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Abstract. The TriGen algorithm is a general approach to transform
distance spaces in order to provide both exact and approximate sim-
ilarity search in metric and non-metric spaces. This paper focuses on
the reduction of intrinsic dimensionality using TriGen. Besides the well-
known intrinsic dimensionality based on distance distribution, we inspect
properties of triangles used in metric indexing (the triangularity) as well
as properties of quadrilaterals used in ptolemaic indexing (the ptolemaic-
ity). We also show how LAESA with triangle and ptolemaic filtering
behaves on several datasets with respect to the proposed indicators.

1 Introduction

The real-world datasets for similarity search often exhibit high intrinsic dimen-
sionality manifested by distance distribution with low variance and high
mean [5]. The reason could be the high complexity of the similarity model within
a given domain (lot of independent features), but often this is just a consequence
of automated feature extraction processes, e.g., the inference of deep features [6].
Intrinsically high-dimensional data cannot be used for efficient exact search but,
luckily, there have been developed many approximate methods [9] to tackle this
problem for the price of a lower retrieval precision. Some of these methods ele-
gantly avoid the direct problem of high intrinsic dimensionality by not indexing
actual distances, but just permutations of pivots [4,7]. These methods enabled
competitive application of similarity search in real-world domains where maxi-
mal retrieval precision is not as critical as the performance. However, we must
keep in mind these methods are limited in tuning the precision at runtime (from
query to query) as well as they are restricted to pivot-based indexing schemes.

The TriGen algorithm [11] was proposed as a universal method for fast exact
and approximate search in metric and non-metric spaces. So far, it was not
analyzed as a method for (intrinsic) dimensionality reduction. In this paper
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we empirically analyze this missing aspect. We also investigate the impact of
TriGen modifications on the potential of ptolemaic indexing [8] that achieves
better performance than metric indexing (though limited to ptolemaic metrics).

2 Background

When indexing data for fast similarity search, we face two fundamental concepts
– the data indexability and the indexing model.

2.1 Indexability

The indexability generally refers to an ability to search efficiently a dataset S ⊂ U

under a similarity model (U, d), regardless the indexing method used. The key
is the distribution of data or, specifically, in case of similarity search it is the
distribution of distances d(x, y) among data objects x, y ∈ S. The classic index-
ability indicator for a metric space model (U, d) is the intrinsic dimensionality
[5], defined as the ratio of squared mean and doubled variance of the distance
distribution; iDim(S, d) = μ2

2σ2 . The lower iDim, the better indexability.
Alternatively, the ball overlap factor (BOF) [11] describes the ability to par-

tition the dataset into non-overlapping ball-shaped regions. The BOF counts for
how many object pairs will constitute overlapping balls (each ball radius is the
distance to the ball center’s kth nearest neighbor).

2.2 TriGen Transformation

The TriGen algorithm [11] transforms the input distance space (U, d) by use of
triangle-generating or -violating modifiers and a dataset sample S

∗ ⊆ S ⊂ U into
a target space (U, f(d)). A modifier f : R → R+

0 must be an increasing function
with f(0) = 0 to preserve the ordering of distances1 and thus search results with
respect to sequential scan. The triangle-generating (concave) modifiers “inflate”
all the triangles in the space to become more equilateral; then the dataset is less
indexable as the intrinsic dimensionality increases. The triangle-violating (con-
vex) modifiers have the opposite effect – “squeezing” the triangles and lowering
the intrinsic dimensionality. The idea behind the triangle-violating modifiers is
that they lower the intrinsic dimensionality (more efficient search) for the price
of a retrieval error (some triangles break which shows in incorrect filtering by
querying). The indexability indicators, like the intrinsic dimensionality or BOF,
together with the T-error measuring the ratio of broken triangles, guide TriGen
to determine the right modifier.

Unlike other methods that map the source distance space into the Euclidean
space, the TriGen model is based solely on transformation of distances, hence
there is no need for an expensive and static embedding of metric objects into
vectors. In consequence, once a modifier is computed for a particular problem, its

1 Ranking of objects xi ∈ U based on d(q, xi) is the same as based on f(d(q, xi)).
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change (e.g., a precision guarantee) can be easily recomputed and the already
created index just updated (no change in descriptors). This allows to switch
between several TriGen modifiers at query time, providing thus flexible exact-
to-approximate search (e.g., the NM-tree [10]). Other TriGen follow-ups include
extensions to non-symmetric distances [3], and the genetic TriGen variants [1,2].

In this paper, we inspect the TriGen in the role of dimensionality reduction
method. In high-dimensional datasets (as measured by intrinsic dimensionality),
all of the non-trivial triangles tend to be almost-equilateral. Then application
of TriGen with triangle-violating modifiers could act as a lossless dimensionality
reduction method by squeezing the triangles without the violation of triangle
inequality (breaking the triangles by squeezing them too much). Our hypothesis
is, the higher the (intrinsic) dimensionality of data is, the more almost-equilateral
the triangles are, and so the more aggressive modifier could be applied while still
keeping the triangles unbroken. Simply said, we analyze the question if TriGen
could “cancel” the curse of dimensionality (to some extent) in similarity search.

2.3 Metric and Ptolemaic Indexing

The metric access methods (metric indexes) [5] use some construction of lower
bounds using the triangle inequality. In the simplest case of pivot tables (aka
LAESA), the three objects in the triangle are the query object q, a dataset
object x, and a pivot p (i.e., LB�(q, x) = |d(q, p) − d(p, x)|). If the triangle
is equilateral, LB�(q, x) = 0 and so the dataset object x cannot be filtered
by the lower bound. On the other hand, if the triangle is (squeezed to) a line
segment, the lower bound gets maximal (i.e., LB�(q, x, p) = d(q, x)) and so it
is “super-effective” for filtering.

Similarly, ptolemaic access methods (ptolemaic indexes) [8] use some con-
struction of lower bounds using the Ptolemy’s inequality that operates on quadri-
laterals (quadruplets, respectively). In the simplest (LAESA) case there are four
objects in the quadrilaterals: the query object q, a dataset object x, and two
pivots p1, p2, while a lower bound can be derived as

LBpt(q, x, p1, p2) =
|d(q, p1) · d(x, p2) − d(q, p2) · d(x, p1)|

d(p1, p2)
(1)

As the quadrilaterals are more complex than triangles, there is not a single
best or worst quadrilateral example for the lower bound construction. Also the
inflating and squeezing effect of TriGen modifiers is not clear in case of quadri-
laterals, and so for ptolemaic indexing.

3 Triangle and Quadrilateral Distribution

The intrinsic dimensionality, as an indexability indicator, considers only dis-
tances themselves but does not consider that some distance combinations cannot
be present in triangles at the same time, which is important for the filtering by
metric access methods. The BOF compensates this issue, but it cannot be easily



264 D. Bernhauer and T. Skopal

generalized for Ptolemaic inequality or non-metric cases. Therefore, we define the
triangularity to quantify the shape of triangle on a real-value scale from equi-
lateral triangle, through line segment to broken triangle. Similarly, we define
Ptolemaicity to quantify the shape of quadrilateral on a scale from tetrahedron,
through line segment to broken equilateral.

Hence, we need to aggregate three distances forming a triangle into one num-
ber, with extremes for equilateral triangles and line segments. We could adopt
the TriGen criteria (presented in [5]) used for determining the number of trian-
gles that do not satisfy the triangle inequality. The triangularity is defined for a
triangle a = d(x, y), b = d(y, z), c = d(x, z) by Eq. 2 – this ratio determines how
“equilateralish” (or “inflated”) a triangle is. The triangularity is 1 for equilateral
triangle, 1/2 means the triangle forms line segment (“squeezed”), and for values
below 1/2 the triangle is broken (does not satisfy the triangle inequality).

Triangularity(a, b, c) =
a + b

2c
, where a ≤ b ≤ c (2)

After TriGen preprocessing, we expect the distribution will be shifted to
line segments (“squeezed”) instead of almost-equilateral triangles. Knowledge of
this common property makes the triangularity a good indicator of datasets with
statistically high probability to exhibit bad indexability.

Moreover, we try TriGen for Ptolemaic indexing, though the TriGen mod-
ifiers were originally proposed for indexing using the lower bounds based on
triangle inequality and not the Ptolemy’s inequality (Eq. 3). We would like
to find out how the Ptolemy’s inequality holds in comparison with the tri-
angle inequality. We define ptolemaicity of a quadrilateral as Eq. 4, where
d(w, x)d(y, z), d(w, y)d(x, z) ≤ d(w, z)d(x, y). The greatest ptolemaicity value
is 1, which represents regular tetrahedron and results in bad indexability. ptole-
maicity 1/2 represents a line segment and for values below 1/2 the equilateral is
broken (does not satisfy Ptolemy’s inequality).

(∀w, x, y, z ∈ U) d(w, x)d(y, z) + d(w, y)d(x, z) ≥ d(w, z)d(x, y) (3)

Ptolemaicity(w, x, y, z) =
d(w, x)d(y, z) + d(w, y)d(x, z)

2d(w, z)d(x, y)
(4)

4 Analysis of High-Dimensional Data

We have analyzed several datasets and looked at the intrinsic dimensionality
and the retrieval efficiency (using the LAESA algorithm). Two low-dimensional
datasets are from SISAP datasets: the 20-dimensional NASA dataset, and the
112-dimensional Colors dataset. As high-dimensional datasets we used a sam-
ple of the 2048-dimensional AlexNet image (V3C1) dataset, and several artifi-
cial datasets of dimensionality 2 to 2048 (randomly generated vectors). For all
datasets we have used the Euclidean space, which is both metric and ptolemaic.
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Table 1. Datasets statistics (iDim, distance computations with metric LAESA).

Dataset (dim) without TriGen with TriGen (zero error)

iDim Dist. Comp. iDim Dist. Comp.

NASA (20) 5.184 ± 0.007 2.12% 4.593 ± 0.007 1.15%

Colors (112) 2.742 ± 0.003 2.63% 2.553 ± 0.003 2.08%

Random (128) 181.328 ± 0.304 100% 28.663 ± 0.022 95.78%

Random (2048) 1967.66 ± 184.295 100% 37.035 ± 0.175 99.3%

V3C1 (2048) 30 ± 0.050 86.65% 9.215 ± 0.012 45.39%

In Table 1 on the left, we present intrinsic dimensionality comparison and
efficiency improvement of the metric LAESA (with randomly chosen 50 piv-
ots) against sequential search. The iDim of Colors dataset is lower than iDim
NASA dataset, however, LAESA performs better on NASA. Note the embedding
dimensionality and iDim are dramatically different in case of V3C1 and Colors.
Figure 1 shows distance distribution histograms for all datasets.

In Fig. 2a (dashed), we present triangularity distribution. As we expected,
the distribution is shifted to the right side for high-dimensional datasets. This
is the main assumption for transforming metric space using the TriGen into a
more indexable one. Similarly, we have visualized the ptolemaicity distribution
in Fig. 2b (dashed), which displays the same properties.

Fig. 1. Distance distribution comparison

Both triangularity and ptolemaicity distributions are similar, which means
TriGen could be used for modification of Ptolemaic space, too. If the TriGen
transforms both spaces consistently then, based on figures, Ptolemy’s inequality
is violated earlier, because there is a higher number of line segments.
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Fig. 2. Distribution of triangularity or ptolemaicity in datasets before (dashed) and
after (solid) TriGen modifications.

Fig. 3. Dist. distribution before (dashed) and after (solid) TriGen modifications.

4.1 TriGen Modifications

In the first part of our experiment, we have configured TriGen to zero error
tolerance. The measured retrieval error (as defined in [11]) was also zero, hence,
we achieved faster and still exact search. Figure 3 shows the change of distance
distributions in datasets after TriGen modifications were made.

Table 1 on the right describes basic indicators after TriGen modifications, and
we observe that triangle-violating modifications reduced the intrinsic dimension-
ality. The retrieval efficiency improved for all datasets (for some only slightly,
but two times for NASA and V3C1). It indicates the presence of an inner struc-
ture beyond all conventional indicators, except for Random (2048) that is not
indexable for exact search. However, TriGen can still transform a seemingly not-
indexable dataset (V3C1, Random(128)) into partially indexable even for exact
search.
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Both triangularity (Fig. 2a) and ptolemaicity (Fig. 2b) distributions are flat-
ter and shifted to the left as we expected. The ptolemaicity distribution is flatter
than triangularity distribution, which means that Ptolemy’s inequality is more
prone to a violation when used with TriGen.

4.2 Comparison of Real Performance

The TriGen algorithm controls the ratio of triangles satisfying the triangle
inequality (so-called T-error tolerance) by a weight parameter that determines
the convexity/concavity of the modifier. In the previous experiments we set T-
error tolerance = 0 that (empirically) guarantees zero retrieval error. In Fig. 4a,
we can see the dependence of distance computations and retrieval error on the
weight (V3C1 dataset). We used just the triangle-violating (squeezing) modi-
fications where −10 weight is heavy squeezing and −0.1 weight is almost no
squeezing. We used LAESA with 50 randomly chosen pivots utilizing metric fil-
tering, ptolemaic filtering, or both, and compared it with the sequential search.

The important observation is the ptolemaic filtering2 has a similar pattern as
the metric filtering. The general difference is in the shift of the ptolemaic curves
to the right. The combination of triangle and ptolemaic filtering utilizes the
benefits of both approaches. Triangle filtering deals with retrieval error caused by
the Ptolemy’s inequality violation and the Ptolemy’s filtering deals with better
efficiency, because of its ability to create better lower bounds.

Fig. 4. Efficiency and retrieval error (LAESA with 50 pivots on V3C1 dataset).

Another point of view is presented in Fig. 4a, where pairs of efficiency and
retrieval error values from Fig. 4b are aggregated into single efficiency per error
value. So, we get rid of the TriGen weight parameter and only observe how
the real efficiency is dependent on real retrieval error, obtaining more readable
results than when depicted individually.
2 We used simple random selection of pivot pairs in ptolemaic filtering instead the

better but slower Balanced heuristic [8].
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4.3 Discussion

The intrinsic dimensionality is not always sufficient to predict the real efficiency
of an indexing algorithm. First, because of some inner structure that can hardly
be described by a single number. Second, the high number of low distances, trian-
gularities, or ptolemaicities does not imply better indexability. A good example
can be randomly generated vectors with one outlier, which will shift the whole
histogram to the left.

The TriGen can be used for both precise and approximate search. The combi-
nation of both filtering inequalities improves not only efficiency but also lowers
the retrieval error. There is a possibility in the future to try other kinds of
inequalities and their ability to scale with TriGen.

5 Conclusions

We have introduced structure-sensitive empirical measures for the analysis of
metric and Ptolemaic spaces and defined the triangularity and the ptolemaic-
ity as the quantifiers of triangle and quadrilateral shapes. Analysis of high-
dimensional data shows that it is possible to use TriGen as dimensionality reduc-
tion method that improves the efficiency of similarity search.

Although the TriGen was designed for transforming non-metric spaces into
metric ones, we have shown that the inverse application on high-dimensional
data is possible as well and efficient for both exact and approximate search.
Moreover, experiments indicate that TriGen could be used with different types
of filtering inequalities (like Ptolemy’s). The combination of several filtering
inequalities synergically deals with the advantages (better efficiency) and dis-
advantages (worse precision) of the individual methods.
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