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Abstract. In order to spread asynchronous circuit design to a large
community of designers, High-Level Synthesis (HLS) is promising option
because it requires limited technical skills. Common HLS operations
quickly provide a synchronous RTL description, which is usually split
in two parts: a data-path and a control-path. In order to desynchro-
nize such a circuit, the desynchronization process is only applied to the
control-path, which is no more than a Finite State Machine (FSM). Our
approach helps designers for quickly designing data-driven circuits while
maintaining a reasonable cost, a similar area and a short time-to-market.
To demonstrate our technique, the HLS tool, Catapult HLS from Mentor
Graphics, has been used. Once the control-path has been extracted, the
corresponding FSM is simply analyzed and desynchronized. On the other
hand, the data-path is kept as it is. The resulting circuit is a bundled-data
circuit requiring a particularly low design effort. Some samples illustrate
the method and show its relevance in terms of area and performance.

Keywords: Event-driven circuits · Desynchronization · Low-power
circuits · High-level synthesis

1 Introduction

Asynchronous circuits are today considered as relevant alternatives to syn-
chronous design for many purposes. Indeed, unlike typical synchronous archi-
tectures, they have local synchronizations instead of a global synchronization
signal. This brings several advantages depending on the implementation tem-
plate: a reduced dynamic power consumption, robustness [2], low-voltage oper-
ations [9] or security. Despite all these favorable characteristics asynchronous
circuits are not today widely spread in the industry, probably due to the lack of
dedicated knowledge, know-how and EDA tools.

High-Level Synthesis (HLS) enables fast circuit design from a high-level
description. This description, usually written in a C-like language, is compiled
in order to synthesize a Register Transfer Level (RTL) description. The mostly
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used commercial HLS tools cover from ASIC to FPGA implementations, but only
generate classical synchronous circuits. For large circuits, this approach helps to
explore several architectures and meet the required performances in terms of
area, power and speed. Moreover, HLS demands few technical skills in hardware
design. Therefore, this approach is ideal for spreading asynchronous circuits in
the industry: it is an automated method, which implements asynchronous cir-
cuits without important changes in the standard design flow.

This paper proposes a new design method for synthesizing bundled-data cir-
cuits based on the use of most synchronous HLS tools. Our approach uses the
HLS tool, Catapult HLS from Mentor Graphics, that partitions the resulting
circuit into a data-path and a control-path. Then we only desynchronize the
control-path, which is replaced by a specific asynchronous Finite State Machine
(FSM). This leads to an asynchronous circuit synthesis requiring no specific
knowledge on bundled-data circuits while taking advantage of the asynchronous
logic features. Section 2 presents the bundled-data circuit principles and the
related works on the HLS. Section 3 describes the proposed desynchronization
method. Section 4 applies our method on a FIR Filter and a GCD calculator
and then compares the synchronous circuits generated from Catapult and their
asynchronous counterparts.

2 Related Works

2.1 Bundled-Data Circuits in a Nutshell

In this paper, we focus on a specific class of asynchronous circuits: the bundled-
data circuits. In the sequel, we give a brief overview of this class of circuits [17,18].

Bundled-data circuits look very similar to synchronous circuits but the clock
tree has been removed and replaced by a control circuit, whereas the data-path
is kept as it is (see Fig. 1). The control circuit is locally composed of distributed
controllers communicating with each others thanks to a 4-phase handshake pro-
tocol.

Fig. 1. Bundled-data circuit architecture.

The local timing assumptions in bundled-data circuits are between two con-
nected controllers. Indeed, as shown in Fig. 1, the data must be sampled by the
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registers of the next pipeline stage register once the data computation is com-
pleted. Therefore the delay of the control path TCTRL has to be longer than the
computation in the data-path TDATA in Fig. 1. Thus, it is necessary to add a
delay element on the request signal for covering the logical gate delays. In the
control path, the controllers are made with C-elements or Muller gates. Figure 2
shows its symbol and its truth table. This component allows the synchronization
between 2 signals.

Fig. 2. C-element truth table and symbol.

Late-Capture Protocol. There are many handshake protocols for bundled-
data circuits offering different advantages. Most of them activate the registers
when the request signal goes high. In order to meet the timing assumption
requirements, it is mandatory to have a delay element greater than the critical
logical path. In a 4-phase protocol, the cycle time is two times the delay because
the request rising edge is propagating through the delay but also its falling edge
during the return-to-zero phase. This leads to an important speed drop (2 times)
compared to the synchronous version.

In order to be more efficient, a protocol activating the registers on the request
falling edge is preferable such as the late-capture protocol [13]. Figure 3 shows
the late-capture waveform. The request signal rising and falling edges are propa-
gating through the delay before activating the registers. In this way, the delay is
half of the delay required for a protocol activating the registers on its rising edge.
This has two advantages: the speed is maintained as in synchronous circuits and
the delay power consumption is minimized.

Fig. 3. Handshaking signals with late-capture protocol.

Figure 4 presents the Signal Transition Graph (STG) [3] of the late-capture
protocol and its delay-insensitive implementation. This protocol decouples the
handshake protocol at the input and at the output of the controller to enhance
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the speed of the communication. Hence, the late-capture protocol waits for the
deactivation of the request Rin before activating the output request Rout.

Fig. 4. (a) STG of a late-capture protocol. (b) Late-capture controller implementation.

2.2 High-Level Synthesis

HLS tools usually compile a high-level circuit description with no architectural
nor timing information. This high-level description is synthesized into a RTL
code. In addition, HLS is able to perform architectural exploration to optimize
the design according to the design constraints. HLS is typically an attractive
way to quickly design synchronous circuits implementing algorithms [4]. In case
of asynchronous circuits, several tools already exist [16]. These tools use three
different synthesis strategies.

Syntax Directed Translation. This strategy uses a dedicated high-level hard-
ware description language (HDL) and map the code syntactic structures onto
hardware components. For instance, the synthesis tools TiDE [10] and Balsa [1]
translates the language syntax into handshake components. Circuit speed and
area depend a lot on the designer’s ability to write an optimized HDL code.

Pipelined Process Decomposition. HLS tools use intermediate representa-
tions of the algorithm to abstract and capture the function as independently
as possible from the syntax. Data-driven decomposition [20] and CASH com-
piler [19] respectively use dynamic and static single assignment forms. These
approaches are suitable for high-throughput applications as they generate highly
pipelined components. But they are ill-adapted to typical IoT applications, which
require low-power circuits and can afford low-speed.

Scheduling Based Flows. To enable optimization strategies, synchronous
HLS is decomposed in distinct yet interdependent steps [4]. The main technical
steps are allocation and scheduling, which can be done by different approaches
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depending on the design objectives. Most of the HLS tools use a control/data-
path decomposition style. This approach fits well the HLS decomposition because
the data-path results from the allocation, and the control-path from the schedul-
ing. Following this model asynchronous HLS raises two issues:

– The scheduling time is continuous for asynchronous circuits. Thus, the opti-
mal asynchronous scheduling may be different. An efficient algorithm is pro-
posed in [8] that solves this question for two optimization criteria.

– For implementing the asynchronous FSM, there are many proposed architec-
tures including locally-clocked [5,11] with optimized state coding, and one-hot
state coding [15] allowing direct mapping from the state graph.

To the best of our knowledge, only the BUDASYN [5] flow, which only targets
FPGA platforms, integrates a solution to both problems by implementing the
algorithm of [8]. The FSM is a centralized locally-clocked implementation of an
Extended Burst Mode (XBM) specification [21].

For asynchronous circuits, HLS tools help bridging the gap between circuit
designer skills and the specific asynchronous techniques. Our approach is also
based on a scheduling flow. However, the FSM is implemented thanks to intercon-
nected distributed controllers. Compared to centralized implementations, such
as locally-clocked FSMs, distributed AFSMs are likely less compact but offer a
better scalability, ease the place and route operations, and are more appropriated
for fine-grain pipelining.

This work is an improvement of the work presented in [12]. Moreover, our
method is applied on a commercial tool, which allows more design possibilities. It
relies on the synchronous tool Catapult from Mentor Graphics [7] for scheduling
and allocation. It provides support for a standard programming language (a sub-
set of ANSI C) and a wide set of possible transformations such as loop unrolling
and pipelining. Catapult generates a synchronous synthesizable RTL code of the
data-path and synchronous FSM. In order to generate an asynchronous control,
the synchronous FSM is simply desynchronized.

3 Desynchronization Method

The HLS tool Catapult from Mentor Graphics generates a synchronous circuit
divided in two parts: a control- and a data-path. This section presents the imple-
mented method for desynchronizing the circuit just by replacing its control-path
by its asynchronous counterpart. Therefore, the only modification of the data-
path is the renaming of the flip-flop clock signal.

3.1 Desynchronization Principle

Figure 5 shows how the control-path and the data-path are interconnected within
Catapult. The control-path activates multiplexers and enable signals on the flip-
flops in the data-path. Each state is one-hot encoded. A dedicated signal controls
the activated part of the data-path, represented by the signals CM in Fig. 5.
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Fig. 5. Circuit architecture generated from catapult.

The next state is chosen at each cycle thanks to the signals CS coming from the
combinational part of the data-path.

In a circuit generated with Catapult, the synchronization between the system
and the I/O is done thanks to a Synchronization Block (Sync Block in Fig. 5)
and its handshake signals inserted at the input and output of the data-path. If
the external environment does not activate the Synchronization Block, the Stall
Block freezes the whole circuit including the FSM thanks to the signal enable
in Fig. 5.

To desynchronize such a circuit, the FSM is replaced by an Asynchronous
Finite State Machine (AFSM). In order to generate an AFSM, the RTL descrip-
tion is parsed to extract the FSM states. Thanks to this AFSM representation,
a Petri Net modeling its behavior is generated. Then the Petri Net model is
used for validating that the AFSM has no deadlocks and its liveliness is formally
ensured. Once these verifications are done, an AFSM netlist is generated with
late-capture controllers. The data-path is kept as it is. The unique modification
removes the clock tree and substitutes the clock by the signals coming from
the AFSM. By only substituting the FSM by an AFSM and connecting it to
the data-path as presented in Fig. 6, the whole circuit behavior becomes asyn-
chronous. Thus, the registers are only activated when needed (depending on the
current AFSM state) while the computation results remain the same.

Fig. 6. Circuit architecture after the desynchronization.
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Notice that there are now two types of control signals driven by the AFSM.
The CM signals activate the combinational part and the CR signals directly
activate the registers (in replacement of the clock).

3.2 AFSM Architecture

Each AFSM state corresponds to a controller. When there are several successors
(respectively predecessor) a demultiplexer (respectively a multiplexer) compo-
nent is used. Only one controller is activated at one because this latter represents
a FSM state. Thus, the handshake protocol needs deactivating the previous con-
troller before activating the next one. This is also a reason for choosing the
late-capture protocol. The state activation begins with the request signal of the
protocol. As the combinational part processes the data during the whole state
duration, the signal CM is activated on the request rising edge as shown in Fig. 7.
According to our protocol, the data capture (represented by CR) is initiated with
the delayed request deactivation. Then the deactivation of CM comes with the
falling edge of the acknowledgement signal ack.

Fig. 7. State activation according to the handshake protocol.

Figure 8 shows an AFSM controller and its connection to the data-path. The
signal CR is connected after the delay on the request wire to ensure the local
timing assumptions. As the registers sample on a rising edge, an inverter is
added. Once the request is activated, the signal CM immediately launches the
computation. In this way, the local data-path has two times the delay duration
for computing the data. The reset of CM is done by an OR gate between the
request and acknowledgement. As shown on Fig. 6, the AFSM can be frozen by
the Stall Block, which also deactivates the whole data-path when no new data
are available on the Sync Block. For this purpose, a latch has been added after
each controller for disabling the request. Its clock pin is connected to the Stall
Block output to be in transparent mode during the circuit operation and in latch
mode when the circuit is idle.

In Fig. 8, the next states are chosen thanks to a demultiplexer and a selection
signal CS coming from the data-path. The design of a demultiplexer implement-
ing the late-capture protocol is given on Fig. 9a. Notice that the selection signal
is always valid when the request is deactivated. Therefore the selection coming
from the data-path is not yet arrived on the request rising edge, which is prop-
agated without control to the next branches. Thanks to a register, a delay and
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Fig. 8. Asynchronous FSM architecture.

a NAND gate, the request falling edge will only be transmitted to the selected
branch. The delay ensures that the selection signal arrives first at the NAND
input, so that the demultiplexer only activates one controller. A similar prop-
erty should also be guarantied by the multiplexer. The latter just propagates
the incoming request and acknowledges the adequate successor. Its implementa-
tion is given in Fig. 9b. Compared to the demultiplexer letting the request rising
edge propagating to the next branches, the combinational logic transmitting the
request to the next controller is not so obvious. Indeed, this functionality is
obtained thanks to the equation shown in Fig. 9b.

Fig. 9. (a) Demultiplexer architecture. (b) Multiplexer architecture.

The AFSM liveliness can be proven thanks to its Petri net model [14]. As only
one token, representing the current state, evolves in the Petri net, the multiplexer
and demultiplexer must generate only one token at their output. The deadlocks
can also checked. In order to guarantee their absence, note that it is required to
add a controller in each one-controller loop. This added controller will not be
associated to CM nor CR. This case only happens when a state loops on itself.
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4 Testcases: FIR Filter and GCD Calculator

In order to demonstrate our design flow, this section presents the desynchroniza-
tion flow applied to a Greatest Common Divisor (GCD) calculator and a Finite
Impulse Response (FIR) Filter. They are first generated with Catapult and then
desynchronized. The area and speed performances have been evaluated in the
FD-SOI 28 nm technology from STMicroelectronics.

4.1 GCD Calculator

The GCD calculator uses the Euclid’s algorithm (given in Fig. 10a) to compute
the GCD of two input numbers. The circuit FSM generated by HLS is shown
in Fig. 10b. State 1 recovers the input data, State 2 computes the data and State
3 sends the result. When desynchronizing, a Petri net of the FSM is constructed
to verify the liveliness and the absence of deadlocks. The self-loop on State 2
requires an additional controller to avoid deadlocks. Two GCD calculators have
been implemented: a 8-bit and a 64-bit. For both implementations, the control
path is exactly the same.

Fig. 10. (a) Source code of the GCD calculator. (b) GCD Calculator FSM.

4.2 FIR Filter

FIR Filters are very usual digital circuit. They process sampled data with filter
coefficients. Let xi the ith sample of the input signal and hi the ith coefficient of
the filter. The output sample yk is given by Eq. (1):

yk =
∑

i

xk−ihi (1)
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This equation has been implemented for a 8-bit filter written in C. We choose
a sequential architecture with one multiplier and one accumulator. This leads
to the architecture given in Fig. 11a. The samples (resp. coefficients) are stored
in DL (resp. ROM) and then computed by MULT/ACC. The generated circuit
by Catapult has a FSM with only two states (see Fig. 11b): a reset state 0 and
a computation state 1. During the desynchronization, the Petri net is extracted
as in the previous example and a controller is added to the self-loop on State 1.

Fig. 11. (a) FIR Filter Architecture. (b) FIR Filter FSM.

4.3 Results

All the three circuits have been synthesized thanks to Design Compiler from Syn-
opsys and validated with back-annotated logical simulations. The timing con-
straints are resolved thanks to the method described in [6] that takes advantage
on the synchronous static timing analysis to check the specific timing constraints
imposed by the asynchronous circuits. Thus, this allows us to use traditional
EDA tools to synthesize and validate our circuits. Their synchronous counter-
part have also been designed in order to compare them in terms of area and
speed. For the FIR filter, the input signal is a pulse. For the GCD calculator, a
random number generator generates the two input signals. The simulations use
sufficiently long stimuli in order to average the results.

Area. Figure 12 reports the area of the circuits presented above. The area of the
asynchronous circuits is a little bit larger than their synchronous counterparts.
Indeed an asynchronous control circuit replaces the FSM. The extra-area of the
AFSM results from a small increase of the FSM complexity. However, looking
at the whole circuit, it is important to notice that the clock tree has not been
implemented in the synchronous versions of the FIR and GCD circuits. The lack
of the clock tree will impact unfavorably the comparison for the asynchronous
circuits.
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Fig. 12. Areas of the circuits normalized by the synchronous circuits.

Figure 12 reveals that the higher area increase is obtained with the 8-bit
GCD calculator. The area is increased of 52% compared to its synchronous
counterpart but, in this case, the tiny data-path is quite simple compared to
the AFSM. Hence the area increase is huge. Changing the area ratio between
the data-path and the control-path gives a completely different view. For the
GCD, a 64-bit GCD only gives a 6% growth of the area. For the FIR filter, the
FSM is rather simple and the data-path is quite huge compared to the control
circuit. Therefore the area is only of 4% larger. As HLS is commonly used for
designing large signal processing circuits, the control-path remains usually small
compared to the data-path. Hence the area overhead will be negligible with most
of applications designed with Catapult.

Speed. The synchronous circuit speed is imposed by the critical path, while,
in asynchronous circuits, the speed results from an average of the stage speeds.
Therefore the asynchronous circuits are faster than their synchronous counter-
parts, as shown in Fig. 13.

Fig. 13. Normalized computation time of the circuits.

The asynchronous FIR filter is a little bit faster with a speed increase of 5%.
As the FSM remains in the same state during the computation (see Fig. 11b),
only one controller activates the registers. Hence, the delay of the control circuit
matches the circuit critical path. Therefore the speed of the two versions are
almost the same.

For both GCD, the critical path corresponds to the computation stage, which
is controlled by State 2 (State 2 is fed back on itself). Thus the performance
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strongly depends on the iteration number on State 2. For the 8-bit GCD, the
computation requires a few iterations, so that the circuit often communicates
with its environment activating the other states. Hence the performance enhance-
ment is huge and reaches 44% compared to its synchronous counterpart. For the
64-bit GCD, the computation iteration number is larger and the system spends
most of the time in State 2 where the critical path is. The speeds of the syn-
chronous and asynchronous circuits are very similar and we only notice a slight
speed increase of 3% for the asynchronous circuit.

5 Conclusion

For most of the designers, asynchronous design is challenging. Nevertheless, asyn-
chronous circuits provide interesting features making them attractive for many
applications. The proposed automated design flow takes advantage of the syn-
chronous HLS from Mentor Graphics, Catapult HLS, to achieve asynchronous
circuit design with very limited technical skills. This approach avoids learning
HDL and keeps the design framework unchanged. This method is an opportu-
nity for non-specialists to quickly design asynchronous circuits in a very standard
framework.

The synthesized asynchronous circuits present a little area overhead, which
has to be mitigated by the lack of the clock tree in the synchronous versions. The
results also show a slight speed increase. As the results are strongly correlated to
the FSM and data-path architectures, there is no doubt that a data-path mostly
computing outside its critical path will enhance the speed of the asynchronous
version. The worst case corresponds to the desynchronized circuits which only
activate their critical path (our FIR filter).

Asynchronous circuits are well-suited for processing non-uniformly sampled
signals and low-voltage applications thanks to their intrinsic robustness. Future
work will target the design flow enhancement and the power analysis of the
desynchronized circuits.
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