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Abstract. In recent years, EU has placed great importance on the safety of road
users (real and perceived). In this context today in Greece, around 180
municipalities are implementing SUMPs for first time and therefore a primary
identification of the hazardous points is made through the mapping of traffic
incidents. This article presents the results of the mapping of traffic accidents in
five metropolitan municipalities of Attica (Athens, Piraeus, Marousi, Kifisia,
Chalandri), and their analysis using GIS tools. Network kernel density analysis
was performed to determine the spots where a high concentration of severe
accidents appeared, as well as spatial autocorrelation using Moran index and
Hot-Spot Analysis in terms of time, driver’s age and type of vehicle involved.
The results indicate the hazardous points in the study areas and their particular
characteristics. Finally, it is noted that the aforementioned analysis can con-
tribute to the design of feasible solutions in order to improve road safety and at
the same time, create a safe and sustainable transport system in each of the study
cities.
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1 Introduction

Contemporary cities face several serious challenges questioning their sustainability and
efficiency [1]. The car-oriented approach that influenced transport planning process in
cities mainly after 1950s [2], resulted in urban systems with intense traffic congestion,
urban sprawl, environmental pollution, inaccessible and unattractive public spaces,
movement barriers (e.g. arterials passing through central areas) and especially road
accidents [3–5]. Focusing on road accidents and crashes, we should strongly mention
that in recent years European Union (EU) has placed great importance on road users’
safety (real and perceived), as it has considerable influence both in the operation of
transport systems and in citizens’ quality of life [6]. Tellingly, according to the
European Commission [7], more than 35.000 people were killed and more than
1.5 Mio. Were injured in the year 2009 in European countries. Focusing on Greece, in
the year 2017, Hellenic Statistical Authority (ELSTAT) recorded approximately 750
deaths, 700 serious and 12.200 minor injuries in approximately 10.800 incidents [8].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2021
E. G. Nathanail et al. (Eds.): CSUM2020, AISC 1278, pp. 505–514, 2021.
https://doi.org/10.1007/978-3-030-61075-3_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61075-3_50&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61075-3_50&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-61075-3_50&amp;domain=pdf
https://doi.org/10.1007/978-3-030-61075-3_50


Under these circumstances, a new perspective regarding cities and their future has
emerged during recent years; this concept is no other than Sustainable Mobility [9].
Sustainable mobility describes a system that meets transport needs through promoting
public transport, walking and cycling and, at the same time, enhances environmental
integrity, social equity and economic efficiency. A new type of strategic plan, proposed
by EU, that integrates all possible measures pointing towards an alternative mobility
level, is the Sustainable Urban Mobility Plan (SUMP) [10]. It is worth mentioning that
road safety is an integral part of sustainable mobility [11, 12] and SUMPs in particular.
Today in Greece, around 180 municipalities are implementing SUMPs; by mapping the
traffic incidents, the hazardous points are identified for the first time.

In this context this research outlines the results of the mapping procedure of traffic
accidents in five metropolitan municipalities of Attica (Athens, Piraeus, Marousi,
Kifisia and Chalandri) and their analysis using GIS tools. Network kernel density
analysis was performed to determine the spots where a high concentration of severe
accidents appeared, as well as spatial autocorrelation using Moran index in terms of
time, driver’s age and type of vehicle involved. The data of the research were derived
from Hellenic Statistical Authority (ELSTAT) and concern the years 2012–2017.

2 Literature Review: Spatial Analysis of Traffic Accidents

A plethora of researchers have invested great efforts in studying the impacts of various
risk factors [e.g. 13, 14] and road safety measures [15] and have developed or adopted
several mathematical methodologies to approach crash prediction problems [e.g. 16] or
road-road safety site prioritization problems [e.g. 17]. In the aforementioned context, in
order to decrease traffic accidents and improve road safety levels, it is vital to under-
stand how, where and when traffic accidents occurred, as these accidents are subject to
both spatial and temporal variations [18]. A thorough understanding of spatial patterns
can contribute significantly to tackle accidents effectively [19, 20]. Spatial analyses in
road safety usually include the examination of crashes through taking into considera-
tion their absolute or relative locations [5]. The way in which researchers select and
define the spatial units of analysis influences directly the aim of the study, the inter-
pretability of results and the data preparation as well [21].

Spatial analysis of point events, known as point pattern analysis (PPA), has been
broadly examined by spatial scientists and a notable variety of methods have been
developed for detecting high-risk sites (i.e. ‘‘hot spots”). The PPA methods can be
classified into two broad categories [22, 23]. The first category includes methods which
examine the first-order effects of a spatial process and the second category contains
methods that examine the second-order effects of a spatial process [19]. Precisely, the
first group focuses on the underlying properties of point events and measures the
variation in the mean value of the process. It involves methods such as Kernel Density
Estimation, Quadrat Count Analysis, etc. The second group mainly refers to the spatial
interaction (dependency) structure of point events for spatial patterns, and includes
methods such as Spatial Autocorrelation, Nearest Neighbor Statistics, G function, F
function, K function, etc. In this research we focus on Kernel Density Estimation and
Spatial Autocorrelation methods:
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Kernel Density Estimation (KDE) is one of the most popular methods for analyzing
the first order properties of points’ distribution [22, 24]. It should be noted that this
method is not a direct analytical method; on the contrary it constitutes an interpolation
technique [25]. The KDE estimates the density within a range (bandwidth) of each
observation to represent the value at the center of the window. Within the bandwidth,
the KDE weighs nearby objects more than far ones based on a kernel function.
The KDE generates a density of the events (discrete points) as a continuous field (e.g.,
raster). By using the density (or average attributes) of nearby objects to represent the
property at the middle location, the KDE captures the very essence of location: it is not
the place itself but rather its surroundings that make it special and explains its setting
[26]. Delmelle et al. [27] mentioned that the KDE is an approach that leads to intuitive
visualization and exploration of data.

The planar KDE has been used widely for traffic accidents ‘‘hot spots” analysis and
detection. Some examples include: study of urban cyclists’ traffic hazard intensity [28]
wildlife-vehicle accident analysis [29, 30], pedestrian crash zones detection [31]
highway accident ‘‘hot spot” analysis [32], etc. However, Kernels are projected over 2-
D spaces, while road crashes occur in the road network which is a 1-D linear area [19].
Hence, in order to overcome this discrepancy, KDE has been expanded to network
KDE approach [33] in which the network is now represented as fundamental units of
equal network length (termed pixels). The studies utilized this method [e.g. 19, 34–36]
concluded to results regarding each segment of the network, thus achieving greater
accuracy.

In simple terms, spatial dependence essentially refers to events at a location (e.g.
road crashes) being highly influenced by events at neighboring locations. It is typically
measured via spatial autocorrelation metrics [5]. According to Griffith [37] spatial
autocorrelation is the correlation between the values of a variable, which derives
strictly from the proximity of these values in the geographic space. This approach is
contradicting the general assumption of independent observation in the domain of
classic statistics. Another similar definition proposed by Legendre and Legendre [38]
mentions: “Spatial features have the tendency to be dependent. A phenomenon known
as spatial autocorrelation can be defined as the property of random variables to take
values over distance that are more similar or less similar than expected for randomly
associated pairs of observations, due to geographic proximity”.

Spatial autocorrelation can be used to describe and compare the spatial structure of
a variable [39]. Specifically, this method contributes to [40]: a) test on model mis-
specification, b) measure of the strength of the spatial effects on any variable, c) test on
assumptions of spatial stationarity and spatial heterogeneity, d) identification of spatial
clusters, e) understand the influence that the geometry of spatial units has on a variable,
f) test on hypotheses about spatial relationships, g) identify the outliers, both spatial and
non-spatial.

Discussing the Role of Traffic Safety in Sustainable Urban Mobility Plans 507



3 Methodology

This study adopts a quantitative approach in order to illustrate and analyze the spatial
dimension of traffic accidents comprehensively. For this purpose, we used two different
methods in order to obtain more efficient and representative results of the existing
situation. The methods were Kernel Density Estimation (KDE) and Spatial Autocor-
relation. It should be mentioned that this approach ensures a wide view of different
aspects concerning the spatial dimension of accidents (e.g. clustering, interactions,
etc.). After the application of the aforementioned methods, the paper presents these
findings in the form of diagrams, and maps, thus evolving the understanding of the
current usage patterns. The secondary data used were derived from Hellenic Statistical
Authority (ELSTAT) and refer to traffic accidents concerning the years 2012–2017 in
5 municipalities in the metropolitan area of Athens. The database obtained included
attributes regarding the location and the time of the accident, as well as the identity of
street users involved. We should note that a pre-process was essential, in order to
organize, and validate the accuracy of the data.

Firstly, the purpose of using KDE is to identify the hazardous locations (i.e.
clusters) in the road network. It is essential to note that for the estimation of the planar
Kernel density in each point of the grid two basic parameters are required, namely:
kernel function (k-function) and bandwidth (i.e. search radius). The purpose of the k-
function is to measure the so called “distance decay effect” [41]. In this study, the
Bitweight function, which resembles better the Gaussian distribution function, is used
in all the kernel density estimations. Regarding the estimation of kernel densities in the
network space, we used the same general function. In our approach, the network kernel
function is defined for two cases: (1) the location s does not coincide with a node and
(2) the location coincides with a node [33, 42]. The selection of the right bandwidth is
surely not an easy process. The range of the commonly used bandwidths starts at 50 m
for urban areas and goes up to 500 m for highways [36]. In this study, we tested 6
different values, i.e. 50, 100, 200, 300, 400 and 500; by observing visualized output
maps, the bandwidth of 200 m is selected and recommended for the identification of
hazardous locations in the road network. Another important parameter for the network
KDE is the maximum segment length (or pixel size). In the SANET tools manual, a
rule of thumb is mentioned and recommended to the users; according to it, the pixel
size has to be 10 times smaller than the selected bandwidth. In this study, this rule was
respected; therefore, the maximum segment length is equal to 20 m.

Finally, another important issue that has puzzled researchers is related with the
selection of the right density threshold(s) [35]. Initially, all the accidents and the road
networks from all the municipalities were imported in QGiS and kernel densities were
computed using v.kernel tool from GRASS GIS. At next, descriptive statistics, of
kernel densities were estimated; by performing a X2 test; it was observed that for a
confidence interval of almost 95%, the density observations are gamma distributed.
Using the cumulative probability function of Gamma distribution, we approached and
finally determined the values of four thresholds. If the density at location s is higher
than the first, second, third and fourth threshold, then this density value is also higher
than the 85%, 90%, 95% and 99% of all density values, respectively. In the second
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stage, a dataset of densities was created for each municipality and for each road
hierarchy level. Following the aforementioned approach, for each municipality and for
each hierarchy level, four thresholds were determined.

Secondly in our analysis for spatial autocorrelation we use two different methods in
order to produce better and more cohesive results. The first method calculates the index
of Moran’s I (Global and Local), which is a common statistical diagnostic tool that is
defined as the division of the spatial variance with the total spatial variance of each
variable [43, 44]. The main contribution of Moran’s I is the evaluation whether a spatial
pattern is clustered, random or dispersed. It works on both feature locations and fea-
tures values simultaneously. The second method is the Hot-Spot Analysis which cal-
culates the Getis-Ord Gi* statistics [40]. Specifically, this tool works by looking at each
feature within the context of neighboring features. It identifies statistically significant
hot spot as a location having high value and surrounded by high valued neighbors as
well.

In both methods (applied in ArcGIS environment) we used the same parameters,
thus ensuring the adoption of a common view between the results of each method.
Precisely, for the conceptualization of spatial relationships, the inverse distance method
was selected, as the closer two traffic accidents are in space, the more likely they are to
interact with each other. Regarding the distance method; Manhattan distance method
was chosen, since it is more appropriate for urban environment and when travel is
restricted to a street network. Finally, the threshold distance was set to 3200m based on
the size of the municipalities.

4 Results

The main results from the network kernel density estimation analysis could be con-
cluded in the following: the highest mean and the maximum kernel density value were
reported in the municipality of Athens. Furthermore, the median value is not equal to 0
as it happens in the other study municipalities; thus, there are not many segments in
Athens with zero kernel density. The mean density value of Piraeus is approximately
4.5 times lower than Athens. The variance is also low compared to the municipality of
Athens. Higher concentration of traffic accidents was reported in the municipality of
Marousi compared to the other northern municipalities. In all study areas, the kernel
densities in residential streets were lower than the ones in primary, secondary and
collector roads. In addition, only in the residential streets, the median value is equal to
zero; therefore, in the other road hierarchy levels, there are a few road segments, where
no traffic accidents have been recorded in the examined period. Finally, no significant
differences in the kernel densities can be observed between primary and secondary
roads.

By applying the method described in the previous chapter, four thresholds per
municipality were estimated (see Table 1). Road segments or spots with densities that
are higher than the 99% of density values of each dataset were noticed using black
color (black spots) (see Fig. 1-NW). As it can be seen, in order to characterize a spot as
black in Athens, higher density values are required. In addition, it is observed that
kernel densities are relatively high in the central areas of each municipality.
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Specifically, high concentrations have been reported around the center of Athens, in
primary roads in Piraeus, in the central part of Kifisia and in primary arterial roads in
Chalandri. The spatial pattern is almost similar for all the study areas.

An alternative approach is to use different thresholds for each different road hier-
archy level. In Fig. 1-NE, the black spots seem to spread out of the main arteries of the
metropolitan area of Athens. In residential streets, the thresholds values are lower.
Hence, a comparatively high concentration of traffic accidents in a spot is not an
obligatory condition for calling it black. Problematic junctions mainly in the road
network of Athens can be identified clearly now; again, many of the black spots are
concentrated around central Athens and particularly in some secondary and collector
roads. In addition, according to this analysis some junctions (primary roads inter-
secting) in the central part of Piraeus are quite problematic. In the road networks of the
rest municipalities, a few “dangerous” junctions can be observed.

Regarding the findings of the Spatial Autocorrelation Analysis, we should highlight
the following: The results of the “Global Moran’s I” analysis show significant spatial
autocorrelation for severity (Moran’s I = 0.0232, p < 0.01), season (Moran’s
I = 0.02986, p < 0.01) and time (Moran’s I = 0.02298, p < 0.01) of the accidents,
revealing the existence of potential patterns in their spatial distribution. On the other
hand, the patterns of the age of victim and the vehicle type involved do not appear to be
significantly different than random. Furthermore, when it comes to the calculation of
the “Local Moran’s” Index, we should mention that in total, 14 high-high clusters were
detected concerning the severity of accidents. They were observed on the primary road
network of the metropolitan area, which includes roads that carry high traffic volume.
Also, most of the high-low outliers were close to low-low clusters, while low-high
outliers were mainly located near the high-high clusters (see Fig. 1-SW).

Finally, when using the Getis-Ord Gi* statistic for the severity of accidents, 141 hot
spots (99% confidence) were detected. As it can be observed from Fig. 1-SE, most of
the hot spots are located on the primary and secondary network, showing that high
traffic volume and high speed (especially at night) may cause severe accidents.

Table 1. Presentation of threshold values.

k shape h scale thre1 (85%) thre2 (90%) thre3 (95%) thre4 (99%)

Athens 0.3 43.7 28.6 40.1 61.7 117.6
Piraeus 0.1 22.0 5.0 8.7 16.7 40.5
Kifisia 0.1 21.2 0.6 1.9 6.2 24.0
Marousi 0.1 22.6 2.5 5.2 12.0 34.2
Chalandri 0.1 17.5 1.7 3.6 8.6 25.5
Primary roads 0.4 49.2 37.6 51.3 76.7 141.4
Secondary roads 0.3 50.7 35.9 49.6 75.3 141.0
Collector roads 0.3 32.7 20.8 29.3 45.3 86.8
Residential streets 0.1 26.6 4.8 8.9 18.0 45.9
All municipalities 0.1 45.0 11.3 19.1 36.0 85.3
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5 Discussion and Conclusions

The current research deals with the spatial dimension of road accidents by using two
different methods (KDE and spatial autocorrelation). These methods as applied in the
five municipalities of Athens’ Metropolitan Area indicate some valuable findings.
The KDE method cannot produce absolute results, since its output depends highly
enough on the initial parameters (i.e. bandwidth, distribution, etc.) and the selected
thresholds. In this study, the bandwidth was chosen to be equal to 200 m and a
methodology to define thresholds using Gamma distribution was presented. To identify
hazardous spots in the road network of a municipality area efficiently, a planner should
use different thresholds per road hierarchy level. By using “global” thresholds, a
planner can make comparisons between similar municipalities or areas in terms of
concentration of black spots in order to understand well enough the seriousness of
traffic safety problems in the study area. Apart from KDE, the spatial autocorrelation

Fig. 1. Network KDE (NW-Municipality and NE-Hierarchy) and Spatial Autocorrelation (SW-
Local Moran’s I and SE- Hot Spot Analysis, both concerning severity).
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methods unveiled that the spatial distribution of the accidents is correlated with
severity, season, and time (e.g. peak hours). Hence, it would be substantial for SUMPs
to formulate flexible measures adjusted to different seasons, and time periods, or to
implement measures prioritized according to the severity of the accidents. As it seems
the efficient analysis of existing road accidents provides valuable information about
dangerous points or corridors.

In an attempt to bridge the gap between analysis and planning procedure of a
SUMP, we suggest some example measures or interventions corresponding to the three
dimensions of traffic safety (Risk, Severity and Exposure): The analysis revealed a
noticeable spatial pattern where black spots are mainly concentrated in the central cores
of the study area. Therefore, the creation of ring road zones will reduce through
movements, thus decreasing the exposure in the city centers. Moreover, in arterial roads
(mainly high risk linear clusters), planners should decide appropriate solutions
including: a) construction of roundabouts in case of serious movement conflicts, b)
widening of sidewalks or other pedestrian oriented interventions, c) construction of
cycle tracks, when the coexistence with cars in cycle lanes seems dangerous and d) bus
lanes. These interventions contribute significantly to reducing accidents’ risk i.e.
probability of traffic accident occurrence. Furthermore, planners should also pay
attention to hazardous clusters by considering the enhancement of horizontal and
vertical signing indicating lower speed limits. In central areas especially, where spatial
analysis identified significant hotspots, they should propose the creation of traffic
calming areas with a speed limit up to 20–30km/h. These measures will deal effectively
with the severity of the accidents. Finally, municipalities which implement road safety
measures, have to develop a traffic safety observatory in order to monitor and evaluate
the progress of road accidents, and hence reconsider their further actions.

In general, it is explicit that road safety has undoubtedly a great role to play in
SUMPs. Hence, the methods we applied can be fundamental tools, used both in
analysis and monitoring process. Definitely, these tools add an extra dimension to
traffic safety analysis and they are easy-to-use for transport and urban planners with
basic GIS knowledge. For this reason, this research has notable value and could be
considered as a small but at the same time important step towards a truly integration of
road safety in SUMPs. At last, spatial analysis of road accidents and their connection
with SUMPs cannot be fully argued in one single research. Another take could be the
implementation of more spatial analysis techniques and afterwards the combination of
the results in order to produce an integrated evaluation index. Moreover, further
research can deal with the formulation of models aiming to predict the spatial distri-
bution of accidents and factors affecting it (e.g. geographically weighted regression).
Finally, new studies can use our findings, in order to propose planning solutions.
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