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Abstract. Efficient indexing and retrieval in generic metric spaces often
translate into the search for approximate methods that can retrieve rele-
vant samples to a query performing the least amount of distance compu-
tations. To this end, when indexing and fulfilling queries, distances are
computed and stored only against a small set of reference points (also
referred to as pivots) and then adopted in geometrical rules to estimate
real distances and include or exclude elements from the result set. In
this paper, we propose to learn a regression model that estimates the
distance between a pair of metric objects starting from their distances
to a set of reference objects. We explore architectural hyper-parameters
and compare with the state-of-the-art geometrical method based on the
n-simplex projection. Preliminary results show that our model provides
a comparable or slightly degraded performance while being more efficient
and applicable to generic metric spaces.

Keywords: Distance estimation · Metric spaces · Regression · Deep
neural networks · Pivoted embeddings

1 Introduction

Thanks to the impetus given by recent developments in deep learning, machine
learning has gained unprecedented popularity and spread into unimaginable num-
ber domains of computing. Perhaps one of the most unexpected application
domains is that of index structures. In an exploratory research paper, Kraska et al.
[8] showed how machine learning models, including deep learning ones, can fully
or partially replace existing index structures, such as B-Tree or Bloom filters. This
work paved the way for a whole new area of research in index structure, termed
learned index. The core idea of learned indexes is to obtain a more compact index
representation or performance gains by learning from data distribution.

In particular, Kraska et al. show that an index can be seen as a model f
that predicts the position y of a record x, i.e. y = f(x). Seen with the eyes of
machine learning, this problem is known as a regression problem. Therefore, in
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this context a learned index is simply an ML model (such as linear regression
or a neural network) that replaces a B-Tree and predicts the position of query
key. In this work, we would like to generalize the concept of learned index by
providing a broader definition, in which the regression allows us to predict the
representation of metric objects in vector form from the knowledge of distances
from some anchors. This type of transformation of data is useful in the problems
of searching in large-scale metric spaces, where a compromise between accuracy
and speed of response to queries is often required. In large-scale scenarios, the
amount of distance computations between objects needed for an exact search
tends to saturate the available computational budget for obtaining reasonable
response times, considering also that in metric spaces, distance functions are
often expensive to compute.

The idea of reconstructing the distance between any pair of objects in a metric
space by exploiting distances with a group of reference objects was probably first
addressed in [9]. The authors proposed an embedding into another metric space
where it is possible to deduce upper and lower bounds on the actual distance
of any pair of objects. Connor et al. [4–6] observed that for a large class of
metric spaces, distances to a set of n pivots can be used to project the data
objects into a n-dimensional Euclidean space such that in the projected space
the Euclidean distance between any two points is an upper or lower bound of
the actual distance. They called this approach n-Simplex projection, and they
proved that it can be used in all the metric spaces meeting the n-point property
[2]. As also pointed out in [3], many common metric spaces meet the desired
property, like Cartesian spaces of any dimension with the Euclidean, cosine or
quadratic form distances, probability spaces with the Jenson-Shannon or the
Triangular distance, and more generally any Hilbert-embeddable space [2,10].
This approach has recently been used in an inverted index for approximate
research on the n-nearest neighbors to obtain an estimate of the real distances
of the objects present in the results of a query [12].

We intend to develop a similar approach to the n-simplex projection, however
instead of using a handcrafted deterministic algorithm, in this paper we test a
machine learning approach based on deep neural networks to probe their capa-
bilities in this context. The rest of the paper is structured as follows. Section 2
describes the general idea of method developed and the model used. Section 3
presents the dataset and experimental evaluation. Section 4 concludes.

2 Method

2.1 Model Definition

Let X a metric space with distance function d : X × X → R
+ and P = { pi ∈

X : i = 1 . . . N } a set of reference points (or pivots) in X . We define the pivoted
embedding e(x,P) of an object x ∈ X w.r.t P as an N -dimensional real-valued
vector where the i-th component is the distance between x and the i-th pivot, i.e.

e(x,P) = [ d(x, p1), . . . , d(x, pi), . . . , d(x, pN ) ] ∈ R
N . (1)
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We are interested in estimating the distance d(x, y) between a pair of objects
x, y ∈ X given their pivoted embeddings ex = e(x,P), ey = e(y,P) with respect
to a common set of reference objects P. We formulate this task as a regression
problem: we define a parametric model f that outputs the estimated distance
given the pivoted embeddings and optimize its parameters on a training set via
gradient descent. In addition to ex and ey, we include the distances between
pivots { d(pi, pj) : i = 1 . . . N, j = 1 . . . N, i < j } in the inputs of our model
as a real-valued vector p ∈ R

N(N−1)
2 is commonly computed once offline and

available. Formally,
d̃(x, y) = f(ex, ey,p; θ) , (2)

where d̃(x, y) indicates the estimate for d(x, y) of the model f having parameters
θ. Following common practice in metric learning, we define

f(ex, ey,p; θ) = |Φ(ex,p; θ) − Φ(ey,p; θ)|2 , (3)

where Φ(e,p; θ) is a neural network that takes as input a pivoted embed-
ding e and the distances between pivots p and outputs a real-valued vector
representation.

As the architecture of Φ(e,p; θ), we choose a two-branch fully-connected
residual network: e and p are independently processed by two MLPs with resid-
ual connections whose outputs are then merged by concatenation and followed
by one or more additional fully-connected layer. Each branch comprises multi-
ple residual blocks [7] having the structure reported in Fig. 1a. We explore and
evaluate architectural hyperparameters such as depth and branch merging point
in Sect. 3.

2.2 Model Training

We train our model with mini-batch gradient descent. Given a training set Xtr ⊂
X , to form a training batch we randomly draw N objects as pivots P and B
pairs of objects (xi, yi), i = 1 . . . B, xi, yi ∈ Xtr, and we adopt the original metric
distance d to obtain the inputs (the pivoted embedding of the objects exi

, eyi

and distances between pivots p) and the target (exact distances between objects
d(xi, yi)) of our model. We optimize the loss function

L =
1
B

B∑

i=1

SmoothL1 ( f(exi
, eyi

,p), d(xi, yi) ) , (4)

with

SmoothL1(a, b) =

{
1
2 (a − b)2, if |a − b| < 1
|a − b| − 1

2 , otherwise .
(5)

We choose the SmoothL1 function to avoid huge gradients in the early phase
of training that often lead to numerical instabilities. At each batch, we sample
new pivots and couples and repeat the procedure. We periodically evaluate our
model on a test set Xts by measuring the estimation error, and we adopt early
stopping when the test error stops decreasing.
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3 Experiments

3.1 Dataset

Throughout all experiments, we adopt a subset of the YFCC100M-HNfc6 deep
features dataset [1]—a dataset of 100M 4096-dimensional features extracted from
YFCC100M [11] images using the HybridCNN [13] deep convolutional pretrained
network and selecting the output of the fc6 layer. In the original space, features
are compared with the L2 distance, i.e. d = L2. We select the first 1M features
and divide them in training, validation and test sets with a 750K/150K/100K
split. As a metric of performance, we report the mean absolute error and the
mean absolute percentage error (MAPE) computed on the test set together with
their standard deviations.

3.2 Choice of the Φ Network

We perform experiments to evaluate two main architectural hyperparameters of
Φ—the depth of the network and the fusion strategy of the two branches. For the
former, we test a number of intermediate layers in {1, 2, 4}, while for the latter,
we test concatenation of the two branches at the input level (early fusion), at
half depth (mid fusion), and right before the final layer (late fusion). Figure 1
depicts the tested architectures for each parameter combination. We decided
not to apply any bottleneck layer to reduce the dimensionality of the input, thus
every layer keeps the dimensionality of its input except for the last projection.
We are aware this leads to prohibitive memory requirements as N increases, as
the dimensionality of p is O(N2), but in this preliminary phase, this reduces
the architectural search space and enables us to evaluate the model without
introducing performance caps. We train all models with SGD with momentum
0.9, learning rate of 0.05 (divided by 10 when the validation loss plateaus),
batch size 100 for 10K iterations, validating every 100 iterations. We adopt early
stopping by monitoring the MAPE on the validation set and selecting the model
reaching the minimum1. On our single-GPU configuration, we were able to test
all variations with N up to 128, as larger values are prohibitively expensive in
terms of GPU memory required for training (+10GB); we left the exploration
of larger values with reduced models to future work. Results in terms of MAPE
and MAE are reported in Table 1. We notice that on average, an early fusion
strategy is able to reach slightly better results with more performance gains with
deeper networks. On the other hand, deeper networks with other fusion strategy
suffer from numerical instabilities leading to divergence; we left to future work
the tuning of optimization hyperparameters that may alleviate this phenomenon.
Among shallower (and thus more efficient) ones, the model with late fusion and
depth = 1 shows good overall performance on all tested N values with respect
to other variants.

1 The code for reproducing our results is available at https://github.com/fabiocarrara/
pivoted-estimation.

https://github.com/fabiocarrara/pivoted-estimation
https://github.com/fabiocarrara/pivoted-estimation
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(a) Composition of a Residual Block. Output dimensionality is reported in brackets for
fully connected layers.
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(b) Architectural variations tested. The output dimensionality (K in Fig. (1a)) of each
layer is reported in brackets. C indicates concatenation.

Fig. 1. Explored architectures for Φ(e,p)
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Table 1. Performance of architectural variations of our model on YFCC100M-HNfc6
features test subset. Bold entries indicate the model reaching the best mean absolute
percentage error (MAPE) for each N . Dashes (-) indicate configurations that do not
converge.

N

arch 2 4 8 16 32 64 128

ea
rl
y 1 36.7±24.3 28.1±20.1 23.0±16.4 18.4±13.1 16.4±12.1 16.1±12.1 14.8±11.3

2 36.9±24.7 27.2±20.5 22.8±17.1 19.2±14.3 18.2±14.2 17.9±16.7 18.0±14.3

4 36.3±25.0 25.0±20.0 18.7±15.2 14.0±11.7 12.7±11.5 12.9±11.8 15.3±15.7

m
id 2 37.4±26.2 39.6±28.2 33.8±26.1 25.9±18.8 32.9±30.1 30.0±29.2 31.1±28.1

4 39.1±26.4 - - - - - -

la
te

1 37.1±24.9 27.0±19.9 21.3±15.8 17.4±12.4 15.6±11.4 13.6±10.3 12.9±9.9

2 35.6±24.7 25.7±21.9 48.8±46.1 88.9±70.9 - - -
4 56.3±36.3 - - - - - -

(a) Absolute Percentage Error (%, mean and standard deviation)

N

arch 2 4 8 16 32 64 128

ea
rl
y 1 0.46±0.30 0.35±0.25 0.29±0.20 0.23±0.16 0.21±0.15 0.20±0.15 0.19±0.14

2 0.46±0.31 0.34±0.25 0.29±0.21 0.24±0.18 0.23±0.18 0.23±0.21 0.23±0.18

4 0.46±0.31 0.32±0.25 0.23±0.19 0.18±0.15 0.16±0.14 0.16±0.15 0.19±0.19

m
id 2 0.47±0.33 0.50±0.36 0.43±0.33 0.33±0.24 0.42±0.39 0.38±0.37 0.39±0.35

4 0.49±0.33 - - - - - -

la
te

1 0.47±0.31 0.34±0.25 0.27±0.20 0.22±0.15 0.20±0.14 0.17±0.13 0.16±0.12

2 0.45±0.31 0.32±0.27 0.62±0.57 1.13±0.89 - - -
4 0.71±0.46 - - - - - -

(b) Absolute Error (mean and standard deviation)

3.3 Comparison with the State of the Art

We compare in Fig. 2 our models selected from Table 1 (the best for each N)
with the n-Simplex projection on the same dataset. The n-Simplex projection
provides geometrical upper (simplex-U) and lower (simplex-L) bounds for dis-
tance estimates in super-metric spaces given e and p. We also report the estima-
tion obtained by averaging the upper and lower bound (simplex-M) that usually
provides a finer estimate. A main drawback of this technique is the iterative
O(N3) simplex building procedure that needs to be executed for each value of p
we are willing to use. Our approach provides a comparable or slightly degraded
performance, but once trained, it can cope with different values of p without the
need of expensive procedures. Moreover, our approach can be applied to generic
metric spaces.



Learning Distance Estimators from Pivoted Embeddings of Metric Objects 367

(a) Mean Absolute Percentage Error

2 4 8 16 32 64 128

N

0%

20%

40%

60%

80%

100%

M
A
P
E

net (ours)
simplex-L
simplex-M
simplex-U

(b) Mean Absolute Error

2 4 8 16 32 64 128

N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
A
E

net (ours)
simplex-L
simplex-M
simplex-U

Fig. 2. Comparison with the state-of-the-art n-Simplex estimator: simplex suffixes -U,
-L, and -M indicate estimation using respectively the upper bound, lower bound, and
their mean.

4 Conclusion

We explored the use of neural regressors for estimating distances from pivoted
embedding in generic metric spaces. Preliminary experiments on deep-learned
image descriptors suggest that the proposed approach can be used in approxi-
mated regimes providing a performance comparable to exact geometrical bounds
while being more efficient. Moreover, our formulation is not limited to super-
metric spaces and can be applied seamlessly to different set of reference points—
properties that pave the way to advanced indexing structures including dynam-
ically chosen reference points sets. Future work comprises the development of
more compact architectures for higher dimensionalities and extended experi-
mentation on additional metric and retrieval datasets.
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