected RISC-V

Fig. 2. EM cartography of Genuine PicoRV32 (left) and HT1 Infected RISC-V (right)
for sample 401

Figure 2 presents an example of the EM cartography result for the temporal
sample 401 of the genuine design (PicoRV32 on the left) and of the HT1 infected
design (presented on the right). Here, we can notice that it is not possible to
distinguish the difference created by the HT insertion. The same comparisons
for other temporal samples and for other HTs (HT2 and HT3) give the same
results. In conclusion, we cannot detect the HT inserted in the RISC-V processor
just based on visual comparison of the raw traces.

HTs Detection Based on T-Test Metric. The second approach in the state
of the art is using the T-test metric for the detection (See Sect. 2).

Fig. 3. HTs detection using T-test metric

In order to evaluate the performance of T-test detection methods, we evaluate
its detection rate for different numbers of cartographies which are selected for
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the T-test computation. The detection results of the T-test metric are presented
in Fig. 3. It presents the detection rate and the false positive of the T-test based
detection method for the 3 HTs in function of the number of cartographies used
for the T-test computation. For the detection, we use a parameter c as the
threshold coefficient for the detection. In each case, if the corresponding T-test
value for one selected measurement point and one selected temporal sample is
greater than c = 2.0 times of the reference T-test value, it can be considered
as a HT. We can notice (in Fig. 3) that the detection results for all the 3 HTs
are between 55% and 75% with a very high false positive rate (between 15%
and 30%). So we can infer that the T-test performance is very low. Moreover,
the performance of the T-test metric also depends upon the selected temporal
sample for the test. In some specific samples, we can observe a big difference
between the T-test coefficient of the genuine design and the infected design.
But in many other samples, we cannot see the difference between them. The
measurement point of the cartography can also impact the detection results.

One-Class SVM on EM Raw Traces [15]. This method consists is applying
the One-Class SVM method on the raw power traces for the detection. They
tested this method with the traces acquired from an AES design. In our case,
we reevaluate the performance of this method with our EM traces of RISC-v
design. For the test, we use 40 cartographies of reference RISC-V design for the
training phase. And we use 10 cartographies of reference RISC-V design for the
training phase and 40 cartographies of infected design for the test phase. With
this dataset, we obtain a false positive and false negative of 40%. So for the
moment, this method is not working with our design.

In conclusion, the statistical T-test metric and the One Class SVM based
method have poor performances for the detection of these HTs and it also
depends upon many parameters. In the following sections, we present our new
methods based on ML algorithms to improve the detection rate.

5 New Methods Based on Machine Learning Algorithms

5.1 Supervised Machine Learning Based HT Detection Methods

Methodology. For the first method, we apply directly the supervised machine
learning algorithms for the HT detection using EM raw traces. The methodology
of this method is composed of the following steps:

1. Acquire the EM traces of reference design (EMref ) and HT design (EMHT )
2. Use these EM traces (EMref and EMHT ) to train the supervised machine

learning algorithms
3. Acquire the EM traces of test design EMtest

4. Apply the trained models on EMtest, the models will decide if the test design
is the same than reference or HT design
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Detection Results. Figure 4 presents the data format used for the ML based
method for the HT1 and HT2 on DE1 SoC board. In this figure, N represents
the number of cartographies, 13 × 13 represents the Nx steps of 2 mm along
X-axis and Ny steps along Y-axis of the cartography and 5000 is the amount of
samples of each EM trace. In our method, we have used the cartography of each
sample as the input. Therefore, for one cartography, we have 5000 input vectors
of length 169 (5000× 169) for HT1 & HT2. For the HT3 on Arty board, we have
5000 input vectors of length 100 (5000× 100).

Fig. 4. Data preparation for the machine learning methods

Then we compute the detection results using all 5 supervised ML algo-
rithms: Support Vector Machine (SVM), Multilayer Perceptron (MLP), Decision
Tree Classification (DTC), Linear Regression Classification (LRC) and K-nearest
neighbors classification (KNNC). In order to evaluate the performance of these
methods, we evaluate the detection probability and proportion of false positives
of the methods when we vary the number of cartographies used in the training
phase. It means that we have to select a number of x cartographies amongst the
50 cartographies of genuine dataset and HTs (HT1 & HT2 and HT3) infected
datasets. And the number of cartographies used for the detection phase is 50−x.
For this test, we vary the number of x from 1 to 22 cartographies (amongst the
50 cartographies of each datasets).

The results are presented in Fig. 5. In this test, the detection rate of SVM and
MLP are greater than 90% or even above with varying number of cartographies
in the training phase from 1 to 20 (refer to Fig. 5). And the false positive is
smaller than 4%. (refer to Fig. 5). For the DTC, the detection rates for the HT1
and HT2 are greater than 95% with a false positive smaller than 1%. However,
the detection rate for the HT3 is smaller than 80% with a false positive of 4%.
With the LRC, the detection rate of the HT1 is good (greater than 90%) with
a false positive of 3%. However, the detection results for HT2 and HT3 are
poor (between 50% to 60%) with a false positive of 20%. For the last algorithm
(KNNC), the detection rates of these 3 HTs are greater than 80% with a false
positive smaller than 3%. So, for the moment the SVM and MLP based detection
methods can detect the HTs with a good success compared to the T-test based
method.

One of the drawbacks of the supervised ML based methods is that we need
the dataset of the infected design. In the real case, it could be difficult to have
these HT datasets. And for different HTs with different datasets, the detection
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Fig. 5. HTs detection using supervised machine learning algorithms

results can be different. Each time, when we have a new HT design, we might
need to re-train our model. For this reason, we have applied other detection
methods based on the outliers detection.
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5.2 Outlier Detection Based Method

Methodology. In order to solve the problems of supervised ML based detection
method, we propose a new detection method using the novelty/outliers detection.
The goal of these methods is to detect whether a new observation belongs to the
same distribution as existing observations (an Inlier), or should be considered as
different (an outlier). For the HT detection, we can apply these algorithms for
two scenarios:

– When we want to detect if two different chip batches are the same or not. It
can detect any difference between two chip batches.

– When we want to detect if a test data (from a test chip) belongs to the
same distribution as the reference observations (from the reference chips). If
the test data is detected as an outlier, we can conclude that there is some
modification (HT) on the test chip.

For the first test, we apply the same methodology as the one used by the
first proposed method using the supervised machine learning methods. But in
this time, we replace the supervised methods by the outlier detection methods
(Sect. 2.3). In this case, we use the raw EM values for the training phase and
detection phase as described in Fig. 4. However, using the raw EM values as
input, we obtained a low performance with a false positive and false negative
between 60 to 40% depending on the selected outlier detection algorithms.

In order to increase the performance, we propose a new approach with the
combination of T-test and outlier detection methods. With the raw data, the
EM value of each sample could be very different. But, using the T-test for the
pre-processing, we will evaluate only the variance at each sample therefore the
data in different samples will have the same scale. In this case, we will use the
T-test coefficients instead of raw EM values for the input of our outlier detection
algorithms. The methodology of our method is composed of the following steps:

1. Acquire the EM traces of the reference design
2. Compute the T-test value of the reference design (Tref )
3. Train the Outliers detection algorithms using the T-test value (Tref )
4. Acquire the EM trace of test design
5. Compute the T-test value of the test design (Ttest)
6. Test the trained Outlier detection algorithms with (Ttest) to decide if the test

design is the same (or not) than the reference design

Detection Results. For the test, we evaluate the performance of these algo-
rithms by varying the number of cartographies used for T-test computation from
3 to 22 cartographies (amongst the 50 cartographies of each dataset). Then we
apply 4 outliers detection methods for our experimentation: One-Class SVM,
Elliptical Envelope, Isolation Forest and Local Outlier Factor. The detection
results of the 3 HTs using these methods are presented in Fig. 6. The obtained
results show that the detection rates of all selected algorithms are greater than
95%. Particularly, the detection rate of One-Class SVM, Elliptical Envelope and
Local Outlier Detection are close to 100%. However, the One-Class SVM has
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Fig. 6. HTs detection using outliers detection

a poor false positive rate (between 10% to 30% for HT2 and HT3) compared
to other algorithms (nearly 1%). So the results show that we can detect effec-
tively all these 3 HTs using the Elliptical Envelope and Local Outlier Detection
algorithms. We can also notice that the new detection methods are much more
efficient than T-test and supervised ML based detection methods. Figure 2 shows
the performance comparison of our new method with those in the state of the
art.
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Table 2. Comparison of detection methods

Method Target HT Size (%) Detection rate

State-of-the-art Raw trace comparison [21] RISC-V 0.53, 0.27, 0.1 nc

T-test [1] RISC-V 0.53, 0.27, 0.1 70%

One-Class SVM [15] RISC-V 0.53, 0.27, 0.1 60%

This paper Supervised ML methods RISC-V 0.53, 0.27, 0.1 ≈ 90%

Test & outlier detection methods RISC-V 0.53, 0.27, 0.1 ≈ 100%

6 Discussion and Perspectives

As described in the introduction section, the HT is a big and serious challenge
at the moment. Many methods and techniques are studied and proposed for
the detection, but there is no universal method that can detect all HTs for
the moment. Because of the complexity of the HT, the combination of different
techniques may be required in order to increase the coverage of the detection.

In this paper, we study the HT detection based on the EM traces during the
operation of the circuit or device. This can be useful to detect the HT during
the testing phase. Application of ML is a new trend in the field of security in
general and also in the hardware security. For the moment, the supervised ML
algorithms based method is efficient to detect the HT. However, these algorithms
require the dataset for genuine design and also for all HT designs. It could be
interesting to evaluate the performance of the supervised ML based methods on
new HTs which are not taken into account during the training phase. For the
second method using the Outlier Detection algorithms such as Isolation Forest
and Local Outlier detection, we obtain promising results comparing to those in
the state of the art (Table 2). So a study of the performance of this method
for HT detection could deserve more attention. For the future work, it could be
interesting to test the performance of the outliers detection algorithms using the
simulated traces as the reference for the training phase instead of the real traces
coming from golden chip. We can apply this metric for a large HT database in
order to have a complete evaluation of its performance. We need also to evaluate
our methodology against the process variations.

This method could be very useful to classify and highlight the difference of
two chip batches or to detect if a test dataset belongs to the same distribution as
reference dataset or not. It can be applied to detect the HT that may have been
inserted directly by the chip vendors. In this scenario, the chip vendors produce
different chip versions for different clients because of the pressure coming from
their government. If we can obtain the chips from different clients, we will detect
the difference of these chips. In these scenarios, it raises a great suspicion about
the genuineness of the delivered product, and the buyer may raise complains
towards the provider and in turn require explanation about the dubious quality
of the product. It can be also used as a forensic tool to detect similarities between
two designs from different manufacturers, hence detecting if a manufacturer has
reverse-engineered the design of another company and embedded in their circuit.
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7 Conclusion

In this paper, we have proposed new HT detection methodologies using Machine
Learning algorithms. Our methodology allows having an automatic method
which is independent of the selected test samples. For the first method, we
applied the supervised machine learning algorithms for the HT detection. The
results show that we can obtain a detection rate of 90% with a false positive of
5% (with Support Vector Machine and K-nearest Neighbors) compared to the
T-test (detection rate of 70% and false positive of 30%). For the second method,
we applied the Outliers Detection algorithms combined with the T-test metric
for the HT detection. This method can also detect different HT designs even with
those which are never discovered (or never used for the training phase) unlike
the statistic and supervised machine learning based methods. For this paper, we
apply our methodology on the EM cartography traces and on a generic purpose
processor RISC-V. Three HTs with different sizes of 0.53%, 0.27% and 0.1%
are inserted for the experimentation. The results show that, using the Elliptical
Envelope and Local Outlier Factor algorithms, we can detect the HT with a
detection rate of 100% and a false positive smaller than 1%.
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Abstract. A primary concern in creating compartments (i.e., protection
domains) for bare-metal systems is to adopt the applicable compartmen-
talization policy. Existing studies have proposed several typical policies
in literature. However, neither of the policies consider the influence of
unsafe functions on the compartment security that a vulnerable function
would expose unpredictable attack surfaces, which could be exploited to
manipulate any contents that are stored in the same compartment. In
this paper, we design a machine learning-assisted compartmentalization
scheme, which adopts a new policy that takes every function’s secu-
rity into full account, to create compartments for bare-metal systems.
First, the scheme takes advantage of the machine learning method to
predict how likely a function holds an exploitable security bug. Second,
the prediction results are used to create a new instrumented firmware
that isolates vulnerable and normal functions into different compart-
ments. Further, the scheme provides some optional optimization plans
to the developer to improve the performance. The PoC of the scheme is
incorporated into an LLVM-based compiler and evaluated on a Cortex-M
based IoT device. Compared with the firmware adopting other typical
policies, the firmware with the new policy not only shows better security
but also assures the overhead basically unchanged.

Keywords: Bare-metal systems · Compartmentalization policy ·
Machine learning

1 Introduction

As Internet-of-Things (IoT) devices play an increasingly important role in daily
life, their security problems have received more attentions. Quite a few liter-
atures report that the inevitable software faults have exposed massive attack
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surfaces (e.g., Denial of Service attacks [20], Zigbee Chain Reaction [16], etc.).
However, a large number of IoT devices are low cost and execute the appli-
cation logic directly on the hardware without an operating system, known as
“bare-metal systems”. Due to the resource constraints, bare-metal systems lack
effective isolation mechanism. A single vulnerability in one firmware function
can be exploited by the attacker to subvert not only the entire firmware but also
the system which it is connected to, as shown by Tencent Blade Team against
the application processor in a cell phone through exploiting Qualcomm’s WiFi
SoC in Black Hat USA 2019 [21]. To tackle this problem and enforce least priv-
ileges, creating compartments (i.e., protection domains) for bare-metal systems
has garnered plenty of attention by both industry and academia.

Clements et al. (2018) have used the term “compartment” in their ACES
design [5] to describe an isolated code region, along with its accessible data,
peripherals, and allowed control-flow transfers. By restricting the accessibility,
compartments are isolated from each other. Since a bare-metal system contains
only one address space for all control logics, which leaves the developers a flexible
option to partition the address space into many compartments. So the primary
concern of creating compartments is to design the applicable compartmental-
ization policy to determine which function codes should be grouped together to
form a compartment, and define the accessibility of each compartment to specific
peripherals and data.

Accordingly, existing studies have provided some compartmentalization poli-
cies, the representatives of which are: 1) functions defined in the same source
code file are grouped into the same compartment; 2) functions with access to the
same peripherals are grouped into the same compartment [5]. Such approaches,
however, are both calling-based policies which have not paid enough attention
to the influence of unsafe functions on compartment security. To be specific, any
vulnerable function in such a compartment may leave an attack surface for a
remote attacker to manipulate other innocent functions in the same compart-
ment. Moreover, when a firmware’s application logic involves complex calling
relationships, these two approaches will result in massive growth of compart-
ments, which could neither solve the aforementioned problem nor avoid introduc-
ing substantial overhead. So far, however, rarely is there discussion of designing
a compartmentalization policy with the consideration of the security of every
function.

In this paper, we design a Machine Learning (ML) assisted compartmental-
ization scheme, which adopts a new policy (named Prediction policy), to isolate
vulnerable functions and optimize the compartment usage for overhead reduc-
tion. Through a supervised ML-assisted prediction model, the scheme first pre-
dicts how likely a function holds an exploitable security bug (i.e., vulnerable
or normal). Then it uses the prediction results to enforce the policy that the
function codes, which are predicted to be normal (i.e., no attack surface open
to attackers), can be grouped into a single compartment to reduce the switch-
ing among compartments, while vulnerable functions are placed into different
compartments to ensure the security. With some optional optimization plans for
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different types of compartments, the performance can be further improved. The
PoC of the scheme is incorporated into an LLVM-based compiler and evaluated
on the STM32F4-DISCO board. We have conducted substantial experiments
and the results show that the Prediction policy not only assures better security
for a firmware than the existing approaches/policies but also introduces similar
amount of performance overhead, and would introduce less overhead than the
existing approaches under certain circumstances, like when there’s just a few
vulnerable functions in the firmware.

In summary, our contributions are as follows:

– We introduce a ML-assisted method to predict how likely a function holds an
exploitable security bug in a bare-metal system.

– Combining with the prediction results, we not only design a compartmen-
talization scheme to isolate vulnerable and normal functions into different
compartments, but also provide some optional optimization plans to improve
the performance.

– The PoC of the scheme is incorporated into an LLVM-based compiler to
create instrumented test firmwares running on the STM32F4-DISCO board.
Through substantial experiments, we show the effectiveness of the scheme on
securing bare-metal systems.

2 Background

2.1 Features of Bare-Metal Systems

Securing the bare-metal system is a noteworthy topic, and the literature [6]
has highlighted several features of such system. First, the system only contains
one single application for all control logics, which means all the logics (e.g.,
controlling peripherals and accessing global data, etc.) are included into different
function codes and compiled into this application. Second, the application is
placed into a (shared) physical memory space, and it runs as privileged low-level
software with direct access to peripherals, without going through intervening
operating system software layers. Third, towards the system running on the
ARMv7-M architecture, the Memory Protection Unit (MPU) is the common
security hardware which is lightweight and does not support the virtual memory.

2.2 Memory Protection Unit (MPU)

The compartment design greatly relies on frequently switching access to memory,
this work can be done by controlling MPU. MPU directly adds an access control
layer over the physical memory. The layer virtually divides the entire physical
memory into several regions, which own diverse access permissions under both
privileged and unprivileged modes. On the ARMv7-M architecture the MPU
can define up to 8 regions, numbered 0–7. These regions can overlap, and higher
numbered regions have precedence [1]. In the following we use the term “MPU
region” to define a contiguous memory area whose access permissions are con-
trolled by MPU.
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Fig. 1. The working flow of the ML-assisted compartmentalization scheme

3 Adversary Model and Assumptions

We assume that the program is buggy but not malicious (i.e., the application
itself is trustworthy). We also assume a strong remote attacker who tries to
gain arbitrary code execution with access to an arbitrary read/write permission.
By exploiting the memory corruption vulnerability of a certain function, he
can maliciously manipulate its stack, which will lead to the modification of the
sensitive data, the code-reuse attack or even code injection in executable memory.
We also assume the IoT devices host a Cortex-M (3, 4, 7) core, which is based
on ARMv7-M architecture and supports MPU and two privileged levels.

4 ML-Assisted Compartmentalization Scheme

The overview of the scheme is shown in Fig. 1. a) Creating the original control
graph with the help of the analysis method. b) Each function is predicted by a
ML model to get itself a label. c) The Prediction policy uses the prediction results
to generate the control graph which defines numbers of vulnerable compartments
and a single normal compartment to store vulnerable and normal functions. d) To
further improve the performance, the final control graph is created after applying
some optional optimizations. The section below describes the scheme in detail.

4.1 Control Dependency for Original Control Graph (a)

Similar to ACES [5] which transforms the compartmentaization into a graph
partitioning task, our scheme uses the Program Dependence Graph (PDG) tech-
nology [7] for capturing all control-flow, global data, and peripheral dependencies



24 D. Huo et al.

Table 1. Features extracted from a function

Feature name Description

CallIn # of functions that call the function

CallOut # of functions that the function calls

CountInput # of inputs a function uses

CountLineCode # of lines containing source code

CountLineCodeExe # of lines containing executable code

CountOutput # of outputs set in a function

CountPath # of unique paths through a function body

Cyclomatic McCabe Cyclomatic complexity

MaxNesting Maximum nesting level of control flows

RatioCommentToCode Ratio of number of comment lines to number
of code lines

ReturnType Return type of a function

KeyWord # of user specified keywords in a function

UnsafeFunction # of user specified unsafe instructions in a
function

of the application. The example control dependency is shown in Fig. 1(a-left), the
elements (i.e., function codes, global data and peripherals) of the application are
represented as different vertexes, which have different edges (i.e., Control Edge,
Global. Dep and Periph. Dep) to describe their calling relationship. Accordingly,
the scheme gets an original control graph which roughly defines the accessibil-
ity of a given function code with its accessible peripherals and global data. As
an example shown in Fig. 1(a-right), function 2 has the permission to access
peripheral A and global data c, while it cannot access global data a.

4.2 ML-Assisted Function Prediction (b)

To train a ML model for accurate prediction, appropriate features should be
selected to describe the training datasets first. Existing works [8,9] have shown
the effectiveness of predicting the vulnerability at method-level with the com-
bination of various features. As most of bare-metal applications are written in
C/C++, features should help the ML model to show better prediction effects on
identifying typical C/C++ vulnerabilities (e.g., buffer overflow, memory leakage
and pointer misbinding). Therefore we refer to the above feature selection meth-
ods and select 10 features listed on Table 1 (“#” means “number” and is used in
Table 4 and 5 as well). Moreover, unsafe instructions (e.g., strcat, vsprintf, etc.),
vulnerable keywords and the return type of a function are all C/C++ security-
related features reported in [17], we extract them by static analysis so they can
be also added on the table.

Next, we turn to selecting the appropriate ML method. For model reliability,
we only choose the validated training datasets to make sure all functions can
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be accurately labeled. By comparing two ML methods (i.e., semi-supervised and
supervised learning), we prefer the supervised model because semi-supervised
learning is to tackle training datasets with large amounts of unlabeled data and
a small quantity of labeled data. In contrast, the supervised learning method
shows better performance when processing the dataset with all labeled data.

To generate prediction results, there are two indicators referred to judge a
function. One is the vulnerable probability, which is dynamically calculated by
the ML model to show the probability that a function is vulnerable. The other
is an inherent model metric called threshold [15]. A function is predicted to be
vulnerable if its vulnerable probability is greater than the threshold, otherwise it
is normal. The threshold is 0.5 by default and can be modified to fit the system
requirement. This paper uses threshold 0.5 to predict and label each function.

4.3 Control Graph After Prediction Policy (c)

By applying the prediction results, functions will be grouped to generate the
control graph by the Prediction policy, which enforces the rule that vulnera-
ble functions should be isolated and placed into different compartments, while
normal functions can be grouped into a single compartment.

As for the way of grouping functions, we follow the principle that grouping
functions equals merging code vertices in the control graph, which will also gather
all their associated edges and vertices. In other words, if several functions are
grouped in compartment-A, their accessible global data and peripherals will be
all accessible by functions in compartment-A. In addition, codes, peripherals and
global data are placed in different memory areas, so each compartment must be
assigned with different MPU configurations to define the accessibilities to these
memory areas. Therefore the control graph reconstructed by Prediction policy is
shown in Fig. 1(c). Functions 1 and 2 are predicted to be vulnerable, for safety
reasons they will be placed into separate vulnerable compartments, together
with their accessible global data and peripherals. The compartment containing
function 1 has three accessible MPU regions, which are for function 1, global
data a and c, and peripheral B respectively. On the other side, functions 3, 4
and 5 are predicted to be normal, they can be safely placed into the normal
compartment, with access to peripherals A, C and D, global data b and d.

4.4 Optimized Final Control Graph (d)

If the performance of the resulting compartments is too low, the policy also
provides some optional optimizations to the developer. We will discuss the opti-
mizations on normal and vulnerable compartments separately.

For Normal Compartments: As all normal functions are placed into a single
compartment, the MPU regions used for merging peripherals and global data
may expanded beyond the region limitation, so we give priority to lowering the
MPU region usage. Due to the specificity of the normal compartment, a well-
known architectural feature is reemphasized here. Unlike the global data which
can be placed in appointed memory, peripherals in Cortex-M processors are
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Fig. 2. The firmware is divided into several compartments (a), which have different
memory access permissions (b) after the compartment switching.

mapped fixedly in the memory area [1]. For example, peripherals A, B, C and
D are fixedly placed at the addresses 0× 10, 0× 20, 0× 30 and 0× 40. Since
one MPU region can only define the accessibility of a continuous memory area,
merging regions of peripherals may include additional peripherals. As shown in
Fig. 1(d), merging peripherals A, C and D into one MPU region will also include
peripheral B. As functions are all predicted to be normal, we believe that there
are no attack surfaces to compromise peripheral B.

For Vulnerable Compartments: As vulnerable functions may be compromised
by the attacker, adopting the same optimization discussed above may cause
irrelevant peripherals under attack. Thus we turn to researching the way of
reducing compartment usage by merging correlatively vulnerable compartments.
Our research findings suggest that if two vulnerable compartments both refer to
the same global data for their own control logics, one compromised compartment
may exploit the global data to affect the control logic of the other. So these two
compartments can be merged as they have the “correlative vulnerability”. As
shown in Fig. 1(d), Functions 1 and 2 are merged if their control logics both
depend on global data c. On the other hand, if a function is predicted to be
normal but also uses this global data for its control logic, it will be placed into
the same vulnerable compartment as well.

4.5 Memory Layout of Final Control Graph

After placing global data and function codes in specified memory address by
compiler, the final memory layout is shown in Fig. 2. Based on the final control
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Table 2. Predictability comparison among different models.

Model name Precision AUC Recall F-Measure

Voting(GBDT+LightGBM+XGBoost+RF) 0.79 0.83 0.77 0.78

Voting(GBDT+LightGBM+XGBoost) 0.79 0.83 0.76 0.78

Voting(GBDT+LightGBM+XGBoost+KNN) 0.79 0.83 0.79 0.77

XGBoost 0.77 0.83 0.78 0.78

LightGBM 0.76 0.83 0.79 0.77

BaggingKNN 0.80 0.82 0.70 0.75

GBDT 0.78 0.83 0.77 0.77

DecisionTree 0.70 0.81 0.80 0.75

RF (Random Forest) 0.77 0.82 0.78 0.77

NB (Naive Bayes) 0.98 0.67 0.34 0.51

graph, the firmware is divided into two compartments (i.e., X and Y). To ensure
the compartment switching, each function call between compartments and the
associated return have to be instrumented with compartment switching codes,
these codes are responsible for configurating MPU to dynamically change the
memory access permissions for the new compartment. As shown in the example,
function 2 can either call function 3 or function 4 based on the predefined logic
(e.g., through a if instruction). If function 2 is to call function 3, it also calls
the Entry Code to enter function 3 and enable the accessible address space of
compartment Y (i.e., the accessibility to peripherals A, B, C and D, global data
b and d). When function 3 finishes its work and wants to return to function 2, it
will call the Exit Code to return to function 2 and enable the accessible address
space of compartment X.

5 Implementation

5.1 Training Prediction Model

Datasets Preprocessing. We will take two typical types of C/C++-program
vulnerabilities as an example to train the prediction model, namely buffer error
(CWE-119) and resource management error (CWE-399). Throughout the exper-
iment, we collect the training datasets in Code Gadget Database(CGD) [12].
Following its report, we label 17725 vulnerable code gadgets (as the number 1)
and 43913 normal code gadgets (as the number 0).

With understand 5.0 python interface [18], we design an analyzing program
to extract features of each labeled function in CGD, and store the results in the
database. Among them, the data which contain too many useless entries (e.g., 0
or null) will be considered as invalid and discarded from the training datasets.
Moreover, we also adjust the sizes of the datasets to make the number of positive
samples and negative samples comparable. Note that this program can be used
to extract features from functions waiting for prediction as well.
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Model Selection. With the preprocessed datasets, we train a majority of com-
mon supervised models to select the appropriate one by comparing four crite-
ria [3], namely Precision, Area Under roc Curve (AUC.), Recall and F-Measure.
In addition, models with “bagging” theory are also taken into the comparison.
We take numbers of experiments and selectively show the representative mod-
els with relatively higher performance in Table 2. Finally we choose the model
“Voting(GBDT + LightGBM + XGBoost + RF)” because most of its criteria
are a little better than others.

5.2 Creating Compartments Through Prediction Policy

Tools for Creating Compartments. To create compartments for bare-metal
systems, tools supproting the following functions are helpful: 1) program anal-
ysis: a tool can analyze the application to generate the PDG; 2) compartment
creation: based on the PDG a tool can use the compartmentalization policy to
create compartments; 3) application instrumentation: a tool can insert instru-
mentation codes into the application to implement the compartment switching.
To realize these functionalities, besides the PDG generation tools, we refer to the
compiler ACES [5], which extends LLVM to create compartments on ARMv7-
M devices. Through modifying necessary cofiguration and preparing specialized
ARM cross-compiler, we successfully depoly ACES project with two compart-
mentalization policies locally.

The Prediction Policy. We implement and port both the Prediction policy and
the function prediction process as additional passes into the compiler. Besides
the common compiling processes, the compiler first extracts the function features
through understand interface [18], then uses the pre-trained ML model (saved
as a “.m” file by joblib library) to predict and label each function. After that
the control is transfered to the policy, which refers to the function prediction
results to isolate vulnerable and normal functions into different compartments,
along with their accessible peripherals and global data.

The core algorithm of the Prediction policy is shown in Algorithm 1. Lines
1–11 implement the design of Sect. 4.3 (i.e., Step c). With the Program Depen-
dency Graph (G), the policy first gets all the code vertices and data vertices and
put them into code array (i.e., Bcode) and data array (i.e., Bdata) separately.
Basing on the prediction result (R), the policy then traverses the Bcode to place
the vulnerable code vertex (i.e., vulnerable nodec) into vulnerable compartment
array (i.e., F[uid]) and remove the vulnerable nodec from Bcode. Finally, all
remained code vertices in Bcode will be placed into the normal compartment
array (i.e., F[normal]). Lines 12–16 implement the design of the vulnerable com-
partment optimization mentioned in Sect. 4.4 (i.e., Step d). For each data vertex
(i.e., noded) in Bdata, the policy leverages interfaces in NetworkX [13] to find
all the vulnerable code vertices with the same accessibility to this data vertex,
and then merges vulnerable compartments belonging to these vulnerable code
vertices. Note useless vulnerable compartments should be removed before the
generation of the Finished Control Region Graph (F).
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Algorithm 1. The Prediction Policy
Input: The Program Dependency Graph G.

The Function Prediction Results R.
Output: The Finished Control Region Graph F.
1: Get base code and data nodes: (Bcode, Bdata) = GetNodes(G);
2: Create key-value Structure U to save vulnerable nodes, and F to save finished

graph;
3: Initialize variable uid = 0 to order vulnerable region;
4: for nodec in Bcode do
5: if nodec in R is vulnerable then
6: add vulnerable nodec to F [uid];
7: uid = uid + 1 ;
8: remove vulnerable nodec from Bcode;
9: end if

10: end for
11: Create normal region in F , and put all remained code nodes in Bcode to F [normal];

[Optional optimized method start]
12: for noded in Bdata do
13: Get code neighbors list nec = GetNeighbors(noded)
14: Merge all vulnerable nec in F to one region
15: end for
16: Check and Remove useless vulnerable compartments in F

[Optional optimized method end]
17: return F ;

6 Evaluation

In this section, we not only evaluate the security and performance of a firmware
with three compartmentalization policies (i.e., Filename, Peripheral and Predic-
tion) but also calculate the 95% confidence intervals of FNR and FPR to research
the ways of improving the model predictability with current datasheets. Through
these tests, we expect developers to have a better understanding of our scheme.

To consistently and detailedly discuss the findings, tests are performed on the
same bare-metal application named MotorOn. Core source code files of MotorOn
are all listed in Table 3, including main.c for the core logic, sha256.c for libs
of security functions and two driver files for controlling peripherals. To simplify
the description, functions are all marked as different numbers. In addition, all
lib and driver codes are written by STMicroelectronics and the intermediate files
are not listed here. We compile MotorOn to create three binaries (one for each
policy) and execute them on STM32F4-DISCO board, which features a 32-bit
Cortex-M4 core with 192 KB RAM and 1 MB Flash [19].

6.1 Security Evaluation

In this section we first talk about different compartment divisions under different
policies and then analyze their security. We assume an attacker could maliciously
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Table 3. MotorOn’s callchain: by analyzing the encrypted request from UART,
MotorOn controls peripherals and sends message back.

Rx from uart ( 1 ) – likely vulnerable // main.c

Crypto msg ( 2 ) – likely vulnerable // main.c

LED on/LED off ( 3 ) // main.c

Motor on/Motor off ( 4 ) // main.c

Tx from uart ( 5 ) // main.c

Mbedtls sha256 ( 6 ) // Sha256.c

HAL GPIO WritePin ( 7 ) // Stm32f4xx hal gpio.c

HAL UART Handle IT ( 8 ) // Stm32f4xx hal uart.c

control the motor through memory corruption vulnerability in the following
three ways. 1) overwriting the global data which is for configuring the motor;
2) writing the GPIO which controls the motor; 3) bypassing the analyzing code
and maliciously calling motor-on functionality through a vulnerable function.
We assume libs and drivers provided by the vendor are safe, while two user-
defined functions (No. 1 and 2) are likely vulnerable and would be exploited to
perform the above attacks.

Compartment Divisions: As shown in Table 4, the compartment divisions are
obviously related to different compartmentalization policies. For functions that
are all implemented in the same source code file, the Filename groups them into
the same compartment. The Peripheral aims to isolate peripherals from each
other, but it also uses its control-flow aware compartmentalization to create
long call chains within the same compartment. Therefore the Peripheral finally
groups Functions 1 to 7. On the other hand, Function 1 and 2 will be isolated
into different compartments by the Prediction because they are both predicted
to be vulnerable in the function prediction process.

Compartment Security: For an attacker to overwrite the global data or GPIO,
the vulnerable functions must be placed in a compartment which can access
them. As the Peripheral groups Functions 1 to 7 together, the global data or
GPIO for controlling the motor can be overwritten. While the GPIO cannot
be overwritten in the Filename because its driver codes are placed into another
compartment which is not accessible by vulnerable functions. In contrast, both
global data or GPIO cannot be overwritten in the Prediction as vulnerable and
normal functions are isolated into different compartments.

For an attacker to directly execute the motor-on functionality, vulnerable
functions should have the accessibility to call the motor-on function, which
means they must be grouped in the same compartment. Among the policies,
only the Prediction can defend this attack due to its function-security-aware
compartmentalization design. However, though with little chance, there is an
indirect attack (named the deputy attack) that a vulnerable function can be
exploited to call its compartment switching codes to enter the compartment
storing motor-on function, and both Peripheral and Filename do not achieve
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Table 4. On restricting attacks from vulnerable functions to compromise the motor.
(✓) - restricted, (✗) - not restricted.

Firmwares with policies Filename Peripheral Prediction

Core # of compartments 4 2 3

Compartment divisions (by Function No.) 1/2/3/4/5, 6, 7, 8 1/2/3/4/5/6/7, 8 1, 2, 3/4/5/6/7/8

Overwrite Global Data ✗ ✗ ✓

GPIO ✓ ✗ ✓

Control hijack Direct ✗ ✗ ✓

Deputy ✗ ✗ ✗

the expected protection effect in this case study. As for the Prediction, it can
defend the attack led by Rx from uart (1) because Rx from uart (1) does not
contain a compartment switch into motor-on’s compartment. But the policy
cannot defend the attack led by Crypto msg (2). Although the Prediction has
some effects, we still mark it as the cross for the sake of prudence.

6.2 Performance Evaluation

Next we research the performance of MotorOn with different policies. To ensure
the accuracy, files in MotorOn, including core files listed in Table 3 and un-listed
intermediate files, are all taken into the evaluation. Results are shown in Table 5.

Number of Compartments: As previously stated, a compartment is used to
describe a code region with several accessible data regions. So the number of
compartments in a firmware equals to the number of code regions. We can see the
total number of compartments in Prediction is less than those in other policies.
One reason is that MotorOn contains limited vulnerable functions as it has been
tentatively verified and validated before deploying in industry. While MotorOn
contains many normal functions (and intermediate functions) for complicated
logics, which increases the total compartment usage in other policies.

Rumtime Overhead: Creating more compartments leads to more times of com-
partment switching, which will affect the overhead. By successfully receiving 100
motor-on commands, we record the average execution time of MotorOn (Units:
CPU clock). In our test, only compartments for core files will be called 100
times because they store the motor-on logics. On the other hand, compartments
for intermediate files have a low impact on the results because most of them
store the platform initialization codes which will be executed before the testing.
Accordingly, the Peripheral has the best performance as it groups most of the
core functions into the same compartment and reduces the number of compart-
ment transitions. However, the Peripheral fails to isolate vulnerable functions,
which will cause normal functions under attack. As a comparison, the Prediction
restricts the damage range of the vulnerability by increasing a little performance
overhead. In addition, a developer could adopt the optimizations to merge more
vulnerable compartments if the overhead is intolerable.
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Table 5. Performance evaluation, including total compartment usage, runtime over-
head and flash usage for MotorOn with different policies.

Firmwares with policies Filename Peripheral Prediction

Total # of compartments 11 19 7

Runtime overhead (clock/per time) 8098 × 103 8082 × 103 8088 × 103

Total # of regions Code 11 19 7

Data 5 6 4

Flash usage 426 KB 493KB 423KB

Memory Usage: As each compartment needs additional compartment switching
codes (shown in Sect. 4.5), the Flash usage of the Prediction is lower.

6.3 Further Research on Model Predictability

The Prediction policy depends on the function prediction results, so the model
predictability is another important topic. As mentioned in Sect. 4.2, the metric
threshold is for judging a function. In fact, the more functions are predicted
to be vulnerable, more compartments should be created, which will improve
the security but reduce the performance. So a developer should select proper
threshold according to different application scenarios. Next we will use False
Positive Rate (FPR) and False Negative Rate (FNR) to research the influence
of different thresholds on the model predictability.

We randomly sample the CGD datasets [12] to build 30 data groups, each
of which contains 2000 samples. By these data groups, we calculate the 95%
confidence intervals of FPR and FNR under different thresholds. As shown Fig. 3,
we can see that the curve trend between FPR and FNR is opposite. The increased
threshold causes more vulnerable functions to be predicted as normal, which will
rise the FNR and reduce the accuracy rate. On the other hand, the increased
threshold causes less normal functions to be predicted as vulnerable, which will
reduce the FPR and increase the accuracy rate. The results not only show the
real model predictability under different thresholds, but also provide developers
with the reference to control the predictability by adjusting the thresholds. As an
example, a developer may first choose the threshold 0.4 as this threshold keeps
both FPR and FNR relatively low. And then he is likely to adjust and carefully
adopt a even lower threshold if he takes the system security as his priority but
does not want the scheme to cause too much compartment usage.

An additional uncontrolled factor is the possibility that a software containing
uncountable “real” vulnerable functions will cause the generation of too many
compartments. This issue could be mitigated by the compartment optimization,
as shown in Sect. 4.4. Moreover, a commercial application usually needs to go
through some verification or validation process before depolying on the IoT
device, which also limits the number of “real” vulnerable functions.
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(a) Confidence Intervals of FNR (b) Confidence Intervals of FPR

Fig. 3. Confidence intervals (y-axis) of FNR and FPR under thresholds (x-axis)

7 Related Work

Numbers of solutions have been proposed to restrict compromised software mod-
ules from subverting other system modules for ARM-based devices [2,4]. Hilps [4]
utilizes TxSZ hardware field on AArch64 to implement effective domain switch-
ing and intra-level isolation. SKEE [2] provides an isolated execution environ-
ment at the same privilege level of the kernel without active involvement of
higher privileged software. While they are for Cortex-A devices and not avail-
able on Cortex-M devices. Our work uses MPU to create lightweight protection
domains for firmwares on ARMv7-M based devices, a vulnerable function in one
compartment is constrained and cannot subvert contents of other compartments.

Facing the low-cost requirement on IoT devices, some frameworks [5,10,11,
14] are proposed to build memory isolation. TrustLite [11] and Sancus [14] pro-
vide hardware-assisted isolation schemes, but they both require specific modifica-
tions on the processors. MINION [10] designs compartments and compartment
switching at thread-level, but it cannot flexibly determine the compartments.
ACES [5] automatically infers and enforces inter-component isolation on bare-
metal systems. While the security of its compartmentalization policy needs more
discussions. Our work not only combines the machine-learning and compiler tech-
nique to isolated vulnerable and normal functions into different compartments
for system security but also take some optional optimizations to reduce the over-
head.

8 Conclusion and Future Work

In summary, this paper has argued that existing compartmentalization policies,
which are applied to partition a bare-metal firmware into compartments, do not
address the problem that an unsafe function in a compartment could act as the
“stepping stones” to manipulate other contents that are also saved in this com-
partment. The research has also shown that a novel scheme with an appropriate
ML model can be designed to not only compartmentalize vulnerable and normal
functions respectively but also optimize the subsequent compartmentalization
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overhead. The PoC of the scheme is incorporated into an LLVM-based compiler
and evaluated on STM32F4-DISCO board. Compared with the firmware adopt-
ing other typical policies, the firmware with the new policy not only shows better
security but also assures the overhead basically unchanged.

In future investigations, it might be possible to use more training datasets
with newly discovered vulnerabilities to improve the model predictability. It
is a challenging work as new applications with exploitable vulnerabilities are
reported everyday. However, a further study of the spatial independence of train-
ing datasets could help to assess potential long-term effects of the current model
predictability. More broadly, researchers were likely to investigate ways of auto-
matically adopting the applicable threshold for different IoT application scenar-
ios. Besides, to improve the security of the scheme itself, studies on defending
deputy attacks are helpful. Despite its exploratory nature, this paper will prove
useful in expanding our understanding of how to secure bare-metal systems with
the consideration of the performance overhead. To be specific, basing on the
application requirement, one could adjust the threshold to either enforce the
security (i.e., reducing the threshold to mark more vulnerable functions) or the
performance (i.e., through marking less vulnerable functions or compartment
optimization).
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Abstract. Malware authors do their best to conceal their malicious soft-
ware to increase its probability of spreading and to slow down analysis.
One method used to conceal malware is packing, in which the original
malware is completely hidden through compression or encryption, only to
be reconstructed at run-time. In addition, packers can be metamorphic,
meaning that the output of the packer will never be exactly the same,
even if the same file is packed again. As the use of known off-the-shelf
malware packers is declining, it is becoming increasingly more important
to implement methods of detecting packed executables without having
any known samples of a given packer. In this study, we evaluate the use
of recurrent neural networks as a means to classify whether or not a file
is packed by a metamorphic packer. We show that even with quite simple
networks, it is possible to correctly distinguish packed executables from
non-packed executables with an accuracy of up to 89.36% when trained
on a single packer, even for samples packed by previously unseen packers.
Training the network on more packer raises this number to up to 99.69%.

Keywords: Packing · Packer detection · Security · Static analysis ·
Machine learning · Deep learning

1 Introduction

There is a constant arms race going on between malware authors and malware
analysts. As anti-malware tools get better at detecting malware, the malware
authors are being forced to adapt new strategies to hide their malware. Modern
anti-malware tools rely mainly on two approaches: signature-based detection,
and detection based on heuristics. The first method detects malware by searching
for exactly matching unique byte-strings, called signatures, within an analyzed
file, while approaches based on heuristics estimates the behavior of the analyzed
code by e.g.. enumerating called functions. Since both of these methods rely on
analyzing the malware itself, a common way of avoiding detection is to hide
the malicious software using tools called packers, which completely hide the
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original code from analysis. It is reported that up to 92% of all malware is hidden
this way [12], and 35% of these are hidden using custom, previously unseen
packers [23]. This large number of unknown packers, combined with the inability
to analyze the malicious code itself, results in anti-malware tools having a harder
time detecting potential malware. To make matters worse, some packers are
designed to procedurally generate packed executables that always look different,
even if the original file is the same.

Detection of packed binaries, rather than malicious code itself, is useful in
several ways. As mentioned, the malware itself cannot be detected using con-
ventional methods when it is hidden. However once a file is determined to be
obfuscated it can be flagged as high priority for further analysis. If such detection
is used in e.g.. a network intrusion detection system (NIDS), the search space to
identify the responsible file of an intrusion could be decreased. Such files could
also be stopped from entering the network until they are checked and cleared
by an administrator. Since a large portion of the tools used to hide malware are
custom made, and therefor not previously known, studying ways to generically
detect these kinds of obfuscation techniques is important. Despite this, studies
conducted on packer detection (discussed in Sect. 8) do generally not evaluate
how general the proposed methods are, but they only evaluate on packers known
by the model. A notable exception is a study by Bat-Erdene et al. from 2017 [9].

The purpose of this study is to determine whether deep learning, in particular
recurrent neural networks, can be used to differentiate between the procedurally
generated code mentioned above, and compiler generated code. We will deter-
mine whether or not this is possible by training a neural network on several data
sets derived from a large set of off-the-shelf packers, and evaluating how general
these models are. These experiments are described in Sect. 6. Our results show
that neural networks can be trained to make the distinction, not only for packers
in the training set, but also for previously unseen packers. To the best of our
knowledge, we are the first to use deep learning to solve this problem, and we
have evaluated our approach on the largest set of packers in the literature. Our
two main contributions are a) showing that deep learning can be used to train
models capable of distinguishing between obfuscated code and compiler gener-
ated code in the general case, and b) our classification of a very large amount of
run-time packers.

The rest of this paper is structured as follows. In Sect. 2, the concepts of
a packer, metamorphic packer and polymorphic packer are defined. Section 3
describes the recurrent neural network used for packer detection in this study,
and Sect. 4 discusses how data generation and processing was performed.
Section 5 describes how the set of packers studied in this paper was selected. The
experiment design is explained in Sect. 6. Results are shown in Sect. 7. Previous
work in the area of packer detection is laid out in Sect. 8, and finally conclusions
and future work are presented in Sect. 9.
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2 Background

The tools used by malware authors to hide their malware, referred to as packers,
have evolved from earlier tools that produced self-extracting archives [27]. The
term “packer” originally referred to a program that packed a set of files into a
single package. This meaning has shifted over time to refer to tools that transform
executable files into another form that can reproduce the original at run-time.
This drift in terminology has led to competing definitions amongst the work in
this area. For clarity, we pin down definitions of these commonly used terms. We
also discuss the operation of a packer, as well as different kinds of packers.

2.1 Terminology

Throughout this paper, we will use the following terms to talk about packers,
and the concepts surrounding them:

– A packer is a program that transforms an executable into two parts: an
unpacking stub and the data that it operates upon.

– An unpacker or unpacking stub is a piece of code that converts data into code.
– The original program is an executable whose signature is being hidden by the

packing process.
– The packed data is a binary stream from which the original program can be

reconstructed by the unpacker.

Most packers will perform (up to two) transformations when creating the
packed data: compressing the data, and/or encrypting the data. Typically pack-
ers that compress the packed data are referred to as compressors, and packers
that encrypt the packed data are referred as crypters [30]. These transformations
are not mutually exclusive and it is possible for a packer to be both a compressor
and a crypter.

When checking for malware using signature-based detection, the stream of
bytes in the unpacker and packed data are compared to known samples (typically
by comparing hashes). In order to avoid detection, a polymorphic packer will
create a different unpacker and packed data stream on each executable. This
may be achieved, for example, by encrypting the code via a different key on each
execution of the packer [27]. In a similar fashion, a metamorphic packer will avoid
detection by generating unpackers where the code is semantically equivalent but
not identical [27]. Programming using macros instead of actual code, where each
macro represents a set of different representations of the same operation, can
be used to accomplish this [15]. A monomorphic packer will produce the same
unpacker and packed data stream for each execution on the same input original
program [28].

2.2 Typical Operation

Packers operate on executable files, which can be either an original program,
or an executable that has already been processed by one or more packers. This
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should not matter, since the original executable is simply data to the packer.
The executable is transformed in some way, commonly through compression or
encryption, to hide the original code. Following this, an unpacking stub is created
and bundled with the transformed executable in a new executable file. The entry
point of this executable file points to the start of the unpacking stub, which will
inflate or decrypt the original executable into memory at run-time. Typically
this is done in one single pass, unpacking the whole original into memory at
once, however there are advanced packers that use multiple passes [28].

Once the original code is unpacked into memory, the unpacking stub will hand
over execution to the unpacked application. This is typically done through a tail
jump to the original entry point (OEP). The tail jump is commonly obfuscated,
e.g.. by pushing the OEP to the stack and “returning” to it, to hide where in
memory the original code starts.

It is common for packers to employ techniques for making the unpacking stub
itself harder to analyze as well. Common techniques include embedding random
data in the code, loading libraries at run-time, overlapping instructions, as well as
poly- and metamorphic code. Code can be metamorphic either by procedurally
generating the assembly code itself by choosing between synonymous assembly
sequences, or by inserting dummy basic blocks into the control flow graph of the
program. Morphine v.2.7 [17] uses both of these techniques, and also inserts
junk code, i.e. code that is semantically identical to a NOP, into the unpacking
stub to make analysis harder [14].

3 Neural Network Design

The data that is being analyzed in this study, discussed at length in Sect. 4.1,
is a sequence of x86 assembly instructions. Since these sequences are slices of
real code, context is crucial. For instance, while the operation of an XOR opcode
will always be the same in any given executable, the purpose can vary widely
depending on how it is used. In some contexts an XOR opcode might be used to
efficiently clear a register, while in another context it could be used to decrypt
packed data that was encrypted with an XOR-cipher. Because of this, the general
design of the neural network evaluated in this study is a recurrent neural network,
as they are well suited for learning a context sensitive sequence of data.

In particular, the neural network used in this study is made up of a multi-
layered LSTM network, and a fully connected binary classifier. The multi-layered
LSTM network has two layers, each with 128 nodes. The second of these two
layers feed into a dropout layer with 50% dropout to mitigate overfitting. The
dropout layer feed into the binary classifier, which has three layers of 128, 64
and 1 nodes respectively.

The first two layers of the fully connected binary classifier use a ReLU (Recti-
fied Linear Unit) activation function, while the last layer uses a sigmoid function.
ReLU is used as it makes training the network easier while still yielding good
results, while the sigmoid function is used to make sure the output of the net-
work is a probability between 0 and 1. We chose a sigmoid function, as opposed
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Fig. 1. Neural network design used in this study.

to a softmax function, since we are performing binary classification in this study.
The network is illustrated in Fig. 1.

The input of the network consists of the first 128 instructions of each sample
file. A sliding window is used to specify each time-step in the sequence, where
the window size w = 1 is used. Both the number of instructions and the size of
the sliding window were determined through a process that is described in [10].
Each input is labeled l ∈ {0, 1} where 0 means the instructions come from a
non-packed executable, and 1 means they come from a packed executable. The
encoding of the x86 instructions is discussed in Sect. 4.1.

3.1 Training

The neural network was trained for 50 epochs1, with a batch size of 10 ∗ n, where
n is the number of packers included in training. A small batch size means reduced
training time and memory requirements, while letting the network update its
weights a large number of times to facilitate learning. Each batch consisted of
both packed and non-packed samples in equal amounts, to ensure that the neural
network had equal exposure to positive (packed) and negative (non-packed) sam-
ples. Because each sample is only seen by the network exactly once per epoch,
the network need to be trained for multiple epochs to allow the network to make
a sufficient number of updates to the weights of each node, which is why the
network is trained for 50 epochs. The model with the best accuracy was saved
and used for the evaluation.

1 An epoch is a pass over all training and validation data exactly once.
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4 Data Collection and Preprocessing

In this section the collection and generation of the raw data used in this study
is laid out, as well as the preprocessing and filtering steps that were taken to
construct the final data set.

4.1 Data Encoding

The goal of this study is to determine if it is possible to utilize neural networks
to differentiate metamorphic code from compiler generated code. As such, the
raw data used will be binary code, which is structurally complex. It is there-
fore necessary to find a way to represent this data, so the neural network can
understand it.

The first issue to address was which data to feed to the network. A trivial
approach would be to use the raw byte values of the code, but the issue with
this approach is that some operations that are semantically different share bytes.
For instance, both JMP and INC start with the byte 0xFF. Extending this to
the whole opcode does not solve this problem, as JMP [EAX] and INC [EAX]
are semantically different but have the opcodes 0xFF2 and 0xFF0 respectively,
which are numerically very close to each other. Using the whole numerical values
for an instruction and its arguments has the opposite problem; JMP EAX and
JMP 0x1234 are semantically similar, but their numerical values, 0xFFE0 and
0xe92f120000, are very different.

The encoding scheme that we decided on was to map the assembly mnemon-
ics of the x86 instruction set to a list sorted according to the order given in
Chapter 6 of the x86 manual [4], where the mnemonics are grouped by the
type of operation they perform (e.g.. moves, jumps or arithmetic). Mnemonics
not described there were sorted alphabetically at the end of our list2. The data
fed to the neural network are the indices of these mnemonics, meaning that
semantically similar operations will have similar indices, thus solving the issues
mentioned above. Based on an evaluation detailed in [10], we chose to only con-
sider the first n= 128 instructions after the entry point of each executable file.
This results in fast execution, while still retaining a good average accuracy. Dis-
assemblies that were shorter than n instructions were padded with meaningless
values. However if the last disassembled instruction was a direct jump it was fol-
lowed, and disassembly continued from there. Because the disassembly will only
be too short if it reaches the end of an executable section, we know that this
has to be unconditional control flow (either JMP or RET), as otherwise execution
would risk “falling outside” the code. Therefore we only need to consider the last
instruction. Files that could not be disassembled at all, or were not recognized
as Portable Executable (PE) files, were excluded from the data set.

2 https://gist.github.com/erikbergenholtz/a653d46db64c2ce490af91698f75e992.

https://gist.github.com/erikbergenholtz/a653d46db64c2ce490af91698f75e992
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4.2 Collection and Generation of Raw Data

The basis for the data set used in this study were 1904 executable files retrieved
from the C:/Windows directory of our reference system3. These files were packed
once by each of the 42 packers found in the prestudy in Sect. 5 (positive samples),
and were also included in the data set in their original form (negative samples).
Many packers failed to pack the whole set of 1904 files. On average, each packer
could pack 1358 files. Since some of our experiments include multiple packers in
the training set, we augmented the negative samples with the 13002 DLL files
found in the C:/Windows directory of reference system. All of these files were
preprocessed according to Sect. 4.1, resulting in a total of 61535 positive samples
and 12549 negative samples after preprocessing, meaning that the full test set
consisted of 74084 files.

These 74084 files were split into one training set, one validation set, and one
test set. The validation and test sets each consist of 10% of the total amount of
data each, i.e. 7426 files, and the remaining 59232 files are in the training set.

It is important to note that while the full data set is unbalanced, with almost
five times more positive samples than negative samples, the three subsets men-
tioned above are always balanced when used. If, for example, the neural network
is trained on a packer with 1000 samples, then 1000 negative samples are used.
If a set of packers with a total of 13000 samples is used for training, then this
set is capped at 12549 samples, and an equal amount of files is used from each
packer. In other words, in both training, validation and test sets there is always
balanced data, despite the fact that the data set as a whole is unbalanced.

5 Packer Prestudy

A prestudy was conducted to determine which packers to include in the main
study. We had two criterion for including a given packer in the main study: avail-
ability and relevance. We consider a packer to be available if and only if we can
legally acquire a copy of it without purchasing it. This means that commercial
tools are out of the scope of this study, unless they provide a free demo or trial
version. A packer is considered to be relevant if and only if it is metamorphic,
possible to execute on a modern operating system, and is able to pack 32-bit PE
files. We chose to not make the ability to pack 64-bit PE files a requirement, as
a lot of the packers we found in the prestudy were 32-bit applications, and we
wanted to include as many packers as possible. We still consider 32-bit packers
relevant, as they can run on modern 64-bit systems.

A total of 180 packers, listed in Table 1, were identified and considered for this
study. The available packers were evaluated for relevance on a Windows 10 (see
footnote 3) virtual machine, by packing the same executable twice with each
packer. The two resulting executables were disassembled with objdump4, and

3 Windows 10 Education 32-bit, build 17763.316.
4 objdump -d <FILENAME>.
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Table 1. Packers included in the selection process. Packers marked with green were
included in the study, and red were unavailable. Yellow are metamorphic, but not
included.

AASE Aegis Crypter AHT Entry Point Protector AKALA v3.20
Alex Protector Allaple Alloy v4.3.21.2005 Alternate exe v2.220
AntiCrack protector AntiCrack protector pro AntiUCPE v1.02 APack v0.98
Armadillo ARMProtector v0.3 ASPack v2.43 ASprotect v2018.3
ASprotect v2.78 Beria 0.07 Berio BeRoEXEPacker
BJFNT v1.3 CelsiusCrypt CodeCrypt v0.164 Code Virtualizer v2.2.1.0
ComCryptor v1.80 Corso v5.2 Crinkler 2.1a Crunch v1.0
CRYPToCRACk’s PE Protector CryptoLock v2.0 Daemon Crypt 2.0 DalKrypt v1.0
Diet DingBoy PE-Lock v1.5 DragonArmor v0.4.1 Drony Application Protect v3.0
Enigma v6.00 !EPack v1.0 !EPack v1.4 EPProtect
Escargot Excalibur v1.03 exe32pack EXECryptor v1.3
EXEFog v1.12 EXEJoiner EXEPack ExeSax v0.9.1
ExeStealth eXPressor FileXPack FSG v1.3
FSG v2.0 GHF Protector HidePX v1.4 Hmimy’s Protector
HuffComp v1.3 Hyperion JDPack KillFlower v1.2
KKrunchy v0.23a2 KKrunchy v0.23a KKryptor Krypton
LameCrypt LiteProtect LZEXE v0.91 LZEXE v0.91e
MarCrypt v0.1 marioPACKer v0.0.3 MaskPE Masspecer v3.0
Mew v11 MicroJoiner Molebox Morphine 1.5
Morphine 1.6 Morphine 1.7 Morphine 1.9 Morphine 2.7
Morphine 3.5 Morphnah MPRESS v1.27 MPRESS v2.18
MPRESS v2.19 [MSLRH] Mucki’s Protector v1.0 MZOoPE v1.0.6b
NakedPacker v1.0 NeoLite v2.0 NFO v1.0 NiceProtect
NoobyProtect NoodleCrypt v2.0 nPack NSAnti (Anti007)
NsPack v3.7 NTKrnl Obsidium v1.6.6 Obsidium v1.6.7
ORiEN PackerFuck PackMan v1.0 Pack v1.0
PCGuard v6.00.0540 PCShrink v0.71 PE-Armor PEBundle
PECompact PECRP v1.02 PECrypt32 v1.02 PEDiminisher
PELockTide v1.0 PELock v2.08 PE.ncrypt v3.0 PE.ncrypt v4.0
PenguinCrypt PE Ninja PEPaCK PE.Prot
PersonalPrivatePacker PEShiELD v0.25 PEShrinker PESpin
PEstil PETITE v2.4 PeX PKLITE32
Pohernah v1.1.0 PolyCrypter PolyCrypt PE PolyEnE v0.01+
Private EXE Protector v2.0 RCryptor RDG Tejon Crypter ResCrypt
RJoiner RkManager11 RLPack 1.21 RPolycrypt
ScrambleUPX v1.07 SecureCode Sentry ShareGuard v4.0
Shrinker v3.4 demen Shellter v7.1 SimplePack v1.0 SimplePack v1.3
SLVc0deProtector v1.12 STonePE tELock Themida v2.4.5.0
ThinApp Trap v1.21 UCFPE v1.13 Unk0wn Crypter v1.0
Unopix v0.94 Unopix v1.10 Upack UPolyX
UPX v3.91w UPX v3.95 USSR v0.31 VBox
VGCrypt v0.75 VMProtect v3.3 VPacker v0.02.10 WinKript
Winlicence v2.4.5.0 Winlite WinUpack WWPack32 v1.12
WWPack32 v1.20 XCR v0.13 XProtector XXPack v0.1
YodaCrypter v1.3 YodaProtector v1.03 ZCode v1.0.1 ZProtect

these disassemblies were compared. A packer is considered to be metamorphic,
and therefore relevant, if the disassemblies differ.

We chose to compare the disassembled code for differences, rather than the
files themselves, as we are only interested in packers where the unpacking stub
is generated dynamically. Cases where different encryption keys are used each
time, i.e. polymorphic packers, are not of interest in this study.

Monomorphic packers are excluded from the study as they are trivial to
detect using signature-based detection, and because they would only provide a
single data point for the neural network to learn from.

6 Experiments

Two experiments were performed in this study, both of which are laid out in this
section. We also discuss how the disassembly engine used in these experiments
was selected.
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6.1 Choice of Disassembler

Since the neural network works with mappings of opcode mnemonics, it is essen-
tial how to extract the mnemonics. We considered two well known, off-the-shelf
disassemblers for this study: objdump [1] and radare2 [2]. These two tools oper-
ate differently, in that objdump is a linear disassembler while radare2 is a recur-
sive disassembler. This means that objdump will disassemble a program from the
first instruction to the last in the order instructions are laid out in the file, while
radare2 will disassemble one block of code at a time, following jump instruc-
tions along the way. The consequences of this are that objdump will be able to
disassemble all code in the file, but may also disassemble embedded data by
mistake. radare2, on the other hand, won’t disassemble any data, but may end
up seeing very small portions of the code if it encounters indirect jumps. The
tools were evaluated on a subset of the data set used in this study, and from
this evaluation it was clear that objdump is in general able to disassemble larger
parts of the files than radare2. For this reason, we chose to use objdump5 in this
study. More details on the evaluation can be found in [10].

6.2 Experiment Design

The experiments laid out below were all performed with the parameters and
procedures described above. The results can be found in Sect. 7.

Training on a Single Packer. In the first experiment, we trained the neural
network on a single packer at a time for each packer included in the study.
This allows us to determine which packers produce the model that can most
accurately distinguish packer generated code from compiler generated code, even
for packers that the neural network has not been exposed to. Being able to train
such a general model with samples from a single packer would be very beneficial,
as it would allow us to detect unknown packers, even with a small training set.

Training on n − 1 Packers, Evaluate on Excluded One. In the second
experiment, a model was trained on all packers included in the experiment except
for one. The model was then evaluated on the excluded packer. This was done
for the ten packer families that yielded the most accurate models in the first
experiment. This experiment represents a realistic scenario in which we have
access to samples of many, but not all, packers, and where a new unseen packer
is being scanned by the anti-malware tool. As with the previous experiment,
begin able to train such a general model would be highly beneficial, as it would
allow us to detect unseen packers. Since it will be exposed to more kinds of
metamorphic code, it is our hypothesis that the accuracy of these models will
be higher than that of the first experiments.

5 objdump -Mintel -D --start-address <ENTRY POINT>.
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6.3 Evaluation

The performance of each model was evaluated by estimating the probability of
a given file being packed (ppacked) once for each file in the unseen test set of
each experiment. Since we are interested in a binary prediction (packed or not
packed) we applied Eq. 1 to determine whether or not a file was considered to
be packed or not.

prediction =

{
packed if ppacked > 0.5
non-packed if ppacked ≤ 0.5

(1)

Two different test sets were created for each of the two experiments described
above. For the first experiment, the first test set consisted of executables packed
by the packer used for training. The second test set consisted of packed files
from all packers. For the second set of experiments, the first test set consisted
of files packed by the one packer that was excluded from the training set. The
second test set consisted of all packers included in the experiment. All test sets
also contain non-packed files in the same amount as packed files.

Of these four test sets, we are mostly interested in the evaluation on all
packers for experiment one, and in the evaluation of the excluded packer for
experiment two. This is because these two evaluations are performed on packers
that are not included in the training sets of the experiments, and will therefore
show how general the trained model is. A more general model will be able to
more accurately detect unseen packers, which is highly desirable.

Since all our data is labeled, we are recording the number of true positives
(TP), false positives (FP), true negatives (TN), and false negatives (FN) for the
two evaluations of each model. A true positive in our case is a file that has been
classified as packer and in fact is packed, and a true negative is a non-packed file
classified as such. Using these values, we can calculate accuracy, precision and
recall for all models.

7 Results

The results of the experiments described in Sect. 6 are laid out below.

7.1 Model Trained on a Single Packer

The accuracy of each model trained on a single packer can be seen in Fig. 2. For
each model, the accuracy of evaluating the models on the packer itself, as well as
all packers in bulk, is shown. From the figure it is clear that most models work
well when classifying files packed by the packer used for training. However, we
are more interested in seeing how well the models generalize onto the unknown
packers. Here, some of the models perform well, with the best being the model
trained on EXEFog v1.12 with and accuracy of 89.36%, and the worst being PE
Ninja with an accuracy of only 51.16%.
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Fig. 2. Accuracy of model trained on the individual packers, when evaluated against
only the packer included in the training set (Self), and all packers included in the study
(All).

These results are very promising, as it means that by training an RNN on
only samples packed by EXEFog v1.12, we can get a model that can correctly
distinguish files from any of the 42 packers in 89.36% of the cases. This, combined
with the recall of 81.75% and a precision of 96.43%, as seen in Fig. 4 in the
Appendix, makes for a good model for detection of executables packed by a
metamorphic packer, even the packer is unknown to the network.

7.2 Model Trained on n − 1 Packers

Figure 3 shows the accuracy of the models trained on the ten packers that yielded
the most accurate models in the previous experiment, with one packer being
excluded from the training set. From the graph, we can tell that the resulting
models have a very high accuracy, both when evaluated on the excluded packer
and when evaluated on all packers in the training set. The best model was the one
trained on all packers but Themida v2.4.5.0, where an accuracy of 99.69% was
achieved when evaluated on only Themida v2.4.5.0, and 97.01% when eval-
uated on all packers in the training set. The other models show a very high
accuracy in general as well, with accuracies above 95% for all packers but two,
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Fig. 3. Accuracy of model trained on N-1 packers, when evaluated against only the
packer excluded in the training set (Excluded), and all packers included in the training
set (All).

as shown in the figure. The recall and precision follow the same pattern, as shown
in Fig. 5 in the Appendix.

Keeping in line with the results from the previous experiment, these results
show that it is indeed possible to train a recurrent neural network on a subset
of all metamorphic packers, while retaining the ability to accurately distinguish
the metamorphic code from compiler generated code of a normal, non-packed
executable.

8 Related Work

Although many of the following papers use the term “polymorphic”, the pack-
ers they study is metamorphic according to our terminology, as described in
Sect. 2.1.

A number of methods have been proposed to address the problem of detection
of metamorphic packers, ranging from advanced signature-based detection and
entropy analysis to steganalysis.

Signature-based detection is explored by Křoustek et al. [21], and Naval et al.
in [24] and [16]. The approach taken by Křoustek et al. is part of the Retargetable
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Decompiler project [3], and uses handcrafted heuristic signatures. In their study,
they demonstrated that the approach can identify metamorphic packers with
an accuracy of 98%. Naval et al., on the other hand, use the Smith-Waterman
algorithm together with multiple sequence alignment to generate signatures. The
method reached an accuracy of 92.5% and 99.0% when evaluated on ASPack and
PECompact respectively [24], and was later extended by parallelizing the Smith-
Waterman algorithm, yielding a speed up of up to 49.19 times the original speed,
while maintaining accuracy [16].

Ban et al. [5,6] used string-kernel-based support vector machines for packer
identification, thus bridging the gap between signature-based and machine
learning-based detection. Their method could identify which packer was used
to pack a certain executable with and accuracy of 91.42%, thus outperforming
PEiD.

Machine learning approaches of different kinds have also been studied in mul-
tiple articles. Hubballi et al. evaluated two approaches in 2016 [18]. The first was
a semi-supervised approach trained on data from the PE header, with an accu-
racy of 98.97%, and the second was clustering approach based on the assumption
that packers mutate their memory at run time. This method reached an accuracy
of 100% for certain packers. Lee et al. [22] studied the use of stacked RNNs and
Convolutional Neural Networks (CNN) to classify Android malware. Features
are extracted using gated recurrent units (GRU), optimized by an additional
CNN unit. The method was shown to be robust against obfuscation, and were
able to detect 99.9% of the analyzed obfuscated samples. Kancherla et al. used
Byte and Markov plots to extract features which were used to train an Sup-
port Vector Machine [20]. They concluded that the features extracted using the
Markov plots performed better, with detection accuracies ranging from 83.94%
for Armadillo up to 99.05% for Themida.

Xie et al. proposed the use of a sample-based Extreme Learning Machine
(ELM) system for run-time packer detection [29]. Their hypothesis was that the
system would be less sensitive to erroneous or missing data if it was sample-
based, which was confirmed by experiments in which the proposed system per-
formed better than other ELMs, and reached a detection accuracy of 69.74%.

Bat-Erende et al. [7–9] studied the use of entropy analysis for packer detec-
tion, as did Jeong et al. in [19]. In all four studies, the entropy of the executable
in memory was calculated while the unpacking stub was running. Using this
analysis, Jeong et al. could correctly identify the OEP of a packed binary in
72% of their tests [19]. Bat-Erende, meanwhile, could classify files as packed
or unpacked with a true positive rate of 98.0%, and an accuracy of 90.4% on
files packed once [7], and on average 98.0% on files that were packed multiple
times [8]. In [9] they showed that it is also feasible to use this method to detect
unknown packers, with an average accuracy of 95.35%. In a similar vein, Sun
et al. [26] trained statistical classification models on randomness profiles of exe-
cutables, extracted with a sliding window, to classify packed executables. The
method was shown to have a precision between 95.5% and 100% for certain
packers.
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Steganalysis, the study of detecting hidden communication inside digital
data, was proposed as a means of packer detection by Brugess et al. in [13].
Their method converts the executable to a gray-scale image, from which fea-
tures are then extracted to train a support vector machine. The evaluation of
this approach show an accuracy of 99.49%.

More recently, virtual machine (VM)-based obfuscation has been observed in
industry-grade obfuscation solutions, such as VM Protect and Themida, and in
advanced malware [25]. When this technique is used, the original machine code
(e.g.. x86) is converted to a byte code used by the VM. The byte code is based on
a instruction set architecture (ISA) chosen randomly at the time of conversion.
This makes reverse-engineering very time-consuming. The deobfuscation method
presented in [25] relies on static analysis. However, it is not very efficient because
it requires more or less full understanding of the VM and needs to be repeated
for each obfuscator encountered [11]. On the other hand, [11] proposes a novel
method of program synthesis based on Monte Carlo Tree Search (MCTS). Their
implementation, called Syntia, allowed them to synthesize with more than 94%
success rate the semantics of arithmetical and logical instruction handlers in VM
Protect and Themida obfuscators.

9 Conclusions and Future Work

The results presented in Sect. 7 show that it is indeed possible to train a recurrent
neural network to distinguish between non-packed compiler generated code and
the unpacking stub generated by a metamorphic packer. The results also show
that it is possible for such models to not only make the distinction for packers
included in the training set, but that a high level of accuracy can also be reached
for detecting previously unseen packers.

Including a single packer in the training set results in at most an accuracy of
89.36% when the model is evaluated on all packers included in the study. This
was achieved by training on EXEFog v1.12 with a sliding window size of w = 1,
and the model also had a precision of 96.43% and a recall of 81.75%. These
metrics shows that the model performs well, and that this method shows a lot
of promise.

Training the RNN on a set of packers and evaluating it on a single excluded
packer, reinforces this point. When using a set of ten packers and training on
all but one, we achieve an accuracy of 99.69% at most when training on all
ten packers except for Themida v2.4.5.0. The other packers evaluated this way
show generally high performance as well. This shows that as the number of
packers included in the test set goes up, its ability to make accurate predictions
about unseen packers goes up as well.

As the aim of this study was to simply explore the feasibility of using recur-
rent neural networks to distinguish between non-packed compiler generated code
and metamorphic unpacking stubs, the encoding scheme used to encode the
training and test data is rudimentary and naive. In future studies, we will explore
how the encoding affects the accuracy of the trained models. In particular, we



50 E. Bergenholtz et al.

will explore whether or not the output of binary analysis methods can be used to
extract more meaningful information from the PE files, to improve the accuracy
of the network presented in this study.

Appendix

Recall and Precision

Fig. 4. Recall (top) and precision (bottom) of model trained on the individual packers,
when evaluated against only the packer included in the training set (Self), and all
packers included in the study (All).
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Fig. 5. Recall (top) and precision (bottom) of model trained on N-1 packers, when
evaluated against only the packer excluded in the training set (Excluded), and all
packers included in the training set (All).

References

1. Objdump. https://sourceware.org/binutils/docs/binutils/objdump.html. Accessed
16 Jan 2020

2. Radare2. https://www.radare.org/r/. Accessed 16 Jan 2020
3. Retargetable decompiler. https://retdec.com/. Accessed 8 May 2019
4. Intel R© 64 and IA-32 ArchitecturesSoftware Developer’s Manual, May 2019

https://sourceware.org/binutils/docs/binutils/objdump.html
https://www.radare.org/r/
https://retdec.com/


52 E. Bergenholtz et al.

5. Ban, T., Isawa, R., Guo, S., Inoue, D., Nakao, K.: Application of string kernel based
support vector machine for malware packer identification. In: The 2013 Interna-
tional Joint Conference on Neural Networks, IJCNN 2013, Dallas, TX, USA, 4–9
August 2013, pp. 1–8. IEEE (2013). https://doi.org/10.1109/IJCNN.2013.6707043

6. Ban, T., Isawa, R., Guo, S., Inoue, D., Nakao, K.: Efficient malware packer identi-
fication using support vector machines with spectrum kernel. In: Eighth Asia Joint
Conference on Information Security, AsiaJCIS 2013, Seoul, Korea, 25–26 July 2013,
pp. 69–76. IEEE (2013). https://doi.org/10.1109/ASIAJCIS.2013.18

7. Bat-Erdene, M., Kim, T., Li, H., Lee, H.: Dynamic classification of packing algo-
rithms for inspecting executables using entropy analysis. In: 8th International Con-
ference on Malicious and Unwanted Software: “The Americas”, MALWARE 2013,
Fajardo, PR, USA, 22–24 October 2013, pp. 19–26. IEEE Computer Society (2013).
https://doi.org/10.1109/MALWARE.2013.6703681

8. Bat-Erdene, M., Kim, T., Park, H., Lee, H.: Packer detection for multi-layer exe-
cutables using entropy analysis. Entropy 19(3), 125 (2017). https://doi.org/10.
3390/e19030125

9. Bat-Erdene, M., Park, H., Li, H., Lee, H., Choi, M.-S.: Entropy analysis to classify
unknown packing algorithms for malware detection. Int. J. Inf. Secur. 16(3), 227–
248 (2017). https://doi.org/10.1007/s10207-016-0330-4

10. Bergenholtz, E., Casalicchio, E., Ilie, D., Moss, A.: Appendices for: detec-
tion of metamorphic malware packers using multilayered LSTM networks
(2020). https://github.com/erikbergenholtz/appendix metamorphic packers/
blob/master/appendix.pdf. Accessed 14 Apr 2020

11. Blazytko, T., Contag, M., Aschermann, C., Holz, T.: Syntia: syntesizing the seman-
tics of obfuscated code. In: Proceedings of 26 USENIX Security Symposium. Van-
couver, BC, Canada, August 2017

12. Brosch, T., Morgenstern, M.: Runtime packers: the hidden problem. Black Hat
USA (2006)

13. Burgess, C.J., Kurugollu, F., Sezer, S., McLaughlin, K.: Detecting packed exe-
cutables using steganalysis. In: 5th European Workshop on Visual Information
Processing, EUVIP 2014, Villetaneuse, Paris, France, 10–12 December 2014, pp.
1–5. IEEE (2014). https://doi.org/10.1109/EUVIP.2014.7018361

14. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transforma-
tions, January 1997. http://www.cs.auckland.ac.nz/staff-cgi-bin/mjd/csTRcgi.pl?
serial

15. The Mental Driller: Metamorphism in practice or “How I made MetaPHOR and
what I’ve learnt”, February 2002. https://web.archive.org/web/20070602061547/
http://vx.netlux.org/lib/vmd01.html. Accessed 10 Dec 2019

16. Gupta, N., Naval, S., Laxmi, V., Gaur, M.S., Rajarajan, M.: P-SPADE: GPU
accelerated malware packer detection. In: Miri, A., Hengartner, U., Huang, N.,
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Abstract. In this work, we study the privacy risk due to profile match-
ing across online social networks (OSNs), in which anonymous profiles
of OSN users are matched to their real identities using auxiliary infor-
mation about them. We consider different attributes that are publicly
shared by users. Such attributes include both strong identifiers such
as user name and weak identifiers such as interest or sentiment varia-
tion between different posts of a user in different platforms. We study
the effect of using different combinations of these attributes to profile
matching in order to show the privacy threat in an extensive way. The
proposed framework mainly relies on machine learning techniques and
optimization algorithms. We evaluate the proposed framework on three
datasets (Twitter - Foursquare, Google+ - Twitter, and Flickr) and show
how profiles of the users in different OSNs can be matched with high
probability by using the publicly shared attributes and/or the underly-
ing graphical structure of the OSNs. We also show that the proposed
framework notably provides higher precision values compared to state-
of-the-art that relies on machine learning techniques. We believe that
this work will be a valuable step to build a tool for the OSN users to
understand their privacy risks due to their public sharings.

Keywords: Social networks · Profile matching · Deanonymization

1 Introduction

An online social network (OSN) is a platform, in which, individuals share vast
amount of information about themselves such as their social and professional
life, hobbies, diseases, friends, and opinions. Via OSNs, people also get in touch
with other people that share similar interests or that they already know in real-
life [7]. With the widespread availability of the Internet, especially via mobile
devices, OSNs have been a part of our lives more than ever. Most individuals
have multiple OSN profiles for different purposes. Furthermore, each OSN offers
different services via different frameworks, leading individuals share different
types of information [8]. Also, in some OSNs, users reveal their real identities
(e.g., to find old friends), while in some OSNs, users prefer to remain anonymous
(especially in OSNs in which users share sensitive information about themselves).
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It is trivial to link profiles of individuals across different OSNs in which they
share their real identities. However, such profile matching is both nontrivial and
sometimes undesired if individuals do not reveal their real identities in some
OSNs. While profile matching is useful for online service providers to build com-
plete profiles of individuals (e.g., to provide better personalized advertisement),
it also has serious privacy concerns. If an attacker can link anonymous profiles of
individuals to their real identities (via their other OSN accounts in which they
share their real identity), they can obtain privacy-sensitive information about
individuals that is not intended to be linked to their real identities. Such sensi-
tive information can then be used against the individuals for discrimination or
blackmailing. Thus, it is very important to quantify and show to the OSN users
the extent of this privacy risk.

Some OSNs can be characterized by their graphical structures (i.e., con-
nections between their users). The graphical structures of some popular OSNs
show strong resemblance to social connections of individuals in real-life (e.g.,
Facebook). Therefore, it is natural to expect that the graphical structures of
such OSNs will be similar to each other as well. Existing work shows that this
similarity in graphical structure (along with some background information) can
be utilized to link accounts of individuals from different OSNs [19]. However,
without sufficient background information, just using graphical structure for
profile matching becomes computationally infeasible. On the other hand, some
OSNs or online platforms either do not have a graphical structure at all (e.g.,
forums) or their graphical structure does not resemble the real-life connections
of the individuals. However, this does not mean that users of such OSNs are pro-
tected against profile matching (or deanonymization). In these types of OSNs,
an attacker can utilize the attributes of the users (i.e., types of information that
are shared by the users) across different OSNs for deanonymization.

In this work, we quantify and show the risk of profile matching in OSNs by
considering both the graphical structure and other attributes of the users. We
show the threat between an auxiliary OSN (in which users share their real iden-
tities) and a target OSN (in which users prefer to make anonymous sharings).
The proposed framework matches user profiles across multiple OSNs by using
machine learning and optimization techniques. We mainly focus on two types of
attacks (i) targeted attack, in which the attacker selects a set of victims from the
target OSN and wants to determine the profiles of the victims in the auxiliary
OSN, and (ii) global attack, in which the attacker wants to deanonymize the pro-
files of all the users that are in the anonymous OSN (assuming they have accounts
in the auxiliary OSN). Our results show that by using different machine learn-
ing (logistic regression and support vector machine) and optimization techniques,
individuals’ profiles can be matched with more than 70% accuracy (depending
on the set of attributes used for profile matching). We also study the effect of
different types of attributes (i.e., strong identifiers and weak identifiers) to the
profile matching risk. The main contributions of this work can be summarized
as follows:



56 A. Halimi and E. Ayday

– We develop a profile matching framework across OSNs by using various pub-
licly shared attributes of the users and the graphical structure on the OSNs.
Using this framework, we show how the privacy risk can be quantified accu-
rately.

– We study the effect of different sets of publicly shared attributes to profile
matching. In particular, we show how strong identifiers (such as user name
and location) and weak identifiers (such as activity patterns across OSNs,
interests, or sentiment) of the users help the attacker.

– We evaluate the proposed attack on four different social networks.
– We show that our profile matching algorithm provides significantly higher

precision and a comparable recall to the state-of-the-art.

The rest of the paper is organized as follows. In the next section, we sum-
marize the related work and the main differences of this work from the existing
works in the area. In Sect. 3, we discuss the threat model. In Sect. 4, we provide
the details of the proposed framework. In Sect. 5 we show the results of the
proposed framework by using real data. Finally, in Sect. 6, we discuss the future
work and conclude the paper.

2 Related Work

We review two primary lines of related research: (i) deanonymization based on
network structure and (ii) profile matching using public data.

Graph Deanonymization: In the literature, most works focus on profile
matching (or deanonymization) by using structural information that mainly
relies on the network structure of OSNs. Narayanan and Shmatikov propose
a framework for analyzing privacy and anonymity in social networks and a
deanonymization (DA) algorithm that is purely based on network topology [19].
Another approach by Wondracek et al. uses group membership found on social
networks to identify users [27]. Nilizadeh et al. propose a community-level DA
attack [20] by extending the work in [19]. Unlike previous attacks, Pedarsani
et al. propose a seed-free DA attack [22]. It is a Bayesian-based model for
graph DA which uses degrees and distances to other nodes as each node’s finger-
print. Sharad and Danezis propose an automated approach to re-identify users
in anonymized social networks [23]. Ji et al. propose a secure graph data shar-
ing/publishing system [13] in which they implement and evaluate graph data
anonymization algorithms, data utility metrics, and modern structure-based
deanonymization attacks.

Profile Matching Using Public Attributes: It has been shown that by lever-
aging public information in users’ profiles (such as user name, profile photo,
description, location, and number of friends) users in different OSNs can be
linked to each other. Most works apply different classifiers to the feature vec-
tors to distinguish between matching and non-matching profiles. In Sect. 5.4,
we simulated some of these approaches and we show that our proposed frame-
work provides higher precision compared to them. The attributes used for profile
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matching vary from one work to another. Shu et al. provide a comprehensive
review of state-of-the-art profile matching algorithms [24]. Iofciu et al. use only
user names and their tags (separately or together) to link different users [12].
Nunes et al. apply different classifiers to the feature vectors consisting of user
name, posts, and sets of friends similarities [21]. Vosecky et al. only use nick
name, email, and date of birth to link different users [25]. Malhotra et al. use user
name, name, description, location, profile photo, and number of connections [18].
On the other hand, Liu et al. propose a method to match user profiles across
multiple communities by using the rareness and commonness of user names [16].
Zafarani et al. analyze the behaviour patterns of the users, the language used,
and the writing style to link users across social media sites [29]. To evaluate
the quality of different user attributes in profile matching, Goga et al. identify
four properties: availability, consistency, non-impersonability, and discriminabil-
ity [10]. Liu et al. propose a framework called HYDRA that uses both structural
and unstructural information to match profiles [17]. Wang et al. [26] propose a
method that leverages both structural and content information (extracted top-
ics) in a unified way. Zhou et al. [30] analyze the connections of the users and
their behaviours.

Contribution of this Work: Previous works show that there exists a non-
negligible risk of matching user profiles. As the amount of information provided
on social networks increases, this risk also increases. However, existing methods
mostly focus on accuracy, and hence they provide high false positive rates. They
do not use precision and recall (which are shown to be more reliable evaluation
metrics [10]) for evaluation. In this work, we propose a framework that achieves
significantly higher precision and a comparable recall to previous works for both
structured and unstructured OSNs. Moreover, we consider a wider spectrum of
attributes and extensively analyze the effect of weak identifiers to the profile
matching scheme.

3 Threat Model

For simplicity, we consider two OSNs to describe the threat: (i) A, the auxiliary
OSN that includes the profiles of individuals with their identifiers and (ii) T ,
the target OSN that includes anonymous profiles of individuals. In general, the
attacker knows the identity of the individuals from OSN A and depending on
the type of the attack, they want to determine the real identities of the user(s)
in OSN T by only using the public attributes of the users (i.e., information that
is publicly shared by the users). The attacker can be a part (user) of both OSNs
and they can collect publicly available data from both OSNs (e.g., via crawling).
We assume that the attacker is not an insider in T . That is, the attacker cannot
use the IP address, access patterns, or sign up information of the victim for
profile matching (or deanonymization).

We consider two different attacks (i) targeted attack, and (ii) global attack.
In the targeted attack, the attacker wants to deanonymize the anonymous profile
of a victim (or a set of victims) in OSN T , using the unanonymized profile of the
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same victim in OSN A. In the global attack, the attacker’s goal is to deanonymize
the anonymous profiles of all individuals in T by using the information in A. An
attacker can select either attack model based on their goals and resources.

4 Proposed Model

Let A and T represent the auxiliary and the target OSN, respectively, in which
people publicly share attributes such as date of birth, gender, and location.
Profile of a user i in either A or T is represented as Uk

i , where k ∈ {A, T}. In this
work, we focus on the most common attributes that are shared in many OSNs.
Thus, we consider the profile of a user i as Uk

i = {nk
i , �

k
i , g

k
i , pki , f

k
i , ak

i , t
k
i , s

k
i , r

k
i },

where n denotes the user name, � denotes the location, g denotes the gender,
p denotes the profile photo, f denotes the freetext provided by the user in the
profile description, a denotes the activity patterns of the user in a given OSN
(i.e., time instances at which she is active), t denotes the interests of the user (on
that particular OSN), s denotes the sentiment profile of the user, and r denotes
the (graph) connectivity pattern of the user. As discussed, the main goal of the
attacker is to link the profiles between two OSNs. The overview of the proposed
framework is shown in Fig. 1.

profile of user in 
social network 

: coupled profiles
: uncoupled profiles

:

:

profile of user in     
social network 

?
…

…

OSN TOSN A

OSN A OSN T

Pair

Individual i ( )
Username

Loca on
Gender

Photo
Freetext
Ac vity
Interest

Sen ment
Graph connec on

Individual j ( )
Username
Loca on
Gender
Photo
Freetext
Ac vity
Interest
Sen ment
Graph connec on

Si
m

ila
rit

y

Fig. 1. Overview of the proposed profile matching framework in OSNs which consists
of 4 main steps: (1) data collection, (2) categorization of attributes and computation
of attribute similarities, (3) generating the model, and (4) profile matching.
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In general, our proposed framework is composed of two main parts: (i)
Steps 1–3 (in Fig. 1) constitute model generation and they are the offline steps
of the algorithm, (ii) Step 4 is the profile matching part. We give a highlevel
description of each step in the following.

In Step 1, profiles and attributes of a set of users are obtained from both
OSNs to construct the training dataset. We denote the set of profiles that are
extracted for this purpose from OSNs A and T as At and Tt, respectively. We
assume that profiles are selected such that some profiles in At and Tt belong to
the same individuals and some do not (more details on collecting such profiles
can be found in Sect. 5.2).1 We let set G include pairs of profiles (UA

i , UT
j ) from

At and Tt that belong to the same individual (i.e., coupled profiles). Similarly,
we let set I include pairs of profiles (UA

i , UT
j ) from At and Tt that belong to

different individuals (i.e., uncoupled profiles).
In Step 2, for each pair of users in sets G and I, we compute the attribute

similarity by using the metrics that are discussed in Sect. 4.1. In Step 3, we label
the pairs in sets G and I and add them to the training dataset. If the pair is
in set G, we label the pair as “1”, otherwise we label it as “0”. We generate
our model using different machine learning techniques such as logistic regression
and support vector machine to learn the contribution of each attribute to profile
matching (details of this step are discussed in Sect. 4.2). In Step 4, the attack
type is determined and profiles to be matched are selected, and hence sets Ae and
Te are constructed. For simplicity, we assume set Ae includes N users from OSN
A and set Te includes N users from OSN T .2 Every profile in set Ae is paired
with every profile in set Te and the similarity between each pair is computed by
using the generated model. In the end, profiles in sets Ae and Te are paired by
maximizing similarities using an optimization algorithm as discussed in Sect. 4.3.

4.1 Categorizing Attributes and Defining Similarity Metrics

Once the attributes of the users are extracted from their profiles, they should
be categorized so that similarity values of attributes between different users can
be computed. In the following, we summarize how we categorize the considered
attributes and define their corresponding similarity metrics between a user i
in OSN A and a user j in OSN T . We refer the reader to [11] for a detailed
description of the similarity metrics.

– User name similarity - S(nA
i , nT

j ): We use Levenshtein distance [15] to
calculate the user name similarity.

– Location similarity - S(�Ai , �Tj ): We convert the textual location information
collected from the users’ profiles into coordinates via GoogleMaps API [1] and
calculate geographic distance.

– Gender similarity - S(gAi , gTj ): If an OSN does not provide the gender
information publicly (or does not have such information), we probabilistically

1 Such profiles are required to construct the ground-truth for training.
2 Sets Ae and Te do not include any users from sets At and Tt.
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infer the possible gender information by using the US social security name
database3 and look for a profile’s name (or user name).

– Profile photo similarity - S(pAi , pTj ): We calculate this via a face recogni-
tion tool named OpenFace [5].

– Freetext similarity - S(fA
i , fT

j ): Freetext data in an OSN profile can be a
short biographical text or an “about me” page. In this work, we use NER
(named-entity recognition) [9] to extract features (location, person, organi-
zation, money, percent, date, and time) from the freetext information. To
calculate the similarity, we use the cosine similarity between the extracted
features from each user.

– Activity pattern similarity - S(aA
i , aT

j ): Activity pattern similarity is
defined as the similarity between observed activity patterns of two profiles
(e.g., login or post). Let aA

i represent a vector including the times of last |aA
i |

activities of user i in OSN A. Similarly, aT
j is a vector including the times

of last |aT
j | activities of user j in OSN T . First, we compute the time differ-

ence between every entry in aA
i and aT

j , and then we compute the normalized
distance of these pairs to compute the activity pattern similarity.

– Interest similarity - S(tAi , tTj ): First, we create a topic model using the posts
of randomly selected users from both the auxiliary and the target OSNs. To
create the topic model we use Latent Dirichlet Allocation (LDA) [6]. Then,
by using the created model, we compute the topic distribution of each post
generated by the users and compute the interest similarity from the distance
of the topic distributions.

– Sentiment similarity - S(sAi , sTj ): To determine whether the shared text
expresses positive or negative sentiment we use sentiment analysis tool of
Python NLTK (natural language toolkit) text classification [2]. This tool
returns the probability for positive and negative sentiment in the text. Since
users’ moods are affected from different factors, it is realistic to assume that
they may change by time (e.g., daily). Thus, we compute the daily sentiment
profile of each user and the similarity between them.

– Graph connectivity similarity- S(rAi , rTj ): To model the graph connectiv-
ity pattern of a user, we follow the same strategy as in [23]. For each user
i, we define a feature vector Fi = (c0, c1, ..., cn−1) of length n made up of
components of size b. Each component contains the number of neighbors that
have a degree in a particular range, e.g., ck is the count of neighbors with a
degree such that k · b < degree ≤ (k + 1) · b. We use the feature vector length
as 70 and bin size as 15 (as in [23]).

4.2 Generating the Model

As discussed, we first construct sets At and Tt for training. Also, set G includes
pairs of profiles (UA

i , UT
j ) that belong to the same individual and set I includes

pairs of profiles (UA
i , UT

j ) from At and Tt that belong to different individuals.

3 US social security name database includes year of birth, gender, and the correspond-
ing name for babies born in the United States.
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We refer to the pairs in G as “coupled profiles” and the ones in I as “uncoupled
profiles”. We first compute the individual attribute similarities between each
pair of coupled and uncoupled profiles in G and I using the similarity metrics
described in Sect. 4.1. Then, to train (and construct) the model and learn the
contribution (or weight) of each attribute, we use two different machine learning
techniques: (i) logistic regression and (ii) support vector machine (SVM).

4.3 Matching Profiles

As discussed, for profile matching, we consider the users in sets Ae and Te from
the auxiliary and the target OSNs. For simplicity, we also assume that both
sets include N users.4 Before the actual profile matching, individual attribute
similarities between every profile in Ae and in Te are computed using the sim-
ilarity metrics described in Sect. 4.1. Then, the general similarity S(UA

i , UT
j )

is computed between every user in Ae and Te using the weights determined in
Sect. 4.2. Let Z be a N × N similarity matrix that is constructed from the
pairwise similarities between the users in Ae and Te. Our goal is to obtain a
one-to-one matching between the users in Ae and Te that would also maximize
the total similarity. To achieve this matching, we use the Hungarian algorithm,
a combinatorial optimization algorithm that solves the assignment problem in
polynomial time [14]. The objective function of the Hungarian algorithm can be
expressed as below.

min

N∑

i=1

N∑

j=1

−Zijxij ,

where, Zij represents the similarity between UA
i and UT

j (i.e., S(UA
i , UT

j )). Also,
xij is a binary value, that is, xij = 1 if profiles UA

i and UT
j are matched as a

result of the algorithm, and xij = 0 otherwise. After performing the Hungarian
algorithm to the Z matrix, we obtain a matching between the users in Ae and
Te that maximizes the total similarity. Note that we multiply Zij values with
-1, in order to obtain the maximum similarity (profit). We use the one-to-one
match obtained from Hungarian algorithm to quantify the privacy risk of OSN
users due to profile matching.

5 Evaluation

In this section, we evaluate the proposed framework by using real data from four
OSNs. We also study the impact of various sets of attributes to profile matching.

5.1 Evaluation Metrics

To evaluate our model, we consider two types of profile matching attacks: (i)
targeted attack, and (ii) global attack. In targeted attack, the goal of the attacker
4 The case when the sizes of the OSNs are different can be also handled similarly (by

padding one OSN with dummy users to equalize the sizes).
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is to match the anonymous profiles of one or more target individuals from T to
their corresponding profiles in A. In the global attack, the goal of the attacker
is to match all profiles in Ae to all profiles in Te. In other words, the goal is to
deanonymize all anonymous users in the target OSN (who have accounts in the
auxiliary OSN).

In both targeted and global attacks, we use Hungarian algorithm for profile
matching between the auxiliary and the target OSN (as discussed in Sect. 4.3).
Hungarian algorithm provides a one-to-one match between all the users in the
auxiliary and the target OSN. However, we cannot expect that all anonymous
users in the target OSN to have profiles in the auxiliary OSN (we are only inter-
ested in the ones that have profiles in both OSNs). Therefore, some matches
provided by the Hungarian algorithm are useless for us. Thus, we define a con-
fidence value and we only consider the correct matches above this value to com-
pute the true positives. For this purpose, we set a “similarity threshold”. For the
evaluation metrics, we use precision, recall, and accuracy. We compute accuracy
as the fraction of correctly matched coupled pairs to all coupled pairs regardless
of the similarity threshold.

5.2 Data Collection

In the literature there are limited datasets that can be used for profile matching
between unstructured OSNs. Thus, to evaluate our proposed framework, we col-
lected two datasets that consist of users from three OSNs (Twitter, Foursquare,
and Google+) with several attributes. The most challenging part of data col-
lection was to obtain the “coupled” profiles between OSNs that belong to same
person in real-life. We also used the Flickr social graph [28] to evaluate our
proposed framework on structured OSNs. In the following, we discuss our data
collection methodology.

Dataset 1 (D1): Twitter - Foursquare: To collect the coupled profiles, we
used Twitter Streaming API [4]. When an individual generated a check-in in the
Swarm app (a companion app to Foursquare) [3] and published it via Twitter, we
connected the corresponding Twitter and Foursquare accounts to each other (as
coupled profiles). We then removed such simultaneous posts from the dataset.
Furthermore, we also randomly paired uncoupled profiles which are used for
training and testing the proposed algorithm. We used Foursquare as our auxiliary
OSN (A) and Twitter as our target OSN (T ). D1 consists of 4000 user profiles
in each OSN where 2000 users have profiles in both OSNs.

Dataset 2 (D2): Google+ - Twitter: To collect the coupled profiles, we
exploited the fact that Google+ allows users to explicitly list their profiles in
other social networks on their profile pages. We first visited random Google+
profiles and parsed the URLs to Twitter accounts of the users (if it exists).
Then, we extracted information from both user profiles. We used Twitter as our
auxiliary OSN (A) and Google+ as our target OSN (T ). Note that Google+
has shut down after our data collection. However, results we show using D2 are
still good representatives of profile matching risk for OSNs in which users share
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similar content as Google+ (e.g., Facebook). D2 consists of 8000 users in each
OSN where 4000 of them are coupled profiles.

Dataset 3 (D3): Flickr social graph [28]: We generated both target and
auxiliary OSN graphs by sampling one whole graph into two pieces as in [23].
To generate the auxiliary and the target OSN graphs, we used a vertex overlap
of 1 and an edge overlap of 0.9. D3 consists of 50000 users.

To create the LDA model, we randomly sampled a total of 15000 tweets (from
Twitter), tips (from Foursquare), and posts (from Google+) and generated the
model by using this data. Then, we apply the model to the posts of the users
to find the interest similarity as discussed in Sect. 4.1. Note that there may
be missing attributes (that are not published by the users) in the dataset. In
such cases, based on the distributions of the similarity values of each attribute
between the coupled and uncoupled pairs, we assign a value for the similarity
that minimizes both the false positive and false negative probabilities.

5.3 Evaluation Settings

In the rest of the paper, we will hold the discussion over a target and auxiliary
network as the training process is the same for all datasets. As mentioned, in
D1, Twitter is the target network and Foursquare is the auxiliary network. In
D2, Google+ is the target network and Twitter is the auxiliary network. In D3,
both target and auxiliary network is generated from Flickr. From each dataset,
we select 3000 profile pairs for generating the model. These pairs consist of
1500 coupled and 1500 uncoupled profile pairs. To generate the model, we use
two different machine learning techniques: (i) logistic regression and (ii) support
vector machine. Overall, we conduct three experiments by using different sets of
attributes. Experiment 1 and Experiment 2 are conducted on D1 and D2 while
Experiment 3 is conducted on D3.

In our first experiment (Experiment 1), we use all the attributes we extracted
from both OSNs for the model generation. We observe that location, user
name, and profile photo are the most identifying attributes to determine
whether two profiles belong to same individual or not. In the second experiment
(Experiment 2), we only consider the weak identifiers such as activity patterns,
freetext, interests (that is extracted from users’ posts), and sentiment. Note that
this scenario can be also used to quantify the risk of profile matching between
an OSN and a profile in a forum (in which users typically remain anonymous,
and activity patterns, freetext, interests, and sentiment are the only attributes
that can be learned about the users). In the third experiment (Experiment 3),
we use only the graph connectivity attribute to match user profiles. Using the
generated model, we compute the general similarity between profiles UA

i and UT
j

for both machine learning techniques (i.e., logistic regression and SVM).
After generating the model for each experiment, we select 1000 users from

the auxiliary OSN and 1000 users from the target OSN to construct sets Ae and
Te, respectively (for each dataset). Note that none of these users are involved in
the training set. Among these profiles, we have 500 coupled pairs and we evaluate
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the accuracy of our proposed framework based on the matching between these
coupled profiles.

Most previous works build different classifiers to determine whether two user
profiles are matching or not [10,18,23,25]. We also compare our proposed frame-
work with the existing profile matching schemes that are based on machine learn-
ing algorithms. In general, we refer to such schemes as the “baseline approach”.
In the baseline approach, we only use the strong identifiers such as user name,
location, gender, profile photo, and the graph connectivity (if it is present).
We use our proposed metrics to compute the individual similarities of these
attributes. We use K-nearest neighbor (KNN), decision tree, random forest, and
SVM techniques to classify the pairs as coupled or uncoupled. In KNN, a pair
is assigned to the most common class among its k-nearest neighbors. A decision
tree has a tree like structure in which each internal node represents a “test” on a
feature, each branch represents the result of the test, and each leaf represents a
class label. A random forest consists of a multitude of decision trees at training
time and for each new example, it outputs the average of the prediction of each
tree. In our experiments, random forest consists of 400 trees. In SVM model,
the training data is represented as points in space and the data of different cate-
gories are divided by a clear gap. New examples are mapped into the same space
and are classified by checking on which side of the gap they fall. To implement
this baseline approach, first, we train the classifiers with the training dataset
constructed in Sect. 4.2 (including only user name, location, gender, and profile
photo for D1 and D2; and graph connectivity features for D3). Then, based on
the trained model, we classify each new pair by using either KNN, decision tree,
random forest, or SVM.

5.4 Results

In real-life, two OSNs do not contain exactly the same set of users. Thus, first, we
evaluate the proposed framework by using a dataset that includes both coupled
and uncoupled profiles. For the global attack, we try to match all N = 1000
profiles in Ae to N = 1000 profiles in Te. Among these pairs, 500 of them are
coupled profile pairs and 999500 are uncoupled profile pairs, and hence the goal is
to make sure that these 500 users are matched with high confidence. In targeted
attack, we set the number of target individuals to 100 from T . These 100 coupled
profiles for the targeted attack are randomly picked among 500 coupled pairs in
the test dataset. We run the targeted attack 10 times and get the average of
the results. We run Experiments 1, 2 and 3 (introduced in Sect. 5.3) for these
settings. For each experiment, we report the precision and recall values for the
similarity threshold at which the precision and recall curves (almost) intersect.
In Table 1, we present the results obtained for the logistic regression model
for Experiments 1 and 2, and in Table 2, we present the results of the logistic
regression model for Experiment 3. In general, we observe that the precision,
recall, and accuracy of the logistic regression model are higher compared to the
SVM model. Due to the space constraints, we do not present the details of the
results for the SVM model.
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Table 1. Results of the profile matching scheme (both targeted and global) with both
coupled and uncoupled profiles by using logistic regression as the machine learning
technique. For Experiments 1 and 2, we report the precision and recall values for the
similarity threshold at which the precision and recall curves (almost) intersect.

D1 (Twitter - Foursquare) D2 (Google+ - Twitter)
Global Attack Targeted Attack Global Attack Targeted Attack

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy
Experiment 1 (with all attributes) 0.79 0.79 58.6% 0.85 0.85 63% 0.88 0.89 62% 0.88 0.89 63%
Experiment 2 (with the weak identifiers) 0.004 0.004 0.4% ∼ 0 ∼ 0 0% 0.45 0.46 12% 0.43 0.43 13%

Table 2. Results of the profile matching scheme (both targeted and global) for
Experiments 3 by using logistic regression as the machine learning technique. Precision
and recall values are computed with the similarity threshold at which the precision and
recall curves (almost) intersect.

D1 (Flickr Social Graph)
Ae = 1000, Te = 1000 Ae = 500, Te = 500

Global Attack Targeted Attack Global Attack Targeted Attack
Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

Experiment 3 (only graph connectivity) 0.72 0.92 83.4% 0.85 0.81 84% 0.93 0.88 92% 0.91 0.93 90%

Table 3. Results of the profile matching scheme (both targeted and global) for
Experiments 1 and 2 with only coupled profiles by using logistic regression as the
machine learning technique. Precision and recall values are computed with the sim-
ilarity threshold at which the precision and recall curves (almost) intersect.

D1 (Twitter - Foursquare) D2 (Google+ - Twitter)
Global Attack Targeted Attack Global Attack Targeted Attack

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy
Experiment 1 (with all attributes) 0.82 0.83 65.6% 0.87 0.87 66% 0.90 0.90 66.2% 0.92 0.92 72%
Experiment 2 (with the weak identifiers) ∼ 0 ∼ 0 0.4% ∼ 0 ∼ 0 1% 0.71 0.69 12.8% 0.66 0.66 13%

In Experiment 1 (in which we use all the attributes), for the global attack, we
obtain a precision value of around 0.8 (for D1) and 0.9 (for D2) for a similarity
threshold of 0.6. This means that if our proposed framework returns a similarity
value that is above 0.6 for a given profile pair, we can say that the corresponding
profiles belong to same individual with a high confidence. Also, overall, we can
correctly match 293 coupled profiles in D1 (with an accuracy of 58.6%) and 306
coupled profiles in D2 (with an accuracy of 62%) out of 500 in global attack.
Furthermore, in targeted attack, we obtain a precision value of 0.85 for D1 and
0.88 for D2 (for a similarity threshold of 0.6) and overall, we are able to correctly
match 63 profiles in both D1 and D2 (out of 100). Using the same test dataset,
we obtain a precision that is close to zero by using the baseline approach (by
using KNN, decision tree, random forest and SVM and for both datasets (D1
and D2). This shows that the proposed framework significantly improves the
baseline approach while it provides comparable recall value compared to these
machine learning techniques (this is further discussed in Fig. 2).

In Experiment 2 (in which we use the weak identifiers), for the global attack,
we obtain a precision value of almost 0 (for D1) and 0.45 (for D2) and an
overall accuracy of 12% for D2. In Experiment 3 (in which we use only the
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graph connectivity), we obtain a precision value of 0.72 for D3 in global attack,
and we can correctly match 417 coupled profiles out of 500 (with an accuracy
of 84.7%). We further comment on these results in the next section. Overall,
the results show that publicly sharing identifying attributes significantly helps
profile matching. Furthermore, we show that even the weak identifiers may cause
profile matching between the OSN users for some cases.

Next, by only using the 500 coupled profiles in our test dataset, first we run
Experiments 1, 2 and 3 (introduced in Sect. 5.3) as before, and then we study
the effects of dataset size to profile matching. Thus, for the global attack, we
try to match all N = 500 profiles in Ae to N = 500 profiles in Te (where there
are 500 coupled and 24500 uncoupled profile pairs this time) and in targeted
attack, we set the number of target individuals to 100 from T as before. We
show the accuracy (i.e., fraction of the correctly matched profiles) and preci-
sion/recall values we get from each experiment for the logistic regression model
in Tables 2 and 3. As before, in general, we obtain more accurate results for the
logistic regression model compared to the SVM model. The precision and recall
values reported in the tables are obtained when we set the similarity threshold to
the value at which the precision and recall curves (almost) intersect. In practice,
the attacker can pick the similarity threshold based on the set of attributes being
used for profile matching. In general, we observe that all precision, recall, and
accuracy values we obtain for this scenario are higher than the ones reported for
the previous scenario (in Table 1).

Finally, in Fig. 2, we show the precision/recall values of the proposed frame-
work for Experiments 1 and 3 as a function of the dataset size for the global
attack and for the logistic regression model. For the proposed framework, we
report the precision and recall value for the similarity threshold at which the
precision and recall curves almost intersect (as before). In the same figure, we
also compare the proposed profile matching scheme with the baseline approach
in which we use KNN, decision tree, random forest, and SVM for profile match-
ing as discussed in Sect. 5.3. We observe that the precision/recall of the proposed
framework does not decrease with increasing dataset size, which shows the scala-
bility of our proposed framework. We also observe that the proposed framework
notably provides significantly higher precision values compared to the baseline
approach for both Experiments 1 and 3. As shown in Fig. 2, the precision val-
ues obtained with the baseline approach are significantly lower than the ones
obtained with the proposed framework. This means that the number of false
matches (matched profiles that do not belong to the same individual) is high.
In order to decrease the number of false matches, one can use a cutoff threshold
for the probability returned from the classifier. By doing so, two user profiles
are matched only if the probability returned by the classifier is greater than this
cutoff threshold. We also compute precision and recall for the baseline approach
using different values for such a cutoff threshold and observe that our proposed
framework still outperforms the baseline approach. Furthermore, we observe that
using such a cutoff threshold causes precision/recall of the baseline approach to
decrease with increasing dataset size.
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(c) Dataset 3

Fig. 2. The effect of dataset size to the precision/recall for the global attack in
Experiments 1 and 3 with only coupled profiles.

5.5 Discussion

In general, for all experiments, we observe that logistic regression provides better
results compared to the SVM model. In terms of the variation of the results
obtained for different datasets, we observe the followings:

– Precision, recall, and accuracy obtained from D2 are higher compared to D1.
Users share more complete and informative information in Google+ com-
pared to Foursquare. In particular, Experiment 2 shows that Google+ pro-
files provide more complete information in terms of freetext sharings, activity
patterns, and interests of the users.

– D3 (which contains only the network structure of Flickr) achieves a higher
accuracy than D2 (and D1) due to the high similarity between the target
and the auxiliary OSNs. When the overlap between them is decreased, the
accuracy of proposed framework decreases, but still is higher than the one
obtained from the baseline approach.

– In D1, the weight for the activity pattern is higher than the one for D2
because, some users tend to share about their Foursquare check-ins on their
Twitter accounts at close times (there is no such behavior between Google+
and Twitter).

These observations can also be generalized for other OSNs that share common
behavior with the ones that we studied. We also have the following observations
in terms of the attributes we used:

– In D1 and D2, the user name attribute is the most differentiating one com-
pared to others.

– Our results show that except user name, other strong identifiers include loca-
tion, gender, and profile photo. One may claim that users that are matched
based on their strong identifiers may not be privacy conscious. That is why in
Experiment 2 (in Sect. 5.4), we remove such strong identifiers and only con-
sider the weak identifiers (activity patterns, freetext, interests, and sentiment)
of the users for profile matching. The results show that the contribution of
weak identifiers to the profile matching is significantly lower compared to the
strong identifiers (as shown in Tables 1, 2 and 3). However, weak identifiers
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require more data and analysis. As more posts are collected, we expect that
the contribution of the weak identifiers will increase. We will head to this
direction in future work. We will also enrich the variety of weak identifiers
and collect the graph structure together with the public attributes.

– Even though the contribution of the weak identifiers is low, we show that it
is still possible to match user profiles by only using them. Note that weak
identifiers are hard to be controlled, even for privacy-conscious users. Thus,
showing the potential to match user profiles by only using weak identifiers
justifies the severity of the matching risk.

Note that in datasets D1 and D2, users willingly provide links to their social
networks, while in D3 auxiliary and anonymized graph are generated from the
same graph. We acknowledge that such users might not represent privacy con-
scious ones. However, it is hard to find groundtruths that represent privacy
cautious users. Also, in previous works [10,29] coupled profiles were obtained in
a similar way by using Google+ or about.me, where users provide the links to
their social profiles. As future work, we will collect a dataset that contains high
number of posts and will focus on profile matching based on weak identifiers.

6 Conclusion and Future Work

In this work, we have proposed a framework for profile matching in online social
networks (OSNs) by considering the graphical structure and other attributes of
the users. Our results show that by using only public available information, users’
profiles in different OSNs can be matched with high precision and accuracy. We
have shown how different spectrum of publicly available attributes can be utilized
to match user profiles. We have also shown that even a limited number of weak
identifiers of the users, such as activity patterns across different OSNs, interest
similarities, and freetext similarities may be sufficient for the attacker in some
cases. We have shown that the proposed framework significantly improves the
baseline approach in terms of precision while providing comparable recall values
compared to state of the art machine learning techniques.

As future work, we will work on designing a user interface that informs the
users about their privacy risk due to profile matching in real-time (as they share
a new content). We will also provide suggestions to the users for alternative shar-
ings (e.g., modify content, share later, or share with more generalized informa-
tion) in order to reduce the risk. We will work on approximate graph-matching
algorithms to improve the efficiency of the proposed framework. We will also
extend the work for multiple auxiliary OSNs that may have correlations with
each other.

Acknowledgments. We thank Volkan Küçük for collecting D1 and D2 and for his
help in the initial phases of this work.
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Abstract. We propose a new lattice-based digital signature scheme
MLWRSign by modifying Dilithium, which is one of the second-round
candidates of NIST’s call for post-quantum cryptographic standards. To
the best of our knowledge, our scheme MLWRSign is the first signature
scheme whose security is based on the (module) learning with rounding
(LWR) problem. Due to the simplicity of the LWR, the secret key size
is reduced by approximately 30% in our scheme compared to Dilithium,
while achieving the same level of security. Moreover, we implemented
MLWRSign and observed that the running time of our scheme is compa-
rable to that of Dilithium.

Keywords: Lattice cryptography · Digital signatures · Learning with
rounding

1 Introduction

Lattice-based cryptography is believed to be a promising candidate for the
NIST’s call for post-quantum cryptographic (PQC) standards [20]. For key
encapsulation mechanisms (KEM), the lattice-based schemes proposed are the
schemes based on the learning with errors (LWE) problem, e.g. FrodeKEM [11],
NewHope [4], CRYSTALS-Kyber [10], the learning with rounding (LWR)-based
schemes Round5 [5] and SABER [13], and NTRU-based schemes [8,16]. For dig-
ital signatures, LWE-based schemes qTESLA [2], CRYSTALS-Dilithium [14,17],
and the NTRU-based scheme FALCON [15] are the only lattice-based schemes.
While there are many lattice-based KEM schemes (9 out of 17), there are only
3 lattice-based signature schemes. Moreover, no LWR-based signature schemes
have been proposed to date.

Banerjee et al . [7] proposed the LWR problem, which is a variant of LWE where
the random errors are replaced by a deterministic rounding function. Bogdanov

A. Takayasu—During a part of this work, the author was affiliated with the University
of Tokyo.

c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 73–90, 2020.
https://doi.org/10.1007/978-3-030-61078-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61078-4_5&domain=pdf
http://orcid.org/0000-0002-5687-620X
https://doi.org/10.1007/978-3-030-61078-4_5


74 H. Okada et al.

et al . [9] showed that there exists a reduction from search Ring-LWE (RLWE)
to search Ring-LWR (RLWR). Following the work, Chen et al . [12] introduced a
computational RLWR (CRLWR) problem, which is a counterpart of the compu-
tational Diffie-Hellman problem, and showed a reduction from decisional RLWE
to CRLWR. This paper also showed that the KEM scheme based on Module-
LWR (MLWR), to which RLWR can be viewed as a special case, Saber and the
RLWR-based scheme Round5 are secure under the CRLWR assumption.

The (R)LWR-based KEM schemes are among the most promising candidates
for the NIST PQC standards, due to the efficiency resulting from the simplic-
ity of the (R)LWR problem. The (R)LWE-based KEM schemes require sampling
noise from Gaussian distributions, resulting in higher bandwidth. On the con-
trary, (R)LWR-based KEM schemes naturally reduce the bandwidth avoiding
additional randomness for the noise, since the noise of (R)LWR is a rounding
error that is deterministically obtained.

The Module-LWE (MLWE)-based signature scheme CRYSTALS-Dilithium
[14,17] (hereinafter, referred to as Dilithium) is also among the most promis-
ing candidates due to its efficiency, especially on its public key size. Dilithium
decreases the size of the public key by separating the high/low order bits of the
element of the LWE sample. The high part is included in the public key and the
low part is included in the secret key. This technique is conceptually similar to
the construction of the LWR-based scheme. In the LWR, the low order bits are
rounded off to be the deterministic noise (corresponds to a part of the secret
key), and the high order bits are the LWR sample, which corresponds to the
public key.

Our Contributions. In this paper, we propose an MLWR-based digital signature
scheme MLWRSign by modifying Dilithium. To the best of our knowledge, our
scheme is the first digital signature scheme based on the (ring variants of) LWR
problem. We modify Dilithium to be a MLWR-based scheme, aiming to obtain
the best of both worlds of the LWR-based KEM schemes and Dilithium. As a
result, the size of the secret key in our scheme is reduced by approximately 30%,
compared to Dilithium. We present detailed analytical results on the probabil-
ity of the rejection sampling during the signing procedure of our scheme, and
show that the expected number of rejections is at the same level as Dilithium.
This analysis is applicable to Dilithium, and it would be helpful for optimizing
parameters of the scheme.

We efficiently implement MLWRSign and the results show that the running
time of our scheme is comparable to Dilithium. Following the LWR-based KEM
schemes such as Round5 and Saber, we also use all moduli of the powers of 2 in
our scheme. Due to this setting, the bit decomposing technique in our scheme
becomes simpler and more efficient. As discussed in [13], when the moduli are
powers of 2, (negligibly small) exceptional biased sets exist for the secret key:
If all coefficients of the polynomials in a secret vector are divisible by a high
power of 2, then the same property will hold for the linear combination of them.
However, since all the coefficients of a secret vector are small enough (≤23)
in our parameters, our scheme can disregard the case. Although the number
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theoretic transform (NTT) cannot be used to speed up polynomial multiplication
in our setting of the moduli, this disadvantage can be mitigated with Toom-Cook
and Karatsuba polynomial multiplication. We implement our scheme using the
Toom-Cook and Karatsuba, and the results show that the running time of our
scheme is comparable to that of the reference implementation of Dilithium that
uses NTT for polynomial multiplication.

2 Preliminary

Notations. We write the rings R = Z[X]/(Xn + 1) and Rq = Zq[X]/(Xn + 1),
where q and n are integers, and the value of n is always 256 throughout this
paper. We denote elements in R or Rq (which includes elements in Z and Zq) in
regular font letters, and bold lower-case letters represent column vectors whose
elements are in R or Rq. All vectors will be column vectors by default. Bold
upper-case letters are matrices. For a vector v, we denote by v� its transpose.

For an even (resp. odd) positive integer α, we define r′ = rmod±α to be the
unique element r′ in the range −α

2 < r′ ≤ α
2 (resp. −α−1

2 ≤ r′ ≤ α−1
2 ) such that

r′ ≡ r mod α. For an element u ∈ Zq, let ‖u‖∞ := |umod±q|. We define the �∞
and �2 norms for a polynomial w =

∑n−1
i=0 wiX

i ∈ R as ‖w‖∞ := max
i

‖wi‖∞ =

max
i

|wimod±q| and ‖w‖ :=
√‖w0‖2∞ + · · · + ‖wn−1‖2∞, respectively. Similarly,

for a vector v = (v0, . . . , vk−1) ∈ Rk, we define ‖v‖∞ := max
i

‖vi‖∞ and

‖v‖ :=
√‖v0‖2 + · · · + ‖vk−1‖2. We define Sη := {w ∈ R | ‖w‖∞ ≤ η}. Let

Bh ⊂ R be a ring whose h coefficients are either −1 or 1 and the rest are 0. By
Hw(w) we denote the # of non-zero coefficients in w ∈ Rk for k ≥ 0.

We denote rounding to the nearest integer by �·	, and we extend it to polyno-
mials and matrices coefficient-wise. The Boolean operator [[statement]] outputs

1 if the statement is true, and 0 otherwise. We denote by a
$← A the process of

drawing an element a from a set A uniformly at random.
Let A be an algorithm. Unless otherwise stated, we assume all algorithms to

be probabilistic. We denote by y ← A(x) probabilistic computation of algorithm
A on input x, where the output is stored as y. A(x) ⇒ y denotes the event that
A on input x returns y. With fixed randomness, we can run any probabilistic A
deterministically.

Assumptions. We define the MLWR problem, the Module-SIS (MSIS) problem,
and the SelfTargetMSIS problem, on which the hardness and the security of our
scheme MLWRSign is based.

Definition 1 (MLWRq,p,k,l,D distribution). Let q, p, k, l be positive integers
such that q > p ≥ 2. For a probability distribution D : Rq → {0, 1}, choose a

random matrix A $← Rk×l
q , and a vector s ← Dl, and output (A, �p

qAs	).
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Algorithm 1: Games UF-CMA and UF-NMA

GAMES UF -CMA/UF -NMA:
1: (pk, sk) ← KeyGen(par)
2: (M∗, ς∗) ← ASIGN(pk) // UF -CMA

3: (M∗, ς∗) ← A(pk) // UF -NMA

4: return [[M∗ /∈ M]] ∧ Verif(pk,M∗, ς∗)

SIGN(M)
1: M = M ∪ {M}
2: ς ←

Sign(sk,M)
3: return ς

Definition 2 (decision MLWRq,p,k,l,D problem). Given a pair (A, t) decide,
with non-negligible advantage, whether it came from the MLWRq,p,k,l,D distri-
bution or whether it was generated uniformly at random from Rk×l

q × Rk
p. The

advantage of an algorithm A in solving the decision MLWRq,p,k,l,D problem is
AdvMLWR

q,p,k,l,D(A) := |Pr[b = 1 | A ← Rk×l
q ; t ← Rk; b ← A(A, t)] − Pr[b = 1 | A ←

Rk×l; s ← Dl; b ← A(A, �p
qAs	)]|.

Definition 3 (MSISq,k,l,ζ problem). Given A $← Rk×l
q , find a vector y =

[
z� | u�]� ∈ Rl+k

q such that ‖y‖∞ ≤ ζ and
[
A | Ik

] · y = 0. The advantage of
an algorithm A in solving the MSISq,k,l,ζ problem is

AdvMSIS
q,k,l,ζ := Pr[‖y‖∞ ≤ ζ ∧ [

A | Ik

] · y = 0 | A $← Rk×l
q ;y ← A(A)].

Definition 4 (SelfTargetMSISH,q,k,l+1,ζ problem). Let H {0, 1}∗ → B60 be

a cryptographic hash function. Given a random matrix
[
A | t] $← Rk×(l+1),

find a vector y =
[
z� | c | u�]� ∈ Rl+1+k such that ‖y‖∞ ≤ ζ and

H
(
μ ‖ [

A | t | Ik

] · y)
= c. The advantage of an algorithm A in solving the

SelfTargetMSISH,q,k,l+1,ζ is

Digital Signatures. We define the syntax and security of a digital signature
scheme. Let par be public system parameters.

Definition 5 (Digital Signature). A digital signature scheme SIG is defined
as a triple of algorithms SIG = (KeyGen,Sign,Verif). The key generation algo-
rithm KeyGen(par) returns the public and secret keys (pk, sk). We assume that
pk defines the message space MSet. The signing algorithm Sign(sk,M) returns
a signature ς. The deterministic verification algorithm Verif(pk,M, ς) returns 1
(accept) or 0 (reject).
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Algorithm 2: Supporting algorithms for MLWRSign

Decomposep(r, α)

1: r := r mod+p, r0 := rmod±α, r1 := (r − r0)/α, return (r1, r0)
HighBitsp(r, α)

2: (r1, r0) := Decomposep(r, α), return r1
LowBitsp(r, α)

3: (r1, r0) := Decomposep(r, α), return r0
MakeHintp(z, r, α)

4: r1 := HighBitsp(r, α), v1 := HighBitsp(r + z, α), return h := [[r1 �= v1]]
UseHintp(h, r, α)

5: m := p/α, (r1, r0) := Decomposep(r, α)

6: if h = 1 and r0 > 0 then return (r1 + 1)mod+m
7: if h = 1 and r0 ≤ 0 then return (r1 − 1)mod+m
8: return r1

The signature scheme SIG has a correctness error γ if we have Pr[Verif(pk, M ,
Sign(sk,M) = 0] ≤ γ for all key pairs (pk, sk) ∈ KeyGen(par), and all messages
M ∈ MSet.

We define unforgeability against chosen-message attack (UF-CMA), and
unforgeability against no-message attack (UF-NMA) advantage functions of a
(quantum) adversary A against SIG as AdvUF-CMA

SIG (A) := Pr[UF-CMAA ⇒ 1],
AdvUF-NMA

SIG (A) := Pr[UF-NMAA ⇒ 1], where the games UF-CMA and UF-NMA
are given in Algorithm 1. We also consider strong unforgeability under chosen
message attacks (SUF-CMA), where the adversary may return a forgery on a
message previously queried to the signing oracle with a different signature. In
the game corresponding to SUF-CMA, the set M contains tuples (M, ς) and for
the success condition (M∗, ς∗) /∈ M is checked.

3 Our Scheme: MLWRSign

We present our scheme MLWRSign in Algorithm 3. We show our simple support-
ing algorithms for the bit decomposing technique in Algorithm2 and Sect. 3.1.
We prove the correctness of MLWRSign in Sect. 3.2. In Sect. 3.3, we analyze the
probability of the rejection sampling in our signing procedure. We present the
concrete settings parameters in Sect. 3.4.

3.1 Supporting Algorithms

We show the supporting algorithms for MLWRSign in Algorithm 2, which are
analogues of those of Dilithium. These algorithms are used for extracting “higher-
order” and “lower-order” bits of elements in Zq, in order to decrease the size of
the public key. In Dilithium, q is a prime and α is an even number so the algorithm
Decompose has to consider the case when r−r0 = q−1. Since we use moduli q, p
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Algorithm 3: MLWRSign

KeyGen(par)

1: ρ
$← {0, 1}256, K

$← {0, 1}256

2: A := ExpandA(ρ), s1 ← Sl
η, t := � p

q
As1� ∈ Rk

p

3: (t1, t0) := Decomposep(t, 2d), tr := CRH(ρ ‖ t1)
4: return (pk = (ρ, t1), sk = (ρ, K, tr, s1, t0))

Sign(pk, sk, M)

5: A := ExpandA(ρ), t = t1 · 2d + t0, s2 := (t − p
q
As1)

6: μ := CRH(tr ‖ M), seed := CRH(K ‖ μ), cnt := 0
7: repeat
8: repeat
9: repeat

10: cnt := cnt + 1

11: y ∈ Sl
γ1−1 := ExpandMask(seed, cnt)

12: w := � p
q
Ay� ∈ Rk

p , ξ1 := � p
q
Ay� − p

q
Ay

13: w1 := HighBitsp(w, 2γ2)

14: c ∈ B60 := H(μ ‖w1)
15: z := y + cs1
16: until ‖z‖∞ < γ1 − β1

17: ξ2 := �cs2� − cs2, ν := �ξ1 − ξ2�
18: (r1, r0) := Decomposep(w − �cs2� − ν, 2γ2)

19: until ‖r0‖∞ < γ2 − β2 and r1 = w1

20: h := MakeHintp(−ct0,w − �cs2� − ν + ct0, 2γ2)

21: until Hw(h) ≤ ω and ‖ct0‖∞ < γ2

22: return sig = (z,h, c)
Verif(pk, sig, M)

23: A := ExpandA(ρ), μ := CRH(CRH(pk) ‖ M)

24: w′
1 := UseHintp(h, � p

q
Az� − ct1 · 2d, 2γ2), c′ := hash(μ ‖w′

1)

25: return ([[‖z‖∞ < γ1 − β]] ∧ [[c = c′]] ∧ [[Hw(h) ≤ ω]])

in the power of twos, our Decompose can be efficiently performed in a simpler
bit-wise manner to break up an element.

The following lemmas state the properties of these supporting algorithms on
which the correctness and security of our scheme is based. Since these Lemmas
are analogues of the Lemmas 1, 2, and 3 in [14], we omit their proofs.

Lemma 1 (Lemma 1 in [14]). Suppose that p and α are positive integers
such that p > 2α, p ≡ 0 (mod α) and α even. Let r and z be vectors of elements
in Rq where ‖z‖∞ ≤ α/2, and let h,h′ be vectors of bits. Then the HighBitsp,
MakeHintp, and UseHintp algorithms satisfy the following properties:

1. UseHintp(MakeHintp(z, r, α), r, α) = HighBitsp(r + z, α).
2. Let v1 = UseHintp(h, r, α). Then ‖r − v1 · α‖∞ ≤ α + 1. Furthermore, if the

number of 1s in h is ψ, then all except at most ψ coefficients of r−v1 ·α will
have a magnitude of at most α/2 after centered reduction modulo q.
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3. For any h, h′, if UseHintp(h, r, α) = UseHintp(h′, r, α), then h = h′.

Lemma 2 (Lemma 2 in [14]). If ‖s‖∞ ≤ β and ‖LowBitsp(r, α)‖∞ < α/2−β,
then HighBitsp(r, α) = HighBitsp(r + s, α) holds.

The function CRH is a collision resistant hash function that maps to {0, 1}384.
The function ExpandA maps a uniform seed ρ ∈ {0, 1}256 to a matrix A ∈
Rk×l. The function ExpandMask deterministically generates the randomness of
the signature scheme, mapping a concatenation of seed and nonce cnt to y ∈
Sl

γ1−1.

3.2 Correctness

We prove the correctness of our signature scheme in this subsection. If ‖ct0‖∞ <
γ2, then by Lemma 1 we know that UseHintp(h,w − �cs2	 + ct0, 2γ2) =
HighBitsp(w − �cs2	, 2γ2). From the definitions of w, t, and z, we obtain

⌈
p
qAz

⌋
− ct = w − �cs2	 − ν (1)

where s2 = �p
qAs1	− p

qAs1, ξ1 := �p
qAy	− p

qAy, ξ2 := �cs2	−cs2 and ν := �ξ1−
ξ2	. Since ξ1 and ξ2 are polynomials whose coefficients are rounding errors that
are heuristically i.i.d and uniformly distribute on (− 1

2 , 1
2 ], we have ‖ν‖∞ ≤ 1.

Using t = t1 ·2d+t0, we can rewrite (1) as �p
qAz	−ct1 ·2d = w−�cs2	−ν+ct0.

Thus, the verifier computes w′
1 = UseHintp(h,w − �cs2	 − ν + ct0, 2γ2) =

HighBitsp(w − �cs2	 − ν, 2γ2). Since the signer also checks that r1 = w1 in
line 19, we obtain HighBitsp(w − �cs2	 − ν, 2γ2) := r1 = w1. Therefore, w′

1

that the verifier computes is the same as w1 that the signer computes, and the
verification procedure is always accepted.

3.3 Rejection Sampling

We analyze the probability of the rejection of our signing procedure in this
subsection. Proofs for the lemmas presented here are shown in AppendixA. We
first calculate the probability of the rejection in line 16.

Lemma 3. When γ1 is large enough, we can approximate

P1 := Pr[‖z‖∞ < γ1 − β1] � e−nlβ1/γ1 . (2)

Secondly, we calculate the probability of the rejection in line 19.

Lemma 4. When we assume that each coefficient of r0 is uniformly distributed
modulo 2γ2, and γ2 is large enough, we can estimate

P2 := Pr[‖r0‖∞ < γ2 − β2] � e−nkβ2/γ2 . (3)
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The check of r1 := HighBitsp(w − �cs2	 − ν, 2γ2) = HighBitsp(w, 2γ2) := w1

always succeeds if the condition ‖�cs2	 + ν‖∞ ≤ β2 and ‖r0‖∞ < γ2 − β2

holds, from Lemma 2. Since ‖ν‖∞ ≤ 1 holds by definition, we have ‖�cs2	 +
ν‖∞ ≤ ‖�cs2	‖∞ +1. In the following, we derive the probability of the condition
‖�cs2	‖∞ ≤ β′

2 := β2 − 1, under which the check of r1 = w1 always succeeds.

Lemma 5. Let FN (0,5) be the c.d.f of N (0, 5), then we have

P3 := Pr[‖�cs2	‖∞ < β′
2] = (1 − 2FN (0,5)(−β′

2))
nk. (4)

We set the parameter β2 such that ‖�cs2	‖∞ < β′
2 holds with a probability

higher than 1 − 2−30. Thus, the rejection probability in line 19 is dominated by
P2. Finally, we calculate the probability of the rejection in line 21.

Lemma 6. Let σ2
Y := 60 · 22d/12, and FN (0,σ2

Y ) be the c.d.f. of a Gaussian
distribution N (0, σ2

Y ), then we have

P4 := Pr[‖ct0‖∞ < γ2] = (1 − 2FN (0,σ2
Y )(−γ2))

nk. (5)

We set the parameter γ2 so that ‖ct0‖∞ < γ2 holds with overwhelming
probability. Also note that we set parameter d to satisfy 60 · 2d−1 < 2γ2 (as it
will be shown in Sect. 3.4) and the fact that ‖ct0‖∞ ≤ ‖c‖1 · ‖t0‖∞. From these
we obtain σY := 1

6
√
5
·60 ·2d−1 < 1

3
√
5
·γ2, and approximately γ2 > 6.7σY . Thus,

we can also estimate that FN (0,σ2
Y )(−γ2) is negligibly small, without numerical

computation of FN (0,σ2
Y )(−γ2).

Lemma 7. Let h be the coefficient of an element of the vector h and
FB(nk,P ) be the c.d.f of the binomial distribution B(nk, P ), and P :=

1
γ2−β2

∫ 0

−2(γ2−β2)
FN (0,5·22d)(x)dx, then we have

P5 := Pr[Hw(h) < ω] = FB(nk,P )(ω). (6)

We set the parameter ω such that Hw(h) < ω with a probability higher than
1 − 210.

To summarize, disregarding the conditions with overwhelming probability,
i.e., assuming P3, P4, P5 � 1, we can estimate the probability of exiting the loop
in lines 6 to 21 using (2) and (3) as follows:

P1 · P2 = e−n(β1l/γ1+β2k/γ2). (7)

Thus, the expected number of iterations of the loop is en(β1l/γ1+β2k/γ2).

3.4 Parameters Settings

We show our parameters in Table 1. In the following, we explain how we select
these values.

We set q = 223 for all parameter sets of the security category. This value is
the nearest power of two of 8380417 that is the value of the modulo q used in
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Table 1. Parameters for MLWRSign.

I weak II medium III recomm. IV very high

(q, p) (223, 219) (223, 219) (223, 220) (223, 220)

d 10 10 11 11

(γ1 = q/16, γ1 = p
q
γ1) (219, 215) (219, 215) (219, 216) (219, 216)

(γ2 = γ1/2, γ2 = γ1/2) (218, 214) (218, 214) (218, 215) (218, 215)

η = q/2p 8 8 4 4

(k, l) (3, 2) (4, 3) (5, 4) (6, 5)

ω 64 80 96 120

(β1, β2) (425, 25) (425, 25) (225, 25) (225, 25)

# of 1 or −1 in c 60 60 60 60

BKZ block-size b to break MSIS 235 355 475 605

Core-Sieve bit-cost 20.292b 68 103 138 176

Q-Core-Sieve bit-cost 20.265b 62 94 125 160

BKZ block-size b to break MLWR 208 362 465 619

Core-Sieve bit-cost 20.292b 60 105 135 180

Q-Core-Sieve bit-cost 20.265b 55 95 123 164

NIST Security Level - 1 2 3

Dilithium. We set q and p as the power of twos in order to perform rounding
by simple bit-shift operation, similar to the LWR-based PKE schemes Saber [13]
and Round5 [5].

The parameter η corresponds to the standard deviation σ of the LWE prob-
lem. Dilithium bases its security on LWE with uniform distribution whose stan-
dard deviation is σ = 2η/

√
12, which is the standard deviation of the uniform dis-

tribution U(−η, η). For our scheme, the parameter η is defined by η := � q
2p� = q

2p .
We estimate the bit-security based on the values of σ = 2η/

√
12, k, l, and n,

using the lwe-estimator [1]. See Sect. 4 for details of the estimation of the bit-
security. Note that η is also restricted to be the power of two since we set q, p as
the power of twos. As a limitation, this setting loses a little flexibility to control
the rejection rate and bit-security.

A cryptographic hash function that hashes onto B60 is used in Dilithium and
our signature scheme. Bh ⊂ R is a ring whose h coefficients are either −1 or 1
and the rest are 0. Thus, we obtain |Bh| = 2h ·(n

h

)
, and then |B60| = 260 ·(25660

) �
2257.01 > 2256. Thus, we can ensure that the challenge c comes from a domain
whose size is larger than 2256.

The parameters β1 and β2 are the counterpart of β used in Dilithium. In the
scheme, the corresponding s1 and s2 are the variables that uniformly distribute
on Sη, and β is selected such that ‖csi‖∞ < β for i = 1, 2 with overwhelming
probability. Since c ∈ B60, si ∈ Sη, we obtain the bound ‖csi‖∞ ≤ ‖c‖1 ·‖si‖∞ =
60η, thus it can be seen that β ≤ 60η. In MLWRSign, while we use the same
s1 ∈ Sη as Dilithium, s2 is a polynomial whose coefficients uniformly distribute
on (− 1

2 , 1
2 ]. Thus, we define the two parameters β1 and β2 such that ‖cs1‖∞ < β1,
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γ1 = 219
�log2 60�−1 d = 14

q = 223

γ1 = 219 γ1 = 216

q/p
�log2 60�−1 d = 11

p = 220

q/p

q = 223

γ1 = 219 γ1 = 215

q/p �log2 60�−1 d = 10

p = 219

q/p

q = 223

Fig. 1. Illustration of the bit length of t = t1 · 2d + t0 (pk part: t1, sk part: t0)

‖�cs2	‖∞ < β2 − 1(< β1) with overwhelming probability. This probability was
analyzed in (4).

We set γ1 := q/16, γ2 := γ1/2, γ1 := p
q γ1, and γ2 := γ1/2. These parameters

are related to the rejection rate of the signing and the security, as we discussed
in Sect. 4.1. The parameter d defines the length of t0, which is part of the pk
and sk (See also Fig. 1). We select d such that 60 · 2d−1 < 2γ2 for the security
of our scheme, as we will discuss in Sect. 4.1. Here, 60 · 2d−1 is the upper bound
of ‖ct0‖∞.

4 Security

The concrete security of Dilithium was analyzed in [17] in the case where H is
a quantum random oracle. Similar to the analysis, we analyze that the advan-
tage of an adversary A breaking the SUF-CMA security of our MLWRSign is
AdvSUF-CMA

MLWRSign(A) ≤ AdvMLWR
q,p,k,l,D(B) + AdvSelfTargetMSIS

H,q,k,l+1,ζ (C) + AdvMSIS
q,k,l,ζ′(D) + 2−254,

for D a uniform distribution over Sη, and

ζ = max{γ1 − β, q
p (2γ2 + 1 + 60 · 2d−1)} ≤ 4γ2, (8)

ζ ′ = max{2(γ1 − β), 4γ2 + 2} ≤ 4γ2 + 2. (9)
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Furthermore, let the running times and success probabilities of A, B, C, D be
tA, tB, tC, tD, and εA, εB, εC, εD, then the lower bound on tA/εA is within a small
multiplicative factor of min

i∈{B,C,D}
ti/εi.

Intuitively, the MLWR assumption is required to protect against key-recovery,
the SelfTargetMSIS assumption is required for unforgeability, and the MSIS
assumption is required for strong unforgeability. In the following, we will out-
line some parts of the security proof that are related to the concrete parameter
setting.

4.1 UF-CMA Security Sketch

It was shown in [17] that there exists a tight reduction showing that zero-
knowledge deterministic signatures that are secure against UF-NMA, in which
the adversary obtains the public key and attempts to create a valid signature
without accessing a signing oracle, are also secure under the standard UF-CMA
security definition. Thus, in order to show our scheme is UF-CMA secure, it is
sufficient to show that our scheme is zero-knowledge and UF-NMA secure. Under
the MLWR assumption, the public key (A, t = �p

qAs1	) is indistinguishable from

(A, t $← Rk
p). The proof that our signature scheme is zero-knowledge follows the

framework from [6,19]. We sketch the proof in AppendixB.
Thus, if we assume that MLWRq,p,k,l,D is hard for a distribution D that sam-

ples a uniform integer in the range [−η, η], then, in order to prove UF-NMA
security, we only need to analyze the hardness of the experiment where the
adversary receives a random (A, t) and needs to output a valid pair of
message and signature (μ, (z,h, c)) such that H(μ ‖UseHintp(h, �p

qAz	 − ct1 ·
2d, 2γ2)) = c, ‖z‖∞ < γ1 − β, and Hw(h) ≤ ω. From Lemma 1 we can
write 2γ2 · UseHintp(h, �p

qAz	 − ct1 · 2d, 2γ2) = �p
qAz	 − ct1 · 2d + u, where,

‖u‖∞ ≤ 2γ2 + 1. Since t = t1 · 2d + t0 and ‖t0‖∞ ≤ 2d−1, we can rewrite
�p

qAz	−ct1 ·2d+u = p
q

[
A | − q

pt | Ik

]·[z� | c | q
pu

′�]�
, where u′ := (ct0+u+ξ)

and ξ := �p
qAz	 − p

qAz. The worst-case upper-bound for ‖u′‖∞ is given as
‖u′‖∞ ≤ ‖c‖1 · ‖t0‖∞ + ‖u+ ξ‖∞ ≤ 60 · 2d−1 +2γ2 +1 < 4γ2 = 4p

q γ2. Note that
we select d such that 60 · 2d−1 < γ1 − 1, as we mentioned in Sect. 3.4. Thus, a
(quantum) adversary who can create a forgery of a new message is able to find
(z, c,u′) and μ ∈ {0, 1}∗ such that ‖z‖∞ < γ1 − β, ‖c‖∞ = 1, ‖u′‖∞ < 4γ2 and

H′

⎛

⎝μ ‖ [
A | − q

pt | Ik

]
⎡

⎣
z
c

q
pu

′

⎤

⎦

⎞

⎠ = c, (10)

where H′(μ ‖ 2γ2x) = H(μ ‖ x). Since A and t are random, this is equivalent to
SelfTargetMSISk,l+1,ζ defined in Definition 4, where ζ = max{‖z‖∞, ‖ q

pu
′‖∞} ≤

4γ2 shown in (8). It is shown in [14] that, by using a standard forking lemma
argument, adversary to solve the above problem in the random oracle model can
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solve the MSIS problem. As discussed in the paper, since the reduction using the
forking lemma lacks tightness, our scheme also relies on the exact hardness of
analogues of the problem of (10). Under the assumption H is a cryptographic
hash function, the only approach for solving the problem of (10) appears to be
picking some w such that H′(μ ‖w) = c, and then finding a pair z, u′ that
satisfies w = Az − c q

pt + q
pu

′. Let t′ := w + c q
pt, then we can rewrite this as

[
A | Ik

]
[

z
q
pu

′

]

= t′. (11)

The concrete security that we concern is the hardness of the problem of finding
a pair z, q

pu
′ that satisfies (11) and ‖ q

pu
′‖∞, ‖z‖∞ < 4γ2.

4.2 SUF-CMA Security Sketch

To handle the strong-unforgeability requirement, one needs to handle an addi-
tional case. Intuitively, the reduction from UF-CMA to UF-NMA used the fact
that a forgery of a new message will necessarily require the use of a challenge
c for which the adversary has never seen a valid signature (i.e., (z,h, c) was
never an output by the signing oracle). To prove strong-unforgeability, we also
have to consider the case where the adversary sees a signature (z,h, c) for
μ and then only changes (z,h). In other words, the adversary ends up with
two valid signatures (z,h, c) and (z′,h′, c), such that z �= z′, h �= h′, and
UseHintp(h, �p

qAz	 − ct1 · 2d, 2γ2) = UseHintp(h′, �p
qAz′	 − ct1 · 2d, 2γ2). By

Lemma 1, from the above equality it can be shown that there exists a pair
(z′′ := z−z′,u) such that ‖z′′‖∞ ≤ 2(γ1−β), ‖u‖∞ ≤ 4γ2+2, and Az′′+u = 0,
which is the solution of MSISk,l,ζ′ .

4.3 Concrete Security

We follow the methodology of [14] to derive the security parameters in Table 1
with minor adaptations considering the MLWR problem. Since there are no
known attacks that benefit the module structure, we view MLWR and MSIS
problems as the LWR and SIS problems. The LWR and SIS problems are exactly
the same as those in the definitions of MLWR and MSIS in Sect. 2 with the ring
Rq being replaced by Zq.

We can view an MLWRq,p,l,k,D instance as an LWR instance of dimensions
256l and 256k: we can rewrite MLWRq,p,l,k,D as finding vec(s1) ∈ Z

256l × Z
256k

from (rot(A), vec(t)), where vec(·) maps a vector of Rq to the vector obtained
by concatenating the coefficients of its coordinates, and rot(A) ∈ Z

256k×256l
q is

obtained by replacing all entries a ∈ R of A by the 256× 256 matrix whose z-th
column is vec(xz−1 · aij). Given an LWR instance (A, t := �p

qAs	), we convert it
to a LWE instance (A, q

pt = As + q
pξ), where ξ := �p

qAs	 − p
qAs is a vector of

rounding error uniformly distributed over (− 1
2 , 1

2 ). Thus, we obtain the variance
of noise of the converted LWE sample as σ2 = q2

12p2 , and we estimate the concrete
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Table 2. CPU cycles and data sizes of MLWRSign. The parameter sets are from Table 1.

I weak II medium III recomm. IV very high

Public key size (bytes) 896 1184 1472 1760

Secret key size (bytes) 1392 1872 2384 2864

Signature size (bytes) 1387 2044 2701 3366

KeyGen median cycles 77K 138K 215K 300K

Sign median cycles 357K 941K 745K 1281K

Sign average cycles 474K 1297K 975K 1689K

Verif average cycles 83K 144K 230K 328K

Expected repeats (from (7)) 4.9 8.9 4.1 5.6

hardness (BKZ block size b) based on the value of n = 256l, q and σ using the
lwe-estimator [1].

As we discussed in Sect. 4.1, the best known attack against the
SelfTargetMSISk,l+1,ζ involves breaking the security of H and solving the problem
in (11). The latter amounts to solving the MSISk,l+1,ζ problem for the matrix[
A | t′]. The MSISk,l+1,ζ instance can be mapped to a SIS256k,256(l+1),ζ instance

by considering the matrix rot(A | t) ∈ Z
256·k×256·(l+1)
q . Similarly, the MSISk,l,ζ′

instance can be mapped to the SIS256·k,256·l,ζ′ instance. Since the values of q, k, l,
and ζ ′ in (9) of our scheme are almost the same as those of Dilithium (only the
value of q is slightly different), the MSIS instances above are also the same. Thus,
in Table 1, we refer to the BKZ block size b to break SIS given in [14].

5 Results and Comparison

Data Size. The size of public key pk = (ρ, t1) in MLWRSign is 32(�log p�−d)·k+1)
bytes, while that of Dilithium is 32((�log q� − 14) · k + 1) bytes. The bit-length
of a coefficient of a polynomial of vector t1 is always 9 bits, as you can see
in Fig. 1. This is because we select d such that �log2(60 · 2d−1)� = log2(2γ2),
thus d := log(2γ2) − 5. Therefore, the bit length of t1 is log p − log(2γ2) + 5 =
log q − log(2γ2) + 5, which is equivalent to that of Dilithium.

The size of secret key sk = (ρ,K, tr, s1, t0) in MLWRSign is 112 +
32(l�log2(2η+1)�+dk) bytes, while that of Dilithium is 112+32((k+l)�log2(2η+
1)�+14k) bytes. While in Dilithium the noise vector s2 had to be included in the
secret key, we need not store it since we can generate it in the Sign procedure
thanks to the deterministic characteristic of LWR. Furthermore, as the modu-
lus of t is reduced from q to p, the length of d is less than the value fixed in
Dilithium (d < 14), as you can see in Fig. 1. The concrete sizes of the secret keys
in Dilithium [14] are 2096, 2800, 3504, and 3856 bytes for “weak”, “medium”,
“recommended”, and “very high” parameter sets, respectively. Thus, our secret
key sizes are short by 26% to 34%.
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Table 3. Comparison with lattice signatures in reference implementations

Scheme Sec Cycles Bytes Assumption Framework

MLWRSign-III
(this paper)

123 sign: 745Ka

verif: 229Ka
pk: 1472
sk: 2384
sig: 2701

MLWR, MSIS FS with abort

Dilithium-III
[14]

125 sign: 789Kb

verif: 209Kb
pk: 1472
sk: 3504
sig: 2701

MLWE, MSIS FS with abort

qTESLA-p-III
[2]

129∗ sign: 7122Kc

verif: 2102Kc
pk: 38432
sk: 12392
sig: 5664

RLWE FS with abort

Falcon-512 [21] 103 sign: 1368Kd

verif: 95Kd
pk: 897
sk: 1281
sig: 657†

NTRU-SIS Hash-and-sign

∗Calculated from 20.265b with BKZ block size b = 489
†Averages taken over 10,000 signatures (signature size of Falcon is probabilistic)
aBenchmarked on a 1.6 GHz Intel Core i5-8265U (Whiskey Lake)
bBenchmarked on a 3.5 GHz Intel Core i7-4770K (Haswell)
cBenchmarked on a 3.4 GHz Intel Core i7-6700 (Skylake)
dBenchmarked on a 3.3 GHz Intel Core i7-6567U (Skylake)

The size of the signature sig = (z,h, c) is 32l log2(2γ1) + ω + k + 40 bytes.
This is the same as that of Dilithium, since the values of γ1, β1 (corresponds to
β in Dilithium) and ω in our scheme are the same as those of Dilithium.

CPU Cycles. We implemented our scheme and the results are shown in Table 2.
They are the number of CPU cycles for KeyGen, Sign, and Verif. These numbers
are the medians or averages of 10,000 executions each. Signing was performed
with a 32-byte message. We have performed the experiments on a laptop with
an Intel Core i5-8265U CPU that runs at a base clock frequency of 1.6 GHz.
The code compiles with gcc 7.5.0. Our implementation is based on the reference
implementation of Dilithium that is available at [14].

As we mentioned before, we cannot utilize the NTT for polynomial multipli-
cation since we select the modulus q in the powers of 2. To mitigate this disad-
vantage, we use Toom-Cook and Karatsuba polynomial multiplication instead
of NTT. Also, we efficiently implement the rounding operation with a simple bit
shift following the method used in [5,13]. As a result, the running time of our
scheme is comparable with that of Dilithium, although our secret key is short.

Note that CPU cycles of Sign for the parameter set III are lower than those
for the parameter set II, although the parameter set III achieves higher security.
This is because we use lower η in III and due to this the expected number of
rejections is less than that of the parameter set II.

Comparison with Other Lattice Signatures. Table 3 compares MLWRSign to
lattice-based signature schemes that are proposed for NIST PQC, in terms of
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security, signature and key sizes, and the performance of portable C reference
implementations.

The most compact, in terms of key and signature sizes, lattice-based schemes
are NTRU-based schemes, e.g., Falcon [15,21]. However, they contain several
disadvantages. One disadvantage is that the security of these schemes is based
on NTRU rather than (ring or module variants of) LWE. The geometric structure
of NTRU lattices has recently been exploited [18] to produce significantly better
attacks against the NTRU problem with large-modulus or small-secret, although
these attacks are not applicable to the recent parameters set used in the digital
signatures. The other disadvantage is that changing the security levels of those
schemes is not easy since it requires a reconstruction of the schemes.

The other lattice constructions are digital signatures based on the hardness
of RLWE/LWE, e.g, [2,3,19]. The disadvantage of these schemes is that both
key and signature sizes and running times are high. As you can see in Table 3,
data sizes and CPU cycles of the latest implementation of qTESLA [2] are much
higher than other schemes.

The MLWE-based signature scheme, Dilithium, offers reasonably small signa-
tures and public keys, and high speeds of signing and verification. In particular,
the sum of the size of the public key and signature of the scheme is smaller
than all the non-lattice-based schemes, to the best of our knowledge. By basing
its security on MLWR, our scheme MLWRSign offers a smaller secret key than
Dilithium, while the size of the public key and signature of are exactly the same,
and speeds of signing and verification are at the same level.

6 Conclusion

We proposed an MLWR-based digital signature scheme MLWRSign, which is a
variant of Dilithium that is one of the second-round candidates of NIST’s call
for post-quantum cryptographic standards. To the best of our knowledge, our
scheme MLWRSign is the first signature scheme whose security is based on the
(variants of) LWR problem. By utilizing the simplicity of LWR in our scheme, we
reduced the size of the secret key by approximately 30% compared to Dilithium,
while achieving the same level of security. We efficiently implemented MLWRSign
using the Toom-Cook and Karatsuba polynomial multiplication, and observed
that the running time of our scheme is comparable to that of the reference
implementation of Dilithium.

A Proofs for Rejection Rate Analysis

We prove the Lemmas 3 to 7 of Sect. 3.3 in the following.

Proof of Lemma 3. P1 can be computed by considering each coefficient sepa-
rately. For each coefficient σ of cs1, the corresponding coefficient of z will be in
(−γ1 + β1 + 1, γ1 − β1 − 1] whenever the corresponding coefficient of yi is in
(−γ1 + β1 + 1 − σ, γ1 − β1 − 1 − σ). The size of this range is 2(γ1 − β1) − 1,
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and the coefficients of y have 2γ1 − 1 possibilities since y ∈ Sl
γ1−1. Thus, we

obtain P1 =
(

2(γ1−β1)−1
2γ1−1

)nl

=
(
1 − β1

γ1−1/2

)nl

. When γ1 is large enough, we can

estimate the above as e−nlβ1/γ1 . ��
Proof of Lemma 4. Similar to the proof of Lemma 3, we obtain P2 =
(

2(γ2−β2)−1
2γ2

)nk

=
(
1 − β2+1/2

γ2

)nk

, and we can estimate this as e−nkβ2/γ2 when
γ2 is large enough. ��
Proof of Lemma 5. Let Xi be the i-th coefficient of an element of the vector
s2, and let Y be a coefficient of an element of the vector cs2. Then, since s2 ∈
Sk

1
2
, if we assume that X1 . . . Xn are i.i.d. and Xi ∼ U(− 1

2 , 1
2 ), we obtain Y ∼

N (0, 60σ2
X) by the central limit theorem, where σ2

X = Var(Xi) = 1/12. Thus,
we obtain Pr[|Y | < β′

2] = 1 − 2FN (0,5)(−β′
2), and (4). ��

Proof of Lemma 6. By construction, t = t1 · 2d + t0 and ‖t0‖∞ ≤ 2d−1. Let
Xi be i-th coefficient of an element of the vector t0, and let Y be a coefficient
of an element of the vector ct0. Note that c ∈ B60 so Y is the sum of the
random 60 elements of {Xi}n

i=1. If we (heuristically) assume that X1 . . . Xn are
i.i.d. and Xi ∼ U(−2d−1, 2d−1), we obtain Y ∼ N (0, σ2

Y ) by the central limit
theorem, where σ2

Y := 60σ2
X and σ2

X = Var(Xi) = (2 · 2d−1)2/12 = 22d/12.
Thus, we obtain Pr[|Y | < γ2] = 1 − 2FN (0,σ2

Y )(−γ2), where FN (0,σ2
Y ) is the c.

d. f. of N (0, σ2
Y ). Since Y is a coefficient of an element of the vector in Rk

p , we
obtain (5). ��
Proof of Lemma 7. Let X, Y and h be the coefficient of an element of the
vector r0, ct0 and h, respectively, and define Z := X + Y . Recall that
h = [[HighBitsp(w − �cs2	 − ν + ct0, 2γ2) �= HighBitsp(w − �cs2	 − ν, 2γ2)]],
and h = 1 when the corresponding Z satisfies |Z| > γ2, h = 0 otherwise.
We now calculate Pr[h = 1]. In line 21, the conditions ‖r0‖∞ < γ2 − β2 and
‖ct0‖∞ ≤ γ2 are already satisfied. Thus, we assume that X ∼ U(−(γ2 −
β2), (γ2 − β2)), Y ∼ N (0, σ2

Y = 5 · 22d) as we have already derived, then we
obtain fZ(z) =

∫ z+(γ2−β2)

z−(γ2−β2)
fX(z − y)fY (y)dy = 1

2(γ2−β2)

∫ z+(γ2−β2)

z−(γ2−β2)
fY (y)dy =

1
2(γ2−β2)

(FY (z + (γ2 − β2)) − FY (z − (γ2 − β2))), and FZ(z) =
∫ z

−∞ fZ(x)dx =
1

2(γ2−β2)

∫ z+(γ2−β2)

z−(γ2−β2)
FY (x)dx, where fX , fY and fZ are the p.d.f of the distri-

bution of X, Y and Z, respectively. Then, we obtain Pr[h = 1] = Pr[|Z| >

γ2] = 2FZ(−γ2) = 1
γ2−β2

∫ 0

−2(γ2−β2)
FY (x)dx, and thus we obtain Hw(h) ∼

B(nk,Pr[h = 1]) since h ∈ Rk
p . Therefore, we obtain (6). ��

B Zero-Knowledge Proof

We will assume that the public key is t rather than t1 because the security of
our scheme does not rely on t0 being secret. We first calculate the probability
that some particular (z, c) is generated in line 15 and takes over the randomness
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of y and the random oracle H that is modeled as a random function. We have
Pr[z, c] = Pr[c] · Pr[y = z − cs1|c]. Whenever z satisfies ‖z‖∞ < γ1 − β1, the
above probability is exactly the same for every such tuple (z, c). This is because
‖cs1‖∞ ≤ β1 (with overwhelming probability), and thus ‖z − cs1‖∞ ≤ γ1 − 1,
which is a valid value of y. Therefore, if we only output z when it satisfies
‖z‖∞ < γ1 − β1, then the resulting distribution will be uniformly random over
Sl

γ1−β1−1 × B60.

The simulation of the signature follows [14]. The simulator picks (z, c) $←
Sl

γ1−β1−1 × B60, then it also makes sure that ‖r0‖∞ = ‖LowBitsp(w − �cs2	 −
ν, 2γ2)‖∞ < γ2 − β. Since we know that w − �cs2	 − ν = �p

qAz	 − ct by (1),
the simulator can perfectly simulate this as well. If z satisfies ‖LowBitsp(w −
�cs2	 − ν, 2γ2)‖∞ < γ2 − β, then as long as ‖�cs2	‖∞ ≤ β2, we will have
r1 := HighBitsp(w−�cs2	−ν, 2γ2) = HighBitsp(w, 2γ2) = w1. Since our β2 was
selected such that we have ‖�cs2	‖∞ < β2 with overwhelming probability (over
the choice of c, s2), the simulator does not need to check if r1 = w1 holds and can
assume that it always passes. We can then program H(μ ‖w1) ← c. Unless we
have already set the value of H(μ ‖w1) to something else, the resulting pair (z, c)
has the same distribution as in a genuine signature of μ. Over the random choice
of A and y, the probability that we have already set the value of H(μ ‖w1) is

Pr
y←Sl

γ1−1

[HighBitsp(�p
qAy	, 2γ2) = w1] ≤

(
2γ2+1
2γ1−1

)n

, and we set the parameters

γ1, γ2 such that we have the upper bound of the above as less than 2−255. All
the other steps after line 19 of the signing algorithm use public information and
thus they are simulatable.
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Abstract. We present the first constant-round, multicast, tree-based
Ring-LWE group key exchange protocol with logarithmic communica-
tion and memory complexity. Our protocol achieves post-quantum secu-
rity through a reduction to a Diffie-Hellman-like decisional analogue to
the decisional Ring-LWE problem. We also present a sequential, multi-
cast, tree-based Ring-LWE group key exchange protocol with constant
communication and memory complexity but a logarithmic number of
rounds.

Keywords: Group key exchange · Post-quantum · Ring-LWE

1 Introduction

Key exchange protocols are essential to cryptography as any encryption proto-
col requires the use of shared secret keys. There are many two-party protocols
and a few post-quantum key exchanges, but only three post-quantum group key
exchanges, namely one by Furukawa, Kunihiro, Takashima [9] at ISITA 2018, one
by Apon, Dachman-Soled, Gong, and Katz [1] at PQCrypto 2019, and one by
Choi, Hong, and Kim [6] from 2020. Their schemes are interesting generalizations
of a Diffie-Hellman based group key exchange by Burmester and Desmedt [3],
to using a Supersingular Isogeny Diffie-Hellman key exchange, a Ring-Learning-
With-Errors (Ring-LWE) key exchange à la Ding, Xie, and Lin [10] (using a key
reconciliation tweak à la Peikert [14]), and a Dutta-Barua [8] protocol, respec-
tively, as their underlying key exchange mechanics. However, for n parties, their
protocols all have communication complexity O(n).

In this paper, we generalize a tree-based, Diffie-Hellman based group key
exchange, also by Burmester and Desmedt [4]. Our protocol is based on Ring-
LWE and we call it the Tree-based Ring-LWE group key exchange (Tree-R-
LWE-GKE). Our protocol has communication and memory complexity O(logk n)
(when every node in the tree is assumed to have k children), where communi-
cation complexity corresponds to the maximal amount of messages received per
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party and memory complexity corresponds to the maximal amount of values
needed to be stored per party until the final key computation.

As done by Desmedt, Lange, and Burmester [7], we also generalize a sequen-
tial version, calling it the Peer-to-Peer Tree-based Ring-LWE group key exchange
(P2P-Tree-R-LWE-GKE). P2P-Tree-R-LWE-GKE achieves constant communi-
cation and memory complexity with O(logk n) round complexity. Thus, P2P-
Tree-R-LWE-GKE works well for devices with limited memory.

The security of our protocols reduces to a Diffie-Hellman-like version of the
decisional Ring-LWE problem, shown by Bos, Costello, Naehrig, Stebila [2] to
have comparable security to the decisional Ring-LWE problem. A fortunate side-
effect is that the parameters for the group key exchange are not influenced by
further constraints than those of the hardness problem, unlike the protocols in
[1] and [6].

The organization of our paper is as follows. In Sect. 2, we give our notation
and explain both our security model in Sect. 2.1, and the Ring-LWE key exchange
and accompanying hard problem in Sect. 2.2. In Sect. 3, we give our Tree-based
Ring-LWE group key exchange (Tree-R-LWE-GKE) while our sequential Tree-
based Ring-LWE group key exchange (P2P-Tree-R-LWE-GKE) protocol is given
in AppendixA. We compare both our group key exchanges to other post-
quantum Ring-LWE group key exchanges in Sect. 4. We give our concluding
remarks in Sect. 5.

2 Preliminaries

We begin by defining notation and notions that we will use in our treatment of
the group key exchange.

On notation, if χ is a probability distribution over a set S, then s
R← χ

denotes sampling an element s ∈ S according to the distribution χ. We use the
notation s

R← S to denote element s ∈ S being chosen uniformly at random
from S. If Algo is an algorithm, then we let y ← Algo(x) denote the output
y from the algorithm, given input x. If the algorithm is probabilistic and uses
some randomness to choose its output, we may draw attention to this by using
the notation y

R← Algo(x).

2.1 Security Model

For the security of our Group Key Exchange (GKE) protocol, we consider the
Manulis, Suzuki, and Berkant [13] version of the G-CK+ model of Suzuki and
Yoneyama [15], which itself is a generalization of an extension of the model by
Canetti and Krawczyk [5]. Due to length concerns, we will be rather brief in our
description of the model and furthermore, because our protocol does not use any
long-term keys, we will simplify the G-CK+ security model by removing security
concerns concerning long-term secrets. For a an even more detailed description
of the G-CK+ model, please refer to Manulis, Suzuki, and Berkant [13].
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Consider a finite set of parties P = {P0, . . . ,Pη} modeled by probabilistic
polynomial-time Turing machines.

Any subset of P can, at any time, decide to initiate a new group key exchange
protocol session. We call such a session an instance and denote the s-th session
of party Pi as the instance Πs

i . We may consider the set of such instances,
{Πs

i : s ∈ [n],Pi ∈ P}. The set of parties involved in the s-th session is denoted
as pids

i ⊂ P, called the partner id, and includes Pi as well. A session can be
invoked by sending all parties involved the partner id in a message. In an invoked
session Πs

i , Pi accepts if the protocol execution was successful, in which case, Pi

then holds the session key ks
i .

We consider an adversary A, modeled as a (not necessarily classical) proba-
bilistic polynomial-time Turing machine that controls all communication. As we
only wish to prove the security of our GKE without worrying about authenti-
cation, we assume an adversary may send an initializing message to a subset of
parties to start a GKE protocol between them, but cannot create or alter any
other message, delivering messages faithfully and only once. We call this model
the authenticated-links G-CK+ security model.

Each party, in each session, maintains a session id sids
i and associated internal

state states
i , used to store ephemeral secrets for the duration of Πs

i . We say
that two instances Πs

i and Πt
j are matching if sids

i ⊆ sidt
j or sidt

j ⊆ sids
i , and

pids
i = pidt

j .
The adversary is given access to the following attack queries.

– AddParty(P): A new party is added to P.
– RevealState(Πs

i ): reveals the protocol-specified state states
i of instance Πs

i

to the adversary, including any and all ephemeral secrets, at the time of query,
if the session is not completed.

– RevealKey(Πs
i ): reveals the session key of a session ks

i to the adversary,
only if Πs

i was accepted.
– Test(Πs

i ): issues the final test. Once the adversary decides that they have
enough data, they query the Test oracle for a challenge. A random bit b is
generated; if b = 1 then the adversary is given the session key ks

i , otherwise
they receive a random key from the key space. The query requires that Πs

i is
accepted.

We say that an instance Πs
i is fresh if none of the above attacks have been

queried on a matching instance Πt
j (this includes Πs

i itself). If this is not the
case, we say that the instance Πs

i is exposed.
Before and after Test(Πs

i ) is issued, the adversary is allowed to make adap-
tive queries, issuing oracle queries with the condition that it cannot expose the
test session. Eventually, A guesses a bit b′. We let Succ(A) be the event that A
guesses b′ = b, i.e. guesses the Test bit b correctly, and define the advantage

Adv(A) =
∣
∣
∣
∣
Pr[Succ(A)] − 1

2

∣
∣
∣
∣
.

In this model, we define security as the following.
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Definition 1 (Session-Key Secure). A GKE is said to be session-key secure
in the authenticated-links G-CK+ security model if for any polynomial-time
adversary A,

1. If two parties accept matching instances, these instances produce the same
session key as output, except with at most negligible probability;

2. Adv(A) is negligible.

In the following, (post-quantum) hard means that there is no polynomial-
time (quantum) algorithm that can solve a given problem, except with negligible
probability.

2.2 Ring-LWE Key Exchange and Hard Problem

For Ring-Learning-With-Errors (Ring-LWE), we consider a key exchange proto-
col over an algebraic ring. We assume that the reader is familiar with elementary
ring theory.

Although Ring-LWE protocols would usually be expected to reduce to a Ring-
LWE problem, the Ring-LWE two-party key exchange we consider, namely the
two-party Ring-LWE key exchange of Ding, Xie, and Lin [10] with Peikert’s
tweak [14], uses a “key-reconciliation mechanism” to derive its final keys, which
relies on the indistinguishability of the reconciliated key from random. From
now on, we will refer to this key exchange as the Ring-LWE key exchange.
Bos, Costello, Naehrig, Stebila [2] give a Diffie-Hellman-like definition of indistin-
guishability that takes key reconciliation into consideration and also show how
the new definition’s hardness reduces to the hardness of the decisional Ring-LWE
problem. We will therefore define both the usual decisional Ring-LWE problem
and the Diffie-Hellman-like definition, as well as the Ring-LWE key exchange.
All our definitions are based on, or indeed taken from, those in [2].

Let Z be the ring of integers and denote [N ] = {0, 1, . . . , N−1}. In this paper,
we set R = Z[X]/(Φ(X)) where Φ(X) = Xm+1 for m = 2l, for some l ∈ Z+. We
let q be a positive integer defining the quotient ring Rq = R/qR ∼= Zq[X]/(Φ[X]),
where Zq = Z/qZ.

Definition 2 (Decisional Ring-LWE (D-Ring-LWE) Problem; [2], Def-
inition 1). Let m,R, q and Rq be as above. Let χ be a distribution over Rq and

let s
R← χ. Define Oχ,s as an oracle that does the following:

1. Sample a
R← Rq and e

R← χ,
2. Return (a, as + e) ∈ Rq × Rq.

The Decisional Ring-LWE problem for m, q, χ is to distinguish Oχ,s from
an oracle that returns uniformly random samples from Rq × Rq.

Note 1. The above D-Ring-LWE problem is given in its normal form, i.e. s is
chosen from the error distribution as opposed to uniformly at random from Rq.
See [12, Lemma 2.24] for a proof that this problem is as hard as choosing s
uniformly at random from Rq.
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In order to introduce the Ring-LWE key exchange, which is the chosen basis
for our group key exchange, we must first define Peikert’s key reconciliation
mechanism, which requires some background. Let �·� denote the rounding func-
tion: �x� = z for z ∈ Z and x ∈ [z − 1/2, z + 1/2).

Definition 3 ([2], Definition 2). Let q be a positive integer. Define the mod-
ular rounding function

�·�q,2 : Zq → Z2, x 
→ �x�q,2 =
⌈
2
q x

⌋

mod 2,

and the cross-rounding function

〈·〉q,2 : Zq → Z2, x 
→ 〈x〉q,2 =
⌊
4
q x

⌋

mod 2.

Both functions are extended to elements of Rq coefficient-wise: for f =
fm−1X

m−1 + · · · + f1X + f0 ∈ Rq, define

�f�q,2 =
(

�fm−1�q,2 , �fm−2�q,2 , . . . , �f0�q,2

)

,

〈f〉q,2 =
(

〈fm−1〉q,2 , 〈fm−2〉q,2 , . . . , 〈f0〉q,2

)

.

We also define the randomized doubling function

dbl : Zq → Z2q, x 
→ dbl(x) = 2x − e,

where e is sampled from {−1, 0, 1} with probabilities p−1 = p1 = 1
4 and p0 = 1

2 .

The doubling function may be applied to elements in Rq by applying it on
each of the coefficients, as done with the rounding functions. Such an application
of the doubling function results in a polynomial in R2q. The reason for consid-
ering such a doubling function is that it allows for odd q in the key exchange
protocol.

The following lemma shows that the rounding of the doubling function on a
uniformly random element in Zq results in a uniformly random element in Z2q.

Lemma 1 ([2], Lemma 1). For odd q, if v ∈ Zq is uniformly random and

v
R← dbl(v) ∈ Z2q, then, given 〈v〉2q,2, �v�2q,2 is uniformly random.

We may now define Peikert’s reconciliation function, rec(·), which recovers
�v�q,2 from an element w ∈ Zq that is “close” to the original v ∈ Zq, given only
w and the cross-rounding of v.

Definition 4. Define sets I0 = {0, 1, . . . ,
⌈

q
2

⌋ − 1} and I1 = {− ⌈
q
2

⌋

, . . . ,−1}.
Let E = [− q

4 , q
4 ), then

rec : Z2q × Z2 → Z2,

(w, b) 
→
{

0, if w ∈ Ib + E mod 2q,

1, otherwise .
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Reconciliation of a polynomial in Rq is done coefficient-wise so the following
lemma allows us to reconcile two polynomials in Rq that are close to each other,
by considering the coefficients of the two polynomials.

Lemma 2 ([2], Lemma 2). For odd q, let v = w + e ∈ Zq for w, e ∈ Zq such
that 2e ± 1 ∈ E (mod q). Let v = dbl(v), then rec(2w, 〈v〉2q,2) = �v�2q,2.

Finally, we define the Ring-LWE key exchange.

Protocol 5 (Ring-LWE Key Exchange). Let m,R, q,Rq and χ be as in the
D-Ring-LWE problem (Definition 2). Given Rq, ParaGen outputs a uniformly

random a
R← Rq. Parties P0 and P1 generate a two-party key exchange protocol

Π as follows:

Setup: For input Rq, ParaGen outputs to each party Pi the public parameter

a
R← ParaGen(Rq).

Publish1: Each party Pi chooses si, ei
R← χ as their secret key and error key,

respectively, computes their public key bi = asi + ei ∈ Rq, and sends
their public key bi to party P1−i.

Publish2: Party P1, upon receiving b0 from P0, chooses a new error key e′
1

R← χ,
computes v = b0s1 + e′

1 ∈ Rq, and uses the randomized doubling

function on v to receive v
R← dbl(v) ∈ R2q. Using the cross-rounding

function, P1 computes c = 〈v〉2q,2 ∈ {0, 1}m and sends c to P0.
KeyGen: In order to generate the final key, party P0 uses the reconciliation

function to output k1,0 ← rec(2b1s0, c) ∈ {0, 1}m. Party P1 simply
computes k0,1 = �v�2q,2 ∈ {0, 1}m.

Except with negligible probability k0,1 = k1,0 = k, i.e. this protocol satisfies cor-
rectness.

The security of the above protocol reduces to a decisional hardness prob-
lem that Bos, Costello, Naehrig, Stebila [2] dub the decision Diffie-Hellman-like
(DDH-like) problem. We give a reformulation of the DDH-like problem definition
from [2, Definition 3] for ease of proof later, although the two are equivalent.

Definition 6 (Decision Diffie-Hellman-like (DDH-like) Problem). Let
m,R, q,Rq, χ be D-Ring-LWE parameters. Given a tuple sampled with probability
1/2 from one of the following two distributions:

– (a, b0, b1, c, k), where a
R← Rq, s0, s1, e0, e1, e

′
1

R← χ, bi = asi + ei ∈ Rq for

i = 0, 1, v = b0s1 + e′
1, v

R← dbl(v), c = 〈v〉2q,2, and k = �v�2q,2 ∈ {0, 1}m,

– (a, b0, b1, c, k
′), where a

R← Rq, s0, s1, e0, e1, e
′
1

R← χ, bi = asi + ei ∈ Rq for

i = 0, 1, v = b0s1 + e′
1, v

R← dbl(v), c = 〈v〉2q,2, and k′ R← {0, 1}m,
determine from which distribution the tuple is sampled.

Theorem 1 (Hardness of DDH-like problem). Let m be a parameter, q
an odd integer, and χ a distribution on Rq. If the D-Ring-LWE problem for
m,R, q,Rq, χ is hard, then the DDH-like problem for m,R, q,Rq, χ is also hard.
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3 New Tree-Based Ring-LWE Group Key Exchange

Assume that from a set of parties, P, we have a subset of n ≥ 2 parties
{P0,P1, . . . ,Pn−1}, re-indexing if need be, that wish to generate a shared key.
The parties are assumed to be arranged in two trees, connected at the roots by
parties P0 and P1, and arranging the parties in ascending order from the top-
leftmost root, going right, and continuing down the tree level-wise, not branch-
wise (see Fig. 1). We choose to call this a double tree. We assume that all
parties are unique, i.e. a party appears at most once in the tree.

As shown for BDII in [4], we let there be a variable number of children per
node (see Fig. 1), however, our notation and definitions vary from those given
in [4]. Excepting the leaves of the tree, each party Pi has a parent par(i), and a
set of children j.cld(i) for j = 1, 2, . . . , li where 0 ≤ li ≤ n − 2 is the amount of
children of Pi, which are all considered the neighbours of Pi (see Fig. 2). For all
Pi that are leaves, li = 0. We let ancestors(i) be the set of indexes of all ancestors
of a party Pi, including i but having removed 0 and 1. P0 and P1 are assumed
to be parents of each other.

P0 P1

P2 P3

P6 P7 P8 P9

P4 P5

P10P11

Fig. 1. Possible Double Tree Configu-
ration for n = 12

par(i)

Pi

1.cld(i) 2.cld(i) · · · li.cld(i)

level
score(i)−1

level
score(i)

level
score(i)+1

Fig. 2. The neighbours of Pi: Parent and
children.

We use the term “multicast” to mean that a party only sends a message to
a discrete subset of all potential parties: at most its descendants and parent.

Protocol 7 (Tree-based Ring-LWE Group Key Exchange). The Tree-
based Ring-LWE Group Key Exchange (Tree-R-LWE-GKE) protocol for
n parties, Πn, takes as input parameters m,R, q,Rq and χ, as in the D-Ring-
LWE problem (Definition 2), and outputs a shared key K ∈ {0, 1}m.

The parameter generator algorithm, ParaGen, takes as input the param-
eter Rq and the number of parties, n. The algorithm outputs a tuple consisting

of a uniformly random a
R← Rq, a double tree for the n parties, Γ , and a unique

session identifier, sID.
The parties Pi for i = 0, 1, . . . , n − 1 generate a group key exchange protocol

Πn as follows:
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Setup: For the input Rq and the number of parties, n, the algorithm outputs
to each party Pi the tuple:

params := (a, Γ, sID) ← ParaGen(Rq, n).

Publish1: Given params, each Pi chooses random secret keys si, ei, e
′
i

R← χ and
computes a public key bi = asi +ei. Pi then multicasts its public key
to its neighbours (parent and li children).

Publish2a: Upon receiving the public key bpar(i) from its parent, Ppar(i), Pi gener-
ates the value vi = bpar(i)si+e′

i. Using the randomized doubling func-

tion (see Definition 3) on this value, Pi finds vi
R← dbl(vi) ∈ R2q.

Using the cross-rounding function (see Definition 3), Pi then com-
putes

ci = 〈vi〉2q,2 ∈ {0, 1}m,

the key reconciliation key for its parent, which Pi sends to said par-
ent, Ppar(i).
We assume, without loss of generality, that P1 generates c1 and
sends it to P0, while P0 generates no key reconciliation key c0.

Publish2b: Upon receiving the respective key reconciliation keys cj.cld(i) from its
li children, and also using the value vi, Pi computes the shared keys
kpar(i),i and kj.cld(i),i for each j ∈ {1, . . . , li}:

kpar(i),i = �vi�2q,2 ∈ {0, 1}m,

kj.cld(i),i ← rec(2bj.cld(i)si, cj.cld(i)) ∈ {0, 1}m,

for j ∈ {1, . . . , li}, where �·� is the modular rounding function (see
Definition 3) and rec is the reconciliation function from Defini-
tion 4.
Again, without loss of generality, P1 sets k0,1 = �v0�2q,2 ∈ {0, 1}m

while P0 computes k1,0 ← rec(2b1s0, c1) ∈ {0, 1}m.
Publish3: Each Pi with children (this excepts the leaves of Γ ) computes

xj.cld(i) = kpar(i),i ⊕ kj.cld(i),i,

and multicasts this value to its respective descendants, for each j ∈
{1, . . . , li}.

KeyGen: Each Pi computes a final key

Ki = kpar(i),i ⊕
⊕

h∈ancestors(i)

xh = K.

Proposition 1 (Correctness). Except with negligible probability, each party in
the Tree-based Ring-LWE Group Key Exchange protocol (Protocol 7) computes
the same final key K = k0,1.
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Proof. This can be seen by induction. By key reconciliation, except with negli-
gible probability, K0 = K1 = k0,1. Assume that Kpar(i) = K then, as

Kpar(i) = kpar(par(i)),par(i) ⊕
⊕

h∈ancestors(par(i))

xh,

except with negligible probability, we have that, except with negligible proba-
bility,

Ki = kpar(i),i ⊕
⊕

h∈ancestors(i)

xh

= kpar(i),i ⊕ (

kpar(par(i)),par(i) ⊕ ki,par(i)

) ⊕
⊕

h∈ancestors(par(i))

xh

= Kpar(i) = K.

In fact, [2], Proposition 2, the probability that, for two honest parties doing the
Ring-LWE key exchange, the derived keys are not the same, is less than 2−214 .
The probability of a single party in the GKE not having the correct final key is
less than or equal to the probability that a single pair of parties does not have the
same derived Ring-LWE key. Using Fréchet inequalities for logical disjunction,
we have that the probability of even a single GKE party not having the correct
final key must be less that n · 2−214 . ��

Note that the shared key of the group is simply the shared key of the initial
parties P0 and P1. In order to prove that our Tree-R-LWE-GKE protocol is
secure, we show a reduction to the DDH-like problem from Definition 6.

Theorem 2. Under the assumption that the DDH-like problem (Definition 6) is
hard, the Tree-R-LWE-GKE protocol given in Protocol 7 is session-key secure in
the authenticated-links G-CK+ security model.

Proof. We must show that the protocol in Protocol 7 satisfies the security notion
given in Definition 1. The first requirement is satisfied by the correctness shown
in Proposition 1.

For the second requirement, assume that there exists a (not necessarily
classical) polynomial-time adversary A, allowed polynomially-many classical
queries, with non-negligible advantage Adv(A) = ε (see Definition 1). We build
a polynomial-time distinguisher D, allowed polynomially-many classical queries,
for the DDH-like problem in Algorithm1. As an analysis of our distinguishing
algorithm, we note the following.

For every session, except the �-th, D simulates the Tree-R-LWE-GKE pro-
tocol to A, choosing new random secret keys for each party in each session and
simulating all communication through A. As all randomness is generated anew
for each session and there are no long-term keys, all sessions are independently
generated. Hence, any attack on any other session does not reveal anything
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Algorithm 1. DDH-like distinguisher, D.
Input: (m, R, q, Rq, χ, a, b0, b1, c, k) as in the DDH-like problem.

1: �
R← {1, . . . , Λ}, where Λ is an upper bound on the number of sessions activated by

A in any interaction.
2: Invoke A and simulate protocol to A, except for the �-th activated protocol session.
3: For the �-th session:
4: Set params := (a, Γ, s), where Γ is an n-party binary graph and s is the session

identifier
5: Set b′

0 = b0, b
′
1 = b1 and c1 = c. Choose (si, ei, e

′
i)

R← χ3 for i = 2, . . . , n−1 and

set b′
i = asi + ei. Set vi = bpar(i)si + e′

i, generate vi
R← dbl(vi) ∈ R2q and compute

ci = 〈vi〉2q,2 ∈ {0, 1}m. Simulate multicasting for each Pi along with identifying
information (Pi, s).

6: Set

x′
j.cld(0) := k ⊕ k0,j.cld(0), ∀j ∈ {1, 2, . . . , l0},

x′
j.cld(1) := k ⊕ k1,j.cld(0), ∀j ∈ {1, 2, . . . , l1},

x′
j.cld(i) := kpar(i),i ⊕ kj.cld(i),i, ∀j ∈ {1, 2, . . . , li},

for i ≥ 2 where Pi is not a leaf in Γ .
7: if the �’th session is chosen by A as the test session then
8: Provide A as the answer to the test query,
9: d ← A’s output

10: else
11: d

R← {0, 1}.

Output: d

about the �-th session except through repetition of secret keys, which happens
with negligible probability.

For the �-th session, using the public information for P0, namely
b0, D simulates R-LWE key exchange (Definition 5) with the secret keys
sj.cld(0), ej.cld(0), e

′
j.cld(0) of party Pj.cld(0), obtaining the shared key k0,j.cld(0) =

kj.cld(0),0, except with negligible probability. Likewise, using the public informa-
tion for P1, namely b1, D simulates Ring-LWE key exchange with the secret
keys sj.cld(1), ej.cld(1), e

′
j.cld(1) of party Pj.cld(1), obtaining k1,j.cld(1) = kj.cld(1),1,

except with negligible probability. All other shared keys may be computed in
polynomial-time as the secret keys for Pi are known for i = 2, . . . , n − 1.

As the si, ei, e
′
i are chosen uniformly at random for i ≥ 2, the distribution

of the b′
i, x

′
j.cld(i) in Algorithm 1 are identical to that in a Tree-R-LWE-GKE

instance.
The transcript given to A by D is

(b′
0, . . . , b

′
n−1, x

′
1.cld(0), x

′
2.cld(0), . . . , x

′
l0.cld(0), x

′
1.cld(1), . . . , x

′
(ln−1).cld(n−1)),

where we assign a blank value for the x′ value when there is no child.
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In the �-th session, if the subroutine adversary A attempts an attack query,
it is satisfactorily replied to unless it queries a state reveal on P0 or P1, in which
case D terminates the algorithm as it is not privy to their secret keys.

If the �-th session is the test session and k is a valid Tree-R-LWE-GKE final
key, then k = k0,1, i.e. (a, b0, b1, c, k) is indeed a valid DDH-like tuple, where
k = �v0�2q,2.

If the test session is not the �-th session, then D outputs a random bit, i.e. it
has advantage 0. However, If the test session is the �-th session, which happens
with probability 1/Λ, then A will succeed with advantage ε. Hence, the final
advantage of the DDH-like distinguisher D is ε/Λ, which is non-negligible. ��
Corollary 1. Assuming the DDH-like problem is post-quantum hard, Tree-R-
LWE-GKE is a post-quantum secure group key exchange.

In AppendixA, we give a peer-to-peer (sequential) version of our Tree-R-
LWE-GKE, calling it the P2P-Tree-R-LWE-GKE protocol. As it is sequen-
tial, relying on a party to generate the final key before sending a final message
to its children, the amount of rounds is bounded by the length of the double
tree, while the communication and memory complexity become constant (see
Sect. 4). It achieves the same level of security as the Tree-R-LWE-GKE protocol
through an analogous argument, which we therefore omit, and summarize this
in the following theorem.

Theorem 3. Assuming the DDH-like problem is post-quantum hard, P2P-Tree-
R-LWE-GKE (Protocol 8) is a post-quantum secure group key exchange.

Note 2. The Tree-R-LWE-GKE and P2P-Tree-R-LWE-GKE protocols do not
use any long-term secrets, and so, achieve forward security.

4 Comparison

In this section, we compare our group key exchanges, Tree-R-LWE-GKE (Pro-
tocol 7) and P2P-Tree-R-LWE-GKE (Protocol 8 in AppendixA), with the other
post-quantum Ring-LWE group key exchanges: Apon, Dachman-Soled, Gong,
and Katz [1] and Choi, Hong, and Kim [6]. Apon, Dachman-Soled, Gong, and
Katz [1] generalize a Diffie-Hellman based group key exchange construction by
Burmester and Desmedt [3] into a Ring-LWE setting. Choi, Hong, and Kim
[6] generalize another Diffie-Hellman based group key exchange by Dutta and
Barua [8] into a Ring-LWE setting. Both papers arrange the parties in a ring
structure, letting Pn = P0,Pn+1 = P1, etc., and achieve a post-quantum Ring-
LWE n-party group key exchange protocol with communication and memory
complexity O(n).

We choose to consider our Tree-R-LWE-GKE and P2P-Tree-R-LWE-GKE
having k-ary trees as their graphs, which are double trees where each party
(excepting leaves) has exactly k children. This gives Tree-R-LWE-GKE a con-
stant number of rounds and communication and memory complexity logk(n),
while the values are more or less reversed for P2P-Tree-R-LWE-GKE.
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We evaluate these GKEs in the following aspects: the number of rounds, the
communication complexity, and the number of values needed to compute the
final key, i.e. the memory complexity. The amount of rounds is taken to be the
maximal amount of times any party must wait for information from other parties
in order to proceed. The communication complexity considers the maximal
number of broadcast/multicast messages received by any party in one call of the
protocol1. The memory complexity takes into account the maximal amount
of values stored until the final key computation. Table 1 shows these parameters
for our selected GKEs.

Table 1. Comparison table of Ring-LWE based GKEs.

Protocol Rounds Communication Memory

Apon et al. [1] 3 O(n) O(n)

Choi et al. [6] 3 O(n) O(n)

Tree-R-LWE-GKE 3 O(logk n) O(logk n)

P2P-Tree-R-LWE-GKE O(logk n) k + 2 2

For Tree-R-LWE-GKE, we have three rounds, as the Ring-LWE public keys
are exchanged in the first round, key reconciliation keys in the second round, and
the exclusive-or of shared keys in the third round. The multicast values received
are the Ring-LWE public keys of the parent and each child, a key reconciliation
key from the parent, as well as one XOR sum from each ancestor. The values
stored until the final key computation consist of one XOR sum from each ancestor
as well as the Ring-LWE key shared with the parent.

The Tree-R-LWE-GKE protocol and related P2P-Tree-R-LWE-GKE differ
greatly in the amount of rounds, communication complexity, and values needed
to generate the final key. We note that the overall smallest number of operations
per party is obtained when k = 2 in Tree-R-LWE-GKE and that the best over-
all efficiency of P2P-Tree-R-LWE-GKE is also obtained when k = 2. However,
depending on the structure of the network and the computational power of the
parties involved, etc., it may be beneficial to select one protocol over the other
and to arrange the double tree as needed.

Parameter Constraints. Beyond the parameter constraints required for the
hardness of the Ring-LWE problem, the parameters of [1] and [6] (including the
number of parties) are required to satisfy further bounds set by the key reconcil-
iation and Rényi bounds, for correctness and security. Fixing the ring, noise dis-
tributions, and security parameters, therefore limits the amount of parties their
1 In doing so, we assume that broadcasting/multicasting a message does not depend

on the number of receivers but that receiving l messages means that the receiver
incurs a cost of l, even if all messages are received in a single round. The reason
for this is that it takes into account that receiving messages requires being online
and also storing said messages while broadcasting/multicasting is usually a one-time
operation.
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protocols can support, while our security proof sets no further constraints on
our parameters and our correctness bound makes the amount of parties incon-
sequential. Although our protocol does not have constraints other than those
required for the hardness of the DDH-like problem, the advantage for an adver-
sary in solving the DDH-like problem is less than the sum of the advantages of
solving two instances of the D-Ring-LWE problem (see [2, Theorem 1]), meaning
that our Ring-LWE parameters must be adjusted accordingly. For example, [2]
suggest n = 1024, q = 232 − 1, σ = 8/

√
2π to achieve statistical 128-bit classi-

cal security, giving theoretical 64-bit post-quantum security, assuming Grover’s
algorithm corresponds to a square-root speed up to the search problem.

5 Concluding Remarks

We gave two new, tree-based Ring-LWE group key exchange protocols, relying
on the hardness of the DDH-like problem, which is an analogue to the decisional
Ring-LWE problem. Our protocols give us versatile post-quantum Ring-LWE
n-party group key exchanges, which when balanced with k children per node,
in one case achieves constant round complexity and communication and mem-
ory complexity O(logk n), and in the other case, constant communication and
memory complexity and round complexity O(logk n).

We remark that Ring-LWE group key exchanges of [1] and [6] have high
communication and memory complexity, but possibly other benefits, due to their
integration of the Ring-LWE two-party key exchange mechanics into the protocol
steps, unlike ours, which requires each pair of parent and child to complete a
Ring-LWE key exchange before proceeding. It may be possible to improve our
key exchange by likewise integrating Ring-LWE key exchange principles into
the tree structure but we have not considered the possibility. In any case, as
our protocols are tree-based, they benefit from being able to structure the tree
according to processing power or memory capabilities. In conclusion, the low
communication and memory complexity in our protocol, the versatility of tree-
based constructions, along with the added security benefit from reducing to the
indistinguishability of a single instance of Ding, Xie, and Lin’s Ring-LWE key
exchange with Peikert’s tweak, makes our protocols highly competitive Ring-
LWE based post-quantum group key exchanges.

As a final note, [1] and [6] both present authenticated GKEs as well. Using
a Katz-Yung compiler [11] would turn Tree-R-LWE-GKE into an authenticated
version, but would give us O(n) communication and memory complexity. In
the extended version of this paper, we introduce a compiler that preserves our
complexity advantage.

A Peer-to-Peer Tree-R-LWE-GKE Protocol

Like Desmedt, Lange, and Burmester [7], we also give a peer-to-peer version
of our Tree-R-LWE-GKE protocol. We call this protocol the P2P-Tree-R-LWE-
GKE protocol and note that the number of rounds and the communication
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complexity switches, the communication complexity becoming constant and the
number of rounds becoming logarithmic. The differences between the protocols
begins after the Publish2b step.

We again consider a double tree, Γ , for n-parties and use the term “multicast”
to mean that a party only sends a message to a discrete subset of all potential
parties: at most its descendants and parent.

Protocol 8 (Peer-to-Peer Tree-based Ring-LWE GKE). The Peer-to-
Peer Ring-LWE Group Key Exchange (P2P-Tree-R-LWE-GKE) pro-
tocol for n parties, Πn, takes as input parameters m,R, q,Rq and χ, as in the
D-Ring-LWE problem (Definition 2), and outputs a shared key K ∈ {0, 1}m.

The parameter generator algorithm, ParaGen, takes as input the param-
eter Rq and the number of parties, n. The algorithm outputs a tuple consisting

of a uniformly random a
R← Rq, a double tree for the n parties, Γ , and a unique

session identifier, sID.
The parties Pi for i = 0, 1, . . . , n − 1 generate a group key exchange protocol

Πn as follows:

Setup: For the input Rq and the number of parties, n, the algorithm
outputs to each party Pi the tuple:

params := (a, Γ, sID) ← ParaGen(Rq, n).

Publish1: Given params, each Pi chooses random secret keys si, ei, e
′
i

R← χ
and computes a public key bi = asi + ei. Pi then multicasts its
public key to its neighbours (parent and li children).

Publish2a: Upon receiving the public key bpar(i) from its parent, Ppar(i), Pi

generates the value vi = bpar(i)si + e′
i. Using the randomized dou-

bling function (see Definition 3) on this value, Pi finds vi
R←

dbl(vi) ∈ R2q. Using the cross-rounding function (see Defini-
tion 3), Pi then computes ci = 〈vi〉2q,2 ∈ {0, 1}m, the key recon-
ciliation key for its parent, which Pi sends to said parent, Ppar(i).
We assume, without loss of generality, that P1 generates c1 and
sends it to P0, while P0 generates no key reconciliation key c0.

Publish2b: Upon receiving the respective key reconciliation keys cj.cld(i) from
its li children, and also using the value vi, Pi computes the shared
keys kpar(i),i and kj.cld(i),i for each j ∈ {1, . . . , li}:

kpar(i),i = �vi�2q,2 ∈ {0, 1}m,

kj.cld(i),i ← rec(2bj.cld(i)si, cj.cld(i)) ∈ {0, 1}m,

for j ∈ {1, . . . , li}, where �·� is the modular rounding function (see
Definition 3) and rec is the reconciliation function from Defini-
tion 4.
Again, without loss of generality, P1 sets k0,1 = �v0�2q,2 ∈ {0, 1}m

while P0 computes k1,0 ← rec(2b1s0, c1) ∈ {0, 1}m.
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Publish3a: Parties P0 and P1 have already computed the same final key
K = k1,0 = k0,1 (except with negligible probability) and send
xj.cld(0) = K ⊕ kj.cld(0),0, respectively xj.cld(1) = K ⊕ kj.cld(1),1,
to their respective children, for j ∈ {1, . . . , l0}, respectively j ∈
{1, . . . , l1}.

KeyGen and:
Publish3b

Upon receiving xpar(i), Pi computes the final key

Ki = xpar(i) ⊕ kpar(i),i.

Every party Pi with children (this excepts the leaves of Γ ), then
computes xj.cld(i) = Ki ⊕ kj.cld(i),i and multicasts this to its j-th
child, for each j ∈ {1, . . . , li}.

It is easy to see that this protocol satisfies correctness: By key reconciliation,
K0 = K1 = K, except with negligible probability. Assume that Ppar(i) obtained
the final key Kpar(i) = K. For party Pi,

Ki = xpar(i) ⊕ kpar(i),i = (K ⊕ ki,par(i)) ⊕ kpar(i),i = K,

except with negligible probability.
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Abstract. Cryptocurrencies are a new form of digital asset and are being widely
used throughout the world. A variety of cryptocurrency-based botnets have been
proposed and developed to utilize cryptocurrencies as new command and control
(C&C) platforms. Most existing cryptocurrency-based botnets are bonded with
the cryptocurrency client, which generates abnormal P2P traffic that can be easily
detected and blocked. In addition, the commands embedded in transaction records
can be easily traced, since the transaction records in a cryptocurrency network are
usually publicly available. In this paper, we propose CoinBot, a novel botnet that
based on the cryptocurrency networks. CoinBot is characterized by low cost, high
resilience, stealthiness, and anti-traceability. Different from other cryptocurrency-
based botnet, CoinBot utilizes Web2.0 services to achieve a dynamic addressing
service for obtaining commands. As such, there is no need to run a cryptocurrency
wallet application and hardcode a botmaster’s sensitive information in CoinBot,
and the communications between the botmaster and the bots are hidden under
legitimate HTTP/S traffic. Furthermore, we propose a cleaning scheme to prevent
commands frombeing permanently recorded in the blockchain, thereby decreasing
the risk of channel exposure. CoinBot is a generic model that can be applied to
different kinds of cryptocurrency networks. We believe this model will be highly
attractive to botmasters and could pose a considerable threat to cybersecurity.
Therefore, we provide defensive suggestions to mitigate similar threats in the
future.

Keywords: Botnet · Cryptocurrency · Blockchain · Command and control

1 Introduction

A botnet [1] is a group of compromised computers that can be controlled remotely by a
botmaster to execute coordinated attacks, such as spam, denial-of-service attacks, click-
ing fraud and ransomware distribution. Compared to other Internet malware, the major
feature of a botnet is that it has a one-to-many command and control (C&C) channel. The
C&C channel is the essential component of a botnet, which receives commands from the
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botmaster and forwards them to the bots. Once the C&C channel is destroyed by defend-
ers, the botmaster will not be able to remotely direct his or her bots to execute attacks.
Therefore, to construct a robust botnet that can thwart defenders, botmasters have com-
mitted considerable effort to enhance C&C infrastructure performance by increasing
availability, resilience, stealthiness and anti-traceability.

Existing botnet C&C channels still face difficulties when confronting defenses. For
example, centralized botnets suffer from the single point of failure problem, and P2P
botnets are vulnerable to index pollution attacks and Sybil attacks [2]. These issues have
motivated botmasters to continuously exploremore promisingways to acquire newC&C
channels. A new method that has recently emerged applies blockchain technology to
build botnet C&C infrastructures. In September 2019, TrendMicro researchers revealed
that the Glupteba botnet uses the Bitcoin blockchain to update its C&C server address
[3]. Security researchers have also conducted studies on cryptocurrency-based botnet
designs; for example, Bitcoin and Ethereum have been used for botnet C&C communica-
tions [4–6]. In cryptocurrency-based botnets, commands are embedded into a transaction
by the botmaster, and bots extract the commands from the blockchain via a hardcoded
identity label. In this way, the botnets inherit the features of the public cryptocurrency
network: they are resilient, anonymous, and publicly accessible. Nevertheless, for an
ideal botnet, current cryptocurrency-based botnets still have some drawbacks.

The first drawback is heavy P2P traffic. Cryptocurrencies are decentralized peer-to-
peer (P2P) networks based on blockchain technology, which is a distributed ledger. To
join the network, bots must include a corresponding cryptocurrency wallet application,
so a large amount of P2P network traffic will be generated when synchronizing block
data and enumerating the transactions. Such traffic is easily caught by detection systems
based on network traffic anomalies such as high network latency, unusual ports, and
unusual system behavior, especially in networks where no related cryptocurrency is
used. Second, botnet activity can be traced on the blockchain. As we know, a blockchain
is an open, distributed ledger that can record transactions between two parties efficiently
and in a verifiable and permanent way. Once recorded, the data in any given block
cannot be altered retroactivelywithout alteration of all subsequent blocks,which requires
consensus of the network majority. Therefore, commands are permanently stored in
the blockchain along with the transaction and can be accessed by anyone, which may
expose botnet activities and even become evidence for digital forensic analysis. Third, the
botmaster’s sensitive information is hardcoded. In current cryptocurrency-based botnets,
bots mainly rely on a hardcoded botmaster’s identity label, such as a wallet address or
public key, to extract commands from specific transactions. Obviously, once a bot is
captured and reverse engineered by defenders, the C&C channel will be exposed and
traced with the exposure of this information.

To overcome the above drawbacks, we design a novel covert botnet channel by
utilizing a cryptocurrency network and web services, which we call CoinBot. Our
contributions are threefold:

• We propose CoinBot, a generic botnet C&C channel model in a cryptocurrency net-
work. By utilizing two popular web services, URL shortening service and block
explorer service, the bots can extract commands via a dynamic addressing scheme,
and C&C communication is hidden in legitimate HTTP/S traffic.
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• To avoid commands being permanently recorded in the blockchain, we present a
cleaning scheme that is inspired by the double-spending problem, which is a potential
issue in a digital cash system.

• We deploy a CoinBot prototype in multiple cryptocurrency networks and analyze its
feasibility, cost overhead, resilience, stealthiness and anti-traceability features. We
also discuss possible strategies for mitigating the proposed botnet.

2 Background

2.1 Botnet C&C Channel

The C&C channel is a crucial component for a botnet, as it is the only means to maintain
control over the bots. In earlier years, attackers usually controlled a bot based on the
IRC or HTTP protocol. This centralized architecture is simple, efficient and highly
interactive. However, hardcoded C&C addresses usually cause a serious single point of
failure problem. To eliminate the problem, botmasters came up with the domain-flux
[7] protocol. Bots are no longer hardcoded with a C&C address prior to deployment
but with a domain generation algorithm (DGA) that takes date and time as seed values
to generate custom domain names at a rapid rate. Another approach to compensate for
the deficiency of centralized botnets is to use the P2P protocol. In a P2P botnet, each
infected host can act as both a client and a server. Based on the distributed features of
P2P protocols, the botmaster can issue commands at any node, so it can hide the real
address of the C&C server and effectively solve the single point of failure problem.
However, P2P botnets are not perfect and possess inherent weaknesses. For example,
structured P2P botnets, such as Storm [8], are vulnerable to index pollution attacks and
Sybil attacks, and their scale is easy tomeasure byCrawler and Sybil nodes; unstructured
P2P botnets usually communicate using random scanning or peer-list; the former has the
inherent weaknesses of flow anomalies, and the latter is vulnerable to peer-list pollution
attacks.

In recent years, botmasters have constructed their C&C infrastructure by abusing
public services, such as social networks (e.g., Twitter, Facebook), network disks (e.g.,
Dropbox,Mediafire), and online clipboards (e.g., pastebin.com, cl1p.net). TheKoobface
botnet [9], which first appeared in late 2008, preys on social networking sites as its
primarymeans of propagation, which sets a precedent for other botnet families to exploit
Web2.0 sites. InAugust 2009, a botnet that usedTwitter as aC&Cchannelwas discovered
[10]. Lee et al. [11] explored newbotnets based onURLshortening services and proposed
alias flux methods that frequently change shortened URLs of C&C servers to hide their
existence, which is similar to the domain-flux method. These kinds of C&C channels
do not require the botmaster to deploy his or her own servers, and messages exchanged
between bots and the botmaster flow through the network as legitimate application
messages.Most importantly, defenders cannot shut down the whole botnet by destroying
the C&C servers. Modern botnets also tend to use a mix of techniques, such as P2P
networks with HTTPC&C servers, or leverage different public services to buildmultiple
channels [12].
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2.2 Cryptocurrency

A cryptocurrency can be thought of as a digital asset that is constructed to function as a
medium of exchange, premised on the technology of cryptography [13]. The first decen-
tralized cryptocurrency, Bitcoin (BTC) [14], was created in 2009 by Satoshi Nakamoto.
Over the past decade, the number of cryptocurrencies has exploded, and there are over
5000 available cryptocurrencies on the Internet as of March 2020 [15].

Transaction. A crypto transaction [16] is a transfer of value between digital wallets. A
wallet typically keeps a public key, which is also called a wallet address, and a secret
piece of data, called a private key, which is used to sign transactions. Only the owner
of the private key can spend his or her own coin. After a transaction is submitted to
the network, it will wait for confirmation by the nodes of the P2P network. A node
called a miner confirms transactions by solving a cryptographic puzzle and adds them to
the distributed ledger. The distributed ledger is structured as a blockchain. Each block
contains a set of valid transactions and is linked to the previous block by including its
hash. When miners create a new block, they broadcast it to the network, and this block is
verified by all the nodes of the network. Nodes always consider the longest chain to be
the correct one andwill continue to extend it. Any transaction or data exchange that takes
place on the blockchain has the data stored in chronological order and is time-stamped.
This makes tracking the information very easy and erasing the information very hard.

Double-Spending. Double-spending [14] is a problem in which the same digital cur-
rency is spent twice. Because of differences in propagation time over the network, there
is no guarantee that the order in which transaction messages arrive at a node is the order
in which they were created. Therefore, some nodes have validated one transaction, and
others have validated a conflicting transaction that uses the same unspent transaction
output (UTXO). A UTXO defines an output of a blockchain transaction that has not
been spent, i.e., used as an input in a new transaction. To resolve this inconsistent state
of the network, consensus mechanisms, such as proof-of-work and proof-of-stake, are
designed to maintain the order of the transactions. In the cryptocurrency network, when
miners receive a new transaction, they first check whether its input has been previously
spent. If the input has been used, it will be considered invalid. If both transactions take
place at the same time, the transaction that obtains themaximumnumber of confirmations
from the miners is included in the blockchain, and others are discarded.

OP_RETURN. Bitcoin and other cryptocurrencies based on the Bitcoin protocol (e.g.,
Litecoin, Dash) allow arbitrary data on the blockchain to be saved through a special
instruction of the scripting language, called OP_RETURN [17]. OP_RETURN can be
used for digital asset proof-of-ownership and has at times been used to convey additional
information needed to send transactions. Research [18] has shown that OP_RETURN
usage has been steadily increasing since March 2015. The limit for storing data in an
OP_RETURN of the Bitcoin network was originally planned to be 80 bytes; after the
Bitcoin 0.12.0 release, the data limit was extended to 83 bytes. In the Ethereum network,
the data field [19] of a transaction has the same function as OP_RETURN. In general, the
data field stores an initialization Bytecode in the case of a contract-creation transaction
or an ABI Byte String containing the data of the function when calling on a contract.
This field has no explicit limit to the amount of data that can be actually embedded.
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3 Related Work

The race between attackers and defenders has led to highly innovative botnet C&C
infrastructure. While early botnets used IRC, HTTP and P2P, later botnets focused on
converted and sophisticated C&C channels. With the rise of blockchain technology and
cryptocurrency, specific cryptocurrency networks have been proposed for botnet C&C
communication. According to the interests of researchers and the differences between
these studies, we compare several aspects of current cryptocurrency-based botnets in
Table 1: 1) which cryptocurrency network to use; 2) how to insert commands; 3) how to
receive commands; 4) whether the botmaster’s identity information will be hardcoded
in the bot; and 5) whether commands will be recorded in the blockchain.

Table 1. Cryptocurrency-based Botnet works.

Related works Network Insert command Receive
command

Hardcoded Recorded

ZombieCoin [4] Bitcoin OP_RETURN Bitcoin node
(SPV)

Y Y

Sweeny et al. [5] Ethereum Smart Contract Ethereum
node

Y Y

Daza V et al.
[20]

Bitcoin
Testnet

OP_RETURN Bitcoin node
(SPV)

Y Y

DUSTBot [21] Bitcoin
Testnet

OP_RETURN Bitcoin node Y Y

LNBot [22] Bitcoin OP_RETURN LN node Y N

DLchain [23] Bitcoin Digital Signature Bitcoin node N Y

ChainChannels
[6]

Multiple
networks

Digital Signature
—

Y Y

CoinBot Multiple
networks

OP_RETURN Website N N

As shown in Table 1, most works use the Bitcoin network. ZombieCoin [4] was
the first paper to propose using the Bitcoin network for botnet C&C. In ZombieCoin,
the botmaster embeds the commands in the output script function OP_RETURN of
the transaction; then, the bots identify this transaction and extract the commands via
the hardcoded botmaster’s public key. [20, 21] both leveraged Bitcoin Testnet as the
C&C infrastructure for a bidirectional botnet, and they also used OP_RETURN outputs
to embed messages inside transactions. Jonathan Sweeny [5] first proposed using the
Ethereum private blockchain for a botnet C&C channel. In this study, the botmaster
must create his or her own Ethereum private blockchain, and each bot joins the chain
via the same configuration file. The commands are written into the smart contract; by
calling the smart contract, the bots can extract the commands. Different from utilizing
OP_RETURN outputs, ChainChannels [6] proposed a method to insert hidden data
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into transaction signatures. This approach does not require any specific blockchain field
because it relies solely on digital signatures, which is equally applicable to any other
blockchain as long as it uses a suitable signature scheme (such as ECDSA) that allows
the injection of subliminal messages.

Almost all cryptocurrency-based botnets need to run a cryptocurrency node for
receiving commands. To decrease memory and traffic footprints, some botnets use the
lightweight simplified payment verification (SPV) mode, which does not replicate the
entire blockchain but only a subset of block headers, and filter incoming traffic to
transactions of interest. In addition, we note that there are two limitations in current
cryptocurrency-based botnets. First, commands will be publicly announced along with
the transaction, thus logging C&C activities in the blockchain forever. Second, a public
key or wallet address is hardcoded in bots to identify the botmaster’s transaction, which
will increase the risk of botnet exposure. Some researchers have also noticed these
limitations. To overcome the first problem, Ahmet Kurt et al. [22] proposed LNBot,
which utilizes the Bitcoin Lightning Network for botnet C&C. The Bitcoin Lightning
Network provides “off-chain” transactions that are not announced and not recorded on
the blockchain, thus hiding botnet activities. Nevertheless, this method only works for
Bitcoin-based botnets. To solve the second problem, Tian et al. [23] presented DLchain.
The authors designed a dynamic label generation algorithm based on the statistical dis-
tribution of real transaction data, and the senders and receivers share the same algorithm
to construct the covert channel.

In contrast, our work focuses on solving both problems at the same time and proposes
a generic model that can be used on multiple cryptocurrency networks. Furthermore, to
avoid anomalous traffic patterns, we exploit Web2.0 services instead of running cryp-
tocurrency nodes to obtain commands, thus hiding the traffic generated by our bots
within legitimate HTTP/S traffic. To the best of our knowledge, this is the first paper to
use this method.

4 Design of CoinBot

4.1 Overview

The architecture of CoinBot is shown in Fig. 1, and the communication between the
botmaster and the bots includes four steps. Note that this process does not include the
cleaning scheme; the details of the cleaning scheme are explained in Sect. 5.

(1) The botmaster embeds the signed and encoded command into the OP_RETURN
function or data field of a transaction and submits it to the corresponding
cryptocurrency network. The botmaster then receives a transaction hash (Tx hash).

(2) The botmaster chooses a block explorer service and uses the RESTful API to gener-
ate a URL with Tx hash. This URL can directly locate the transaction that contains
the botmaster’s command.

(3) The botmaster chooses a URL shortening service and converts the URL obtained
in step (2) to a shortened URL that can be predicted by a URL generation algorithm
(UGA).
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Botmaster

Bitcoin Cash

blockexplorer.comchain.so blockchain.comblockcypher.com

LiteCoinDashEthereumBitCoin

7.ly

Bots

URL Shortening Service

Cryptocurrency

Blockchain Explorer Service

① Submit a transaction
with the command

② Generate a URL with Tx hash

④ Extract the command

③ Normalize the URL to a shortened one

DGA

Fig. 1. The CoinBot Architecture

(4) The bots share the same UGA as the botmaster and periodically send requests to
the URLs generated by the UGA. Once successful, the bots will extract and verify
the command from the specific field of the response.

The above steps can be summarized into two actions: command issuing by the
botmaster and command extraction by the bots. Next, we will describe these two actions
in detail.

4.2 Command Issuing

In CoinBot, the botmaster inserts the command in the OP_RETURN output script func-
tion of a transaction and sends it to the corresponding cryptocurrency network. As we
introduced in Sect. 2.2, a cryptocurrency network using the Bitcoin protocol (e.g., Lite-
coin, Dash) is allowed to insert arbitrary data through OP_RETURN. By utilizing this
function, we can embed commands into the transaction. The limit size of the inserted data
is 83 bytes formost cryptocurrency networks. This bandwidth is sufficient to embedmost
commands. Longer commands can be further encoded (e.g., Huffman) or fragmented to
fit within these limits. The format of our command is <commandtype> <parameter>,
where commandtype means the activity type, such as DDoS, Scan or Download, and
parameter contains information such as target address, command expiration date. Com-
mands are encrypted and signed with a symmetric key and an asymmetric key, respec-
tively, and then encoded inBase64.Authentication based on digital signatures guarantees
that the botnet is owned only by the botmaster and eliminates the risks of being injected
with malicious commands or being controlled by others. We show the command as
follows:

Base64(private key signature (RC4(command))RC4(command))
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4.3 Command Extraction

For bots to extract the commands, CoinBot uses a dynamic addressing scheme based on
block explorer services and URL shortening services.

A block explorer is a web service made specifically to search the blocks of a
blockchain; it allows users to explore the entire blockchain of the platform they are
using, including wallet status, transaction data, block data and so on. In general, block
explorers work on top of cryptocurrency full nodes; they can quickly synchronize trans-
action data and provide real-time data display. Most block explorers support multiple
cryptocurrencies and provide RESTful API for querying data and propagating transac-
tions. We show several popular block explorer services in Table 2. In CoinBot, after
submitting a transaction to the cryptocurrency network, the botmaster will obtain a Tx
hash of this transaction. Based on the Tx hash and the block explorer RESTful API, one
can form a URL to directly locate this transaction and look up detailed information. For
example, if the botmaster uses BlockCypher and embeds the command into a Bitcoin
transaction (assuming that the Tx hash is 60bfd8b23acb8…), this transaction will be
found at “https://api.blockcypher.com/v1/btc/main/txs/60bfd8b23acb8…/”.

Table 2. Popular Block Explorer Services.

Block Explorer RESTful API Main Net

chain.so /api/v2/get_tx/{network}/{Tx hash} B, D, Z, L,
Doge

blockchair /{network}/dashboards/transaction/{Tx hash} B, E, BC, L,
D, Doge

blockcypher /v1/{network}/main/txs/{Tx hash} B, L, Doge,
D

cryptoID /{network}/api.dws?q=txinfo&t={Tx hash} L, D

blockchain /rawtx/{Tx hash} B

etherscan.io /api?module=transaction&action={}&txhash={}&apikey={} E

(B = Bitcoin, D = Dash, Z = Zcash, Doge = Dogecoin, L = Litecoin, E = Ethereum, BC =
Bitcoin Cash)

Although the botmaster can query the transaction via the above URL address, the
transaction is unknown to the bots. For bots to locate this transaction, we design a
URL generation algorithm (UGA) based on URL shortening services (USSes). USSes
can replace long URLs with shorter ones and subsequently redirect all requests for the
shortened URL to the original long URL [24]. Some USSes (e.g., tinyurl, is.gd) permit
users to customize a short URL, which gives users a degree of freedom, as shown in
Fig. 2. UGA is similar to DGA, but the algorithm does not generate domain names
but URLs. In CoinBot, the botmaster runs a certain UGA using a seed to generate a
set of algorithmically-generated URLs (AGUs) and randomly selects one of them as a
registrant on the correspondingUSS and points to theURL address of the transaction that
contains the command. Bots use the same seed to run the UGA and generate the same

https://api.blockcypher.com/v1/btc/main/txs/60bfd8b23acb8%e2%80%a6/
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AGUs. Then, they periodically send requests to these AGUs to extract the command.We
depict the UGA in Algorithm 1. The number of AGUs nmeans the number of generated
domains per day. A list of USSes U is a set of customized URL formats based on the
corresponding USSes. For example, [https://tinyurl.com, https://is.gd]. Similar to the
seeds used in the DGA botnet [25], a dynamic seed prevents the URL list from being
predicted prematurely even if defenders reverse the bot. For example, the seed could be
Twitter trend [26], which are changed every day and do not have fixed patterns. Even if
defenders have mastered the UGA, they can only know the AGUs for that day, making
premature prediction impossible.

Algorithm1 URL Generation Algorithm
Input:
The number of AGUs n; a list of USSes ; a seed s;
Output:
1. Initialize a list ;
2. Generate a set of terms with the seed s;
3. Randomly select a USS u from ;
4. For each do
5.   
6.   
7. Return ;

Fig. 2. Using tinyurl to customize a URL

5 Cleaning Scheme

In this section, we propose a cleaning scheme to avoid commands being written into the
blockchain. The cleaning scheme is based on two facts:

• If there are two conflicting transactions that have not been confirmed in the cryptocur-
rency network (i.e., the same UTXO is spent twice), once one of them is confirmed by
miners and can no longer be reversed; the other transaction will be considered invalid
and will never be written into the blockchain.

• Each transaction has a fee attached that is given to the miner for their hard work. To
earnmore coins,minerswill confirm transactionswith the highest fees first. The higher

https://tinyurl.com
https://is.gd
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the fees a user is willing to pay, the faster his or her transaction will be processed. In
other words, a transaction with lower fees will take a longer time to be confirmed.

Therefore, if the bots can extract the command before the transaction is mined and
the botmaster can withdraw this transaction by creating a conflicting transaction before
the previous transaction, the commandwill not be recorded in the blockchain. To achieve
this goal, the transaction containing the command should set very low fees to encourage
a long confirmation time so that the bots have enough time to obtain the command, while
the conflicting transaction should set higher fees to ensure it can be confirmed first. In
the cryptocurrency network, when miners receive a new transaction, they first check
whether the transaction is correctly formed and whether the value has been previously
spent in a block in the blockchain. If the transaction is correct, miners will store it in a
local memory pool (mempool) and work on constructing a block. A mempool is a local
structure at each full node that contains all transactions that have been received and not
yet confirmed. If a transaction that appears in the mempool of a given node is confirmed
elsewhere, the transaction will be removed from the mempool. These transactions in the
mempool are called pending transactions [19]. Essentially, our cleaning scheme utilizes
these pending transactions to clean command histories and achieve anti-traceability.

In the following, we refer to Bitcoin as an example to describe the cleaning scheme
in detail. The scheme is shown in Fig. 3:
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Fig. 3. The cleaning scheme

(1) The botmaster first embeds the command into a transaction and sends it to the
Bitcoin network via a block explorer or wallet application. This transaction must
be set with a very low fee to ensure that the transaction confirmation time is as long
as possible. We name this transaction Tx_a, which can be queried on some block
explorer services.
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(2) The botmaster and the bots share the sameUGAbased on a seed andURLshortening
service (USS). The botmaster randomly selects an AGU generated by the UGA and
points to the URL address of the transaction on the block explorer via USS. By
periodically sending requests to AGUs, bots extract the command from Tx_a.

(3) Estimating that all bots have received the command, the botmaster sends a conflict-
ing transaction (Tx_b) that uses the same UTXO but higher fees. In theory, miners
will confirm Tx_b first.

(4) When Tx_b is confirmed, Tx_a will be dropped from the local mempool. Therefore,
the transaction containing the command will not be recorded in the blockchain.

In the cleaning scheme, there are two important problems to be considered. The
first is how low the Tx_a fee should be set and how long its confirmation time can be
delayed. The confirmation time of a transaction is defined as the time elapsed between
the moment the transaction is submitted to the cryptocurrency network and the time it
is finally recorded into a confirmed block. It is usually related to the transaction fees
and fluctuates every day depending on the status of the cryptocurrency network. If the
confirmation time is too short, some bots may not have yet received the command, but
Tx_a is written into the blockchain, making the cleaning scheme invalid. Therefore, the
botmaster wants the confirmation time to be as long as possible so that all bots have
sufficient time to extract the command before Tx_a is confirmed. The second problem
is the time for when the botmaster sends the conflicting transaction Tx_b. If Tx_b is
submitted too early, some bots may not have received the command yet; if too late,
miners may accept Tx_a. Both cases may invalidate the cleaning scheme. To solve these
problems, we present a proof of concept in the next section.

6 Proof of Concept

In this section, we evaluate the parameters of the cleaning scheme and verify the fea-
sibility of CoinBot. As the botmaster, we use bitcoinjs-lib, litecore-lib and dash-lib to
create corresponding raw transactions and submit them to the cryptocurrency network
via BlockCypher [27]. BlockCypher is a popular block explorer and has features that
support propagating raw transactions and provide data queries for multiple blockchains.
In this way, the botmaster is not only able to easily modify transaction fees but can also
leverage BlockCypher’s large network of nodes to propagate transaction and query data
faster. Our bots are developed based on Python3.6 and run on 20 volunteer machines
in multiple locations, including the United States, Japan, England and Hong Kong. The
bots periodically access the AGUs that are generated by the UGA, and the AGUs will
change every day according to our UGA.

6.1 Confirmation Time Assessment

To evaluate the tradeoff between the confirmation time and the transaction fee and find
the best confirmation time and fee, we deployed a set of experiments with different fees
(from 0 sat/byte to 5 sat/byte) for 10 days on Litecoin and Dash. Our results are shown
in Fig. 4 and Fig. 5. We can see that when the fee is more than 1 sat/byte, the transaction



118 J. Yin et al.

can be confirmed in a short time. For Litecoin, the shortest confirmation time is 12 s with
3 sat/byte fees on 3/19; for Dash, the shortest confirmation time is 49 s with 3 sat/byte
fees on 3/12. We also notice that the confirmation time does not follow a certain rule
and is difficult to predict, a transaction with a higher fee may have a longer confirmation
time. This is because the network status is different every day, and network congestion
and computing power will affect the confirmation time. This uncertain situation poses a
challenge to the cleaning scheme.

0

1

2

3

4

5

6

3/12 3/13 3/14 3/15 3/16 3/17 3/18 3/19 3/20 3/21 3/22lo
g(

co
nf

ir
m

at
io

n 
tim

e
(s

))

Date Time

0 0.3 0.6 0.9 1 2 3 4 5

Fig. 4. Transaction confirmation time with different fees on Litecoin
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Fig. 5. Transaction confirmation time with different fees on Dash

Nevertheless, we find that when the fee is less than 1 sat/byte, the transaction will
stay unconfirmed for a long time, the shortest time is 16 h, and the longest time is 24 h.
If the transaction has not been confirmed during this period, it will be dropped from the
block explorer and never queried. The reason for this situation is a policy setting called
the minimum relay fee in cryptocurrency network. Each full node has a policy setting
called theminimum relay fee that filters out transactionswith transaction fees that are too
low. The default value is 1 sat/byte. If the transaction fee is below this value, it will not be
broadcast to other nodes but will stay in the local mempool. Without enough computing
power, the probability of the transaction being mined is very low. If the transaction is
not confirmed for a long time, it will be dropped by the node. Therefore, by utilizing
this function, the botmaster can gain enough time for the bots to obtain the command.
According to experiments, as long as the botmaster sets the fee at less than 1 sat/byte,
bots will have at least 16 h to obtain the command.
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6.2 Feasibility Assessment

Sixteen hours is long enough for a bot to get the command. The botmaster can send
commands repeatedly to ensure that each bot can obtain commands even if it is
offline or shut down. To verify the feasibility of CoinBot and the cleaning scheme,
we create a command: “<download><http://www.example.com/mm.exe><2020-5-
20><2020-6-20>”, which is encrypted with RC4, signed with RSA512, and encoded
with Base64. The command size is 176 bytes, so we split it into 3 segments and add the
command ID and segment ID in each command segment. Considering the rate limits on
accessingWeb2.0 services, the access frequency for AGUs is set to once per minute, and
the number of AGUs is 10. As shown in Table 3, we send these commands to Litecoin,
Dash and Bitcoin Testnet at the same time and with different fees, but all fees are less
than 1 sat/byte. Figure 6 plots the cumulative probability distribution of the time bots
obtained the command. On Litecoin and Bitcoin Testnet, approximately 75% of bots got
the command within 70 s; on Dash, approximately 90% of bots got the command within
70 s; all bots could get a complete command within 6 min. After all bots received the
command, we sent three conflicting transactions that had no extra data with the same
UTXO and 2 sat/byte fees to Litecoin, Dash andBitcoin Testnet. These transactions were
confirmed after 7 min, 10 min and 6 min, respectively, but caused a “double-spending”
warning that did not affect our operation, as shown in Fig. 7. Then, the transactions
containing the commands were dropped from the network and could not be queried on
any block explorer.

Table 3. Transaction information.

Command
ID

Command Segment Command
Size (bytes)

Blockchain Transaction
Size (bytes)

Fee
(sat/byte)

1 1-0-3|MzXQjcXE… 76 Litecoin 314 0.8

1-1-3|oE1BtLEIJ… 76 Dash 314 0.4

1-2-3| kfx063ZeX… 42 Bitcoin
Testnet

279 0

In fact, the time it takes for the bots to obtain commands depends on the access fre-
quency and the number of AGUs. For a long-running bot, the botmaster should consider
the network anomalies and rate limits of these Web2.0 services. Therefore, we reset the
access frequency to 10min, 20min and 30min, and the results are shown in Fig. 8.When
the access frequency is 10 min and 20 min, all bots received the command within an
access period.When the access frequency is 30min, approximately 90% of bots received
the command within an access period, i.e., 30 min; only two bots received the command
past 30 min, at 31 min and 35 min, respectively. Therefore, if the access frequency is
more than 10 min, we suggest that two access periods for the bots to obtain commands
is appropriate; that is, the botmaster can send conflicting transactions after two access
periods. Our experiment was conducted under ideal conditions: all bots were online. In
the real world, the bots will go online or offline, and the botmaster needs to considermore

http://www.example.com/mm.exe
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Fig. 7. Screen capture of WARNING on the BlockCypher
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external factors to determine parameters. In addition, some may think: Why not wait
for the block explorer to automatically remove the transaction with low fees? Because,
although the computing power of a single node is limited, in theory, it is still possible
that this transaction can be confirmed. What’s more, staying in cryptocurrency network
for a long time will provides defenders with the opportunity to trace.

In conclusion, CoinBot is feasible and applicable to multiple blockchains. To imple-
ment the cleaning scheme, the transaction fee is preferably less than 1 sat/byte. When
the transaction fee is set below 1 sat/byte, the time for sending conflicting transactions
should depend on the access frequency but should not exceed 16 h.

7 Evaluation and Analysis

In this section, we analyze the performance of CoinBot in terms of the cost as well as
the resilience, stealthiness and anti-traceability of its design.

Cost Overhead. The costs of developing CoinBot on the main cryptocurrency network
depend on the value of the cryptocurrency itself. In popular cryptocurrencies, Bitcoin is
the most expensive. In March 2020, 1 BTC traded at approximately $6614, 1 Litecoin
traded at approximately $39.81, and 1 DOGE traded at approximately $0.001841. In
CoinBot, we only consider the conflicting transaction that is responsible for replacing
the previous transaction because the botmaster does not want the transactions containing
commands to be confirmed. Considering a median transaction size of 226 bytes, if we
use the 1 sat/byte fee, taking Bitcoin as an example, the transaction fee is 226 satoshis,
approximately $0.015.As such, this cost ismuch less than the cost of building a dedicated
C&C infrastructure (e.g., VPS, Domain). A better method for a lower cost may involve
using a testnet. A testnet is a copy almost identical in every way to the cryptocurrency
main network except that its token is worthless and used for testing purposes only. These
transactions on the test network can also be looked up by a specific block explorer (e.g.,
chain.so, etherscan.io). Using a testnet is just as effective and cheaper than using the
main network. The botmaster’s only concern is communicating the message reliably
because it could be subject to intermittent down time. For example, the first Ethereum
testnet was shut down in November 2016.

Resilience Analysis. The C&C channel of CoinBot is not restricted to a specific
blockchain but supports multiple blockchains and public services, thus providing it with
high resilience and scalability. In the addressing process, CoinBot is based on the URL
shortening services and block explorer service. If the service in use becomes deactivated,
the botmaster can easily find an alternative service because there are many similar ser-
vices that meet the requirements on the Internet. In addition, compared to using servers
(i.e., virtual private servers) as a C&C, public services themselves can be more secure
and steady due to their functionality and technical support. Therefore, we believe that
the design of CoinBot is also suitable for building large-scale botnets.

Stealthiness Analysis. Compared to other cryptocurrency-based botnets, one of the
major characteristics of CoinBot is that it has no cryptocurrency client. Therefore, the
traffic generated byCoinBot is not heavy P2P traffic butHTTP/S traffic.HTTP/S traffic is
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commonly allowed to cross enterprise network perimeters and can be hidden in the large
volume of background noise provided by the legitimate HTTP/S traffic being carried on
a network. It is more difficult for detection systems to detect abnormal situations in large
amounts of HTTP/S traffic than in P2P traffic. When there is no cryptocurrency user in
the network, defenders can deploy rule-based detection systems or set up firewalls. In
addition, public services commonly support HTTPS, and CoinBot can take advantage of
the protocol to encrypt the transmission content, thus further increasing the stealthiness
of the botnet.

Anti-traceability Analysis. The anti-traceability of CoinBot can be reflected in two
aspects: first, the botmaster is anonymous. Web services often require a registration pro-
cess that easily reveals personal information. CoinBot introduces some web services,
but there is no registration process in these public services, thus preventing the identity
of the botmaster from being exposed. To further provide anonymity, the botmaster can
use conventional mechanisms such as VPNs or Tor. In addition, CoinBot uses a dynamic
addressing scheme instead of a hardcoding botmaster’s wallet address or public key, thus
protecting the botmaster’s critical information. Second, the botnet activities are unob-
servable. Our cleaning scheme keeps commands from being recorded in the blockchain.
This increases the difficulty of forensics to some degree and reduces the risk of botnet
activity being exposed.

8 Countermeasures

Our evaluation highlights the low cost, resilience, stealthiness and anti-traceability of
CoinBot, which are very attractive traits for botmasters. We believe this is a desirable
design that botmasters may employ in the near future. To mitigate the threat of these
botnets, we discuss possible countermeasures.

First, we recommend detecting the UGA features of CoinBot from network traffic.
It is difficult to distinguish CoinBot’s traffic from legitimate HTTP/S traffic, but it is
possible to detect UGA behavior in traffic. To obtain the commands, each bot has to
periodically retrieve a large number of the same or similar URLs, which will lead to
spatiotemporal features in network behavior. These URLs belong to a limited number of
URL shortening service providers and exhibit unusual characteristics such as returned
HTTP 404 error responses, being retrieved periodically, and being requested during
nonworking hours, such as late nights or early mornings.

Second, block explorer service providers should take more responsibility for detect-
ing such a botnet. This is not only for social responsibility but also for providingmore sta-
ble services. To prevent these services from being abused, we propose some suggestions
to service providers as follows:

(1) Set up the user authentication process and further restrict the use of the query API
to prevent bots from reading commands from the service easily.

(2) Detect and block behaviors such as a large number of distributed clients querying
a certain pending transaction in a short timeframe. This is a typical behavior of a
large number of bots trying to obtain commands.
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(3) Pay attention to frequent double-spent warnings and trace the corresponding pend-
ing transactions. Although the commands will not be recorded in the blockchain, if
service providers can keep corresponding pending transaction information, it will
be possible to discover C&C activities.

(4) Filter or prohibit transactions with fees lower than 1 sat/byte and prevent display-
ing the pending transaction information. This will invalidate the CoinBot cleaning
scheme. However, this outcome has a very low probability because it may not serve
the interests of service providers, and it would be difficult to reach a universal
agreement with so many block explorer services on the Internet.

Finally, from the perspective of establishing a healthy blockchain ecological envi-
ronment, we also recommend that researchers and engineers propose a more secure
solution to prevent blockchain from being abused. For example, removing user defin-
able features, such as OP_RETURN, may be the most effective way to eliminate the
possibility of attackers using the cryptocurrency network for botnet C&C. Proposals to
disable this feature have been controversial [18], and researchers may have to take more
effort to evaluate its practical value.

9 Conclusions

This paper introduces a novel botnet C&C channel model based on cryptocurrency net-
works, known as CoinBot. In CoinBot, the botmaster embeds commands in transactions,
and the bots retrieve commands through a dynamic addressing scheme based on block
explorer and URL shortening services. In addition, we propose a cleaning scheme that
uses pending transactions to propagate commands to prevent C&C activities from being
recorded in the blockchain permanently, thus decreasing the possibility of attribution
significantly. The proof-of-concept implementation of this architecture indicated that
CoinBot is applicable to a wide variety of cryptocurrencies and that the cleaning scheme
can be successfully implemented when the transaction fee is set below 1 sat/byte. Com-
pared to similar approaches, CoinBot is low cost and offers high resilience, stealthiness
and anti-traceability.

Considering that cryptocurrency services consistently perform well and cannot be
easily closed, the proposedmodelmayprove to be a considerable threat to cryptocurrency
services. In future work, we will investigate more effective mechanisms to mitigate such
kind of advanced threats.
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Abstract. Trusted Execution Environment (TEE) has been widely used
as an approach to provide an isolated storage and computation environ-
ment for various protocols, and thus security features of TEE deter-
mine how to design these protocols. In practice, however, new TEE-
based protocols are often designed empirically, and a lack of comprehen-
sive analysis against real threat models easily results in vulnerabilities
and attacks. Unlike most past work focusing on communication chan-
nels or secure enclaves, we present a formal model for TEE-based proto-
cols, which includes a detailed threat model taking into account attacks
from both network and TEE-based platforms together with a scalable
multiset-rewriting modelling framework instantiated by Tamarin. Based
on the proposed threat model and formalism, we use Tamarin to system-
atically and automatically analyze related offline and web-based proto-
cols considering all combination of threats. The results and comparison
highlight the protocols’ advantages and weaknesses inherited from TEE-
based platforms. Moreover, we also capture some vulnerabilities that are
difficult to be found under the traditional threat model and propose
corresponding fixes.
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1 Introduction

Trusted Execution Environments (TEEs), such as ARM TrustZone, Intel SGX,
and Trusted Platform Module (TPM), have been widely used as an approach to
provide a physically isolated storage and computation environment for mobile,
desktop, laptop, and server computing platforms. Benefited from the hardware
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support, platforms deployed with TEEs can achieve high security guarantee by
utilizing the idea of multi-level security domains.

Designers and developers have made full use of TEE to design and imple-
ment various kinds of security protocols in order to meet different needs of the
platforms and the communication between them. Some basic security protocols,
which have been studied for more than a decade, include Trusted Boot and
Remote Attestation [1].

With the development of mobile payment, passwordless login and transaction
becomes a part of our daily life. Most passwordless authentication protocols rely
on the TEE-based platforms for a better protection of the authentication factors
such as fingerprint and facial features during the login and transaction.

In addition, more delicate protocols (e.g. TCG Trusted Mobility Solutions
[2], session key establishment protocol [3], etc) are designed and implemented
based on TEE.

Due to limited computation and storage resources in TEE, not all the pro-
tocol steps and data can be protected. Therefore, protocol designers have to
carefully choose which parts and what parameters should be placed in TEE,
and then leave the left part less protected in normal OS environment. This leads
to a fact that new TEE-based protocols are often designed empirically, and a
lack of comprehensive analysis against real threat models easily results in vul-
nerabilities and attacks [4–6].

Formal methods and analysis have been applied to help design protocols and
platforms with less flaws. In classical protocol analysis, the attacker is supposed
to control the communication network. However, the protocols we studied in this
paper rely heavily on the TEE-based platforms and thus face additional attacks
from local TEE, normal OS environment, and even remote platforms.

1.1 Research Contribution

Unlike most past work focusing on communication channels or secure enclaves,
we propose a formal model for TEE-based protocols, which includes: (1) a
detailed threat model considering attacks from both network and platforms and
their combinations; (2) corresponding formalism for modelling these protocols.

(1) In the detailed threat model, we take into account data storage locations
(e.g. ROM, RAM, and flash) on the platforms and treat them as the plat-
form states. The adversaries try to corrupt the platforms and thus may
have different levels of access (e.g. NULL, read-only and read-write) to these
states. Meanwhile, communication through both protected and unprotected
network/local channels are considered, and attackers have full control of the
unprotected communication channels but only very limited access to the pro-
tected channels. Moreover, based on the above, we consider the combinations
of different attacker abilities, which may vary with the protocol architecture.
The detailed threat model is proposed in Sect. 2.

(2) As instantiated by Tamarin, we present a scalable multiset-rewriting mod-
elling framework for the TEE-based protocols, where both protocol entities
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and attacker abilities are modelled as multiset rewriting rules, which make
up the labeled transition system of TEE-based protocol. The corresponding
formalism is introduced in Sect. 3.

Based on the proposed threat model and formalism, we get dozens of scripts
to check the secrecy, authentication and unlinkability properties of offline and
web-based protocols relying on TEE. The analysis is completely automated by
using Tamarin tool systematically generating all combinations of threat scenarios
for each of the protocols. The results and comparison highlight these protocols’
advantages and weaknesses inherited from the TEE-based platform. Moreover,
we also capture some vulnerabilities that are difficult to be found under the
traditional threat model and propose corresponding fixes. The analysis and ver-
ification results are introduced in Sect. 4.

1.2 Related Work

Some work has been done to formally analyze the interface instructions offered
by TEEs [7–10]. Since each type of TEEs has different specification and imple-
mentation, these approaches normally address security issues specific to related
TEE-based protocols.

Other researchers provide security models of the TEE-based platforms focus-
ing on different TEE characteristics (e.g. isolated execution environment, sealing
mechanism, remote attestation, dynamic codes loading and execution, etc), and
further analyze security properties of the protocols relying on these features.
In [11], Datta et al. propose a logic built around a concurrent programming
language with constructs for modeling machines with shared memory, various
platform operations, dynamically loading and executing unknown codes. [12]
presents a program logic called System M for modeling and proving safety prop-
erties of systems that execute adversary-supplied code via interface-confinement.
Jacomme et al. [13] propose the SAPIC process calculus in order to capture the
TEEs’ ability to produce reports binding cryptographically a message to the pro-
gram that produced it (i.e. remote attestation). However, this line of research
lacks a comprehensive threat model covering the large attack surface that TEE-
based protocols suffer.

Bai et al. propose TRUSTFOUND [14] and consider attacks from network,
software and hardware when analyzing security of TEE-based platforms and
protocols. Whereas our threat model is more fine-grained and consider combi-
nations of different threats. Moreover, our security analysis takes into account
privacy-type property such as unlinkability.

2 TEE-Based Protocols Overview and Threat Model

2.1 TEE-Based Platforms and Protocols

The TEE-based protocol is one specific kind of protocols built on the TEE-based
platforms, and its server-client architecture is shown in Fig. 1. One TEE-based
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protocol consists of local and remote entities. The former are software compo-
nents executing in either Secure World (SW) or Non-Secure World (NSW) on the
TEE-based platforms, and they exchange data with each other by system calls.
The later reside in a remote server platform, and communicate with local entities
in NSW via network. Permanent data such as prestored keys and certificates are
stored in Non-Volatile Storage like ROM, flash, and disk whereas transient data
(e.g. nonces) are kept in RAM. Based on the server-client architecture in Fig. 1,
the peer-to-peer type can be easily obtained.

2.2 Threat Model

Figure 1 also shows that, in classical protocol analysis, the attacker is supposed
to control the communication between protocol entities. However, in the real
world the TEE-based protocols heavily rely on the TEE-based platforms, where
permanent and transient data needed by protocol entities are stored. Attackers
may control different parts of the architecture and then have access to these
data, which would result in violated security properties even if the properties
are reserved in the classical analysis.
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Fig. 1. The server-client architecture of TEE-based protocol & a comparison of attacker
abilities in the classical analysis and real world.

Therefore, besides the communication between protocol entities, we also focus
on the data storage locations (e.g. ROM, RAM, flash, etc), in which the attackers
are also interested. We assume that one attacker may have (1) no access (NULL),
(2) read-only access (RO), or (3) read-write access (RW) to these data storage
locations and communication channels. The reason we omit the write-only access
is that having write access normally implies having read access since the attacker
needs read the data first and then analyze to locate where he writes. To sum up,
the basic three levels of access can be organized as a partial ordering relation,
which is RW>RO>NULL.

Based on different parts of the protocol architecture that one attacker may
control, we divide attackers into three categories, namely 1) the communication
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attacker, 2) the server attacker, and 3) the local attacker. We will introduce the
attackers and their possible abilities in details, and then discuss the combinations
of these attackers for different TEE-based protocols.

2.2.1 Communication Attacker
The communication attacker is the one who tries to control the communication
between protocol entities. In classical analysis, this is captured by Dolev-Yao
model, where the attacker is assumed to be unable to break cryptographic prim-
itives, but can perform protocol-level attacks (e.g. sniffing the communication
network, modifying traffic, etc) to an unprotected communication channel. This
ability is denoted as Com-RW.

However, in many cases, SSL/TLS and private system calls are used to
ensure protected communication between protocol entities, which causes that
one attacker can only block or delay the message sent during communication.
We denote this kind of attacker ability as Com-NULL.

The relationship of possible abilities possessed by the communication attacker
can be organized as a partial ordering relation shown in Fig. 2.

2.2.2 Server Attacker
We assume that the server attacker tries to control the remote server platform.
If he succeeds in taking full control of the OS (e.g. rooting the system) on
remote server platform, then he gains read-write access to all the related data
storage locations (e.g. ROM, RAM, flash, disk, etc) and communication channels
(e.g. network), which is denoted as attacker ability Svr-RW. However, the server
attacker may only corrupt parts of the OS, in that case, read-only access to
the related resources is gained, and this is denoted as Svr-R. Possible abilities
relationship of the server attacker is shown in Fig. 2. Moreover, we assume that
attackers, who successfully gains access to the platform, also have the same access
to the protected communication channels related to the corrupted platform.

If the remote server platform is also TEE-based, then the following Sect. 2.2.3
captures the abilities that one attacker may have.

2.2.3 Local Attacker
The local attacker makes attempt to control the local TEE-based platform, and
corrupt the NSW and/or SW.

i) When the attacker only targets the NSW, the situation is similar to the server
attacker, and he may gain read-only or read-write access to the related data
storage locations configured as non-secure (e.g. large-capacity flash, disk, and
RAM in NSW) and related communication channels (e.g. network and system
call). We denote this type of attacker as the Non-Secure World attacker (NSW
attacker).

ii) When the attacker has physical access to TEE-based platform and wants
to corrupt the SW, he can perform active and passive attack actions (e.g.
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probing the memory, injecting faults, etc) to gain read-only or read-write
access to the data storage locations belonging to Secure World. We call this
type of attacker as the Secure World attacker (SW attacker). As one may
notice, benefited from physical access, the SW attacker also has the ability
to corrupt the OS in NSW, and therefore gain read-only or read-write access
to the NSW as well. Normally, it is harder to corrupt SW than NSW, so we
assume that the attacker ability to SW implies the same or stronger ability
to NSW. In the same way, we denote possible abilities of SW attacker as
(NSW-RW, SW-RW), (NSW-RW, SW-R), (NSW-R, SW-R), and NULL.

Possible abilities of local attacker (i.e. NSW attacker and SW attacker) can
be organized as a lattice shown in Fig. 2.

1) Communication
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2) Server
attacker

3) Local attacker

Svr-RW
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NULL
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(NSW-R, SW-R)

NULL

3)-i Non-Secure 
World Attacker

3)-ii Secure 
World Attacker

Com-RW

Com-NULL

Fig. 2. Relation of attacker abilities and combinations of different attackers.

2.2.4 Combinations of Attackers for Different TEE-Based Protocols
For different TEE-based protocols, combinations of attackers are considered to
explore possible threat scenarios.

Taking Trusted Boot as an example, network is not used during the protocol,
so only local attackers needs to be considered for this kind of protocols.

However, for most TEE-based protocols, network and remote server platform
are necessary. If SSL/TLS and private system calls are used, then one analyst
needs consider possible abilities based on the combinations of Com-NULL com-
munication attacker, server attacker and local attacker. In the case that the
network and system calls are not protected, then possible abilities based on
the combinations of Com-RW communication attacker, server attacker and local
attacker need to be considered.

3 Modelling the TEE-Based Protocols

We choose Tamarin prover [15], which is the state-of-the-art security protocol
verification tool, as our basis to model and analyze various TEE-based protocols.
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3.1 Modelling the Protocols and Threat Model

As instantiated by Tamarin, we present the multiset-rewriting modelling frame-
work and notations for the TEE-based protocols, where network messages and
local data are represented as terms, protocol atomic operations and states
denoted as functions and facts, protocol execution together with attacker capa-
bilities modelled as multiset rewriting rules, which constitute the labeled tran-
sition system of one TEE-based protocol.

Due to space limitation, we only list the core multiset-rewriting notations
from Tamarin. For complete details, we refer to Tamarin prover manual [16].
Meanwhile, we emphatically explain our self-defined facts for modelling platform
states together with protected communication channels, and multiset rewriting
rules for attacker abilities.

Network Messages and Local Data. In tamarin, network messages are mod-
elled as terms T , which could be variables, constants and functions. We also use
terms to model local data stored on platforms. Additionally, we define unary
function xToken($b) to model the implicit access token of protocol entity (with
ID $b) to local data, where xToken could be nsToken, sToken, and svrToken.

Protocol Atomic Operation. Moreover, Tamarin facilitates reserved func-
tions to denote symbolic cryptographic operations and corresponding results. For
example, sign(m, sk) stands for a signature on m using private key sk and implies
the signing operation is performed by some protocol entity or the attacker. Nat-
urally, related equations are defined based on these functions like

verify(sign(m, sk),m, pk(sk)) = true.

To model more protocol atomic operations, Tamarin uses facts represented by
F(t1, ..., tk), where F is a fact symbol and t1, ..., tk are terms. There are reserved
fact symbols like: K - for attacker knowledge; Fr - for fresh data; In and Out -
for protocol inputs and outputs via unprotected communication channels.

Protocol States. Other fact symbols may be added as required by the protocol,
e.g. for representing the state. These symbols can be persistent (the correspond-
ing facts cannot disappear), or linear (the corresponding facts are consumed by
rules and protocol rules can update them). Persistent fact symbols are prefixed
by ! (e.g. !F). A multiset can contain multiple copies of the same linear fact.

Therefore, we define facts to capture what are stored in data storage loca-
tions, which are considered as the protocol states. Here, we focus on three types
of TEE-based platform data storage locations (i.e. ROM, RAM, and flash).
!ROM(AT, T ) and !Flash(AT, T ) are persistent facts to capture non-volatile data
T on ROM and flash, whereas RAM(AT, T ) is linear fact to represent transient
data T on RAM. The access token AT ::=nsToken($b)|sToken($b)|svrToken($b)
helps indicate that the protocol entity $b can access data T in storage locations
of local NSW, local SW or remote server platform.

For protected network and local communication, we define facts
TLS($b1, $b2, T ) and LOC($b2, $b3, T ), where $b1, $b2, and $b3 are the names
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of the protocol entities on remote server platform, in local NSW and SW respec-
tively, and T is the transmitted message between them.

In Tamarin, protocol execution and adversary capabilities are represented by
a set of multiset rewriting rules, which can be considered as a labeled transition
system of protocol entities together with the adversary acting on protocol states.

Multiset Rewriting Rule and State Transition. A multiset rewriting rule
is defined by [L]−−[ M ]→[R], where L,M,R are multisets of facts called respec-
tively premisses, actions and conclusions. One rule can be considered as a state
transition in the labeled transition system consisting of all the rules, which
model the protocol entities and adversary. For convenience, we denote such a
rule [L] ⇒ [R] when M is empty. We also extend multiset rules with vari-
able assignments and equality constraints, where L may contain expressions like
x = t to ground local variables and M may contain a set of equations in the
form u

.= v. Equations are not directly supported in Tamarin, but can be easily
encoded with restrictions as follows. We define a binary fact symbol Eq and the
formula “∀x, y, i. Eq(x, y)@i ⇒ x

.= y”, where the Eq(x, y) action in the rule
allows to test that x

.= y before the rule proceeding.

Protocol Execution. The execution of protocol is represented by a set of
multiset rewriting rules, which modelling protocol entities acting on protocol
states. Here, we give a toy example rule modelling one protocol entity in NSW
as follows:

rule NswEntity:
[ LOC($nseID, $seID, 〈m, sig〉) ] ⇒
[ RAM(nsToken($nseID), 〈m, sig〉), Out(〈m, sig〉) ],

where the NSW protocol entity $nseID receives one message-signature pair
received from protocol entity $seID in SW via local protected system calls, and
then forwards the pair to a remote server platform via unprotected network.

Adversary Capabilities. Just like the protocol execution, the adversary capa-
bilities can also be modelled as a set of multiset rewriting rules based on the
threat model.

Any attacker can deduct knowledge based on what he knows at the crypto-
graphic level, which are captured by rules of the form [K(u1)), ..., K(uk)] ⇒ [K(v)],
for some terms u1, ..., uk.

For attackers in classical analysis considered to fully control the communica-
tion channels (i.e. with the ability Com-RW), they can perform output, input,
getting public and fresh names operations. Whereas if the communication chan-
nel is protected by TLS or private system calls, then facts TLS($b1, $b2, x) and
LOC($b1, $b2, x) are used instead of In(x) and Out(x). In this case, the attacker
between protocol entities can only block or delay the communication (i.e. with
the ability Com-NULL), which means the attacker can only delete or delay using
the TLS and LOC facts.

For attackers completely or partially controlling the remote server platform
(i.e. Svr-RW or Svr-R), they can read and write (or only read) all the data
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storage locations and related communication channels, which are modelled by
the rules prefixed with SvrAttacker Read and SvrAttacker Write such as

rule SvrAttacker Read SvrFlash:
[!Flash(svrToken($svrID), x)] ⇒ [Out(x)]
rule SvrAttacker Write SvrFlash:
[!Flash(svrToken($svrID), x), In(y)] ⇒ [!Flash(svrToken($svrID), y)].

Following the idea of the rules modelling Svr-RW and Svr-R server attackers,
we can define rules that capture the abilities of NSW-RW, NSW-R, SW-RW, and
SW-R local attackers. The main difference is that the rules for NSW attackers
capture that the attackers may have access to both network and local commu-
nication channels, to which one protocol entity in NSW is related.

3.2 Encoding the Security Properties

In Tamarin, basic security properties such as secrecy and correspondence are
encoded as trace formula (i.e. temporal first-order logic formula), whereas
privacy-type properties (e.g. unlinkability) are modelled by observational equiv-
alence between two labeled transition systems, which normally only differ in
terms.

3.2.1 Basic Security Properties and Action Traces
Basic security properties are modelled as temporal first-order logical formulae,
which are evaluated over action traces in Tamarin that are generated by the
protocol execution.

Protocol rules of the form [L]−−[ M ]→[R] have M as a multiset of action facts.
When the rewriting system makes a transition based on a ground rule instance,
the rule’s actions are appended to the action trace. Thus, the action trace can
be considered to be a log of the actions defined by the transition rules, in a
particular execution. The analysts choose what are logged, and this helps them
log appropriate events that enable the specification of the desired properties.

3.2.2 Privacy-Type Properties and Observational Equivalence
In Tamarin, privacy-type properties are encoded as observational equivalence
of two instances set of rules for one TEE-based protocol, which shows that an
intruder cannot distinguish these two systems. We can prove such properties for
two systems, which only differ in terms, using the diff operator.

4 Case Studies

We choose both offline and web-based protocols to validate our approach and
show the compatibility of our method. The chosen TEE-based protocols are in
Trusted Firmware and Web Authentication (WebAuthn) specifications, which
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are respectively proposed by ARM and FIDO alliance as guidance for various
manufacturers’ protocol design and implementation. From these specifications,
we take the Chain of Trust protocol (offline) and passwordless FIDO2 authen-
tication protocol (web-based and FIDO2 WebAuthn protocol for short) as our
case studies. Based on the threat model in this paper, we get dozens of scripts
considering different combinations of attacker abilities to our case studies, and
all the scripts are proven automatically by the Tamarin tool. A full repository
of the scripts can be found in [17]. The verification results are sound and com-
plete for basic security properties, while Tamarin may generate false attacks to
privacy-based properties, and we verify manually to make sure that the found
attacks really exist.

4.1 Chain of Trust Protocol: Modelling, Analysis and Results

ARM TrustZone is a platform-wide security technology that can be designed and
implemented in similar ways with different details. To standardize the designs
and implementations, ARM has released specifications and referenced source
codes of Trusted Firmware for mobile platforms (i.e. ARM TF-A [18] for short).
The core idea of Trusted Firmware is to enable Trusted Boot, which sets up
a Chain of Trust (CoT) by validating each of the involved components (e.g.
trusted/normal firmware and OS kernels) during platform poweron or reboot.
The CoT makes sure that the integrity of each component has been verified
before they being loaded and executed. Here, we take latest ARMv8 TF-A for
the mobile platforms as an example to introduce the CoT protocol execution.

4.1.1 Overview of CoT Protocol
The whole boot sequence of ARM TF-A consists of five Boot Loaders (BLs) and
can be divided into three groups: the first group is BL1 (short for Boot Loader
1), which is the very first part of TF-A normally pre-stored in Boot ROM by
manufacturer; the second group is BL2, which is the left part of TF-A normally
pre-stored in flash due to the small size of Boot ROM; the third group of images
include runtime firmware (BL31 responsible for OS dispatch) trusted OS kernel
(BL32, i.e. system executing in SW) and NSW firmware (BL33) to load the
normal OS kernel. Additionally, the third group of images all reside in NSW
flash before being shipped.

The ARM TF-A prevents malicious firmware from running by authenticating
all Boot Loader images from BL2 up to BL33. It does this by establishing a CoT
using a certificate-based scheme, where all certificates are self-signed and stored
in NSW flash together with related public keys. However, as the authentication
root key, the public part of Root Of Trust Key’s hash value (i.e. h(ROTK PK))
is stored in ROM to be resistant to tampering. The certificates are categorised
as key certificates and content certificates. Key certificates include public keys
which are used to verify content certificates and other key certificates related to
BLs in the following group. Content certificates contain the expected BL image
hash value, with which a BL image can be authenticated by matching its hash.
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The verification relationship of keys and certificates are shown in Fig. 3 attached
as AppendixA, and we refer to [18] for complete details.

4.1.2 Modelling the CoT Protocol
The certificate-based CoT scheme can be considered as a protocol, where the
manufacturer generates and prestores all the Boot Loader images, keys, hashes,
and certificates in ROM or NSW flash on the ARM TrustZone platform. This
setup phase is modelled as the rule Manufacturer. And then during platform
boot phase, one BL verifies and loads BLs in the following group into specified
RAM (e.g. SW or NSW RAM) if the verification succeeds. The execution of
the second phase are captured by a series of rules, the last of which is rule
BL2 Loading indicating that all the BLs are loaded into RAM. Due to space
limitation, the readers can find all the scripts with detailed comments in the
folder “1 ARM-TF” of [17].

4.1.3 Encoding the Security Properties
The essence of the CoT protocol is to guarantee the integrity of each loaded
BL image after they being shipped by manufacturer. In other words, if one
BL image is loaded, then the image should be the same as the one shipped by
manufacturer. Moreover, the version numbers of loaded BL images during one
CoT execution should be consistent to each other in order to protect the CoT
protocol from a rollback attack. For example, a mismatch of version numbers
between BLs can lead to a rollback of the NSW firmware (i.e. BL33) together
with a normal OS with serious bugs. The version numbers consistence can be
considered as the integrity of a loaded BL images set during one CoT execution.

We model the above security goals of CoT as authentication properties, and
follow the work of Lowe [19] where a hierarchy of authentication specifications is
defined. In [19], Lowe identifies four progressive authentication properties namely
aliveness, weak agreement, non-injective agreement and injective agreement. Due
to space limitation, we refer to [19] for the definitions of the authentication
properties. As follows, we apply Lowe’s definitions to our CoT protocol.

(1) Aliveness, (2) weak agreement, and (3) non-injective agreement sepa-
rately indicate that if BL1-BL33 (resp. one BL1-BL33 set) have been loaded
into RAM on one TEE-based platform during one CoT execution, then (1) the
manufacturer is alive, (2) the manufacturer has shipped some BL1-BL33 (resp.
some BL1-BL33 set) on the same TEE-based platform, (3) the manufacturer
has shipped the same BL1-BL33 (resp. the same BL1-BL33 set) on the same
TEE-based platform. The idea of injective agreement is to prevent relay attacks,
so obviously it is unnecessary to consider injective agreement for the repeated
CoT execution after one manufacturer shipment. However, we will discuss this
property in the next case study.

We capture the aliveness, weak agreement of loaded BL images and the loaded
BL images set, non-injective agreement of loaded BL images and the loaded BL
images set in lemmas as L1, L2, L3, L4, and L5 respectively in one script.
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4.1.4 Analysis and Results Based on Threat Model
Based on the threat model in Fig. 2-(b), we get six Tamarin scripts, where we
consider different attackers controlling NSW and SW to varying degrees. The
verification results are shown in Table 1 attached as AppendixB, and we analyze
the results and summarize as follows.

According to the ARM TF-A specification, BL1 as the Root of Trust is stored
in tamper-resistant ROM, and all the other BLs are verified before being loaded
into RAM. But the specification ignores the check of BL33’s version number,
which would cause a rollback attack introduced in Sect. 4.1.3.

In Table 1, we use ✓ to indicate a reserved property whereas ✗ shows that the
property is violated. As shown in Table 1, we capture the rollback attack in our
scripts by checking non-injective agreement of the loaded BL images set, which
is modelled as lemma L5. As a result, we have lemma L5 falsified. Furthermore,
we propose a fix that BL33’s version number should also be checked by BL2,
and then verify the fix. The verification results show that, after the fix, all the
authentication properties of the CoT protocol are reserved unless the attacker
have the ability of NSW-RW and SW-RW (i.e. taking fully control of SW and
NSW).

4.2 FIDO2 WebAuthn Protocol: Modelling, Analysis and Results

FIDO is an alliance which aims at providing standards for secure passwordless
authentication, and FIDO2 is the overarching term for FIDO Alliance’s up-to-
date set of specifications. Among their proposals, the core component is the
World Wide Web Consortium’s (W3C) Web Authentication (WebAuthn) speci-
fication [20], where a set of web-based APIs are defined to enable a passwordless
authentication from the user on the client to the server. Users on a WebAuthn-
enabled client are authenticated locally by an authenticator (e.g. fingerprint
identifier, face recognizer, etc), which is supposed to reside in a protected sys-
tem environment such as the verified OS kernel on a normal platform or the
SW on a TEE-based platform. Benefited from the hardware-supported security
features, the TEE-based scheme is considered to be the most secure way to
implement the FIDO2 WebAuthn protocol. Therefore, in this paper, we focus
on the TEE-based WebAuthn protocol to show how our approach is used to
model and analyze its security properties.

4.2.1 Overview of the TEE-Based FIDO2 WebAuthn Protocol
The TEE-based FIDO2 WebAuthn protocol consists of a registration phase and
an authentication phase, and a user on a client may register or authenticate
him/herself to a server by using an authenticator in TEE.

During registration, attestation is needed to prove that the authenticator is
legitimate and its generated credential key pair is not forged by the adversary.
Here, we consider three main attestation schemes proposed by FIDO2 namely
self attestation (without CA), basic attestation (CA needed), and ECDAA attes-
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tation [21], which is an improved Direct Anonymous Attestation (DAA) scheme
based on elliptic curves and bilinear pairings largely compatible with [22].

The specification emphasizes that both the network and local communication
channels should be protected separately by the TLS and private system calls.
Due to space limitation, we refer to FIDO2 WebAuthn specification [20] for
complete details of the registration and authentication phases.

4.2.2 Modelling the Protocol Execution
Based on the multiset-rewriting modelling framework and notations we pro-
pose in Sect. 3.1, modelling the TEE-based FIDO2 WebAuthn protocol is quite
straightforward. We denote various IDs as $SvrID, $ClientID, and $AAGUID,
which could be any public name. Furthermore, the username, which could be
considered as the user ID, is also modelled as $UserName. The protected
network and local communication between protocol entities are modelled as
TLS($SvrID, $ClientID, T ) and LOC($ClientID, $AAGUID, T ), where T is the
exchanged message denoted as terms. Facts !ROM, RAM, and !Flash are used to
capture what are stored in the ROM, RAM, and flash. For example, the fact

!Flash(svrToken($SvrID), 〈$AAGUID, $UserName, pk(credSk)〉)
captures that one generated credential public pk(credSk) together with the
corresponding authenticator model ID $AAGUID and registered username
$UserName are stored on the flash of the server platform with ID $SvrID.

Full modelling details can be found in [17], where dozens of Tamarin scripts
model self-attestation, basic-attestation, ECDAA-attestation registration phase
and authentication phase of the protocol. For each sub-protocol, we get a dozen
of scripts considering different attacker abilities based on the threat model.

4.2.3 Encoding the Security Properties
The main security goal of TEE-based FIDO2 WebAuthn protocol is to enable a
passwordless registration and authentication for users. In other words, the pro-
tocol is supposed to guarantee that if the server successfully verifies the attes-
tation signature (resp. authentication signature) and related username from one
legitimate authenticator, then one user definitely has used the authenticator to
register (resp. authenticate) using the username.

We model the main security goal by the four progressive authentication prop-
erties identified by Lowe and mentioned in Sect. 4.1.3.

(1) Aliveness, (2) weak agreement, (3) non-injective agreement and (4) injec-
tive agreement separately indicate that if the server successfully verifies one
attestation signature (resp. authentication signature) and related username from
one legitimate authenticator, then (1) the authenticator is alive, (2) the authen-
ticator has generated some attestation signature (resp. authentication signature)
on some username, (3) the authenticator has generated the verified attestation
signature (resp. authentication signature) on the username before and (4) the
authenticator has generated the verified attestation signature (resp. authentica-
tion signature) on the username only once before the verification.
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We capture the aliveness, weak agreement, non-injective agreement and injec-
tive agreement during registration phase (resp. authentication phase) in lemmas
as L6, L7, L8, L9 (resp. L10, L11, L12, L13).

Besides authentication, unlinkability between authenticators is also the main
concern of the protocol. We check the unlinkability between authenticators by
constructing a variation of the protocol FIDO2 WebAuthn protocol, where two
authenticators A and B on same WebAuthn-enabled client separately generate
attestation signatures 〈attestSigA1, attestSigA2〉 and attestSigB. If the server
cannot distinguish the cases when it receives 〈attestSigA1, attestSigA2〉 (i.e. sig-
natures from one authenticator) and 〈attestSigA1, attestSigB〉 (i.e. signatures
from two authenticators), then unlinkability between authenticators is reserved.

The unlinkability is modelled as observational equivalence in Tamarin. Due
to the complexity of checking the property, we simplify the protocol variation
Tamarin scripts in the way that all the facts modelling protected TLS and local
communication channels are removed. This simplification is reasonable, since all
the transmitted messages are also recorded in the platforms’ RAM modelled by
facts RAM. Besides, since the usernames should be carefully chosen so that they
cannot be used as handles to link authenticators in the ECDAA scheme, we
also ignore the usernames in the scripts. Although, there is no lemma for the
unlinkability in the scripts, we still denote it as L14 for the further discussion.

Last but not least, we also consider the secrecy of the attestation private
key and authentication private key in the authenticator. These two private keys
never leave the authenticators, but may be still vulnerable to some attackers in
our threat model. The secrecy of the attestation and authentication private key
are captured in lemmas as L15 and L16.

4.2.4 Analysis and Results Based on Threat Model
Since the protected network and local communication channels are used, we con-
sider attackers with the ability Com-NULL combined with attackers controlling
the server platform, the NSW and SW on TEE-based client platform to varying
degrees.

Based on the threat model in Fig. 3-(b), we get dozens of Tamarin scripts sep-
arately modelling the registration phase (using self attestation, basic attestation,
and ECDAA attestation scheme) and the authentication phase. The verification
results are shown in Table 2 attached as AppendixC, and we analyze the results
and summarize as follows.

The secrecy of attestation and authentication private keys are well reserved
unless the attacker has the access to SW (i.e. with the ability SW-R or SW-
RW). This is expected and captured by the verifying results of lemmas L15, L16
recorded in the “sec.” columns.

Authentication properties verification results are listed in the “auth.”
columns. It shows that attackers with only reading access to server platform,
NSW and/or SW (i.e. Svr-R, NSW-R and/or SW-R abilities) cannot violate any
authentication property. However, if the attackers successfully gain the write
access to any platform or any world, then none of the authentication proper-
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ties can be reserved. But there are two exceptions, the first of which is that,
for the attacker with NSW-RW ability only, aliveness during basic-attestation
and ECDAA-attestation registration phase are reserved. This exception occurs
because the attestation private key and public key are prestored separately in
an authenticator and a server, so the server can verify the attestation signature
to tell whether the registration session is from a legitimate authenticator or not.
The second exception is that, for the attacker with NSW-RW ability only, all
the authentication properties during authentication phase can be well reserved.
This happens for the reason that the authentication information (e.g. authen-
tication private key, username, etc) from the authenticator and user has been
registered by the server, hence during the authentication phase, the server can
be sure that the authentication session is from the legitimate authenticator and
user, and further there is no replay attack.

Unlinkability is considered in the ECDAA attestation scheme, and the results
show that partially or fully controlling the server platform (i.e the ability Svr-R
or Svr-RW) is helpless to the attackers who wants to violate the unlinkability
between authenticators. However, the blind signature generation is split into two
steps separately performed by the client and the authenticator. If an attacker
gains the read access to NSW (i.e. with NSW-R ability), then he can read and
use the random numbers generated by the same client to distinguish the blind
signatures from different authenticators. This violates the unlinkability property
between authenticators, and we capture this vulnerability by verifying L14 under
an attacker with NSW-R ability. Furthermore, we suggest a fix that ECDAA-
Sign should be only performed in the authenticator.

Due to the complexity of the ECDAA attestation scheme and our lim-
ited computation resources, we check some authentication properties (e.g. weak
agreement) by verifying a weaker authentication property (e.g. aliveness) under
the same attacker. If the weaker property is violated, then the stronger property
cannot be reserved. In this case, the stronger property violation is denoted as ✕
in Table 2. In a similar way, an unlinkability violation is implied by the same vio-
lated property under an attacker with weaker ability, and we denote the former
unlinkability violation as ✖ in Table 2.

5 Conclusion

In this paper, we propose a symbolic model for the TEE-based protocols, which
includes a detailed threat model and a symbolic modelling framework instan-
tiated by Tamarin. Based on the proposed model, we perform modelling and
systematic analysis on both offline and web-based protocols. The results show
that our proposed formal method helps capture the vulnerabilities that are dif-
ficult to be found under the traditional protocol analysis.
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A Boot Sequence and Verification Relationships in CoT

The boot sequence, verification relationship of keys and certificates are shown
in Fig. 3 for a quick understanding. And we refer to ARM TF-A documentation
[18] for complete details of CoT in ARMv8 Trusted Firmware-A.

A

BLx verifies B using public key A, 
and then verifies C using the public key in B, 
and finally loads BLy.

B
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Fig. 3. Boot sequence and the verification relationship of keys and certificates in ARM
TF-A CoT protocol.

B Verification Results of Chain of Trust Protocol

We summarize in Table 1 all the verification results of the Chain of Trust protocol
scripts in [17]. The results are obtained on a computer with 4 Intel(R) Core(TM)
i7-7700HQ CPU @ 2.8 GHz and 4 GB of RAM, and every script in [17] is verified
within several minutes some even seconds.

C Verification Results of TEE-Based FIDO2 WebAuthn
Protocol

We summarize in Table 2 all the verification results of TEE-based FIDO2
WebAuthn protocol scripts in [17], and the results are obtained on a computer
with the same hardware resources mentioned in AppendixB.
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Table 1. Authentication properties verification results in CoT protocol.

Attacker abilities CoT before fix CoT after fix

NSW SW L1–L5 L1–L5

– – ✓✓✓✓✗ ✓✓✓✓✓

NSW-R – ✓✓✓✓✗ ✓✓✓✓✓

NSW-RW – ✓✓✓✓✗ ✓✓✓✓✓

NSW-R SW-R ✓✓✓✓✗ ✓✓✓✓✓

NSW-RW SW-R ✓✓✓✓✗ ✓✓✓✓✓

NSW-RW SW-RW ✗✗✗✗✗ ✗✗✗✗✗

Table 2. Security properties verification results in TEE-based FIDO2 WebAuthn pro-
tocol.

Attacker abilities Self att.a Basic att.b ECDAA att.c Auth.d

Svr NSW SW sec. auth. sec. auth. sec. auth. unlink. sec. auth.

– – – ✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✓ ✓ ✓✓✓✓

– NSW-R – ✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✗ ✓ ✓✓✓✓

– NSW-RW – ✓ ✗✗✗✗ ✓✓ ✓✗✗✗ ✓✓ ✓✗✕✕ ✖ ✓ ✓✓✓✓

– NSW-R SW-R ✗ ✓✓✓✓ ✗✗ ✓✓✓✓ ✗✗ ✓✓✓✓ ✖ ✗ ✓✓✓✓

– NSW-RW SW-R ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗

– NSW-RW SW-RW ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗

Svr-R – – ✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✓ ✓ ✓✓✓✓

Svr-RW – – ✓ ✗✗✗✗ ✓✓ ✗✗✗✗ ✓✓ ✗✕✕✕ ✓ ✓ ✗✗✗✗

Svr-R NSW-R – ✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✖ ✓ ✓✓✓✓

Svr-RW NSW-R – ✓ ✗✗✗✗ ✓✓ ✗✗✗✗ ✓✓ ✗✕✕✕ ✖ ✓ ✗✗✗✗

Svr-R NSW-RW – ✓ ✗✗✗✗ ✓✓ ✓✗✗✗ ✓✓ ✓✗✕✕ ✖ ✓ ✓✓✓✓

Svr-RW NSW-RW – ✓ ✗✗✗✗ ✓✓ ✗✗✗✗ ✓✓ ✗✕✕✕ ✖ ✓ ✗✗✗✗

Svr-R NSW-R SW-R ✗ ✓✓✓✓ ✗✗ ✓✓✓✓ ✗✗ ✓✓✓✓ ✖ ✗ ✓✓✓✓

Svr-RW NSW-R SW-R ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗

Svr-R NSW-RW SW-R ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗

Svr-RW NSW-RW SW-R ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗

Svr-R NSW-RW SW-RW ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗

Svr-RW NSW-RW SW-RW ✗ ✗✗✗✗ ✗✗ ✗✗✗✗ ✗✗ ✗✕✕✕ ✖ ✗ ✗✗✗✗
aLemmas L16, L6, L7, L8, L9 for self-attestation registration phase.
bLemmas L15, L16, L6, L7, L8, L9 for basic-attestation registration phase.
cLemmas L15, L16, L6, L7, L8, L9, L14 for ECDAA-attestation registration phase.
dLemmas L16, L10, L11, L12, L13 for authentication phase.
✖Security property violation implied by the same violated property under an attacker with

weaker ability.
×Security property violation implied by a violated weaker property under an attacker with

same ability.



A Symbolic Model for Systematically Analyzing TEE-Based Protocols 143

References

1. Lebedev, I., Hogan, K., Devadas, S.: Invited paper: secure boot and remote attesta-
tion in the sanctum processor. In: Proceedings of the CSF, Oxford, UK, pp. 46–60
(2018)

2. Lee, S., Lee, J.-H.: TEE based session key establishment protocol for secure info-
tainment systems. Des. Autom. Embed. Syst. 22(3), 215–224 (2018). https://doi.
org/10.1007/s10617-018-9212-5

3. Sawtooth. PoET 1.0 Specification. https://sawtooth.hyperledger.org/docs/core/
nightly/master/architecture/poet.html. Accessed 1 May 2020

4. Machiry, A., Gustafson, E., Spensky, C., et al.: BOOMERANG: exploiting the
semantic gap in trusted execution environments. In: Proceedings of the NDSS,
San Diego, CA, USA (2017)

5. Bulck, J.V., Oswald, D., Marin, E., Aldoseri, A., Garcia, F.D., Piessens, F.: A
tale of two worlds: assessing the vulnerability of enclave shielding runtimes. In:
Proceedings of the CSS, London, UK, pp. 1741–1758 (2019)

6. Bulck, J.V., Piessens, F., Strackx, R.: SGX-step: a practical attack framework for
precise enclave execution control. In: Proceedings of the SysTEX, Shanghai, China,
pp. 1–6 (2017)

7. Smyth, B., Ryan, M., Chen, L.: Formal analysis of anonymity in ECC-based direct
anonymous attestation schemes. In: Barthe, G., Datta, A., Etalle, S. (eds.) FAST
2011. LNCS, vol. 7140, pp. 245–262. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29420-4 16

8. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 111–125. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19751-2 8

9. Shao, J., Qin, Y., Feng, D., Wang, W.: Formal analysis of enhanced authorization
in the TPM 2.0. In: Proceedings of the AsiaCCS, Singapore, pp. 273–284 (2015)

10. Sinha, R., Rajamani, S., Seshia, S., Vaswani, K.: Moat: verifying confidentiality
of enclave programs. In: Proceedings of the CCS, Denver, Colorado, USA, pp.
1169–1184 (2015)

11. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and its
application to trusted computing. In: Proceedings of the S&P, Berkeley, CA, USA,
pp. 221–236 (2009)

12. Jia, L., Sen, S., Garg, D., Datta, A.: A logic of programs with interface-confined
code. In: Proceedings of the CSF, Verona, Italy, pp. 512–525 (2015)

13. Jacomme, C., Kremer, S., Scerri, G.: Symbolic models for isolated execution envi-
ronments. In: Proceedings of the EuroS&P, Paris, France, pp. 127–141 (2017)

14. Bai, G., Hao, J., Wu, J., Liu, Y., Liang, Z., Martin, A.: TrustFound: towards a
formal foundation for model checking trusted computing platforms. In: Jones, C.,
Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 110–126. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-06410-9 8

15. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 48

16. The Tamarin Team. Tamarin-Prover Manual. https://tamarin-prover.github.io/
manual/index.html. Accessed 1 May 2020

https://doi.org/10.1007/s10617-018-9212-5
https://doi.org/10.1007/s10617-018-9212-5
https://sawtooth.hyperledger.org/docs/core/nightly/master/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/nightly/master/architecture/poet.html
https://doi.org/10.1007/978-3-642-29420-4_16
https://doi.org/10.1007/978-3-642-29420-4_16
https://doi.org/10.1007/978-3-642-19751-2_8
https://doi.org/10.1007/978-3-642-19751-2_8
https://doi.org/10.1007/978-3-319-06410-9_8
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1007/978-3-642-39799-8_48
https://tamarin-prover.github.io/manual/index.html
https://tamarin-prover.github.io/manual/index.html


144 S. Xu et al.

17. Conference-author. Tamarin scripts for TEE-based protocols. https://github.com/
conference-author/TEEBasedPro/. Accessed 3 May 2020

18. ARM. Trusted Firmware-A Documentation. https://trustedfirmware-a.readthedo
cs.io/en/latest/. Accessed 1 May 2020

19. Lowe, G.: A hierarchy of authentication specification. In: Proceedings of the CSFW,
Rockport, Massachusetts, USA, pp. 31–44 (1997)

20. FIDO. Web Authentication: An API for accessing Public Key Credentials Level 1.
https://www.w3.org/TR/webauthn-1/. Accessed 1 May 2020

21. FIDO. FIDO ECDAA Algorithm. https://fidoalliance.org/specs/fido-v2.0-id-
20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html. Accessed 1 May 2020

22. Chen, L., Li, J.: Flexible and scalable digital signatures in TPM 2.0. In: Proceedings
of the NDSS, Berlin, Germany, pp. 37–48 (2013)

https://github.com/conference-author/TEEBasedPro/
https://github.com/conference-author/TEEBasedPro/
https://trustedfirmware-a.readthedocs.io/en/latest/
https://trustedfirmware-a.readthedocs.io/en/latest/
https://www.w3.org/TR/webauthn-1/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-ecdaa-algorithm-v2.0-id-20180227.html


Crypto II



New Practical Public-Key Deniable
Encryption

Yanmei Cao1, Fangguo Zhang2(B), Chongzhi Gao3, and Xiaofeng Chen1

1 State Key Laboratory of Integrated Service Networks (ISN), Xidian University,
Xi’an, China

yanmcao@163.com, xfchen@xidian.edu.cn
2 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China

isszhfg@mail.sysu.edu.cn
3 School of Computer Science, Guangzhou University, Guangzhou, China

czgao@gzhu.edu.cn

Abstract. The primitive of deniable encryption aims to protect the pri-
vacy of communicated data in the scenario of coercion by allowing the
sender (or receiver or both of them) to open the ciphertext transmit-
ted into a different message. There are two types of deniability, namely,
multi-distributional deniability and full deniability, and the later pro-
vides better security guarantees than the former one. However, all exist-
ing schemes under the framework of full deniability are less efficient.
In this paper, we first propose a new public key encryption scheme in
which the ciphertexts could be decrypted by the receiver depending on
the decision of the sender. Additionally, building on this encryption,
we construct a new public-key sender-deniable encryption scheme under
the framework of full deniability. Compared with Canetti et al.’s party
scheme, the proposed scheme is superior in both efficiency anddeniability.

Keywords: Deniable encryption · Controlled decryption · Subgroup
membership problem

1 Introduction

Encryption techniques can protect the privacy of communicated data against
eavesdropping attacks, but fail in providing a security guarantee against coercion
attacks which could be found in some scenarios, such as electronic auction [1,2],
electronic election [3,4] and cloud storage services [5], etc. Deniable encryption,
introduced by Canetti et al. [6] in 1997, provides an affirmative solution to
coercion attacks. Loosely speaking, it allows the sender (or receiver or both of
them) coerced to undetectably open the transmitted ciphertext into a different
message by constructing a fake random input, possibly some parameters required
in the encryption or the key. Thus, deniable encryption enjoys an interesting
property named deniability, which is useful in the contexts of receipt-free auction
[1], audit-free cloud storage [5] and leakage resilience [7]. Moreover, deniable
c© Springer Nature Switzerland AG 2020
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encryption implies non-committing encryption introduced by Canetti et al. [8]
for adaptive security of protocols in the computational setting. Hence, it can be
utilized to construct adaptively secure multiparty computation protocols [9–11].

There are two types of deniability. One is a weaker definition called multi-
distributional deniability or flexible deniability, in which alternative algorithms
of key generation and encryption are utilized, and both parties of communi-
cation can convincingly claim that they transmitted a different message with
prescribed algorithms. The other one is full deniability, where parties always run
the algorithms prescribed and can equivocate their transmitted messages later.

Many deniable schemes have been proposed in the multi-distributional of
deniability. Canetti et al. [6] proposed a flexibly deniable scheme based on
translucent sets. Subsequently, Klonowski et al. [12] improved the deniability of
the scheme above. Ibrahim [13] constructed single bit and multiple bits sender-
deniable encryption schemes based on quadratic residuosity assumption, whose
idea essentially comes from the use of translucent sets. In 2011, O’Neill et al. [14]
proposed a new approach from simulatable encryption to design the first non-
interactive bi-deniable encryption scheme with negligible deniability. Moreover,
they also constructed a bitranslucent set based on LWE, from which a bi-deniable
encryption scheme can be given. As for as we know, multi-distributional deni-
able schemes are more efficient than those with full deniability, but alternative
algorithms in their constructions may result in some issues: misuse, suspicion,
and coordination, etc.

To avoid problems mentioned above, several works focusing on full deniabil-
ity have been found. Canetti et al. [6] described a scheme called the party scheme
based on translucent sets, which requires superpolynomially-long ciphertexts to
achieve high deniability. In 2011, Bendlin et al. [15] showed that any nonin-
teractive fully public-key receiver-deniable (or bi-deniable) encryption schemes
with better than polynomial deniability is impossible. Concurrently, Dürmuth
and Freeman [16] proposed a fully sender-deniable encryption scheme based on
the translucent set constructed form the samplable encryption, which achieves
negligible deniability. Later, it was broken by Peikert and Waters (see [17]).
Until 2014, Sahai and Waters [18] used indistinguishability obfuscation (iO) to
present the first fully sender-deniable encryption scheme with negligible deniabil-
ity. Recently, Canetti et al. [19] also utilized iO to construct a fully bi-deniable
interactive encryption scheme with negligible deniability. However, the above
two iO-based schemes have only a theoretical meaning as iO is not effectively
implemented as far as we know. Therefore, these schemes above are unrealistic
in practicability and efficiency.

1.1 Our Contribution

In this paper, we propose a simple and efficient public-key deniable encryption
scheme under the framework of full deniability. Our contributions can be sum-
marized as follows:

– We present a new public key encryption scheme based on subgroup mem-
bership problem assumption, in which the ciphertexts could be decrypted by
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the receiver depending on the decision of the sender. Besides, we use it as a
building block to construct a deniable encryption scheme.

– We propose a new public-key sender-deniable encryption scheme based on
the proposed public key encryption and simple binary string position, under
the framework of full deniability. It supports encryption for multi-bit message
and achieves δ(n)-deniability.

– The proposed deniable encryption scheme satisfies the desired properties
of correctness, semantic security and deniability. Moreover, compared with
Canetti et al.’s party scheme, the scheme has a good performance in practi-
cability, which is superior in both efficiency and deniability.

1.2 Organization

The rest of this paper is organized as follows. In Sect. 2, we present some prelimi-
naries. In Sect. 3, we introduce a building block called public key encryption with
controlled decryption. The proposed new public-key sender-deniable encryption
scheme and an instantiation are presented in Sect. 4. The security and efficiency
analysis of the proposed scheme are given in Sect. 5. Finally, the conclusion is
given in Sect. 6.

2 Preliminaries

In this section, we describe some notations and necessary preliminaries used in
this paper.

2.1 Notations

We denote the set of all bit strings of length n by {0, 1}n, and denote by M
the message space. Let PPT stand for probabilistic polynomial-time. Let G,H
be groups, and we use |G| = N to denote that the order of the group G is N
and H ≤ G to denote that H is a subgroup of G. For the sake of simplicity, we
just use g · h (resp. gx) instead of g · h mod N (resp. gx mod φ(N)) to denote the
multiplication (resp. exponentiation) in group G. The assignment of the value y
to x is denoted by x ← y. If X is a set, we use x ← X to denote x is randomly
selected from X. If A is an algorithm, we use y ← A(x) to denote that on input
x, the output of A is y.

Now we first recall the definition of δ(n)-close given in [6,20].

Definition 1. (δ(n)-close). Let X = {Xn}n∈N and Y = {Yn}n∈N be two ensem-
bles of probability distributions, and let δ : N → [0, 1]. We say that X and Y are
δ(n)-close if for every polynomial time distinguisher D and for all large enough
n, |Pr(D(Xn) = 1) − Pr(D(Yn) = 1)| < δ(n).

If δ(n) is negligible then we say that X and Y are computationally indistin-
guishable.
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2.2 Public-Key δ(n)-Sender-Deniable Encryption

Canetti et al. [6] gives a general definition of δ(n)-sender-deniable encryption as
below.

Definition 2. (Public-key δ(n)-sender-deniable encryption). A public-key δ(n)-
sender-deniable encryption scheme is a 4-tuple of polynomial time algorithms
(Gen,Enc,Dec,Fake) described as follows.

– Gen is a key generation algorithm that takes as input the security parameter
n and outputs public/private key pair (pk, sk).

– Enc is an encryption algorithm that takes as input the public key pk, a mes-
sage m ∈ M, and a random input r, it outputs a ciphertext c.

– Dec is a decryption algorithm that takes as input the private key sk and a
ciphertext c, it outputs a message m.

– Fake is an efficient faking algorithm that takes as input the public key pk,
a message m ∈ M, a random input r, and a desired fake message m′ ∈
M, it outputs r′′ ← Fake(pk,m, r,m′), where r′′ satisfies Enc(pk,m′, r′′) =
Enc(pk,m, r).

A public-key δ(n)-sender-deniable encryption scheme should satisfy the fol-
lowing properties.

– Correctness: The probability that the receiver’s output is different from the
sender’s input is negligible in n.

– Security: For any m0,m1 ∈ M, the communications between the sender and
receiver for transmitting m0 are computationally indistinguishable from the
communications for transmitting m1.

– Deniability: For any m,m′ ∈ M, choose random inputs r, r′, and let
c ← Enc(pk,m, r), r′′ ← Fake(pk,m, r,m′), the random variables (m′, r′′, c)
and (m′, r′,Enc(pk,m′, r′)) are δ(n)-close for any PPT distinguisher which
is given only pk.

Note that schemes in which the coerced party chooses the fake message m′

at time of encryption are called plan-ahead deniable encryption schemes.

2.3 Intractable Assumptions

In this subsection, we describe two intractable assumptions: subgroup member-
ship problem assumption and one-bit-flipping distribution assumption. The first
assumption has been widespread utilized in some public-key encryption schemes
[21–24].

Definition 3. (Subgroup membership problem assumption). Let G be a finite
abelian group along with a non-trivial subgroup H, the subgroup membership
problem is to decide if x is in H for a given random x ∈ G. We define a PPT
adversary A’s advantage against the subgroup membership problem as below,

AdvA
sub = |Pr[A(x, ·) = 1|x ← H] − Pr[A(x, ·) = 1|x ← G]| ,

where · denotes public parameters. The subgroup membership problem assump-
tion states that for any adversary A, AdvA

sub is negligible.
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Definition 4. (One-bit-flipping distribution assumption). For every bit string
e = (en, en−1, ..., e1) ∈ {0, 1}n, we define a family of functions Fn = {f : {0, 1}n\
{0n} → Zn|ef(e) = 1}. Choose a random f ∈ Fn and define Xn = {e|e ∈ {0, 1}n}
and Yn(f) = {e′|e′ = (en, ..., ef(e)+1, 0, ef(e)−1, ..., e1) ∈ {0, 1}n, e ← Xn \ {0n}},
the two distribution ensembles X = {Xn}n∈N and Y = {Yn(f)}n∈N are δ(n)-
close where δ(n) is an infinitesimal.

This assumption states that randomly changing only one bit from 1 to 0 in a
random n-bit string does not affect its randomness when n is sufficiently large.

Here we describe a method to implement f . Firstly, let x be a bit string of
length n, we mark the locations of the bits in x from the right as 1, 2, ..., n and
use Γ (x, i) to denote the location of the i-th 1 from the right, for instance,
Γ (11001, 2) = 4. Then we randomly select a pseudo-random function G :
{0, 1}n → {0, 1}�logn

2 � and denote f(x) = Γ (x,G(x) mod ‖x‖) where ‖x‖ is
the hamming weight of the string x. It can be easily verified that f(x) is PPT
computable.

3 Public Key Encryption with Controlled Decryption

In this section, we introduce a building block called public key encryption with
controlled decryption (PKE-CD), in which the ciphertexts can be decrypted
depending on the sender’s decision. We also describe necessary security require-
ments of PKE-CD and then design a concrete scheme.

3.1 Formal Definition

Definition 5. (PKE-CD). A public key encryption with controlled decryption
scheme Π = (KeyGen,Encrypt,Decrypt,Fake) is a 4-tuple of polynomial
time algorithms defined as follows.

– KeyGen(1λ) is a key generation algorithm that takes as input the security
parameter λ and generates public/private key pair (pk, sk).

– Encrypt(pk,m, d, r) is an encryption algorithm that takes as input the public
key pk, a message m from a message space M, a tag d ∈ {0, 1}, and a random
input r ∈ Ωd. It produces a ciphertext c.

– Decrypt(sk, c) is a deterministic decryption algorithm that takes as input
the private key sk and a ciphertext c. It returns the encrypted message m if
d = 1, and the symbol ⊥ otherwise.

– Fake(pk,m, r,m′) is a faking algorithm that takes as input the public key pk,
a message m, a random input r ∈ Ω1, and a desired fake message m′ ∈ M.
It generates r′′ ← Fake(pk,m, r,m′), where r′′ belongs to Ω0 and satisfies
Encrypt(pk,m′, 0, r′′) = Encrypt(pk,m, 1, r).
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3.2 Security Requirements

The PKE-CD must satisfy three security requirements: correctness, semantic
security [25–27], and half-deniability, respectively. We now provide the formal
definitions.

Definition 6. (Correctness). A PKE-CD scheme is correct if, the probability
that the receiver’s output is different from the sender’s input is negligible for any
decryptable ciphertexts, and the probability that any undecryptable ciphertexts is
decrypted is negligible.

Semantic Security Game. We describe a semantic security game as a multi-
phase game between an adversary and a challenger as follows:

– Setup. The challenger runs (pk, sk) ← KeyGen(1λ) and gives pk to A.
– Challenge. A outputs two different messages m0,m1 ∈ M to be challenged.

The challenger flips a coin b ∈ {0, 1} and outputs a challenge ciphertext
c ← Encrypt(pk,mb, 1, r) for a random input r ∈ Ω1.

– Guess. A outputs its guess b′ ∈ {0, 1}.

We define the advantage of an adversary A in this game to be

AdvA,se
PKE−CD = Pr [b = b′] − 1

2
.

Definition 7. (Semantic security). A PKE-CD scheme is semantically secure
in the presence of an eavesdropper if for all PPT adversaries A the function
AdvA,se

PKE−CD is negligible in λ.

Half-Deniability Game. We describe a half-deniability game as a multiphase
game between an adversary and a challenger as below:

– Setup. The challenger runs (pk, sk) ← KeyGen(1λ) and gives pk to A.
– Challenge. A outputs two different messages m,m′ ∈ M. The challenger

flips a coin b ∈ {0, 1}. If b = 0, randomly select r′ ∈ Ω0, create c′ ←
Encrypt(pk,m′, 0, r′), and return (m′, r′, c′) to A. If b = 1, randomly choose
r ∈ Ω1, generate c ← Encrypt(pk,m, 1, r), r′′ ← Fake(pk,m, r,m′), and
return (m′, r′′, c) to A.

– Guess. According to two distributions X = {(m′, r′,Encrypt(pk,m′, 0, r′))|
r′ ∈ Ω0} and Y = {(m′, r′′,Encrypt(pk,m, 1, r))|r ∈ Ω1, r

′′ ←
Fake(pk,m, r,m′)}, A outputs its guess b′ ∈ {0, 1}.

We define the advantage of an adversary A in this game to be

AdvA,half
PKE−CD = |Pr [A(X) = 1] − Pr [A(Y ) = 1]| .

Definition 8. (Half-deniability). A PKE-CD scheme is half-deniable if for all
PPT adversaries A the function AdvA,half

PKE−CD is negligible in λ.

If two distributions X and Y above are ε(λ)-close then we say the PKE-CD
scheme is ε(λ)-half-deniable.
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3.3 A Concrete PKE-CD Scheme

In this subsection, we describe a concrete PKE-CD scheme based on subgroup
membership problem assumption.

– KeyGen(1λ): On input the security parameter λ, randomly choose two dis-
tinct odd primes p and q of equal length such that P = 2N + 1 is also prime
where N = pq. Let G ≤ F

∗
P be a multiplicative group with order N , pick a

random generator g of G, compute h = gq, and denote H = 〈h〉, it is easy to
see that H is a subgroup of G with order p. Algorithm KeyGen outputs the
public key pk = (N,P,G,H, g, h) and private key sk = (p, q).

– Encrypt(pk,m, d,R): On input the public key pk, a message m from the
message space M = {0, 1, 2, ..., T} where M is a set of integers, a tag d ∈
{0, 1}, and a random input R, produce a ciphertext c = gmR.
1. Decryptable: R = hr where r ← Ω1 = ZN .
2. Undecryptable: R is randomly selected from Ω0 = G.

– Decrypt(sk, c): On input the private key sk and the ciphertext c, compute
g′ = gp, c′ = cp.
1. Decryptable: Given c′ = cp = (gmhr)p = gpmgqrp = (gp)m = g′m and

compute the discrete logarithm of c′ base g′. Since 0 ≤ m ≤ T , m could
be found in time O(T ) using exhaustive search or in time O(

√
T ) using

Pollard’s lambda method [28], finally, give back the message m.
2. Undecryptable: Given c′ = cp = (gmR)p = g′mRp, where R is randomly

chosen from G, thus the receiver can not get anything from c′ and then
returns ⊥.

– Fake(pk,m, r,m′): On input the public key pk, the transmitted message m,
the random input r ∈ Ω1, and a fake message m′, output a fake random input
R′′ = gmhr/gm′ ∈ Ω0. Later, the sender can claim that c is an undecryptable
ciphertext constructed by c = gm′

R′′.

Next, we provide a detailed security analysis.

Theorem 1. The proposed PKE-CD scheme is correct.

Proof. As described in decryption parse above, if c is a decryptable ciphertext,
it can be decrypted deterministically. While if c is an undecryptable ciphertext,
it can be decrypted into some m ∈ M only with probability T+1

q . Currently, we
require the primes p and q should be at least 1024 bits so that this probability
is negligible.

Theorem 2. The proposed PKE-CD scheme is semantically secure, if the sub-
group membership problem assumption holds.

Proof. Suppose there exists an adversary A who breaks the semantic security of
the proposed PKE-CD scheme with a non-negligible advantage ε, and we can
construct an adversary B to solve the subgroup membership problem assumption
with a non-negligible advantage AdvB

sub = ε. Given as input a random problem
instance (N,P,G,H, g, h, x), B works as follows.
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Algorithm 1. A Concrete PKE-CD Scheme.

KeyGen(1λ)
Input: the security parameter λ
Output: public/private key pair
(pk, sk)

1: pick primes p, q, |p| = |q|
2: N = pq, P = 2N + 1
3: set group G ≤ F

∗
P , |G| = N

4: pick a generator g of G, h = gq

5: H = 〈h〉 ≤ G, |H| = p
6: return pk = (N, P,G,H, g, h), sk =

(p, q)

Encrypt(pk, m, d, R)
Input: pk, m, tag d and R Output: a
ciphertext c

1: if d = 1 then
2: r ← Ω1 = ZN , R = hr

3: return c = gmR = gmhr

4: else
5: R ← Ω0 = G

6: return c = gmR
7: end if

Decrypt(sk, c)
Input: sk, c Output: m or
⊥
1: g′ = gp, c′ = cp = (gmR)p = g′mRp

2: if R = hr then
3: Rp = 1, c′ = g′m

4: return m
5: else
6: return ⊥
7: end if

Fake(pk, m, r, m′)
Input: pk, m, r and a fake mes-
sage m′ Output: a fake random
R′′

1: c1 = gmhr

2: c2 = gm′

3: return R′′ = c1/c2

– Setup. B sets the public key pk = (N,P,G,H, g, h) and gives pk to A.
– Challenge. A outputs two different messages m0,m1 ∈ M to be challenged.

B flips a coin b ∈ {0, 1} and responds with a challenge ciphertext c = gmbx.
– Guess. A outputs its guess b′ ∈ {0, 1}. If b′ = b, B outputs 1 and claims

x ∈ H, otherwise outputs 0 and claims x ∈ G.

If x is uniform in G, the challenge ciphertext c is uniformly distributed in G and
independent of the bit b. Hence, we get Pr[b′ = b] = 1/2, i.e., Pr[B(x, pk) =
1|x ← G] = 1/2. While if x is uniform in H, we assume the advantage of the
adversary A breaking the PKE-CD scheme’s semantic security is ε, it is easy to
see that

Pr[B(x, pk) = 1|x ← H] = 1/2 + AdvA,se
PKE−CD = 1/2 + ε.

Therefore, the advantage of the adversary B is AdvB
sub = (1/2 + ε) − 1/2 = ε.

Theorem 3. The proposed PKE-CD scheme is half-deniable, if the subgroup
membership problem assumption holds.

Proof. Suppose there exists an adversary A who has a non-negligible advantage
ε against the half-deniability of the proposed PKE-CD scheme, and we can
construct an adversary B to solve the subgroup membership problem assumption
with a non-negligible advantage AdvB

sub = ε. Given as input a random problem
instance (N,P,G,H, g, h, x), B works as follows.
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– Setup. B sets the public key pk = (N,P,G,H, g, h) and gives pk to A.
– Challenge. A outputs two different messages m,m′ ∈ M. B computes c =

gmx, R′′ = c/gm′
and responds with (m′, R′′, c).

– Guess. A outputs its guess b′ ∈ {0, 1} by judging whether (m′, R′′, c) is
in the distribution X = {(m′, R′, gm′

R′)|R′ ← G} or in the distribution
Y = {(m′, R′′, gmhr)|r ← ZN , R′′ = gmhr/gm′}. B then also outputs b′.

We can easily get

AdvB
sub = |

∑

xi∈G

Pr[x = xi|xi ← G] · Pr[B(x, pk) = 1]

−
∑

xi∈H

Pr[x = xi|xi ← H] · Pr[B(x, pk) = 1]|

= |Pr[A(X) = 1] − Pr[A(Y ) = 1]| = AdvA,half
PKE−CD = ε.

4 New Public-Key Sender-Deniable Encryption Scheme

In this section, we present a new public-key sender-deniable encryption scheme
based on PKE-CD scheme and one-bit-flipping distribution assumption. Then
we give an instantiation of the proposed scheme.

4.1 The Proposed Construction

Let Π = (KeyGen,Encrypt,Decrypt,Fake) be a PKE-CD scheme, and let
M be the message space for Π. Given Fn,Xn and Yn(f) as defined in the one-
bit-flipping distribution assumption.

– Gen(1n): On input the security parameter n, run algorithm KeyGen(1λ)
to produce (pk, sk), randomly choose f ∈ Fn, and output the public key
PK = (pk, f, n) and private key SK = sk.

– Enc(PK,m,m′,R): On input the public key PK, encrypted and fake mes-
sages m,m′ ∈ M, and a random input R which contains all random inputs
used in the whole encryption algorithm. Algorithm Enc runs as follows:
1. Randomly select e = (en, en−1, ..., e1) ∈ Xn and compute k = f(e).
2. Let e′′ = (en, en−1, ..., ek+1, 0, ek−1, ..., e1) and compute k′′ = f(e′′).
3. For i = k and i = k′′, let mk ← m, mk′′ ← m′, randomly

pick rk, rk′′ ∈ Ω1, create ck ← Encrypt(pk,mk, 1, rk), ck′′ ←
Encrypt(pk,mk′′ , 1, rk′′). While for 1 ≤ i ≤ n, i �= k, i �= k′′, randomly
choose mi ∈ M, ri ∈ Ωei

, produce ci ← Encrypt(pk,mi, ei, ri). Finally,
output c = (cn, cn−1, ..., c1).

– Dec(SK, c): On input the private key SK and the ciphertext c. Algorithm
Dec proceeds as follows:
1. Parse the ciphertext c into cn, cn−1, ..., c1, and then run algorithm

Decrypt to decrypt each sub-ciphertext ci for 1 ≤ i ≤ n. If ci is decrypt-
able, output mi and denote the position i as 1, otherwise, output ⊥ and
denote the position i as 0.
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2. Obtain a bit string e = (en, en−1, ..., e1) from the conclusion of the step
above, compute k = f(e) and return encrypted message m = mk.

– Fake(PK,m,R,m′): On input the public key PK, the encrypted message
m, the random input R, and the fake message m′. Algorithm Fake works as
below:
1. Obtain e from R and compute k = f(e).
2. Let e′′ = (en, en−1, ..., ek+1, 0, ek−1, ..., e1) and compute k′′ = f(e′′).
3. Randomly choose m′′

k ∈ M and produce r′′
k ← Fake(pk,m, rk,m′′

k).
4. For 1 ≤ i ≤ n, i �= k, let m′′

i ← mi, r′′
i ← ri, output R

′′ which includes
e′′, {m′′

i |1 ≤ i ≤ n, i �= k′′}, and {r′′
i |1 ≤ i ≤ n}.

Note that the random input R contains e, {mi|1 ≤ i ≤ n, i �= k}, and {ri|1 ≤
i ≤ n}, the fake message m′ = mk′′ has been included in R, thus the proposed
scheme is plan-ahead deniable.

Algorithm 2. The Proposed Construction.

Gen(1n)
Input: the security parameter n
Output: public/private key pair
(PK, SK)

1: (pk, sk) ← KeyGen(1λ)
2: f ← Fn

3: return PK = (pk, f, n), SK = sk

Enc(PK, m, m′,R)

Input: PK, m, m′ and R Output: a
ciphertext c

1: e = (en, en−1, ..., e1) ← Xn,
2: k = f(e)
3: e′′ = (en, ..., ek+1, 0, ek−1, ..., e1)
4: k′′ = f(e′′)
5: for 1 ≤ i ≤ n do
6: if i = k, i = k′′ then
7: mk ← m, mk′′ ← m′

8: rk, rk′′ ← Ω1

9: ck ← Encrypt(pk, mk, 1, rk)
10: ck′′ ← Encrypt(pk, mk′′ , 1, rk′′)
11: else
12: mi ← M
13: ri ← Ωei

14: ci ← Encrypt(pk, mi, ei, ri)
15: end if
16: end for
17: return c = (cn, cn−1, ..., c1)

Dec(SK, c)
Input: SK, c Output: m

1: parse c into cn, cn−1, ..., c1
2: for 1 ≤ i ≤ n do
3: if ⊥← Decrypt(sk, ci) then
4: i ← 0
5: else
6: mi ← Decrypt(sk, ci)
7: i ← 1
8: end if
9: end for

10: e = (en, en−1, ..., e1)
11: k = f(e)
12: return m = mk

Fake(PK, m,R, m′)
Input: PK, m,R and the fake message m′

Output: a fake random R
′′

1: obtain e from R

2: k = f(e)
3: e′′ = (en, ..., ek+1, 0, ek−1, ..., e1)
4: k′′ = f(e′′)
5: m′′

k ← M
6: r′′

k ← Fake(pk, m, rk, m′′
k)

7: for 1 ≤ i ≤ n, i �= k do
8: m′′

i ← mi

9: r′′
i ← ri

10: end for
11: return R

′′
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Correctness. The correctness of the scheme above follows directly from the
phases of encryption and decryption as well as the Theorem 1, here we omit it.

4.2 An Instantiation

In this subsection, we provide an example of the proposed scheme based on the
concrete PKE-CD scheme described in Subsect. 3.3.

– Gen(1n): On input the security parameter n = 10, run algorithm Key-
Gen(1λ) to generate pk = (N,P,G,H, g, h), sk = (p, q), randomly choose
f ∈ F10 (here the implementation of f as described in Subsect. 2.3), out-
put the public key PK = (pk, f, n = 10) and private key SK = sk.
Note that we take n to be 10, which is too small to apply in practice, but
here we just give a toy example to illustrate the proposed scheme. Besides,
we suppose f(1010110110) = Γ (1010110110, 3) = 5, f(1010100110) =
Γ (1010100110, 4) = 8.

– Enc(PK,m,m′,R): On input the public key PK, encrypted and fake mes-
sages m,m′ ∈ M, and a random input R. Algorithm Enc runs as follows:
1. Randomly select e = (e10, e9, ..., e1) ∈ X10, for example, e =

(1010110110), compute f(1010110110) = 5.
2. Let e′′ = (1010100110) and compute f(1010100110) = 8.
3. For i = 5 and i = 8, let m5 ← m, m8 ← m′, randomly pick r5, r8 ∈ ZN ,

and generate c5 = gm5hr5 , c8 = gm8hr8 . While for 1 ≤ i ≤ 10, i �= 5, i �= 8,
randomly choose mi ∈ M, select r2, r3, r6, r10 ∈ ZN , R1, R4, R7, R9 ∈ G,
and produce ciphertexts as follows:

c1 = gm1R1, c2 = gm2hr2 , c3 = gm3hr3 , c4 = gm4R4,

c6 = gm6hr6 , c7 = gm7R7, c9 = gm9R9, c10 = gm10hr10 .

Finally output c = (c10, c9, ..., c1). Note that the random input used in
the encryption parse is

R =

(
(1010110110),m10, ...,m6,m4, ...,m1

r10, R9, r8, R7, r6, r5, R4, r3, r2, R1

)
.

– Dec(SK, c): On input the private key SK and the ciphertext c, algorithm
Dec proceeds as follows:
1. Parse the ciphertext c into c10, c9, ..., c1, run algorithm Decrypt to

decrypt each sub-ciphertext ci for 1 ≤ i ≤ 10, and output

(m10, 1), (⊥, 0), (m8, 1), (⊥, 0), (m6, 1), (m5, 1), (⊥, 0), (m3, 1), (m2, 1), (⊥, 0).

2. Obtain e = (1010110110) from the conclusion of the step above, compute
f(1010110110) = 5, and return the encrypted message m = m5.

– Fake(PK,m,R,m′): On input the public key PK, the transmitted message
m = m5, the random input R, and the fake message m′ = m8. Algorithm
Fake works as below:
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1. Obtain e from R and compute f(1010110110) = 5.
2. Let e′′ = (1010100110) and compute f(1010100110) = 8.
3. Choose m′′

5 ∈ M at random and produce R′′
5 = gm5hr5/gm′′

5 .
4. Output R

′′ bellow:

R
′′ =

(
(1010100110),m10,m9,m7...,m6,m

′′
5 ,m4, ...,m1

r10, R9, r8, R7, r6, R
′′
5 = gm5hr5/gm′′

5 , R4, r3, r2, R1

)
.

There exist two ways to open the encryption as follows.

1. Opening the encryption honestly: The sender outputs

(m10, r10), (m9, R9), (m8, r8), (m7, R7), (m6, r6),
(m5, r5), (m4, R4), (m3, r3), (m2, r2), (m1, R1),

and claims that the transmitted message is m = m5.
2. Opening the encryption dishonestly: The sender outputs

(m10, r10), (m9, R9), (m8, r8), (m7, R7), (m6, r6),
(m′′

5 , R′′
5 ), (m4, R4), (m3, r3), (m2, r2), (m1, R1),

and claims that the transmitted message is m′ = m8. Note that m′′
5

is a reasonable message which is selected randomly from M, and R′′
5 =

gm5hr5/gm′′
5 = c5/gm′′

5 .

In the case of coercion, the sender will open the encryption dishonestly.

5 Security and Efficiency Analysis

In this section, we provide the security and efficiency analysis of the proposed
scheme.

5.1 Security Analysis

Theorem 4. Let Π be a public key encryption with controlled decryption
scheme. Then the proposed scheme is semantically secure.

Proof. Please refer to AppendixA.

Theorem 5. Let Π be a public key encryption with controlled decryption
scheme, and one-bit-flipping distribution assumption holds. Then the proposed
scheme is δ(n)-deniable.

Proof. Please refer to AppendixB.
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5.2 Efficiency Analysis and Comparison

In this subsection, we compare the proposed deniable encryption scheme with
Canetti et al.’s party scheme [6].

Let τ (e.g., τ = 2048) be the size of the sub-ciphertexts in both schemes,
where the sub-ciphertext in [6] refers to the element in the set S or R. Besides,
the set S further refers to Construction II since it is more efficient. And let n
be the number of the sub-ciphertext, where n should be at least greater than
500. We denote by k a sufficiently large number related to τ , by T an operation
on a trapdoor permutation, by B an operation on a hard-core predicate, by I
an inverse operation, by E an exponentiation operation, by M a multiplication
operation, by f an operation on a function mentioned in Subsect. 2.3, by L an
operation on a discrete logarithm, by D a division operation. We respectively
use Enc, Dec and Fake to denote encryption, decryption, and opening the
encryption dishonestly in both schemes. Table 1 provides the comparison of two
schemes.

Table 1. Comparison of the two schemes

Schemes Canetti et al.’s party scheme [6] The Proposed Scheme

Computation Enc lnk(T + B) n(2E + M) + 2f

Dec lnk(I + B) n(2E + L) + f

Fake - 3E + M + D + 2f

Ciphertext lnτ nτ

Deniability 4/n δ(n)

Compared with Canetti et al.’s party scheme, the proposed deniable scheme is
superior in both efficiency and deniability. Firstly, Canetti et al.’s party scheme
can only process one bit a time, whereas the proposed scheme allows a l-bit
message encryption, generally, we take l = 40. Secondly, it’s obvious that the
proposed scheme is much more efficient than [6] in the phases of Enc and Dec
when simultaneously encrypting a l-bit message. Note that some operations are
performed in the phase of Fake of the proposed scheme, but overall all algorithms
mentioned above require less computational overhead than [6]. Thirdly, when
encrypting a l-bit message, the length of ciphertext of the proposed scheme is
reduced to nτ and δ(n)-deniability is simultaneously achieved, where δ(n) is less
than 1/n. Moreover, note that [6] is claimed to be unplanned-ahead, the size of
encrypted message in this scheme is one bit. Hence, once the true message is
fixed, the fake message will be also fixed. In this sense, [6] is also plan-ahead and
our comparison is reasonable. As a result, the proposed deniable scheme is more
practical.
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6 Conclusion

In this paper, we propose a public key encryption with controlled decryption.
More precisely, the sender decides whether the ciphertexts can be decrypted.
Additionally, we utilize the proposed public key encryption scheme as a building
block to construct a new public-key sender-deniable encryption scheme under the
framework of full deniability, which supports encryption for multi-bit message
and achieves δ(n)-deniability. Compared with Canetti et al.’s party scheme, the
proposed scheme is superior in both efficiency and deniability.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (No. 2018YFB0804105), and the National Cryptography
Development Fund (No. MMJJ20180110).

Appendix A. Proof of Theorem4

Proof. Suppose there exists an adversary A who breaks the semantic security of
the proposed scheme with a non-negligible advantage ε, and we can construct an
adversary B to break the semantic security of the PKE-CD scheme with a non-
negligible advantage AdvB,se

PKE−CD = ε. Let Π=(KeyGen, Encrypt, Decrypt,
Fake) be a PKE-CD scheme, and let (pk, sk) ← KeyGen(1λ). Given as input
pk and other public parameters f and n. B works as follows.

– Setup. B sets the public key PK = (pk, f, n) and gives PK to A.
– Challenge. A submits two different messages m0,m1 ∈ M to B, B then

sends them to the challenger. The challenger flips a coin b ∈ {0, 1}, randomly
selects a random input r ∈ Ω1, and outputs a challenge ciphertext c ←
Encrypt(pk,mb, 1, r) to B. Then B choose a random e ∈ Xn, for 1 ≤ i ≤
n, i �= f(e), randomly selects mi ∈ M, ri ∈ Ωei

, it produces ciphertexts
cn, cn−1, ..., cf(e)+1, cf(e)−1, ..., c1 by running algorithm Encrypt, and returns
c = (cn, cn−1, ..., cf(e)+1, c, cf(e)−1, ..., c1) to A as a challenge.

– Guess. A outputs its guess b′ ∈ {0, 1}, B then also outputs b′.

It is easy to see that the adversary B’s advantage of breaking PKE-CD scheme’s
sematic security is equal to the adversary A’s advantage of breaking the sematic
security of the proposed scheme, i.e., AdvB,se

PKE−CD = ε.

Appendix B. Proof of Theorem5

Proof. Suppose Π is ε(λ)-half-deniable, Xn and Yn(f) are δ(n)-close for a
random f ∈ Fn. Given any encrypted and fake messages m,m′ ∈ M, ran-
dom inputs R and R

′. Let (PK,SK) ← Gen(1n) where PK = (pk, f, n),
c ← Enc(PK,m,R), c′ ← Enc(PK,m′,R′), and R

′′ ← Fake(PK,m,R,m′).
Next, we define four probability distributions R1

n, R2
n, R3

n and R4
n via series of

hybrid games which is a common technique in security analysis [29,30].
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– Game G1: Pick e′ = (en, en−1, ..., e1) ∈ Xn at random, compute k′ = f(e′).
Then randomly choose m′

i ∈ M for 1 ≤ i ≤ n, i �= k′, select r′
i ∈ Ωei

for
1 ≤ i ≤ n, and generate R′ = (e′,m′

n, ...,m′
k′+1,m

′
k′−1, ...,m

′
1, r

′
n, r′

n−1, ..., r
′
1).

Finally, the game outputs the distribution R1
n = {R′}.

– Game G2: Pick e′ = (en, en−1, ..., e1) at random from a different distribution
Yn(f), compute k′ = f(e′). Then randomly choose m′

i and r′
i as before, pro-

duce R
′ = (e′,m′

n, ...,m′
k′+1,m

′
k′−1, ...,m

′
1, r

′
n, r′

n−1, ..., r
′
1). Finally the game

outputs the distribution R2
n = {R′}.

– Game G3: Pick e = (en, en−1, ..., e1) ∈ Xn at random, compute k = f(e), set
e′′ = (en, ...ek+1, 0, ek−1, ..., e1) and compute k′′ = f(e′′), randomly choose
m′′

i ∈ M for 1 ≤ i ≤ n, i �= k′′, select r′′
i ∈ Ωei

for 1 ≤ i ≤ n, and create R
′′ =

(e′′,m′′
n, ...,m′′

k′′+1,m
′′
k′′−1, ...,m

′′
1 , r′′

n, r′′
n−1, ..., r

′′
1 ). Finally the game outputs

the distribution R3
n = {R′′}.

– Game G4: Obtain e, k, e′′ and k′′ as before. For i = k, set mk ← m, then
randomly choose rk ∈ Ω1,m

′′
k ∈ M, produce r′′

k ← Fake(pk,mk, rk,m′′
k). For

i = k′′, randomly select rk′′ ∈ Ω1. While for 1 ≤ i ≤ n, i �= k, i �= k′′, ran-
domly choose mi ∈ M, ri ∈ Ωei

. Let m′′
i ← mi, r′′

i ← ri, for 1 ≤ i ≤ n, i �= k,
and generate R

′′ = (e′′,m′′
n, ...,m′′

k′′+1,m
′′
k′′−1, ...,m

′′
1 , r′′

n, r′′
n−1, ..., r

′′
1 ). Finally

the game outputs the distribution R4
n = {R′′}.

It clear that the Game G1 and Game G2 are indistinguishable except that the
bit string e′ comes from different distributions Xn and Yn(f), therefore, R1

n and
R2

n are δ(n)-close. It follows directly that the output distributions of Game G2

and Game G3 are the same from the definition of Yn(f). We see that the only
difference between Game G3 and Game G4 is the distributions of r′′

k , according
to the half-deniability of Π, we know that R3

n and R4
n are ε(λ)-close. Taken

altogether results above, we immediately get R1
n and R4

n are ε(λ) + δ(n)-close.
Next, we consider the random variables (m′,R′, c′) and (m′,R′′, c), it is not hard
to see that the random inputs R

′ and R
′′ belong to distribution R1

n and dis-
tribution R4

n, respectively. Since c′ ← Enc(PK,m′,R′), c ← Enc(PK,m′,R′′),
it immediately follows that the random variables (m′,R′, c′) and (m′,R′′, c) are
ε(λ)+δ(n)-close. In [6], Canetti et al. omitted the negligible quantity when they
estimated their scheme’s deniability, and we also omit the negligible quantity
ε(λ) in our scheme. This completes the proof.

References

1. Howlader, J., Roy, S.K., Mal, A.K.: Practical receipt-free sealed-bid auction in
the coercive environment. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 418–434. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12160-4 25

2. Chen, X., Lee, B., Kim, K.: Receipt-free electronic auction schemes using homomor-
phic encryption. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp.
259–273. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-
6 20

https://doi.org/10.1007/978-3-319-12160-4_25
https://doi.org/10.1007/978-3-319-12160-4_25
https://doi.org/10.1007/978-3-540-24691-6_20
https://doi.org/10.1007/978-3-540-24691-6_20


162 Y. Cao et al.

3. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 103–118. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 9

4. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption.
In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 38

5. Chi, P., Lei, C.: Audit-free cloud storage via deniable attribute-based encryption.
IEEE Trans. Cloud Comput. 6(2), 414–427 (2018)

6. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0052229

7. Dachman-Soled, D., Liu, F.-H., Zhou, H.-S.: Leakage-resilient circuits revisited –
optimal number of computing components without leak-free hardware. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 131–158. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 5

8. Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party
computation. In: Miller, G.L. (ed.) STOC 1996, pp. 639–648. ACM (1996)

9. Canetti, R., Goldwasser, S., Poburinnaya, O.: Adaptively secure two-party com-
putation from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 557–585. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 22

10. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 24

11. Dachman-Soled, D., Katz, J., Rao, V.: Adaptively secure, universally composable,
multiparty computation in constant rounds. In: Dodis, Y., Nielsen, J.B. (eds.) TCC
2015. LNCS, vol. 9015, pp. 586–613. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 23

12. Klonowski, M., Kubiak, P., Kuty�lowski, M.: Practical deniable encryption. In:
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Abstract. Many blockchain researches focus on the privacy protec-
tion. However, criminals can leverage strong privacy protection of the
blockchain to do illegal crimes (such as ransomware) without being pun-
ished. These crimes have caused huge losses to society and users. Imple-
menting identity tracing is an important step in dealing with issues aris-
ing from privacy protection. In this paper, we propose a blockchain trace-
able scheme with oversight function (BTSOF). The design of BTSOF
builds on SkyEye (Tianjun Ma et al., Cryptology ePrint Archive 2020).
In BTSOF, the regulator must obtain the consent of the committee to
enable tracing. Moreover, we construct a non-interactive verifiable multi-
secret sharing scheme (VMSS scheme) and leverage the VMSS scheme
to design a distributed multi-key generation (DMKG) protocol for the
Cramer-Shoup public key encryption scheme. The DMKG protocol is
used in the design of BTSOF. We provide the security definition and
security proof of the VMSS scheme and DMKG protocol.

Keywords: Blockchain · Traceable scheme · Oversight function ·
Verifiable multi-secret sharing scheme · Distributed multi-key
generation protocol

1 Introduction

Nowadays, the blockchain that originated in Bitcoin [15] has attracted great
attention from industry and academia. The reason of high concern is mainly
the large-scale application scenarios of blockchain. That is, the blockchain is no
longer limited to the decentralized cryptocurrencies (e.g. PPcoin [11], Litecoin
[1]), and can also be applied to other fields, such as military, insurance, supply
chain, and smart contracts.

In a nutshell, the blockchain can be seen as a distributed, decentralized,
anonymous, and data-immutable database. The blockchain stores data in blocks.
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W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 164–182, 2020.
https://doi.org/10.1007/978-3-030-61078-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61078-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-61078-4_10


A Blockchain Traceable Scheme with Oversight Function 165

A block contains a block header and a block body. The block body stores data in
the form of a Merkle tree. The block header contains the hash value of the block
header of the previous block to form a chain. The blockchain uses consensus
mechanism (such as proof of work (PoW) [15]) to guarantee nodes to reach
consensus on some block.

There are many researches on the blockchain privacy protection [4]. However,
criminals can leverage strong privacy protection of the blockchain to do illegal
crimes (such as ransomware) without being punished. These crimes have caused
huge losses to society and users. CipherTraces third quarter 2019 cryptocurrency
anti-money laundering report shows that the total amount of fraud and theft
related to cryptocurrencies are $4.4 billion in aggregate for 2019.

In blockchain applications, implementing identity tracing is an important
step in dealing with issues arising from privacy protection. Tianjun Ma et al.
proposed SkyEye [14], a blockchain traceable scheme. SkyEye can be applied in
the SkyEye-friendly blockchain applications (more details about these applica-
tions are available in [14]), that is, each user in these blockchain applications has
the public information generated from the private information, and the users’
public information can be displayed in the blockchain data. SkyEye allows the
regulator to trace the users’ identities of the blockchain data. However, in Sky-
Eye, there are no restrictions and oversight measures for the regulator, and the
regulator can arbitrarily trace the blockchain data.

In this paper, we design oversight measures for the regulator in SkyEye to
prevent the regulator from abusing tracing right, thereby constructing a BTSOF.
Our main contributions are as follows:

1. We construct a non-interactive verifiable multi-secret sharing (VMSS) scheme
based on the non-interactive verifiable secret sharing scheme proposed by
Pedersen (Pedersen-VSS) [17]. We leverage the Franklin-Yung multi-secret
sharing scheme [8] in the design of the VMSS scheme. In addition, we provide
the security definition and security proof of the VMSS scheme.

2. We use the VMSS scheme to construct a distributed multi-key generation
(DMKG) protocol for the Cramer-Shoup public key encryption scheme [5].
The construction of the DMKG protocol builds on the techniques of dis-
tributed key generation (DKG) protocol proposed by Gennaro et al. [10].
We define the security of the DMKG protocol and prove the security of this
protocol.

3. We propose a BTSOF. The design of BTSOF builds on SkyEye [14] and
leverages the DMKG protocol described above and some other cryptographic
primitives (e.g., non-interactive zero-knowledge). There is a committee in
BTSOF. The regulator must obtain the consent of the committee to enable
tracing. The regulator can trace one data, multiple data or data in multiple
period.

Paper Organization. The remainder of this paper is organized as follows.
Section 2 provides the background. Section 3 provides an overview of BTSOF.
Section 4 provides some definitions. Section 5 briefly describes the VMSS scheme
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(more details are available in Appendix A) and details the DMKG protocol.
Section 6 describes the blockchain traceable scheme with oversight function. We
discuss related work in Sect. 7 and summarize this paper in Sect. 8.

Fig. 1. An overview of the blockchain application using SkyEye.

2 Background

In this section, we describe the notation in this paper and provide an overview
of SkyEye [14]. We then introduce some cryptographic building blocks.

2.1 Notation

Let p and q denote two large primes such that q divides p − 1. We use Zp to
denote a group of order p and Zq to denote a group of order q. Unless otherwise
noted, the exponential operation performs modulo p operation by default. For
example, gx denotes gx mod p, where g ∈ Zp and x ∈ Zq. Let || denote the
concatenate symbol, such as a||b denotes the concatenation of a and b. Let | · |
denote the size of some set, such as |A| represents the number of elements in the
set A. We use (pktra, sktra) to denote the traceable public-private key pair and
(pkreg, skreg) to denote the public-private key pair of the regulator.

2.2 SkyEye

The design of SkyEye[14] uses some cryptographic primitives (e.g., chameleon
hash scheme [12], which has a special property: the user who knows the
chameleon hash private key can easily find collision about the chameleon hash
value computed by the chameleon hash public key). SkyEye’s main design idea
is to add identity proofs to the blockchain data. The identity proof of each user
includes the ciphertext of the user’s chameleon hash public key encrypted by
pktra. Moreover, in SkyEye, (pkreg, skreg) used for user registration is the same
as (pktra, sktra) used for tracing. That is, sktra is obtained by the regulator. For
ease of description, we use u to denote a user, idu to denote the u’s true identity,
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and pkcu to denote the chameleon hash public key of the user u. Let CHidu

denote the chameleon hash value of identity idu and MT denote the Merkle
tree. Each leaf node of MT stores the value of each successfully registered user,
which is the concatenation of the chameleon hash public key and the chameleon
hash value of the identity.

Figure 1 shows an overview of the blockchain application using SkyEye. The
user u generates the registration information reginfo and sends reginfo to the
regulator. If the verification of reginfo is successful, the regulator can extract
some information recordu = (pkcu , idu, CHidu

) from reginfo, store recordu to
the database, add pkcu ||CHidu

to MT , and publish the Merkle tree MT. If the u’s
(pkcu ||CHidu

) appears in the Merkle tree MT , the user u successfully registers in
the regulator. Then, the user u can generate the blockchain data datau consisting
of data contents and the identity proofs of users involved in data creation. Unlike
traditional verification process in the blockchain, the verification process works as
follows: (i) verifying data contents; (ii) verifying identity proofs in the data. If the
verification of datau is successful, datau is added to the block that is generated
by the verification node (e.g., miner). According to a consensus mechanism, the
nodes in the network select a final block and add it to the blockchain. The
tracing process is shown as follows: the regulator obtains datau from the
blockchain and then gets the chameleon hash public key set PKC by decrypting
each ciphertext of chameleon hash public key in datau using the private key sktra.
Finally, the regulator can obtain the users’ true identity set ID corresponding
to datau by searching the database according to PKC .

2.3 Cryptographic Building Blocks

The cryptographic building blocks include the following: Cramer-Shoup encryp-
tion scheme, non-interactive zero-knowledge, digital signature scheme, and multi-
secret sharing scheme. Below, we informally describe these notions.

Cramer-Shoup Encryption Scheme. The Cramer-Shoup Encryption Scheme
CS = (Setup,KeyGen,Enc,Dec) is described below (more details are described
in [5]).

• Setup(λ) → ppenc. Given a security parameter λ, this algorithm samples
g1, g2 ∈ Zp at random, where the order of g1 and g2 is q. Then, this algorithm
chooses a hash function H form the family of universal one-way hash func-
tions. Finally, Setup returns the public parameters ppenc = (p, q,H, g1, g2).

• KeyGen(ppenc) → (pk, sk). Given the public parameters ppenc, this algorithm
randomly samples x1, x2, y1, y2, z ∈ Zq, and computes c1 = gx1

1 gx2
2 , c2 =

gy1
1 gy2

2 , and c3 = gz
1 . Finally, KeyGen returns a pair of public/private keys

(pk, sk) = ((c1, c2, c3), (x1, x2, y1, y2, z)).
• Enc(pk,m) → C. Given the public key pk and a message m, this algo-

rithm first randomly samples r ∈ Zq. Then it computes u1 = gr
1, u2 =

gr
2, e = cr

3m,α = H(u1, u2, e), v = cr
1c

rα
2 . Finally, this algorithm returns

C = (u1, u2, e, v).
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• Dec(sk, C) → m/⊥. Given the private key sk and the ciphertext C, this
algorithm computes α = H(u1, u2, e), and checks if ux1+y1α

1 ux2+y2α
2 = v. If

the check fails, this algorithm outputs ⊥; otherwise, it outputs m = e/uz
1.

Non-interactive Zero-Knowledge. Let R : {0, 1}∗ × {0, 1}∗ −→ {0, 1} be an
NP relation. The language for R is L = {x ∈ {0, 1}∗|∃w ∈ {0, 1}∗ s.t. R(x,w) =
1}. A non-interactive zero-knowledge scheme NIZK = (K,P,V) corresponds to
the language L, which is described below:

• K(λ) → crs. Given a security parameter λ, K returns a common reference
string crs.

• P(crs, x, w) → π. Given the common reference string crs, a statement x, and
a witness w, P returns a proof π.

• V(crs, x, π) → {0, 1}. Given the common reference string crs, the statement
x, and the proof π, V returns 1 if verification succeeds, or 0 if verification
fails.

A non-interactive zero-knowledge scheme satisfies three secure properties: (i)
completeness; (ii) soundness; and (iii) perfectly zero knowledge. More details are
available in [2].

Digital Signature Scheme. A digital signature scheme Sig = (KeyGen,
Sign, V er) is described below:

• KeyGen(λ) → (pksig, sksig). Given a security parameter λ, KeyGen returns
a pair of public/private keys (pksig, sksig).

• Sign(sksig,m) → σ. Given the private key sksig and a message m, Sign
returns the signature σ of the message m.

• V er(pksig,m, σ) → b. Given the public key pksig, the message m, and the
signature σ, V er returns b = 1 if the signature σ is valid; otherwise, it outputs
b = 0.

Multi-secret Sharing Scheme. We use the Franklin-Yung multi-secret sharing
scheme [8]. A (t − l + 1, t + 1; l, n)-multi-secret sharing scheme has two phases:
distribution phase and recovery phase, where l denotes the number of secrets, t
denotes the threshold, and n denotes the number of participants.

Distribution phase. The dealer D distributes a secret set S = {s1, ..., sl} ∈ Zl
q

to n participants, P1, ..., Pn. D first chooses a random polynomial f of degree t
such that f(−k) = sk for k = 1, ..., l and f(−k) is random for k = l +1, ..., t+1.
Finally, D sends sti = f(i) secretly to Pi for i = 1, ..., n.

Recovery phase. Any at least t + 1 participants can compute the polynomial
f via the Lagrange interpolation formula, and then reconstruct the secret set S.

The above scheme satisfies two properties: (1) any at least t + 1 participants
can reconstruct the secret set S; (2) any at most t − l + 1 participants can not
find anything about the secret set S from their shares in an information-theoretic
sense.
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3 An Overview of BTSOF

We design oversight measures for the regulator on the basis of SkyEye, so as
to construct the blockchain traceable scheme with oversight function. The main
design idea is shown in the Fig. 2. If the regulator wants to trace the blockchain
data datau, it must send the data datau and corresponding evidence witu to the
committee. And if the committee agrees this tracing, it sends the information for
tracing to the regulator. Finally, the regulator can trace the data datau according
to the information sent by the committee. For the encryption scheme in SkyEye,
we use the Cramer-Shoup encryption scheme. The specific ideas are described
as follows.

Fig. 2. An overview of the blockchain traceable scheme with oversight function.

From Sect. 2.2, it can be seen that in SkyEye, the prerequisite for tracing
by the regulator is to use the traceable private key sktra to decrypt all the
chameleon hash public key ciphertexts in the blockchain data datau to obtain
the chameleon hash public key set PKC . Therefore, we separate the generation
of (pkreg, skreg) and (pktra, sktra). That is, (pkreg, skreg) is generated by the
regulator and (pktra, sktra) is periodically generated by the committee using
the DMKG protocol which is suitable for the Cramer-Shoup encryption scheme
(more details about DMKG protocol are described in Sect. 5). In other words, the
regulator must obtain the consent of the committee to enable tracing. Without
loss of generality, in this paper, we analyze the interaction between the committee
and regulator in one period. Let T denote one period and (pkT

tra, skT
tra) denote

the traceable public-private key pair in this period.
For ease of describing the next design ideas, we assume that the committee

has n participants P1, ..., Pn where each member Pi is honest for i ∈ {1, ...n}
(and in Sect. 6, we analyze the case of corrupted participants in the com-
mittee). Assuming that each committee member Pi has the traceable private
key component (x1i, x2i, y1i, y2i, zi) and the traceable public key component
(c1i, c2i, c3i) = (gx1i

1 gx2i
2 , gy1i

1 gy2i
2 , gzi

1 ). I.e., the private key skT
tra = (x1 =∑

i∈{1,...n} x1i mod q, x2 =
∑

i∈{1,...n} x2i mod q, y1 =
∑

i∈{1,...n} y1i mod q, y2 =
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∑
i∈{1,...n} y2i mod q, z =

∑
i∈{1,...n} zi mod q). And the public key pkT

tra = (c1 =
∏

i∈{1,...n} c1i = gx1
1 gx2

2 , c2 =
∏

i∈{1,...n} c2i = gy1
1 gy2

2 , c3 =
∏

i∈{1,...n} c3i = gz
1).

Although the traceable public-private key pair (pkT
tra, skT

tra) has been gen-
erated by the committee, an issue remains. When the regulator sends the data
set and corresponding evidence to the committee and the committee agrees this
tracing, if the committee sends the private key skT

tra directly to the regulator,
this will cause the regulator to trace not only the data set that it sends, but also
the data of other participants using pkT

tra during the T period.
To address the above issue, we ask the committee to send the private key skT

tra

to the regulator only when the regulator needs to trace all data of the T period. In
other cases, the committee sends some information to the regulator, which allows
the regulator to trace only the data set sent to the committee. Next, we describe
the design idea for the other cases. We assume that datau only has a chameleon
hash public key ciphertext Cu = (u1, u2, e, v) = (gr

1, g
r
2, c

r
3 ·pkcu , cr

1c
rα
2 ), where r is

a random number used for encryption and α = H(u1, u2, e). When the regulator
sends (datau, witu) to the committee, if the committee agrees this tracing, for
each i ∈ {1, ...n}, Pi processes the ciphertext Cu as follows: ui1 = u

(x1i+y1iα)
1 =

g
r(x1i+y1iα)
1 , ui2 = u

(x2i+y2iα)
2 = g

r(x2i+y2iα)
2 , ui3 = uzi

1 = grzi
1 . Pi then broadcasts

(ui1, ui2, ui3) to other members.
Next, Pi can compute ui12 = Πj∈{1,...n}uj1uj2 = ux1+y1α

1 ux2+y2α
2 and

ui13 = Πj∈{1,...n}uj3 = uz
1. Finally, Pi sends (ui12, ui13) to regulator for each

i ∈ {1, ...n}.
Because all committee members are honest, the regulator can choose the

(ui12, ui13) for some i ∈ {1, ...n} to decrypt Cu. The regulator first checks if
ui12 = v. If the check passes, the regulator computes pkcu = e/ui13, and then
searches his database to determine the true identity idu corresponding to the
chameleon hash pubic key pkcu .

4 Definitions

In this section, we first describe the definition and security of the blockchain
traceable scheme. Then, we introduce the threat model in this paper.

4.1 Blockchain Traceable Scheme

The definition and security of the blockchain traceable scheme is introduced
by Tianjun Ma et al. [14]. A blockchain traceable scheme contains five algo-
rithms (Setup,Geninfo, V erinfo, Genproof , V erproof , T race) described below. A
complete formal definition can be found in [14].

• Setup(λ) → pp. Given a security parameter λ, Setup returns public parame-
ters pp.

• Geninfo(pp, id) → reginfo. Given the public parameters pp and a user iden-
tity id, Geninfo returns the registration information reginfo.
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• V erinfo(pp, reginfo, skreg) → b. Given the public parameters pp, registration
information reginfo, and the regulator private key skreg, V erinfo outputs a
bit b. If b = 1, reginfo is valid; otherwise, reginfo is invalid.

• Genproof (pp, infoproof ) → proofid. Given the public parameters pp and the
information infoproof used to generate identity proof, Genproof returns the
identity proof proofid.

• V erproof (pp, proofid) → b. Given the public parameters pp and identity proof
proofid. V erproof outputs a bit b. If b = 1, proofid is valid; otherwise, proofid

is invalid.
• Trace(dataB , sktra) → ID. Given the blockchain data dataB and the trace-

able private key sktra, Trace returns the identity set ID corresponding to
dataB .

A blockchain traceable scheme is secure if it satisfies two properties: identity
proof indistinguishability and identity proof unforgeability. The former property
states that no adversary can distinguish the identity proofs of the honest users,
and the latter property means that the adversary cannot forge the identity proofs
of the honest users. More details are available in [14].

4.2 Threat Model

For the DMKG protocol, we assume that there are n probabilistic polynomial-
time participants P1, ...Pn in the DMKG protocol. These participants are in
a fully synchronous network. All participants have a common broadcast chan-
nel, and there is a private point-to-point channel between the participants. The
adversary A is static. That is, the corrupted participants must be chosen by the
adversary A at the beginning of the DMKG protocol. The adversary can corrupt
at most t − 1 participants in any way, where t − 1 < n/2. The DMKG protocol
is secure with threshold t if it satisfies correctness and secrecy requirements in
the presence of the adversary A that corrupts at most t − 1 participants (more
details about correctness and secrecy requirements are available in Appendix B).

For BTSOF, the assumptions about the regulator and the blockchain data are
the same as in SkyEye[14] (i.e., the regulator is trusted and the blockchain data
generated by the users cannot be tampered with). From Sect. 3, it can be seen
that BTSOF is constructed by adding oversight measures to SkyEye[14]. That is,
the traceable public-private key pair is generated by the committee through the
DMKG protocol, and the tracing process is achieved by the interaction between
the regulator and committee. These measures only modify Setup and Trace
algorithms in SkyEye. Thus, as long as it can prove that the committee is trusted
and the regulator can only trace the data set sent to the committee if it obtains
the consent of the committee, BTSOF satisfies identity proof indistinguishability
and identity proof unforgeability. Therefore, in BTSOF, we only consider the
threat model that is same as the threat model in the DMKG protocol except
that the set (P1, ..., Pn) is called a committee and n is equal to 3t − 2. Because
the adversary controls at most t − 1 committee members, the honest members
are in the majority on the committee. Moreover, we assume that the regulator
can receive each committee member’ reply at time trep.
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Fig. 3. Generating the private key sk = (x1, x2, y1, y2, z)
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5 DMKG

In this section, we first briefly describe the VMSS scheme. Next, we describe the
construction and security of the DMKG protocol.

VMSS Scheme. For designing the DMKG protocol, we construct a VMSS
scheme. The design of the VMSS scheme combines the technology of Pedersen-
VSS[17] and Franklin-Yung multi-secret sharing scheme [8]. Due to space con-
straints, we briefly describe the VMSS scheme (more details are available in
Appendix A). A dealer D distributes a secret set S = {s1, ..., sl} to some partic-
ipants. D first broadcasts the commitment of each secret in S. Then, D commits
to a polynomial f(x) of degree t such that f(−i) = si, i = {1, ..., l}. Finally,
D broadcasts the commitments of f(x) and secretly sends share (computed by
f(x)) to each participant. Each participant can verify the share sent by D and
the commitments on the secret set S according to these commitments of f(x).

5.1 Construction of DMKG

We assume that a trusted authority has chosen g1, h1, g2, h2 ∈ Zp, where h1 =
gγ1
1 and h2 = gγ2

2 for γ1, γ2 ∈ Zq. The DMKG protocol consists of two phases of
generating the private key sk = (x1, x2, y1, y2, z) and generating the public key
pk = (c1 = gx1

1 gx2
2 , c2 = gy1

1 gy2
2 , c3 = gz

1). The above two phases are presented in
detail in Fig. 3 and Fig. 4. The key ideas are described below.

In generating the private key sk phase, for each i = 1, ..., n, Pi randomly
chooses the components x1i, x2i, y1i, y2i, zi of sk in Zq. The distribution pro-
cess of zi uses the Pedersen-VSS scheme [17], which is the same as the DKG
protocol [10]. That is, Pi randomly chooses a t-degree polynomial Hi(x) sat-
isfying Hi(0) = zi to distribute zi. We use the VMSS protocol to distribute
(x1i, x2i, y1i, y2i). Specifically, Pi first broadcasts the commitments of x1i, x2i,
y1i, and y2i. Then, Pi commits to two polynomials Fi(x), Gi(x) of degree t such
that Fi(−1) = x1i, Fi(−2) = y1i, Gi(−1) = x2i, and Gi(−2) = y2i. Finally, Pi

broadcasts the product of two polynomial commitments so that other partici-
pants can verify the shares sent by Pi and the commitments on x1i, x2i, y1i,
and y2i (Eq. 1 and Eq. 2 in Fig. 3). At the end of this phase, Pi obtains a set
of qualified participants Qfinal, and holds the values Fj(i), Gj(i), and Hj(i) for
j ∈ Qfinal.

In generating the public key pk phase, each participant Pi broadcasts the
components c1i = gx1i

1 gx2i
2 , c2i = gy1i

1 gy2i
2 , and c3i = gzi

1 = g
Hi(0)
1 of pk for

i ∈ Qfinal. The verification process of c3i is the same as the DKG protocol[10].
Pi broadcasts the public values Aik for k = 0, ..., t, so that other participants
can verify (c1i, c2i) through Aik, and verify Aik via the shares sent by Pi (Eq. 3
and Eq. 4 in Fig. 4).

5.2 Security of DMKG

Theorem 1. The DMKG protocol described in Fig. 3 and Fig. 4 is a secure
protocol for distributed multi-key generation in the Cramer-Shoup encryption
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Fig. 4. Generating the public key pk = (c1 = gx1
1 gx2

2 , c2 = gy11 gy22 , c3 = gz1)

scheme. That is, it satisfies correctness and secrecy requirements in the presence
of an adversary that corrupts at most t − 1 participants for any t − 1 < n/2.

Due to space constraints, we provide the proof of Theorem 1 in the extended
version of this paper [13].

6 BTSOF

In this section, we describe the construction and security of BTSOF.

6.1 Construction of BTSOF

We modify the Setup and Trace algorithms in SkyEye and keep the other algo-
rithms unchanged. We add the step of generating the common reference string
crs for non-interactive zero-knowledge proof to the Setup algorithm, and leave
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the process of generating the traceable public-private key pair in the Setup algo-
rithm to the committee. Let the committee use the DMKG protocol to periodi-
cally generate the traceable public-private key pair and let the regulator generate
his public-private key pair used for user registration. We modify the Trace algo-
rithm to the interaction between the committee and the regulator to ensure that
the regulator only trace the data set sent to the committee. Next, we describe
this interactive process.

Without loss of generality, we analyze the interaction between the committee
and regulator in one period. Let T denote one period and (pkT

tra, skT
tra) denote

the traceable public-private key pair in this period. Let Qfinal denote the set of
qualified members in the committee’s process of generating (pkT

tra, skT
tra) in this

period. For each i ∈ Qfinal, Pi has the public-private key pair (pksigi
, sksigi

) of
the signature scheme, the traceable private key component (x1i, x2i, y1i, y2i, zi),
and the traceable public key component (c1i, c2i, c3i) = (gx1i

1 gx2i
2 , gy1i

1 gy2i
2 , gzi

1 ).
The operations of the committee and the regulator are presented in detail in
Fig. 5 and Fig. 6. The key ideas are described below.

The regulator broadcasts a message to the committee to indicate the data
set it wants to trace. The message has two types:

• The message mrtc = (R, dw) = (R, (datal, witl)l∈{1,...,len}) indicates that the
regulator wants to trace the data set with len elements, where R denotes
the identifier of the regulator, and (datal, witl) denotes the l-th data and the
corresponding evidence for l ∈ {1, ..., len}.

• The message mrtc = (R, dw) = (R, (T,witT )) indicates that the regulator
wants to trace all data of the T period, where R denotes the identifier of the
regulator and witT denotes the corresponding evidence.

After receiving the above message mrtc, for each i ∈ Qfinal, Pi verifies the
correctness of the corresponding evidence in mrtc. If the verification is successful,
Pi signs dw in the message mrtc, and sends the signature to the regulator.

Every time a signature is received from a committee member, the regulator
verifies the signature and keeps it in the set sigall if the verification is successful.
Finally, if the size of sigall is greater than or equal to 2t − 1, the regulator
broadcasts the message mrtc = (R, dw, sigall) to the committee.

After receiving the above message mrtc = (R, dw, sigall), each committee
member in Qfinal first verifies each signature in the set sigall, and counts the
number of valid signature. If the number is greater than or equal to 2t − 1, the
committee members in Qfinal perform the following processing.

• If mrtc = (R, (T,witT ), sigall), the members in Qfinal construct the private
key skT

tra. For each i ∈ Qfinal, Pi sends the message mi = skT
tra to the

regulator.

• If mrtc = (R, (datal, witl)l∈{1,...,len}, sigall), for each i ∈ Qfinal, Pi processes
the ciphertext of each user’s chameleon hash public key in the data set, and
sends these processed ciphertexts (that is denoted by mi) to the regulator.
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Fig. 5. Committee member operations
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Fig. 6. Regulator operations

After receiving the message mi sent by each member Pi where i ∈ Qfinal,
the regulator chooses the value that is in the majority in these messages, and
achieves tracing according to the value.

6.2 Security of BTSOF

We briefly describe the security of the scheme. If the size of the signature set
sigall provided by the regulator to the committee is greater than or equal to
2t − 1 (the adversary controls at most t − 1 participants), this means that the
members that agree with the regulator tracing the data set are in the majority
on the committee. When the regulator does not trace all data of the T period,
for each i ∈ Qfinal, after generating (uik1, uik2, uik3), Pi uses non-interactive
zero-knowledge technique to guarantee that other committee members can ver-
ify the correctness of (uik1, uik2, uik3), but can not obtain any information of
(x1i, x2i, y1i, y2i, zi).
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Finally, the message mi = (uik12, uik13)k∈(1,...,|C|) sent by each member does
not contain any information about the private key skT

tra. Therefore, the regulator
only traces the data set that it sends. Moreover, because the honest members
are in the majority on the committee, the regulator can choose the value that is
in the majority in these messages to achieve tracing the data set.

7 Related Work

Blockchain research focuses primarily on privacy [4], efficiency [20], security [7],
and its applications in other fields [18]. However, research on traceable mecha-
nisms is limited, and is mainly concentrated in the cryptocurrencies.

Ateniese and Faonio [3] proposed a scheme for Bitcoin. In their scheme, a
user is certifiable if it obtains certified Bitcoin address from a trusted certificate
authority. The regulator can determine the certifiable users’ identities in the Bit-
coin transactions via the certificate authority. Garman, Green and Miers [9] con-
structed a new decentralized anonymous payment system based on Zerocash [4].
Their scheme achieves tracing by adding privacy preserving policy-enforcement
mechanisms.

Narula, Vasquez, and Virza [16] designed the first distributed ledger system,
which is called zkLedger. zkLedger can provide strong privacy protection, public
verifiability, and practical auditing. Their scheme is mainly used for auditing
digital asset transactions over some banks. The ledger exists in the form of a
table in zkLedger. Each user’s identity corresponds to each column in the table.
Therefore, the regulator can determine each user’s identity according to the
correspondence between each column and the identity of each user in the table.

Defrawy and Lampkins [6] proposed a proactively-private digital currency
(PDC) scheme. In their scheme, the ledger is kept by a group of ledger servers.
Each ledger server has two ledgers: a balance ledger and a transaction ledger. The
balance ledger contains a share of each user’s identity. Therefore, the regulator
can trace the users’ identities in transactions via these ledger servers. Wüst et
al. proposed PRCash [19], a blockchain currency. Their scheme can provide fast
payments, good level of user privacy and regulatory control at the same time.

Tianjun Ma et al. proposed SkyEye [14], a traceable scheme for blockchain.
Their scheme can be applied to a class of blockchain applications. SkyEye allows
the regulator to trace the users’ identities of the blockchain data. However, the
regulator can arbitrarily trace the users’ identities of the blockchain data without
any restrictions and oversight measures in SkyEye. We propose a blockchain
traceable scheme with oversight function based on SkyEye to limit the tracing
right of the regulator. The regulator must obtain the consent of the committee
to enable tracing.

8 Conclusion

In this paper, we propose BTSOF, a blockchain traceable scheme with oversight
function, based on SkyEye. In BTSOF, the regulator must obtain the consent of
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the committee to enable tracing. The regulator can trace one data, multiple data
or data in multiple period. Moreover, we construct a non-interactive verifiable
multi-secret sharing scheme (VMSS scheme) and leverage the VMSS scheme to
design a distributed multi-key generation (DMKG) protocol for the Cramer-
Shoup public key encryption scheme. The DMKG protocol is used in the design
of BTSOF.

Acknowledgments. This work was supported in part by the National Key R&D Pro-
gram of China (2017YFB0802500), Beijing Municipal Science and Technology Project
(No. Z191100007119007), and Shandong province major science and technology inno-
vation project (2019JZZY020129).

A Non-interactive Verifiable Multi-secret Sharing
Scheme

In this section, we describe the definitions, construction, and security of the
VMSS scheme.

A.1 Definitions

A VMSS scheme consists of the distribution phase, verification phase, and recov-
ery phase. In the distribution phase, the dealer distributes the secret set and
sends shares to the participants. In verification phase, the participants verify
the shares sent by the dealer. In recovery phase, the participants reconstruct the
secret set.

We assume that a dealer D distributes a secret set S = {s1, ..., sl} ∈ Zl
q

to n participants, P1, ..., Pn. Let V erpro denote the verification protocol that
runs on the dealer D and participants P1, ..., Pn. A VMSS scheme is secure with
threshold t if it satisfies the following two definitions (cf. [17]).

Definition 1. The V erpro must satisfy the following two requirements:

1. If the dealer and Pi follow V erpro for i ∈ {1, ..., n}, and the dealer follows the
distribution agreement, Pi accepts the dealer’s share with a probability of 1.

2. For all subsets U1, U2 of the set U = {1, ..., n} (|U1| = |U2| = t + 1), if all
participants in U1 and U2 have accepted their respective share sent by the
dealer in V erpro, the secret set Si that is reconstructed by Ui (i ∈ {0, 1})
satisfies S1 = S2.

Definition 2. For any A ⊆ {1, ..., n} (|A| <= t − l + 1) and any V iewA, the
VMSS protocol has:

P [D has a secret set S | V iewA] = P [D has a secret set S],

where S = {s1, ...sl} and V iewA denotes the view of the set A.
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A.2 Construction

We assume that the dealer D has a secret set S = {s1, ..., sl} ∈ Zl
q, and a trusted

authority has chosen g, h ∈ Zp, where h = gγ , γ ∈ Zq. The VMSS scheme is
described as following.

Distribution Phase. The dealer D samples β1, ..., βl ∈ Zq at random, and
broadcasts Ei = gsihβi for i = 1, ..., l. Then, Pi randomly chooses two polyno-
mials f(x), f ′(x) ∈ Zq[x] of degree t such that f(−k) = sk and f ′(−k) = βk for
k = 1, ..., l. Let f(x) = a0 + a1x + ... + atx

t and f ′(x) = b0 + b1x + ... + btx
t.

Then, D broadcasts cmj = gajhbj for j = 0, 1, ..., t. Finally, D computes
sti = f(i), shi = f ′(i) and sends (sti, shi) secretly to Pi for i = 1, ..., n.

Verification Phase. For each i ∈ {1, ..., n}, Pi first verifies Ek for k =
1, ...l and checks if Ek = gskhβk =

∏t
j=0 cm

(−k)j

j . If the check fails for an
index k, Pi declines (sti, shi); otherwise, Pi verifies (sti, shi) and checks if
gstihshi =

∏t
j=0 cmij

j . If the check fails, Pi declines (sti, shi); otherwise, Pi

accepts (sti, shi).

Recovery Phase. Any at least t+1 participants that have accepted their shares
can compute the polynomial f via the Lagrange interpolation formula, and then
reconstruct the secret set S.

A.3 Security

Theorem 2. If the dealer D can not compute γ, the VMSS scheme described
in Sect. A.2 is secure. That is, the VMSS scheme satisfies Definition 1 and
Definition 2.

Due to space constraints, we provide the proof of Theorem 2 in the full version
[13].

B Security Requirements of DMKG Protocol

The DMKG protocol is used to generate the public-private key pair
(pk, sk) in the Cramer-Shoup encryption scheme, where pk = (c1, c2, c3) =
(gx1

1 gx2
2 , gy1

1 gy2
2 , gz

1) and sk = (x1, x2, y1, y2, z). The DMKG protocol is secure
with threshold t if it satisfies the following requirements in the presence of the
adversary A that corrupts at most t − 1 participants (cf. [10]).

1. Correctness
(P1). Any subset of t + 1 shares provided by honest participants can deter-
mine the same private key sk = (x1, x2, y1, y2, z).
(P2). There is an effective algorithm that on input the participants’ n shares
and public messages generated by the DMKG protocol, outputs the unique
private key sk, even if at most t − 1 shares are generated by the corrupted
participants.
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(P3). All honest participants have the same public key pk = (c1, c2, c3) =
(gx1

1 gx2
2 , gy1

1 gy2
2 , gz

1), where (x1, x2, y1, y2, z) is determined by P1.
(P4). The values x1, x2, y1, y2, and z of the private key are uniformly dis-
tributed in Zq.

2. Secrecy
The adversary gets nothing about sk except for the pubic key pk. More for-
mally, for each probabilistic polynomial-time adversary A that can corrupt at
most t − 1 participants, there is a simulator O such that on input the public
key pk, the output distribution produced by the simulator O is indistinguish-
able from the adversary’s view in the real DMKG protocol that outputs the
public key pk.
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Abstract. Functional encryption (FE) gives the power to retain control
of sensitive information and is particularly suitable in several practical
real-world use cases. Using this primitive, anyone having a specific func-
tional decryption key (derived from some master secret key) could only
obtain the evaluation of an authorized function f over a message m,
given its encryption. For many scenarios, the data owner is always dif-
ferent from the functionality owner, such that a classical implementation
of functional encryption naturally implies an interactive key generation
protocol between an entity owning the function f and another one man-
aging the master secret key. We focus on this particular phase and con-
sider the case where the function needs to be secret.

In this paper, we introduce the new notion of blind functional encryp-
tion in which, during an interactive key generation protocol, the master
secret key owner does not learn anything about the function f . Our new
notion can be seen as a generalisation of the existing concepts of blind
IBE/ABE. After a deep study of this new property and its relation with
other security notions, we show how to obtain a generic blind FE from
any non-blind FE, using homomorphic encryption and zero-knowledge
proofs of knowledge. We finally illustrate such construction by giving an
efficient instantiation in the case of the inner product functionality.

1 Introduction

With the growth of online activities, multiple data (confidential emails, employ-
ment contracts, bank transactions, etc.) are transmitted and stored over differ-
ent external platforms. A ruthless competition between several actors is ongoing
in order to offer particular services, based on those data, thus answering posi-
tively to an increasing demand. For example, one could subscribe to a malware
detection service (or a spam filter) that aims to identify bad patterns over some
incoming messages and, at best, to reject them. In a different use case, a company
or an institution specialized in machine learning algorithms could find interest to
obtain some specific data from a data owner to improve its algorithms: individ-
uals with specific characteristics related to e.g., healthcare, or companies with
some specific kind of data for e.g., threats detection related to Intranet/Internet
browsing. At the same time, several concerns about the security and privacy
of manipulated data bring new challenges to those organizations in this con-
text. Encryption mechanism is one enabler to achieve the compliance and data
c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 183–201, 2020.
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security/privacy that is required in today’s security interest. However, conciliate
data confidentiality and functionality could be a hard task by using basic all-
or-nothing approach of traditional encryption schemes, where no computation
are possible, except by decrypting the data itself, then decreasing the obtained
security. From a higher perspective, we consider a scenario with an entity that
try to get in clear a function over some encrypted data.

In recent years, Fully Homomorphic Encryption (FHE) [20] and Functional
Encryption (FE) [8] arise as a general and very promising framework that gives
the flexibility and the possibility to retain control of leaked information. Where
FHE permits to delegate some computation over sensitive data to third parties,
FE gives the power from an encryption of a message m and functional decryption
key skf for a certain function f , to obtain in clear the evaluation f(m) and no
additional information.

Motivation. In a FE scheme, the function decryption key skf is derived from
a master secret key msk and the function f . The master key owner is then
very powerful and (even if mainly separate) is most of the time close to the data
owner. It follows that in most use cases, the functional key generation protocol is
interactive between the owner managing the master secret key msk and the owner
of the algorithm knowing the function. While the natural approach to obtain skf

is to send f to the master secret key’s owner, we give amongst other concerns
interest to a situation when the evaluation function f could be sensitive. In the
malware detection example, it corresponds to the market compliance defined in
e.g. [13] which shows the sensitivity of the rules given by the security editor.
In the data analytics scenario, the underlying machine learning algorithm to
better detect a specific disease or a malware is sometimes linked to some very
specific and rare know-how. Hence, it could be relevant and crucial to blind the
underlying structure to the master secret key owner.

Our Contributions. More precisely, we provide in this paper the following
three main contributions.

Contribution 1: General Definition of Blind Interactive FE. For real-life appli-
cations, the functional key extraction is interactive. The authority AUT that
controls the msk must get the function f in some way. This lead us to consider
in this work an interactive functional key generation phase. The definition of
IFE is then adapted and similar to the one of FE (i.e we maintain Setup,Enc,Dec
and the correctness condition), except that we replace the KeyGen algorithm by
an IKeyGen two-party protocol between AUT and U . The result of the inter-
action is a functional key skf for U and some output defined by the view of
AUT . In addition, we provide some adapted security definition from FE to the
IFE case. In particular, the message-privacy (MP) property asks that no addi-
tional information about m is produced by the system except of f(m), while
the function-privacy (FP) asks that the functional key does not leak additional
information about f . We show how to adapt these existing security definitions
from FE to the IFE case. Then, our new notion of blindness is inspired by the
notions of blind signatures [26] or blind identity-based encryption (IBE) [11,24].
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Intuitively, it means that a curious AUT � cannot link a functional key to an
interaction it had with an honest user U . Even if it looks related to the FP
security, we show in the sequel that our notion of blindness is different (and
complementary) from FP in the general case.

Contribution 2: Generic Construction of Blind IFE from any FE. A possible app-
roach to derive generically an interactive FE would be to use a secure two-party
computation of the IKeyGen protocol. We insist that such an approach does not
achieve the blindness property we are interested in. Indeed, although the author-
ity does not learn the user’s input with 2PC, it could make the functional keys
output by two users in the blindness security game depend on the function in
different ways. This is possible by using for example two different master keys.
Here is an overview of the construction (see Sect. 3): Our approach starts from
an existing FE scheme for a class of function F and upgrades it to a blind IFE
scheme from the same class F , by only modifying the KeyGen algorithm. U starts
by encrypting an encoded version of some function f with a Fully Homomorphic
scheme FHE under her own key and sends the ciphertext Cf to AUT . With msk,
the party AUT homomorphically evaluates the circuit KeyGen(msk, ·) using the
FHE.Eval algorithm on Cf , then sends back a ciphertext Cskf

of the correspond-
ing functional key skf . U can now decrypt with her (FHE) secret key the received
ciphertext and recover skf . Thereby, the FHE blinds to AUT both the function f
and the key skf . However, this basic protocol is insecure since each entity could
cheat on its input, hence we provide some modifications using Zero-Knowledge
Proofs of Knowledge (ZKPoK) mechanisms to ensure correct behaviour and to
prevent from getting some unauthorized functions. With this considerations, we
are able to obtain a feasibility result on the construction of blind IFE scheme.

Contribution 3: Specific Construction for IPFE. Many applications, such as data
mining or statistical computation need as subroutines inner product evaluation.
That is why several [2,5,17] IPFE constructions have recently been proposed.
Most of known schemes extract functional keys of the same shape: (y, 〈s, y〉)
where s, y ∈ Z

�
p for a (large) prime p, where 〈x, y〉 :=

∑�
i=1 xi · yi is the inner

product of x ∈ R� and y ∈ R� for some ring R. Our contribution is to give an
efficient two party protocol computing these functional keys with the blindness
property, and which can be used in the constructions whose functional key is
an inner product. Hereafter, we modify the construction from [22] by using the
Castagnos-Laguillaumie (CL) linear homomorphic encryption from [16] since we
need inner product computed in Zp. We can then directly embed this protocol
into secure DDH-based schemes like those of [2,5] or in the CL-based protocol
from [17]. We develop in Sect. 4 an IKeyGen protocol that implements the KeyGen
algorithm in order to build a blind IPFE scheme.

Related Work and Discussion. The notion of interactive key generation is
considered in the case of Accountable-Authority Identity-Based Encryption (IBE)
in [23]. The first consideration of blindness for IBE appears in the work of Green
and Hohenberger in [24] followed by of Camenisch et al. [11] where it was used
as a building block for respectively a simulatable oblivious transfer and a public
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key encryption with oblivious keyword search. In [28], an adaptation is proposed
for the case of the Attribute-Based Encryption (ABE) primitive. More recently,
[19] consider a variant of blind IBE to resolve the key escrow problem. As far as
we know, no such study has been done for the more general case of functional
encryption. Controlled functional encryption [27] is also a variant of FE with
an interactive behaviour. While similar to our general approach of hiding the
function to the authority, the model is different from ours.1

Private function evaluation (PFE) [1] is closely related to our problem. In
PFE, a party P1 holds an input x while another party P2 holds a circuit Cg

describing a function g; the goal is for one (or both) to learn the result g(x).
Our blind IFE could be seen as a PFE with the additional property of blind-
ness, which is not automatically guaranteed by a generic PFE. Eventually, the
security requirements could be defined in terms of simulatability which infor-
mally enable to design an ideal functionality that captures previous properties
(message-privacy, function-privacy or blindness) and consider interdependent
executions with other protocols while preserving the main security characteris-
tics. However, we took the classical approach to provide a natural generalization
of the blindness property, as well as the classical security notions for FE (mes-
sage/function privacy) in the presence of an interactive key generation protocol.
This has the benefits to only adapt existing definition by adding some interactive
oracles, and avoid eventually some subtle negative results, as in the context of
simulation-based blind signature [3]. In addition, our solution encompasses the
existing definitions for IBE/ABE cases [11,24,25,28] presented in the literature.

2 Blind Interactive Functional Encryption

Based on the known definitions of FE [8], we formally define our new notion
of blind interactive functional encryption. Our goal is twofold. We first want to
capture the situation of a user holding a function f and asking an authority for
a corresponding functional key skf during an interactive protocol. We then con-
sider the case where the user wants to protect the function f from the authority.
In the sequel, we introduce the notion of interactive FE with the new security
notion of blindness. In addition, we discuss some related security properties.

2.1 Syntactic Definitions for Interactive FE

We set for the rest of the paper two specific parties: an authority denoted by
AUT and a user denoted by U . For a λ ∈ N, fix an arbitrary set of functions F
represented by a poly-sized family of circuits {Fλ}λ∈N and a message space M ,
where each m ∈ M ⊆ {0, 1}∗ is represented by a string input of any f ∈ F . A
public key interactive functional encryption is defined as follows.
1 There are two parties in our model where the master secret key owner is the only

party to provide functional keys. In [27], it is only possible to produce functional keys
that depends on the ciphertext and is only used once, while we consider multiple
users, functional keys and ciphertexts.
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Definition 1 (Public key IFE). Let λ ∈ N. An interactive functional encryp-
tion scheme for F consists of a tuple IFE = (Setup,KeyGen,Enc,Dec) where,

– Setup(1λ) is a PPT algorithm that takes as input a security parameter 1λ and
outputs a master secret key msk and a master public key mpk.

– IKeyGen(AUT (msk),U(mpk, f)) is a 2-party interactive protocol between an
authority AUT with input the master secret key msk and a user U with inputs
a master public key mpk and a function f ∈ F . The output of this protocol
is, on the authority’s side Output(AUT ) and on the user’s side, skf .

– Enc(mpk,m) is a PPT algorithm which takes as input the master public key
mpk and a message m ∈ M , and returns a ciphertext c.

– Dec(mpk, skf , c) is a PPT algorithm which takes as input a master public key
mpk, a functional key skf and a ciphertext c and outputs a string z.

For correctness, for all f ∈ F and m ∈ M , given (mpk,msk) ← Setup(1λ),
skf resulting from IKeyGen protocol between (honest) AUT and U and c ←
Enc(mpk,m), we require Pr

[
Dec(mpk, skf , c) = f(m)

]
≥ 1 − negl(λ).

The above definition can easily be adapted to the private-key setting. Notice
that functional encryption denoted by FE = (Setup,KeyGen,Enc,Dec) falls as
a particular case, i.e. there is a non-interactive KeyGen algorithm executed by
the owner of msk (AUT in our context) which outputs a functional key skf . In
addition, our generic conversion will start from a FE scheme with a determined
KeyGen algorithm. Since it takes (the description of) f and msk as inputs, it will
be necessary to specify the size of the circuit that computes the function f in
addition to the size and depth of the circuit computing KeyGen.

A Trivial Example. In the following, we present a simple IFE that one can
obtain from any FE. Given FE = (Setup,KeyGen,Enc,Dec) following Defini-
tion 1, it is easy to define a trivial interactive IFE scheme as Trivial.IFE :=
(Setup,Trivial.IKeyGen,Enc,Dec) where Trivial.IKeyGen protocol is defined in Fig.
1. Here, the user simply asks the msk owner’s (i.e AUT ) to generate the func-
tional key skf . In particular, this protocol corresponds to the most common
implementation for real-life use-cases of FE as discussed in the introduction.

While it is simple, it is interesting to notice that in Trivial.IFE, the user does
not learn any information about msk. In particular, the intuition is to conjecture
that the resulted IFE scheme will inherit the message-privacy of the FE scheme.
We prove this fact in Proposition 2, but this observation also gives the intuition
of the notion of the leak-freeness property that we will define in Sect. 2.3. On the
other hand, blindness is not guaranteed by construction since AUT learns f .

Validity of skf . One issue of this trivial example is that the authority may have
sent to the user a fake key skf . Thus, the latter should have a way to verify its
validity. One solution was given for interactive blind IBE [11,24]. They propose
to encrypt a polynomial number of random messages with id, then try to decrypt
using the obtained identity-related key. A first idea can be to proceed similarly,
which works quite well in the public key setting and in the case of (indexed)
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AUT (msk,mpk) U(mpk, f)
f←−−−−−−−−−−−

skf ← KeyGen(msk, f)
skf−−−−−−−−−−−→

Output (f, skf ) Output skf

Fig. 1. Trivial.IKeyGen

functions of the form of fk(m, y) := m ⇐⇒ R(k, y) = 1 where R is a publicly
known relation. However, in the general case, this method may obviously not
convince a user of the validity of the skf , and is definitely not possible in the
private key setting. We then propose to make use of a Zero-Knowledge Proof
of Knowledge ZKPoK, generated by the authority to prove that it has correctly
computed skf , as π ← ZKPoK{msk : skf = KeyGen(msk, f)}. We stress that
considering the validity of skf is an additional requirement and we can have this
property using another approach. However, when dealing with blindness, having
ZKPoK could help in order to force AUT to assure that skf is well formed.

2.2 High-Level View of Security Properties

An interactive FE must first verify a message-privacy property. This will be
discussed in Sect. 2.3. Then, we consider our new notion of blindness and discuss
other properties. We first analyse what the authority could learn.

Output of the Authority. The fact that we want to hide the function to the
authority is at first related to the authority’s view of the interactive protocol.
Indeed, intuitively, the best case (hiding f and skf ) would be an authority which
does not learn anything more that what it already knew before the interaction.
Recall that the authority, by definition, can deduce Output(AUT ) from its own
view ViewAUT (msk, f) := (msk, r;m1, . . . ,mt), where r some random elements,
and mj the jth message that it received from some interaction.

1. Considering f in the output. To ensure a notion of blindness of the key
generation algorithm, the authority cannot obtain from the received mes-
sages mj , or more generally, from ViewAUT (msk, f), any information about
the user’s choice of the function. A standard solution, as in the context of blind
signature [26], is to ask the authority to link a functional key skf generated
during an interaction to the corresponding function f . Informally, the adver-
sary runs two random sequential executions of the protocol with two users
and is asked to link the produced functional keys to each user. We will call
this notion blindness which is, to the best of our knowledge new in the general
context of functional encryption. We treat this security notion in Sect. 2.4.
In particular, having f , or some information about f during one execution
(i.e is one of the mj), as for the construction of Trivial.IFE (see Example 2.1),
gives a way to find the user’s choice, thereby breaking blindness.
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2. Considering skf in the output. The functional key skf is used to decrypt
ciphertexts cm of some messages m in order to obtain values f(m). For the
authority, which is in possession of msk, it is possible to encrypt any message
m of its choice. If skf can be deduced from ViewAUT , then the authority
can learn arbitrary information about f (every f(m) of its choice). This last
observation remains true even if we start from a function-private FE where
skf have some hiding property and does not leak any information about the
function f . We deduce that having skf in the authority’s view breaks the
blindness requirement of the last paragraph since it easy to distinguish two
sequential interactions. Because of this access to an unlimited evaluation of
the function f , we remarked that the same problem arises in the context of
function-private (FP) public key functional encryption [7,10] where hiding
information about f in skf gives the same restrictions. We give a formal
treatment of function-privacy for IFE in the full version.

Finally, we provide in Sect. 2.5 a discussion about possible relations between FP
and blindness where we prove that there are in fact two separate notions.

2.3 Message-Privacy for Interactive FE

Adaptation from FE. The basic security consideration for functional encryp-
tion is related to the standard notion of semantic security in presence of dif-
ferent functional keys [8]. As it is usually done, we consider the adaptive form
of message-privacy with multiple messages and multiple functional keys. Our
notion of message privacy is a direct adaptation of this classical notion when
we have to consider interactive oracles. We refer to Definition 8 in the appendix
for the formal definition. Next, consider the IFE with the Trivial.IKeyGen from
Example 2.1. The user sends f and the authority generates skf using msk. The
following proposition is immediate and the proof is given in the full version.

Proposition 2. The Trivial.IFE of Example 2.1 is message-private if the under-
lying FE is message-private.

There are two different ways to prove that an interactive FE is message-private.
Obviously, the direct way which shows that a protocol fulfils the Definition 8.
Another possibility relies on the notion of leak-freeness that we will present next.

Leak-Freeness. Recall that in Trivial.IFE of Example 2.1, the curious user does
not learn any information about the master secret key msk that could help her
to break the MP security game of the FE scheme. Regarding blindness, we note
however that the user has to hide to the authority its inputs, but could cause the
protocol to leak additional information about msk. In particular, when building
a message-private IFE, one could hope to only get the information that could be
obtained from a natural Trivial.IFE. Informally, we have to compare the different
information that could be obtained from the proposed interactive key generation
and the trivial implementation of FE, i.e the Trivial.IFE.
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Let FE = (Setup,KeyGen,Enc,Dec) be a message-private scheme. Inspired by
the work done for IBE [11,24], we generalize the notion of leak-freeness for func-
tional encryption. Such notion aims at providing a condition to preserve from
learning any additional informations, due to the interactive key generation, that
could break the message-privacy. Informally, it makes possible to prove that an
IFE.IKeyGen protocol executed with an honest authority does not leak more infor-
mation than the Trivial.IKeyGen from Example 2.1, with the same honest author-
ity. The main intuition is that such notion can then be used to prove that the
resulting interactive functional encryption IFE = (Setup, IKeyGen,Enc,Dec) is
also message-private. The formal definition of leak-freeness is given in Appendix
B. The motivation of this notion is given by the following proposition.

Proposition 3. Let FE = (Setup,Enc,KeyGen,Dec) be a message-private secure
FE scheme. Let IFE := (Setup,Enc, IKeyGen,Dec). If IFE.IKeyGen is leak-free with
respect to KeyGen, then IFE is message-private.

Due the lack of space, the proof of this proposition is not provided here but it
could be seen as a generalization of the result in the IBE case presented in [24].
This proposition is used to prove the security of our generic construction.

2.4 Blindness for Interactive FE

In this section we formally define our new blindness property. Intuitively, fol-
lowing the usual definition for blind signatures [26], blindness means that the
authority cannot link a functional key to an interaction it had with an honest
user. This is clearly related to the information that the authority has at the end
of the key generation protocol, namely Output(AUT ).

It is possible to define a unique notion of blindness independently for both
the private and public key settings. This situation is simulated by an adversary
who can choose maliciously the parameters but follows the protocol. His aim
is to decide which of two chosen functions f0, f1 has been used to generate the
functional keys skf0 and skf1 in two sequential executions with an honest user
U . We call this notion blindness and corresponds to a variant of the selective-
failure blindness security considered in [11,24] for IBE, which adds the following
property: the authority cannot cause the protocol to fail in a manner dependent
on the user’s choice. This additional security requirement was used in order to
build oblivious transfer [24] or searchable encryption [11]. Here we consider basic
definitions and leave extensions for further applications.

We introduce the interactive oracle IKeyGen(·,O(mpk, f)) in which the adver-
sary plays the role of the authority and only obtains his own output. In the game
below, we write AIKeyGen(1)(·,O(f0))/IKeyGen

(1)(·,O(f1)), which mean that A can query
each oracle only once (hence the notation IKeyGen(1)) and that the two oracles
can be invoked in an arbitrary order.

Definition 4 (Blindness). Let b ∈ {0, 1}. An IFE is blind, if every adversary
A has a negligible advantage |Pr[b′ = b] − 1/2| in the following experiment
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1. (mpk, f0, f1, stfind) ← ASetup(·)(find, 1λ).
2. stissue ← AIKeyGen(1)(·,O(mpk,fb))/IKeyGen

(1)(·,O(mpk,f1−b))(issue, stfind), the step
produces at the end of the executions local outputs (possibly undefined ⊥) skfb

and skf1−b
respectively.

3. If skf0 = ⊥ or skf1 = ⊥, set (skf0 , skf1) = (⊥,⊥).
4. b′ ← A(guess, skf0 , skf1 , stissue).

This definition can easily be adapted to the private key setting.

Remark. It is important to note, as in the context of blind signatures, that
any information about skf that can be deduced during the interaction from the
Output(AUT ) leads our definition to fail. Indeed, for example if A gets skf in the
end of the interaction, it will obviously win the game by just interacting with one
of the two oracles. In fact, any left-or-right definition would fail, since during the
interaction there is always a way to distinguish between two keys/interactions.
This difficulty comes for the inherent capabilities of the FE scheme. From the
encryption of a certain message m such that f0(m) �= f1(m) and an interaction
giving skfb

at the end of one of the two interactions, it is always possible to
decrypt and get fb(m). Since f0 and f1 are chosen by A, it seems clear that
the blindness implies in particular that the malicious authority does not get
information about skf and f during (or in the end of) the interaction.

2.5 On the Relationship Between Function-Privacy and Blindness

Function-Privacy for (I)FE. Several other security properties have been con-
sidered for FE in the literature and we will not review all of them. However, we
could generalize the known [4,7,10] notion of function-privacy which informally
states that a functional key skf does not give any additional information about
the underlying function f , except from what is given by the evaluations over
some data being encrypted. We give in the full version a generalization of it in
the context of IFE where informally, interactive oracles are added in order to con-
sider potential leakage during the interaction. Since our aim is to present a blind
IFE scheme, we only briefly highlight the differences between theses notions.

Depending on the public or private key setting and the presence or not of skf

in the authority’s output, we obtain several (dis)connections between function-
privacy and blindness security properties. Informally, this is due to the nature
of the considered options. Indeed, the FP security asks any adversary which
does not have necessarily an access to an encryption oracle, to obtain unwanted
information about the function f from skf and eventually the interaction. The
blindness security game concerns an authority with the capability of encrypting
arbitrary messages using the master key msk. We now give our main theorem
which, in a nutshell, says that these two properties are distinct, and then com-
plementary. In the full version of this paper, we provide a detailed proof of this
theorem by providing, for each of the resulted six cases a separating construction.

Theorem 5 Blindness and Function-Privacy properties are mutually separated
for both private-key and public-key IFE.
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– IFE.Setup(1λ): Output (mpk,msk) ← FE.Setup(1λ).
– IFE.IKeyGen(AUT (msk), U(mpk, f)) is described in Fig. 3
– IFE.Enc = FE.Enc
– IFE.Dec = FE.Dec

Fig. 2. Our generic blind IFE

AUT (msk,mpk) U(mpk, f)
Select random R

(pk, sk) ← FHE.Setup(1λ)
ctf ← FHE.Enc(pk, f ;R)

pk, ctf←−−−−−−−−−−−−−−−−−−−
πU ← ZKPoK(sk, f, R) : {f ∈ F

∧ (sk, pk) = FHE.Setup(1λ)

∧ ctf = FHE.Enc(pk, f ;R)}
←−−−−−−−−−−−−−−−−−−→

If Verify(πU ) = 0 aborts
Select random R′, R′′

ctskf
← FHE.Eval(pk,KGmsk,R′ , ctf ;R′′)

with KGmsk,R′ := FE.KeyGen(·,msk;R′)
ctskf−−−−−−−−−−−−−−−−−−−→

πAUT ← ZKPoK(msk, R
′
, R

′′) : {
ctskf

= FHE.Eval(pk,KGmsk,R′ , ctf ;R
′′)}

←−−−−−−−−−−−−−−−−−−→
If Verify(πAUT ) = 0 aborts
Output skf ← FHE.Dec(sk, ctskf

)

Fig. 3. Our interactive key generation IFE.IKeyGen

3 Generic Construction of Blind IFE from Fully
Homomorphic Encryption

We provide in this section a generic construction of a message-private blind
interactive functional encryption from any FE, where AUT does not obtain any
information at the end of the interactive key generation. In addition, our concern
is to not modify the Setup,Enc,Dec algorithms but only the KeyGen algorithm.

3.1 Our Generic Construction

Let λ > 0 be a security parameter and consider a family of functions F =
{Fn,λ}n=n(λ) whose input size n(λ) is polynomial in λ. Suppose that all functions
f ∈ F can be encoded as a p(λ)-bit string (for a polynomial p). Consider a
functional encryption scheme FE = (Setup,Enc,KeyGen,Dec) for this family F .
We suppose that FE.KeyGen is a randomized algorithm that is described by a
circuit of logarithmic depth d(λ). Consider FHE = (Setup,Enc,Dec,Eval) to be a
CPA-secure Fully Homomorphic Encryption scheme, where the input encryption
algorithm is a bit string with size at least p(λ) and supports evaluation of circuits
of depth at least d(λ). Our interactive blind functional encryption for the class
of function F is described in Fig. 2 and 3. Note that encryption and decryption
are exactly those of the original FE.

Correctness. By correctness of the FHE scheme, the user U obtains after decryp-
tion skf = KGmsk,R′(f) := FE.KeyGen(msk, f ;R′) for certain random R′.
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3.2 Security of Our Construction

Roughly speaking, the CPA-secure FHE will insure blindness since two inter-
action transcripts are indistinguishable and the ZKPoK will guarantee that no
additional information is leaked from the interaction. Additionally, we will need a
notion of weak-function indistinguishablity which informally says that any adver-
sary (even if it knows the secret key of the FHE) cannot produce any FHE cipher-
text cty, for input y, two functions h0, h1 with h0(y) = h1(y) such that it could
distinguish between FHE.Eval(pk, h0, cty) and FHE.Eval(pk, h1, cty) (we refer to
[6] and the full version of this paper for a precise definition).

Theorem 6. Consider a message private FE in addition to a weak-function
indistinguishable CPA-secure FHE scheme. If the proofs πU and πAUT are
ZKPoK, then the IFE described in Fig. 2 is message-private and blind.

Due to space limitation, we only sketch the main ideas of the MP security proof
and provide a complete proof of blindness.

Sketched Proof of MP. Similarly to the proof [24] for the IBE case, we first
prove that the IFE.KeyGen protocol is leak-free (see Sect. 3 and Definition B)
with respect to FE.KeyGen and by Proposition 3, it implies the IFE is message-
private. More precisely, we describe a simulator (which does not have msk) that
makes use of the extractability of zero-knowledge proofs of knowledge to obtain
the function f . Then, having access to some oracle Trivial.IKeyGen providing skf ,
it could simulate a valid interactive IFE.IKeyGen protocol with any adversary by
using (i) the homomorphic property of the FHE to generate the ciphertexts and
(by evaluating the constant circuit equal to skf ) (ii) its rewinding capability
together with the zero-knowledge property of ZKPoK to simulate the proofs.
Remark that in the simulation of the ciphertexts, the adversary cannot notice
the difference thanks to the weak-function indistinguishability notion. Finally, we
deduce that the IFE.IKeyGen is leak-free w.r.t FE.KeyGen and the result follows.

Proof of Blindness. In the proof of blindness, we have to show that the (sequen-
tially generated) messages exchanged between a malicious authority AUT and
two honest users are completely independent from the functions. We prove it
via a sequence of hybrid games. By using the extractability of ZKPoK, we first
obtain msk from the interaction with the adversary. This allows us to replace the
generation of the functional secret key by the non-interactive version, in a non-
detectable way. We finally reduce our problem to the one of the CPA-security
of the FHE scheme. In the final game, the malicious authority obtains messages
that are independent from the functions of its choice, which imply blindness.

Suppose we have an adversary A attacking the blindness game. Recall that
it chooses the public parameters (mpk,msk) and two functions f0 and f1, then
runs two sequential interactions with honest user U(mpk, fb) and U(mpk, f1−b)
respectively where b is a random bit. At the end of the interactions, A receives
the two functional keys (skf0 , skf1) (or (⊥,⊥)) corresponding to (f0, f1). The
goal for A is to find the bit b with non-negligible probability. We note b̄ := 1− b.
We prove the blindness property via a sequence of games.



194 S. Canard et al.

Game 0
1. (mpk, f0, f1) ← ASetup(·)(1λ)
2. (pkb, skb) ← FHE.Setup(1λ) (pkb̄, skb̄) ← FHE.Setup(1λ)
3. ctfb ← FHE.Enc(pkb, fb; Rb) ctfb̄

← FHE.Enc(pkb̄, fb̄; Rb̄)
4. wb ← (skb, fb, Rb) wb̄ ← (skb̄, fb̄, Rb̄)
5. mb := (pkb, ctfb) mb̄ := (pkb̄, ctfb̄

)
6. πb ← ZKPoK(O(wb), A(mb)) πb̄ ← ZKPoK(O(wb̄), A(mb̄))
7. (ct′

b, ct
′̄
b) ← A((πb, mb), (πb̄, mb̄))

8. π′
b ← ZKPoK(A(w′

b), O(ct′
b)) π′̄

b ← ZKPoK(A(w′̄
b), O(ct′̄

b))
9. If Verify(πb) = 1 If Verify(πb̄) = 1
10. skfb ← FHE.Dec(ct′

b, skb) else skfb ←⊥ skfb̄
← FHE.Dec(ct′̄

b, skb̄) else skfb̄
←⊥

11. b′ ← A(skf0 , skf1)
12. returns 1 iff b′ = b

Fig. 4. Blindness experiment.

Game 0. This is the original game as in Definition 4. We give more details about
each interaction in Fig. 4. We will describe the interaction of the adversary with
each oracle user Ub and Ub̄. Lines 1, 7, 11–12 describe the behaviour of A during
the blindness game and the remaining lines the user’s behaviour.

Game 1. We modify Game 0 in the following way. In this game, because there
are two possible ZKPoK (see line 8), we know that there exists an extractor
Extb (resp. Extb̄) that can extract the witnesses from π′

b (resp. π′
b̄
) and obtain

w∗
b = (msk∗

b , R
′
b, R

′′
b ) for each bit b ∈ {0, 1}. We add the following quantities for

each user in line 8: w∗
b := (msk∗

b , R
′
b, R

′′
b ) and w∗

b̄
:= (msk∗

b̄ , R
′
b̄
, R

′′
b̄
). The match-

ing condition prevents the adversary to use two different master secret keys.
Thanks to the extractability condition, the rewinding techniques of the ZKPoK,
it is possible to efficiently extract the corresponding witness, and for the adver-
sary, the success probability remains the same (except with negl. probability).
Assuming that the π′ are proofs of knowledge, Game 0 is then indistinguishable
from Game 1.

Game 2. We modify the Game 1 in the following way. If the master secret keys
do not match, i.e msk∗

b = msk∗
b̄ , the user oracles in the two interactions abort

and we set (skf0 , skf1) = (⊥,⊥). Otherwise, we set msk := msk∗
b and instead of

decrypting ct′b (or ct′
b̄
), as in line 10, we exploit the extracted value msk, R

′
b and

the FE.KeyGen(msk, ·; ·) algorithm on input (fb, R
′
b) (resp. (fb̄, R

′
b̄
)) to obtain

valid functional key(s). We replace line 10. by the new line (depending on b)
skfb

← FE.KeyGen(msk, fb;R′
b) and skfb̄

← FE.KeyGen(msk, fb̄;R′
b̄
). If the proof

does not fail the oracles return (locally) skfb
(and skfb̄

). Otherwise, it returns
(skf0 , skf1) = (⊥,⊥). Finally, we give as in line 11. (skf0 , skf1) to A. Thanks to
the correctness of FHE and FE, Game 1 is indistinguishable from Game 2.

Game 3. We change the behaviour of user U1 and encrypt a randomly chosen
function g1 ∈ F with size description equal to f1 with a modified proof of π1

in the first message and π′
1 in the second one. In more details, there exists a

zero-knowledge simulator Sim1 for π1 that can simulate the proof of knowledge
without knowing the underlying witness. We replace the term in line 3. for
U1 with ctg1,1 ← FHE.Enc(pk1, g1;R1), where R1 is a random element. Next,
we simulate the corresponding term in line 6. with π∗

1 ← Sim1(π1). In addition,
there exists a simulator Sim′

1 for π′
1 such that the line 8 becomes π∗∗

1 ← Sim′
1(π

′
1).
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Now suppose that there is a distinguisher between Game 2 and Game 3 with
non-negligible advantage, then we show how to build an adversary B that breaks
the CPA security of the FHE scheme. B has the following behaviour. B generates
a public pk0 using FHE.Setup(1λ). It receives from the challenger of the CPA
secure FHE scheme another public key pk1. It runs A in order to get f0, f1,mpk
and uses them for the CPA security game by choosing the messages (g1, f1). It
forms ct0 := FHE.Enc(pk0, f0;R0) (an encryption under his own key). Next, it
receives an encryption ct�1 of one of the two functions {g1, f1} under pk1 from the
challenger. It can now use A in the following way by interacting as a legitimate
user. It simulates the first messages of U0 (line 5) with (m0 := (pk0, ctf0)) and
U1 with (m1 := (pk1, ct�1)). Up to this point, it could use the zero knowledge
property and simulate the corresponding proofs π∗

1 and π∗∗
1 . Finally, B returns

the same output of A (the same bit).
Now, taking a step back to the CPA security game, if ct�1 is an encryption of

f1, then this situation corresponds to Game 2 experiment. If ct�1 is an encryption
of g1 then it corresponds to Game 3 by construction. Unless the proofs are not
zero-knowledge, the advantage of B winning the CPA security game of the FHE
scheme is the same as the advantage of A in distinguishing between Game 2 and
Game 3. We deduce that Game 2 is indistinguishable from Game 3, assuming
that the FHE scheme is CPA-secure and the proofs π, π′ are zero-knowledge.
Game 4. We change the behaviour of U0 as in the previous Game 3 by encrypting
a randomly chosen function g0 ∈ F with size description equal to f0 with a
modified proof π0 in the first message and π′

0 in the second one. In more details,
there exists a zero-knowledge simulator Sim0 for π0 that can simulate the proofs
without knowing the underlying witness. We replace the corresponding term in
line 3 for U0 with ctg0,0 ← FHE.Enc(pk0, g0;R0), where R0 is a random element.
Next, we simulate the corresponding term in line 6. with π∗

0 ← Sim0(π0) In
addition, there exists a simulator Sim′

0 for π′
0 such that the line 8 becomes

π∗∗
0 ← Sim′

0(π
′
0). We can then proceed as for the transition between Game 2 and

Game 3 to prove that Game 3 is indistinguishable from Game 4, assuming that
the FHE scheme is CPA-secure and the proofs π, π′ are zero-knowledge.

Putting all previous results together, we finally conclude that Game 0 is
indistinguishable from Game 4. In Game 4, the view of A is independent of b: the
functional keys skfb

, skfb̄
do not depend on the values sent by A by construction.

Thus, the probability of guessing the bit b is exactly 1/2. Hence, we conclude
that this scheme satisfies the blindness property. �

4 Efficient Blind Interactive Inner Product FE

We want to stress here that for specific functionalities, our approach can lead to
efficient constructions. We propose in this section a blind functional encryption
for inner product, which is inspired by our generic construction. For such a
functionality, we only need a linearly homomorphic encryption scheme, and for
efficiency reasons, we chose to use CL scheme [16]. For most of the known IPFE
scheme [2,5], the functional key reduce to the computation of an inner product.
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The Setup algorithm consists of a description of a cyclic group G of prime order
p > 2λ with generator g ← G. For each i ∈ {1, . . . , �}, it samples si ← Zp and

compute hi = gsi . Finally, define msk := (si)�
i=1 and mpk :=

(
G, g, {hi}�

i=1

)
.

Note that the prime p is set for the CL scheme according to the IPFE. This is
possible thanks to the flexibility of the CL key generation which is presented in
Appendix C, and we refer to this appendix for notations.

Description of Our Scheme. The interactive key generation IKeyGen(AUT
(s ∈ Z

�
p),U(mpk, y ∈ Z

�
p)), consisting of the two-party private inner product

computation is as follows, which is an adaptation of [22].

– The user U generates a pair of keys pk = gx
p and sk = x for the CL scheme over

the message space Zp. Then, it encrypts each coordinate yi for i ∈ {0, . . . , �}
as ci = (c1,i, c2,i) = (gri

p , fyihri), sends pk, cy to AUT and performs a ZKPoK
πU such that {h = gx

p ∧ c1,i = gri
p ∧ c2,i = fyihri fori ∈ {1, . . . , �}}.

– If the proof fails, AUT aborts. Otherwise, it homomorphically computes
csky

:= (c1,sky
, c2,sky

) ←−
((∏�

i=1 csi
1,i

)
gr′

p ,
(∏�

i=1 csi
2,i

)
hr′

)
for some ran-

dom r′ that it sends to U . Then, it performs a proof πAUT that: {{gsi =
hi}�

i=1 ∧ csky
=

((∏�
i=1 csi

1,i

)
gr′

,
(∏�

i=1 csi
2,i

)
hr′

)
}.

– If πAUT fails U aborts. It decrypts csky
and gets sky := (y, 〈s, y〉) ∈ Z

�
p × Zp.

Our blindness notion is new in the context of FE, so it is difficult to find a
point of comparison with existing classical 2PC protocols for computing inner-
product, since they were not designed for this context. However, we could com-
pare with other linearly homomorphic schemes. The additive variant of ElGamal
would imply to compute a final discrete log, which is not possible for large p. The
ZKPoK are proofs for classical discrete logarithm-based expressions. The main
subtleties concern the CL part since it uses a group of unknown order, which can
be obtained from class group of ideals of orders of imaginary quadratic fields.
As in [14], the solution is to use repeated GPS proofs [21] with binary challenges
to get special soundness. More efficient techniques have been recently proposed
in [15]. For the proofs that concern the group G coming from the IPFE setup,
a standard Schnorr proof is sufficient. Using Paillier encryption instead of CL
prevents the necessity to repeat a GPS proof with binary challenge. It however
necessitates to add (i) a proof that the Paillier modulus n has truly been com-
puted as the multiplication of two primes p and q [12], (ii) a proof of knowledge
of a plaintext y and its randomness r composing the given Paillier ciphertext
c = (1 + n)yrn (mod n2), which can be done using techniques given in [18] and
(iii) a proof that y < p in a group of composite order [9]. We argue that this
implies a heavier global proof than what we propose using CL encryption.

Security and Efficiency Analysis of Our Inner Product IFE. The fol-
lowing result is a corollary of Theorem 6.

Theorem 7. The scheme described above is message-private and blind if CL
scheme is CPA-secure and the πU , πAUT are zero-knowledge proofs of knowledge.
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A precise efficiency analysis of GPS-like proof in the context of CL encryption has
been performed in [14]. It is implemented within class groups of some imaginary
quadratic fields. The cost of such a proof is dominated by the computation of
exponentiations in the class group. [14, Fig. 9] gives some measurements: on their
architecture, an exponentiation takes 55ms for a 128 bit security. For the proof
described in Eq. 4 with � = 1, there are essentially 4 exponentiations in the class
group. This protocol has to be repeated say 40 times to get a soundness error of
2−40, which means that such a proof costs less than 10 seconds (with � = 1). The
overall cost is then linear in �, which means that our interactive blind IFE has a
reasonable practical cost of � times tens of seconds. This is even more reasonable
that this extraction is done only each time that a functional key is necessary,
which happens occasionally.
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pean Union H2020 Research and Innovation Program Grant 780701 (PROMETHEUS).
The two first authors were also supported by the European Union H2020 Research and
Innovation Program Grant 786767 (PAPAYA).

A Message-Privacy for IFE

Oracles. In traditional FE, the adversary has access to a KeyGen(msk, ·) ora-
cle which extracts a functional key when the adversary requests it for a chosen
input function f . We here adapt the definition of message-privacy to our inter-
active setting. The main difference relies in the fact that some information could
leak during the interactive key generation. We introduce an interactive oracle
IKeyGen(O(msk), ·): when calling this oracle, the adversary, on input f ∈ F , par-
ticipates in an interactive protocol with the oracle playing the role of an honest
authority. The adversary finally gets the output functional key skf . For any bit
b ∈ {0, 1}, we define Encb(mpk, ·, ·) to be an oracle which takes as inputs x0 and
x1 and returns Enc(mpk, xb). The next definition extends known definitions [8]
to the interactive setting and could be well adapted for private-key FE.

Definition 8 (Message-privacy). Let IFE = (Setup, IKeyGen,Enc,Dec) over
a message space M and a function space F . We say that IFE is message-
private (MP) if for any PPT adversary A, there exists a negligible function
negl(λ) such that the quantity, called the advantage of A, AdvA,MP-IFE(1λ) :=∣
∣
∣Pr

[
Exp

(0),mp
A (λ) = 1

]
− Pr

[
Exp

(1),mp
A (λ) = 1

]∣
∣
∣ ≤ negl(λ), where Exp

(b),mp
A (λ) is

1. (mpk,msk) ← Setup(1λ) 2. b′ ← AIKeyGen(O(msk),·),Encb(mpk,·,·)(1λ,mpk)

3. output b′ = b

We required that for all f ∈ F and (m0,m1) coming from A’s calls to the
oracles KeyGen and Encb respectively, it holds that f(m0) = f(m1).
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B Leak-Freeness

We provide a generalization of the Leak-Freeness property of [24].

Definition 9 (Leak-Freeness). An IKeyGen protocol corresponding to KeyGen
algorithm of any FE scheme is leak-free w.r.t. KeyGen if, for all efficient adver-
saries A, there exists an efficient simulator S such that for all value λ, no dis-
tinguisher D can determine whether it is playing GameReal or GameIdeal where

– GameReal: Run Setup(1λ). As many times as D wants, A chooses a function
f and executes the IKeyGen(AUT , ·) protocol input f with an honest authority
AUT . A returns the resulting view to D which returns a bit.

– GameIdeal: Run Setup(1λ). As many times as D wants, S chooses a function
f and asks Trivial.IKeyGen(msk, ·) to obtain a functional key skf on input f .
S returns then the resulting view to D which returns a bit.

The quantity AdvD,leak−free(1λ) := |Pr[DGameReal(1λ) = 1]−Pr[DGameIdeal(1λ) = 1]|
is the advantage of D and IKeyGen is leak-free w.r.t KeyGen if it is negligible.

We discuss in the following some remarks about the definition.

– A secure two-party protocol realizing the KeyGen functionality of a classical
FE ensures the message-privacy since it preserves each party for learning
the other party’s input. The main difference in our consideration is that we
require the use of a known FE scheme with some specific KeyGen algorithm in
addition to the existence of a simulator (which interacts with a specific oracle
Trivial.IKeyGen). This simulator is then asked to produce a consistent view
to any distinguisher. As mentioned in previous sections, a two-party protocol
wouldn’t offer the blindness property for free. In Example 2.1, Trivial.IKeyGen
is by definition leak-free w.r.t KeyGen but not blind.

– The adversary in GameIdeal does not appear in the definition. As pointed in
[24], the leak-freeness definition implies that the function (for the key being
extracted) is extractable from the IKeyGen protocol (with all but negligible
probability), since for every adversary it must exist a simulator S that should
be able to interact with A, in order to learn which functions to submit to the
Trivial.IKeyGen(msk, ·) oracle.

– When considering the validity of skf (in Sect. 2.1), a ZKPoK is used in order
to verify if a functional key skf is well-formed. This is independent from the
definition of the leak-freeness property, since the authority is always honest
in this context (simulated by an oracle).

C The Castagnos-Laguillaumie Scheme

CL Encryption Scheme. The Setup phase in the CL scheme consists of the
description of a DDH group with an easy DL subgroup (p, s̃, g, f, gp, G, F,Gp)
where the set (G, ·) is a cyclic group of order ps, for an unknown integer s, p is
a prime number such that gcd(p, s) = 1. The only known information on s is an
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upper bound s̃ of s. The set Gp = {yp, y ∈ G} is the subgroup of (unknown) order
s of G, and F is the subgroup of order p of G, so that G = F ×Gp. The elements
f, gp and g = f · gp are respective generators of F , Gp and G. The discrete
logarithm problem is easy in F , which means that there exists deterministic
polynomial time algorithm a Solve that solves the discrete logarithm problem
in F . The message space of CL is Zp and its indistinguishability under chosen
plaintext attacks relies on the hard subgroup membership assumption that says
that is hard to distinguish the elements of Gp in G. An instantiation of this
group is obtained using the class group of a non maximal order of an imaginary
quadratic field (we refer the reader to [16,17] for a more precise description).
Roughly, CL scheme consists of a secret key sk is an integer x ← {0, . . . , s̃p − 1}
and the public key is pk = gx

p . The encryption procedure returns a ciphertext
cm = (c1, c2) where c1 ← gr

p and c2 ← fmhr for a random r. The decryption
algorithm computes M ← c2/cx

1 and returns m using the Solve algorithm on M .
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Abstract. In this paper, we propose a lattice-based HIBE scheme in the
standard model with faster trapdoor delegation. It is proven secure under
the Learning With Errors assumption. Inspired by Canetti et al.’s trans-
formation (Eurocrypt’03), an HIBE can be converted into a forward-
secure public-key encryption (FS-PKE) scheme, and the efficiency of key
update relies on the efficiency of trapdoor delegation. For applications,
our HIBE with faster delegation can be used to generate a lattice-based
FS-PKE with faster key update. Furthermore, we also obtain a lattice-
based forward-secure signature (FSS) scheme combining HIBE-like key-
update technique with Zhang et al.’s short signature construction in the
standard model (Crypto’16).

Keywords: Hierarchical identity-based encryption · Forward-secure
public-key encryption · Forward-secure signature · Standard model

1 Introduction

Shamir [27] proposed the idea of identity-based encryption (IBE) in 1984. It pro-
vides a public-key encryption mechanism where a public key is an arbitrary string
such as an email address or a telephone number. The corresponding private key
can only be generated by a private-key generator (PKG) who has knowledge of a
master secret key. Boneh and Franklin [8] defined a security model for IBE and
gave a construction based on Bilinear Diffie-Hellman (BDH) assumption. Cocks
[14] presented an IBE construction from quadratic residues. In 2002, hierarchical
identity-based encryption (HIBE) was introduced in [16] for a large network, and
a number of constructions are known [6,7,16]. In an HIBE scheme, any user can
securely use its secret key to delegate a valid secret key to any subordinate user
in a hierarchy (i.e., a tree).

State of Affairs of Lattice-Based HIBE. In the lattice setting, Cash
et al. [13] proposed the first HIBE scheme in the standard model based on the
Learning With Errors (LWE) assumption. This construction processes identities
c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 202–220, 2020.
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bit by bit and then assigns linearly many matrices to each level, which results
in large master public keys. After that, [2] constructs an improved HIBE in the
standard model with much smaller master public keys, since it assigns only one
different matrix to each level.

In Agrawal-Boneh-Boyen work [2], they applied the trapdoor generation
algorithm in [3] to generate a full rank matrix A ∈ Z

n×m
q (with m ≥ �6nk�

and k = �log2 q�) and a short basis TA ∈ Z
m×m
q for the lattice Λ⊥(A) (i.e.,

AT = 0 mod q) which serves as the master secret key of HIBE. The quality
of the trapdoor is given by its largest singular value s1(TA) = max‖u‖=1 ‖Ru‖;
smaller s1(TA) means higher quality. The trapdoor TA generated by [3] satisfies
s1(TA) ≤ 20

√
nk. Agrawal et al. [2] constructed an ID-specific matrix FID as

an encoding of identity ID. The secret key for ID is a short basis for the lattice
Λ⊥(FID). Trapdoor delegation is done by using the short basis for Λ⊥(FID) to
generate a randomized short basis for Λ⊥(FID|idl+1). Their delegation algorithm
first invokes Gaussian samplings over the lattice Λ⊥(FID|idl+1) to generate a set
of independent short vectors, then converts it to a short basis for Λ⊥(FID|idl+1)
using the techniques in [22], requiring at least Ω(n3 log2 n) time.

In 2012, Micciancio and Peikert [23] proposed a new trapdoor generation algo-
rithm to output a (nearly) uniformly random matrix A ∈ Z

n×m
q (with m ≈ 2nk)

and a G-trapdoor for A, denoted R ∈ Z
(m−nk)×nk such that A

[
R
Ink

]
= HG

with an invertible tag H ∈ Z
n×n
q . This resulting trapdoor has higher quality,

s1(R) ≤ 1.6
√

nk. Recall the “gadget” matrix G = In ⊗ (1, 2, · · · , 2k−1)T (T
is transpose operation) is a carefully crafted public matrix for which the asso-
ciated preimage sampling algorithm costs only O(n log n) sequential time or
O(log n) parallel time. Furthermore, [23] introduces a trapdoor delegation algo-
rithm which delegates a G-trapdoor for A to a G-trapdoor for an extension[
A|A′]. Its efficiency heavily relies on Gaussian samplings over Λ⊥(G), costing

only O(n log n) time, and it does not require expensive ToBasis operations [22].
Following [2], Katsumata et al. [18] constructed a revocable HIBE scheme

applying gadget-based trapdoors. As described in [18], a version of the Agrawal-
Boneh-Boyen HIBE that uses G-trapdoors works as follows: consider a hierarchy
representing a complete tree of depth L, the G-trapdoor’s generation algorithm
[23] is run to generate a (nearly) uniformly random matrix A ∈ Z

n×2nk
q , along

with a G-trapdoor for A. To encode an identity ID = (id1, · · · , idl) ∈ (Zn
q \{0})l

with l ≤ L, it constructs an ID-specific matrix

FID = [A|A1 + H(id1)G| · · · |Al + H(idl)G]

by assigning one matrix Ai ∈ Z
n×nk
q to each level i, where H : Zn

q → Z
n×n
q is an

encoding function. This construction decreases the master-public-key size of [2]
since its A,A1, · · · ,AL are shorter due to the work of [23]. On the downside,
the secret key for an identity ID is still a short basis for the lattice Λ⊥(FID),
thus it still uses Agrawal-Boneh-Boyen trapdoor delegation, requiring at least
Ω(n3 log2 n) time.

One Natural Question is Why the HIBE Constructions [18] do not define a
G-trapdoor for FID as the secret key for ID, then utilize G-trapdoor’s delegation
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algorithm [23], requiring only O(n log n) time. We explain the reason in the fol-
lowing.

Assume that the secret key of user ID is a G-trapdoor RID for FID such

that FID

[
RID

Ink

]
= G, and trapdoor delegation is done by delegating RID to a

randomized G-trapdoor for [FID|Al+1 + H(idl+1)G]. It seems this construction
goes well so far. However we next show the security proof will not proceed
successfully, since the reduction cannot answer the secret-key queries for some
special identities that are different from the targeted identity only at the last
component.

More precisely, in a selective identity attack, the adversary A must first name
the target identity ID∗, is then given the master public key and a challenge
ciphertext encrypted to ID∗, and A may query secret keys for any identity ID
that is not a prefix of ID∗. In the security proof, the reduction first obtains a
target identity ID∗ = (id∗

1, · · · , id∗
j ), then generates a master public key that is

“punctured” at ID∗: it constructs A as its input sample of LWE problem, and
it constructs each Ai = ARi −H(id∗

i )G for a short random Ri where we define
H(id∗

i ) = 0 for i > j. Then the ID-specific matrix becomes

FID = [A|AR1 + (H(id1) − H(id∗
1))G| · · · |ARl + (H(idl) − H(id∗

l ))G] .

Intuitively, when ID is not a prefix of ID∗ we know that H(idi) − H(id∗
i ) is full

rank for some i ∈ [1, l]. If the secret key for ID is a short basis for Λ⊥(FID),
the reduction has a publicly known basis TG for Λ⊥(G), and then extends it to
a randomized short basis for FID, using the algorithm SampleBasisRight in [2].
However if the secret key for ID is a G-trapdoor for FID, the reduction cannot
generate random G-trapdoors for some special identities that are different from
ID∗ only at the last component. We take ID′ = (id∗

1, · · · , id∗
l−1, id

′
l) with different

id′
l as an example, it is not a prefix of ID∗. We show the details in the following.
For the special identity ID′, its ID-specific matrix becomes

FID′ = [A|AR1| · · · |ARl−1|ARl + (H(id′
l) − H(id∗

l ))G] .

The reduction knows a G-trapdoor RID′ =
[
−RT

l |0| · · · |0
]T

with tag H(id′
l) −

H(id∗
l ) for FID′ . However RID′ has special structure (i.e., it is padded with zero

rows), that is distributed differently from the output of G-trapdoor’s delegation
algorithm (Algorithm 1) run by a real execution. Therefore, if the reduction
responds with RID′ to answer the secret-key query for ID′, the adversary A will
distinguish this difference. That is the reduction cannot proceed successfully.

As described above, the HIBE constructions [18] do not apply G-trapdoor’s
delegation algorithm. From the above illustration, it is not clear how they would
be compatible with the trapdoor delegation of G-trapdoors. In this paper, we
solve this problem, present an HIBE with faster trapdoor delegation, requiring
only O(n log n) time.

Applications of HIBE with Faster Trapdoor Delegation. We remark
that our HIBE with faster trapdoor delegation can be used to construct forward-
secure public-key encryption (FS-PKE) and signature (FSS) schemes with faster
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key update. The basic idea of forward security is that secret key is updated
periodically and corruption of the current secret key does not compromise past
uses of secret keys in earlier time periods. More precisely, it uses a key-update
paradigm where the lifetime of a system is divided into T time periods. A user
initially stores secret key SK0 and it updates with time while the public key
PK remains fixed. Namely, at the beginning of each period t, the user applies a
public one-way function to the key SKt−1 to derive the current secret key SKt;
then SKt−1 is erased and SKt is used for all secret cryptographic operations
during period t.

In particular, Canetti, Halevi and Katz [10] gave a generic FS-PKE con-
struction from any HIBE scheme. The basic idea is to exploit the hierarchical
structure to enable key update, thus the one-wayness of hierarchical structure
implies the one-wayness of key update. Furthermore, the efficiency of key update
in the resulting FS-PKE relies on that of trapdoor delegation in an HIBE. This
approach, in turn, was used to construct many forward-secure cryptosystems
[7,9,19,20]. Inspired by [10] and based on our HIBE, we obtain FS-PKE and
FSS schemes with faster key update than ones directly instantiated with all
existing lattice-based HIBE schemes.

1.1 Our Contributions

In conclusion, we provide an HIBE construction with faster trapdoor delegation
in the standard model based on the LWE assumption. A comparison between
our construction and previous ones is shown in Table 1. Furthermore, we prove
that our HIBE is indistinguishable from random under selective-identity, chosen
plaintext attacks (INDr-sID-CPA). Using the transformation of [11], we also
obtain an INDr-sID-CCA secure HIBE construction.

Table 1. Comparisons of performance between our HIBE versus prior ones. (Let L be
the maximum hierarchy depth. Let λ be the number of bits of each ID-string. To be
precise, the master public key contains n · m̃ + n elements in Zq, and the ciphertext of

one-bit plaintext contains at most ˜k elements in Zq.)

Schemes Master-public-key size m̃Ciphertext size ˜kTrapdoor-delegation time

CHKP10 [13](12λL + 6)nk (6λL + 6)nk + 1 Ω(n3 log2 n)

ABB10 [2] (6L + 12)nk (6L + 6)nk + 1 Ω(n3 log2 n)

KMT19 [18] (L + 2)nk (L + 2)nk + 1 Ω(n3 log2 n)

Our HIBE (L + 2)nk (2L + 2)nk + 1 O(n logn)

As applications, we construct a FS-PKE scheme from our HIBE inspired
by [10]. It has faster key update than ones directly instantiated with all exist-
ing lattice-based HIBE constructions. With this key-update technique, we also
construct a FSS scheme based on the short signature scheme of [29] in the stan-
dard model. To the best of our knowledge, they are the first FS-PKE and FSS
constructions from lattices in the standard model.
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1.2 Our Techniques

As described above, it is not clear how the HIBE scheme [18] would be com-
patible with G-trapdoor’s delegation algorithm. Recall the reason is that the
reduction cannot answer secret-key queries for some special identities that are
different from the targeted identity only at the last component, for example
ID′ = (id∗

1, · · · , id∗
l−1, id

′
l), if each user’s secret key is a G-trapdoor.

In this paper, we double each matrix Ai + H(idi)G, define an ID-based
matrix in Z

n×(2nk+2lnk)
q

FID = [A|A1 + H(id1)G|A1 + H(id1)G| · · · |Al + H(idl)G|Al + H(idl)G] (1)

The secret key for ID is defined as a G-trapdoor RID for FID such that

FID

[
RID

Ink

]
= G. In this case, when receiving the secret-key query for ID′, the

reduction first builds

FID′ =

⎡

⎢

⎢

⎣

A|B1| · · · |Bl−1|ARl + (H(idl) − H(id∗
l ))G|

︸ ︷︷ ︸

F̄ID′

ARl + (H(idl) − H(id∗
l ))G

⎤

⎥

⎥

⎦

with Bi = [ARi|ARi] for each i ∈ [1, l − 1]. We rewrite

FID′ =
[
F̄ID′ |ARl + (H(idl) − H(id∗

l ))G
]
.

The reduction knows a G-trapdoor for F̄ID′ with tag H(idl)−H(id∗
l ), denoted as

R̄ID′ =
[
−RT

l |0| · · · |0
]T

. Then it runs G-trapdoor’s delegation algorithm (Algo-

rithm 1) in order to extend R̄ID′ to a random G-trapdoor RID′ for FID′ . Finally,
the reduction responds with RID′ that is distributed identically to that in a real
execution. In our paper Ai + H(idi)G is double, which increases the ciphertext
sizes of [18] by a factor 2. However we decrease the running time of trapdoor
delegation from Ω(n3 log2 n) to O(n log n).

Based on the generic transformation in [10], we obtain a FS-PKE scheme
based on the LWE assumption. Furthermore, combining this key-update tech-
nique with a signature scheme in the standard model, we also construct a FSS
scheme. More precisely, we apply the signature scheme of [29], which utilizes
lattice-based Programmable Hash Functions (PHF). Let H = (H.Gen,H.Eval)
be a PHF construction and K be the PHF key generated via H.Gen. In order
to construct a FSS, each time period t is correlated with an identity node
IDt of HIBE. The secret key for time period t is defined as a G-trapdoor for
FIDt

, that can be used to sample a short vector e as a signature such that
[FIDt

|H.Eval(K,M)] e = u.

1.3 Related Works

In [25], Peikert presented an HIBE construction using gadget-based trapdoors
[23]. The secret key for ID is defined as a short integer matrix R such that
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AR = G mod q, which allows faster trapdoor delegation [23]. However the
form R is not compatible with G-trapdoor generation algorithm and puncturing
technique used in security proof of HIBE, where the trapdoor is in the form of[∗
I

]
. In this paper, we consider the HIBE construction with G-trapdoors of the

form
[∗
I

]
.

The idea of a forward-secure public-key cryptosystem was suggested by
Anderson [4]. The first construction of a FSS scheme was proposed in [5] along
with a formal adversarial model. Afterwards, many forward-secure cryptosystems
were constructed, including signature [1,17,21], public-key encryption (PKE)
[7,12] and group signature [19,24,28] schemes, etc.

2 Preliminary

2.1 Notation

We denote the reals by R and the integers by Z. For a positive integer N ∈ Z, we
let [N ] = {0, 1, · · · , N −1}. The function logc denotes the logarithm with base c,
and we use log to denote the natural logarithm. The standard notation O,ω,Ω
are used to classify the growth of functions. If f(n) = O(g(n) · logc(n)) for some
constant c, we write f(n) = Õ(g(n)). Let ωn = ω(

√
log n). By poly(n) we denote

an arbitrary function f(n) = O(nc) for some constant c. By negl(n) we denote an
arbitrary negligible function f(n) < n−c for sufficiently large n and each positive
c. Let In be the n×n identity matrix. By XT we denote the transpose of matrix
X. By ‖·‖ and ‖·‖∞ we denote the l2 and l∞ norm, respectively. The norm of a
matrix X is defined as the norm of its longest column (i.e., ‖X‖ = maxi ‖xi‖).
The largest singular value of a matrix X is s1(X) = maxu ‖Xu‖, where the
maximum is taken over all unit vector u. The Gram-Schmidt orthogonalization
of an ordered set of vectors V = {v1, · · · ,vk} ∈ R

n is Ṽ = {ṽ1, · · · , ṽk} where
ṽi is the component of vi orthogonal to span(v1, · · · ,vi−1) for all i = 1, · · · , k.

2.2 Lattices and Gaussian Distributions

A lattice Λ is a discrete additive subgroup of R
m for some m ≥ 0. In this

paper, we are only concerned with full-rank integer lattices, which are additive
subgroups of Zm with finite index. Most recent cryptographic applications use
a particular family of so called q-ary integer lattices, which contains qZm as a
sublattice for some integer q. For positive integers n and q, let A ∈ Z

n×m
q be

arbitrary and define the following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Z
m : Az = 0 mod q}.

For any u ∈ Z
n
q , define the coset Λ⊥

u (A) = {z ∈ Z
m : Az = u mod q}. Note

that for large enough m = O(n log2 q), the columns of uniformly random matrix
A ∈ Z

n×m
q generate all of Zn

q with all but negl(n) probability.
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Let L be a subset of Zm. For a vector x ∈ L and c ∈ R
m, define the Gaussian

function ρs,c(x) = exp(−π ‖x − c‖2 /s2) centered at c with parameter s > 0.
Let ρs,c(L) =

∑
x∈L ρs,c(x), and define the discrete Gaussian distribution over

L with center c and parameter s as

∀y ∈ L, DL,s,c(y) =
ρs,c(y)
ρs,c(L)

For notational convenience, ρs,0 and DL,s,0 are abbreviated as ρs and DL,s.
When s = 1 we write ρ to denote ρ1. The distribution DL,s will most often be
defined over the lattice Λ⊥(A) for a matrix A ∈ Z

n×m
q or over a coset Λ⊥

u (A)
where u ∈ Z

n
q .

In 2012, Micciancio and Peikert [23] proposed a new trapdoor generation
algorithm to output an essentially uniform trapdoor matrix A ∈ Z

n×m
q and

a trapdoor R that allows to efficiently sample short vectors in Λ⊥(A). Recall
the definition of the “gadget” vector g = (1, 2, 4, · · · , 2k−1)T and matrix G =
In⊗gT ∈ Z

n×nk
q where ⊗ represents the tensor product. Then the lattice Λ⊥(G)

has a publicly known short basis S = In ⊗ Sk ∈ Z
nk×nk
q with

∥∥∥S̃
∥∥∥ =

∥∥∥S̃k

∥∥∥ ≤ √
5

such that gT·Sk = 0 ∈ Z
k
q and G·S = 0 ∈ Z

n×nk
q . Let (q0, q1, · · · , qk−1) ∈ {0, 1}k

be the binary expansion of q =
∑

i 2i · qi, we have

G =

⎡
⎢⎢⎢⎣

· · ·gT · · ·
· · ·gT · · ·

. . .
· · ·gT · · ·

⎤
⎥⎥⎥⎦ ,Sk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 q0
−1 2 q1

−1 q2
. . .

...
2 qk−2

−1 qk−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Given S and any vector u ∈ Z
n
q , discrete Gaussian sampling with parameter s

over the coset Λ⊥
u (G) can be performed in O(n log n) sequential time, or parallel

O(log n) time using n processors.

Definition 1. (G-trapdoor [23]) For any integers n,m, q ∈ Z, k = �log2 q�,
and matrix A ∈ Z

n×m
q , the G-trapdoor for A is a matrix R ∈ Z

(m−nk)×nk

such that A
[
R
Ink

]
= HG for some invertible tag H ∈ Z

n×n
q . The quality of the

trapdoor is measured by its largest singular value s1(R).

Proposition 1. ([23]) Given any integers n ≥ 1, q > 2, k = �log2 q� sufficiently
large m ≈ 2nk and a tag H ∈ Z

n×n
q , there is an efficient randomized algorithm

GenTrap(1n, 1m, q,H) that outputs a matrix A ∈ Z
n×m
q and a G-trapdoor R ∈

Z
(m−nk)×nk with quality s1(R) ≤ √

m · ωn such that the distribution of A is

negl(n)-far from uniform and A

[
R
Ink

]
= HG.

In addition, given R and any U ∈ Z
n×n′
q for some real s ≥ 3 · · ·1 (R) ·

ωn, there exists an algorithm SampleD(R,A,H,U, s) that samples E from a
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distribution within negl(n) statistical distance from (DZm,s)n′
satisfying AE =

U.

Furthermore, [23] introduces an efficient algorithm for securely delegating a trap-
door for A ∈ Z

n×m
q to a trapdoor for an extension

[
A|A′] ∈ Z

n×(m+nk)
q . It is

straightforward to generalize this algorithm to apply to any extension Ā ∈ Z
n×m′
q

with m′ ≥ m + nk.

Algorithm 1. Extended algorithm DelTrap(Ā,R,H, H̄, s) for delegating a trap-
door.
Input: a parity-check matrix Ā = [A|A1|A2] ∈ Z

n×m
q × Z

n×w
q × Z

n×nk
q where w =

m′ − m − nk; a G-trapdoor R for A with tag H; a new tag H̄ and a parameter
s ≥ 3 · · ·1 (R) · ωn.

Output: a G-trapdoor R̄ for Ā with tag H̄.
1: Sample a short matrix R̄1 ← Dw×nk

Z,s and compute U = H̄G − A2 − A1R̄1.

2: Running SampleD(R,A,H,U, s) → R̄0. Output R̄ =

[

R̄0

R̄1

]

∈ Z
(m′−nk)×nk.

Lemma 1. For any valid inputs Ā ∈ Z
n×m′
q and H̄ ∈ Z

n×n
q , Algorithm 1 out-

puts a G-trapdoor R̄ for Ā with tag H̄ so that Ā
[

R̄
Ink

]
= H̄G with quality

s1(R̄) ≤ s · O(
√

m′ − nk +
√

nk) except with negligible probability.

2.3 Hard Problems

We next present two hard average-case problems: the Learning With Errors
(LWE) problem and the Short Integer Solution (SIS) problems.

For any positive integer n, q, real α > 0, and any vector s ∈ Z
n
q , the

distribution As,α over Z
n
q × Zq is defined as As,α = {(a,aTs + x) : a ←

Z
n
q , x ← DZ,αq}. For m independent samples (a1, y1), · · · , (am, ym) from As,α,

we denote it in matrix form (A,y) ∈ Z
n×m
q × Z

m
q , where A = (a1, · · · ,am)

and y = (y1, · · · , ym)T. We say that an algorithm solves the LWEq,α problem
if for uniformly random s ← Z

n
q , given polynomial samples from As,α it out-

puts s with noticeable probability. The decisional variant of LWE is that for a
uniformly random s ← Z

n
q , the solving algorithm is asked to distinguish As,α

from the uniform distribution over Zn
q ×Zq. For certain modulus q, the average-

case decisional LWE problem is polynomially equivalent to its worst-case search
version [26].

Given positive n,m, q ∈ Z, a real β > 0, and a uniformly random matrix
A ∈ Z

n×m
q , the SISq,β problem asks to find a non-zero vector e ∈ Z

m such that
Ae = 0 mod q and ‖e‖ ≤ β. In [15], Gentry et al. introduced ISIS problem,
which was an inhomogeneous variant of SIS. Specifically, given an extra random
syndrome u ∈ Z

n
q , the ISISq,β problem asks to find a vector e ∈ Z

m such that
Ae = u mod q and ‖e‖ ≤ β. Both the two problems were shown to be as hard
as certain worst-case lattice problems [15].
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2.4 Hierarchical Identity-based Encryption

In the following, we give the definition of hierarchical identity-based encryption
schemes following [2,13,16].

Definition 2. A hierarchical identity-based encryption (HIBE) scheme
is implicitly parameterized identity space I = {Il}l∈[1,L], consists of four algo-
rithms (Setup,Derive,Encrypt,Decrypt):

Setup(1κ, L): On input a security parameter κ and a maximum hierarchy
depth L, outputs a master key pair (mpk,msk).
Derive(mpk, skID, (ID|idl+1)): On input the master public key mpk, a secret
key skID corresponding to an identity ID at depth l, it outputs a secret key for
the identity (ID|idl+1) with idl+1 ∈ Il+1. Specifically, sk() = msk for l = 0.
Encrypt(mpk, ID,M): On input mpk, an identity ID and a plaintext M . It
returns a ciphertext C for the identity ID.
Decrypt(skID, C): On input a secret key skID corresponding to an identity ID
and a ciphertext C. It outputs its associated plaintext M .

Correctness. For any (mpk,msk) output by Setup(1κ, L), any identity ID and
its secret key skID, and any plaintext M , an HIBE scheme must satisfy

Decrypt(skID,Encrypt(mpk, ID,M)) = M.

Security. We will use the notion called indistinguishable from random under

selective-identity, chosen plaintext attacks (INDr-sID-CPA) in [2] in which the
attacker announces an identity that it plans to attack before it sees the master
public key.

Definition 3. We say an HIBE scheme is INDr-sID-CPA if for any probabilis-
tic polynomial time (PPT) adversary A, its advantage is negligible in the security
parameter κ in the following game.

Targeting. The adversary A outputs an identity ID∗ = (id∗
1, · · · , id∗

j ).
Setup. The experiment generates the master key pair (mpk,msk) ←

Setup(1κ, L) and gives mpk to A.
Phase 1. The adversary can ask for the private key corresponding to any

identity ID = (id1, · · · , idl) as long as ID is not a prefix of the
targeted identity ID∗. The experiment computes the private key

skID = Derive(mpk, · · ·Derive(mpk,msk, id1) · · · , idl)

and gives it to A.
Challenge. The adversary A outputs a challenge plaintext M∗. The experi-

ment chooses a uniformly random ciphertext C0 from the cipher-
text space, and computes C1 ← Encrypt(mpk, ID∗,M∗). Then it
randomly chooses a bit b ← {0, 1}, and gives C∗ = Cb to the adver-
sary A.
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Phase 2. The adversary can make more private key queries of any identity
ID as long as it is not a prefix of ID∗.

Guess. The adversary A outputs a guess b′ ∈ {0, 1} and wins if b′ = b. its
advantage is defined as the absolute value of the difference between
its success probability and 1/2.

In the security game against chosen ciphertext attacks (CCA), the adversary
is also allowed to make decryption queries in both Phase 1 and 2 such that it
can obtain the decryption results from any identity-ciphertext pair (ID, C) �=
(ID∗, C∗).

Tree Representation. For further discussion, it will be convenient to consider
that identities can be represented graphically in a tree where each node cor-
responds to an identity. A node at depth l represents an identity of length l
(considering the root node to be at the depth 0).

3 Our HIBE Constructions

Let integers n, q ∈ Z be some polynomials in the security parameter κ, k =
�log2 q�. We use an encoding function H : Z

n
q → Z

n×n
q to map an identity

component in Z
n
q to a matrix in Z

n×n
q . The map H satisfies that for all distinct

u,v ∈ Z
n
q the matrix H(u) − H(v) ∈ Z

n×n
q is full rank. Thus, we require that

for an identity ID = (id1, · · · , idl) each component idi belong to Z
n
q \{0} i.e.,

Ii ⊂ Z
n
q \{0}.

We construct a L-level HIBE scheme as follows.

• Setup(1κ, L): On input a security parameter κ and the maximum depth L,
do:
1. Invoke the trapdoor generation algorithm GenTrap(1n, 12nk, q, In) to out-

put a matrix A ∈ Z
n×2nk
q and a G-trapdoor R ∈ Z

nk×nk for A with tag
In.

2. Choose L uniformly random matrices A1, · · · ,AL ∈ Z
n×nk
q and a uni-

formly random vector u ∈ Z
n
q .

3. Output the master key pair (mpk,msk) = ((A,A1, · · · ,AL,u),R).
• Derive(mpk, skID, ID|idl+1): On input a secret key corresponding to ID =

(id1, · · · , idl), it aims to generate a secret key for (id1, · · · , idl+1). For this, it
works as follows:
1. Let Ai,idi

= [Ai + H(idi)G|Ai + H(idi)G] ∈ Z
n×2nk
q for i = 1, · · · , l+1,

then build

FID|idl+1 =
[
A|A1,id1 | · · · |Al,idl

|Al+1,idl+1

]
=

[
FID|Al+1,idl+1

]
2. Derive a G-trapdoor for FID|idl+1 with tag In by invoking the algo-

rithm RID|idl+1 ← DelTrap(FID|idl+1 ,RID, In, In, sl+1) with skID = RID

and sl+1 ≥ 3 · s1(RID) · ωn. Output RID|idl+1 .
• Encrypt(mpk, ID,M ∈ {0, 1}) : On input mpk, ID and M , it works as follow-

ing:
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1. Build the ID-specific matrix FID ∈ Z
n×(2nk+2lnk)
q .

2. Choose a random short matrix R̄l ← D2nk×2lnk
Z,s̄ with s̄ ≥ ωn. Sample a

uniformly random vector s ∈ Z
n
q , and sample noise vector x0 ← DZ,αq,

x1 ← D2nk
Z,αq.

3. Compute c0 = uTs+x0 +
q

2
M , c1 = FT

IDs+
[

x1

R̄T
l x1

]
. Output the cipher-

text C = (c0, c1).
• Decrypt(skID, C): Given skID = RID and C = (c0, c1), it works as following:

1. Use the algorithm eID ← SampleD(RID,FID, In,u, s) with s ≥ 3 · s1(RID) ·
ωn. Compute b = c0 − eTIDc1 ∈ Zq.

2. Set M = 1 if
∣∣b − � q

2�∣∣ ≤ � q
4�, else M = 0. Output the plaintext M .

Parameters. When the decryption is operated as specified, we have

b = c0 − eTIDc1 =
q

2
M + x0 − eTID

[
x1

R̄T
l x1

]

We call x0 − eTID

[
x1

R̄T
l x1

]
the error term and ensure that it is less than � q

4�.
We have sl ≈ Õ(

√
nk)l. By ‖x1‖ ≤ αq · √

2nk, ‖R̄T
l x1‖ ≤ αq · O(nk), and∥∥∥∥ x1

R̄T
l x1

∥∥∥∥ ≤ αq · O(nk). In addition using the fact that sl ≈ Õ(
√

nk)l for l =

1, · · · , L, we have that
∥∥∥∥x0 − eTID

[
x1

R̄T
l x1

]∥∥∥∥
∞

≤ 2αqnk · Õ(
√

nk)l. Thus we need

to set the parameters such that 2αqnk ·Õ(
√

nk)L < � q
4� holds for a L-level HIBE

construction.

Theorem 1. If there exists a PPT adversary A breaking the INDr-sID-CPA
security of our HIBE scheme with non-negligible advantage ε0, then there exists
an algorithm B solving the LWEq,α problem with advantage ε1 ≥ ε0 − negl(κ).
(The proof is shown in Appendix B.)

In [11], Canetti et al. put forward a transformation from any CPA-secure L-level
HIBE scheme to a CCA-secure (L − 1)-level HIBE scheme. Thus, our HIBE
construction can be naturally transferred to a CCA-secure one.

4 Applications to Forward-Secure Public-Key
Cryptosystems

In this section, we propose a forward-secure public-key encryption scheme trans-
ferred from our HIBE scheme. Inspired by the work of [10], we convert ID nodes
of a HIBE into time periods according to a pre-order traversal. Moreover, this
method can be extended to construct a forward-secure signature scheme in the
standard model. They have faster key update than ones directly instantiated
with all existing lattice-based HIBE constructions.
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4.1 Forward-Secure Public-Key Encryption

We first present syntactic definition of forward-secure public-key encryption
schemes, following the definition in [10].

Definition 4. A forward-secure public-key encryption (FS-PKE)
scheme consists of four algorithms (Gen,Upd,Enc,Dec) with the following syn-
tax:

Gen(1κ, T ): On input a security parameter κ and the total number of time
periods T . It returns a public key PK and an initial secret
key SK0.

Upd(PK, t, SKt): On input PK, an index t of the current time period and the
associated secret key SKt. It returns the secret key SKt+1 for
the following time period.

Enc(PK, t,M): On input PK, an index t ≤ T of a time period and a message
M . It returns a ciphertext C.

Dec(SKt, C): On input the current secret key SKt, and a ciphertext C. It
returns a message M .

Correctness. For each message M and time period t ≤ T , it holds that

Dec(SKt,Enc(PK, t,M)) = M

where (PK,SK0) ← Gen(1κ, T ) and SKt = Upd(PK, t − 1, · · ·Upd(PK, 0,
SK0) · · · ).
Security. The security notion is forward-secure indistinguishability from ran-
dom under chosen plaintext attacks (FS-INDr-CPA). Roughly speaking, any
PPT adversary, who has the current secret key, cannot distinguish a challenge
ciphertext from a uniformly random ciphertext for earlier time periods. We defer
its formal definition to Appendix A.

We show that how to convert ID nodes of an HIBE scheme into time peri-
ods. Formally, given our HIBE Π = (Setup,Derive,Encrypt,Decrypt), we then
construct a FS-PKE scheme Π ′ = (Gen,Upd,Enc,Dec) such that the number of
nodes in Π’s tree T is greater than T .

Gen(1κ, T ): Run Setup(1κ, L) → ((A,A1, · · · ,AL,u),R), return a public key
PK = (A,A1, · · · ,AL,u) and an initial secret key SK0 = R.
Upd(PK, t, SKt): Let IDt be the ID-node corresponding to period t. Denote
St as the set of secret keys for all right siblings of nodes on the path (from
root to IDt), then SKt = (RIDt

, St).
If IDt is a leaf node, then IDt+1 is the first right sibling of the deepest node

on the path (from root to IDt) that has right siblings. Update the current
secret key to SKt+1 = St, and rewrite SKt+1 = (RIDt+1 , St+1) where St+1 =
St \ {RIDt+1} for period t + 1. Otherwise, IDt+1 is the first left child of IDt.
For IDt’s each child ID, compute RID ← Derive(mpk,RIDt

, ID). Let IIDt
is the

identity set of IDt’s all children. Then SKt+1 = ({RID}ID∈IIDt
, St), we rewrite

SKt+1 = (RIDt+1 , St+1) where St+1 = St ∪ {RID}ID∈IIDt
\ {RIDt+1}.

Output the secret key SKt+1 for period t + 1.
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Enc(PK, t,M): Run Encrypt(PK, IDt,M) → C.
Dec(SKt, C): Recall SKt = (RIDt

, St) and run Decrypt(RIDt
, C) → M .

Theorem 2. Our FS-PKE scheme Π ′ is secure in the sense of FS-INDr-CPA
based on the LWE assumption.

Following Theorem 4 of [10], the proof is trivial.

4.2 Forward-Secure Signature

We first present a formal definition of forward-secure signature schemes, follow-
ing the Bellare-Miner model [5].

Definition 5. A forward-secure signature (FSS) scheme consists of four
algorithms (Gen,Upd,Sign,Verify) with the following syntax:

Gen(1κ, T ): On input a security parameter κ and the total number of
time periods T . It returns a public key PK and an initial
signing key SK0.

Upd(PK, t, SKt): On input PK, an index t of the current time period and the
associated secret key SKt. It returns the secret key SKt+1

for the following time period.
Sign(SKt,M): On input the current secret key SKt and a message M . It

returns a signature σ.
Verify(PK, t,M, σ): It returns 1 if the signature σ is valid on message M for

time period t and 0 otherwise

Correctness. Verify(PK, t,M,Sign(SKt,M)) = 1 for each M and t < T .
Security. We use the notion named forward-secure unforgeability under chosen
message attacks (FS-EUF-CMA). Roughly speaking, any PPT adversary, who
has the current signing key, cannot forge a signature on a new message for earlier
time periods. The formal definition is deferred to Appendix A for space reason.

Our construction is based on the key-update technique of our FS-PKE and a
short signature scheme in [29]. This signature is constructed from Programmable
Hash Functions (PHF) H = (H.Gen,H.Eval), where H.Gen outputs a key K,
H.Eval(K,M) outputs a hash value of message M . For the purposes of our
exposition, it does not matter how PHF actually works, thus we refer to [29] to
learn PHF’s construction.

Formally, we present our FSS construction as follows. Given a lattice-
based PHF construction H = (H.Gen,H.Eval) and our HIBE scheme
Π = (Setup,Derive,Encrypt,Decrypt), we construct a FSS scheme Π ′′ =
(Gen,Upd,Sign,Verify) where Upd is the same as that of our FS-PKE scheme
Π ′.

Gen(1κ, T ): Run Setup(1κ, L) → ((A,A1, · · · ,AL,u),R) and
H.Gen(1κ) → K, return a public key PK =
(A,A1, · · · ,AL,u,K) and an initial secret key SK0 =
R.
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Upd(PK, t, SKt): On input SKt = (RIDt , St) where St is the set of
secret keys for all right siblings of nodes on the path
(from root to IDt), run Π ′.Upd(mpk, t, (RIDt

, St)) →
(RIDt+1 , St+1). Return SKt+1 = (RIDt+1 , St+1).

Sign(SKt,M ∈ {0, 1}n): Build FIDt
where t is current time period and rewrite

SKt = (RIDt
, St). Compute FIDt|M = [FIDt

|HK(M)]
where HK(M) = H.Eval(K,M) ∈ Z

n×nk
q . Then sample

e2 ← Dnk
Z,s and e1 ← SampleD(RIDt

,FIDt
, In,uM , s)

where uM = u − HK(M)e2. Return the signature σ =[
e1
e2

]
.

Verify(PK, t,M, σ = e): Build FIDt|M , return 1 if and only if FIDt|M · e = u and
‖e‖ ≤ s

√
m̂ with m̂ = (2l + 3)nk. Otherwise, return 0.

Theorem 3. Our FSS construction Π ′′ is secure in the sense of FS-EUF-CMA
based on the ISIS assumption. (The proof is shown in Appendix C.)

Acknowledgments. The authors would like to thank the anonymous reviews of
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A Some Formal Definitions

We give a formal definition of the security notion for a FS-PKE scheme called
FS-INDr-CPA.

Definition 6. A forward-secure public-key encryption scheme is secure in the
sense of FS-INDr-CPA if the advantage of any PPT adversary in the following
game is negligible in the security parameter κ.

Setup. The experiment generates a fresh key pair (PK,SK0), and hands PK
to the adversary.

Attack. The adversary issues one Break-in(t) query. On input t ≤ T , the key
SKt is computed via Upd(PK, t − 1, · · ·Upd(PK, 0, SK0) · · · ) and then given
to the adversary.

Challenge. The adversary A outputs a challenge plaintext M∗ and time period
t∗ < t. The experiment chooses a uniformly random ciphertext C0 from the
ciphertext space, and computes C1 ← Enc(PK, t∗,M∗). Then it randomly
chooses a bit b ← {0, 1}, and gives C∗ = Cb to the adversary A.

Guess. The adversary outputs a guess b′ ∈ {0, 1}, it succeeds if b′ = b. The
adversary’s advantage is the absolute the value of the difference between its
success probability and 1/2.

We then present a formal definition of the security notion for a FSS scheme
called FS-EUF-CMA.



216 G. Tang and T. Qiu

Definition 7. We say a FSS is secure in the sense of FS-EUF-CMA if the
success probability of any PPT adversary is negligible in the following game.
The adversary A is given PK and access to the following oracles:

Break-in: On input t′ ≤ T , this oracle computes the key SKt′ , and then
returns it to the adversary.

Signing: On input a message M and a period t,this oracle runs σ ←
Sig(PK,SKt,M), and returns σ. Let Ot be the set of queried
messages for a time period t. Set Ot = Ot ∪ {M}.

Oracle Break-in is queried only once. At the end of the game, the adversary
outputs its forgery (t∗,M∗, σ∗). We determine the adversary wins the game if
t∗ < t′, Ver(PK, t∗,M∗, σ∗) = 1 and M∗ /∈ Ot∗ .

B Proof of Theorem 1

Proof. In the following, we use a sequence of games from Game 0 to Game 3. In
particular, we note that the main difference between our and Agrawal-Boneh-
Boyen HIBE’s security proofs is the way of answering A’s secret-key queries in
Game 2.

Game 0. This is the original INDr-sID-CPA game from Definition 3 between
an adversary A against our scheme and a challenger S.

Game 1. This game is identical to Game 0 except that the challenger S changes
the setup and the challenge phases as follows.
Setup. Recall that the identity that A intends to attack is ID∗ = (id∗

1, · · · ,
id∗

j ). Instead of choosing A1, · · · ,AL randomly, S chooses Ri ← D2nk×nk
Z,s̄

with Gaussian parameter s̄ ≥ ωn and sets Ai = ARi − H(id∗
i )G where

we define H(id∗
i ) = 0 for i > j.

Challenge. This is identical to Game 0 except that the challenger S
uses R̄j = [R1|R1| · · · |Rj |Rj ] when generating the challenge ciphertext,
instead of sampling a random R̄j ← D2nk×2jnk

Z,s̄ .
For appropriate distribution of Ri, the matrix Ai is uniformly random up to
negl(n) statistical distance for i = 1, · · · , L. Observe that R̄j in Game 1 is
distributed identically to that in Game 0. Thus A’ views in Game 0 and 1
are indistinguishable statistically.

Game 2. We now change the way of generating A and the users’ private keys.
Setup. The challenger S generates A as a random matrix in Z

n×2nk
q .

Phase 1 and Phase 2. To respond to a private key query for ID = (id1, · · · ,
idl) which is not a prefix of ID∗, the challenger S works as follows.
1. Build FID = [A|A1,id1 | · · · |Al,idl

], for each i ∈ [1, l],

Ai,idi
= [ARi + (H(idi) − H(id∗

i ))G|ARi + (H(idi) − H(id∗
i ))G] .

2. Find the largest x ∈ [1, l] such that H(idx) �= H(id∗
x). If x =

l, rewrite FID =
[
F̄ID|ARl + (H(idl) − H(id∗

l ))G
]
. Then we have
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[
−RT

l |0| · · · |0
]T

is a G-trapdoor for F̄ID with tag H(idl) − H(id∗
l ).

Else, rewrite FID =
[
F̄ID|Ax+1,idx+1 | · · ·

]
, then

[
−RT

x |0| · · · |0
]T

is

a G-trapdoor for F̄ID with tag H(idx) − H(id∗
x). Denote R̄ID =[

−RT
x |0| · · · |0

]T
∈ Z

mx×nk where

mx =

{
2nk + (2x − 1)nk x < l

2nk + 2(l − 1)nk x = l

Run RID ← DelTrap(FID, R̄ID,H(idx) − H(id∗
x), In, sl). Give RID to

A.
For any identity ID, the corresponding secret key RID is generated from the
algorithm DelTrap with same Gaussian parameter both in Games 1 and 2.
Thus the adversary’s advantage in Game 2 is at most negligibly different
from its advantage in Game 1.

Game 3. We now modify the challenge phase as follows.
Challenge. S chooses random vectors b0 ← Zq, b1 ← Z

m
q uniformly, and

compute c∗
0 = b0 + q

2M∗, c∗
1 =

[
b1

R̄T
j b1

]
where R̄j = [R1|R1| · · · |Rj |Rj ].

Since the challenge ciphertext is always a fresh random element in the cipher-
text space, A’s advantage in Game 3 is zero. Lemma 2 shows that A’s advan-
tage in distinguishing Game 2 and 3 is the same as B’s advantage in solving
LWE problem.

In conclusion, if there exists a PPT adversary A breaking the INDr-sID-CPA
security of our HIBE scheme, then we can construct an algorithm B solving the
LWEq,α problem, which completes the proof. ��
Lemma 2. If there exists a PPT adversary A who has non-negligible advantage
ε in distinguishing Games 2 and 3, then there exists an algorithm B solving the
LWEq,α problem with advantage ε.

Proof. We construct an algorithm B for the LWEq,α problem as follows. Given

the LWEq,α instance (
[
Â|û

]
,
[
b̂1|b̂0

]
) ∈ Z

n×(2nk+1)
q ×Z

2nk+1
q . B simulates Game

3 for A except that it replaces (A,u) in the setup phase and (b1, b0) in the
challenge phase with (Â, û) and (b̂1, b̂0), respectively.

Observe that if (
[
Â|û

]
,
[
b̂1|b̂0

]
) are valid LWEq,α tuples, we have

[
b̂1|b̂0

]
=[

Â|û
]T

s + [x1|x0] for some uniformly random vector s ← Z
n
q and random noise

vector [x1|x0] ← D2nk+1
Z,αq . Therefore, the ciphertext C1 = (c∗

0, c
∗
1) is defined as

c∗
0 = ûTs + x0 + q

2M∗ and c∗
1 = FT

ID∗s +
[

x1

R̄T
j x1

]
, and thus C1 is distributed

exactly as in Game 2. If
[
Â|û

]
is uniform in Z

n×(2nk+1)
q and

[
b̂1|b̂0

]
is uniform

in Z
2nk+1
q , we have C1 = (c∗

0, c
∗
1) is distributed exactly as in Game 3.
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If A succeeds in guessing if it is interacting with a Game 2 or Game 3 chal-
lenger, then B outputs A’s guess as the answer to the LWEq,α challenge instance.

��

C Proof of Theorem 3

Proof. If there exists a PPT adversary A who can break forward-secure unforge-
ability, then we can construct an ISIS solver B by invoking A. The solver B first
obtains an input sample (A,u) of ISIS problem, then it picks a random time
period t∗ and hopes that A produces a forgery pertaining to t∗. It constructs
each Ai = ARi−H(id∗

i )G for short random Ri with IDt∗ = (id∗
1, · · · , id∗

j ) where
we define H(id∗

k) = 0 for k > j. It also runs the trapdoor generation algorithm
of PHF to generate a key K together with a trapdoor td. Then B gives the public
key PK = (A,A1, · · · ,AL,u,K) to A and stores td.

For t > t∗, we have IDt and each right sibling of the nodes on the path from
root to IDt are not prefixes of IDt∗ . To respond to any secret-key query for t with
t > t∗, from the proof of Theorem 1, B can generate RIDt

and St, and thus it
can output SKt = (RIDt

, St).
For a signing query with input (M, t), B computes HK(M) = ARM +HMG

using the trapdoor td. By programmability of PHF, we have that HM is
invertible with a certain probability. Thus B knows RIDt|M =

[
−RT

M |0| · · · |0
]

as a G-trapdoor for FIDt|M with tag HM , and then it samples e ←
SampleD(RIDt|M ,FIDt|M ,HM ,u, s) as a signature on message M pertaining to t.

Finally A outputs a valid signature e∗ on a new message M∗ for the time
period t∗ with the probability 1

T . From the properties of PHF (Definition 2 of
[29]), we have HK(M∗) = ARM∗ + HM∗G with HM∗ = 0 with non-negligible
probability. With FIDt∗ |M∗e∗ = [A|AR1|AR1| · · · |ARj |ARj |ARM∗ ] e∗ = u,
we have a short vector x = [I2nk|R1|R1| · · · |Rj |Rj |RM∗ ] e∗ such that Ax = u,
solving the ISIS problem.
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Abstract. A Virtual Private Network (VPN) helps to mitigate security
and privacy risks of data transmitting on unsecured network such as
public Wi-Fi. However, despite awareness of public Wi-Fi risks becoming
increasingly common, the use of VPN when using public Wi-Fi is low. To
increase adoption, understanding factors driving user decision to adopt a
VPN app is an important first step. This study is the first to achieve this
objective using discrete choice experiments (DCEs) to elicit individual
preferences of specific attributes of a VPN app. The experiments were
run in the United Kingdom (UK) and Japan (JP). We first interviewed
participants (15 UK, 17 JP) to identify common attributes of a VPN
app which they considered important. The results were used to design
and run a DCE in each country. Participants (149 UK, 94 JP) were
shown a series of two hypothetical VPN apps, varying in features, and
were asked to choose one which they preferred. Customer review rating,
followed by price of a VPN app, significantly affected the decision to
choose which VPN app to download and install. A change from a rating
of 3 to 4–5 stars increased the probability of choosing an app by 33%
in the UK and 14% in Japan. Unsurprisingly, price was a deterrent.
Recommendations by friends, source of product reviews, and the presence
of in-app ads also played a role but to a lesser extent. To actually use
a VPN app, participants considered Internet speed, connection stability,
battery level on mobile devices, and the presence of in-app ads as key
drivers. Participants in the UK and in Japan prioritized these attributes
differently, suggesting possible influences from cultural differences.

Keywords: Human factors in security · Virtual Private Network
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1 Introduction

VPN provides an encrypted channel for data transmission. It mitigates the pri-
vacy and security risks of user data when using public Wi-Fi such as traffic
eavesdropping ([5,22,23]) and side channel data leak [4]. Although these risks
can be mitigated by encrypting data at the application or at the network layer,
the reality today is not all apps, websites, and Wi-Fi access points perfectly
encrypt all data they transmit. Until that happens, encouraging users to use a
VPN app is sound approach.

More than 200 VPN apps are available on both Google Play and Apple App
Stores each1. However, VPN adoption for personal use and for security and pri-
vacy purpose is relatively low. The 2017 Norton Wi-Fi Risk Report examining
consumers’ public Wi-Fi practices showed that only 25% of 15,532 survey respon-
dents from 15 countries mentioned they used VPN [24] — which was worrying,
given that three-fourths of participants put their data at risk. More concerning is
that 80% of these participants also admitted having used public Wi-Fi for email
and online banking [24]. As the use of public Wi-Fi and cyber risks continues
to grow [1,4,5,22,23], understanding factors affecting the decisions to adopt a
VPN app is key to identifying suitable strategies to promote its uses.

Previous studies examining drivers for VPN adoption focused on the trans-
parency of VPN service [11], the awareness and trust of VPN [6], and the security
and privacy of the VPN apps [2,7,18,28]. However, none examined the effects
of a VPN app’s attributes on individuals decision to adopt it. Our study aimed
to bridge this gap in the knowledge. Specifically, we investigated the attributes
affecting the decisions to a) download and install an app — referred to as the
uptake hereafter — and b) actually use a VPN app.

We conducted semi-structured interviews with participants in the UK (15)
and Japan (17) to identify common attributes of a VPN app which they con-
sidered important for the adoption. The results were then used to design and
run DCEs, the quantitative method to elicit individual preferences to specific
attributes of a product by exploring the full landscape of potential choices, with
participants in the UK (149) and Japan (94). Our findings showed that several
attributes of a VPN app significantly affected the decisions to adopt it. However,
participants in the two countries prioritized these attributes differently and some
of these drivers stem from the herding attitude and resource preservation heuris-
tics. These insights would help VPN app providers to design a more desirable
VPN app and government agencies keen to promote online safety to develop a
more workable awareness campaign to promote the use of VPN.

In summary, our contributions are as followed. We investigated drivers for a
VPN app adoption in the UK and Japan, being the first to use DCEs. We showed
that several VPN app’s attributes affecting the decision to adopt an app, and
that preferences for these attributes were not always universal in nature and
that some of them stemmed from biases in decision-making.

1 As of May 2020.
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2 Related Work

2.1 Current State of VPN Uptake and Usage

Various sources reported different statistics of the current state of VPN uptake
and usage. Norton [17], a cyber security company, reported in 2016 that 16% of
people in the UK used a VPN when using public Wi-Fi. In 2017, the Norton Wi-
Fi Risk Report examining consumers’ public Wi-Fi practices showed that 25%
of 15,532 survey respondents from 15 countries (UK and JP included) mentioned
they used VPN [24]. Although the trend was upward, the 25% was relatively low,
given that three-fourths of these participants put their data at risk and that 80%
of them admitted having used public Wi-Fi for email and online banking [24].

Another survey in 2017, by YouGov [27], reported that 16% of British adults
used either a VPN or proxy server, mostly for accessing contents not available to
them locally (48%) but also for extra security (44%) and for extra privacy (37%).
From the standpoint of security and privacy of user data, the reported 16% was
fairly low. Published statistics for VPN usage in Japan were more difficult to
find. Nonetheless, VPNmentor [26] reported that Japan ranked amongst the
countries2 with the lowest use of VPN.

2.2 Factors Affecting VPN Uptake and Usage

Previous studies investigating drivers for VPN adoption for personal use are few.
Using desk research and an interview with a technical expert from the Dutch
National Cyber Security Centre, Ghaoui [6] identified obstacles that had led to
low adoption in the country including the lack of awareness of VPN, difficulties
in comparing VPN apps, and distrust of VPN providers. Similarly in Japan,
Kaspersky [10] reported in 2019 a lack of awareness of VPN in the country.
Of the 624 survey participants, 35% said they knew about VPN. The issue of
the difficulties in comparing VPN apps identified in the Netherlands [6] is also
likely to apply elsewhere. There are many VPN apps today. Comparing these
numerous apps is challenging even for someone with a technical background.

One possible reason for low VPN adoption may lie in the potential security
and privacy flaws of the apps themselves. A number of studies provided evidence
that many VPN apps were prone to several risks: de-anonymization attacks [2],
traffic leakage [11,18], insecure VPN tunnelling protocols and DNS traffic leakage
[7], VPN traffic de-encryption and Man-in-the-Middle attack [28], and lack of
transparency of VPN services [11]. However, ordinary users are unlikely to truly
understand these technical issues; hence, arguably, these issues may not affect
the decisions to adopt VPN.

Previous studies shed some light on possible reasons for the low VPN adop-
tion. However, none of them examined the attributes of a VPN app that could
influence the adoption. Our study aimed to address this gap.

2 Along with Australia, Poland, Canada, Netherlands, and France.
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3 Methodology

3.1 Background of Discrete Choice Experiment (DCE)

DCE is an attribute-based survey method for measuring utility (a level of satis-
faction) [19]. Many areas of study, from marketing to health care, use DCE but
fewer so in cyber security. A DCE is used to elicit individual preferences of spe-
cific attributes of a product or service. Hence, the DCE can yield several useful
insights such as guiding the design of a product or marketing strategies [21].

In a DCE, participants are asked to state their preferences for a hypothetical,
yet generally realistic product. This usually involves presenting them with a
series of hypothetical choice sets. Each choice set comprises of two (or more)
competing products (e.g., product A and B) having the same set of attributes
(e.g., price and customer review rating). However, the value of at least one (or
more) attributes vary (e.g., A is £0.99 and B is £1.99). Participants are asked to
choose the choice they prefer (e.g., A or B). The varying attributes’ value allows
us to observe how participants perceive the importance of each attribute, and
to identify key attributes affecting decision-making, accordingly.

The DCE, based on Lancaster’s economic theory of value [13], assumes that
participants derive utility from the underlying attributes of the product utility,
generally referred to as the main effects (Eq. 1) and participants select the choice
which maximizes their utility (Eq. 2) [19,20].

Uin = V (Xin, β) + εin (1)

Where Uin is the latent utility of choice i as perceived by the individual n;
V (Xin, β) is an explainable component, specified as a function of the attributes
of choice i; and a random (unexplainable) component εin is the unmeasured
variation in preferences which could be caused by factors such as unobserved
attributes, or measurement errors [19].

Participant n will choose choice i if it maximizes their utility among all j
alternatives included in choice set Cn. That is,

Uin > Ujn∀j �= i ∈ Cn (2)

Where Uin is the latent utility of choice i as perceived by individual n; and Ujn

is the latent utility of the alternative choice j as perceived by individual n.
Since εin and εjn, are unobservable and unmeasurable, it is not possible to

conclude exactly whether εin > εjn; hence, the choice outcome can only be
determined in terms of probability (Eq. 3) [15,19]. That is,

Pin = Pr(Uin > Ujn∀j �= i ∈ Cn) (3)

Where Pin is the probability of participant n selecting choice i; and Pr is the
probability of Uin > Ujn.

Designing a DCE involves several steps [8]. The first step is usually identifying
the key attributes and their values — hereafter referred to as attribute levels.
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There could be an infinite number of attributes and attribute levels. However,
not all of them are key in driving decision-making. Several techniques can help
to narrow them down such as using focus groups, or user interviews (used in this
study) [19]. Once the key attributes and attribute levels have been identified,
the next step is designing the choice sets and the user interface of the actual
experiment. When the experiment has been tested and finalized, participants
are recruited, data collection commences, and the choice analysis follows.

3.2 Experimental Design

Attributes and Attribute Levels Identification. We conducted user inter-
views to identify a common set of attributes and attribute levels of a VPN app
likely to or have influenced the decisions to adopt a VPN app.

Recruitment. In the UK, we advertised our study on noticeboards at public space
and via online media. In Japan, we advertised our study via student and staff
mailing lists and verbally in classrooms (we were only permitted to conduct the
study with students and staff). Eligible participants were restricted to residents
of the UK/Japan, age at least 18 years old, all of whom had a smartphone, and
used public Wi-Fi at least from time to time. A total of 32 participants (15 UK
and 17 JP) were recruited from mixed demographics (Appendix: Table 4). Each
participant in the UK was awarded a £10 gift voucher. In Japan, for two of the
institutions, each participant was awarded a ¥1000 gift voucher. Participants at
another institution, however, were recruited on a voluntary basis.

Interview Structure. We conducted a one-hour face-to-face semi-structured inter-
view with each participant. The questions set the scene by asking participants
about their use of public Wi-Fi and the risks they perceived, and their prior
experience with VPN and/or a VPN app. If they had never heard of or used
VPN before, we explained and demonstrated how it works. We then asked them
about attributes of a VPN app which would or have influence(d) them to down-
load and install and actually use it. Interview questions were the same for the
interviews in the UK and Japan. However, interviews in Japan was conducted
in Japanese. Interview sessions were audio-recorded and transcribed for data
analysis.

Analysis of User Interviews. We analyzed the transcriptions to identify common
attributes of a VPN app deemed by participants in each country as crucial. This
involved two steps. First, each transcription was reviewed manually and the
attributes of a VPN app which each participant said were important for the
uptake and the actual uses of the app were recorded. Since participants did not
always use the same terminology for the same attributes, we standardized the
attribute names and grouped them manually (where possible).

Next, for each country, we used Microsoft Power BI’s text analysis function
to analyse the frequency of each attribute i.e. how many participants considered
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Table 1. A summary of attributes and attribute levels tested

Uptake of a VPN app

Attribute UK JP

Price Free Free

£0.99/one-off ¥100/one-off

£4.99/month ¥500/one-off

¥1,000/month

App review rating Good (4–5 stars) Same as the UK

Moderate (3 stars)

Bad (1–2 stars)

No. of app downloads >100,000 =>1000 downloads

10,000–100,000 <1000 downloads

<10,000

User interface Professional-looking n/a

Amateur-looking

Recommended by friends Yes n/a

No

Source of app review n/a App store

Tech blog/Websites

Installation time n/a =>5 mins

<5 mins

In-app ads n/a Yes

No

Actual use of a VPN app

Attribute UK JP

No. of dropped connections/hr 1–2 Same as the UK

3–4

>4

Internet speed when using VPN 10–20% slower

21–30% slower

>30% slower

Battery level on mobile phone 75–100%

50–74%

25–49%

<25%

VPN initiation method Automatic Automatic

On-demand – via app On-demand

On-demand – via task bar

In-app ads n/a Yes

No
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the attributes to be important. Attributes which were mentioned by many par-
ticipants (minuptake: UK = 5, JP = 10; minactualuse: UK = 12, JP = 9) were
chosen to be tested in the DCEs. However, we also included the presence of the
in-app ads in the actual uses (of a VPN app) part of the experiment for Japan
despite not meeting the minimum frequency. The rationale was this attribute
was included in the uptake part of the experiment; hence, we wanted to test
whether the effect of this attribute persisted in the actual use of a VPN app.

To identify attribute levels, insights drawn from the analysis of the interview
transcriptions and desktop research were used. A summary of attributes and
attribute levels being tested in the DCEs is in Table 1.

Choice Set Design. The main objective of this step is to decide how many
combinations of attribute levels, i.e. choice sets, to be tested in the experiment.
In theory, all possible combinations of the attribute levels would be tested. How-
ever, doing so is impractical [12]; it would be too expensive and place too much of
a cognitive load on participants, likely resulting in poor data quality. To demon-
strate, the number of possible combinations of the attribute levels for the uptake
part was 108(= 33×22) for the UK experiment and 192(= 41×31×24) for Japan
experiment. Hence, in line with general practice, a subset of all possible choice
sets — known as an orthogonal fractional factorial design — was used.

For the Japan experiment which took place first, we considered three factors:
statistical power, cognitive load, and budget constraint. In principle, the more
choice sets and the higher the number of participants, the higher the statistical
power. However, the higher the number of choice sets, the greater the cognitive
load placed on participants; and the higher the number of participants, the
more expensive the experiment. Soft-testing took place to test the cognitive
workload of various numbers of choice sets with staff at the institution. The
36-choice set for each part of the experiment: the uptake and the actual uses
of the app, blocking into 4 versions, was concluded as a suitable design. In the
UK study, we considered the same factors and used the insights gained from
the previous design from the Japan study. However, we also took into account
the fact that participants would be members of the public; hence could be less
patient with the 36-choice sets design. The 8-choice set, blocking into 2 versions,
was chosen. The choice sets for both studies were selected randomly from all
possible combinations of choice sets using SAS JMP.

Data Collection.

Experiment Structure. We used LimeSurvey as a platform for our online experi-
ment. Before starting the experiment, we provided participants (on-screen) with
info about VPN and a short video clip of how it helped to mitigate the risks
of using public Wi-Fi (in English and in Japanese). The experiment consisted
of three parts. Part I set the scene by asking participants demographic ques-
tions, their usage and perceived risks of public Wi-Fi, and prior experience with
VPN. Part II and III were the actual choice experiment for the uptake and the
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actual uses of a VPN app, respectively. In each part, participants were presented
with a series of choice sets. Each choice set consisted of two competing hypo-
thetical VPN apps having the same set of attributes but with at least one (or
more) attribute level(s) different from each other. The user interface design was
localized for each country to make the experiment more engaging (Examples in
Fig. 1 (UK) and Fig. 2 (JP)). Participants were asked to choose the app they
preferred. No personal identifiable information (PII) was collected; hence data
were anonymous. We pilot tested the system before launching it.

[a] A choice set for the uptake of a VPN app

[b] A choice set for the actual uses of a VPN app

Fig. 1. An example of a choice set for the UK experiment

Recruitment. In the UK, we recruited participants via Prolific Academic. In
Japan, we were allowed to advertise our study via student and staff mailing lists
and verbally in classrooms, and put up flyers advertising our studies at one of the
participating institutes. In both countries, eligible participants were restricted to
individuals living in the UK/Japan, at least 18 years old, and used public Wi-Fi
at least from time to time. Each participant in the UK was awarded £3 (for a 15-
min experiment). In Japan, each participant at two participating institutions was
awarded a ¥1000 gift voucher (for a 1-hr experiment). Participants at another
institution, however, were recruited on a voluntary basis as monetary payments
was not allowed.

Data Cleansing and Analysis. Participant responses were refined to opti-
mize data quality. Incomplete records or records which failed the fatigue test
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[a] A choice set for the uptake of a VPN app

[b] A choice set for the actual uses of a VPN app

Fig. 2. An example of a choice set for Japan experiment

were removed. After data cleansing, we had 243 responses (149 UK, 94 JP) for
Part I of the experiment and 239 responses (148 UK, 91 JP) for Part II from
mixed demographic (Appendix: Table 5). Data were analyzed using SAS JMP
Choice Model suite. We analyzed the main effects of the choice outcome using
the likelihood ratio tests. Next, we used the Effect Marginal function to ana-
lyze the marginal probabilities and marginal utilities for each main effects. The
Probability Profiler function was used to compare choice probabilities among
potential combinations of attribute level3 and to identify a set of attribute levels
that would return maximized desirability i.e. the ideal VPN app that partici-
pants perceived as most desirable. Finally, the WTP function was used to esti-
mate participants’ Willingness to Pay for a VPN app given a change in certain
attribute values.

3.3 Ethics Consideration

We submitted the study design to the IRB of the institution in the UK. The
application covered both the UK and Japan study. We were granted permission
for the study provided that we: 1) informed participants about the study, 2)
3 Defined as exp (U)/(exp (U)+exp (Ub)) where U is the utility for the current settings

and Ub is the utility for the baseline settings; implies that the probability for the
baseline settings is 0.5 [21].
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explained the study to the participants and received consent from them prior
to data collection, 3) where PII was collected, complied with applicable data
protection laws, and 4) delete any PII upon the publication of the study. We
also obtained approval to run the study from the institutions in Japan.

4 Results

4.1 Attributes Affecting the VPN Uptake

Main Effects. The app review rating, a form of herding attitude describing
the tendency for people to follow others [3,14], exerted the most influence (UK:
(x2(2) = 564.98, p < 0.0001; JP: (x2(2) = 717.17, p < 0.0001)). Price followed
(UK: (x2(2) = 169.60, p < 0.0001); JP: (x2(3) = 607.94, p < 0.0001)). In the UK,
the decisions were also influenced by recommendation by friends (x2(1) = 87.85,
p < 0.0001) and the number of app downloads(x2(2) = 22.63, p < 0.0001) but to
a lesser extent than the app review rating and the price. However, user interface
of a VPN app did not significantly affect participants’ decisions (x2(1) = 0.12,
p > 0.05). In Japan, the presence of an in-app ads (x2(1) = 15.57, p < 0.0001),
source of app review rating (x2(1) = 15.01, p < 0.001), and the number of
downloads of the app (x2(1) = 10.40, p < 0.001) also played a significant role
but to a lesser extent than the app review rating and the price. Table 2 shows a
summary of the main effects on the uptake decisions.

Table 2. Main effects on the uptake decisions

Attribute UK (n = 149) JP (n = 94)

App review rating 564.98(2)*** 717.17(2)***

Price 169.60(2)*** 607.94(3)***

No. of downloads 22.63(2)*** 10.40(1)**

Interface (UI) 0.12(1) n/a

Friend recommendation 87.85(1)*** n/a

Source of app review n/a 15.01(1)**

In-app ads display n/a 15.57(1)***

Installation and setup time n/a 0.07(1)

() degree of freedom, ***, **, * significant at p < 0.0001, 0.001, 0.05

Effect Marginal. The marginal utility (MU) showed that participants pre-
ferred a free VPN app over a paid app (MU = 1.15 (UK), = 0.86 (JP)). All
other attribute levels being equal, the marginal probability (MP) of participants
choosing a free app was 0.65 (UK) and 0.48 (JP). Participants also preferred
an app with a good review rating over a moderate and bad rating (MU = 1.80
(UK), = 0.77 (JP)). The MP of any participant choosing an app with a good
review rating, all other attribute levels being equal, was 0.82 (UK) and 0.58
(JP). The MU and MP for all attributes are in Fig. 3 in the Appendix.
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Probability Profiler. Review rating and price were found most influential.

Review Rating. In the UK, all other attribute levels being equal, a change in
the app rating from moderate to good increased the probability of uptake by
0.33(= 0.83 − 0.50 probability of choosing the UK baseline app4). A downward
change to a bad review, however, reduced the probability by 0.40(= 0.10−0.50).
Similarly, in Japan, a change from moderate to good increased the probability
of uptake by 0.14(= 0.64 − 0.50 probability of choosing the baseline app5). A
downward change to a bad review reduces the probability by 0.26(= 0.50−0.24).
Again, the results underline the importance of the herding attitude in security
decisions. Our participants followed the crowd too when deciding whether to
download and install a VPN app, just like many ordinary decisions in life [3].

Price. An increase in price reduced the probability of uptake in a linear manner.
In the UK, introducing a £0.99 fee to a baseline free app reduced the probability
by 0.18(= 0.32 − 0.50). A more expensive option of £4.99/month drove the
probability down by 0.44(= 0.06 − 0.50). In Japan, likewise, the probability was
reduced by 0.12(= 0.38 − 0.50), 0.27(= 0.23 − 0.50), and 0.35(= 0.15 − 0.50) if
charging ¥100/one off, ¥500/one off, and ¥1000/month.

Willingness-to-Pay (WTP). Even though price was a deterrent, participants
were willing to make a trade-off and pay for a VPN app if some attribute levels
were to change. All other attributes levels of a baseline app being equal, partic-
ipants in the UK and Japan were willing to pay £3.05 (SE = 0.44) and ¥343
(SE = 34.00) if the baseline free app with moderate rating had a good review
rating. The UK participants were also willing to pay £2.05 (SE = 0.35) if the
baseline app was recommended by friends, and pay £1.19 (SE = 0.46) if the
baseline free app (having less than 10K downloads) had a number of downloads
between 10K and 100K. Similarly, participants in Japan were willing to pay
¥91 (SE = 26.60) if the baseline free app (having less than 1K downloads) had
more than 1K downloads. However, they were not willing to pay for an app in
order to remove in-app ads (WTP = −¥106.19, SE = 25.98), suggesting that
participants in Japan would rather download and install a free VPN app with
ads.

Maximized Desirability. The maximized desirability calculation showed some
similarities in the ideal sets of attribute levels that participants in both countries
viewed as most desirable. In the UK, the ideal attribute set (Desirability =
0.80 (on a scale of 0 to 1), Utility = 3.80 (min = 3.12, max = 4.48)) was
observed in a free VPN app with a good review, recommended by friends, 10K–
100K downloads, and with an amateur look and feel. In Japan, the ideal set
4 Set as a free app (£0), moderate app review rating, not referred by friends, had
<10, 000 download, and had an amateur-looking interface.

5 Set as a free app (¥0), moderate app review rating (based on info from App store),
had <1, 000 downloads, had in-app ads, and required <5 mins installation.
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(Desirability = 0.80, Utility = 1.88 (min = 1.72, max = 2.04)) was also a free
VPN app with a good review rating (based on the info on app store), but also
with an installation time of less than 5 mins, a greater than 1 K download, and
with the presence of in-app ads.

4.2 Attributes Affecting the Actual Uses of a VPN App

Main Effects. Participants in the UK and in Japan prioritized the attributes
affecting the actual uses of a VPN app differently. In the UK, Internet speed
when using VPN played the most significant role (x2(2) = 262.96, p < 0.0001),
followed by battery level on mobile devices at the time of wishing to use VPN
(x2(3) = 126.05, p < 0.0001). Connection stability (i.e. the number of dropped
connections/hour) also significantly influenced the decisions but to a lesser extent
(x2(2) = 32.44, p < 0.0001). However, in Japan, connection stability played the
most significant role (x2(2) = 140.82, p < 0.0001), followed by battery level on
mobile devices (x2(3) = 132.56, p < 0.0001). The decision to use a VPN was
also affected by whether the app displayed an ad (x2(2) = 81.14, p < 0.0001).
Internet speed when using VPN, however, did not affect the decision to use a
VPN app as much as it did to the UK participants (x2(2) = 22.47, p < 0.0001).

In both countries, the method to initiate a VPN app — whether automatic or
manual — did not significantly affect the decision to use the app (UK: x2(2) =
1.29, p > 0.05; JP: (x2(1) = 1.52, p > 0.05)). This suggested that the endowment
effect — the tendency for people to generally value something more once they
own it [9] — may not apply to a VPN app. Table 3 provides a summary of the
main effects on the decisions to actually use a VPN app.

Table 3. Main effects on the decisions to use a VPN app

Attribute UK (n = 148) JP (n = 91)

Battery level 126.05(3)*** 132.56(3)***

Internet speed when using VPN 262.96(2)*** 22.47(2)***

Connection stability 32.44(2)*** 140.82(2)***

Method to initiate VPN 1.29(2) 1.52(1)

In-app ads display n/a 81.14 (1)***
() degree of freedom, ***, **, * significant at p < 0.0001, 0.001, 0.05

Effect Marginal. In the UK, all other attribute levels being equal, participants
preferred a 10–20% decrease in Internet speed when using VPN (MU = 0.94,
MP = 0.65), rather than the two other slower attribute levels. For mobile phone
battery level at the time of wishing to use VPN, the 75–100% level was the most
preferred choice (MU = 0.70, MP = 0.43), all other attribute levels being
equal. The battery level of less than 25% was the least preferred option (MU =
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−0.93, MP = 0.08), suggesting influence from resource preservation heuristic. In
Japan, all other attribute levels being equal, participants preferred 1–2 dropped
connections/hour when using VPN, the lowest among the three attribute levels
(MU = 0.35, MP = 0.46). Participants also preferred no in-app ads displayed
when using a VPN app (MU = 0.20, MP = 0.60). Similar to the UK, the
75–100% battery level was the most preferred choice (MU = 0.35, MP = 0.34)
whilst the 25% battery level was the least preferred choice (MU = −0.46, MP =
0.15), suggesting that resource preservation heuristic was universal in nature.
The MU and MP for all attributes are in Fig. 4 in the Appendix.

Probability Profiler. Statistically significant results from the Internet speed,
connection stability, and battery levels were observed.

Internet Speed. In the UK, where participants were most concerned about the
Internet speed, the probability of using the app reduced by 0.12(= 0.28 − 0.50)
and 0.36(= 0.14 − 0.50) if the speed was reduced from the baseline of 10–20%
slower to 21–30% slower and to >30% slower, respectively. This suggests that
stabilising Internet speed when VPN is in use is needed.

Connection Stability. In Japan, where participants were most concerned about
VPN connection stability, the probability of using the app reduced by 0.07(=
0.43−0.50) if the number of dropped connections/hr changed from 3–4 times/hr
to >4 times/hr. However, if it changed to only 1–2 times/hr, the probability of
using the app increased by 0.09(= 0.59 − 0.50), suggesting the need to minimise
interruptions to the service to encourage users to use a VPN app.

Battery Level on Mobile Device. All other attribute levels being equal, the prob-
ability of participants using a VPN app decreased as the battery level decreased
in both countries, but to a lesser extent in Japan. In the UK, the probabil-
ity reduced by 0.10 (= 0.40 − 0.50 probability of choosing the baseline app6),
0.18(= 0.32 − 0.50), and 0.34(= 0.16 − 0.50) if the battery level was to reduce
from 75–100% to 50–74%, 25–49%, and <25%, respectively. In Japan, when the
battery level was depleted from 75%–100% to 50–75%, and 25–50%, the proba-
bility of using a VPN app decreased by 0.07(= 0.43−0.50 probability of choosing
the baseline app7). If the battery was less than 25%, the probability of using the
app decreased by 0.19(= 0.31−0.50). One possible explanation for this difference
is that carrying power banks is more common in Japan. This finding supports
evidence from previous studies showing how the resource preservation heuristic
affects risk-mitigating decisions; users were also reluctant to update software due
to fear of draining their mobile phone battery [25].
6 Set as 3–4 dropped connections/hr, 10–20% slower in Internet speed (when using

VPN), manual VPN initiation, and there was 75–100% battery level left on a user’s
mobile device.

7 Set as 3–4 dropped connections/hr, 10–20% slower in Internet speed (when using
VPN), has in-app ads, manual VPN initiation, and there was 75–100% battery level
on a user’s mobile.



236 N. Sombatruang et al.

Maximized Desirability. The ideal sets of attribute levels that participants
in both countries viewed as most desirable were fairly similar. In the UK, the
ideal set (Desirability = 1.00 (on a scale of 0 to 1), Utility = 1.99 (min = 1.70,
max = 2.27)) was observed in a VPN app having 1–2 dropped connections/hr,
being 10–20% slower in Internet speed (compared to without VPN), connecting
automatically when using public Wi-Fi, and with participants having 75–100%
battery level on mobile devices at the time of wishing to use VPN. The same
set of levels, plus having no in-app ads, was found to be most desirable in Japan
(Desirability = 0.91, Utility = 1.03 (min = 0.90, max = 1.17)).

5 Discussion

Our study provides three key insights. First, several attributes of a VPN app
significantly affected the decisions to download and install and to actually use
the app. Second, preferences for some of these attributes were driven by biases in
decision-making, specifically the herding attitude and the resource preservation
heuristic. Third, the preferences for and the priority given to these attributes
were not always universal. These insights offer a number of potential applications
for VPN providers, public policy makers, and cyber security research community.

5.1 VPN App Providers

First, although price significantly affected the app uptake decisions, contrary to
conventional wisdom, it was not the most important factor. Rather, the review
rating of the app was. Participants were willing to pay for a free VPN app if
the review rating was 4–5 stars. This finding suggests that VPN app providers
should address customer feedback promptly to increase/maintain the review
rating. Next, the findings that the installation and setup time, and the look
and feel of the app did not significantly affect the uptake decisions should be
welcoming to VPN app providers. From an economics standpoint, app developers
can spend less time on perfecting these attributes, reducing the overall costs of
development. Moreover, for Japan in particular, the findings that participants
were not willing to pay to remove in-app ads would help to guide VPN providers
to plan pricing more carefully. Hence, the pay-to-remove-ads strategy, as seen
in many apps today, is unlikely to be attractive for VPN users in Japan. VPN
providers can also use the insights to develop a VPN app that is attractive
to use and drive users to use it as a habit. These include several proposals.
First, a VPN app should consume minimal battery power because the battery
preservation heuristic significantly deter the desire to use the app. Minimising
the number of dropped connections and stabilising Internet speed when VPN is
being used are other attributes that VPN providers should consider improving.

5.2 Public Policy Makers

Public policy makers can use the insights from the study to develop attractive
awareness campaigns to promote VPN adoption. An awareness campaign which



Attributes Affecting User Decision to Adopt a VPN App 237

utilizes the power of social influence to change behavior could be more effective
than just giving out general messages about VPN e.g., showing how many people
have already downloaded VPN apps could potentially attract interest from the
public. Studies in behavioral economics (e.g., [16]) have shown that this ‘social
nudging’ technique works, albeit with different products/services.

5.3 Cyber Security Research Community

The findings that participants choose a VPN app based on non-security/privacy
related attributes and that preferences for some of these attributes were driven
by biases are beneficial for the study of security decisions. It provides another
piece of evidence that security decisions are not that different from other deci-
sions people make in life. However, evidence supporting this notion is still fairly
limited; hence, call for cyber security research community to investigate this
under examined area further.

6 Limitations and Future Work

Our study has limitations. First, there could be other attributes of a VPN affect-
ing the decisions to adopt a VPN app but were not tested in our DCEs. However,
we believe that our approach to attribute identification was sufficiently rigorous
and that our guided questions and the interview probing techniques adequately
addressed these issues. Preferences for VPN attributes could also be driven by
the subject effects — factors pertaining to individuals e.g., gender, age, perceived
risks of public Wi-Fi; we seek to explore them in details in future work. Next, in
the choice experiment, despite providing clear instructions and adequate infor-
mation about VPN, and using engaging experiment design, some participants
may not have paid full attention. However, our pilot tests and fatigue tests were
designed to detect these potential pitfalls.

There were also uncommon threats to the external validity of the results.
Our evidence were from the UK and Japan; both are developed economies with
good Internet infrastructure. Users or potential users of a VPN app in other
countries may have different preferences e.g., price may be the most critical
factor in developing economies. Next, in Japan, participants were recruited from
participating institutions only. Their knowledge of and experience with VPN and
cyber security in general were likely to be higher than that of the general public.
Recruiting more participants and from a diverse sample pool would increase
statistical power and the external validity of the findings.

Future research interested in VPN uptake would also benefit from analysing
comments on app stores and identify a VPN app’s attributes needing improve-
ment. Adapting and improving the DCE method we used such as investigating
factors affecting other security tools uptake and using real products instead of
hypothetical ones are prime candidate. Finally, implementing a platform to help
potential users to compare attributes of the many VPN apps in the market would
be beneficial. In our study, participants were able to easily compare between the
two competing VPN apps. However, it is not easy for a user to do that in reality.
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7 Conclusion

We investigated attributes affecting user decision to adopt a VPN app, a tool
which helps to mitigate the privacy and security risks when using unsecured
networks such as public Wi-Fi. The novelty of this study lies in it being the
first to examine the attributes of a VPN using DCEs and drawing cross-cultural
evidence from the UK and Japan. Our findings showed that various attributes
of a VPN app can be designed to drive the uptake and the actual usage of the
app. The latter, in particular, is a difficult challenge. Asking people to form
a new habit is hard but we showed that — with the right incentives — it is
not entirely hopeless. We also showed that preferences for and priorities given
to certain VPN app’s attributes are not universal, suggesting that a customized
VPN app for different markets would be more favourable than the one-size-fit-all
app, mostly seen in the app store today. Moreover, we provided another evidence
that security decisions — in the VPN adoption context — were affected by biases
commonly observed in decisions-making in general too.
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A Appendix

Table 4. Demographic of participants in the interviews

Demographic Country

UK JP

Gender n % n %

Female 8 53 3 18

Male 7 47 14 82

Total 15 100 17 100

Education n % n %

A Level or vocational training 4 27 1 6

Bachelor’s degree 5 33 10 59

Postgraduate’s degree 6 40 6 35

Total 15 100 17 100

Age n % n %

18–25 8 53 9 53

26–35 3 20 4 24

36–45 3 20 2 12

56–65 1 7 2 12

Total 15 100 17 100
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Table 5. Demographic of participants in the DCE

Demographic Country

UK JP

Gender n % n %

Female 80 54 9 10

Male 67 45 83 88

Prefer not to say 2 1 2 2

Total 149 100 94 100

Education n % n %

GCSE Level (or equivalent) 13 9 nil nil

A Level (or equivalent) 34 23 5 5

Diploma/vocational training 22 15 1 1

Bachelor’s degree 60 40 44 47

Postgraduate’s degree 20 13 44 47

Total 149 100 94 100

Age n % n %

18–25 41 28 65 69

26–35 50 34 18 19

36–45 37 25 8 9

46–55 14 9 3 3

56–65 6 4 nil nil

66+ 1 1 nil nil

Total 149 100 94 100

Employment n % n %

Not working - Fulltime students 19 13 49 52

Not working - others 16 11 2 2

Not working - permanently sick/disable 6 4 nil nil

Working - full time 82 55 25 27

Working - part time 19 13 18 19

Total 149 100 94 100

Income n % n %

Up to £12,500 87 58 nil nil

£12,501 to £50,000 12 8 nil nil

£50,001 to £150,000 50 34 nil nil

Under ¥1,950,000 nil nil 66 70

¥1,950,000 to ¥3,300,000 nil nil 5 5

¥3,300,000 to ¥6,950,000 nil nil 16 17

¥6,950,000 to ¥9,000,000 nil nil 4 4

¥9,000,000 to ¥18,000,000 nil nil 3 3

Total 149 100 94 100
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(a) Main effect marginal – UK (b) Main effect marginal – JP

Fig. 3. The main effects’ marginal probability and utility for the uptake decisions

(a) Main effect marginal – UK (b) Main effect marginal – JP

Fig. 4. The main effects’ marginal probability and utility for the decisions to use a
VPN app
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Abstract. The Transport Layer Security (TLS) 1.3 protocol supports
a fast zero round-trip time (0-RTT) session resumption mechanism,
enabling clients to send data in their first flight of messages. This pro-
tocol has been designed with Web infrastructure in mind, and requires
these first messages to not change any state on the server side, as it
is susceptible to replay attacks. This is disastrous for common IoT sce-
narios, where sensors often transmit state-changing data to servers. As
bandwidth is a huge concern in the IoT, the field stands to benefit signif-
icantly from an efficient session resumption protocol that does not suffer
from these limitations. Building on the observation that in IoT scenarios
the set of clients is often bounded and fairly static, we propose rTLS
(ratchet TLS), an efficient 0-RTT session resumption protocol that dra-
matically decreases bandwidth overhead, while adding forward secrecy
and break-in resilience, and is not susceptible against replay attacks.

Keywords: Network · Security · IoT · IIoT · TLS · Protocol

1 Introduction

There are many examples of well-established communication protocols that are
able to satisfy contextually-defined requirements and are in use in modern tech-
nology. Arguably the most well-known example is the TLS protocol [16]. This
protocol is widely used in today’s Internet, with Web security as its main focus.
Recently, this protocol has been gaining traction in the Internet of Things (IoT)
domain as well. To better suit the heterogeneous needs present in this domain,
new extensions of the TLS protocol are needed, specifically to enable extremely
lightweight devices to partake in TLS connections as well.

A typical TLS handshake can require anywhere between 1 and 4 KB of
traffic. This is a large amount of traffic overhead for lightweight devices running
on battery power, where powering a wireless radio is very costly. Therefore,
there is a need to reduce this handshake overhead as much as possible. To aid
c© Springer Nature Switzerland AG 2020
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in reducing bandwidth and latency, TLS 1.3 features a new session resumption
protocol capable of transmitting application data already in the first flight of
messages. This allows users to quickly reopen a session without having to go
through the expensive handshake again. Unfortunately, this resumption protocol
is only marginally useful for IoT applications, as it does not allow for data that
might change server-sided state, as a result of its weakness against replay attacks.

A second motivator for reducing traffic overhead is that the financial costs
of sending this data might become unbearable. For example, it is expected that
with 5G Low-Power Wide Area Networks (LPWAN) services such as Long Term
Evolution - Machine (communication) (LTE-M) and Narrow Band Internet of
Things (NB-IoT), network providers will charge users based on data usage [2,9,
21]. Moreover, if the cost of setting up a secure connection is tens of times the
cost of the payload itself, users might opt not to secure it at all, or implement
their own cryptographic protocol, with associated risks.

In a standard TLS setup, servers are not likely to keep state on a client in
between sessions, and the protocol is designed with that assumption in mind. In
an IoT setting, however, the set of clients is fairly static, and often even known
a priori, or traceable through some key infrastructure. Keeping state on these
clients between connections can help in reducing the handshake overhead, but
this is not yet utilized in TLS 1.3. There is thus a pressing need for IoT-focused
TLS extensions that enable secure yet efficient communication with lightweight
devices.

In this work, we introduce rTLS, a TLS extension that can authenticate
two endpoints and set up a secure connection with minimal additional over-
head, given that the client and server have initiated a session in the past. In
particular, we introduce an extension to TLS 1.3 that changes the 0-RTT ses-
sion resumption protocol, reducing overhead compared to the standard protocol,
while adding new security features including replay protection, forward secrecy,
and break-in protection. We build the protocol on the assumption that servers
can store state on clients, with the IoT in mind. We provide equations on the
lower bound for traffic overhead of any TLS resumption protocol as well as our
proposed extension, and compare it to overhead observed from the OpenSSL [13]
implementation of TLS 1.3. We also provide estimations for storage overhead for
both client and server.

The remainder of this paper is organized as follows: In Sect. 2 we briefly dis-
cuss the foundations necessary to understand our proposed extension. In Sect. 5
we discuss related work on lightweight protocols and other TLS extensions. Then,
in Sect. 3 we explain our extension in detail. After that, we evaluate the storage
and transmission overhead as well as the security properties in Sect. 4, after
which we conclude this work in Sect. 6

2 Preliminaries

This work proposes an improvement of session resumption for the TLS 1.3 proto-
col, building on Key Derivation Function (KDF)-chains, described in the double
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ratchet protocol description in the Signal documentation [14]. In this section, we
briefly discuss the essentials needed to understand our proposed solution.

2.1 TLS 1.3

The TLS 1.3 protocol [16] negotiates a secure communication channel (a session)
between two parties, typically referred to as client and server. In the most typi-
cal scenario, one-way authentication is provided, that is, the server authenticates
itself to the client, building on the certificate authority paradigm for key distri-
bution. The protocol also supports session resumption, allowing users to more
quickly renegotiate a session, leveraging state data from past sessions between
those two users. In this section, we only briefly discuss necessary elements of the
protocol. For a more in-depth discussion, we refer to the standard [16].

In order to speed up session negotiation, TLS 1.3 provides several improve-
ments over its predecessor, TLS 1.2 [17]. One of the major improvement points
is the introduction of 0 Round Trip Time session resumption, or 0-RTT. This
allows clients to send application data already in their first message to the server
when initiating a session resumption. In the standard, this comes with the caveat
that this so-called early data must be idempotent; it should not result in state
changes. This is due to 0-RTT handshakes being weak against replay attacks.

The 0-RTT key data is transmitted to the client in a NewSessionTicket
message. The server bundles up necessary data for it to continue the session later
on, along with a Pre-Shared Key (PSK). The standard describes a structure for
NewSessionTicket messages, but not for the tickets which these encapsulate,
essentially leaving room for a variety of implementations from e.g. databases
with lookup keys to self-encrypted and authenticated messages. In this work, we
assume the mechanism first explained in RFC 5077 [10], a solution optimized
for the Web, and which requires no server-side state variables on closed sessions.
With this approach, the server encrypts the necessary state variables with a
secret key, before handing them over to the client. Upon session resumption,
the client sends over this encrypted bundle again, and these variables are then
decrypted and in turn, can be used to decrypt the early data.

2.2 Double Ratchet Algorithm

The Double Ratchet Algorithm [14] is a cryptographic protocol enabling highly
secure, asymmetric message exchange. Originally developed for Signal [20], it
is now also used in WhatsApp [22]. It has received significant cryptographic
attention and has been formally verified [5].

At the heart of this protocol lies a KDF-chain, which is a feedback loop where
part of its output is fed back into the function as input for the next iteration,
while also providing key material for encrypting messages. This creates a ratchet-
like construction, because of the one-way nature of the KDF function; new keys
can be generated constantly, while one can never retrieve old keys. Therefore, it is
also common to refer to this construction as a ratchet. These properties provide
ratchets with protection against replay attacks as well as forward secrecy.
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A double ratchet is a setup where one “outer” ratchet and one or more
“inner” ratchets work together to provide stronger security properties. The outer
ratchet uses external entropy from a Diffie-Hellman (DH) handshake as input.
When the outer ratchet is spun (i.e. its KDF function is executed), it generates
new input keys for its inner ratchets, thereby resetting them, and providing
post-compromise, or break-in, protection. When only the inner ratchet is spun,
it generates encryption keys for messages, and uses its own output as input for
the next inner KDF execution. The outer ratchet is often called the DH ratchet,
while the inner ratchets are called symmetric ratchets.

In the Double Ratchet Algorithm, both parties maintain one DH ratchet and
two symmetric ratchets, for outgoing respectively incoming messages. In our
work, we use only one symmetric ratchet, as only the client will ever initiate
a connection, and the client will thus only need a ratchet for sending, while
the server only needs one for receiving. For more details on the double ratchet
algorithm, we refer the reader to [14].

3 ratchet TLS (rTLS)

In this section we describe our proposed extension in detail. Note that it is
designed with the goal of making maximal use of existing extensions and utilities
available in the TLS suite, and requiring only a minimal amount of change, to
increase ease of verification and implementation.

This extension uses a Symmetric Ratchet mechanism to generate the keys
involved in session resumption. Additionally, it uses standard TLS mechanisms to
provide an outer DH ratchet, providing forward secrecy and break-in protection.
The original TLS specification leaves room to enable this elegantly by allowing
us to transmit relevant data as a PSK. Then, we can make use of the existing
psk key exchange modes extension included in the RFC [16], by specifying a
custom exchange mode for ratcheting to let the server know that we want to use
this mode for session resumption. As we will see in the following sub-sections,
this leads to a minimal number of changes in the protocol itself.

In the remainder of this section, we will first explore the differences between
standard TLS handshakes and ratchet-mode handshakes in Sects. 3.1 and 3.2,
after which we explain the protocol setup and operation in detail in Sect. 3.3.

3.1 Initial handshake

Figure 1a depicts the communication pattern of a typical initial handshake for
a TLS session making use of our extension. To improve ease of comparison
with the RFC [16], we have adopted the same syntax and included the same
common extensions. In fact, the communication pattern of this handshake is
indistinguishable from a standard TLS handshake. However, we further extend
PSK-related extensions to achieve our goals. We denote those elements in the
communication pattern that are relevant to this extension in blue.
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Fig. 1. Figure 1a and 1b depict the initial respectively resumption handshake commu-
nication patterns. + denotes an extension, * denotes an optional or situation-dependent
component while {} and [] denote encryption with a derivation of the handshake or
application secret, respectively. Modifications from the original handshakes are printed
in blue. (Color figure online)

The inclusion of the psk key exchange modes extension in the first flight of
messages signals to the server that the client wants to obtain a session ticket. To
create our desired ratchet construction, we need to know what symmetric ciphers
should be used during resumption, and also agree on a KDF. In principle, any
secure cipher and KDF can be used for this, however, in an effort to keep the
number of required protocol changes to a minimum, we reuse the TLS cipher-
suite agreed upon by the client and server, since this already includes apt choices
for the required primitives while also guaranteeing that these are supported by
the client. Note that the choice of cipher-suite is only definite after the server has
replied with its own ServerHello and key share messages. The DH secret key
that is established through the key share elements is used to derive all secrets
used in TLS, including the PSK resumption secret. This means that whenever
the key share extension is included, the subsequently generated PSK resump-
tion secret is derived from a fresh entropy source. The psk key exchange modes
extension list of a byte-sized enumerated type, indicating a PSK type. The cur-
rently standardized values are 0 for a static PSK and 1 for PSK with (EC)DHE
key establishment. We add another value 3 indicating a PSK with key ratchet-
ing. This list of types indicates to the server which PSK types are supported by
the client.

After the initial handshake is done, the server sends a NewSessionTicket
to the client. While it is allowed for a server to send multiple of these tickets
in one session, this is not necessary: session resumption can add entropy when
needed and thus provide fresh resumption tickets at a later point in time. Table 2
contains all fields in this structure, as specified in the TLS specification.
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Table 1. Layout of the NewSessionTicket structure.

Type Field name Description

uint 32 ticket lifetime ticket lifetime in seconds

uint 32 ticket age add used to obscure ticket age

opaque ticket nonce (max. 255 bytes) nonce

opaque ticket (max. 232 bytes) ticket itself

Extension extensions (max. 232 bytes ) extensions

The ticket field contains an identifier that the client can later send to the
server allowing it to identify the connection and access corresponding stored
state. It does not contain an encryption key for resumption. Instead, a resump-
tion master secret is derived as described in the standard: from the ticket nonce
and master secret. The extension field must also contain the early data indication
extension indicating that the PSK may be used for early data.

3.2 Session Resumption

Upon resumption of a session using the ratchet PSK mode, the communication
pattern once again looks identical to that of a standard TLS 0-RTT session
resumption, as can be seen in Figure 1b. The blue text indicates fields that
deviate in usage or content in this mode.

Firstly, the client chooses whether to include a key share extension. This is
not strictly necessary for every resumption, but depends on the desired gran-
ularity of break-in resilience; including a DH handshake in every resumption
handshake implies that break-in recovery occurs after every resumption, while
including these every n resumption handshakes implies break-in recovery after
every n handshakes and so on. If the server receives a key share from the client
during resumption, it includes a key share extension in its response carrying the
necessary DH parameters, otherwise it does not need to include this extension.

The client also includes a psk key exchange modes extension to indicate
which PSK mode is used for the pre shared key field. This is mandated by the
standard, and the content of this field is identical to the same field in the initial
handshake.

Further, the client now includes a pre shared key field containing neces-
sary data for the server to identify the connection as well as the ratchet index
currently used by the client. This value is used by the server to determine if it
missed any previous connection attempts, and if so, how many times it should
ratchet its symmetric ratchet before decrypting the received early data. The
pre shared key extension consists of two components: a list of PskIdentity
and a list of PskBinderEntry structures. The latter is a list of Hash-Based Mes-
sage Authentication Code (HMAC) values that authenticate the ClientHello
up-to-and-including the list of PskIdentity entries, while the former consists
of an identity and obfuscated ticket age value. The ticket age is further
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described in the standard and not important to this work, so we refrain from
discussing it in detail. The identity value is defined as an opaque value in the
standard, allowing us to populate it with a connection ID received from the
server during the initial handshake (4 bytes), and the 1-byte ratchet index indi-
cating the index of the symmetric KDF chain (after having derived the latest
resumption master secret).

Every time the client initiates a resumption handshake with the server, the
resumption master secret is ratcheted, going one step further down the KDF
chain. From the ratcheted resumption master secret an early traffic secret is
derived, which is used to encrypt the early application data sent by the client.
Once the server has received a ClientHello with the necessary extensions for a
ratchet-mode resumption, it can find the correct ratchet based on the connection
ID obtained from the received identity field. It then spins this ratchet until
the number of spins equals the ratchet index in the identity field.

When the resumption handshake includes the key share extension, i.e. it
initiates a DH handshake, the resulting shared secret is used to derive all sub-
sequent secrets for a TLS session, as specified in its key schedule [16]. Notably,
when a resumption secret already exists, the newly derived master secret depends
on both the existing resumption secret and the DH shared secret. From this
new master secret a new resumption master secret is then generated for use in
future resumptions, and the ratchet index must be reset to 0. This construction
ensures that an adversary cannot attack the protocol by replacing the client’s
shared key field with its own parameters, as the adversary will not have access
to the existing resumption and therefore cannot derive a correct next resumption
secret.

We only reserve 1 byte for the ratchet index because we expect it to be reset
to 0 well before 255 communication attempts have been made. Nevertheless, we
add the requirement that if the ratchet index is 255, both parties must delete
their PSK and negotiate a new PSK after a standard handshake.

3.3 Double Ratchet Setup and Operation

Next, we summarize the extra steps needed for both the initial- and resumption
handshakes in a step-by-step fashion.

Initial Handshake. The initial handshake is largely unmodified, but some
special steps have to be taken by both the client and the server.

1. ID generation: The server generates a globally unique connection ID. This
ID is transmitted to the client in the NewSessionTicket;

2. Symmetric ratchet initialization: The client and server initialize the
ratchet index variable to 0. The symmetric ratchet key is the resumption
master secret.

3. Persistent state storage: Both client and server store their state variables
for anticipated session resumptions;
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Resumption. Below we describe the extra steps needed for a typical session
resumption. A DH exchange may take place, but we do not consider that as an
extra step – the TLS standard already accommodates for this.

Client

1. Ratchet step: The client ratchets its symmetric ratchet before the resump-
tion master secret is used to derive any other secret. The early-data secret is
thus derived from the ratcheted master secret;

2. PSK exchange: During the handshake, the client sends its ratchet index
and connection ID to the server, as part of the pre shared key;

Server

1. Access state: The server receives a 0-RTT resumption, and after having
verified the pre shared key’s HMAC field, finds the relevant state variables
using the received connection ID as a key (e.g. in a hash map);

2. Replay condition: The server ensures that is < ic where is and ic are the
server respectively received client ratchet indices for this connection.

3. Ratchet step: The server spins the symmetric ratchet ic − is times where
ic is the received ratchet index in pre shared key and is its own ratchet
index. The early data encryption key is derived from the new state of the
sym. ratchet;

Both

1. Reset ratchet index: If a DH exchange was performed during the resump-
tion handshake, then the client and server reset their ratchet index to 0.

2. Persistent state storage: Both the client and server store their state vari-
ables for future session resumptions;

3.4 Ratchet State Variables

This extension expects both the client and server to maintain some state for
each connection. This state consists of the following data:

1. Mapping: a connection ID → ratchet mapping, to identify which ratchet
belongs to which connection;

2. Resumption Master Secret: This is used to derive the keys used for
encryption, upon next resumption (32 bytes);

3. Ratchet Index: To indicate the number of ratchet steps that occured since
the last DH exchange (1 byte);

4 Evaluation

4.1 Security Evaluation

In this section, we discuss the security properties of the proposed protocol exten-
sion. We only discuss the resumption handshake, as the initial handshake is left
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untouched by this extension. Firstly, note that because the NewSessionTicket
message gets transmitted by the server as application data after the initial hand-
shake, it is by definition authenticated, verified, and confidential. Since we require
both the client and server to securely store their state variables, we can further
assume that any keys derived from the resumption master secret can only be
computed by the client and server.

Replay Attacks. We divide replay scenarios into two groups: those that occur
within one DH handshake period, and those that span across at least one DH
handshake. In the former, when an attacker replays a session resumption hand-
shake m without any modifications, the server will reject m and not process
the associated early data, as the replay condition is < ic will be violated. ci
cannot be forged either, as it is protected by an HMAC and we assume secu-
rity of the cryptographic hash function, and secrecy of the HMAC keys. In the
second group, an attacker records n different resumption message m0, . . . ,mn−1

where n is the DH handshake frequency. Let c0, . . . , cn−1 be the corresponding
ratchet indices. Now, the attacker is certain that at least one DH handshake has
been performed since m0 was sent, and the next message mn will have ratchet
index cn = c0. As the ratchet indices are equal, one could attempt to bypass
the replay condition check. However, the resumption master keys for m0 and m1

are different, and therefore the HMAC keys used for the PSK binder fields are
different. Thus, when an attacker sends m0 to a server after n resumptions have
passed, the HMAC validation will fail before ic gets checked, and m0 will thus
be rejected.

Forward Secrecy. The 0-RTT resumption also enjoys forward secrecy, as we
only store the last resumption key. After every attempt, a key is derived using
a cryptographic hash function, so it is not feasible for an adversary to compute
past keys based on a compromised resumption key.

Break-in Protection. Additionally, the protocol enjoys break-in protection,
proportional to the frequency of DH exchanges in resumption handshakes. These
exchanges effectively function as the DH ratchet in the Signal protocol. the
shared secret resulting from such a DH exchange is used as key input for the
key derivation function, adding new entropy to it. This means that if an adver-
sary compromises one of the endpoints at some moment in time, and extracts
resumption keys from it, they will not be able to decrypt any messages after the
next DH exchange has occurred; they do not possess the required shared secret.

4.2 Traffic Overhead Estimation

Initial Handshake. The number of bytes transmitted by each side during the
initial handshake is unchanged – the one addition to the protocol just defines
an extra value for an enumerated field (psk key exchange modes). After the
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Table 2. The message structure and
size of a minimal NewSessionTicket
message. Here |ID| refers to the iden-
tifier length and |N | to the size of the
nonce.

Size (bytes) Field name

4 ticket lifetime
4 ticket age add;
|N | ticket nonce
|ID| ticket
2 extensions length
4 Early data extension

Total 14 + |ID| + |N |

Table 3. Symbol definitions for message ele-
ments, where x ∈ {c, s} refers to the message
sender (client resp. server).

Symbol Description

Hx (Client or Server) Hello

edx early data

Dx Application data
pex psk key exchange modes

pskx pre shared key

ksx key share

ee EncryptedExtensions

eed EndOfEarlyData

f Finished

R Record Layer headers

handshake is done, the server transmits a NewSessionTicket message to the
client. As this is part of the extension setup, in this context we consider this
as part of the initial handshake; without it, resumption would not be possible.
The structure and size of a minimal NewSessionTicket message is displayed in
Table 2. The client does not need to send any reply to this message. We set
the size of the ID field and nonce field to 4 respectively 32 bytes. Therefore,
compared to no session resumption at all, minimal overhead is 14 + 4 + 32 = 50
bytes. Compared to a session ticket in standard TLS 1.3, which is typically in
the hundreds of bytes, this is a significant improvement.

Resumption Handshake. The resumption handshake will ideally be per-
formed much more often than the initial handshake, thus it is important that
the traffic overhead for this handshake is as small as possible. The fixed cost for
any resumption handshake consists of boilerplate parts of the handshake that
cannot be eliminated without rigorous change to the protocol. In the following,
we write client and server as c and s, respectively. We map symbols to every
message element in the resumption handshake in Table 3, where x can be either
c or s to indicate the message sender. We refer to the size of message X as |X|.

We define the fixed cost C of any 0-RTT resumption handshake as:

C = 3|R| + |Hc| + |Hs| + |edc| + |pex| + |ee| + 2|f | + |eed|
This cost is not a fixed number of bytes, but rather is not negotiable; any PSK
extension will have to include these elements, and their size is independent of
the actual PSK mode. The total cost of a minimal resumption handshake where
the server does not respond with any early data is C + |pskc|+ |psks|. Note that
ksc and kss are not required for a minimal handshake. Conform to the standard,
pkss is defined as a 2-byte value representing an identity index in pskc, and is
wrapped in a 4-byte TLS extension structure. ksc is more complex however, and
we write the full layout in Table 4. As we only send one identity and binder,
The size of pskc becomes |pskc| = 15 + α + β, where α denotes the size of the
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identity field, and β the size of the binder HMAC. The identifier field PSKID
can be written as PSKID = ID||i where ID is the identifier received in the
session ticket during the initial handshake and i is the symmetric KDF chain
index. Now, |PSKID| = |ID| + 1 = 5. The exact value of β depends on the
chosen HMAC function, which is usually either Secure Hash Algorithm (SHA)-
256 (32 bytes) or SHA-384 (48 bytes). The complete traffic cost c1 for session
resumption can thus be written as c = |psks| + |pskc| + C = 26 + β + C, and is
58 + C if SHA-256 is chosen.

Table 4. Layout of the pre shared key structure and its sub-structures, when sent by
a client.

pre shared key

Size Field name Description

2 extension type Extension type

2 extension data Size of the extension

2 PSKIdentities length Nr. of PSK identities

identities PSKIdentity values

2 binders length Nr. of PSK binders

binders PSKBinder values

PSKIdentity

2 identity length Size of identity field

α identity value of this identity

4 obfuscated ticket age ticket age (see [16])

PSKBinder

1 binder length size of the binder value

β binder HMAC value (see [16])

When a DH exchange is included, we will have to add the size of the ksc and
kss elements. The size of ksc is of variable length depending on the number of
supported DH groups the client advertises. Each key share entry takes up 4 + l
bytes where l is the size of the supported group. The smallest supported group
is X25519 with a 32-byte field, while the largest is P-521 with 132 bytes. ksc also
reserves 2 bytes to denote the number of listed groups, therefore ksc = 6 + l.
The server replies with a single key share entry, thus kss = 4 + l. As with
any TLS extension, these entries are wrapped in an extension structure with
a 4-byte type field. The total cost of a resumption with DH exchange is thus
c2 = c1 + |ksc| + |kss| = c1 + 18 + 2l.

If we take into account a key share every n messages, we arrive at the final
equation for the total average cost ct:

ct =
{

26 + β + C for n = 0
26 + β + 18+2l

n + C for n > 0

}
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Fig. 2. Average transmission overhead v. DH key exchange frequency

where β is the hash digest size, l the elliptic curve coordinate length, n the DH
handshake rate, and C the fixed cost. Figure 2 shows the average overhead versus
the key exchange frequency, for various common cipher suites.

Giving an exact value for C is somewhat difficult: multiple fields in Hc, Hs,
and ee can vary a lot in length, depending on the supported cipher suites and
provided extensions among other things. Instead, we count the minimum size for
these fields as they are defined in the standard, thereby giving a lower bound for
C. Note that in practice, a handshake with so few extensions is not useful for
overhead minimization, as more round-trips will be needed to establish necessary
parameters such as the cipher suite. Moreover, it leaves out extensions meant
to increase overall security. Minimal sizes, including all headers, for Hc and Hs

are 50 and 48 bytes, respectively. edc and eed both require 2 and 4 bytes. pex
is at least 3 + m bytes in size, where m is the number of supported modes
(at least 1). ee is at least 6 bytes in size, but may vary a lot, depending on the
supported extensions. The length of f is determined by the chosen hash function.
The record layer headers are 5 bytes in size. With one PSK key exchange mode
and the SHA-256 hash function, the total cost of C is then at least 193 bytes.
Therefore, the lower bound on transmission overhead of a resumption handshake
with our extension is 251 bytes without, or 333 bytes with a key exchange.

4.3 Storage Overhead Estimation

Both the client and server need to store some state variables in between sessions.
This differs from the standard session resumption protocol where only the client
stores the PSK. The client needs to securely store the secret KDF key (depends
on digest size), as well as its connection ID (4 bytes) and the ratchet index (1
byte). The client thus needs to store 37 bytes if SHA-256 is used.

The server needs to store the same amount of state, but for every client that
it shares a ratchet for resumption with. This can be done through e.g. a hash
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map using the connection ID as a key, and a structure containing the other state
variables as value. If state is being kept for the maximum amount of clients of
232 (with a 4-byte connection ID), this amounts to roughly 270 GB worth of
data.

4.4 Overhead Comparison with TLS 1.3

Based on measurements performed on OpenSSL [13], a standard PSK in TLS 1.3
adds 571 and 603 bytes of overhead, when SHA-256 respectively SHA-384 is used.
In Table 5 we compare the overhead of rTLS for various values of n to that of
a standard TLS 1.3 PSK. We use a higher value of C, obtained from handshake
measurements in OpenSSL, which includes a minimal number of extensions by
default, and acts as an indicative value that represents a lightweight use case.
In this table, the values are computed using the smallest allowed hash function
(SHA-256) and curve (X25519). As can be seen, a rTLS PSK requires only
roughly 11% of the traffic overhead compared to a standard TLS PSK, and can
be expected to reduce the total amount of transmitted data roughly by half.

Table 5. A comparison between rTLS session resumption and openSSL standard ses-
sion resumption

Indicative Lightweight Use (C = 408)

Scenario Avg. Overhead (b) Avg. Total size (b)

rTLS, n = 0 58 466

rTLS, n = 1 108 516

rTLS, n = 10 63 471

Standard TLS 1.3 571 979

5 Related Work

There exist ample communication security protocols aimed at embedded
devices [1]. We look at the TLS protocol and its variants, specifically those
that are relevant to the usage of this protocol in embedded environments.

Initially developed for Web security, TLS is now gaining traction in the IoT
world, partly due to widely available libraries and broad support in software rele-
vant to IoT. For example, many Message Queuing Telemetry Transport (MQTT)
brokers support TLS as a security layer.

While this is fine for most devices (mostly upwards from class 1 in the Inter-
net Engineering Task Force (IETF) classification [4]), it becomes problematic
when working with class 0 or low-end class 1 devices, as they do not possess
the capability to maintain TLS connections or can simply not afford it due to
resource constraints (e.g. due to a power budget). To address this, several opti-
mizations have been proposed over the years. One of the first was Sizzle [7],
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which is an implementation of the Secure Socket Layer (SSL) protocol, and is
capable of running on extremely constrained devices with only tens of kilobytes
of memory. While the authors showed that heavyweight cryptographic opera-
tions required for the protocol to function were certainly possible on heavily
constrained devices, they did not attempt to reduce the amount of transmitted
data.

Datagram Transport Layer Security (DTLS) [18] modifies the TLS protocol
to work over User Datagram Protocol (UDP), while retaining most of the security
guarantees provided by TLS. This reduces the data overhead and latency some-
what. There exist multiple open-source implementations [23], and several works
exist detailing extremely lightweight implementations [3,11]. In these works,
lightweight mostly pertains to computational and memory cost, while transmis-
sion overhead is either not addressed or addressed to a much lesser degree. Other
approaches have been taken as well, such as [15], compressing DTLS messages
to fit into 6LowPAN frames.

Several extensions for TLS have been proposed that also bring the potential
to lower message overhead. The TLS Cached Info specification [19] allows clients
to store server certificates and certificate requests, making it possible to leave
these out in future handshakes. The TLS Raw Public Key extension [24] allows
clients and servers to authenticate each other through public keys, instead of
X.509 certificates. This can significantly reduce the handshake size. This method
does require an out-of-band means of verifying public keys, which might very
well be possible in a controlled environment such as a factory. Another promis-
ing adaptation of TLS that might lower the size overhead of TLS significantly is
the Compact Transport Layer Security (CTLS) IETF draft [6]. In this draft, the
authors propose optimizing the TLS protocol for size by eliminating redundancy
where possible and making aggressive use of space-optimization techniques such
as variable-length integers. The result is isomorphic to TLS, but not interoper-
able.

TLS is also proposed as the default mechanism to secure connections in the
QUIC protocol, a network protocol building on UDP that provides advanced
features such as multiplexing and authenticated encryption of its data by default.

Session resumption in TLS 1.3 has been subject to debate, as it is vulner-
able to replay attacks and provides no forward secrecy [16]. While for a Web
environment, there exists some justification for these design choices, for an IoT
environment where short conversations with short messages are the norm, this
is less than ideal, as it effectively removes the possibility to optimize overhead
through use of the session resumption protocol. None of the extensions discussed
in this section address session resumption, which means that this is an open
issue we think has significant potential for minimizing protocol overhead, when
designed carefully.

At the time of writing, National Institute of Standards and Technology
(NIST) is hosting an ongoing competition for lightweight cryptographic primi-
tives [12]. Many of the candidates specifically target very short messages. Once
the candidates have received sufficient cryptanalytic attention, these can become
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valuable tools in future lightweight communication protocols, as well as poten-
tially helping protocols such as TLS adapt to constrained devices.

In [8], Hall-Andersen et al. acknowledge the complexity of TLS and propose
nQUIC as a lightweight, less complex alternative to QUIC’s default TLS config-
uration. Their experiments show a significant reduction in bandwidth compared
to TLS.

6 Conclusion

In this work, we proposed an IoT-friendly and standard-compliant adaption of
the TLS 1.3 0-RTT session resumption protocol. We first argued that in order
to be applicable to IoT, replay resistance is a necessary property, as lightweight
sensor devices are much more likely to transmit data that will change server
state.

Building from the observation that in IoT scenarios the group of possible
clients for a server changes relatively slowly and is typically much smaller than
possible clients for a Web server, we argued that it is reasonable to require a
server to keep some state variables for each of its clients. We then took inspira-
tion from the Double Ratchet algorithm to design a 0-RTT resumption protocol
that fits neatly into the existing message structure, and makes use of exist-
ing functionality where possible. In our extension, the PSK utilizes a ratchet
construction, which provides replay protection as well as forward secrecy and
break-in resilience to early data transmitted in a 0-RTT handshake. The intro-
duction of these properties in the 0-RTT subprotocol is a step towards making
TLS suitable for IoT scenarios.

We estimated a lower bound of 193 bytes on traffic overhead for any 0-RTT
resumption protocol in TLS 1.3, and then showed that our protocol requires at
least 251 bytes of traffic overhead. Compared to the standard session resumption
overhead of roughly 764 bytes, this is a significant improvement.

In future work, we aim to further reduce the transmission overhead by explor-
ing different opportunities, such as replacing the original message structure for
resumption altogether, thereby reducing the fixed cost.
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Abstract. Most malwares use evasion technologies to prevent them-
selves from being analyzed by sandbox systems. For example, they would
hide their maliciousness if the presence of Virtual Machine (VM) is
detected. A popular idea of detecting VM is to utilize the difference
in instruction semantics between virtual environment and physical envi-
ronment. Semantic detection has been widely studied, but existing works
either have limited detection range (e.g. detect VMs on specific hyper-
visor) or cost too much time. And most methods are not available for
various kinds of VMs while introducing acceptable performance over-
head.

In this paper, we proposed FindPiDicators, a new approach to select a
few indicators (e.g. registers) and cases (instruction execution) through
complete experiments and statistical analysis. Using FindPiDicators, we
obtain PiDicators, a lightweight artifact that consists of some test cases
and indicators. We use PiDicators to detect the presence of VM and
it offers several benefits. 1) It could accurately detect VM without the
influence of operating system, hardware environment and hypervisor. 2)
PiDicators does not rely on API calls, thus it is transparent and hard to
resist. 3) The detection based on PiDicators is time-efficient, for only 31
cases are considered and four registers’ values are required for each case.

Keywords: Virtualization · Detection · Malware · Anti-analysis

1 Introduction

Nowadays, almost all software would be analyzed before their release. To frus-
trate analysis, malware authors have developed lots of evasion techniques [1–3]
that identify the presence of the analysis environment and refrain from perform-
ing malicious activity. One dominant category of evasion is anti-virtualization
[4,5], because most analysts prefer to run malware inside a virtual environment
to avoid their computers being affected. So far lots of viruses and trojans have
been deployed with one or more anti-VM technologies to prevent analysis [6].
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Compared with other evasion techniques, including anti-disassemble and anti-
debugging, anti-virtualization not only focuses on application layer, but also pays
attention to system layer, which is incredibly important for evasion. Nowadays,
there have been many methods to detect the presence of VM, and they could be
classified into string detection, timing detection and semantic detection.

There are many special strings inside guest systems that could be utilized
to detect the presence of VM [5,7–9]. For example, attackers can identify a VM
by searching for the string “VMware” in the Windows Registry. However, such
methods use API calls that will expose the action of detection and they are easy
to resist for analysts through adjusting the return values to be plausible. These
deficiencies make it difficult for attackers to detect VM silently and accurately.

Timing detection also works on VM detection [10,12]. Many malwares detect
a VM by checking if the expected time has elapsed. Generally, malware sam-
ples determine that it is running in a virtual environment if an instruction
takes longer. However, some analysis systems [4] accelerate code execution to
make themselves stealthier. Therefore, whether this kind of methods work or
not depends on the target environment, thus timing detection is not general.

Instruction semantics are widely used in VM detection [14–17]. Among these
works, some use several instructions and they are easy to resist by falsifying
return values. Some others execute lots of test cases in a VM and compare their
outputs with the outputs observed in a physical machine. And they exploit the
difference to distinguish VM from physical machine. However, the difference
generated in one test is only applicable to the two environments involved in
the test, so its effectiveness is extremely limited. Besides, the execution and
comparison is time-consuming due to the huge amount of cases.

Overall, none of these methods meets all these requirements: 1) it has a
wide detection range (e.g. VMs on multiple hypervisors or different hardware
environments), 2) it is transparent and robust enough to prevent itself being
resisted by analysts. 3) the method is time-efficient.

In this paper, we proposed FindPiDicators, a novel approach that select a few
test cases and several indicators to detect the presence of VM. With extensive
experiments and statistical analysis, we solved two problems: 1) which indicators
do better in detecting VM and 2) which cases could be used to detect various
VMs. Using FindPiDicators, we calculated PiDicators and use it to detect VM.

The main advantages of PiDicators are as follows: 1) Its detection capability is
impervious to hypervisor, hardware environment and operating system. 2) The
values of PiDicators are collected with inline assembly code rather than API
calls. What’s more, modifying the values of PiDicators is risky and challenging
for analysts. Therefore, PiDicators is transparent and robust. 3) The detection
using PiDicators just needs to execute 31 cases instead of tens of thousands of
cases, so the performance overhead is acceptable.

We built an implementation of FindPiDicators with complete experiments
and statistical analysis. Based on the results, we obtained PiDicators that con-
sists of 31 cases. And for each case, the values of 4 registers are recorded. We
also implemented a tool to automatically collect values of PiDicators in target
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environments. Using this tool, we gathered values of PiDicators from 212 phys-
ical machines and 57 virtual machines. Based on 70% of the collected data, we
trained SVM model and decision tree model, and evaluated them with remain-
ing data. These models resulted in an accuracy of 96.55% (SVM) and 95.07%
(Decision Tree). We also calculated semantic similarity of PiDicators between
any two samples to explain why PiDicators could accurately detect VM.

In summary, our work makes the following contributions:

– We proposed FindPiDicators, a novel approach that select a few indicators
and cases to detect the presence of VM.

– Using FindPiDicators, we designed lightweight PiDicators. PiDicators could
be used to accurately detect VM and it has a wide detection range. What’s
more, the performance overhead is acceptable.

– We evaluated the detection capability and the efficiency of PiDicators and
discussed its defensiveness.

The rest of this paper is organized as follows. Section 2 presents an overview
of anti-VM techniques. Section 3 describes our goals and design of FindPiDica-
tors. Section 4 describes the implementation of FindPiDicators and the obtain
of PiDicators. Section 5 evaluates the detection capability and the efficiency of
PiDicators. Section 6 discusses the defensiveness of PiDicators and its optimiza-
tion. Section 7 concludes this paper.

2 Related Work

There have been many techniques for VM detection. And they could be classified
into three categories.

String Detection. Many special strings inside guest systems would reveal a
VM [5,7–9]. For example, malwares can detect a VM by searching the process
list for the VMware string (e.g., “VMwareService.exe”, “VMwareTray.exe” and
“VMwareUser.exe”). We can also search for VMware strings in registry, service
list, installed applications and so on. These methods are easy to implement with
API calls. However, API calls compromises the transparency of malware and
make malware detectable.

Subsequently, Windows Management Instrumentation (WMI) [4] became
more popular to detect VM because WMI calls are stealthier. And BIOS infor-
mation, specific processes and services could be retrieved with WMI queries.
However, WMI is specific to Windows guests and it is not applicable to other
guests (e.g. Linux guests). In comparison, PiDicators is collected with inline
assembly code, thus it is more transparent and it has a wider scope of applica-
tion.
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Timing Detection. The routine of timing detection is to check if the expected
time had elapsed. On the one hand, malwares could detect the presence of VM if
an instruction takes longer. They use windows API calls and instruction RDTSC
[10] to measure the time period and elapsed number of CPU cycles. However,
some analysis systems [4] accelerate code execution to make themselves unde-
tectable. On the other hand, some malwares detect a VM if a given instruction
consumes too less time, for some systems try to shorten the elapsed time (e.g.
skip sleeps) to deceive malware [12].

As studied in [12], timing detection is hard to counter for analysts. However,
these methods are not applicable to various VMs, for some of them only works
in normal VM, and some others are merely useful to accelerated VM. Compar-
atively, PiDicators would be useful no matter whether the VMs are accelerated.

Semantic Detection. There are many differences in instruction semantics
between VM and physical machine. These differences have been widely used in
VM detection [7,15–17]. For example, instruction IN executed on VMware with
EAX = 0AH returns the version of VMware. However, when this instruction is
executed on a real machine in protected mode, unless the permission allows,
an exception will be triggered. Instruction CPUID is also practical in detecting
VM. By calling CPUID in VM with EAX = 40000000H as input, the malware will
get the virtualization vendor string. These methods could be resisted through
adjusting the return values to plausible values.

Instead of single instruction, these methods [13–17,20] try to enumerate and
test all possible instances of instructions. They iteratively execute each instance
in a VM and a physical machine and then find their differences. Martignoni
et al. presented Red Pill Testing [17], a testing methodology based on fuzzing.
They performed random exploration of a CPU instruction set and parameter
spaces to detect improper behaviors in VM. Hao Shi et al. improved on the Red
Pill Testing and proposed Cardinal Pill Testing [15]. They devised tests that
carefully traverse operand space and explore execution paths in instructions
with the minimal set of test cases. Furthermore, in their later work [16], they
additionally evaluate kernel-space instructions. However, these works introduce
significant performance overhead and the result of each test is only applicable to
the two environments involved in the test, thus they are inefficient. PiDicators
retains the detection capability of these works, and it improves the efficiency
through selecting a few practical test cases and indicators to detect the presence
of VM.

3 Design

PiDicators is expected to accurately detect VM with low cost. Specifically, the
goals of PiDicators are listed as follows.

G1: Detection Capability. PiDicators could be used to accurately detect var-
ious VMs that may run on different hypervisors, different hardware environ-
ments and so on.
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G2: Defensiveness. The collection of PiDicators in target environment is
stealthy. Moreover, it is hard for analysts to resist this evasion by adjust-
ing the values of PiDicators.
G3: Efficiency. The performance overhead introduced by PiDicators should
be little and acceptable.

As described in Sect. 2, there is no method that meets all these requirements
at the same time. However, the methods (e.g. Cardinal Pill Testing) that test lots
of instances of instructions have provided high defensiveness and great detection
capability. Therefore, inspired by Cardinal Pill Testing, we propose FindPiDica-
tors, which is more efficient while remaining high detection capability. To clarify
our design, some notions are defined as follows.

Definition 1. Car Set. A set of test cases. Each case is an instance of an
instruction. We use the set designed by Hao Shi et al. in Cardinal Pill Test-
ing [15].

Definition 2. set-I(n). A set of many indicators. n is used to mark different
sets. Specifically, set-I(1) contains user registers, exception registers, and user
memory. set-I(2) is selected from set-I(1) and it contains 68 registers. set-I(3)
is chosen from set-I(2) and it contains 4 registers.

Definition 3. set-R(e,set-I(n)). A set of results. We execute a case in envi-
ronment e and obtain the values of set-I as a result. The results of all cases in
Car Set compose set-R(e,set-I(n)).

Definition 4. SETS-R(set-I(n)). It is composed with set-R(e1,set-I(n)), set-
R(e2,set-I(n)) ... set-R(e10,set-I(n)) and the ten variables (e1, e2, ... , e10)
represent ten environments listed in Table 1.

Definition 5. set-P(e1,e2,set-I(n)). A set of special cases. The case in the set
meets the following requirement: its execution make values of set-I(n) different
between e1 and e2.

To achieve the goals of G1 and G3, PiDicators is supposed to contain few
but useful cases and indicators. And we need to solve two problems:

P1: Which indicators in set-I(1) are more practical in detecting VM? After
executing an instruction in VM and physical machine, some indicators present
different values and we call these indicators valuable indicators for convenience.
There are many indicators in set-I(1), but just a few are actually useful in detect-
ing the presence of VM. We should find out which indicators are valuable indica-
tors and find the reason for their differences between VM and physical machine.

P2: Which cases in Car Set are more general in detecting VM? Whether the
current environment is VM or not influences the instruction execution. Apart
from that, there are many other factors (e.g. different hypervisors) that may
cause different contexts in two environments. Therefore, we try to figure out
how instruction execution is influenced by these factors.
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Table 1. Environments involved in the implementation of FindPiDicators.

Name Software environment Hardware environment Label

phy1 windows7-32bit Intel� CoreTM i5-4590S CPU,
16.0 GB, Intel� Ethernet
Connection I217-V

Lenovo

phy2 windows10-32bit Intel� CoreTM i5-4590S CPU,
16.0 GB, Intel� Ethernet
Connection I217-V

Lenovo

phy3 windows7-32bit Intel� CoreTM i5-3470S CPU,
8.00 GB, Realtek PCIe GBE
Family Controller

Lenovo

phy4 windows10-32bit Intel� CoreTM i5-3470S CPU,
8.00 GB, Realtek PCIe GBE
Family Controller

Lenovo

vm1 Windows7-32bit-guest,
Xen4.11.0, Ubuntu host

Intel� CoreTM i5-4590S CPU,
16.0 GB, Intel� Ethernet
Connection I217-V

Lenovo

vm2 Windows7-32bit-guest,
Xen4.4.0, Ubuntu host

Intel� CoreTM i5-4590S CPU,
16.0 GB, Intel� Ethernet
Connection I217-V

Lenovo

vm3 Windows7-32bit-guest,
VMware-workstation-full-15.0.2,
Windows10-64bit-host

Intel� CoreTM i5-4590S CPU,
16.0 GB, Intel� Ethernet
Connection I217-V

Lenovo

vm4 Windows7-32bit-guest,
VMware-workstation-full-15.0.2,
Windows10-64bit-host

Intel� CoreTM i5-3470S CPU,
8.00 GB, Realtek PCIe GBE
Family Controller

Lenovo

vm5 Windows7-32bit-guest,
VMware-workstation-full-15.0.2,
Windows10-64bit host

Intel� CoreTM i7-8700SCPU,
8.00 GB, Killer E2400 Gigabit
Ethernet Controller

Dell

vm6 Windows10-32bit-guest,
VMware-workstation-full-15.0.2,
Windows10-64bit-host

Intel� CoreTM i7-8700SCPU,
8.00 GB, Killer E2400 Gigabit
Ethernet Controller

Dell

3.1 Architecture Overview

The architecture of FindPiDicators is depicted in Fig. 1. It consists of four stages.
Firstly, we execute all cases in many different environments. The values of set-
I(1) are collected in each environment during the cases’ execution, then SETS-
R(set-I(1)) is subsequently obtained. Secondly, we make a theoretical analysis
(as described in Sect. 4.2) to solve P1. In this stage, set-I(2) is picked out and
we select a few indicators from set-I(2) to compose set-I(3). Thirdly, we con-
duct three controlled experiments (see details in Sect. 4.3) to solve P2. With the
answer of P2, set-P’ is determined. Fourthly, PiDicators is calculated with set-
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Fig. 1. Architecture overview of FindPiDicators.

I(3) and set-P’. Later, we could use the values of PiDicators in an environment
to determine whether the current environment is a VM or not.

3.2 Execute Test Cases in Multiple Environments

In this part, SETS-R(set-I(1)) is obtained after executing lots of cases in different
environments. As shown in Fig. 2, there is a collector and a target machine in this
stage. We iteratively execute each case in target environment and the collector is
responsible for collecting the outputs with the help of WinDbg and interrupts. To
address P1 and P2, we carefully design ten environments listed in Table 1, and
gather set-R(e,set-I(1)) in each environment. Consequently, we obtain SETS-
R(set-I(1)).

Fig. 2. Logic execution for cases.
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3.3 Determine Indicators

This part aims to address P1 and obtain set-I(3). From our preliminary observa-
tion on set-R(vm1,set-I(1)) and set-R(phy1,set-I(1)), it is difficult to exploit the
content in user memory to detect VM. Therefore, we remove user memory from
set-I(1), getting set-I(2). Next, to select fewer indicators from set-I(2) to compose
set-I(3) and ensure G1, we carefully select two set-R(e,set-I(2)) from SETS(set-
I(2)) and calculate set-P(e1,e2,set-I(2)). After statistical analyzing P(e1,e2,set-
I(2)) as illustrated in Sect. 4.2, we make clear which indicators present different
values between e1 and e2 and the root causes of these differences.

3.4 Determine Cases

The goal of this part is to solve P2 and determine set-P’. We first study how set-
P(e1,e2,set-I(2)) is affected by three factors (hypervisor, hardware environment
and operating system). To do this, we designed three control groups and each
group is made up with two or more set-P(vm,phy,set-I(2)). For each control
group, we make statistical analysis of its set-P(vm,phy,set-I(2)). Then we pick
out the cases that appear in all set-P(e1,e2,set-I(2)) no matter what e1 and e2
are, and these cases could distinguish VM and physical machine without the
influence of other factors. In this way, we select a few cases to compose set-P’
which achieves a perfect balance of detection capability and efficiency.

3.5 Final PiDicators

Finally, we extracted PiDicators with set-I(3) and set-P’. For all cases of set-P’,
we put their values of set-I(3) together, then PiDicators is obtained.

4 Implementation

4.1 Execute Test Cases and Compare Outputs

Firstly, we compiled and linked test cases of Car Set with Macro Assembler
9.00.30729.207 and Incremental Linker 5.12.8078. As a result, we obtained 13,513
executable files. Next, we installed WinDbg 10.0.18362.1 in collector to interact
with the 10 target environments listed in Table 1. From our attempts on ways
of kernel debug [18], serial cable was chosen to connect physical machine and
virtual serial port is used for VM. Finally, we performed the process shown in
Fig. 2 for each case and collect values of set-I(1). After executing all cases in ten
environments, we totally gathered ten set-R(set-I(1)) and obtained SETS-R(set-
I(1)).
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4.2 Select Indicators

As described in 3.3, we got set-I(2), a set of 68 registers. Then, we focus on set-
P(vm1,phy1,set-I(2)) and the statistics of it are shown in Table 2. We interpret
this table from two aspects to figure out why some indicators show differently
between vm1 and phy1.

From the perspective of the number of valuable indicators, it is distributed
from 3 to 7 in set-P(vm1,phy1,set-I(2)). There are 7,005 test cases whose out-
puts are different in 3 registers and 6,491 cases behave differently in 4 registers.
Moreover, all 13,513 cases generate different values in CR3, IDTR, and GDTR.

From the perspective of the cause of valuable indicators, it is found that
nine registers (CR0, CR2, CR3, IDTR, GDTR, EAX, EBX, ECX and EDX) are
valuable indicators for vm1 and phy1. Furthermore, we study why these registers
show differently. First, CR3 contains the physical address of the page directory
table page and CR2 is used to report an error when a page exception occurs, so
their values are variable. Next, CR0 register contains some flags that control the
operating mode and the status of processor. In set-P(vm1,phy1,set-I(2)), CR0
presents different values in 11 cases’ execution and the difference is caused by
MP (bit 1) and the TS (bit 3). These bits are related to floating-point operations,
but only one of the 11 cases is related to floating-point operations. In addition,
IDTR stores the base address of Interrupt Descriptor Table and GDTR stores
the base address of Global Descriptor Table. All cases output different values in
IDTR and GDTR. Last but not least, EAX, EBX, ECX, and EDX are supposed
to hold same values but 18 cases in set-P(vm1,phy1,set-I(2)) generate different
values in these four registers.

According to the analysis of valuable indicators, we solved P1. As a result,
EAX, EBX, ECX and EDX are believed to be practical in detecting VM and
they are selected to compose set-I(3).

4.3 Select Cases

To find the cases whose detection capability is impervious to hypervisors, hard-
ware environment and operating system. We conducted three experiments to
discuss how these three factors influence on set-P(e1,e2,set-I(2)).

Virtualization Platform. set-P(vm1,phy1,set-I(2)) and set-P(vm3,phy1,set-
I(2)) were used to study how different hypervisor influences on set-P(e1,e2,set-
I(2)). Similar with vm1 and phy1, all cases output different values in CR3,
GDTR, and IDTR between vm3 and phy1, and a few cases generate different
values in EAX, EBX, ECX and EDX. Differently, the maximum number of
indicators that a case generate different values is 8, and there are more cases
whose outputs are different in three registers. Thus, virtualization platforms
have an impact on set-P(e1,e2,set-I(2)) because of their different simulations of
guests.
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Table 2. The distribution of valuable indicators for vm1 and phy1. The second column,
for example, means that there are 7005 test cases who have different outputs between
vm1 and phy1 in cr3, gdtr and idtr.

Registers The count of valuable indicators Total of each register

Three Four Five Six Seven

cr0 0 2 9 0 0 11

cr2 0 6488 11 0 1 6500

cr3 7005 6491 12 1 4 13513

gdtr 7005 6491 12 1 4 13513

idtr 7005 6491 12 1 4 13513

eax 0 0 2 0 4 6

ebx 0 0 0 1 4 5

ecx 0 0 0 1 4 5

edx 0 1 2 1 3 7

Total of each count 7005 6491 12 1 4 13513

Hardware Environment. set-P(vm3,phy1,set-I(2)) and set-P(vm5,phy1,set-
I(2)) were chosen to study the impact of hardware environment on set-
P(e1,e2,set-I(2)). It is found that there are more valuable indicators (e.g. DR6,
fpdp) in set-P(vm5,phy1,set-I(2)). What’s more, all cases output different value
between vm5 and phy1 in DR6, in addition to CR3, IDTR and GDTR. There-
fore, we draw to the conclusion that hardware environment will interfere with
VM detection.

Operating System. We researched the influences of operating system on
P(e1,e2,set-I(2)) with set-P(vm4,phy3,set-I(2)) and set-P(vm4,phy4,set-I(2)). It
is found that there are many more valuable indicators in vm4 and phy4, such as
mm, st, xmm, etc. And the number of indicators that a case generate different
values is at least 7, and it could be more than 12. Therefore, operating system
has a marked impact on set-P(e1,e2,set-I(2)).

Above all, whether the current environment is a VM or not, hypervisor,
hardware environment and operating system all influence on the values of set-
I(2). To achieve G2 and G3, we expect the cases in set-P’ to distinguish VM from
physical machine without the influence of hypervisor, hardware environment and
operating system. In order that, we first selected the cases that make the values
of set-I(3) different between vm1 and phy1 and we find that all of them are
branches of CPUID. To inspect the universality of this phenomenon in other set-
P(vm,phy,set-I(2)), we traced the cases whose outputs are different in set-I(3).
The results are shown in Table 3. Without consideration of vm6 and phy4 that
installed a different operating system, all the cases that cause different values
in set-I(3) are leaves of instruction CPUID. Therefore, we picked out CPUID
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related cases that exist in any set-P(e1,e2,set-I(2)) shown in Table 3. As a result,
we obtained a total of 31 cases and these cases make up of set-P’.

Table 3. The number of cases that make the values of set-I(3) different between two
environments.

vm phy1 phy3 phy4

vm1 9(all CPUID related) 14(all CPUID related) 3281(14 CPUID related)

vm3 9(all CPUID related) 14(all CPUID related) 3281(14 CPUID related)

vm4 14(all CPUID related) 9(all CPUID related) 3277(9 CPUID related)

vm5 14(all CPUID related) 15(all CPUID related) 3282(15 CPUID related)

vm6 3280(14 CPUID related) 3283(15 CPUID related) 3269(15 CPUID related)

4.4 Final PiDicators

With set-I(3) and set-P’, we calculate PiDicators as described in Sect. 3.5.
Finally, PiDicators contains 124 indicators for there are 31 cases in set-I(3) and
4 registers in set-P’. And in a target environment, the value of PiDicators is
represented as a vector with the values of 124 registers.

5 Evaluation

In this section, we evaluate the detection capability and the efficiency of PiDica-
tors. We first implemented a tool with inline assembly code to collect the value
of PiDicators and system parameters from target environments. With this tool,
we collected data from 57 virtual samples and 212 physical samples. And the
distribution of the dataset is shown in Table 4 and Table 5. This dataset involves
different operating systems and multiple hypervisors and these data are from
various real devices. Therefore, the assessment results based on this dataset are
independent of the three factors.

Table 4. Distribution of datasets on operating systems.

Operating System VM Phy Total

Windows10 22 163 185

Windows8 2 11 13

Windows7 32 38 70

Windows2003 1 0 1

Total 57 212 269
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Table 5. Distribution of datasets on the type of environments.

Brand of Hypervisors Numbers

Physical 212

VMware Workstation 41

Virtual Box 3

Parallel 6

Others 7

5.1 Detect VMs on Various Environments

We trained SVM and decision tree on 70% of the 269 samples and evaluated them
with remaining data, to test how PiDicators accurately detects an VM without
the influence of hypervisor, operating system and hardware environment. The
two models respectively achieved an accuracy of 96.55% and 95.07%. Later, we
pick out ten cases with the highest weight, by executing Algorithm 1 (described
as follows) for 11 rounds. Weight represents how important a case is relative to
the other cases in VM detection.

a). Initialize Remove = {}, S = {0, 1, 2, 3 . . . . . . 28, 29, 30}.
b). Take S as feature, then execute SVM and decision tree model 100 times, and

calculate the average accuracy of each model.
c). Calculate the weights of 31 cases, and the weight of each case is obtained by

adding the weight of 128 bits (the output of EAX, EBX, ECX, EDX).
d). Find the case with the highest weight, and get its serial number seq, then

Remove = Remove + {seq}, S = S - {seq}.
e). Return to step b.

The result is shown in Table 6. In the first round, no case was removed from
S and the case with the highest weight has a sequence of 6. This case is the
instance of CPUID with EAX = 06H and ECX = 08H as inputs. In Table 6, as
the case with the highest weight was removed from S, the average accuracy of
SVM and decision tree decreased as expected. Then we got Remove = {6, 5, 1,
4, 26, 10, 11, 22, 27, 24} and took it as feature to classify those environments.
The accuracy of SVM is increased to 97.64%.

Above all, PiDicators can effectively detect a VM from many environments,
and its detection capability is independent of hypervisor, hardware environment
and operating system.

5.2 Detect VMware VMs

We filtered out 41 VMware samples and 212 physical samples to evaluate how
accurately PiDicators detect a VM that runs on VMware. We trained SVM and
decision tree on 70% of these samples and evaluated them with remaining data,
and the result is listed in Table 7. The test case with the highest weight in the first
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Table 6. For all collected data, we executed Algorithm 1 and picked out the 10 cases
with the highest weight. Seq refers to the sequence of the test case with the highest
weight. Weight means this highest weight. Input describes the inputs of this case.

Remove SVM D.T Seq Weight Input (eax/ecx)

{} 0.966 0.951 6 0.776 06h/08h

+{6} 0.966 0.933 5 0.321 05h/01h

+{5} 0.963 0.918 1 0.689 01h/0h

+{1} 0.965 0.961 4 0.681 04h/0h

+{4} 0.956 0.915 26 0.637 40000000h/0h

+{26} 0.965 0.94 10 0.598 0ah/09h

+{10} 0.968 0.936 11 0.545 0bh/0h

+{11} 0.9 0.860 22 0.509 80000008h/0h

+{22} 0.879 0.890 27 0.387 40000004h/0h

+{27} 0.741 0.769 24 0.162 8000000ah/0h

+{24} 0.734 0.620 18 0.163 80000004h/0h

line is an instance of CPUID with EAX = 40000000H as input and it is popular
in detecting Xen, KVM, VMware. After executing the process described in 5.1
for 8 rounds, we got Remove = {26, 10, 5, 22, 1, 11, 6} and took it as feature to
classify environments. The accuracy of SVM was increased to 98.96%, and the
accuracy of decision tree was increased to 98.09%.

Table 7. For all VMware data and physical data, we executed Algorithm 1 for 8 rounds
and the results are listed as follows.

Remove SVM D.T Seq Weight Input (eax/ecx)

={} 0.976 0.965 26 0.943 40000000h/0h

+{26} 0.975 0.969 10 0.827 0ah/09h

+{10} 0.976 0.979 5 0.348 05h/01h

+{5} 0.976 0.946 22 0.823 80000008h/01h

+{22} 0.979 0.954 1 0.765 01h/0h

+{1} 0.966 0.965 11 0.684 0bh/0h

+{11} 0.951 0.988 6 0.726 06h/08h

+{6} 0.960 0.884 4 0.560 04h/0h

5.3 Similarity Calculation

We studied the similarity of the collected data, trying to explain why PiDicators
does well in VM detection. Specifically, for each virtual sample, we performed
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operations as follows: (1) measure cosine similarity in PiDicators between the
virtual sample and each of other virtual samples. (2) calculate the average of the
similarity values obtained in the first step. (3) measure cosine similarity between
this virtual sample and each of other physical samples. (4) calculate the average
of the similarity values obtained in the third step. The results are shown in Fig. 3.
It is found that the similarity between two VMs is higher than that between a
VM and a physical machine. Therefore, the values of PiDicators could perfectly
distinguish VMs from physical machine.

We attempted to explain the differences illustrated in Fig. 3. PiDicators is
composed of cases that are related with instruction CPUID, which returns the
characteristics of processor such as the processor Type, Family, Model and so on.
VMs share CPU with physical machines and the features of virtual CPUs are
dependent on hypervisors. What’s more, physical CPUs usually provide more
features than virtual CPUs. Therefore, VMs are more likely to have similar
values in PiDicators.

Fig. 3. For each VM, we measured the cosine similarity between it and other samples.
The results are presented in this Figure.

5.4 Efficiency

We evaluated the efficiency of PiDicators in this part. Firstly, PiDicators is
composed by 31 test cases and we need only 4 registers’ values for each case.
However, previous works [13–17,20] execute tens of thousands of cases and they
collected much information (such as memory data, values of many registers and
so on) during each execution. So PiDicators is much more efficient in theory.
Secondly, we chose five environments (phy1, phy3, vm1, vm4, vm5) and recorded
the time required for executing 13,601 cases and collecting their outputs. It is
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found that the elapsed time is more than 20 h in all these environments. Thirdly,
we calculated the time consumed for collecting values of PiDicators in many
target environments. And the time consumed is less than 5 s in these target
environments. Last but not least, the comparison between VM and physical
machine in previous work is time-consuming while our classification is based on
the trained model, so the decision-making is time-saving. In summary, PiDicators
is more time-efficient.

6 Discussion

6.1 The Defensiveness of PiDicators

In this paper, we have not introduced the defensiveness of PiDicators. We believe
PiDicators is highly adversarial. Firstly, the values of PiDicators is collected with
inline assembly code rather than API calls, thus it is more transparent. Secondly,
all cases in PiDicators are instances of CPUID. Some of them are clearly defined
in instruction manual and some others have not been defined. For defined cases,
they return processor characteristics that may affect the normal execution of
programs. So, it is risky for analysts to falsify the outputs of these cases. For
undefined cases, their return value cannot be arbitrarily modified because the
modified data may expose the presence of VMs. Therefore, PiDicators is trans-
parent and hard to resist.

Although it is highly adversarial, analysts would try their best to defend this
detection. For undefined cases, analysts might use random values as falsified
outputs. And for defined cases, modifying the return values will work if it does
not disturb the execution of programs. However, it is challenging to ensure the
correct execution of programs with fake outputs of CPUID instructions. And it
needs further research in the future.

6.2 The Optimization of PiDicators

PiDicators could be extended with more cases or indicators to improve its detec-
tion capability. In the process of implementing FindPiDicators, we ignored some
cases that cause exceptions. Therefore, we would further study these unconsid-
ered cases in the future to make PiDicators more perfect. Besides, FindPiDica-
tors is practical for all VMs based on x86 architecture in theory. But we only
considered various Windows platforms in this paper, and we would collect more
samples data from Linux platforms to make PiDicators more reliable.

7 Conclusion

In this paper, we proposed FindPiDicators, a novel approach to select a few
indicators and cases to detect the presence of VM. Using FindPiDicators, we
designed lightweight PiDicators and use it to detect various VMs efficiently.
Based on a comprehensive dataset, we evaluated and explained the detection



274 Q. Huang et al.

capability of PiDicators. We also evaluated its efficiency. Finally, we discussed
the high defensiveness of PiDicators. We believe that PiDicators would be widely
used in VM detection.
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Abstract. This paper describes a Heterogeneous Confidential Computing (HCC)
system composed of a CPU Trusted Computing Environment and a hardware
accelerator.We implement twoAES-GCMhardware engineswith high-bandwidth
and low-latency that are designed for end-to-end encryption of DMA transfers.
Our solution minimizes changes to the hardware platform and to the application
and SW stack. We prototyped and report the performance of protected image
classification with proposed encrypted-DMA on an Intel Arria-10 FPGA.

Keywords: Cryptographic protection · Heterogeneous confidential
computation · Protected transfer · Hardware for AES-GCM · TEE · SGX ·
FPGA · Accelerator

1 Introduction

There is rapid growth of compute intensive applications on the cloud. Cloud Service
Providers (CSP) are starting to offer HW accelerators for better performance and energy
efficiency. Simultaneously, there is an increasing interest in providing integrity of com-
putation and confidentiality to workloads to protect against loss of privacy or intellectual
property. CSPs are beginning to offer confidential computing services [1–3] that provide
hardware supported Trusted Execution Environments (TEE) such as Intel® Software
Guard Extensions (SGX) [4], and the Confidential Computing Consortium has been
formed to coordinate efforts [32]. Many workloads can benefit from a heterogeneous
approach, leveraging both HW accelerators for performance and CPU-based TEEs for
flexibility, however protection between the TEE and accelerator is required.

We propose a solution with security enhancements to FPGA based accelerators and
small change to software stacks but no HW changes to the CPU or the interconnect,
making it feasible and practical on today’s platforms. Proposals to protect computation
offload that require architectural changes to the CPU, to non-reconfigurable accelerators
or, to the communication standards between the CPU and the accelerator have a steeper
enabling path. A related work is Graviton [5] which proposes changes to the GPU to
create a TEE that resists exploits from a compromised host driver and reports overhead
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of 17%–33%. Another work, HIX [6], proposes CPU modifications to enforce context
isolation, changes to the PCIe interconnect to support integrity, and changes to the OS
to manage GPU resources while achieving 26% average performance overhead.

1.1 Architecture and Threat-Model

In this section, we describe the security architecture and threat-model for our motivating
example where a cloud customer’s application runs on public cloud using a TEE and a
HW accelerator for compute acceleration. Cloud customers want increased control of
security of their workloads against potential threats from the CSP’s OS/VMM and from
physical threats from system administrators who have full control of the hardware. The
security architecture shown in Fig. 1 includes:

• Trusted Execution Environments: A TEE provides increased protection for sensitive
portions of the workload executing on the CPU, isolating it from other software and
privileged software like the OS or VMM.

• Accelerator hardening: To complement the TEE protections, the accelerator provides
protections to the workload on the accelerator, including clearing data between loaded
workloads, isolation between co-resident workloads onmulti-tenant accelerators, lim-
itingFWandmanagement logic access to theworkload, protection for external storage,
etc.

• Attestation architecture: Both the TEE and the accelerator must be capable of attesting
to their authenticity and security posture. Existing CPU-based TEE technologies have
some type of attestation architecture and usuallymeet these requirements. Building on
accelerator security features, we provide multiple levels of attestation to meet needs
of multiple parties involved in the computation.

• End-to-end cryptographic tunnel between TEE and trusted accelerator. This is the
focus for the rest of the paper.

PCIe

Board
logic

DMA
& 

MMIO
Crypto

FPGACPU

Applica�on OS

kernel 
drivers 

Crypto Lib
Compute

Kernel
(accelera�on
architecture)Kernel

Interface

Memory
Interface

PCIe link
A�esta�on

Trust Boundary Trust Boundary

Fig. 1. Placement of the protection mechanism in the prototyping environment.

This paper proposes amethod to protect the data transfer from theCPU to a PCIe con-
nected accelerator without HW changes to the CPU or PCIe interface. Data is transferred
via DMA between a TEE and the accelerator with confidentiality, integrity, replay and
redirection protection in the presence of a privileged software adversary. We also protect
against physical attack to steal, modify, or inject data in the physical link. Protection
from Denial of Service (DoS) is out of scope of the current work.
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We optimized our cryptographic protocol and hardware implementation for data
transfer bandwidth and low latency for deep neural network (DNN) inference, however
we believe it will apply to many other uses. The low latency requirement instigated a
protocol with no buffering and AES-GCM authenticated encryption with the following
novel features:

• In-line encryption and high throughput: data is encrypted and processed pipelined
in the data transfer with no buffer or changes to flow control. Parallel AES pipelines
and Galois Field multipliers to meet 100Gbps DMA throughput.

• Minimal Initial Setup Latency: Initialization takes 19 clock cycles for DMA and
16 cycles for MMIO for a given key. The engines are self-capable of computing the
Round keys, Authentication key (H) and a few powers of H at initialization.

• On-time Authentication Tag:Computing and validating Authentication Tag is in the
critical path for DMA and MMIO transaction latency. The Authentication Tag is vali-
dated per clock for each 32-bit/64-bit MMIO transaction. For the DMA, intermediate
Tag is updated in each clock cycle as: Tag = Tag × H4 + d1 × H4 + d2 × H3 + d3
× H2 + d4 × H, where d1, d2, d3, d4 represents 512-bit data/clock; the final Tag is
computed at the end of all data transmission with minimal additional cycles.

2 Proof-of Concept Prototype Design Decisions

The crypto architecture was shaped by a set of design decisions. We elected to optimize
performance and developer experience on FPGAs accelerators to enable prototyping and
deployment on existing platforms. FPGAs are reconfigurable by the CSP, application
owner or accelerator board manufacture. Current usage of FPGA accelerators is simpler,
typical FPGA accelerators have a single context and single user at a time, and do not
require shared virtualmemory (SVM). This simplifies the protectionmechanism as users
share the FPGA sequentially, i.e., different tenants have exclusive use of the FPGA at
different times, and data is transferred through DMA and MMIO. In contrast, GPU and
ASIC are only modifiable by the HW vendor and GPUs support concurrent workloads
and SVM, making a solution for those accelerators more complex.

We chose to use SGX for our TEE because it is used in public cloud confidential
computing [1–3], and as a ring 3 TEE technology, enclaves do not permit ring 0 driver
within the enclave. Byworkingwithin these constraints, our solution easily ports to other
ring 0 TEEs on the market. SGX encrypts its memory in the enclave page cache (EPC)
with a key known only to the CPU HW. Data exchanged with a accelerator is copied
unencrypted outside EPC where it is vulnerable.

We chose to use end to end encryption with integrity between the enclave and the
accelerator endpoint, leaving the OS/VMM and hardware in the middle unchanged and
outside the TCB. Since the OS cannot access the local memory of the accelerator, the
DMA controller (DMAC) in the accelerator initiates memory requests to the host as only
it can access the accelerator’s local memory.

We chose to send integrity information out of band to avoid changes to the data
transport protocols and the transport link. The architecture was prototyped on a platform
with the accelerator directly connected to the CPU through PCIe but it may apply to
other type of connections and communication protocols.
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We chose to prototype applications using the OpenCL framework which abstracts
communications between hostCPUand accelerator usingDMAandMMIO.DMA trans-
fers data through buffers, MMIO is mostly used to manage the accelerator. The OpenCL
application has control over execution. The execution model has a clear demarcation
between data transfer and data consumption. The application configures the DMAC on
the accelerator to transfer data through DMA. After completion of the transfer, the appli-
cation directs the accelerator to process data. Results are also transferred back by DMA
in two steps. This allows for verification of integrity before the accelerator or application
consumes transferred data.

Wechose image recognition usingDNNacceleratedwithFPGAsas use case due to its
growing importance as cloud workload. For example, Project Brainwave [7] accelerates
DNN models with FPGAs. Our focus on low latency supports emerging interactive use
cases of DNN inference.

We prototyped the data transfer protocol on an Arria 10 GX FPGA Programmable
Accelerator Card (PAC) [10] because of their availability at the time of prototyping. The
Arria 10 PAC does not support attestation, we used a pre-exchanged symmetric AES key
between the TEE and the Crypto Engine (CE) on the FPGA. A follow-on prototype may
leverage Intel’s Stratix® 10 and Agilex® FPGAs integrated Secure Device Manager
(SDM) [30] to perform an attested key exchange.

We prototyped with Intel® OpenVINO [8] image recognition framework accelerated
with Intel® FPGA Acceleration Stack [9]. We chose AES-GCM authentication encryp-
tion because it provides confidentiality, integrity and replay protection; it can operate
on arbitrary data sizes; and plain and cipher text sizes remain the same size [11–13].
The PAC made enforcing strict ordering of DMA data required by AES-GCM simple
because the DMA controller makes write and read memory requests in order, and the
board support package (BSP) has a built-in parameter to deliver read responses to the
accelerator kernel in the order requested by default.

Figure 1 shows the encryption engines in the PAC and on the host that form the
encrypted tunnel. The Kernel Mode Driver (KMD) runs outside the enclave and only
sees ciphertext. The RTL module with the crypto engine intercepts all data transfer to
the accelerator kernel. Encryption and integrity verification are done in the enclave and
can be encapsulated as part of DMA to minimize changes to existing applications. HW
encryption placed outside the acceleration kernel minimizes changes to existing kernels.

Profiling image classification showed that the time spent in computation is much
larger than the data transfer time. Time spent onMMIO to configure the DMA controller
is even much smaller. We elected to prototype DMA protection and hardware imple-
mentations of DMA data encryption to estimate performance and left MMIO protection
and optimization of the SW implementation for future work.

The proposal encrypts as it writes out of enclave and decrypts as it reads into enclave
to avoid additional data copy and memory use. The HW encryption engine process the
full bandwidth of the bus inline without using precious block memory.

The hardware platform and sample application used to prototype support a single
DMA at a time. This allowedmultiplexing the hardware crypto engine for transfers from
host to accelerator and transfers from accelerator to host.
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3 Data Transfer Protocol

The protocol provides confidentiality, integrity and replay protection and prevents remap
attacks of transfers between EPC memory and local accelerator memory. The DMAC
in the FPGA access accelerator memory during DMA transfer. Encrypted and integrity
verified MMIOs enable secure configuration of the DMAC.

AES-GCM authenticated encryption of the DMA data helps to prevent data leakage
and to detect data tampering and replay. AES-GCM authenticated encryption of MMIO
to configure DMA helps to prevent use of DMA to corrupt memory. The protected
MMIO protects the target address in the accelerator memory and the size of transfer.
While OS/VMM retains management of host memory and assigns the DMA address
in host memory, any attempt to change host DMA address or size will be detected by
verification of payload integrity.

The application (APP) is enhanced to encrypt as it copies data to/from the host DMA
buffer and to verify the integrity of the data before consuming data. Software verifies
integrity by comparing authentication tags (AT) calculated on data inside the enclave
with the AT calculated by the accelerator as data in accelerator memory traveled through
the crypto engine. Software reads AT from the accelerator via MMIOwith no protection
because AT does not need confidentiality and any tampering would result in denial of
service.

Protected DMA DMA crypto engine DMA controller in device

Initialize crypto engine ahead of DMA data transfer
1. start

2. load IV, key, AAD, Ő:ő  
     filter data, fill pipeline 3. ready_for_data

DMA data transfer
4. configure transfer

5.  plain data
6. encrypt data & update AT7. encrypted data

Verify integrity of data transferred by DMA
8. compute req for final AT

9. compute final AT10. read At
11. AT

12. compare to AT 
       calculated by SW

Protected DMA DMA crypto engine DMA controller in device

Fig. 2. Protected DMA from accelerator local memory to host memory

The APP initializes the hardware encryption engine, encrypts data and calculates
the AT as it moves data to the host DMA buffer before calling the kernel mode driver
(KMD) to start DMA transfer. The crypto engine placed downstream of the logic that
reorders memory read responses intercepts all memory transactions that carry data.
The DMA crypto engine decrypts and calculate the AT over all data received since
initialization until asked to finalize AT calculation. Upon receiving DMA completion
message, theAPP commands the hardware crypto engine in the accelerator to finalize the
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AT calculation computed over the entire DMA payload. The APP reads the accelerator’s
AT and compares with the AT it calculated to validate the DMA transfer.

Figure 2 illustrates DMA transfer from accelerator to host. First, the APP initializes
the hardware crypto engine. Next, it configures the descriptors and starts DMA. The HW
crypto engine encrypts data and calculatesAT as thememorywrite requests pass through.
The APP requests HW to finalize AT calculation upon receiving DMA completion, and
decrypts and calculates the AT as it copies the data from the host DMA buffer to the
enclave. The APP then reads the AT calculated by the accelerator to verify integrity.

The changes to protect DMA payload include initialization of crypto engine, encryp-
tion/decryption and integrity verification. The application would need to add logic to
handle DMA transfer integrity errors. The KMD and buffer memory allocation are not
changed since the HW AT is read via MMIO keeping the DMA payload the same size.

3.1 Protected MMIO

Access to FPGA registers may compromise computation in ways that are not detectable
by the application or are irreversible. For example, a read or write to a device register
may reset portions of the accelerator, select different computation, trigger computation,
cause soft errors or even permanent damage by changing voltage, clock, or temperature
operation limits. To avoid these hazards, all MMIO transactions to security sensitive
registers are intercepted to verify integrity and origin in the APP the accelerator is
currently assigned to. MMIO requests that fail these tests are blocked. For example,
the address range with registers for the accelerator kernel on the PAC card is protected.
The application uses the protocol that can be encapsulated in a SW function to access
security sensitive addresses instead of using MMIO directly.

1. The software computes the AT of the next request to read/write the protected reg-
ister and includes the address offset of the register in the AT calculation to prevent
misdirection. The software writes the computed AT to a register that is not protected.

2. The software sends the MMIO request for the protected register. Logic in the accel-
erator intercepts MMIO requests and upon detecting that the address offset is pro-
tected, calculates the AT and compares with the AT stored in the accelerator. The
logic exposes the result of verification in a protected status register. If the tags match,
the HW exposes the AT calculated by the accelerator in an unprotected register and
completes the MMIO request. Else, the AT register is not updated. For a MMIO read
request, the logic also returns a dummy read completion.

3. The software confirms the MMIO request succeeded and returns the status to the
user APP. For aMMIO read, the function calculates the AT of the response and reads
the AT exposed by the accelerator by MMIO to confirm the data received and the
data sent are the same and from the requested register. For a MMIO write request
the function reads the protected status bit with this protocol.

Figure 3 illustrates protection of a MMIO read. Protected registers can only be
accessed using the protocol by software with the key regardless of how the register is
mapped by the OS/VMM because the accelerator intercepts and validates all MMIO
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requests to the protected address offsets. The application must be upgraded to the pro-
tectedMMIO protocol to access security sensitive registers. Conversely, device registers
managed by the OS should not be in address offsets protected by the accelerator with the
application’s key. Protection of register accessed by bothOS andAPP requiresmediation
by the party that owns the key. The discussion of how the accelerator enables the OS to
regain control of the accelerator from the application while ensuring secrets are erased
first is not described in this paper.

Protected MMIO MMIO crypto engine Acceleration Kernel

SW stores AT of the protected transaction it will request

1. calculate AT of MMIO read request w/ offset of device
    store AT for next request   
    mmio_write64(ATlow), mmio_write64(AThigh)

MMIO read request
3. mmio_read(secure_addr) 

     HW calculates AT of request 
     compare to SW AT

 If integrity fails 5. packet dropped
6. set fail flag7. mmio_read_response(error_cte) 

 else integrity passes 8. mmio_read (offset)
9. mmio_read_response (value)

       store AT (offset, rd, enc (value)) 
       reset fail flag 11. mmio_read_response (enc (value)) 

Verify MMIO read integrity
       read AT from crypt engine
       mmio_read64(ATlow), mmio_read64(AThigh)
          mmio_read_response(ATlow), 
          mmio_read_response(AThigh)

calculate AT of response, compare to AT from HW
       decrypt enc (value)

Protected MMIO MMIO crypto engine Acceleration Kernel

2.

4.

10.

12.

13.

14.

Fig. 3. Protected MMIO read flow diagram

3.2 Performance Analysis of the Protocol

We focused on performance of DMA transfers because most of transfer time in image
classification is spent on a few large DMAs. The HW latency overhead is almost inde-
pendent of throughput and length of the DMA transfer. We match the throughput of
the crypto engines to the bandwidth of the bus to impose no restriction on bandwidth
nor require buffering or flow control. The protocol initializes the pipeline of the crypto
engine before start of DMA data transfer and calculates a single AT over all the payload.
The hardware latency overhead is approximately the time to fill the encryption pipeline
and to calculate the final AT. Protection in SW optimizes latency by leveraging AES-NI
acceleration in the CPU and doing encryption during data copy through the enclave
boundary to avoid additional buffer copies. SW encryption latency is much longer than
HW encryption latency in our use case.

OneMMIO read to a protected register adds 2MMIO read and 2MMIOwrite to copy
AT, and 2 encryption/decryption andAT calculations.MMIOwrite to a protected register
adds 3 MMIO read, 3 MMIO write, and 3 encryption/decryption and AT calculations. A



HCC: 100 Gbps AES-GCM Encrypted Inline DMA Transfers 283

MMIO write has more overhead because it reads a status flag from a protected register.
We do not expect a measurable impact of MMIO overhead on performance of the use
case based on profiling of number of MMIO transactions.

HW protection of MMIO is optimized for performance, the MMIO crypto engine
pipeline is initialized only once for the duration of the application, not before each
transaction. The throughput of authentication tag calculation matches the throughput
of the internal MMIO data bus to impose no bandwidth restriction. We minimized the
latency of AT calculation as it is in the critical path of the protected MMIO protocol.

4 High Performance Crypto Engine Implementation

Our goal was to demonstrate the AES-GCM HW engines integrated and running in the
PACPCIe accelerator cardwithout limiting the@100Gbps of the internal bus connecting
the accelerator kernel in the PACandHost.We implement ourAES-GCMengines instan-
tiated inline on the 200 MHz, 512-bit bus that carry 512-bit DMA memory transactions
and MMIO transactions in the 32 or 64 LSB.

We implemented the AES-GCM algorithm for independent engines for DMA and
MMIO with an AES pipeline datapath, Galois Field Multipliers for AT computation
with related registers and control. We encrypt 512-bit DMA inline data and compute
related Galois Field operations for partial AT generation in each clock. After processing
the final data block, we compute the final AT with minimal latency. We encrypt and
compute or validate AT of every 32-bit/64-bit MMIO request or read response in one
clock cycle to match the throughput of the bus.

4.1 Microarchitecture of the 512-Bit Inline AES-GCM Engine

Figure 4 depicts the microarchitecture of the HW engine that can process 512-bit inline
data for AES-GCM encryption/decryption and partial authentication tag generation.
The AES-GCM pipeline has four parallel AES encryption unrolled engines (1 round per
pipeline depth/stage) running in CTR mode. There are five parallel 128-bit Galois Field
Multipliers divided into two pipeline stages. Additionally, there are counters and control
logic to generate encrypted counter streams, to compute length of the data stream, and
to control compute of the final AT.

Our objective was to design the pipeline to process 512-bit data at 200 MHz clock to
provide 100Gbps throughput in the Intel Arria 10 FPGA used in the PAC. The datapath
of one round of our AES engine based on GF((24)2) fitted to the FPGA meets timing
at 5 ns clock period. We implemented depth-10 pipeline for AES128 with one round
in each clock period. We are not providing further details of AES engines based on
GF((24)2) because many AES implementations have been reported in the literature in
the last 3 decades [17–21].

The Galois Field GF(2128) multiplier for tag computation is based on the hybrid
Karatsuba multiplier [15, 16]. We split the critical path of the Karatsuba 128-bit mul-
tiplier and polynomial reduction into two pipeline stages to fit the 200 MHz. The first
stage consists of the 32-bit hybrid Karatsuba multiplier implemented with three 16-bit
regular multiplier and the Karatsuba layer to produce 63-bit results. The second stage
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AES1
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Fig. 4. Microarchitecture of the 512-bit AES-GCM HW engine.

consists of 64-bit and 128-bit levels for Karatsuba multiplication and the XOR based
reduction logic for irreducible polynomial x128 + x7 + x2 + x + 1. The following
microarchitecture approaches address the challenges created by the two cycle latency
for GF(2128) multiplication to process 512-bit data in each cycle.

To recap, the authentication tag (Tag) in AES-GCM is computed as:

Tag =
(
(A × Hn) ∧ (

d1 × Hn−1
) ∧ . . . ∧ (

dn−2 × H2
) ∧ (Len × H )

) ∧ (
Ek

(
IV ||32{1′b1}))

Where, “A” represents Additional Authentication Data, d1 to dn-2 are 128-bit data
blocks, “ˆ” represents bitwise XOR operation, Ek is the AES encryption with the secret
key k, IV represents the initial vector, and× is the GF(2128) multiplication. We compute
the Tag for the DMA transactions of 512-bit/clock as follows:

Step 1: Initialization: Tag = A×H, T2 = 0, T3 = 0; 

Step 2: Repeat:  

Clock 1: 

Clock 2: T3 = d1×H4 ^ d2×H3 ^ d3×H2 ^ d4×H 

Step 3: Capture Length: Tag = Tag×H ^ Len×H 

Step 4: Final Tag: Tag = Tag ^ Ek(IV||32{1’b1}).

 T2 = d1×H8 ^ d2×H7 ^ d3×H6 ^ d4×H5

Tag = (Tag ^ T2 ^ T3) ×H8

Where, H, H2, H3, H4, H5, H6, H7, H8 are precomputed during setup stage and stored
in registers. We incorporated five Galois Field multipliers to the AES-GCM engine to
compute all five multiplications in parallel. This works well if the DMA transfer is a
multiple of 1024 bits. The actual microarchitecture is more complex than represented
above. For example, to support data sizes of multiples of 512 bit we keep track of the last



HCC: 100 Gbps AES-GCM Encrypted Inline DMA Transfers 285

512-bit block internally; and multiply them with lower powers of H as represented in
Step 2/Clock 2 when the engine receives the “last_in” pulse, to signal completion of data
transfer. If the block of data is a multiple of 128-bit but not a multiple of 512-bit we select
the H powers accordingly based on the length of the final block. In this implementation
we restrict support to data lengths that are multiple of 128-bit.

Initialization starts with a “start” pulse to apply the secret key and IV to the engine.
After receiving a start pulse the machine pushes a block of all zeros as the first input to
the AES Pipeline-1 for encryption by the input key to generate the authentication key H.
Additionally, at the start pulse the engine initializes its counters and related control logic.
In the following cycle, it initializes all four AES pipelines with CTR, CTR+1, CTR+2
andCTR+3.All counters increment by 4 and repeat for 9 cycles to fill the pipeline. On the
10th clock cycle, the computed H value is registered on the AES pipeline output. In the
following cycle, the H value is pushed into a Galois Field multiplier to compute H2. On
this same clock, the encrypted initial values of the four counters reach the output registers
of the four AES pipeline and so we stop the AES pipeline and continue to precompute
the other H power values (H3 to H8). Since each Galois Field multiplication requires
two clock cycles, we require four additional cycles to compute H3 to H8. Therefore,
the engine takes 16 cycles to startup. The DMA protection engine is ready for DMA
data streaming on the 17th cycles from the start pulse when it asserts the ready-for-data
signal (ready_for_data). It can grab 512-bit plaintext/ciphertext data in each clock cycle
and produce the corresponding ciphertext/plaintext in the following clock cycle. It also
executes the operations related to AT calculation in parallel with the ciphertext/plaintext
generation. Figure 5 provides the execution flow of the DMA Protection Engine during
data streaming operation.

DMA Security Engine is ready-for-data

Execute Step 2 of Authen�ca�on Tag 
computa�on on 512-bit ciphertext. Note that,  
ciphertext is available a�er XOR for encrypt; 
whereas, for decrypt it is the actual input  data.  

Capture 512-bit input data and XOR them 
with the current outputs of the AES pipelines

The Engine updates the Tag register, 
releases the encrypt/decrypt output 
and sets up the  output_valid to logic 1.

input_valid = 1

Yes

No

Wait and stall

last = 1

Start execu�ons for Step 3 
and Step 4

Count 10 clock cycles to complete 
the encryp�on of IV||32{1'b1}

Compute final Tag, generate the 
predone pulse  

Release Tag and generate done pulse

Yes

Set busy status to logic 0 and stop

No

Fig. 5. The DMA protection engine data streaming flow

After encrypting/decrypting all data blocks, the engine waits for a last_in input pulse
to produce the final Tag by computing Step 3 and Step 4 described above. These two steps
include two Galois Field multiplications, one AES encryption and two XOR operations.
The operations in Step 3 takes 2 clock cycles in the DMA Protection Engine. Step 4
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involves an AES operation on IV||32{1’b1} which starts in parallel with Step 3 but takes
10 clock cycles and is followed by an XOR for computing the final Tag output. In total,
Step 3 and Step 4 take 11 clock cycles.

4.2 The 32/64-Bit Inline Encryption and Tag Generation for MMIO

Protected MMIO transactions are necessary to protect the configuration and initializa-
tion of the DMA controller with cryptographic confidentiality and integrity. The inline
encryption/decryption and Tag generation/validation must protect one MMIO in every
clock cycle to process back-to-back operations.

We implemented separate AES-GCM pipelines for inline 32-bit/64-bit encryption
& authentication in each cycle as shown in Fig. 6. The architecture consists of three
AES128 pipelines to encrypt the 128-bit string of zero (for H), counter 1 (for final Tag)
and 2 (for data encryption). After these encryptions are completed in the first 10 pipeline
stages, we start computing the Tag.We instantiated the sameGalois Fieldmultiplier used
for DMA in the MMIO AES_GCM engine. We compute Tag = (((d × H) ˆ length) ×
H) ˆ E(iv, 32’d1) inline on every cycle for independent 32-bit/64-bit data in five pipeline
stages after the AES last round pipeline stage. In total, the pipeline depth and latency
of this AES-GCM engine for inline encryption and Tag generation is 15 and 16 clock
cycles. This engine can compute the encryption/decryption and Tag computation for one
128-bit input block in each clock cycle. For MMIO transaction we had no additional
authentication data (AAD). However, it would be easy to accommodate AAD in the
pipeline stages at cost of one more GF128 multiplier for Tag computation.

Fig. 6. Microarchitecture of the 32-bit/64-bit inline encryption and authentication engine.

5 Results

Multiple AES-GCM hardware designs have been reported on various devices that target
a range of applications including very low area [25], high throughput [23, 24] and DPA
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resistant [27]. Few of them targeted high bandwidth TLS traffic with wide datapath to
process multiple AES blocks in parallel. Table 1 shows a survey of existing works. None
of them targeted Arria 10 FPGA making it difficult to make a comparison.

Table 1. Survey of reported AES-GCM

AES-GCM
engines

Devices Datapath
width
[bit]

Key
schedule

Resource
[LUT]

Frequency
[MHz]

Throughput
[Gbps]

Year

[16] Virtex 5 128
√

30K 311 36.92 2017

[15] Virtex 5 128
√

26K 324 41.47 2009

[25] Cyclone V 128
√

4K 50 0.417 2017

[26] Virtex4 128
√

55.6K 120 15.3 2007

[27] Virtex-7 128
√

152K 119 15.24 2017

[14] Virtex 5 512 × 484K 200 102.4 2014

[23] Virtex
UltraScale

512
√

108K 200 200 2018

[24] Virtex
UltraScale

1024
√

164K 320 327.7 2015

[28] Virtex-5 512
√

59K 233 119.3 2010

[29] Virtex-7 512
√

– 200 102.4 2017

Our microarchitectures and Verilog RTL implementations of the DMA and the
MMIO crypto engines are platform and technology independent for implementation on
FPGA or ASIC. Table 2 shows implementation results of proposed AES-GCM engines.
The fitting report of the engines by themselves on the Arria-10 10AT115S2F45E2SG
report the DMA engine consumes 47 K adaptive logic modules (ALM) and the MMIO
engine 23 K ALM and no block memory or DSP block. The maximum operating clock
frequency reported by the Quartus timing analyzer tool is 309.78 MHz for DMA and
302.5 MHz for MMIO. Or, 154.89 Gbps throughput for our 512-bit data DMA engine
and 38.72 Gbps for the 128-bit MMIO engine. 200 MHz is the maximum operating
frequency supported by most of the older generation FPGA. Note that modern FPGAs
like Arria 10 and Stratix 10 support higher operating clock frequencies.

We integrated the DMA data crypto engine with an acceleration kernel derived
from the acceleration kernel architectures distributed in the Deep Learning Acceleration
(DLA) [22] package and synthesized and fitted to the Arria 10 GX FPGA Intel Pro-
grammable Acceleration Card (PAC) [10]. Table 3 shows estimates of resource utiliza-
tion of FPGA logic and percentage of the 430 KALM in the FPGA compared to the
2019R3_PV_RC_FP11_InceptionV1_ResNet_SqueezeNet_TinyYolo_VGG bitstream
in the OpenVINO distribution.

The FPGA in the PAC has multiple clock domains, the DMA crypto engine was
instantiated inline on a data bus in the 200 MHz clock domain. Based on Quartus tool,
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Table 2. Implementation results of our AES-GCM engines

AES-GCM
engines

Devices Datapath
width
[bit]

Key
schedule

Resource
[LUT]

Frequency
[MHz]

Throughput
[Gbps]

Year

Ours DMA Arria 10 512
√

47K 200 100 2020

Ours
MMIO

Arria 10 128
√

23K 38.72 2020

Table 3. Resource utilization impact of DMA data protection

Utilization/bitstream Release (unprotected) Redesign (protected)

BSP [KALM]/[%] of Arria 10 150/35% 150/35%

Kernel [KALM]/[%] of Arria 10 150/35% 130/30%

DMA crypto [KALM]/[%] of Arria 10 n.a. 50/12%

MMIO crypto [KALM]/[%] of Arria 10 n.a. (25/6%)

Remaining for routing [KALM]/[%] of Arria 10 130/30 100/23

fmax of kernel [MHz] 242 236

the maximum operating frequency of our AES-GCM engines is greater than 300 MHz
which gives high confidence they will run at 200 MHz under all operating conditions.

The bitstream from the OpenVINO distribution and the bitstream synthesized with
our DMA data crypto engine were loaded in the PAC card and benchmarked using the
benchmark_app in the Intel®OpenVINO-FPGA ST build that is single threaded and has
a smaller memory footprint than the public distribution of Intel® OpenVINO-FPGA.
Table 4 shows preliminary latency measurements of image classification of 1 image of
228 × 228 pixels on an image recognition application based on OpenVINO accelerated
with FPGA on a resnet-50 network. The transfer time measured in the protected case
includes HW and SW encryption. The application and SW encryption are executed
inside a SGX enclave and use Graphene Library OS [31]. While the proposal calls for
MMIO protection, our preliminary measurements are on the application without MMIO
protection. Also, the system was lightly loaded, compared to a cloud server which will
likely have higher CPU load. Benchmarking was done on a Z370 AORUSGaming 5-CF
workstationwith an Intel(R) Core (TM) i5-8500CPU at 4.00GHz, caches L1= 384KiB,
L2 = 1536KiB, L3 = 9MiB, 64 GB RAM at 2666 MHz (0.4 ns), on Ubunto 16.04. The
SGX EPC size on this processor is 128MBwith 98MB available to the application. The
workstation was not running other jobs during the measurements, the core frequency
was set in the 4.1 GHz range by the performance governor.

The latency overhead of less than 1 ms to the reference use case demonstrates the
viability of our DMA crypto engine and data transfer protocol for applications that
require low latency.
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Table 4. Comparison of latency of classification of 1 image w/and w/o DMA data encryption

Release bitstream [ms] Redesign bitstream
[ms]

Change (overhead)
[ms]/%

Total inference 3.11 4.02 0.91/29

Transfer time 0.20 0.43 0.23/114

CPU processing 0.18 0.33 0.15/83

FPGA processing 2.74 3.26 0.52/19

Kernel Fmax [MHz] 242 236 −6 MHz/−2.5%

The overhead to encrypt 1.7 MB of data in 4 separate DMAs was 230 microseconds
or 7% of the total inference time without protection. The overhead mainly comes from
SW encryption with the DMA crypto engine adding an estimated 600 ns (30 clocks *
5 ns * 4 DMA). Overhead to protect pre and post processing in the CPU depend on
the choice and implementation of the trusted execution environment. Our unoptimized
implementation of application protected in an SGX enclave on a platform with limited
EPC added 150 us or 5% of the unprotected inference time.

The DMA crypto engine used approximately 50 KALM or 12% of the logic blocks
of the Arria 10 FPGA in the PAC and it was integrated with an acceleration kernel 13%
smaller to keep routing resources comparable to the bitstream in the release. We ran
synthesis and fitting tools with 75 different seeds to generate a bitstream integrating
the smaller acceleration kernel with comparable maximum operation frequency and
protection for DMA. The less parallel acceleration kernel running at a lower frequency
increased network processing in the FPGA by 520 us or 16%.

Twomain contributors to the overhead were increased FPGA processing and encryp-
tion and TEE protection in SW. We expect less impact in the size and frequency of the
acceleration kernel on a more advanced FPGA accelerator card such as the Stratix 10
PAC. The DMA and MMIO crypto engines would consume 1.8% and 0.9% of the
available 2800 K ALMs on an Intel® Stratix® 10 SX FPGA used in the Stratix 10 PAC.

6 Conclusion

Public clouds are seeing an increase of heterogeneous computing for performance, but
also an increase customer interest confidential computing in public clouds. This work
proposes an approach to extend confidential computing model from the CPU to het-
erogeneous workloads leveraging accelerators. We describe and prototype the crypto-
graphic mechanisms to protect data transfer to offload work to an FPGA accelerator
that is deployable in existing computer platforms without silicon changes to the CPU or
changes to the PCIe standard.

We prototyped the architecture to solve critical implementation challenges of the
crypto engines and validate performance and feasibility. Our implementation of a highly
optimized AES-GCM authenticated encryption in hardware avoided additional buffer-
ing. The measured overhead of data encryption for classification of 1 image was in the
order of 250 us.
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Webelieve highly efficient crypto implementations as described in our proposal could
play a critical role in increasing the use of heterogeneous architectures for confidential
computing usages.

We would like to acknowledge the support of many colleagues without which this
workwould not have been possible, especially SomnathChakrabarti, Rick PEdgecombe,
Matthew Hoekstra, Eric Innis, Dmitrii Kuvaiskii, Ting Lu, Pradeep Pappachan, Carlos
V Rosa, Nanda K Unnikrishnan, Mona Vij, and Salessawi Yitbarek.
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Abstract. We discuss the setting of information-theoretically secure
channel protocols where confidentiality of transmitted data should hold
against unbounded adversaries. We argue that there are two possible sce-
narios: One is that the adversary is currently bounded, but stores today’s
communication and tries to break confidentiality later when obtaining
more computational power or time. We call channel protocols protecting
against such attacks future-secure. The other scenario is that the adver-
sary already has extremely strong computational powers and may try to
use that power to break current executions. We call channels withstand-
ing such stronger attacks unconditionally-secure.

We discuss how to instantiate both future-secure and unconditionally-
secure channels. To this end we first establish according confidentiality
and integrity notions, then prove the well-known composition theorem to
also hold in the information-theoretic setting: Chosen-plaintext security
of the channel protocol, together with ciphertext integrity, implies the
stronger chosen-ciphertext notion. We discuss how to build future-secure
channel protocols by combining computational message authentication
schemes like HMAC with one-time pad encryption. Chosen-ciphertext
security follows easily from the generalized composition theorem. We also
show that using one-time pad encryption with the unconditionally-secure
Carter-Wegman MACs we obtain an unconditionally-secure channel pro-
tocol.

1 Introduction

In today’s information infrastructure the time intervals over which sensitive data
are stored increase rapidly. Striking examples are digital tax data or electronic
medical records which need to be kept for years or even decades according to legal
stipulations, requiring also to uphold the involved individuals’ right to privacy
for such time periods. In some cases the protection time span is quasi indefinite,
if one considers for example genetic data which descendants (partially) inherit
from their ancestors.

The cryptographic challenge here is that the long-term protecting schemes
must be able to withstand unexpected cryptanalytic advances, but also pre-
dictable advances in computational power. An adversary may store digital data
c© Springer Nature Switzerland AG 2020
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and aim to break the underlying cryptographic scheme later with new methods or
by pure advances in technology. Remarkably, this does not only hold for data at
rest but also for data in transmission: An adversary may record encrypted com-
munication today and try to break confidentiality tomorrow. If we talk about
transmissions over unreliable networks then the adversary may also use addi-
tional means to attack schemes, such as omission, injection or modification of
transmitted ciphertexts.

The above challenge is the starting point of our work. We consider security
of cryptographic channels against potentially unbounded adversaries, denoted
as information-theoretically secure channels.1 The question we address is what
kind of channel security can we achieve in settings with unbounded adversaries,
and how can we accomplish this.

1.1 Modeling Information-Theoretically Secure Channels

If we look at the long-term security of channel protocols, in order to completely
rule out unforeseen cryptanalytic advancements, this boils down to uncondi-
tional security. In this context Shannon’s famous result [25] tells us that we need
keying material as long as the cumulative size of transmitted messages which
should be protected. Ensuring that sufficient keying material is available when
required is beyond our scope; the most prominent option today would be to
use quantum key distribution (QKD) [17]. Clearly, this attaches a high-price
tag to information-theoretic security in practical deployment. When securing
high-stake data transmission, truly long-term security however is and will be
called for, and hence ought to be formally understood. Focusing on the channel
protocol, we make the simplifying assumption that sender and receiver readily
have secure shared keys K available with each operation; our channel notions will
allow to precisely quantify the amount of required keying material per operation.

For modeling unconditional security of channels we use a two-stage adversary
model similar to the one introduced by Bindel et al. [9]. They consider signature-
based public-key infrastructures and the question how security is affected by
quantum adversaries. Among other, they distinguish adversaries which are clas-
sical when interacting with the certificate authority and gain quantum power
only much later in the future, versus adversaries which have quantum capabil-
ities even when interacting with the signer. The idea has also been adapted in
subsequent works like [8].

In our setting we distinguish between adversaries which are bounded or
unbounded in the first phase, during the channel protocol execution, but def-
initely become unbounded in the second phase, after the receiver closed the
connection:

1 Our notion of (cryptographic) channels should not be confused with other concepts
like Wyner’s wire-tap channels [28] or other measures to generate information-
theoretically secure keys from physical assumptions. We are interested in how to
transmit data securely once the sender and the receiver already share a key.
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– For future-secure channels the first-stage adversary is bounded in computa-
tional resources when the channel protocol is running, but may store the
communication data and later try to decrypt when having more computa-
tional power or more time.

– For unconditionally-secure channels the first-stage adversary already has
extreme computational power when the channel protocol is executed, such
that we need to protect against unbounded adversaries immediately.

In both cases we assume an active adversary which can tamper with the net-
work communication, thereby capturing (and preventing) re-ordering and replay
attacks. This in particular distinguishes our setting from prior works concerned
with the unconditional security of individual messages (but without ordering
requirements), e.g., aiming at everlasting privacy in e-voting [21].

1.2 Achieving Information-Theoretically Secure Channels

We next show how one can build future-secure and unconditionally-secure chan-
nel protocols. We follow the common paradigm to encrypt and authenticate the
data in transmission. For encryption we need unconditional security for both
channel types, because any break of confidentiality, during the protocol execu-
tion or afterwards, violates long-term secrecy of the data. This suggests to use
the one-time pad encryption.

Authenticity, on the other hand, is a property which has to hold only dur-
ing the channel’s life time, in order to decide if a transmission comes from
the expected sender. This is also remarked in [22] where the authors combine
quantum key distribution with short-term authentication methods. In our chan-
nel instantiation aiming at future security we can thus use computationally-
secure authentication methods like HMAC [4]. For unconditionally-secure chan-
nels we need information-theoretically secure authentication schemes like Carter-
Wegman MACs [27].

Before diving into the construction we first carefully adapt the classic com-
position theorem of Bellare and Namprempre [7] to the setting of information-
theoretically secure channels: we show that an IND-CPA secure protocol which
additionally provides INT-CTXT integrity of ciphertexts is also IND-CCA
secure. As we will see, in our setting IND-CPA (even against unbounded adver-
saries) holds based on using one-time pad encryption; the composition result
hence elegantly allows us to focus on establishing INT-CTXT (computation-
ally or unconditionally) via appropriate authentication methods. This way, we
obtain IND-CCA future-secure channels if we use computational authentica-
tion, and even IND-CCA unconditionally-secure channels if we use information-
theoretically secure authentication.

We then give two concrete channel protocols, combining one-time pad encryp-
tion with computationally-secure MACs like HMAC, resp. with information-
theoretically secure schemes like Carter-Wegman MACs. For the future-secure
channel we use a counter to prevent repetition and out-of-order attacks, and
show that the channel is IND-CPA secure and (computationally) INT-CTXT
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secure. Our general composition theorem therefore shows that the channel is
IND-CCA future-secure. For the unconditional case it turns out that we do not
need counters since we use a one-time key in each authentication step. We show,
applying once more the composition theorem, that we achieve unconditional
security of the channel if we apply Carter-Wegman MACs to the (plain) one-
time pad encryption. Due to unforgeability of Carter-Wegman MACs linearly
degrading with the number of transmitted messages, our results exhibit a note-
worthy trade-off between the future- and unconditionally-secure constructions.

1.3 Further Related Work

Alternative approaches to unconditionally-secure encryption include limiting the
adversary’s memory capacity in the bounded-storage model [12,20]. As such
restriction may regularly not apply in practice for small-bandwidth, but highly-
critical communication data, we in contrast consider fully-unbounded adversaries
(and hence have to resort to the one-time pad for confidentiality).

Künzler et al. [19] consider which functions are securely computable in the
long-term scenario when one assumes short-term authenticated channels, i.e.,
channels which are only computationally secure during the computation. In a
similar vein, Müller-Quade and Unruh [23] define a statistical version of the
universal composition framework, enabling long-term security considerations.
The work shows how to build commitments and zero-knowledge protocols in
this setting, again assuming that secure channels are available.

2 Security of Information-Theoretically Secure Channels

2.1 Channels

We first define the notion of a channel protocol. It consists of an intialization
step in which some shared key material KI is generated, usually for authentica-
tion purposes, and the sender’s and receiver’s states are initialized. The OTKey
algorithm lets the sender and receiver generate fresh key material, e.g., through
authenticated quantum key distribution, to be used only once and in a pre-
determined sequence (e.g., the order they are established in QKD). We do not
specify in our abstract model how this is accomplished. Finally, the Send and
Recv algorithms allow to process data for the communication.

Definition 1. A channel Ch = (Init,OTKey,Send,Recv) with associated sending
and receiving state space SS, resp. SR, message space M ⊆ {0, 1}≤M for some
maximum message length M ∈ N, initialization key space Kinit = {0, 1}Ninit and
per-message key space Kmsg = {0, 1}N for some key lengths Ninit, N ∈ N, error
space E with E ∩ {0, 1}∗ = ∅, consists of four efficient algorithms defined as
follows.

– Init() $−→ (KI , stS , stR). This probabilistic algorithm outputs an initial key
KI ∈ Kinit and initial sending and receiving states stS ∈ SS, resp. stR ∈ SR.
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– OTKey() $−→ K ∈ {0, 1}N . This algorithm generates the next per-message
key K for both parties, to be used only once.

– Send(stS ,KI ,K,m) $−→ (stS , c). On input a sending state stS ∈ SS, an initial
key KI ∈ Kinit, a per-message key K ∈ Kmsg, and a message m ∈ M, this
(possibly) probabilistic algorithm outputs an updated state stS ∈ SS and a
ciphertext (or error symbol) c ∈ {0, 1}∗ ∪ E.

– Recv(stR,KI ,K, c) → (stR,m). On input a receiving state stR ∈ SR, an initial
key KI ∈ Kinit, a per-message key K ∈ Kmsg, and a ciphertext c ∈ {0, 1}∗,
this deterministic algorithm outputs an updated state stR ∈ SR and a message
(or error symbol) m ∈ M ∪ E.

We say that a channel is correct if for any i ∈ N, any (KI , stS [0],
stR[0]) ←$ Init(), any (K1, . . . ,Ki) ∈ (Kmsg)i with Kj ←$OTKey() in sequence
for j = 1 to j = i, any (m1, . . . ,mi) ∈ Mi, any sequence (stS [1],
c1) ←$Send(stS [0],KI ,K1,m1), . . . , (stS [i], ci) ←$Send(stS [i − 1],KI ,Ki,mi),
and (stR[1],m′

1) ← Recv(stR[0],KI ,K1, c1), . . . , (stR[i],m′
i) ← Recv(stR[i − 1],

KI ,Ki, ci), it holds that (m1, . . . ,mi) = (m′
1, . . . ,m

′
i).

2.2 Channel Security

Our core security notion follows the common ones for channels (or stateful
authenticated encryption) by Bellare, Kohno, and Namprempre [6], but com-
bines confidentiality and integrity in a single game, following what is sometimes
referred to as CCA3 security [26]. The adversary A can repeatedly ask the sender
(oracle) to encrypt one of two messages. The choice of which message to encrypt
is based on a secret bit b which the adversary tries to predict eventually. On
the receiver’s side the adversary may submit arbitrary ciphertexts C in order
to learn something about the bit b. Indeed, if the adversary manages to forge a
ciphertext (decrypting to a non-error) on the receiver’s side, either by creating a
fresh valid ciphertext or by changing the order of the sender’s ciphertexts, then
we give the adversary enough information to predict b. The latter is achieved for
a ciphertext forgery by returning the encapsulated message m if b = 0, and ⊥
otherwise.

In more detail, the corresponding security experiment (in Fig. 1) works as
follows: The adversary can call the sending oracle OSend about two equal-length
messages m0,m1, then the sender encapsulates mb (and updates its state stS)
and returns the ciphertext. We keep track of the order of ciphertexts by a
counter i. The receiver’s oracle ORecv is more involved. When called with a
ciphertext C it first increments its counter j and then decapsulates the message
and updates its state stR. There are now various cases to distinguish, relating
to the question whether the ciphertext C is a forgery or not:

– If j > i or C 
= Cj , i.e., if this is a new ciphertext or one which has not
been produced by the sender as the i-th ciphertext before, then we say that
the ciphertext sequences are not in-sync anymore. This is captured by a flag
out-of-sync.
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Fig. 1. Experiment Expind-sfccaCh (A)

– If we have reached an out-of-sync situation, either in this call to ORecv

or an earlier one, then we provide the adversary with the received message
in case b = 0. This enforces that, for a scheme to be secure, whenever the
received ciphertext sequences goes out of sync, the output of Recv must be ⊥,
as otherwise it would be easily distinguishable from the case b = 1 always
outputting ⊥.

The overall goal of the adversary is to predict b, either by distinguishing the
messages encapsulated by the sender, or by breaking integrity and learning about
b through a receiver’s reply.

To capture unconditionally-secure channels and future-secure ones in a single
game we divide the adversary A in two phases, A1 and A2. In the first phase
the adversary has access to both the sender and receiver oracle. In this first
stage the adversary may still be bounded in running time (for future-secure
channels), resp. already be unbounded (for unconditionally-secure channels). In
the second stage the adversary is in both cases unbounded but can no longer
access the receiver oracle. This allows us to model future-secure channels where
A1 is restricted and the authentication only needs to be temporarily secure,
and in the second phase of the unbounded A2 past and future sender messages
remain confidential (but computational authentication may now be broken). For
unconditionally-secure channels we allow already A1 to be unbounded such that
A2 merely acts as a dummy.

We stress, however, that we do not formalize the notion of being bounded
or unbounded in our concrete security analysis. Instead, we give reductions to
underlying problems, e.g., if A1 breaks integrity of the channel then we break
some underlying primitive with (roughly) the same running time. By this we
get a reasonable security guarantee from computationally secure authentication
schemes such as HMAC, as well as from unconditionally secure ones such as
Carter-Wegman MACs.
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Fig. 2. Experiment Expint-sfctxtCh (I)

Definition 2 (Chosen-Ciphertext Security). For an adversary A =
(A1,A2) define its advantage in Experiment Expind-sfccaCh (A) (Fig. 1) as

Advind-sfccaCh (A) = Pr
[
Expind-sfccaCh (A) == true

]
. (1)

Note that for a secure channel we expect the advantage to be close to the
pure guessing probability 1

2 .
We argue below that one can achieve the CCA notion by considering a weaker

CPA requirement on confidentiality, and combining it with an integrity notion.
The CPA indistinguishability game is identical to the CCA game but does not
give the two-stage adversary access to the receiver oracle ORecv (cf. AppendixA
for its formal definition). The integrity experiment allows the adversary to see
ciphertexts of chosen messages via oracle OSend, and merely checks if the adver-
sary manages to send a new or out-of-order ciphertext which decrypts correctly.
Finally we define integrity by demanding that the adversary is able to forge a
valid ciphertext with negligible probability only:

Definition 3 (Ciphertext Integrity). For an adversary I define the advan-
tage in Experiment Expint-sfctxtCh (I) (Fig. 2) as:

Advint-sfctxtCh (I) = Pr
[
Expint-sfctxtCh (I) == true

]
. (2)

3 Composition Theorem

We next show that for any channel protocol Ch chosen-ciphertext security follows
from chosen-plaintext security and integrity, similar to the composition result for
classical channels [6]. The security reduction shows that the derived attackers
B against ind-cpa and I against int-sfctxt have roughly the same running time
characteristics as the adversary against ind-sfcca. In particular, if the first-stage
adversary A1 against ind-sfcca is bounded (or unbounded) then so is the first-
stage adversary B1 against ind-cpa and also I.
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Theorem 1 (ind-cpa∧ int-sfctxt ⇒ ind-sfcca). For any channel protocol Ch and
any ind-sfcca adversary A = (A1,A2), we can construct and int-sfctxt adversary
I and an ind-cpa adversary adversary B = (B1,B2) such that

Advind-sfccaCh (A) ≤ Advint-sfctxtCh (I) + Advind-cpaCh (B) . (3)

Here, B1 and I use approximately the same resources as A1.

Proof. The proof follows the common game-hopping technique, where Game0
denotes A’s attack in experiment Expind-sfccaCh . In Game1 we modify the receiver
oracle ORecv by letting it return ⊥ instead of m for an out-of-sync query (for
which in addition b == 0). This is depicted in Fig. 7 in AppendixB. The other
steps of the experiment remain unchanged.

We argue that the difference of A’s advantage between the two games lies in
a potential first-stage query of A1 to the receiver oracle which returns a message
m 
= ⊥ in Game0 but not in Game1. We show that the probability of this
happening is bounded by the integrity guarantees of the channel. To this end we
build a reduction I mounting an attack according to experiment Expint-sfctxtCh (I).
This algorithm I runs a black-box simulation of A1 (in Game0). Any oracle call
ORecv of A1 is forwarded directly to the corresponding oracles of I. Algorithm
I initially also picks a random bit b ←$ {0, 1} and whenever A1 makes an oracle
call m0,m1 to OSend, then I first checks that |m0| = |m1| and returns ⊥ if not;
else it forwards mb to its own oracle OSend to receive a ciphertext Ci. Algorithm
I returns Ci in the simulation of A1. Algorithm I stops if A1 stops.

Note that the only difference between the two games from A’s perspective is
that Game0, in case b = 0, returns an actual message m in a call to ORecv if (a)
m 
= ⊥, and (b) out-of-sync has been set to true (in this call or a previous call).
This, however, means that all prerequisites in the ORecv oracle of the integrity
experiment are satisfied, causing int-broken to become true and to make I
win the game. Hence, any difference between the games can be bounded by the
advantage against integrity.

A careful inspection of the modified ORecv oracle now shows that this oracle
always returns ⊥ and only changes the state of the out-of-sync variable. The
latter only affects the ORecv oracle itself. It follows that we can simulate this
oracle by returning ⊥ immediately for any query to ORecv. Formally, this is a
black-box simulation B of A, where B1 relays all communication of A1 with
oracle OSend, but returns ⊥ to A1 for any call of A1 to ORecv. Algorithm B2

relays all communication of A2 to the only oracle OSend without modification.
Hence, in the next game hop we can eliminate the ORecv oracle altogether,
obtaining the CPA-game Game2. For this game we can bound the advantage by
the CPA-security of the channel. ��

4 Instantiations

In this section we discuss that instantiations combining the one-time pad encryp-
tion scheme with a computationally-secure MAC like HMAC, and with an
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Fig. 3. Experiment Expseuf-cma
M (F)

unconditionally-secure one like Carter-Wegman MACs, provide future security,
resp. unconditional security for the channel protocol. This of course requires
additional steps to prevent replay attacks or protection against omission of
ciphertext. For the computational case we choose here for the sake of concrete-
ness a sequence number on the sender’s and receiver’s side. For the unconditional
MAC we can omit the sequence number because we use a fresh key portion with
each message anyway.

In both cases we use our composition result from Theorem 1 to argue secu-
rity. ind-cpa security of the encryption scheme follows by the perfect secrecy of
the one-time pad encryption and the fact that we use a fresh key for each cipher-
text. This holds even against unbounded adversaries. It hence suffices to argue
int-sfctxt security to conclude ind-sfcca security of the channel protocol. For this
we need the strong unforgeability of the authentication algorithm.

4.1 Message Authentication

We first define message authentication codes and their security:

Definition 4 (Message Authentication Codes). A MAC scheme M =
(MKGen,MAC,Verify) with associated message space M consists of three algo-
rithms such that

– MKGen() $−→ KMAC. The key generation algorithm outputs a key KMAC.
– MAC(KMAC,m) $−→ t. The (possibly probabilistic) MAC algorithm maps the

key KMAC and a message m ∈ M to a tag t.
– Verify(KMAC,m, t) → {true, false}. The verification algorithm takes a key, a

message, and a tag as input, and outputs a decision.

Correctness says that for all keys KMAC ← MKGen(), any message m ∈ M, any
tag t ←$MAC(KMAC,m) we always have Verify(KMAC,m, t) == true.

As mentioned earlier we require strong unforgeability of the MAC, demand-
ing that is not only infeasible to find a valid tag for a previously untagged mes-
sage, but that one also cannot find a different valid tag to a previously tagged
message. Strong unforgeability follows for example for unforgeable MACs where
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authentication is deterministic and verification is done by recomputing the tag
and checking the result against the given tag [5].

Definition 5 (Strong Unforgeability). For an adversary F define the advan-
tage in Experiment Expseuf-cma

M (F) (Fig. 3) as:

Advseuf-cma
M (F) = Pr

[
Expseuf-cma

M (F) == true
]
. (4)

We say that F is q-query bounded if |Q| ≤ q in the experiment.

Note that here adversary F may be bounded or unbounded in computation
time. For unbounded F we usually assume that the adversary can only make a
single query to oracle during the attack OMAC and is thus 1-query bounded.

Two possible instantiations which are relevant for us here are the HMAC
algorithm which provides strong unforgeability under reasonable assumptions
about the compression function in the underlying hash function [3,4], and Carter-
Wegman MACs which are unconditionally secure for 1-bounded adversaries [27]
and also follow the verification-through-recomputation paradigm.

4.2 Future-Secure Channels

For a future-secure channel we define the sender and receiver algorithms as fol-
lows. We initialize counters for the sender and the receiver, respectively, both as
zero. Algorithm Send first generates a ciphertext c via one-time pad encryption
OTP.Enc (K,m) = m ⊕ K under the fresh per-message key K. It then authen-
ticates the ciphertext c, prepended with a fixed-length encoding of the counter
value in stS , under a computationally-secure MAC, using the steady key KI .2

The sender then increments its counter to be stored in the updated state stS ,
and outputs the full ciphertext consisting of the OTP ciphertext and MAC tag.

The receiver algorithm Recv, when receiving a ciphertext C = (c, t), first
checks if the state stR indicates a previous failed decryption or if the MAC is
invalid. If so, Recv returns the error symbol ⊥ and keeps this information in its
state. Otherwise Recv decrypts the ciphertext part c with the per-message key,
OTP.Dec (K, c) = c ⊕ K, increments the counter, and stores the updated value
in its state stR.

Construction 2 (Future-Secure Channel). Define the protocol FSCh =
(Init,OTKey,Send,Recv) for message space M = {0, 1}≤M and key space K =
{0, 1}M by the algorithms in Fig. 4.

We next argue int-sfctxt security of the channel protocol, assuming that the
underlying MAC scheme M is strongly unforgeable:
2 Technically, the encoded counter restricts the number of messages that can be sent.
If there are n bits reserved for the counter value then one can transmit at most
2n messages. In practice this is not an issue and deployed channel protocools today
commonly have such restrictions as well (e.g., TLS 1.3 [24] uses an n = 64 bit
sequence number).
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Fig. 4. Future-Secure Channel Protocol FSCh

Lemma 1. For any int-sfctxt adversary I there exists an adversary F such that

Advint-sfctxtFSCh (I) ≤ Advseuf-cma
M (F) . (5)

Furthermore, F uses approximately the same resources as I.

Proof. We show that if I at some point during the integrity experiment sets
int-broken to true, then we can break (strong) unforgeability of the MAC
scheme. To this end we let a forger F run a black-box simulation of I, simulating
the other steps of the channel protocol FSCh like encryption locally, and only
using the oracle access to OMAC(KI , ·) to compute MACs when required. For
the simulated receiver oracle F always answers ⊥. Algorithm F also keeps track
of sent and received ciphertexts in the simulation, including the values i and j.
When I sends the first ciphertext C∗ = (c∗, t∗) to the receiver oracle such that
C∗ has not been the next ciphertext prepared by the sender (i.e., C∗ is entirely
new or a modification of the j-th sent ciphertext Cj = (cj , tj)), then F outputs
(j||c∗, t∗) as its forgery attempt.

Note that the simulation is perfect, as the receiver oracle always returns ⊥.
Furthermore, F outputs a forgery as soon as int-broken is set to true. This
can only happen if out-of-sync has become true (according to the model) but
the MAC verification has returned true (according to the protocol). The former
implies that the ciphertext C∗ must have been new or reordered (j > i or
C∗ 
= Cj). And since the channel starts returning error symbols ⊥ whenever it
has encountered an invalid MAC, it must be the first such out-of-sync ciphertext
C∗ which, too, carries a valid MAC, to get some output m 
= ⊥ from the receiver
oracle.

Assume that j > i for the first valid out-of-sync ciphertext C∗ = (c∗, t∗). In
this case, since the receiver in the protocol holds the same counter value j in
stR up to this point, the receiver verifies t∗ with regard to j||c∗. Since j > i the
sender oracle (and thus the MAC oracle in the simulation) has not issued any
MAC for this counter value yet, such that the “message” j||c∗ for valid tag t∗ in
F ’s output constitutes a fresh forgery. Analogously, if j ≤ i and C∗ = (c∗, t∗) is
different from Cj = (cj , tj), then the pair (j||cj , tj) is a successful strong forgery
for F because the sender oracle (and thus MAC oracle) has only issued one tag
for value j, with a different result (j||cj , tj) 
= (j||c∗, t∗).
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It follows that whenever I breaks integrity of the channel protocol we have
a forgery for the underlying MAC scheme. For efficient I the resulting forger F
is also efficient. ��

We can now apply the composition theorem (Theorem 1), noting that the one-
time-pad encryption ensures perfect ind-cpa security (such that independently of
the adversarial resources the advantage is 1

2 ), and using that integrity is bounded
by the security of the strong unforgeability of the MAC scheme:

Theorem 3 (Future-Secure Channel). For the channel protocol FSCh in
Construction 2 and any ind-sfcca adversary A = (A1,A2), we can construct and
seuf-cma adversary F such that

Advind-sfccaFSCh (A) ≤ 1
2 + Advseuf-cma

M (F) . (6)

Here, F uses approximately the same resources as A1.

For an unbounded A1—and hence an unbounded I in the proof—however,
Eq. (6) may become void, since I may win Experiment Expseuf-cma

M (F) with sig-
nificant probability.

4.3 Unconditionally-Secure Channels

For an unconditionally-secure channel we assume that both adversarial stages
A1 and A2 in Experiment Expind-sfccaCh (A) are unbounded, that is, we consider
an unbounded adversary throughout the entire Experiment Expind-sfccaCh (A). Our
construction therefore asks for a fresh authentication key (part) with each send
operation: we first split the per-message key K into two parts, K1 and K2. The
former, K1, is used for encryption via OTP, the latter, K2, is used for authen-
tication via an unconditionally-secure Carter-Wegman-MAC. For messages of
length M bits we typically need M bits for the one-time pad and 2M bits for
the Carter-Wegman MAC. More abstractly we consider a 1-query bounded MAC
M in the construction below:

Construction 4 (Unconditionally-Secure Channel). Define the channel
protocol USCh = (Init,OTKey,Send,Recv) for message space M = {0, 1}≤M

by the algorithms in Fig. 5.

Once more we first argue int-sfctxt security of the channel protocol, assuming
that the underlying MAC scheme M is strongly unforgeable against unbounded
adversaries. The noteworthy fact here is that we lose a factor of qSend + 1 of
sender queries in the security bound:

Lemma 2. For any int-sfctxt adversary I making at most qSend sender oracle
queries there exists a 1-query bounded adversary F such that

Advint-sfctxtUSCh (I) ≤ (qSend + 1) · Advseuf-cma
M (F) . (7)

Furthermore, F uses the same resources as I.
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Fig. 5. Unconditionally-Secure Channel Protocol USCh

Note that a Carter-Wegman MAC satisfies Advseuf-cma
M (F) ≤ 2−M if we authen-

ticate messages of at most M bits with 2M key bits [27]. This means that, as
long as the number qSend of sent ciphertexts is limited, the bound in the lemma
is still reasonably small. Interestingly, for small message sizes M though and
with a focus on “only” future-secure protection, an HMAC-based instantiation
of Construction 2 can provide better concrete security.

Proof. The proof follows the one for the computational case closely. Only this
time F guesses in advance, with probability 1

qSend+1 , the number i of the sender
query for which I sends the first modified ciphertext C∗ 
= Ci to the receiver
oracle, where we account for the possibility that j > i with the additional choice
i = qSend +1. Algorithm F simulates an execution of I by doing all steps locally,
and answering each receiver request with ⊥. Only in the i-th sender oracle query
F uses the external MAC oracle to compute the tag (still using a self-chosen,
independent key part K1 to encrypt the message before). When the integrity
adversary I outputs the first modified ciphertext C∗ = (c∗, t∗) to the receiver
oracle then F returns the pair (c∗, t∗) as its forgery attempt.

Given that the guess i is correct it follows as in the computational case that
F wins the 1-query bounded unforgeability game if I wins the integrity game.
Here we use that F at most makes a single external MAC query—or none if
i = qSend + 1—and creates a (strong) forgery against the MAC scheme, because
the pair (c∗, t∗) must be distinct from the MAC query (for i ≤ qSend) or even
new (for i = qSend + 1). ��

It follows as in the computational case that Theorem1 yields overall security.

Theorem 5 (Unconditionally-Secure Channel). For the channel protocol
USCh in Construction 4 and any ind-sfcca adversary A = (A1,A2) where A1

makes at most qSend sender oracle queries, we can construct an int-sfctxt adver-
sary F such that

Advind-sfccaFSCh (A) ≤ 1
2 + (qSend + 1) · Advseuf-cma

M (F) . (8)

Here, F uses the same resources as A1 and is 1-query bounded.
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5 Conclusion

We have shown how to achieve long-term confidentiality for channels, modeling
security along the common notions for the computational setting like [6,7] and
adopting the two-stage adversaries of [9] to account for unbounded adversarial
resources. We have shown how one-time pad encryption with authentication can
be used to achieve the notion, where the proof is simplified through our translated
general composition theorem that chosen-plaintext confidentiality and integrity
gives chosen-ciphertext confidentiality in this setting. This provides fundamental
security guarantees for such channels from which one can extend the result in
several directions, as we discuss next.

We considered atomic channel protocols in which it is assumed that a trans-
mitted ciphertext is fully received on the other side. Depending on the network,
however, ciphertexts may be fragmented. It has been shown in attacks on actual
channel protocols like SSH and IPSec [2,15] that this fragmentation behavior
could potentially be exploited. A more formal treatment of ciphertext fragmen-
tation can be found in [1,10]. One can also consider, on top, the possibility that
the channel protocol itself may distribute input messages arbitrarily over cipher-
texts, leading to the notion of stream-based channels [16]. It would be interesting
to see how the requirement of unconditional security affects such models.

A possible extension in regard of security may be to allow exposure of some
per-message keys, in which case these messages would not be confidential any-
more. Still, the “fresh” keys should uphold security for the other messages. This
is similar to key updates in (computationally-secure) channel protocols where
leakage of keys should not affect other keys and phases [18]. It would be inter-
esting to augment the model here by similar considerations.

We followed earlier work and used a game-based definition for the security
of channels, where keying material is provided by external means. If one now
uses, say, a secure QKD protocol to generate the keys, then it remains yet to
prove formally that the combined protocol is secure (albeit no attack on the
joint execution is obvious). This is called compositional security. In stronger,
simulation-based notions for key exchange and channels such as [13,14] compo-
sitional guarantees usually follow immediately. Compositional security for game-
based notions of key exchange, as here, have been discussed in [11]. Again, both
types, simulation-based and game-based models, usually only consider computa-
tionally bounded adversaries, leaving open the question if they still hold in the
information-theoretic setting.
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Appendix

A Chosen-Plaintext Security

Fig. 6. Experiment Expind-cpaCh (B)

Definition 6 (Chosen-Plaintext Security). For an adversary B = (B1,B2)
define the advantage in Experiment Expind-sfccaCh (B) (Fig. 6) as:

Advind-cpaCh (B) = Pr
[
Expind-cpaCh (B) == true

]
. (9)

B Composition Game Hop

Fig. 7. Modified receiver oracle experiment Expind-sfccaCh (A) for Game1 in the proof of
Theorem1.
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Abstract. Oblivious Parallel RAM (OPRAM) enables multiple clients
to synchronously make read and write accesses to shared memory (more
generally, any data-store) whilst hiding the access patterns from the
owner/provider of that shared memory. Prior work is best suited to the
setting of multiple processors (or cores) within a single client device,
and consequently there are shortcomings when applying that work to
the multi-client setting where distinct client devices may not trust each
other, or may simply wish to minimise – for legal reasons or otherwise
– the volume of data that is leaked to other client devices. In prior con-
structions, obliviousness from the storage provider is achieved by passing
accesses between the clients in one or more sorting networks, both before
and after the logical access is made to the shared memory: this process
inherently leaks the contents of the accesses to those other clients.

In this paper we address this issue by introducing the notion of client
obliviousness for OPRAM, which asks that clients should only learn as
much as is necessary for the scheme to function correctly. We provide an
instantiation using established tools, with careful analysis to show that
our new notion and regular OPRAM security are met. In the process,
we give new insight into the use of the OPRAM model in the context of
outsourced storage.

1 Introduction

Oblivious RAM is a cryptographic primitive that enables a client to store and
retrieve blocks of data on an untrusted storage medium. The beauty of this
primitive is that a client can do this in such a way that no information about
their access pattern is revealed to the storage server beyond the total number of
accesses. This primitive dates back to the seminal work by Goldreich and Ostro-
vsky [18,19]. ORAM has been extensively studied, both in terms of advanced
capabilities and stronger security models [10,17,28,30].

In this paper we consider the problem of hiding the access pattern when
multiple clients concurrently read from and write to an untrusted storage server.
This is a fundamental problem in the realm of protecting outsourced storage and
verification of outsourced computations – Boyle et al. [1] defined and constructed
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W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 312–330, 2020.
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Oblivious Parallel RAM (OPRAM) and subsequent works have mainly focused
on improving the efficiency of realized schemes [4–8,27,29].

The OPRAM literature to date is most suited for the situation where the
clients are co-located, such as when each client represents (possibly a core of) a
processor in the same computer. Trust between the clients is required because
the clients pass their accesses to each other and sort based on the access loca-
tions (in order to deal with access conflicts): this process stops the server learning
from which client a given access originated. In some situations the clients may
be restricted by legal systems or organisational policy and thus want their mem-
ory accesses to remain as private as possible from the server (as provided by
OPRAM) but also if possible from the other clients. If the clients are processors
– or more generically, devices – that are based in disparate geographic locations
and are accessing some central (storage) service, then not only is inter-client
communication an issue of cost, but also a concern regarding both the privacy
and legal implications of multi-jurisdiction data sharing. In short, the low-latency
and pairwise-secure channels assumed by previous descriptions of OPRAM may
not be realistic in practice.

Motivating Scenario. Consider an organisation with operating facilities in
several distinct locations, with numerous legal requirements for each jurisdiction
meaning that a strict access control regime and audit trail is required for the data
that flows between the clients, and data that is stored on a central storage server.
This organisation wishes to store data in such a way that all facilities can append
their latest reports at regular intervals, but access the other facilities’ data only
when necessary (and perhaps only when approved following legal procedure). To
do this, a storage provider is tasked with holding the database, but an oblivious
RAM protocol is used to hide access patterns, and since the regular update
procedure is at a predictable time, oblivious parallel RAM is used to ensure that
the identity of the facility updating an entry is hidden from the storage server.

How does this scenario fit with the security model for OPRAM in the litera-
ture? Do existing constructions facilitate mechanisms for reducing the volume of
data that is leaked to each client as part of the protocol? In this context, there
may exist other central entities that are used by the organisation to assist with
enhancing privacy for the clients as part of the protocol – if this is the case, then
what are the trade-offs regarding efficiency and trust by using such entities? It
is these questions that we approach in this work.

Contributions. In this paper we introduce an additional security property for
OPRAM schemes, which we call client obliviousness (CO), which informally
states that the clients should learn as little as possible about the other clients’
accesses. Numerous subtleties consequently arise, and we address the minimal
leakage in (a large class of) OPRAM schemes and the effects of techniques such as
client anonymisation and storage-space partitioning. We provide an instantiation
that is functionally equivalent to the subtree-OPRAM scheme of Chen et al. [8],



314 G. T. Davies et al.

yet to obtain security in the strong CO sense, the constituent parts are almost
all replaced with other primitives (from the cryptographic literature).

Threat Model. The system consists of a set of users, a storage database S,
and a routing entity R. The users encrypt data using symmetric encryption and
store it with S, and S is assumed to try to learn as much as it can from correct
execution of the protocol, i.e. is honest-but-curious (HbC). Any collusion between
one user and S leads to total loss of any security – this is inherent in ORAM
and OPRAM schemes in which the client/all clients have shared ownership of
the stored data. The router R is to carry some of the management burden, yet
it should not learn which users are making which accesses, and is also assumed
to be HbC. We use ‘semi-trusted’ to refer to the combination of user anonymity
and HbC that we desire from R.

Related Work. Consider the parallel version of ORAM first formalised by
Boyle, Chung and Pass (BCP) [1] in work that built upon several earlier
ideas [21,24,34]. Their OPRAM formulation requires considerable inter-client
communication in order to synchronise before and after accesses to the data
storage occur. In particular, clients coordinate with each other in an oblivious
aggregation phase to ensure that no two clients access the same block simultane-
ously, and if two (or more) wish to write to the same block, some regime defines
which client proceeds. Chen, Lin and Tessaro (CLT) [8] provided a more effi-
cient OPRAM construction, named Subtree-OPRAM, based on an extension of
the well-known Path-ORAM [32] protocol: we will build upon this construction
later on. CLT also provided a generic construction from ORAM to OPRAM,
with slightly worse complexity than Subtree-OPRAM. Other works have subse-
quently given further optimised OPRAM schemes [4–7,27].

One area in which curious/malicious clients have been considered is the realm
of Multi-client ORAM (MC-ORAM) [16], where a number of distinct data own-
ers (clients) use some central data store and can delegate read and write access
to other users for their files. (Recall that in OPRAM the entire database is
necessarily shared between all clients, so there is no concept of file ownership.)
Security of access control in the MC-ORAM context has been studied by Maf-
fei et al. [25,26] (hereafter MMRS) and their aim is to model the capabilities of
adversarial clients who wish to learn i) which clients are making read requests
and ii) any information about write requests to data that the adversary does not
have access to. We investigate a subtly different scenario that is motivated by
OPRAM. Consider a database that is collectively owned by a number of clients
who share key material, and is partitioned such that all clients can perform
accesses on only a subset of the database – an explicit property of many OPRAM
schemes in the literature. If client A wishes to read an entry in the database, it
will (usually, if the eventual position is not in its partition) be directed to the
partition accessor for that data item, client B, who will make the lookup. Client
B can see the value being written or read, this is essential to the proper operation
of the system, however, they should not learn the identity of client A. So far this
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is captured by the definitions of MMRS, however, in our system architecture,
following OPRAM constructions in the literature, the new location of the data
item after it is read could be in another partition, and in fact it may well be with
high probability. As far as MMRS are concerned this means that data ownership
is transferred (to randomly chosen other clients), something their model can’t
support. We reiterate that this per-timestep partitioning is a natural method for
achieving OPRAM since it aids both obliviousness and efficiency.

Chen and Popa [9] target hiding file metadata in outsourced storage using
multi-client ORAM and two servers that use multi-party computation. Their
work hides user identities from the servers, which MMRS do not, however, the
malicious clients they consider are essentially the same as in MMRS.

TaoStore [29] is an extension of Path-ORAM to the asynchronous setting,
achieved by employing a trusted proxy; their aim is not to provide an OPRAM
construction, but rather to deal with continuous and asynchronous requests
to the storage server by one or more clients in the presence of an adversary
that learns timing information of the accesses. Their proxy is considerably more
trusted than the router we wish to employ – the paper’s focus is to bundle
concurrent reads and eviction operations efficiently and not to hide any infor-
mation from a client obliviousness perspective. We note however, that employing
a trusted proxy can give strong guarantees of client obliviousness, and there may
exist scenarios slightly outside of our target problem setting for which this – or
a combination of this approach and ours – is a more appropriate solution.

Chakraborti and Sion [2,3] study efficiency in parallel accesses to ORAM
architectures. In the process, they consider the information leakage to each client
inferred by the global set of accesses, but their threat model is considerably
weaker than our notion of client obliviousness: no attempts are made to stop
observation of accesses of the other clients. As mentioned before, works regarding
multi-client ORAM schemes fall into a similar regime. Recall that in this setting,
multiple clients have their own data, however, stored in a single ORAM, where
each client is free to share parts of their data with other clients. Franz et al. [16]
initiated the study of multi-client ORAM by introducing the concept of delegated
ORAM. Karvelas, Peter and Katzenbeisser [22] introduced Blurry-ORAM, a
multi-client extension of Path-ORAM that tried to hide the access patterns for
their own data from the storage server as well as other clients. Clients owning
only some data and sharing with other clients requires sharing and revocation
algorithms: these concerns are not relevant to the OPRAM scenario.

2 Preliminaries

2.1 Notation and Abstraction Level

For vector x, let x[i] indicate the i-th component of x, and for integer n let [n] be
the set {1, ..., n}. We will at times define a vector as the concatenation of vectors:
in this case consider the result as a matrix with a vector in each column. If L is
a matrix, we use Li,j to specify the entry in the i-th row and j-th column, and
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we will give context where necessary to identify which component serves which
purpose. Δ(·, ·) is the statistical distance between two distributions.

Since our work is mainly applicable to the setting of outsourced storage, we
follow CLT’s approach and notation for casting O(P)RAM in terms of clients,
servers and accesses, rather than as abstract (parallel) RAM program compilers
– the formulations are in our setting equivalent. An oblivious RAM compiler
essentially turns the logical accesses to the storage medium into a sequence of
actual accesses, in such a way that the logical requests are hidden if the honest-
but-curious server only sees the actual sequence of accesses. In the multi-client
setting, the adversary sees the transcripts of communication among the clients
(in addition to the communication between each client and the server).

Fix N ′, the number of cells (each of size B′) of the (external) database, and
m, the number of clients. Interactions between any client and the server’s storage
(i.e. actual accesses) are of the form Acc(op,a, v) where op ∈ {read,write}, a ∈
[N ′], and v is either in {0, 1}B′

(for writes) or ⊥ (for reads). An oblivious parallel
RAM (scheme/compiler) O = {Ci}i∈[m] takes as input security parameter λ,
storage size parameter N , and block size B, and proceeds in a sequence of T
rounds, which represent the synchronous accesses of the m clients. The logical
accesses, which can be regarded as ‘pre-compiled’, are defined as above except
for being in the correct spaces: a ∈ [N ] and v ∈ {0, 1}B ∪ {⊥}. For all i ∈ [m],
denote the logical operations of client Ci as yi =

(
Acc(opi,r,ai,r, vi,r)

)
r∈[T ]

.

Then, collect these operations using y = (y1, . . . ,ym). In the interactive
OPRAM protocol that is produced by the compiler from the parameters and
these logical accesses, the clients can communicate with each other (direct, point-
to-point) and make ‘actual’ accesses to the server S(N ′, B′). In our construction
later, we will additionally allow clients to further interact with a routing entity
R. In each round, each Ci will output (intuitively: receive) some output vali,r and
update its local state. If two or more parties wish to access the same location in
a given round, we term this an access collision. Similarly, if two or more parties
wish to write to the same location in a given round, we term this a write collision.

We follow CLT in writing the server as S(N ′, B′) where N ′ is a function of N ,
and B′ is a function of B (and the security parameter) – in all existing schemes
the relationship for block size expansion represents encryption: B′ = B + O(λ).

2.2 Oblivious Parallel RAM

For an OPRAM compiler to be meaningful and useful, it must be correct
and oblivious. We again follow CLT in this regard. We need to introduce
the write-conflict regime Reg (see Appendix A) as a parameter of the algo-
rithms used to determine these two properties. We write O(y) as the executed
compilation for logical (sequence of) accesses y. Inspired by CLT, we define
ACPO(λ,N,B, Reg,y) = (ACP1, . . . ,ACPT ) as the collection of communication
patterns for each round, representing the transcript of communication between
the clients, (between the clients and the third party, if it exists,) and between
clients and the server. Intuitively, a scheme provides obliviousness if an adversary



Client-Oblivious OPRAM 317

given this information cannot infer anything about y (other than the number of
accesses). Similarly, we can define ACPi,r as the communication pattern for client
Ci in round r. Further, write the outputs for client i as vali = (vali,1, . . . , vali,T )
and all outputs as

OutO(λ,N,B, Reg,y) = (val1, . . . ,valm).

For an OPRAM compiler O, outputs z = OutO(λ,N,B, Reg,y) are
correct with respect to (parallel access) sequence y if for each command
Acc(opi,r,ai,r, vi,r) of y, the output vali,r in z is either the most recently written
data in ai or ⊥ if the location is yet to be written to. Further, it must be that
write regime Reg has been successfully implemented in the execution. Again fol-
lowing CLT, define Correct as a predicate that takes as input (y, z) and returns
1 if the outputs z are correct with respect to y, and 0 otherwise.

Definition 1 (OPRAM [8]). An OPRAM (scheme/compiler) O provides cor-
rectness and obliviousness if, for all N,B, T and fixed Reg, there exists a negli-
gible function μ : N → R such that for every λ ∈ N, and for every two (parallel
sequences) y and y′ of length T :

Correctness: Prob[Correct(y,OutO(λ,N,B, Reg,y)) = 1] ≥ 1 − μ(λ),

Obliviousness: Δ
(
ACPO(λ,N,B, Reg,y),ACPO(λ,N,B, Reg,y′)

)
≤ μ(λ).

While the work of BCP considered general programs where not all of the
m processors need to be active at each time step, we follow the approach of
CLT, who consider the situation with all processors responsible for a partition
of the storage and all participating in each time step (we discuss later the ability
for protocols to provide dummy read requests for each client not wishing to
make a genuine access). They reference Stefanov et al. [31] as the source of
the partitioning technique. The BCP approach can still be regarded as using
partitioning, however their approach insists that this is in a sense dynamic for
each time step: the protocol chooses a representative for each data access.

2.3 System Assumptions

Here we clarify our setting and briefly discuss some of the choices we have made.
We assume a group of m clients who will interact with some central data store
(‘server’) that is capable of storing N ′ fixed-size data items (‘blocks’), plus a
router R. We assume R to be a very simple device and we minimise the trust
assumptions placed upon it as much as is possible.

The task of R is to prepare the received client access requests in a well-formed
manner which includes, e.g., to remove repetitions in accessing the same data
items. Note that this routing entity could be an elected group of the set of users
(with the election occurring in a separate pre-processing phase), or run using
multi-party computation between two or more of the users. However, we prefer
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to aid readability by explicitly assuming this routing entity to be a separate one.1

All existing ORAM schemes assume at a minimum that plaintext data blocks
are encrypted, and it is the ciphertexts that are subject to ORAM operations.
All clients possess the (symmetric) key material used to encrypt the data blocks,
plus the system parameters (including e.g. encryption algorithms) necessary to
implement the compiled OPRAM protocol (and thus interact with the database
hosted by the server). The encryption mechanism is assumed to provide semantic
security, and the constructions will apply further primitives to the plaintexts and
ciphertexts involved. We assume that there are pairwise secure communication
channels between all m clients, and between the clients and R, however we do
not assume that the cost of this communication is free or negligible.

In prior work the clients are given identifiers {1, . . . , m} (or more generally
elements of some identifier space ID) and the write-conflict regime Reg is fixed as
PRIORITY as defined in AppendixA. Defining this regime as a parameter means
that we also need to make the mechanism for choosing (unique) client identi-
fiers as the designer’s prerogative. If identifiers are fixed and known amongst
the clients (e.g. the identifier is the location of the client) but Reg uses some
hierarchical mechanism then an adversary may be able to calculate its position
in the hierarchy using its requests. In this sense, a random allocation of (unique)
identifiers is the simplest setting, but we wish to additionally build protocols
that defend against such side channels.

We will only consider tree-based O(P)RAMs in this work, and as such we
will often use the terminology (paths, nodes etc.) to reflect this. Two important
components of O(P)RAM schemes are the position map, that maps positions for
the logical accesses a ∈ [N ] to locations in the storage medium a′ ∈ [N ′], and
the local stash. In our construction we assume that R holds and updates the
position map – this is to make the protocol simpler and reduce the challenges
invoked by synchronisation. Prior work (such as Path ORAM [32]) has shown
how to recursively store the position map in another ORAM, and while this
appears possible in our setting it is not clear if the extra communication rounds
required to securely realise this would benefit what is, for the most part, a proof-
of-concept. Since our construction functionally emulates the Subtree-OPRAM
protocol of CLT, the analysis of stash is inherited from their work.

We have already mentioned the partitioning existing in prior work: the stor-
age medium’s data locations are (approximately equally) divided into N ′

m entries
and each of the clients is responsible for making accesses in just one partition.
This implies the existence of some partition map, where the allocation may either
be fixed for all T rounds, or be dynamic. If the storage medium itself is geograph-
ically divided then it would certainly make sense for the partitions to be fixed,
however we leave the decision for this to the implementer.

1 The router can, if required, (i) enable a fully non-interactive system architecture,
where the clients only communicate with R and not each other; and/or (ii) assist
with the audit trail, in the motivating example of restrictive legislation.
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3 Client-Oblivious OPRAM

Deploying current instantiations of OPRAM would mean that in the (fixed-
topology) shuffling phase, that decides which client should be responsible for
writing to which location in the database, the records of each client are by design
passed between a large number of the other clients. This may be undesirable, and
it will often be preferable that an instantiation would limit the sharing between
the clients as much as possible. We discuss the unavoidable leakage and give a
security model that captures this scenario.

3.1 Inevitable Leakage in OPRAM

Given the system assumptions detailed in Sect. 2.3, we now indicate what it is
possible to hide, and what information must necessarily pass to clients in any
protocol that achieves the OPRAM definition (Definition 1).

We have fixed that each client can only read and write to one partition, on
behalf of the other clients. In each round, parallel requests need to be managed
before and after the actual access, and ensuring (at most) two a priori-fixed
representatives for each actual access (the read, then the write-back) fulfils this
role. This in itself makes client obliviousness without a trusted proxy (à la Tao-
Store [29]) more challenging: we seek to minimise the impact. If a client makes a
request to a position that is not in their partition, then some other client doing
the read will observe the data in this position, and the client writing back will
necessarily see the prior content of the cell or the new data being written (though
it should not be able to distinguish these cases). This leakage is unavoidable, and
even if it was protected in one time-step using some encryption mechanism, the
partition-accessing client could of course just read that data item in the next
time-step. More important from our point of view is that the identity of the
client that originally made the access should be hidden from the partition acces-
sor. We must thus split the ORAM access process into two steps: first the clients
read m data items from the storage, and then those data items plus potentially
some other items are written back (or overwritten, in the case of writes) and
flushed into position.

To mitigate some of the data leakage we wish to avoid, an anonymisation step
could occur before any data sharing between the participating clients takes place.
The goal here is to hide client identities, as much as is possible without inhibiting
functionality, from other clients, but also from any routing entity or other third
party. In doing this, the OPRAM protocol’s ability to remove repeated entries
and return the retrieved values to the correct clients invokes many challenges.
For a given round, in the event that multiple clients wish to access the same
data item, fake read accesses must be created such that requests for a total of m
positions are eventually passed into what can be thought of as the non-parallel
component of the OPRAM compiler.

Intuitively, we consider a security game in which an adversary tries to learn
or infer some information that was not passed via its (set of) corrupted client(s).
The adversary A provides some parameters: the number of clients, the size of the
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database, and the number of ‘rounds’ (time steps) of the program (sequence of
accesses). Then, the challenger constructs a program based on these parameters,
with random data for writes. The compiler then runs, turning this program into
an interactive OPRAM protocol. For each round, A receives the transcript of
all communication that it has elected to see, as defined by a corruption strategy
it provides. Then, A must submit its output of an access that it believes was
made: a client, a data position and a round. Since A will see accesses for its
corrupted clients in their partitions, we normalize A’s advantage by the number
of uncorrupted clients in the round it gave, as output.

Given these concerns, we wish to design schemes that give the following
protections simultaneously:

– The entity hosting the server should not be able to infer anything beyond the
number of accesses, i.e. regular ORAM security;

– The entity hosting the server should not be able to distinguish parallel
requests (i.e. multiple requests to the same position, compared with the same
number of requests to distinct positions), i.e. regular OPRAM security;

– The protocol should be client oblivious: For any access that a client did not
make itself, it should not learn:

• the originating client
• the position being read, for positions outside of its partition

A possible extension to client obliviousness is to also capture the data being
written, however: (1) formalising this in a definition is very challenging, and (2)
our construction does not cover this and cannot be easily extended to do so.

3.2 Client Obliviousness for OPRAM

We cast CO as a game-based notion: this allows more fine-grained corruption
of clients, however this necessitates care regarding win conditions. Our con-
struction uses public-key primitives and so we require a computational adver-
sary, moving away from the statistical security definitions in many areas of the
O(P)RAM literature. Our game-based security experiment for CO is given in
Fig. 1 in AppendixB. The idea is that an adversary submits a set of parameters,
which specifies the number of clients and rounds. Then the game will, for each
access, choose read or write, choose a location, and if a write choose some data.
The adversary specifies its corruption strategy: this is a vector CorrStrat of m
elements, where entries are either a round number {1, . . . , T} or ⊥. In doing so,
the adversary specifies the points from which it sees a ‘decrypted’ version of each
client’s transcript. Finally, it outputs a triple: a client identifier, a position in the
ORAM and a round identifier. If the adversary had corrupted that client before
that round, then it trivially loses.

Since we assume that all clients are active in all rounds, if the adversary has
corrupted a client and does not see any accesses to its partition then it learns
that none of the clients accessed its data items. Further, since a client has to read
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(in cleartext) requests in its own partition, the adversary can just corrupt one
client, wait until it is asked to make a request in its own partition (on average one
per round) then output that data item with a random other client identifier, and
win with probability upper-bounded2 by 1

m−1 . This means we must normalise
the success probability by the number of uncorrupted clients in the round that
was output by the adversary: CCr (number of corrupted clients in round r) is
calculated by incrementing a counter once for every entry in CorrStrat smaller
than or equal to r.

Definition 2 (Client Obliviousness (game-based)). O is a Client Oblivi-
ous Oblivious Parallel RAM (CO-OPRAM) compiler if there exists no adversary
with non-negligible advantage in the following sense:

AdvCO-OPRAM
O, A (λ) =

∣
∣Prob

[
ExpCO-OPRAM

O, A (λ) = 1
]

− 1
m − CCr

∣
∣,

where experiment ExpCO-OPRAM
O, A (λ) is given in Fig. 1 in AppendixB and CCr is

defined as above.

We assume that the clients, the server and any additional parties operate
according to the protocol, and even after the adversary corrupts a client the
adversary can then perform computations based on the information it receives
via the transcripts. Extending to malcious clients that can arbitrarily deviate
would require some additional assumption that this behaviour retains correct-
ness. It may be possible (and efficient) for the challenger to check this for some
protocols however in general this may be very challenging, and any security
reductions would need to take this into account – further it is not apparent if
this strengthening is necessarily well motivated in our motivating scenario.

4 Construction

In this section, we provide a detailed overview of our construction which (func-
tionally) emulates the Subtree-OPRAM protocol of CLT, with major modifica-
tions to the sub-protocols to ensure client obliviousness. Additional detail com-
paring our protocol with that of CLT is given in AppendixD. We now set the
scene and begin with m clients C1, . . . , Cm and routing entity R, where each
client is “responsible” for accessing data within one distinct part (partition) of
the ORAM (data storage), even on behalf of the other clients. We assume that
all m clients share a secret symmetric key for a semantically-secure encryption
scheme, with which the data blocks are encrypted. Note that the router does
not possess this key. Each client now wishes to execute an operation (either read
or write) to a data item within the ORAM. These clients wish to store N items

2 Note that any protocol achieving regular OPRAM security needs to (at a minimum)
produce one fake read every time that an access collision occurs. If the protocol hides
which reads are real and which are fake from the reading clients, and the probability
of access collisions is high, then this probability may be much smaller.
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(each of size B, for N a power of two) on a server by using N ′ cells with the
assistance of R. Following our motivating scenarios for this type of protocol, some
type of router or equivalent infrastructure will already exist, and we will simply
make use of it. The protocol (specifically, R) will implement some write-conflict
regime Reg (see Appendix A).

Our protocol follows Subtree-OPRAM in organising the server storage as a
forest of m complete binary trees T1, . . . , Tm of depth log N − log m where each
node in each separate tree contains a bucket of blocks in which data items can
be stored. As usual, we identify a path with a leaf in the tree. By Pos.Map,
we denote the position map that maps the locations a ∈ [N ] to the leaves in
the server storage. Each client Ci is responsible for handling a partition of the
ORAM, namely the corresponding tree Ti. This means that Ci executes reads
and writes to all leaves (i.e. paths) that belong to this tree, and each client needs
to locally manage a stash Stashi to store overflowing blocks whose path belongs
to Ti. Note that the top log m levels of the tree that have been initially removed
are incorporated into the stashes of the clients. This means that the tree – the
combination of the subtrees and the shared stash for upper levels – is a complete
binary tree with no ‘overlap’ between the partitions. Further, the union of all
client stashes emulates the single stash in the Subtree-ORAM protocol. Only R
has access to the position (and thus partition) map.

4.1 Client-Oblivious OPRAM Construction

We will use in the following a public-key encryption scheme PKE =
(Gen,Enc,Dec) and a (one-time) symmetric encryption scheme SKE =
(KG,E,D). To instantiate the sender-private anonymous channel, we assume the
existence of a TOR-style onion-routing network [12,13] to anonymously route
accesses in steps 1 and 6.

We now describe the execution of the protocol in a given round. Each of
the m clients and R initially run Gen to generate a key-pair (pkCi

, skCi
)i∈[m] and

(pkR, skR), respectively. Additionally, each client generates a one-time symmetric
key k̃Ci

. We will also require the router R to sample fake key material of equal
length as the one-time symmetric keys – this requires that the size of the output
of KG is a constant. Each client Ci produces/provides a logical access request of
the form Acc(opi,ai, vi) and the m clients proceed in parallel to process the m
logical accesses:

1. Anonymised Access Requests. The aim of this first phase is to anonymise
each client’s access to the ORAM from the other clients as well as the router
R. We achieve this through a combination of a TOR-style mechanism sending
the requests to the router and also using random client identifiers to hide the
client’s identity. We assume that all clients are active TOR nodes and that the
initial setup has taken place before the start of the protocol. Each client chooses
a random identifier from the identifier space via idCi

←$ ID and generates a
one-time symmetric key via k̃Ci

←$ KG(1λ). The client chooses a random route
of three TOR relays tor1, tor2, tor3 ∈ [m] and establishment of this circuit will
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result in the generation of symmetric keys ktor1 , ktor2 , ktor3 for each of the nodes.
Next it prepares Ektor1

(
Ektor2

(
Ektor3

(R‖EncpkR
(idCi

‖k̃Ci
‖Acc(opi,ai, vi)))

))
and

sends this ciphertext through the chosen route: each node decrypts one layer
after another until the inner (public-key) encryption arrives at R.

2. Digesting the Access Requests. After having received m ciphertexts, R
first decrypts all of them and checks whether there are any collisions between the
client identifiers. If so, it will abort. Otherwise, the router continues, and first
must handle access collisions. In the event of any access collision, i.e. m̃ clients
(m̃ ≥ 2) wishing to access a location, R must create m̃−1 fake reads by selecting
a random location a ←$ [N ], setting op = read and v =⊥. In the event of a write
collision, i.e. m̃′ clients (m̃′ ≥ 2) wishing to write to a location, R must enforce
Reg to decide which clients (if any) get to write. In summary, R will turn the m
logical access requests that it decrypted into m actual accesses, and appending
to each access a record of the client (identifiers), if any, that actually requested
the location. Using the position map, R can determine which accesses need to be
executed by which partition accessor, i.e., it determines the path �i to which each
request corresponds. In more detail: for each received request, R simply fetches
the information about the path from the position map, i.e., �i = Pos.Map(ai).
Then it sets a′

i = ai, and immediately refreshes the position map Pos.Map(ai) to
a new randomly assigned path �′

i ←$ [N ]. This new path might fall into another
client’s partition. Hence, we add also the information to which client the block
needs to be re-routed later since the clients themselves do not have access to the
position map. Note that for write requests, the behaviour here still applies: the
client expects to receive the old data item in return, so the router is also required
to fetch the corresponding path. If the determined path belongs to tree Tj then
this means that R needs to prepare an access request to the partition accessor Cj .
In order to keep it oblivious from the partition accessor how many clients wish to
access the data item in Tj , we force the router to include m many one-time sym-
metric keys into the request. Here we distinguish between valid keys, i.e., keys
that were initially sent by the requesting client, and fake keys which are gener-
ated by R to simply keep the partition accessor busy without learning how many
clients really wish to access this particular data item. If only one client wants to
access a particular data item in the partition of Cj , then R has received a valid
one-time key generated from Ci, i.e. k̃Ci

. For the remaining m−1 keys, R samples
m−1 many fake keys fk1, . . . , fkm−1 from K ensuring that they are all of length
equal to k̃Ci

. Now R prepares the access instruction for the partition accessor, i.e.,
(opi,a′

i, vi, �i, �
′
i‖Ck, π(k̃Ci

‖fk1‖ . . . ‖fkm−1)) where π permutes the keys. Finally,
R encrypts the access instruction for a data item under the partition accessor’s
public key, i.e. EncpkCj

(
opi,a′

i, vi, �i, �
′
i‖Ck, π

(
{k̃Cp

}p∈[m̃]‖{fkq}q∈[m̂]

))
where

the number of clients is m = m̃+ m̂, with m̃ being the number of clients making
a real access and m̂ being the number of fake keys. R sends the ciphertext to Cj .

3. Accessing the Paths. Each client Cj receives a set of ciphertexts that
contain the accesses it must make and starts decrypting them using secret key
skCj

. Then the requested paths are retrieved and batched as a set Sj where (i)
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the accessor retrieves all paths in Sj which form a subtree TSj
, and (ii) for each

request (opi,a′
i, �i), the accessor finds the block a′

i in either TSj
or Stashj with

data item v̄i and keeps it locally, and deletes it either in the tree or stash.

4. Multicast Data Items. After having retrieved the requested data item
v̄i, the partition accessor prepares m encryptions of the data item using the m
received keys and simply broadcasts all of them.

5. Retrieve Data Items. Client Ci now fetches all ciphertexts and starts trial
decrypting them all using one-time key k̃Ci

. (As soon as one ciphertext has
successfully decrypted Ci can stop, since only one data item was requested.)

6. Re-route Blocks. Each partition accessor has also received the information
in Step (2) to which path �′

i the data item needs to be routed. Since the client
does not have access to the position map, the router has initially provided the
information to which client Ck the blocks need to be given. For each retrieval
made in step (3), the partition-owning client prepares EncpkCk

(�′
i,a

′
i, ṽi) where

ṽi = vi if opi = write, and ṽi = v̄i if opi = read, to be sent to the legitimate
write-back partition accessor. Next, the client creates m − 2 dummy ciphertexts
to all other clients (or m−1 if the new location is again in this client’s partition)
via EncpkCi

(str) for some fixed string str of length equal to �′
i||a′

i||ṽi. Then, the
client sends these m − 1 ciphertexts to the respective public key holders.

7. Flush Subtree and Write-Back. Each client Ck tries to decrypt each of
the m ciphertexts received in step (6), to learn which newly assigned paths must
be written back to in its partition. After successfully obtaining this information,
each client runs the flushing procedure on all real-read paths and the stash.
Finally, the client writes back subtree TSk

. If at any point the Stash contains too
many blocks then the procedure outputs “overflow”.

4.2 Analysis of Our CO-OPRAM Protocol

In this section, we provide details of why the construction given in Sect. 4.1 is
correct and satisfies obliviousness. Since our construction is essentially built to
emulate Subtree-OPRAM – and crucially all sub-protocols are functionally the
same – the main arguments of CLT regarding correctness and stash analysis sim-
ply apply also to our scheme. Obliviousness is more tricky, as we have introduced
new components that mimic the operation of the sub-protocols: we just need to
argue that these components leak only as much as the original scheme. A crucial
component of this is fixing the topology of the communication: the communica-
tion pattern seen by the OPRAM obliviousness adversary in each sub-protocol
should be independent of the inputs. As CLT observe, this means that they
are oblivious in a very strong sense, and unfortunately we cannot inherit this
in our scheme. The ‘vulnerable’ communications in our protocol are as follows,
indicating in which step of the construction the communication occurs:

(1.) The (onion-encrypted) messages sent from clients to R;
(2.) The access instructions sent to the (reading) partition accessors;
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(4.) Multicasting the results;
(6.) Re-routing from reading partition accessors to writing partition accessors.

The first step involves three ciphertexts per request, sent and forwarded by two
random clients. Since at this stage there is no link between these pre-processed
requests and the accesses to be made, these requests appear to be independent of
the inputs from the perspective of an adversary seeing only ciphertexts. For the
second set of messages, which are again of fixed size, the adversary learns nothing
other than what it is about to learn from the subsequent path reads (assuming
that the partition map is known to the adversary). In the multicast stage, the
messages sent by each partition accessor are again of fixed size, and assuming
security of the one-time encryptions this is again a fixed communication pattern.
Finally, the re-routing mechanism relies on the strength of the PKE scheme, the
fact that messages are fixed size and the fact that these clients write back anyway.

Client Obliviousness. This is based on the strength of the one-time symmetric
scheme OT-SKE that we employ in step 4, the PKE scheme PKE used in steps 1
and 6, and the TOR-style encryption3 MT-SKE used in steps 1 and 6 (we simply
assume security of the the block-encryption scheme used for the data items).

Theorem 1. Let O be the OPRAM protocol given in Sect. 4.1, built using
OT-SKE, PKE and MT-SKE. For any adversary A against the client oblivi-
ousness (CO-OPRAM) of O, there exist adversaries B, B′ and B′′ against the
one-time symmetric encryption scheme, the public-key encryption scheme, and
the TOR-style symmetric encryption scheme, respectively, such that

AdvCO-OPRAM
O, A (λ) ≤ Advμind-ote

OT-SKE, B(λ) + Advind-cpa
PKE, B′(λ) + Advμind-mte

MT-SKE, B′′(λ).

The proof follows the standard game-hopping technique; in AppendixC we detail
the games that result in the term collection. A full proof is given, along with
formal definitions of these security properties, in the full version of this work
[11].
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normalize the win probability in Definition 2.



326 G. T. Davies et al.

A Write-Conflict Resolution

BCP and CLT followed the concurrent-read-concurrent-write (CRCW) app-
roach, explicitly insisting that in the event of a write collision, the client with
the lowest identifier will be the one that gets to go ahead and write. We do
not make such a restriction, and leave the write-conflict regime (Reg) as a sys-
tem parameter. Fich, Ragde and Wigderson [14] detailed a number of possible
regimes, including:

– PRIORITY [20] (as used by BCP and CLT): clients have assigned identifiers,
and priority is given to e.g. the client with the lowest identifier;

– ARBITRARY [33]: An arbitrary processor is allowed to write;
– COMMON [23]: Simultaneous writes to a location are allowed as long as the

clients are writing the same data;
– COLLISION: No client gets to write, and the special symbol ⊥c is written to

the memory location.

Further, we also note that the concurrent-read-exclusive-write model (at most
one client is allowed to write to a location in each time step) described by Fich
et al. and introduced by Fortune and Wyllie [15] may also be appropriate for our
setting, though this is a simplification that reduces a number of the challenges
that we tackle later on. In the scenario that motivates our work, the entity (or
group of users) tasked with access control would define which regime is in place
for a subset of the rounds, or for the lifetime of the system.

B Client Obliviousness Experiment

Fig. 1. Client Obliviousness security experiment.
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C Theorem1 Term Collection

– Game 0. This game simply corresponds to the original CO-OPRAM game.
– Game 1. Same as Game 0 except that the challenger now replaces all cipher-

texts that were generated in Step (4) of the construction, and hence are part
of the transcript, with encryptions of random messages, except for the ones
that the clients should be able to decrypt.

– Game 2. Same as Game 1 except that the ciphertexts that were generated
in Step (1) are now modified, and hence different in the transcript which the
adversary receives. Here we replace the innermost encryption of the TOR-
style encryption mechanism, that is the public-key encryption under the pub-
lic key of R, with the encryption of a random message, with the restriction
that the client assigned to ktor3 is not corrupted.

– Game 3. Same as Game 2 except the challenger swaps the appropriate ele-
ments of the TOR-style mechanism to encryptions of random messages.

By this point, the adversary’s transcript contains no information that would
allow it any non-negligible advantage in the client obliviousness game.

D Comparison to CLT construction

We now compare our construction given in Sect. 4.1 more closely with the con-
struction of CLT. As stated earlier, our protocol functionally emulates the oper-
ation of subtree-OPRAM, however, the sub-protocols performed by the clients
are replaced by the steps above, with the addition of the router R. Recall that the
Subtree-OPRAM protocol of CLT requires to run a sub-protocol OblivElect where
a representative (for a particular data item a) between all m clients is elected –
this client is not necessarily the partition accessor where respective accesses have
been made. The representative receives the data items from the partition accessor
and is responsible to distribute them along the requesting clients. This process
is highly interactive and defeats the purpose of our client-oblivious notion. Steps
(1) and (2) of our construction (perfectly) emulate OblivElect with the help of R,
since they are functionally the same, and the communication pattern is of fixed
topology (one fixed-size message from each client to R, and one fixed-size mes-
sage from R to each accessing client). Generation of fake reads is done in a similar
manner as CLT – though it is R, rather than the non-representatives that choose
the locations of the fake reads to be made – and naturally the reads themselves
are done in the same way. To multicast we cannot use an unencrypted sorting
network, however, our step (4) allows only the requesting clients to retrieve their
requests and is thus functionally the same as OblivMulticast. Similarly we cannot
use OblivRoute, however, in our step (6) we again use a fixed topology mechanism
so that a client receives the items that it must write to its partition. Flushing
and writing back is exactly as in Subtree-OPRAM.
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outsourced personal records. In: 2015 IEEE Symposium on Security and Privacy,
pp. 341–358. IEEE Computer Society Press (2015). https://doi.org/10.1109/SP.
2015.28

26. Maffei, M., Malavolta, G., Reinert, M., Schröder, D.: Maliciously secure multi-client
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Abstract. Learning with Errors (LWE) and Ring-LWE (RLWE) prob-
lems allow the construction of efficient key exchange and public-key
encryption schemes. However, while improving the security through the
use of error distributions with large standard deviations, the decryption
failure rate increases as well. Currently, the independence of individual
coefficient failures is assumed to estimate the overall decryption failure
rate of many LWE/RLWE schemes. However, previous work has shown
that this assumption is not correct. This assumption leads to wrong
estimates of the decryption failure probability and consequently of the
security level of the LWE/RLWE cryptosystem. An exploration of the
influence of the LWE/RLWE parameters on the stochastic dependence
among the coefficients is still missing. In this paper, we propose a method
to analyze the stochastic dependence between decryption failures in
LWE/RLWE cryptosystems. We present two main contributions. First,
we use statistical methods to analyze the influence of fixing the norm
of the error distribution on the stochastic dependence among decryption
failures. The results have shown that fixing the norm of the error distri-
bution indeed reduces the stochastic dependence of decryption failures.
Therefore, the independence assumption gives a very close approximation
to the true behavior of the cryptosystem. Second, we analyze and explore
the influence of the LWE/RLWE parameters on the stochastic depen-
dence. This exploration gives designers of LWE/RLWE based schemes
the opportunity to compare different schemes with respect to the inac-
curacy made by using the independence assumption. This work shows
that the stochastic dependence depends on three LWE/RLWE parame-
ters in different ways: i) it increases with higher lattice dimensions (n)
and higher standard deviations of the error distribution (

√
k/2); and ii)

it decreases with higher modulus (q).
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1 Introduction

Post-Quantum cryptographic schemes based on the Learning with Errors (LWE)
and the Ring-LWE (RLWE) problems exhibit a non-vanishing decryption failure
rate. In order to decrease this failure rate without degrading the security level,
frequently Error-Correcting Codes (ECC) are used [6]. A low decryption failure
rate does not only reduce the amount of re-transmissions but is also essential to
avoid attacks which are capable to exploit these failures [5]. Therefore, a small
decryption failure rate is desirable or in some settings even mandatory. The
intuitive question is how to determine the decryption failure rate. The quantifi-
cation of this failure rate is not straightforward due to the correlation between
the coefficients of the noise term. Despite within RLWE schemes the coefficients
of polynomials are sampled independently, their product does not keep the inde-
pendent nature between the coefficients.

When no ECC is applied, simple inequalities, such as the Fréchet inequality,
can be used to determine an upper bound on the overall decryption failure rate.
For schemes that make use of an ECC, previous works assumed the coefficients
to fail independently in order to compute the overall failure rate [8,13]. How-
ever, the influence of the correlation on the failure rate and the validity of the
independence assumption is still an open research question.

First discussions about the correlation were made in Hila5 [13], LAC [8],
and [6]. In [4], it is shown that the influence of the correlation for the NIST
submission LAC is larger than expected and therefore the failure rate was under-
estimated. The authors experimentally verified that the norms of certain poly-
nomials are major contributors to the stochastic dependence. Conditioning the
failure probabilities on these norms reduces the stochastic dependence on aver-
age. Assuming that the aforementioned averaged result also works for a single
fixed norm, the LAC team decided to fix the norms to a specific value for the
second round of the NIST competition. However, to the best of our knowledge,
the influence of fixing the norms to a specific value on the stochastic dependence
has not been analyzed so far. The constraint of fixing the norms significantly
reduces the possible space of error polynomials. Therefore, stochastic indepen-
dence when a specific value for the norms is chosen has to be analyzed. Moreover,
previous works have not analyzed the influence of the RLWE parameters n (lat-
tice dimensions), q (modulus), and k (related to the standard deviation of the
error distribution) on the stochastic dependence of decryption failures.

In this work, we analyze the origin of the stochastic dependence of decryption
failures and the effect of fixing the norms to their expected values. Moreover,
we analyze the influence of the RLWE parameters on the applicability of the
independence assumption. We introduce various measures for quantifying the
stochastic dependence between random variables and statistically estimate them.
The methods in this work are applied on RLWE schemes but are also suitable
for LWE schemes.
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2 Preliminaries

2.1 Notation

All polynomials in this paper are printed in bold and are an element of the ring
R = Zq[x]/(xn + 1), where n and q are both integers. The polynomials can be
represented as a =

∑n−1
i=0 aix

i, where all coefficients ai are reduced after each

operation modulo q. Let a
$←− S denote the sampling process from a distribution

S. The centered binomial distribution with standard deviation σ =
√

k/2 is
denoted as χk. The norm of a polynomial is defined as ‖x‖2 :=

√∑
i x

2
i and the

norm of a vector of polynomials is defined as ‖Z‖2 :=
√∑

k‖zk‖22. Let PX be
a distribution on a random variable X. Its support supp(PX) denotes the set of
all a such that PX(a) > 0.

2.2 Ring Learning with Errors (RLWE)

The RLWE problem was introduced by Lyubashevsky et al. in [9] as a possibility
of speeding up cryptographic constructions based on the LWE problem proposed
by Regev in [12]. The hardness of this problem relies on recovering the secret
polynomial s from b = a · s + e, where the coefficients of the secret polynomial
s and error polynomial e are usually sampled from a discrete Gaussian or a
centered binomial distribution, and the coefficients of the public polynomial a
from a large uniform distribution. Moreover, it is known to be a hard problem
to distinguish (a, b) from a uniform sample in R×R. RLWE instances are used
as the main building blocks for several post-quantum cryptographic schemes.

2.3 Algorithmic Description

This subsection describes the general structure and basic principles of RLWE
based schemes.

RLWE-based schemes are mainly defined by the parameters (n, q, k), where
n determines the degree of the elements in R, q is the modulus, and k determines
the variance of the error distribution. The selection of the different parameter
values creates different instances of the RLWE problem and influences the secu-
rity level, key/ciphertext sizes, failure rate, and as we show in this work also the
stochastic dependence between decryption failures.

A PKE/KEM system based on RLWE is composed of three major opera-
tions: key-generation, encryption and decryption. These operations are shown in
Algorithm 1, Algorithm 2 and Algorithm 3, respectively.

The key generation creates the private key sk = s and the public key
pk = (b, seed). It is composed of three steps. The first step generates the pub-
lic polynomial a by using a cryptographic pseudo random number generator
that is initialized with a truly random seed. All coefficients of a are uniformly
distributed between 0 and q − 1. In the second step, the sampling of the secret
polynomial s and the error polynomial e are performed. The coefficients of these
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polynomials are usually taken from a binomial distribution, which is centered
at zero, having outcomes in [−k, k] mod q. After the sampling process, in the
third step, the RLWE instance b = as + e is computed.

During the encryption operation, any plaintext m is transformed into a
ciphertext c = (u,v). It is composed of three steps. The first step generates
the polynomial a as well as the secret and error polynomials s′, e′ and e′′. In
the second step, before hiding the message m in the RLWE instance v, the mes-
sage is encoded into a polynomial. During this step, redundancy can be added to
allow error correction after decryption. Finally, in the third step, the two RLWE
instances u and v are created and can be sent securely over a public channel.

The decryption operation retrieves the hidden message m from c. It is com-
posed of two steps. In the first step, the largest noise term ass′ is removed from
v by subtracting us. In the second step, the ECC removes further errors. With
high probability no decryption failure occurs and m̂ = m.

Algorithm 1: Key Generation

seed
$←− {0, 1}256

a ← GenA(seed)

s, e
$←− χk

b ← as + e
Result: pk = (b, seed), sk = s

Algorithm 2: Encryption
Input: pk = (b, seed), m ∈ {0, . . . , 255}32

a ← GenA(seed)

s′, e′, e′′ $←− χk

u ← as′ + e′

v ← bs′ + e′′ + Encode(m)
Result: c = (u, v)

Algorithm 3: Decryption
Input: c = (u, v), sk = s
m̂ ← Decode(v − us)
Result: m̂

3 Decryption Failures

As already indicated in Subsect. 2.3, the efficient usage of an RLWE scheme has
intrinsically a certain probability that the message m is not retrieved correctly
after the decryption process. The large term ass′ in v −us = es′ − e′s+ e′′ +
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Encode(m) cancels out and only a relatively small difference noise term remains
additively on the encoded message

d = es′ − e′s + e′′. (1)

Another representation of this noise term is

d = STC + G, (2)

where

S =
[−s
e

]

, C =
[
e′

s′

]

, G = e′′. (3)

A coefficient fails if its absolute value abs(di) > qt, where the threshold qt
is usually q/4 and di denotes the i-th coefficient of d. Throughout this work,
the event of a failure in the i-th coefficient is denoted as Fi and a successful
decryption is denoted as Si. If an algebraic ECC is applied, up to t erroneous
coefficients can be corrected, where t depends on the minimum distance of the
code. The overall scheme fails when not all coefficients can be corrected. As a
consequence, a re-transmission of m might be necessary. The requirements for
decryption failure rates depend on the application. For an ephemeral CPA-secure
key exchange, a failure rate in the range of 2−40 might be acceptable because
key agreement errors do not affect the security of the scheme [6]. However, CCA-
secure PKE schemes require a much lower failure rate. Many schemes aim for
failure rates that are lower than 2−128 (e.g., [1,2]). The reason is that decryption
failures can be exploited by an attacker as shown in [5].

4 The Stochastic Dependence Problem

The computation of the exact value of the failure rate of RLWE schemes turns
out to be not straightforward. The reason is the stochastic dependence between
the coefficients of the difference noise term d, which emerges from the two poly-
nomial multiplications es′ and e′s.

In the past, for many algorithms based on the RLWE problem it was con-
sidered a valid assumption that the coefficients of d fail independently [6,8,13].
However, it was later shown that this is not the case in general. In [4], it was
shown experimentally that the stochastic dependence between decryption fail-
ures for the parameters used in LAC leads to an overestimation of the security
level. This effect has to be taken into account when choosing RLWE parameters.

4.1 Origin of the Stochastic Dependence

In this section, it is described why the stochastic dependence between coefficients
of the polynomials within LWE/RLWE-based algorithms occurs.

Let c ∈ R be the product of two polynomials a, b ∈ R
c = a · b mod (xn + 1). (4)
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The k-th coefficient of c is then given by

ck =
k∑

i=0

aibk−i −
n−1∑

i=k+1

aibn−i+k. (5)

A closer look at the first two coefficients of the product c0 and c1 already
shows that there is a dependence between the coefficients.

c0 = a0b0 − a1bn−1 − a2bn−2 − a3bn−3 − · · · − an−1b1 (6)
c1 = a0b1 + a1b0 − a2bn−1 − a3bn−2 − · · · − an−1b2 (7)

Note that both coefficients are composed from the same coefficients in a and
b, e.g., a0 is used as a factor in the first product of each sum.

The following counterexample shows that the coefficients of c are not inde-
pendent in general.

Example 1. Let the largest possible output value of the error distribution be
denoted as p, let n = 2 and q > 2p2. A simple computation then shows that

c0 = 2p2 =⇒ c1 = 0.

That means that c0 = 2p2 determines c1, which violates the assumption of
stochastic independence between the coefficients.

4.2 Influence of the Correlation on the Failure Rate

The calculation of the failure rate for a single coefficient can be determined
exactly by convolving probability distributions in order to obtain the distri-
bution of di = (CTS + G)i as described in [6]. For LWE/RLWE schemes all
coefficients have the same failure probability pb = P [|(CTS + G)i| > q/4]. As
described in Sect. 3, when more than t coefficients fail, where t is the number
of correctable coefficients, the decryption fails. The event of a decryption fail-
ure is in the following denoted as df . If no error correction is applied, simple
inequalities, such as the Fréchet inequality

P [df ] = P [|d0| > q/4 ∪ |d1| > q/4 ∪ · · · ∪ |dn−1| > q/4]
≤ min(1, P [|d0| > q/4] + P [|d1| > q/4] + · · · + P [|dn−1| > q/4])
= min(1, n · pb)

(8)

can be used to determine an upper bound of the overall failure rate. This bound
does not require independent coefficients but it is not tight.

The problem of calculating the failure rate of the scheme gets more difficult
when an ECC is applied. Previous works assumed that the correlation between
the coefficients is very low and has only a minor influence on the results [6,8,13].
This allows to calculate the overall failure rate for RLWE based systems that
use an ECC by the formula
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P [df ] = 1 −
t∑

i=0

(
n

i

)

pib(1 − pb)n−i. (9)

However, in [4] it was experimentally shown that the independence assumption
is not valid for all RLWE parameter sets and therefore the stochastic dependence
between decryption failures has to be taken into account when it comes to the
computation of the decryption failure rate of cryptographic schemes.

4.3 Reducing the Stochastic Dependence

In [4] is stated that the main sources of the stochastic dependence of decryption
failures are the norms of S and C. They assumed that the decryption failures
are independent conditioned on fixed values of ‖S‖2 and ‖C‖2.

If the decryption failures F0, . . . , Fn−1 are assumed to be mutually indepen-
dent conditioned on the norms of S and C the following equation holds:

P (F0, . . . , Fn−1 | ‖S‖2, ‖C‖2) =
n−1∏

i=0

P (Fi | ‖S‖2, ‖C‖2) (10)

If this assumption would be not only an approximation but rather exact,
fixing the norms of S and C would entirely remove the stochastic dependence
between decryption failures.

In the first round submission of the NIST-PQC, LAC used the centered
binomial distribution χ1 as the error distribution. If a polynomial is sampled
according to the error distribution each coefficient is sampled independently from
the centered binomial distribution χ1. This sampling is in the following referred
to as Round 1 sampling. The independence assumption on decryption failures
was experimentally shown not to be applicable in that case [4]. Furthermore the
authors used Monte Carlo simulation based techniques to show that decryption
failures in different coefficients are on average almost stochastically independent
if they are conditioned on ‖S‖2 and ‖C‖2. Mathematically this can be expressed
as the following approximation:

P (F0, . . . , Fn−1) =
∑

‖S‖2,‖C‖2

P (F0, . . . , Fn−1 | ‖S‖2, ‖C‖2)P (‖S‖2, ‖C‖2)

≈
∑

‖S‖2,‖C‖2

n−1∏

i=0

P (Fi | ‖S‖2, ‖C‖2)P (‖S‖2, ‖C‖2)

(11)

For this reason and due to high Hamming weight attacks pointed out in [3] the
LAC team changed the error distribution for polynomials for their second round
submission to the NIST-PQC.

To explain this, we define the set of polynomials having exactly the expected
amount of −1s, +1s and 0s for Round 1 sampling as

Tn(χ1) := {xn ∈ Z
n
q : N(a|xn) = χ1(a) · n, ∀a ∈ {−1, 0, 1}} (12)
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where N(a|xn) denotes the number of occurrences of symbol a within the
sequence xn. The sampling of a polynomial e from the error distribution in
the second round submission of LAC is defined as e

$←− Tn(χ1). This sampling
procedure is in the following denoted as Round 2 sampling.

Round 2 sampling fixes the number of −1s, +1s and 0s in all polynomials
drawn from the error distribution. This in turn fixes the norms of S and C.
For LAC128 this constraint implies ‖S‖2 = ‖C‖2 = 512 whereas for LAC256
‖S‖2 = ‖C‖2 = 1024. Clearly, the coefficients within an error polynomial are
not stochastically independent with respect to each other. Still the stochastic
dependence between decryption failures is claimed to be reduced by this sampling
method.

Round 2 sampling significantly reduces the set of output sequences of the
error distribution. In [8] it is stated that the entropy of the error distribution is
reduced by roughly 10 bits for LAC128. The reduction of the entropy is about
10 bits for LAC256 as well which is easily verified by counting the set of possible
output sequences from the error distribution. The LAC team also shows that
this reduction in entropy does not change the security reduction or the security
evaluation of the scheme. However, there is no additional analysis on the effect
of the stochastic dependence between decryption failures in the supporting doc-
umentation. In reality Eq. (10) is only an approximation and its applicability
has only been checked experimentally averaged over all possible sets of norms of
S and C by using Monte Carlo simulations [4]. Therefore, it is not clear whether
the restriction of the possible error polynomials in Round 2 sampling (compared
to Round 1 sampling) has an effect on the stochastic dependence of decryption
failures for LAC128 and LAC256.

5 Methods for Quantifying the Stochastic Dependence

The existence of a correlation between the coefficients after the polynomial mul-
tiplication is evident. However, it is unclear how strong this correlation is and
how the parameters of LWE/RLWE schemes affect this phenomenon. In Subsect.
5.1, the selection of the statistical approach to quantify the stochastic depen-
dence between random variables is motivated. In Subsect. 5.2 different measures
for the stochastic dependence of random variables are introduced.

5.1 Statistical Estimation of Stochastic Dependence

The joint probability distribution of the product coefficients after the multi-
plication of two polynomials in R is unknown. To analytically compute this
joint probability distribution is not straightforward, especially if various error
distributions are considered. Fortunately, it is possible to estimate properties
of random variables using statistical methods even if the respective random
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variable is unknown, e.g. the estimation of the expectation of a random variable
X by taking the mean of N samples (x1, . . . , xN )

X =
1
N

N∑

k=1

xk (13)

which converges to the mean value if the variance of X is finite.
In this work, we propose a method which is based on statistical measure-

ments as well. Our framework works for different kinds of error distributions.
Therefore, we generate samples of s, e, s′, e′ and e′′ according to the error dis-
tribution. With each set of those samples the computation described in Eq. (1)
is performed. Due to limited simulation time only the stochastic dependence
between the first two coefficients of the result (d0 and d1) is considered for the
measures discussed in Sect. 5.2. However, the ideas shown in this work can be
extended to more than two coefficients.

We consider the random variables X and Y which map the respective values
of d0 and d1 to the set {S, F}, where S denotes a successful decryption and
F decryption failure. We formalize this for the random variable X. For Y , the
formalism works accordingly.

X : Zq → {S, F} (14)

d0 �→
{

F, if abs(d0) > qt

S, else
(15)

This means that there are four events possible for the joint outcome of X and
Y , F0F1, F0S1, S0F1 and S0S1. The first letter denotes the outcome of X and
the second letter the outcome of Y . The joint probability distribution PXY

and the marginal distributions PX and PY are estimated using histograms by
measuring the occurrence the respective outcome and dividing it by the number
of samples. The measures for stochastic dependence introduced in Sect. 5.2 are
then computed from the estimated distributions.

5.2 Stochastic Dependence Calculation: Pearson Correlation,
l1-Distance and Mutual Information

The concept of stochastic independence is of major interest in probability theory.
In this work, we are interested in measuring the amount of stochastic dependence
between two random variables X and Y . It is crucial to find appropriate measures
for stochastic dependence between random variables. In this section, we intro-
duce three measures for stochastic dependence: Pearson correlation, l1-distance,
and mutual information.

The Pearson correlation coefficient measures the linear dependency between
two random variables. It is defined by Eq. (16).

ρ(X,Y ) :=
Cov(X,Y )

√
V ar(X)V ar(Y )

(16)
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The definition of the Pearson correlation coefficient only uses moments up to
second order of the respective random variables. This means that even if the
Pearson correlation between X and Y is zero the random variables are not
necessarily independent. However, if X and Y are stochastically independent
their Pearson correlation coefficient is zero.

Therefore, in the following alternative measures for stochastic dependence
are presented. Perhaps the most intuitive measure is the l1-distance, defined as

d(PXY , PXPY ) := ‖PXY − PXPY ‖1 =
∑

a∈X ,b∈Y
|PXY (a, b) − PX(a)PY (b)| (17)

where X and Y denote the sets of possible outcomes of the random variables,
PXY their joint distribution and PX , PY the marginal distributions of the ran-
dom variables.

The definition already shows that two random variables X and Y are stochas-
tically independent if and only if d(PXY , PXPY ) = 0. As the distance between
the joint distribution PXY and the product of the marginal distributions PXPY

is summed over all possible outcomes, the l1-distance is an obvious candidate
for a measure of stochastic dependence.

Another possible measure of stochastic dependence is mutual information.
It was introduced by Shannon in [14] and shows similar properties to the l1-
distance. The mutual information I(X;Y ) is defined as

I(X;Y ) :=
∑

(a,b)∈supp{PXY }
PXY (a, b) log2

(
PXY (a, b)

PX(a)PY (b)

)

. (18)

As for the l1-distance, the mutual information between X and Y is 0 if and
only if the random variables X and Y are stochastically independent. It is even
mentioned as a potential measure for stochastic dependence in [10].

The previously introduced measures for stochastic dependence are connected
with each other by certain equalities and inequalities which are introduced in
the following.

Pinsker’s inequality and [7, Lemma 4.1] connect both measures by upper and
lower bounding the l1-distance.

‖PXY − PXPY ‖21 ≤ 2 ln(2)I(X;Y ) ≤ 1
β

‖PXY − PXPY ‖21 (19)

where β := inf
(x,y)∈supp(PXPY )

PX(x)PY (y).

For the Pearson correlation, a connection to the mutual information is known
for Gaussian random variables. An equality relating mutual information and
Pearson correlation can only be valid if the joint probability distribution can
be fully described by moments of at most second order. This is for instance if
the joint distribution of two random variables X and Y is the bivariate normal
distribution. The following equation connects the mutual information and the
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Pearson correlation of the random variables X and Y if their joint distribution
is a bivariate normal distribution.

I(X;Y ) = −1
2

log2(1 − (ρ(X,Y ))2) (20)

6 Experimental Results

Subsection 6.1 presents the influence of fixing the norm of the error distribu-
tion in LAC on the stochastic dependence of decryption failures. Subsection 6.2
shows the influence of the LWE/RLWE parameter sets (n, q, k) on the stochastic
dependence of decryption failures. The analysis in this work is performed for the
parameters used within the LAC-cryptosystem but the proposed methodology
can be applied to any RLWE-based system.

6.1 Fixing the Norm of the Error Distribution in LAC

Table 1 shows the failure probabilities, the absolute value of the Pearson correla-
tion, the l1-distance and the mutual information for LAC128 and LAC256. The
results show a decrease of the failure probabilities for the sampling performed in
the second round submission of LAC in the NIST-PQC. The statistical results
for all previously introduced measures for stochastic dependence decrease for
Round 2 sampling and therefore indicate less stochastic dependence.

Figure 1 and Fig. 2 show the maximal failure rate for a given error correction
capability of the ECC for LAC128 and LAC256, respectively. Both figures show
five different data sets:

– Round 1 norm averaging: This curve shows computational results for Round 1
sampling if stochastic independence of decryption failures conditioned on the
norms of S and C is assumed (Eq. 11, methodology from [4]).

– Round 1 sampling experimental: The ×-symbols give experimental results
based on Monte Carlo simulations using Round 1 sampling of LAC.

– Round 1 sampling indep. assumption: This curve shows computational results
for Round 1 sampling assuming that decryption failures are stochastically
independent. The required single-coefficient failure probability pb has been
analytically determined to obtain the resulting curve.

– Round 2 sampling experimental: The ×-symbols give experimental results
based on Monte Carlo simulations using Round 2 sampling of LAC.

– Round 2 sampling indep. assumption: The ◦-symbols depict computational
results for Round 2 sampling if stochastic independence of decryption failures
is assumed. The required single-coefficient failure probability pb has been
experimentally determined by using Monte Carlo simulations using Round 2
sampling of LAC. A justification for this procedure is given in Appendix B.

The figures for both parameter sets show that the experimental results for
Round 2 sampling perfectly match the theoretical results using the independence
assumption. Therefore, we conclude that the stochastic dependence between
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decryption failures was significantly reduced compared to Round 1. This is in
accordance with the results presented in Table 1. As a result, the independence
assumption approximates the real behaviour of decryption failures significantly
better for Round 2 sampling compared to Round 1 sampling. Therefore, we
consider the independence assumption to be valid for Round 2 sampling.

Table 1. Results for LAC128 and LAC256 (1st/2nd Round), 1011 samples

Error distribution Pearson (abs) l1-distance I P[F0F1] P[F0S1] P[S0F1] P[S0S1]

LAC128 Round 1 8.852e−06 3.248e−09 5.477e−11 9.230e−09 9.170e−05 9.178e−05 0.99982

LAC128 Round 2 5.083e−06 1.805e−09 1.900e−11 7.430e−09 8.874e−05 8.879e−05 0.99982

LAC256 Round 1 1.032e−04 2.288e−06 7.546e−09 3.201e−05 5.575e−03 5.575e−03 0.98882

LAC256 Round 2 6.077e−06 1.347e−07 2.633e−11 3.143e−05 5.572e−03 5.572e−03 0.98882

0 5 102−30

2−24

2−18

2−12

2−6

20

Error correction capability of the ECC

de
cr

yp
ti

on
fa

ilu
re

pr
ob

ab
ili

ty

Round 1 norm averaging
Round 1 sampling experimental
Round 1 sampling indep. assumption
Round 2 sampling experimental
Round 2 sampling indep. assumption

Fig. 1. Decryption failure probability depending on the error correction capability of
the ECC (LAC-128)

6.2 Influence of the LWE Parameter Set (n, q, k) on the Stochastic
Dependence

This subsection analyzes the influence of different RLWE parameters on the
independence assumption. In this analysis, the centered binomial distribution is
used as the error distribution. Figures 3, 4 and 5 depict the relation of (n, q, k)
to the stochastic dependence of decryption failures. Experimentally determined
curves deviate stronger from the curves using the independence assumption if
the stochastic dependence between decryption failures is larger. In the follow-
ing LAC256 having (n, q, k) = (1024, 251, 1) is used as a reference. Proceed-
ing from this reference set each parameter has been varied to determine the
respective parameter’s influence on failure rate and stochastic dependence. In
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Fig. 2. Decryption failure probability depending on the error correction capability of
the ECC (LAC-256)
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Fig. 3. Number of failed coefficients for fixed q = 251, and k = 1

each figure, the experimentally determined decryption failure rates are com-
pared with theoretical results obtained using the independence assumption. It
is hard to analyze the influence of k for different values in LAC as its depen-
dence on the failure probability is extremely high. Therefore, in Appendix A
experiments for NewHope parameters with increased variance of the error dis-
tribution are depicted. In addition to Figs. 3, 4 and 5, Table 2 shows the results
obtained by the methods introduced in Sect. 5. Both results show that a higher
decryption failure rate also leads to a larger deviation of the experimental data
from the independence assumption. Therefore, larger values for n and k and
smaller values for q increase the stochastic dependence of decryption failures
and the independence assumption approximates the exact behaviour of decryp-
tion failures worse. In the following, an explanation for this behaviour is given.
As noted in Sect. 4.3 large norms of S and C increase the failure rate of RLWE
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Fig. 4. Number of failed coefficients for fixed n = 1024, and k = 1

based algorithms. The probability of obtaining large norms in S and C increases
with larger n and k. The decryption failure rate increases with larger norms of
S and C and decreases with larger q. A decryption failure can only occur if
the norms of S and C are larger than a certain threshold which depends on q.
Obtaining a decryption failure in one coefficient reduces the possible set of norms
(and increases the probability for higher norms), which increases the chance of
a decryption failure in other coefficients. Correct decryption of a coefficient in
comparison only changes the probabilities of the norms of S and C. Therefore,
as shown in the figures the stochastic dependence between decryption failures
increases with higher n and k and lower q. As a consequence the inaccuracy
implied by using the independence assumption for computing the failure rate
of a cryptographic scheme is higher for schemes which rely on strong ECCs to
obtain a low decryption failure rate.
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Fig. 5. Number of failed coefficients for fixed n = 1024, q = 251
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Table 2. Pearson correlation, l1−distance and mutual information for different param-
eter sets (n, q, k), 1011 samples

Parameter set Pearson (abs) l1-distance I P[F0F1] P[F0S1] P[S0F1] P[S0S1]

(512, 251, 1) 8.852e−06 3.248e−09 5.477e−11 9.230e−09 9.170e−05 9.178e−05 0.99982

(768, 251, 1) 5.445e−05 3.017e−07 2.105e−09 2.005e−06 1.387e−03 1.387e−03 0.99722

(1024, 251, 1) 1.032e−04 2.288e−06 7.546e−09 3.201e−05 5.575e−03 5.575e−03 0.98882

(1024, 231, 1) 1.414e−04 5.976e−06 1.406e−08 1.180e−04 1.068e−02 1.068e−02 0.97853

(1024, 251, 1) 1.032e−04 2.288e−06 7.546e−09 3.201e−05 5.575e−03 5.575e−03 0.98882

(1024, 271, 1) 6.897e−05 7.640e−07 3.384e−09 7.947e−06 2.777e−03 2.777e−03 0.99444

(1024, 251, 1) 1.032e−04 2.288e−06 7.546e−09 3.201e−05 5.575e−03 5.575e−03 0.98882

(1024, 251, 2) 5.512e−04 2.625e−04 1.625e−07 2.751e−02 0.13816 0.13816 0.69617

7 Limitations and Open Questions

The methods proposed in this work are based on statistics. Due to the statistical
approach there are still several open problems and limitations.

The required amount of samples for estimating mutual information and l1-
distance between decryption failures increases with decreasing failure rate. For
schemes without error correction, the failure rate is typically lower than 2−120.
This means that on average 2120 samples are required to obtain one decryption
failure. As there are several errors required to estimate the error probability
distribution, Monte Carlo simulation becomes infeasible for these schemes.

The decryption failure probability for schemes with ECC is usually much
higher, e.g., for LAC with Round 1 sampling between 2−24.74 and 2−7.48. How-
ever, as we consider the dependence between multiple coefficients, the probability
that multiple coefficients fail is the one of interest, which is much lower.

Even without the limitations of the proposed statistical method an analytical
analysis would contribute to a better understanding of the stochastic dependence
between decryption failures. This point is still missing to the best of our knowl-
edge. In order to find an analytical method it is not enough to consider the
stochastic behaviour of one coefficient but the joint probability distribution of
multiple coefficients. The commonly employed large parameter sets in lattice-
based cryptosystems make an analytical approach non-trivial.

Additionally, although mutual information and l1-distance are potentially
good candidates to measure the stochastic dependence between decryption fail-
ures, we were not able mathematically proof a strict threshold value up to which
the correlation between decryption failures can be neglected for further analysis.

8 Conclusion

In this work, we analyzed the influence of the LWE/RLWE parameter set on
the stochastic dependence between decryption failures caused by the difference
noise term. To reduce the stochastic dependence between decryption failures in
the second round LAC submission the Hamming weight of the error distribution
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was fixed. In this paper, the effect of fixing the Hamming weight on the stochas-
tic dependence has been analyzed. Our results show that this measure achieves
a significant decrease of the stochastic dependence between decryption failures.
Therefore, if the error distribution chosen in the second round submission of
LAC is used, assuming independence of decryption failures can be considered a
valid simplification. Moreover, the results have shown that the standard devia-
tion of the error distribution, the polynomials length, and the modulus all have a
significant influence on this dependence. To quantify the stochastic dependence,
the Pearson correlation, l1-distance and mutual information between the fail-
ures of the individual coefficients were statistically determined. All those mea-
sures for stochastic dependence indicate that stochastic dependence increases
with higher standard deviation, larger polynomial length, and smaller modulo
reduction parameter. Although this work does not show an analytical solution
to obtain the stochastic dependence between decryption failures, the proposed
methods are suitable to compare different RLWE parameter sets. When chang-
ing the error distribution for LAC, designers should check whether the stochas-
tic dependence measures are below the ones determined in this work (e.g. for
LAC256 I ≤ 2.633 · 10−11). The results in Fig. 2 confirm that this threshold is
suitable.

A Influence of k on the Stochastic Dependence
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Fig. 6. Number of failed coefficients for fixed n = 1024, q = 12289

As mentioned in Subsect. 6.2, NewHope parameters with an increased vari-
ance of the error distribution are used to show the influence of k on the stochastic
dependence of decryption failures with finer granularity.

Figure 6 shows the influence of the variance of the error distribution on the
probability of the number of decryption failures. The results show that increasing
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the variance increases the failure rate. It is also shown that the deviation between
independence assumption and experimentally determined curves is increased for
larger k.

Table 3 shows the Pearson correlation, l1-distance, and mutual information
for k = 40 and k = 52. The results show an increase of the stochastic dependence
when k is increased.

Table 3. Pearson correlation, l1−distance and mutual information for different stan-
dard deviations of the error distribution (1.8 · 109 samples)

Parameter set Pearson (abs) l1-distance I P[F0F1] P[F0S1] P[S0F1] P[S0S1]

1024, 12289, 40 8.931e−05 2.484e−07 5.514e−09 5.472e−07 6.956e−04 6.963e−04 0.99861

1024, 12289, 52 2.944e−04 1.047e−05 6.072e−08 8.460e−05 8.971e−03 8.969e−03 0.98198

B Statistical Estimation Error of pb

In order to obtain the results presented in Figs. 1 and 2, it was necessary to
estimate the failure probability pb of a single coefficient. This was accomplished
using a Monte Carlo simulation. We denote the number of samples as n and the
number of errors within those samples as ne. We estimate pb with

p′
b =

ne

n
. (21)

In the following we justify why the error inflicted by using the estimation p′
b of

pb is negligible.
Therefore, the basic task is to use the knowledge of n and ne obtained from

the experiment to find an interval in which pb lies with high probability. This
interval is denoted in the following as the confidence interval [p1, p2]. The prob-
ability for pb to be in this interval is denoted as the confidence level cl. The
confidence interval depends on the demanded confidence level cl, n and ne.

The following approach is analogous to the description in [11].
We define the variable

g := norminv
(

1 + cl
2

)

where norminv(.) denotes the inverse of the cumulative distribution function of
the standard normal distribution.

Then

p1,2 =
ne + g2/2 ∓ g

√
ne(1 − ne/n) + g2/4

n + g2
. (22)

As in general g � n the confidence interval is approximately centered around
p′
b.
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Example 2. In this example the algorithm LAC256 with Round 2 sampling is
considered. We consider only failures within the first coefficient in the Monte
Carlo simulation. Due to symmetry the likelihood of an error is the same within
each coefficient.

We fix the demanded confidence level to cl = 99%. The results of the Monte
Carlo simulation show that ne = 560305194, n = 1011. Therefore,

ne

n
= 0.0056031, p1 = 0.0056024, p2 = 0.0056037 (23)

The results show that the length of the interval relative to p′
b is 0.0217% for a

confidence level of 99%. Therefore it is possible to approximate the actual pb
with p′

b obtained using a Monte Carlo simulation.
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Abstract. Location-based services (LBSs) are widely deployed in com-
mercial services. These services always depend on a service provider,
e.g., a cloud server, to store the enormous amounts of geospatial data
and to process various queries. For example, a Yelp user can retrieve
a list of recommended cafés by submitting her/his current location to
the service provider. While LBSs offer tremendous benefits, it is vital to
safeguard users’ privacy against untrusted service providers. However,
no prior secure k nearest neighbor query processing schemes satisfy the
three security requirements of one-time, oblivious, and unlinkable. In
particular, we are concerned with the problem of item exclusion: how
to match one data query with each item on the cloud no more than
once in an oblivious and unlinkable manner. In this paper, we propose
the first secure k nearest neighbor query processing scheme, Obaq, that
satisfies the above requirements. Obaq first introduces an item identi-
fier into an existing secure k nearest neighbor query processing scheme.
Each data owner inserts an item identifier and her/his location informa-
tion into a secure index, and each data user transfers the identifier of
a previously received data item and location information into a specific
range. Then, Obaq excludes corresponding items via privacy-preserving
range querying. We define strong index privacy and strong token privacy
and formally prove the security of Obaq in the random oracle model.
We further evaluate the performance of Obaq using a prototype and a
real-world dataset. The experimental results show that Obaq is highly
efficient and practical in terms of computational cost, communication
overhead, and response delay.
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1 Introduction

1.1 Background

Nowadays, most smartphones are equipped with GPS and mobile applications
provide location-based services (LBSs) [1–3] via sending the current location of
a user and a geospatial query to a service provider, i.e., a cloud server [4,5].
The service provider searches its database, as structured by the data owners’
submitted data, and returns a query result to the data user [6]. For example,
Yelp, Google Map, and Facebook enable a data user to conveniently retrieve a
list of restaurants, coffee shops, and hotels around her/his current location.

However, service providers always store their geospatial data on a public
cloud, such as Dropbox Inc. or Microsoft Inc., to enable lower maintenance
costs, lower response delays, and greater flexibility. This, in turn, makes privacy
a key concern since public clouds are not fully trusted [7,8]. First, public clouds
may have malicious insiders. For example, in 2015, a Mercedes engineer stole
highly sensitive data with the intention of giving these data to his new employer,
Ferrari [9]. Second, public clouds may be hacked and users’ information may be
leaked. In 2016, hackers stole 167 million email addresses and passwords from
LinkedIn and sold them on the dark web [10]. Therefore, it is vital to enforce
privacy-preserving measures for location-based queries on public clouds.

To solve this problem, secure k nearest neighbor (SkNN) query processing
has been proposed [11–16] and is now widely adopted in LBSs. The SkNN query
model is depicted in Fig. 1. A data owner stores encrypted data and a secure
index on a service provider. A data user submits an SkNN query to the service
provider, which returns a corresponding result after searching its database. We
consider the service provider to be an honest-but-curious adversary in this model.

Data 
owner

Data
user

Service provider

Fig. 1. SkNN query model.

1.2 Motivation

No previous studies [13–18] have addressed the problem of item exclusion, which
results in the following three new requirements for SkNN.
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– One-time: Exclude a specific item from a data query after it has been
matched to the data query.

– Oblivious: Prevent the service provider from knowing which attribute in the
query has been used to exclude the specific item mentioned above.

– Unlinkable: Prevent the service provider from knowing that the specific item
has been previously matched to the query mentioned above.

1.3 Technical Challenges and Proposed Solutions

The technical challenges lie in the following aspects. First, existing studies have
only focused on how to match a query and qualified data items. If we add an
identifier to label each item and exclude one specific item using its fixed identifier,
then the token privacy is leaked to the service provider. Therefore, we need to
secretly exclude a specific item, i.e., the service provider cannot know that the
exclusion step is included. Second, we not only have to secretly exclude a specific
item, but we need to incorporate the exclusion step into an ordinary query, i.e.,
the service provider cannot sense any difference when searching items and using
different subitems in the query. Third, we must preserve ignorance after an item
is directionally excluded, i.e., the service provider cannot know that the excluded
item meets the conditions of an ordinary query.

To address the above issues, we propose Obaq: a one-time, oblivious, and
unlinkable query processing scheme. Our contributions are summarized as fol-
lows.
– To the best of our knowledge, we are the first to focus on the item exclusion

problem in query processing over encrypted data and we propose a one-time,
oblivious, and unlinkable query processing scheme.

– We achieve the three above-mentioned new requirements via identity trans-
formation and a privacy-preserving range query. Specifically, we first assign an
identifier to each data owner. Each data owner converts her/his current loca-
tion into a feasible region and a set of prefixes, and then encodes a unique
identifier concatenated with their current location into another set of pre-
fixes. The two sets of prefixes are inserted into an indistinguishable Bloom
filter (IBF) as a secure index. The data user performs the same procedure for
their current location but encodes a carefully designed identifier range con-
catenated with their current location into a set of prefixes for item exclusion.
The prefixes are further hashed into a query token. The data user submits this
token to the service provider which returns a result via membership checking
in the IBF.

– We define strong index privacy and strong token privacy, and then formally
prove that the proposed Obaq scheme achieves strong provable security in the
random oracle model. We then demonstrate the efficiency and practicability
of Obaq via a performance analysis.

1.4 Paper Organization

The remaining of this paper proceeds as below. We discuss related work in
Sect. 2. We elaborate on the system model, threat model, and design objectives
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in Sect. 3. We present the Obaq scheme in Sect. 4. We formally analyze the
privacy and security of the Obaq in Sect. 5. In Sect. 6, we implement the OBaq
system and analyze its performance. Lastly, we draw some conclusions in Sect. 7.

2 Related Work

Li et al. [13] presented the first range query processing protocol which achieved
index indistinguishability under the indistinguishability against chosen keyword
attack (IND-CKA). A data owner converts each data item dti by prefix encod-
ing [19] and organizes each prefix family of encoded item F (dii) into a PBTree.
Then the data owner makes the PBtree privacy-preserving by a keyed hash
message authentication code HMAC and Bloom filters. For each prefix pri, the
data owner computes several hashes HMAC(Kj , pri) and inserts a randomized
version HMAC(r,HMAC(Kj , pri)) into a Bloom filter. Each r corresponds to a
node and each node relates to a prefix family, i.e., data item. Next, a data user
converts a range into a minimum set of prefixes and computes several hashes
HMAC(Kj , pri) for each pri as a trapdoor. The service provider searches in the
PBtree to find a match by using the trapdoor.

Li et al. [14] concerned processing conjunctive queries including keyword
conditions and range conditions in a privacy-preserving way and presented a
privacy-preserving conjunctive query processing protocol supporting adaptive
security, efficient query processing, and scalable index size at the same time.
Specifically, they adopt prefix encoding as in their earlier work [13] and design
an indistinguishable Bloom filter (IBF), i.e., twin Bloom filter to replace the
previous structure. A pseudo-random hash function H to determine a cell loca-
tion H(hk+1(hj(wi)) ⊕ r), i.e., which twin cell stores ‘1’. Instead of building a
PBTree, they construct an IBTree as the secure index.

Lei et al. [16] presented a secure and efficient query processing protocol
SecEQP. They leveraged some primitive projection functions to convert the
neighbor regions of a given location. Given the codes of two converted loca-
tions, the service provider computes the proximity of the two locations by
judging whether the two codes are the same. This is an improvement over
their previous work [14] since the two-dimensional location data is projected
to high-dimensional data which expands the location space to make the con-
verted location more secure. The data owner further embeds the codes into a
similar IBFTree in order to build a secure index. The data user computes similar
trapdoors by a keyed hash message authentication code. The final secure query
processing is the same as [14].

Different from the previous works, Obaq scheme can support the three new
features in SkNN, namely one-time, oblivious, and unlinkable. The novelty of
Obaq is in realizing the function of item exclusion by mixing privacy-preserving
identifier range query with existing SkNN query without sacrificing privacy.
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3 Problem Formulation

We propose Obaq scheme to address the item exclusion problem in SkNN. In this
section, we elaborate on the system model, threat model, and design objectives.

3.1 System Model

The proposed Obaq system model is shown in Fig. 2, where there exist a data
owner DO , a data user DU , and a service provider SP . We assume the total
number of data owners is N and define DI = {di1, di2, · · ·, diN} as the set of
data items.

– Data owner: A DO holds some data items. Each data item is described by
spatial attributes (location information) and an identifier. The DO extracts
the spatial attributes and identifier of each data item and computes a secure
index in order to retrieve the data efficiently. Then the DO encrypts her/his
data item by the shared keys and standard encryption algorithms. Each index
has a pointer to link itself to the encrypted data item. Finally, the DO out-
sources the index and the encrypted data item to the SP . Meanwhile, we
assume that each DO has only one data item for clarity and the DO shares
secret keys with some DU s.

– Data user: A DU needs certain information (data items) regarding her cur-
rent location. The DU generates a search token by shared secret keys, spatial
attributes, and an identifier range. The identifier range is carefully calculated
for item exclusion. Then the DU submits the token, i.e., SkN query, to the
service provider. If there is a match, the DU decrypts the encrypted data
item received from the SP . Otherwise, the DU continues to wait for a valid
query result.

– Service provider: The SP offers a platform for DOs to delegate the query
service to DU s. The SP receives the secure indexes and encrypted data items
from the DOs and tokens from the DU s. Then the SP searches over the secure
indexes by using the tokens and returns corresponding results to the DU . If
a match is found, the SP sends back an encrypted data item. Otherwise, an
“N/A” string is returned.

3.2 Threat Model

The security threat primarily comes from the malicious behaviors of the service
provider which we assume is semi-honest (honest-but-curious). This assump-
tion is proposed in [20] and has been widely acknowledged in existing work on
privacy-preserving query processing [13–16,21–24]. The service provider is semi-
honest, meaning that it offers reliable data and query services as the protocol
specification, but it is curious about data it stores and queries it receives. The
data owners and data users are honest, and the collusion attack is not considered
in this work.
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Fig. 2. Obaq system model.

3.3 Design Objectives

There are three design objectives in this work: privacy, efficiency, and accuracy.
First, Obaq should preserve three kinds of privacy: strong index privacy,

strong token privacy, and data privacy.

– Strong index privacy: (1) Any adversary cannot obtain the spatial infor-
mation or the identifier from the secure index. (2) The adversary cannot
distinguish the subitem used for spatial information and the subitem used
for the identifier in the secure index. (3) The adversary cannot link different
indexes from the same data owner. (4) The adversary cannot judge whether
two indexes are generated from the same location even if they are.

– Strong token privacy: (1) Any adversary cannot obtain the spatial infor-
mation or the identifier range from the token. (2) The adversary cannot dis-
tinguish the subitem used for spatial information and the subitem used for the
identifier range in the token. (3) The adversary cannot link different tokens
from the same data user. (4) The adversary cannot judge whether two tokens
are generated from the same location even if they are.

– Data privacy: Any adversary cannot extract any useful information from
the encrypted data items.

Second, Obaq should meet three kinds of efficiency requirements as follows.

– Low computational cost: the computational operations of data owners,
data users, and the service provider should not be time-consuming.

– Low communication overhead: the amount of data exchanged between
the data owners/users and the service provider is small.

– Low query response: the data user receives a query result within an accept-
able amount of time considered the low computation ability of data users and
the vast amount of data in the database of the service provider.
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– Low interaction: the scheme should be non-interactive between data owners
and the service provider, and it only requires a small number of interactions
between data users and the service provider.

Third, Obaq should not sacrifice the accuracy of the underlying SkNN query
processing after we enforce the three new requirements.

4 Proposed Scheme

4.1 Overview

We sketch the Obaq scheme in Fig. 3. First, we turn the kNN problem into the
equality checking problem through the projection-based space encoding. Then,
we transform the equality checking problem as well as the item exclusion problem
into the keywords query problem through prefix-free encoding and prefix encod-
ing. Finally, we use the IBF to build secure indexes and then achieve secure and
efficient query processing via membership checking in Bloom filters.

Specifically, a data owner DO converts the current location into a feasible
region and translates the feasible region into a set of prefixes. Meanwhile, the DO
encodes a unique identifier concatenated with the current location into another
set of prefixes. The two sets of prefixes are further inserted into an IBF which
is the secure index. Then the DO submits the secure index and a ciphertext of
the data item to the service provider SP .

A data user DU also performs the same for the current location but encodes
an identifier range concatenated with the current location into a set of prefixes.
This range is carefully designed for item exclusion. Assume the identifier of an
item to be excluded is n, the range is set to the union of [0, n− 1]∪ [n+1, N ]. If
the DU has no specific requirement for item exclusion, the range is set to [0, N ].
The prefixes are further hashed into tokens. Then the DU submits the token to
the SP .

Finally, the SP searches the indexes by using the token and returns an
encrypted data item to the DU if the query conditions are satisfied.

4.2 Index Building

A data owner DO with an identifier n is holding a data item din at location l.
u projection functions p1, p2, · · ·pu are made public for all users, where pi(l) =
�ai·l+bi

di
�, a = (θ, 1), θ ∈ [0, 2π], b ∈ [0, d], and d is the interval length. The u

vectors {a} equally divide 2π. The DO first converts the l into a feasible location
fln:

fln = AND(p1(1), p2(l), · · ·, pu(l)). (1)

Then the DO converts each pi(l) into p̃i(l), i.e., a string of numbers, by using
prefix-free encoding [16] and computes a string strn by string concatenation:

sn = p̃1(1)||p̃2(l)|| · · · ||p̃u(l). (2)



One-Time, Oblivious, and Unlinkable Query Processing 357

Projec�on-based space encoding

kNN problem

Prefix encoding

Membership checking in Bloom filter

Keyword query problem

Item exclusion problemEquality checking problem

IBF-based index

Prefix-free encoding

Fig. 3. Obaq scheme overview.

Next, the DO constructs a keyword Sn = n||sn and converts it into a set
of prefixes Sn by using prefix encoding. Here, we note that the conversion is
conducted separately, i.e., Sn contains the prefixes of n which is concatenated
with the prefixes of sn. In this way, the data owner lays a foundation for the
data user to meet the requirement of item exclusion.

Given t pseudo random hash functions h1, h2, · · ·, ht, a random oracle H, and
m + 1 secret keys K1,K2, · · ·,Km,Km+1, the DO initializes an empty IBF Bn

and embeds each prefix pri in the Sn and a randomly chosen number rn into the
Bn by setting for all i ∈ [1, |Sn|] and j ∈ [1,m]:

Bn[H(hKm+1(hj(pri)) ⊕ rn)][hj(pri)] = 1, (3)

Bn[1 − H(hKm+1(hj(pri)) ⊕ rn)][hj(pri)] = 0, (4)

where hi = HMACKi
(·).

Finally, the DO submits the secure index Bn, rn, and a ciphertext cn of din
encrypted by the AES encryption to the SP . The algorithm of token generation
is described in Algorithm 1.

4.3 Token Generation

A data user DU is holding an identifier n′ to be excluded at location l′. The DO
first converts the l′ into a feasible location fl′n = AND(p1(1′), p2(l′), · · ·, pu(l′)).
Then the DU computes a similar string by using prefix-free encoding and string
concatenation: s′

n = p̃1(1′)||p̃2(l′)|| · · · ||p̃u(l′). Next, the DU forms a range
R = [1, n′−1] ∪ [n′+1, N ], constructs a keyword S′

n = R||s′
n, and converts it into

a set of prefixes S ′
n by using prefix encoding. Here, we note that the conversion

is also performed in a separate manner, i.e., S ′
n contains the minimum set of
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Algorithm 1: Index Building
Input: l, n, u, v, p1, p2, · · ·, pu, h1, h2, · · ·, ht, H, K1,K2, · · ·,Km,Km+1

Output: In

/*Projection-based space encoding*/
for (i = 1; i ≤ u; i + +) do

compute pi = pi(l);

compute fln = AND(p1, p2, · · ·, pu);
/*Prefix-free encoding*/
for (i = 1; i ≤ u; i + +) do

convert pi to p̃i;

compute sn = p̃1||p̃2|| · · · ||p̃u; compute Sn = n||sn;
/*Prefix encoding*/
convert Sn into a set of prefixes Sn;
/*IBF construction*/
initialize an empty Bn;
for (j = 1; j ≤ m; j + +) do

for (i = 1; i ≤ |Sn|; i + +) do
set Bn[H(hKm+1(hj(pri)) ⊕ rn)][hj(pri)] = 1;
set Bn[1 − H(hKm+1(hj(pri)) ⊕ rn)][hj(pri)] = 0;

set In = B;
return In;

prefixes of R concatenated with the prefixes of s′
n. By doing so, the date user

successfully excludes the identifier of corresponding data owner n in the token.
For each prefix pr′

i ∈ S ′
n, the DU computes m hashes hj(pr′

i), 1 ≤ j ≤ m. For
each hj(pr′

i), the DU computes hKm+1(hj(pri)). Finally, the DU submits the
query token T = {hKm+1(hj(pr′

i), hj(pr′
i)} to the SP . The algorithm of token

generation is described in Algorithm 2.

4.4 Query Processing

On receiving the secure index In from the DO and token T from the DU ,
the SP performs query processing by checking whether B[H(hKm+1(pr′

i)) ⊕
rn)][hj(pr′

i)] = 1 for at least one j ∈ [1,m]. If so, then the token matches an
embedded in the B and the SP returns the corresponding encrypted data item
to the DU for further decryption. If not, then the query does not match the
secure index, i.e., match fails. The algorithm of query processing is described in
Algorithm 3.

5 Security Analysis

In this section, we resort to the adaptive indistinguishability under chosen-
keyword attack (IND-CKA) secure model [25] and prove that the Obaq scheme
is adaptive IND-CKA (L1, L2)-secure in the random oracle model.
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Algorithm 2: Token Generation
Input: l′, n′, u, v, p1, p2, · · ·, pu, h1, h2, · · ·, ht, H, K1,K2, · · ·,Km,Km+1

Output: T
/*Projection-based space encoding*/
for (i = 1; i ≤ u; i + +) do

compute p′
i = pi(l

′);

compute fl′n = AND(p′
1, p

′
2, · · ·, p′

u).;
/*Prefix-free encoding*/
for (i = 1; i ≤ u; i + +) do

convert p′
i to p̃i(1

′);

compute s′
n = p̃′

1||p̃′
2|| · · · ||p̃′

u;
form R = [1, n′ − 1] ∪ [n′ + 1, N ];
compute S′

n = R||s′
n;

/*Prefix encoding*/
convert S′

n into a set of prefixes S ′
n;

/*Hash computation*/
for (j = 1; j ≤ m; j + +) do

for (i = 1; i ≤ |S ′
n|; i + +) do

compute HKm+1(hj(pr
′
i)), hj(pr

′
i);

set T = {HKm+1(hj(pr
′
i), hj(pr

′
i)};

return T ;

Algorithm 3: Query Processing
Input: In, T , h1, h2, · · ·, ht, H, K1,K2, · · ·,Km,Km+1, rn
Output: Res
for (i = 1; i ≤ m; i + +) do

if B[H(hKm+1(pr
′
i)) ⊕ rn)][hj(pr

′
i)]

?
= 1 then

set Res =‘1’;
return Res;

set Res = ‘0’;
return Res;

Let I, T , C denote the index, token, and ciphertext. Assume that Obaq
adopts a CPA-secure encryption scheme [26]

∏
to encrypt data items. Two

leakage functions are defined as follows. (1) L1(I,DI): Given the I and DI,
L1 returns the size of each IBF w, the number of data items N , the data owner
identifier (1, 2, · · ·, N), and the length of data item ciphertext z. (2) L2(I,DI, T ):
Given the I, DI, and T , L2 returns the search pattern and the access pattern.

Now we prove that Obaq scheme is adaptive IND-CKA (L1, L2)-secure in the
random oracle model. Specifically, we first build a simulator S̃ that can simulate
a view SV = (I∗, T∗, C∗) with the information acquired from the L1 and L2.
Next, we prove that a probabilistic polynomial-time (PPT) adversary A is not
able to distinguish the simulation view SV from the real view RV = (I, T, C).
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Strong index privacy: To simulate the I∗, the S̃ builds an IBF B∗. The S̃ has
to ensure that the length of the IBF is the same as the length of the B in the I,
while the length is acquired from the L1. In the jth cell twin of B∗, the S̃ either
sets B ∗ [0][j] = 0 or B ∗ [0][j] = 1 which is determined by tossing a coin. Next,
the S̃ chooses a random number r to randomize the B. Lastly, the S̃ returns B∗
and r as the I∗ to the A. The I∗ is the same as the real index I. The ‘0’s and
‘1’s are B∗ equally distributed in the cell twins of the B∗ and 1-cell. Therefore,
the A cannot distinguish the I∗ from the I.

Strong token privacy: To simulate T∗, the S̃ knows if a received T has been
submitted from the L2. If so, the S̃ returns the old token To to the A. Otherwise,
the S̃ creates a new token T∗ which is a st of m-pair of hashes and locations.
Specifically, the S̃ uses the H to choose m-pair of hashes and locations while
make sure that the chosen ones match the T . Then the S̃ returns the created
m-pair of hashes and locations as the T∗. Since T∗ is generated by random hash
functions, the A cannot distinguish the T∗ from the T .

Data privacy: To simulate the ciphertexts of DI, the S̃ acquires N and z
from the L1. The S̃ creates a simulated ciphertext C∗ with a randomly chosen
plaintext and the

∏
. The S̃ has to make sure that the length of the C∗ is the

same as the length of the real ciphertext C. Hence, the A cannot distinguish the
C∗ from the C since the

∏
provides ciphertext indistinguishability.

In summary, the simulated view SV and the real view RV are indistin-
guishable by a PPT adversary. Therefore, Obaq scheme is adaptive IND-CKA
(L1, L2)-secure in the random oracle model.

6 Performance Evaluation

6.1 Experimental Settings

We summarize the experimental parameters in Table 1. The dataset we choose
is the real-world dataset from Open-StreetMap Project [27] that collected one
million geographical data from volunteers. We instantiated the Obaq on a
Lenovo X1 Carbon ThinkPad with an 8.00 GB of RAM, an Intel Core i7-7500
CPU @2.70 GHz, Windows 10 Home for 64-bit operating system. We imple-
mented hash functions in JAVA and Java Pairing-Based Cryptography (JPBC)
Library [28].

6.2 Experimental Results

Computational Costs. Each data owner computes S ∗ 3 ∗ t ∗ m hashes in
index building and one AES encryption in data item encryption. Each dat users
computes S ′ ∗ 3 ∗ t ∗ m hashes in token generation and one AES decryption in
data item decryption. The two sets of experiments are conducted 30 times and
the experimental results are recorded in Fig. 4. The average time costs for data
owner and data user are 1.44 ms and 0.62 ms.

In query processing, we select the number of queries Q from [10000, 100000]
and the number of nearest locations from [10, 100], and the service provider
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Table 1. Experimental Parameters

Parameters Meanings Value

k Number of nearest locations [10, 100]

Num Number of locations 100000

Q Number of queries [10000, 100000]

d Interval length 5

u Number of projection functions 5

S Number of prefixes for index 10

S ′ Number of prefixes for token 2

m Number of secret keys 5

w Number of twin cells in IBF 10 ∗ Num ∗ d

t Number of hash functions in IBF 5
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Fig. 4. Computational costs of users.

executes S ′ ∗ 3 ∗ t ∗ m XORs in processing one query. The experimental results
are recorded in Fig. 5. From the figure, we can see that the average time cost
for the service provider is 20 ms when the number of queries is 10000 and it
increases linearly with the number of queries. When k increases, the time costs
also increases correspondingly.

Communication Overhead. Since the length of encrypted data items does
not depend on the OBaq scheme, we only consider the communication overhead
of the secure index and query token which clarifies the comparison later. A data
owner submits a secure index to the service provider and the communication
overhead is |Bn| = |10 ∗ Num ∗ d| = 610.35 KB. A data user submits a query
token T = (1 + |h|) ∗ m ∗ t ∗ |S ′| = 1.57 KB to the service provider.
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Fig. 5. Computational costs in query processing.

Number of Interactions. For the interaction between a data owner and the
service provider, there is only a one-way communication, i.e., from the data
owner to the service provider. For the interaction between a data user and the
service provider, there is only a two-way communication, i.e., from the data
owner to the service provider and then from the service provider back to the
data user.

6.3 Comparison with PBtree and SecEQP

We compare Obaq with two schemes with strong privacy guarantees and the
average experimental results for computational costs and communication over-
head of the three entities are shown in Table 2.

We observe that the Obaq does not increase extra computational costs or
communication overhead when compared with PBTree and SecEQP. This is
because we construct our design of index and token based on the two schemes and
carefully integrate the item exclusion process into the final membership check-
ing in IBF. Also, the SecEQP involves the OR-composition operations which
consume more time than the other schemes.

Meanwhile, the number of interactions of Obaq is also the same as the one
in PBTree and SecEQP.

Table 2. Experimental Parameters

Scheme Computational costs (ms) Communication overhead (KB)

k = 1, Q = 10000

Data owner Data user Service provider Data owner Data user

PBTree 1.45 0.6 20 610.35+data item size 1.57

SecEQP 4.81 1.71 117 3662.11+data item size 6.93

Obaq 1.44 0.62 20 610.35+data item size 1.57
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7 Conclusions

In this work, we have proposed a one-time, oblivious, and unlinkable query pro-
cessing scheme over encrypted data on cloud. The distinctive novelty of our
scheme is in realizing the function of item exclusion by mixing privacy-preserving
identifier range query with existing SkNN query. We also put forth the notion
of strong index privacy and strong token privacy. We have implemented and
evaluated Obaq scheme on real-world datasets. It is analyzed that Obaq scheme
provides strong privacy and high-efficiency.

In future work, we will design a one-time, oblivious, and unlinkable query
processing scheme under a collusion attack between the service provider and the
data user. Specifically, a malicious data user can inform the service provider of
which subitem in the query is used for item exclusion.
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Abstract. Cube attack, proposed by Dinur and Shamir at EURO-
CRYPT 2009, is one of general and powerful cryptanalytic techniques
against symmetric-key cryptosystems. However, it is quite time consum-
ing to search for large cubes using the existing techniques, e.g., random
walk, and practically infeasible to execute the cube attack when the
size of cube exceeds an experimental range, e.g., 50. Thus, how to find
favorite cubes is still an intractable problem. In this paper, a new general
method of searching for cubes in cube attacks, called iterative walk, is
proposed. Iterative walk takes the technique numeric mapping proposed
at CRYPTO 2017 as a tool, which is used to test cubes and find out
the best cubes among them. This new method consists of two concrete
techniques, called incremental iterative walk and decremental iterative
walk, respectively. Both of them split the process of searching for cubes
with large size into several iterative processes, each of which aims at
searching for a ‘best’ set of input variables with small size. After each
iterative process, the input variables in the obtained ‘best’ set are added
to (or dropped from) the cube in incremental (or decremental) iterative
walk. As illustrations, we apply it to the authenticated encryption cipher
ACORN v3, which was selected as one of seven finalists of CAESAR com-
petition. Some new distinguishing attacks on round reduced variants of
ACORN v3 are obtained.

Keywords: Cube attack · Distinguishing attack · ACORN v3 ·
Numeric mapping

1 Introduction

Cube attack on tweakable black box polynomials was introduced by Dinur and
Shamir [1] at EUROCRYPT 2009 and can be seen as a generalization of higher-
order differential attack [2,3] and chosen IV statistical attacks [4,5]. The idea of
cube attack is to tweak the multivariate master polynomial by assigning chosen
values for the public variables, which results in derived polynomials. The set of
assigned public variables is denoted as a cube, and the sum of corresponding
derived polynomials over all values of the cube, denoted as a superpoly, is evalu-
ated. The target of cube attacks is to find a number of linear superpolys in terms
c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 369–385, 2020.
https://doi.org/10.1007/978-3-030-61078-4_21
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of the common secret variables and recover the secret variables by solving the
resultant system of linear equations. The possibility that a cube yields a linear
equation depends on both its size and the algebraic properties of the cipher.
Since the seminal work of Dinur and Shamir, several variants of cube attacks,
including cube tester [6], dynamic cube attack [7], conditional cube attack [8]
and correlation cube attack [9] were put forward.

Previous Works on Searching for Cubes. A key step to a successful cube
attack is searching for good cubes and the corresponding superpolys during the
offline phase. However, how to find favorite cubes is still an intractable problem.
In the original paper of the cube attack [1], the cryptosystems were regarded as
black-box, and the authors proposed a new technique, which is a variant of the
random walk proposed in [5], to search for cubes experimentally. The basic idea
is to start from a random subset and iteratively test the linearity of superpoly to
decide whether the size of tested subset should be increased or decreased. In this
technique, the authors introduced a linearity test to reveal the structure of the
superpoly. If the linearity test always passes, the Algebraic Normal Form (ANF)
of the superpoly is recovered by assuming that the superpoly is linear. Moreover,
a quadraticity test was introduced in [10], and the ANF of the superpoly is simi-
larly recovered. Note that they are experimental cryptanalysis, and it is possible
that cube attacks do not actually work. For example, if the superpoly is highly
unbalanced function for specific variables, we cannot ignore the probability that
the linearity and quadraticity tests fail.

In [11], an simple evolutionary algorithm was proposed by Aumasson et al.
to find good cubes. By introducing the well known greedy heuristic, a strategy
called Greedy Bit Set Algorithm was presented by Stankovski in [12] to find
cubes. The authors of [13] and [14] both used the union of two subcubes to
generate larger cube candidates. In all these works, the size of a cube is limited
to the experimental range because the attacker has to make 2d encryptions
under the fixed key to compute the sum over a cube of size d. Thus, searching
for large cubes is time consuming, and it is practically infeasible to execute the
cube attack when the size of cube exceeds an experimental range, e.g., 50. This
restricts the capability of the attacker for better cubes.

Numeric Mapping. Recently two works on cube attacks using large cubes of
size greater than 50 were presented in [15,16]. Both of them treat the cryptosys-
tems as non-blackbox polynomials. One is introducing the bit-based division
property into cube attacks on non-blackbox polynomials by Todo et al. [15]
at CRYPTO 2017. More recently, Wang et al. [17,18] further investigated this
attack and presented better key recovery attacks on some NFSR-based stream
ciphers. Nevertheless, in these two works, the recovered secret variables are gen-
erally smaller than 1 bit, while the time complexities are significantly high and
the success probabilities of key recovery are difficult to estimate as their attacks
are based on some assumptions. Another is exploiting a new technique, called
numeric mapping, to present a general framework of iterative estimation of alge-
braic degree for NFSR-based cryptosystems by Liu [16] at CRYPTO 2017. The
key idea of Liu’s work is based on a simple fact. Its advantage is that it has
linear time complexity and needs a negligible amount of memory. Furthermore,
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it is deterministic rather than statistical. As pointed out by Todo et al. [19],
Liu’s method is more efficient, since cube attacks based on division property
need to ask for the help of solvers, e.g., the MILP solver. The high efficiency of
numeric mapping makes it possible to test a large number of large cubes with
limited computational resources. It is important to note that numeric mapping
can give an upper bound on algebraic degree of the output of a given NFSR-
based cryptosystem when the cube is given. However, how to search for cubes
using numeric mapping is not explored in [16]. Later, Zhang et al. [20] further
investigated Liu’s work, and presented some attacks on two variants of Trivium
stream cipher.

Previous Attacks on ACORN v3. ACORN v3 [21] is an authenticated
encryption stream cipher, and was selected as one of seven finalists of CAE-
SAR competition [22] at March 2018. Up to now, several attacks on ACORN
v3 had been published in [23–26]. However, there are no attacks better than
exhaustive key search on ACORN v3 so far. In [27], Ghafari and Hu proposed
a new attack framework based on cube testers and d-monomial test, and gave
a distinguishing attack on 676 initialization rounds of ACORN v3 with a time
complexity of 200 × 233.1 In [29], Ding et al. proposed distinguishing attacks
on 647, 649, 670, 704, and 721 initialization rounds of ACORN v3, which is
the best known distinguishing attack on the round reduced variants of ACORN
v3 so far. At CRYPTO 2017, Todo et al. [15] proposed possible key recovery
attacks on 647, 649 and 704 rounds of ACORN v3, where no more than one bit
of the secret key can be recovered with unknown probability in around 278, 2109

and 2122, respectively. The attack was improved by Wang et al. [17] at CRYPTO
2018, and possible key recovery attacks on 704 and 750 rounds of ACORN v3 are
presented, where no more than one bit of the secret key can be recovered with
unknown probability in around 277.88 and 2120.92, respectively. Recently, two
works [30,31] on constructing distinguishers on ACORN v3 had been published,
which were done independently of our results.

Our Contribution. In this paper, a new general method of searching for cubes
in cube attacks, called iterative walk, is proposed. Iterative walk takes the tech-
nique numeric mapping as a tool, which is used to test cubes and find out the
best cubes among them. It consists of two concrete techniques, called incremen-
tal iterative walk and decremental iterative walk, respectively. Both of these two
techniques split the process of searching for cubes with large size into several
iterative processes, each of which aims at searching for a ‘best’ set of input vari-
ables with small size. After each iterative process, the input variables in the
obtained ‘best’ set are added to (or dropped from) the cube in incremental (or
decremental) iterative walk. As illustrations, we apply it to ACORN v3. Some
new distinguishing attacks on round reduced variants of ACORN v3 we have
obtained are listed in Table 1, and comparisons with previous works are made.
Note that three key recovery attacks on the cipher in [16–18] are also listed in
Table 1. In these attacks, the recovered secret variables are generally no more

1 Only 670 initialization rounds of ACORN v3 was attacked when it was formally
published in [28].
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than 1 bit, while the time complexities are significantly high. Because of the high
time complexities, these attacks are impractical and can not be verified by exper-
iments, and the success probabilities of key recovery are difficult to estimate as
they are based on some assumptions. Compared with them, our attacks have
significantly better time complexities. Meanwhile, our attacks are deterministic
rather than statistical, that is, our attacks hold with probability 1.

To verify these cryptanalytic results, we make an amount of experiments on
round reduced variants of ACORN v3. The experimental results show that our
distinguishing attacks are always consistent with our evaluated results. They are
strong evidences of high accuracy of our method.

Table 1. Attacks on round reduced variants of ACORN v3

# Rounds Attack Time compleixity Reference

647 Key recovery attack 278 [15]

Distinguishing attack 221 [29]

Distinguishing attack 218 Sect. 4.2

649 Key recovery attack 2109 [15]

Distinguishing attack 224 [29]

Distinguishing attack 218 Sect. 4.2

676 Distinguishing attack 200 × 233 ≈ 240.64 [27]

Distinguishing attack 236 [29]

Distinguishing attack 230 Sect. 4.2

704 Key recovery attack 2122 [15]

Key recovery attack 277.88 [17]

Distinguishing attack 261 [29]

Distinguishing attack 250 Sect. 4.2

721 Distinguishing attack 295 [29]

736 Distinguishing attack 295 Sect. 4.2

750 Key recovery attack 2125.71 [18]

750 Key recovery attack 2120.92 [17]

This paper is organized as follows. Some preliminaries are introduced in
Sect. 2. A new general method of searching for cubes in cube attacks is pre-
sented in Sect. 3. In Sect. 4, the method is applied to ACORN v3 to prove the
effectiveness of our new method. The paper is concluded in Sect. 5.

2 Preliminaries

2.1 Cube Attacks and Cube Testers

Cube attack, which can be seen as a generalization of higher order differ-
ential attacks, was introduced by Dinur and Shamir [1] at EUROCRYPT
2009. It treats the output bit of a cipher as an unknown Boolean polynomial
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f (k0, · · · , kn−1, v0, · · · , vm−1) where k0, · · · , kn−1 are secret input variables and
v0, · · · , vm−1 are public input variables. Given any monomial tI which is the
product of variables in I = {i1, · · · , id}, f can be represented as the sum of
terms which are supersets of I and terms which are not supersets of I:

f (k0, · · · , kn−1, v0, · · · , vm−1) = tI · pS(I) + q (k0, · · · , kn−1, v0, · · · , vm−1)

Where pS(I) is called the superpoly of I in f , and the set {vi1 , · · · , vid
} is called

a cube. The idea behind cube attacks is that the sum of the Boolean polynomial
f (k0, · · · , kn−1, v0, · · · , vm−1) over the cube which contains all possible values
for the cube variables is exactly pS(I), while this is a random function for a ran-
dom polynomial. In cube attacks, low-degree superpolys in secret variables are
exploited to recover the key, while cube testers work by distinguishing pS(I) from
a random function. Especially, the superpoly pS(I) is equal to a zero constant, if
the algebraic degree of f in the variables from I is smaller than the size of I.

2.2 Random Walk

As for cube attacks, the basic questions are how to estimate the algebraic degree
of the output polynomial f which is only given as a black box, and how to choose
appropriate cubes if they exist. In [1], a simple technique was proposed, which
is a variant of the random walk proposed in [5]. The basic idea of this technique
is briefly described as follows.

The attacker randomly chooses a size k between 1 and m and a subset I of
k public variables, and computes the value of the superpoly of I by numerically
summing over the cube CI (setting each one of the other public variables to
a static value, usually to zero). If his subset I is too large, the sum will be a
constant value (regardless of the choice of secret variables), and in this case he
has to drop one of the public variables from I and repeat the process. If his
subset I is too small, the corresponding pS(I) is likely to be a nonlinear function
in the secret variables, and in this case he has to add a public variable to I and
repeat the process. The correct choice of I is the borderline between these cases,
and if it does not exist the attacker can restart with a different initial I.

2.3 Numeric Mapping

In [16], Liu presented a general framework of iterative estimation of algebraic
degree for NFSR-based cryptosystems, by exploiting a technique, called numeric
mapping. Denote F

n
2 the n-dimension vector space over F2. Let Bn be the set of

all functions mapping F
n
2 to F2, and let f ∈ Bn. The Algebraic Normal Form

(ANF) of given Boolean function f over variables x1, x2, · · · , xn can be uniquely

expressed as f (x1, x2, · · · , xn) = ⊕
c=(c1,c2,··· ,cn)∈Fn

2

ac

n∏

i=1

xi
ci , where ac’s are coef-

ficients of algebraic normal form of f . The numeric mapping, denoted by DEG,
is defined as
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DEG : Bn × Zn → Zn,

(f,D) �→ max
ac �=0

{
n∑

i=1

cidi

}

where D = (d1, d2, · · · , dn). For the composite function h = f ◦ G, it defined
the numeric degree of h as DEG (h,deg (G)), denoted DEG (h) for short. The
algebraic degree of h is always less than or equal to the numeric degree of h.
The algebraic degrees of the output bits with respect to the internal states can
be estimated iteratively by using numeric mapping. Based on this technique,
Liu [16] proposed a concrete and efficient algorithm (described as Algorithm 1
in Appendix for more details) to find an upper bound on the algebraic degree
of the output, and then gave a general framework of iterative estimation of
algebraic degree of NFSR-Based Cryptosystems.

3 Iterative Walk: A New General Method of Searching
for Cubes

In Algorithm 1, an upper bound on algebraic degree of the output of a given
NFSR-based cryptosystem after N initialization rounds is obtained as output.
Here, we denote NC the maximum number of rounds of not achieving maximum
degree (i.e., |C|) when taking the variables in the set C as input variables. In
this paper, we are more concerned with the value of NC , which indicates the
maximum number of rounds that efficient distinguishers can be constructed.
Inspired by Algorithm 1, a new algorithm is proposed to estimate the maximum
attacked number of rounds is depicted as Algorithm 2.

Algorithm 2. Estimation of the Maximum Attacked Number of Rounds

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the set of input variables C with size |C|.

1: Set D(0) and E(0) to deg
(
s(0), C

)
;

2: Set NC to 0;
3: For t from 1 to N do:
4: Compute DegEst

(
f,E(t)

)
;

5: If DegEst
(
f,E(t)

)
< |C|, then NC ← t;

6: Compute D(t) = DegEst
(
G,E(t−1)

)
;

7: Set E(t) to
(
D(0),D(1), · · · ,D(t)

)
;

8: Return NC .
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In the algorithm above,
(
s
(0)
1 , s

(0)
2 , · · · , s

(0)
L

)
denotes the internal state at

clock t = 0 with size L, and deg
(
s(0), C

)
=

(
deg

(
s
(0)
1 , C

)
,deg

(
s
(0)
2 , C

)
, · · · ,

deg
(
s
(0)
L , C

))
, where the notation deg

(
s
(0)
i , C

)
denotes the algebraic degree of

s
(0)
i with C as input variables. Especially, deg (0, C) = −∞ and deg (1, C) = 0.

Note that when Algorithm 2 is utilized to search for cubes, the key is taken as
parameter, that is, deg (ki, C) = 0 for any bit ki of the key. This is consistent
with a distinguisher in the setting of fixed and unknown key. DegEst is a pro-
cedure for estimating algebraic degree. For a given NFSR-based cryptosystem,
Algorithm 2 outputs the maximum number of rounds of not achieving maximum
degree when taking a given cube as input variables. Similar to Algorithm 1, Algo-
rithm 2 has linear time complexity of O(N) and needs a negligible amount of
memory. Thanks to the high efficiency of Algorithm 2, checking a large amount
of cubes with limited computational resources becomes feasible.

Based on Algorithm 2, a new general method of searching for cubes, called
iterative walk, is proposed. Iterative walk splits the process of searching for cubes
with large size into several iterative processes, each of which aims at searching
for a ‘best’ cube of input variables with small size. After each iterative pro-
cess, the cube varies according to the corresponding result. In this technique,
Algorithm 2 is utilized as a tool to test given cubes and find out the best cubes
among them. Iterative walk consists of two concrete techniques, called incremen-
tal iterative walk and decremental iterative walk, respectively. Different strategies
are employed in these two techniques to search for cubes, as described in the
following two subsections.

3.1 Incremental Iterative Walk

Incremental iterative walk splits the process of searching for cubes with large
size into several iterative processes, each of which aims at searching for a ‘best’
cube of input variables with small size. After each iterative process, the input
variables in the obtained ‘best’ set are added to the cube until the cube contains
all input variables.

The detailed process of incremental iterative walk is summarized as follows.
The attacker first sets the cube C to the empty set and NC to 0. After that,
he repeats the followings to search for a good cube with large size. He selects
an iterative size r and generates q sets

{
Ωr

1 , Ω
r
2 , · · · , Ωr

q

}
which consists of all

possible sets by choosing r variables from V − C, where q =
(|V −C|

r

)
. For each

set Ωr
i , the attacker takes the key K as parameter and the variables in C ∪ Ωr

i

as input variables, sets the remaining variables in V − (C ∪ Ωr
i ) to be zeros,

and then computes NC∪Ωr
i

by implementing Algorithm 2. After implementing
Algorithm 2 for q times, the attacker finds out the value of β which satisfies
NC∪Ωr

β
= max

{
NC∪Ωr

i
, i = 1, 2, · · · , q

}
, sets NC to NC∪Ωr

β
and C to C ∪ Ωr

β ,
and then gives NC and C as outputs in this iterative process.
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Algorithm 3. Incremental Iterative Walk

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the sets of variables K = (k0, · · · , kn−1)
and V = (v0, · · · , vm−1).

1: Set C to ∅;
2: Set NC to 0;
3: If C ⊂ V , repeat the followings :
4: Select the iterative size r;
5: Set

{
Ωr

1 , Ω
r
2 , · · · , Ωr

q

}
to the set of all possible sets by choosing r variables

from V − C, where q =
(|V −C|

r

)
;

6: Set two intermediate variables α and β to -1;
7: For i from 1 to q do :
8: Take the key K as parameter and the variables in C ∪ Ωr

i as input varia-
bles, set the remaining variables in V − (C ∪ Ωr

i ) to be zeros, and then
compute NC∪Ωr

i
by implementing Algorithm 2;

9: If NC∪Ωr
i

> α, then α ← NC∪Ωr
i

and β ← i;
10: Set NC ← α and C ← C ∪ Ωr

β ;
11: Return NC and C.

In Algorithm 3, NC denotes the maximum number of rounds of not achieving
maximum degree |C| when taking the set C as input variables. α and β are two
intermediate variables and utilized to store necessary calculation results. For a
given NFSR-based cryptosystem, Algorithm 3 gives the maximum number of
rounds that efficient distinguishers can be constructed and the corresponding
cube as outputs for each iterative process.

Complexity. Let T0 denotes the time complexity of implementing Algorithm 2
once. Assume that the iterative processes (i.e., Step 4–11 in Algorithm 3) are
executed λ times, with the corresponding iterative sizes r1, · · · , rλ, respectively.
In the first iterative process, Algorithm 2 is executed

(|V −C|
r1

)
times with C = ∅,

which leads to a time complexity of T0 · (
m
r1

)
. In the second iterative process,

Algorithm 2 is executed
(|V −C|

r2

)
times with |C| = r1, which leads to a time

complexity of T0 ·(m−r1
r2

)
. Similarly, the time complexity of all iterative processes

can be calculated easily. Thus, the total time complexity of Algorithm 3 can be
obtained as

T = T0 ·
⎡

⎣
(

m
r1

)

+
(

m − r1
r2

)

+ · · · +

⎛

⎝m −
λ−1∑

i=1

ri

rλ

⎞

⎠

⎤

⎦
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The time complexity of Algorithm 3 mainly depends on the time complexity
of Algorithm 2 (i.e., T0), the IV size m and the selected iterative sizes r1, · · · , rλ.
This algorithm needs a negligible amount of memory.

3.2 Decremental Iterative Walk

Incremental iterative walk searches for a cube with large size, by adding input
variables to the cube gradually. The basic idea of decremental iterative walk
is similar to incremental iterative walk, while a different strategy is employed
to search for cubes in decremental iterative walk. Decremental iterative walk
splits the process of searching for cubes into several iterative processes, each of
which aims at searching for a ‘best’ cube of input variables with small size. After
each iterative process, the input variables in the obtained ‘best’ set are dropped
from the cube until the cube contains no input variables, which is different from
incremental iterative walk, as depicted in Algorithm 4.

Algorithm 4. Decremental Iterative Walk

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the sets of variables K = (k0, · · · , kn−1)
and V = (v0, · · · , vm−1).

1: Set C to V ;
2: Take the key K as parameter and the variables in C as input variables, imp-

lement Algorithm 1 to compute NC ;
3: If C �= ∅, repeat the followings :
4: Select the iterative size r;
5: Set

{
Ωr

1 , Ω
r
2 , · · · , Ωr

q

}
to the set of all possible cube sets by choosing r vari-

ables from C, where q =
(|C|

r

)
;

6: Set two intermediate variables α ← NC and β ← −1;
7: For i from 1 to q do :
8: Take the key K as parameter and the variables in C − Ωr

i as input vari-
ables, set the remaining variables in (V − C) ∪ Ωr

i to be zeros, and then
compute NC−Ωr

i
by implementing Algorithm 2;

9: If NC−Ωr
i

> α, then α ← NC−Ωr
i

and β ← i;
10: Set NC ← α and C ← C − Ωr

β ;
11: Return NC and C.

Similar to Algorithm 3, for a given NFSR-based cryptosystem, Algorithm 4
also gives the maximum number of rounds that efficient distinguishers can be
constructed and the corresponding cube as outputs for each iterative process.
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However, in Algorithm 4, the cube first contains all input variables, and then
the input variables are dropped from the cube gradually. Let T0 denotes the
time complexity of implementing Algorithm 2 once. Assume that the iterative
processes (i.e., Step 4–11 in Algorithm 4) are executed λ times, with the corre-
sponding iterative sizes r1, · · · , rλ, respectively. Similar to the complexity cal-
culation of Algorithm 3, the total time complexity of Algorithm 4 can be easily
given as

T = T0 ·
⎡

⎣
(

m
r1

)

+
(

m − r1
r2

)

+ · · · +

⎛

⎝m −
λ−1∑

i=1

ri

rλ

⎞

⎠

⎤

⎦

4 Application to ACORN v3

In this section, we first give a brief description of ACORN v3, and then apply
our new method to ACORN v3 to exploit new distinguishing attacks on it.

4.1 A Brief Description of ACORN v3

ACORN v3 is an authenticated encryption stream cipher, and it has been
selected as one of the seven algorithms in the final portfolio of the CAESAR
competition. The structure of ACORN v3 is shown in Fig. 1. The state size of
ACORN v3 is 293 bits, denoted by S(t) = (s(t)0 , s

(t)
1 , · · · , s

(t)
292) at t-th clock. It is

constructed by using 6 LFSRs of different lengths 61, 46, 47, 39, 37, 59 and one
additional register of length 4, and uses a 128-bit key and a 128-bit IV. ACORN
v3 passes through the key-IV initialization phase, associated data processing
phase, encryption/decryption phase and tag generation/verification phase. Since
our work is fully based on the key-IV initialization phase, we present a brief
description of the cipher during this phase. We refer to the original description
of ACORN v3 in [4] for more details.

Fig. 1. The structure of authenticated encryption cipher ACORN v3

At t-th clock, the cipher executes the state update function S(t+1) = State−
Update128(S(t),mt, cat, cbt), which is given as follows.
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Step 1. Linear feedback update:
st,289 ← st,289 ⊕ st,235 ⊕ st,230

st,230 ← st,230 ⊕ st,196 ⊕ st,193

st,193 ← st,193 ⊕ st,160 ⊕ st,154

st,154 ← st,154 ⊕ st,111 ⊕ st,107

st,107 ← st,107 ⊕ st,66 ⊕ st,61

st,61 ← st,61 ⊕ st,23 ⊕ st,0

Step 2. Generate keystream bit:
zt ← st,12 ⊕ st,154 ⊕ st,235 · st,61 ⊕ st,235 · st,193 ⊕ st,61 · st,193

⊕st,230 · st,111 ⊕ (st,230 ⊕ 1) · st,66

Step 3. Generate the nonlinear feedback bit:
ft ← st,0 ⊕ st,107 ⊕ 1 ⊕ st,244 · st,23 ⊕ st,244 · st,160 ⊕ st,23 · st,160

⊕cat · st,230 ⊕ cbt · zt

Step 4. Shift the 293-bit register with the feedback bit ft:
st+1,i ← st,i+1 for i = 0, 1, · · · , 291
st+1,292 ← ft ⊕ mt

The initialization of ACORN v3 consists of loading the key and IV into the
state, and running the cipher for 1792 steps.

1. Initialize the state S−1792 to 0.
2. Let m−1792+t = kt for t = 0 to 127;

Let m−1792+128+t = ivt for t = 0 to 127;
Let m−1792+256 = kt mod 128 ⊕ 1 for t = 0;
Let m−1792+256+t = kt mod 128 for t = 1 to 1535;

3. Let ca−1792+t = 1 for t = 0 to 1791;
Let cb−1792+t = 1 for t = 0 to 1791;

4. For t = −1792 to t = −1, S(t+1) = StateUpdate128(S(t),mt, cat, cbt).

4.2 Results on ACORN v3

In this subsection, we will apply our Algorithm 3 and 4 respectively to ACORN
v3 to search for cubes. A key step to apply them is choosing the iterative sizes.

The Results of Applying Algorithm. 3 to ACORN v3. When applying
Algorithm 3 to ACORN v3, the chosen iterative sizes in the whole iterative
process and the corresponding experimental results are listed in Table 2. In the
i-th iterative process, the iterative size ri is choosed, and then Algorithm 3 gives
NC and C as outputs, where C is obtained by adding the ri input variables listed
in the third column of Table 2 to the outputted cube in the (i − 1)-th iterative
process. NC denotes the maximum number of rounds of not achieving maximum
degree |C| when taking the variables in the set C as input variables. As shown in
Table 2, the best result is found in the 19-th iterative process, which results into
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Table 2. The results of applying Algorithm 3 to ACORN v3

The i-th iterative process Iterative size ri Added input variables Cube size |C| NC

1 5 117, 121, 122, 125, 127 5 550

2 5 112, 118, 123, 124, 126 10 604

3 5 86, 91, 96, 113, 119 15 625

4 5 95, 104, 107, 116, 120 20 641

5 5 108, 109, 110, 114, 115 25 653

6 5 94, 98, 99, 100, 105 30 669

7 5 82, 87, 89, 90, 103 35 686

8 5 81, 83, 84, 101, 106 40 695

9 5 85, 88, 92, 97, 111 45 695

10 5 76, 77, 79, 93, 102 50 696

11 5 69, 70, 72, 78, 80 55 699

12 5 65, 67, 71, 74, 75 60 708

13 6 60, 61, 62, 63, 64, 73 66 710

14 6 49, 50, 56, 57, 58, 66 72 719

15 6 48, 51, 52, 53, 54, 55 78 719

16 6 42, 43, 44, 45, 46, 47 84 719

17 5 34, 35, 36, 38, 59, 68 90 723

18 6 25, 26, 29, 31, 33, 40 96 730

19 7 16, 20, 21, 22, 24, 28, 37 103 732

20 7 9, 11, 12, 18, 19, 27, 41 110 732

21 7 7, 13, 14, 15, 17, 30, 39 117 725

22 11 0, 1, 2, 3, 4, 5, 6, 8, 10, 23, 32 128 708

a distinguishing attack on 732 rounds of ACORN v3 with a time complexity of
2103. All these results are obtained on a common PC with 2.5 GHz Intel Pentium
4 processor within about two days.

The Results of Applying Algorithm 4 to ACORN v3. When applying
Algorithm 4 to ACORN v3, the chosen iterative sizes in the whole iterative
process and the corresponding experimental results are listed in Table 3. In the
i-th iterative process, the iterative size ri is choosed, and then Algorithm 4 gives
NC and C as outputs, where C is obtained by dropping the ri input variables
listed in the third column of Table 2 from the outputted cube in the (i − 1)-th
iterative process. NC denotes the maximum number of rounds of not achieving
maximum degree |C| when taking the variables in the set C as input variables.
In our experiments, it should be noted that NV = 708 when taking all IV bits as
input variables. As shown in Table 3, the best result is found in the 1-th iterative
process, which results into a distinguishing attack on 731 rounds of ACORN v3
with a time complexity of 2123. All these results are obtained on a common PC
with 2.5 GHz Intel Pentium 4 processor within about two days.

The Improved Results. Since the IV bits of ACORN v3 are sequentially
loaded into the internal state in the second 128 initialization rounds, it is a
nature and reasonable idea that we select the latter IV variables into the cube.
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Table 3. The results of applying Algorithm 4 to ACORN v3

The i-th

iterative process

Iterative

size ri

Dropped input variables Cube size |C| NC

1 5 5, 7, 13, 14, 22 123 731

2 5 6, 15, 16, 24, 31 118 724

3 5 0, 3, 8, 17, 57 113 717

4 5 1, 12, 21, 23, 47 108 714

5 5 4, 20, 29, 42, 48 103 706

6 5 2, 10, 19, 26, 43 98 703

7 5 9, 11, 18, 27, 44 93 695

8 5 25, 28, 30, 32, 45 88 679

9 5 37, 38, 39, 40, 41 78 657

10 5 49, 50, 51, 52, 53 73 650

11 5 54, 55, 56, 58, 59 68 648

12 5 60, 61, 62, 63, 64 63 639

13 5 65, 66, 67, 68, 69 58 630

14 6 70, 71, 72, 73, 74, 75 52 608

15 6 76, 77, 78, 79, 80, 81 46 599

16 7 82, 83, 84, 85, 86, 87, 88 39 588

17 7 89, 90, 91, 92, 93, 94, 95 32 550

18 8 96, 97, 98, 99, 100, 101, 102,

103

24 532

19 9 104, 105, 106, 107, 108, 109,

110, 111, 112

15 481

20 9 113, 114, 115, 116, 117, 118,

119, 120, 121

6 376

21 6 122, 123, 124, 125, 126, 127 0 0

To reduce the search space, we fix the first p IV variables to be zeros, i.e.,
ivi = 0, i = 0, · · · , p − 1, and put the last q(≥ 0) IV variables into the cube.
We consider applying Algorithm 4 when the V is dropped from (v0, · · · , v127)
to (vp, · · · , v127−q). Some better results we have found are listed in Table 4, and
the corresponding cubes are given in Appendix. As for 676 rounds of ACORN
v3, the best result we have found implies DEG (f,X) = 29, which leads to a
practical distinguishing attack on it with a time complexity of 230 and improves
the previous distinguishing attack [29] by a factor of 26. As for 736 rounds of
ACORN v3, the best result we have found implies DEG (f,X) = 94, which
leads to a distinguishing attack on it with a time complexity of 295. This is the
best result we have found.

Experiments. Since 218 and 230 in Table 4 are practical, we verify these results
by carrying out a test for random 100 keys within half a day on a common
PC with 2.5 GHz Intel Pentium 4 processor. All outputs of 647, 649 and 676
rounds of ACORN v3 always sum to 0. This clearly confirms the effectiveness
and accuracy of our method.



382 L. Ding et al.

Table 4. The improved results on ACORN v3

# Rounds The values of p and q The iterative size r Time compleixity

647 p = 106, q = 0 4 218

649 p = 104, q = 0 6 218

676 p = 94, q = 0 4 230

704 p = 72, q = 0 6 250

736 p = 21, q = 73 12 295

5 Conclusions

In this paper, we focus on proposing a new general method of searching for cubes in
cube attacks. The new method is called iterative walk, which takes the technique
numeric mapping as a tool. It consists of two concrete techniques, called incre-
mental iterative walk and decremental iterative walk, respectively. Both of them
split the process of searching for cubes with large size into several iterative pro-
cesses, each of which aims at searching for a ‘best’ set of input variables with small
size. After each iterative process, the input variables in the obtained ‘best’ set are
added to (or dropped from) the cube in incremental (or decremental) iterative
walk. The effectiveness and accuracy of our new method is confirmed by applying
it to the authenticated encryption cipher ACORN v3. Hopefully, our new method
can provide a new perspective to search for cubes in cube attacks.
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Appendix A

Algorithm 1. [16] Estimation of Degree of NFSR-Based Cryptosystems

Require: Given the ANFs of the internal state s(0), the ANFs of the update
function G and output function f , and the set of input variables X.

1: Set D(0) and E(0) to deg
(
s(0),X

)
;

2: For t from 1 to N do:
3: Compute D(t) = DegEst

(
G,E(t−1)

)
;

4: Set E(t) to
(
D(0),D(1), · · · ,D(t)

)
;

5: Return DegEst
(
f,E(N)

)



A New General Method of Searching for Cubes in Cube Attacks 383

(See Table 5)

Table 5. The cubes used in Table 4

# Rounds The cube size The cube

647 18 107, · · · , 120, 122, 123, 125, 127

649 18 104, 109, · · · , 122, 124, 125, 127

676 30 94, · · · , 116, 119, · · · , 124, 127

704 50 72, 74, 75, 77, 79, · · · , 85, 87, · · · ,
94, 97, · · · , 127

736 95 21, 23, 24, 25, 28, 29, 30, 32, 33, 38,
39, 40, 41, 42, 46, · · · , 51, 53, · · · ,
127

References

1. Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux,
A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 16

2. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceeding Sym-
posium Communication and Coding Cryptography, pp. 227–233. Kluwer Academic
Publishers (1994)

3. Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/
10.1007/3-540-60590-8 16

4. Englund, H., Johansson, T., Sönmez Turan, M.: A framework for chosen iv statis-
tical analysis of stream ciphers. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.)
INDOCRYPT 2007. LNCS, vol. 4859, pp. 268–281. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-77026-8 20

5. Fischer, S., Khazaei, S., Meier, W.: Chosen IV statistical analysis for key recovery
attacks on stream ciphers. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS,
vol. 5023, pp. 236–245. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68164-9 16

6. Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery
attacks on reduced-round MD6 and trivium. In: Dunkelman, O. (ed.) FSE 2009.
LNCS, vol. 5665, pp. 1–22. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 1

7. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

8. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.) EURO-
CRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 9

https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-540-77026-8_20
https://doi.org/10.1007/978-3-540-68164-9_16
https://doi.org/10.1007/978-3-540-68164-9_16
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-03317-9_1
https://doi.org/10.1007/978-3-642-21702-9_10
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-319-56614-6_9


384 L. Ding et al.

9. Liu, M., Yang, J., Wang, W., Lin, D.: Correlation cube attacks: from weak-key
distinguisher to key recovery. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT
2018. LNCS, vol. 10821, pp. 715–744. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78375-8 23

10. Mroczkowski, P., Szmidt, J.: The cube attack on stream cipher trivium and
quadraticity tests. Fundam. Inf. 114(3–4), 309–318 (2012)

11. Aumasson, J., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA imple-
mentations of high-dimensional cube testers on the stream cipher Grain-128. Cryp-
tology ePrint Archive, Report 2009/218 (2009). https://eprint.iacr.org/2009/218

12. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8 16

13. Fouque, P.-A., Vannet, T.: Improving key recovery to 784 and 799 rounds of trivium
using optimized cube attacks. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp.
502–517. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-
3 26

14. Liu, M., Lin, D., Wang, W.: Searching cubes for testing Boolean functions and its
application to Trivium. In: IEEE International Symposium on Information Theory
(ISIT 2015), Hong Kong, China, 14–19 June 2015, pp. 496–500. IEEE (2015)

15. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polynomials
based on division property. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10403, pp. 250–279. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63697-9 9

16. Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63697-9 8

17. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

18. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division
property based cube attacks exploiting algebraic properties of superpoly (full ver-
sion). Cryptology ePrint Archive, Report 2017/1063 (2017). https://eprint.iacr.
org/2017/1063

19. Todo, Y., Isobe, T., Hao, Y., Meier, W.: Cube attacks on non-blackbox polyno-
mials based on division property (full version). Cryptology ePrint Archive, Report
2017/306 (2017). https://eprint.iacr.org/2017/306.pdf

20. Zhang, X., Liu, M., Lin, D.: Conditional cube searching and applications on
Trivium-variant ciphers. In: Chen, L., Manulis, M., Schneider, S. (eds.) ISC 2018.
LNCS, vol. 11060, pp. 151–168. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99136-8 9

21. Wu, H.: ACORN: a lightweight authenticated cipher (v3). CAESAR Submission
(2016). http://competitions.cr.yp.to/round3/acornv3.pdf

22. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. http://competitions.cr.yp.to/index.html

23. Siddhanti, A.A., Maitra, S., Sinha, N.: Certain observations on ACORN v3 and the
implications to TMDTO attacks. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.)
SPACE 2017. LNCS, vol. 10662, pp. 264–280. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71501-8 15

https://doi.org/10.1007/978-3-319-78375-8_23
https://doi.org/10.1007/978-3-319-78375-8_23
https://eprint.iacr.org/2009/218
https://doi.org/10.1007/978-3-642-17401-8_16
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-662-43933-3_26
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_9
https://doi.org/10.1007/978-3-319-63697-9_8
https://doi.org/10.1007/978-3-319-96884-1_10
https://eprint.iacr.org/2017/1063
https://eprint.iacr.org/2017/1063
https://eprint.iacr.org/2017/306.pdf
https://doi.org/10.1007/978-3-319-99136-8_9
https://doi.org/10.1007/978-3-319-99136-8_9
http://competitions.cr.yp.to/round3/acornv3.pdf
http://competitions.cr.yp.to/index.html
https://doi.org/10.1007/978-3-319-71501-8_15
https://doi.org/10.1007/978-3-319-71501-8_15


A New General Method of Searching for Cubes in Cube Attacks 385

24. Zhang, X., Lin, D.: Cryptanalysis of acorn in nonce-reuse setting. In: Chen, X.,
Lin, D., Yung, M. (eds.) Inscrypt 2017. LNCS, vol. 10726, pp. 342–361. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75160-3 21

25. Zhang, X., Feng, X., Lin, D.: Fault attack on ACORN v3. Comput. J. 61(8),
1166–1179 (2018)

26. Adomnicai, A., Masson, L., Fournier, J.J.A.: Practical algebraic side-channel
attacks against ACORN. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp.
325–340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 20

27. Ghafari, V.A., Hu, H.: A new chosen IV statistical distinguishing framework to
attack symmetric ciphers, and its application to ACORN-v3 and Grain-128a. Cryp-
tology ePrint Archive, Report 2017/1103 (2017). https://eprint.iacr.org/2017/
1103.pdf

28. Ghafari, V.A., Hu, H.: A new chosen IV statistical distinguishing framework to
attack symmetric ciphers, and its application to ACORN-v3 and Grain-128a. J.
Amb. Intel. Hum. Comp. 2018, 1–8 (2018)

29. Ding, L., Wang, L., Gu, D., Jin, C., Guan, J.: Algebraic degree estimation of
ACORN v3 using numeric mapping. Secur. Commun. Netw. 2019, 1–5 (2019).
https://doi.org/10.1155/2019/7429320. Article ID 7429320

30. Yang, Jingchun., Liu, Meicheng, Lin, Dongdai: Cube cryptanalysis of round-
reduced ACORN. In: Lin, Zhiqiang, Papamanthou, Charalampos, Polychronakis,
Michalis (eds.) ISC 2019. LNCS, vol. 11723, pp. 44–64. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30215-3 3

31. Kesarwani, A., Roy, D., Sarkar, S., Meier, W.: New cube distinguishers on NFSR-
based stream ciphers. Des. Codes Cryptogr. 88, 173–199 (2020). https://doi.org/
10.1007/s10623-019-00674-1

https://doi.org/10.1007/978-3-319-75160-3_21
https://doi.org/10.1007/978-3-030-12146-4_20
https://eprint.iacr.org/2017/1103.pdf
https://eprint.iacr.org/2017/1103.pdf
https://doi.org/10.1155/2019/7429320
https://doi.org/10.1007/978-3-030-30215-3_3
https://doi.org/10.1007/s10623-019-00674-1
https://doi.org/10.1007/s10623-019-00674-1


A Love Affair Between Bias Amplifiers
and Broken Noise Sources
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Abstract. In this paper, we extend the concept of bias amplifiers and
show how they can be used to detect badly broken noise sources both in
the production and service phases of a true random number generator.
We also develop a theoretical framework that supports the experimental
results obtained in this paper.

1 Introduction

Based on the mathematical Trojan horse described in [12], the author of [9]
introduces the concept of bias amplifiers as well as two new classes of digital
filters: greedy bias amplifiers and Von Neumann bias amplifiers. The main role of
these filters is to boost health tests1 implemented in a random number generator
(RNG). Thus, they allow users to have an early detection mechanism for RNG
failure.

Usually, digital filters are applied to RNGs to correct biases2, but the filters
described in [9,12] have an opposite purpose. When applied to a stream of unbi-
ased bits the filters are benign. On the other hand, if applied to a stream of
biased bits the filters amplify their bias. Thereby, making the RNG worse.

When designing bias amplifiers, a couple of rules must be respected. The first
one states that if the input bits are unbiased or have a maximum bias (i.e. the
probability of obtaining 1 is either 0 or 1) the filter must maintain the original
bias. For unbiased bits this rule keeps the amplifiers transparent to a user, as
long as the noise source functions according to the original design parameters.
For maximum bias the rule is a functional one. Since the RNG is already totally
broken, changing the bias does not make sense (from a designing point of view).
The second rule states that the filter should amplify the bias in the direction that
it already is. This rule helps the designer amplify the bias in an easier manner.

Based on bias amplifiers, the author of [9] introduces a generic architecture
for implementing health tests. More precisely, using a lightweight test on the
amplified bits the architecture can detect deviations from the uniform distribu-
tion. Unfortunately, the architecture’s instantiations are devised only for RNGs
1 According to recent standards [7,10] health tests are mandatory.
2 They are called randomness extractors [5].
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that generate uniform, independent and identically distributed (u.i.i.d.) bits.
Also, it can only detect deviation from the initial parameters of the source. In
this paper we extend the initial results to noise sources that have a Bernoulli
distribution and show that the architecture can detect, starting from the design
phase, badly broken sources. To support our results we develop a theoretical
model and provide the reader with simulations based on our model.

When manufacturing noise sources one must evaluate the statistical prop-
erties of each source. But this requires specialized expertize and increases pro-
duction time. If the noise source has a Bernoulli distribution and the designer
implements the generic architecture from [9], our results indicate that the manu-
facturer can automatically detect large deviations from the uniform distribution.
Hence, broken noise sources can be discarded without consulting an expert and,
thus, decreasing production time.

The author of [9] states that for an u.i.i.d. source, its architecture can detect
deviation from the initial parameters, but does not provide a theoretical argu-
ment. Our theoretical model fills this gap and is in accordance with their exper-
imental claims.

In time, noise sources can become biased (e.g. due to ageing or malfunc-
tioning). To automatically detect this type of anomaly, the RNG designer can
use our theoretical estimates, implement a long term testing methodology (i.e.
internally compute the percent of failing samples) and signal the operator if the
percent is lower than the selected threshold.

Structure of the Paper. Notations and definitions are presented in Sect. 2. In
Sect. 3 we apply greedy and Von Neumann amplifiers to broken Bernoulli noise
sources and present some experimental results. The theoretical model is provided
in Sect. 4. We conclude in Sect. 5.

2 Preliminaries

Throughout the paper, we consider binary strings of length m composed of inde-
pendent bits that follow a Bernoulli distribution B(p̃), where p̃ is the probability
of obtaining a 1. The probability of obtaining a 0 is denoted by q̃ = 1 − p̃. We
will refer to ε = p̃ − 0.5 as bias and to Pr[X] as the probability of event X.
Let Pa be the probability of a random string being a. Then for any A ⊆ Z

n
2 we

denote by Pr[A] =
∑

a∈A Pa. Note that n denotes the number of bits mapped
into one bit by an amplifier.

To ease description, we use the notation Cn
k to denote binomial coefficients

and [s, t] to denote the subset {s, . . . , t} ∈ N. When s and t are real numbers by
[s, t] we understand the set of real numbers lying between s and t. We further
state a lemma from [4].

Lemma 1. Let si, i ∈ [1, b] be integers such that s = s1+ . . .+sb ≤ a. Then, the
number of integer solutions of the equation x1+ . . .+xb = a with the restrictions
xi ≥ si is Cb+a−s−1

b−1 .
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Fig. 1. Probability of obtaining 1 after amplification.

2.1 Bias Amplification

In this paper, we consider a digital filter to be a mapping from Z
n
2 to Z2. A bias

amplifier is a digital filter that increases the bias of the input data.
Let n = 2k + 1 ≥ 3 be an odd integer and w(u) the Hamming weight of an

element u ∈ Z
n
2 . Define the sets

Sn
0 = {u ∈ Z

n
2 | 0 ≤ w(u) ≤ k}

Sn
1 = {u ∈ Z

n
2 | k + 1 ≤ w(u) ≤ n}.

If Dg is a digital filter that maps Sn
0 and Sn

1 to 0 and 1, then according to [9] Dg

is a greedy bias amplifier (see Lemma 2). A visual representation of the relation
between n and Pr[Sn

1 ] can be found in Fig. 1a.

Lemma 2. Let k ≥ 0. Then the following hold

1. Pr[Sn
0 ] =

∑k
i=0 Cn

i · p̃i · q̃n−i and Pr[Sn
1 ] =

∑k
i=0 Cn

i · p̃n−i · q̃i.
2. Pr[Sn

0 ] > Pr[Sn+2
0 ] and Pr[Sn

1 ] < Pr[Sn+2
1 ].

3. Pr[Sn
1 ] − Pr[Sn

0 ] < Pr[Sn+2
1 ] − Pr[Sn+2

0 ].
4. Pr[Sn

0 ] − Pr[Sn+2
0 ] > Pr[Sn+2

0 ] − Pr[Sn+4
0 ] and Pr[Sn+2

1 ] − Pr[Sn
1 ] >

Pr[Sn+4
1 ] − Pr[Sn+2

1 ].

Let n = 2k ≥ 4 be an even integer and x an integer such that
∑x

i=1 Cn
i <

Cn
k /2 <

∑x+1
i=1 Cn

i . Define y = Cn
k /2 − ∑x

i=1 Cn
i and the sets

Wn
0 ⊂ {u ∈ Z

n
2 | w(u) = x + 1}

Wn
1 ⊂ {u ∈ Z

n
2 | w(u) = n − x − 1},

V n
0 = {u ∈ Z

n
2 | 1 ≤ w(u) ≤ x} ∪ Wn

0

V n
1 = {u ∈ Z

n
2 | n − x ≤ w(u) ≤ n − 1} ∪ Wn

1 ,



A Love Affair Between Bias Amplifiers and Broken Noise Sources 389

such that |W0| = |W1| = y. If Dv is a digital filter that maps V n
0 and V n

1 to 0
and 1, then according to [9] Dv is a Von Neumann bias amplifier (see Lemma
3). A visual representation of the relation between n and Pr[V n

1 ] can be found
in Fig. 1b.

Lemma 3. Let k ≥ 0. Then the following hold

1. Pr[V n
0 ] =

∑x
i=1 Cn

i p̃iq̃n−i + yp̃x+1q̃n−x−1 and Pr[V n
1 ] =

∑x
i=1 Cn

i p̃n−iq̃i +
yp̃n−x−1q̃x+1.

2. Pr[V n
0 ] > Pr[V n+2

0 ] and and Pr[V n
1 ] < Pr[V n+2

1 ].

Due to the nature of x and y, the relation between greedy and Von Neumann
amplifiers is found through heuristic methods (see Fig. 2). The observations are
formally stated in [9] as a conjecture (see Conjecture 21).

Conjecture 21. Let n be even. Denote by Mn = (Pr[V n
1 ]−Pr[V n

0 ])/(Pr[V n
1 ]+

Pr[V n
0 ]). Then Mn < Mn+2 and Pr[Sn−1

1 ] − Pr[Sn−1
0 ] < Mn.

Remark that in the case of greedy amplifiers the metric equivalent to Mn,
(Pr[Sn−1

1 ]−Pr[Sn−1
0 ])/(Pr[Sn−1

1 ]+Pr[Sn−1
0 ]), is equal to Pr[Sn−1

1 ]−Pr[Sn−1
0 ].

Note that in Fig. 2 the y-axis represents the values P (Sn−1
1 ) − P (Sn−1

0 ) (inter-
rupted line) and Mn (continuous line).

Informally, Conjecture 21 states that the Von Neumann amplifier for a given
n is better at amplifying ε than its greedy counterpart. But, a downside is that
they require more data than greedy amplifiers. Another disadvantage is that
Von Neumann amplifiers require a variable number of input bits, compared to a
constant number for greedy ones.

Fig. 2. Greedy (interrupted line) vs Von Neumann (continuous line) amplifiers.
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2.2 Generic Architecture for Implementing Health Tests

RNG standards [7,10] require manufactures to implement some early detec-
tion mechanism for entropy failure. Health tests represent one such method for
detecting major failures. There are two categories of health tests: startup tests
and continuous tests. The former are one time tests conducted before the RNG
starts producing outputs, while the latter are tests performed in the background
during normal operation.

In [9], a generic architecture for implementing continuous health tests (see
Fig. 3) is proposed3. The data D (obtained from the noise source) is stored in
a buffer, then a greedy bias amplifier is applied to it and data Da is obtained.
Next, some lightweight tests are applied on Da. If the tests are passed, the RNG
outputs D, otherwise D is discarded. Note that the greedy bias amplifier can
be implemented as a lookup table, thus obtaining no processing overhead at the
expense of O(2n) memory.

If we replace the greedy amplifier with a Von Neumann one, the generic
architecture becomes suited for devising a startup test. Thus, before entering
normal operation, the amplified data can then be tested using the lightweight
tests and if the tests pass the RNG will discard the data and enter normal
operation. Note that the first buffer from Fig. 3 is not necessary in this case and
that the Von Neumann module can be instantiated using a conversion table.
Because Von Neumann amplifiers require n > 2, the speed of the RNG will
drop. This can also be acceptable as a continuous test if the data speed needed
for raw data permits it, the RNG generates data much faster than the connecting
cables are able to transmit or the raw data is further used by a pseudo-random
number generator (PRNG).

Fig. 3. Generic architecture for implementing health tests.

3 Note that when n = 1 we obtain Intel’s testing architecture.
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The architecture’s instantiations presented in [9] employ the health tests
implemented in Intel’s processors [6]. Intel’s health tests (denoted by Hi) use a
sliding window and count how many times each of the six different bit patterns
(1, 01, 010, 0110, 101 and 1001) appear in a 256 bit sample. If the number of
patterns belongs to some given intervals then the sample is marked pass4. In
the case of bias amplification, if a 256 bit buffer ba from Da passes Hi, all the
input buffers that where used to produce ba are considered marked pass.

3 Empirical Investigation

In order to implement Intel’s health tests, we experimentally computed the initial
thresholds used in Hi.5 The results are presented in Table 1 and were computed
using 106 256 bit samples generated based on the Bernoulli distribution instan-
tiated with the Mersenne Twister engine (mt19937) found in the C++ random
library [1]. When the data used to generate the thresholds follows a B(p̃) distri-
bution, we denote by Hi(p̃) the resulting health test.

Note that ε might be different for each individual noise source (e.g. due to
manufacturing variations) and since our scope is to automatically detect large
deviations, we had to experimentally determine the initial bounds. A similar
process needs to be carried out internally by each RNG during a setup phase.
Remark that since the bias is unknown, using theoretical estimates increases
design complexity.

Table 1. Health bounds for Hi(p̃).

Bit pattern Allowable number of occurrences per sample

p̃ = 0.1 p̃ = 0.2 p̃ = 0.3 p̃ = 0.4 p̃ = 0.5

1 5–50 24–87 45–115 67–138 92–167

01 5–44 20–64 32–75 42–80 45–83

010 3–43 13–57 14–64 12–66 10–58

0110 0–12 0–21 0–27 2–32 1–35

101 0–14 0–27 1–39 5–50 9–61

1001 0–15 0–23 0–31 1–34 2–35

When the architecture presented in Fig. 3 is instantiated with Hi(p̃) we
denote it by At(p̃). To analyze the behavior of At(p̃) we conducted a series
of experiments. Thus, we generated 450450 256 bit samples using the Bernoulli
distribution B(p̂)6 instantiated with mt19937. Then, we applied the greedy bias
amplifying filters from Sect. 2.1 with amplifying factors n = 1, 3, 5, 7, 9, 11, 13
4 The terminology used by Intel is that the sample is “healthy”.
5 Intel also experimentally generated, using their noise source, the initial thresholds.
6 Note that in our experiments p̃ is fixed, while p̂ drifts from 0.01 to 0.99.
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and counted how many samples are marked pass. The probability Ppass of a
sequence to be marked pass is derived by dividing the counter with 450450. The
results are presented in Fig. 8. Note that for p̃ ∈ [0.5, 1.0] the resulting plots are
mirrored version of the plots obtained for p̃ ∈ [0.0, 0.5] and thus are omitted. We
further consider p̃ ≤ 0.5.

Remark 1. Let n = 9, 11, 13. We can easily see that the number of samples
that are marked pass is close to zero for p̃ ≤ 0.3 and is considerably lower
(Ppass < 0.60) when 0.3 ≤ p̃ ≤ 0.4. We can also observe that when p̃ ≤ 0.3,
p̂ needs to drift at least 0.05 to have Ppass < 0.40. When p̃ = 0.4, p̂ needs to
drift at least 0.01 to have Ppass < 0.85. Thus, if we instantiate At(p̃) with greedy
amplifiers with n = 9, 11, 13 the architecture can detect catastrophic RNG failure
(i.e. p̃ ≤ 0.4).

Remark 2. Let p̃ = 0.5. We can easily see that when n = 9, 11, 13 and p̂ �∈
(0.46, 0.54) we have Ppass < 0.97. Thus, the architecture enables us to detect
when a good source deviates7 with more than 0.04 from 0.5.

We also conducted a series of experiments to test the performance of At(p̃)
instantiated with the Von Neumann bias amplifying filters from Sect. 2.1 with
amplifying factors n = 1, 4, 6, 8, 10, 12, 14. So, we generated data with B(p̂) until
we obtained 10000 256-bit samples8, then we applied the Von Neumann bias
amplifying filters and counted how many of these samples pass the Hi(p̃) test.
The results are presented in Fig. 9. Note that in this case Ppass is obtained by
dividing the counter with 10000. Another metric that we computed is the number
of input bits required to generate one output bit. The results are presented in
Fig. 4.

Remark 3. Let n ≥ 6. We can easily see that the number of samples that are
marked pass is close to zero for p̃ ≤ 0.4. We can also observe that when p̃ ≤ 0.3, p̂
needs to drift at least 0.08 to have Ppass < 0.42. When p̃ = 0.4, p̂ needs to drift at
least 0.03 to have Ppass < 0.84. Thus, if we instantiate At(p̃) with Von Neumann
amplifiers with n = 6, 8, 10, 12, 14 the architecture can detect catastrophic RNG
failure. Also, remark that the drift for Von Neumann amplifiers is larger than in
the case of greedy amplifiers.

Remark 4. Let p̃ = 0.5. We can easily see that when n = 6 and p̂ �∈ (0.47, 0.53) we
have Ppass < 0.975, while for n ≥ 8 and p̂ �∈ (0.48, 0.52) we have Ppass < 0.985.
Thus, the architecture enables us to detect when a good source deviates with
more than 0.03 and, respectively, 0.02 from 0.5. Hence, Von Neumann amplifiers
provide us with a better detection method than the greedy counterparts.

Remark 5. Although, Von Neumann amplifiers are better suited to detect devia-
tions than greedy amplifiers, we can observe that the data requirements fluctuate

7 The deviation might be an effect of components’ ageing or malfunctioning.
8 We generated less data than the greedy counterpart due to the amplifier’s high bit

requirements (see Fig. 4).
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and even in the uniform case efficiency can get to as low 0.01495 bitsout/bitsin.
This translates into longer testing times that in the case of greedy amplifiers
where the data requirements are fixed. Thus, when choosing between greedy
and Von Neumman amplifiers one need to consider what is more important:
faster testing times or better detection of source deviations.

Fig. 4. Bit requirements for Von Neumann amplifiers.

4 Theoretical Model

In this section we develop the theoretical framework that supports the findings
presented in Sect. 3. First we derive a series of lemmas that are later used for
estimating Ppass. Then, we provide the reader with a series of simulations.

4.1 Description

We first state a known result regarding the number of 1s (denoted by c1) in
a sequence of length m. Then, we determine the number of overlapping 01s
(denoted by c01), 010s (denoted by c010), 101s (denoted by c101), 0110s (denoted
by c0110) and 1001s (denoted by c1001) in a sequence of length m. Note that we
assume that all the sequences are generated by a Bernoulli noise source B(p).

Lemma 4. Let k a positive integer. Then

Pr[c1 = k] = Cm
k · pk · qm−k.
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Remark 6. Note that when the Hamming weight ω of a sequence is either 0 or
m, we have c01 = c010 = c101 = c0110 = c1001 = 0. Thus, when computing the
probability P of k occurrences of a pattern, the cases ω = 0 and ω = m add
to P a term qm + pm only when k = 0. For uniformity, we further consider the
term qm + pm as being implicit.

Lemma 5. Let k be a positive integer. Then

Pr[c01 = k] =
m−1∑

ω=1

Cω
k · Cm−ω

k · pω · qm−ω.

Proof. First we form a sequence Γ of k concatenated 01s. Thus, for a given
Hamming weight ω we are left with ω − k 1s and m − ω − k 0s that are unused.
When inserting the m − 2k bits into Γ , for ease of description, we always insert
0s and 1s before a 0 and, respectively, a 1 that is already in Γ . Remark that we
can insert a number of 1s and 0s at the beginning and, respectively, the end of
Γ without changing the number of 01 patterns.

After inserting in Γ the m − 2k bits we obtain the sequence

1 . . . 1︸ ︷︷ ︸
y0

0 . . . 0︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
y1

1 . . . 0 . . . 0︸ ︷︷ ︸
xk

0 1 . . . 1︸ ︷︷ ︸
yk

1 0 . . . 0︸ ︷︷ ︸
xk+1

with the restrictions

x1 + . . . + xk+1 = m − ω − k, xi ≥ 0, i ∈ [1, k + 1], (1)
y0 + . . . + yk = ω − k, yi ≥ 0, i ∈ [0, k]. (2)

According to Lemma 1, the number of solutions that satisfy Eq. (1) and Eq. (2)
is Cm−ω

k and, respectively, Cω
k . Using the number of solutions and the law of

total probability we obtain the desired result.

Lemma 6. Let k a positive integer. Then

Pr[c010 = k] =
m−1∑

ω=1

ω∑

r=k

Cm−ω
r · Cr

k · Cω−r
r−k · pω · qm−ω.

Proof. Let r be the maximum number of 01 patterns. Using a similar reasoning
to the proof of Lemma 5 we obtain the sequence

1 . . . 1︸ ︷︷ ︸
y0

0 . . . 0︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
y1

1 . . . 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr+1

with the restrictions

x1 + . . . + xr+1 = m − ω − r, xi ≥ 0, i ∈ [1, r + 1], (3)
y0 + . . . + yr = ω − r, y0 ≥ 0. (4)

According to Lemma 1 the number of solutions that satisfy Eq. (3) is Cm−ω
r .



A Love Affair Between Bias Amplifiers and Broken Noise Sources 395

To ensure that there are exactly k 010 patterns Eq. (4) that have to satisfy
the following condition: exactly k out of r y1, . . . , yr must be 0. We further
assume that y1 = . . . = yk = 0 and yk+1, . . . , yr ≥ 1. Note that the number of
solutions obtained under this assumption must be multiplied with a factor of
Cr

k . Eq. (4) now becomes

y0 + yk+1 + . . . + yr = ω − r, y0 ≥ 0, yi ≥ 1, i ∈ [k + 1, r] (5)

According to Lemma1 the number of solutions for Eq. (5) is Cω−r
r−k . By adding

everything together and using the law of total probability we obtain the desired
result.

Lemma 7. Let k be a positive integer. Then

Pr[c101 = k] =
m−1∑

ω=1

m−ω∑

r=k

Cω
r · Cr

k · Cm−ω−r
r−k · pω · qm−ω.

Proof. In this case, we consider r as the maximum number of 10 patterns and
Γ as the sequence composed of k concatenated 10s. Remark that we can insert
a number of 0s and 1s at the beginning and, respectively, the end of Γ without
affecting r. Thus, after inserting in Γ the m − 2k bits, we obtain the sequence

0 . . . 0︸ ︷︷ ︸
x0

1 . . . 1︸ ︷︷ ︸
y1

1 0 . . . 0︸ ︷︷ ︸
x1

0 . . . 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr+1

with the restrictions

x0 + . . . + xr = m − ω − r, x0 ≥ 0, (6)
y1 + . . . + yr+1 = ω − r, yi ≥ 0, i ∈ [1, r + 1]. (7)

According to Lemma 1 the number of solutions that satisfy Eq. (7) is Cω
r .

To ensure that there are exactly k 101 patterns Eq. (6) that have to satisfy
the following condition: exactly k out of r x1, . . . , xr must be 0. We further
assume that x1 = . . . = xk = 0 and xk+1, . . . , xr ≥ 1. Note that the number
of solutions obtained under this assumption must be multiplied with a factor of
Cr

k . Equation (6) now becomes

x0 + xk+1 + . . . + xr = m − ω − r,

x0 ≥ 0, xi ≥ 1, i ∈ [k + 1, r] (8)

According to Lemma 1 the number of solutions for Eq. (8) is Cm−ω−r
r−k . By adding

everything together and using the law of total probability we obtain the desired
result.

Remark 7. In [8], an analysis for Pr[c0110 = k] is presented. But, the authors
consider bits that have a B(0.5) distribution and that are arranged in a circle.
Thus, in our case, we need to reanalyze Pr[c0110 = k].
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Lemma 8. Let k be a positive integer. Then

Pr[c0110 = k] =
m−1∑

ω=1

ω∑

r=k

r−k∑

s=t

Cm−ω
r · Cr

k · Cr−k
s · Cω−2r+s

r−k−s · pω · qm−ω,

where t = 2r − ω.

Proof. Let r be the maximum number of 01 patterns. Using a similar reasoning
to the proof of Lemma 5 we obtain the sequence

1 . . . 1︸ ︷︷ ︸
y0

0 . . . 0︸ ︷︷ ︸
x1

0 1 . . . 1︸ ︷︷ ︸
y1

1 . . . 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr+1

with the restrictions presented in Eqs. (3) and (4). According to Lemma 1 the
number of solutions that satisfy Eq. (3) is Cm−ω

r .
To ensure that there are exactly k 0110 patterns Eq. (4) that have to satisfy

the following condition: exactly k out of r y1, . . . , yr must be 1. We further
assume that y1 = . . . = yk = 1 and yk+1, . . . , yr �= 1. Note that the number of
solutions obtained under this assumption must be multiplied with a factor of
Cr

k .
Let s be the number of yi, i ∈ [k + 1, r] that are 0. We assume that yk+1 =

. . . = yk+s. Thus, yi ≥ 2 for i ∈ [k + s + 1, r]. Note that the number of solutions
obtained under this assumption must be multiplied with a factor of Cr−k

s .
Equation (4) now becomes

y0 + yk+s+1 + . . . + yr = ω − r − k,

y0 ≥ 0, yi ≥ 2, i ∈ [k + s + 1, r] (9)

According to Lemma 1 the number of solutions for Eq. (9) is Cω−2r+s
r−k−s . By adding

everything together and using the law of total probability we obtain the desired
result.

Lemma 9. Let k a positive integer. Then

Pr[c1001 = k] =
m−1∑

ω=1

m−ω∑

r=k

r−k∑

s=t

Cω
r · Cr

k · Cr−k
s · Cm−ω−2r+s

r−k−s · pω · qm−ω,

where t = 2r − m + ω.

Proof. As in Lemma 7, r is the maximum number of 10 patterns and we obtain
the sequence

0 . . . 0︸ ︷︷ ︸
x0

1 . . . 1︸ ︷︷ ︸
y1

1 0 . . . 0︸ ︷︷ ︸
x1

0 . . . 1 . . . 1︸ ︷︷ ︸
yr

1 0 . . . 0︸ ︷︷ ︸
xr

0 1 . . . 1︸ ︷︷ ︸
yr+1

with the restrictions presented in Eq. (6) and (7). According to Lemma 1 the
number of solutions that satisfy Eq. (6) is Cω

r .
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To ensure that there are exactly k 1001 patterns Eq. (6) that have to satisfy
the following condition: exactly k out of r x1, . . . , xr must be 1. We further
assume that x1 = . . . = xk = 1 and xk+1, . . . , xr �= 1. Note that the number
of solutions obtained under this assumption must be multiplied with a factor of
Cr

k .
Let s be the number of xi, i ∈ [k + 1, r] that are 0. We assume that xk+1 =

. . . = xk+s. Thus, xi ≥ 2 for i ∈ [k + s + 1, r]. Note that the number of solutions
obtained under this assumption must be multiplied with a factor of Cr−k

s .
Equation (6) now becomes

x0 + xk+s+1 + . . . + xr = m − ω − r − k,

x0 ≥ 0, xi ≥ 2, i ∈ [k + s + 1, r] (10)

According to Lemma 1 the number of solutions for Eq. (10) is Cm−ω−2r+s
r−k−s . By

adding everything together and using the law of total probability we obtain the
desired result.

To compute the probability Ppass that a sequence of length m is marked pass,
we further assume that the 6 statistical tests are independent. Note that this is a
standard assumption [2,11] and offers us an estimate for the real probability. To
derive the estimates for the bias amplifiers we use the probabilities from Lemmas
2 and 3.

Lemma 10. For a greedy amplifier with an amplification factor n = 2k +1 and
a Bernoulli noise source B(p̃) we have that

Ppass 	
6∏

i=1

(
bi∑

�=ai

Pr[ci = �]

)

,

where ai, bi are the lower and upper limits for ci ∈ {c1, c01, c010, c101, c0110, c1001}
and p =

∑k
j=0 Cn

j · p̃n−j q̃j.

Lemma 11. For a Von Neumann amplifier with an amplification factor n = 2k
and a Bernoulli noise source B(p̃) we have that

Ppass 	
6∏

i=1

(
bi∑

�=ai

Pr[ci = �]

)

,

where ai, bi are the lower and upper limits for ci ∈{c1, c01, c010, c101, c0110, c1001},
p =

∑x
j=1 Cn

j p̃n−j q̃j + yp̃n−x−1q̃x+1, x is an integer such that
∑x

j=1 Cn
j <

Cn
k /2 <

∑x+1
j=1 Cn

j and y = Cn
k /2 − ∑x

j=1 Cn
j .

4.2 Results

To test our model we implemented Lemmas 10 and 11 using the GMP library
[3]. Let P = {0.01, 0.02, . . . , 0.99}. To measure the exact distance between the
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experimental En,p̃ and theoretical Tn,p̃ distributions, we computed the Kullback-
Leibler divergence

KL(En,p̃||Tn,p̃) =
∑

p̂∈P
En,p̃(p̂) log(En,p̃(p̂)/Tn,p̂(p̂))

and the total variation distance

δ(En,p̃, Tn,p̃) =
∑

p̂∈P
|En,p̃(p̂) − Tn,p̃(p̂)|/2.

Roughly speaking, KL(En,p̃||Tn,p̃) represents the amount of information lost
when Tn,p̃ is used to approximate En,p̃ and δ(En,p̃, Tn,p̃) represents the
largest possible difference between the probabilities that the two probabil-
ity distributions can assign to the same event [13]. The results for p̃ ∈
{0.1, 0.11, . . . , 0.2, 0.3, 0.4, 0.5} are presented in Figs. 6 and 7. We remark that
for p̃ ≥ 0.20 we have KL(En,p̃||Tn,p̃) 	 0.01 and δ(En,p̃, Tn,p̃) 	 0.02. Thus, the
theoretical model is a good estimate for the real probability when p̃ ≥ 0.2. Also,
note that Remarks 1 to 5 remain true for the theoretical estimates.

Fig. 5. Tests correlation

When p̃ < 0.2 the model starts to distance himself from the real probability,
due to the high correlations between the statistical tests. More precisely, the
assumption made for Lemmas 10 and 11 starts to fail. To see how the tests are
correlated, we computed the Pearson correlation coefficient

rp(T1, T2) =
∑1000

i=1 (t1i − t̄1)(t2i − t̄2)
√∑1000

i=1 (t1i − t̄1)2
√∑1000

i=1 (t2i − t̄2)2
,
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where t1i and t2i represent the number of samples that pass test T1 and, respec-
tively, T2 in experiment i, while t̄1 and t̄2 represent the associated expected
values. The results for p ∈ P are presented in Fig. 5. Note that in Fig. 5 the
correlation between testing for the allowable number of occurrences per sample
for 1 and 01 patterns is denoted by 01, for 1 and 010 patterns is denoted by 02
and so on.

Fig. 6. Kullback-Leibler divergence

Fig. 7. Total variance distance
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Fig. 8. Experimental results for greedy amplifiers.
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Fig. 9. Experimental results for Von Neumann amplifiers.

5 Conclusions

In our paper we extended the architecture introduced in [9] to Bernoulli noise
sources and provided the reader with both experimental and theoretical perfor-
mance metrics. As a practical application, we showed that the architecture can
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detect catastrophic failures of a noise source. Another possible application would
be a detection mechanism for large deviations from the original parameters of a
good noise source.

Future Work. Bias is not the only way for a RNG to go wrong. Another impor-
tant feature that can deviate is correlation. Thus, an interesting question is the
following: can bias amplifiers detect when random data becomes correlated or
other classes of amplifiers need to be developed?

The theoretical model presented in this paper is devised only for Intel’s health
tests. But the architecture presented in Fig. 3 can be applied to any health test.
Thus, an important step into understanding the behavior of bias amplifiers would
be to model the architecture’s behavior when it is instantiated with other health
tests and compare the results with our initial findings.

Acknowledgments. The author would like to thank Mariana Costiuc for asking him
what happens if we apply bias amplifiers to broken sources.
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Abstract. Securing Neural Network (NN) computations through the
use of Fully Homomorphic Encryption (FHE) is the subject of a grow-
ing interest in both communities. Among different possible approaches
to that topic, our work focuses on applying FHE to hide the model
of a neural network-based system in the case of a plain input. In this
paper, using the TFHE homomorphic encryption scheme, we propose
an efficient method for an argmin computation on an arbitrary num-
ber of encrypted inputs and an asymptotically faster - though levelled
- equivalent scheme. Using these schemes and a unifying framework for
LWE-based homomorphic encryption schemes (Chimera), we implement
a practically efficient, homomorphic speaker recognition system using the
embedding-based neural net system VGGVox. This work can be applied
to all other similar Euclidean embedding-based recognition systems (e.g.
Google’s FaceNet). While maintaining the best-in-class classification rate
of the VGGVox system, we demonstrate a speaker-recognition system
that can classify a speech sample as coming from one out of 50 hidden
speaker models in less than one minute.

Keywords: FHE · Embedding-based · Neural networks · Speaker
recognition

1 Introduction

An homomorphic encryption scheme is an encryption scheme permeable to any
kind of operation on its ciphertexts. With any input x and function f , with E
the encryption function, we can obtain E (f(x)) non interactively from E(x). We
speak of a Fully Homomorphic Encryption (FHE) scheme if its parameters can
be chosen independently of the (multiplicative) depth of the homomorphic com-
putation to apply. Otherwise we speak of a Levelled Homomorphic Encryption
(LHE) scheme.
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From the birth of “privacy homomorphism” in [33] to the present day, and
through the first truly FHE scheme Gentry presented in [21] there have been
many improvements in the field of homomorphic encryption. However, real-world
practical application examples remain limited due essentially to the large time
and space costs induced by these techniques. Yet, the field of Artificial Neural
Networks (ANNs) yields promising application scenarios for FHE. In a nutshell,
the field of ANNs encompasses varied and powerful tools that are successfully
used in a wide variety of fields (medical diagnosis methods, autonomous vehi-
cles, financial decision making, etc.), the list of which would be long enough to
fit the size of this article. However, their emergence has given way to privacy
and confidentiality concerns regarding the data-sets used for the training of such
networks and regarding the data that is classified or processed during the opera-
tional inference phase. In this context, FHE is emerging as a possible answer to
some of those concerns. Indeed, given an ideal FHE scheme, one could in prin-
ciple choose to hide any type of data at any point in the process of creation and
application of an ANN: the learning data during the training phase; the classifi-
cation data during the inference phase; and even the network itself. The list goes
on but the actual practical applications are so far quite limited due both to the
previously mentioned FHE limitations and the increasing complexity and depth
of the state-of-the-art ANNs. As a line of research, focusing on specific types of
ANNs with more FHE-friendly structures and marrying them with specialized
versions of the tools that the FHE community is producing can yield practical
and real-world applications. This is what we do in this paper with the so-called
embedding-based networks.

Prior Work. Research on the application of techniques for computing over
encrypted data, FHE or others “competing” techniques, to ANN-related issues
is only at its beginning and has so far barely scratched the surface of the prob-
lem. Indeed, the first attempts at applying homomorphic encryption techniques
to ANN have almost all focused on the inference phase and more specifically on
the problem of evaluating a public (from the point of view of the computer doing
the evaluation) network over an encrypted input (hence producing an encrypted
output). The first work of this kind is CryptoNets [39] where the authors suc-
cessfully evaluate an approximation of a simple 6-layer Convolutional NN able to
achieve 99% success recognition on the well-known MNIST hand-written digits
database. Their implementation uses the FV FHE scheme [20] and achieves net-
work evaluation timings of around 4 min on a high-end PC. Yet, thanks to the
SIMD/batching property of FV-like schemes, one network evaluation can in fact
lead to 4096 evaluations of the network done in parallel on independent inputs
(i.e. the network is evaluated once on ciphertexts which have many “slots” and
thus contain different cleartexts). So, although the latency remains of 4 min, the
authors rightfully claim their system to be able to sustain a throughput of around
60000 digit recognitions per hour. In subsequent papers, Chabanne et al. [8,9] are
building approximations with small multiplicative depth of networks with up to
6 nonlinear layers. Through significant hand-tuning of the learning step of their
networks, they show that these can achieve state-of-the-art prediction quality
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on both hand-digit (MNIST) and face recognition. However their work lacks an
implementation and, hence, they did not provide FHE evaluation timings. More
recently, Bourse et al. [5], have fine-tuned the TFHE cryptosystem towards a
slight generalization of BNNs (Binary Neural Networks) called DiNNs in which
the nonlinear activation function is the sign function which they intricate with
the TFHE bootstrapping procedure for more efficiency. Overall, they are able
to evaluate small DiNN networks (100 neurons and only one hidden layer) in
around 1.5 s resulting in a (just decent) 96% prediction accuracy on the MNIST
database. As already emphasized, all the previously mentioned papers focus only
on the inference phase. Public work on applying FHE to the training phase and
on ANN techniques other than mainstream Convolutional NNs are very few with
only some works focusing on basic clustering [12,27] and some focusing on logis-
tic regression model learning [3,7,28]. We can mention [31] as the latest work to
push the limits of the use of FHE in the training of neural networks. It should also
be mentioned that the applications of other “competing” techniques for comput-
ing over encrypted data, the main one being Secure Multiparty Computations
(MPC), to ANN also start to be investigated in their associated communities
(e.g., [2,34]). Additionally, most previous works tackle the problem of evaluat-
ing a public network over an encrypted input. Of course, this is an important
first step and a pragmatic angle of attack but, even when one limits oneself to
the inference phase, other setups are worth investigating such as, for example,
that of evaluating a private network or model over a public (again from the
point of view of the computer doing the evaluation) input which is also very
relevant in many practical situations, as illustrated in the present paper. Yet,
just for that first case, the above state-of-the-art demonstrates that no fully sat-
isfying solution has yet been found but also reveals an emerging research trend
towards looking for adapted neural network structures. This is where our work
aims to start filling the gap: by providing a fresh look at how using a specific
yet state-of-the-art type of neural-based speaker recognition system can allow
us to implement a very time efficient classification of public data over a pri-
vate model. Producing a solution to this specific, embedding-based system (see
Sect. 2 for details), requires us to solve the nearest neighbour problem (given a
number of encrypted inputs, find the one closest to the new, plain, input) in the
homomorphic domain. Previous work on a subject that can be mapped to secure
nearest neighbour computations are [17–19,25,35]. All of these works (except for
[17]) use an additive homomorphic encryption scheme for a distance computa-
tion. Then the comparison is done through various means: bit-based approaches
that are quite heavy computationally; garbled circuits (see [40]) or other kinds of
exchange protocols between the server running the computations and the owner
of the data. [10] is one such work that uses homomorphic encryption for the
distance computation and garbled circuits for the comparison. We can cite [38]
as a solution that uses exclusively FHE (the HElib library [24] implementing the
BGV FHE scheme [6]) - as we do - to solve the k-Nearest Neighbours problem
and achieves its results through a bit-wise approach that is significantly more
expensive time-wise than our own.
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Our Contribution. In this paper we consider a state-of-the-art, best-in-class,
speaker-recognition embedding system based on convolutional neural networks:
VGGVox [16]; the properties of which allow us to implement a FHE classification.
For this we use the results from [4] which develops a unified, consistent theoretical
framework for several homomorphic schemes. It allows us to design both a fully
homomorphic and a levelled scheme for speaker recognition based on the neural
embedding system from [16]. We implement this with the TFHE library [15]
based on [13,14] and the SEAL library [37] using the BFV scheme from the
original paper [20]. In the end, our scheme can classify an audio sample as
coming from one of 100 hidden speakers in less than a minute.

In the process of building this homomorphic speaker-recognition scheme, we
present a general and efficient, fully homomorphic, argmin computation scheme
from an arbitrary number of encrypted inputs. In parallel, we present an asymp-
totically faster, though levelled, equivalent scheme.

Paper Structure. The paper is organized as follows. In Sect. 2, we present the
VGGVox neural-based embedding system on which we base our fully homomor-
phic classification scheme and give a case study of a possible application of our
work. Section 3 presents the homomorphic schemes and operations on which we
base our work. Section 4 presents the general algorithms we designed to provide
homomorphic classification schemes while Sect. 5 shows how and to what extent
those schemes can be considered practical: we present the parameters used as
well as the timings we obtain and the classification precision we achieve. We
include an appendix that presents in more detail the parameter choices.

2 A Neural Embedding System: VGGVox

VGGVox. What we call VGGVox in this paper refers to a neural embedding
system presented in [16]. It was trained and tested on datasets called VoxCeleb1
[30] and VoxCeleb2 [16]. We refer to the cited papers for an in-depth presentation
of the system. We present in what follows only the notions necessary to our
discourse.

The system applies two consecutive Convolutional Neural Networks (CNN)
to a raw audio segment containing a speech sample from one given speaker. The
second of these networks outputs a real vector embedding of dimension 1024 that
is a representation of the speaker in the Euclidean space R1024. The point of the
system is to make it so that the Euclidean distance in the output space (R1024)
becomes a good measure of the similarity between the speakers of the samples in
the input space (raw audio samples). In short, if we find that two audio samples
going through the networks yield two vectors that are close-enough, then we can
assume that the same speaker has provided the two original samples. The way
that we use this system is to have a certain number of reference embeddings
each representing a different speaker. Then, we classify a new sample as being
spoken by one of the reference speakers by finding the reference embedding that
is closest to the new embedding. Therefore, we need to solve a nearest neighbour
problem.
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Of course, this kind of embedding-based neural architecture is not universally
applicable. However, it has shown to be a very efficient way to solve specific
problems. One such system is used in [36] for face recognition. Embedding-based
systems are also typical for text-processing applications [23]. Also, [36] and [16]
show that the field of embedding-based neural systems is evolving quickly and
we can expect that other applications will be proposed in the years to come. This
is important because the work that we provide in this article can be generalized
to any system working in the same way as the VGGVox system. As long as the
measure of similarity that interests us at the output of the neural networks is the
Euclidean distance, then the framework we present works without having to be
adapted to the specifics of the new system. We refer to [16] for precise information
on the performance of VGGVox in terms of classification rate. As such it is
recognized as a highly accurate speaker-recognition system that achieves best-
in-class performance in the speech processing community.

Case Study. The philosophy underlying the architecture of the VGGVox sys-
tem, which is similar to that of other embedding-based systems such as Google’s
FaceNet, is to avoid the burden of retraining the whole system when a new
individual needs to be recognized. This is desirable for obvious maintainability
reasons. Hence, the overall classification system is partitioned in a first generic
pre-processing step which is trained once and for all on a representative (pos-
sibly public) learning data set, without depending on the individuals that will
in fine have to be recognized by the system (which usually are not known at
design time). Then, in order to achieve the desired classification function, the
pre-processing part is supplemented by a much simpler classification scheme,
usually based on some distance, which this time depends on the individuals to
be classified. In use-cases where one wishes more to hide what is sought in data
rather than hiding the data themselves (from some server), marrying FHE with
such embedding-based systems is therefore quite relevant since the complex pre-
processing part does not need to be executed in the encrypted-domain. This is
relevant in use-cases where an entity, the analyst, wishes to deploy an analysis
“black-box” on an honest-but-curious server whose job is to analyze raw traffic
(available in non-encrypted form to the server) with respect to an undisclosed
analysis criteria. Examples of this include hiding individuals or profiles of interest
when analyzing a video stream, hiding cyber-attack signatures when analyzing
packet streams or, as illustrated in depth in this paper, identifying undisclosed
individuals in voice streams (to name a few examples). In our case, a recording
of an individual is accessible to the server, but its identity remains secret. The
general architecture is illustrated on Fig. 1. Furthermore, architectures of this
type also have the property that the server has access to the raw data but no
access to the analysis criteria or results whereas the analyst has access to the
analysis results but no access to the raw data. Such properties are desirable in
cases where legal, ethical or commercial reasons prevent a single party to have
access to both raw data and analysis results.

To be more concrete with the use of VGGVox in such a system we can
consider the following setup where an agency (the analyst) needs to perform some
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analysis of the voice calls carried over the network of an operator (the server).
By law, the agency is not allowed to have access to the raw voice calls but may
have the right to know whether individuals from a target set are involved in some
phone conversations. By law, the operator cannot be disclosed information on
the target individuals. In this setup, the analyst, which is owning the FHE public
and private key, first runs voice samples from the target individuals through its
own copy of the VGGVox network in order to obtain the associated embeddings,
say r1, ..., rN , which it encrypts and sends to the operator. On the other side,
the operator runs a given voice sample1 through its own copy of the VGGVox
system and obtains an embedding r which it confronts to the encrypted ri’s
to obtain (in the simplest case) encryptions of e.g., mini ||r − ri||2 as well as
argmini||r − ri||2 which it sends to the analyst for decryption (and beyond).

Lastly, let us reemphasize that although the classifier has access to the input
vectors it cannot by construction observe the classification results which are
encrypted under the analyst FHE. Therefore, the classifier is not in a position
to extract any information from the private model by analyzing input and clas-
sification result pairs.

AnalystServerInput Stream

black box

Decryption
Algorithm

i
a unique

identifier for a
speaker

[i]

Fig. 1. A figure illustrating the case study that we provide.

3 Homomorphic Schemes

LWE Based Encryption Schemes. Both of the encryption schemes that we use
are based on the LWE problem (introduced by Regev in [32]) and ring-LWE
[29]. They are the BFV [20] scheme, implemented in the SEAL [11,37] library
and based on the ring-LWE problem (it encrypts polynomials), and the TFHE
1 The way these samples are selected may depend on some meta-data and is beyond

the scope of this paper.
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scheme [13,14] implemented in the TFHE library [15] and based on both the
LWE and ring-LWE problems (it can encrypt both polynomials and scalar val-
ues). We will not go into the details of any one of these schemes and refer the
reader to the original papers. We will only present here the information necessary
to understand the algorithms that we build as they are presented in Sect. 4.

In essence, since the work in [4], the two encryption schemes can be consid-
ered to be the same one (both part of a more general, all-encompassing scheme:
Chimera). This means that any polynomial ciphertext encrypted in the BFV
encryption scheme can be seen as a TFHE ciphertext of the same (though
rescaled) plaintext.

From now on, we are therefore not going to identify a ciphertext by its
associated encryption scheme but rather by whether it encrypts a polynomial or
a scalar value. Therefore a ciphertext of a polynomial m[X] will be written as
[m[X]](r) and one for a scalar m as [m]. Similarly, we assume here that we can
apply any operation on a given ciphertext that can be applied in BFV or TFHE.

One specificity of TFHE with respect to other such schemes is that it is
built around the torus (T = [0, 1]). Most other schemes and BFV in particular
are built around a finite group. The plaintext space and ciphertext space used
will be considered to be either T or T[X] for simplicity sake, unless specified
otherwise.

TRGSW. TRGSW is the ring version of the GSW scheme introduced in [22]. A TRGSW
ciphertext encrypts messages in R[X]. We only ever use this encryption scheme
as way to apply a specific MUX gate. For that purpose, the message space of
TRGSW ciphertexts in this paper is only ever {0, 1} (polynomials of degree 0).
This means we represent TRGSW ciphertexts as scalar ciphertexts [∗].

Homomorphic Operations. Since they are based on the LWE (or ring-LWE)
problem, both the BFV and TFHE encryption schemes rely on a noise to be
introduced in the ciphertext. We assume that it is a Gaussian noise unless stated
otherwise and refer to it through its standard deviation that we denote σ or α.
The noise is the same in TFHE and BFV up to a rescaling. Importantly, whenever
we present a value for a standard deviation in the paper, it will be one rescaled
and therefore applicable in the torus. To use it in a BFV ciphertext, multiply
by the BFV modulus q.

With every homomorphic operation (except the bootstrap operation) the
noise grows. This is a fundamental issue in FHE in general and in this paper in
particular. We will refer to it as “noise propagation”. We add to the notation of
the ciphertext a possible mention of an encryption key s and a noise α as such:
[∗]s,α. In the following, we present the different operations that we use in this
paper. These operations are all operations that are implemented in either the
SEAL library or the TFHE library.

The operation InternSub allows us to subtract two ciphertexts. From a cipher-
text of a given polynomial message, SampleExtractp can extract a scalar cipher-
text of the pth coefficient of the message polynomial. We can apply an external
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multiplication and multiply a ciphertext to a plaintext (both in the scalar and
polynomial cases) with the ScalarExternMult and PolyExternMult operations.

From two keys s and s′, we can create an object KSs→s′ (KS for short) called
the key-switching key. Given a ciphertext [∗]s encrypted with key s, we can apply
the KeySwitchs→s′ operation with KS to obtain a ciphertext [∗]s′ encrypting the
same plaintext but with key s′.

The most important operation we use is the bootstrap operation2. From
two keys s and s′, we can create an object BKs→s′ (BK for short) called the
bootstrapping key. Given an integer b, a ciphertext [μ]s,α of a scalar value μ
encrypted using the key s with noise α, and this bootstrapping key BK, we can
obtain a ciphertext [μ0]s′,αb

where μ0 = 1/b if μ ∈ [0, 1
2 ] and μ0 = 0 if μ ∈ [12 , 1]

3 Very importantly, αb is fixed by the parameters of the bootstrapping key BK
and does not depend on the initial standard deviation. We write this operation
BootStraps→s′,αb

. We call it “sign bootstrap” because the function that it applies
(it could apply other functions) can be considered a sign computation. This
operation therefore allows us to both apply a sign function to the input ciphertext
and reduce its noise down to αb. Figure 2 is a representation of this operation.
The application of the function is not infinitely precise. The figure shows how
there are values for which the operation does not necessarily output the correct
value. This is not a problem when the parameters are chosen accordingly: see
Sect. 5.2 for details.

Given a scalar ciphertext [μ], we can output a TRGSW ciphertext [μ0] where
μ0 = 1 if μ ∈ [0, 1

2 ] and μ0 = 0 if μ ∈ [ 12 , 1]. This operation is composed of several
bootstrap and key-switch operations and outputs the result of a sign bootstrap
as seen above, only under a TRGSW encryption. We exclusively use this operation
in order to then apply a TFHE MUX gate. We call this operation CircuitBoot.

Given a TRGSW ciphertext [b] of message b ∈ {0, 1}. Given two ciphertext
polynomials [μ1[X]] and [μ2[X]]. We can apply a MUX gate that outputs [b?μ1 :
μ2], which is a ciphertext of μ1 if b = 1 and a ciphertext of μ2 if b = 0. We call
this operation MUX.

4 Homomorphic Speaker Recognition

In order to determine homomorphically which encrypted vector from a number
of reference embeddings is closest to a plain vector input, first, we need to be
able to compute distances, and second, we need to be able to compare those
distances. We present in this section the main algorithms for the distance com-
putation and the comparison phase. The initial distance is computed using BFV
ciphertexts and BFV operations. The distance ciphertexts then become TFHE
ciphertexts (again, with a simple rescaling and therefore at no significant cost)

2 This bootstrapping is only a slight variation on the bootstrapping procedure intro-
duced in [13], we just add a public rotation to the bootstrap operation used in [5].

3 We implicitly write the possible values of μ and the output value μ0 as members of
the torus space T. Alternatively, we also refer to 1/b as the value 1. This is arbitrary
but allows us to represent the bootstrap operation very intuitively in Fig. 2.
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Fig. 2. This figure illustrates the principle behind the sign bootstrapping function. The
circle represents the torus. μ ∈ T is an example of a torus message. When encrypted
it gains a Gaussian error e, the checkered slice and curve show the range that it can
take. It corresponds to the values that μ + e will take with probability 1 − 2−64. If
that range is completely encapsulated within the top part of the circle, then the sign
bootstrap function will output an encryption of 1 with a fixed error. The bottom part
corresponds to an output of 0. The red parts correspond to the uncertain zones where
a lack of precision from the bootstrap operation means the output is uncertain. (Color
figure online)

for the comparison phase. We will first present the distance computation oper-
ations and then two schemes for the comparison of all the distances, each with
their strengths and weaknesses.

4.1 Distance Computation

We are given d real vectors: c(k) ∈ Rγ , k ∈ {1, ..., d} of dimension γ. These are
the outputs of the VGGVox system for d different speakers. To be more precise,
we are going to use an approximation of the actual VGGVox output vectors. We
are going to consider c(k) ∈ Nγ and we refer to Sect. 5.1 for a discussion on the
impact of this. We encode each of these vectors in polynomial form:

∀k ∈ [1, d], C(k) =
γ−1∑

i=0

c
(k)
i+1 · Xi

Actually, the entity performing the distance computation, as mentioned in
Sect. 2, only has an encrypted version of those vectors:

[
C(k)

](r)
. These cipher-

texts are the reference ciphertexts and they are stored on the server waiting for
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a new (cleartext) vector to come in for comparison. Let’s call m ∈ Rγ this new
vector and encode it as a polynomial:

M =
γ−1∑

i=0

mγ−i · Xi

Given this M and the
[
C(k)

](r)
, we want to compute dk the d distances from m

to every one of the c(k). This is a basic computation and we only go into detail
so as to assess the multiplicative depth of the computation. We define:

μ =
γ∑

i=1

m2
i and ∀k ∈ {1, ..., d}, μ(k) =

γ∑

i=1

(
c
(k)
i

)2

For a given k, let’s call Dk:

[Dk](r) = −2 × M × [C(k)](r) + μ · Xγ−1 + [μ(k) · Xγ−1](r) (1)

Remark that we can pre-compute −2 × [C(k)](r) and [μ(k) · Xγ−1](r). Then

[dk] = SampleExtractγ−1([Dk](r))

yields an encryption of the distance between m and the reference vector c(k).

4.2 The Tree Method

At this point, we want to be able to find the index of the minimum distance.
There are two ways that we can do this. The first one consists of building two
parallel trees: one for the min computation and the other for a parallel argmin
computation. We will call this version the “tree version”.

The min tree: The min tree outputs the overall minimum distance. It compares
two distances at every level and then compares the “winners” of the previous
level in the current level. We start by computing an indicator δ that indicates
which of two distances is the smallest one: for instance, at the first level, for the
two distances dk and dl:

δk,l = 1 if dk < dl

= 0 otherwise

The tool used here is the bootstrap introduced in [13]. With a sign function as
output function and an addition to re-calibrate the result we obtain a scalar
ciphertext of δk,l

4 for any given k and l.
Of course 1 and 0 are not the actual torus values. In practice, for every

application of the sign bootstrap, we can choose any integer b so that the output
4 In the case where dk = dl the sign bootstrap yields a random output. This is actually

also the case when dk is “close” to dl: this means the difference is in the red zone
around 0 seen in Fig. 2. See Sect. 5.1 for implications.
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is either 0 or 1
b . The chosen base b will be given for every use of the bootstrap

operation but we may also - when convenient - only refer to the two outputs
as 1 and 0. In this case for instance, we use a base b = 4. This δ indicator is
then lifted to a TRGSW ciphertext through the CircuitBoot operation. We use it
in the TFHE MUX gate to select the minimum distance for the next level of the
tree. Per se, this means that this scheme is not fully homomorphic. Indeed every
application of the MUX gate adds noise to a ciphertext that is itself reused in
that same MUX gate at the next level of the tree. Therefore the parameters have
to be chosen according to the depth of the tree. By repeating these operations
we find ourselves, after the last comparison, with the overall minimum distance.

The argmin tree: The argmin tree computes the index of the minimum distance. It
uses the δ values created by the min tree to select which index can go through to
the next level of the tree. Every index from 0 to d−1 is encoded as a polynomial
representation of its own base 2 decomposition5: for an index k it is the unique
polynomial Pk ∈ B[X] such that Pk(2) = k. The TFHE MUX gate is applied on
those indexes with the δ values as deciders. Both trees are presented in Fig. 3.

Fig. 3. This figure shows the selection of the min and argmin for the first 4 distances.
After the first round of selection, min(d1, d2) and min(d3, d4) are compared in the
second round. This goes on until the final argmin and min values are computed.

4.3 The Matrix Method

Another way to go about determining an argmin homomorphically is what we
will informally call the “matrix” way. Instead of treating the compared distances
5 This greatly reduces the stress on the parameters induced from the MUX gate.
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two-by-two in a tree, we compute all of the δ values in bulk. This gives us the
following matrix: ⎛

⎜⎜⎜⎝

0 δ1,0 · · · δd−1,0

δ0,1 0 · · · δd−1,1

...
...

. . .
...

δ0,d−1 δ1,d−1 · · · 0

⎞

⎟⎟⎟⎠

As seen in Sect. 4.2, these are obtained by subtracting the distances to com-
pare and then applying a bootstrap operation. There are effectively 1

2 · (d2 − d)
bootstraps because δi,j = 1 − δj,i for every i, j. At this point, we sum the lines
of the matrix together and obtain:

(
Δ0 Δ1 · · · Δd−1

)
where Δi =

d−1∑

j=0

δi,j

All of the Δi are between 0 and d − 1. There is only one of them (let’s call it
Δmax) with value d − 1. The index for that Δ is the argmin we are looking for.
Indeed, it corresponds to the only distance that is lower than every other one
and therefore has δ values always equal to 1. As mentioned previously, these
values of 0 and 1 are only theoretical. In practice there is a base b so that the
values are actually 0 and 1

b . Here we set this to 2d−3. This is important because
it is the value which allows us to have Δmax be the only value above 1

2 in the
torus circle. As seen in Fig. 4, this means that applying a sign bootstrap6 on the
Δ values yields a 1 only for Δmax and 0 for all other values.

Remark: In practice, depending on the number d of distances to compare, the Δ
values cannot be obtained immediately through a single sum and then a boot-
strap. There are two limiting factors for the output of the operation to be correct:
the noise propagation during the sum, and the precision of the sign bootstrap (as
seen in Fig. 2). Therefore, in practice, we divide the sum in “chunks” of a given
number m of ciphertexts and make intermediate sign bootstraps that output 1
if the intermediate sum is maximal and 0 otherwise. Therefore, the base for the
first bootstrap operation has to be 1

2m−3 . We give the value we use for m in
Sect. 5.2.

5 Practical Implementation

5.1 Precision

The two schemes presented in Sects. 4.2 and 4.3 do not allow us to perform
an exact homomorphic transposition of the VGGVox classifications in terms of
precision. This means that the classification rate of our homomorphic system will
be slightly lower than the non-encrypted one. This is due to two main factors:

6 This time where b = 4 and where the 0 and the 1 outputs are swapped.
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Fig. 4. A torus representation of the Δ values. As we can see here, applying a bootstrap
on all of them means only one (the highest value) will yield an output of 1. We can see
here that compared with Fig. 2 the 0 and 1 values are swapped. The checkered zones
still represent the actual range of the message values. The parameters must be chosen
so that they do not overlap with the red zones. (Color figure online)

– The precision of the input vectors. The output vectors of the VGGVox net-
works (the ones we take as inputs for our distance computations) are real
numbers. Because of strains on the parameters we cannot afford to match
their precision. This means we choose to round the vectors down to a certain
number of digits. This strain corresponds to the fact that the values in SEAL
(resp. TFHE) must not go above p

2 (resp. 1
2 ) during the distance computation.

– The precision of the bootstrap operation. As shown in Fig. 2, the bootstrap
operation, given a set of parameters, has a “red” zone around 0 and 1

2 where
input values yield an uncertain output. We can arrange for the values of dk−dl

to never reach the zone around 1
2 (by reducing the precision of the inputs as

seen above). However, if two distances are too close, their difference can be
too low for the bootstrap operation to yield the correct result.

In all other cases of such precision errors, either the overall result will not be
affected, or the closest vector will be miss-classified as one very close to the
actual one. These possible errors depend on the given classification problem. In
Sect. 5.3, we show that - for the real-world state-of-the-art classification problem
that we test our algorithm on - these errors do not occur.

5.2 Parameters

We set the parameters according to two constraints: the accuracy of the final
result and the security of the overall scheme.



416 M. Zuber et al.

Security: We base the security of our scheme on the lwe-estimator7 script.
The estimator is based on the work presented in [1]. It allows us to find the
smallest initial noise for our ciphertexts, that still ensures security and gives us
the most leeway in terms of noise propagation. The security of FHE schemes
depends on the ciphertext noise to coefficient modulus ratio (σ/q) as well as
on the degree of the polynomials (N). Table 1 in Appendix A shows minimum
noise to coefficient modulus ratio values for a given set of parameters. As the
coefficients in TFHE belong to the real torus we consider their modulus 1 and do
not represent them in the corresponding parameter tables. We restrict ourselves
here to two security parameter values: 80 and 110. However, the precision (σ/q)
for the SEAL (resp. TFHE) library is up to 7.6e−9 (resp. 1.11e−16) as of now.
By this we mean the lowest value that can be taken as a standard deviation for
a Gaussian sampling. Thus, any standard deviation below that could not yield
an actual implementation. Therefore, we take the highest σ of the two when a
conflict occurs.

Accuracy: As mentioned in Sect. 5.1, whichever way we choose to do it, there is
an inherent approximation in the homomorphic classification that we compute.
In our case, we choose to use an approximation factor of 3 for the vector inputs:
we truncate the values after the third digit. The parameters we use for the
initial SEAL distance computation are given in Table 2 in Appendix A. When
setting the parameters for the bootstrap and key-switch operations of the min
and argmin computations, one needs to strike a good balance between efficiency
and accuracy while taking security constraints into account. This leads us to the
parameters presented in Table 3, in Appendix A.

More precisely, the parameters are obtained by running a scilab script with
the security and accuracy constraints translated into equations. These equations
are very similar to the ones [26] presents to explain parameter determination for
their own TFHE scheme

Furthermore, with the given parameters, in the matrix version, we can add
up to 65 δ values together before applying a BootStrap operation (m = 65 as
seen in Sect. 4.3). For the tree scheme, the depth that these parameters allow
us to go to, in this case, is 72. This means we can classify among 272 different
model embeddings. In practice, given a fixed number of models beforehand, one
could reduce the size of the parameters we give here to fit the size of their tree
and increase the time performance of their classification.

Overall, with these parameters, we achieve a 127-bit security in the “matrix”
scheme and an 80-bit security in the “tree” scheme. In the “tree” scheme, setting
parameters to obtain a higher security level would compromise the usefulness of
the network in that it would greatly limit the number of comparisons we can
make, or make a single comparison operation prohibitively expensive in terms
of time and storage.

7 https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py.

https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
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5.3 Performance

Classification Rate: As we stated in Sect. 5.1, our homomorphic distance and
argmin computations do not match the necessary precision to replicate exactly
the classification results from the VGGVox system in [16]. In this paragraph we
evaluate how that affects the classification rate of our homomorphic equivalent.
Given our set of parameters, we can determine that in order for the BootStrap
operation to reliably differentiate between two distances, their difference must
not be greater than 2.51e−02. Below such a value, the operation will select one
or the other randomly. This allowed us to simulate our homomorphic scheme in
the clear by testing with several test embeddings whether, given the shortest dis-
tance, the difference between that distance and the others was below 2.51e−02.
As we saw in Sect. 5.1, it is the only condition we need for the overall argmin
computation to be exact. Experimentally, we find that after truncating test vec-
tors at the third digit then the smallest distance was always smaller than the
other distances by a wide margin (at least 0.1 which is more than enough for
the bootstrap operation to output the correct result).

Fig. 5. Time in minutes for tree and matrix overall classification times depending
on the number of model embeddings for the VGGVox system. The time for the tree
version corresponds to the green curve and the time for the matrix version to the red
curve. (Color figure online)

Timings: With the given parameters, we are able to implement both schemes
on an Intel Core i7-6600U CPU, Linux Mint 18.3 Cinnamon 64-bit, 16 GiB.
The overall time for a classification (the distance computations and the argmin
computation) depends on the number of original reference embeddings to which
we need to compare the new input. To be more precise, for a number d of
references, the tree scheme will evaluate d − 1 comparison circuits (as seen in
Fig. 3). This means the time the tree version takes for a classification is linear
in the number of model embeddings.
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As for the matrix scheme, it will first evaluate (d2−d
2 ) BootStrap operations,

and then, depending on the value of m (as seen in Sect. 4.3), it will evaluate a
varying number of BootStrap operations. Most importantly, the time the matrix
version takes for a classification is quadratic in the number of references. Asymp-
totically speaking, the tree version is therefore better. This makes up for the fact
that it is levelled and not fully homomorphic. Figure 5 shows our experimental
timing curves for both of schemes we implemented.

6 Conclusion

In this paper, we investigated two different methods to classify a clear recording
as coming from one of an arbitrary number of encrypted speaker embeddings.
One such method is fully homomorphic but has a quadratic time-wise complexity
in the number of references to classify from. The second one is levelled but time-
linear in the number of references. Additionally, both of these methods use their
own way to compute a min and argmin from an arbitrary number of encrypted
inputs using FHE and LHE respectively.

Additionally, it is paramount to stress the general applicability of our results
to any embedding-based Euclidean classification system (and there exists many).
The fact that we provide an efficient embedding-based classification here there-
fore expands the reach of homomorphic secure classification beyond this specific
speaker-recognition system without needing to adapt any of our results to the
specifics of the new system.

A Parameters

In this appendix we present the security parameters we use for both FV and
TFHE. This corresponds to Tables 1, 2 and 3. The security of chosen parameters
(as an example for the first parameters from Table 1) was asserted using the
following scripts (lwe-estimator commit a276755):

– FV:

n, q, stdv_q = 1024, 132120577, 2e-11

alpha = stdv_q * sqrt(2*pi)
_ = estimate_lwe(n, alpha, q, secret_distribution=(-1,1))

– TFHE:

n, stdv = 1024, 5e-13

alpha = stdv * sqrt(2*pi)
q = ZZ(ceil(1/stdv))
_ = estimate_lwe(n, alpha, q, secret_distribution=(0,1))
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Table 1. Tables presenting the security parameters for both FV and TFHE. In the left
table, the security parameters for FV. In the right table, the security parameters for
TFHE (q = 1). σ is the standard deviation of the Gaussian noise. Because we use both
FV and TFHE, we need to choose the tighter security constraint between the two. The
actual standard deviations chosen in the case of N = 1024 for both 80 and 110 security
levels are therefore written in green in the tables. The ones we cannot chose are in red.

λ q N σ/q

80 132120577 1024 2e−11

110 132120577 1024 16e−11

λ N σ

80 1024 5e−13

80 2048 2e−25

110 1024 1e−9

110 2048 5e−19

Table 2. The parameters set in the SEAL library for the initial distance computations.
N is the size of the initial ciphertext polynomials. The value of p needs to be high
enough to prevent the distance values from “overflowing” and needs to verify q = 1
mod p in order to reduce noise propagation.

N p q σ/q

1024 10752 132120577 7.6e−9

Table 3. Tables presenting the appropriate parameters for both the matrix and tree
schemes. In the upper table, the parameter set in the case of the “matrix” argmin
computation. In the lower table, the parameter set in the case of the “tree” scheme. Nb

(resp. Ns) is the size of the bootstrapping key (resp. the key-switching key) polynomials
and σb (resp. σs) the standard deviation of the Gaussian noise in the bootstrapping
key (resp. the key-switching key).

Nb σb Bg �

2048 1.1e−16 64 6

Nb σb Bg � Ns σs base t

2048 1.1e−16 16 10 1024 5e−13 5 14
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Abstract. In 2017 Kyung-Ah Shim et al. proposed a multivariate sig-
nature scheme called Himq-3 which is a submission to National Institute
of Standards and Technology (NIST) standardization process of post-
quantum cryptosystems. The Himq-3 signature scheme can be classified
into the oil vinegar signature scheme family. Similar to the rainbow sig-
nature scheme, the Himq-3 signature scheme uses a multilayer structure
to shorten the signature size. Moreover the signing process is very fast
due to a special system called L-inveritble cycle system that is used to
invert the central map. In this paper, we provide a complete cryptanal-
ysis to the Himq-3 signature scheme. We describe a new attack method
called the singularity attack. This attack is based on the observation that
the variables in the L-invertible cycle system are not allowed to be zero
in a valid signature. For the completeness, we show step by step how
variables and layers can be separated so that signature forgery can be
performed. We claim that the complexity of our attack is much lower
than the proposed security level.

Keywords: Post-quantum cryptography · Multivariate public key
cryptography · Cryptanalysis · Oil vinegar signature scheme

1 Introduction

1.1 Background

The ability to authenticate digital messages has always been an important build-
ing block for any free, secure, and digital society. In 1976, Whitfield Diffie and
Martin Hellman did a major contribution to construct a mathematical frame-
work, known as digital signature scheme, in this direction. The digital signature
algorithm (DSA), the RSA digital signature algorithm, and the elliptic curve dig-
ital signature algorithm were the only signature schemes that were allowed under
the guidelines of the National Institute of Standards and Technology (NIST)’s
c© Springer Nature Switzerland AG 2020
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up to 2013. However, in 1999 Peter Shor showed that these number theory based
signature schemes are weak to sufficiently powerful quantum computers [18].
This indicates a significant need to prepare the current communication system
for a post-quantum world. Due to the rapid development of quantum computers,
NIST believes that it is prudent to begin developing standards for post-quantum
cryptography. The call for proposals started in December 2016. NIST expects to
perform multiple rounds of evaluation over a period of three to five years.

1.2 Multivariate Public Key Cryptography

Multivariate Public Key Cryptography (MPKC) is one of the candidates that
are believed to have the potential to resist quantum attacks [4]. The security of
MPKC depends on the difficulty of solving a system of multivariate quadratic
polynomials over a finite field. A breakthrough in MPKC was proposed by Mat-
sumoto and Imai in 1988 [14]. Instead of working over the vector space kn for
a finite field k, they looked to a degree n extension of k in which an invert-
ible map can be constructed. Unfortunately, this scheme was broken by Patarin
using the linearization equation attack [15]. However, inspired by this attack,
Patarin proposed the oil vinegar signature scheme [16]. The oil vinegar signa-
ture scheme can be classified into three groups: Balanced oil vinegar [16] (Patarin
1997), Unbalanced oil vinegar (UOV) [12] (Kipnis et al. 1999) and Rainbow [7],
a multilayer signature scheme with unbalanced oil vinegar in each layer (Ding
and Schmidt 2005). The balanced oil vinegar scheme was broken by Kipnis and
Shamir [13] using the idea of invariant subspaces. The unbalanced oil vinegar
scheme remains unbroken since its publication nearly 20 years ago. However,
the main drawback of UOV is its large key size and signature size. Rainbow is
considered to be one of the most promised post-quantum cryptography signa-
ture schemes. Its multilayer structure, in which oil variables from previous layer
are reused as vinegar variables in next layer, reduces the key size and signature
size. Detailed security analysis of rainbow signature scheme is presented in [5].
There are several other signature schemes that are closely related to rainbow
such as TRMC, TTS, etc. More about those schemes and their security analysis
can be found in [5]. The lifted unbalanced oil vinegar proposed by Ward et al. is
another modification of UOV [2] which achieves small key size by restricting all
the coefficients of public keys to be binary. In 2019, Ding et al. designed a new
attack, the subfield differential attack on LUOV, which drops the complexity
of solving LUOV blew the NIST security strength for non-prime extension case
[9]. Both rainbow and LUOV have passed into the second round for the NIST
post-quantum standardization project. There are also new secure multivariate
encryption schemes [6,19].

1.3 The Himq-3 Scheme and the Singularity Attack

The Himq-3 signature scheme proposed by Kyung-Ah Shim et al. in 2017 is a
round 1 candidate of NIST post quantum standardization. It can be viewed as a
variant of multilayer UOV. Himq-3 attempts to be more efficient than rainbow.
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A crucial component of the central map of Himq-3 is a system called L-invertible
cycle system [8]. The function of this L-invertible cycle system is to make the cen-
tral map invertible. Moreover it appears that this system works very efficiently.
The authors claim that it is more efficient to solve the L-invertible cycle system
than a system of linear equations by a Gaussian elimination [17]. However, the
L-invertible cycle system also restricts the values to certain variables. The idea
of our singularity attack is based on such restriction. We claim that if enough
signatures can be collected, we can construct a system of linear equations of
monomials in which the solutions will leak partial information about the private
key.

1.4 Our Contributions

The main result of this paper is a complete attack on a NIST round 1 candidate:
the Himq-3 signature scheme. This new attack method is called the singularity
attack. This attack is simple and straightforward. It does not involve polynomial
solving algorithms such as F4/F5 or XL algorithm. Neither do we need the rank
attacks (Minrank/Highrank attacks). The most complicated algorithm in our
attack is just Gaussian elimination. We will show that it is impossible for the
Himq-3 signature scheme and its variant Himq-3F to fulfill the proposed security
level under the singularity attack. We notice that the variables which play a
very important role in inverting the central map cannot be equal to zero in
honest signing process. Hence, the public key of the scheme cannot be treated
as a random multivariate quadratic system. There are some structures in the
public key that we can explore. We will first show that if enough signatures are
obtained, we can figure out how those variables are transformed by the private
key. Next, we will undo the effect of the private keys by separating the variables
and extracting the layers so that the public key can be turned in to the form
where forgeries can be made. We will discuss the complexity of our attack for
each proposed set of parameters, and the experimental results will be provided.
Moreover, we will give a toy example in the appendix to clarify the first step of
our attack.

2 HIMQ-3 Signature Scheme

2.1 Preliminary

General Construction of Bipolar MPKC Signature Scheme. We first
describe the general construction of a Bipolar MPKC signature scheme. Let
Fq be a finite field of order q. The main idea for the construction of MPKC
signature schemes is to construct a polynomial map F : Fn

q → F
m
q , called the

central map, defined by F = (F (1), · · · ,F (m)) of m equations in n variables
such that it is easy to find pre-images for a given vector. To hide the ability to
find pre-images and thus construct a public key from F , one uses two invertible
affine maps S : Fm

q → F
m
q , and T : Fn

q → F
n
q . The public key is the composition
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P = S ◦ F ◦ T . The private keys are the invertible affine maps S, T and the
central map F individually. The signing process for a document is as follows:

F
m
q

S−1

−−−→ F
m
q

F−1

−−−→ F
n
q

T −1

−−−→ F
n
q .

To verify the signature, one goes through the other direction by the public key
P:

F
m
q

P←− F
n
q .

L-Invertible Cycle System. The Himq-3 scheme contains a system of
quadratic equations called L-invertible cycle system. This system makes it pos-
sible for the Himq-3 scheme to invert its central map.

Let Fq be a finite field with 2k elements and l be an odd positive integer.
The L-invertible cycle product system Q over Fq is defined by:

Q : α1x1x2 = β1, α2x2x3 = β2, · · · , αlxlx1 = βl,

where αi and βi are nonzero elements in Fq. We can rewrite the system Q in the
form:

x1x2 = γ1, · · · , xlx1 = γl,

where γi = βi/αi.

Remark 1. Given an L-invertible cycle system Q as above, the solution of the
system can be found as follows:

Let A = γ1γ2 · · · γl and B = γ2γ4 · · · γl−1. We see that x1 =
√

A
B , and xi =

γi−1/xi−1 for i = 2, · · · , l − 1, and xl = γl/x1.

Remark 2. We call the variables in the L-invertible cycle system the cycle vari-
ables and a quadratic product of cycle variables are called cycle product. An
important observation is that in any solution, the value of the cycle variables
must be nonzero.

2.2 Description of the Himq-3 Scheme

The Himq-3 signature scheme can be classified as a new variant of UOV scheme,
which shares the layer structure with the rainbow signature scheme [7]. Namely,
one solves oil variables in previous layer, and plug in the solutions to next layer
to solve new oil variables. We will now describe the particulars of the Himq-3
central map.

Let us denote the finite field by Fq of order q = 2k. Let v, o1, o2, o3 be positive
integers where o1 and o2 are odd, we need the conditions that v ≥ o1 + 1 and
o1 ≥ o2 ≥ o3. Further, let the number of equations m = o1 + o2 + o3 and the
number of variables n = v + m. The Himq-3 central map contains n variables in
the following four types.
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Variables Name

x1, · · · , xv v variables

xv+1, · · · , xv+o1 o1 variables

xv+o1+1, · · · , xv+o1+o2 o2 variables

xv+o1+o2+1, · · · , xv+o1+o2+o3 o3 variables

Define x = (x1, · · · , xn). The central map F = (F (1), · · · ,F (m)) of the Himq-
3 signature scheme is defined by three layers:

First Layer. The first layer contains polynomials

F (i)(X) = Φi(X) + δixv+ixv+i+1

for i = 1, · · · , o1 − 1 and

F (o1)(X) = Φo1(X) + δo1xv+o1xv+1

in which δi is a nonzero constant in Fq. The term Φi(X) is a quadratic polynomial
in v variables (x1, · · · , xv) defined by

Φi(X) =
v∑

j=1

αi,jxjx1+(i+j−1)(mod v)

where αi,j is a nonzero element in Fq. Each polynomial of the first layer consists
of a quadratic polynomial Φi only in v variable in the front and a cycle product
in o1 variables in the end. To invert the first layer, one randomly assigns values
to v variables, which in turn makes the first layer into a L-invertible cycle system
in o1 variables. If the constant terms are nonzero, the system can be easily solved
by Remark 1. Otherwise, randomly assign values to v variables again and repeat
the process.

Second Layer. The polynomials

F (o1+i)(X) = Ψi(X) + δo1+ixv+o1+ixv+o1+i+1

for i = 1, · · · , o2 − 1, and

F (o1+o2)(X) = Ψo2(X) + δo1+o2xv+o1+o2xv+o1+1

form the second layer in which δi is a nonzero constant in Fq. The term Ψi(X)
is a quadratic polynomial in v and o1 variables (x1, · · · , xv+o1) defined by

Ψi(X) =
v∑

j=1

α′
i,jxjxv+(i+j−1)(mod o1)

where α′
i,j is a nonzero element in Fq. Similar to the first layer, each polynomial

of the second layer is formed by a quadratic polynomial Ψi in v and o1 variables
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in the front and a cycle product in o2 variables in the end. To invert the second
layer, one plugs the values assigned to v variables and the solutions to o1 variables
from previous layer into Ψi, then the second layer becomes a L-invertible cycle
system in which o2 variables can be solved provided that the constant terms are
nonzero.

Third Layer. The third layer is composed of the polynomials

F (o1+o2+i)(X) =
∑

v+1≤l≤j≤v+o1

β
(i)
l,j xlxj + Θi(X) + Θ′

i(X) + εixo1+o2+i

for i = 1, · · · , o3, in which β
(i)
l,j and εi are elements in Fq. The polynomials Θi

and Θ′
i are quadratic polynomials in variables (x1, · · · , xn) defined by

Θi(X) =
v+o1∑

j=1

γi,jxjxv+o1+(i+j−1)(mod o2),

and

Θ′
i(X) =

v+o1+o2∑

j=1

γ′
i,jxjxv+o1+o2+(i+j−1)(mod o3)

where γi,j and γ′
i,j are nonzero elements in Fq. We notice also that the o3 variables

are never multiplied together by themselves like oil variables in a UOV scheme.
In addition they only appear in the polynomials of third layer, which makes
the scheme under the threat of the highrank attack [3]. The third layer can be
turned into a linear system in o3 variables only once the random values assigned
to v variables and solutions to o1 and o2 variables from the first and second
layers respectively are plugged in. Hence, o3 variables can be simply solved by a
Gaussian elimination.

Remark 3. The design rationale of the individual Φi, Ψi, Θi, Θ
′
i is to increase the

rank of the symmetric matrices associate to the polynomials so that they achieve
maximum amount of rank for the variables they involve. The purpose of such
design is to prevent the scheme from the minrank attack [11].

We borrow from the authors of Himq-3 the graphs of symmetric matrices asso-
ciated to the quadratic part of central map polynomials [17].
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2.3 The Proposed Parameters

The authors of Himq-3 proposed the following sets of parameters for three dif-
ferent levels of security.

Security level |Fq| v o1 o2 o3

128-bit 28 36 15 15 15

192-bit 28 56 25 25 25

256-bit 28 84 33 33 32

The Himq-3 signature scheme is claimed to be secure against all known
attacks for these three levels of security according to the security analysis pro-
vided in [17]. We will show that the Himq-3 signature scheme meets none of
these three security levels against our singularity attack. The complexities of
our attack on Himq-3 with the last two sets of parameters are even very far
away from the target level of security.

2.4 Compared to Rainbow Signature Scheme

A significant difference between rainbow and Himq-3 is the way to invert the
central map. Rainbow uses the unbalanced oil vinegar structure, to be more spe-
cific, in each layer one solves new oil variables by Gaussian elimination given the
random values assigned to vinegar variables and the solutions to oil variables
from previous layers as new vinegar variables. Different from the rainbow signa-
ture scheme, the Himq-3 signature scheme uses the L-invertible cycle system to
invert the first and second layers, and Gaussian elimination is only performed in
the last layer. Due to this reason, the authors claim that the times of signing and
verification of Himq-3 are respectively 3.1 times and 1.3 times faster than those
of rainbow at the 128-bit level of security [17]. In addition, the sparse polyno-
mials of the central map make the secrete key relatively small. The authors also
claim that the secrete key size of Himq-3 is only 11.5% of that of rainbow. How-
ever, the L-invertible cycle system does not only speed up the signing process,
but also puts restriction on certain variables. As we metioned in earlier, the cycle
variables in the L-invertible cycle system cannot be equal to zero for any validly
made signatures. One can see that the o1 and o2 variables are the cycle variables
in the central map. Therefore, these nonzero variables give away the randomness
of Himq-3. The comparison of key sizes, signature size and performance between
Himq-3 and rainbow can be found in [17].

2.5 Himq-3 Variant: Himq-3F

Himq-3F is a generalization of Himq-3. Himq-3F fully fills the v × v parts in
the first layer and v × o1 parts in the second layer. In addition, it shares the
third layer with Himq-3. However, the quadratic product of the cycle variables
in the central map of Himq-3F remains unchanged. Hence, the way to invert the
central map of Himq-3F is essentially the same as Himq-3.
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3 The Singularity Attack

3.1 Notations and Definitions

The central map of Himq-3

F = (F (1)(x1, · · · , xn), · · · ,F (m)(x1, · · · , xn))

is defined in the same way as in Sect. 2. Let S : Fm
q → F

m
q and T : Fn

q → F
n
q be

two invertible affine linear maps such that the public key is in the form:

P = S ◦ F ◦ T = (P(1)(x1, · · · , xn), · · · ,P(m)(x1, · · · , xn)).

Let Qi be the symmetric matrix associated to the quadratic part of F (i) for
i = 1, · · · ,m. The matrix Pi denotes the symmetric matrix associate to the
quadratic part of public key polynomials P(i) for i = 1, · · · ,m. Let S and T be
the matrix representations of S and T respectively. Next, We define Q′

i = TtQiT
for 1 ≤ i ≤ m, and F ′

i = XtQ′
iX for 1 ≤ i ≤ m.

We further define some subspaces of Fn
q as follows:

V = {X ∈ F
n
q : xv+1 = · · · = xn = 0},

O1 = {X ∈ F
n
q : x1 = · · · = xv = xv+o1+1 = · · · = xn = 0},

O2 = {X ∈ F
n
q : x1 = · · · = xv+o1 = xv+o1+o2+1 = · · · = xn = 0},

O3 = {X ∈ F
n
q : x1 = x2 = · · · = xv+o1+o2 = 0},

V O1O2 = {X ∈ F
n
q : xv+o1+o2+1 = · · · = xn = 0}, and

V O1 = {X ∈ F
n
q : xv+o1+1 = · · · = xn = 0}.

3.2 General Idea of the Attack

The key observation is that the cycle variables cannot be equal to zero when eval-
uated at a honestly generated signature. In addition, this fact does not change
under the change of basis T . In other words, even if T is applied to mix the
variables, the positions in the L-invertible cycle system part in the polynomials
F (i) for 1 ≤ i ≤ o1 + o2 still cannot be equal to zero no matter what linear
combinations of variables are plugged in. Since the scheme is constructed over a
finite field with 2k elements, it is a basic knowledge that if we raise any nonzero
element a in the field to the power of 2k − 1, then a2k−1 = 1. For this reason, if
we evaluate the transformed cycle variables at the signatures under the effect of
T , and then raise their powers to 2k − 1, we will obtain some equations in vari-
ables of T . Thus, if we have access to enough signatures, we will obtain enough
equations. If the system of equations can be solved, we will get partial informa-
tion about the private key T which immediately gives us the transformed cycles
variables. The next step is to use those transformed cycle variables to further
separate the layers and other variables. This can be accomplished easily by basic
linear algebra. The Himq-3F keeps the L-invertible cycle system in the first and
second layer of its central map. The same restriction applies to these variables
in the L-invertible cycle system in Himq-3F. Hence, the singularity attack works
for the Himq-3F as well.
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3.3 Finding the Cycle Variables

Suppose that the private key (F , T ,S) has been generated with its corresponding
public key P = S ◦ F ◦ T . The private key T can be expressed as an invertible
matrix (aij)1≤i,j≤n and a vector b = (b1, · · · , bn) so that for any (x1, · · · , xn) ∈
F

n
q , we have that

T ((x1, · · · , xn)) =

⎡

⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x1

x2

...
xn

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎣

b1
b2
...

bn

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

∑n
i=1 a1ixi + b1∑n
i=1 a2ixi + b2

...∑n
i=1 anixi + bn

⎤

⎥⎥⎥⎦ .

Our goal is to find how the private key T transforms the cycle variables used
in the L-invertible cycle system (up to a multiplication by a non-zero constant).
Namely, we want to find the transformed cycle variables in the form of linear
combinations of γj (

∑n
i=1 ajixi + bj) for v + 1 ≤ j ≤ v + o1 + o2, and for some

nonzero constant γj ∈ Fq. Let us denote a signature by σ = (σ1, · · · , σn), then
for v + 1 ≤ j ≤ v + o1 + o2 we have that

∑n
i=1 ajiσi + bj �= 0 because a cycle

variable cannot be zero when evaluated at a signature by the signing process
as described above. Since Fq is a finite field with q = 2k elements, the nonzero
elements of Fq form a multiplicative group F

∗
q . So for any γj ∈ F

∗
q and for any

signature σ, we obtain that

1 =

(
n∑

i=1

γjajiσi + γjbj

)2k−1

=
k∏

h=1

(
n∑

i=1

γjajiσi + γjbj

)2k−h

As we are working in characteristic two we have that

k∏

h=1

(
n∑

i=1

γjajiσi + γjbj

)2k−h

=
k∏

h=1

(
n∑

i=1

(γjajiσi)2
k−h

+ (γjbj)2
k−h

)
.

Since the vector b is randomly chosen, we first consider the main case when
bj �= 0. The case in which bj = 0 can be solved analogously. Now we can set
γj = b−1

j to obtain

k∏

h=1

(
n∑

i=1

(b−1
j ajiσi)2

k−h

+ 1

)
= 1.

Let ãji = b−1
j aij and perform the above product, we get

ã2k−1
j1 σ2k−1

1 + ã2k−2
j1 ãj2σ

2k−2
1 σ2 + · · · + ãjnσn + 1 = 1.

If we treat the individual monomials of the ãij ’s as individual variables, we
obtain a homogeneous linear equation with (n + 1)k − 1 terms. We get another
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homogeneous linear equation if we use a different signature. Hence by collecting
around (n + 1)k − 1 signatures we can build a linear system.

For v + 1 ≤ j ≤ v + o1 + o2, we list the monomials of ãij in the order:
ã2k−1

j1 , ã2k−2
j1 ãj2, · · · , ãjn. Moreover, for each signature σi = (σi,1, · · · , σi,n), the

corresponding coefficients are: σ2k−1
i,1 , σ2k−2

i,1 σi,2, · · · , σi,n. A matrix can be simply
constructed by having these corresponding coefficients as a row for each signature
we use. Therefore the size of this matrix is (n + 1)k − 1 by (n + 1)k − 1 if we use
(n + 1)k − 1 signatures. If follows that we obtain a homogeneous linear system:
Ax = 0, where A is the matrix whose rows are (σ2k−1

i,1 , σ2k−2
i,1 σi,2, · · · , σi,n) for

each signature σi, and the vector x = (ã2k−1
j1 , ã2k−2

j1 ãj2, · · · , ãjn)t.

Remark 4. Assume that bj �= 0, for v + 1 ≤ j ≤ v + o1 + o2, the vector ãj =
(ã2k−1

j1 , ã2k−2
j1 ãj2, · · · , ãjn)t is contained in the kernel of A. Moreover, it is obvious

that they are linearly independent. It follows that Rank(A) ≤ (n + 1)k − 1 −
(o1 + o2). In fact, according to our experiments, with overwhelming probability,
Rank(A) = (n + 1)k − 1 − (o1 + o2).

To solve the linear system, we first perform a Gaussian elimination on this matrix
A, and turn the linear system into a reduced echelon form A′x = 0. We start at
the bottom of A′. If A has rank (n+1)k −1− (o1 +o2), then in the last nonzero
row of A′, most entries will equal to zero and the nonzero entries will only appear
in the last o1 + o2 + 1 columns in variables ão1+o2+1

jn , ão1+o2
jn , ão1+o2−1

jn , · · · , ãjn.
Hence, converting this back into a polynomial means we have a univariate poly-
nomial equation which we can thus solve by the Berlekamp’s algorithm. One can
see that if 2k − 1 ≥ o1 + o2 + 1, we will obtain a univariate polynomial. Solving
the univariate polynomial allows us to get our possibilities for ãjn (as the above
equation will be true for any of the ãji’s, v + 1 ≤ j ≤ v + o1 + o2, we will return
all of these values). We then move up the matrix to the first time that ãj(n−1)

appears only with powers of itself and ãjn. As we already know what ãjn can be,
this is also a univariate polynomial equation. For each of our possible solutions
to ãjn, we plug in and get the possible solutions to ãj(n−1). Continue this process
until we collect all the ãji for which bj �= 0. On the other hand, to avoid the
inequality 2k − 1 ≥ o1 + o2 + 1, the size of the field is then forced to be small,
which will reduce the complexity of other attacks such as a direct attack or a
min/high rank attack [17].

Remark 5. The process is essentially the same as for the case bj = 0 except
that we then guess the last available ãji to be non-zero hence enabling us to set
γj = ã−1

ji for that particular ãji. Repeat until all of the ãji are found, which
generally is after the first few guesses. Since there are less variables in this case,
the resulting matrix is of smaller size than the previous matrix. A toy exam is
provided in the Appendix to demonstrate this step.



432 J. Ding et al.

The collection of ãji that we found actually tells us the transformed cycle
variables. Let us denote by

x′
j =

{∑n
i=1 ãjixi + 1 if bj �= 0∑n
i=1 ãjixi if bj = 0

for v + 1 ≤ j ≤ v + o1 + o2, the transformed cycle variables under the effect of
T . Next we will use these variables to further separate the layers.

3.4 Extract the Second Layer

Let us recall how the polynomials of the central map are defined in these three
different layers. Each first layer polynomial contains Φi where only v variables
times one of themselves. Moreover, quadratic terms of a v variable multiplied by
an o3 variable appear in every third layer polynomial. In addition, in a second
layer polynomial, every quadratic term contains a cycle variable (either an o1
or an o2 variable) as a factor. Thus, if we set the cycle variables equal to 0,
the quadratic terms in the polynomials of the second layer will vanish but not
those from first and third layers. Since we found the transformed cycle variables
{x′

v+1, · · · , x′
v+o1+o2

}, we will use them to extract the second layer.
Setting the transformed cycle variables equal to zero can be accomplished by

constructing the quotient ring

Fq[x1, · · · , xn]/〈x′
v+1, · · · , x′

v+o1+o2
〉.

Let φ be the natural homomorphism:

φ : Fq[x1, · · · , xn] −→ Fq[x1, · · · , xn]/〈x′
v+1, · · · , x′

v+o1+o2
〉.

Consider the polynomials φ(P(i)) = P̃(i) for i = 1, · · · ,m. The quadratic terms in
the second layer polynomials will vanish in this quotient ring, while the quadratic
terms in the first and third layer polynomials will not. Let us construct a matrix
M1 whose rows are formed by the coefficients of quadratic terms of each P̃(i)

for i = 1, · · · ,m. The matrix M1 cannot be of full rank because the polyno-
mials P̃(1) · · · , P̃(m) do not contain any quadratic terms from the second layer
polynomials, which already vanish in the quotient ring. If we apply a Gaussian
elimination on this matrix M1, the bottom o2 rows will all be zero, and they
represent the quadratic part of the second layer polynomials in the quotient
ring. By applying the same Gaussian elimination over the public keys, we can
get o2 linear combinations of the polynomials of the second layer by themselves,
namely, o2 linear combinations of F ′

i (equivalently o2 linear combinations of Q′
i)

for o1 + 1 ≤ i ≤ o1 + o2 are found. Let F̄i be those o2 linear combinations of
F ′

o1+1, · · · ,F ′
o1+o2

for i = o1+1, · · · , o1+o2. Let us denote by Q̄i the symmetric
matrices associated to the quadratic part of F̄i for i = o1 + 1, · · · , o1 + o2. The
structure of those polynomials is not visible yet since there is a change of basis T
still acting on them. Having the second layer extracted will enable us to further
separate the variables.
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3.5 Distinguish o1 Variables from o2 Variables

The variables {x′
v+1, · · · , x′

v+o1+o2
} we obtained in Sect. 4.3 can either be a trans-

formed o1 variable or a transformed o2 variable under the change of basis of T .
We will use the second layer that we extracted to distinguish which type of cycle
variable they act under the effect of T . Observe that the quadratic terms in a
second layer polynomial in the central map are either a product of an o1 variable
multiplied by an v variable or a product of an o2 variable multiplied by another
o2 variable. Hence, we can set all the variables x′

v+1, · · · , x′
v+o1+o2

equal to zero
except one. If the one left is a transformed o1 variable under the effect of T , then
quadratic part of F ′

i will not vanish for o1+1 ≤ i ≤ o1+o2. If it is a transformed
o2 variable under the effect of change of basis, then the quadratic part of F ′

i will
vanish for o1 + 1 ≤ i ≤ o1 + o2. As we already obtained o2 linear combinations
F̄i of F ′

o1+1, · · · ,F ′
o1+o2

in Sect. 3.4, we can construct the quotient rings one by
one, and check if the quadratic part of F̄i for i = o1 + 1, · · · , o1 + o2 vanishes or
not in the quotient rings. It follows that we will immediately know which x′

j is
a transformed o1 variable and which one is a transformed o2 variable under the
effect of T .

3.6 Getting the Linear Combinations of First and Second Layers

In the central map, o3 variables only appear in the third layer, and they are
multiplied by v, o1 and o2 variables. Hence, we may use o3 variables to get rid
of the third layer. It is obvious that the space O3 is contained in the kernel of
Qi for o1 + 1 ≤ i ≤ o1 + o2. So it follows that T −1(O3) can be found by taking
intersections of ker Q̄i for o1+1 ≤ i ≤ o1+o2. In addition, for i = o1+1, · · · , o1+
o2, the image of Qi is contained in the space V O1O2. Therefore, T −1(V O1O2)
can be obtained by collecting the images of Q̄i for o1+1 ≤ i ≤ o1+o2. Note that
we may not get the full space T −1(V O1O2) in general, we provide an analysis for
the probability of getting the full space in the Appendix. One will see that for the
proposed parameters, the space can be obtained with overwhelming probability.

Having these two spaces allows us to perform a change of basis on the public
key so that the variables will be placed in their own positions. Take the o3 basis
vectors of T −1(O3) and the v+o1+o2 basis vectors of T −1(V O1O2), and perform
a change of basis on Pi for i = 1, · · · ,m. We get new matrices P′

1, · · · ,P′
m. The

quadratic terms of a v, o1 and o2 variable multiplied by an o3 variable will be in
their own submatrix.

The o3 variables do not appear in the polynomials of the first and second
layer at all, hence for a first or second layer polynomial, the submatrix in the
top right/down left corner should vanish. On the other hand, the third layer
polynomials contains quadratic monomials of vo3, o1o3 and o2o3. Hence for a
third layer polynomial, the submatrix in top right/down left corner will not
vanish.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1O2 | O3

∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
− − − − − − −

|

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1O2 | O3

∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
∗ ∗ ∗ ∗ ∗ | ∗
− − − − − − −
∗ ∗ ∗ ∗ ∗ |

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We use a similar method stated in Subsect. 3.4 to get the linear combinations
of polynomials of first and second layer. Let us construct a matrix M2 whose
rows are formed by the entries in the top right (vo1o2 by o3) submatrix of each P′

i

for i = 1, · · · ,m. Then the matrix M2 cannot be full rank since there are o1 +o2
zero rows generated by the first and second layer polynomials which are mixed
by S with other nonzero rows. Apply a Gaussian elimination on the matrix M2,
the bottom o1 + o2 zero rows will represent the linear combinations of first and
second layer polynomials. Apply the same Gaussian elimination over the public
key, one obtains o1 + o2 linear combinations of polynomials F ′

i (equivalently
o1 + o2 linear combinations of Q′

i) for 1 ≤ i ≤ o1 + o2. Due to the change of
basis map T , the structure of those polynomials is not visible. For simplicity, let
Q̃1, · · · , Q̃o1+o2 denote these o1 + o2 linear combinations of matrices Q′

i

3.7 Separate the First Layer Out

Let us consider the symmetric matrices associated to the linear combinations
of polynomials of first and second layers in the central map (these symmetric
matrices can be visualized by overlapping Qi for 1 ≤ i ≤ o1 + o2. See the
pictures of these matrices in Sect. 2). The entries representing the cycle products
of an o2 variable multiplied by one of themselves are in different spots, and the
submatrices of the o2 by o2 part are one off the full rank. Thus, if we take the
images of these symmetric matrices and then take intersections of those image
spaces, we can get rid of images produced by the entries in the o2 by o2 part and
the space V O1 can be obtained. It follows that the space T −1(V O1) can be found
by taking the images of Q̃i for 1 ≤ i ≤ o1 + o2, then taking the intersections.

Now we use a similar method to extract the first layer as we did in Sub-
sect. 3.6. We can perform a change of basis on the public key to turn the variables
to their own positions since we have the space T −1(V O1), the exact transformed
o2 variables under the effect of T , and the space T −1(O3). After performing a
change of basis on Pi for i = 1, · · · ,m, the o2 and o3 variables will go to their
own positions, but v and o1 variables are still mixed together. We obtain the
new matrices P̄i for i = 1, · · · ,m. Recall that in a first layer polynomial, there
are quadratic terms of a v variable multiplied by a v variable, and an o1 vari-
able multiplied by another o1 variable. Moreover, the second layer polynomials
contain quadratic terms of a v variable multiplied by an o1 variable and cycle
products of an o2 variable by an o2 variable. Hence, for a first layer polynomial,
the submatrix of o2 by o2 part will vanish. While for a second layer polynomial,
the submatrix of o2 by o2 part will not vanish.
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1 | O2 O3

∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
− − − − − −

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V O1 | O2 O3

∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
∗ ∗ ∗ ∗ ∗ |
− − − − − −

∗ ∗
∗ ∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us construct a matrix M3 whose rows are formed by the entries of each o2
by o2 submatrix of P̄i for i = 1, · · · ,m. It follows that the matrix M3 cannot be
of full rank because there are o1 zero rows generated by the first layer polynomials
which are mixed by S with other nonzero rows. Perform a Gaussian elimination
on M3, the bottom o1 zero rows represent the first layer polynomials. Let us
apply the same Gaussian elimination on the public key, we can get o1 linear
combinations of first layer polynomials, namely o1 linear combinations of F ′

i

(equivalently o1 linear combinations of Q′
i) for 1 ≤ i ≤ o1. Again, because of the

change of basis map T , no structure can be seen from those polynomials. Let
Q̄1, · · · , Q̄o1 be the o1 linear combinations of Q′

i for i = 1, · · · , o1.

3.8 Getting Transformed V Space

Once the first layer is obtained, it is easy to get the space T −1(V ). In a linear
combination of symmetric matrices Qi for i = 1, · · · , o1, the entries representing
the cycle products of an o1 variable multiplied by another o1 variable are in
different spots, and the submatrix of the o1 by o1 part is one off full rank.
Hence, taking the images of Qi for 1 ≤ i ≤ o1 and then taking the intersections
will yield the space V . It follows that T −1(V ) can be obtained by taking images
of Q̄i for 1 ≤ i ≤ o1 and then taking the intersections.

3.9 Invert Change of Basis

We have extracted the first layer and the second layer from the public key, in
other words, we have undone the work that the private key S does. Additionally,
we now have all the information required to create a change of basis which will
undo T ’s effect of hiding the cycle structure in the public key. We do not need
the exact transformed v and transformed o3 variables as they do not appear
in the L-invertible cycle system. As long as these variables are mapped to a
linear combination of themselves we will have no problem inverting the central
map as done in the original scheme. Hence, having just the spaces of T −1(V )
and T −1(O3) is enough. However, the cycle variables must each be mapped
to another cycle variable. That is, we must know exactly how T changed these
variables, and also its affine part cannot be ignored. Fortunately, we have already
found this up to a scalar multiple when we found x′

v+1, · · · , x′
v+o1+o2

.
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3.10 Complexity

The most complicated step throughout the entire attack is to do a Gaussian
elimination over the square matrix of size (n+1)k −1. The complexity of solving
such linear system is ((n + 1)k − 1)ω, where ω is called the complexity exponent
of linear algebra [1]. The best published estimates to date gives ω ≈ 2.3727 [10,
20]. The complexity of singularity attack on Himq-3 for all three sets proposed
parameters is stated in the table.

|Fq|, v, o1, o2, o3 Security level # of Signatures Complexity ω = 2.3727, ω = 2

28, 36, 15, 15, 15 128-bit 251 2120, 2102

28, 56, 25, 25, 25 192-bit 256 2134, 2112

28, 84, 33, 33, 32 256-bit 260 2143, 2120

It can be seen that the Himq-3 scheme does not meet the target levels of
security. The complexities of our attack on Himq-3 with last two sets of proposed
parameters are much lower than the target levels of security. It is obvious that
the complexity of our attack is dominated by the size of the field. So we do not
leave too much room for the authors of Himq-3 to save the scheme by choosing
different parameters. The set of proposed parameters of Himq-3F for 128-bit
level of security is |Fq| = 28, v = 36, o1 = 13, o2 = 17, o3 = 15. Thus, the
complexity of the singularity attack on Himq-3F for this set of parameters is
approximately 2121 if we use ω = 2.3727 and 2102 if ω = 2. So Himq-3F does not
meet the claimed level of security.

4 Experimental Results

We ran our attack 100 times with Magma of version V2-24 on three sets of
parameters and record the times it took to obtain part of T including evaluating
the signatures. Our hardware is a workstation of Intel Core i7-9700, 8 Core,
12 MB Cache, 3.0 Ghz.

v, o1, o2, o3 Field Find cycle variables Find T −1(V O1O2) Time in seconds

7, 3, 3, 2 q = 23 100 100 7.651

9, 3, 3, 2 q = 23 100 86 20.770

11, 5, 5, 4 q = 23 100 100 302.843

13, 3, 3, 2 q = 23 100 0 115.252
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5 Conclusion

We presented a complete cryptanalysis of a NIST round 1 submission Himq-3.
This attack method may also be applied to other cryptosystems in which there
are some restrictions on its variables. So our singularity attack is a warning
for cryptographers not to restrict the variables used in design of central map
from being zero. According to our complexity analysis and experimental results,
Himq-3 and its variant Himq-3F can be defeated with overwhelming probability
at much lower costs than the target security levels. However, our attack method
does not apply to the rainbow scheme since there is no restriction on any variables
in the scheme.
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support of NSF (Grant: #CNS − 1814221). J. Ding would like to thank NIST, and
the TAFT Research Center for many years’ support. Finally, we are grateful for the
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A Toy Example

We provide a toy example to clarify the step 3.3. In this example, we choose
k = 3, thus our field is the finite field of 23 elements. The finite field will be
represented by {0, 1, w, w2, · · · , w6}, where w is a generator in the multiplicative
group of the finite field. Let n = 2. For the sake of clarity. We use a linear map
instead of a affine map. Our linear map T is randomly chosen to be the matrix

[
w2 w2

w3 w

]
.

Suppose we obtain a set of signatures (x1, x2):

(w, w5), (w5, w), (w2, 1), (w6, w5), (0, w2), (w5, w3), (1, w6), (0, w5),

(0, w2), (1, 0), (w5, w6), (0, w), (w5, w3), (1, w), (w5, 0), (w6, 1), (w6, w3),

(w, w4), (w2, w5), (w3, w), (1, w6), (w, 1), (w2, w), (w2, w), (w4, w), (w4, 1), (w4, w2).

We first construct a generic polynomial g = a1x1 + a2x2. We assume that
this polynomial is never equal to zero. Hence, in this finite field, g2

3−1 =
(a1x1 + a2x2)2

3−1 = 1. We can rewrite this equation as: (a1x1 + a2x2)2
3−1 =

(a1x1 + a2x2)2
3−1

(a1x1 + a2x2)2
3−2

(a1x1 + a2x2)2
3−3

= 1. Since this is a field of
characteristic 2, the equations turns out to be

((a1x1)
23−1

+ (a2x2)
23−1

)((a1x1)
23−2

+ (a2x2)
23−2

)((a1x1)
23−3

+ (a2x2)
23−3

) = 1.

Multiply the product out, we have

a
7
1x

7
1 + a

6
1a2x

6
1x2 + a

5
1a

2
2x

5
1x

2
2 + a

4
1a

3
2x

4
1x

3
2 + a

3
1a

4
2x

3
1x

4
2 + a

2
1a

5
2x

2
1x

5
2 + a1a

6
2x1x

6
2 + a

7
2x

7
2 + 1 = 0.
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We view the products of ai as variables, and xi as coefficients. If we evaluate
these coefficients at the signatures, we get (n + 1)k = 27 vectors which will be
the rows of the matrix. We apply echelon form on this matrix and then remove
the zero rows. The new matrix is:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 w5 0 w4

0 0 1 0 0 0 w2 0 w6

0 0 0 1 0 0 w4 0 w5

0 0 0 0 1 0 w3 0 w
0 0 0 0 0 1 w6 0 w2

0 0 0 0 0 0 0 1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

Our next goal is to turn this matrix back to polynomials. Recall the order of the
monomials, we get 7 multivariate polynomials:

a7
1 + 1

a6
1a2 + w5a1a

6
2 + w4

a5
1a

2
2 + w2a1a

6
2 + w6

a4
1a

3
2 + w4a1a

6
2 + w5

a3
1a

4
2 + w3a1a

6
2 + w

a2
1a

5
2 + w6a1a

6
2 + w2

a7
2 + 1

The first and last polynomials do not help, they are trivial. Remember that
we are not looking for the original values for ai, we only need solutions for ai

up to unit multiple. Therefore, we can set a1 = 1, and if we pick the second
polynomial, we then get a univariate polynomial w5a6

2 + a2 + w4. The roots are
a2 = 1 and a2 = w5.

Let us check our solution with the linear map T =
[
w2 w2

w3 w

]
. It is clear that

a1 = 1 and a2 = 1 are unit multiples of a1 = w2 and a2 = w2. Now if we check
the second row, The original values are:

a1 = w3

a2 = w

If we multiply the inverse of w3 by w, we get w−2 which is exactly equal to w5

in the finite field of 23 elements.

B Getting Transformed V O1O2 Space

We know that there are o1 column vectors in the v × o1 part of each symmetric
matrix Qi for i = o1 + 1, · · · , o1 + o2. So we have o1o2 such vectors. Assume
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that these o1o2 vectors do not span the entire V space. Let us take v − 1 vectors
and look at the span of these v − 1 vectors. Therefore, the probability of the
next vector being in the span of these v − 1 vector is qv−1−1

qv ≈ 1
q . There are

o1o2− (v−1) vectors to check, so the probability of failing to fill the entire space
is 1/qo1o2−(v−1). Thus we can conclude that if o1o2 is larger enough than v, we
can always get the full space. All the sets of proposed parameters satisfy this
condition, so we do not need to worry about this case at all.
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Abstract. Software vulnerabilities in emerging systems, such as the
Internet of Things (IoT), allow for multiple attack vectors that are
exploited by adversaries for malicious intents. One of such vectors is
malware, where limited efforts have been dedicated to IoT malware
analysis, characterization, and understanding. In this paper, we analyze
recent IoT malware through the lenses of static analysis. Towards this,
we reverse-engineer and perform a detailed analysis of almost 2,900 IoT
malware samples of eight different architectures across multiple analy-
sis directions. We conduct string analysis, unveiling operation, unique
textual characteristics, and network dependencies. Through the control
flow graph analysis, we unveil unique graph-theoretic features. Through
the function analysis, we address obfuscation by function approximation.
We then pursue two applications based on our analysis: 1) Combining
various analysis aspects, we reconstruct the infection lifecycle of various
prominent malware families, and 2) using multiple classes of features
obtained from our static analysis, we design a machine learning-based
detection model with features that are robust and an average detection
rate of 99.8%.

Keywords: IoT · Malware · Static analysis · Lifecycle · Detection

1 Introduction

The increasing acceptance of IoT devices by end users has been paralleled with
their increased susceptibility to attacks. Adversaries exploit software on IoT
devices to gain control over them, and create large botnets for launching synchro-
nized attacks [7,18,22,23]. Recently, Mirai, a prominent IoT botnet, recorded
an attack traffic of 620 Gbps [26]. These new adversarial capabilities associated
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with IoT insecurity necessitate efforts for understanding IoT malicious software,
through an in-depth analysis, characterization, and detection.

There has been an increasing number of studies on IoT malware analysis,
although the literature is mainly focused on Mirai analysis [20], due to the diffi-
culty of obtaining other IoT malware and the public availability of Mirai’s source
code. Other prior works have proposed mechanisms for detection by using fea-
tures generated from malware binaries transformed into images [27], by using
features from mobile-applications of IoT devices [6], or by drawing parallels
from Android malware [15,21]. These studies are limited because of not using
IoT malware (specific to embedded devices), being narrowly focused on a small
number of samples, or by being limited in their analysis approaches—see Sect. 5
for details.

Motivated by these shortcomings, we utilize program analysis techniques over
a large number of IoT malware samples to understand their artifacts. Program
analysis used for malware analysis include both static and dynamic approaches.
The dynamic analysis approach requires executing the malware in a sandboxed
environment. While comprehensive, the dynamic analysis approaches suffer from
a limited scalability and a significant run time. On the other hand, static analysis
relies on extracting artifacts from the contents of the binaries, such as strings,
without executing them [13]. We utilize the latter approach for our analysis.

Summary of Findings. Our strings analyses (Sect. 3.1) reveal the operational
and textual characteristics, as well as network dependencies. From these strings,
we report the presence of shell commands, the use of cuss words, as well as
network-related artifacts. Shell commands provided us insights into the steps
that botnets follow for operation, their propagation strategies, and transport
protocols. The cuss words hinted at specific content-based characteristics, while
the network artifacts show the propagation metrics of the botnets. By analyzing
the control flow graph of each IoT malware sample (Sect. 3.2), we also extract
graph-theoretic features and found that those features correspond to tight graphs,
highlighting a shift in IoT malware structure from other related malware, such
as Android. Moreover, the host dependency graph analysis unveiled that a single
host can be part of multiple infections. Finally, through port analysis, we were
able to enumerate the prevalence of non-standard ports that could be blocked
to mitigate attacks. Function-level analysis (Sect. 3.3) unveils useful informa-
tion about the operation of IoT botnets based on the public GNU libraries and
standard functions they use. Noting that functions are a major avenue for obfus-
cation for evasion, we explore deobfuscation by manually visualizing candidate
functions to approximate the main function based on the control flow graph
similarity.

Contributions. In this paper, we make three major contributions. 1. We char-
acterize a set of recent IoT malware samples by analyzing their artifacts obtained
from static program analysis techniques (Sect. 3). The different generated arti-
facts are utilized to understand the theoretic, lexical, and semantic significance
of samples. En route, we address various challenges, including obfuscation via
function approximation; by visualizing the functions for the samples with an
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obfuscated main function, we approximate the hidden main function to allow
the analysis of obfuscated samples. 2. We propose two security operation appli-
cations of our analysis: malware life-cycle reconstruction and automated malware
detection using machine learning (Sect. 4). First, using four classes of features
(meta-data, graph, functions, and strings), we design and evaluate an ML-based
detection system, which provides a high accuracy rate of ≈99.8%. Second, by
analyzing the various components of string and graph features, we reconstruct
the infection, propagation, and the attack strategy of IoT botnets, exemplified by
three case studies – Mirai, Tsunami, and Gafgyt (delegated to the appendix for
the lack of space). The dataset and codes will be made public for benchmarking.

Organization. This paper is organized as follows. We describe our dataset,
samples characteristics, and methodology in Sect. 2. We statically analyze the
malware samples using various techniques in Sect. 3. In Sect. 4, we explain our
benign dataset, the ML algorithms used, features, and also present results of
detection. We then visit the literature, independent research published in the
literature, discuss our results, and compare them to prior work in Sect. 5. We
conclude our study in Sect. 6. The lifecycle reconstruction is in the appendix.

2 Dataset and Methodology

2.1 Dataset

Table 1. Distribution of malware by
architecture.

Arch Malware
# %1

MIPS 600 20.69%
ARM 668 23.04%
I-386 449 15.48%
PPC 270 9.32%
X86 250 8.62%
SH 233 8.04%
M68 217 7.48%
SPR 212 7.33%
Total 2,899 100%

We acquired a dataset of 2,899 mal-
ware samples from IoTPOT [24], a hon-
eypot emulating IoT devices. IoTPOT
implements vulnerable services, such as
telnet, distributed over different coun-
tries [17]. Table 1 shows the samples
distribution across architectures (SPR:
SPARC, SH: Renesas SH, PPC: PowerPC,
M68: Motorola m68k, I-386: Intel 80386,
and x86: x86-64). We note that samples
for ARM and MIPS architectures make up
≈44% of the dataset, and while ARM has the most samples, Motorola SPARC
has the least. Also, the dataset has only 253 samples with 64-bit architectures,
while the remaining 2,646 are 32-bit samples. Samples in our dataset range in size
from 1 kilobyte—a sample first scanned on February 26, 2018—to 2.4 megabytes.

Samples Age. We observed that the malware samples in our dataset were first
seen in VirusTotal [10] between May 17, 2017 and March 2, 2018, with only
2.96% of samples in 2017. Moreover, we observed that the samples exhibit a low
detection rate, i.e., between 0% and 67.35%, and a positive correlation of 0.14
between the total scanners and the positive detection rate.

Malware Families. Using the scan results from VirusTotal and AVClass [25],
which consolidates VirusTotal labels, we assigned known family names to each
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malware sample depending on a majority voting. As a result, our samples rep-
resent seven malware families, with 2,609 out of 2,899 belonging to the Gafgyt
family, which is perhaps explained by its long relative history. Additionally, the
dataset contains 185 Mirai, 64 Tsunami, 7 Hajime, and 32 Singleton samples
(malware that do not have definite family name by majority count). On the
other hand we observe only one sample for each of Lightaidra and IRCbot, and
we include them for the completeness of our analysis.

2.2 Methodology

Static Analysis. We analyzed each of the malware samples in our dataset to
uncover their lexical, syntactic, and semantic features and to understand their
functionality using strings and disassembled codes. Using this information, gen-
erated by automating the reverse-engineering of each sample, we identify various
artifacts for analysis. Embracing an open-source approach, we used Radare2 to
manually inspect a few malware samples per architecture before scaling-up the
analysis using Radare2’s API. We analyzed the strings, flags, jumps, calls, func-
tions, and disassembly to understand samples functionality and behavior.

Challenges. To protect against software piracy, programmers employ obfusca-
tion techniques. Malware authors also employ obfuscation by packing although
to hide portions of the binary and to prevent its analysis and reverse-engineering.
Packers can be of two types, 1. Standard packers are the software packers, either
proprietary or freeware, that declare their identification. For example, Ultimate
Packer for eXecutables (UPX) is a freeware packer that compresses an executable
with a decompression code such that the compressed executable decompresses
itself during the run-time. Out of the 2,899 samples, only ten samples (≈0.35%)
were identified as UPX-packed. 2. Custom Packers are used by malware authors
to evade deobfuscation with standard packers. The custom packers may include
a novel packing or further packing of a standard packer-packed malware, such
that it is challenging to deobfuscate, if not undetectable. We identify 227 sam-
ples (≈7.83%) that have less than ten functions. Among them, 25 samples did
not have any function and are classified by AVClass as Singleton.

For the samples that do not have a main (but have a substantial number of
functions), we analyze their control flow graph and compare it with the CFG of
the ones that have a main function. We notice that their main functions can be
identified for 299 out of 468 such malware samples.

3 Statically Analyzing IoT Malware

For each sample, we began by analyzing its entry-point and the function calls.
We also performed a type-match analysis of all functions for all architectures,
except for the SH architecture, which causes a segmentation fault (total of 233
samples or ≈8%). In the rest of this section, we describe different attributes and
artifacts of static analysis, such as strings, control flow graphs, and functions.
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3.1 String Analysis

For a malware binary, strings are sequences of the printable characters of the
binary contents, and reveal valuable information about its contents and seman-
tics (capabilities). We analyze the strings obtained from each malware sample to
gain insight into the strategy employed by the malware authors, and to exam-
ine its potential as a modality for malware detection. Leveraging the stings, we
identify their offset, followed by disassembly at that offset. The disassembly of
the offset is then analyzed to understand the functionality of the code. Upon
our analysis, we found various details about the malware execution, e.g., creden-
tials, communication protocols, attack propagation, Command and Control (C2)
servers, target IP addresses, and port numbers. Our analysis also revealed that
different families have similar targeted sensitive information (user credentials),
infection, propagation, and attack strategies (explained by shell commands).

Shell Commands. IoT devices use a compressed form of libraries, such as Busy-
box, to attain Linux shell capabilities for configuration and operation. Malware
authors abuse the shell on those devices to implement the malware life cycle:
infection, propagation, and attack. From our analysis, we observed that malware
samples, such as Mirai, use the shell to launch a dictionary attack using a list of
frequently-used or default credentials to gain access to devices. The presence of
strings, such as root, admin, and 12345 in our analysis is used as a cue of those
dictionary attacks. If successful, the malware then attempts to traverse differ-
ent directories followed by downloading malware script or sending or exfiltrating
information, as can be seen in the script snippet in Fig. 1.

Fig. 1. Snippet of information exfiltration.

We uncover the propagation strategies by analyzing the shell commands.
Figure 2 lists a variety of shell commands used for infection propagation or for
obtaining files from a C2 or a dropzone. The use of access permissions and anony-
mous commands, as seen in strings such as chmod, Upgrade-Insecure-Requests,
anonymous ftpget, uncover the usage strategy of the adversary on the devices and
for communication. Our analysis also unveils various commands to remove the
residual binaries and scripts stored in the file system, perhaps to evade detection
through file system scans, as shown in Fig. 2. In this figure, the first command
changes the directory, followed by executing one of two commands, each pulling
a file from a C2 using TFTP, using busybox, and then changing access permis-
sions of the downloaded file. On the other hand, the second command downloads
an application from the C2 using HTTP 1.1. The third command downloads a
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Fig. 2. Shell commands initiating host infection. Note the last command attempts to
remove traces from file system.

file (notice the cuss word in the file name) in the tmp directory, executes it, and
finally removes the downloaded files to evade detection.

Special Words. In the software development communities, jargons are pre-
dominant, and are used in comments as well as in naming variables, which moti-
vated us to study jargons (special words) in the residual strings from our static
analysis to understand them as artifacts and as a lightweight detection feature.
Through our initial manual analysis, we observed that almost all analyzed sam-
ples contained cuss words in their strings. To automate analysis and quantify the
prevalence of cuss words in strings, we created a list of 2,200 cuss words by com-
bining a widely used list of offensive and profane words [14] and public websites
and mailing lists. We observed that ≈97% of the samples contained at least one
of these words. For a conservative analysis, we eliminated words with multiple
meanings from our list—e.g., context overtone, such as execution, threeway, fail,
attack. As a result, we removed 150 words, and limited our list to strictly abusive
words, which reduced the number of malware samples that contain such words
to 92% in their strings, highlighting the significant prevalence of these words.

IP Analysis. Generally, malware communicate with two different types of IP
addresses that may appear in their code. 1. Malware communicate with C2
servers for instructions, such as lists of potential targets, updated binaries, execu-
tion steps, etc. Moreover, an adversary may also exfiltrate information extracted
from the infected hosts. In our analysis, we found that such IP addresses can be
identified by associated command keywords, such as wget, TFTP, POST, and
GET. We designated them as dropzone IP addresses. 2. Malware also com-
municate with IP addresses to be infiltrated. Successful infiltration leads to the
propagation of the malware by recruiting additional bots. We call them target
IP address, our analysis uncover a large number of targets encoded in the bina-
ries of the malware samples. In our analysis, all IP addresses obtained from the
strings that did not qualify as dropzones were labeled as targets.
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Fig. 3. Figure 3(a): Dropzone IP and their possible target IP. A single Dropzone IP
attempts to infect multiple target IPs. Figure 3(b) shows top 28 ports in the samples.
The top two ports are 23 and 666, which appear 992 and 226 times, respectively.

From our analysis, we observed that while the target IPs are associated with
a dropzone, they can be shared between dropzones, leading to a shared target
selection phenomenon. Alternatively, a device can be attacked by multiple drop-
zone IPs, leading to the probable interdependence between malware families
their infections, and associated propagation pattern. An illustration (from our
analysis) is shown in Fig. 3(a), which visualizes three sample dropzone IPs in a
network with their corresponding target IPs, highlighting a clear hierarchy.

Next, we consider visualizing addresses locations for affinity analysis. We
notice that malware samples mask IP addresses encoded into their strings for
multiple reasons, including efficiency and evasion. In our analysis we observed
two masking patterns. 1. Malware samples that mask the last two octets of the
IP addresses (/16), e.g., 13.92.%d.%d. When visualizing the location of those
addresses, we used the network address of the /16 network (i.e., 13.92.1.1). 2.
Malware samples that fully mask addresses, e.g., %d.%d.%d.%d. We discard
those addresses from further analysis, for the lack of sufficient information.

Utilizing the API service of ipinfo.io, we automated the collection of IP
details for the dropzones and the targets to visualize them on the world map.
Figure 4(a) shows the geographical heat map of the dropzone IP addresses and

Fig. 4. Figure 4(a) shows country origin of dropzone IPs and Fig. 3(b) shows target
countries as per future infected IPs
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Table 2. Number of samples by architecture and IANA defined port type. D/P: to
Dynamic/Private.

Arch Known Percentage Registered Percentage D/P Percentage

MIPS 433 72.16% 234 39.00% 10 1.66%

ARM 417 62.42% 145 21.70% 4 0.59%

I-386 321 71.49% 109 24.27% 3 0.66%

PPC 198 73.33% 94 34.81% 5 1.85%

X86 184 73.60% 67 26.80% 4 1.60%

SPR 174 82.07% 61 28.77% 2 0.94%

M68k 172 79.26% 57 26.26% 2 0.92%

Overall 1,899 65.50% 767 26.45% 30 1.03%

Fig. 4(b) shows the heat map for the targets. Overall, we observed 1,761 unique
IPs in 34 countries, forming the dropzones attempting to infect 2,190 distinct
IPs from 78 countries. While most of the dropzone IPs originate from the United
States, most targeted IPs map to China. By clustering the target IP addresses by
their source (C2), we observed shared targets among different dropzones, which
could be due to shared vulnerabilities within these targets allowing for multiple
infections by different malware samples and families. Exploring this possibility
requires a causal analysis, which we leave as a future work.

Port Numbers. Another essential artifact we statically analyze is port num-
bers. Port numbers identify active services on hosts and are the gateway for
attacks and infection. Port numbers uniquely identify a network-based applica-
tion, and are shared among different applications (running on different trans-
port protocols) to share network resources. Port numbers can be assigned auto-
matically by the OS, assigned as default by popular applications, or assigned
manually by users. For an incoming message, an IP address identifies the host
while the port number identifies an application on that host. Typical popu-
lar applications have standard assigned port numbers, while other ports are
unallocated and are free to be used by the users— the Internet Assigned Num-
bers Authority (IANA) [16] designates port numbers as well-known, registered,
and dynamic/private ports. Adversaries may use certain port numbers to evade
detection by firewalls.

We analyzed the port numbers used most by the malware samples by first
categorizing them according to the category designation by IANA. Figure 3(b)
visualizes the distribution of the most prevalent port numbers appearing in our
dataset. We observe the TCP/UDP ports of 23, 666, and 443 as the three most
frequently used. Table 2 also lists the overall distribution of these ports across
architectures targetted by the malware samples, and we notice that ≈66% of the
malware samples used well-known ports for their transportation, while 27.4%
of them used registered or dynamic/private. Interestingly, 27.4% of samples
used port 48101, which is utilized by Mirai to carry out a DoS attack using
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Table 3. Graph Details by architecture and family. Tot: total samples with generated
graphs, Perc.: percentage, Av.#N.: Average number of nodes, Av.#E.: Average number
of edges, Av.SP: Average shortest path, Av.D.: Average density, Fam.: Family, Gfgt:
Gafgyt, Miri: Mirai, Tsn: Tsunami, Hjm: Hajime, Sing: Singleton, Lght: Lightaidra,
I-B: IRCbot

Arch Tot Perc. Av.#N. Av.#E. Av.SP Av.D. Fam. Tot Perc. Av.#N. Av.#E. Av.SP Av.D.

ARM 665 99.55% 64.13 96.66 8.89 0.02 Gfgt 2,609 100% 54.25 80.87 7.55 0.03

MIPS 578 96.33% 59.62 89.86 8.26 0.14 Miri 185 100% 39.25 58.81 4.21 0.28

I-386 449 100% 68.82 103.86 9.61 0.02 Tsn 64 100% 44.78 64.31 5.77 0.03

PPC 270 100% 65.35 98.50 9.00 0.02 Hjm 7 100% 3.00 3.00 0.66 0.50

X86 250 100% 53.73 78.43 7.86 0.02 Sing 7 21.87% 5.57 6.85 0.43 0.01

SH 233 100% 43.24 58.96 4.80 0.03 Lght 1 100% 62.00 93.00 9.37 0.02

M68k 217 100% 1.00 0.00 0.00 0.00 I-B 1 100% 17.00 25.00 3.70 0.09

SPR 212 100% 11.45 15.99 0.49 0.02 Bngn 276 100% 60.90 90.80 3.18 0.09

TCP flooding. By carefully examining each port in the IANA list of port num-
bers, we found what applications run on top of these ports, and complied a
list of port numbers that can be blocked, given that they are unused/abused.
Such port numbers widely used by malware samples include (ordered list):

– 5888
– 22322
– 4574
– 55555
– 7942
– 48101

– 44824
– 7832
– 5017
– 9969
– 13174
– 7373

– 50404
– 24244
– 48101
– 2048
– 8965
– 5001

– 61235
– 65535
– 65422
– 65500
– 19241
– 6892

– 11023
– 33024
– 32676
– 12378
– 20669
– 25566

– 6942
– 12340
– 7773
– 20411
– 31293
– 2378

3.2 Control Flow Graphs Analysis

An important modality for analyzing and detecting malware is their graph prop-
erties. For this analysis, we represent the disassembled codes as basic blocks
based upon the jumps, branches, references, etc. and the calls among them as a
call flow graph (CFG), and explore their properties. For this analysis, the aver-
age shortest path is calculated as, a =

∑
s,t∈V

d(s,t)
n(n−1) , where V is the set of

nodes in the graph, d(s, t) is the shortest path from s to t, and n is the number
of nodes. This property represents the average shortest path between the entry
point (entry0) and the end of the malware program. The density of a graph is
calculated as, d = m

n(n−1) , where m is the number of edges and n is the number
of nodes, and we calculate the average density across graphs for the same archi-
tecture. The fraction of the number of edges out of the total number of possible
edges represents the compactness of the CFG.

Table 3 shows a representation of the graphs, multiple graph-theoretic fea-
tures, sorted by architecture and family. For this analysis, we calculate the aver-
age shortest path of each of the graphs with an edge weight of 1. From those
results, we notice that the graphs vary in size and graph theoretic properties
(sometimes significantly) across architectures, although universally have small
density. They also generally have a relatively long shortest path, and a relatively
similar number of nodes and edges, which are distinct features of IoT malware.
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Table 4. Additional Static Analysis Details by Architecture. R: Reversed, CA: Cross
Architecture (samples that have other architecture names in their strings). Others are
in Table 2. Tuples mean: (# of samples, x100 %)

Arch./Fam. R UDP TCP HTTP CA Graph

ARM (668, 1) (164, 0.24) (151, 0.22) (506, 0.75) (528, 0.79) (665, 0.99)

MIPS (600, 1) (116, 0.19) (114, 0.19) (455, 0.75) (336, 0.56) (578, 0.96)

I-386 (449, 1) (99, 0.22) (93, 0.2) (326, 0.72) (346, 0.77) (449, 1)

PPC (270, 1) (67, 0.24) (60, 0.22) (203, 0.75) (213, 0.78) (270, 1)

X86 (250, 1) (52, 0.20) (47, 0.18) (189, 0.75) (193, 0.77) (250, 1)

SH (233, 1) (0, 0.00) (0, 0.00) (3, 0.01) (1, 0.01) (233, 1)

M68 (217, 1) (49, 0.22) (47, 0.21) (173, 0.79) (170, 0.78) (217, 1)

SPR (212, 1) (49, 0.23) (45, 0.21) (170, 0.8) (168, 0.79) (212, 1)

Gafgyt (2,609, 1) (573, 0.21) (540, 0.20) (1840, 0.70) (965, 0.36) (2,609, 1)

Mirai (185, 1) (1, 0.01) (2, 0.01) (159, 0.85) (1, 0.01) (185, 1)

Tsunami (64, 1) (22, 0.34) (15, 0.23) (26, 0.40) (13, 0.20) (64, 1)

Benign (276, 1) (0, 0.00) (0, 0.00) (0, 0.00) (0, 0.00) (276, 1)

We report that we were not able to extract graphs for three malware samples
for ARM and 22 samples for MIPS, all of which belonged to the Singleton family
and had no observable function information, meaning that it packs even its entry
function thus concealing every instruction in its disassembly. By correlating them
with architecture-based analysis, we could extract graphs for seven out of the 32
malware belonging to the Singleton family.

3.3 Functions Analysis

The functions, whether a library or non-library, impart intuitions about the
functionality of malware, e.g., memory allocations, signal handling, obtaining
IP addresses, etc. Libraries in our analysis refer to GNU standard libraries that
malware samples use for standard functions, such as signal handling and mem-
ory allocation, while non-libraries are custom functions defined by users. In our
analysis, we noticed that about 7% of the samples do not have main function,
and further analysis shows the presence of malware that rename their functions,
including main, with random names. We address this obfuscation in as follows.

Function Approximation. About 7% of the analyzed samples do not have the
main function, and for those samples we manually examined the disassembled
code in search for information the code may reveal despite obfuscation.

Typically, a program does the data loading before starting with the main. As
such, we begin by observing the functions from the entry-point, and moved across
functions successively, starting from this entry-point. We traversed through the
different functions starting offset and observed the disassembled code and the
CFG generated from it. We compared the generated graph from each function
(manually) with the CFG from the main of samples that have a main func-
tion, and observed a probable function that resembles the reference graph of the
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Table 5. Static Analysis Details by Architecture. NM: No main, ND: No Data, NL:
No Load, NT: No Text, CW: Cuss Words, DZ: Dropzone IP, TI: TargetIP, SC: Shell
Command, OS: Obfuscated Strings, OF: Obfuscated Functions, and 1 - x100%. Other
abbreviations are defined in Table 2.

Arch NM ND NL NT CW DZ TI SC OS OF

# %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1

ARM 40 0.05 16 0.02 0 0.00 16 0.02 600 0.89 569 0.85 599 0.89 649 0.97 16 0.02 13 0.01

MIPS 105 0.17 40 0.07 6 0.01 38 0.06 463 0.77 0 0.00 460 0.76 550 0.91 38 0.06 175 0.29

I-386 3 0.01 3 0.01 3 0.01 3 0.01 437 0.97 419 0.93 422 0.93 446 0.99 3 0.01 3 0.01

PPC 30 0.11 5 0.02 0 0.00 5 0.01 263 0.97 0 0.00 262 0.97 264 0.97 5 0.01 1 0.01

X86 35 0.14 1 0.01 0 0.00 1 0.01 247 0.98 0 0.00 240 0.96 249 0.99 1 0.01 0 0.00

SH 18 0.07 230 0.98 230 0.98 230 0.98 1 0.01 0 0.00 0 0.00 3 0.01 230 0.98 0 0.00

M68k 25 0.11 0 0.00 0 0.00 0 0.00 212 0.97 204 0.94 204 0.94 216 0.99 0 0.00 25 0.11

SPR 212 1.00 0 0.00 0 0.00 0 0.00 205 0.96 0 0.00 207 0.97 208 0.98 0 0.00 0 0.00

Table 6. Static analysis details by family. Abbreviations are defined in Table 5, and 1

represents x100%.

Fam. NM ND NL NT CW DZ TI SC OS OF

# %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1 # %1

Gfgt 323 0.12 239 0.09 228 0.08 239 0.09 2361 0.90 1181 0.45 2335 0.89 2363 0.90 239 0.09 76 0.02

Miri 95 0.51 9 0.04 1 0.01 7 0.03 10 0.05 0 0.00 1 0.01 163 0.88 7 0.03 105 0.56

Tsn 10 0.15 10 0.15 10 0.15 10 0.15 53 0.82 11 0.14 54 0.84 54 0.84 10 0.15 0 0.00

Sing 32 1.00 29 0.90 0 0.00 29 0.90 3 0.09 0 0.00 3 0.09 3 0.09 29 0.90 29 0.90

Hjm 7 1.00 7 1.00 0 0.00 7 1.00 0 0.00 0 0.00 0 0.00 0 0.00 7 1.00 7 1.00

Lght 1 0.00 0 0.00 0 0.00 0 0.00 1 1.00 0 0.00 1 1.00 0 0.00 0 0.00 0 0.00

I-B 1 1.00 1 1.00 0 0.00 1 1.00 0 0.00 0 0.00 0 0.00 0 0.00 1 1.00 0 0.00

Bngn 8 2.89 14 0.05 13 0.04 14 0.05 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00

(known) main function. We repeated this experiment for ten malware samples
and were able to approximate the main function successfully for all of them. As
an illustration, Fig. 6 in AppendixA.2 represents the disassembled code of the
Mirai botnet from an entry-point. In this case, and after the seventh instruc-
tion, the program branches to fcn.00008190 which is a possible candidate for
the main. Although we go through all of the other functions, we concluded this
to be the main function for the analyzed sample given the similarity with the
structure obtained from the sample with the main. Note that this approximation
does not require a k×n comparisons—for k candidate main functions against n
graphs from samples with main functions—as confirmed by our analysis.

Table 4, Table 5, and Table 6 summarize the results of our static analysis.
Table 6 shows that only IRCbot samples have no string information, besides
the 25 Singleton malware samples without any visible functions. Apart from
those samples, we show in Table 4 that SH samples do not have any UDP or
TCP artifacts present in their strings, as explained from Table 5, where 98.71%
of the SH samples have no data, load, and text sections, and demonstrating
the level of packing in Reseas SH malware. Additionally, we see that none of
the families among Singleton, Hajime, Lightaidra, and IRCbot have traces of
transport protocols in their strings.
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4 Malware Detection

Our static analysis uncovers a wide range of features that are not only valuable
for characterizing IoT malware, but also can be used for their detection. To
automate this detection process using those features, in this section we explore
the design and evaluation of a machine learning tool for this purpose.

Benign Dataset Curation. To train our detector, we begin by assem-
bling a dataset of benign applications. Considering the limited options, we
extracted ELF files from Linux-based WiFi router firmware, assembled from
OpenWrt.org [9], a repository for Linux-based embedded device’s firmware.

Using the attributes of analysis for malware in Tables 4, 5 and 6, we generated
the properties of the benign samples (listed in Table 4 and Table 6 in the last
row). From our analysis, we notice that while most of the malicious samples
contained cuss words, none of the benign samples contained such words. We also
notice that none of the benign samples is packed, with no transport protocol
information observable in their binaries. Finally, Table 3 shows that the average
number of nodes in the benign samples is more than that in any malware family.

4.1 Features, Configurations, and Classifier

Taking into account the obfuscation strategies employed by IoT malware, detect-
ing them notwithstanding obfuscation is necessary. Thus, we obtain various fea-
tures for detection, divided into five categories as follows. 1. Metadata. This
category includes the basic size features of the malware, namely the file size,
and the size of text, data, and load sections, respectively (four features in total).
2. Graph. This category includes the CFG analysis results outlined earlier,
including the number of nodes and edges, the average shortest path, etc. (11
features in total). 3. Function. This category describes the different function
names in the code. Although function names are easily obfuscated, obfuscation
techniques such as renaming can be a useful parameter to characterize malware
(145,350 initial features in total). 4. Flag. This category is a combination of
sections, strings, symbols, registers, etc. Since we observe unique characteristics
of malware and benign binaries using strings, e.g., cuss words, we expect this
section to be very discriminative (277,988 features in total). 5. All Features.
This category is a combination of all four categories (301,997 features in total).

We used the feature categories to evaluate the robustness of our classifier.
Where obfuscation is used in a sample, we found that at least one category is
capable of detecting that sample. Five different configurations were considered,
including a separate experiment for each category (and one for all combined fea-
tures). For the last three experiments, the feature dimension was huge, increasing
the training, which necessitate considering feature reduction.

Principal Component Analysis (PCA). PCA can be viewed as a linear
transformation operation on a set of zero mean correlated variables (features
in our study) into low-dimensional uncorrelated principal components (PCs),
preserving the original co-variance structure. In this work, we employed PCA to
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Table 7. Results of the IoT malware classification results using the RF classifier.

Category Feature Random forest

FNR FPR AR

Metadata Raw 0.10 0.50 99.80

Graph Raw 0.80 12.30 98.20

Funcion Raw 4.80 8.30 96.40

PCA 0.10 2.10 99.60

Flag Raw 3.20 10.80 97.10

PCA 0.20 1.10 99.70

Overall Raw 3.50 8.70 96.90

PCA 0.10 1.30 99.80

reduce the features vector dimension while maintaining a high accuracy. Namely,
we used PCA to reduce the feature vector of each sample from ≈1 × 302, 000 to
1 × 1, 500, thus reducing the training and prediction times significantly.

Feature Generation. In order to detect malicious IoT (ELF) malware, we used
the features discussed earlier to generate signatures. We employed text analysis
on the strings, functions, and flags sections, and used them along with the file
metadata and the graph-theoretic features for generation.

For string features, we used “bag of words” to create a feature vector for
every malware and benign sample. Our feature vector represents the number of
times the word appears in a given sample. We also considered every word in the
vocabulary, instead of selected features, because the selected features are part
of the string that we used to create our feature vector.

Random Forest (RF) Classifier. RF classifiers are typically applied in non-
linear classification tasks, where bagging is used with random feature selection
to train individual trees, allowing for a variance reduction in the output of indi-
vidual trees and addressing noisy input datasets. This in turn meets the require-
ments for our malware detection, so we select RF to demonstrate features obtain
from our analysis to discriminate between benign and malicious IoT binaries.

Settings and Metrics. We used 10-fold cross-validation to train our RF-based
classifier, and used the False Positive Rate (FPR), False Negative Rate (FNR),
and Accuracy Rate (AR) as metrics. The FPR is defined as the portion of benign
samples classified as malicious, the FNR is defined as the portion of malicious
samples classified as malicious, and the accuracy is defined as the portion of
the samples in the dataset that are correctly classified (calculated as number of
correctly labeled divided by the number of all samples).
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4.2 Results

The results are shown in Table 7 by averaging ten independent experiment runs
with different initial seeds. The results show the performance when using indi-
vidual feature category, and the overall performance. We observe that even with
code-level obfuscation, malware metadata can be still utilized to detect malware
accurately. Namely, using the metadata features is shown to produce a classi-
fication accuracy of 99.80% in correctly distinguishing malicious from benign
samples. However, we argue the other feature categories are still valuable, and
provide additional robustness even with the similar performance: given that some
features can be manipulated (e.g., metadata can be manipulated by modifying
the section information in the ELF header, to force a desired output of the clas-
sifier when using that feature), other (independent) features such as graph will
still be able to detect the manipulated sample.

5 Related Work and Discussion

Limited prior work is available on IoT malware analysis and detection. In this
section, we review the prior work related to IoT malware analysis and detection,
and the gap that this work attempt to bridge by improvements.

IoT Malware Analysis and Detection. Pa et al. [24] are among the first to
investigate IoT malware by implementing IoTPOT, a telnet based honeypot to
capture IoT malware. However, they did not consider analysis of intrinsic char-
acteristics of the collected samples. Cozzi et al. [8] performed an empirical study
of Linux malware in general for characterization, but did not study them holisti-
cally to understand their execution pattern and features from their source code
that can aid their detection. Kolias et al. [19] analyzed the Mirai botnet from a
network perspective by analyzing its DDoS attacks, and by listing the compo-
nents of the botnet and their operation and communication steps. However, this
work is network-based (dynamic), and does not consider static features.

Angrishi [4] outlined an anatomy of the IoT botnets from the network’s
perspective and did not look at the static features. Donno et al. [11] also inves-
tigated the capability of IoT malware to carry out DDoS attacks by focusing
on the functioning of the Mirai malware. Additionally, Antonakakis et al. [5]
analyzed the network artifacts of the Mirai botnet and showed the ability of the
botnets to target the security-deficient low-end IoT devices. While these studies
analyzed network artifacts, they do not study the code-based features. They are
also limited by the number of malware families they analyze.

For IoT malware detection, Van der Elzen and Van Heugten [12] examined
the ISP traffic to identify IoT malware traffic using existing network-based tech-
niques, but did not consider network artifacts (addresses) in the malware code.
Su et al. [27] detected DDoS-capable IoT malware by leveraging a convolutional
neural network-based detector gray-scale images generated from the Gafgyt and
Mirai binaries with an accuracy of 94%. Milosevic et al. [21] used the memory
and CPU features of android malware for detection with a precision and recall
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of about 84%, albeit dynamic (not static). Aggarwal and Srivastava [1] proposed
securing IoT devices through by implementing Software Defined Network (SDN)
and Edge Computing guards, although they did not examine detection features.
Azmoodeh et al. [6] used a dataset of 128 malware samples for ARM-based IoT
apps from VirusTotal and used Opcodes to classify them as malicious or benign.
However, their study is limited to a single architecture and opcodes sequences.
Furthermore, Alasmary et al. [3] utilized the features generated from the CFG of
the IoT malware towards their detection. However, they do not look at the other
groups of features that we look into in this work. They also do not look into the
features holistically towards understanding the malware’s execution strategy.

Discussion. The prior works have focused mostly on understanding Mirai for
the availability of samples, mostly using dynamic features of CPU and network
usage, and by drawing analogies from Android app-based features for detection.
Alasmary et al. [2] showed that the IoT and Android malware differ from each
other. With a few exceptions, these works do not characterize the semantics
of IoT malware for detection. Obfuscation in the static analysis-based related
work is often ignored, which we address through main function approximation
for malware that do not have a main function. Our work standas out in its
accuracy of 99.8%, given the diversity and comprehensiveness of the features, as
compared to 94% accuracy reported by Su et al. [27]. Unique in our study is the
identification of common ports used for malware communication, highlighting
the usage of non-standard ports by malware samples. We propose that blocking
such ports when not being used by trusted applications may reduce the exposure
to risk. Finally, in AppendixA.1 we use our static analysis artifacts to explain
the infection, propagation, and attack strategy of botnets by their families.

Limitations. This study leverages static analysis towards understanding and
detecting the IoT malware. A major feature utilized for this analysis is strings
and functions. These features, however, can be impacted by obfuscation tech-
niques, e.g., the use of packers and stripped binaries. For such malware, we show
that the metadata information can be used as a detection modality.

6 Conclusion and Future Work

IoT malware is on the rise, with very little work on understanding their capabil-
ities and trends from a static program analysis standpoint. Through static anal-
ysis, we dissect a large number of IoT malware samples for strings, graph struc-
tures, and functions. Among other interesting findings, we uncover unique IoT
malware features; the prevalence of cuss words in strings, multi-infections discov-
ered dropzone/target IP visualization, and compact control flow graph structures.
We then use those insights to pursue IoT malware infection process (life cycle)
reconstruction and a highly-accurate IoT malware detection. While static anal-
ysis provides plenty of information about malware capabilities, malware authors
employ obfuscation techniques, including packers, to limit disassembly. In the
future we will extend our analysis to dynamic behavior and artifacts across the
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same analysis directions obtained from static artifacts. In doing that, we will
explore how dynamic analysis can address samples identified invalid through
static analysis, and explore how dynamic analysis can complement by improving
the lifecycle reconstruction and detection applications.

Acknowledgments. This work was supported in part by a Collaborative Seed Award
(2020) from Cyber Florida and NRF under NRF-2016K1A1A2912757.

A Appendix

A.1 Infection Process Reconstruction

The infection starts with a dictionary attack using parameterized user creden-
tials. Upon successful access, it attempts to access BusyBox or traverse to direc-
tories explicitly mentioned directly or parameterized. Then it downloads pay-
loads from a specified C2 using a protocol, such as HTTP and wget. The down-
loaded file is then given read, write, and execute permissions using the chmod
777 command. The HTTP POST method is used to exfiltrate information from
the host device to the C2. Upon infection the host participates in expanding the
attack network by scanning IPs from a list of target IPs over a different port.
Additionally, the presence of rm -rf reflects at the clearance of its traces to avoid
detection. The malware finally launches a series of flooding attacks, using DNS
amplification, HTTP, SNMP, wget, Junk, and TCP.

Although the malware from different families follow a similar sequence
towards their objectives, we observe the difference in the ways to achieve those
steps. Among the Tsunami family, we observe that the attack is device depen-
dent, shown by the occurrence of words such as, Cisco, Oracle, Zte, and Dream-
box. Table 8 shows that ≈83% of the Tsunami malware use IRC. For the Gafgyt
family, we found that the execution depends on successfully accessing the end-
point using the explicitly mentioned credentials, such as default username-
password combinations. Additionally, for the selection of the target devices,
we observe masked IP addresses (recall the presence of octet mask and full
mask) and IP addresses stored in a file downloaded from C2, as can be seen
in Fig. 5. Also, Table 8 shows the infection strategy of Mirai, Tsunami, Gafgyt,
and Lightaidra variants. It represents the samples among a variant that creates
or traverses directories, or those that have access permission changes. It also
exhibits the prevalence of transport protocols used to carry an attack, the meth-
ods used to download malicious shell scripts for infection, removal of executable
files downloaded from the C2 after execution by family. We observe that 53
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Table 8. Infection statistics of malware families. Cre.: Create Directory, Trav.: Traverse
Directory, Perm.: Access Permission, T.Pr.: Transport Protocol Used R.Tr.: Remove
Traces, T: TCP, U: UDP, W: wget, TF: TFTP, H: HTTP, G: GET, and others are in
Table 2.

Fam. Tot Cre. Trav. Perm. T.Pr. R.Tr. Infection IRC

Gfgt 2,609 516 2,299 2,099 T, U 2,195 W, TF, G, H 1

Miri 185 - 2 1 T, U - W, TF, H -

Tsn 64 11 24 24 T, U 23 W, TF, G, H 53

Lght 1 - - - - - G -

variants out of 64 Tsunami malware use IRC for infection. Although the table
represents a certain vector in the malware behavior, that vector can have broad
implications, within a family. We, however, do not generalize the observation
across-architectures.

Fig. 5. Retrieving a list of target hosts.

A.2 Function Approximation

For the malware that are stripped of their function names, we compare the CFG
from their individual functions and compare CFG manually with the CFG from
the main of the samples that have a main function. For the ten malware samples
that we experimented on, we were able to approximate the main function.
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Fig. 6. A sample disassembly of Mirai malware. Observe the 8th instruction, where the
program branches to the obfuscated main function.
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Abstract. More and more industrial devices are connected to IP-based
networks, as this is essential for the success of Industry 4.0. However,
this interconnection also results in an increased attack surface for var-
ious network-based attacks. One of the easiest attacks to carry out are
DoS attacks, in which the attacked target is overloaded due to high net-
work traffic and corresponding CPU load. Therefore, the attacked device
can no longer provide its regular services. This is especially critical for
devices, which perform Real-Time (RT) operations in industrial pro-
cesses. To protect against DoS attacks, there is the possibility of throt-
tling network traffic at the perimeter, e.g. by a firewall, to develop robust
device architectures. In this paper, we analyze various concepts for secure
device architectures and compare them with regard to their robustness
against DoS attacks. Here, special attention is paid to how the control
process of an industrial controller behaves during the attack. For this
purpose, we compare different schedulers on single-core and dual-core
Linux-based systems, as well as a heterogeneous multi-core architecture
under various network loads and additional system stress.

Keywords: Industrial control systems · Real-time · Denial of service ·
Network-based attack · Flooding

1 Introduction

Modern industrial devices, like Programmable Logic Controllers (PLCs), are
more and more connected to IP-based network structures due to the trend of
Industry 4.0, which is based on network-enabled machines, actuators and sensors.
In addition to controlling a Cyber Physical System (CPS), the connectivity
enables features, like easy configuration, remote data collection, web services,
updating of firmware or uploading of control programs. These features increase
the productivity and comfort of use, but the wide accessibility also enlarges the
attack surface of the industrial controllers through various network-based attack
c© Springer Nature Switzerland AG 2020
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vectors [17]. Furthermore, the historical network isolation by air gaps no longer
applies, making components a possible target for network-based attacks.

The third industrial revolution was founded on the use of PLCs, first intro-
duced by Modicon 1969, which automate the manufacturing process by digital
programming and provided a huge gain of productivity [4]. These devices were
designed without considering any security aspects for their connectivity, since
the devices were separated from IT network infrastructures by the concept of air
gap. This means a physical segregation of the Industrial Control System (ICS)
network from other networks. As a consequence, the air gap for the industrial
processes is nowadays not always guaranteed and other mechanisms are required,
since the communication between IT and OT networks arises due to Industry
4.0.

Many processes in the industrial context require a control loop, that must
react fast and within a certain time, e.g. the fill up process in a bottling plant.
The PLCs, which control the processes, are working in a cyclic manner, i.e. they
repeatedly execute a control program e.g. every 1 ms. Deviation of this cyclic
execution of the process control program can lead to bad consequences, like
too much or too little fill quantity. These systems must provide a deterministic
behavior, i.e. a known latency jitter from stimulus to response within the indus-
trial control program. This deterministic control can be provided by RT capable
devices.

Recent research shows, that the cyclic operations of several commercial con-
trol devices can be influenced by network-based attacks. Niedermaier et al. pre-
sented, that high network traffic loads can affect the cyclic execution of common
PLC devices up to complete system failures [13]. These kind of flooding attacks
enable even less experienced attackers with access to the industrial network to
influence the cyclic execution of control programs and can thereby cause dis-
turbance to controlled physical processes. Two different types of attackers are
considered, as shown in Fig. 1. For instance an external attacker 1 can perform a
Denial of Service (DoS) attack on a service, that is accessible from external net-
works, like the Internet, The second attacker type is an internal attacker 2 who,
in addition to an intended attack with flooding, could also trigger an DoS attack
unintentionally e.g. by executing a network scan. This attacker type differenti-
ation assumes proper firewall configuration, so no flooding attack or scanning,
e.g. for asset management, is possible from external networks.

Vendors of industrial components have to make decisions about the underly-
ing architecture design in an early development state. This early decision must
already consider proper protection against DoS attacks. The recent industrial
security standard IEC 62443-4-2 requires DoS Protection from secure industrial
devices. Therefore a Security-by-Design approach for modern industrial control
devices is obligatory, to achieve robust regular execution of a control task, when
network connectivity is necessary. A secure architecture for industrial control
devices is required, which is also robust against various kinds of network flooding
attacks and under certain system loads. To evaluate suitable system architec-
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Fig. 1. DoS attack scenarios on PLCs addressed in this work.

tures for future PLC designs, influences of certain stress factors on RT execution
must be considered.

The General Purpose Operating System (GPOS) Linux is a common choice
for industrial components, due to need of implementing demanding Graphical
User Interfaces (GUIs) or the possibility, to use open source libraries. In addition
Linux can be used for commercial products and supports multiple hardware
architectures. The implementation of features is commonly less costly on fully
featured operating systems, like Linux, and therefore development duration and
costs are far less, than on systems, based on bare metal or Real Time Operating
System (RTOS) [16]. Linux is a GPOS, but by applying the preempt rt patch,
it becomes RT capabilities [15]. This combination addresses the requirement for
a fully fledged Operating System (OS) and the real-time needs for demanding
industrial control processes.

The contribution of this paper is the systematic measurement of influences
on a control program under network load and CPU stress scenarios, executed
on different device architectures. Further, we discuss the measurement results
and the consequences of architectural choices on the robustness of industrial
components against DoS attacks.

The paper is organized as follows. First we provide a summary of related
work in Sect. 2, followed by the presentation of technical background about RT
systems, PLCs and network-based attacks in Sect. 3. We present the selection
of architectures in Sect. 4. Section 5 describes the method of our measurements
and the measurement setup. Further, the test cases and the results are shown
in Sect. 6, followed by a discussion in Sect. 7. A final conclusion is provided in
Sect. 8.

2 Related Work

Influences of DoS attacks on ICS components are still a topic in research and were
investigated in previous works. Long et al. analyzed DoS attacks on network-
based control systems and how this degrades their performance almost two
decades ago [9]. Although this work discusses DoS attacks on PLCs, the results
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are based on simulation data and no investigations of real devices is done. This
theoretic work handles effects of delay on communication between PLC and
remote devices and not the effects in connection with system load, produced by
receiving many packets.

Markovic et al. also provide measurements of performance degradation under
Distributed Denial of Service (DDoS) attacks, based on simulation data [11]. In
comparison to these works, we want to provide realistic measurement data by
investigating influences on electrical controls of real devices.

Niedermaier et al. presented measurement of common of the shelf PLCs under
certain network loads [13]. The measurements aim for physical influences of
network-based flooding attacks, but lacks architecture comparison to provide a
robust network-enabled PLC design. We use similar measurement routines, but
also discuss architecture approaches and their suitability for future robust PLCs.

Recent research already discusses robust hardware architecture for ICS. Nie-
dermaier et al. presents a dual controller setup, which separates the control task
and the communication part by hardware [14]. This architecture design requires
implementation of a custom dual controller setup and lacks the capability to run
a full fledged OS, like Linux. This concept is not comparable to architectures,
which provide the features of a full OS for functionality next to the process
control, like in the architecture designs within our work.

Lelli et al. discuss the deadline scheduler within Linux and compare the
percentage of missed deadlines with SCHED FIFO and SCHED OTHER under certain
system load scenarios [7]. They come to the conclusion, that SCHED DEADLINE is
suitable for hard RT tasks, if the taskset can be partitioned and the per-core load
is <1. However no results for full system utilization and other sources of load,
e.g. network traffic, are discussed within their work. This worst case scenario for
RT execution is analyzed by our measurements.

On Linux-based RT systems the measurement tool cyclictest is a common
method to determine the kernel latency on all cores of a Device under Test (DuT)
[5]. Linutronix runs continuous tests on multiple hardware platforms with this
tool and applies a defined load during the tests [8]. The test routines contains
certain network communication load, but lack investigation of influences during
network-based attacks, like flooding.

In further work there is already investigation of jitter on RT patched Linux
systems, measured on digital outputs [1,2,12], but none covers external influ-
ences, like high network loads to these systems.

In summary, related work does not cover demanding cyclic execution under
heavy network-based attacks. Therefore we focused our work on creating a test
methodology, which covers these scenarios.

3 Technical Background

This section discusses the topics RT, PLCs and network-based attacks.
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3.1 Real Time

To control a CPS, control devices need to provide RT operations. RT by far does
not mean fast processing, but deterministic and in-time execution of a certain
task. A specific process has to complete and provide its results within a time
mark, known as deadline. RT systems can be classified in the categories soft, firm
and hard [6]. This classification is done by the consequences accompanied with
the miss of a RT system deadline. Deadline misses on soft RT systems lead to a
degradation of the event value after the deadline. Misses on a firm RT system
degrade the value of the event to zero after the deadline. A single deadline miss
on a hard RT system can lead to a complete fault of the controlled process. This
can cause catastrophic consequences, like out-of-control production processes,
destruction of production environment and gear or even hazard to human beings.

3.2 Programmable Logic Controllers (PLC)

PLCs nowadays are the main devices to control ICS and therefore have to provide
RT capability. The conditions, that must be met are highly depending on the
physical process, controlled by the device. Therefore control devices must be
prepared, to provide the required RT capability even in worst case scenarios,
like high system load or during a network-based attack. A control program is
executed on PLCs in a cyclic manner and processes the four steps illustrated in
Fig. 2.

1. Read
inputs

1

2. Program
execution

2

3. House-
keeping, e.g.
networking

3

4. Write
outputs

4

Cycle time

Fig. 2. Program execution on a cycle orientated PLC.

The read inputs stage 1 handles the read of digital or analog inputs on
the PLC. The program execution stage 2 handles the execution of the cyclic
control program. The housekeeping part 3 can service communication requests,
internal checks or diagnostic functionality. The write outputs stage 4 handles
the writing of the logic values back to the electric analog or digital output pins
of the PLC. This control program is executed periodically within the configured
cycle time. Deviation of this cycle time can cause a delayed response on stimuli
from the CPS and therefore disturb the RT controlling.
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3.3 Network-Based Attacks

A known method to achieve deviation on RT devices is network flooding. Net-
work packets produce certain system load at the receiving device on arrival,
even if no payload is handled, since information of the underlying protocols
from some message types are still processed. Parsing and interpreting this infor-
mation already consumes CPU time, even if the receiver has no listening service
running and is not awaiting certain packets. Flooding massive amount of packets
containing Transmission Control Protocol (TCP), synchronize (SYN) packets or
Address Resolution Protocol (ARP) requests for instance are producing high
amount of system load and aim for DoS on the device. This externaly triggered
system load can be used to disturb the regular execution of the receiving device.
Filtering and blocking of certain network packets e.g. with firewall rules can mit-
igate these influences, but degrades also the throughput of the network traffic,
e.g. by limiting the SYN packet rate.

4 Architectures

Robust and distortion free execution of the cyclic industrial control program is
an essential feature of PLCs. For this reason, this work analyzes and compares
the influences of flooding attacks on different device architectures.

The implementation of RT capable devices can be based on various design
approaches. The focus in this paper is on full open source implementations and
therefore the considered solutions lack proprietary concepts and software. In
the following the architecture concepts, which are used as the DuTs within the
measurement procedure, are introduced.

Two architectures, which execute the critical task on a preempt rt patched
Linux are defined: (S) a single-core system and (D) a dual-core system. We
configure these architectures to use the real time schedulers SCHED FIFO (First-
In-First-Out), SCHED RR (Round Robin) and SCHED DEADLINE. In addition (D)
also pins the critical process to CPU2, while the network kernel process runs on
CPU1.

The third variant (C) is a special architecture design, based on a dual-core
Linux system and a co-processor. This co-processor handles the critical control
task, while network communication is handled on the Linux system.

These architecture concepts result in the following test cases:

(S) Single-core system running Linux
(SF) using SCHED FIFO
(SR) using SCHED RR
(SD) using SCHED DEADLINE

(D)] Dual-core system running Linux
(DF) using SCHED FIFO and pinned execution on CPU2
(DR) using SCHED RR and pinned execution on CPU2
(DD) using SCHED DEADLINE and pinned execution on CPU2

(C) Dual-core system running Linux with additional co-processor
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For single-core (S) and dual-core (D) test cases a Raspberry Pi 4 is used.
The Linux image is created with the buildroot environment [3] and enabled
preempt rt patch on Kernel Version 4.19.113. Since the background processes
have influence on process latencies, this minimal setup is used. On the Linux-
based DuT, the static priority schedulers SCHED FIFO and SCHED RR are config-
ured with the highest possible priority of 99. The SCHED DEADLINE configures its
three parameters the following. Runtime is set to 100 000 ns, which is the execu-
tion time assigned to the task within a period, while its deadline and period are
set to 1 000 000 ns.

For the co-processor test case (C), a development board with the STM32MP1
Microcontroller Unit (MCU) from ST Microelectronics is used [19]. The MCU
consists of a dual-core Cortex A7 CPU with additional Cortex M4 co-processor.
This device provides a test case for hardware separated execution.

5 Methodology and Measurement Parameters

The architectures selected for this work are used to implement a minimal RT
industrial process. Thereby, we want to provide measurements and comparison
of influences on the regular execution of a task on these architectures during
network-based attacks and additional synthetic system loads. The results can
give advice for future designs of robust PLCs.

To represent a common cyclic execution of industrial control programs, a
elementary periodical program, that inverts the logic level of a physical output
within every cycle, is used. So the stages program execution 2 and write outputs
4 are present. Other execution stages, like reading inputs 1 or housekeeping 3

are not necessary and thus omitted within our analysis. The minimal control
program is provided for the Linux-based systems (S) and (D), as well as on
the bare metal system (C). The cycle time within our control program is set
to 1 ms in all configured test cases, as this is a common minimal cycle time
for off-the-shelf PLCs. This results in an digital output signal, as illustrated in
Fig. 3.

The regular signal is a square wave signal, which changes the output state
every 1 ms. If no influence occurs, the square wave signal is continuing as
expected. In contrast to this, the square wave signal delays or keeps the cur-
rent output value, when network flooding influences the control program.

2 4 6 8

3.3

Time in ms →

O
ut

pu
t

Regular
Expected
Delayed

Fig. 3. Impacts on cycle time and output signal.



Analysis of Industrial Device Architectures for RT Under DoS Attacks 469

5.1 Setup

To measure the output signal of the DuT, the Saleae Logic Pro logic analyzer
is used [18], to capture the temporal progression of this signal during the test
scenarios. Figure 4 shows a schematic of the measurement setup. The sample
rate is configured to 250 Megasamples per second. This device is connected to a
computer, which is also executing the network stress tests via a direct Gigabit
Ethernet connection to the DuT. Network hops in between might decrease the
packet rate during a full load network attack, therefore we used a direct connec-
tion to simulate the worst case scenario, where the attacker has unlimited access
without any bandwidth limitations.

DuT

ETH

out Logic
analyzer

USB

in

Attack and measurement computer

ETH USB

Electrical output

Attack traffic Control & measure

Fig. 4. Test setup for the attack and measurement.

5.2 Attacking Tools

Network flooding with SYN and ARP packets and network scanning are carried
out on the DuT to disturb the regular execution.

For the first attack, a SYN flood test generates a large amount of SYN
packets, without handling the resulting responses from the DuT. The second
attack is an ARP flood program, which generates gratuitous ARP requests,
which are sent to the DuT.

We also measure the impact of the common network scanning tool nmap [10].
The tool is used to detect configurations of the network connection, e.g. for asset
management in the industrial network. Without rate limitation this tool also
generates massive network load for the DuT. In our test cases a full SYN scan
for all 65535 ports is executed. The use of this tool is not intended to disturb the
receiver device, but since the scan of open ports without scan rate limitation can
generate high network traffic, similar to the SYN flood tool, consequences for the
cyclic control program under this network load were measured. The measurement
period is set to ten seconds for the idle and the attack measurements, due to the
fact, that a full nmap scan on the DuT takes around three to eight seconds in
our setup.
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Additional CPU load is generated to simulate high system utilization, e.g.
brought by regular execution, demanding tasks or further attacks, which aim for
high load generation on the device.

This system load is created with the common command line tool stress-ng
and combined with the SYN and ARP flooding attacks and nmap network scan-
ning. Within this test run, we set one Central Processing Unit (CPU) load
process for single-core systems and two CPU load processes for the dual-core
systems, which get pinned to a CPU each. This results in a user-space process,
which consumes 100% CPU time on all available cores. Additional CPU load
is intended to simulate high system utilization. This is common for demanding
industrial use cases, which require much processing time, at least for certain
time.

5.3 Measurement Procedure

A measurement procedure consists out of three measurements, with a duration
of five minutes each. While one measurement is taken during network attack, the
other two capture the device in idle, before and after the attack. A five seconds
break is implemented between these three captures. The measurement during the
attack gives information about expectable consequences of the attack scenario,
while the measurement before and after the attack is used for comparison to the
regular execution and the idle jitter. The capture after the attack also reveals
information, if the influences of the attack are persistent, e.g. if the system
crashed under the attack load.

6 Results

In this section the measurement results of our setup are presented and outcom-
ings are discussed.

6.1 DoS with Flooding for Single and Dual-core

The analysis with SYN and ARP based network attacks showed, that single-core
configurations, like (SF), (SR) and (SD), have high outliers of their periodic
toggle frequency during attack, in comparison to their idle measurement before
and after. The single-core setups do not show any deviation of mean cycle time,
but have outliers multiple times higher and lower than the mean value. There
are outliers observed, which are multiple times the common cycle time of one
millisecond, while the highest outliers can be found in the single-core setup with
deadline scheduler (SD). These high outliers get compensated by lower outliers,
up to 62 times smaller, than the mean value. This results in a mean cycle time
without deviation, like the idle mean. While faster cyclic execution should work
well for most use cases, the higher outliers conditions delayed execution within
the CPS. This behavior can cause severe disturbance to the controlled physical
process. Both network attacks result in comparable disturbance to the signal,
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especially for (SF) and (SR) the distribution differs and more cycles are found
around the mean cycle time of 1 ms. The results for SYN flooding attack on
(SD), (SF) and (SR) are depicted in Fig. 5. Our measurement for ARP flooding
for the single-core test cases is shown in Fig. 6.

Fig. 5. Single-core 5 min SYN flood
test for (SD), (SF) and (SR)

Fig. 6. Single-core 5 min ARP flood
test for (SD), (SF) and (SR)

In the dual-core scenario with pinning the toggle process to CPU2, an impact
on cycle time during the SYN flood attack is not recognizable for all three test
cases (DD), (DF) and (DR). There are outliers measured during idle and attack,
which jitter a few thousandths around the mean. Figure 7 shows the dual-core
test cases during SYN flooding. The dual-core test cases show minimal higher
outliers during the ARP flooding attack, but the deviation stays around one
percent. ARP flooding for all dual-core test cases is depicted in Fig. 8. Since the
choice for a Linux-based system for RT demands, presupposes the acceptance of
some jitter during the execution of the control process, the measured dual-core
systems provide a low jitter, even under network attack, for the configured cycle
time.

Fig. 7. Dual-core 5 min SYN flood test
for (DD), (DF) and (DR)

Fig. 8. Dual-core 5 min ARP flood test
for (DD), (DF) and (DR)

6.2 DoS with Flooding for Single and Dual-core and CPU Load

In addition to network flooding, synthetic CPU load is generated during the
measurement on the DuT, to simulate high system utilization.
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The single-core configurations (SD), (SF) and (SR) with stress show com-
parable distribution but higher outliers during ARP and SYN flooding, in com-
parison to the measurement without additional CPU load. SYN flooding with
stress is depicted in Fig. 9. ARP flooding with stress is shown in Fig. 10.

Fig. 9. Single-core 5 min SYN flood
test for (SD), (SF) and (SR) with CPU
load

Fig. 10. Single-core 5 min ARP flood
test for (SD), (SF) and (SR) with CPU
load

The dual-core setups with additional stress now have higher outliers during
SYN and ARP flooding. This differs from the measurement of these systems
without additional load, were only ARP resulted minor outliers during attack.
The setups (DF) and (DR) now show higher and lower outliers during network
attack, which results in a jitter around 11–13% .

Fig. 11. Dual-core 5min SYN flood
test for (DD), (DF) and (DR) with
CPU load

Fig. 12. Dual-core 5 min ARP flood
test for (DD), (DF) and (DR) with
CPU load

(DD) with full CPU utilization, shows high outliers even in the idle mea-
surements. These outliers are two times the common cycle time and do not get
worse under attack. So a fully utilized dual-core system, using deadline sched-
uler shows very high jitter, even without additional network load. A full utilized
system using the deadline scheduler with our tested configuration does not pro-
vide a low jitter system, which seems usable for RT controlling needs. This odd
behavior requires further investigation with this test case in addition to a fully
loaded system.
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SYN flooding on the dual-core test cases with additional CPU load is depicted
in Fig. 11 and for ARP flooding in Fig. 12. This shows also the odd behavior of
(DD) under attack, which is similar in the pre and post idle.

6.3 Impacts of Network Scanning

The previously shown scenarios are intended to provoke a DoS of the DuT inten-
tionally. However, network load is not just caused by offensive network traffic,
but also by intentional network services, like scans. Hence, this scenario shows
the effects of a conventional network scanner (nmap) on the different architecture
configurations.

The test cases (SD), (SF) and (SR) have similar outliers than under ARP
and SYN flooding, while there is again no deviation from the mean cycle time.
Dual-core setups (DD), (DF) and (DR) do not show additional outliers during
the nmap scan. Resulting influences during nmap scanning is depicted in Fig. 13.

Fig. 13. Nmap full scan 10 s on single-core and dual-core test cases

6.4 Impacts on Co-processor Architecture (C)

The measurement of the co-processor test case showed no measurable deviation
during all attacks, compared to idle. All measured outliers in the measurements
are within a very low jitter of a view nanoseconds. This is conditioned by the
strict separation between co-processor executing the cyclic program and the
Linux system, which results in a near perfect cyclic signal. Figure 14 depicts test
case (C) under SYN flooding attack, while the other attacks show similar results.
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Fig. 14. Co-processor (C) 5 min SYN Flood

6.5 Network Packets and CPU Load

During the flooding attacks, the attacker sends about 100 000 SYN packets/s to
the DuT. The DuT answers these packets with around 10 000 SYN/ACK and
SYN/RST packets/s.

This indicates, that not all network packets can be processed. The flooding
attack does not crash the network communication, since the DuT constantly
sends packets back to the sender device over the complete measurement period.

To determine the cause of disturbance under network-based attacks, CPU
usage is analyzed for a single-core test case. The CPU load distribution during
a SYN flooding attack is shown in Fig. 15. It can be observed, that during the
attack the software IRQ increases to almost 100 % CPU utilization. This high
utilization has an impact on the lower priority user tasks, e.g. the cyclic toggle
program.

Fig. 15. CPU load during SYN flooding on the single-core Raspberry Pi 4.

7 Discussion

During our measurements the different architecture designs showed very differ-
ent impacts to the different network-based and CPU-based loads. Table 1 and
Table 2 show the highest measured outliers with and without additional CPU
load. For future PLC designs, the results can be a reference for the requirement
of robustness. The measured influences on the control process during network
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and system load determine the choice of the underlying architecture, therefore
the measurement outcome gets summarized to give recommendations.

The introduced hardware separation with a co-processor provides best results
in latency jitter, already in the idle state. But the implementation of such an
architecture requires low-level programming and software development skills. To
provide a deterministic and jitter free controller for CPS, the co-processor solu-
tion is the only acceptable architecture from the measured test cases. This makes
the co-processor architecture the best choice for hard RT demands, which can
not accept single outliers during regular execution. However, already dual-core
systems, with additional task pinning, provide a robust setup for RT demand-
ing industrial control processes. Even if there are influences measurable during
attack or network scans, the measured dual-core setups provide overall a low jit-
ter. If little deviation from expected execution is tolerable for the control task,
multi-core systems, running Linux preempt rt can offer a viable architecture
for executing ICS tasks. Our measurements show, that task pinning in multi-
core systems - (DD), (DF) and (DR) - provide robustness from network flooding
attacks, since without additional load, no impact during attack can be mea-
sured. Even in combination with CPU load, (DF) and (DR) provide low cycle
time delay, around 11–13% , while (DD) suffers from full utilization. This archi-
tecture suits firm real-time needs, were some missed deadlines are tolerable and
do not disturb regular execution.

Table 1. Overview of maximum cycle time, without additional CPU load

Idle SYN flooding ARP flooding Nmap

SD 1.008 ms 27.852 ms 25.685 ms 21.678 ms

SF 1.013 ms 3.438 ms 3.331 ms 2.560 ms

SR 1.008 ms 4.213 ms 3.200 ms 2.603 ms

DD 1.007 ms 1.008 ms 1.011 ms 1.005 ms

DF 1.005 ms 1.006 ms 1.007 ms 1.005 ms

DR 1.006 ms 1.006 ms 1.010 ms 1.005 ms

C 1.000 ms 1.000 ms 1.000 ms 1.000 ms

Single-core solutions - (SD), (SF) and (SR) show high outliers during
network-based attacks. The cyclic execution shows outliers, which are multi-
ple times higher, than the mean cycle time. There are also outliers, which are
multiple times smaller than this mean time. While the higher outliers can cause
massive delay in process execution, faster cycles are tolerable for most scenar-
ios. In addition, it should be mentioned, that the single-core test cases do not
show any deviation in the mean value of the cycle time. Therefore this architec-
ture could be the correct choice for soft real-time control systems, if some high
outliers of regular cyclic execution are neglectable.
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Table 2. Overview of maximum cycle time, with additional CPU load

Idle SYN flooding ARP flooding Nmap

SD 1.018 ms 30.681 ms 69.619 ms 22.143 ms

SF 1.014 ms 4.282 ms 21.389 ms 2.661 ms

SR 1.014 ms 4.438 ms 21.697 ms 2.769 ms

DD 2.043 ms 2.016 ms 2.022 ms 2.027 ms

DF 1.039 ms 1.111 ms 1.113 ms 1.070 ms

DR 1.052 ms 1.122 ms 1.130 ms 1.082 ms

C 1.000 ms 1.000 ms 1.000 ms 1.000 ms

8 Conclusion

In this work, we discussed how different configurations of schedulers and CPU
architectures influence the robustness of ICS devices against high network com-
munication loads. For real-time control processes, a preempt rt patched Linux is
a complex underlying system. This results in a general higher jitter, due to kernel
and scheduling latencies. The use of multi-core systems with real-time patched
Linux and pinning the critical process to a different CPU provides already good
robustness for network flooding attacks, even in combination with high CPU
utilization.

Physical processes, which are controlled by such devices, have specific but var-
ious demands on the RT capabilities of the controlling device. For these reasons,
a general recommendation for a RT capable industrial control device architec-
ture is hard to define, since this choice also depends on factors, like development
and hardware costs, required features of the underlying system and many more.

The outcome of this work can act as a reference to determine the choice
of robust architectures for future PLCs. Robustness of future PLCs against
network-based attacks is essential, due to the increase of connectivity. Therefore
our measurement methodology and results should be considered for the selection
of future architecture for RT industrial devices. If single deadline misses lead to
catastrophic consequences for the control process, developers should reconsider
the usage of Linux preempt rt, since our measurement shows high impact on
single-core and measurable impact on multi-core test cases on the cycle time. If
this jitter is not tolerable for the control process or the controlled CPS has hard
RT requirements, the execution of the control process on a dedicated CPU is
the only feasible solution within our measurements.

The measured heterogeneous multi-CPU architecture, provides Linux fea-
tures and also a co-processor, which creates a predictable and robust RT sys-
tem. But even multi-core Linux systems showed very little jitter, even under
worst case network loads, which makes them suitable for multiple use cases. If
Linux-based systems are used for RT process control, further additional mitiga-
tion strategies e.g. firewall rules must be considered and therefore can be part
of future investigation and measurement.
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Abstract. In recent years, with the problem of network security is getting worse,
the network threat situation assessment becomes an important approach to solve
these problems. Aiming at the traditional methods based on data category tag that
has high modeling cost, low efficiency, and a long period in the network threat
situation assessment, this paper proposes a Variational-Generative (V-G) network
assessment method. Firstly, we design the V-G network which is composed of
VAE’s encoder and GAN’s discriminator and obtain the reconstruction error of
each layer network by training the network collection layer of the V-G network
with normal network traffic. Then, conduct the reconstruction error learning by
the 3-layer variational autoencoder of the output layer and calculate the abnormal
threshold of the training. Moreover, carry out the group threat testing with the test
dataset contains abnormal network traffic and calculate the threat probability of
each test group. Finally, obtain the Threat Situation Value (TSV) according to the
threat probability and the threat impact. The simulation results show that compared
with the other methods, this proposed method can evaluate the overall situation of
network security threat more intuitively and has a stronger characterization ability
for network threats.

Keywords: Unsupervised learning · V-G network · Network security threat ·
Threat probability · Threat situation assessment

1 Introduction

The rapid rise of newnetwork technologies such as big data, cloud computing, andmobile
internet have injected powerful impetus into social development. However, at the same
time, network security issues have become increasingly prominent. To strengthen the
construction of the network security defense system and deal with the emerging new
threat attacks in the network environment effectively, the stable and efficient Network
Threat Situation Assessment (NTSA) method has become an important research topic.
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Network threat situation assessment can evaluate the current network security situ-
ation from a more comprehensive perspective, provide reliable information for network
managers to make decision analysis, to minimize the loss that is caused by network
threats. However, in recent years, the network is facing a large number of multi-source
threat attacks, which poses a huge threat to individuals and enterprises. The traditional
network threat situation assessment method has the shortcomings of high modeling
cost, low efficiency, and long cycle, which cannot make real-time and effective network
security situation assessment.

To evaluate the network threat situation effectively in a multi-source data environ-
ment, this paper proposes a network threat assessment method based on the variational
generative network. The contributions of this paper are as follow:

(1) The proposed variational generation network can directly learn and model the
preprocessed data without relying on labels.

(2) The assessmentmodel can be applied tomulti-source heterogeneous network traffic
which evaluates network security threat more comprehensively.

(3) The experiment results verify the efficiency of our assessment model.

The rest of this paper is organized as follows. In Sect. 2 we mainly introduce our
related work. We will describe the proposed variational generative network and the
assessment model in Sect. 3. Section 4 presents detailed steps of network threat assess-
ment. Section 5 reports the experiment results and in the end, the conclusion is placed
in Sect. 6.

2 Related Work

Assessment methods based on mathematical models are applied to one of the earliest
methods in network threat situations. They are widely used due to their simple and
effective nature.YangM [1] proposed a cloud computing risk assessmentmodel that used
theMarkovChain (MC)model to describe the randomrisk environment andmeasured the
risk value through Information Entropy (IE). Wang H [2] combined Analytic Hierarchy
Process (AHP) with the hierarchical model of situational assessment and integrated the
fuzzy results of multi-source equipment with D-S evidence theory to solve the problem
of single information source and large deviation of accuracy. Because the evaluation
method based on the mathematical model is greatly influenced by subjective factors,
and there is no objective and unified standard definition variable, it is usually unable to
achieve relatively perfect evaluation results.

Assessmentmethods based on probability and knowledge reasoning arewidely used.
Such methods usually take advantage of the statistical characteristics of prior knowl-
edge and combine with expert knowledge and experience database to build a model,
then evaluate the threat situation by adopting logical reasoning. Sallam H [3] identified
potential network threats through Fuzzy Reasoning (FR) and evaluated network secu-
rity risks according to the attacker’s overall capability, the overall probability of attack
success, and the impact of the attack on three sub-fuzzy reasoning systems. Wen Z C [4]
conducted a quantitative assessment of the network security situation by fusing infor-
mation sources with graded Naive Bayes classifier. The method fused various security
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assessment indicators in combination with the characteristics of mathematical statistics.
However, the limitations of these methods are they cannot give timely feedback and
cannot meet the needs of task processing which are resulting in a decrease in evaluation
efficiency.

Deep learning-based evaluation methods have been widely used in recent years
because of their high efficiency and easy implementation. Feng W [5] extracted internal
and external information features from the original time series network data and trained
and verified the extracted features in the Recursive Neural Network (RNN)model which
had high predictive accuracy and robustness. He F [6] combined the Wavelet Neural
Network (WNN) with the Maximum Overlap Discrete Wavelet Transform (MODWT)
and proposed the network security situation prediction model through the data-driven
method. Nevertheless, in the face of massive network security data, due to the lack
of sufficient prior knowledge and established criteria of data category annotation, the
task of manual category annotation is large and the cost is high, so the supervised data
modeling method based on data label is gradually unable to apply to specific network
scenarios.

Unsupervised Learning (UL) provides an idea to solve the shortcomings of the above
methods. Its main feature is that there is no need to label data categories manually but
to conduct feature learning and modeling on the pre-processed data directly.

3 Proposed Network Threat Situation Assessment Model

In this section,wefirst describe our proposed variational generative network, then present
the network threat situation assessment model.

3.1 Proposed Variational Generative Network

Variational Autoencoder (VAE) and Generative Adversarial Network (GAN)
Autoencoder (AE) andVariationalAutoencoder (VAE) [7] are both composed of encoder
and decoder, the most difference between them is that VAE adds the “noise constraint”
which compels the encoder to produce a collection of latent variables which subject to
the unit Gaussian distribution.

Generative Adversarial Networks (GAN) [8] is one of the most promising deep
generation network models in the field of unsupervised learning, which consists of a
generator and discriminator.

The generator first learns the probability distribution characteristics of a collection
of random noises obtained by direct sampling through a prior distribution. Then try to
generate the data sample Y = {Y1, Y2, Y3, …, Yn} which is the same as the original
sample X = {X1, X2, X3,…, Xn} to “trick” the discriminator which is responsible for
determining the similarity between the generated sample Y and the original sample X.

V-G Network Model. The design of V-G network is based on the following analysis:

(1) VAE can learn in the process of encoding data prior to distribution and generate
samples with good diversity performance. However, while measuring the similar-
ity between generated samples and original samples, it can only use the Mean
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Square Error (MSE) functions to roughly calculate the similarity errors between
data elements.

(2) GAN has a high discriminant standard for generated samples and original samples
when it judges the similarity of samples through discriminator. However, it is diffi-
cult for the fitting of real sample distribution to converge to a better result because
the generator does not add any condition constraint which causes a huge solution
space when generating samples.

To complement each other’s advantages, VAE’s encoder and GAN’s discriminator
are combined to formaV-Gnetwork.Besides,whenmeasuring the similarity, the original
measurement of element error carried out byVAE is transformed into characteristic error
measurement performed by GAN’s discriminator. For this, the V-G network can capture
the data distribution characteristics easier. V-G’s network structure is shown in Fig. 1.

Fig. 1. V-G’s network structure

3.2 Network Threat Situation Assessment Model

The network threat situation assessment model established in this paper is presented in
Fig. 2. The model includes five parts: data acquisition, data preprocessing, multi-source
data feature selection, threat testing, and network threat situation assessment.

We first get the multi-source network traffic data in the data acquisition part and
preprocess the data for further steps. Then conduct feature selection to avoid the redun-
dant data of data source which may increase over-fitting risk of the V-G network in the
training process. We carry out the threat testing based on the V-G network and in the end
we calculate the network threat situation value. The details of the assessment process
will present in the next section.
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Fig. 2. Network threat situation assessment framework

4 Network Threat Situation Assessment Model Based on the V-G
Network

4.1 Data Acquisition

At present, common types of network threats include website information leakage, web
attack threat, DDoS attack vulnerability, host commonly used service vulnerability, sys-
tem configuration security, and so on. To evaluate the network threat situation com-
prehensively, this paper selects four different types of network threat traffic datasets
as the evaluation data sources. They are HTTP CSIC 2010, ADFA-LD, ISOT, and
UNSW-NB15.

TP CSIC 2010 dataset is a set of normal and abnormal network attack traffic data
automatically generated based on web applications. It contains 36,000 normal requests
andmore than 25,000 abnormal requests. There are mainly 3 types of abnormal requests,
which are divided into 16 attack categories. ADFA-LD dataset is a network traffic dataset
based on Linux host-level intrusion detection system, containing 5925 pieces of traffic
data which are mainly divided into 6 attack categories. ISOT dataset is composed of
various botnet traffic and normal network data traffic which includes 19 characteristic
categories. UNSW-NB dataset is mainly composed of 15 2007 DDoS attacks, mainly
divided into 9 types of attacks.

4.2 Data Preprocessing

(4) Character feature numeralization processing

We apply the one-hot encoding method to process the nonnumerical vectors of
datasets. Take the Http CSIC 2010 dataset as an example, we convert the 3 types of



484 H. Yang et al.

HTTP request data (GET, POST, and PUT) into binary eigenvectors (1, 0, 1), (1, 0, 0),
and (1, 1, 0), respectively.

(5) Feature normalization

To suppress the negative impact of these results on the model training, the Max-Min
scaling method is used to unify the feature values in the interval of [0, 1].

4.3 Multi-source Data Feature Selection

To avoid the redundant data of data source which may increase over-fitting risk of the
V-G network in the training process and reduce the generalization ability of the model,
this paper selects features of the data source by filtering the unrelated features of the
data source to ensure the high availability and the nonredundancy of data.

Multi-cluster Feature Selection (MCFS) algorithm is applied for feature selection.
MCFS is an unsupervised feature selection algorithm which does not rely on the data
label information in the dataset. The feature selectionprocess is divided into the following
five steps:

Step 1. Construct k-nearest neighbor graph. For each data point xi corresponding to
the graph with N vertices, a k-nearest neighbor graph is constructed by searching for the
k nearest neighbor points of xi, to obtain the local geometric structure features of the
data distribution and the adjacency weight matrix W. Heat kernel weighting method is
applied to calculate the adjacency weight matrix W among data points and the formula
is as follows:

Wij = e−|xi−xj|2
σ (1)

where xi and xj represent any two data points in the k-nearest neighbor graph and σ is a
fixed parameter.

Step 2. Spectral clustering embedded analysis. Define a diagonal matrix D whose
diagonal elements are Dii = ∑

j = 1W ij and obtain the planar embedding structure of
the data stream by calculating the generalized eigenvalue of Laplace matrix L.

LHk = λDhk (2)

where L = D−W and H = {h1, h2, …, hk} is the set of eigenvectors corresponding to
the minimum generalized eigenvalues obtained by Eq. (2). Each column of H represents
the planar embedding of any data point xi and k represents the inner dimension of the
data.

Step 3. Sparse coefficient learning. After obtaining the planar embedding H of data
points, to evaluate the importance of each feature in its corresponding data dimension
(each column of H) andmeasure the ability of each feature to distinguish data clustering,
MCFS takes the embedded hk given by any column in H as a regression target and the
objective function is represented by Eq. (3):

min
ak

∥
∥
∥hk − QTak

∥
∥
∥
2 + β|ak |min

ak

∥
∥
∥hk − QTak

∥
∥
∥ (3)
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where ak is a m-dimensional vector and Q is a matrix of N × M.
For minimizing the objective function, define the L1-norm of ak as:

|ak | =
M∑

j=1

∣
∣ak,j

∣
∣ (4)

where ak includes the sparse coefficient which is used to approximate the different
features of hk . According to the penalty of L1-norm, the sparse coefficient of ak will
gradually shrink to zero when the test error β is large enough. At this point, a subset of
features that are most relevant to hk will be selected.

Step 4. Calculate the MCFS score. Calculate k sparse coefficient vectors {a1, a2,…,
ak} ∈ RM based on Step 3 for a dataset which contains k clusters, where each non-zero
element ak corresponds to d features. The MCFS score of each feature j is defined as:

MCFSj = max
k

∣
∣ak,j

∣
∣ (5)

where ak,j is the jth element of vector ak .
Step 5. Feature selection. According to Step 4, calculate the MCFS scores of each

class of features in the dataset and sort the MCFS scores of all features in descending.

4.4 Threat Testing

The process of threat testing is mainly divided into four processing stages: network
collection layer training, network parameters optimization, output layer reconstruction
error training, and threat testing. The network threat testing model is shown in Fig. 3.

RMSE

...
...

...

∆∆∆∆

Network 
output 

layer L2

Network 
collection 
layer L1

Threat 
situation 

indicators

Fig. 3. Threat testing model

Let l represent a single V-G network layer, and let L1 and L2 represent the network
collection layer and network output layer respectively. L1 is made out of m l (layer). L2
is a 3-layer variational autoencoder network with k input and output units. The detailed
steps of the threat testing process are designed as follows:
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Step 1. Network collection layer training. Normal network traffic data is input to L1
in batches for training after data preprocessing and multi-source data feature selection.
The training ends when it reaches the Nash equilibrium.

Step 2. Network parameters optimization. To overcome the parameters tend to fall
into local optimization which is caused by the parameter tuning process with Gradient
Descent (GD) method, Newton method (NM), Gauss Newton (GN) method and other
algorithms, this paper uses Levenberg Marquardt (LM) optimization algorithm instead
of GD and GN algorithm to carry out parameter tuning for the V–G network.

In the process of optimizing network parameters, GD, NM, GN, and LM four algo-
rithms find the optimal function matching of high-dimensional data by minimizing the
error sum of squares, namely, minimizing the objective function f (x):

f(x) = min
M∑

j=1

N∑

i=1

f 2i,j(x) (6)

The gradient change of the objective function is:

f
′
(xj,k) =

M∑

j=1

N∑

i=1

fi,j(x)
∂fi,j(x)

∂xj,k
(7)

LM algorithm introduces the identity matrix I to avoid the irreversible phenomenon
that may occur when the Jacobian matrix J (in GN algorithm) approximately represents
the Hessian matrix H (in NM algorithm) and applies the damping factor μ to adjust the
operation of the algorithm. LM algorithm combines GD algorithm and GN algorithm to
dynamically tune parameters.

When optimizing the parameters, the optimization method is determined according
to the gradient descent rate and the damping factor μ. If the gradient descent rate of the
function is too slow, the damping factor μ increases. The GD algorithm is used to find
the global optimal value.

x∗
k+1 = xk − (H + μI)−1f

′
(xk) (8)

If the gradient descent rate of the function is too high, the damping factorμ decreases.
The GN algorithm is used to find the global optimal value.

x∗
k+1 = xk − (V + μI)−1JT f (9)

V = JT J (10)

Step 3. Output layer reconstruction error training. The input item of the output layer
network L2 comes from the 0–1 normalized reconstruction error value of the training
output of each corresponding sub-network in L1. The reconstructed error value of the
output of L1 and L2 is calculated by the Root Mean Square Error (RMSE) function:

RMSE
(→
x ,

→
y
)

=
√
√
√
√1

n

n∑

i=1

(xi − xj)2 (11)
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where �x and �y represent the input sample vector and the generated sample vector
respectively, and n is the dimension of the input vector.

The training error set e* output by L1 can be expressed as e* = {e1, e2, …, em} and
it will be the input item of L2. Then calculate the training error threshold η through the
RMSE function when conducting the error training.

Step 4. Threat testing. After the training of the V-G network collection layer and the
training of output layer reconstruction error, the test dataset contains abnormal network
traffic data is used for threat testing. Select m groups randomly in the same number of
test samples v and take it as the input data of L1. The test error output by L1 in each test
can be expressed as β = {β1, β2, …, βm}.

4.5 Network Security Threat Situation Assessment

In this study, the quantitative assessment results of the network threat situation are
determined by two key factors: threat severity and threat impact.

Threat Severity. The unsupervised networkmodel is used to analyze the characteristics
ofmulti-source network traffic data. Thenormalized test errorβ value obtained according
to the threat test results during each test is taken as the threat probability.

TPi = βi (12)

This paper refers to the “Overall Emergency Plans for National Sudden Public Inci-
dents” [9] and develops the classification of network threat situations combined with
the attack classification of the Snort Chinese user manual. The threat severity is divided
into five levels in this paper: safety, low-risk, mid-risk, high-risk, and super-risk, cor-
responding to the five probability intervals of threat probability: 0.00–0.20, 0.21–0.40,
0.41–0.60, 0.61–0.80 and 0.81–1.00, respectively.

Threat Impact. To classify the degree of impact on the threat probability, the Common
Vulnerability Scoring System (CVSS) [10, 11] is used to develop a classification table
of threat impact (as shown in Table 1).

Table 1. Threat impact classification

Threat impact Probability interval Impact indicators

Confidentiality (C) Integrity (I) Availability (A)

No-effect 0.00–0.40 0 0 0

Low-effect 0.41–0.80 0.22 0.22 0.22

High-effect 0.81–1.00 0.56 0.56 0.56

The formula for calculating the threat impact (TI) is defined as:

TIi = log2

(
x12C + x22I + x32A

3

)

(13)
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C, I, and A represent the confidentiality, integrity, and availability of three threat
impact indicators respectively, x1, x2, and x3 represent the weight of quantified value of
threat impact in three threat impact indicators respectively.

Threat situation value (TSV, denoted as T ) is determined by the threat probability
and the threat impact. The calculation formula is as follows:

T = 1

n

n∑

i=1

(TPi × TIi) (14)

5 Experiments and Results

5.1 Comparative Analysis of Four Kinds Network Model Threat Testing Results

Network Training. To prove the validity of the model in this paper, AE, VAE, GAN,
and V-G four networks are respectively used to form a network set for model training.
Four kinds of models are using the same parameters for network training and the training
data is the same set of normal network traffic data which ensures the comparability of the
results. Model training is carried out when the number of layers of network collection
is 5, 10, 15, 20, and 30.

The training anomaly threshold η output from four types of threat test models in the
stage of model training under the different network layers is shown in Fig. 4.

Fig. 4. Four kinds of models training error threshold η

Figure 4 shows that compared with the other three models, the V-G network obtains
the minimum training error threshold η when the number of the network layer is 15,
suggesting that refactoring capability for processing raw data of V-G model is superior
to the other three models.

In the process of model training, GD, NM,GN, and LM four optimization algorithms
are used to optimize the model parameters of the V-G network and the convergence of
the optimization process of the four algorithms are shown in Table 2.

As can be seen from Table 2, compared with the other three algorithms, though LM
algorithm has more iterations and time consumption, the root-mean-square error value
is the smallest, indicating that the algorithm achieves better convergence effect for the
model which is more helpful for improving the accuracy of threat testing.
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Table 2. The convergence of different optimization algorithms

Optimization algorithms Iterations Time RMSE

GD 220 350 s 0.35

NM 210 370 s 0.37

GN 200 320 s 0.32

LM 240 340 s 0.08

Network Testing. We conduct 200 groups threat tests with the random data in the same
size which is selected from the same test dataset. AE, VAE, GAN, V-G four models are
used to carry out threat testing experiments respectively. The normalized test error β

obtained from the 10 groups of threat test experiments are shown in Fig. 5.

Fig. 5. Threat test results of four kinds models

As can be seen from Fig. 5, compared with the other three types of models, the
V-G network has the largest test error β when the number of network collection layers
reaches 15 with the same test samples which indicate that its ability to detect network
threats is more prominent.

5.2 Network Threat Situation Quantitative Assessment Results Analysis

The test errorβ of eachgroup is normalized to the interval of [0, 1] and is obtained through
the process of network threat testing. The evaluation results of the threat severity and
the threat impact of 10 groups of network threat situations are shown in Table 3.

To increase the objectivity and authenticity of the evaluation results, the threat situa-
tion value was calculated respectively by Back Propagation (BP) [12] and Radial Basis
Function (RBF) [13] methods and compared with the calculated results of the V-G net-
work. The calculation results of the threat situation values of three types of methods in
a certain time period are displayed in Fig. 6.

As can be seen from Fig. 6 (a), at 9 min, 22 min, 47 min, 89 min, 108 min and
153 min, the threat situation value shows a large range of changes which indicates that
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Table 3. Evaluation results of the threat severity and the threat impact

No Threat
probability

Threat severity Threat impact

1 0.187 Safety No-effect

2 0.275 Low-risk No-effect

3 0.238 Low-risk No-effect

4 0.426 Mid-risk Low-effect

5 0.262 Low-risk No-effect

6 0.557 Mid-risk Low-effect

7 0.685 High-risk High-effect

8 0.504 Mid-risk Low-effect

9 0.358 Low-risk No-effect

10 0.281 Low-risk No-effect

Fig. 6. Threat situation value comparison

the threat severity of the network is high at these moments and the network might be
subjected to various types of attacks. It is found that compared with the BP network in
the six moments when the network is threatened, the method in this paper has a stronger
capability of representing the features of network threats.

Similarly, it can be seen from Fig. 6 (b) that at five moments when the network is
attacked, this method has a more intuitive threat characterization effect than the RBF
method.

6 Conclusion

Toovercome the traditionalmethod of network security threat situation assessment based
on the supervised need to rely on data modeling label limitations, this paper proposes
a variational-generative (V–G) network assessment method to conduct network threat
testing tasks. It calculates the threat situation value through quantifying the impact
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factors of network threat situation, then accomplishes the real-time situation of network
threat assessment. The simulation experimental results show that the proposed method
can evaluate the overall situation of network threats more intuitively and has a stronger
characterization ability for network threats.
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References

1. Yang, M.F.: Research on cloud computing security risk assessment based on information
entropy and Markov chain. Int. J. Netw. Secur. 20(4), 664–673 (2018)

2. Wang, H., et al.: Research on network security situation assessment and quantificationmethod
based on analytic hierarchy process. Wireless Pers. Commun. 102(2), 1401–1420 (2018).
https://doi.org/10.1007/s11277-017-5202-3

3. Sallam, H.F.: Cyber security risk assessment using multi fuzzy inference system. Int. J. Eng.
Innov. Technol. (IJETI) 4(8), 13–19 (2015)

4. Wen, Z., Chen, Z., Tang, J.: Network security situation quantitative evaluation method based
on information fusion. J. Beijing Univ. Aeronaut. Astronaut. 42(8), 1593–1602 (2016)

5. Feng, W., Wu, Y., Fan, Y.: A new method for the prediction of network security situations
based on recurrent neural network with gated recurrent unit. Int. J. Intell. Comput. Cybern.
11(4), 511–525 (2018)

6. He, F., Zhang, Y., Liu, D., Dong, Y., Liu, C., Wu, C.: Mixed wavelet-based neural network
model for cyber security situation prediction using MODWT and hurst exponent analysis.
In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol. 10394,
pp. 99–111. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64701-2_8

7. Doersch, C.F.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
8. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the 27th International

Conference on Neural Information Processing Systems, pp. 1–9. MIT Press, Massachusetts,
Cambridge (2014)

9. State Council: The State Council of the People’s Republic of China. Overall Emergency Plans
for National Sudden Public Incidents. China Lesgal Press, Beijing (2006)

10. Mell, P., Scarfone, K., Romanosky, S.: Common vulnerability scoring system. IEEE Secur.
Priv. Mag. 4(6), 85–89 (2006)

11. Common Vulnerability Scoring System v3.0: Specification Document. https://www.first.org/
cvss/specification-document. Accessed 05 Feb 2020

12. Tang, C.H., Yu, S.Z.: A network security situation prediction method based on likelihood BP.
Comput. Sci. 36(11), 97–100 (2009)

13. Lai, Z.Q.: Network Security Situation Prediction Model Based on Hybrid Optimization RBF
Neural Network. Lanzhou University (2017)

https://doi.org/10.1007/s11277-017-5202-3
https://doi.org/10.1007/978-3-319-64701-2_8
http://arxiv.org/abs/1606.05908
https://www.first.org/cvss/specification-document


Crypto V



A Hardware in the Loop Benchmark
Suite to Evaluate NIST LWC Ciphers

on Microcontrollers

Sebastian Renner1,2(B), Enrico Pozzobon1,3, and Jürgen Mottok1

1 OTH Regensburg, Regensburg, Germany
{sebastian1.renner,enrico.pozzobon,juergen.mottok}@othr.de

2 Technical University of Munich, Munich, Germany
3 University of West Bohemia, Pilsen, Czech Republic

Abstract. The National Institute of Standards and Technology (NIST)
started the standardization process for lightweight cryptography algo-
rithms in 2018. By the end of the first round, 32 submissions have been
selected as 2nd round candidates. NIST allowed designers of 2nd round
submissions to provide small updates on both their specifications and
implementation packages. In this work, we introduce a benchmarking
framework for evaluating the performance of NIST Lightweight Cryp-
tography (LWC) candidates on embedded platforms. We show the fea-
tures and application of the framework and explain its design rationale.
Moreover, we provide information on how we aim to present up-to-
date performance figures throughout the NIST LWC competition. In
this paper, we present an excerpt of our software benchmarking results
regarding speed and memory requirements of selected ciphers. All up-
to-date results, including benchmarking different test cases for multiple
variants of each 2nd round algorithm on five different microcontrollers,
are periodically published to a public website. While initially only the
reference implementations were available, the ability of automatically
testing the performance of the candidate algorithms on multiple plat-
forms becomes especially relevant as more optimized implementations
are developed. Finally, we show how the framework can be extended
in different directions: support for more target platforms can be easily
added, different kinds of algorithms can be tested, and other test met-
rics can be acquired. The focus of this paper should rather lay on the
framework design and testing methodology than on the current results,
especially for reference code.

Keywords: Lightweight cryptography · Benchmarking · Embedded
systems · RISC-V

1 Introduction

In the era of rising numbers of interconnected computing devices and frequent
cyber attacks, an increased need for secure communication exists. Standard
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cryptosystems often cannot be applied in areas like sensor networks, since the
devices used here typically consist of low-performance hardware components. To
aid in the process of development, evaluation and standardization of suitable
lightweight cryptography algorithms, the NIST has initiated the Lightweight
Cryptography Project with the final goal to standardize lightweight hash func-
tions and cryptosystems which support authenticated encryption with associated
data (AEAD). NIST received 57 and accepted 56 algorithm proposals, from
which 32 primitives have been announced as 2nd round candidates in August
2019.

In this paper, we introduce a Hardware in the Loop (HIL) benchmarking
setup for the evaluation of software implementations of the submitted LWC
ciphers’ performance. We explain the architecture and design of the framework,
its core hardware and software components and how they interact with each
other. By dissecting the compilation, testing process and result acquisition, we
want to make the framework as transparent as possible.

We started the development of the framework already shortly after the begin-
ning of the NIST LWC competition. First proof-of-concept testing results had
already been acquired during the 1st selection round. Since then, our tests have
been performed periodically on all implementations available for 2nd round can-
didates. Of course, results for the speed, code size or RAM utilization of reference
software implementations provide little value for an actual comparison since the
performance of a cipher here depends highly on its implementation – which will
be optimized over time and therefore its performance figures will change. That’s
why we established a submission system tied to our framework, which allows
designers and developers to hand in their optimized implementations for testing
on a variety of architectures commonly found on embedded hardware.

Contribution. The main contribution of this work is the introduction and
publication of a HIL performance benchmarking framework for authenticated
cipher software implementations of NIST LWC candidates. Our setup integrates
actual hardware test devices, which allows for real world and fair performance
evaluation in a HIL setting in contrast to a simulated environment. We provide
an in-depth description of the software architecture, its implementation and the
communication between the different software and hardware parts. Moreover, we
explain how we designed the testing process and how we perform the measure-
ments for each test case (speed, ROM size and RAM utilization). We also show
how we designed a basic implementation submission system, which allows devel-
opers to get their latest code evaluated on regular basis and how we present the
up-to-date data to the public. Furthermore, we discuss the framework’s capabil-
ity to extend the support of embedded platforms and how it could be tweaked
to allow different kinds of tests, both within the context of the NIST LWC com-
petition and also regarding various other use cases in the domain of algorithm
performance testing.

As a proof-of-concept, we also provide an excerpt of preliminary benchmark-
ing results for 2nd round candidates. As of now, highly optimized software imple-
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mentations, especially for embedded devices, are not yet available for all of the
32 remaining candidates. That is why a reliable comparison of the implementa-
tion between candidates is hard and can lead to false conclusions. However, a
comparison of different implementations of the same cipher can sometimes be of
value when analyzing how special tweaking of (a part) of the algorithm alters
its performance. Furthermore, with the advancement of the NIST LWC compe-
tition, more optimized variants of 2nd or the upcoming 3rd round candidates
are expected, so benchmarks of those more tailored implementations will likely
result in a more meaningful comparison of performance figures in between the
candidates.

Outline. The rest of this paper is structured as follows: The next section will
describe related work in the field of benchmarking cryptographic algorithms. In
Sect. 3, we present our custom HIL benchmarking framework for the NIST LWC
candidates and its features. Furthermore, the test setup, test cases, database
backend and the evaluated microcontroller units (MCUs) are described. Section 4
introduces some preliminary exemplary performance results, before we conclude
our work in Sect. 5. The last section discusses various possible future research
paths.

2 Related Work

This work is about software performance analysis of the NIST LWC project can-
didates. Ankele et al. published software benchmarks of 2nd round submissions
of the CAESAR AEAD competition on Intel desktop processors [1,2]. Cazorla et
al. compared implementations of 17 block ciphers on a 16 bit MCU from Texas
Instruments [4]. Similar research was conducted by Hyncica et al. in 2011. They
evaluate 15 symmetric cryptographic primitives regarding throughput, code size
and storage utilization on three different embedded platforms [8]. Tschofenig et
al. analyzed the performance of cryptographic algorithms, also on MCUs. Their
work focuses on asymmetric elliptic curve ciphers executed on ARM Cortex-
M cores [10]. An evaluation of 19 block and stream ciphers was published by
Dinu et al. in 2015. A previous paper written by the same authors, introduces
a benchmark framework for cryptographic ciphers, which focuses on fair per-
formance testing [5,6]. The frameworks eBacs and SUPERCOP are additional
examples for popular software written for evaluating implementations of crypto-
graphic algorithms [3]. Built to extend SUPERCOP, XBX and XXBX enhance
the testing framework to support the evaluation of hash functions and AEAD
ciphers on embedded devices [9,11].

The research presented in this paper focuses on the evaluation of 2nd round
candidates of the NIST LWC project. The software implementations are bench-
marked using a custom HIL setup featuring multiple different MCU platforms
and architectures. The framework is currently capable of evaluating the perfor-
mance (speed), RAM and ROM utilization of the AEAD algorithms proposed to



498 S. Renner et al.

the NIST LWC competition on five different MCUs. Due to its modular struc-
ture, adding support for more platforms or altering the processed test vectors to
focus on specific use cases is trivial.

3 Methodology

The NIST stated the delivery of a software implementation to be mandatory for
each submitted AEAD cipher in its call for submissions. Besides requirements
concerning the cryptographic primitive itself, the set of guidelines included some
formal regulations. For example, the static directory structure within submis-
sions and the use of a predefined software Application Programming Interface
(API) for cryptographic functions are mentioned. Before developing the method-
ology and test procedures for the software benchmarks, an analysis of these for-
mal requirements was conducted. The goal was to extract the basic guidelines
for the creation of a test setup, which is completely compliant to the defines of
NIST and yet flexible in terms of expandability.

3.1 Framework

After reviewing existing performance benchmark frameworks for AEAD ciphers,
a decision was made towards the development of a custom test tool. That was
because our focus regarding the hardware architecture was set on various instruc-
tion sets, typically found on microcontrollers. Since an intensive study of an
existing framework and probably programming a manual extension would have
been necessary to execute our test cases on the selected MCUs, the decision to
built test routines from scratch was considered to be more suitable in our case.

Our framework consists of a couple of C, Python and Bash scripts, which
are communicating with each other in a mostly automated manner. Moreover,
we use JavaScript, PHP and HTML for the presentation of the results on the
web and an SQL database to store all relevant information. The compile all.py
script is responsible for compiling each submitted cipher implementation for each
of the target platforms. Note, that our routine always tries to compile each sub-
mitted cipher (variant) as it was provided in the ZIP file; no changes are made
to the received implementation. compile all.py fetches the source files of the
crypto aead directories and adds them into the target template structure one
after the other. The MCU-specific template implements a basic runtime environ-
ment and utilizes the NIST API when calling the encryption/decryption func-
tions. Templates are written in C/C++ depending on the development kit of the
target MCU, and are responsible for providing a standardized communication
protocol between the MCU and the rest of the test setup. For each combina-
tion between cipher implementation and template, compile all.py attempts to
produce a binary firmware ready to be flashed on the target MCU.

After the compilation has terminated, the performance benchmarks can be
started for each successfully compiled implementation by using the test.py
script included in each template. Each test.py script implements the flashing
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and communication routines specific to an MCU, while all the common testing
functions are inherited from the imported file test common.py, thus providing
a standardized public interface to the test scheduler.

The test scheduler is another Python script responsible for distributing the
compiled firmware binaries across the available MCU development boards and
starting the correct test.py script, making sure that only one test is executed on
a given piece of hardware but allowing multiple tests to be executed in parallel
on different boards. The test scheduler also provides a web GUI that shows the
results and the error logs of the tests, and allows to repeat failed tests or to
upload the result data to the results database.

Once one of the test.py scripts flashes the binary onto an MCU, it starts
sending one test vector at a time. The tested MCU, upon receiving the test
vector, will toggle the logic value of one of its General-purpose input/output
(GPIO) pins before and after executing the tested cryptographic function, which
allows a logic analyzer attached to the GPIO pin to measure the execution time
precisely. The logic analyzer used is a Saleae Logic Pro 16, driven using the
sigrok library in streaming mode and a custom C program to allow multiplexing
the single logic analyzer to multiple tests that could be running in parallel. The
logic analyzer “multiplexer” software communicates to the individual test.py
instances using UNIX domain sockets (or alternatively TCP sockets).

If the tested MCU allows debugging over JTAG and a suitable JTAG inter-
face is connected, test.py will also capture the contents of the entire Random
Access Memory (RAM) of the MCU before and after performing a cryptographic
operation. This, combined with filling the RAM with a random pattern before
starting the test procedure, allows to evaluate the memory usage of each algo-
rithm.

The architecture of the performance evaluation framework allows testing all
compiled cipher variants in a completely automated manner. The integration of
new target devices requires little effort and no generic test routines need to be
reconfigured – only a specific test.py and the runtime environment for call-
ing the encrypt/decrypt functions from the NIST API on the MCU have to be
provided. The software design of the framework satisfies some common require-
ments regarding test automation. Test data is provided and collected through a
standard interface, which communicates with exchangeable and modular scripts.
Once the performance test has been started, no user intervention is necessary
until all suitable cipher variants have been evaluated. Moreover, a basic logging
functionality is included, and continuous checks of the transmitted data ensure
the recognition and reporting of communication errors.

To conclude the introduction to the test framework, Fig. 1 visualizes its com-
munication model and its previously described parts.

3.2 Test Setup

The physical hardware setup necessary for performing the tests consists in a sin-
gle laptop computer, a Saleae Logic Pro 16 logic analyzer and one development
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Fig. 1. Core components and data flow of the test framework

board for every tested MCU. For boards that don’t have an integrated Univer-
sal Serial Bus (USB)-to-Universal asynchronous receiver/transmitter (UART)
interface or a programmer, external interfaces need to be provided as well. For
this purpose, FT2232H Mini Modules were used since each of them can provide
JTAG and UART connectivity over USB at the same time. The power for each
tested MCU is also provided over USB from the computer.

Since our test framework makes use of the sigrok library, any supported logic
analyzer could be used alternatively. We decided to use a Saleae Logic Pro 16
because it is capable of keeping a fast sampling rate of 100 MHz when using 5
channels. One GPIO pin from each tested MCU is connected to the logic analyzer
to precisely measure the duration of each cryptographic operation as described
previously.

The appropriate software to compile and run the performance tests, including
its underlying functions, concludes the test environment. Table 1 briefly shows
the tools which have been deployed. We used the platform packages provided by
the most recent versions of PlatformIO and CubeMX, which include a complete
toolchain for each of the tested boards. The makefiles for the building of the MCU
firmwares specify the recommended compiler flags from NIST, if applicable on
the MCU.

The presented testing framework is not limited to use of any of the described
software or hardware elements. Support for any additional compiler could easily
be added, the logic analyzer hardware and software can be replaced as long as
the replacements allow for scripting of the logic captures, and protocols other
than UART can be used to communicate with the MCU.



A Hardware in the Loop Benchmark Suite to Evaluate NIST LWC Ciphers 501

Table 1. Overview of used software tools

Software type Tool Version

Compiler (Uno) gcc 5.4.0

Compiler (F1) gcc 9.2.1

Compiler (ESP) gcc 5.2.0

Compiler (F7) gcc 7.3.1

Compiler (R5) gcc 8.2.0

Framework PlatformIO 4.3.3

Framework STM32CubeMX 5.4.0

Interpreter Python 3.7.3

Logic analyzer library libsigrok 0.5.1

Debugger software openocd 0.10.0

3.3 Results Storage

Each successful test produces the following results:

– Time duration of each cryptographic operation.
– Size of the compiled binary.
– Memory utilization, if possible on the tested MCU.

All these results are stored in a MariaDB SQL Database, together with infor-
mation regarding the family, variant, implementation and revision of the tested
cipher, version of the template that was used to compile the test, and timestamp
of the execution of the test. This allows tracking the change in performance of
each algorithm when any of the parts of the setup are changed (like compiler
updates or bugfixes in the templates).

3.4 Test Cases

In this work, we introduce three different basic test cases, which are of rele-
vance when assessing how lightweight a software implementation of a cipher is,
the performance (speed), the size of the binary and the utilization of RAM.
Of course, the test results of each cipher variant can be compared to its com-
petitors within the NIST LWC project. However, we decided to include two
more algorithms in the tests: a what we call nocrypt algorithm, which sim-
ply copies the plaintext from input to output without performing any encryp-
tion, and an implementation of one of the current state-of-the-art AEAD algo-
rithms, AES-GCM. The results of the nocrypt benchmarks give an estimate
for the overheads introduced by the framework for execution time, memory
requirement and code size for all the tested platforms. AES-GCM implemen-
tations represent the state-of-the-art in the field of symmetric AEAD ciphers.
It is a well-tested and standardized cipher. Comparing optimized implementa-
tions of ciphers from the NIST LWC project to AES-GCM can later show how
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they perform against the actual standard in the different test cases. We mod-
ified the AES-GCM implementation found in mbed TLS to respect the NIST
submission guidelines in order to make it testable with our framework. mbed
TLS (formally known as PolarSSL) is part of the popular IoT operating system
mbed OS and is compliant to NIST SP800-38D [7]. The flags MBEDTLS AES
ROM TABLES and MBEDTLS AES FEWER TABLES were added to the con-
figuration of mbed TLS since they are commonly used flags on embedded devices
with a small amount of RAM and Read Only Memory (ROM). MBEDTLS AES
ROM TABLES places the SBOX and RCON tables and their inverses in the
ROM instead of initializing them in the RAM on the first utilization of the AES
algorithm. The MBEDTLS AES FEWER TABLES reduces the binary size by
avoiding the inclusion of some optimizations, bringing it closer to the one from
other LWC entries.

We conduct benchmarks for all officially submitted software implementations
of 2nd round candidates. These include reference implementations, as well as var-
ious optimizations. Results for reference implementations might often not be very
representative. However, they have been included in our early proof-of-concept
tests to verify the correct behavior of the benchmark framework. For a compet-
itive comparsion of different ciphers, always the latest and best optimizations
have to be taken into account. It is also important that different candidates are
on a similar level of optimization to get meaningful results out of a performance
comparison. For example, it is fair to compare two cipher designs implemented
fully in ARM assembly. Besides all official 2nd round implementations avail-
able from the NIST web page, we are continuously testing new and optimized
implementations received through our online submission form or mail. We do not
change any of the implementations, in order to support a neutral evaluation. The
tests include processing the test vectors available in the submitted ZIP archive.
The vectors for AES-GCM have been created using the genkat aead.c file to
ensure a fair evaluation. However, in terms of the benchmark framework, differ-
ent or more test vectors can be included in the test by simply providing them
in the same format that genkat aead.c produces. For the speed test case, each
cipher runs an encryption and decryption of 1089 NIST test vectors stored in a
text file provided in the submission package. After selecting and publishing the
2nd round candidates, NIST allowed reasonable updates on implementations to
fix possible bugs. Since the deadline for these modifications was set to the 27th
of September 2019, our retesting of the 2nd round candidates is based on the
most recent version of the official LWC code repository.

The speed benchmark measures the time for the encryption and decryption
of the message per test vector. If the vector contains associated data, its signing
and verification is also taken into consideration. The time measurement is taken
directly at the target and does not include the transmission time, e.g. on the
serial line. The logic analyzer gathers each encryption/decryption cycle from the
GPIO pin toggle and saves the captured data to a text file upon the processing of
the last test vector. The correct behavior of the cipher is checked by comparing
the calculated plain- and ciphertext to the values in the test vector file. All
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measurement results are later processed and stored into a SQL database. The test
data is then exposed to the public through a website. In that way everyone can
inspect it and also see which test has been conducted at which time. Furthermore,
we provide additional plots to visualize e.g. the encryption/decryption time for
each vector of each speed evaluation.

To compare the code size of the cipher variants, the AES-GCM implementa-
tion and the nocrypt routine are also included in the ROM usage test case. We
integrate each implementation into the template sources and compile a flashable
binary for each cipher and test platform. The size of the nocrypt image can be
seen as the minimal code size, when the template projects are applied. The com-
pilation of each algorithm includes the use of NIST’s provided flags. After the
compile all.py script finishes, the code size of the binaries is determined with
a small bash script utilizing the du system command on Linux. The binary size
can then be compared to the size of the binary produced using no encryption to
remove the overhead of the test framework.

To measure the RAM usage, the memory of the chip is filled with a known
pseudo-random pattern, the test vectors are run, and the memory is dumped
afterwards. By checking the differences between the memory dumps before and
after the algorithm has been executed, it is possible to determine how many
memory locations have been written during the execution of the encryption and
decryption algorithms. The largest number of consecutive untouched memory
locations between the end of the BSS segment and the beginning of the stack is
considered the “unused memory”. The number of additional bytes used by each
algorithm when compared to the nocrypt implementation is seen as the memory
utilization of the examined algorithm.

3.5 Tested Platforms

The benchmarking framework currently supports five different platforms, featur-
ing one 8 bit-, three 32 bit- and one 64 bit MCU and four different architectures.
By choosing this set of supported boards, we aim to cover a wide range of micro-
controllers, which are frequently used in IoT development. Also, the afterwards
described platforms are real-world low-cost-targets for the NIST LWC candi-
dates. With the recent rise of the open-source RISC-V architecture, we decided
to extend our initial selection of platforms with a device, which uses a chip based
on RISC-V. Providing templates for different architectures should show the sim-
ple expansion of the framework on the one hand. On the other hand, the diversity
of the test platforms amplifies a fair evaluation of various cipher optimizations
for low-, mid- and high-performance MCUs. The following paragraphs introduce
the key features of each test platform briefly.

Arduino Uno R3. The Arduino Uno features an 8 bit ATmega328P MCU from
Atmel/Microchip. The AVR-based controller has a clock speed of 16 MHz and
provides 32 KB flash. The ATmega chip represents a simple low-end/low-cost
processor, which is very popular in the community.
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STM32F1 “bluepill”. The “bluepill” or “blackpill” boards are cheap 32 bit
evaluation platforms based on a STM32F103C8T6 MCU. The ARM Cortex-M3
core provides a clock frequency of 72 MHz and 64 KB of flash memory.

STM32 NUCLEO-F746ZG. The F746ZG NUCLEO board is considered a
high-power 32 bit device. It features 1 MB of flash memory and an ARM Cortex-
M7 core which clocks at a frequency of up to 216 MHz. In contrast to the
“bluepill”, this chip is already better suited for more resource-intensive IoT
products.

Espressif ESP32 WROOM. The Espressif ESP32 WROOM evaluation kit
is based on a dual-core 32 bit Xtensa LX6 MCU. With a maximum clock fre-
quency of 240 MHz and a flash memory size of 4 MB, it is currently the second
most powerful platform supported by the test framework. The ESP32 and its
predecessor ESP8266 are widely used for various IoT and automation projects.

Sipeed Maixduino RISC-V 64. The Sipeed Maixduino development board
is including a Kendryte K210 64-bit MCU clocked at a maximum of 400 MHz
and 8 MB on-chip SRAM. The Maixduino also features a MAIX AI module and
an ESP32 MCU used for wireless communication. The module is advertised as
a development platform for AI and IoT applications.

4 Results

In this section, we provide an excerpt of some preliminary results obtained with
our test setup. As stated beforehand, the result dataset is continuously extended
since we receive and also start to contribute optimized implementations of var-
ious ciphers which then get evaluated. All test data is publicly available on
lwc.las3.de. In the following, we show inner-family comparisons of some tested
ciphers as an example. We include the test result for the reference implemen-
tation for completion purposes. However, competitive performance evaluations
should always take into account the maturity and the optimization level of an
implementation.

Figure 2 shows a comparison of the speed benchmark results of the Romu-
lusN1v12 variant on the STM32F7 MCU for two optimized implementations (we
do not consider the reference implementation – ref –to be optimized). rhys refers
to an optimized C implementation developed by Rhys Weatherley1. Weatherley
provided implementations optimized for 32-bit MCUs for all 2nd round candi-
dates. Moreover, some performance figures were also obtained and published2.
Every implementation called rhys in the upcoming plots refers to the work from
Weatherley.

1 https://github.com/rweather/lightweight-crypto.
2 https://rweather.github.io/lightweight-crypto/index.html.

https://lwc.las3.de/
https://github.com/rweather/lightweight-crypto
https://rweather.github.io/lightweight-crypto/index.html
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The armsc result in Fig. 2 corresponds to an implementation from Alexan-
dre Adomnicai optimized for ARM architecture. It can be observed that both
optimizations easily outperform the reference implementation which supports
the claim that reference implementations should not be used for a competitive
comparison. Moreover, the tailored version for the ARM instruction is roughly
69% faster than rhys. This might be linked to the rhys implementation being
optimized for generic 32-bit MCUs, while armsc is specifically built to perform
well on an ARM chip.
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Fig. 2. Speed measurements of RomulusN1v12 on the STM32F7

Figure 3 depicts preliminary speed results for the Xoodyak cipher on the
STM32F103. Besides the reference implementation, we again include the rhys
optimization, as well as implementations from the cipher designers, which have
been extracted from the eXtended Keccak Code Package (XKCP)3. Here, it is
specifically interesting to see how the performance differs between the optimiza-
tions for ARMv6M and ARMv7M. As the STM32F103 features a Cortex-M3
core with ARMv7M architecture, it is reasonable that the xkcp-armv7m variant
outperforms version xkcp-armv6m. The more generic rhys implementation ranks
between the two.

Figure 4 shows the results of the speed benchmark of the GIFT-COFB can-
didate for multiple implementations. The opt32 variant represents an optimiza-
tion for 32-bit platforms, which has originally been submitted within the NIST
package. The arm-* implementations are different optimizations mostly written
in ARM assembly. Again, these have been provided by Alexandre Adomnicai.

3 https://github.com/XKCP/XKCP.

https://github.com/XKCP/XKCP
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The rhys submission performs very similar to the opt32 version, likely because
both have been programmed with optimization strategies for more generic 32-
bit architectures in mind. arm-fast leads on the performance chart, while arm-
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Fig. 5. ROM size measurements of GIFT-COFB128v1 on the STM32F7

compact ranks last. In between these two, arm-balanced is placed. Since arm-fast
obviously targets high-speed use cases and arm-compact seems to mainly aim
for a small ROM footprint, these results reflect this intent.

In Fig. 5, we compare the ROM size of the GIFT-COFB implementations
mentioned beforehand on the STM32F7 platform. We want to especially empha-
size the results for the arm-* optimizations. In contrast to the speed test case,
arm-fast now ranks last, while arm-compact produces the smallest ROM foot-
print. Again, arm-balanced is located in between the other two ARM variants.
This supports the claim that these implementations suit their use case. Depend-
ing if either ROM size and/or speed are a priority, one can choose either imple-
mentation.

5 Conclusion

In this paper, we introduced a framework for benchmarking cipher software
implementations of the NIST LWC project on various MCUs. We gave an
overview over its architecture, the core components and the communication
channels. It was described how the compilation, the test procedure and the
results acquisition are conducted. We explained which performance tests can be
carried out at the moment and showed how the test setup can be extended to
support e.g. more hardware platforms or different test inputs. Additionally, we
introduced an online submission system, job scheduling and database backend
to allow developers to hand in their most recent implementations and receive
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the benchmark results upon test completion. With exposing and continuously
updating the source code and all performance figures on a public website, we
aim for maximum transparency and easy reproducibility of our results.

We also showed an excerpt of preliminary benchmark data for some cipher
implementations in this paper. Due to the high dynamics in the development of
new and more optimized implementations, we decided to not include a full set of
results in a static publication. All test data for all reference and known optimized
implementations will be periodically updated on the public website. Moreover,
as mentioned earlier, tailored software implementations do not currently exist
for every cipher (variant) and therefore a comparison in between the candidates
could sometimes be unfair or lead to wrong conclusions. Again, we believe the
best strategy is to index and test all available upcoming implementations, so that
we will reach a competitive and more comparable data set with the advancement
of the NIST LWC competition.

6 Future Work

Apart from the already provided tests, different real-world test cases e.g. in
the context of a TLS connection could be integrated into the framework. Fur-
thermore, adding support for other MCU platforms could be considered. By
integrating the RISC-V-based chip, we have already proven the possibility of an
easy integration of novel devices. Extending the portfolio especially on the lower-
performance end will be a future project. Another area of research in this con-
text involves side-channel analysis. We could try to add a feature to gather e.g.
power traces during the execution of the ciphers. When capturing these traces in
a predefined and fixed manner, their release could facilitate an investigation of
the ciphers’ resistance against basic side-channel attacks like Correlation Power
Analysis (CPA) and Differential Power Analysis (DPA). Since NIST also spec-
ified resistance against such attacks as a nice-to-have feature in their call for
algorithms, this could help in the evaluation of the candidates.

Acknowledgements. This work is supported by the Bavarian State Ministry of Sci-
ence and the Arts in the framework of the Bavarian Research Institute of Digital
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Abstract. Verifiable delay function (VDF) has been a hot topic in
recent cryptography research since the Ethereum researchers announced
that they intended to use it in Ethereum 2.0. VDF has many applications
in decentralized systems. This paper tries to organize the development
path of VDF and related applications. We compare the performance
of the four state-of-art VDFs by theoretical analysis and experimental
verification. And through experiments, the influence of different type of
groups and different hardware conditions on VDF performance are com-
pared. In the end, we concluded that Wesolowski VDF is more suitable
for decentralized clock applications that require higher time accuracy.
Meanwhile, modular N multiplicative cyclic group is more suitable for
constructing VDF that requires higher time accuracy while the class
group is more suitable for applications with limited space. Besides, the
effect of hardware on various VDFs is basically the same if the four VDFs
use the same group and in the case of the same number of evaluation
steps. Generally speaking, it might have a constant multiple improve-
ment on the performance of VDF.

Keywords: Blockchain · Verifiable delay function · Implementation ·
Simulation

1 Introduction

Verifiable Delay Function (VDF) is a new cryptography primitive and was first
proposed by Dan Boneh et al. in 2018 [2]. VDF is essentially a time delay func-
tion, it performs t-step sequential computations on a input x ∈ X and output
a unique and efficiently verifiable evaluation result (y, π), π is the proof. The
evaluation of VDF is sequential that can not be significantly accelerated with
parallel processors, thus the least time we need to complete a fixed steps VDF
is a consensus. And due to this excellent property, VDF has a wide range of
applications in decentralized systems:
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The Ethereum researchers included it in the research plan and intended to
use it in Ethereum 2.0 to help solve the randomness problem. They plan to feed
the result of RANDAO mechanism to VDF to generate random numbers. Adver-
sarys’ manipulation on random numbers are generally time-sensitive which need
to get the number as soon as possible. Thus, we use VDF to extend the number
generation time. Due to the sequential nature of VDF, no one can obtain random
numbers in advance, so it can prevent random numbers from being manipulated.
Moreover, the Chia Network researchers also plan to introduce VDF to support
Proof of Space (PoS) consensus protocol. They use VDF to construct a verifiable
timestamp to prevent the “Long-range Attack”. Due to the sequential of VDF,
it can provide an uniform time standard for decentralized network. With VDF,
they can simply limit the mining speed so that any branched-chain cannot be
bootstrapped much faster than the main chain which makes the attack unsuc-
cessful. Besides, the VDF can also be used to build the proof of replication, etc.
Therefore, VDFs with stable performance have extremely high research value.

Researchers have proposed several VDF constructions till now [2,5,7–9,11].
And some work also summarizes the performance of different VDF in theory
[1,3,5,6]. However, the performance of different VDF in practice still needs to be
explored. For example, the theoretical performance of Unique VDF [7], Pietrzak
VDF [8] and Continuous VDF [7] are very similar to each other, but their perfor-
mances in practice are quite different. And VDFs with different properties have
different scopes of application, which still remains unexplored. Meanwhile, VDFs
implemented with different groups vary greatly in performance thus are suitable
for different applications. Besides, there also lacks research on the influence of
hardware on different VDF performance.

In this paper, we compare different VDFs experimentally and theoretically
and made the following contributions:

– We studied the constructions of Unique VDF [7], Wesolowski VDF [11],
Pietrzak VDF [8] and continuous VDF [7] and implemented them in Python
programming language. We compared the performance of these four VDFs
from four aspects (evaluation speed, verification speed, proof size and proof
generation speed) and found the most suitable application for them. For
example, we discovered that Wesolowski VDF [11] excels in verification time
and proof size(both are kept at a constant level), and is more suitable for
applications that require higher time accuracy or with large scale network,
such as decentralized clock systems or timestamp.

– We also examined the influence of different groups on VDF performance.
We tested the average evaluation time for single-step computation and the
performance of VDFs on different groups. We find that the modular N multi-
plicative cyclic group is more suitable to construct VDF for applications that
require high time accuracy while the class group is more suitable to construct
VDF for applications with limited space.

– Finally, we examined the influence of hardware on the VDF performance.
We test the average evaluation time for single-step computation on different
machines for the two groups and the performance of the four VDFs. We find
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the influence of hardware on different VDF is basically the same, which is a
constant multiple.

2 Related Work

In 2019, Wesolowski and Pietrzak solved the problem of public verification based
on Time-lock Puzzle and respectively proposed a well-defined implementation of
VDF [8,11]. Boneh et al. made a detailed comparison between these two VDFs
in [3]. And Attias et al. implemented these two VDFs and compared the per-
formance of them [1]. De Feo et al. proposed a decodable VDF implementation
based on a super-singular isogeny graph of elliptic curves and bilinear pairs in
[5]. This Feo VDF relies on the sequential of isogeny computation: the computa-
tion requires access to all nodes on the given path of the isogeny graph. But the
VDF’s verification process based on bilinear pairs, which is not quantum-safe.
Barak Shani [9] combined Time-lock Puzzle and the trapdoor VDF [11] and
constructed a VDF based on isogeny elliptic curves, which provides a new idea
for anti-quantum attack VDF that waiting for explore. Ephraim et al. proposed
Continuous VDF and Unique VDF based on a non-interactive proof system that
can merge proofs [7]. The Continuous VDF satisfies the incremental property by
merging proofs of the child node. The proof merging strategy was proposed by
Paul Valiant in [10].

3 VDF Constuctions

A VDF is an algorithm consists of three functions [2]:

– Setup(λ, t) → PP = (ek, vk): The Setup function takes the security
parameter λ and the evaluation step number t as inputs, and randomly gen-
erates a common parameter PP in O(poly(λ)) time, which consists of two
parts: the evaluation key ek and the verification key vk.

– Eval(ek, x) → (y, π): The Eval function takes the evaluation key ek and
an element x as input and produces a unique output y and a proof π with
no more than O(poly(log(t), λ)) parallel processors in O(t) time. π is not
necessary for every VDF.

– V erify(vk, x, y, π) → {yes, no}: The Verify function takes the verifica-
tion key vk, input x, output y and proof π as input and verify the correctness
of output y and proof π in O(poly(log(t), λ)) time.

The notion of VDF mentioned above was first introduced by Boneh in 2018
[2], from which we can see that a VDF should satisfy the many features, like
unique output and efficient verifiable etc. Besides, VDF also need to satisfy the
following property:

– Sequential: Adversary cannot significantly speed up the evaluation process
of VDF with no more than O(polylog(t)) parallel processors. Here, we denote
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T a function that measures the running time of input algorithm and denote
δ the average evaluation time for one single step. We say that a function f
is (t, ε)-sequential if for all algorithm A with poly(t, λ) processors and λ =
O(log|X|) there exists a negligible function negl such that:

Pr[y = f(x)|y = A, x ∈ X,T (A) < (1 − ε)δt] ≤ negl(λ)

In this paper, we compare four state-of-art VDFs constructed with groups
of unknown order. All of the four VDFs achieve (t, ε)-sequential [2] base on the
repeated squaring assumption (RSW Assumption). RSW, also known as Gener-
alised Time-Lock Assumption, assumes that the polynomial function f(x, t) =
x2t

is a iteratively (ε, t) − sequential function.
Besides, some VDF also has incremental features, which is not necessary: The

number of iterations t was not fixed in the Setup function. After the evaluation
of every step, VDF produces an output and proof. We can use the proof to
efficiently verify the correctness of all computations has been done so far.

All constructions introduced here are non-interactive protocols converted
from public-coin interactive models using Fait-Shamir heuristic. Among them,
Continuous VDF and Unique VDF are constructed based on a proof system that
can merge proofs, we introduce it first.

3.1 Proof Merge Technique

Fig. 1. After finishing the computation of the last yellow node (11D), we output a
proof consists of proofs of all yellow nodes before the computation of the red node
(Color figure online)

Paul Valiant first proposed the concept of proof merge in [10], which combines
two different proofs to generate a new one that can verify the correctness of the
previous two proofs, and the proof length and verification complexity will not
be much higher than before.

The main idea in [10] is mentioned as follows: the proof merge system adopts
k-fork tree structure, that each leaf node represents a D-step evaluation (see
Fig. 1). The computation was done sequentially in the order of the arrows. After
the computation of each node, we output a proof list which verifies the correct-
ness of all computations from the very beginning till now. The proof list consists
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of proofs of all left siblings of the nodes on the path from the current node to the
root. And after the evaluation of all children, the parent merges the proofs of all
children and generate one for itself. For example, we merge the proofs from D
to 4D and generate π(0−4D) for the parent node after the evaluation of node 4D
is finished. They add the proof of parent node to the proof list and from which
they delete all its children.

Fig. 2. The non-interactive proof system takes x, y = x2t

as input and generate

x′, y′ = x′2t/k

which recursively narrows the gap between x and y.

Ephraim et al. introduced a non-interactive proof system for the computation
y = x2t

in [7], which can perfectly achieve proof merge function (See Fig. 2). They
divide the t-step square computation into k t/k−step sub-computations, thus the
prover process can be view as a merge of k sub-computations. Specifically, they
generate xi = x2it/k

, i = 0 · · · k as intermediate state of the t-step computation
and generate k random numbers where (r1, r2, . . . , rk) = hash(x, t, y, xi), i =
1 · · · k. And then they compute x′ =

∏k
i=1 xri

i−1, y
′ =

∏k
i=1 xri

i where xri
i =

(xri
i−1)

2t/k

, y′ = x′2t/k

. Therefore, the new generated pair (x′, y′) reduces the gap
between x and y from t to t/k. In the proof process, we recursively reducing
the gap between x and y with this method until the gap is smaller than kd, in
which case we can efficiently verify the relationship between x and y without any
proof. For each sub-computation, we can also generate such proofs. Therefore,
the proof can viewed as a merge of proofs of sub-computations. The detailed
algorithm is given in Appendix A.1.

3.2 Unique VDF

Ephraim et al. [7] proposed the construction of Unique VDF, which is non-
incremental but well reflects the specific idea of merging proofs mentioned above.
We denoted by uVDF the Unique VDF, and the construction of uVDF is as
follows:

We do the evaluation process of uVDF according to the details showed
in Fig. 2 and use the set MSG = {msg1,msg2, · · · ,msgn} as VDF proof
(msgi = x1, x2, · · · , xk consists of intermediate states computed by each layer).
When doing verification, the verifier generates random numbers (r1, r2, . . . , rk) =
hash(x, t, y, xi), i = 1 · · · k and compute x′ =

∏k
i=1 xri

i−1, y
′ =

∏k
i=1 xri

i recur-
sively as the provers. With the proofs, they donot need to evaluate xi again.
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Finally, they just need to check whether the equation y = x2kd

holds. The
detailed algorithm is given in Appendix A.2.

[7] gives more description about uVDF: The upper bound of sketch process
evaluation time is O(λc1), where c1 measures the complexity of hash function.
Therefore the upper bound of evaluation process is O(3λc1 + 2δt), δ is the aver-
age time for one-step evaluation. Thus the evaluation time of uVDF if (1 + c)δt
which satisfies the sequential property of VDF. And the sequential of the uVDF
evaluation process base on the RSW Assumption, which also ensures the sound-
ness of uVDF even if allowing adversary to choose the start point x and time
t:

For every non-uniform algorithm Aλ and every security parameter λ ∈ N ,
which is:

Pr

[
pp ← uV DF.gen(1λ)
(x, t)(ŷ, π̂) ← Aλ(pp) :

uV DF.verify(1λ, pp, (x, t), (ŷ, π̂)) = 1∧
(ŷ, π̂) �= uV DF.Eval(1λ, pp, (x, t))

]

≤ negl(λ)

3.3 Wesolowski VDF

In 2018, Wesolowski et al. proposed a trapdoor VDF in [11] and the main idea of
the VDF proof is as follows: They evaluate y = x2t

first and generate a random
number l from x and y. They generate π = x�2t/l� as proof with the stored
intermediate states. When verifying, the verifier can check the correctness of the
computation by checking whether y is equal to πlxr, since 2t = �2t/l� ∗ l + r.
We can compute π = x�2t/l� as follows:

– π = 1, r = 1
– Repeat t times: b = �2r/l� ∈ {0, 1}, r = (2r mod l) ∈ {0, 1, . . . , l − 1},

π = π2gb

– output π

This method requires O(t) multiply operations, and Wesolowski et al. also
proposed a faster way in [11]. Besides, the security of Wesolowski VDF is based on
RSW Assumption and adaptive root assumption. The adaptive root assumption
assumes that for any ε > 0, in time (1−ε)δt with log(t, λ) processors, there is no
algorithm A = {A1,A2} that can A2 find the an integer u, which is the l − th
root of integer w which is given by A1. Otherwise, the adversary can compute
π = ugq so that πlgr = (ugq)lgr = ulgql+r = wg2

t

. Thus the adversary can
convince the verifier to accept the tuple (x, t, y = wg2

t

, π = ugq).

3.4 Pietrzak VDF

The VDF proposed by Pietrzak et al. [8] is very similar to the proof system intro-
duced in Sect. 3.1 and is a variant of Unique VDF when k = 2 (See Appendix
A.4). Instead of MNMC group, pietrzak use positive quadratic residual group
that can determine whether an element belongs to it without significantly weaken
the security of VDF (Only constant level effect). The sequential property also
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relies on the RSW assumption, while the soundness relies on a low order assump-
tion which assumes that there is no algorithm can find a pair (μ, d) in O(T) time
with no more than polylog(t, λ) processors, where μd = 1, μ �= 1. Otherwise,
adversary can use the tuple (x, t, y = x2t

μ) to convince the verifier accepting the
wrong result with a probability of 1/d (when the random number r satisfies the
equation 2t = r + 1(modd)).

Due to the Pietrzak VDF is quite similar to the Unique VDF, the upper
bound of evaluation process is O((1+c)δt) too. And the verifier just need 2log(t)
small exponentiations to verity the result. Pietrzak et al. also proposed a more
efficient proof generating method with the intermediate states in [8] which can
reduce the evaluation complexity to O((1 + 2√

t
)t) (See [8]).

3.5 Continuous VDF

Fig. 3. Here, k = 3. The frontier list of s consists of proofs of five yellow nodes. After
the evaluation of s is finished, we merge proofs of node 7D, 8D and 9D to generate a
new proof π6D−9D. We add π6D−9D to the frontier and delete all proofs of π6D−9D’s
children.

Ephraim et al. proposed a Continuous VDF based on the proof merge technique
mentioned in Sect. 3.1, which was the first incremental VDF construction [7].
Here we denoted by cVDF the Continuous VDF. The construction of cVDF
is similar to the tree structure mentioned in Fig. 1. However, instead of k-tree,
Continuous VDF uses a (k+1)-tree while the number of evaluation step t is the
power of k. For each non-leaf node, its last child merges the proofs of the first k
left-sibling nodes with the proof system mentioned in Sect. 3.1. The parent node
takes the proof generated by the last child as its proof. Meanwhile, the input of
the parent node is the input of its leftmost child, and the output of the parent
node is the output of its k-th child.

cVDF maintains a frontier list consists of proofs of the left siblings of all nodes
in the path from the current node to the root node (See Fig. 3). The verifier
just need to check the proof list with no more than k2log(t) exponentiations.
Meanwhile, the upper bound of evaluation time of cVDF is O((1 + c)kd′

δt)
where d′ = �log(t)� − d. And the soundness of cVDF is also rely on the RSW
Assumption.
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3.6 Theoretical Comparison

Based on the design principles mentioned in [7,8,11], we summarize the theoret-
ical performance of these four VDFs. Among them, the cells about evaluation
time, verification time and setup time of Wesolowski VDF and Pietrzak VDF
have been summarized in [5], here we referenced to their work to some extent.
The description of performance of Unique VDF and Continuous VDF is not com-
prehensive, we evaluated the preformance of the verification process, the setup
process and the proof length ourselves.

Table 1. The upper boundary of consumption for four VDF.

VDF type Eval Verify Setup Proof length

Unique VDF O((1 + c)t) O(log(t)) O(λ3) O(log(t))

Wesolowski VDF O((1 + 2/log(t))t) O(λ4) O(λ3) O(λ3)

Pietrzak VDF O((1 + 2/
√

t)t) O(log(t)) O(λ3) O(log(t))

Continuous VDF O((1 + c)k�log(t)�−dt) O(log(t)) O(λ3) O(log(t))

For Efficiency of VDF: It can be seen from the Table 1 that for evaluation
Pietrzak VDF is a little more efficient than Wesolowski VDF and Unique VDF,
while Continuous VDF is much slower. Moreover, for verification, the upper
bound of Wesolowski VDF is O(λ3), which is completely independent with the
number of iterations t. Therefore, the Wesolowski VDF is the most efficient for
verification process. For other indicators, the theoretically performance of four
VDFs is very close to each other, thus the specific gap still needs to be confirmed
by the experiment.

For Security Assumptions: As mentioned in above, all of four VDFs are con-
verted from public-coin non-interactive protocols and rely on the Fiat-Shamir
heuristic. Both Unique VDF and Continuous base on the RSW assumption and
the Fiat-Shamir heuristic for constant round proof system. And Wesolowski VDF
base on the adaptive root assumption while Pietrzak VDF relies on the low order
assumption. [7] has compared the security of soundness base on these assump-
tions: the believe both assumptions on which Wesolowski VDF and Pietrzak
VDF based are unstandard and is weaker than the assumption of cVDF and
uVDF. As a result, the soundness of pietrzak is weaker that adversary must
sample the starting point x from some distribution while the adversary of cVDF
can choose their own number. Besides, [3] think Wesolowski VDF is more secure
than Pietrzak VDF for if advptive root assumption holds then so must the low
order assumption, which means adaptive root is stronger than then low order.

4 Groups

The four VDFs mentioned above are constructed with groups of unknown order.
The type of group used in construction will affect the efficiency of VDF. In this
section, we briefly introduce three different groups of unknown order:
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Modular N Multiplicative Cyclic Group (MNMC Group): the group
used in VDF is a cyclic subgroup of the modular N multiplicative group. We sam-
ple a big number N = pq first, where p and q are both large prime numbers. And
then define a multiplication “∗” on field ZN : for x, y ∈ ZN , x∗y = xy mod N .
The group defined on “∗” operation is a modular N multiplicative group. We
sample a generator x ∈ ZN that is prime to N , so that <x> is a cyclic group of
order (p − 1)(q − 1). All elements in the group that is prime with N satisfy the
Fermat’s little theorem: x(p−1)(q−1)−1 ≡ 1 mod N . Thus, one can compute
the power fast with the factors of N , which presents a security challenge for
VDF.

Positive Quadratic Residual Group: Instead of MNMC group, Pietrzak et
al. use a positive quadratic residual group to construct VDF in [8]. The group is
defined as QR+

N = {|x| : x ∈ QRN}, QRN = {x2 mod N : x ∈ ZN}. The mul-
tiply operation of this group is defined as: for x, y ∈ QR+

N , x∗y = |xy mod N |,
which is quite similar to that of MNMC group. One can determine whether an
element is in QR+

N quickly (x ∈ QR+
N if x > 0 and Jacobi symbol of x is +1)

without significantly weakening the VDF security assumption. (about 1/8 of the
VDF implemented with MNMC group).

Class Group: The security of VDF implemented with these two groups men-
tioned above depends on the secrecy of the decomposition of N . Therefore, the
setup process of VDF must be trusted. The Chia Network researchers use class
group to construct VDF. For the class group based on the binary quadratic form
(like f(x, y) = ax2 + bxy + cy2 ), when the absolute value of the discriminant
d = b2 − 4ac is large enough, its order is unknown and difficult to calculate. [4]
gives a detailed algorithm of group calculation.

5 Experiment Result

In this section, we use the python programming language to implement four
VDFs and compare the performance of different VDFs in terms of evaluation
speed, verification speed, proof generation speed and proof size, etc. Therefore we
test the evaluation time, verification time, proof size and the ratio of proof gen-
eration time to computation time of the four VDFs at 10000, 100000, 1000000,
10000000 evaluation steps. And we compare the influence of groups on VDF
performance. We first compare the average time for a single-step evaluation of
MNMC group and class group, then compare the performance of VDF imple-
mented with the two groups from three aspects: evaluation time, Verification
time and proof size. Finally, we compare the influence of hardware on VDF
performance. We test the time consumption of a single-step evaluation on two
machines for both groups and compare the evaluation time for four VDFs on
two different machines.

Among them, for Unique VDF and Continuous VDF, we set k = 10 and
d = 3, which means if the step number t is less than 1000, no proof will be
generated during the evaluation and we square the input x for t times directly
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during the verification. We set the number of evaluation steps for a single node
in Continuous VDF as t = 10000. In addition, for Wesolowski VDF, we set L = 1
and dynamically give the parameter k according to the number of operations.

In Sect. 5.1 we compare the performance of four VDFs. In Sect. 5.2, we exam-
ine the influence of different types of groups on VDF performance. And in
Sect. 5.3, we examine the influence of different hardware on VDF performance.
This article focuses on the case where there is only one processor.

5.1 The Efficiency of VDFs

For all of four VDFs. there is a linear relationship between the running time of the
evaluation process and the evaluation steps t. However, the lines of different VDF
have very different slopes. Wesolowski VDF, Pietrzak VDF and Unique VDF all
have shorter running time than Continuous VDF, and the slope of corresponding
lines are small and close to each other. On the contrary, evaluation process of
Continuous VDF consumes much more time than the three other VDFs. (See
Fig. 4).

Fig. 4. The evaluation time of VDFs/the ratio between proof generation time and
VDF computation time

We also compared the time ratio between proof generation and computation
in evaluation process of different VDF. This indicator is very important that
for some applications with limited computing resources, we cannot effectively
accelerate the process of proof generation. VDF with a faster proof generation
process is more suitable for such applications. We tested three VDF and find
the time ratio of Pietrzak VDF is much lower than the other VDFs, about
1.5% in the case of 10,000,000 steps of evaluations (see Fig. 4). And the ratio of
Wesolowski VDF and Unique VDF is about 10%.

Then in Fig. 5, we compare the verification time and proof size for all VDFs.
Since the verification time and proof size of Continuous VDF are much larger
than those of the three other VDFs, we made a graph for three VDFs alone. It
can be seen from Fig. 5 that the verification time and proof size of Wesolowski
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Fig. 5. The verification time/proof size of VDFs

VDF do not grow when the number of evaluation steps increase, and both of
them remain at a constant level. The relationship between verification time and
evaluation steps of the three other VDFs are approximately in line with log
function, so as the proof length. It can be seen from Fig. 5 that the verification
time of Wesolowski VDF is kept below 10 ms, and the proof size is about 0.24 KB.
In the case where the number of evaluation steps is less than 10,000,000 times,
the verification time of Pietrzak VDF and Unique VDF remains 10100 ms, and
the proof size does not exceed 10 KB. Besides, the verification time and proof
length of Continuous VDF are much higher than the three other VDFs. Its proof
length is about 217 KB and the verification time is longer than 1000 ms when
the number of evaluation steps is 10,000,000.

5.2 The Influence of Groups

In this section, we compare the influence of different groups on VDF perfor-
mance. In Sect. 4, we introduced three different types of groups, and among
them, the multiply operation of MNMC group and Positive quadratic residual
group is quite similar to each other. Thus, in this section we mainly compare the
VDF implemented with MNMC group and class group based on binary quadratic
form.

We compare the average time we need to compute one single step of square
and multiply operation first. See Table 2, the consumption of class group is much
higher than MNMC group, which has a great influence on VDF performance.

In Fig. 6, we compare the influence of groups on evaluation process of different
VDF. The evaluation time of VDF implemented with class group is much higher
than the VDF implemented with MNMC group. For example, the evaluation
time of Wesolowski VDF is about 138 ms in the case of 10,000 evaluation steps
of MNMC group and about 16000 ms in class group.
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Table 2. Single-step computation average time for two groups on different machine
(Unit/MS)

Class group Square Multi MNMC group Square Multi

Mach1 512 Bit 0.14 0.14 Mach1 512 Bit 0.0018 0.0020

Mach1 1024 Bit 0.40 0.38 Mach1 1024 Bit 0.0038 0.0026

Mach1 2048 Bit 0.79 0.80 Mach1 2048 Bit 0.0103 0.0040

Mach2 512 Bit 0.23 0.23 Mach2 512 Bit 0.0041 0.0036

Mach2 1024 Bit 0.47 0.53 Mach2 1024 Bit 0.0063 0.0052

Mach2 2048 Bit 1.15 1.19 Mach2 2048 Bit 0.0165 0.0076

Fig. 6. The performance of different VDF implemented with different types of groups

Fig. 7. The verification time/proof length of different kinds of VDF implemented with
different kinds of groups.
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And then we compare the influence of groups on verification time and proof
length of different VDF. See Fig. 7, the left part shows the influence on verifica-
tion time. The verification time is shorter than 1000 ms in the case of 1,000,000
MNMC group evaluation steps. And the verification time of VDF implemented
class group is much longer. The right part of Fig. 7 shows the influence of groups
on proof size. The length of proof generated by VDF implemented with MNMC
group is about 1.5 times that of VDF implemented with class group in the case
of the same evaluation steps.

5.3 The Influence of Hardware

In this section, we compare the influence of hardware condition on VDF.
We first compare the average time for evaluating single-step square and mul-

tiply operation on different machines (See Table 2). Here, machine 1 uses Inter
Core i7-8750 processor while machine 2 uses Inter Core i7-6500U processor. The
ratio of computation time between machine 2 and machine 1 is about 1.5.

Fig. 8. Evaluation performance on different machine

Then, we tested the performance of four kinds of VDF on machine 1 and
machine 2. See Fig. 8, we tested the evaluation time of different VDF on both
machine 1 and machine 2. In the case of same steps, the evaluation time on
machine 2 is about 1.5 too.

6 Discussion

6.1 The Comparison of VDF Performance

See Fig. 4, the evaluation time of four VDF maintains a proportional relation-
ship with the evaluation steps and the relationship between verification time and
evaluation step is approximately in line with the log function for three VDFs
except for Wesolowski VDF (See Fig. 5). We can conclude that there is at least



Experimental Comparisons of Verifiable Delay Functions 523

an exponential gap between evaluation time and verification time for the VDFs
above. Among them, the Wesolowski VDF has the best performance in the per-
spective of verification time and proof size, which remains at a constant level.
Because the Wesolowski VDF only uses one element π = x�2t/l� as proof. When
the verification process, we just need to check whether the equation y = πlxr

holds. Therefore, the verification time is bounded by the 64-bit constant l. Due
to the short evaluation time and stable performance, Wesolowski VDF is more
suitable for applications requires higher time accuracy, such as verifiable decen-
tralized clock systems and applications with large scale network.

Meanwhile, the performance of Pietrzak VDF and Unique VDF is very close
to each other in three aspects: evaluation time, verification time and proof length.
This is mainly due to that Pietrzak VDF works in a similar way to Unique VDF,
while Pietrzak VDF provides a more efficient method for proof generation. In
theory, in the case of the same evaluation step, proof length of the two VDF is
proportional to the parameter k, and Pietrzak VDF is a variant of the special
case of Unique VDF when k = 2. Therefore, the proof length and verification
time of Unique VDF is slightly larger than that of Pietrzak VDF.

Besides, Pietrzak VDF generates the proof very fast. For the three VDFs that
we counted, Pietrzak VDF achieves the smallest evaluation time and verifica-
tion time ratio. Under the case of 10 million operations, the ratio of Wesolowski
VDF and Unique VDF is more than 10%, while the ratio of Pietrzak VDF is only
1.5%. For general speaking, one can convert a VDF to a tight VDF with at most
log(t) parallel processors to speed up the process of proof generation. There-
fore, Pietrzak VDF is more suitable for situations where the parallel computing
resources are limited, such as applications built on mobile devices.

Finally, the consumption of Continuous VDF in terms of evaluation time,
verification time and proof length are much higher than that of the other three
VDF. We believe that the slow evaluation is mainly caused by the following
reasons: Continuous VDF needs to verify the proof before every step of evaluation
while the verification time of Continuous VDF is significantly higher than that
of other VDF, thus the cumulative effect of multiple verifications exacerbates
the problem of slow evaluation; besides, after each step of the Continuous VDF
computation is completed, a proof is generated, which is inherently less efficient
than the other three VDF constructions. We believe that these two reasons
are the main reasons for the high costs of Continuous VDF. For the thesis in
the first reason, the verification time of Continuous VDF is much higher than
that of other VDF, which is mainly because of the organization of the proof of
Continuous VDF, which is quite different from that of other VDF. The proof
is composed of multiple node proofs, each node proof is composed of a small
Unique VDF proof. Therefore, each verification of Continuous VDF requires
multiple operations that is similar to the Unique VDF verification. And after
each step of the calculation, the proof should be generated, therefore at least
O(t) proofs should be generated in total. In contrast, only O(log(t)) proofs are
generated if we just generate the proof once after all evaluations are completed.
Therefore, due to the incremental property of Continuous VDF, it is attached
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with a lot of extra cost of proof generation, resulting in the verification speed
of VDF is much slower than that of other types of VDF. Therefore, Continuous
VDF is more suitable for applications such as coarse-grained timestamps or
decentralized clocks.

6.2 The Comparison of Groups and Hardware

We tested the influence of different types of groups and hardware on the per-
formance of VDF. We can conclude that (1) VDF implemented with the class
group is much slower than the VDF implemented with the MNMC group in both
the evaluation and verification process. (2) VDF implemented with class group
generates longer proofs in the case of same evaluation steps.

See Table 2, the average time consumption of single-step class group evalua-
tion is much larger than MNMC group, which causes the gap in VDF evaluation
speed. This has big influence on the performance of VDF. In the case of the same
running time (not the same evaluation step), VDF implemented with MNMC
group produces longer proof than that of VDF implemented with class group.
Due to the evaluation speed of VDF implemented with MNMC group is too
fast, the proof produced by VDF implemented with MNMC group is larger
since it contains more group elements even though a single element takes up
less space. For example, Pietrzak VDF can run 1,500,000 modular N multiplica-
tions in about 16 seconds and generate a proof of approximately 3.5k in length,
while it can only run 10,000 class group multiplications and generate a proof of
approximately 2.6k in length. Therefore, the MNMC group is more suitable for
applications requiring higher accuracy while the class group is more suitable for
applications with limited space.

Besides, from Sect. 5.3, we can conclude that the influence of hardware condi-
tions on VDF performance mainly comes from the influence on single-step eval-
uation. In this paper, in the case of the same group, the four VDFs mentioned
in this paper have basically influenced by the hardware to the same degree.

7 Conclusion

In this paper, we compared the performance of the four VDFs and the influence
of different groups and hardware on the performance of VDF. We find that
the efficiency of Wesolowski VDF is very high and Wesolowski VDF is more
suitable for applications that require high time accuracy or with a large scale
network. The proof generation speed of Pietrzak VDF is much faster than others
and is more suitable for applications with limited parallel computing resources
such as applications built on mobile devices. And Continuous VDF’s evaluation
and verification speed is slow and is more suitable for applications like coarse-
grained timestamp or decentralized clock. Besides, the computation speed of
MNMC group is faster then class group, thus VDF based on MNMC group is
more suitable for applications that require high time accuracy while class group
is more suitable for applications with limited space. Finally, the influence of
hardware on the four VDFs is basically the same, which is a constant multiple.
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A Appendix

A.1 Non-interactive Proof System

The construction of non-interactive proof system:

– Prover(x, t, y):
• If t < kd, compute y = x2t

, return y and proof ∅. d was defined in advance.
• Otherwise, compute y = x2t

and build the msg parameter with the inter-
mediate states: msg = (x1, x2, . . . , xk−1) where xi = x2(it)/k

.
• Compute (x′, y′) = sketch(x, t, y,msg).
• Return y and proof π where π = (msg, π′) and π′ = Prover(x′, t/k, y′).

– Sketch(x, t, y,msg):
• We first check whether msg can be parsed as (x1, x2, . . . , xk−1) where

xi = x2(it)/k

, set xk = y = x2t

and x0 = x.
• Generate k random numbers (r1, r2, . . . , rk) = hash(x, t, y,msg).
• Compute x′ =

∏k
i=1 xri

i−1, y
′ =

∏k
i=1 xri

i , where y′ = x′2t/k

.
• Return (x′, y′).

– V erifier(x, t, y, π):
• If t < kd, check whether π = ∅ and y = x2t

, return 1 if correct or 0
otherwise.

• We parse π as (msg, π′), compute (x′, y′) = sketch(x, t, y,msg).
• Run V erifier(x′, t/k, y′, π′).

A.2 Unique VDF

The construction of uVDF:

– uV DF.Setup(λ, t) → PP :
• Generate a big number N = pq where both p and q are primes. Here

p = 2p′ + 1, q = 2q′ + 1, both q′ and p′ are primes in [2λ, 2λ+1).
• Sample a hash function H. For the tree structure, set the number of child

k = λ, where t is the power of k. Set the number d so that when t < kd

we compute the VDF directly without generating proof.
• Output the Public Parameter PP = (N, t, k, d,H)

– uV DF.eval(x, t, PP ) → (y, π):
• If t < kd, compute y = x2t

directly and output y.
• If t > kd, compute y = x2t

and generate msg = (x1, x2, . . . , xk−1) where
xi = x2it/k

. Compute (x′, y′) = sketch(x, t, y,msg).
• Output (y, π),where π = (msg, π′), π′ = Prover(x′, t/k, y′).

– uV DF.verify(x, t, y, π, PP ) → {0, 1}:
• If t < kd, return 1 if y = x2t

or 0 otherwise.
• Return V erifier(x′, t/k, y′, π′).
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A.3 Continuous VDF

– cV DF.Setup(λ) → PP :
• Run uV DF.Setup(λ) to generate the public parameter PPuvdf .
• Set the number d′ so that every leaf node consists of kd′

steps.
• Output the public parameter of cVDF PP = (PPuvdf , d′).

– uV DF.eval node(x, PP,Π):
• Verify the frontier: check the consistency of proofs in the frontier and

verify all proofs in the frontier.
• Use uV DF.eval(x, kd′

, PP ) to compute the kd′
step evaluation of the

current node, and generate the output y and proof π. We generate
πs = (x, y, π, kd′

). If the current node is the leftmost child, then x is
the input of its father. If the current node is a middle node, then x is the
output of its closest left sibling. And if the current node is the rightmost
child then x is the output of sketch function of all its left-siblings.

• Update the frontier: we denoted by s the current node and s+1 the next
node. And we denoted by a the closest common ancestor of s and s + 1,
and denoted a∗ by the child of a on the path from s to a. We generate
πa∗ = (x∗, y∗, π∗, kd′+h). If a∗ = s then πa∗ = πs, otherwise if a∗ is the
ancestor of s then x∗ is the input of leftmost child, y∗is the output of k-th
child a∗ and π∗ = Prover(x∗, kd′+h, y∗), h is the height of a∗.

• Delete all proofs of nodes that is the child of a∗from the frontier, and add
πa∗to the frontier.

– cV DF.verify(x, y, PP,Π):
• Check the consistency of proofs in the frontier and verify all proofs in the

frontier with uV DF.verify.

A.4 Pietrzek

– Setup(1λ) :
• Sample two λ/2 bit numbers p and q the output N = pq.
• Sample x ∈ QR+

N and integer d′ output (x, t = 2d′
).

– Prover(x, t)
• Compute y = x2t

.
• Set x0 = x, y0 = y, t0 = t and i = 0. Sample d.
• While ti > 2d, do the following steps:

– μi = x2ti/2

i

– ri = hash(xi, yi, ti/2, μi)
– xi+1 = xri

i μi, yi+1 = μri
i yi, ti+1 = ti/2 and i = i + 1

We take the intermediate states to generate the proof π = (μ1, μ2, μ3, . . . ,

μm), where m = log2(t) − d. We can conclude that μi = Σ2i−1−1
η=0 (x2(2η+1)t/2i

)ci

and ci =
∏

i∈K ri where K = {i|binary(η)[i] = ′0′} and the binary function can
convert a number into a binary string. For example, μ3 = (x2t/8

)r1r2+(x23t/8
)r1+

(x25t/8
)r2 + x27t/8

, when binary(1) = “001”, K = {1, 2} and when binary(5) =
“101”, K = {2} etc.

When the verification, we compute xi+1 = xri
i μi, yi+1 = μri

i μi recursively
and finally check whether the equation ym+1 = x

tm+1
m+1 holds.
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Abstract. In 2019, Gu Chunsheng introduced Integer-RLWE, a variant
of RLWE devoid of some of its efficiency flaws. Most notably, he proposes
a setting where n can be an arbitrary positive integer, contrarily to the
typical construction n = 2k. In this paper, we analyze the new prob-
lem and implement the classical meet-in-the-middle and lattice-based
attacks. We then use the peculiarity of the construction of n to build an
improved lattice-based attack in cases where n is composite with an odd
divisor. For example, for parameters n = 2000 and q = 233, we reduce
the estimated complexity of the attack from 2288 to 2164. We also present
reproducible experiments confirming our theoretical results.

Keywords: Post-quantum cryptography · Meet-in-the-middle ·
Lattice-based attack · I-RLWE

1 Introduction

With the advent of quantum computers, cryptographers have begun a consis-
tent search for new trapdoor functions to use as building blocks for public-key
cryptographic protocols that are resistant to quantum attacks.

In 2006, Regev introduced the Learning With Errors (LWE) [18] problem, one
of the most important candidate trapdoors in post-quantum cryptography today.
This problem has gained the trust of researchers thanks to its simplicity and its
connection to lattice theory, which has been studied for years and provides us
with useful security estimates. However, cryptosystems based on LWE present
the disadvantage of having large public key sizes. In order to overcome this
problem, Lyubashevsky, Peikert and Regev introduced Ring-LWE (RLWE) in
2010 [17], a related problem that allows smaller key sizes and more efficient
encryption and decryption.

Informally, let R = Q[x]/(xn + 1) and let Rq = R/qR, for an integer n > 1
and a prime q. The Search RLWE problem consists in finding the secret s ∈ Rq

given samples of the form (a,b = as+ e) ∈ Rq × Rq, where e ∈ Rq is a “small”
polynomial drawn from a certain distribution. Another variant of the problem is
the Decision RLWE, which consists in distinguishing the pairs (a,b = as+e) ∈
Rq × Rq from pairs drawn uniformly at random from Rq × Rq.

However, efficiency varies over different polynomial rings in RLWE and a
dedicated optimization is required for each one of them. To overcome this incon-
venience, Gu Chunsheng introduced a variant of RLWE named Integer-RLWE
c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 528–542, 2020.
https://doi.org/10.1007/978-3-030-61078-4_30
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(I-RLWE) [12]. In this new problem the variable x in RLWE is substituted with
a prime q and the space of keys Rq is substituted with Zp, i.e. the set of integers
modulo p = qn +1. The samples are of the form (a, b = as+ e) ∈ Zp ×Zp, where
s =

∑n−1
i=0 siq

i and e =
∑n−1

i=0 eiq
i such that si and ei are “small”.

In his work, Gu also presented a public-key encryption protocol based on
I-RLWE. It is therefore important to analyze this problem and gain a better
understanding of the security it offers.

It is worth mentioning that a similar work has been done by Aggarwal et al.
[1], who introduced an integer-version of the NTRU protocol, and by Beunardeau
et al. [6] and de Boer et al. [7], who cryptanalyzed it. Moreover, a module version
of I-RLWE is used in ThreeBears [13], a candidate protocol in the NIST Post-
Quantum Standardization Process.

1.1 Contribution

In this paper, we analyze the complexity of the I-RLWE problem.
We provide some background and notation in Sect. 2. In Sect. 3 we adapt

two standard attacks to this problem, namely a meet-in-the-middle attack and
a lattice-based attack. These two attacks are straightforward to adapt to the
problem, thus providing an upper bound for the acceptable complexity of further
attacks with minimal effort; studying these attacks is a natural choice. We adapt
the meet-in-the-middle attack of Cheon et al. on Decision LWE [10] to Search
I-RLWE, and analyze its complexity. Likewise, we produce a lattice-based attack
and follow the analysis of Alkim et al. [4] to determine its complexity.

In his work [12], Gu introduces a setting in which q = 2t, instead of a prime,
and n can be any positive integer, instead of n = 2k. We exploit this setting
to construct a new lattice-based attack for cases where n is neither prime nor
a power of two and q is an arbitrary positive integer. Together with the outline
of the attack, we show in Sect. 4 how these weak choices of n lead to a drastic
drop in the estimated security of I-RLWE. Furthermore, we provide experiments
supporting our theoretical estimates in Sect. 5. Finally we give our conclusions
in Sect. 6.

2 Preliminaries and Notation

We denote the set of the real, rational and integer numbers with R,Q,Z respec-
tively. Bold lower case letters represent vectors. For a given vector v, vj repre-
sents its j-th component. For a positive integer p, we write Zp = Z/pZ. Further-
more, the notation [a]p ∈ {0, ..., p − 1} indicates a mod p and, similarly, [v]p is
the vector composed by the entries of the integer vector v reduced modulo p.
The notation ‖v‖ denotes the Euclidean norm of v. Matrices are denoted with
upper case bold M.

Let q be an odd prime and let p = qn + 1, for n > 1 integer. Given a ∈
Zp\{p−1}, let a′ be the integer representative of a in {0, ..., p−2}. We denote with
a = (a0, a1, ..., an−1) the vector of its components in base q. i.e. a′ =

∑n−1
i=0 aiq

i.



530 A. Budroni et al.

Similarly, if we represent a �= p
2 with the integer a′ ∈

{
−p

2 + 1, ..., p
2 − 1

}
, then

we can uniquely write a′ =
∑n−1

i=0 aiq
i, with ai ∈

{
− q−1

2 , ..., q−1
2

}
. Hence we will

write a = (a0, a1, ..., an−1) ∈
{
− q−1

2 , ..., q−1
2

}n
.

We use the symbol ≈B to denote the reflexive and symmetric relation between
two vectors x ≈B y iff ‖x − y‖∞ ≤ B for some positive integer B < q

2 . In a
natural way we can extend this relation to x, y ∈ Zp applying the relation above
to the vectors of the corresponding components in base q.

2.1 Discrete Gaussian Distributions

In the following we write x ∼ D to mean that the random variable x follows
the distribution D. Let ρ0,σ(x) be the probability distribution function of the
Gaussian distribution N(0, σ) with mean 0 and variance σ2. We denote with
DZ,σ the discrete Gaussian distribution on Z with mean 0 and variance σ2 that
assigns to each a ∈ Z the probability

ρ0,σ(a)
∑

d∈Z
ρ0,σ(d)

=
exp(−πa2/2σ2)

∑
d∈Z

exp(−πd2/2σ2)
.

Given n independent random variables x1, ..., xn ∼ DZ,σ, we assume y =
∑n

i=1 xi

follows the distribution DZ,σ
√

n. This is a common assumption in this field and
it comes from the approximation of the discrete Gaussian distribution with the
continuous one. With the notation v ← DZn,σ we indicate a vector in Z

n with
entries sampled independently at random from DZ,σ.

Furthermore, we denote with UZq
the uniform distribution over Zq and, sim-

ilarly, v ← UZn
q

is a vector in Z
n
q with entries sampled independently and uni-

formly at random from Zq.

2.2 Lattices

In this subsection we recall some important definitions and notions of lattice
theory. For a more detailed resource on this topic, we refer the reader to [15].

A lattice is a discrete additive subgroup of Rn. Let b1, ...,bm ∈ R
n be a set

of linearly independent vectors. We define the lattice generated by b1, ...,bm as

L(b1, ...,bm) =

{

v ∈ R
n : v =

m∑

i=1

αibi, αi ∈ Z

}

.

A basis is any set of linearly independent vectors that generates the lattice
as a Z-module and the dimension is the number of vectors in a basis. Let B
a matrix whose rows form a basis of L, we then define the volume of L as
Vol(L) =

√
det(BTB). Unless differently specified, we consider full-rank lattices

through this paper—that is, the case when m = n.
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Definition 1. Let b1, ...,bn ∈ R
n be a set of linearly independent vectors. We

denote with b∗
1, ...,b

∗
n the Gram-Schmidt Orthogonalization of b1, ...,bn

defined as follows:

b∗
1 = b1, b∗

i = bi −
i−1∑

j=1

〈
bi,b∗

j

〉

‖b∗
j‖2

b∗
j , for 1 < i ≤ n.

Definition 2. Given a basis of a lattice L and a gap factor α ≥ 1, the unique
Shortest Vector Problem (uSVPα) is to find (if it exists) the unique non-zero
v ∈ L such that any u ∈ L with ‖u‖ ≤ α‖v‖ is an integral multiple of v.

Estimating the complexity to solve uSVP is a central problem in lattice-based
cryptography. The following, known as Gaussian Heuristic, gives us an estimate
of the length of the shortest vector in a random lattice.

Heuristic 1. Let L be a full-rank lattice of dimension n and let v ∈ L be a
shortest non-zero vector. Then

‖v‖ ≈
√

n

2πe
· Vol(L)1/n.

2.3 Integer Ring-Learning with Errors

Let q, n be two positive integers such that q is prime and q > n3, and let
p = qn + 1.

Definition 3. Let s ← DZn,σ be secret. Given an arbitrary number of samples
of the form

(a, b = as + e mod p) ∈ Zp × Zp, (1)

where a ← UZp
and e ← DZn,σ, the Search Integer-RLWE problem is to

retrieve the secret s.

Definition 4. Let s ← DZn,σ be secret. The Decision Integer-RLWE prob-
lem is to distinguish with non-negligible advantage between an arbitrary number
of samples of the form

(a, b = as + e mod p) ∈ Zp × Zp, (2)

where a ← UZp
and e ← DZn,σ, and the same number of samples drawn uni-

formly at random from Zp × Zp.

In Sect. 3, we will consider n to be a power of 2 and σ =
√

n, as suggested
by Gu [12] in the original definition. However, we will exploit a relaxation on n
claimed in Remark 4.1 of [12] to build a more efficient attack in Sect. 4. Further-
more, the notation I-RLWE will refer to Search I-RLWE, which is the version of
the problem that we address.
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3 Standard Attacks

3.1 Meet-in-the-Middle Attack

A classical meet-in-the-middle (MITM) attack on LWE was previously
described [10]. Due to the connection I-RLWE has to the aforementioned prob-
lem, we follow the exact same methodology to perform our attack. We also draw
inspiration from the work of de Boer et al. on the AJPS Mersenne-Based Cryp-
tosystem [7].

Consider an I-RLWE sample (a, b = as + e mod p). Let v = s mod qn/2 and
w = s − v. For the MITM approach, we consider the noisy relation

aw ≈B b − av

We start by building a table

T =
{

(av, v) : v = (x,y),x ∈ {−B, . . . , B}n/2,y ∈ {0}n/2
}

⊂ Zp × Zp

where B parameterizes the probability of finding the right secret depending on
n. The probability that a given component of s falls in the range {−B, . . . , B}
is given by PB = P(x ∈ {−B, . . . , B} : x ∼ N(0, σ)). It follows that the proba-
bility of all the components of s and e to fall in the range {−B, . . . , B} is P 2n

B .

The second part of the MITM attack consists in an exhaustive search for y
such that y ∈

{
(y1,y2) : y1 ∈ {0}n/2,y2 ∈ {−B, . . . , B}n/2

}
, and b − ay ∈ Zp

is close to the first component of values in T . If such a case occurs for a given y
and a given key-value pair (az, z) ∈ T , then we set s′ = z + y, and we compute
e′ = [b − as′]p. Finally, if we have e′ ≈B 0, then s′ is a likely candidate for s.

The difficult component of this attack lies in determining an efficient search
algorithm to find an element in T that is close to [b − ay]p, as is the case for the
same attack on LWE.

We achieve this by applying the Noisy Collision Search described by Cheon
et al. [10], with some slight adjustments to fit our problem. As such, the below
description is directly adapted from their approach.

Noisy Collision Search. In order to efficiently split the search space, Cheon
et al. propose a locality sensitive hashing function sgn : Zq → {0, 1} defined
as sgn(x) = 1 for x ∈ {0, . . . , q

2 − 1} and 0 otherwise. For y ∈ Zp, if there
exists t ∈ Zp such that y ≈B t, then it is guaranteed that sgn(yi) = sgn(ti) if
yi ∈ VB = {− q−1

2 + B, . . . ,−B − 1} ∪ {B, . . . , q−1
2 − B} at a given index i.

To deal with the case when yi /∈ VB , Cheon et al. define a function sgn’ :
Zq → {0, 1,×} that returns sgn(y) if y ∈ VB, and × otherwise. × indicates that
the result may be either a 1 or a 0. It thus follows naturally that for any given
y ∈ Zp, for any t ∈ Zp such that y ≈B t, sgn(yi) = sgn(ti) for all i ∈ {i | yi ∈ VB}.
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Meet-in-the-Middle Algorithm. Our proposal makes use of two sub-
algorithms described in the work of Cheon et al., namely Preprocess and
Search [10]. We note that in our case, m = n and otherwise perform slight
adjustments so as to fit them to the Search version of our problem. The two
algorithms detailed below are thus nearly taken verbatim from the aforemen-
tioned paper, where the only changes pertain to the content of T and H as well
as the accumulation of the results of Search in a list L. We define sgn(x) (respec-
tively sgn’(x)) to denote the application of sgn (respectively sgn’) to each of the
components of x.

– Preprocess: On input T ⊂ Zp × Zp

1. Initialize an empty hash table H with 2n (empty) linked lists with indexes
in {0, 1}n.

2. For each (t, z) ∈ T ,
(a) append (t, z) into the linked list indexed sgn(t).

3. Return non-empty linked lists H.
– Search: On input a hash table H, a query y ∈ {x | x ∈ Z

n
q } and a distance

bound B,
1. Initialize an empty list L.
2. For each bin ∈ {0, 1}n obtained from sgn’(y) by replacing × by 0 or 1,

(a) If H has a linked list indexed bin, for each (t, z) in the list,
i. Check whether ‖y − t‖∞ ≤ B. If so, append z + y to L.

3. Return L.

Since our changes do not modify the core of the algorithms, we rely on the proof
of correctness provided for the original algorithms.

In the same way, we need to adapt the MITM algorithm provided by Cheon
et al. Pseudocode for this is given by Algorithm 1.

Algorithm 1: Meet-in-the-middle attack for Search I-RLWE
Input: A sample (a, b) ∈ Zp × Zp

(n, q) such that p = qn + 1
B ∈ Zq

Output: A list R of candidates for s
1 Initialize an empty list R

2 Compute T =
{
(av, v) : v = (x,y),x ∈ {−B, . . . , B}n/2,y ∈ {0}n/2

}

3 Run Preprocess on input T to have a hash table H
4 for y ∈ {x | x ∈ {−B, . . . , B}n/2} do
5 Concatenate the result of Search on input (H, b − ay,B) to R

6 return R

Since both e and s are sampled from the same distribution, we use the same
B for the construction of T and for the Search step of the attack. We study the
general complexity of the algorithm below.
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Complexity Analysis. According to the construction of T , we write NT =
|T | = (2B + 1)n/2. We assume that the insertion of an element into a linked list
has complexity O(1). Now, for each element in T , Preprocess needs to call sgn
n times. It follows that the time cost of Preprocess is NT · n.

Since the core of the algorithm didn’t change, we rely on the proof of Lemma
3 in the work of Cheon et al. [10], which determines that Search performs around
24nB/q lookups in T . Each one of these lookups returns a list of elements. We
are interested in counting the average number of elements contained in one of
the linked lists of H.

Proposition 1. Suppose that for (t, z) ∈ T , t comes from a uniform distribution
over Z

n
q . Then, the average length of a given linked list in H is NT

2n .

Search thus finds O(24nB/q · NT
2n ) elements. Finally, it must compute ‖ · ‖∞

for each of them, which has O(n) cost.
We summarize these results in Table 1.

Table 1. Time cost for noisy search

Preprocess Search (per query)

NT · n O(24nB/q · NT
2n

· n)

The full MITM algorithm also consists of two phases. We denote by Tpre the
time complexity of the whole preprocessing phase (i.e. the building of T and
the call to Preprocess), and by Tsearch the time complexity of the whole search
phase, and give a cost estimation for them below:

– Tpre consists of roughly NT · n
2 operations to build T , added to the cost of

executing Preprocess, thus Tpre = NT · (n + n
2 );

– Tsearch consists of NT queries to Search, thus Tsearch = O(NT ·24nB/q · NT
2n ·n).

Choice of B. The choice of B affects both the probability of success and the
complexity of the MITM algorithm, where a higher accuracy necessarily means
a higher complexity. We can use the empirical rule of the normal distribution
to determine a good value for B. Take for example n = 256; according to the
construction of I-RLWE, we have σ =

√
n = 16. The empirical rule cited above

states that, if we set B = 3σ, PB = P(x ∈ {−B, . . . , B} : x ∼ N(0, σ)) ≈ 0.9973.
In that setting, the probability that ‖(s, e)‖∞ ≤ B (i.e. that the algorithm

succeeds) is about 0.9973512 ≈ 0.25. On the other hand, if we set B = 4σ, then
the algorithm will find the right secret with probability about 0.9999512 ≈ 0.95.
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3.2 Lattice-Based Attack

Generally speaking, the most successful approach to solve LWE consists of con-
verting this problem into a hard lattice problem (e.g. uSVP) and then applying a
lattice reduction algorithm that solves it [3]. This approach also provides us with
estimates of the security of LWE against lattice attacks based on the complexity
of such reduction algorithms. Because of its similarity and connections to LWE,
it is natural to define a lattice-based attack to solve I-RLWE.

Consider an I-RLWE sample (a, b = as + e mod p). One wants to define
a lattice that, given a small enough standard deviation σ, contains the target
vector v = (s, e, 1) as a shortest vector. Next, one applies a reduction algorithm
on a basis of such a lattice in order to find v.

Consider the following lattice:

L =

⎧
⎨

⎩
(x,y, u) ∈ Z

n × Z
n × Z : a

n−1∑

i=0

xiq
i +

n−1∑

j=0

yjq
j − ub ≡ 0 mod p

⎫
⎬

⎭
. (3)

By definition, we have that v ∈ L. Furthermore, its norm is expected to be
‖v‖ ≈ σ

√
2n. Let us find a basis for L. Define w(i) as the vector formed by the

components in base q of −aqi mod p, for i = 0, ..., n − 1. We indicate with W
the n × n matrix whose i-th row is the w(i) vector. We also define the matrix:

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q −1 0 . . . 0 0
0 q −1 0 . . . 0
...

. . . . . . . . . . . .
...

0 . . . 0 q −1 0
0 0 . . . 0 q −1
1 0 . . . 0 0 q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
n×n.

Based on the above, we define the following matrix:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

In W
...
0
0

0n×n Q
...
0

0 . . . 0 b0 . . . bn−1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(2n+1)×(2n+1).

The rows of B form a basis for L and Vol(L) = |det(B)| = p.

Success Condition and Complexity. The best reduction algorithm known
in practice is the Block-Korkine-Zolotarev (BKZ) algorithm [9]. This finds a
reduced basis by calling an SVP oracle in a smaller dimension β a polynomial
number of times [14].
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By taking the analysis in [4] for the case of LWE as a model, we determine
the success condition as follows. The Geometric Series Assumption [3,8] states
that a BKZ-reduced basis of a lattice L of dimension d is such that

‖b∗
i ‖ = δd−2i−1

β · Vol(L)1/d, where δβ =
(

(πβ)1/β · β

2πe

)1/2(β−1)

.

Furthermore, the BKZ algorithm will detect the unique shortest vector of the
lattice if its projection onto Span{b∗

d−β+1, ...,b
∗
d} is shorter than the norm of

b∗
d−β . Let λ be the norm of the such projected vector. Then, the attack will

succeed if

λ ≤ δ2β−d−1
β · Vol(L)1/d.

In our case, we have that d = 2n+1 and Vol(L) = p ≈ qn. The projection of our
target vector has expected norm σ

√
β. So, in order to succeed with the attack,

one must choose β to be such that

σ
√

β ≤ δ
2(β−n−1)
β q1/2. (4)

Since the complexity of BKZ is mostly ruled by the calls to the SVP oracle
in dimension β, we only take the estimated complexity of this sub-routine into
consideration. In the literature, there are two main branches for SVP oracle
implementations: lattice sieving and lattice enumeration. Thanks to recent devel-
opments [5,11,16], lattice sieving took an asymptotic advantage over lattice
enumeration. For this reason, we will consider only the estimated complexity
provided by lattice sieving, that is ≈ 20.292β .

As in the literature for LWE and RLWE, we use the above estimate to deter-
mine the theoretical security of I-RLWE for select parameters.

Remark 1. From the complexity estimates given above, it follows that the
lattice-based attack outlined here is more efficient than the meet-in-the-middle
attack.

4 Improved Lattice-Based Attack for Weak Choices of n

In Remark 4.1 of [12], Gu claims that n can be an arbitrary positive integer
instead of being of the form 2k when choosing q of the form 2t instead of a prime.
He justifies this different setting with more efficient encryption and decryption
processes in his protocol. In this subsection we introduce a new lattice-based
attack that exploits the fact that n is nor a prime, nor a power of 2.

Consider the following two lemmas.

Lemma 1. Let n ∈ Z
+ such that n = n̂k and let q be a positive integer. Then

qn + 1 ≡ 0 mod qn̂ + 1 if and only if k is odd.



Attacks on Integer-RLWE 537

Proof. Since n = n̂k we can rewrite qn +1 as (qn̂)k +1 and qn̂ ≡ −1 mod qn̂ +1.
It follows that:

qn + 1 ≡ (qn̂)k + 1 ≡ (−1)k + 1 ≡ 0 mod qn̂ + 1 ⇔ k is odd.

��

Note. We believe Lemma 1 is a known result in Number Theory. However, we
could not find a reference for it.

Lemma 2. Take n, n̂ and q as in Lemma 1, and define p = qn+1 and p̂ = qn̂+1.
Let x ∈ Zp \ {p − 1} and x = (x0, ..., xn−1) be its representation in base q. Then
we have that x̂ = (x mod p̂) ∈ Zp̂ has the following representation in base q:

x̂ = (x̂0, x̂1, ..., x̂n̂−1) ,

where x̂i =
∑n/n̂−1

j=0 (−1)jxjn̂+i, for i = 0, ..., n̂ − 1.

Proof. Trivially, qn̂ ≡ −1 mod p̂. By applying this reduction to x = x0 + x1q +
x2q

2 + ... + xn−1q
n−1 we get the above representation of x̂. ��

Let n̂ be a divisor of n such that n/n̂ is odd. Then p̂ = qn̂ + 1 divides
p = qn + 1 (Lemma 2). Consider an I-RLWE sample (a, b = as + e mod p) and
let â = a mod p̂ and b̂ = b mod p̂. Thanks to the Chinese Remainder Theorem,
we have that

b̂ = âŝ + ê mod p̂,

where ŝ (resp. ê) = s (resp. e) modp̂. In other words, it is possible to obtain a
new instance of the I-RLWE problem in a smaller dimension n̂ such that, thanks
to Lemma 2, we have that ŝ, ê ∼ DZn̂,σ̂, where σ̂ = σ

√
n/n̂.

The idea of this attack is to first solve the reduced problem using the lattice
attack explained in Subsect. 3.2, then use Lemma 2 to perform a faster lattice
attack on the original problem.

Consider the following lattice:

L1 =

⎧
⎨

⎩
(x,y, u) ∈ Z

n̂ × Z
n̂ × Z : â

n̂−1∑

i=0

xiq
i +

n̂−1∑

j=0

yjq
j − ub̂ ≡ 0 mod p̂

⎫
⎬

⎭
. (5)

Analogously to the lattice defined in Subsect. 3.2, L1 contains the reduced target
vector v̂ = (ŝ, ê, 1) and its volume is Vol(L1) = p̂ ≈ qn̂. One can apply a lattice
reduction algorithm to find v̂ and so the reduced secret ŝ and error ê. Next, we
define the following lattice:

L2 =

⎧
⎨

⎩
(x,y,u) ∈ Z

n × Z
n × Z

3 :

x − u1ŝ ≡ 0 mod p̂,
y − u2ê ≡ 0 mod p̂,

a
∑n−1

i=0 xiq
i +

∑n−1
j=0 yjq

j − u3b ≡ 0 mod p

⎫
⎬

⎭
. (6)
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This lattice contains the target vector v = (s, e,1), where 1 = (1, 1, 1), and, as
there are more conditions on its vectors, we expect it to have a higher volume
compared to the lattice defined by (3).

Writing a basis for L2 varies according to the relations between GCD(b, p),
GCD(ŝ, p̂) and GCD(ê, p̂) since some inversions modulo p and p̂ are required.
We show how to build a basis for the attacker’s best case scenario, i.e. when
GCD(b, p) = GCD(ŝ, p̂) = GCD(ê, p̂) = 1. We do not report the other cases for
conciseness.

Consider the following matrix:

B2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u1 0 w1

In 0n×n

...
...

un 0 wn

0 v1 wn+1

0n×n In

...
...

0 vn w2n

0 . . . 0 0 . . . 0 p̂ 0 0
0 . . . 0 0 . . . 0 0 p̂ 0
0 . . . 0 0 . . . 0 0 0 p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ Z
(2n+3)×(2n+3),

where

ui = qi−1ŝ−1 mod p̂ i = 1, ..., n,

vi = qi−1ê−1 mod p̂ i = 1, ..., n,

wi =

{
aqi−1b−1 mod p if i = 1, ..., n,

qi−1b−1 mod p if i = n + 1, ..., 2n.

It’s easy to check that B2 is a basis of L2. In general, Vol(L2) is upper bounded
by pp̂2 ≈ qn+2n̂. This bound is reached in the aforementioned case (but not
only).

4.1 Analysis and Success Condition

In order for the attack to be successful, the reduced vector v̂ must be small
enough to be a shortest vector of L1. Using the Gaussian Heuristic, we check if
v̂ is shorter than the estimated shortest vector in L1:

‖v̂‖ ≈ σ̂
√

2n̂ + 1 = σ

√
n

n̂

√
2n̂ + 1 ≤

√
2n̂ + 1
2πe

· q1/2.
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Then, one gets that σ must be such that:

σ ≤
√

q
n̂

2nπe
. (7)

In his paper, Gu suggested σ =
√

n and q > n3. In this setting, condition (7) is
satisfied.

We give a success condition on the block size β1 for the BKZ-β1 reduction
algorithm to find the target vector v̂ using an analogous approach as in Subsect.
3.2:

σ̂
√

β1 ≤ δ
2(β1−n̂−1)
β1

· q1/2.

Similarly, the target vector v will be found through a BKZ-β2 reduction on a
basis of L2 if the block size β2 is such that

σ
√

β2 ≤ δ
2(β2−n−2)
β2

· q
n+2n̂
2n+3 .

In the above expression we took Vol(L2) = pp̂2 ≈ qn+2n̂.
In Table 2 we show the significant advantage of using this approach over the

standard lattice attack described in Subsect. 3.2 for some choices of n and n̂.
The complexity, based on the required cost for performing lattice sieving, drops
significantly. This allows us to conclude that n must not have odd divisors, that
is to say n is either a prime or a power of 2, in line with the setting of RLWE.

Table 2. Columns 1, 2 and 3 define the parameters, with σ =
√

n. Columns 4 and 7
contain the minimum block size (β and β2) of the BKZ subroutine required to find the
target vector v respectively from lattice (3) and (6). Column 6 contains the minimum
block size β1 to find v̂ from reducing a basis of lattice (5). The complexities in column
5 and 8 are expressed in log2 and correspond to the lattice sieving complexity with
parameter respectively β and β2

Parameters Standard lattice attack Improved lattice attack

n n̂ q β Complexity β1 β2 Complexity

2000 400 233 987 288 130 561 164

1500 300 232 713 208 83 396 116

1200 240 231 559 163 <60 304 89

1000 200 230 463 135 <60 246 71

Remark 2. This attack can be further improved when n has more than one odd
divisor by adding more conditions in the definition of L2.

Remark 3. We remark that these choices of n remain weak for any q and not
only in the setting that Gu proposes.
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5 Experiments

In order to confirm our theoretical results, we performed some practical experi-
ments which we report in this section.

First we generated some I-RLWE samples, then we used the BKZ implemen-
tation contained in the General Sieve Kernel [2], the cutting-edge implementation
at the moment of writing, in order to perform the attacks. Finally we compared
the minimum block size parameter β of the BKZ reduction required to success-
fully retrieve the secret and the error for both approaches. For each instance,
we chose n̂ among the possible choices so that the uSVP on L1 is solvable with
LLL.

We report the results obtained during our experiments in Table 3.
The I-RLWE samples that we used in our experiments can be found at https://
archive.org/details/irlwesamples.

Table 3. Columns 1, 2 and 3 define the parameters, with σ =
√

n. Column 3 report
the minimum block size β that allowed us to retrieve the target vector v through
BKZ reduction on the lattice defined in (3). Similarly, columns 4 and 5 report the
minimum block sizes β1 and β2 for lattices (5) and (6) respectively, so that the attack
was successful. Note that β1 = 1 corresponds to LLL.

Parameters Standard lattice attack Improved lattice attack

n n̂ q β β1 β2

130 26 222 41 1 2

110 22 221 28 1 2

105 15 221 9 1 2

6 Conclusion

In this work, we adapted a meet-in-the-middle attack and a lattice-based attack
from LWE to I-RLWE. The latter, as in the case of LWE and RLWE, gives us
theoretical estimates regarding the security provided by I-RLWE.

We introduced a new lattice-based attack against I-RLWE when the param-
eter n is chosen as a composite number divisible by an odd number. This attack
exploits the weakness on choice of n to build a new lattice of bigger volume,
leading to a more efficient secret and error recovery through lattice reduction.
We provided theoretical estimates of our attack showing how the complexity of
solving I-RLWE reduces in this setting. For example, for n = 2000 the com-
plexity reduces from 2288, estimated with the standard lattice attack, to 2164.
Moreover, this gap also appears for smaller n as in the case for n = 1000 where
the complexity drops from 2135 to 271. This attack likely applies to RLWE; how-
ever, this was not investigated as the setting considered here is avoided in the
literature of RLWE-based protocols.

https://archive.org/details/irlwesamples
https://archive.org/details/irlwesamples
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To confirm our theoretical results, we run experiments for n up to 130. Our
results shows that a much smaller block-size parameter β is required in the BKZ
lattice reduction algorithm in order to successfully recover the secret and the
error.

We conclude remarking that choices of n as in the aforementioned case must
definitely be avoided in I-RLWE, as is prescribed for RLWE.

Acknowledgments. We thank Martha Norberg Hovd and Andrea Tenti for proof-
reading our manuscript in an early stage and providing insightful comments.
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14. Hanrot, G., Pujol, X., Stehlé, D.: Terminating BKZ. Cryptology ePrint Archive,
Report 2011/198 (2011). https://eprint.iacr.org/2011/198

15. Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryp-
tography, 2nd edn. Springer, Heidelberg (2014). https://doi.org/10.1007/978-1-
4939-1711-2

16. Laarhoven, T., Mariano, A.: Progressive lattice sieving. In: Lange, T., Steinwandt,
R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 292–311. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-79063-3 14

17. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

18. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing, STOC 2005, pp. 84–93. ACM, New York (2005). https://doi.org/
10.1145/1060590.1060603

https://doi.org/10.1109/ACCESS.2019.2925425
https://doi.org/10.1007/978-3-319-78381-9_5
https://doi.org/10.1007/978-981-15-0758-8_9
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://eprint.iacr.org/2011/198
https://doi.org/10.1007/978-1-4939-1711-2
https://doi.org/10.1007/978-1-4939-1711-2
https://doi.org/10.1007/978-3-319-79063-3_14
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603


A Family of Subfield Hyperelliptic Curves
for Use in Cryptography

Anindya Ganguly1, Abhijit Das1(B), Dipanwita Roy Chowdhury1,
and Deval Mehta2

1 Crypto Research Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, India

{anindya.ganguly,abhij,drc}@cse.iitkgp.ac.in
2 Space Applications Center Ahmedabad, Indian Space Research Organization,

Bengaluru, India
m deval@sac.isro.gov.in

Abstract. This paper proposes a family of hyperelliptic curves of genus
two for public-key cryptographic primitives. Being subfield curves, the
members of this family are easy to generate. Although slightly slower
than elliptic curves at the same security level, hyperelliptic curves of
our family exhibit performance comparable to widely used hyperelliptic
curves over prime fields.

Keywords: Subfield curves · Hyperelliptic Curve Cryptography
(HECC) · Point counting · Mumford representation · Divisor class
arithmetic

1 Introduction

Elliptic curves, proposed by Koblitz [27] and Miller [44] in 1980s, are used exten-
sively in cryptographic protocols. In 1989, Koblitz proposes that hyperelliptic
curves over finite fields can also be used for cryptographic purposes. However,
these curves are studied less extensively by the cryptographic community than
the schemes based on RSA, finite-field and elliptic-curve discrete logarithms.
Hyperelliptic curves of genus two offer the same level of security as elliptic curves,
with half field sizes. To achieve 128 bits of security, elliptic curves need 256-bit
fields, whereas hyperelliptic curves require only 128-bit fields. But the arithmetic
of hyperelliptic curves is slightly less efficient than that of elliptic curves.

The Jacobians of hyperelliptic curves of genus g > 1 provide the underlying
Abelian group structure. For large-genus hyperelliptic curves, there exist algo-
rithms faster than the generic square-root methods and having subexponential
running times, to solve the discrete logarithm problem. But for g ≤ 3, no such
subexponential algorithm is known.

In hyperelliptic-curve cryptography, generating a suitable cryptographically
strong curve over a finite field is a major issue. Literature suggests that point-
counting algorithms over large prime finite fields are not very efficient. Subfield
c© Springer Nature Switzerland AG 2020
W. Meng et al. (Eds.): ICICS 2020, LNCS 12282, pp. 543–561, 2020.
https://doi.org/10.1007/978-3-030-61078-4_31
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hyperelliptic curves are especially attractive in this context. Moreover, subfield
hyperelliptic curves may offer faster Jacobian arithmetic compared to hyperel-
liptic curves over large prime fields (at the same security level).

There exist software implementations of elliptic- and hyperelliptic-curve cryp-
tography. Gaudry [18] writes a library for finite-field arithmetic. The mpFq library
is practically used for curve-based public key cryptography. A HECC software
implementation is done by Pelzl et al. [36] They put execution times in tabulated
manner for curves of genus two and three. Avanzi [2] implements a prime-field
library nuMONGO which includes elliptic- and hyperelliptic-curve arithmetic.
These implementations use large prime fields. We are not aware of any reported
implementation that includes subfield curves for cryptographic purposes.

In this paper, we propose a family of subfield hyperelliptic curves of genus
two. Point counting for these curves is quite efficient, and so a large number of
such curves can be made available very fast. These curves are almost as efficient
as curves over prime fields. We take genus-2 hyperelliptic curves of the form

C : y2 = x5 + x + a

defined over a single-precision prime p (that is, a ∈ Fp). For q = p5, C can be
viewed as a curve over Fq as well (a subfield curve, see [30]). Let Jp (respectively,
Jq) denote the Jacobian of the curve over Fp (respectively, Fq). The subgroup
order |Jp| divides the group order |Jq|. Suppose that the cofactor n = |Jq|/|Jp|
is prime. Then, there is a unique subgroup G of Jq of size n. The aim is to
work in the cyclic subgroup G. The bit length of n is dictated by the security
level l. Since the square-root attacks (see [6,12]) are the only attacks known
for hyperelliptic curves of genus two, we take l ≈ |n|/2. Since 64-bit security is
not considered safe given the available computing powers, we require l ≥ 80. For
long-term security, it is recommended to use l = 128. We target achieving several
security levels depending upon the needs of the cryptographic applications. More
specifically, we take l = 80, 96, 112, 128. These security levels are roughly the
same as provided by RSA-1024, RSA-1536, RSA-2048, and RSA-3072.

The rest of this paper is organized as follows. Section 2 provides a brief intro-
duction to hyperelliptic curves. In Sect. 3, we concentrate on computing the
order of the Jacobian for subfield curves, over extension fields. Section 4 explains
the divisor-class arithmetic. A comparative performance analysis is presented in
Sect. 5. In Sect. 6, we point out that the known attacks on hyperelliptic curves
do not apply to our curve family. Section 7 concludes the paper.

2 Hyperelliptic Curves

We now present a brief description of hyperelliptic curves [6,33]. Let Fq be a
finite field of characteristic p with q = pm, and Fq the algebraic closure of Fq. A
hyperelliptic curve C of genus g ≥ 1 over the field Fq is defined by the equation

C : y2 + h(x)y = f(x), (1)
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where h(x) ∈ Fq[x] is a polynomial of degree at most g, and f(x) ∈ Fq[x] is
a monic polynomial of degree 2g + 1. The curve C must be non-singular or
smooth, that is, there should not exist any solution P = (x, y) ∈ F

2

q of the
equation y2 + h(x)y − f(x) = 0, at which both the partial derivatives vanish:

2y + h(x) = 0, and h′(x)y − f ′(x) = 0.

If the characteristic of the field is not two, then C can be simplified as y2 = f(x),
where the degree of f is 2g+1. This curve is smooth if and only if f(x) is square
free, that is, gcd(f(x), f ′(x)) = 1. Note that for g = 1, C is an elliptic curve.

The set of rational points on the curve C, denoted by C(Fq) or simply C,
consists of all the ordered pairs (x, y) ∈ F

2

q which satisfy Eq. (1), along with
a special point at infinity O. The points other than O are called finite points
on the curve. For a finite point P = (u, v) ∈ F

2

q on the curve C, we define the
opposite of P as ˜P = (u,−v −h(u)). The opposite of O is O itself. A finite point
P is called special if P = ˜P ; otherwise the point is called ordinary.

Let us use hyperelliptic curves of the form y2 = f(x). For this curve, the set
of all rational points including the point at infinity does not form an Abelian
group. But the Jacobian of the curve is an Abelian group. Cantor [5] provides
the addition algorithm for hyperelliptic curves. Each element of the Jacobian J

has a unique representation as a reduced divisor (u, v). This representation of
reduced divisors is known as the Mumford representation [33]. They are related
to the rational points in the following way. Take g rational points Pi = (xi, yi),
i = 1, 2, . . . , g. Then, we can write

u(x) =
g

∏

i=1

(x − xi) and v(x) =
g

∑

i=1

∏

j �=i(x − xj)
∏

j �=i(xi − xj)
yi.

In particular, for g = 2, we have

u(x) = (x − x1)(x − x2) and v(x) =
(

x − x2

x1 − x2

)

y1 +
(

x − x1

x2 − x1

)

y2.

A single rational point (x1, y1) also gives a valid divisor (x−x1, y1). The inverse
of a reduced divisor (u(x), v(x)) is (u(x),−v(x)). The additive identity in the
Jacobian group has the Mumford representation (1, 0).

3 Order Computation

Point-counting algorithms are important to identify cryptographically strong
curves. Elliptic curves admit polynomial-time point-counting algorithms [9,16,
41]. There are adaptations of these point-counting algorithms for genus-two
hyperelliptic curves. A generalized version of Schoof’s algorithm [41] is intro-
duced by Pila [37]. Independently, Huang [23] and Adleman [1] come up with
point-counting algorithms. Gaudry and Harley [14,17] propose and implement
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a point-counting algorithm for curves defined over large prime fields. All these
algorithms are complicated and practically inefficient [39].

Furukawa et al. [10] propose an algorithm for computing the order of the
Jacobian of hyperelliptic curves of the form y2 = x5 +ax over large prime fields.
They also generate a family of hyperelliptic curves of the form y2 = x5 + a.
Satoh [40] develops a probabilistic polynomial-time algorithm to identify whether
a curve y2 = x5 + ax3 + bx is suitable or not, that is, whether the order of the
Jacobian has a large prime divisor. Buhler and Koblitz [4] propose such an
algorithm for special types of curves y2 + y = xn over large prime fields Fp,
where n is odd prime with n|(p − 1).

Let l be the security level (a bit size) we want to achieve. A hyperelliptic
curve of this security level can be generated as follows. We take an l-bit prime p.
We generate curves C over Fp, and compute the order of its Jacobian over Fp.
We repeat until a 2l-bit prime is obtained as the order. The bottleneck of this
approach is the algorithm for computing orders over large fields Fp.

In order to avoid this difficulty, we choose an l/4-bit prime p. For l ≤ 128,
this prime p fits in a 32-bit unsigned integer. We generate a curve over Fp, and
compute the order of Jp. Since p is now small, simple and practical point-counting
algorithms can be used. We then consider the quintic extension Fq = Fp5 . The
curve C is naturally defined over Fq. Moreover, given the group size |Jp|, the
group size |Jq| can be calculated using simple formulas. We require n = |Jq|/|Jp|
to be a prime. This approach helps us generate many suitable curves of security
level l fairly quickly. On the flip side, we now have to work in a field of bit size
|q| = 5l/4. In the rest of this section, we discuss this two-stage process.

3.1 Compute the Order of Jp for The prime p

In order to compute the order of an element in Jp, we use a baby-step-giant-
step algorithm. The order of Jp lies in the Weil interval [wl, wh], where wl =
⌈

(
√

p − 1)4
⌉

and wh =
⌊

(
√

p + 1)4
⌋

. The order of any point in Jp is an integral
divisor of the group order [39]. The following algorithm computes the order of
an element P . The running time of this algorithm is Õ (p3/4).

1. Set W = wh − wl, and S =
⌈√

W
⌉

.
2. Precompute −jP for j = 0, 1, 2, . . . , S − 1, and store the pairs (−jP, j) in a

list. // Baby steps
// Notice that −jP is computed as −(j − 1)P + (−P ) for j > 0.

3. If some j > 0 is found such that −jP = (1, 0), return j as the order of P .
4. Sort the list with respect to −jP .
5. Compute Q = wlP using the repeated double-and-add algorithm.
6. Compute SP = −(−(S − 1)P + (−P )).
7. For i = 0, 1, 2, . . . , S − 1, repeat // Giant steps

(a) Search the list for Q using the binary-search algorithm.
(b) If some entry (Q, j) is found in the list, store k = wl + iS + j.
(c) Update Q = Q + SP . //SP was precomputed, so this is an addition
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8. If there is only one match k, then return this k as the order of P . If there are
multiple matches, return the difference between any two consecutive matches
as the order of P .

Given this algorithm for computing element orders, the group order can be
computed as follows. We keep on generating random elements P , and compute
their orders k. If 2k > wh, then k is the order of Jp. Otherwise, we keep on
computing the lcm of individual element orders until their lcm l satisfies 2l >
wh. If in several iterations no such k or l can be obtained, the curve has low
exponent, and its order cannot be determined using the above baby-step-giant-
step algorithm. In this case, we discard the curve. Occasional failure to pinpoint
the order of some curves is not a practically serious issue.

The algorithm makes O(S log S) group operations, where S is the square-
root of the width W = wh − wl of the Weil interval. For p ≈ 232, we have
W ≈ 2 × 1015, and S ≈ 5 × 107, so this algorithm is reasonably efficient.

3.2 Compute the Order of Jq for q = pd

We work in quintic extensions, so d = 5 for us. We here provide a treatment for
a general d. Since Fq is an extension of Fp, a curve available from the previous
stage continues to remain a curve defined over Fq. It is easy to compute the
order of Jq from the order of Jp. Instead of running a point-counting algorithm
for C over Fq, we now use the L-function of the curve [6,26].

Let C : y2 = f(x) be a genus-two hyperelliptic curve defined over a prime field
Fp. Here, f(x) is a monic square-free polynomial of degree five. Let Nd denote the
number of rational points on C over Fpd (including the point at infinity). Notice
that Nd is not the order of the Jacobian group Jpd . It is fairly straightforward
to obtain the count Nd (by exhaustive enumeration) so long as pd is small. We
will shortly see that only N1 needs to be computed.

The zeta function of the curve C is defined by the infinite series

ZC(T ) = exp

( ∞
∑

d=1

NdT
d

d

)

= 1 +

( ∞
∑

d=1

NdT
d

d

)

+
1
2!

( ∞
∑

d=1

NdT
d

d

)2

+ · · ·

= 1 + N1T +
1
2
(N2

1 + N2)T 2 + · · · .

This function has an alternate expression ZC(T ) =
L(T )

(1 − T )(1 − pT )
, where

L(T ) = s0 + s1T + s2T
2 + s3T

3 + s4T
4 for some integers s0, s1, s2, s3, s4. These

integers satisfy s0 = 1 and s4−i = p2−isi for i = 0, 1, 2. So we can rewrite
L(T ) = 1 + s1T + s2T

2 + s1pT 3 + p2T 4. If we can compute the two integers
s1, s2, then L(T ) is fully determined. This function is related to the Jacobian
orders as follows.

Curve C : L(1) = |Jp|, (2)

Curve ˜C : L(−1) = |˜Jp|. (3)
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Here, ˜C is a quadratic twist of C over Fp defined by vy2 = f(x), where v is a
quadratic non-residue modulo p. From the two resulting linear equations, we can
compute s1 and s2. But since the point-counting algorithm is written for curves
of the form y2 = f(x) only, we use an equation other than (3). To that end, we
make the power-series expansion of the second expression for ZC(T ).

ZC(T ) = (1 + s1T + s2T
2 + s1pT 3 + p2T 4)(1 − T )−1(1 − pT )−1

= (1 + s1T + s2T
2 + s1pT 3 + p2T 4)(1+T +T 2+ · · · )(1+pT +p2T 2+ · · · )

= 1 + (p + s1 + 1)T + (p2 + s2 + 1 + s1 + s1p + p)T 2 + · · · .

Comparing this with the first power-series expansion of ZC (equating coefficients
of T and T 2) gives

N1 = p + s1 + 1, (4)
N2 = 2(p2 + s2 + 1 + s1 + s1p + p) − N2

1 = p2 − s2
1 + 2s2 + 1. (5)

The determination of N2 requires working in the quadratic extension Fp2 . It is
thus evident that the easiest way to determine L(T ) is to use Eqs. (2) and (4).

Let α1, α2, α3, α4 be the four roots (complex numbers) of L(opp)(T ) = T 4 +
s1T

3 + s2T
2 + s3T + s4 (the opposite of L(T )). For each d = 1, 2, 3, . . . , define

Ld(T ) = (1 − αd
1T )(1 − αd

2T )(1 − αd
3T )(1 − αd

4T ).

The connection between these L-polynomials and the Jacobian orders is this:

|Jpd | = Ld(1) = (1 − αd
1)(1 − αd

2)(1 − αd
3)(1 − αd

4). (6)

We have L(T ) = L1(T ), and |Jp| = L1(1) = L(1) which is consistent with
Eq. (2). It follows that if we can compute the four roots α1, α2, α3, α4 with
sufficient precision, we readily obtain the Jacobian orders in extension fields.

We can avoid complex arithmetic altogether. Indeed, we do not need to com-
pute the roots α1, α2, α3, α4 of L(opp)(T ). The elementary symmetric polynomials
in four variables α1, α2, α3, α4 are defined as follows.

e0 = 1,

e1 = α1 + α2 + α3 + α4,

e2 = α1α2 + α1α3 + α1α4 + α2α3 + α2α4 + α3α4,

e3 = α1α2α3 + α1α2α4 + α1α3α4 + α2α3α4,

e4 = α1α2α3α4,

ek = 0 for k ≥ 5.

Since L(opp)(T ) = T 4+s1T
3+s2T

2+s3T +s4 = (T −α1)(T −α2)(T −α3)(T −α4),
it follows that e0 = 1, e1 = −s1, e2 = s2, e3 = −s3, e4 = s4, ek = 0 for
k ≥ 5. Now, let us define the power sums of the four roots pk = αk

1 +αk
2 +αk

3 +αk
4

for all k ≥ 1. The Newton–Girard formula [6] relates these two sequences as

kek =
k

∑

i=1

(−1)i−1ek−ipi
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for all k ≥ 1. Since we know the ek values, we can compute the pk values
iteratively using this formula. More explicitly, we have

p1 = e1,

p2 = e1p1 − 2e2,

p3 = e1p2 − e2p1 + 3e3,

p4 = e1p3 − e2p2 + e3p1 − 4e4,

pk = e1pk−1 − e2pk−2 + e3pk−3 − e4pk−4 for all k ≥ 5.

Now, let us come back to our original problem of computing the right side
of Eq. (6). Notice that αd

1, α
d
2, α

d
3, α

d
4 are the roots of

L
(opp)
d (T ) = (T − β1)(T − β2)(T − β3)(T − β4),

where βi = αd
i for i = 1, 2, 3, 4. Name the elementary symmetric polynomials in

β1, β2, β3, β4 as Ek (for example, E1 = β1 + β2 + β3 + β4), and the power sums
as Pk (for example, P2 = β2

1 + β2
2 + β2

3 + β2
4). These new power sums are related

to the old power sums (in αi) as

Pk = βk
1 + βk

2 + βk
3 + βk

4 = αdk
1 + αdk

2 + αdk
3 + αdk

4 = pdk.

We need only P1, P2, P3, P4 (that is, pd, p2d, p3d, p4d), so we compute pk for k =
1, 2, 3, . . . , 4d. Now, we use the Newton–Girard formula for L

(opp)
d (T ), that is,

kEk =
k

∑

i=1

(−1)i−1Ek−iPi

for all k ≥ 1, and obtain

E0 = 1,

E1 = P1,

E2 =
1
2
(E1P1 − P2),

E3 =
1
3
(E2P1 − E1P2 + P3),

E4 =
1
4
(E3P1 − E2P2 + E1P3 − P4).

This, in turn, implies that Ld(T ) = E0 − E1T + E2T
2 − E3T

3 + E4T
4, and, in

particular, |Jpd | = Ld(1) = E0 − E1 + E2 − E3 + E4.
We have |Jp| ≈ q2 = p10. Since Jp is a subgroup of Jq, the order of Jp must

divide the order of Jq. We use the cofactor n =
|Jq|
|Jp| . If n is prime, Jq contains a

subgroup G of this order. The bit length of n is |n| = |Jq| − |Jp| ≈ (10 − 2)|p| =
8|p|, that is, the security level is |n|/2 ≈ 4|p| = l, as planned.



550 A. Ganguly et al.

Indeed, we have |n| = 2l or |n| = 2l + 1 if p ≈ 2l/4. In terms of efficiency
of Jacobian arithmetic over Fq, there is hardly any difference in the running
times between these two cases. However, for index arithmetic (modulo n), the
case |n| = 2l + 1 introduces some inefficiency. If we use 32-bit words to pack
fragments of multiple-precision integers, then for the stated values of l, we need
an extra word compared to the case |n| = 2l. This may be an issue for some
cryptographic algorithms.

We present a set of curves which were obtained by our approach. For efficiency
reasons, we take C of the form y2 = x5 + x + a. We vary a in the range [0, 1000]
and record all the cases where n is a prime (some are listed in the Appendix).
The following examples illustrate some curve-generation attempts.

Examples

(1) • Curve C1 : y2 = x5 + x + 47.
|Jp| = 1099928953312 = 240 + 417325536.
Count of rational points on C1 over Fp is 1048979.

• This gives

|Jq| = 1606861421126112580388908685296656425664857224973157020278432

= 2200 − 76623132877695153053407044506176857345768809635815022944.

• The cofactor

n = |Jq|/|Jp|
= 1460877465119621059080883122151454896336021166011
= 2160 − 624172211281859122801710564828123319911376965 is prime.

So this curve is accepted.
(2) • C2 : y2 = x5 + x + 46.

|Jp| = 1097744558000 = 240 − 1767069776.
Count of rational points on C2 over Fp is 1046895.

• This gives

|Jq| = 1606861421126118518527811084904153739543257852153511445450000

= 2200 − 76623132871757014151007437008862978945141629281389851376.

• The cofactor n = |Jq|/|Jp|
= 1463784456425534398803014685411133451998636874275
= 2160 + 2282819094631480599329852694850432342704331299 is not a
prime, so this curve is discarded.

(3) • C3 : y2 = x5 + x + 60.
|Jp| = 1098401972048 = 240 − 1109655728.
Count of rational points on C3 over Fp is 1047522.

• This gives

|Jq| = 1606861421126117326279311266898329713697223055120690303050128

= 2200 − 76623132872949262650825442832888824979938662102532251248.
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• The cofactor

n = |Jq|/|Jp|
= 1462908354152060576672027642006156546558828957461
= 2160 + 1406716821157658468342809289873526902896414485,

even though prime, may be discarded because n > 2160.

4 Jacobian Arithmetic

For use in practical hyperelliptic-curve cryptographic systems, an efficient addi-
tion algorithm for the divisor group is required. Cantor proposes a fast algorithm
for addition using the Mumford representation of divisors. This addition of the
divisor group in the hyperelliptic curve is not so efficient as elliptic-curve point
addition. The performance gap was narrowed by Harley [20]. Later, Lange pro-
vides an explicit version of Harley’s formula [28]. Lange’s explicit version gives a
powerful speedup for hyperelliptic-curve addition. To enhance the performance
further, Lange [28] also proposes an inversion-free addition algorithm.

The Jacobian J is an Abelian group under divisor-class addition. The inverse
of a reduced divisor (u(x), v(x)) is (u(x),−v(x)). The additive identity in the
Jacobian group has the Mumford representation (1, 0). Let D1 = (u1, v1) and
D2 = (u2, v2) be two reduced divisors on the given hyperelliptic curve C. We
target to compute the unique reduced divisor (u, v) of the sum D1 + D2 in the
Mumford representation. Cantor [5] provides Algorithm 1 for computing D1+D2.
Improvements of this algorithm can be found in [28].

Algorithm 1. Cantor’s Addition Algorithm

Input: Two divisor classes D1 = (u1, v1) and D2 = (u2, v2) on the curve C.
Output: The unique reduced divisor having Mumford representation D = (u, v)

such that D = D1 + D2.
1: procedure Cantor(D1,D2)
2: d1 ←− gcd(u1, u2); � d1 = e1u1 + e2u2

3: d ←− gcd(d1, v1 + v2 + h); � d = c1d1 + c2(v1 + v2 + h)
4: s1 ←− c1e1 s2 ←− c1e2 and s3 ←− c2

5: u ←− u1u2

d2
and v ←− s1u1v2 + s2u2v1 + s3(v1v2 + f)

d
mod u

6: while deg u ≤ g do

7: u′ ←− f − vh − v2

u
8: v′ ←− (−h − v) mod u′

9: u ←− u′

10: v ←− v′

11: make u monic
12: return D = (u, v) � Reduced divisor

Wollinger [45] reckons that the explicit version of Cantor’s addition algorithm
takes 2I + 44M + 4S field operations for hyperelliptic curves of genus two over
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arbitrary finite fields. Here, I stands for inversion, M for multiplication, and S
for squaring of field elements. The doubling formula takes 2I + 42M + 8S field
operations. Simpler versions of these formulas are required for efficiency.

Harley provides an optimized practical formula. Harley’s algorithm for addi-
tion on genus-two hyperelliptic curve is first published in [17]. Later, Harley
provides a complete description in his web page [20]. He also provides sample C
codes for doubling. The algorithm is based on the theory and the tools presented
in Mumford’s textbook [34]. The algorithm avoids the computation of quadratic
forms related to hyperelliptic-curve function fields, and extends the so-called
chord-and-tangent law for point addition on elliptic curves. Special attention to
different types of divisors is the key issue to optimize the field operations.

We now give the details of Harley’s addition and doubling algorithms. We
use genus-two hyperelliptic curves of the form (1) over finite fields with arbitrary
characteristics. For odd-characteristic fields, we fix h = 0. We assume that in
addition operations, the two divisors are co-prime to each other and also to their
opposites. Harley provides these subexpressions for addition.

1. k = (f − v2h − v2
2)/u2

2. s = (v1 − v2)/u2 mod u1

3. l = su2

4. u = (k − s(l + h + 2v2))/u1

5. u′ = u made monic
6. v′ = −h − (l + v2) mod u′

Lange simplifies these expressions, and counts the number of field operations [29].
The explicit version takes 2I + 3S + 24M for addition, and 2I + 6S + 24M for
doubling. Until this point, there is significant improvement in terms of squaring
and multiplication, but no change in inversions. Matsuo [32] modifies Harley’s
algorithm, and reduces the number of multiplications for addition and doubling.
In 2002, Lange makes a case study on addition of different types of divisors, and
provides an optimized algorithm for addition and doubling. This work reduces
one inversion. Arithmetic using projective coordinates removes all inversions in
the scalar-multiplication loop. Lange also uses weighted coordinates.

Table 1. Divisor-Class Addition Algorithms

Algorithms Addition Doubling

Elliptic Curve Arithmetic I + 2M + S I + 2M + 2S

Cantor’s Algorithm 2I + 44M + 4S 2I + 42M + 8S

Harley’s Formula 2I + 24M + 3S 2I + 24M + 6S

Matsuo’s Improvement 2I + 22M + S 2I + 23M + 2S

Lange’s Explicit Version I + 22M + 3S I + 22M + 5S

Projective Coordinate 47M + 4S 38M + 6S

Weighted Coordinate [28] 47M + 7S 34M + 7S

Costello and Lauter [7] 43M + 4S 30M + 9S

Hisil and Costello [22] 41M + 7S 28M + 8S
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For space restrictions, we do not go to the details of the optimized formulas
for Jacobian arithmetic using affine, projective, and weighted coordinates, but
refer the reader to [6,7,22]. Table 1 lists the numbers of arithmetic operations
needed to perform addition and doubling for elliptic and hyperelliptic curves.

5 Performance Analysis

Since the arithmetic of hyperelliptic curves is somewhat inefficient in comparison
with the elliptic-curve point arithmetic, reducing the performance gap is a point
of concern. In this section, we analyze the practical performances of hyperelliptic
and elliptic curves [31]. The entire computation depends on the underlying field
operations. Therefore, an efficient implementation of the finite-field arithmetic
plays a vital role in the Jacobian arithmetic. Since we work with subfield curves,
we focus on the arithmetic of quintic extension fields. We prefer to have only
small integers (positive or negative) as the non-zero coefficients of the polynomial
F (t) used to define Fq = Fp[t]/〈F (t)〉. Table 2 lists some l-bit primes and some
corresponding monic irreducible polynomials.

Table 2. Defining the extension fields

Prime length l Prime p Extending polynomial F (t)

20 1048571 t5 − 2 or t5 + 2

24 16777199 t5 + t− 3 or t5 − 4t− 1

28 268435399 t5 − t− 2

32 4294836163 t5 + 2t− 1

We consider a standard elliptic curve, and two hyperelliptic-curve families:
the first is over large prime fields, and the second is that of subfield curves
defined over quintic extensions. This comparative study is based on point addi-
tion, point doubling, and scalar multiplication. Scalar multiplication uses the
4-bit windowed multiplication method for both elliptic and hyperelliptic curves.
All the curves used in our experiments offer 128-bit security. The parameters of
these curves are listed now.

1. Elliptic Curve: Curve P-256 [31]
⊕ Prime p = 2256 − 2224 + 2192 + 296 − 1 of size 256 bits
⊕ Curve E : y2 = x3 − 3x + b, where
b = 2455155546008943817740293915197451784769108058161191238065
⊕ Group order n = 11579208921035624876269744694940757352999695522

4135760342422259061068512044369
2. Hyperelliptic curve: Generic-1271 [3]

⊕ Prime p = 2127 − 1 of size 128 bits
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⊕ Curve C1 : y2 = x5 + f3x
3 + f2x

2 + f1x + f0, where

f3 = 34744234758245218589390329770704207149,
f2 = 132713617209345335075125059444256188021,
f1 = 90907655901711006083734360528442376758,
f0 = 6667986622173728337823560857179992816.

⊕ Group order n = 28948022309329048848169239995659025138451177973
091551374101475732892580332259

3. Subfield curve
⊕ Base prime p = 4294836163 of size 32 bits
⊕ Monic irreducible polynomial F (t) = t5 + 2t − 1 for defining Fp5

⊕ Curve C : y2 = x5 + x + a, where a ∈ Fp. As a sample, we take a = 23.
⊕ Group order n = 11576432614327621930104641095879025579457496847

4650616480294570352692770626891

We have run our codes in Linux environment on an Intel core-i7 3.10 GHz desktop
machine. The codes are complied by the GNU C compiler gcc version 5.5.0. We
have used three mathematical libraries for three sets of implementations. We our-
selves have developed an extension-field arithmetic library which is optimized for
the subfield curves. Our library can also handle elliptic and hyperelliptic curves
over prime fields but is not very optimized for these curves. A very popular and
commonly available library for multiple-precision integer arithmetic is the GNU
multiple-precision library GMP [19]. This library does not support polynomial
arithmetic, so the arithmetic of subfield curves cannot be readily implemented
using GMP. Moreover, despite its popularity, GMP is known to be not one of
the fastest available libraries. The number theory library NTL [43] is a public-
domain and fast library, popular among number theorists. We have used NTL
version 11.3.2. NTL supports the arithmetic of both multiple-precision integers
and polynomials, and is thus suitable for all the three curves.

We first compare the performance of Cantor’s algorithm for hyperelliptic
curves with that of elliptic curves in Table 3. The table illustrates that Cantor’s
algorithm is significantly inefficient compared to the elliptic-curve arithmetic.
For the hyperelliptic curve over prime fields, NTL is the fastest library, whereas
our implementation is the slowest. This is because our implementation is not
optimized for multiple-precision integer arithmetic which is very infrequently
needed in cryptographic protocols involving subfield curves.

Table 4 illustrates the tremendous performance gains achieved by Lange’s
optimization over Cantor’s algorithm. NTL being the most efficient multiple-
precision integer library, we report the timings of P-256 and Generic-1271 for this
library only. Lange’s algorithm for subfield curves is implemented using both our
implementation and NTL. The first inference we draw from these figures is that
the performance gap between elliptic and hyperelliptic curves is now significantly
reduced. Second, there is a stiff competition between hyperelliptic curves over
prime fields and hyperelliptic curves over extension fields. This in turn boosts
interests in furthering work on our proposed family of subfield curves.
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Table 3. Comparison of Cantor’s algorithm with elliptic-curve arithmetic

(All times are in milliseconds)

Curve (Library) Doubling Addition Scalar multiplication

P-256 (NTL) 0.000003 0.000003 0.001375

Generic-1271 (Our work) 0.000191 0.000201 0.038537

Generic-1271 (NTL) 0.000020 0.000022 0.007514

Generic-1271 (GMP) 0.000054 0.000058 0.033367

Subfield curve C (Our work) 0.000034 0.000038 0.011614

Subfield curve C (NTL) 0.000100 0.000102 0.034476

Table 4. Comparison with different coordinates

(All times are in milliseconds)

Coordinate Curve (Library) Doubling Addition Scalar multiplication

Affine Generic-1271 (NTL) 0.000007 0.000009 0.002439

Affine Subfield curve C (Our work) 0.000009 0.0000010 0.003021

Affine Subfield curve C (NTL) 0.000028 0.000026 0.008442

Projective Generic-1271 (NTL) 0.000007 0.000007 0.002466

Projective Subfield curve C (Our work) 0.000011 0.000012 0.003167

Projective Subfield curve C (NTL) 0.000026 0.000028 0.008604

Weighted Generic-1271 (NTL) 0.000007 0.000009 0.002576

Weighted Subfield curve C (Our work) 0.000008 0.000012 0.002944

Weighted Subfield curve C (NTL) 0.000025 0.000031 0.008507

6 Discrete Logarithm Problem

At the 128-bit security level, we work in prime-ordered groups of size about 2256.
The generic square-root attacks (like Pollard’s rho and lambda methods, and the
Pohlig–Hellman method) possess a complexity of O(2128) which is considered too
large to be mountable successfully. In the rest of this section, we focus on some
specific attacks proposed for elliptic and hyperelliptic curves.

We first consider an attack proposed in [6]. Let Jq be the Jacobian of a
genus-g hyperelliptic curve defined over Fpd . Suppose that p||Jq|. There exists
a morphism from Jq to the Fq-vector space of holomorphic differentials of the
curve. This vector space and F

2g−1
q are isomorphic. The complexity of computing

the map is O(log q). As a result, discrete logarithms in Jq are efficiently mapped
to those in F

2g−1
q . The time complexity of the method is O((2g − 1) log qk) for a

small constant k. For our family, we therefore need to ensure that the condition
p||Jq| does not hold. If this condition holds, we must discard the curve.

The Weil-descent attack reduces the DLP from EF
pd

to the Jacobian of a
curve Cp, and computes the discrete logarithm by the index calculus method on
the Jacobian. Gaudry, Hess and Smart develop a Weil-descent method for elliptic
curves defined over binary fields F2d [13]. Galbraith [11] generalizes the attack



556 A. Ganguly et al.

to hyperelliptic curves defined over even binary extension fields. Diem [8] studies
elliptic and hyperelliptic curves over finite extension fields of odd characteristics.
Diem’s work is the most relevant in the current context. In particular, he shows
that when the extension degree d is five, there exist potentially vulnerable ellip-
tic curves. This attack therefore does not apply to our family of hyperelliptic
curves. Hess [21] generalizes the Weil-descent construction of the GHS attack
to arbitrary Artin–Schreier extensions. However, he concentrates only on small
primes like p = 2, 3 in his work.

The decomposition attack is mentioned in [15]. Nagao [35] proposes a decom-
position attack for hyperelliptic curves over an extension field. For the decom-
position of the Jacobian of a genus-g hyperelliptic curve defined over Fq = Fpd ,
we need exactly dg divisors. The complexity of this algorithm is O(q2− 2

ng ). In
our case, q ≈ 2160, so this attack is not feasible. The cover decomposition attack
on the ECDLP proposed by Joux and Vitse [25] for elliptic curves defined over
Fp6 is also not applicable to our family.

Shor’s polynomial-time quantum algorithms solve the integer-factoring and
the finite-field discrete-logarithm problems [42]. Proos [38] show that Shor’s algo-
rithm can solve ECDLP with O(l) qubits and O(l3) Toffoli gates for a curve over
an l-bit field. Huang [24] proposes a quantum algorithm for solving HECDLP
over l-bit prime fields using O(l) qubits and O(l3) Toffoli gates. Replacing the
prime-field arithmetic by the extension-field arithmetic makes Huang’s algorithm
applicable to our curves as well. We conclude that, like other elliptic and hyper-
elliptic curves, our family of curves is not considered quantum-safe.

7 Conclusion

Our experiments reported in this work have been able to narrow the gap between
the performances of elliptic and hyperelliptic curves. We have also established
our proposed family of subfield curves to be nearly as efficient and practical as
curves over prime fields. Possibilities of further performance enhancements of
our family of curves are worth investigating.

Acknowledgments. The authors wish to thank the anonymous referees for providing
useful suggestions. This work is funded by Space Application Center, Ahmedabad,
ISRO.

Appendix

This section lists a set of subfield curves at various security levels. These curves
are of the special form y2 = x5 + x + a, a ∈ Fp, where p is a single-precision
prime. The curves are naturally defined over the quintic extension Fq = Fp5 . We
represent Fq as Fp[t]/〈F (t)〉, where F (t) ∈ Fp[t] is a monic irreducible polynomial
of degree 5. The Jacobian of a curve over Fp and Fq are denoted by Jp and Jq,
and their sizes by np = |Jp| and nq = |Jq|. We have Jq = Jp ⊕ G. For all the
curves listed here, G is a group of prime order n = |G| = nq/np. At all security
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levels, it is recommended to use the curves with n = 2··· − · · · . The curves
with n = 2··· + · · · should work well, but would be slightly (and unnecessarily)
inefficient.

• Security Level l = 80:
p = 220 − 5 = 1048571, n ≈ 2160

F (t) = t5 + 2 or t5 − 2

Curve 1: y2 = x5 + x + 47
np = 1099928953312
nq = 1606861421126112580388908685296656425664857224973157020278432
n = 1460877465119621059080883122151454896336021166011

= 2160 − 624172211281859122801710564828123319911376965
Curve 2: y2 = x5 + x + 52

np = 1101226502688
nq = 1606861421126113461086479300845938085559612360640338474575648
n = 1459156147444600848921990361604654440813312450921

= 2160 − 2345489886302069281694471111628578842620092055
Curve 3: y2 = x5 + x + 60

np = 1098401972048
nq = 1606861421126117326279311266898329713697223055120690303050128
n = 1462908354152060576672027642006156546558828957461

= 2160 + 1406716821157658468342809289873526902896414485

• Security Level l = 96 :
p = 224 − 17 = 16777199, n ≈ 2192

F (t) = t5 + t − 3 or t5 − 4t − 1

Curve 1: y2 = x5 + x + 8

np = 281405073717438

nq = 1766829161770434166957255033723286569895571241304785288893503449734184998

n = 6278597391404986546431038561358469633956007268066042812621

= 2192 + 1495656018305782595249138150803217853651823602008299725

Curve 2: y2 = x5 + x + 36

np = 281393693383592

nq = 1766829161770434168216884428148876763294620088602430264488795231689851752

n = 6278851315128505863648161463591691840628978958927409107481

= 2192 + 1749579741825099812372040384025424526623514463374594585

Curve 3: y2 = x5 + x + 182

np = 281541581675196

nq = 1766829161770434163587554797062952451467097562619621151021438808266205996

n = 6275553157219806100489897430946712150776766808252566107301

= 2192 − 1548578166874663345891992260954265325588636211468405595

• Security Level l = 112:
p = 228 − 57 = 268435399, n ≈ 2224

F (t) = t5 − t − 2
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Curve 1: y2 = x5 + x + 10

np = 72066946475789318

nq = 1942664767136491668301208389967271389372856279556286525957533764077467986946900

119638

n = 26956390719136744219764874022896708536295057384944311723768844333241

= 2224 − 3555948013895574902141064122922137342087037596260757334765915975

Curve 2: y2 = x5 + x + 167

np = 72063113090196194

nq = 1942664767136491668300809351265500106161878078238316225744123602558901646434168

946274

n = 26957824659961587913263335366774193287115584173003202002286485072321

= 2224 − 2122007189051881403679720245437386521560249537370478817125176895

Curve 3: y2 = x5 + x + 170

np = 72057584612233888

nq = 1942664767136491668300484292288477515070484351870000358810513277455612102547752

490848

n = 26959892946601312493893583196586674573668140866926818613849397254671

= 2224 − 53720549327300773431890432956099969003555613753867254212994545

Curve 4: y2 = x5 + x + 192

np = 72054687534662708

nq = 1942664767136491668305707657262048973525479792533873641708241390152754078900427

906948

n = 26960976913569310784338817648515394148503441246058977367724242879781

= 2224 + 1030246418670989671802561495763474866296823518404886620632630565

• Security Level l = 128:
p = 232 − 217 − 61 = 4294836163, n ≈ 2256,
F (t) = t5 + 2t − 1

Curve 1: y2 = x5 + x + 23

np = 18445535354239713704

nq = 2135334970635538267915777519758948826576373745978228427883910271157209604168863

254025408443614264

n = 115764326143276219301046410958790255794574968474650616480294570352692770626891

= 2256 − 27763094039976122524574049897652058695016190989947559163013655220359013045

Curve 2: y2 = x5 + x + 43

np = 18445935166209787132

nq = 2135334970635538267915774785492693917199141366356689538973446161852476014106602

055674233935464572

n = 115761816974568722624207617592602021364593396721538100841934645291061073413921

= 2256 − 30272262747472799363367416085886488676587944102463197522938716852056226015

Curve 3: y2 = x5 + x + 64

np = 18445136678282565974

nq = 2135334970635538267915779272999864719737831085358768927590374074392921311067078

683138031459039214

n = 115766828290825121600808965133278786068804110238629464232457576772583391180261

= 2256 − 25260946491073822762019875409121784465874427011099807000007235329738459675

Curve 4: y2 = x5 + x + 67

np = 18445849105501231246

nq = 2135334970635538267915774947585958992554524495657846435953860223550444608791704

402014490590898726

n = 115762357071364243789903763107428811808666214309177997352893769468004599239381

= 2256 − 29732165951951633667221901259096044603770356462566686563814539908530400555



A Family of Subfield Hyperelliptic Curves for Use in Cryptography 559

References

1. Adleman, L.M., Huang, M.-D.A.: Counting rational points on curves and abelian
varieties over finite fields. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp.
1–16. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61581-4 36

2. Avanzi, R.M.: Aspects of hyperelliptic curves over large prime fields in software
implementations. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol.
3156, pp. 148–162. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28632-5 11

3. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Fast cryptography in genus 2. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
194–210. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-
9 12

4. Buhler, J., Koblitz, N.: Lattice basis reduction, jacobi sums and hyperelliptic cryp-
tosystems. Bull. Aust. Math. Soc. 58(1), 147–154 (1998)

5. Cantor, D.G.: Computing in the Jacobian of a hyperelliptic curve. Math. Comput.
48(177), 99–101 (1987)

6. Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Chapman and Hall/CRC, London (2005)

7. Costello, C., Lauter, K.: Group law computations on Jacobians of hyperelliptic
curves. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 92–117.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-0 6

8. Diem, C.: The GHS attack in odd characteristic. J. Ramanujan Math. Soc. 18(1),
1–32 (2003)

9. Elkies, N.D., et al.: Elliptic and modular curves over finite fields and related com-
putational issues. AMS IP Stud. Adv. Math. 7, 21–76 (1998)

10. Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves
of type y2 = x5+ax over finite prime fields. In: Matsui, M., Zuccherato, R.J. (eds.)
SAC 2003. LNCS, vol. 3006, pp. 26–41. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24654-1 3

11. Galbraith, S.D.: Weil descent of Jacobians. Electron. Notes Discrete Math. 6, 459–
468 (2001)

12. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

13. Gaudry, P., Hess, F., Smart, N.: Constructive and destructive facets of Weil
descent. J. Cryptol. 15(1), 19–46 (2002)

14. Gaudry, P., Schost, E.: Genus 2 point counting over prime fields. J. Symb. Comput.
47, 368–400 (2012)

15. Gaudry, P.: Index calculus for abelian varieties of small dimension and the elliptic
curve discrete logarithm problem. J. Symb. Comput. 44(12), 1690–1702 (2009)
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Abstract. We propose a leakage-resilient inner-product functional
encryption scheme (IPFE) in the bounded-retrieval model (BRM). This
is the first leakage-resilient functional encryption scheme in the BRM.
In our leakage model, an adversary is allowed to obtain at most l-bit
knowledge from each secret key. And our scheme can flexibly tolerate
arbitrarily leakage bound l, by only increasing the size of secret keys,
while keeping all other parts small and independent of l.

Technically, we develop a new notion: Inner-product hash proof sys-
tem (IP-HPS). IP-HPS is a variant of traditional hash proof systems. Its
output of decapsulation is an inner-product value, instead of the encapsu-
lated key. We propose an IP-HPS scheme under DDH-assumption. Then
we show how to make an IP-HPS scheme to tolerate l′-bit leakage, and
we can achieve arbitrary large l′ by only increasing the size of secret
keys. Finally, we show how to build a leakage-resilient IPFE in the BRM
with leakage bound l = l′

n
from our IP-HPS scheme.

Keywords: Inner-product functional encryption · Bounded-retrieval
model · Hash proof system

1 Introduction

Leakage-resilient Cryptography. In traditional cryptography model, secu-
rity usually relies on complete privacy of the secret values, such as secret keys
and randomness. For many cryptographic systems in such a model, even if a
single bit of these secrets is leaked, then the security will totally lose. How-
ever, it is often unrealistic to avoid all kinds of leakage of the secret values.
Actually, developments of side channel attacks [37,40–42] have found that the
adversary is possible to obtain partial information of these secret values by cap-
turing the physical nature of cryptographic operations. Cryptographic systems
should be proven secure against the largest possible class of potential adversaries.
Therefore, a new topic of modern cryptography: leakage-resilient cryptography
appeared.
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Leakage-resilient cryptography was introduced to provide formal security
guarantees even the adversary can obtain some information of the secret val-
ues. There have been lots of studies on leakage-resilient cryptography, including
public key encryption [5,6,14,15,26,45], identity-based encryption [16,20,43,57],
attribute-based encryption [56,58], signatures [13,39] and so on.

The first step of achieving leakage-resilience is to decide an appropriate model
of what information of secrets the adversary can learn. If the adversary can learn
anything of the secret keys, then it is impossible to design a secure cryptographic
system. So we have to restrict the power of the adversary. We may bound the
amount of leakages the adversary can obtain in the following models.

Relative-Leakage Model. In this model, the secret key size is chosen in the same
way as in standard cryptographic systems, which is based on the security param-
eter. We bound a leakage-ratio 0 < μ < 1, then we allow the adversary to obtain
μ|sk| bits from a secret key with bit-length |sk|. In this model, no matter what
the secret key size is, the adversary can get some imperfect reading of the secret
key.

Bounded-Retrieval Model. The bounded-retrieval model (BRM) [23,28] is a gen-
eralization of the relative-leakage model. In this setting, the leakage bound l is
decided by external factors, and we can resist such attacks by increasing the
length of the secret key, to dominate l. Thus, we hope that the size of secret key
can be set flexibly depending on the security parameter and the leakage bound l.
When l is extremely large, it is desirable that we can resist such attacks by only
increasing the length of the secret key without affecting efficiencies of others,
such as public key size, encryption time, decryption time and even master secret
key size in the case of IBE. The BRM is to ensure that all efficiency parameters
other than the secret key size only depend on the security parameter, and not
on the leakage bound l.

Functional Encryption. As another new tide of modern cryptography, func-
tional encryption (FE) [12,48] was proposed to address the “all-or-nothing” issue
of traditional public key encryption (PKE). That is, the decryption result of tra-
ditional PKE is the plaintext if the secret key sk matches the public key pk, or
nothing otherwise. Traditional PKE is found to be insufficient for many emerg-
ing applications in which users are only allowed to obtain a function value of
the ciphertext without any other information about the ciphertext. Roughly
speaking, considering a functional encryption scheme for a functionality F (k, x),
where k is in the key space and x is in the plaintext space, the authority with
the master secret key can generate secret key skk for each value k. Given a
ciphertext of x, the user who holds skk can only learn F (k, x) and nothing
else except possible the length of x. Before the definition of FE appears, there
were many works to overcome the “all-or-nothing” barrier. These works, includ-
ing identity-based encryption (IBE) [11,33,38,50,53], attribute-based encryption
(ABE) [36,54] and predicate encryption (PE) [51], are considered as special cases
of FE.
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After proposing the definition of FE, researchers started to build FE schemes
for general circuits, Turing machines and some very powerful functions [7,32,34,
35,55]. But these FE schemes either have bounded collusion, or have to rely on
powerful, but impractical and not well studied assumptions (indistinguishable
obfuscation (IO) and its variants, or polynomial hardness of simple assumptions
on multi-linear maps). Attacks were identified for some constructions that are
based on IO and multi-linear maps [8,18,19,21].

Functional Encryption for Inner-Product (IPFE) from Standard Assumptions.
Many works try to build efficient schemes for specific functions from well studied
standard assumptions in recent years [1–3,9,59]. Most of them started their work
from inner-product, which is simple but very useful. More precisely, given an
encrypted vector x from message space X and a secret key sky based on vector
y in the key space K, the decryption algorithm will output the inner-product
〈x,y〉 without revealing any other information about x except the length of it.
One of practical applications of IPFE is to calculate the weighted mean, a useful
tool to describe the main features of a collection of information in statistics, and
to protect the privacy of the data set which is used to calculate the weighted
mean.

Leakage-Resilient Functional Encryption in the BRM. While there are
many existing results about PKE and IBE in the BRM, designing FE schemes
in the BRM seems not easy. When considering the security model of FE, unlike
traditional PKE, [48] showed that simulation-based security (SIM-security) is not
always achievable for FE. So Indistinguishability-based security (IND-security)
is widely used in FE research. It is a folklore in the literature that there is a
restriction in IND-security that all secret key queries for function F (k, ·) should
ensure that F (k, x0) = F (k, x1), where x0, x1 are the challenge ciphertexts.

However, this restriction causes that the IND-security of FE is weak in the
sense that a trivially insecure scheme for a certain functionality can be proved
IND-secure [12,48]. One possible way to enhance the IND-security is to allow the
adversary to get some knowledge about the secret keys for functions F (k, ·) where
F (k, x0) �= F (k, x1). More precisely, the adversary is allowed to make leakage
query to such secret keys to collect some information. Of course, if an adversary
can get unrestricted information about the secret key, i.e., it can learn the secret
key for F (k, ·) where F (k, x0) �= F (k, x1) totally, then it can distinguish whether
the challenge ciphertext is an encryption of x0 or x1 easily. Thus, we must place
some restrictions on the type or amount of information that the adversary can
learn through leakage queries. Therefore, it is the time to build FE schemes
which is still IND-secure even the adversary can obtain a bounded amount of
leakage to such secret keys.

The only related work [52] considered leakage-resilient FE for general
functions in the relative-leakage model. They presented a leakage-resilient
CCA-secure generic construction for single-key and single-ciphertext functional
encryption via hash proof system (HPS), one-time lossy filter and garbled cir-
cuits. But the power of the adversary in this work is very limited since queries
for one secret key and one ciphertext can be made. And another drawback is
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that when the system tries to tolerate a larger amount of leakage, the efficiencies
of all parts become lower. Therefore, it is insufficient for practical application of
functional encryption.

1.1 Our Results

Towards practical functional encryption, we focus our research on leakage-
resilient IPFE from standard assumptions in the BRM. We use the
indistinguishability-based security model together with a leakage query oracle
to describe its security. Any adversary can access the leakage query oracle with
some secret keys and functions certain times before seeing the challenge cipher-
text as long as for each key sky , the total number of bits output by the leakage
query oracle is at most the leakage bound l (i.e.,

∑
f |f(sky )| ≤ l, where |f(sky )|

is the bit-length of f(sky ) ).
As our main contribution, our leakage-resilient IPFE scheme and its security

proof build on hash proof system [22].1 [5,45] showed how to use a hash proof
system (HPS) to construct leakage-resilient PKE and IBE schemes. An HPS can
be viewed as a key encapsulation mechanism (KEM) with specific structure. A
KEM includes a key generation algorithm to generate public key and secret key,
an encapsulation algorithm to generate a pair of ciphertext and encapsulated
key, and a decapsulation algorithm which uses the secret key to recover the
encapsulated key from a ciphertext.

An HPS is a KEM with the following properties: (1) An HPS includes an
invalid-encapsulation algorithm to generate invalid ciphertexts. And the invalid
ciphertexts are computationally indistinguishable from those valid ciphertexts
generated by a valid-encapsulation algorithm. (2) The output of decapsulation
algorithm with input a fixed invalid ciphertext and a secret key is related to the
random numbers used to generate the invalid ciphertext and the secret key. The
main benefit of using HPS to construct encryption scheme is that, when proving
the security, after switching the valid ciphertext into invalid ciphertext in the
first step, we can argue the leakage using information-theoretic analysis.

However, existing HPS such as IB-HPS in [5] cannot be applied to our cases
directly. Recall that IPFE requires that the decryption result only reveals an
inner-product value of two vectors and nothing else. When we convert an HPS
into an encryption scheme, we usually use the encapsulated key as a mask to
hide the plaintext in the encryption algorithm, and recover the plaintext from
ciphertext by running decapsulation algorithm to get the encapsulated key. But
when applying to FE, if the decapsulation algorithm of the underlying HPS
still outputs the encapsulated directly, then the decryption of FE will reveal

1 [10] showed how to construct an IPFE scheme from projective hash functions. But
in their construction, the projective hash function is considered as a building block
which is not related to the functionality in IPFE. And the way they build the con-
struction is just like building an IPFE scheme from a PKE scheme. So it is difficult
to build connection between the leakage-resilience of IPFE and the smoothness of
hash functions.
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the plaintext vector, other than an inner-product value only. In order to guar-
antee the security of resulting IPFE scheme, some modifications are needed on
the underlying HPS definition. Here, we develop the notion Inner-product hash
proof system(IP-HPS), which can yield an IPFE scheme. Different from other
HPS, in an IP-HPS scheme, the valid/invalid encapsulation algorithms will take
a vector as input and will output a ciphertext and a encapsulated key k. The
key generation algorithm will output a secret key for a vector y. And the decap-
sulation algorithm will output an inner-product value of y and the encapsulated
key k. Actually, this is the first hash proof system whose output of decapsula-
tion is not the encapsulated key itself. This modification ensures that we can
get a secure IPFE from IP-HPS very easily, by simply using the encapsulated
key as a one-time pad to encrypt a message. As a benefit of it, we can move our
focus from leakage-resilience property of IPFE to a leakage-smoothness property
of IP-HPS. Leakage-smoothness states that the distribution of encapsulated key
derived from an invalid ciphertext and secret keys is almost uniform over the
key space, even if the adversary can obtain at most l′ bits information about the
secret keys, where l′ is a pre-determined leakage bound. We prove the following
theorem:

Theorem 1 (informal). Given a l′-leakage-smooth IP-HPS, we can get a l =
l′
n -leakage-resilient IPFE. And when the IP-HPS scheme meets the efficiency
requirements of the BRM, the resulting IPFE scheme also meets the efficiency
requirements of the BRM.

Now, our goal is to design a l′-leakage-smooth IP-HPS, which meets the
efficiency requirements of the BRM. As the first step to do it, we would like to
design an IP-HPS scheme from simple assumptions, without the requirements
of leakage-smoothness and efficiency. We build an IP-HPS Π1 over Zp from an
IPFE scheme [3] based on DDH assumption. Notice that the key generation
algorithm in the IPFE scheme [3] is deterministic, while in HPS, we require that
the secret key is generated randomly. Thus, in the key generation algorithm of
Π1, we first choose a random number and form a new vector by concatenating
y and the random number. Then we run the key generation algorithm of the
IPFE scheme with input the new vector, and thus the new secret key sky is
related to the random number we chosed. Then, we study a property called
0-universality of the decapsulation algorithm in Π1. The 0-universality ensures
that it is impossible that any two distinct secret keys for the same vector y
will decapsulate an invalid ciphertext to the same value. With these properties,
we show that we are able to convert Π1 into an l′-leakage-smooth IP-HPS for
arbitrarily large leakage-bound l′:

Theorem 2 (informal). Given Π1, we can get an l′-leakage-smooth IP-HPS
Π2 for arbitrarily large leakage bound l′, and Π2 meets the efficiency requirements
of the BRM.

Firstly, we find that the leakage amplification method of IB-HPS in [5], which
can be viewed as parallel-repetition with small public key size, cannot be applied
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to our cases here. In IB-HPS, the output of the decapsulation is already the
encapsulated key, then the leakage-smoothness of their scheme can be proved
from the 0-universality by leftover-hashing lemma [46]. Thus the only thing
they need to do is to amplify the leakage bound while meeting the efficiency
requirements of the BRM. However, in IP-HPS, the output of decapsulation is
an inner-product value between the encapsulated key and the vector in the secret
key, so we need at least n secret keys to determine an encapsulated key. Then, we
cannot find the relation between leakage-smoothness and universality very easily.
Thus, our task is to convert an IP-HPS with 0-universality of decapsulation
algorithm into an leakage-smoothness IP-HPS for arbitrarily large leakage bound
and meets the efficiency requirements of the BRM.

Although the leakage amplificaion method cannot be applied directly, there
are some ideas we can borrow. We introduce a key-size parameter m, which gives
us flexibility in the size of secret key and will depend on the desired leakage
bound l′. And also, due to the efficiency requirements, the encapsulation will
choose only target on a small subset from {1, ...,m}, and show that the size of
the subset (denote by η) is independent of l′. Then, recall that we need n secret
keys to recover one encapsulated key. In order to finish the proof of leakage-
smoothness, the key generation will take an invertible n × n matrix Y as input
and the encapsulation algorithm will output n ciphertexts which shares the same
encapsulated key.

In the proof, we use a similar idea with approximately universal hashing
defined in [5], where we only insist that two secret keys generated by running
the key generation algorithm with the same input Y which are different enough
are unlikely to result in a same encapsulated key. Then we obtaion the leakage-
smoothness by applying a variant of leftover-hash lemma, and show our scheme
meets the efficiency requirements of the BRM by giving a lower bound of η,
which is independent of the leakage bound l′.

We sum up our results in the following:

(1) Give the definition of IP-HPS, together with a series of properties. And
propose an IP-HPS construction Π1 from DDH assumption.

(2) Show how to build a l′-leakage-smooth IP-HPS Π2 from our IP-HPS Π1 for
arbitrarily large l′, and meets the efficiency requirements of the BRM.

(3) Develop the security definition for a leakage-resilient IPFE scheme with leak-
age bound l, and the definition of leakage-resilient IPFE in the BRM. Then
show how to build a leakage-resilient IPFE scheme Π3 in BRM from our
leakage-smooth IP-HPS Π2.

1.2 Related Works: Leakage-Resilient Cryptography

There are several models in the research line of leakage-resilience. [44] started the
line of formal modeling of side-channel attacks by proposing the first model only
computation leaks information. In this model, a function of only the bits accessed
is leaked when the cryptographic system is called each time. Stream ciphers
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[30,49] and signature schemes [31] were proposed under this model. However,
this model cannot capture many types of leakage-attack, such as cold-boot attack
[37], in which all memory contents can leak information regardless whether it is
accessed.

In order to capture these attacks, many works try to study about relative-
leakage model, in which a proportion of secret values can be leaked. The public-
key encryption schemes [4,45], signature schemes [39], and IBE schemes [20]
were proposed under this model. Bounded-retrieval model was proposed by [23,
28]. In this model, the amount of information can be leaked is bounded by an
external parameter, and this leakage bound can be very large. Further, it requires
that the efficiencies of other parts of cryptographic system (except the length
of secret key) should be independent from the leakage bound. Many works [5,
17,29,47] proposed different cryptographic systems under this model. Auxiliary
inputs model was introduced by [27], in which an adversary is given auxiliary
input h(s), and it is computationally hard to find s (the secret values) from
h(s). Symmetric encryption schemes [27], public-key encryption schemes [24]
and IBE schemes [57] were proposed under this model. Continual leakage model
was introduced by [15,25], where there is a notion of time periods and secret
values will be updated at the end of each time period. In this model, an adversary
is allowed to obtain a bounded amount of information of secret values in each
time period, but there is no limitation on the total amount of information it
can obtain in all time periods. Public-key encryption schemes [15], IBE schemes
[15,43,57], ABE schemes [43,56]2 and signature schemes [15,25] were proposed
under this model.

2 Preliminaries

Notations. Let [n] denote set {1, . . . , n}. For vectors x and y, let x||y be
their concatenation. For a set S, define US be the uniform distribution over S.
Similarly, let Uv be the uniform distribution over {0, 1}v.

2.1 Functional Encryption (FE)

We define FE and its indistinguishable security here. Following [12], we start
by defining the notion of functionality and then that of functional encryption
scheme for functionality F .

2 In [56], it said that they discovered leakage-resilient functional encryption scheme
for regular languages based on composite-order pairing groups in continual memory
leakage (CML) model. However, in a functional encryption scheme for regular lan-
guages, a secret key skM is associated with a deterministic finite automata M , and a
ciphertext ct encrypts a message m and is associated with an arbitrary length string
w. A user holds skM is able to decrypt the ciphertext ct if and only if M accepts
the string w. Notice that the decryption result is still m or nothing, so it actually
can be viewed as a ABE scheme for wider classes of functionality.
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Definition 1 (Functionality and FE scheme). A functionality F defined
over (K,X ) is a function F : K × X → Σ ∪ {⊥}, where K is the key space, X
is the message space and Σ is the output space and ⊥ is a special string not
contained in Σ. Notice that the functionality is undefined for when either the
key is not in the key space or the message is not in the message space.
A FE scheme for functionality F consists of 4 PPT algorithms just like FE:
(Setup,KeyGen,Encrypt, Decrypt). The algorithms have the following syntax.

– Setup(1λ): It takes the security parameter λ as input, and produces the mas-
ter public key mpk and the master secret key msk. The following algorithms
implicitly include mpk as input.

– KeyGen(msk, k): It uses the master secret key msk and key k ∈ K to sample
a secret key skk.

– Encrypt(mpk, x): It uses the master public key mpk and a message x ∈ X to
generate a ciphertext ctx.

– Decrypt(skk, ctx): It takes a ciphertext ctx and a secret key skk as input and
outputs F(k, x)

Correctness. For any (mpk,msk) generated by Setup(1λ), any k ∈ K and
x ∈ X , we have:

Pr

[

F(k, x) �= γ

∣
∣
∣
∣

skk ← KeyGen(msk, k)
ctx ← Encrypt(mpk, x), γ = Decrypt(ctx, skk)

]

≤ negl(λ) .

Indistinguishable Security. We define the indistinguishable security game,
parameterized by a security parameter λ as the following game between an adver-
sary A and a challenger in Table 1. The advantage of an adversary A in the indis-
tinguishable security game is defined by AdvFE−IND

FE,A (λ) := |Pr[A wins] − 1
2 |.

Table 1. FE-IND(λ)

Setup: The challenger computes (mpk,msk) Setup(1λ) and sends mpk to the adversary A.

Query 1: The adversary A can adaptively ask the challenger for the following queries:
Secret key query : On input k ∈ K, the challenger replies with skk.

Challenge: The adversary A chooses two vectors x0, x1 ∈ X subject to the restriction that for all k
that the adversary have make the secret key query in Query 1, it holds that (k, x0) = (k, x1). The
challenger chooses b 0, 1} uniformly at random and computes ctb Encrypt(mpk, xb) and gives ctb to
the adversary A.

Query 2: The adversary can make secret key query for arbitrary k as long as (k, x0) = (k, x1).

Output: The adversary outputs a bit b′ 0, 1 and wins if b′ = b.

Definition 2 (IND-secure FE). A FE scheme is IND-secure, if (1) it sat-
isfies the correctness, and (2) the advantage of any PPT adversary A in the
indistinguishable security game is AdvFE−IND

FE,A (λ) = negl(λ).
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Inner-Product Functionality. Here, we are interested in the inner-product
functionality over the field Zp defined in [1]. It is a family of functionalities with
key space Kn and message space Xn both consisting of vectors in Zp of length
n: for any y ∈ Kn,x ∈ Xn, the functionality F(y,x) = 〈y,x〉.

3 Inner Product Hash Proof System (IP-HPS)

3.1 Definitions

To construct a leakage-resilient IPFE scheme, we introduce the notion, IP-HPS,
together with the required properties. An Inner product hash proof system (IP-
HPS) consists of 5 PPT algorithms just like IB-HPS. The algorithms have the
following syntax. (M is the message space and K is the encapsulated-key space.)

– Setup(1λ, 1n): It takes the security parameter λ and n as input, and produce
the master public key mpk and the master secret key msk. The following
algorithms implicitly include mpk as input.

– KeyGen(msk,y): It uses msk and a vector y ∈ K with length n to sample a
secret key sky .

– Encap(z): This is the valid encapsulation algorithm. It uses z ∈ M to output
a valid ciphertext ctz and a encapsulated key k.

– Encap∗(z): This is the invalid encapsulation algorithm. It uses z ∈ M to
output only an invalid ciphertext ctz .

– Decap(ctz , sky ,y): This is the decapsulation algorithm(deterministic). It
takes a ciphertext as input and outputs an inner product of the encapsu-
lated key and y: 〈k,y〉.

Correctness. Given msk,mpk from Setup(1λ, 1n) and y with length n, we have:

Pr

[

〈k,y〉 �= γ

∣
∣
∣
∣

sky ← KeyGen(msk,y)
(ctz ,k) ← Encap(z), γ = Decap(ctz , sky ,y)

]

≤ negl(λ) .

The correctness requires that a ciphertext generated by Encap can be cor-
rectly decapsulated to the corresponding inner-product of the encapsulated key
and the vector y in the secret key.

Valid/Invalid Ciphertext Indistinguishiability. Given the same input,
the valid ciphertext generated by Encap and the invalid ciphertext gener-
ated by Encap∗ should be computationally indistinguishable. For an adversary
A = (A1,A2), we define the following experiment for an IP-HPS Π in Table 2:

Definition 3 A PPT adversary A is admissible if it makes at most n key
queries with linear independent vectors. Then, we say that an IP-HPS Π is
adaptively secure if for any admissible adversary A, the advantage satisfies:
Advind

Π,A(λ, n) := |Pr[Expind
Π,A(λ, n) = 1] − 1

2 |.
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Table 2. V/I-IND(λ, n)

Setup: The challenger computes (mpk,msk) Setup(1λ) and sends mpk to the adversary A.

Query 1: The adversary A can adaptively ask the challenger for the following queries:
Secret key query : On input y ∈ K, the challenger replies with sky.

Challenge: The adversary A chooses a vector z ∈ M and sends it to the challenger. The challenger
computes ct0 Encap(z) and ct1 Encap∗(z). The challenger chooses b {0, 1} uniformly at random
and gives ctb to the adversary A.

Query 2: The adversary can make secret key query for arbitrary y.

Output: The adversary A outputs a bit b′ ∈ {0, 1} and wins if b′ = b.

The challenger computes sky KeyGen(msk,y) the first time that y is queried and responds to all
future queries on the same y with the same sky.

The valid/invalid ciphertext indistinguishability requires that the valid and
invalid ciphertexts are computationally indistinguishiable even if an adversary
can obtain one secret key per vector for at most n linear independent vectors.
We explain why there is a restriction of numbers of key queries here. By the
requirement of HPS, the secret keys should be related to some random numbers
chosen by the key generation algorithm at each running. As a result of it, the
output of decapsulation which takes an invalid ciphertext and a secret key as
input is dependent on the random numbers used to generate the secret key.
However, the output of decapsulation with a valid ciphertext is always the real
inner-product value. For example, the adversary first makes 2 key queries with
y1 = (1, 0, ..., 0) and y2 = (2, 0, ..., 0). If the ciphertext ct is a valid one, then
Decap(ct, sky2

) − Decap(ct, sky1
) = 2k1 − k1 = k1 = Decap(ct, sky1

). However,
if the ciphertext ct is an invalid one, then Decap(ct, sky2

) − Decap(ct, sky1
) �=

Decap(ct, sky1
) since the random numbers used to generate sky2

and sky1
are

different. Thus, the adversary can distinguish whether one ciphertext is valid
or invalid. Note that, during the challenge phase, the adversary can choose any
vector z from the message space, since there is only one vector is chosen in the
Challenge stage, instead of 2 vectors in the definition of IND-security of IPFE.

We still need the following information theoretic properties, as in [5].

Definition 4 (ρ-Universality). A family H, consisting of (deterministic)
functions h(·), is ρ-universal if for any x1 �= x2, we have Prh←H[h(x1) =
h(x2)] ≤ ρ. Then, an IP-HPS Π is ρ-universal if: fix mpk,msk from
Setup(1λ, 1n), two vectors y and z, {Decap(ct, ·,y)|ct ← Encap∗(z)} is a ρ-
universal hash family.

Definition 5 (Smoothness and Leakage-smoothness). Define an n × n
invertible matrix Y := [y1, . . . ,yn]. Define the statistical distance SD(X,Y ) :=
1
2

∑
w |Pr[X = w] − Pr[Y = w]|. We say that an IP-HPS Π is smooth if, for

any fixed values of mpk,msk from Setup(1λ, 1n), any fixed Y and z ∈ M, we
have

SD
(
(ct,k), (ct,k′)

) ≤ negl(λ),
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where ct ← Encap∗(z), k′ ← UK and k is sampled by first choosing sky i
←

KeyGen(msk,yi) for each i and then computing kT := [Decap(ct, sky1
), . . . ,

Decap(ct, skyn
)]Y −1.

An IP-HPS Π is l-leakage-smooth if, for any (possible randomized and inef-
ficient) function f with at most l-bit output, we have

SD
(
(ct, f({sky i

}n
i=1),k), (ct, f({sky i

}n
i=1),k

′)
) ≤ negl(λ),

where ct,k′,z,k and each sky i
are sampled as above.

3.2 Construction of IP-HPS Π1

– Setup(1λ, 1n): It chooses a cyclic group G of prime order p > 2λ, together with
generators g, h ← G. Write h = gw. Then, ∀i ∈ [n + 1], sample si, ti ←R Zp,
s.t. sn+1 + wtn+1 �= 0 mod p Compute hi = gsihti , i ∈ [n + 1]. It outputs
(msk := {(si, ti)}n+1

i=1 ),mpk :=
(
G, g, h, {hi}n+1

i=1

)
.

– KeyGen(msk,y): It generates a key for the vector y. Sample u ← Zp and
then define y∗ := y||u. Output sky := (sky (1) = 〈s,y∗〉, sky (2) = 〈t,y∗〉, u).

– Encap(z): The input vector z has length n + 1. It samples r ← Zp and
x ← Z

n
p . Define x∗ := x||0 with length n + 1. Let C = gr,D = hr, Ei =

g
x∗

i
zi h

r
zi
i ,∀i ∈ [n + 1]. Output ctz := (C,D, {Ei}n+1

i=1 ,z),k := x.
– Encap∗(z): First sample r, r′ ← Zp with r �= r′, and x ← Z

n
p . Define x∗ :=

x||0 with length n+1. Let C = gr,D = hr, Ei = g
x∗

i
zi h

r′
zi
i ,∀i ∈ [n+1]. Output

ctz := (C,D, {Ei}n+1
i=1 ,z).

– Decap(ctz , sky ,y): Calculate Ey :=
∏n+1

i=1 E
y∗

i zi
i

Csky (1)Dsky (2) Then output logg(Ey ).

Similar with [3], the decryption algorithm requires to compute a discrete loga-
rithm. As the analysis in [3], there are some methods to reduce the cost of this
operation. We state the following theorem to study the properties of Π1, and
the proof is shown in AppendixA.

Theorem 3. Under DDH assumption, the above IP-HPS construction Π1 satis-
fies correctness, valid/invalid ciphertext indistinguishability, and 0-universality.

4 Leakage-Smoothness of IP-HPS

The next step is to construct an IP-HPS scheme, which is l′-leakage-smooth for
arbitrarily large l′, and meets the efficiency requirements of the BRM. The l′-
leakage-smoothness states that the scheme is still smooth even if the adversary
can get some information about secret keys with the output length is less than
l′ bits. This property offers the chance to make our final IPFE scheme become
leakage-resilient for arbitrarily large leakage bound. The efficiency requirements
of the BRM states that except the length of secret keys, all other parts of the
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system should be independent of the leakage bound l′. This requirement ensures
that our final IPFE scheme also meets the efficiency requirements of the BRM.

The main idea is: (1) introduce a key-size parameter m, which gives us flex-
ibility in the size of secret key and will depend on the desired leakage bound
l′. For each input vector y of the key generation algorithm, project it into m
new vectors in the same vector space, and then generate secret key for each new
vector. (2) In order to meet the efficiency requirements, the encapsulation will
choose only η indices from {1, ...,m}, denoted as a vector w; and the decapsu-
lation will only use these η secret keys. Here η is a parameter to be determined
later and is independent of m. (3) In the proof of leakage-smoothness, we need to
use the same random numbers to generate the n secret keys for each vector yi.
So the key generation algorithm will take n linear independent vectors as input
(denoted as an invertible matrix Y ). (4) Since the key generation algorithm will
output n secret keys for n vectors, the encapsulation algorithm will also run n
times to get n ciphertexts. These n ciphertexts shares the same encapsulated
key k. The i-th ciphertext can be decapsulated by the i-th secret key.

Before showing our construction, we talk about why a simple extension of
leakage amplification of IB-HPS in [5] cannot be applied here:

On one hand, in IB-HPS, the output of the decapsulation algorithm is already
the encapsulated key. So, in their definition of leakage-smoothness, it only needs
one secret key to compute an encapsulated key. However, in IP-HPS, the out-
put of the decapsulation algorithm is just an inner-product value between the
encapsulated key and the vector y in the secret key. So, in order to determine
an encapsulated key, we need at least n secret keys for n linear independent
vectors, which makes our leakage-smoothness definition and proof become more
complicated.

On the other hand, in an IB-HPS, the inputs of KeyGen and Encap (Encap∗)
have the same parameter: identity. This brings lots of convenience for decapsu-
lation, since the output of decapsulation algorithm only need to be reasonable
when the identity in the ciphertext is the same as the identity in the secret
key. While in IP-HPS, there is no relation between the inputs of KeyGen and
Encap/Encap∗, and the outputs of decapsulation algorithm need to be reason-
able for all possible inputs of vectors.

We start with our IP-HPS scheme Π1 = (Setup,KeyGen1,Encap1,Encap∗
1,

Decap1), and then construct an IP-HPS scheme Π2 = (Setup,KeyGen2,Encap2,
Encap∗

2,Decap2) where the number of secret keys associated with one vector(i.e.
m) can be arbitrarily large. Then we will obtain the property of l′-leakage-
smoothness for arbitrary l′ without losing efficiency.

Let M be a family of n × n invertable matrices and let |M| = m. Define
functions H1,H2 : Z

n
p × [m] → Z

n
p : H1(y, α) := MT

α y, H2(y, α) := M−1
α y.

They are both one-to-one for Z
n
p .

Define Π2 = (Setup,KeyGen2,Encap2,Encap∗
2,Decap) as follows:

– Setup(1λ, 1n): The Setup algorithm is the same as that of Π1.
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– KeyGen2(msk, Y ): Let Y = [y1, . . . ,yn] be invertible. First sample
u[1], . . . , u[m] ← Zp. For all α ∈ [m], i ∈ [n], let sky i

[α] :=(

sky i
[α](1) = 〈s,y∗

i [α]〉, sky i
[α](2) = 〈t,y∗

i [α]〉, u[α], i
)

. Here we set y∗
i [α] :=

H1(yi, α)||u[α]. Let sky := (sky [1], . . . , sky [m]) and then output skY :=
(sky1

, . . . , skyn
).

– Encap2(z): z is a vector in Z
n+1
p . First sample a vector k ∈ Z

n
p . This algorithm

will run the following steps for n times. In step i:
(1) sample wi ← [m]η and θi ← Z

η
p.

(2) For each α ∈ [η], sample ki[α] ← Z
n
p s.t.

∑η
α=1 θi[α]ki[α] = k; and

ri[α] ← Zp.
(3) Let k∗[α] := H2(k[α], wi[α])||0 with length n + 1. Let Ci[α] = gri[α],

Di[α] = hri[α] and Eij [α] = g
k∗

j [α]

zj h
ri[α]

zj

j (Recall that hj is from mpk and
hj = gsj htj ).

(4) Set ctz [α][i] =
(

Ci[α],Di[α], {Eij [α]}n+1
j=1

)

.

Then Encap2 outputs ctz =
(

(ctz [α][i])α∈[η],i∈[n],w1, . . . ,wn,θ1, . . . ,θn,

z,k

)

.

– Encap∗
2(z): z is a vector in Z

n+1
p . First sample a vector k ∈ Z

n
p . This algorithm

will run the following steps for n times. In step i:
(1) sample wi ← [m]η and θi ← Z

η
p.

(2) For each α ∈ [η], sample ki[α] ← Z
n
p s.t.

∑η
α=1 θi[α]ki[α] = k; and

ri[α], r′
i[α] ← Zp with ri[α] �= r′

i[α].
(3) Let k∗[α] := H2(k[α], wi[α])||0 with length n + 1. Let Ci[α] = gri[α],

Di[α] = hri[α] and Eij [α] = g
k∗

j [α]

zj h

r′
i[α]
zj

j (Recall that hj is from mpk and
hj = gsj htj ).

(4) Set ctz [α][i] =
(

Ci[α],Di[α], {Eij [α]}n+1
j=1

)

.

Then Encap∗
2 outputs ctz =

(

(ctz [α][i])α∈[η],i∈[n],w1, . . . ,wn,θ1, . . . ,θn,z

)

.

– Decap2(ctz , sky ): It outputs the inner product of k and y. Parse
w1, . . . ,wn,θ1, . . . ,θn from ctz and i from sky . For each α ∈ [η], obtain
dec[α][i] := Decap1(ctz [α][i], sky [wiα]). Output

∑η
α=1 θiα × dec[α][i].

For the leakage-smoothness and efficiency, we propose Theorem 4. The
proof of it is shown in the full version, together with the analysis of correctness
and valid/invalid ciphertext indistinguishability. From Theorem 4, we can
conclude that our IP-HPS scheme Π2 is l′-leakage-smooth for arbitrarily large
l′, by choosing m ≥ l′+n log p+2λ

(1−ε) log p .
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Theorem 4. For any ε > 0, there exists η = O(log p), s.t. for any polynomial
m(λ), the above construction of Π2 from Π1 is l′-leakage-smooth as long as:
l′ ≤ (1 − ε)m log p − n log p − 2λ.

5 Leakage Resilient Inner-Product Functional Encryption

We define the security for an Inner-product functional encryption (IPFE) scheme
which is resistant to key leakage attacks in the bounded-retrieval model (BRM)
and show how to use an leakage-smooth IP-HPS to construct such an IPFE
scheme. Our security notion only allows leakage attacks against the secret keys
of the various functions, but not the master secret key. And we only allow the
adversary to perform leakage attacks before seeing the challenge ciphertext. As
shown in [4,6,45], this limitation is inherent to encryption schemes since other-
wise the leakage function can simply decrypt the challenge ciphertext and output
its first bit.

5.1 Definitions

Indistinguishable Security with Leakage. We define the indistinguishable security
game, parametrized by a security parameter λ, a parameter of vector length n
and a leakage parameter l, as the following game between an adversary A and
a challenger in Table 3.

Table 3. IPFE-IND(λ, n, l)

Setup: The challenger computes (mpk,msk) Setup(1λ, 1n) and sends mpk to the adversary A. The
challenger constructs a list Lsk to store the secret keys which are queried by the adversary, and a vector R
to store the random numbers which are used to generate the secret keys.

Query 1: The adversary A can adaptively ask the challenger for:
Leakage query : On input a vector y ∈ V, a PPT function f∗, if Lsk is empty, the challenger runs sk(y,1)

IPFE.KeyGen(msk,y, 1), then stores the tuple (r, 1) in R, and the tuple (y, sk(y,1)) in the list Lsk. Else
if y is not in the list Lsk, then the challenger reads and deletes the tuple (r, τ) from R and generates
sk(y,τ+1) IPFE.KeyGen(msk,y, τ + 1) with randomness r. The challenger stores (r, τ + 1) in R and the
tuple (y, sk(y,τ+1)) in the list Lsk. Else if y is in the list Lsk, then the challenger reads the tuple (y, sk(y,τ))
from it. Then the challenger replies with f∗(sk(y,τ∗)) if

∑
f∈{f ′}y∪{f∗} |f(sk(y,τ∗))| ≤ l, where {f ′}y denotes

the set of functions that the adversary have queried with input sk(y,τ∗), and |f(sk(y,τ∗))| is the bit-length
of the function value f(sk(y,τ∗)).

Challenge: The adversary A chooses two vectors x0,x1 ∈ V The challenger chooses b {0, 1} uniformly
at random and computes ctb Encrypt(xb) and gives ctb to the adversary A.

Output: The adversary outputs a bit b′ 0, 1 and wins if b′ = b.

A PPT adversary A is admissible if it makes leakage queries for at most
n linear independent vectors in Query 1. The advantage of an admissible
adversary A in the indistinguishable security game with leakage l is defined
by AdvIPFE-IND

IPFE,A (λ, n, l) := |Pr[A wins] − 1
2 |.

Now we give some explanation about the definition. All restrictions of the
definition come from the definitions and proofs of properties of IP-HPS Π2.
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Recall that there are only 3 items in the definition of leakage-smoothness:
(ct, f({sky i

}n
i=1),k). The secret keys {sky i

}n
i=1 used to compute the encapsu-

lated key k do not appear in the equation directly. In order to use leakage-
smoothness of Π2 to prove the security of leakage-resilient IPFE scheme, for the
secret keys used to compute k, any adversary can only know a function value
f(·), instead of the secret keys. And in the security proof, all secret keys gen-
erated in Query 1 will be used to compute k Thus, we allow the adversary
to make leakage queries on arbitrary vector y, rather than making secret key
queries on vectors y subject to the condition that 〈x0,y〉 = 〈x1,y〉.

In the valid/invalid ciphertext indistinguishability definition of leakage-
smooth IP-HPS Π2, the adversary is allowed to make secret key query once
for a n × n invertible matrix Y = [y1, ...,yn] and get skY = {sky1

, ..., skyn
} ←

Π2.KeyGen(msk, Y ). In order to rely the security of leakage-resilient IPFE on
the valid/invalid indistinguishability of Π2, we have to require that there are at
most n different linear independent vectors appearing in the leakage query. And
such n secret keys should be generated from the same random numbers, and are
corresponding to the 1-th,...,n-th parts of ciphertext respectively. In the defini-
tion, we use a parameter τ to indicate that sk(y ,τ) is corresponding to τ -th part
of the ciphertext. (sk(y ,τ) generated by IPFE.KeyGen(msk,y, τ) can decrypt the
τ -part of the ciphertext.)

Definition 6 (leakage-resilient IPFE). An IPFE scheme is l-leakage-
resilient, if (1) it satisfies the correctness, and (2) the advantage of any admis-
sible PPT adversary A in the indistinguishable security game with leakage l is
negl(λ). We define the leakage ratio of the scheme to be μ = l

β̂
, where β̂ is the

number of bits needed to efficiently store secret key sky .

Definition 7 (leakage-resilient IPFE in the BRM). An IPFE scheme is
adaptively leakage-resilient in the bounded retrieval model (BRM), if the scheme
is adaptively leakage-resilient, and the master public key size, master secret key
size, ciphertext size, encryption time, and decryption time (and the number of
secret-key bits read by decryption) are independent of the leakage-bound l. More
formally, there exist polynomials mpksize,msksize, ctsize, encTime,decTime,
such that for any polynomial l and any (mpk,msk) ← KeyGen(1λ, 1n, 1l),x ∈
V, ctx ← Encrypt(mpk,x):

– Master public key size is |mpk| ≤ O(mpksize(λ)), master secret key size is
|msk| ≤ O(msksize(λ)), and ciphertext size is |ctx | ≤ O(ctsize(λ, |x|)).

– Run-time of Encrypt(mpk,x) is ≤ O(encTime(λ, |x|)).
– Run-time of Decrypt(sky ,x), and the number of bits of sky accessed, are

≤ O(encTime(λ, |x|)).

5.2 Construction of Leakage-Resilient IPFE

The construction of leakage-resilient IPFE from a leakage-smooth IP-
HPS is very simple. Given an l-leakage-smooth IP-HPS scheme Π =
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(Setup,KeyGen,Encap,Encap∗,Decap) where the encapsulated key space is K
and the message space is M, we construct an IPFE scheme with the same vector
space V = K. We show our construction in Table 4.

Recall that in our leakage-smooth IP-HPS scheme Π2, the encapsulation algo-
rithm will output n ciphertexts sharing the same encapsulated key k, and the i-th
ciphertext can be decapsulated by the i-th secret key. So in our leakage-resilient
IPFE scheme, we will choose an index τ ∈ [n] in key generation algorithm to
indicate which ciphertext it wants to decrypt with this secret key.

Table 4. The construction from an l-leakage-smooth IP-HPS scheme Π2 to an IPFE
scheme.

Setup(1λ, 1n): The Setup procedure is the same as Π2.Setup.

KeyGen(msk,y, τ): It chooses n − 1 random vectors y1, ...,yτ−1,yτ+1,yn, such that Y = [y1, ...,yτ =
y, ...,yn] is a n × n invertible matrix. It gets (sky1 , sky2 , ..., skyn) Π2.KeyGen(msk, Y ), and returns
sk(y,τ) = skyτ .

Encrypt(x): It chooses a random z ∈ M and computes (ctz,k) Π2.Encap(z). It sets c1 = ctz, c2 = k+x.
Output ctx = (c1, c2).

Decrypt(ctx, sk(y,τ)): Parse ctx = (c1, c2) and output y c2 Π2.Decap(c1, sk(y,τ))

Theorem 5. Assume that we start with an l′-leakage-smooth IP-HPS Π2, and
for the challenge ciphertext ctb = (c1, c2) and any sky , the adversary can only
do Π2.Decap(c1, sky ) in a black-box way. Then the construction in Table 4 yields
an l = l′

n -leakage-resilient IPFE.

Here, the restriction on the computations of Π2.Decap comes from the
valid/invalid ciphertext indistinguishability analysis of Π2. We use a series of
games argument in our security proof, which begins with the real security game
and ends with a game whose challenge ciphertext is independent of the bit b
chosen by the challenger.

The formal proof of Theorem5 can be found in AppendixB.

Theorem 6. Using the l′-leakage-smooth IP-HPS construction Π2 in Sect. 4,
we can get an l-leakage-resilient IPFE scheme in the BRM with message space
V = Z

n
p and :

(1) Master public-key size, master secret-key size, ciphertext-size and the number
of secret-key bits read by decryption are the same as Π2, and are independent
of l.

(2) Encryption time consists of the Encap time of Π2 and the time of one vec-
tor addition operation with length n. Decryption time consists of the Decap
time of Π2, the time of inner-product operation with vector length n, and a
subtraction. Both the encryption time and decryption time are independent
of l.

(3) The leakage ratio is μ = 1−ε
3n , for sufficiently large values of the leakage-

parameter l.
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Proof. The first two statements are directly proved by the construction of l′-
leakage-resilient IPFE scheme from a l′-leakage smooth IP-HPS. For the leakage
ratio, by Theorem 4, we have l = l′

n ≤ (1−ε)m log p−n log p−2λ
n . We can write m(l)

is a function of l, and choose m(l) ≥ l′+n log p+2λ
(1−ε) log p is sufficient. Then the leakage

ratio for a given l is defined as:

μ =
l

3m(l) log p
=

(1 − ε)l
3nl + 3n log p + 6λ

.

For sufficiently large l, the ratio is approximately 1−ε
3n . ��

A Proof of Theorem3

Correctness and Valid/Invalid Ciphertext Indistinguishiability. For any z,y with
length n + 1 and n respectively, and for any correctly generated mpk,msk, sky

from the above algorithms, if (C,D, {Ei}n+1
i=1 ,z) is generated by Encap(z), then

correctness is proved by calculating logg(Ey ):

Ey =
∏n+1

i=1 E
y∗

i zi

i

Csky (1)Dsky (2)
=

∏n+1
i=1 gx∗

i y∗
i grsiy

∗
i hrtiy

∗
i

gr〈s,y∗〉hr〈t,y∗〉 =
n+1∏

i=1

gx∗
i y∗

i =
n∏

i=1

gxiyi = g〈x,y〉.

For the valid/invalid ciphertext indistinguishability, we show how to use an
adversary A, which can distinguish valid and invalid ciphertexts, to construct
an adversary B, which can distinguish whether c = ab or c is randomly chosen
from Zp. B receives a DDH tuple (g, ga, gb, gc), then it sets C = ga, hi = gb

and Ei = g
x∗

i
zi g

c
zi , where i is randomly chosen from [n], and sends mpk and the

challenge ciphertext to A. If A outputs it is a valid ciphertext, then B outputs
c = ab. Otherwise, B outputs that c is randomly chosen from Zp.
0-Universality of Π1. We show that the decapsulation function of Π1 is a 0-
universal hash family. Fix any (mpk,msk) produced by Setup(1λ, 1n), a set of lin-
ear independent vectors {yi}n

i=1 and z, let ct = (C,D, {Ei}n+1
i=1 ,z) ← Encap∗(z).

From our construction of Encap∗ we have C = gr,D = hr, Ei = g
x∗

i
zi h

r′
zi
i , where

r, r′ are uniformly sampled from Zp with r �= r′. Then, for any secret key
sky = (〈s,y∗〉, 〈t,y∗〉, u), it’s a random variable generated from KeyGen(msk,y)
with y ∈ {yi}n

i=1. Then we can obtain (Assume h = gw):

Decap(ct, sky ) = logg

⎛
⎝

∏n+1
i=1 E

y∗
i zi

i

Csky (1)Dsky (2)

⎞
⎠ = logg

(∏n+1
i=1 gx

∗
i y∗

i gr
′siy

∗
i hr′tiy

∗
i

gr〈s,y ∗〉hr〈t ,y ∗〉

)

= logg

(
g〈x ,y 〉gr

′〈s,y ∗〉hr′〈t ,y ∗〉

g〈s,y ∗〉h〈t ,y ∗〉

)
= logg

(
g〈x ,y 〉g(r

′−r)〈s,y ∗〉h(r′−r)〈t ,y ∗〉
)

= logg

(
g〈x ,y 〉+(r′−r)(〈s,y ∗〉+w〈t ,y ∗〉)

)
= 〈x, y〉 + (r′ − r)〈s + wt, y||u〉

(1)
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Note that if sky is fixed, the randomness of Decap(ct, sky ) is only from ct,
i.e. from r′ −r, which is uniformly random over Zp \{0}. Further, we can define a
hash function family H = {Decap(ct, ·)|ct ← Encap∗(z)}. To obtain universality
of H, we need to show that given msk,mpk and y, for any fixed sky , sk′

y both
generated from KeyGen(msk,y), with sky �= sk′

y , the following probability is
tiny: Prct←Encap∗(z)[Decap(ct, sky ) = Decap(ct, sk′

y )].
In fact we can prove that this probability is 0. Let u′ be the associated u

in sk′
y . Note that by our construction of KeyGen, sky �= sk′

y implies u �= u′.
By our construction of Setup, the (n + 1)-th entry of s + wt �= 0. Then, for
any sky �= sk′

y , 〈s + wt,y||u〉 �= 〈s + wt,y||u′〉. By r �= r′, we know that
Prct←Encap∗(z)[Decap(ct, sky ) = Decap(ct, sk′

y )] = 0. We conclude that H is a
0-universal hash family.

B Proof of Theorem5

Proof. The correctness of decryption follows by the correctness of decapsulation
in Π2. We use a series of games to analyze the security:

– Game 0: Define Game 0 to be the IND-security game with leakage l. In the
challenge stage of Game 0, the challenger computes ctxb

← Encrypt(mpk,xb)
which we parse ctxb

= (c1, c2), where c1 = ctz , c2 = k + xb.
– Game 1: We modify the challenge stage, so that the challenger uses the secret

keys {sky i
, i}t

i=1, t ≤ n queried by A in Query 1, together with some new keys
sk(y t+1,t+1), ..., sk(yn,n) generated by running Π2.KeyGen(msk,yt+j , t+j), j ∈
[n − t] with the same random numbers as sk(y i,i)

, i ∈ [t], where yt+1, ...,yn

are randomly chosen subject to the condition that Y = [y1, ...,yn] is an n×n
invertible matrix. It computes (c1,k1) ← Encap(z), then finds k2 such that
kT
2 = [Decap(c1, sk(y1,1)), ..., Decap(c1, sk(yn,n))]Y −1, and computes c2 =

k2 + xb.
The difference between Game 0 and Game 1 is only the use of k1 versus
k2. However, by the correctness of Decapsulation, we have k1 �= k2 with
negligible probability, given that y1, ...,yn are linear independent. So Game
0 and Game 1 are statistically indistinguishable.

– Game 2: We modify the challenge stage again, so that the challenger uses
Encap∗ to compute the ciphertext. It computes c1 ← Encap∗(z), then finds
k2 such that kT

2 = [Decap(c1, sk(y1,1)), ..., Decap(c1, sk(yn,n))]Y −1, and com-
putes c2 = k2 + xb.
We claim that Game 1 and Game 2 are computationally indistinguish-
able by the valid/invalid ciphertext indistinguishability of IP-HPS. Although
the valid/invalid ciphertext indistinguishability game does not have leakage
queries, it allows the adversary to learn at most n secret keys. The total
number of leakage queries the adversary have made in Query 1 is at most
n, and all secret keys have been queried by the adversary were generated by
the same randomness R. Therefore, indistinguishability between Game 1 and
Game 2 holds even if the adversary sees all the full secret keys sky that the
adversary have made leakage queries in Query 1.
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– Game 3: The challenge ciphertext ctxb
= (c1, c2) is computed by: c1 ←

Encap∗(z), c2 ← UK.
We claim that Game 2 and Game 3 are statistically indistinguishable by the
l′-leakage-smoothness of IP-HPS. Indeed, for a fixed value of mpk,msk, and
i ∈ [n], the only things in Game 2 correlated to sky i

are the outputs of leakage
query with size l ≤ l′

n bits. So the outputs of leakage queries of {sky i
}n

i=1

are at most l′ bits. Recall the definition of l′-leakage-smoothness, by making
all leakage queries together as a single randomized function f(Y) with Y =
{sky i

}n
i=1, k2 is indistinguishable from choosing a completely independent

random variable from UK.

Therefore Game 0 and Game 3 are indistinguishable by any PPT adversary. And
the advantage of any adversary in Game 3 is 0, since the challenge ciphertext in
Game 3 is independent of the bit b. ��
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Abstract. Double ratchet protocol was first proposed and used in Sig-
nal’s end to end encryption and later widely applied by WhatsApp, Face-
book and other popular applications. Asynchronous Ratchet Tree (ART)
is the new group messaging protocol based on ratchet and is the first pro-
tocol that applied forward secrecy (FS) and post-compromised-security
(PCS) in group key exchange. However, anonymity is not considered
which is crucial for privacy preserving solutions. Thus, it is meaning-
ful to provide anonymous features while applying FS and PCS. In this
paper we propose “Anonymous Asynchronous Ratchet Tree (AART)”
to improve the structure of ART to achieve anonymity in group mes-
saging while retaining FS and PCS. Also, we formalize the definitions
of anonymity as Internal Group Anonymity (IGA) and External Group
Anonymity (EGA). We prove that our AART satisfies IGA and EGA as
well as FS and PCS.

Keywords: End to end encryption · Forward secrecy · Post
compromised security · Anonymity · Group messaging protocol

1 Introduction

1.1 Background

Instant Messaging (IM) service plays an important role in people’s daily life for
social activities and other related businesses. Statistic shows that WhatsApp has
the largest user population which is more than 2 billions. Facebook messenger
follows it with 1.3 billion users. And the third one is WeChat, around 1 billion
users. It is pointed out that people spend 27.6 hours on internet per week in
2018 and 15.6% of the time is spent on IM. The most popular IM applications
include WhatsApp, WeChat, QQ, Facebook messenger and so on. Large amount
of data will be generated through the platform, which heavily involves personal
private information.

In order to protect user privacy, End to End Encryption (E2EE) is widely
used in IM applications. One of features of E2EE is that message servers or
c© Springer Nature Switzerland AG 2020
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any third party adversary cannot reveal the message content due to the use of
encryption. To protect security when secret key is leaked, Forward Secrecy (FS)
[14] and Post-Compromised-Security (PCS) [5] are required. FS is to ensure that
adversary cannot reveal the key of past secret messages when current keys are
leaked. PCS is to make sure that after several interactions, the communication
channel will re-reach secure when current keys are leaked. When secret keys
are not compromised, Authenticated Encryption Security (AE-Security) [2] is
considered to be the standard to protect the current content security. It can be
easily shown that AE-security is equivalent to be secure in the Chosen Cipher-
text Attack (CCA) scenario where the attacker has the ability to ask for the
decryption of prepared ciphertexts [15].

Group messaging is one of the important functions of IM. Usually there
are more than three participants taking part in the group messaging protocol.
One of the member sends a message and others will receive the corresponding
message. Many designers apply the strategy that user should send ciphertexts to
each member through one-to-one secure channel, which is called “sender keys”
strategy. This strategy is heavy and cannot satisfy PCS, because the session key
is not decided by all group members. PCS can be achieved by points-to-points
[6] and stateful [5] protocols. To provide PCS in group messaging, Cohn-Gordon
et al. designed an asynchronous ratchet tree (ART) protocol [7].

These features can provide almost perfect security in IM communication,
but still there remains a chance that users’ identities may be leaked during
the communication. In 2019, WhatsApp was attacked by invading users’ mobile
phones through the voice call of the application. Facebook, parent company of
WhatsApp, claims that this attack was conducted by Israel NSO [19]. Users’
identities may be threatened because of hacking and key being compromised.
Current protocols do not provide anonymity along with FS and PCS in group
messaging. So in this paper, our goal is to design a protocol that can provide
anonymous features, including anonymity among group members and anonymity
to the external attackers, as well as achieving FS and PCS. Here, two types of
anonymities can be considered. In the external group anonymity (EGA), an
attacker cannot distinguish between two communication channels of different
groups. Thus, in EGA, an attacker who is not a group member should not be
able to link the user with the corresponding group. EGA may not be enough when
the secret key is compromised, so internal group anonymity (IGA) is required in
this case. IGA indicates that a group member should not be able to pinpoint the
source of the message except the ones sent by himself. When key is compromised,
an external attacker can be seen as a group member, which explains the reason
why IGA is necessary.

Contributions. In this paper, we develop the structure of ART to satisfy IGA
security and apply one time address [16] to achieve the security of EGA. We
formalize our construction as Create to create group channel, SKG to derive
session key, (Update, UpdateGpk) to update group tree by sender and receiver
respectly, E = (ECPA,DCPA) to encrypt and decrypt message, I = (S, V ) to
protect the integrity of message, and (Send,Get) to send and get messages from
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server according to the one time address. Then we prove the security of AART
satisfying FS, PCS and anonymity. Finally we show that AART performs better
than “sender keys” group protocol and comparable to ART while providing
anonymity features. Please refer to the full version for the proof details, which
are omitted in this paper due to the page limit.

2 Related Works

In this section we first focus on the most popular IM applications, and show
that these applications do not provide anonymity and FS, PCS at the same
time. Then the academic results regarding the anonymity and FS, PCS in E2EE
are discussed.

2.1 Group Protocols

iMessage. Apple’s iMessage is among one of the first widely used secure IM, but
later was proved to be insecure by using chosen ciphertext attack [11]. Current
protocol of iMessage is updated in Apple’s whitepaper [1]. In iMessage, when
user A wants to communicate with user B, A needs to know the receiving address
of B in message server (APN). So, all the communication participants are known
to APN. In grouping messaging, users need to set up one-to-one channel with all
group members. Thus, iMessage does not satisfy the above anonymous features.

LINE. LINE is a popular application used in east Asia. Current whitepaper
of LINE was published in 2016 [13]. Isobe et al. [12] point out several attacks
by analyzing the protocol according to the whitepaper protocol which is called
Letter Sealing. Group messaging of LINE first calculates a group key and then
sends the key to all group member by one-to-one channel. If the secret informa-
tion is leaked, attacker can reveal the key of each message. Thus, LINE does not
provide PCS when key is compromised.

Signal. First IM providing ratcheting, is OTR [3]. In each round of communica-
tion, users set up a fresh Diffi-Hellman(DH) key exchange and cannot derive the
past round DH key, so the core of OTR and Signal is called ratcheting. Signal’s
core is double ratchet, which is used in WhatsApp, Facebook messenger and so
on. Cohn-Gordon et al. [6] prove the security of double ratchet. According to the
protocol, the associated data should include long term public key of two partic-
ipants, so the message server can know the identities of them. The anonymity
is not protected though. The strategy of group messaging of Signal is to set
up channels within each group member. So in group messaging, the anonymity
cannot be achieved.
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ART. Cohn-Gordon et al. [7] develop Signal’s ratchet to be ART group key
exchange protocol. ART is the first design to hold PCS in group key exchange.
Group initiator first negotiates each leaf DH key with other members and uses
them to set up and publish DH group public tree. When a group member sends
a message, he should update his leaf DH key and corresponding ancestor node
keys in group tree. Then he sends the message and the updated DH public keys
to other members for their updating. Thus, everyone including people out of the
group, knows the identity of the sender in ART.

Others Applications. WeChat [20] and QQ [17] produced by Tencent, are
widely used in China. From the whitepaper of them, Secure Sockets Layer (SSL)
or Transport Layer Security (TLS) is used to keep the security of message con-
tent. Because of SSL and TLS, WeChat and QQ can hold Forward Secrecy,
however, PCS cannot be satisfied. Also, Tencent claims that WeChat and QQ
can provide anonymity. Furthermore, neither WeChat nor QQ is an open source
project, no further conclusion can be drawn regarding the anonymous features.

2.2 Some Anonymous Approaches Applied in E2EE

Tor is the shortcut of the second-generation Onion Routing network [8]. Tor
is composed by several points, each user in Tor is thought to be one point in
the network. Tok [18] is the IM based on Tor. If user A wants to communicate
with user B by Tok, he chooses several points and he negotiates session keys
with these points. Then he uses these keys to encrypt message in sequence, each
point decrypts one time and passes the decrypted message to next point until
it reaches B. As a result, only the first point knows the address of A and last
point knows the address of B. This network can protect the identity of users,
but because the session key will not be changed during communication, Tok does
not provide FS and PCS.

To validate and authenticate the anonymous public keys in E2EE, Emura
et al. [9] used identity based encryption (IBE) to encrypt packet anonymously.
Emura et al. [10] pointed out that the efficiency is less than SSL and applied
KEM/DEM to encrypting the secret key of authenticator. The encrypted secret
key is sent to proxy, and proxy delays this message to service provider for val-
idating. The structure of E2EE can be achieved through proxy and thus pro-
vide anonymity feature. But KEM/DEM just considers one-to-one situation, and
secret key is not modified, thus cannot provide FS and PCS.

3 Security Definitions

M is the message space. K is the key space. C is the cipher space. Σ is the
MAC space. Assume (gpk, gsk) ← Create(1k) is a group public key generator,
1k stands for the security parameters. {k1, ..., kn} ← SKG(gpk, gsk) is session
keys generator where {k1, ..., kn} ∈ Kn. |m0| = |m1| means the length of m0 is
equal to m1 where m0,m1 ∈ M. E = (E,D) is encryption scheme, E(k,m) = c :
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K×M → C is encryption algorithm and D(k, c) = m : K×C → M is decryption
algorithm. I = (S, V ) is a MAC system where S(k, c) = σ : K × {0, 1}∗ → Σ
and V (k, (c, σ)) = {0, 1} : K × ({0, 1}∗ × Σ) → {0, 1}. The output of V is 1 if a
MAC pair is from S. If V is 0, it will reject this pair. The adversaries mentioned
in each definition are all probability polynomial time (PPT) attackers.

Authenticated Encryption Security (AE-Security). AE-Security should
satisfy the chosen plaintext attack (CPA) and ciphertext integrity (CI) require-
ments.

– Challenger C runs (gpk, gsk) ← Create(1k) and sends gpk to adversary A
– Plaintext Query phase(i ∈ {1, Q}):

• A chooses message mi ∈ M, and sends mi to C
• C runs ki,1, ki,2 ← SKG(gpki, gski), ci ← E(ki,1,mi), σi ← S(ki,2, ci) and

sends ci, σi to A
– Challenge phase:

• A chooses message m0,m1 ∈ M, |m0| = |m1|, m0,m1 �= mi. Also, A
construct c∗, σ∗ pair that does not appear in plaintext query phase. Then,
A sends (m0,m1), (c∗, σ∗) to C

• C sets b
$←− {0, 1}, runs kQ+1,1, kQ+1,2 ← SKG(gpkQ+1, gskQ+1), cb ←

E(kQ+1,1,mb), σb ← S(kQ+1,2, cb) and sends (cb, σb) to A
– A outputs b̂ ∈ {0, 1} and C outputs V (kQ+1,2, (c∗, σ∗))

If A outputs b̂ = b or C outputs 1, A wins this Game. A encryption scheme S can
satisfy AE-Security if AdvAE [A,S] = |Pr(b̂ = b)−1/2|+Pr(V (kQ+1,2, (c∗, σ∗)) =
1) is negligible.

Forward Secrecy (FS). The definition shows that adversary cannot reveal the
forward session keys when key is compromised.

– Challenger C runs (gpk, gsk) ← Create(1k) and sends gpk to adversary A
– Plaintext query (running Q times,i ∈ {1, ..., Q}):

• A randomly chooses message mi,0,mi,1 from M where |mi,0| = |mi,1|,
and sends mi,0,mi,1 to C

• C sets bi
$←− {0, 1} and runs ki ← SKG(gpki, gski)

• C runs ci,b ← E(ki,mb), and sends pki, ci,b to A
– Key compromised phase:

• A sends mQ+1 to C
• C runs kQ+1 ← SKG(gpkQ+1, gskQ+1), cQ+1 ← E(kQ+1,mQ+1), and

sends cQ+1, pkQ+1 and skQ+1 to A
– A outputs b̂i ∈ {0, 1}, i ∈ {1, ..., Q}
An encryption scheme S is FS if AdvFS [A,S] = |Pr(b̂i = bi) − 1/2| for any i is
negligible.

Post Compromised Secure (PCS). This definition shows that when key is
compromised, after at most Q times, PCS will establish new secure channel again
except the active attack of adversary.
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– Challenger C runs (gpk, gsk) ← Create(1k) and sends gpk to Adversary A
– Key compromised phase:

• A sends m0 to C
• C runs k0 ← SKG(gpk0, gsk0), c0 ← E(k0,m0), and sends c0, gsk0 to A

– Plaintext query (at most Q times, i ∈ {1, ..., Q}):
• A randomly chooses message mi from M and sends mi to C
• C runs ki ← SKG(gpki, gski), ci ← E(ki,mi), and sends ci, gpki to A

– Challenge phase:
• A chooses mQ+1,0,mQ+1,1 ∈ M, |mQ+1,0| = |mQ+1,1|. mQ+1,0,mQ+1,1 �=

mi

• A sends mQ+1,0,mQ+1,1 to C
• C sets b

$←− {0, 1}
• C runs kQ+1 ← SKG(gpkQ+1, gskQ+1), cQ+1,b ← E(kQ+1,mQ+1,b)
• C sends cQ+1,b, pkQ+1 to A

– A outputs b̂ ∈ {0, 1}
An encryption scheme S is PCS if AdvPCS [A,S] = |Pr(b̂ = b)−1/2| is negligible.

Internal Group Anonymity (IGA). This definition shows that when adver-
sary knows the secret key, or adversary is one of the group members, IGA cannot
distinguish which group member sends the target message. IGA is specific for
ART-like protocols because we apply this feature on the Create and Update
algorithms.

– Challenger C runs (gpk, gsk) ← Create(1k) and sends gpk, gsk to adversary
A

– A sends m ∈ M to C
– C sets b

$←− {0, 1}, group member Ub runs k ← SKG(gpk, gsk), and cb,0 ←
E(k,m), cb,1 ← Update(gpk, gsk, b), sends cb,0, cb,1 to A

– A outputs b̂ ∈ {0, 1}
An encryption scheme S is IGA secure if AdvIGA[A,S] = |Pr(b̂ = b) − 1/2| is
negligible. In ART, because A knows the updated position of sender, it means
that in this definition, cb,1 is related to b and can be accessed by A. So, in ART,
AdvIGA[A,S] = 1.

External Group Anonymity (EGA). This definition shows that an adver-
sary cannot distinguish between two group or cannot distinguish a group from
random, which means adversary cannot link the user to corresponding group.

– Challenger C runs (gpk0, gsk0) ← Create(1k) and (gpk1, gsk1) ← Create(1k)
and sends gpk0, gpk1 to adversary A

– A sends m ∈ M to C
– C sets b

$←− {0, 1}, group Gb runs kb ← SKG(gpkb, gskb), cb ← E(kb,m) and
sends cb to A

– A outputs b̂ ∈ {0, 1}
An encryption scheme S is EGA secure if AdvEGA[A,S] = |Pr(b̂ = b) − 1/2| is
negligible.
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4 Our Construction

4.1 Object Goals

The aim of our construction is to ensure the security against the five kinds of
adversaries in AE-Security, FS, PCS, IGA and EGA. All of the adversaries can
deliver and modify the message and control the message server. Except AE-
Security, current random values including long term secret keys, session keys,
and leaf keys can be compromised. To break the security features, adversary
can access the Key Derived Function (KDF) as random oracle. Our construction
does not consider the impersionation attack when keys are compromised.

4.2 Security Assumption and Notation

In this subsection, the necessary assumptions and notations for AART are
defined. x

$←− X means choosing a group element x from group X randomly. x||y
means the conjunction of two string x and y. The size of all groups and spaces
are super-poly number and each adversary is PPT adversary, which means that
to exhaust all group and space elements is impossible. A secure pseudo-random
generator (PRG) prg is to pick up the update position for group member. Sig
is secure signature and I = (S, V ) is secure MAC system. E = (ECPA,DCPA) is
a CPA-Security encryption scheme, Zq is a finite field, q is a big prime number.
The basic operation of AART is over point group P of Elliptic Curve (EC), where
P = {(x, y) ∈ Zq × Zq : (x, y) ∈ EC} ⋃ {∞}. The generator of P is P .

Decisional Diffi-Hallman Problem (DDHP). DDHP is to distinguish two

tuples (a · P , b · P , ab · P ) and (a · P , b · P , z · P ), where a, b ∈ Zq and z
$←− Zq,

and the advantage for any PPT adversary should be negligible.

Computional Diffi-Hallman Problem (CDHP). CDHP is to compute ab·P ,
given a tuple (a ·P , b ·P ), where a, b ∈ Zq. The advantage for any PPT adversary
should negligible.

Pseudo-Random-Function Oracle-
Diffi-Hallman (PRF-ODH). [4]: Assume a secure PRF t(·): P → Zq maps
a group element of P to an element of Zq. If DDHP is held in group P and t is
a secure PRF over P, general PRF-ODH assumption is held by P such that: if
z

$←− Zq, given (a ·P, b ·P, t(ab ·P )), (a ·P, b ·P, t(z ·P )), the probability adversary
distinguishes t(ab · P ) and t(z · P ) is negligible. Because of PRF-ODH, CDHP

is still held over P and t: if z
$←− Zq, given (a · P, b · P ), the advantage that the

adversary computes t(ab · P ) is negligible.

Node. node is the basic unit of group tree. The construction of node is:

– node[i]: the ith leaf node of group tree
– node[i].sk: the secret key of node[i]
– node[i].pk: the public key of node[i]



Anonymous End to End Encryption Group Messaging Protocol 595

– node[i].sibling: the sibling of node[i]
– node[i].p: the parent of node[i]

Other operation. agt is the tree of public and private keys. size() is to get
the number of group members or the number of a list. KeyEachange can
be any authentication key exchange (AKE) function or protocol. In signal,
KeyExchange is X3DH [6] protocol. And:

KeyExchange(ikR, IKI , sukR, EKI) = KeyExchange(ikI , IKR, ekI , SUKR)

This design involves several random values. The one time secret key node[i].sk
is held by user i and node[i].pk is the corresponding public key. (ik, IK) is the
identity key pair, and (ek,EK) is the short term key pair. ik and ek are held
by user and IK,EK are published. j denotes the sequence number of current
stage. Session keys mkj , rj , ckj are derived by KDF (tkj , ckj−1). mkj is used for
encryption, rj is used to calculate one time address, and ckj is used to generate
MAC and session key pair for stage j + 1.

4.3 Internal Group Anonymity

Group Setup. Considering three-member group, let A, B and C be the group
member. Setup phase is to create an anonymous group tree, the leaves A, B and
C stand for each group member. This tree is created by the group initiator A.
The steps for creator A to create group tree are shown as follows (Fig. 1):

Fig. 1. Anonymous group tree over view

– Ask for public key pairs (IKi, EKi) of each group member through third
channel.

– Generate setup key suk
$←− Z

∗
q . Let SUK ← suk · P . Generate A’s leaf key

pair (θA0 , θA0 · P ) such that θA0
$←− Z

∗
q . θi0 is the leaf secret key of user i and

θi0 · P .
– Send IKA, SUK to other group members via trusted-third party, which means

that adversary cannot access these messages and reveal the identity of other
group members in the initial session.

– Generate leaf keys of other members: θi0 ← KeyExchange(ikA, IKi, suk,
EKi)
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– Set up group tree by (gpk1, agt1, node1, SUK) ← Create(). Let root private
key and public key be (tk1, TK1).

– Run σ0 ← Sig(ikA, gpk1) and broadcast (gpk1, σ0) to other group members.

Create() is the algorithm to create group tree (Please refer to Algorithm 1
for the algorithm detail in the Appendix). When initiating anonymous group
tree, the initiator has the full view of group tree, including the private leaf key
of each node. After receiving this tree, other group members should check if
(IKA, gpk1, σ0) is valid or not. If σ0 is valid, group member accepts this tuple
and only knows part of the group tree, public part gpk1, and his private leaf key.
Leaf keys can be calculated by running:

θi0 ← KeyExchange(iki, IKA, eki, SUK) (1)

After getting θi0, group member should calculate its leaf public key to ensure the
position i of it. If the pk in gpk1 of kth leaf is equal to θi0 ·P , the position of this
group member is i = k. Then he generates the group shared key tk1 according
to procedure KeyGen(i, node[i], gpk1) :

1. Parent node p ← node[i].p, s ← node[i]
2. Find s’s sibling node s.sibling
3. Calculate p.sk ← t(s.sk · s.sibling.pk)
4. Set s ← p, p ← s.p
5. If p is null, tk ← s.sk, else go to step 2

According to (1), group initiator knows the location of each member in gpk1.
But each other member only knows his location.

Fig. 2. Non-anonymous updating group tree (updated nodes and values are marked
by bold)

Direct Updating. In order to satisfy FS and PCS, when one participant sends a
message, the group tree should be updated. In stage j, the root key tkj should be
generated from gpkj and user’s leaf secret key. After sending or receiving a mes-
sage, gpkj should be updated as gpkj+1, which means that session key should be
used only once. In the update phase, group member can decide whether to anony-
mously update group tree or not when sending messages. When group member
directly sending message via group tree, updating occurs, which is shown in Fig.
2. The procedure is shown as follows (B stands for updated node’s position):
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1. Set node[B].sk as θB1
$←− Z

∗
q , node[B].pk ← node[B].sk · P

2. Update sk2 ← t(θB1 θy1 · P ); pk2 ← sk2 · P
3. Update sk3 ← t(sk1sk2 · P ); pk3 ← sk3 · P
4. Update tk ← t(sk3sk4 · P );TK ← tk · P
5. Broadcast B,node[B].pk, pk2, pk3 to all group members

After receiving the updated public keys, others update the public keys of B and
its ancestor nodes, derive tkj+1 according to KeyGen.

Fig. 3. Anonymous updating group tree (updated values are in black box and marked
by bold)

Anonymous Updating. Because the group initiator knows the location of each
member, he can see which one is to update group tree. So, initiator knows who
send the target message. In order to limit the authority of initiator, the relation
between the updated location and identity should be separated. By using random
node, this feature can be obtained according to Fig. 3. The procedure is shown
as follows (b stands for updated node’s position):

1. b ← prg({2, 4, 6, ..., 2n})

2. Set node[b].sk as θi
$←− Z

∗
q , node[B].pk ← node[B].sk · P

3. Update sk2 ← t(θB1 θy1 · P ); pk2 ← sk2 · P
4. Update sk3 ← t(sk1sk2 · P ); pk3 ← sk3 · P
5. Update tk ← t(sk3sk4 · P );TK ← tk · P
6. Broadcast b, node[b].pk, pk2, pk3 to all group members

Because in group tree, node[i], i ∈ {2, 4, 6, ..., 2n} are random nodes, which means
that the leaf keys of these nodes are generated randomly and thus no group
member is located in these nodes. In this way, initiator cannot bind the sender
with a random node, so he cannot reveal the identity of the sender.

4.4 External Group Anonymous Encryption

One Time Address. Although Ratchet Tree can provide PCS and FS, it
delivers messages through central servers. If those servers are controlled by the
adversaries, attackers can know the relations of all users. With the help of topo-
logical net, attackers can perform behavior analysis to infer the identities of the
user.



598 K. Chen and J. Chen

One time address applied in Monero [16] tries to hide the identity of receiver
using

addr ← H(r · PKs
B) · P + PKv

B

Here, PKs
B ← sks

B · P and PKv
B ← sks

B · P are the long term public keys of
user Bob. H : P ← Zq is a collision-resistant hash function. If user Alice wants

to trade with Bob, she first generates r
$←− K , calculates addr and then puts

r, addr and transactions onto the block chain. Bob should use r and his secret
key pairs to validate the addr. Because addr is changed by r and r is randomly
chosen, addr is changed in each transaction. Because DDHP is hard in PRF-
ODH, adversary cannot reveal the identity of Bob from addr. However, because
Bob should check all addr, the valid operation will cost a lot of time. The idea
from Monero’s one time address is to hide the group public key. So that cloud
server cannot distinguish different messages from different groups according to
one time address. The SKG of our construction contains two parts: (2) and (3).

mkj , rj , ckj ← KDF (tkj , ckj−1) (2)

addrj ← H(t(rj · P )) · P + tkj · P (3)

The initial ck0 is empty. AART generates the pseudo-random value mkj , rj , ckj
from tkj and ckj−1 based on KDF : Z∗

q × K → K3 modeled as random oracle, so
that group members can pre-calculate the one time address for each message.

Encryption and Decryption. Here pos is the position of user leaf, type ∈
{0, 1} is the updated type: 0 is directly update, 1 is anonymously update.

– SKG(node[i]j , gpkj , ckj−1):
• tkj ← KeyGen(i, node[i]j , gpkj)
• mkj , rj , ckj ← KDF (tkj , ckj−1)
• addrj ← H(t(rj · P )) · P + tkj · P

– Encryption(node[i], gpkj , typej , ckj−1):
• (mkj , rj , addrj , ckj) ← SKG(node[i], gpkj , ckj−1)
• (posj , pathj , gpkj+1) ← Update(i, gpkj , typej , node[i]j)
• cj ← ECPA(mkj ,mj)
• σj ← S(ckj , (cj ||posj ||pathj))
• Send((cj , posj , pathj , σj), addrj , server)
• output : cj , σj , addrj , gpkj+1

– Decryption(gpkj , node[i], ckj−1)
• (mkj , rj , addrj , ckj) ← SKG(node[i]j , gpkj , ckj−1)
• cipher ← Get(addrj , server)
• If cipher = ⊥: output ⊥
• cj , posj , pathj , σj ← cipher
• If V (ckj , (cj ||posj ||pathj , σj)) �= 1: output ⊥
• else: (mj , posj , pathj) ← DCPA(mkj , cj)
• gpkj+1 ← UpdateGpk(posj , pathj , gpkj)
• output : mj , gpkj+1
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Update is the algorithm to update group tree during encryption, UpdateGpk is to
update group tree after receiving updated path (Please refer to Algorithm 2 for
the algorithm detail in the Appendix). Send(msg, addr, server) means putting
message msg on server in the position of addr. Get(addr, server) means getting
message from the position addr in server. If sending error or getting nothing,
the response of server is ⊥. The message can be observed and accessed by the
adversary.

5 Security Analysis

In this section, we prove that AART satisfy the secure definitions of AE-Security,
FS, PCS and IGA, EGA. The stage j of AART contains (Create, SKG, Update,
E , I, Send) algorithms. Because Decryption will not affect the group tree, to
simplify definition, this operation is not included.

5.1 Authenticated Encryption Security

When no keys are compromised, the AE-Security of AART in one stage can be
satisfied by Theorem 1.

Theorem 1. Let E = (ECPA,DCPA) be a cipher, and I = (S, V ) is a MAC
system. KDF : Z∗

q ×K → K3 is modeled as a random oracle. Assuming E is CPA
secure and I is a secure MAC system, if adversary A has the advantage to break
AE-Security of AART, then there exists an adversary BPRF−ODH against CDHP
in PRF-ODH, adversary BCPA against CPA-Security of E, and adversary BMAC

against I with following bound:

AdvRO
AE [A, AART ] ≤ Q · AdvCDHP [BPRF−ODH ,P] + AdvCPA[BCPA, E ]

+ AdvMAC [BMAC , I]
(4)

Proof Idea. Adversary A can only see the transaction message of Send and Get.
So the only information for adversary to get advantage to break AE-Security is
gpkj , pathj and posj . If adversary can derive tkj+1 from (gpkj , pathj , posj), he
can break AE-Security of AART, which means that adversary breaks CDHP
on PRF-ODH. Because CDHP is hard in PRF-ODH, E is CPA-Security cipher,
and I is secure MAC system, AdvRO

AE [A, AART ] is negligible. So AE-Security of
AART is proved.

5.2 Forward Secrecy

FS of AART is achieved by the Theorem 2.

Theorem 2. Let KDF : Z∗
q ×K → K3 be modeled as a random oracle. When the

keys of stage j +1 are leaked, if adversary A can break FS of AART, there exists
adversary BAE that can break the AE-Security of stage j with the advantage:

AdvRO
FS [A, AART ] ≤ Q · AdvRO

AE [A, AART ] (5)
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Proof Idea. Assume there are Q stages. According to SKG and Update, tkj
is derived from gpkj and session keys of stage j are generated by tkj , ckj−1. So
if all random values including sk of each user, tkj , session key mkj , rj , ckj are
compromised, and adversary A wants to get session key of stage j−1, he needs to
know ckj−2. The only information A can get is from random oracle query. Thus,
each stage can be reducted to a AE-Security game in Theorem 1. So Theorem 2
is proved, AdvRO

FS [A, AART ] is negligible.

5.3 Post Compromised Security

PCS is proved with Theorem 3.

Theorem 3. Let KDF : Z∗
q × K → K3 be modeled as a random oracle. When

the keys of stage j are compromised, if in the challenge stage, all leaf keys are
updated, the advantage of adversary A to break PCS of AART is equal to the
advantage of A to break AE-Security of stage j + 1, such that:

AdvRO
PCS [A, AART ] = AdvRO

AE,j+1[A, AART ] (6)

Proof Idea. When other keys except ckj of jth session are compromised,
because the keys of next session j + 1 is based on ckj , adversary cannot derive
them. So the only way for adversary is to break the AE-Security of j +1 session.
Thus Theorem 3 can be reducted. When all keys are compromised, if the leaf
keys adversary holds do not get updated until Q session finished, the advantage
for adversary is 1. But when each leaf key of group tree is updated, the advantage
of A is reducted to the AE-Security of Q session and becomes negligible.

5.4 Internal Group Anonymity

IGA of AART is proved with Theorem 4.

Theorem 4. Let KDF be modeled as random oracle, and ECPA be CPA-Security
cipher, prg be secure PRG, if there exist adversary A to break IGA, then there
exist adversary B that break PRG:

AdvIGA[A, AART ] = AdvPRG[B, prg] (7)

Proof Idea. Because the random leaf to be used in anonymous update is chosen
randomly by secure PRG. If adversary can between two anonymous users from
each other by their update messages, he can break the security of PRG.
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5.5 External Group Anonymity

Theorem 5. Let H be a collision resistant hash function, KDF be modeled as
random oracle, if adversary A can break EGA of AART, there exists adversary
BPRF−ODH against DDHP in PRF-ODH with the the advantage:

AdvEGA[A, AART ] ≤ 2 · AdvDDHP [BPRF−ODH ,P] (8)

Proof Idea. To distinguish between two different anonymous groups, the adver-
sary should first distinguishes group addresses from a random value based on
DDHP. And then we induct these two DDHP game into a EGA game based
on definition of EGA. Because the advantage against DDHP is negligible,
AdvEGA[A, AART ] is negligible.

6 Discussion

We further discuss the performance and malicious group member issues of
AART.

Performance
Compared with ART, the space cost of group tree with same number of group
members in AART is two times of ART. Because when creating group tree,
each leaf’s sibling is a random leaf to provide anonymity feature. Therefore, the
height of group tree will increase by one. Thus, the complexity to generate tk
is increased by one as well. The output size of initial stage in AART will be
two times of ART because of the leaves of the enlarged group tree, and updated
path information has one additional output because of height of group tree.
There is additional addr, which will be 256 bytes when using Curve25519. But
the construction of AART thus has the ability to provide IGA and EGA.

Compared with pairwise DH ratcheting group messaging protocols, since
AART is based on ART and ART has the same initial group time as pairwise
DH, the time to create group of AART will be two times as pairwise DH. With
same number of group members n, output bytes of pairwise DH is O(n) and
ART will be O(log2n). Thus AART’s will be O(log22n) = O(log2n), better than
pairwise DH. The performance comparison can be seen in Table 1.

Table 1. Performance comparation

#exponentiations #encryptions bandwidth PCS Anonymity

Sender Per other Sender Per other Sender Per other

Sender keys

[1,13]

setup O(n) O(n) O(n) O(n) O(n) O(n) no No

Ongoing 0 0 1 1 O(1) O(1)

ART [7] Setup O(n) O(log(n)) 0 0 O(n) O(n) Yes No

Ongoing O(log(n)) O(log(n)) 1 1 O(log(n)) O(log(n))

Ours Setup O(2n) O(log(2n)) 0 0 O(2n) O(2n) Yes Yes

Ongoing O(log(2n)) O(log(2n)) 1 1 O(log(2n)) O(log(2n))
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Malicious Group Member
Regarding the collusion attacks, in n members group, if there are n−1 members
in collusion including the creator and the rest one sending a message, they can
reveal the identity of him. But if the creator is trustworthy, collusion attackers
can only know that one member sends a message but they cannot reveal the
identity of him, because they cannot link the long term public key to the sender.

7 Conclusion

In this paper, we propose a multi-stage anonymous group messaging proto-
col called AART, which is based on the design of ART. It is able to provide
anonymity features including IGA and EGA, while retains the previous features
such as FS and PCS of ART. The security of AART is analyzed and proved for-
mally. Finally, we discuss the performance of AART by comparing with ART and
pairwise DH protocols as well as malicious problem that may exist in AART and
the related solutions to the problem. In our future work, effort will be focused on
how to limit the anonymity by tracing the secret keys and revealing the identity
of the malicious users.
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Science Foundation of China under Grant No. 61702212 and the Fundamental Research
Funds for the Central Universities under Grand No. CCNU19TS017.

A Appendix

A.1 Create Algorithm

The inputs of Create algorithm are long-term secret key of group creator ikA, the
long-term public key set IK, the short-term public key set EK and the group
size n. A denotes the index of group creator. Creator first generates his and
random node’s leaf secret key randomly, and uses AKE function KeyExchange
to derive leaf secret key for each other member. Then, creator runs CreateTree
to create group tree using all leaf secret key. Each user leaf keys is located in
odd position of group tree. For each two node, their parent node is generated by
the DH key of the children leaf secret key. Using the new parent nodes as new
leaf nodes, CreateTree will recursively call itself until there is only one node,
which is the root of the group tree. The algorithm is shown in Algorithm 1.
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Algorithm 1. Anonymous Tree Generation
1: procedure Create(ikA, IK, EK,size n)

2: size ← 2n, suk
$←− Z

∗
q

3: for i = 1 to 2n do
4: if i is even number or i = A then
5: node[i].sk

$←− Z
∗
q

6: else
7: θi ← KeyExchange(ikA, IKi, suk, EKi)
8: node[i].sk ← θi
9: end if

10: end for
11: agt ← CreateTree(node, size)
12: gpk ← agt, remove all sk from gpk
13: return gpk, agt, node, SUK ← suk · P
14: end procedure
15: function CreateTree(node,size)
16: if size �= then
17: for i = 1 to size do
18: newNode[(i + 1)/2].sk ← t(node[i].sk · node[i + 1].pk)
19: newNode[(i + 1)/2].pk ← newNode[(i + 1)/2].sk · P
20: Let newNode[(i + 1)/2] be the parent of node[i] and node[i + 1]
21: i ← i + 2
22: end for
23: if size is odd number then
24: Let last node of newNode be node[size]
25: end if
26: return CreateTree(newNode, size(newNode))
27: else
28: return node
29: end if
30: end function

A.2 Update Algorithm

The inputs of Update for sender are user i, group key gpkj , anonymous type
typej and user leaf node[j] in stage j. When typej = 0, the position of the
updated node is user leaf. When typej = 1, the updated node is chosen from
even position of group tree by secure PRG. Then, the one time leaf secret key
will be replaced as a new one, and it will be used to generate the ancestor node.
The algorithm is shown in Algorithm 2.

pop is to extract the first public key from path according to ||. When running
UpdateGpk, user first uses the old chain key to verify the integrity, which is to
satisfy the correctness. Then, he updates the leaf node and its ancestor node
with the position pos. Notice that if the pos and path of j stage is correct, all
group members will update the same public part of group tree. The correctness
of stage j + 1 will be held.
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Algorithm 2. Update Group Tree
1: function Update(i, gpkj , typej , nodej)
2: if typej = 0 then
3: posj ← i
4: else
5: posj ← prg({2, 4, 6, ..., 2n})
6: end if
7: nodej+1 ← nodej

8: node[posj ]j+1.sk
$←− Z

∗
q , node[posj ]j+1.pk ← node[posj ]j+1.sk · P

9: return pos,UpdatePath(gpkj , nodej+1, posj)
10: end function
11: function UpdatePath(gpkj , nodej , posj)
12: cur ← node[pos]j+1, pathj ← [ ]
13: while current node cur is not the root do
14: the sk of cur’s parent is t(cur.sk · cur.sibling.pk)
15: the pk of cur’s parent is its sk · P
16: pathj ← pathj ||cur.pk
17: let cur move to the parent of cur
18: end while
19: pathj ← pathj ||cur.pk
20: move sk from cur
21: return pathj , cur
22: end function
23: function UpdateGpk(posj , gpkj , pathj , nodej)
24: tmp ← gpkj [posj ]
25: while pathj �= [ ] do
26: tmp.pk ← pathj .pop
27: tmp ← tmp.p
28: end while
29: gpkj+1 ← gpkj

30: return gpkj+1

31: end function
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