
Similarity Search with Tensor Core Units

Thomas D. Ahle1 and Francesco Silvestri2(B)

1 IT University and BARC, Copenhagen, Denmark
thdy@itu.dk

2 University of Padova, Padova, Italy
silvestri@dei.unipd.it

Abstract. Tensor Core Units (TCUs) are hardware accelerators devel-
oped for deep neural networks, which efficiently support the multipli-
cation of two dense

√
m × √

m matrices, where m is a given hardware
parameter. In this paper, we show that TCUs can speed up similar-
ity search problems as well. We propose algorithms for the Johnson-
Lindenstrauss dimensionality reduction and for similarity join that, by
leveraging TCUs, achieve a Ω(

√
m) speedup up with respect to tradi-

tional approaches.

Keywords: Similarity search · Tensor core units · Dimensionality
reduction · Similarity join · Locality sensitive hashing

1 Introduction

Several hardware accelerators have been introduced to speed up deep neural net-
work computations, such as Google’s Tensor Processing Units [13] and NVIDIA’s
Tensor Cores [16]. The most important feature of these accelerators is a hardware
circuit to efficiently compute a small and dense matrix multiplication between
two

√
m × √

m matrices, where m is a given hardware parameter. On mod-
ern chips m can be larger than 256 [13]. Matrix multiplication is indeed one
of the most frequent operations in machine learning, and specialized hardware
for supporting this operation can significantly reduce running times and energy
requirements [12]. We refer to these accelerators as Tensor Core Units (TCUs).

Recently, several studies have been investigating how to use TCUs in other
domains. For instance, TCUs have been used for scanning and prefix computa-
tions [10], linear algebra primitives like matrix multiplication and FFT [9,15],
and graph problems [9]. The key designing goal when developing TCU algo-
rithms is to decompose the problem into several small matrix multiplications of
size

√
m × √

m, which are then computed on the accelerator. Such algorithms
also imply fast external memory algorithms, though not the other way around,
since the matrix multiplication chip can be seen as a restricted cache [9].

This work was partially supported by UniPD SID18 grant, PRIN17 20174LF3T8,
MIUR “Departments of Excellence”.

c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 76–84, 2020.
https://doi.org/10.1007/978-3-030-60936-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60936-8_6&domain=pdf
http://orcid.org/0000-0001-9747-0479
http://orcid.org/0000-0002-9077-9921
https://doi.org/10.1007/978-3-030-60936-8_6

Similarity Search with Tensor Core Units 77

The goal of this paper is to show that TCUs can also speed up similarity
search problems. As case studies, we propose TCU algorithms for the Johnson-
Lindenstrauss dimensionality reduction and for similarity join. In both cases,
our results improve the performance by a factor

√
m with respect to state of the

art approaches without hardware accelerators.
We analyze our algorithms on the (m, τ)-TCU model, which is a computa-

tional model introduced in [9] and capturing the main hardware features of TCU
accelerators. In the (m, τ)-TCU model, it is possible to compute the matrix mul-
tiplication between two matrices of size

√
m × √

m in time τ , where m and τ
are given parameters. In a traditional machine, without accelerators, we have
τ = Θ(m3/2).1 In contrast, with TCUs, we have τ = O(m) (i.e., input size
complexity) or even sublinear time under some assumptions.

The Johnson-Lindenstrauss (JL) dimensionality transform reduces the
dimension of a vector x ∈ R

d to roughly k = ε−2 log(1/δ) while preserving
its norm up to a factor 1 ± ε with probability at least 1 − δ. It is an impor-
tant primitive in many learning algorithms, since it dramatically reduces the
number of trained variables, while preserving important characteristics of the
feature vectors, such as their pairwise inner products. The JL transform can be
represented as a multiplication of the input vector x ∈ R

d by a k × d matrix.
This naively takes time Ω(dk). In this paper we use recent breakthroughs in
dimensionality reduction techniques, combined with TCU’s to reduce the time
to O(dk/

√
m+d+k2 log3 d

k). This is significant, since TCUs typically cut a fac-
tor

√
m off matrix-matrix multiplication, but here we cut

√
m off matix-vector

multiplication! When
√

m ≥ k our dimensionality reduction takes time linear in
the input dimension. This improves upon even the famous “Fast Johnson Lin-
denstrauss” transform [6], which takes time Ω(d log d + k2+γ) for any γ > 0 [7],
or Ω(d log d

log m) with TCU optimized FFT [9].
The Similarity Join on two sets P and Q of n points each in R

d, asks us
to find all pairs (x, y) ∈ P × Q whose distance is below a given threshold r
(i.e., all near pairs). Similarity join occurs in numerous applications, such as
web deduplication and data cleaning. As such applications arise in large-scale
datasets, the problem of scaling up similarity join for different metric distances
is getting more important and more challenging. Exact similarity join cannot be
faster than brute force [4], but by leveraging Locality Sensitive Hashing (LSH),
we will develop a TCU approximate algorithm that, under some assumptions,
finds all pairs in expected time O((n√

m
)ρ(|P��rQ|d√

m
+ n)), where |P �	r Q| is the

number of near pairs. When τ = O(m), the TCU algorithm exhibits a Ω(
√

m)
speedup with respect to traditional approaches (even those based on LSH).

1 Fast matrix multiplication algorithms require O(mω/2) time with ω ∈ [2, 3], [8], but
they exhibit poor experimental performance than traditional Θ(m3/2) algorithms.

78 T. D. Ahle and F. Silvestri

2 Preliminaries

2.1 The TCU Model

(m, τ)-TCU model is a RAM model with an instruction to multiply two dense
matrices of size

√
m × √

m in time τ , where m and τ are given parameters
depending on the underline platform.2 It is reasonable to assume that τ = O(m),
that is matrix multiplication takes linear time: indeed, on TCUs, the cost of the
operation is upper bounded by the time for reading/writing the

√
m × √

m
matrices, while the cost of the m3/2 elementary products is negligible due to the
high level of parallelism inside TCU accelerators (e.g., systolic array). Moreover,
under some conditions on high bandwidth connections, we might have τ to be
even sublinear (e.g., O(

√
m)). We recall a result from [9] that will be used later:

Theorem 1. Let A and B be two matrices of size p × r and r × q with p, r, q ≥√
m, then there exists an algorithm for computing A ·B on a (m, τ)-TCU model

in time O(prqm−3/2τ).

2.2 Johnson-Lindenstrauss Dimensionality Reduction

We say a distribution over random matrices M ∈ R
k×d is a (ε, δ)-Johnson-

Lindenstrauss (JL) distribution, if we have Pr [|‖Mx‖2 − 1| ≤ ε] ≥ 1 − δ for
all unit vectors x ∈ R

d In this section we will note some definitions and lem-
mas related to building and combining random matrices in ways related to JL
distributions. The first property was introduced by Kane and Nelson [14]:

Definition 1 (JL-moment property). We say a distribution over random
matrices M ∈ R

k×d has the (ε, δ, p)-JL-moment property, when E[‖Mx‖22] = 1

and
(
E

[∣∣∣‖Mx‖22 − 1
∣∣∣
p])1/p

≤ εδ1/p for all x ∈ R
d, ‖x‖2 = 1.

A distribution with the (ε, δ, p)-JL-moment property is (ε, δ)-JL because of

Markov’s inequality: Pr [|‖Mx‖2 − 1| > ε] ≤ E
[∣∣∣‖Mx‖22 − 1

∣∣∣
p]

/ε ≤ δ.

An interesting property of the JL Moment Property is related to the tensor
product of matrices. The tensor (or Kronecker) product between two matrices
A ∈ R

m×n and B ∈ R
k×� is defined as below. In particular, if we take the tensor

product Ik ⊗ A, where Ik is the k × k identity matrix, we get a km × kn block
matrix with A on the diagonal:

A ⊗ B =

⎡
⎢⎣

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

⎤
⎥⎦ , Ik ⊗ A =

⎡
⎢⎢⎢⎢⎣

A 0 · · · 0

0 A
. . .

...
...

. 0
0 · · · 0 A

⎤
⎥⎥⎥⎥⎦

.

2 The model in [9] is slightly different, and we use here a simplified version for the
clarity of exposition.

Similarity Search with Tensor Core Units 79

The tensor product relates to the JL-moment property by the following sim-
ple lemma from [1]:

Lemma 1 (JL Tensor lemma). For any matrix, Q, with (ε, δ, p)-JL moment
property, Ik ⊗ Q has (ε, δ, p)-JL moment property.

By the simple property A ⊗ B = (I ⊗ B)(A ⊗ I) this lemma allows studying
the JL properties of general tensor products, as long as we can also handle matrix
products. The following generalization of the JL Moment Property will be key
to doing exactly that:

Definition 2 ((ε, δ)-Strong JL Moment Property). Let ε, δ ∈ [0, 1]. We say
a distribution over random matrices M ∈ R

m×d has the (ε, δ)-Strong JL Moment

Property, when E
[
‖Mx‖22

]
= 1 and

(
E

[∣∣∣‖Mx‖22 − 1
∣∣∣
p])1/p

≤ ε
e

√
p

log 1/δ , for all

x ∈ R
d, ‖x‖2 = 1 and all p such that 2 ≤ p ≤ log 1/δ.

Note that the (ε, δ)-Strong JL Moment Property implies the (ε, δ, log 1/δ)-JL
Moment Property, since then εδ1/p = ε/e. Similarly, having the (ε

√
2/e, δ, p)-JL-

moment property for all p ∈ [2, log 1/δ] implies the Strong JL Moment Property,
since δ1/p ≤ 1√

2e

√
p

log 1/δ .

The key workhorse is the following lemma by Ahle and Knudsen [2]. Note
that the original lemma required the (ε/(C0

√
k), δ)-Strong JL Moment Property,

but a quick scan of the proof shows that (ε/(C0

√
i), δ)-Strong suffices.

Lemma 2 (JL Product lemma). There exists a universal constant C0, such
that, for any constants ε, δ ∈ [0, 1] and positive integer k ∈ Z>0. If M (1) ∈
R

d2×d1 , . . . ,M (k) ∈ R
dk+1×dk are independent random matrices satisfying the

(ε/(C0

√
i), δ)-Strong JL Moment Property, then the matrix M = M (k) · . . . ·M (1)

has the (ε, δ)-Strong JL Moment Property.

Intuitively this says that combining k JL reductions, we don’t get an error of
εk, as we would expect from the triangle inequality, but only ε

√
k, as we would

expect from a random walk.

2.3 Locality Sensitive Hashing

Much of recent work on similarity search and join has focused on Locality Sen-
sitive Hashing: at a high level, similar points (i.e., with distance ≤ r) are more
likely to collide than far points (i.e., with distance ≥ cr for a given approximation
factor c). Formally, an LSH is an (r, cr, p1, p2)-sensitive hashing scheme:

Definition 3. Fix a distance function D : U × U → R. For positive reals
r, c, p1, p2, and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-sensitive
if for uniformly chosen h ∈ H and all x, y ∈ U:

– If D(x, y) ≤ r then Pr [h(x) = h(y)] ≥ p1;
– If D(x, y) ≥ cr then Pr [h(x) = h(y)] ≤ p2.

80 T. D. Ahle and F. Silvestri

We say that H is monotonic if Pr [h(x) = h(y)] is a non-increasing function of
the distance function D(x, y).

LSH schemes are characterized by the ρ = logp2
p1 value, with ρ ∈ [0, 1]: small

values of ρ denote LSHs that well separate near points from far points. Term c
is the approximation factor.

3 Dimensionality Reduction

We will describe a construction of a matrix M ∈ R
k×d which is (ε, δ)-JL as

described in the preliminaries, and for which there is an efficient algorithm for
computing the matrix vector product Mx on a TCU. We first give a general
lemma describing the construction, then show how it applies to TCUs:

Lemma 3. Let T (a, b, c) be the time for multiplying two matrices of size (a× b)
and (b × c). For a constant C > 0 and for any d, ε, δ > 0, there exists a matrix
M ∈ R

k×d, with k = 	Cε−2 log 1/δ
, such that |‖Mx‖2 − ‖x‖2| ≤ ε‖x‖2 for any
x ∈ R

d with probability 1−δ (i.e., M is (ε, δ)-JL). The multiplication Mx can be
computed in time

∑�
i=1 T (ik, ζik, ζ�−i) for any ζ > 1 and � such that ζ� = d/k.

Note that, depending on the speed of the rectangular matrix multiplication,
it might be beneficial to pick different values for ζ.

Proof. We define the JL transformation by the following matrix:

M = (Ir�
⊗ A�) · · · (Ir1 ⊗ A1) ∈ R

rmk�×r1c1 ,

where r1, . . . , r� is a sequence of positive integers, Ir is the r × r identity
matrix, and A1, . . . , A�−1 are independent ki × ci matrices, where Ai has the
(ε/(C0

√
i), δ)-Strong JL Moment Property (SJLMP). By Lemmas 1 and 2 we

get that the tail (Ir�−1 ⊗ A�−1) · · · (Ir1 ⊗ A1) ∈ R
rmk�×r1c1 has the (ε/

√
C0, δ)-

SJLMP. We further assume A� has the (ε/(
√

2C0), δ)-SJLMP. Again by
Lemmas 1 and 2 we get that M has the (ε, δ)-SJLMP, and thus M is a JL
reduction as wanted.

Next we prove the running time of the matrix-vector multiplication. The key
is to note that I ⊗ A is the “block identity matrix” with A copied along the
diagonal. The following figure should give some some intuition:

(Iri
⊗ Ai)x = ri

blocks

⎧
⎨
⎩

⎡
⎣

ki

{
Ai︸︷︷︸
ci

Ai

Ai

⎤
⎦ x � Ai

[
x1 . . . xri

]}
ci =

[
y1 . . . yri

]}
ki.

By splitting x into ri blocks, the multiplication (Iri
⊗ A)x corresponds to

reducing each block of x by identical JL matrices. Repeating this process for a
logarithmic number of steps, we get the complete dimensionality reduction.

To make sure the matrix sizes match up, we have

d = r1c1, r1k1 = r2c2, r2k2 = r3c3, . . . , r�−1k�−1 = r�c�, r�k� = k.

Similarity Search with Tensor Core Units 81

We will define k = 	Cε−2 log 1/δ
, ki<� = ik, k� = k, c1 = kζ, ci>1 = ζki−1,
ri = ζ�−i and � = log(d/k)

log ζ such that c1r1 = kζ� = d. The constant C depends on
the constant of the JL lemma we use for the individual Ai, but in general 10C2

0

will suffice, where C0 is the constant of Lemma 2.
Recall the assumption that rectangular multiplication takes time T (a, b, c),

and hence the ith step thus takes time T (ki, ci, ri). Adding it all up we get

�∑
i=1

T (ki, ci, ri) = T (k, ζk(� − 1), 1) +
�−1∑
i=1

T (ik, ζk max(1, i − 1), ζ�−i)

which is then upper bounded by
∑�

i=1 T (ik, ζik, ζ�−i). The claim follows.

By the above theorem and by using the matrix multiplication algorithm of
Theorem 1, we get the following theorem (see the full version [5] for the proof).

Theorem 2. For any d, ε, δ > 0, there exists a (ε, δ)-JL matrix M ∈ R
k×d such

that the product Mx can be computed in time O((dk + k2
√

m log3 d
k) τm−3/2),

on the (m, τ)-TCU model, assuming k ≥ √
m.

In particular for τ = O(m) it takes time O(dk/
√

m + k2 log3 d
k). If

√
m > k we

can “pad” the construction by increasing k to
√

m and simply throw away the
unneeded rows. The running time is then O(d + k2 log3 d

k). We observe that if
τ = O(m) and d dominates k2, then we get time O(dk/

√
m)), which improves a

factor
√

m over a standard application of the standard JL transform in the case
of dense vectors, and for m ≈ k this even improves upon the so-called “Fast JL
transform” [6].

Finally, we note the following extra properties of the construction:

1. In the case of sparse vectors, where many blocks of x are empty, we can skip
them in the computation.

2. The computation can be easily parallelized, with different blocks of x being
reduced on different machines. Our construction also implies a O(dk/

√
m)

upper bound in the external memory model.
3. Our construction improves upon the standard matrix-vector multiplication

for JL, even in the RAM model, by using the Coppersmith-Winograd method
for fast matrix multiplication. In particular we can do JL in time dkε + k2+ε

if matrix multiplication takes time n2+ε.
4. The construction works with any distribution of matrices that have the Strong

JL Moment Property. This means we can use random ±1 matrices or even
ε-Sparse JL matrices.

4 Similarity Join

We now study the similarity join problem: given two sets P and Q of n points
each in R

d and a distance function D : Rd → R+
0 , compute the set P �	r Q =

{(x, y) : x ∈ P, y ∈ Q,D(x, y) ≤ r}. We consider distance functions that can be

82 T. D. Ahle and F. Silvestri

computed with an inner product on a suitable transformation of the two points: a
distance function D is an ip-distance is there exist two functions f, g : Rd → R

d′

such that D(x, y) = f(x) · g(y) for each pair x, y ∈ R
d For the sake of simplicity,

we assume d′ = Θ(d). Notable examples of ip-distances are Hamming, squared
L2 distance, and cosine similarity: for Hamming, f(x) = (x0, 1 − x0, x1, 1 −
x1, . . . , xd−1, 1−xd−1) and g(x) = (1−y0, y0, 1−y1, y1 . . . , 1−yd−1, yd−1); for the
squared L2 distance, f(x) = (x2

0, 1,−2x0, x
2
1, 1,−2x1 . . . , x2

d−1, 1,−2xd−1) and
g(x) = (1, y2

0 , y0, 1, y2
1 , y1 . . . , 1,−y2

d−1, y2); for cosine similarity, f(x) = g(x) =
x/||x||2.

The simplest way to exploit TCUs is a brute force approach, where all pair
distances are computed. As ip-distance computations can be translated into
inner products, we can reduce the similarity join problem to a simple matrix
multiplication between two n × d′ matrices FP and GQ: FP and GQ are the
matrices representing, respectively, the sets {f(p),∀p ∈ P} and {g(q),∀q ∈ Q}.
By exploiting TCUs, we can compute P · QT in time O(dn2m−3/2τ).

A more efficient approach uses LSH for reducing the number of candidate
pairs for which we have to compute distances. The proposed algorithm finds all
P �	r Q pairs in expectation, but it can be easily modified to return all near
pairs with high probability by running O(log n) instances of the algorithm and
merging the results.

The standard LSH approach for similarity join (see e.g. [11,17]) partitions the
points in P ∪ Q into buckets using an (r, cr, p1, p2)-sensitive monotone LSH. A
brute force algorithm is then used for searching similar pairs within each bucket.
The procedure is repeated L times with independent LSHs to guarantee that all
near pairs are found. The LSH is usually set so that p2 = 1/n, which implies that
each point collides once (in expectation) with a point at distance larger than cr
(i.e., a far point), while L is set to Õ

(
p−1
1

)
= Õ

(
p−ρ
2

)
= Õ (nρ) to guarantee

that each near pair is found once (in expectation).
As for similarity join in the external memory model [17], we can improve the

performance in the TCU model by increasing the value of p2 (i.e., by allowing
for more collisions between far points), which implies that the number L of
repetitions decreases since L = p−1

1 = Õ
(
p−ρ
2

)
. We observe that a TCU unit

can multiply two matrices of size
√

m′ ×√
m′ in a TCU(m, τ) in τ time for each

m′ ≤ m, and we exploit this fact by increasing the number of collisions with far
points. We set p2 = m3/2/(τn): each point collides in expectation with at most
m3/2/τ far points, but the overhead due to the respective inner products do not
dominate the running time.

As an LSH is usually given as a black box H′ with fixed probability values
p′
1 and p′

2, we can get the desired probability p2 = m3/2/(τn) by concatenating
k = logp′

2
p2 hash functions. However, if k is not an integer, the rounding gives

L = O(nρp−1
1). A more efficient approach has been recently proposed in [3] that

uses Lhigh hash tables by concatenating 	k
 LSHs H′, and Llow hash tables by
concatenating �k� LSHs H′, and where L = Llow + Lhigh = O(nρp

−(1−ρ)
1). The

right values of Llow and Lhigh depend on the decimal part of k.
We have the following result (see the full version [5] for the proof).

Similarity Search with Tensor Core Units 83

Theorem 3. Given two sets P,Q ⊂ Rd of n points, with n, d ≥ √
m, a threshold

value r > 0, and an (r, c, p1, p2)-sensitive monotone LSH, then the set P �	r Q
for an ip-distance can be computed on a TCU(m, τ) in expected time:

O(pρ−1
1 (nτm−3/2)ρ

(|P �	r Q|τ
m3/2

+ n

)
+ τm−3/2|P �	cr Q|).

When τ = O(m), there are at least n
√

m near pairs, and the number of pairs
with distance in [r, cr] is at most linear with the number of near pairs (which
happens in several datasets [17]), the cost is O(pρ−1

1 (n/
√

m)ρ|P �	r Q|/√
m),

a factor at least
√

m faster than an LSH solution without TCU (e.g.,
O(pρ−1

1 nρ|P �	r Q|)).

5 Conclusion

In this paper, we have investigated from a theoretical point of view how to exploit
TCU accelerators for similarity search problems, showing a Ω(

√
m) improvement

over algorithms for traditional architectures. As future work, we plan to exper-
imentally evaluate our algorithms on common TCU accelerators, such as the
GPU Nvidia Tesla.

References

1. Ahle, T.D., et al.: Oblivious sketching of high-degree polynomial kernels. In: Pro-
ceedings of the 40th Symposium on Discrete Algorithms (SODA), pp. 141–160
(2020)

2. Ahle, T.D., Knudsen, J.B.: Almost optimal tensor sketch. arXiv preprint
arXiv:1909.01821 (2019)

3. Ahle, T.D.: On the problem of p−1
1 in locality-sensitive hashing. In: Proceedings of

the 13th International Conference on Similarity Search and Applications (SISAP)
(2020)

4. Ahle, T.D., Pagh, R., Razenshteyn, I., Silvestri, F.: On the complexity of inner
product similarity join. In: Proceedings of the 35th Symposium on Principles of
Database Systems (PODS), pp. 151–164 (2016)

5. Ahle, T.D., Silvestri, F.: Similarity search with tensor core units. arXiv preprint
arXiv:2006.12608 (2020)

6. Ailon, N., Chazelle, B.: Approximate nearest neighbors and the fast johnson-
lindenstrauss transform. In: Proceedings of the 38th Symposium on Theory of
computing (STOC), pp. 557–563 (2006)

7. Ailon, N., Liberty, E.: Fast dimension reduction using rademacher series on dual
BCH codes. Discr. Comput. Geom. 42(4), 615 (2009)

8. Alman, J.: Limits on the universal method for matrix multiplication. In: Pro-
ceedings of the 34th Computational Complexity Conference (CCC), vol. 137, pp.
12:1–12:24 (2019)

9. Chowdhury, R., Silvestri, F., Vella, F.: Brief announcement: a computational model
for tensor core units. In: Proceedings of the 32nd Symposium on Parallelism in
Algorithms and Architectures (SPAA) (2020)

http://arxiv.org/abs/1909.01821
http://arxiv.org/abs/2006.12608

84 T. D. Ahle and F. Silvestri

10. Dakkak, A., Li, C., Xiong, J., Gelado, I., Hwu, W.M.: Accelerating reduction and
scan using tensor core units. In: Proceedings of the International Conference on
Supercomputing (ICS) (2019)

11. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of VLDB’99, pp. 518–529 (1999)

12. Jouppi, N.P., Young, C., Patil, N., Patterson, D.A.: A domain-specific architecture
for deep neural networks. Commun. ACM 61(9), 50–59 (2018)

13. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
In: Proceedings of the 44th International Symposium on Computer Architecture
(ISCA), pp. 1–12 (2017)

14. Kane, D.M., Nelson, J.: Sparser Johnson-Lindenstrauss transforms. J. ACM
(JACM) 61(1), 1–23 (2014)

15. Lu, T., Chen, Y.F., Hechtman, B., Wang, T., Anderson, J.: Large-scale discrete
fourier transform on TPUs (2020)

16. Nvidia Tesla V100 GPU architecture. http://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

17. Pagh, R., Pham, N., Silvestri, F., Stöckel, M.: I/O-efficient similarity join. Algo-
rithmica 78(4), 1263–1283 (2017)

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

	Similarity Search with Tensor Core Units
	1 Introduction
	2 Preliminaries
	2.1 The TCU Model
	2.2 Johnson-Lindenstrauss Dimensionality Reduction
	2.3 Locality Sensitive Hashing

	3 Dimensionality Reduction
	4 Similarity Join
	5 Conclusion
	References

