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Abstract. Urban traffic is undoubtedly a dynamic phenomenon presenting
variations over both time and space, that in the majority of cases are the result of
a mixture of, either well known (i.e. weather, seasonality) or not easily pre-
dictable (i.e. events, accidents) external factors. Identification of similarities in
the performance of different urban road paths under different traffic states
(different travel demand conditions) is the main subject of the current paper.
Floating taxi travel time data (timeseries per road path) collected in the
framework of Thessaloniki Smart Mobility Living Lab (initiated and operated
by CERTH/HIT) consist the basic input for the hierarchical clustering that is
applied. Clustering applies upon different combinations of road paths’ features
(data points of travel time timeseries, descriptive statistics and mutual infor-
mation of timeseries). The comparison of the clustering results based on average
weekdays travel times per road path (from a six months period) with the
respective results of a typical and an atypical day adds on the interpretability of
underlying relations among paths under different states. The analysis reveals that
resulting clusters can be a building block for the spatiotemporal understanding
of urban traffic. Furthermore, it is shown that adding as clustering feature the
criterion of mutual information of timeseries, therefore taking into account also
non-linear dependences of the different road paths, the clustering interpretability
is differentiated.

Keywords: Urban traffic state - Timeseries - Clustering - Mutual information
criterion

1 Introduction

1.1 Urban Road Traffic; an Undoubtedly Dynamic System

Urban road traffic is undoubtedly a dynamic, therefore complex, system which
becomes even more complex with the increase of city size and of the number of
intersections (nodes) of the road network. The gradual (structured or even unstructured)
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cities’ evolution has increased the complexity of urban structures and functionalities,
part of which is the urban transport network and urban road traffic. Road network
structure (topology), socio-economic factors, weather effects, traffic management
policies and mobility options, purpose of daily trips, mode choice, trips distribution
during the day and drivers’ behavior and choices are some of the aspects which
contribute in system’s complexity. The multiplicity of decisions (personal decisions of
many discrete individuals, which are nevertheless strongly related) adds also in the
complexity of urban traffic [1-8].

Urban traffic, being a non-static phenomenon, is subject to a series of variations
related to both space and time. The former refers to the different traffic patterns per case
(road path, sub-area, flow direction) while the latter relates to traffic variations over
different time-periods:

Short term variations caused by signaling (delays)

Daytime variation- peak and non-peak hours

Variation between days - weekdays, Saturday and Sunday

Long-term variations, fluctuations over the years due to demographic, economic
and geographical changes [9].

Under normal situations (recurrent and known patterns), when no special event has
occurred, urban road systems operate in the expected way. When this balance is dis-
turbed, with demand to exceed capacity (‘the maximum number of vehicles that can
reasonably be expected to be served in the given time period’ [10]) or with the
appearance of a special event, congestion phenomena are noticed [11, 12] while ex ante
flexible and quickly adaptable traffic management schemes should have been mobi-
lized. Spatiotemporal dynamics understanding is a main challenge for transport systems
management. In this paper, complementing other spatiotemporal analysis, clustering
analysis is estimated to be able to help identify operation scenarios that can support
transportation system management. The key goal of the paper is not to compare the
effectiveness of different clustering methodologies but to compare resulting clusters at
different traffic states.

1.2 Aim and Structure

During the last decades, the large penetration of Intelligent Transport Systems in daily
city’s operations has changed the traditional way of collecting and analyzing data for
transport planning and traffic management; large databases of traffic data have been
built and are updated at real time. Floating car data, Bluetooth readers with application
on mobility, cameras/radars and traffic related data mined from social media are jointly
offering a broader picture of the traffic situation for the entire road network [13, 14].

Taking advantage of the existence of such a large traffic databases (time series) in
the framework of Thessaloniki Smart Mobility Living Lab (https://smartmlab.imet.gr/),
the current paper aims at presenting two practical approaches in clustering urban road
paths; clustering based on point values and clustering based on global features
extracted from the time series. The scope per research orientation defines the effec-
tiveness of the different approaches while the interpretability of the clusters (injection
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of prior knowledge under an intuitive way) acts as a measure of effectiveness and
accuracy.

The remainder of the paper is organized as follows. Section 2 presents the reference
area where analysis took place, the main urban road paths and the timeseries used for
the clustering of the road paths. Section 3 presents in brief the methodological
approach while results are presented in Sect. 4. Concluding the paper, Sect. 5 high-
lights key advantages and opportunities of the proposed approach.

2 The Reference Research Area

2.1 Thessaloniki’s Urban Road Network

The reference area for the current work consists of basic road paths of the wider area of
Thessaloniki, a medium size Greek city with a population of around 800.000 inhabi-
tants (2011). High dependence of private vehicles use (50%) is characterizing the city
transport (SUMP of Thessaloniki, www.svakthess.imet.gr). The selection of road paths
follows wider research scopes (availability of different traffic datasets and already
existing geo-reference from CERTH/HIT research activity [15-22]). The examined
paths (with coding, direction, location) are presented in Fig. 1.
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Fig. 1. Examined urban road paths, Thessaloniki (GR), and respective coding for the analysis in
MATLAB software.
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Figure 1 contains also information on the operational characteristics of the paths; as
a general comment we can say that all road paths examined are parts of the three large
horizontal road axis serving a large percentage of daily trips. With the exception of
Path 107 all the other paths are of similar length (1-1.6 km) while consist of one bus
lane plus two more operational lanes.

2.2 The Traffic Data

After verifying the relatively high accuracy and validity of the information contained in
traffic data collected via 1200 floating taxi (GDPR respecting) in the study area, travel
time taxi GPS based timeseries were used for the current analysis. Travel time time-
series per road path in 15 min intervals (reference period: first semester of 2017,
hereinafter A2017) consisted the basis of the analysis— 13.966.878 timestamps were
used for calculating average travel times based on CERTH/HIT methodology [20, 21].

3 The Hierarchical Clustering Approach

3.1 Methodological Steps

Data retrieval from taxi floating data and travel time data per road path were the input
data received from CERTH/HIT - additional elaboration of the data took place for the
current work:

la. Travel time timeseries per examined road path in 15-min intervals for a long period
were extracted, interpolation took place for completing the timeseries where nec-
essary (10560 data points for A2017).

1b. Travel time timeseries of specific days in 15-min intervals (one typical — expected
traffic variations and one atypical, day with extreme weather conditions) were
elicited.

lc. Data aggregation for calculating average travel times per road path in 15-min
intervals took place developing the average travel time timeseries;

2. Timeseries features were also calculated for the average travel time timeseries (1c).

Finally, clustering applied and comparison among the resulting clusters based on
point data and on timeseries feature took place.

3.2 Hierarchical Clustering

Time series clustering remains a challenging issue partially attributed to its high sen-
sitivity to input data. In its generic notion, cluster analysis or clustering is the grouping
of objects that present similarities. The objects are placed into groups, based on specific
measures and similarity criteria according to the following principles:

e In each created group, the close observations resemble each other in the charac-
teristics examined

e The objects belonging in the same group differ significantly from those of the rest
groups.
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The ultimate scope of clusters analysis is to draw useful conclusions about the
timeseries while the efficiency of the methods used is related to the type and size of the
timeseries but also to the use of similarity criteria (ex-ante detailed definition of
research scope i.e. describing objects or describing relations?).

In the current paper, hierarchical clustering is applied given its principle advantage
of not requiring a priori knowledge of the number of clusters and its visualization
strength (dendograms generation) [23]. The agglomerative bottom-up clustering
approach is exploited — starting with each observation as a cluster, the two closest
clusters are joined into one while this repetitive process ends when there is only one
cluster with all the data [24]. For a more detailed description on the hierarchical
clustering, the interested reader is redirected to [25-27].

3.3 The Input Features for Clustering Trials

Following the distinction among ‘shape level’ and ‘structure level’ clustering of Wang
et al. (2006), the current paper presents a clustering of urban road paths (timeseries)
based on point values as well as on their structural characteristics. Structural charac-
teristics in the current analysis include distribution characteristics and underlying
relations: max, min, mean, skewness, kurtosis, autocorrelation (linear measure) and
mutual information (non linear measure) [28].

4 Results

4.1 Long Length Timeseries vs Timeseries of a Typical and an Atypical
Day

Aiming to identify similarities at the performance (travel time variations within the
day) of road paths under typical (averaged travel time data of a long period) network
operation and under non recurrent events and to explore whether abstract similar
patterns among road paths exist, hierarchical clustering applied at different scenarios:

i. Scen.Al: Raw travel time timeseries (x-axis: 15 min intervals) of a large period,
namely of one semester (weekdays) — 150 days, 96 values per day.
ii. Scen.A2: Raw travel time timeseries of a typical day (within the same semester, a
day with typical and expected traffic conditions) — one day, 96 values.
iii. Scen.A3: Raw travel time timeseries of an atypical day (within the same semester,
a day with extreme weather conditions) — one day, 96 values.

MATLAB software was used for applying clustering, dendrograms generation and
cophenetic correlation coefficient calculation. Among the similarities/distances tested
(Euclidean distance, squared Euclidean distance, single and centroid linkage), Eucli-
dean distance (y-axis) presented the highest correlation coefficient for all three sce-
narios (varying between 0.6 and 0.7). Figure 2 shows the results of the hierarchical
clustering procedure per scenario.

Running again the clustering methodology with average timeseries on weekdays of
A2017 the clusters are the same as in Al with slightly differentiated distances.



1112 G. Myrovali et al.

1100

1000 -

I—,__I= 1

6 10 1 5 3 7 9 8 2 4

i) Scenario Al

300

ii) Scenario A2 iii) Scenario A3

Fig. 2. Hierarchical clusters dendrograms per scenario Ax.

The dendrograms of scenarios 1 and 2 presents high similarity (branches) fact that
can be used as an indication that objects (road paths) similarity at a typical weekday is
high enough to high dimensionality clustering such as travel time timeseries of a large
period (approach incorporating the notion of averaging). The prior knowledge for the
reference paths under expected traffic state verifies the 3 obvious clusters created;
Cluster 1 consists of paths 190 and 194 that are paths of same length, consisting part of
a greater axis crossing the city center (direction to the east) and from path 7 that has
similar length and operational characteristics (1 bus lane + 2 lanes, average daily flows
of similar levels) and serves the opposite direction, Cluster 2 consists also of the
opposite direction paths to 190 and 194, namely of 191 and 193 (direction to the West)
and 107 with direction to East, Cluster 3 consists of the last legs (with the opposite
direction) of the two large horizontal axis that are examined. Path 192 seems to dif-
ferentiate from the other paths, which is indeed expected (it serves also turnover trips
around the city center) — correlation analysis undertaken as an extension to the above
analysis, verifies also the above understanding and interpretation.
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From the other side, when clustering road paths using travel times based on raw
data of an atypical day (extreme weather conditions with severe congestion in the
whole city) the clusters derived are, as expected, totally different from these of the first
two scenarios. Distances are higher while also similarities change significantly; the
developed Clusters are difficult to be interpreted given also the breakdown that was
noticed the specific date in the city (snowcovered roads, widespread traffic jam).

4.2 Raw Data Clustering vs Clustering Based on Linear
and a Combination of Non-linear Timeseries Characteristics

Serving the second goal of the current work, namely to compare the clustering results
based on raw data and on features in time domain extracted from the raw datasets,
hierarchical clustering was conducted based on distribution related features — max, min,
mean, skewness, kurtosis — (linear measure of) autocorrelation and (non linear measure
of) mutual information of the timeseries. Figure 3 shows the results of the structural
characteristics based clustering (following a standardization procedure due to the
existence of big differentiations in the values - subtracting of the mean of the attribute
values and dividing by the standard deviation).

RERRE

i) Scenario B1 — without mutual information i) Scenario B2 — including mutual information

Fig. 3. Hierarchical clustering dendrograms based on structural characteristics.

The resulting clusters in the two scenarios B1 and B2 are differentiated in a some
degree; distances among road paths and positioning among clusters are not exactly the
same which shows a relevant impact of taking into consideration also non linear
features while conducting clustering of objects belonging to a dynamic system.
Although the clusters do not differ to such a large degree, the morphology of the B2
dendrogram seems more clear — it is however an indication which should be further
investigated however given the fact that traffic is a dynamic phenomenon it is well
noted that including non linear features can enhance results interpretability.
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5 Conclusions and Discussion

Many studies have dealt with clustering traffic data variables, however in the frame-
work of the current work we focused on exploring the efficiency of dimensionality
reduction of large datasets rather than selecting the most efficient clustering algorithm.
In line with previous research results [26-29], the current paper showed that using
dimensionality reduction methods can provide high accuracy clustering results with a
very low computational cost; road paths clustering based on long length travel time
timeseries is similarly enough with the clustering based on average travel time time-
series (averaging the 110 weekdays of A2017). Furthermore, the results of the clus-
tering of average travel time timeseries of A2017 do not differ much from the clustering
of road paths in a typical weekday. From the other side and as expected, the road paths
clustering is totally different under unusual circumstances (a day with extreme weather
conditions). Correlation and causality analysis [22] shows also the different underlying
relations between timeseries under different traffic states, therefore a two steps analysis
joining the results of correlation-causality and clustering is estimated to add in the
interpretability of outputs —clusters can be only a part of the total necessary input for a
decision support system. From the other side and when concept-based clustering, i.e.
relationships interpretation is the scope of the research, clustering can be based on
characteristics as distribution features (max, min & mean values, skewness, kurtosis)
and correlation information (autocorrelation and mutual information). This advantage
can be exploited not only when missing data in timeseries exist and when the length of
the timeseries is not the same but also when the underlying relations and not just the
shape of the timeseries is the scope of the clustering. And since we are talking for
dynamic systems, as urban road traffic, the authors strongly supports that when com-
bining non linear measures the results of the clustering present higher accuracy.
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