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Abstract. In artificial intelligence, machine learning, and other areas
in which statistical estimation and modeling is common, distributions
are typically assumed to admit a representation in terms of a probability
density function (pdf). However, in many situations, such as mixture
modeling and subspace methods, the distributions in question are not
always describable in terms of a single pdf. In this paper, we present a
theoretical foundation for the modeling of density ratios in terms of the
local intrinsic dimensionality (LID) model, in a way that avoids the use
of traditional probability density functions. These formulations provide
greater flexibility when modeling data under the assumption of local
variation in intrinsic dimensionality, in that no explicit dependence on a
fixed-dimensional data representation is required.

1 Introduction

1.1 Probability Density and Dimensionality

Modelers in computer science disciplines such as artificial intelligence, machine
learning, and pattern recognition typically base their analyses on a distributional
view of their data sources, either in terms of parametric approaches involving
standard distributions, or through nonparametric approaches.

For applications in which the data is continuous in nature, and in the sup-
porting domains of continuous statistical modeling and probability theory, the
concept of probability density is ubiquitous. In continuous domains, the absolute
probability associated with any single event is typically zero, due to the infinite
number of possible outcomes. For this reason, theoreticians and practitioners
alike have been concerned with the relative likelihood of generation of one given
sample value compared to another, as taken over infinitesimally-small volumes
of positive probability measure that contain the values of interest. These density
values, when integrated over the domain, account for its full probability measure,
which is 1 by definition.

Not all distributions of interest admit a probability density function (pdf).
Perhaps the most famous and important example is that of mixture distributions
derived from a collection of random variables. Sampling from a mixture distri-
bution involves a two-stage process, in which a distribution is first selected from
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0
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(c) Unit cube

Fig. 1. Application of a 2-D pdf in uniform distributions in 1-D, 2-D, and 3-D domains.
A 2-D pdf expresses probability density as a ratio between probability mass and area.
Since the 1-D interval has area 0, and since the 3-D cube has infinite area, integration
of the 2-D pdf over the interval and the cube (in terms of the infinitesimal product
dy dx) would produce the values 0 and +∞, respectively.

the mixture according to some probability associated with it, and then a value is
generated from the selected distribution. Although each of the constituent dis-
tributions of the mixture can be associated with a probability density function,
in general the mixture distribution as a whole may not. As an illustrative exam-
ple, consider the situation in Fig. 1 in which with equal probability a sample can
be selected from one of three uniform distributions: over a 1-dimensional unit
interval, over a 2-dimensional unit square, or over a 3-dimensional unit cube.
Each of the three pdfs of the mixture, when integrated over its own domain
(interval, square, or cube), would return a value of 1. However, taking the 2-D
pdf of the square domain and integrating it over the 1-D interval domain would
produce a result of 0, whereas its integration over the 3-D cube would diverge to
+∞. Accordingly, it is not possible to devise a single probability density function
capable of representing this mixture distribution as a whole.

Standard techniques for the direct estimation of probability density (such
as multivariate kernel density estimation [35]) can be problematic when the
data dimensionality is assumed to be large and fixed. As the example in Fig. 1
shows, standard formulations of probability density as an integrand over the
distribution domain explicitly depend on the dimensionalities of the infinitesi-
mal volumes over which the integration is performed. In settings for which the
numbers of features is very large, data analysis models that rely on forms of
density estimation can exhibit bias in terms of the number of features that are
relevant to individual localities within the domain, and the degree of correla-
tion and other interactions among these features. Variations in the numbers of
relevant features from locality to locality within the domain, together with vast
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differences between the (local) relevant feature dimension and the total (global)
feature dimension, can greatly degrade the effectiveness of the distributional
model in data analysis applications.

1.2 Volume, Dimensionality, and Similarity

Although direct estimation of probability density can be problematic, data anal-
ysis that relies on a comparison between two probability densities can (explicitly
or implicitly) benefit from modeling in terms of their ratios. In recent years,
density ratio estimation has been well-studied as an important area in its own
right [34], and has been widely adopted throughout AI and machine learning.
In addition to being used to compare the relative concentration of data between
two locations within a common distribution, it has also served as the foundation
of popular measures of the similarity between two data distributions on com-
patible domains, such as the Kullback-Leibler (KL) divergence [27] and other
f -divergences [28]. Although direct estimation of ratios has been shown to be
inherently biased for small sample sizes [9,33], division of one probability den-
sity by another has the advantage of producing a unitless quantity independent
of local dimensional assumptions. Nevertheless, it should be noted that KL-
divergence and other distributional similarity measures typically integrate these
ratios of probability density over the entire domain (of one of the two distri-
butions), thereby reintroducing fixed-dimensional infinitesimal volumes into the
data model.

The domains of continuous distributions are typically equipped with a sim-
ilarity (or dissimilarity) measure through which the interrelationships among
data are modeled and assessed. In many situations in machine learning/and
data mining, modelers and practitioners tend to view similarity-based density
estimation as an acceptable proxy for volume-based density estimation. How-
ever, in general this is not the case: volume tends to increase not linearly with
distance radius, but with that radius raised to the power of the data dimension.

In this paper, we explicitly acknowledge this disparity between radius and
volume by investigating the issue of density ratios from the perspective of the
recent Local Intrinsic Dimensionality (LID) [15,16] model. LID is a distributional
form of intrinsic dimensional modeling in which the volume of a ball of radius
r is taken to be the probability measure associated with its interior, denoted by
F (r). The function F can be regarded as the cumulative distribution function
(cdf) of an underlying distribution of distances.

Theoretical properties of LID in multivariate analysis have been studied
recently [17]. LID and related expansion-based measures of intrinsic dimensional-
ity [18] have also seen applications in such areas as similarity search [3,8,19–22],
dependency analysis [31], feature selection and ranking [4,13,23], outlier detec-
tion and its analysis [11,24,32], and deep learning [29,30]. Practical estimators
of LID have been developed based on interpoint distances within neighborhood
samples [1,2], which trace their roots to the estimation of the generalized pareto
distribution (GPD) shape parameter [14] developed within the statistical disci-
pline of extreme value theory (EVT).
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1.3 Overview

The goal of the paper is to introduce a theoretical foundation that can serve
for modeling density ratios in terms of LID, without recourse to the traditional
formulation of probability density. After first briefly surveying of the LID model
in the next section, in Sect. 3 we present several results relating the limits of
functions with properties appropriate to density ratio modeling: namely, the
functions are assumed to be smooth (continuously differentiable), positive, van-
ishing at zero, and of the form of a cdf of an induced distance distribution relative
to a reference location in a distribution of interest. In each theoretical statement,
the local intrinsic dimensionality is shown to influence the density ratio model
in a natural way. The paper is then concluded in Sect. 4.

2 Local Intrinsic Dimensionality

In this section, we give a brief overview of the extreme-value-theoretic LID model
of intrinsic dimensionality first introduced in [15]. For more information on the
model and its connections to the statistical theory of extreme values, please see
[10,16,17].

The LID model falls into the expansion family of intrinsic dimensional esti-
mation [18,26]. Like earlier expansion models, LID draws its motivation from
the relationship between volume and radius in an expanding ball around points
of interest. Unlike these models, the LID interprets volume as a function of the
same form as a univariate cumulative distribution function (cdf), representing
the probability measure F (r) captured by a ball of radius r. Although motivated
by applications involving the distribution of distance values, the model formu-
lation (as stated in [16]) generalizes this notion even further, to any smooth
real-valued function that is non-zero in the vicinity of r �= 0.

Definition 1 ([16]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. The intrinsic dimensionality of F at r is
defined as follows whenever the limit exists:

IntrDimF (r) � lim
ε→0

ln (F ((1+ε)r)/F (r))
ln ((1+ε)r/r)

= lim
ε→0

ln (F ((1+ε)r)/F (r))
ln(1+ε)

.

Under the same assumptions on F , when F can be interpreted as the cdf
of a distance distribution, the definition of LID can be regarded as equivalent
to a notion of indiscriminability. Intuitively, if an underlying distance measure
is indiscriminative at a given distance r, then expanding the distance by some
small factor should incur a relatively large increase in probability measure as
a proportion of the current value, F (r). Accordingly, the indiscriminability of
the distance variable is defined as the limit of the ratio of two quantities: the
proportional rate of increase of F (r), and the proportional rate of increase in r.
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Definition 2 ([16]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. The indiscriminability of F at r is defined
as follows whenever the limit exists:

InDiscrF (r) � lim
ε→0

[
F ((1+ε)r) − F (r)

F (r)

/
(1+ε)r − r

r

]
= lim

ε→0

F ((1+ε)r) − F (r)
ε · F (r)

.

When F satisfies certain smoothness conditions in the vicinity of r, its intrin-
sic dimensionality and indiscriminability have been shown to be identical:

Theorem 1 ([16]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. If F is continuously differentiable at r,
then

IDF (r) � r · F ′(r)
F (r)

= IntrDimF (r) = InDiscrF (r).

Let x be any reference location within a data domain S equipped with a
distance measure d. To any point y ∈ D we can associate the distance r =
d(x,y); in this way, any global data distribution over D induces a local distance
distribution with respect to x. Motivated by a need to characterize the local
intrinsic dimensionality in the vicinity of individual reference points, we are
interested in the limit of IDF (r) as the distance r tends to 0. For convenience,
for non-zero distances r we refer to IDF (r) as the indiscriminability of F at r,
and to ID∗

F � limr→0 IDF (r) as the local intrinsic dimension (or LID) of F.
In the ideal case where the data in the vicinity of x is distributed uniformly

within a submanifold in D, ID∗
F would equal the dimension of the submanifold;

however, in general these distributions are not ideal, the manifold model of data
does not perfectly apply, and ID∗

F is not necessarily an integer. Nevertheless,
the local intrinsic dimensionality would give an indication of the dimension of
the submanifold containing x that would best fit the data distribution in the
vicinity of x.

The indiscriminability function IDF can be seen to fully characterize its asso-
ciated function F .

Theorem 2 (LID Representation Theorem [16]). Let F : R → R be a
real-valued function, and assume that ID∗

F exists. Let x and w be values for
which x/w and F (x)/F (w) are both positive. If F is non-zero and continuously
differentiable everywhere in the interval [min{x,w},max{x,w}], then

F (x)
F (w)

=
( x

w

)ID∗
F · GF (x,w), where

GF (x,w) � exp
(∫ w

x

ID∗
F − IDF (t)

t
dt

)
,

whenever the integral exists.

In [16], conditions on x and w are provided for which the GF (x,w) can be seen
to tend to 1 as x,w → 0. The function GF (x,w) is related to the slowly-varying
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functions of long-standing interest within the EVT research community [10,25],
as it governs the rate of convergence of F to its ideal (asymptotic) form. Next,
we revisit this issue so as to prove statements useful for the analysis of limits of
density ratios, that do not explicitly rely on formulations involving GF .

3 LID-Aware Density Ratios

In this section, we present statements concerning the limits of ratios of two func-
tions, with properties that allow them to be applied to situations in which density
ratios are to be modeled. Instead of considering the ratio of pdfs over an infinites-
imal volume whose dimensions depend on knowledge of a full-dimensional coor-
dinate system (as in the usual sense of density ratio estimation), we instead
consider as the underlying volume spheres with infinitesimal radii. Local density
ratios can be then be described as ratio of two cdf functions of distance distri-
butions, each representing the probability measure captured by a sphere, whose
radii (the function arguments) both tend to zero in some fashion.

Although this work is motivated by an interest in modeling limits of density
ratios, the theoretical statements will be presented in a more generally applica-
ble way. Here, we assume only that the functions are smooth (continuously dif-
ferentiable), positive, and vanish at zero—all properties that are assumed, either
explicitly or implicitly, in traditional pdf-based density ratio estimation. For each
of the statements, we show how the existence of ratio limits relates to the underly-
ing local intrinsic dimensionalities of the two functions involved, in a natural way.

3.1 Limits of Ratios of Different Functions

Intuitively speaking, the first result to be presented shows that for a density
ratio limit to be greater than zero, the LID values of the numerator function
and denominator function must be the same—any difference in the LID values
would result in the limit either vanishing or diverging.

Lemma 1. Let α, β : R≥0 → R
≥0 be functions such that α(0) = β(0) = 0, and

for some value of r > 0, their restrictions to the interval (0, r) are continuously
differentiable and positive. Let us also assume that ID∗

α and ID∗
β both exist and

are positive. Further, let Δ = ID∗
β − ID∗

α, and let β0 be the function obtained by
decomposing β into β(u) = uΔ · β0(u). Consider the limits of ratios

λ � lim
u→0

β(u)
α(u)

and λ0 � lim
u→0

β0(u)
α(u)

.

If λ exists and is positive, then ID∗
α = ID∗

β. Alternatively, if λ0 exists and is
positive, then the following statements hold:

1. λ = 0 if and only if ID∗
α < ID∗

β (in which case Δ > 0);
2. λ > 0 if and only if ID∗

α = ID∗
β (in which case Δ = 0 and λ = λ0);

3. λ diverges to +∞ if and only if ID∗
α > ID∗

β (in which case Δ < 0).
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Proof. For the limit λ0 to exist, α(0) = 0 implies that β0(0) = 0 as well. Note also
that β0 must be continuously differentiable and positive over the full range (0, r).
L’Hôpital’s rule can therefore be applied together with Theorem 1, yielding

λ0 = lim
u→0

β0(u)
α(u)

= lim
u→0

β′
0(u)

α′(u)
= lim

u→0

IDβ0(u) · β0(u)
IDα(u) · α(u)

.

The right-hand limit can be separated to produce

λ0 = lim
u→0

β0(u)
α(u)

=
ID∗

β0

ID∗
α

lim
u→0

β0(u)
α(u)

=
ID∗

β0

ID∗
α

· λ0.

These equalities imply that whenever λ0 > 0, we have that ID∗
α = ID∗

β0
, and also

that ID∗
β = ID∗

β0
+Δ. Similar arguments also show that ID∗

α = ID∗
β whenever λ

exists and is positive.
The existence of limit λ0 has implications for the existence of λ, which can

be expressed as

λ = lim
u→0

β(u)
α(u)

= lim
u→0

uΔ · β0(u)
α(u)

= λ0 lim
u→0

uΔ.

Whenever λ0 exists and is positive, we have that λ behaves as the limit of uΔ

as u → 0, in that λ = 0 if and only if Δ > 0, and λ diverges to +∞ if and only
if Δ < 0. Otherwise, λ > 0 if and only if Δ = 0, in which case λ = λ0. ��

Lemma 1 tells us that in an asymptotic sense, density ratios are only meaning-
ful when the local intrinsic dimensionalities of the two functions are equal. This
accords well with what is already known of standard density ratios as defined
using probability densities. However, the LID model has a distinct advantage in
that it is implicitly defined for any locality that admits a ‘local’ distance distri-
bution, and that when modeling a ‘global’ distribution, no arbitrary universally-
fixed local intrinsic dimensionality need be imposed.

3.2 Parameterized Limits Involving a Single Function

Next, we turn our attention to the effect of applying a common function to the
numerator and denominator of an existing ratio. Equivalently, this situation can
be regarded as the effect on an existing ratio of two parameterized values of the
same function, as the common parameter tends to zero. Here, we state and prove
results showing that the LID Representation Theorem applies with simplified
conditions, in terms of the existence of a limit involving the parameterization
itself.

Lemma 2. Let F : R≥0 → [0, 1] be a non-decreasing function, and assume that
ID∗

F exists. Let α, β : R≥0 → R
≥0 be functions such that α(0) = β(0) = 0, and

for some value of r > 0, their restrictions to the interval [0, r) are continuously
differentiable and strictly monotonically increasing. For any constant c �= 0,

lim
u→0

(
β(u)
α(u)

)c

· GF (α(u), β(u)) = lim
u→0

(
β(u)
α(u)

)c

= λc (1)
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whenever the limit λ = limu→0
β(u)
α(u) exists and is positive. If instead c > 0 and

λ diverges to +∞, or if c < 0 and λ = 0, then the limits in Eq. 1 both diverge to
+∞. Otherwise, if c > 0 and λ = 0, or if c < 0 and λ diverges to +∞, then the
limits in Eq. 1 are both zero.

Proof. Since ID∗
F is assumed to exist, for any real value ε ∈ (0, r) there must

exist a value 0 < δ < ε < r such that t < δ implies that | IDF (t) − ID∗
F | < ε.

Therefore, when 0 < α(u) < δ and 0 < β(u) < δ,

ln GF (α(u), β(u)) =
∫ β(u)

α(u)

ID∗
F − IDF (t)

t
dt

|ln GF (α(u), β(u))| ≤ ε ·
∣∣∣∣∣
∫ β(u)

α(u)

1
t

dt

∣∣∣∣∣ = ε ·
∣∣∣∣ln β(u)

α(u)

∣∣∣∣ .

Exponentiating, and multiplying through by (β(u)/α(u))c, we obtain

(
β(u)
α(u)

)c−ε0

≤
(

β(u)
α(u)

)c

· GF (α(u), β(u)) ≤
(

β(u)
α(u)

)c+ε0

,

where ε0 = ε if β(u) ≥ α(u), and ε0 = −ε otherwise.
Let us assume that the limit λ = limu→0 β(u)/α(u) exists. If λ > 0, then

limu→0 (β(u)/α(u))c also exists, and equals λc. In this case, as ε and δ tend to
0, the monotonicity of α(u) and β(u) implies that u is driven to 0 as well. Thus,
we have that

lim
u→0

(
β(u)
α(u)

)c

· GF (α(u), β(u)) = λc = lim
u→0

(
β(u)
α(u)

)c

.

However, if λ = 0 or diverges to +∞, then similar arguments show that the
limits in Eq. 1 both diverge to +∞ (if c > 0 and λ diverges, or c < 0 and λ = 0)
or both converge to 0 (if c > 0 and λ = 0, or c < 0 and λ diverges). ��

Lemma 2 states conditions for which the LID representation function GF can
be ignored. Using the lemma leads to the following simplified restatement of the
LID Representation Theorem itself.

Theorem 3. Let F : R
≥0 → [0, 1] be a non-decreasing function, and assume

that ID∗
F exists and is positive. Let α, β : R

≥0 → R
≥0 be functions such that

α(0) = β(0) = 0, and for some value of r > 0, their restrictions to the interval
[0, r) are continuously differentiable and strictly monotonically increasing. Then

lim
u→0

F (β(u))
F (α(u))

= lim
u→0

(
β(u)
α(u)

)ID∗
F

= λID∗
F (2)

whenever the limit λ = limu→0
β(u)
α(u) exists. If instead λ diverges to +∞, then the

limits in Eq. 2 both diverge to +∞.
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Proof. Applying Theorem 2 to the first limit in Eq. 2 yields

lim
u→0

F (β(u))
F (α(u))

= lim
u→0

(
β(u)
α(u)

)ID∗
F

· GF (α(u), β(u)) .

The result then follows from Lemma 2, with c = ID∗
F . ��

3.3 Limits of Ratios of Inverse Functions

We next show the effect of taking the limit of ratios of the inverse of functions,
in terms of the original functions as well as their local intrinsic dimensionalities.
Here, we find that the limit of the ratio of the functions equals that of the ratio
of their inverses, raised to the power of the local intrinsic dimension of either
function.

When the original function limits are interpreted as the probability mea-
sure captured within neighborhoods whose radii tend to zero, the limits of their
inverse functions can be regarded as the radii associated with neighborhoods
whose captured probability measure tends to zero (as the neighborhoods shrink).
Assessing the limits of ratios involving inverse functions thus gives modelers
greater flexibility in designing estimators for density ratios.

Theorem 4. Let α, β : R≥0 → R
≥0 be functions such that α(0) = β(0) = 0, and

for some value of r > 0, their restrictions to the interval [0, r) are continuously
differentiable and strictly monotonically increasing. Let us also assume that ID∗

α

and ID∗
β both exist and are positive. If the limit ratio λ � limu→0

β(u)
α(u) exists,

then

λ = lim
p→0

(
α−1(p)
β−1(p)

)ID∗
α

= lim
p→0

(
α−1(p)
β−1(p)

)ID∗
β

. (3)

In addition, the limits in Eq. 3 diverge to +∞ whenever λ diverges to +∞.

Proof. Since α(0) = β(0) = 0, the strict monotonicity of α and β over the range
[0, r) imply that their inverse functions α−1(p) and β−1(p) both exist for all
p ∈ [0, s), where s � min{α(r), β(r)}). Moreover, the inverse function theorem
implies that α−1 and β−1 are themselves continuously differentiable over [0, s).

Consequently, using Theorem 3, the limit ratio λ can be expanded as follows:

λ = lim
u→0

β(u)
α(u)

= lim
u→0

α(α−1(β(u)))
α(β−1(β(u)))

= lim
p→0

(
α−1(p)
β−1(p)

)ID∗
α

= lim
p→0

(
α−1(p)
β−1(p)

)ID∗
β

,

after the substitution of p = β(u). Hence, Theorem 3 guarantees that all these
limits exist and equal λ if the limit λ exists; otherwise, if λ diverges to +∞, then
the limits all diverge. Note that the last equality holds due to Lemma 1, which
states that ID∗

α = ID∗
β for the case when λ > 0. ��



Local Intrinsic Dimensionality III: Density and Similarity 257

It is worth noting here that, as shown by Lemma 1, these limits are only pos-
itive when the LID values of the two original functions are identical; otherwise,
the limits either both vanish or both diverge.

4 Conclusion

In this paper, we presented theoretical statements that can serve as a founda-
tion for modeling density ratios in terms of local intrinsic dimensionality. These
formulations give greater flexibility when modeling data under the assumption
of local variation in intrinsic dimensionality, in that no explicit dependence on
a fixed-dimensional data representation is required. In particular, the result of
Theorem 4 on the existence and nature of the ratio of inverse functions allows
modelers to move flexibly and interchangeably between a distance-based model
of local probability density on the one hand, and a probability-based model of
neighborhood radius ratios on the other—all taking into proper account the
effect of local intrinsic dimensionality.

As mentioned earlier, distributional modeling of density ratios is already a
well-established strategy within the machine learning community [34]. The den-
sity ratio formulation considered in this paper can (in principle) be substituted
for conventional pdf-based density ratios in models involving smooth (continu-
ously differentiable) distributions—the ratio of pdfs thereby being replaced by
the limits of ratios of cdfs of distance distributions. In data mining and other
settings where the data is not explicitly modeled in terms of smooth distribu-
tions, the connection to LID-aware density ratios can still be made, albeit less
directly. A data set consisting of n points can be regarded as a sample drawn
from some unknown global distribution that, from any given point of interest x,
induces a distribution of distances. Letting F denote the cdf of the distribution
of distances to x, the expected number of data points lying within distance r of
x is simply n · F (r). If r is the radius of the k-nearest neighborhood of x, then
k/n can serve as a (crude) estimate of F (r). In this sense, within the underlying
continuous model, formulations involving k, n and r can be viewed as sample-
based estimators of formulations involving F and IDF . Continuous limit-based
and LID-aware forms such as those considered in this paper can consequently
be applied to yield explanations of asymptotic behavior, as the sample size n
tends to infinity. Moreover, an LID-aware asymptotic analysis could conceivably
suggest alternative heuristics with improved performance characteristics.

In the data mining setting of outlier detection [7], density ratio modeling
has already assumed a place of central importance. The classic (and still state-
of-the-art) LOF family of outlier detection methods [5] assess the outlierness
of a test data point through a ratio of densities, one at the test point, and
the other with respect to an aggregation of points in the vicinity of the test
point. LOF formulations essentially estimate density using neighborhood-based
criteria, in terms of the radii within which a predetermined number of points are
captured. However, for those settings where the dimensional characteristics are
assumed to vary from locality to locality, Theorem 4 implies that any use of the
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ratio of distances to estimate density ratios should also take the local intrinsic
dimensionality into account. The theoretical results of this paper underscore the
need for the development of LID-aware local outlier detection techniques; work
in this direction is already underway.

LID-aware density ratio modeling may also have useful applications in
density-based clustering [6] and other non-parametric unsupervised learning set-
tings that exploit similarity information. One such possibility involves the well-
known DBSCAN family of clustering methods [12], which relies on absolute den-
sity thresholding to determine clusters, where density is (typically) estimated in
terms of the numbers of points enclosed within neighborhoods of fixed radius.
Extension of the DBSCAN strategy to account for LID-aware density would
potentially allow for the formation of clusters whose densities are not necessar-
ily high in an absolute sense, but instead high relative to the density within
some background distribution. This has the advantage that locally-dense config-
urations of data points within sparse regions may still be discoverable as clusters,
even in the presence of other clusters in regions that are much more dense.

In the larger sense, with its unification of the notions of distance, probability,
and local dimensionality, LID-aware modeling presents an opportunity to rec-
oncile established heuristics in the area of data mining with the distributional
framework that serves as the foundation of machine learning and other areas
in AI. By breaking the dependence of models on a global dimension parameter,
it also offers better support in subspace-based modeling and other contexts in
which sparse-featured solutions are sought. The theoretical results presented in
this paper on LID-aware density ratios will hopefully encourage and support
further research in this direction.
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