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Preface

This volume contains the papers presented at the 13th International Conference on
Similarity Search and Applications (SISAP 2020), held during September 30 – October
2, 2020. The conference was planned to be hosted by the IT University of Copenhagen,
Denmark. Due to the COVID-19 pandemic and international travel restrictions around
the globe, however, SISAP 2020 had to be held as an online conference instead.

SISAP is an annual forum for researchers and application developers in the area of
similarity data management. It focuses on the technological problems shared by
numerous application domains, such as data mining, information retrieval, multimedia,
computer vision, pattern recognition, computational biology, geography, biometrics,
machine learning, and many others that make use of similarity search as a necessary
supporting service.

From its roots as a regional workshop in metric indexing, SISAP has expanded to
become the only international conference entirely devoted to the issues surrounding the
theory, design, analysis, practice, and application of content-based and feature-based
similarity search. The SISAP initiative has also created a repository (http://www.sisap.
org/) serving the similarity search community, for the exchange of examples of
real-world applications, source code for similarity indexes, and experimental testbeds
and benchmark data sets. In addition, SISAP 2020 featured the 2020 edition of the
SISAP Doctoral Symposium, for which a technical program was assembled, to give
PhD students an opportunity to present their research ideas in an international research
venue. The Doctoral Symposium indeed provided a forum that facilitated interactions
among PhD students and stimulates feedback from more experienced researchers.

The call for papers welcomed full research papers, short research papers, as well as
position and demonstration papers, with all manuscripts presenting previously
unpublished research contributions.

We received 50 submissions from authors based in 22 different countries. The
Program Committee (PC) was composed of 63 members from 26 countries. Each
submission received at least three reviews, and the papers and reviews were thoroughly
discussed by the chairs and PC members. Based on the reviews and discussions, the PC
chairs accepted 19 full papers and 12 short papers (including 2 demonstration papers
and 1 position paper), resulting in an acceptance rate of 38% for the full papers and
62% cumulative for full and short papers. After a separate review by the Doctoral
Symposium Program Committee members, two Doctoral Symposium papers, giving a
clear sample of emerging topics in similarity search and applications, were accepted for
presentation and included in the program and proceedings.

The proceedings of SISAP are published by Springer as a volume in the Lecture
Notes in Computer Science (LNCS) series. For SISAP 2020, as in previous years,
extended versions of selected excellent papers were invited for publication in a special
issue of the journal Information Systems. The conference also conferred a Best Paper

http://www.sisap.org/
http://www.sisap.org/


Award, a Best Student Paper Award, and a Best Doctoral Symposium Paper Award, as
judged by the PC co-chairs and the Steering Committee.

Besides the presentations of the accepted papers, the conference program featured
three keynote talks from outstanding scientists from industry and academia: Prof.
Marcel Worring from University of Amsterdam, The Netherlands, Divesh Srivastava
from AT&T Labs-Research, USA, and Ilya Razenshteyn from Microsoft Research,
USA.

We would like to thank all the authors who submitted papers to SISAP 2020. We
would also like to thank all members of the PC and the external reviewers for their
effort and contribution to the conference. We want to extend our gratitude to the
members of the Organizing Committee for the enormous amount of work they have
done, and our sponsors and supporters for their generosity. Finally, we thank all the
participants in the online event, who make up the thriving SISAP community.

September 2020 Shin’ichi Satoh
Lucia Vadicamo

Arthur Zimek
Fabio Carrara
Ilaria Bartolini

Martin Aumüller
Björn Þór Jónsson

Rasmus Pagh
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Interactive Exploration using Hypergraphs

Marcel Worring

University of Amsterdam, The Netherlands

Abstract. Interactive exploration of a multimedia collection, ranging from
search to browsing, requires various tasks to be supported by the system. Cat-
egorization, in which each item receives a membership score, provides a uni-
fying framework for many of these tasks that can now, with specialized efficient
high-dimensional indexing, interactively be performed even for very large
collections. It also provides a proper basis for the notoriously difficult task of
evaluating interactive exploration. Categorization is primarily based on the
learned features of the items in the collection, possibly implicitly supported by
metric learning. It does not explicitly capture the similarity or knowledge-based
relations among items in the collection. Hypergraphs generalize graphs by
having edges which can connect any number of nodes instead of just two. In
doing so they are effectively combining categories and similarity-based relations
in one model. Recent advances in graph-convolutional networks bring new
opportunities to learning using hypergraphs, predicting a hyperedge membership
score that captures both similarity among the elements as well as group mem-
bership. In this talk, we highlight progress made in hypergraph learning and how
it leads to new opportunities for interactive exploration of multimedia content.



Exploiting Similarity Relationships to Repair
Graphs

Divesh Srivastava

AT&T Labs-Research, USA

Abstract. Graphs are a flexible way to represent data in a variety of applica-
tions, with nodes representing domain-specific entities (e.g., records in entity
resolution, products categories in a taxonomy) and edges capturing a variety of
relationships between these entities (e.g., a linkage relationship between records
in entity resolution, a category-subcategory relationship between product cate-
gories in a taxonomy). Often, the edges in this graph are inferred based on
similarity relationships between nodes and are noisy, in that some edges are
missing (i.e., real-world relationships that do not have corresponding edges in
the graph) and some edges are spurious (i.e., edges in the graph that do not have
corresponding real-world relationships). Directly analyzing such graphs can lead
to undesirable outcomes, making it important to repair noisy graphs. In this talk,
we describe an approach that takes advantage of properties of real-world rela-
tionships and their estimated probabilities to ask oracle queries (an abstraction of
crowdsourcing) to efficiently repair the noisy graphs. We illustrate this approach
for the case of graphs that are unions of cliques (which is the case for entity
resolution) and graphs that are tree-structured (which is the case for tax-
onomies), and present theoretical and empirical results for these cases.



Scalable Nearest Neighbor Search for Optimal
Transport

Ilya Razenshteyn

Microsoft Research, USA

Abstract. The Optimal Transport (aka Wasserstein) distance is an increasingly
popular similarity measure for structured data domains, such as images or text
documents. This raises the necessity for fast nearest neighbor search with
respect to this distance, a problem that poses a substantial computational bot-
tleneck for various tasks on massive datasets. In this talk, I will discuss fast
tree-based approximation algorithms for searching nearest neighbors with
respect to the Wasserstein-1 distance. I will start with describing a standard
tree-based technique, known as QuadTree, which has been previously shown to
obtain good results. Then I’ll introduce a variant of this algorithm, called
FlowTree, and show that it achieves better accuracy, both in theory and in
practice. In particular, the accuracy of FlowTree is in line with previous
high-accuracy methods, while its running time is much faster. The talk is based
on a joint work with Arturs Backurs, Yihe Dong, Piotr Indyk, and Tal Wagner.
The paper1 and code2 is available.

1 https://arxiv.org/abs/1910.04126.
2 https://github.com/ilyaraz/ot_estimators.
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Accelerating Metric Filtering by
Improving Bounds on Estimated

Distances

Vladimir Mic(B) and Pavel Zezula

Masaryk University, Brno, Czech Republic
xmic@fi.muni.cz

Abstract. Filtering is a fundamental strategy of metric similarity
indexes to minimise the number of computed distances. Given a triple
of objects for which distances of two pairs are known, the lower and
upper bounds on the third distance can be set as the difference and the
sum of these two already known distances, due to the triangle inequality
rule of the metric space. For efficiency reasons, the tightness of bounds
is crucial, but as angles within triangles of distances can be arbitrary,
the worst case with zero and straight angles must also be considered for
correctness. However, in data of real-life applications, the distribution of
possible angles is skewed and extremes are very unlikely to occur. In this
paper, we enhance the existing definition of bounds on the unknown dis-
tance with information about possible angles within triangles. We show
that two lower bounds and one upper bound on each distance exist in
case of limited angles. We analyse their filtering power and confirm high
improvements of efficiency by experiments on several real-life datasets.

Keywords: Metric space · Similarity search · Triangle inequality ·
Metric filtering · Estimating unknown distance

1 Introduction

Metric spaces are often used to formalise a similarity of complex data objects
from various domains. Given a domain of objects D, a metric space is pair (D, d)
where d : D × D �→ R

+
0 is a distance function which quantifies the dissimilarity

of objects. This function must be non-negative, symmetric, and the distances
among three arbitrary objects from D must satisfy the triangle inequality. Metric
similarity searching has become popular due to its wide applicability, and many
metric indexes have been proposed [10,12]. We consider the query by example
paradigm: having a dataset X ⊆ D and an arbitrary query object q ∈ D, the
task is to efficiently find objects o ∈ X that are close to q according to d.

V. Mic and P. Zezula—This research was supported by ERDF “CyberSecurity, Cyber-
Crime and Critical Information Infrastructures Center of Excellence” (No. CZ.02.1.01/
0.0/0.0/16 019/0000822).

c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 3–17, 2020.
https://doi.org/10.1007/978-3-030-60936-8_1
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4 V. Mic and P. Zezula

The simplest type of a similarity query is the range query : for a threshold
r ≥ 0 and a query object q ∈ D, its solution is {o ∈ X| d(q, o) ≤ r}. Considering
an arbitrary reference object pi, called pivot, and assuming that distances d(o, pi)
and d(q, pi) are known, the triangle inequalities define the lower bound on d(q, o):

d(q, o) ≥ |d(o, pi) − d(q, pi)|. (1)

If the lower bound on distance d(q, o) given by an arbitrary pivot pi is greater
than radius r, o cannot be in the answer of the range query. Accessing o and
evaluation of d(q, o) can thus be avoided. By analogy, if the upper bound:

d(q, o) ≤ d(o, pi) + d(q, pi), (2)

given by triangle inequalities is smaller than r for an arbitrary pi, then o is guar-
anteed to be in the query answer, and the evaluation of d(q, o) can be skipped.

The triangle inequality rule enables to isometrically embed objects q, o, pi in
2D Euclidean space to form a triangle with sides d(q, o), d(o, pi), d(pi, q) [4]. We
further focus on angles in this triangle in the Euclidean space. Please notice that
findings in this article are valid for all metric spaces thanks to this embedding.

Bounds given by Eqs. 1 and 2 are tight, i.e., the equalities hold, if there are
two zero angles and one straight angle within the triangle q, o, pi with distances
d(q, o), d(pi, o), and d(pi, q). However, this is an unrealistic case in most of metric
spaces that describe the similarity of complex real-life data.

We analyse triangle inequalities under the assumption of limited angles in
triangles. We show that the limitation of angles can increase the lower bound
given by Eq. 1 even by 66%, and decrease the upper bound given by Eq. 2 by 40%
in real scenarios. Moreover, the third bound exists: the lower bound on a side
based on a sum of lengths of two other sides in a triangle. These improvements
have a dramatic impact on the filtering power of triangle inequalities.

Section 2 contains analysis to enhance triangle inequalities by angles limi-
tation. Section 3 illustrates what happens if the limitation of angles is wrong.
Section 4 defines, when are the newly proposed bounds correct. Section 5 pro-
vides instructions to set the angles limitation for similarity search. Section 6
presents experimental results and Sect. 7 concludes the paper.

2 Triangle Inequalities with Limited Angles

We define novel lower and upper bounds on distances in this section, which
are given by the triangle inequalities that assume the limited range of angles
within triangles of distances. Specifically, we consider an arbitrary metric space
(D, d) and three objects q, o, pi ∈ D. The triangle with sides a, b, c ∈ R

+
0 is given

by pairwise distances between these objects, and we assume that the distance
c = d(q, o) is unknown and the distances a and b are already evaluated. We
denote α, β, γ the angles in triangle �a, b, c that are opposite to respective
sides. Since we always focus on just one isolated triangle �a, b, c, we can assume1

1 The assumption is used just in the last sections of the article, starting from Sect. 4.
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Table 1. Notation used throughout this paper

(D, d) metric space: the domain of objects and the distance function

X ⊆ D the searched dataset

q ∈ D, r ∈ R
+
0 the query object and the radius of the query

a, b, c pairwise distances between arbitrary given objects from D,

c is the only unknown distance

α, β, γ angles in the triangle of distances that are opposite to sides
a, b, c

[Ωmin, Ωmax] range of the angles α, β, γ in the metric space, usually limited
more than to [0◦, 180◦] in practice

fsum(α, β), fdiff(α, β) functions of angles used in equations expressing c using the
sum and difference of a and b, respectively

CLB sum(Ωmin, Ωmax), minimum and maximum possible values of fsum(α, β) for

CUB sum(Ωmin, Ωmax) given values Ωmin and Ωmax

CLB diff(Ωmin, Ωmax), minimum and maximum possible values of fdiff(α, β) for

CUB diff(Ωmin, Ωmax) given values Ωmin and Ωmax

LBsum(a, b, Ωmin, Ωmax) the lower bound on c based on a sum of a and b, (Eq. 5)

LBdiff(a, b, Ωmin, Ωmax) the lower bound on c based on a difference of a and b, (Eq. 6)

UBsum(a, b, Ωmin, Ωmax) the upper bound on c based on a sum of a and b, (Eq. 8)

a ≤ b without a loss of generality for the application of the similarity search2.
The whole notation is summarised in Table 1.

Two following lemmas form the core of the paper as they allow to define the
bounds on c given by triangle inequalities that consider a limited range of angles
α, β, γ.

Lemma 1. For an arbitrary triangle with sides a, b, c and corresponding angles
α, β, γ holds:

c = (a + b) · 1 − cos γ

cos α + cos β

Proof. All cosines in the fraction can be substituted using the cosine rule to get:

(a+b)· 1 − cos γ

cos α + cos β
=

(a + b)(1 − a2+b2−c2

2ab
)

b2+c2−a2

2bc
+ a2+c2−b2

2ac

= c
−a3 + a2b + ab2 − b3 + ac2 + bc2

−a3 + a2b + ab2 − b3 + ac2 + bc2
= c

��

2 The swap of distances a and b is achieved by swapping the notation of objects q
and o. While this swaps lengths a and b, it preserves the distance c = d(q, o) as
distances d(q, o) and d(o, q) are symmetric.
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Lemma 2. For an arbitrary triangle with sides a, b, c and corresponding angles
α, β, γ holds:

c = |a − b| · 1 + cos γ

| cos α − cos β|

Proof. The numerator of the fraction is non-negative, and all cosines in the
fraction can be substituted using the cosine rule to get:

|a − b| · |1 + cos γ|
| cos α − cos β| =

|(a − b)(1 + a2+b2−c2

2ab
)|

| b2+c2−a2

2bc
− a2+c2−b2

2ac
| = c· |a

3 + a2b − ab2 − b3 − ac2 + bc2|
|a3 + a2b − ab2 − b3 − ac2 + bc2| = c

��

Lemma 1 expresses c using the sum of a and b and the function of α, β, γ. Notice
thus the similarity with Eq. 2. Lemma 2 expresses c using the difference of a and
b, similarly as Eq. 1, and another function of α, β and γ.

Real-life metric spaces contain triangles �a, b, c with angles α, β, γ from a
more narrow range than [0◦, 180◦]. Let us thus assume bounds Ωmin, Ωmax on
the angles such that ∀α, β, γ : Ωmin ≤ α, β, γ ≤ Ωmax. Please notice that bounds
Ωmin and Ωmax are meaningful if and only if 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦,
since α + β + γ = 180◦. The key feature of Lemmas 1 and 2 is that Ωmin and
Ωmax also limit the values of the fractions used in these lemmas. We further
denote and alter these fractions as:

fsum(α, β) =
1 − cos γ

cos α + cos β
=

1 − cos(180◦ − α − β)
cos α + cos β

=
1 + cos(α + β)
cos α + cos β

, (3)

fdiff(α, β) =
1 + cos γ

| cos α − cos β| =
1 + cos(180◦ − α − β)

| cos α − cos β| =
1 − cos(α + β)
| cos α − cos β| (4)

Intuitively, fsum(α, β) is a coefficient exploited to express c using the sum of a
and b, and fdiff(α, β) is utilised to express c using the difference of a and b.

We denote CLB sum(Ωmin, Ωmax) and CLB diff(Ωmin, Ωmax) the minimum pos-
sible values of fsum(α, β) and fdiff(α, β) that are defined for a range of angles
[Ωmin, Ωmax]. As the notation suggests, these minimum values define two lower
bounds on c, since:

c = (a + b) · fsum(α, β) ≥ (a + b) · CLB sum(Ωmin, Ωmax),

c = |a − b| · fdiff(α, β) ≥ |a − b| · CLB diff(Ωmin, Ωmax)

We denote these lower bounds as:

LBsum(a, b, Ωmin, Ωmax) = (a + b) · CLB sum(Ωmin, Ωmax), (5)
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Algorithm 1. Algorithm to evaluate value CLB sum(Ωmin, Ωmax)
Input: Ωmin, Ωmax � bounds on angles α, β, γ; 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦

Output: CLB sum(Ωmin, Ωmax) � coef. for the lower bound on c based on sum of a, b
if 180◦ − 2 · Ωmax ≥ Ωmin then � Can be two angles in a triangle equal to Ωmax?

α ← Ωmax

β ← Ωmax

γ ← 180◦ − α − β
else

α ← min(Ωmax, (180◦ − Ωmin)/2)
β ← α
γ ← max(Ωmin, 180◦ − 2 · α)

Substitute values α, β, γ in Eq. 3 to get value CLB sum(Ωmin, Ωmax)

Algorithm 2. Algorithm to evaluate value CLB diff(Ωmin, Ωmax)
Input: Ωmin, Ωmax � bounds on angles α, β, γ; 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦

Output: CLB diff(Ωmin, Ωmax) � coef. for the lower bound on c based on diff. of a, b
if 180◦ − Ωmax − Ωmin ≤ Ωmax then � Can be two angles in a tr. Ωmax and Ωmin?

α ← Ωmin

β ← min(Ωmax, 180◦ − 2 · Ωmin)
γ ← 180◦ − α − β

else
α ← max(Ωmin, 180◦ − 2 · Ωmax)
β ← 180◦ − α − Ωmax

γ ← Ωmax

Substitute values α, β, γ in Eq. 4 to get value CLB diff(Ωmin, Ωmax)

LBdiff(a, b, Ωmin, Ωmax) = |a − b| · CLB diff(Ωmin, Ωmax) (6)

Similarly, maximum possible values of fsum(α, β) and fdiff(α, β) for a range
[Ωmin, Ωmax], denoted as CUB sum(Ωmin, Ωmax) and CUB diff(Ωmin, Ωmax), define
two upper bounds on c, since:

c = (a + b) · fsum(α, β) ≤ (a + b) · CUB sum(Ωmin, Ωmax)

c = |a − b| · fdiff(α, β) ≤ |a − b| · CUB diff(Ωmin, Ωmax) (7)

and we denote just the first one as:

UBsum(a, b, Ωmin, Ωmax) = (a + b) · CUB sum(Ωmin, Ωmax) (8)

A derivation of value CUB diff(Ωmin, Ωmax) for given [Ωmin, Ωmax] is simple
as it is infinity for all meaningful ranges [Ωmin, Ωmax]. This is given by the
denominator in Eq. 4, which is zero for α = β. Equation 7 thus defines a trivial
upper bound on c: infinity, for all meaningful ranges [Ωmin, Ωmax].

A derivation of concrete values of CLB diff(Ωmin, Ωmax), CLB sum(Ωmin, Ωmax),
and CUB sum(Ωmin, Ωmax) is slightly complicated as angles α, β, γ are limited not
only by Ωmin and Ωmax, but also by equation α +β + γ = 180◦. For this reason,
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Algorithm 3. Algorithm to evaluate value CUB sum(Ωmin, Ωmax)
Input: Ωmin, Ωmax � bounds on angles α, β, γ; 0◦ ≤ Ωmin ≤ 60◦ ≤ Ωmax ≤ 180◦

Output: CUB sum(Ωmin, Ωmax) � coef. for the upper bound on c based on sum of a, b
if 180◦ − 2 · Ωmin ≤ Ωmax then � Can be two angles in a triangle equal to Ωmin?

α ← Ωmin

β ← Ωmin

γ ← 180◦ − 2 · Ωmin

else
α ← max(Ωmin, 180◦ − 2 · Ωmax)
β ← 180◦ − α − Ωmax

γ ← Ωmax

Substitute values α, β, γ in Eq. 3 to get value CUB sum(Ωmin, Ωmax)

Table 2. Examples of triangle inequalities for given ranges of angles Ωmin, Ωmax

[Ωmin, Ωmax] UBsum(a, b, Ωmin, Ωmax) LBdiff(a, b, Ωmin, Ωmax) LBsum(a, b, Ωmin, Ωmax)

[0◦, 180◦] c ≤ (a+ b) · 1 c ≥ |a − b| · 1 c ≥ (a+ b) · 0
[60◦, 60◦] c ≤ (a+ b) · 0.5 undefined c ≥ (a+ b) · 0.5
[20◦, 100◦] c ≤ (a+ b) · 0.815 c ≥ |a − b| · 1.347 c ≥ (a+ b) · 0.174
[20◦, 80◦] c ≤ (a+ b) · 0.742 c ≥ |a − b| · 1.532 c ≥ (a+ b) · 0.174
[25◦, 120◦] c ≤ (a+ b) · 0.869 c ≥ |a − b| · 1.294 c ≥ (a+ b) · 0.216
[25◦, 90◦] c ≤ (a+ b) · 0.752 c ≥ |a − b| · 1.570 c ≥ (a+ b) · 0.216
[30◦, 100◦] c ≤ (a+ b) · 0.778 c ≥ |a − b| · 1.580 c ≥ (a+ b) · 0.259
[30◦, 80◦] c ≤ (a+ b) · 0.684 c ≥ |a − b| · 1.938 c ≥ (a+ b) · 0.259
[0◦, 90◦] c ≤ (a+ b) · 1 c ≥ |a − b| · 1 c ≥ (a+ b) · 0

we immediately formulate Algorithms 1–3 that evaluate CLB diff(Ωmin, Ωmax),
CLB sum(Ωmin, Ωmax), and CUB sum(Ωmin, Ωmax) for given Ωmin and Ωmax.

Table 2 gives examples of newly derived lower and upper bounds on c for
selected ranges [Ωmin, Ωmax]. We choose these ranges to illustrate several fea-
tures:

– We limit the angles by trivial values [Ωmin, Ωmax] = [0◦, 180◦] in the first line,
and we get the pure triangle inequalities.

– The second line represents another extreme case: if all angles are 60◦, i.e. the
triangle �a, b, c is equilateral, bound LBdiff(a, b, Ωmin, Ωmax) is not defined3,
and bounds LBsum(a, b, Ωmin, Ωmax) and UBsum(a, b, Ωmin, Ωmax) are tight.
Together, they give the precise value c = 0.5 · (a + b).

– The lower bound LBsum(a, b, Ωmin, Ωmax) is zero, and thus ineffective in case
of trivially bounded angles [Ωmin, Ωmax] = [0◦, 180◦]. If the angles are more
limited, this bound can bring a new effective limitation on c.

– The last row of the table illustrates that the bounds are not improved beyond
pure triangle inequalities when preserving Ωmin = 0◦ and decreasing Ωmax

to 90◦.
3 In this case, LBdiff(a, b, Ωmin, Ωmax) = 0 · ∞, which is an indefinite expression.
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– The table confirms a contribution of angles limitation. For instance, if all
angles are guaranteed to be within range [30◦, 80◦], UBsum(a, b, Ωmin, Ωmax)
is decreased by 31.6% to 0.684 · (a+ b) and LBdiff(a, b, Ωmin, Ωmax) is almost
doubled to 1.938 · |a− b|, in comparison with unlimited angles. Moreover, the
lower bound LBsum(a, b, Ωmin, Ωmax) = 0.259 · (a + b) is established.

Table 3. Examples of angles α, β, γ that do not meet the limitation [Ωmin, Ωmax] =
[30◦, 80◦] and the consequences for the newly proposed bounds on c that assume this
angles limitation. The wrong assumption may, but does not have to lead to wrong
bounds on distances. Wrong coefficients and angles are in red.

1 2 3 Col. 4 Column 5 Col. 6 Column 7 Col. 8 Column 9

α β γ fsum(α, β) CUB sum(30◦, 80◦) fdiff(α, β) CLB diff(30
◦, 80◦) fsum(α, β) CLB sum(30◦, 80◦)

28 ◦ 75◦ 77◦ 0.679 0.684 1.963 1.938 0.679 0.259

75◦ 80◦ 25◦ 0.217 0.684 22.382 1.938 0.217 0.259

25◦ 78◦ 77◦ 0.696 0.684 1.754 1.938 0.696 0.259

Please notice that if the maximum permitted angle is e.g. 80◦, the sum of two
arbitrary angles in a triangle �a, b, c is at most 160◦, and thus all angles within
triangles are at least 20◦. A setting of Ωmin smaller than 20◦ for Ωmax = 80◦ thus
does not play a role as Ωmin is effectively at least 20◦ in this case. Similarly, if e.g.
Ωmin = 30◦, then Ωmax is effectively at most 120◦ as the sum of two smallest
angles in a triangle is at least 60◦. These features are taken into account by
Algorithms 1–3.

3 Impact of Wrong Angles Limitation [Ωmin, Ωmax]

Real-life metric space similarity models usually do not guarantee bounds on
angles Ωmin and Ωmax. In these cases, the angles limitation can be set exper-
imentally to be valid for a vast majority of all triangles within a given metric
space. Consequences of imprecise bounds [Ωmin, Ωmax] can be of various kinds,
as we illustrate by Table 3. Here, we assume limitation [Ωmin, Ωmax] = [30◦, 80◦],
and show three examples of angles α, β, γ within triangles such that they violate
the angles limitation.

Examples of the Upper Bound UBsum(a,b, Ωmin , Ωmax ): The fourth col-
umn of Table 3 contains values fsum(α, β) defined by Eq. 3 that are evaluated
for actual angles α, β, γ given in columns 1–3. In case of the first and sec-
ond row of the table, this value is smaller than the value CUB sum(30◦, 80◦)
which is provided by the fifth column of the table. Therefore, the upper bound
UBsum(a, b, Ωmin, Ωmax) is correct in case of these two rows despite wrong
bounds [Ωmin, Ωmax]. Specifically, in case of the first row holds:

c = 0.679 · (a + b) ≤ 0.684 · (a + b) = UBsum(a, b, Ωmin, Ωmax)
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and the case of the second row is analogous. In case of the last row, wrong bounds
[Ωmin, Ωmax] cause a wrong upper bound UBsum(a, b, Ωmin, Ωmax), since:

c = 0.696 · (a + b) > 0.684 · (a + b) = UBsum(a, b, Ωmin, Ωmax)

Wrong limitation of angles [Ωmin, Ωmax] in metric spaces thus can, and does not
have to lead to a wrong upper bound UBsum(a, b, Ωmin, Ωmax).

Examples of the Lower Bound LBdiff (a,b, Ωmin , Ωmax ): Column 6 of
Table 3 contains values fdiff(α, β) defined by Eq. 4 that are evaluated for actual
angles α, β, γ given in columns 1–3. In case of first two rows of the table, these
values are bigger than CLB diff(30◦, 80◦) which is presented in the seventh col-
umn. Therefore, the lower bound LBdiff(a, b, Ωmin, Ωmax) is correct in case of
corresponding triangles �a, b, c despite wrong bounds on angles [Ωmin, Ωmax].
Specifically, in case of the first row holds:

c = 1.963 · |a − b| ≥ 1.938 · |a − b| = LBdiff(a, b, Ωmin, Ωmax)

and the case of the second row is analogous. In case of the last row, wrong bounds
[Ωmin, Ωmax] imply a wrong lower bound LBdiff(a, b, Ωmin, Ωmax), since:

c = 1.754 · |a − b| < 1.938 · |a − b| = LBdiff(a, b, Ωmin, Ωmax)

Wrong limitation of angles [Ωmin, Ωmax] in metric spaces thus can, and does not
have to lead to a wrong lower bound LBdiff(a, b, Ωmin, Ωmax).

Examples of the Lower Bound LBsum(a,b, Ωmin , Ωmax ): Examples for
the lower bound LBsum(a, b, Ωmin, Ωmax) are provided in columns 8 and
9 of the Table 3. The same reasoning as in the case of lower bound
LBdiff(a, b, Ωmin, Ωmax) reveals that the lower bound LBsum(a, b, Ωmin, Ωmax)
is correct in case of the first and third row of the Table 3, and wrong in case of
the second row.

We have also proved that all new bounds on c: LBsum(a, b, Ωmin, Ωmax),
LBdiff(a, b, Ωmin, Ωmax) and UBsum(a, b, Ωmin, Ωmax) can be correct at the same
time even in case of a triangle that violates the assumption about the range
of angles [Ωmin, Ωmax] – example is given by the first row of Table 3. The key
question thus is, when are bounds correct, and when they are not.

4 When Are the Bounds on Distances Correct?

Table 2 proves that there exist different values Ωmin, Ωmax that imply the same
value CLB sum(Ωmin, Ωmax). This is also true for coefficients CLB sum(Ωmin, Ωmax)
and CUB sum(Ωmin, Ωmax). Identification of bounds Ωmin, Ωmax that imply a
fixed value of each of these coefficients will enable us to formally describe trian-
gles for which are the newly proposed bounds on c correct, and for which they
are not.
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Let us assume a given value of CLB diff(Ωmin, Ωmax). Since this is a minimal
value of fdiff(α, β), we can define values α and β that imply the given value of
fdiff(α, β) = CLB diff(Ωmin, Ωmax) by an analysis of Eq. 4:

α = 2 · arccos

(
CLB diff(Ωmin, Ωmax) · cos β + 1√CLB diff(Ωmin, Ωmax)2 + 2 · CLB diff(Ωmin, Ωmax) · cos β + 1

)
− β (9)

To facilitate an understanding of this equation, we introduce plots as is the one
in Fig. 1. It depicts the angles α and β on axes y and x, respectively. Angle
γ = 180◦ − α − β also exists, despite it is not explicitly shown in the plot. The
inequality α + β ≤ 180◦ limits the meaningful part of the plot, as well as the
assumption α ≤ β used without a loss of generality for the applications in the
similarity searching (see Sect. 2). These limitations are depicted by black lines
in the figure, so we consider just the triangular area below these lines in the
following.

Fig. 1. Functions describing α and β that imply fdiff(α, β) = CLB diff(30◦, 80◦);
fsum(α, β) = CLB sum(30◦, 80◦); and fsum(α, β) = CUB sum(30◦, 80◦). (Color figure
online)

Function given by Eq. 9 for value CLB diff(30◦, 80◦) is depicted by a blue
curve in the Fig. 1. It is easy to verify that points [α, β] below this curve imply
smaller values fdiff(α, β) than CLB diff(30◦, 80◦), and points above the curve
imply bigger value fdiff(α, β) than CLB diff(30◦, 80◦). Formally:

– if α is smaller than the right side of Eq. 9, then fdiff(α, β) is smaller than
CLB diff(Ωmin, Ωmax),

– if α is bigger than the right side of Eq. 9, then fdiff(α, β) is bigger than
CLB diff(Ωmin, Ωmax),

– if Eq. 9 holds, then fdiff(α, β) is equal to CLB diff(Ωmin, Ωmax).

Therefore, the lower bound LBdiff(a, b, Ωmin, Ωmax) is correct for all triangles
with α bigger or equal to the right side of Eq. 9, and wrong for the others. If α
equals to the right side of Eq. 9, then the lower bound is tight.

Similarly, we analyse Eq. 3 to reveal, when are the lower and upper bounds
on c based on a sum of a and b correct, tight, and wrong, respectively.
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The relation between angles α and β that imply a given value of fsum(α, β)
= CLB sum(Ωmin, Ωmax) is:

α = 2 · arccos

(
CLB sum(Ωmin, Ωmax) · sin β√CLB sum(Ωmin, Ωmax)2 − 2 · CLB sum(Ωmin, Ωmax) · cos β + 1

)
− β

(10)
This function is depicted by the orange curve for angles limitation [Ωmin, Ωmax] =
[30◦, 80◦] in Fig. 1, and its semantics is the following:

– If α is smaller or equal to the right side of Eq. 10, then the lower bound
LBsum(a, b, Ωmin, Ωmax) is correct,

– if α is bigger than the right side of Eq. 10, then this lower bound is wrong,
– if Eq. 10 holds, this lower bound is tight.

Finally, the relation between angles α and β that imply a given value of
fsum(α, β) = CUB sum(Ωmin, Ωmax) is4:

α = 2 · arccos

(
CUB sum(Ωmin, Ωmax) · sin β√CUB sum(Ωmin, Ωmax)2 − 2 · CUB sum(Ωmin, Ωmax) · cos β + 1

)
− β

(11)
and this function is depicted in Fig. 1 by the green curve for angles limitation
[Ωmin, Ωmax] = [30◦, 80◦]. The semantics of this equation is the following:

– If α is bigger or equal to the right side of Eq. 11, then the upper bound
UBsum(a, b, Ωmin, Ωmax) is correct,

– if α is smaller than the right side of Eq. 11, then this upper bound is wrong,
– if Eq. 11 holds, then this upper bound is tight.

Therefore, all three bounds on c are correct in case of triangles whose angles
α, β are depicted between colour curves in the plot like in Fig. 1.

5 Setting Bounds [Ωmin, Ωmax] for Similarity Search

Test Data. In the experiments that follow, we use three different high dimen-
sional datasets, comprising DeCAF, SIFT and MPEG7 image visual descriptors.

DeCAF descriptors [5] are extracted from the Profiset image collection5.
These descriptors derive from the Alexnet convolutional neural network [6], from
which data from the second-last fully connected layer (FC7) is extracted as a
4,096-dimensional array of floating-point values. It has been demonstrated that
Euclidean distance applied to the post-Relu [9] descriptors gives a good surrogate
for semantic similarity over the original images [5].

4 This equation is derived in the same way as Eq. 10, as CUB sum(Ωmin, Ωmax) is given
by the same function as CLB sum(Ωmin, Ωmax).

5 http://disa.fi.muni.cz/profiset/.

http://disa.fi.muni.cz/profiset/
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SIFT descriptors [7] serve us as another real-life example of descriptors of
images. Each descriptor comprises 128 floating point values. This dataset is
known as ANN SIFT1M dataset6.

MPEG7 visual descriptors [8] are provided by the CoPhIR data collection
[2]. Each of five sub-descriptors is accompanied with a suitable metric function,
and all five sub-descriptor spaces are combined into a single metric space (D, d)
by a weighted sum of particular distances [1]. In total, this representation can
be viewed as a 280-dimensional vector compared by non-Minkowski distance.

Selecting Angles [Ωmin , Ωmax ] for a Good Space Approximation. A simple
way to adjust the lower and upper bounds on c is to sample random triangles
of distances from the searched metric data and depict angles α, β in a plot like
is the one in Fig. 1. The limitation of angles [Ωmin, Ωmax] should be selected to
wrap the points by curves (the green, blue and orange) as tightly as possible.

(a) for random triangles (b) for triangles with nearest neighbours

Fig. 2. Angles limitation [Ωmin, Ωmax] for random triangles and those with NN (Color
figure online)

We are, however, interested in the application of newly proposed bounds
on c to speed-up the similarity search. We thus have to pay special attention to
triangles of distances �a, b, c where c is an extremely small distance considering
the data. These extreme cases form a significantly different distribution of angles
α, β, and moreover, they are not effectively sampled by random triangles.

Selecting Angles [Ωmin , Ωmax ] for a Similarity Search. We thus randomly
select 1000 objects q ∈ D and find their 100 nearest neighbours oNN from a
random sample of X of size 100,000 objects. We denote c = d(q, oNN) and for
each oNN select another 100 random pivots pi ∈ X to form a triangle �a, b, c
where a, b are distances d(q, pi), d(oNN, pi) and b ≥ a. Together, we have 10
million samples of angles α, β for each dataset.

We depict both angles distributions in Figs. 2a and b7. Specifically, purple
points (MPEG7) and black circles (100NN – MPEG7) depict angles in triangles

6 http://corpus-texmex.irisa.fr/.
7 We depict just non-overlapping points due to hardware limitations.

http://corpus-texmex.irisa.fr/
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sampled in random, and with focus on nearest neighbours, respectively. Distri-
butions are significantly different, and plots for the DeCAF and SIFT descriptors
confirm this as well, though not shown due to the limited paper length.

Figure 2a also depicts angles [α, β] that imply fsum(α, β) and fdiff(α, β) of
the same values as are given by CLB diff(16◦, 110◦), CLB sum(16◦, 110◦), and
CUB sum(16◦, 110◦). These curves, shown again in blue, orange and green, tightly
embrace angles from randomly sampled triangles (purple points).

Figure 2b illustrates that a distribution of angles [α, β] from triangles with
a near neighbour makes impossible to select bounds [Ωmin, Ωmax] such that all
three curves tightly embrace (the black) sampled points. This is caused by asym-
metric semantics of angles α, β, γ in these triangles. We experimentally veri-
fied that Ωmin cannot be bigger than 4◦ to set properly the orange curve (i.e.
coefficient CLB sum(Ωmin, Ωmax)). Consequently, this Ωmin implies the minimum
meaningful value of Ωmax = 88◦ due to equation α + β + γ = 180◦, and limita-
tion [Ωmin, Ωmax] = [4◦, 88◦] defines a very loose embrace of the sampled points
by the green and blue curve – compare distribution of black circles “100NN –
MPEG7” in Fig. 2b with the coloured curves.

(a) DeCAF

(b) SIFT (c) MPEG7

Fig. 3. Sampled angles with focus on the nearest neighbours, curves with adaptive
limitation [Ωmin, Ωmax] described in Table 4

Therefore, we propose to set bounds [Ωmin, Ωmax] independently for each
of the newly proposed bounds LBsum(a, b, Ωmin, Ωmax), LBdiff(a, b, Ωmin, Ωmax),
UBsum(a, b, Ωmin, Ωmax) on c to maximise their tightness. The formal approach
to select these values of [Ωmin, Ωmax] forms the future work. For now, we just
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identify [Ωmin, Ωmax] for all curves and datasets to tightly wrap angles [α, β]
sampled with a focus on nearest neighbours. These wrappings are illustrated in
Fig. 3, and the values [Ωmin, Ωmax] with corresponding bounds on c are provided
in Table 4.

6 Searching with New Bounds

We experimentally verify the contribution of proposed bounds on c to the similar-
ity search. We search for k = 10 and k = 100 closest objects (k nearest neighbours
– kNN ) to 1,000 randomly selected query objects q ∈ D in 1 million datasets,
and use a data filtering to speed-up the search. In particular, we select 256 pivots
pi ∈ D and pre-compute distances d(o, pi), o ∈ X for all pivots. When the query
object comes, we evaluate all distances d(q, pi), and then for each o ∈ X we eval-
uate the biggest lower bound on d(q, o) provided by an arbitrary pivot pi – it can
be either LBdiff(a, b, Ωmin, Ωmax) or LBsum(a, b, Ωmin, Ωmax). If it is bigger than
the distance r of the current kth nearest object to q, the evaluation of d(q, o) is
skipped. Otherwise, the lowest upper bound UBsum(a, b, Ωmin, Ωmax) provided
by pivots is computed, and if it is smaller than r, the evaluation of d(q, o) is
skipped and o is added to the query answer. Please notice that the order of the
verification of bounds matters, since they are sometimes in a contradiction.

Table 4. Selected angles limitation [Ωmin, Ωmax], and new bounds on c

CLB diff(Ωmin, Ωmax) CLB sum(Ωmin, Ωmax) CUB sum(Ωmin, Ωmax)

DeCAF dataset [28◦, 90◦] [8◦, 86◦] [30◦, 80◦]
c ≥ 1.664 · |b − a| c ≥ 0.070 · (b+ a) c ≤ 0.684 · (b+ a)

SIFT dataset [12◦, 84◦] [3◦, 88.5◦] [20◦, 85◦]
c ≥ 1.264 · |b − a| c ≥ 0.026 · (b+ a) c ≤ 0.762 · (b+ a)

MPEG7 dataset [8◦, 86◦] [4◦, 88◦] [40◦, 90◦]
c ≥ 1.162 · |b − a| c ≥ 0.035 · (b+ a) c ≤ 0.710 · (b+ a)

(a) 10NN (b) 100NN

Fig. 4. Real-life experiments: increase of saved distance computations out of 1M
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The proposed bounds on c do not provide any guarantees on their precision.
Nevertheless, 999 out of a thousand 10NN queries on each dataset are evaluated
with recall 1, i.e. all 10 true nearest neighbours are returned. Query answers
may contain more than k objects due to object involvements based on upper-
bounds8. But despite of this, the median answer on 10NN queries contains 10
objects in case of each examined dataset. Answers to 100NN queries contain all
100 true nearest neighbours in case of 955, 963 and 923 query objects in case of
the DeCAF, SIFT, and MPEG7 dataset, respectively. The biggest answers, 105
on median, are returned in case of the MPEG7 dataset.

Numbers of saved distance computations are presented in Fig. 4. Box-plots
describe the distribution of values over particular query objects. Dark-grey box-
plots form the baseline, i.e. the metric filtering with bounds given by Eqs. 1
and 2. Light-grey box-plots present results achieved by newly proposed bounds.
Median numbers of skipped distance computations increase from 0.4% to 11.8%
(DeCAF), from 59.4% to 75.2% (SIFT), and from 64.5% to 80.2% (MPEG7) in
case of 10NN queries. The results are coherent with 100NN queries.

7 Conclusions and Future Work

We analysed consequences of limited angles within triangles of distances in metric
spaces and their impact on the bounds on distances given by triangle inequalities.
We derived a new lower bound on a distance LBsum(a, b, Ωmin, Ωmax) which is
based on a sum of two opposite sides in a triangle. Our findings have a strong
impact on the filtering power of triangle inequalities, which we confirmed by
experiments with 3 real-life datasets. Moreover, the proposed enhancement of
the filtering is extremely precise, as only 3 out of three thousand 10NN queries
did not provide the query answer with the recall 1 in our experiments. The
proposed method can be immediately incorporated into metric-based indexes
to improve their efficiency, thanks to its simplicity and practically no overhead.
In the future work, we would like to clarify the relation of this work to convex
transforms of distance functions [3,11]. We also would like to develop algorithms
able to set angle limitations automatically. Also, an automatic setting of the
angle limitations for each pivot independently might increase the efficiency of
filtering even further. We plan to report such findings in our future publications.
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Abstract. This paper describes two locally-differential private algo-
rithms for releasing user vectors such that the Jaccard similarity between
these vectors can be efficiently estimated. The basic building block is the
well known MinHash method. To achieve a privacy-utility trade-off, Min-
Hash is extended in two ways using variants of Generalized Randomized
Response and the Laplace Mechanism. A theoretical analysis provides
bounds on the absolute error and experiments show the utility-privacy
trade-off on synthetic and real-world data. A full version of this paper is
available at http://arxiv.org/abs/2008.08134.

1 Introduction

Privacy of user data is becoming an ever increasing need for organizations and
users alike. Multiple large-scale privacy breaches in the last years showed how
critical and vulnerable most of today’s infrastructure is [8]. In particular, there
is dispute about the concept of a trusted data curator to whom users send their
original data, and who uses this data to build models for different tasks such as
targeted advertisement. As Kearns and Roth put it in their recent book about
ethical algorithms [10], “[to] make sure that the effect of these models respect
the societal norms that we want to maintain, we need to learn how to design
these goals directly into our algorithms.” In pursue of this goal, the present
paper studies how we can implicitly incorporate privacy into a similarity search
system.

The concept of differential privacy as introduced by Dwork et al. in [7] defines
privacy in a precise mathematical way that often allows the design of efficient
randomized algorithms. In the case of an untrusted data curator, the concept can
be extended to local differential privacy, where users themselves run randomized
algorithms to make their data private before sending it to an untrusted curator.

This paper proposes two randomized mechanisms when users have a collec-
tion of items and are interested in finding their similarity with other users under
the Jaccard similarity in a private manner. The proposed algorithms build upon
the papers [4,11,17] and a precise account of the relation will be given in the
related work section at the end of this paper. In a nutshell, each user starts by
applying MinHash as introduced by Broder [1] with the range compression of
Li and König [12] (Sect. 3.1) to produce a sketch of their data. It is well known
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that these sketches can be used to efficiently estimate the original Jaccard sim-
ilarity. Now, each user applies a local randomization to their sketch to satisfy
the notion of differential privacy as introduced in the next section. One random-
ization mechanism is based on the concept of randomized response (Sect. 4),
the other mechanism uses the concept of Laplacian noise (Sect. 5). We provide
probabilistic bounds on the estimation error of these mechanisms as Theorems 2
and 3. A running example of our setting and the mechanisms is provided in the
full version of this paper. The mechanisms will be evaluated in a real-world set-
ting in Sect. 6. There we will see that they allow for precise similarity estimations
if user vectors do not contain too few elements.

We hope that the proposed methods will help in building privacy-preserving
similarity search systems with good utility and precise privacy guarantees.

2 (Local) Differential Privacy

Differential privacy conveys a precise mathematically definition of privacy. It
says that a randomized algorithm is private if for two “neighboring” databases,
there must be a “good enough” probability that the algorithm produces the
same output. Here, a clean definition of neighboring is a key criterion and we will
introduce our notion in the next section. While differential privacy usually works
with a trusted data curator, the notion of local differential privacy describes the
setting in which the user apply the randomized algorithm themselves. Thus, the
curator never sees the original data.

Definition 1 (Sect. 12.1 [8]). Let ε, δ ≥ 0. Let A be a randomized algorithm
with output space R. A satisfies (ε, δ)-local differential privacy ((ε, δ)-LDP), if
and only if for any neighboring input x and y we have: ∀v ∈ R : Pr[A(x) = v] ≤
eε Pr[A(y) = v] + δ.

Note that A is run by each individual user.

3 Basic Setup

Let U be a collection of n users and I be a collection of m items. Each user
has a subset of the items. Formally, user u ∈ U is associated with a bit vector
xu = (X1, . . . , Xm) ∈ {0, 1}m, where Xi = 1 means that item i is present in the
user’s item set. From a practical point of view, such a representation is often
obtained from a real-valued vector (X ′

1, . . . , X
′
m) ∈ R

m by setting Xi = 1 iff
X ′

i ≥ t, for some chosen threshold t ∈ R.
This paper will focus on the similarity of user’s item sets with regard to

their Jaccard similarity. For two vectors x, y ∈ {0, 1}m, the Jaccard similarity
J(x, y) = |x ∩ y|/|x ∪ y| is the fraction of positions with a common one over the
number of positions with at least a one.

We want to release the matrix M = (xu)u∈U ∈ {0, 1}n×m in a locally dif-
ferential private way. This means that each user locally produces a differential
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private version x̂u of xu such that if two vectors xu and yu do not differ by much,
there is a good chance that they map to the same output. Sending all x̂u to an
untrusted curator, we obtain a matrix M̂ = (x̂u)u∈U that can be published. The
utility of this mapping M �→ M̂ is the ability to recover from any two vectors
x̂ and ŷ their original similarity J(x, y). Since the mapping introduced random
noise to preserve privacy, custom similarity estimation algorithms are required
to solve this task.

Neighboring Notion. Throughout this paper, we will often make the assump-
tion that each user vector has at least τ ≥ 1 items, i.e., at least τ bits are set.
We say that two vectors x and y in {0, 1}m are neighboring if they differ in at
most α positions. In this case, J(x, y) ≥ 1 − α/τ .

Basic Building Blocks of Differential Privacy. We review the Laplace
mechanism [8, Chap. 3.3] to produce differential privacy mechanisms in our
context. The �1-sensitivity Δ(f) of a function f : {0, 1}m → R

K is defined as
Δ(f) = max ‖f(x) − f(y)‖1, where the maximum is taken over all neighboring
bitstrings x, y. Given f(x) ∈ R

K and a privacy budget ε, the Laplace mechanism
returns the value f(x)+(Y1, . . . , YK), where each Yi is drawn independently from
the Laplace distribution with shape parameter Δ(f)/ε and mean 0.

Theorem 1 (Thm 3.6 [8]). The Laplace mechanism preserves (ε, 0)-LDP.

Another way of preserving (ε, 0)-LDP is via generalized randomized
response [16]. The variant used in this paper will be described in Lemma 2.

3.1 Jaccard Similarity Estimation via MinHash

MinHash. Our approach relies on the MinHash algorithm that was first
described by Broder in [1]. Choosing a MinHash function h : {0, 1}m → [m] :=
{1, . . . , m} amounts to choosing a random permutation π over [m]. The hash
value of x ∈ {0, 1}m is the position of the first 1 in x under π. MinHash has
the property that for any pair x, y ∈ {0, 1}m, we have Pr[h(x) = h(y)] = J(x, y)
where the probability is taken over the random choice of h. Repeating this con-
struction K times results in an output (h1(x), . . . , hK(x)) ∈ [m]K . By linearity
of expectation, the value 1

K

∑K
i=1[hi(x) = hi(y)] is an unbiased estimator of

J(x, y).

b-bit MinHash. Li and König described in [12] the following twist to the stan-
dard MinHash approach. For an integer B ≥ 2, choosing a range-B MinHash
function amounts to choosing a MinHash function hmin : {0, 1}m → [m] and
a universal hash function [2] huni : [m] → [B]. The range-B MinHash func-
tion is h := huni ◦ hmin : {0, 1}m → [B]. This mapping has the property that
Pr[h(x) = h(y)] = (1 − J(x, y))1/B + J(x, y), since with probability J(x, y)
the MinHash value is identical—which yields a collision—and with probability
1 − J(x, y) the MinHash value is different but the random mapping generates a
collision. [12] discussed the case B = 2b for b ≥ 1 where the hash function gives
a b-bit value. In this paper we will use their approach for general B ≥ 2.
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3.2 Generalized Randomized Response for Close Vectors

To have a chance for good utility of our mechanisms, we will use the additive δ
summand available in LDP (cf. Definition 1) to collect cases where the mapping
h maps two neighboring user vectors far away from each other. We then provide
ε-LDP on the remaining cases. We will need two technical lemmata.

Lemma 1. Let x, y ∈ {0, 1}m such that J(x, y) ≥ 1 − α/τ . Let δ > 0. Let
h1, . . . , hK be a collection of K random range-B MinHash functions. Let x∗ =
(h1(x), . . . , hK(x)) and y∗ = (h1(y), . . . , hK(y)). With probability at least 1 − δ,
the number of positions where x∗ and y∗ differ is at most K(α/τ)

(
1 − 1

B

)
+

√
3 ln(1/δ)

(
1 − 1

B

)
Kα/τ .

Proof. For each i ∈ [K], define the random variable Xi = [hi(x) �= hi(y)]. Let
X =

∑K
i=1 Xi denote the number of differences between x∗ and y∗. Since all

Xi are independent and Pr(Xi = 1) = (1 − J(x, y))
(
1 − 1

B

) ≤ α/τ
(
1 − 1

B

)
, we

have E[X] ≤ Kα/τ
(
1 − 1

B

)
. Using the Chernoff bound Pr(X > (1 + β)E[X]) ≤

exp
(−β2/3E[X]

)
[5, Theorem 1.1] with β =

√
3 ln(1/δ)/E[X] proves the lemma.

The next lemma shows that we can avoid loosing a factor K in the privacy
budget1 when using generalized randomized response [16] on vectors with few
differences.

Lemma 2. Fix ε > 0. Let x, y ∈ [B]K be two arbitrary vectors that differ in
at most L positions. Let ε′ = ε/L. Let A be generalized randomized response
mapping from z ∈ [B]K to z∗ ∈ [B]K such that with probability eε′

/(eε′
+B − 1)

we have that z∗
i = zi, and otherwise z∗

i is uniformly picked from [B]−{zi}. Then
A is ε-differentially private.

Proof. Fix an arbitrary v ∈ [B]K . We have to show that Pr[A(x)=v]
Pr[A(y)=v] ≤ eε. Let

the set Ix,v collect all positions in which xi = vi, and let Nx,v collect all posi-

tions in which xi �= vi. We observe that Pr[A(x) = v] =
∏

i∈Ix,v

eε′

eε′+B−1
·

∏
i∈Nx,v

1
eε′+B−1

. The expression for Pr[A(y) = v] follows analogously. Let
D = {i | xi �= yi} denote all positions where x and y differ. Because all terms
where x and y are identical cancel out, we may conclude that

Pr[A(x) = v]

Pr[A(y) = v]
=

∏
i∈Ix,v∩D

eε′

eε′
+B−1

∏
i∈Nx,v∩D

1

eε′
+B−1

∏
i∈Iy,v∩D

eε′

eε′
+B−1

∏
i∈Ny,v∩D

1

eε′
+B−1

≤
∏

i∈D

eε′

eε′
+B−1
1

eε′
+B−1

≤ eε′L = eε.

4 LDP Sketches via Generalized Randomized Response

This section introduces an (ε, δ)-locally differential private algorithm to produce
the user vectors x̂u using generalized randomized response.
1 Traditionally, a standard application of the composition theorem [8] shows that the

composition of K ε-DP mechanisms satisfies (Kε)-DP.
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The idea of the following algorithm is that each user receives the description
of K range-B MinHash functions that map from [m] to [B] for B ≥ 2. Each
user applies the range-B MinHash functions and perturbs the hash value using
a variant of generalized randomized response [16]. We proceed to describe the
RRMinHash approach. An example is given in the full version of this paper.

Preprocessing. Each user accesses K ≥ 1 range-B MinHash functions
h1, . . . , hK shared among all users. Each user u applies h1, . . . , hK to their vector
xu to obtain x∗

u ∈ [B]K . Now, each position of x∗
u is perturbed using generalized

randomized response (Lemma 2) with an individual privacy budget of ε′ = ε/L
to generate the response x̂u, where L is an upper bound on the number of differ-
ences between neighboring user vectors as in Lemma 1. x̂u is the public response
of user u.

Lemma 3. The randomized mechanism x �→ x̂ is (ε, δ)-LDP.

Proof. Fix ε, δ > 0 and let x, y ∈ {0, 1}m such that they differ in at most α
positions. By Lemma 1, with probability at least 1 − δ, the vectors x∗ and y∗

differ in at most L = K(α/τ)
(
1 − 1

B

)
+

√
3 ln(1/δ)

(
1 − 1

B

)
Kα/τ� positions.

If x∗ and y∗ differ in at most L positions, Lemma 2 guarantees that the mapping
x∗ �→ x̂ is ε-differential private.

Similarity Estimation. Given two responses x̂ ∈ [B]K and ŷ ∈ [B]K , count
collisions to obtain pcol =

∑
[x̂i = ŷi]/K. Given pcol, B, and p∗ = eε′

/(eε′
+B−1),

we estimate the Jaccard similarity of x and y as

ĴRR(x̂, ŷ) =
(B − 1)(B · pcol − 1)

(B · p∗ − 1)2
(1)

Lemma 4. ĴRR(x̂, ŷ) is an unbiased estimator of J(x, y).

Proof. We proceed in two parts. First, we calculate the probability of the event
“x̂i = ŷi”. Next, we connect this probability to the estimation given above.

To compute the collision probability, we split up the probability space in two
stages. In the first stage, we condition on the events “x∗

i = y∗
i ” and “x∗

i �= y∗
i ”,

i.e. on whether the range-B MinHash values collide or not. In the second stage,
we calculate the probability that the perturbed responses collide. As discussed
in Sect. 3.1, a random range-B MinHash function has the property that Pr[x∗

i =
y∗

i ] = (B − 1)J(x,y)+ 1
B .

Given that x∗
i = y∗

i , we observe x̂i = ŷi if both keep their answer, or if
both change their answer to the same of the other B − 1 possible responses.
Since both pick a choice uniformly at random, this means that Pr[x̂i = ŷi | x∗

i =
y∗

i ] = (p∗)2+ (1−p∗)2

B−1 . Consider that the event x∗
i �= y∗

i happened. In this case, we
observe a collision of the perturbed values in the following cases: (i) one response
is truthful, the other is changed and picks the truthful response as answer, and
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(ii) both responses are obtained by changing the answer, and they both choose
the same answer at random. Computing these probabilities, we conclude that

Pr[x̂i = ŷi | x∗
i �= y∗

i ] = 2p∗ (1 − p∗) 1
B−1 + (1 − p∗)2

(
1 − 1

B−1

)2
1

B−2 . The
last term is obtained by first conditioning that neither choice picks the other’s
truthful answer, and then using the random choice of the remaining B−2 buckets.

Putting everything together, we obtain

Pr[x̂i = ŷi] =
(B − 1)J(x, y) + 1

B

(

(p∗)2 +
(1 − p∗)2

B − 1

)

+

(

1− (B − 1)J(x, y) + 1

B

) (

2p∗ (1−p∗)
1

B − 1
+ (1−p∗)2

(

1− 1

B − 1

)2 1

B − 2

)

.

Simplifying this formula by collecting terms yields

Pr[x̂i = ŷi] =
J(x, y) + BJ(x, y)p∗(Bp∗ − 2) + B − 1

B(B − 1)
. (2)

Solving (2) for J(x, y) and using linearity of expectation to connect pcol to
Pr[x̂i = ŷi] results in (1).

Utility Analysis. Next we will discuss probabilistic bounds on the absolute
error that the similarity estimation algorithm achieves on the private vectors.
This means that we want upper bound the value |ĴRR(x̂, ŷ) − J(x, y)|. In the
following, we will consider the absolute error in the case ĴRR(x̂, ŷ) > J(x, y).
The case ĴRR(x̂, ŷ) < J(x, y) follows by symmetry.

Lemma 5. With probability at least 1 − δ,

|ĴRR(x̂, ŷ) − J(x, y)| ≤
√

3 ln(1/δ)B3(1 + p∗(Bp∗ − 2))
K(Bp∗ − 1)4

. (3)

Proof. Fix x and y. We let Xi be the indicator variable for the event “x̂i = ŷi”.
Define X = X1 + · · · + XK . By (2) we know that Xi is Bernoulli-distributed
with q := Pr[Xi = 1] = J(x,y)+BJ(x,y)p∗(Bp∗ − 2)+B − 1

B(B − 1) . Again using a Chernoff

bound, we see that with probability at least 1− δ, X ≤ E[X]+
√

E[X]3 ln(1/δ).
Assume from here on that this inequality holds. From (1), we start by observing
that

ĴRR(x̂, ŷ)=
(B − 1)(B · X/K − 1)

(B · p∗ − 1)2
≤ (B − 1)(B(E[X] +

√
E[X]3 ln(1/δ))/K − 1)

(B · p∗ − 1)2

Lem 4
= J(x, y)+

(B − 1)B
√

E[X]3 ln(1/δ)

K(Bp∗ − 1)2
<J(x, y)+

√
3 ln(1/δ)B3(1+ p∗(Bp∗−2))

K(Bp∗ − 1)4
.

Theorem 2. Fix ε, δDP, δfail > 0. There exists B and K such that with proba-
bility at least 1−δfail,|ĴRR(x̂, ŷ)−J(x, y)| = O(

√
α/(τ · ε)). The constant hidden

in the big-Oh notation depends on δDP and δfail.
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Proof. Lemma 5 tells us that for every choice of B and K, with probability at
least 1 − δfail it holds that

|ĴRR(x̂, ŷ) − J(x, y)| ≤
√

3 ln(1/δ)B3(1 + p∗(Bp∗ − 2))
K(Bp∗ − 1)4

. (4)

Since p∗ ≤ 1, we continue to bound the right-hand side of (4) by
√

3 ln(1/δfail)
K ·

B2/(Bp∗ − 1)2. Assume that Bp∗ ≥ 2, which means that ε′ ≥ ln(2(B − 1)/(B −
2)) and ε ≥ L · ε′. Since 1/(x − 1) ≤ 2/x for x ≥ 2, we continue to bound the

absolute error from above by
√

3 ln(1/δfail)
K · B2(2/(Bp∗))2 ≤

√
48 ln(1/δfail)

K (1 +

(B − 1)/eε′
)2. Now, we may set B = 3 since it makes the numerator as small

as possible. (B = 2 is no valid choice because of the assumption Bp∗ ≥ 2.)
Choosing K = Θ(τε/α), the absolute error is bounded by Θ(

√
α/(τε)) for all

ε ≥ L ln 4.

5 LDP Sketches via the Laplace Mechanism

This section introduces an (ε, δ)-LDP protocol for generating private user vectors
x̂u using the Laplace Mechanism. As before, for fixed integers B and K, we use
K range-B MinHash functions such that each user produces a sketch in [B]K .

Let x and y be neighboring vectors and let x∗ and y∗ be the two sketches in
[B]K . As before, with probability at least 1 − δ, we can assume that x∗ and y∗

differ in at most L = K(α/τ)
(
1 − 1

B

)
+

√
3 ln(1/δ)

(
1 − 1

B

)
Kα/τ positions.

Before we can use Theorem 1, we have to compute the sensitivity Δ of the
local sketches under the assumption that neighboring vectors differ in at most
L positions. Since each coordinate in which the two vectors differ contributes at
most B − 1 to the �1 norm, the sensitivity is at most Δ := L(B − 1). According
to Theorem 1, adding Laplace noise with scale Δ/ε to x∗ to produce x̂ guarantees
(ε, 0)-differential privacy as long as the number of differences is at most L. With
probability at most δDP, there are more than L differences. We are now ready
to describe the NoisyMinHash approach, with an example provided in the full
version.

Preprocessing. Let K,B,α, and τ be integers, and let ε > 0 and δ > 0
be the privacy budget. Choose K range-B MinHash functions h1, . . . , hK and
distribute them to the users. Each user with vector x returns x̂ = (h1(x) +
Nx,1, . . . , hK(x) + Nx,K) ∈ R

K , where each Nx,i ∼ Lap(Δ/ε) with Δ = (B −
1)

(
K(α/τ)

(
1 − 1

B

)
+

√
3 ln(1/δ)

(
1 − 1

B

)
Kα/τ

)
.

Similarity Estimation. Given x̂ and ŷ from R
K , return

ĴLap(x̂, ŷ) =
(B2 − 1)K − 6

∑K
i=1(x̂i − ŷi)2 + 24K(Δ/ε)2

(B − 1)(B + 1)K
. (5)
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Notably, the estimation algorithm just computes the squared Euclidean distance
and adjusts for the noise added.

Lemma 6. ĴLap(x̂, ŷ) is an unbiased estimator for J(x, y).

Proof. Given x and y from {0, 1}m, apply NoisyMinHash to compute x̂, ŷ ∈ R
K .

Using linearity of expectation, we proceed as follows:

E

[
K∑

i=1

(x̂i − ŷi)2
]

=
K∑

i=1

E[(x̂i − ŷi)2] = KE[((h1(x) − h1(y)) + (Nx,1 − Ny,1))2]

= KE[(h1(x)− h1(y))2 + 2(h1(x)−h1(y))(Nx,i − Ny,i) + (Nx,i − Ny,i)2]
(1)
= K(E[(h1(x)− h1(y))2] + E[(Nx,i − Ny,i)2])
(2)
= KE[(h1(x)− h1(y))2] + 2KVar[Nx,i] = KE[(h1(x)− h1(y))2] + 4K(Δ/ε)2.

In our calculations, both (1) and (2) used that Nx,i and Ny,i are independently
chosen, E[Nx,i] = E[Ny,i] = 0, and Var[Ny,i] = 2(Δ/ε)2.

Let x∗ = h1(x) and y∗ = h1(y). We continue by calculating E[(x∗ − y∗)2] as

B−1∑

j=1

j2 Pr[|x∗ − y∗| = j] =

B−1∑

j=1

j2
(B − 1)(1− J(x, y))

B
Pr[|x∗ − y∗|= j | x∗ �= y∗]

(1)
=

B−1∑

j=1

j2
(B − 1)(1 − J(x, y))

B
2(B − j)/B =

2(B − 1)(1− J(x, y))

B2

B−1∑

j=1

j2(B − j)

=
2(B − 1)(1 − J(x, y))

B2
· B2

12
(B + 1)(B − 1) =

(B − 1)2(B + 1)(1 − J(x, y))

6
,

where (1) is obtained by noticing that for a fixed x∗ (with B choices), there are
B −2j choices with two y∗ such that |x∗ −y∗| = j, and there are 2j choices with
only one choice y∗. Putting everything together, we summarize

E

[
K∑

i=1

(x̂i − ŷi)2
]

=
K(B − 1)2(B + 1)(1 − J(x, y))

6
+ 4K(Δ/ε)2.

The result is obtained by rearranging terms.

Utility Analysis

Theorem 3. Fix ε, δDP, δfail > 0. There exists B and k such that with probabil-
ity at least 1 − δfail, |ĴLap(x̂, ŷ) − J(x, y)| = Õ

(
(α/τ)4/5 · ε−2/5

)
. The constant

hidden in the big-Oh notation depends on δDP and δfail, and the tilde notation
suppresses polylogarithmic factors.

Proof. We first describe and analyze the two events which constitute the failure
probability δfail. Next we proceed to analyze the estimation error under the
condition that none of these events occur. We will only analyze the case that
ĴLap(x̂, ŷ) is larger than J(x, y). The other case follows by symmetry.
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First, we assume that the number of differences between x∗ and y∗ (among
the K functions) does not differ by more than a value L′ from its expecta-

tion. This is true for L′ =
√

3 ln(2/δfail)
(
1 − 1

B

)
Kα/τ by Lemma 1 for failure

probability δfail/2. Second, we use Theorem 3.8 in [8] (reproduced in the full
version of this paper) that says that with probability at least 1 − δfail/4, the
maximum absolute difference in a coordinate of x̂ compared to x∗ is at most
D = ln(4K/δfail)Δ/ε.

By a union bound, with probability at least 1 − δfail none of these events
occur, i.e., we observe a deviation of at most L′ in the number of differences of
two vectors x∗ and y∗ from their expectation, and the Laplace noise added to
both x∗ and y∗ keeps all coordinates within D in their absolute value. Under
this condition, we will study the value |X − E[X]| for the random variable X =
∑K

i=1(x̂i − ŷi)2. If this value is at most t, the absolute estimation error is at most
6t

(B − 1)(B +1)K , cf. (5).
As in the proof of Lemma 6, we split up x̂i into x∗

i and Ni to calculate
∑K

i=1(x̂i − ŷi)2 =
∑K

i=1

(
(x∗

i − y∗
i )2 + 2(x∗

i − y∗
i )(Ni − Nj) + (Ni − Nj)2

)
. By

our second condition, we may assume that |Ni − Nj | ≤ 2D, which means that
the last summand is at most 4KD2 over the whole sum. For the first summand,
we use the first condition that says that the number of observed differences is
within L′ from its expectation. Since each individual term in the sum contributes
at most (B − 1)2, the deviation from the expectation over the whole sum is not
more than (B − 1)2L′. Lastly, using both conditions, the contribution of the
middle term over the whole sum is bounded by 4D(Kα/τ(1 − 1/B) + L′).

Using P := Kα/τ(1 − 1/B) and rewriting L′ =
√

3P ln(2/δfail), we can put
the observations from above together and conclude that with probability at least
1 − δfail the estimation error is

O

(
(B − 1)2

√
3P ln(2/δfail) + KD2 + D(P +

√
3P ln(2/δfail))

(B − 1)(B + 1)K

)

.

Comparing the second and the third term of the sum, we notice that D >
(B − 1)(P +

√
P ) for ε > 1, so the second term is always larger than the third

and we may bound the estimation error by O

(
(B − 1)2

√
3P ln(2/δfail)+KD2

(B − 1)(B +1)K

)

. The

function (x − 1)2/((x − 1)(x + 1)) is monotonically increasing for x ≥ 1, so the
choice B = 2 minimizes the expression above. Now, observe that the first term
is O(

√
α/(Kτ)) and the second term is Õ((αK/τε)2), where the tilde notation

suppresses the logarithmic dependence on K. To balance the estimation error,
we set these terms in relation to each other and solve for K. This shows that
the asymptotic minimum is achieved for K = ε4/5(τ/α)3/5. Using this value to
bound the estimation error results in the bound stated in the theorem.

Comparing RRMinHash and NoisyMinHash. Comparing Theorems 2 to 3, both
analyses provide bounds on the absolute error in terms of the length τ of indi-
vidual vectors, the neighboring notion α, and the privacy budget ε.
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Since the value α/τ is between 0 and 1, the contribution of (α/τ)4/5 to
the error of NoisyMinHash (Theorem 3) is smaller than the term (α/τ)1/2 for
RRMinHash. However, the ε−1/2 dependence of RRMinHash is better than ε−2/5

for ε ≥ 1. This should mean that while NoisyMinHash might guarantee smaller
error for small epsilon settings, the error decreases faster for RRMinHash.

In both mechanisms, the preprocessing time to generate a private vector is
O(Kτ) for a vector with τ set bits. It consists of evaluating K range-B MinHash
functions (each taking time O(τ)) and sampling O(K) values from a uniform
(RRMinHash) or Laplace distribution (NoisyMinHash). The similarity estimation
of two vectors takes time O(K). A private vector for RRMinHash consists of K bits
and the similarity estimation uses the Hamming distance, while NoisyMinHash
uses K floating point values and uses Euclidean distance as basis for similarity
estimation. Given the difficulty of correctly implementing the Laplace Mecha-
nism [13], RRMinHash has a simpler basis for a correct implementation.

6 Experimental Evaluation

All algorithms described in this paper where implemented in Python 3. The
code, raw results, and evaluation notebooks can be accessed at https://github.
com/maumueller/ldp-jaccard. Due to space restrictions, we only present a few
selected results. See the Jupyter notebook at the web page for additional plots
and tables.

Experimental Setting. We conduct experiments in two different directions.
First, we create artificial vectors and test how well the algorithms estimate

Jaccard similarity for a fixed privacy budget. We use the mean absolute error
as our quality measure, which is defined as 1

�

∑�
i=1 |di − ei| for true similari-

ties d1, . . . , d� and their estimates e1, . . . , e� returned by the algorithm. In the
experiment, we create user vectors x with τ ∈ {20, 50, 100, 250, 500, 1000, 2000}
entries. For each such x, we create vectors y′ with τ entries and Jaccard similar-
ity in {0.1, 0.5, 0.9} to x. The number K of hash functions considered is chosen
from {10, 20, 30, . . . , 500}. For each algorithm, we vary the privacy budget and
internal parameters such as the range B of the MinHash functions. All runs were
repeated 100 times with random hash functions.

Second, we study how well these algorithms work on real-world datasets.
Following [17], we chose the MovieLens and Last.FM dataset available at https://
grouplens.org/datasets/hetrec-2011. We obtain a set representation by collecting
all movies rated at least 4 (MovieLens, m = 65 536) and the top-20 artists
(Last.FM, m = 18 739 ). The average set size is 178.1 (σ = 187.5) and 19.8 (σ =
1.78), respectively. To account for the influence of the size of the user vectors,
we create different versions of these datasets. From the MovieLens dataset, we
make three versions containing all users that have at least 50, 100, and 500
entries, respectively. This results in datasets with 1636, 1205, and 124 users.
From the Last.FM dataset, we collect all users that have at least 20 entries which
amounts to 1860 users. For each dataset, we take 50 query points at random

https://github.com/maumueller/ldp-jaccard
https://github.com/maumueller/ldp-jaccard
https://grouplens.org/datasets/hetrec-2011
https://grouplens.org/datasets/hetrec-2011
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Fig. 1. Results on synthetic vectors with τ ∈ {50, 500, 2000}, privacy budget ε ∈ {4, 6},
and vectors with Jaccard similarity of 0.5. Blue, red, green lines represent runs with
choice of 2, 3, 5 for B, respectively; top: RRMinHash, bottom: NoisyMinHash. (Color
figure online)

among all data points for which the 10-th nearest neighbor has at least Jaccard
similarity 0.1. As quality measure, we use recall@k (R@k) which measures the
average number of times that the (index of the) true nearest neighbor is found
among the first k nearest neighbors in the private vectors. (Note that the true
vectors are not revealed, so there cannot be a re-ranking step as is tradition
in nearest neighbor search.) Moreover, we report on the approximate similarity
ratio, which is defined as the ratio of the sum of similarities to the 10 original
nearest neighbors, and the sum of similarities to the 10 nearest neighbors among
the private vectors computed with their original similarities.

For the whole evaluation, we will use range-2 MinHash (i.e., 1-bit Min-
Hash [12]) with K ≤ 100 as a baseline for comparison. For all experiments,
we set α = 1, i.e. we allow for a single item change. Results for other values can
be read off the plots by looking at different τ values. For example, a combination
(α = 1, τ = 500) is identical to (α = 10, τ = 50) since all bounds depend on the
ratio of α and τ . For all private mechanisms, we use δ = 0.0001.

6.1 Result Discussion on Artificial Data

Figure 1 visualizes the mean absolute error (with standard deviation as error
bars) for runs of RRMinHash (top) and NoisyMinHash (bottom) for privacy bud-
gets of ε = 4 (left) and ε = 6 (right) and choices 2, 3, 5 of the B parame-
ter (blue/red/green lines). With respect to RRMinHash and a privacy budget of
ε = 4, we notice that for each choice of τ the trend is that smaller B values pro-
duce smaller absolute error, which is in accordance with our analysis in Sect. 4.
(Larger B values can be found on the supplemental website; they performed
much worse.) For vectors of 50 elements, the smallest MAE error is achieved
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with the smallest choice of K, resulting in an MAE of around 0.35. The error
shrinks to around 0.15 for 500 elements (with K of around 20), and 0.05 for
vectors with 2 000 elements (with K around 80). The linear increase of K with τ
further motivates the choice of K in Theorem 2. Increasing the privacy budget
to ε = 6 further decreases the error but results in the same trends. We note that
a growing privacy budget also corresponds to a larger K choice, again as moti-
vated in Theorem 2. Increasing K will sometimes result in worse error because
of integer constraints in Lemma 2. From a practical point of view, one should
choose K as large as possible before this increase occurs. The trends are identical
with regard to NoisyMinHash, but it is much clearer that a smaller choice of B
is preferable (as motivated in the proof of Theorem 3). We achieve an MAE of
around 0.43, 0.18, 0.1 for vectors of size 50, 500, 2000 and ε = 4, respectively,
slightly worse than RRMinHash.

Fig. 2. Results on synthetic vectors with τ ∈ {50, 500, 2000}, privacy budget ε ∈ {2, 6},
and vectors with Jaccard similarity of 0.5. Blue, red, green lines represent runs with
RRMinHash, NoisyMinHash, Range-2 MinHash (non-private), respectively. There is only
one line for MinHash because its error is independent of the vector size. (Color figure
online)

Figure 2 sets our two mechanisms in relation to MinHash with B = 2 and
a privacy budget of 2 (left) and 6 (right). For ε = 2, we need large vectors to
guarantee an error that is roughly a factor of two larger than that achieved by
MinHash. For ε = 6, both larger vectors allow for an estimation vector that
is nearly as small as MinHash. Again, RRMinHash achieves smaller error than
NoisyMinHash, in particular for larger privacy budgets.

We conclude that RRMinHash with B = 2 is a good choice in all considered
experiments on artificial data. For small privacy budget, large user vectors are
needed to get small estimation errors. A larger privacy budget allows to accom-
modate smaller vectors.

6.2 Results on Real-World Data

Table 1 summarizes the observed results for runs on the Last.FM and MovieLens
datasets. Again, we set MinHash in relation to RRMinHash and NoisyMinHash.
Motivated by the observations above we only discuss the case B = 2.
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Table 1. Results on real-world datasets for different quality measures and privacy
budget ε of 4 and 8 (split up via “/” in individual cells).

Dataset Algorithm R@10 R@50 R@100 Approx

Last.FM (τ = 20) MinHash 0.42 0.72 0.82 0.55

RRMinHash 0.04/0.16 0.15/0.38 0.25/0.51 0.19/0.35

NoisyMinHash 0.03/0.06 0.11/0.19 0.19/0.31 0.16/0.23

MovieLens (τ = 50) MinHash 0.13 0.34 0.47 0.61

RRMinHash 0.02/0.05 0.09/0.17 0.18/0.28 0.49/0.53

NoisyMinHash 0.01/0.02 0.05/0.11 0.11/0.21 0.49/0.50

MovieLens (τ = 100) MinHash 0.31 0.62 0.75 0.72

RRMinHash 0.04/0.07 0.12/0.24 0.22/0.36 0.52/0.57

NoisyMinHash 0.04/0.04 0.09/0.15 0.18/0.27 0.52/0.54

MovieLens (τ = 500) MinHash 0.58 0.93 0.99 0.83

RRMinHash 0.19/0.31 0.65/0.76 0.91/0.96 0.72/0.76

NoisyMinHash 0.14/0.25 0.63/0.69 0.90/0.92 0.71/0.73

We observe that RRMinHash achieves equal or better quality than
NoisyMinHash in all measurements, so we focus the comparison on MinHash
and RRMinHash. First, we note that the datasets are rather difficult. Even stan-
dard MinHash with B = 2 does not achieve close to perfect recall, which means
that all vectors are rather close to each other. The Last.FM dataset provides
very small user vectors. Accordingly there is a big difference between the quality
achieved by the two algorithms. For a privacy budget of ε = 4, the quality is
between a factor of around 10 (R@10) and of around 3 (R@100, Approx) worse
if solving the similarity search task on private vectors. For a privacy budget of
ε = 8, these factors shrink to 1.5–3. With regard to MovieLens, we observe that
it is difficult for MinHash to achieve high recall values for τ = 50. Results for
RRMinHash are again a factor 3–6 worse for privacy budget 4, with the excep-
tion of the relative approximation that is rather close (0.49 vs. 0.61). Quality
increases slowly from 50 to 100 items, and rapidly for 500 items (because of its
small size).

We summarize that there is a clear trade-off between the utility and privacy
of the proposed mechanisms. The results on artificial and real-world data show
that to ensure good utility under a small privacy budget, user vectors have to
contain many items, say in the 100s. Many of the theoretical choices translated
well into practice. Most interestingly, while the upper bounds in the theory
section painted an unclear picture about the utility at a fixed privacy budget, our
empirical analysis clearly suggests that RRMinHash is both easier to implement
and achieves higher utility for the same privacy budget.
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7 Related Work

The paper by Kenthapadi [11] shows how to estimate vector differences under the
�2 norm in a differentially private setting in the centralized model of differential
privacy. More precisely, their algorithm has privacy guarantees with respect to
a single element change (i.e., one user changes one item). In very recent work,
Dhaliwal et al. [4] show how to achieve the same guarantees when the privacy-
guarantees are over the change of a fraction of a user vector in the central model.
Both approaches apply a Johnson-Lindenstrauss transform [9] and add noise of a
certain scale to the resulting matrix. Our NoisyMinHash approach can be seen as
a natural generalization of their method, but there are some stand-alone features
such as the mapping to B buckets.

With respect to similarity estimation under Jaccard similarity, the paper by
Riazi et al. [15] describes a privacy-preserving approach for similarity estimation
both for inner product similarity (using SimHash [3]) and Jaccard similarity
(using MinHash). Their privacy notion does not satisfy differential privacy.

The paper by Yan et al. [17] is closest to our approach. It discusses an LDP
approach based on MinHash by selecting certain hash values in a differentially
private manner using the exponential mechanism. As we argue in the full version
of this paper, their approach does not provide the guarantees they state and
quickly degrades to a basic MinHash approach without noise addition.

Concurrent to our work, Pagh and Stausholm [14] describe LDP sketches for
approximating the number of items in a set. Their sketches are linear, which
allows them to approximate the size of the union and the intersection of two
sets, and thus their Jaccard similarity. In contrast to our bounds, their bounds
rely on the universe size of set elements. It would be interesting to compare their
mechanism to ours in a practical setting, in particular because their lower-order
error terms [14, Theorem 1] suggest that they need much larger vectors than the
ones considered in our empirical study in Sect. 6.

Finally, this paper studied the privacy/utility-tradeoff achievable with our
proposed methods. While an important issue, it does not discuss (un)desirable
privacy budgets, which will be application-specific and lack consensus [6].
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Abstract. Sketches are compact bit strings that are considered as prod-
ucts of an LSH for high-dimensional data. We use them in filtering for
narrowing down solution candidates in similarity search. We propose a
pivot selection method for narrow sketches with a length such as 16-bits
by optimization algorithms with the accuracy of filtering itself as the
objective function.

1 Introduction

The purpose of our research is to establish fast similarity search techniques for
large-scale high-dimensional data. Such techniques can contribute to pattern
recognition, data mining, knowledge discovery, etc. In this paper, we aim to
improve the accuracy and speed of approximate similarity search using sketches.

The sketch [2,8,10,12,15] is a compact bit string that represents high-dimen-
sional data. We can regard a mapping from data to sketch as a type of locality-
sensitive hash (LSH) that can maintain some similarity of data. We use sketches
for filtering to narrow down the solution candidates at the first stage of sim-
ilarity search. The similarity search using sketches is only an approximation,
and improving accuracy is one of the most important issues. Since it is costly
to measure the accuracy of filtering by sketches, we have conventionally been
designing the sketching based on the optimization by using an evaluation that
is different from the accuracy such as the collision probability and the entropy.
However, there is a limit to optimize with such an indirect evaluation [7].

We have established a very fast search technique using relatively short and
narrow such as 16-bit sketches [4,5]. In this paper, we propose an efficient method
to evaluate a set of pivots P by utilizing the fast search principle using narrow
sketches. The method gives an evaluation measure directly related to the filtering
performance by the sketches defined by P . The effectiveness of the proposed
c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 33–46, 2020.
https://doi.org/10.1007/978-3-030-60936-8_3
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method is confirmed by experiments using two real-life datasets consisting of a
million to several million data. The proposed method enables faster and more
accurate nearest neighbor searches than the optimization of collision probability.

There exist two important issues on sketches, the quality and indexing [11].
For higher quality, sketches are proposed to well approximate the original search
space. For faster search, the indexing has been studied. These are usually inde-
pendently treated with each other. Our approach addresses both issues together.

2 Fast Similarity Search Using Narrow Sketches

Here, we prepare concepts necessary for similarity search using sketches and later
discussions, and introduce the results of our research leading up to this paper.

2.1 Similarity Search Using Sketches

We assume that the data to be searched is given as points in a metric space
with a coordinate system. We use one of the basic similarity search query types,
the k nearest neighbor queries (k-NN, for short). Their goal is to acquire the k
closest points to the point given as the query. Here, k ≥ 1, and this paper focuses
mainly to search for one nearest neighbor, i.e. k = 1. When there are multiple
nearest neighbor solutions, we consider any one of them as a correct answer.

Data points in the dataset are indexed by natural numbers (referred to as
data IDs) from 0 to n−1. In other words, the dataset consisting of n points is set
ds = {x0, . . . , xn−1} ⊆ U , where U is the data space. The dissimilarity between
two data points x and y is defined by the distance D(x, y). The nearest neighbor
search (NN search, for short) for a query q ∈ U is to find a data point x ∈ ds
such that D(q, x) ≤ D(q, y) for all y ∈ ds. The main symbols and notations are
summarized in Table 1.

The k-NN search for a query q using sketches is performed by the following
two stages, where k′ ≥ k ≥ 1 is a parameter of the number of candidates obtained
in the first stage. The priority of sketches is conventionally determined by the
Hamming distance. We, however, use asymmetric distance measures between the
query point and a sketch, in this paper.

1. The first stage (the filtering using the priority by sketches):
Select k′ candidates xi0 , . . . , xik′−1

whose sketches σ(xi0), . . . , σ(xik′−1
) have

top k′ priorities for q.
2. The second stage (the k-NN search using distances D(q, xi0), . . . , D(q, xk′−1)):

Select the k-NN data points from the candidates xi0 , . . . , xik′−1
.

The recall of the k-NN search using sketches is given by the ratio of the
number of correct answers included in k′ candidates selected by the first stage
filtering with respect to k. We say that the filtering by sketches has a high
accuracy when the search recall is high. Clearly, the larger the k′, the higher
the filtering accuracy is. The accuracy of filtering is also influenced by the used
priority, as well as by the sketching transformation.
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Table 1. Notations

Notation Description

U The data space

m Dimensionality of data space

x, y, x0, . . . Data points in U
D(x, y) The distance between x and y

ds Dataset {x0, x1, . . . , xn−1} indexed by numbers

n Number of data points in ds

k Number of data points in the answer by the k-NN search

k′ Number of candidates obtained in the 1st stage filtering

q ∈ U A query point

(p, r) A pivot for BP, a pair of the center p ∈ U and the radius r

w The width (length) of sketches

P A w-tuple of pivots ((p0, r0), (p1, r1), . . . , (pw−1, rw−1))

σ(P, x), σ(x) The sketch of x using P and the sketch of x if P is omitted

ς A sketch of unspecified data point

scorep(q, ς) Lp-like asymmetric distance between a query q and a sketch ς

Q Sample of queries {q0, q1, . . . , q|Q|−1}
Q′ ⊆ Q The resampling of queries

P The space of w-tuple of pivots

E(P, Q′) The evaluation value of P for Q′ ⊆ Q

Nb(P ) ⊆ P The neighborhood of P

t ∈ N The time step (0, 1, 2, . . . )

size(t) ≤ |Q| The resampling size at t (monotonically increasing)

2.2 Space Partitioning for Sketching Transformation

Ball partitioning (BP, for short) is used to define bit-string sketches of data
points. BP assigns a data point x bit 0 if x is in the sphere specified by a pair
(p, r) with the center p ∈ U and the radius r, and bit 1 otherwise. Formally:

BP (p,r)(x) =
{

0, if D(p, x) ≤ r,
1, otherwise.

The pair (p, r) is called a pivot. The length of a sketch is called width. A sketch of
width w is defined as a concatenation of w bits assigned by BP using a w-tuple
of pivots P = ((p0, r0), . . . , (pw−1, rw−1)) as follows:

σ(P, x) = BP (pw−1,rw−1)(x) · · ·BP (p0,r0)(x)

The arrangement of bits in sketches is from right to left since we apply bit
operators to them like “right-shift.” The sketch of x is also denoted as σ(x)
by omitting P if clear from the context. A sketch of unspecified data point is
denoted by using ς.
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2.3 More Accurate Priorities than Hamming Distance

Traditionally, the Hamming distance between sketches, which is the number of
mismatched bits between sketches, has been used as the priority in the first stage
filtering. Dong et al. [2] introduced asymmetric distances between data point
and sketch which give more accurate priorities than the Hamming distance. We
introduced similar asymmetric distances, such as score∞, score1 and score2, as
the priorities by sketches [3]. While we use them for relatively narrow sketches [4,
5] based on the viewpoint that sketches can be considered as quantized images
of a dimension reduction called Simple-Map [14], Dong et al. use long sketches
as a kind of data compression to improve filtering performance.

The minimum distance from a query q to the partition boundary of BP (pi,ri)

is given by the following:

ei(P, q) = |D(pi, q) − ri|
Using this, a lower bound on D(q, x) is obtained by using ς = σ(P, x):

bi(q, ς) =
{

ei(P, q), if BP (pi,ri)(q) �= (ς � i) & 1,
0, otherwise,

where � and & are bit operators of logical right-shift and bitwise AND, respec-
tively. Therefore, (ς � i) & 1 is the i-th bit of ς from the right. Let x be any
point included in the opposite side to a query q of the partition boundary by
BP (pi,ri). Then, the corresponding bits of sketches for q and x disagree, and the
distance between q and x is at least ei(P, q). Thus, we can prove that bi gives a
lower bound. By aggregating these lower bounds like Minkowski’s Lp distance,
we define the following asymmetric distances.

score1(q, ς) =
w−1∑
i=0

bi(q, ς), score2(q, ς) =

√√√√w−1∑
i=0

bi(q, ς)2,

score∞(q, ς) =
w−1
max
i=0

bi(q, ς)

The only score∞(q, ς) is guaranteed to be a true lower bound on distance D(q, x).
We experimentally confirmed that all of these provide more accurate filtering

than the Hamming distance [3]. Here, we should notice that the scorep(q, ς)
requires no access to the data point x whose sketch is ς, and therfore, it is less
expensive to evaluate than the distance D(q, x). These asymmetric distances
made us notice that the required search accuracy may be obtained even when
using narrower sketches than previously thought.

2.4 Fast Filtering by Sketch Enumeration

Here, we explain the main points of the fast search method introduced in [4,5].
We assume that the size of the dataset is several million and the width of

sketches is 16-bits. Since the number of 16-bit patterns is only 216, the data
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1 function Search(q , ς,NN ,nearest , checked)
2 for i = f [ς] to f [ς] + num[ς] − 1 do
3 if D(q , x[id [i]]) ≤ nearest then
4 (NN ,nearest) ← (id [i], D(q , x[id [i]]));

5 checked ← checked + 1;
6 if checked ≥ k′ then
7 return (NN ,nearest , checked);

8 return (NN ,nearest , checked);

9 function SearchBySketchEnum(q)
10 Setup the sketch enumeration in the ascending order of scorep for q;
11 (j,NN ,nearest , checked) ← (0, “none”, ∞, 0);
12 while checked ≤ k′ do
13 ς ← the next sketch in the enumeration;
14 (NN ,nearest , checked) ←Search(q , ς,NN ,nearest , checked);

15 return NN ;

Algorithm 1: NN Search by Sketch Enumeration

points can be managed by the bucket method with the sketch as the key, where
data points with a sketch ς are immediately accessed if ς is given. As for the
bucket we use, we will explain details shortly.

Let ς0, ς1, . . . be the sketch enumeration in the priority order for the query q.
For each j = 0, 1, . . ., the number of data points x with σ(x) = ςj is expected
to be more than 15, because the average number of data points for each sketch
is larger than 1, 000, 000 ÷ 216 � 15. Therefore, sketches to be enumerated are
only a small part of approximately 66,000 sketches. By using an algorithm that
enumerates sketches one by one in the ascending order of the priority, it is
possible to speed up the first stage search without collating sketches so that the
cost is practically ignored. We call a method of the first stage filtering based on
sketch enumeration a filtering by sketch enumeration. On the other hand, many
conventional search methods are based on the first stage filtering by sequential
search on all sketches of data points. We call such a method a sequential filtering.

Algorithm 1 outlines the NN search method that utilizes the sketch enumera-
tion in the ascending order of scorep for a query. For details of the enumeration,
refer to papers [4,5]. Let data points in the dataset be stored in the array,
xi = x[i] for i = 0, . . . , n − 1. We use a bucket with the sketch as key for the
dataset. The bucket is assumed to be represented by three arrays id , f , and num
that satisfy the following conditions.

· id [j] = the ID of the j-th data point in the sketch order. Data points are
not necessarily sorted on memory. Indirect sorting via id is enough.
· f [ς] = the first position in the sketch order of data points with sketch ς.
· num[ς] = the number of data points in the dataset whose sketches are ς.

Data points can be considered to be sorted in the sketch order as follows:

σ(x[id [0]]) ≤ · · · ≤ σ(x[id [n − 1]]).
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1 procedure LS
2 P ← any tuple of pivots in P;
3 for t = 0 to ∞ do
4 P ′ ← randomly selected tuple of pivots from Nb(P );
5 if E(P ′,Q) is better than E(P,Q) then
6 P ← P ′

7 procedure AIR
8 P ← any tuple of pivots in P;
9 for t = 0 to ∞ do

10 P ′ ← randomly selected tuple of pivots from Nb(P );
11 Q′ ← randomly selected resampling from Q such that |Q′| = size(t);
12 if E(P ′,Q ′) is better than E(P,Q ′) then
13 P ← P ′

Algorithm 2: Local Search and Annealing by Increasing Resampling

Also, we can get the following data IDs whose sketches are ς without accessing
the array x:

id [f [ς]], . . . , id [f [ς] + num[ς] − 1].

Using this sequence, for each data point whose sketch is ς, function Search in
Algorithm 1 compares the distance D(q, x[id [i]]) with the current nearest dis-
tance (see line 3 in Algorithm 1).

3 Pivot Selection by Optimization Algorithms

To improve the accuracy of filtering by sketches, we consider optimization algo-
rithms to select pivots using a dataset and a set of queries as a training exam-
ple. As the methods, we use the local search (LS, for short) and the simulated
annealing. The objective function is the accuracy of filtering by sketches, that is,
the search recall using the sketches. As an efficient alternative of the simulated
annealing, we use the AIR (Annealing by Increasing Resampling) [6,7].

Algorithm 2 formalizes the LS and AIR specialized for the pivot selection
based on the evaluation E(P,Q) of a tuple of pivots P using a sample Q of
queries. Both the LS and AIR iterate trials to improve the tuple of pivots P . The
AIR uses a small resampling of the sample to evaluate pivots at the beginning
iterations, and then, gradually increases the resampling size. The number of
iterations in the LS and AIR is infinity, which is replaced with an integer specified
by parameter N -trials in realistic setting. We regard the final P as the result
obtained by the LS and AIR.

Let us consider optimization using the search recall itself for a sample con-
sisting of 10,000 queries as the objective function to maximize. In this paragraph,
we use the NN search speeds reported in [4,5]. They include a speed fast enough
to remind us of the idea of using the search recall itself as the objective function
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for optimization. Using the sequential filtering on 32-bit sketches with Hamming
distance, the time required for the NN search with recall = 91.5% is 139 ms per
query (presented in Table 5 in [5] and Table 1 in [4]). If the filtering by 18-bit
sketch enumeration in score1 order is used, it takes 4.97 ms per query (presented
in Table 3 of [4]), which is 28 times faster than the sequential filtering Using
the sequential filtering on 32-bit sketches, one measurement requires 139 ms ×
10,000 = 1,390 s. If optimization is performed using the LS, it is necessary to
repeat trials at least about 10,000 times, which is a rough estimation from our
experiments. Since the LS measures the search recall in each trial, it takes 13.9
million seconds, 5 months and more, in total.

Thus, according to our best knowledge, no one even tried to optimize the
actual search recall as a direct objective function evaluated by using the conven-
tional search method based on sequential filtering. On the other hand, filtering
by sketch enumeration enables extremely fast search, so even in a naive method
using SearchBysketchEnum to evaluate the search recall it is possible to
perform the optimization within a week.

3.1 Fast Evaluation of the Search Recall

We present a method to further speed-up the evaluation of the search recall.
First, we prepare the correct query answers that include the IDs of data points.
We use these answers in the training phase, in which we evaluate the search
recall. The approximate query answers are evaluated just using the sketches,
without the actual distance calculations: we compare the answer data IDs with
those obtained from the enumerated sketches based on the high-speed search
principle of narrow sketches.

SearchBysketchEnum uses sketch enumeration in increasing order of
scorep. For each enumerated sketch ς, the actual distance D(q, x[id [i]]) between
the query q and the data point x[id [i]] is calculated (see line 3 in Algorithm 1).
However, using the correct answer information about data ID of the nearest
neighbor we can obtain in advance, to calculate the search recall, it is sufficient
to confirm whether or not the data ID id [i] appears in k′ candidates (see line 5
in Algorithm 3). Therefore, the actual distance calculation can be omitted. Algo-
rithm3 formalizes the improved evaluation of the search recall with the function
EvalRecallBysketchEnum.

4 Experiments

We propose to use the LS or AIR to select a tuple of pivots for narrow sketches,
where EvalRecallBysketchEnum is used to compute the evaluation E(·, ·) of
pivots as the objective function of optimization. The AIR treats the set of queries
in the training example as the sample and uses the resampling for queries. On
the other hand, the AIR uses the fixed dataset throughout in the optimization
process. To confirm the effectiveness of the proposed method, we run experiments
using the following two datasets, which are referred to as the Image dataset and
the DeCAF dataset in the rest, respectively.
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// Q[0], . . . , Q[|Q| − 1]: queries
// ans[0], . . . , ans[|Q| − 1]: answer (array of data ID)

1 function Check(ans, ς, checked)
2 i ← f [ς];
3 while i < f [ς] + num[ς] and checked < k′ do
4 checked ← checked + 1;
5 if ans = id[i] then return (true, checked);
6 i ← i + 1;
7 ;

8 return (false, checked);

9 function EvalRecallBySketchEnum(P, Q, ds)
10 Prepare arrays id , f ,num of bucket for ds using pivots P ;
11 success ← 0;
12 for i = 0 to |Q| − 1 do
13 Setup the sketch enumeration in the ascending order of scorep for Q[i];
14 (found , checked) ← (false, 0);
15 while checked < k′ and not found do
16 ς ← the next sketch in the enumeration;
17 (found , checked) ←Check(ans[i], ς, checked);
18 if found then success ← success + 1;
19 ;

20 return success/|Q|;
Algorithm 3: Evaluation of Search Recall by Sketch Enumeration

1. Image features (also used in papers [3–5]):
– 6.9 million 64-dimensional vectors extracted as the 2D frequency spec-

trum of image frames of video movies.
– Each of 64 axis values is represented by an 8-bit unsigned integer from 0

to 255.
– The distance between vectors is measured by the L1 distance function.

2. DeCAF descriptors:
– 1 million 4,096-dimensional DeCAF descriptors [1,13].
– Data conversion: To save the size in memory, we use converted axis values

into 8-bit unsigned integers after multiplied by 10. Almost no difference
in search results is derived by the conversion.

– The distance between vectors is measure by the L2 (Euclidean) distance
function.

We use a PC with AMD Ryzen 7 3700X 3.59 GHz and memory 16 GBytes. We
use OpenMP only for pivot selection in training phase, to speed-up optimization
by parallel computing. We measure the speed of the NN search with no parallel
computing in testing phase. All the data are stored in the main memory.
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4.1 A Baseline: Pivot Selection Based on Collision Minimization

When the sketches match for different data points x and y, we say that a colli-
sion occurs. If the tuple of pivots P is selected so that the collision probability
becomes small, it is expected that the accuracy of the filtering by sketches will
be improved to some extent, as long as the width w of sketches is relatively short
for the dimensionality m of data space.

We introduced quantization ball partitioning (QBP, for short) [3] for pivot
selection based on collision minimization. QBP assumes that each coordinate of
the data space has the minimum and maximum values, MIN and MAX . For
example, in experiments in this paper, we use 8-bit unsigned integers where
MIN = 0 and MAX = 255. For floating point values, we may use the lower and
upper bound on the dataset as MIN and MAX . QBP selects any point from
the dataset, quantizes it to MIN or MAX using the median of the dataset as a
threshold, and makes it the candidate of the center of pivot.

QBP limits the center of pivot to be one of the corners of the space, data
points whose axis values are MIN or MAX . It has been experimentally confirmed
that QBP provides lower collision probability and more accurate filtering than
BP which uses an arbitrary point as the center. This is very similar to the
fact reported by Mic et al. [9], where BP with outliers as the center candidates
achieves highly accurate filtering.

We run the precise NN search with 10,000 queries for the Image dataset and
1,000 queries for the DeCAF dataset, using the sequential evaluation of all dis-
tances. Then, we run SearchBysketchEnum using pivots found by Select-
PivotQBP [3]. We use sketches of width w = 18 for the Image dataset, and
w = 22 for the DeCAF dataset, since these widths lead to the fastest search. We
use score1 for the Image dataset and score2 for the DeCAF dataset, to achieve
the best filtering accuracy. These search speeds are summarized in Table 2 with
required k′/n and achieved recall. We will later compare these with the search
speed using improved sketches.

4.2 Training and Test

Our goal is to select a tuple of pivots for sketches so that the filtering accuracy
is high. We use a pair of a dataset and a set of queries to find an optimized
tuple of pivots by the LS and AIR, using the search recall itself as the objective
function. Such a pair should be regarded as a “training example” in terms of
so-called machine learning. Therefore, the quality of the selected tuple of pivots
should be evaluated using a “test case” different from the training example.

Table 2. Speed of nearest neighbor search before proposed optimization

Dataset n(×106) m Precise NN search SearchBysketchEnum k′/n Recall

Image 6.9 64 114 (ms/query) 3.0 (ms/query) 1.5% 90%

DeCAF 1.0 4,096 625 (ms/query) 48 (ms/query) 4.5% 90%
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We create a dataset for the training example of the Image dataset as a uni-
form sample of each 16th data point. As for the queries of the training example,
a set of 10,000 queries synthesized by weighted averaging of two data points
randomly selected from the dataset, in the same manner as in papers [3–5], is
used. As the dataset of the test case, the whole dataset is used. A different set
of 10,000 queries from the training example is used for the test case.

For the DeCAF dataset, we decided to use one eighth of 1 million data points
as the dataset of the training example, and other 5,000 data points as queries.
For the test case, we use the entire 1 million dataset and 1,000 queries provided
by Profiset, which are disjoint from the queries of the training example.

Table 3 summarizes the training example and the test case for each dataset.

4.3 Experiments on Image Dataset

LS and AIR algorithms use the neighborhood Nb(P ) of the tuple of pivots P .
Using our experience with the QBP, we choose one of the 2m corners of the data
space with dimensionality m as the center of pivot, and determine the radius
by the median of the distances between the center and data points. Therefore,
we regard that P has m · w parameters for sketches with width w. It is natural
that a neighborhood of P is obtained by inverting only one parameter between
MIN and MAX . However, to reduce the number of iterations of LS and AIR,
we invert 10 parameters at once in the initial trials. The number of parameters
to be inverted is gradually decreasing and only one is inverted at the final stage.

We use the AIR as a kind of simulated annealing, where cooling schedule is
very important. In the AIR, we use a monotonically decreasing function size(t)
that specifies the size of resampling at the time t instead of temperature. Accord-
ing to [6], we can determine size(t) so that the AIR’s resampling schedule is
compatible with the cooling schedule of the ordinal simulated annealing (SA, for
short).

Let T0 be the initial temperature and Tr the ratio of the current temperature
T with respect to T0, that is:

T = T0 · Tr (0 < Tr < 1).

Table 3. Training examples and test cases

Dataset Training example Test case

n |Q| n |Q|
Image 6.9 million × 1

16
10,000 6.9 million 10,000

DeCAF 1 million ×1

8
5,000 1 million 1,000

Here, we adopt the most standard cooling schedule in which the temperature
decreases linearly. Let Progress be the ratio of the number of the trials already
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done with the total number of trials, which is corresponding to
t

N -trials
in AIR

of Algorithm 2. Then,

Tr = 1 − Progress.

As similarly to selecting T0 for the initial temperature, we have to select s0
for the initial resampling size. Let s0 > 0 be arbitrarily selected for the initial
resampling size, that is, size(0) = s0 . Then, we can determine the resampling
size for t > 0 by the following:

size(t) =
|Q|(

|Q|−s0
s0

)
T 2
r + 1

,

where |Q| is the number of queries in the sample Q.
The choice of the initial resampling size may affect not only computing cost

but also the optimization quality when N -trials is not large enough. The smaller
the initial resampling size is, the smaller the computing cost required for the
optimization is. This property is one of the key benefits of the AIR over the
SA. However, too small initial resampling size corresponds to a very high initial
temperature in the SA, where stable and better solutions cannot be obtained
unless the number of transition trials is increased. In our experiments, |Q| =
10, 000 (Image), |Q| = 5, 000 (DeCAF) and N -trials ≥ 105, we choose s0 = 10.

Table 4 summarizes the results of pivot selection by the LS and AIR, where
the computational efficiency is observed from the elapsed time of pivot selection
in the row of Time, as well as the quality of optimization from the ratios k′/n of
the number of candidates k′ to the dataset size n needed to achieve the respective
search recall. All values are averages over 5 runs using different random seeds.
Note that the LS and AIR randomly select a neighbor from Nb(P ) and the
AIR randomly selects a resampling. We omit the NN search time by Search-
BysketchEnum using selected tuple of pivots, which is determined only by k′

when w is fixed. Later, we present the shortest NN search times using the best
tuples of pivots.

Table 4. Pivot selection for image dataset

Optimization
method

N -trials Optimization time Filtering performance: k′/n to achieve recall

75% 80% 85% 90% 95%

LS 5,000 7.4 (min) 0.142% 0.256% 0.466% 0.924% 2.27%

10,000 15 (min) 0.138% 0.244% 0.450% 0.910% 2.20%

15,000 23 (min) 0.136% 0.240% 0.446% 0.900% 2.21%

AIR 500,000 91 (min) 0.128% 0.222% 0.404% 0.832% 2.02%

1,000,000 181 (min) 0.118% 0.210% 0.384% 0.762% 1.89%
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By comparing results in Table 2 and Table 4, we can observe that both
methods can find better tuples of pivots than SelectPivotQBP. For exam-
ple, to achieve 90% recall, SearchBysketchEnum using the tuple of pivots
obtained by SelectPivotQBP needs k′/n = 1.5% (see Table 2), while using
the tuple of pivots optimized by the AIR with N -trials = 1, 000, 000 needs only
k′/n = 0.762%.

When using the LS, the results are being improved just until N -trials =
15, 000, because the number of parameters of the tuple of pivots for the Image
dataset is m ·w = 1, 152, and the LS gets stuck in a local optimum after approxi-
mately 20,000 trials. On the other hand, the AIR can find better tuples of pivots,
but needs more computing cost. Here we point out that the running time of the
AIR with N -trials = 500, 000 is approximately 12 times bigger than the run-
ning time of the LS with N -trials = 5, 000. Since the SA usually uses the whole
training example to evaluate the objective function, the SA needs optimization
time almost same as the LS. Therefore, when N -trials = 500, 000, the AIR is
expected to be about 8 times faster than the ordinal SA.

4.4 Experiments on DeCAF Dataset

Since we use sketches of width w = 22 for the DeCAF dataset which consists
of vectors of length m = 4, 096, we have to carefully set the neighborhood for
the tuple of pivots since the number of parameters w · m = 90, 112 provides
many possibilities. If about 10 parameters are inverted at once, similarly as in
the case of the Image dataset, a very large number of N -trials is required until
a satisfactory solution is obtained for both LS and AIR. Also, simply increasing
the number of inverting parameters does not work because it reduces the chance
of moving to a better solution in the optimization process. Therefore, when the
LS is used, we replace one of the w pivots with the one obtained by QBP, and
use it as the neighborhood when searching for pivots. When the AIR is used, we
need a slight modification on the neighborhood. In each trial, we make the AIR
to choose a pivot with the smallest difference to the current one from 50 pivots
obtained by QBP.

The results are summarized in Table 5. Increasing N -trials from 5,000 to
15,000 for the LS does not significantly improve the tuple of pivots. The AIR
with N -trials = 500,000 selects better tuple of pivots than the AIR with
N -trials = 100,000.

4.5 Speed Tests by the Best Tuples of Pivots

Finally, we summarize the shortest NN search times achieved by SearchBy-
sketchEnum using the best tuples of pivots. For Image dataset, the best tuple
of pivots is selected by AIR with N -trials = 1,000,000. For the DeCAF dataset,
it is selected by AIR with N -trials = 500,000. The shortest NN search times
to achieve the recall of 75%, 80%, 85%, 90%, 95% on average are provided in
Table 6. For instance, the NN search with recall = 90% takes 1.7 ms per query
in case of Image dataset. This is by 43 % less in comparison with 3 ms per
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query required by SearchBysketchEnum using the tuple of pivots selected
by SelectPivotQBP (see Table 2). In case of the DeCAF dataset, we reduce
the NN search time from 48 to 27 ms, again when fixing the average recall of
the searching to 90 %. Thus proposed method for pivot selection by AIR using
accelerated evaluation algorithm EvalRecallBysketchEnum can provide a
significantly better tuple of pivots, by which the more accurate and faster NN
search is achieved.

We also performed 100-NN queries using the DeCAF dataset to verify the
robustness of our method. The number of candidates k′/n = 3.0% imply the
query execution time 40 ms per query, and the recall just 75 %.

Table 5. Pivot selection for DeCAF dataset

Optimization
method

N -trials Optimization time Filtering performance: k′/n to achieve recall

75% 80% 85% 90% 95%

LS 5,000 25 (min) 1.02% 1.42% 2.19% 3.39% 6.66%

10,000 50 (min) 1.00% 1.39% 2.09% 3.33% 6.67%

15,000 74 (min) 1.01% 1.43% 2.15% 3.31% 6.74%

AIR 100,000 98 (min) 1.02% 1.41% 2.01% 3.17% 6.06%

500,000 490 (min) 0.95% 1.33% 1.99% 2.99% 5.42%

Table 6. NN search time using the best tupples of pivots

Dataset NN search time (ms/query) for recall

75% 80% 85% 90% 95%

Image 0.27 0.47 0.85 1.7 4.2

DeCAF 8.3 12 18 27 53

5 Conclusion

We proposed a method of pivot selection for sketches by optimization algorithms
that use the recall of the NN search as the objective function. By experiments,
we confirmed that optimized sketches reduce of the NN search time by 40% for
both of two real-life datasets keeping the recall = 90%. As a future work, we
plan to use the recall of the k-NN search as the objective function for k > 1.
In this paper, we run all the experiments with the data stored in the memory.
Therefore, we want to focus on the efficiency of the similarity search in more
realistic setting for very large-scale datasets where data does no longer fit into
the main memory.
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Abstract. Many large multimedia applications require efficient process-
ing of nearest neighbor queries. Often, multimedia data are represented
as a collection of important high-dimensional feature vectors. Existing
Locality Sensitive Hashing (LSH) techniques require users to find top-k
similar feature vectors for each of the feature vectors that represent the
query object. This leads to wasted and redundant work due to two main
reasons: 1) not all feature vectors may contribute equally in finding the
top-k similar multimedia objects, and 2) feature vectors are treated inde-
pendently during query processing. Additionally, there is no theoretical
guarantee on the returned multimedia results. In this work, we propose
a practical and efficient indexing approach for finding top-k approxi-
mate nearest neighbors for multimedia data using LSH called mmLSH,
which can provide theoretical guarantees on the returned multimedia
results. Additionally, we present a buffer-conscious strategy to speed up
the query processing. Experimental evaluation shows significant gains
in performance time and accuracy for different real multimedia datasets
when compared against state-of-the-art LSH techniques.

Keywords: Approximate nearest neighbor search · High-dimensional
spaces · Locality Sensitive Hashing · Multimedia indexing

1 Introduction

Finding nearest neighbors in high-dimensional spaces is an important problem
in several multimedia applications. In multimedia applications, content-based
data objects, such as images, audio, videos, etc., are represented using high-
dimensional feature vectors. Locality Sensitive Hashing (LSH) [8] is one of the
most popular solutions for the approximate nearest neighbor (ANN) problem
in high-dimensional spaces. Since it was first introduced in [8], many variants
of LSH have been proposed [4,7,9,13] that mainly focused on improving the
search accuracy and/or the search performance of the given queries. LSH is
known for two main advantages: its sub-linear query performance (in terms of
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the data size) and theoretical guarantees on the query accuracy. While the origi-
nal LSH index structure suffered from large index sizes (in order to obtain a high
query accuracy), state-of-the-art LSH techniques [7,9] have alleviated this issue
by using advanced methods such as Collision Counting and Virtual Rehashing.
Thus, owing to their small index sizes, fast index maintenance, fast query per-
formance, and theoretical guarantees on the query accuracy, we propose to build
mmLSH upon existing state-of-the-art LSH techniques.

Motivation of Our Work: Drawbacks of LSH on Multimedia Data
Popular feature extraction algorithms, such as SIFT, SURF (for images),
Marsyas (for audio), etc., extract multiple features that collectively represent
the object of interest for improved accuracy during retrieval. Hence, if a user
wants to find similar objects to a given query object, nearest-neighbor queries
have to be performed for every individual feature vector representing the query
object (and then these intermediate results are aggregated to find the final object
results (Sect. 4)). Existing techniques treat these individual feature vectors as
independent of each other, and hence cannot leverage common elements between
these feature vector queries for improved query performance. Most importantly,
existing techniques can only give theoretical guarantees on the accuracy of the
individual feature vector queries, but not on the final object results, unlike our
proposed index structure, mmLSH.

Contributions of this Paper: In this paper, we propose a practical and effi-
cient indexing approach for finding top-k approximate nearest neighbors for
multimedia data using LSH, called mmLSH. To the best of our knowledge, we
are the first work to provide a rigorous theoretical analysis for answering approx-
imate nearest neighbor queries on high-dimensional multimedia data using LSH.
Our main contributions are:

– mmLSH can efficiently solve approximate nearest neighbor queries for mul-
timedia data while providing rigorous theoretical analysis and guarantees on
the accuracy of the query result.

– Additionally, we present an advanced buffer-conscious strategy to speedup
the processing of a multimedia query.

– Lastly, we experimentally evaluate mmLSH, on diverse real multimedia
datasets and show that mmLSH can outperform the state-of-the-art solu-
tions in terms of performance efficiency and query accuracy.

2 Related Work

LSH was originally proposed in [8] for the Hamming distance and then later
extended to the popular Euclidean distance [6]. C2LSH [7] introduced two main
concepts of Collision Counting and Virtual Rehashing that solved the two main
drawbacks of E2LSH [6]. QALSH [9] used these two concepts to build query-
aware hash functions such that the hash value of the query object is considered as
the anchor bucket during query processing. [19] proposes an efficient distributed
LSH implementation which includes a cache-conscious hash table generation
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(to avoid cache misses to improve the index construction time). Our proposed
cache-conscious optimization is to improve the efficiency of the query processing
(and hence very different).

Query Workloads in High-Dimensional Spaces: Until now, only two works
[10,15] have been proposed that focus on efficient execution of query workloads
in high-dimensional spaces. Neither of these two works provide a rigorous theo-
retical guarantees on the accuracy of the final result. In [15], the authors propose
to efficiently execute set queries using a two-level index structure. The problem
formulation, which is quite restrictive compared to our work, states that a point
will be considered in the result set only if it satisfies a certain user-defined per-
centage of the queries in the query workload. In [10], the authors build a model
based on the cardinality and dimensionality of the high-dimensional data to effi-
ciently utilize the cache. The main drawback of these two approaches is that
they require prior information that is found by analyzing past datasets. Hence
the accuracy and efficiency of the index structures is determined by the accuracy
of the models. Our proposed work is very different from these previous works:
mmLSH does not require any training models and additionally, we provide a
theoretical guarantee on the accuracy of the returned results.

3 Key Concepts and Problem Specification

A hash function family H is (R, cR, p1, p2)-sensitive if it satisfies the following
conditions for any two points x and y in a d-dimensional dataset D ⊂ R

d: if
|x − y| ≤ R, then Pr[h(x) = h(y)] ≥ p1, and if |x − y| > cR, then Pr[h(x) =
h(y)] ≤ p2. Here, p1 and p2 are probabilities and c is an approximation ratio. LSH
requires c > 1 and p1 > p2. In the original LSH scheme for Euclidean distance,
each hash function is defined as ha,b(x) =

⌊
a.x+b

w

⌋
, where a is a d-dimensional

random vector and b is a real number chosen uniformly from [0, w), such that w
is the width of the hash bucket [6]. C2LSH [7] showed that two close points x
and y collide in at least l hash layers (out of m) with a probability 1 − δ.

Given a multidimensional database D, D consists of n d-dimensional points
that belongs to R

d. Each d-dimensional point xi is associated with an object Xj

s.t. multiple points are associated with a single object. There are S objects in
the database (1 ≤ S ≤ n), and for each object Xj , set(Xj) denotes the set of
points that are associated with Xj . Thus, n =

∑S
j=1 |Xj |.

Our goal is to provide a k-NN version of the c-approximate nearest neighbor
problem for multidimensional objects. For this, we propose a notion of distance
between multidimensional objects called Γ -distance (defined in Sect. 4.1) and
that depends on a percentage parameter that we denote by Γ .

Let us denote the Γ -distance between two objects X1 and X2 by
Γdist(X1,X2). For a given query object Q, an object Xj is a Γ -c-approximate
nearest neighbor of Q if the Γ -distance between Q and Xj is at most c times
the Γ -distance between Q and its true (or exact) nearest neighbor, X∗

j , i.e.
Γdist(Q,Xj) ≤ c × Γdist(Q,X∗

j ), where c > 1 is an approximation ratio.
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Similarly, the Γk-NN version of this problem states that we want to find k
objects that are respectively the Γ -c-approximate nearest neighbors of the exact
k-NN objects of Q.

4 mmLSH

The Borda Count method [17] (along with other aggregation techniques [16])
are popular existing techniques to aggregate results of multiple point queries to
find similar objects in multimedia retrieval [2]. In order to find top-k nearest
neighbor objects of multimedia object query Q, the existing methods find the
top-k′ nearest neighbor points for each query point qi, where 1 ≤ i ≤ |set(Q)|,
k is the number of desired results by the user, and k′ is an arbitrarily chosen
number such that k′ >> k [2]. Once the top-k′ nearest neighbors of each query
point qi is found, an overall score is assigned to each multimedia object Xj based
on the depth of the points (associated with Xj) in the top-k′ results for each
of the point queries qi of Q. Drawbacks of this approach: 1) there is no
theoretical guarantee for the accuracy of the returned top-k result objects, and
2) all query points qi of the query object Q are executed independently of each
other. Hence, if a query point takes too long to execute as compared to others,
then the overall processing time is negatively affected. Our proposed method,
mmLSH, solves both these drawbacks as explained in the next sections.

4.1 Key Definitions of mmLSH

Justification for Using R-Object Similarity and Γ -distance: In order to
define two Nearby Objects, we first define a similarity/distance measure between
two objects in the context of ANN search. Note that, there have been several
works that have defined voting-based similarity/distance measures between two
multimedia objects, especially images [11,22,23]. Also, region-based algorithms
have been explored in the past, whose main strategy is to divide the query object
in regions and compare these with regions of the dataset objects via some region
distance, and then aggregate the resulting distances [1]. In this work we define
the Γ -distance as a way to measure distances between objects as a whole. Our
definition follows the naive strategy of comparing all pairs of features of the
objects but it uses a percentage parameter Γ to ensure two identical objects
have a near zero distance. Another key advantage of the proposed distance is
that it allows us to provide theoretical guarantees for our results. In order to do
so, we leverage the theoretical guarantees of LSH in our design.

Definition 1 (R-Object Similarity). Given a radius R, the R-Object Sim-
ilarity between two objects Q and Xj, that consists of set(Q) and set(Xj) d-
dimensional feature vectors respectively, is defined as:

sim(Q,Xj , R) =
|{q ∈ set(Q), xi ∈ set(Xj) : ||q − xi|| ≤ R}|

|set(Q)|.|set(Xj)|
(1)
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Note that, 0 ≤ sim(Q,Xj , R) ≤ 1. sim(Q,Xj , R) will be equal to 1 if every
point of Q is a distance at most R to every point of Xj (e.g. if you are comparing
an entirely green image with another green image - and assuming the feature
vectors were based on the color of the pixel. But if you are comparing two
identical images, then sim(Q,Xj , R) < 1 if R is less than the largest among
||q−xi||). Since the number of points associated with two objects can be different,
we normalize the similarity w.r.t the points associated with Q and Xj .

Definition 2 (Γ -distance). Given a two objects Q and Xj, the Γ -distance
between Q and Xj is defined as:

Γdist(Q,Xj) = inf{R | sim(Q,Xj , R) ≥ Γ} (2)

In order to find points that are within R distance, we use the Collision
Counting method that is introduced in C2LSH [7].

We define a Collision Index (denoted by ci(Q,Xj) that determines how close
two objects are based on the number of points between the two objects that are
considered close (i.e. the collision counts between the points of the two objects
is greater than the collision threshold l).

Definition 3 (Collision Index of Two Objects). Given two objects Q and
Xj, the collision index of Xj with respect to Q is defined as:

ci(Q,Xj) =
|{q ∈ set(Q), xi ∈ set(Xj) : cc(q, xi) ≥ l}|

|set(Q)|.|set(Xj)|
(3)

The Collision Index between two objects depends on how many nearby points
are considered as candidates between the two objects. Thus, in turn, the accuracy
of the collision index depends on the accuracy of the collision counting process
(which is shown to be very high [7,9]). Hence we define an object Xj to be a Γ -
candidate if the collision index between them is greater than or equal to (1−ε)Γ ,
where ε > δ is an approximation factor which we set to 2δ.

Definition 4 (Γ -candidate Objects). Given an object query Q and an object
Xj, we say that Xj is a Γ -candidate with respect to Q if ci(Q,Xj) ≥ (1 − ε)Γ .

Additionally, we define an object to be a Γ -false positive if it is a Γ -candidate
but its Γ -distance to the object query is too high.

Definition 5 (Γ -False Positives). Given an object query Q and an object Xj,
we say Xj is a Γ -false positive with respect to Q if we have ci(Q,Xj) ≥ Γ + β

2
but Γdist(Q,Xj) > cR.

4.2 Design of mmLSH

During query processing, instead of executing the query points of Q indepen-
dently, we execute them one at a time in each projection (Lines 5–6 in Algo-
rithm1). The function CountCollisions(qi) (Line 7), an existing function from
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Algorithm 1. k-Nearest Neighbor Object
1: while TRUE do
2: if |{Xj |Xj ∈ CL ∧ Γdist(Q, Xj) ≤ cR}| ≥ k then
3: return the top-k objects from CL;
4: end if
5: for g = 1; g ≤ m; g + + do
6: for i = 1; i ≤ |set(Q)|; i + + do
7: CountCollisions(qi);
8: ∀Xj∈S Update ci(Q, Xj);
9: end for

10: if |CL| ≥ k + βS then
11: return the top-k objects from CL;
12: end if
13: end for
14: R = cnumIter;
15: numIter + +;
16: end while

C2LSH, is responsible for counting collisions of query points and points in the
database. The Buffer-conscious Optimizer module (Sect. 4.3) is responsible for
finding an effective strategy to utilize the buffer to speed up the query process-
ing. This module decides which query and the hash bucket should be processed
next. The Γ -Analyzer module is in charge of calculating the collision indexes
(Sect. 4.1) for objects in the database and for checking/terminating the process
if the terminating conditions are met.

Terminating Conditions for mmLSH: The existing solution (Sect. 4) finds
top-k′ candidates for each query point in Q and then terminates. Instead,
mmLSH stops when top-k objects are found. These conditions guarantee that
Γ -c2-approximate NN are found with constant probability (Sect. 4.4):

T 1) At certain point at level-R, at least k+βS Γ -candidates have been found,
where βS is the allowed number of false positives. (Line 14, Algorithm1)
T 2) At the end of level-R, there exists at least k Γ -candidates whose Γ -
distance to Q is at most R. (Line 6, Algorithm 1)

4.3 Buffer-Conscious Optimization for Faster Query Processing

Another goal of mmLSH is to improve the processing speed by efficiently utilizing
a given buffer space. In order to explain our strategy, we first analyze the two
expensive operations and the two naive strategies for solving the problem. The
two main dominant costs in LSH-based techniques are the Algorithm time (which
is the time required to find the candidate points that collide with the given query
point) and the Index IO time (which is the time needed to bring the necessary
index files from the secondary storage to the buffer).

Due to space limitations, we do not present a formal cost model for this
process. Our main focus is on minimizing the above mentioned two dominant
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costs: algorithm time and index IO time. We want to store the most important
hash buckets from the cache to maximize total number of buffer hits.

Table 1. Performance comparison of naive strategies NS1 and NS2 (in sec)

Total AlgTime IndexIOTime

NS1: LRU 263.6 117.6 146.0

NS2: Per-Bucket 279.5 260.8 18.7

Fig. 1. (a) Query split strategy, (b) Comparison of exact and approx. Frequencies on
a real and random query

Naive Strategy 1: Using LRU Eviction Strategy on a Given Buffer.
Given Q, we first find the hash bucket locations for each of point queries of Q. In
order to make the LRU (Least Recently Used) eviction strategy more effective,
in each hash function m, we order the execution of point queries of Q according
to the hash bucket locations from left to right. During query processing, we evict
the LRU index files from the buffer when the buffer gets full.

Naive Strategy 2: Using a Per-bucket Execution Strategy. Since one of
our goals is to reduce the indexIOCost, we also consider a Per-bucket execution
strategy. Given a query object Q, we bring each useful hash bucket, hb, into the
buffer, and for every q in Q that requires hb, we perform Collision Counting to
find the candidate nearest neighbor points to the point query. In Fig. 1(a), this
strategy would bring in hb1 (then solve for q1), then bring hb2 (and then solve
for q1 and q2, since both queries using hb2) and so on.

As seen from Table 1, NS1, due to its simplicity, has a lot smaller AlgTime
than NS2, but its IndexIOTime is a lot more than NS2. NS2 needs to find the
queries that require the particular hash bucket brought into the main memory.
While this process can be sped up with more index structures, it is still an
expensive operation to check for all queries. In each projection , since a hash
bucket is brought into the buffer only once for NS2, IndexIOTime is the lowest.

Hence we propose an efficient and effective buffer-conscious strategy that
reduces the IndexIOTime of NS1 without adding significant overhead to the
AlgTime. Instead of using LRU, our eviction strategy is to evict a bucket based
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on the following three intuitive criteria. Criterion 1: if the bucket was not added
to the buffer very recently. When a bucket is added to the buffer, then there is
a high likelihood that another query might use it in the near future. Criterion
2: if the bucket is far away from the current query. It is more beneficial to evict
another bucket that is far apart in the projection than the position of the current
query. Criterion 3: if the number of queries that still require this bucket (called
frequency of the bucket) is the lowest after the first two criteria are satisfied.
Criterion 3 ensures that a bucket needed by a lot of queries is not evicted.

The main challenge is that the main criterion (Criterion 3) requires mmLSH
to know the frequencies of each bucket to decide which bucket to evict. This is an
unfair expensive requirement to have in online query processing. Across different
multimedia datasets, we observed that the frequencies of buckets on collection of
queries associated with an object showed a behavior very similar to a collection
of randomly chosen queries. Figure 1(b) shows that the bucket frequencies for a
randomly chosen query from the Wang [21] dataset exhibit a similar pattern for
a set of randomly generated point queries on a single projection.

Projection-Dividing Strategy: We use the above stated important observa-
tion to estimate the frequencies of buckets during offline processing. The follow-
ing is the overview: 1) We divide a projection into different regions. Too few
divisions will result in a high error between the estimated and actual frequen-
cies. Too many divisions will also result in a high error because if the frequency
behavior is slightly deviated than the random queries’ behavior, then we assign
same frequencies as that of the random queries. For this paper, we empirically
decide the total number of divisions (set to 10). 2) We calculate the average
frequencies for the random point queries for each region, and assign the region’s
frequency to each bucket in that particular region. 3) For each projection, we
assign approximate frequencies to all buckets in each projection.

Query-Splitting Strategy: In order to utilize the buffer more effectively, we
split the queries into multiple sub-queries and reorder the execution of the queries
based on these new set of queries. In Fig. 1(a), the query execution order will
change from q1, q2, q3 to q1a, q2a, q1b, q3a, q2b, q3b to utilize the buffer more
effectively. Note that too many splits is still detrimental due to the increase in
the overall Algorithm time (like Naive Strategy 2). We also try different number
of splits and get the overall times of 173, 169, 171, and 176 s for 5, 10, 15, and 20
splits respectively. In this work, we empirically find a good split (that is found
during the indexing phase, and set to 10).

4.4 Theoretical Analysis

Guarantees on the Stopping Conditions. The goal of this section is to
prove the following theorem which provides a theoretical guarantee to mmLSH.
For simplicity we perform the theoretical analysis for the case k = 1, the general
case follows similarly after simple adaptations.
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Theorem 1. Let Q be a query object and let L = min{|X| | X ∈ D}. If

Γ ≥

√√
√
√max

{
ln 1

δ

(ε − δ)2|Q|L,
2 ln 2

β

β2|Q|L

}

,

then mmLSH finds a Γ -c2-approximate NN with constant high probability.

For the proof of this theorem we need the following lemma. For this, we
consider the following two properties for a given query object Q and level R:

P1) If X is an object such that Γdist(Q,X) ≤ R then X is a Γ -candidate.
P2) The number of Γ -false positives is at most βS.

In the next lemma, we show that the above properties hold with high probability.

Lemma 1. Let δ be the probability defined in Sect. 3 and ε > δ as defined in
Sect. 4.1, then if Γ satisfies the inequality in Theorem1 we have Pr[P1] ≥ 1 − δ
and Pr[P2] > 1

2 .

Proof. For qi ∈ set(Q) and xj ∈ set(X), let A be the condition cc(q, xj) ≥ l, B
be ||q − xj || ≤ R, and C be ||q − xj || > cR. From the proof of Lemma 1 in [7]
we know the following inequalities hold:

Pr[A|B] ≥ 1 − δ and Pr[¬A|C] ≥ (1 − exp(−2(α − p2)2m)) ≥ (1 − β

2
). (4)

We proceed to prove inequality Pr[P1] ≥ 1−δ. Assume Γdist(Q,X) ≤ R, which
is equivalent to Pr[||qi − xj || ≤ R] ≥ Γ, where qi ∈ set(Q) and xj ∈ set(X).
Therefore, p = Pr[A] ≥ Pr[A ∧ B] = Pr[A|B]Pr[B] ≥ (1 − δ)Γ, where the last
inequality follows from the left hand side inequality in Eq. (4).

For every 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |X|, let Yi,j ∼ Ber(1 − p) be a Bernoulli
random variable which is equal to 1 if cc(qi, xj) < l. Then

Pr[ci(Q,X) ≥ (1 − ε)Γ ] = 1 − Pr[
∑

i,j

Yi,j ≥ (1 − (1 − ε)Γ )|Q||X|]

≥ 1 − exp(−2(ε − δ)2Γ 2)|Q||X|,

where the inequality follows from Hoeffding’s Inequality. Therefore for the given
range of Γ we have Pr[P1] = Pr[ci(Q,X) ≥ (1 − ε)Γ ] ≥ 1 − δ.

We continue with the proof of Pr[P2] > 1
2 . For this, we assume

Γdist(Q,X) > cR. Which is equivalent to Pr[||qi − xj || > cR] ≥ 1 − Γ. Then

1 − p = Pr[¬A] ≥ Pr[¬A ∧ C] = Pr[¬A|C]Pr[C] ≥ (1 − β

2
)(1 − Γ )

where the last inequality follows from the right hand side inequality in Eq. (4).
Therefore, p ≤ Γ + β

2 − βΓ
2 . For every 1 ≤ i ≤ |Q| and 1 ≤ j ≤ |X|, let

Yi,j ∼ Ber(1 − p) be a Bernoulli random variable defined as above. Thus

Pr[ci(Q,X) ≥ Γ +
β

2
] = Pr[

∑

i,j

Yi,j ≤ (1 − Γ − β

2
− Δ)|Q||X|]
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for some Δ > 0. Thus, from Hoeffding’s Inequality it follows that

q = Pr[ci(Q, X) ≥ Γ +
β

2
] < exp(−2(Γ +

β

2
− p)2|Q||X|) ≤ exp(−2

(β

2

)2
Γ 2|Q||X|).

Let FP be the set of false positives, that is FP = {X ∈ D | ci(Q,X) ≥
Γ + β

2 and Γdist(Q,X) > cR}, then Pr[P2] = Pr[|FP | ≤ βS]. Therefore, it
suffices to show the latter is larger than 1

2 .
Let X1, . . . , XS denote the elements of D. For every 1 ≤ i ≤ S let Zi ∼ Ber(q)

be the Bernoulli random variable which is equal to one if Xi ∈ FP . Then the
expected value of the size of FP satisfies

E(|FP |) = E(
∑

i

Zi) =
∑

i

E(Zi) = S · q < S · exp(−2
(β

2
)2

Γ 2|Q||X|).

Therefore, from Markov’s Inequality it follows that

Pr[|FP |] ≤ βS]1− ≥ E[|FP |]
βS

> 1 − 1
β

exp(−2
(β

2
)2

Γ 2|Q||X|) ≥ 1
2
,

where the last inequality holds by the assumption on Γ . This finishes the proof.

We are now ready to prove the theorem.

Proof (of Theorem 1). By Lemma 1 properties P1 and P2 hold with constant
high probability. Therefore, we may assume these properties hold simultaneously.

Let r be the smallest Γ -distance between Q and an object of D. Set t =
�logc r	 and R = ct.

Assume first that the algorithm finishes with terminating condition T 1, that
is at level R at least 1 + βS Γ -candidates have been found. By property P2
at most βS of these are false positives. Let X be the object returned by the
algorithm, then we have Γdist(Q,X) ≤ cR ≤ c2r.

Now, if the algorithm does not finish with T 1, then property P1 guarantees
it finishes with T 2 at the end of level R. Let X be the object returned by the
algorithm, then we have Γdist(Q,X) ≤ R ≤ cr < c2r. This finishes the proof.

5 Experimental Evaluation

In this section, we evaluate the effectiveness of mmLSH on four real multimedia
data sets. All experiments were run on the nodes of the Bigdata cluster1 with:
two Intel Xeon E5-2695, 256 GB RAM, and CentOS 6.5 operating system. We
used the state-of-the-art C2LSH [7] as our base implementation.2 All codes were
written in C++11 and compiled with gcc v4.7.2 with the -O3 optimization flag.
For existing state-of-the-art algorithms (C2LSH and QALSH), we used the Borda
Count process (Sect. 4) to aggregate the results of the point queries to find the

1 Supported by NSF Award #1337884.
2 mmLSH can be implemented over any state-of-the-art LSH technique.
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nearest neighbor objects. Additionally, since the accuracy and the performance
of the aggregation is affected by the chosen number of top-k′ results of the
point queries, we choose a varying k′ for Linear, C2LSH, and QALSH for a fair
comparison: k′ = 25, 50, 100. We also implement an LRU buffer for the indexes
in C2LSH and QALSH to show a fair comparison with our results. We compare
our work with the following alternatives:

– LinearSearch-Borda: In this alternative, the top-k′ results of the point
queries are found using a brute-force linear search. This method does not
utilize the buffer since it does not have any indexes.

– C2LSH-Borda: top-k′ results of point queries are found using C2LSH [7].
– QALSH-Borda: top-k′ results of point queries are found using QALSH [9].

5.1 Datasets

We use the following four real multimedia datasets to evaluate mmLSH :

– Caltech [3] This dataset consists of 3,767,761 32-dimensional points that
were created using BRIEF on 28,049 images belonging to 256 categories.

– Corel [5] This dataset consists of 1,710,725 64-dimensional points that were
created using SURF on 9,994 images belonging to 100 categories.

– MirFlicker [14] This dataset consists of 12,004,143 32-dimensional points
that were created using ORB on 24,980 images.

– Wang [21] This dataset consists of 695,672 128-dimensional SIFT descriptors
belonging to 1000 images. These images belong to 10 different categories.

5.2 Evaluation Criteria and Parameters

We evaluate the execution time and accuracy using the following criteria:

– Time: Two main dominant costs in LSH-based techniques are the algorithm
time and the index IO time. We observed that index IO times were not con-
sistent (i.e. running the same query multiple times, would return drastically
different results, mainly because of disk cache and instruction cache issues).
Thus, the overall execution time is modeled for an HDD where an average
disk seek requires 8.5 ms and an average data read rate is 0.156 MB/ms [18].

– Accuracy: Similar to the ratio defined in earlier works [7,9], we define an
object ratio to calculate the accuracy of the returned top-k objects as fol-
lowing: ORΓ (Q) = 1

k

∑k
i=1

Γdist(Q,Xi)
Γdist(Q,X∗

i )
where X1, . . . , Xk denote the top-k

objects returned from the algorithm and X∗
1 , . . . , X∗

k denote the real objects
found from the ground truth. Γdist is computed using Eq. 2. Object Ratio of
1 means 100% accuracy and as it increases, the accuracy decreases.

We do not report the index size or the index construction cost, since they would
be the same as the underlying LSH implementation that we use (C2LSH [7]).

We choose δ = 0.1, β = 25
S , ε = 0.2, w = 2.184 [9] for C2LSH and mmLSH,

w = 2.7191 [9] for QALSH. We randomly chose 10 multimedia objects as queries
from each dataset and report the average of the results.
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5.3 Discussion of the Results

In this section, we analyze the execution time and accuracy of mmLSH using the
criteria explained in Sect. 5.2 against its alternatives. We note that QALSH gives
drastically worse times than C2LSH, and hence when comparing the effectiveness
for varying parameters, we only compare with C2LSH.

Effect of Buffer Size: Figure 2(a) shows the benefit of our eviction strategy
(Sect. 4.3) when compared with C2LSH + LRU for varying buffer sizes. It is
evident from this figure that our three criterion are helpful in evicting less useful

Fig. 2. Effect of (a) Buffer size on time, (b) Varying k on time and accuracy

Fig. 3. Comparison of time of mmLSH against alternatives

Fig. 4. Comparison of accuracy of mmLSH against alternatives
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index files. The small overhead in Algorithm time is offset by a significant reduc-
tion in the number of index IOs. We found out that the highest L3 cache size is
24.75 MB for desktop processors and 60MB for server processors. Therefore, we
decided to choose the buffer sizes between 20 MB and 50 MB. We use 30 MB as
the default cache size in the following experiments.

Effect of Number of Desired Objects: Figure 2(b) shows the execution time
and accuracy of mmLSH against C2LSH for varying number of desired objects
(k). This figure shows that mmLSH has better time and object ratio for different
k values. Additionally, it shows that mmLSH is scalable for a large number of
desired objects as well. Moreover, although the object ratio of mmLSH stays
the same by increasing k, the object ratio of C2LSH increases. We use k = 25
as the default for the following experiments.

Comparison of mmLSH vs. State-of-the-art Methods. Figures 3 and 4
show the time and accuracy of mmLSH, LinearSearch-Borda, C2LSH-Borda,
QALSH-Borda for 4 multimedia datasets with varying characteristics. The Borda
count process is done after query processing and takes very negligible time. Note
that, In our work, we consider all feature-vectors that are extracted by a feature-
extraction algorithm. Several works [12,20] have been proposed that cluster these
points with the purpose of finding a representative point to reduce the complexity
and overall processing time of the problem. Our work is orthogonal to those
approaches and hence are not included in this paper.

For the Caltech and MirFlickr datasets, QALSH did not finish the exper-
iments due to their slow execution and hence are not included in the charts.
The slow execution is mainly due to the use of the B+-tree index structures
to find the nearest neighbors in the hash functions. mmLSH always returns a
higher accuracy than the alternatives while being much faster than all three
alternatives. This is because mmLSH is able to leverage the common elements
between queries and improve cache utilization along with being able to stop
earlier than the state-of-the-art algorithms. For future work, we plan on investi-
gating the application of mmLSH to other distance measures and compare with
other feature vector aggregation techniques [11].

6 Conclusion

In this paper, we presented a novel index structure for efficiently finding top-k
approximate nearest neighbors for multimedia data using LSH, called mmLSH.
Existing LSH-based techniques can give theoretical guarantees on these individ-
ual high-dimensional feature vector queries, but not on the multimedia object
query. These techniques also treat each individual feature vector belonging to
the object as independent of one another. In mmLSH, novel strategies are used
that improve execution time and accuracy of a multimedia object query. Addi-
tionally, we provide rigorous theoretical analysis and guarantees on our returned
results. Experimental evaluation shows the benefit of mmLSH in terms of exe-
cution time and accuracy compared to state-of-the-art algorithms. Additionally,
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mmLSH can give theoretical guarantees on the final results instead of the indi-
vidual point queries.
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Abstract. Set similarity join (SSJ) is a well studied problem with many
algorithms proposed to speed up its performance. However, its scalability
and performance are rarely discussed in modern multicore environments.
Existing algorithms assume a single-threaded execution that wastes the
abundant parallelism provided by modern machines, or use distributed
setups that may not yield efficient runtimes and speedups that are pro-
portional to the amount of hardware resources (e.g., CPU cores). In this
paper, we focus on a widely-used family of SSJ algorithms that are based
on the filter-verification paradigm, and study the potential of speeding
them up in the context of multicore machines. We adapt state-of-the-art
SSJ algorithms including PPJoin and AllPairs. Our experiments using
12 real-world data sets highlight important findings: (1) Using the exact
number of hardware-provided hyperthreads leads to optimal runtimes for
most experiments, (2) hand-crafted data structures do not always lead
to better performance, and (3) PPJoin’s position filter is more effective
in the multithreaded case compared to the single-threaded execution.

1 Introduction

The set similarity join (SSJ) operation takes two collections (or a single collec-
tion) of records and finds all pairs of records with similarities greater than a
user-defined threshold. Many data management problems are modeled as SSJ,
such as fuzzy join of two tables on a pair of text columns, record deduplication to
remove highly similar near-duplicates, and plagiarism detection to find similar
sentences or paragraphs.

In particular, a fruitful line of research work has contributed to speeding
up filter-verification based SSJ algorithms [1,3,4,12]. The basic idea is to gen-
erate candidate pairs of records, which are a superset of the result set. Com-
putationally cheap filters are used to keep the number of candidate pairs far
below the size of the cross product of the input collection(s). Then, a verification
step computes the similarity of each candidate pair. However, filter-verification
c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 62–75, 2020.
https://doi.org/10.1007/978-3-030-60936-8_5
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approaches either use single-threaded or shared-nothing, distributed computing
paradigms (e.g., MapReduce [6,11]). Neither approach fully exploits the paral-
lelization potential provided by modern multi-socket multicore machines. Single-
threaded solutions waste the available parallelism on modern hardware. Dis-
tributed solutions can use local parallelism by running multiple executors on one
node, but assume a shared-nothing architecture that replicates data structures
such as inverted indexes multiple times on the same machine, wasting memory
and introducing cache inefficiency [6]. Surprisingly, they often cannot compete
with single-threaded algorithms in terms of runtime and data set sizes [8].

In this paper, we explore the potential of parallelizing such filter-verification
based SSJ algorithms on modern multicore machines. These machines often fea-
ture high core counts over multiple processors and exhibit non-uniform mem-
ory access (NUMA) in which remote memory access is much slower than local
accesses. In this context, we adapt existing single-core SSJ algorithms to become
parallel algorithms and discuss the performance impact of various design deci-
sions such as thread placement, filtering and record inlining to improve locality.1

Experimentally, we show how local parallelization significantly speeds up exist-
ing single-threaded approaches, without data replication and the high complexity
and cost of managing a cluster of machines. Furthermore, we find some optimiza-
tions such as position filters can work even better in parallel SSJ algorithms than
in sequential algorithms.

We provide the necessary background in Sect. 2. We then describe our app-
roach to parallelizing SSJ algorithms in Sect. 3, followed by experimental evalu-
ation in Sect. 4. Section 5 concludes this paper.

2 Background

In this section, we first define the exact SSJ problem formally and survey state-of-
the-art algorithms and related work that parallelizes SSJ on different hardware
platforms. We then give background on the hardware platform we target at, i.e.,
multi-socket, multicore servers with large main memory.

2.1 Exact Set Similarity Join

There are two categories of SSJ problems: approximate SSJ and exact SSJ. For
approximate SSJ problems, it is acceptable to output pairs that are below the
similarity threshold, and miss pairs that are above the threshold. We focus on
the exact SSJ problem: the output pairs must be correct and there should be no
missing correct pairs.

Given two collections (sets), S and R, formed over the same universe U of
tokens (set elements), and a similarity function between two sets, sim : P(U)×
P(U) → [0, 1], the SSJ between S and R computes all pairs of sets (s, r) ∈ S×R
whose similarity exceeds a user-defined threshold t, where 0 < t ≤ 1. That is,

1 Our implementation is available at https://github.com/fabiyon/ssj-sisap.

https://github.com/fabiyon/ssj-sisap
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Algorithm 1: Sequential AllPairs algorithm.
Data: R, invertedIndex, t
Result: {(r, s)|(r, s) ∈ R × R, r �= s, sim(r, s) ≥ t}

1 foreach r ∈ R do
2 candidates ← {}
3 foreach token ∈ GetPrefix(r, t) do
4 foreach s ∈ GetList(invertedIndex, token) do
5 candidates ← candidates ∪ {s}
6 foreach s ∈ candidates do
7 Verify(r, s, t)

the output is the set of all pairs (s, r) with sim(s, r) ≥ t. Following previous
work [1,8,12] on SSJ algorithms, we hereafter exemplarily focus on all-pairs
self-joins using the inverse Jaccard distance as a similarity function. However,
all subsequently described approaches can be adapted to the R × S join and
are applicable to other set similarity measures such as Cosine or Dice. All our
datasets are a single collection R of sets consisting of sorted tokens. In the
following, we use the terms set and record interchangeably.

2.2 State-of-the-Art Approaches

The exact SSJ computation can be expensive: to compute the SSJ over R, |R|·|R|
set comparisons need to be performed in the worst case. To speed up SSJ, a line of
prior work focused on minimizing the number of candidates generated. Efficient
techniques for SSJ use filters to avoid comparing hopeless record pairs, i.e., pairs
that provably cannot pass the threshold [1,4,12]. We distinguish two classes of
filters. Filter-verification techniques use set prefixes or signatures followed by
an explicit verification of candidate pairs (e.g., [1,12]). Metric-based approaches
regard each record as a point in space with each token as dimension. It partitions
the space such that similar records fall into the same or nearby partitions (e.g.
[7]). The study in [6] suggests that this approach is not efficient. Thus, we focus
on the filter-verification approach.

To generate candidate pairs, for each set r in the input collection R, the
filter-verification approach aims to find other sets s in R which contain tokens
(set elements) from r. Inverted indexes are used to speed up the process. For a
given similarity threshold t and a set R, we only need to probe the inverted index
for a subset of tokens in R (i.e., the prefix ) to discover all possible candidates.
For a Jaccard similarity threshold t, the size of the prefix can be computed as
|R|−�|R| ·t�+1 (referred to as prefix filter [4]). Any prefix-sized subset of tokens
in R can be used as prefix. Thus, choosing the subset of the least frequent tokens
would be the most efficient and likely yield the least number of candidates. As
a result, most exact SSJ algorithms sort tokens in every set using inverse global
token frequency, so that the prefix can be obtained by reading the inverted lists
of the tokens starting from the beginning.
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Several SSJ algorithms use prefix filtering, such as AllPairs [1], PPJoin [12]
and GroupJoin [3]. Algorithm 1 shows the major steps of AllPairs. In lines
2–5, the candidates of set R are found from the inverted lists of the prefix of R;
at lines 6–7 the exact similarity of each pair (r, s) is computed. PPJoin extends
AllPairs by using a position filter which helps remove candidates based on
the position of the first intersecting tokens in R and S [12]. GroupJoin further
extends PPJoin by merging identical prefixes over multiple sets; this avoids the
re-computation of the same overlaps [3]. MPJoin [10] introduces a removal filter.
It disregards entries in the inverted index that do not pass future applications of
the position filter. It uses the observation that records are indexed and probed in
ascending order in length such that the required overlap increases monotonically.

Besides the CPU-based algorithms described previously, some recent work
focuses on speeding up SSJ using different hardware platforms, notably GPUs.
Quirino et al. proposed a standalone GPU algorithm that runs both candi-
date generation and verification within GPU using a block-based probing app-
roach [9]. Bellas et al. proposed a different framework that uses GPU for can-
didate verification, while keeping candidate generation a CPU task [2]: working
under a much-limited GPU memory, candidate pairs are verified by GPU in
chunks. The experimental result in [2] indicates that the CPU-GPU solution
out-performs the standalone GPU algorithm in [9]. It batches candidate pairs
for verification when the number of candidates are large, which is the case for
low similarity thresholds. As noted by the authors of [2], the bottleneck in SSJ is
often the candidate generation rather than candidate verification, thus the accel-
eration provided by GPU is limited. In comparison, our work exclusively focuses
on the parallelization potential of multi-core hardware in combination with exist-
ing filtering approaches and implementation optimizations – it is orthogonal to
the recent work on GPU-based SSJ.

2.3 Modern Multicore Systems

We target single-node shared memory systems with multiple processors and a
high core count. All processors in such a system are connected through an inter-
connect (e.g., Intel QPI) that implements a coherence protocol. Each processor
can access it’s local memory through an integrated memory controller. Local
memory access is fast, while accessing remote memory attached to other proces-
sors on the same machine, comes with additional latency. This is referred to as
“NUMA effect.”

Modern processors use caches for performance. There are usually three levels
of caches with a total size of tens of MBs. The last level cache (LLC) is usu-
ally shared among all cores in a processor. The first-level cache L1 is typically
small and core-local. Modern processors usually provide hyperthreading. The
idea is to better utilize a processor by allowing two processes to concurrently
access different resources of one core, i. e. the arithmetic logic unit (ALU) or the
floating point unit. Another important technique for performance is prefetching.
Processors probabilistically read data from main memory which is likely to be
used subsequently by a running program. Prefetching can hide memory stalling,
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i.e., a core waiting for data to arrive from main memory. Prefetching is done
automatically or explicitly as instructed by software.

Data
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Fig. 1. Data-parallel (left) vs. pipelined (right) execution models.

3 Parallelizing Filter-Verification Based Set Similarity
Join

We choose the AllPairs algorithm [1] as the basis filter-verification algorithm.
First, we discuss the execution model (i.e., how to assign threads tasks to run
SSJ algorithms), and then discuss the design considerations in the context of
multicores. We show the impact of different design decisions experimentally in
Sect. 4.

3.1 Execution Model

An SSJ algorithm can be parallelized using data parallelization or pipelining.
Figure 1 shows the basic idea of each design choice. In data parallelization, the
input data is partitioned into disjoint batches consist of a tunable number of
records. Each thread then runs the AllPairs algorithm (or PPJoin when the
position filter is activated) on a different batch. Multiple threads can proceed in
parallel without conflicts. In practical implementations, a pool of threads can be
created upon system start. After a batch is processed, the thread continues with
the next batch, avoiding the cost of creating and destroying threads at runtime.

Another possible parallelization model is pipelined execution. The SSJ task
can be subdivided into sub-tasks, each of which can be executed on a dedicated
thread. The entire join algorithm is finished cooperatively by multiple threads
which communicate through message passing.

Compared to data parallelization, pipelining requires frequent inter-thread
communication and synchronization using message queues. We experimentally
verified that such overheads were too high to make the parallel algorithm effi-
cient. Therefore, in the rest of the paper we focus on data parallelization.

3.2 Design Considerations

Under the data-paralell execution mode, we identify four important issues in
designing parallel SSJ algorithms.
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Filters. It was not clear how filter techniques used in single-core algorithms
may behave on multicores. Prior study [8] has shown that the prefix filter in
AllPairs is the most effective filter technique. Besides the prefix filter, AllPairs
also includes the important length filter. Furthermore, we explore the use of
PPJoin’s position filter. Our parallel SSJ algorithm ignores by default the entries
in the inverted index which cannot be similar due to length differences. This is
comparable to the deletion filter of MPJoin, which deletes such entries in the
inverted index which cannot pass the position filter for following probe records.
Since it has a significant positive impact in all our experimental cases, we decided
to use this optimization by default.

Record Inlining. Records consist of a record ID (integer) and a variable number
of integer tokens. A straightforward record implementation is to use a struct
which contains the id and a pointer to an array of integer tokens. In order to
access the tokens, the pointer has to be dereferenced first which often incurs
expensive cache misses and CPU stalls as the processor waits for data to be
fetched from memory to CPU caches. By inlining, we co-locate the tokens with
the record ID without such extra layer of indirection. We expect this to be
more efficient as it avoids pointer-chasing during record access. AllPairs reads
the records including their tokens one-by-one in the filter phase, so we expect
a positive effect on runtime. On the other hand, inlining introduces overhead
when accessing records randomly due to the variable-length tokens. For random
reads, we introduce a pointer array that maps token IDs to the location of the
corresponding record in the record array. AllPairs accesses records randomly
in the probe phase. As a result, in the probe phase, both variants (with and
without inlining) do pointer chasing once per record.

Thread Affinity. Threads running SSJ tasks may get migrated among cores
by the OS scheduler because of various events if they are not pinned to specified
hardware threads or cores. This can degrade performance due to the NUMA
effect in case a thread is migrated to a socket but the data it is accessing is on
another socket.

Batching. In the data-parallel execution model, each thread runs the SSJ algo-
rithm by batches. The batch size controls the number of records that are joined
on one thread without synchronizing with other threads. Thus, we expect the
batch size to influence the runtime.

4 Experiments

In this section, we empirically quantify the impact of the design considerations
discussed in the previous section.
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4.1 Setup

Our implementation uses C++11 and allows tuning of various parameters as
described in the previous section. We run experiments on a server with two
Intel(R) Xeon(R) CPU E5-2620 processors clocked at 2.0 GHz and 32 GB of
DRAM. Each CPU has six cores (12 hyperthreads) and 32 KB/256 KB/15 MB
of L1/L2/L3 caches. We use the machine exclusively for the experiments. Since
system processes and hardware events (network etc.) can influence the measure-
ments, we repeat each experiment three times and report the average to even
out such effects.

Datasets. We use 10 real-world and two synthetic datasets from a prior non-
distributed experimental survey [8]. Table 1 summarizes the characteristics of
these datasets. We omit more detailed descriptions of the datasets available
elsewhere [8]. Similar to prior work [8], we assume that records in the input
collection R are sorted by ascending lengths. This is important for applying
length filter and reducing index accesses. Tokens within each record are sorted
by global token frequency. Using the least frequent tokens for the prefix reduces
the number of candidates. There are no exact duplicates in the datasets; finding
exact duplicates is an important but orthogonal problem, and does not impact
our design. In order to analyse the runtime behavior on larger datasets we scale
each dataset 5 and 10 times using the method from [11]. We copy each record n
times, and in the copied records, each contained token is replaced with the next
token in the global token frequency. Token lengths and distributions remain
unchanged. Note that the approach does not introduce duplicates. Similar to
prior work on sequential SSJ algorithms, we assume the input datasets fit in
main memory: modern multicore servers often feature 100s of GBs or even TBs
of main memory. Even if the dataset does not fully fit in memory, we expect for
a majority of workloads, the working set will fit in memory such that during SSJ
execution no disk I/O is involved on the critical path.

Metrics. We vary the Jaccard similarity threshold among 0.6, 0.75, and 0.9.
We assume these are sensible values for many SSJ applications. We measure
the runtime within our program from including the index build until the join
computation is completed. We do not store the join result itself, only its size.
We run our code with all combinations of variables described in the previous
section and report on the results in the following. In each run, we also profile the
execution using perf to gather metrics such as cache misses. This adds a small
and constant amount of overhead, however, it does not affect relative runtimes,
which are important in our discussion.
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Table 1. Characteristics of the experimental datasets.

Dataset # recs Record length Universe ·103 Size (B)

·105 max avg size maxFreq

AOL 100 245 3 3900 420 396M

BPOS 3.2 164 9 1.7 240 17M

DBLP 1.0 869 83 6.9 84 41M

ENRO 2.5 3162 135 1100 200 254M

FLIC 12 102 10 810 550 92M

KOSA 6.1 2497 12 41 410 46M

LIVE 31 300 36 7500 1000 873M

NETF 4.8 18000 210 18 230 576M

ORKU 27 40000 120 8700 320 2.5G

SPOT 4.4 12000 13 760 9.7 41M

UNI 1.0 25 10 0.21 18 4.5M

ZIPF 4.4 84 50 100 98 33M

4.2 Speedups and Scalability

We first investigate how the number of threads affects runtime.

Speedup over Single-Core Execution. Using multithreading is benefitial
for the SSJ runtime under all combinations of our input datasets and thresh-
olds. We observed speedups of roughly 2–10 times on our hardware. We omit
the detailed results for brevity. The absolute runtimes of the multithreaded ver-
sion vary between rougly 0.2 and 262 s for all datasets and thresholds. For each
combination of input and threshold, we evaluated the parameter combination of
number of threads, core affinity, position filter, inlining, and batch size leading
to the lowest runtime. Overall, the best runtimes were achieved by using 24 or
32 threads. 70% of the best runtimes were achieved for a batch size of 125 or
250. The position filter is effective for most (70%) of the cases. However, we did
not find an optimal parameter configuration for all the combinations of dataset
and threshold. In the following, we discuss the influence and interdependencies
of and between the variables and draw conclusions under which conditions which
variable values are favorable.

Scalability. Figure 2 shows the speedup of our experiments relative to the num-
ber of threads. Without loss of generality we only consider results with the
following parameters: no inlining, batch size 500, no CPU affinity, and no posi-
tion filter. Other parameter combinations show a similar behavior, so we omit
them here. For the majority of results, the speedup increases linearly up to 12
threads (number of physical cores). Starting with 16 threads, we record decreas-
ing speedups. The optimal runtime is achieved at 24 threads for all datasets
except ORKU and LIVE (0.75 and 0.9 similarity thresholds), and ENRO
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(0.9 similarity threshold). Since the machine has 12 physical cores, this result
shows that SSJ algorithms generally benefit from hyperthreading which can hide
memory access latency caused by cache misses. This is not a trivial result, as
hyperthreading was shown to be only benefitial in a limited range of cases [5].

The results show that the scalability varies depending on the input dataset,
the threshold, and the number of threads. Note that SPOT is an exception
showing a hard limit at a speedup of 2, independent of the threshold and the
number of threads. We found that the scability behavior is related to index
lengths (the number of record IDs for each token). For SPOT, the average index
length varies between 2.19 and 0.82 (for thresholds 0.6 and 0.9, respectively).
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Fig. 2. Speedup under various datasets and similarity thresholds.
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The index lengths of other datasets and thresholds varies between roughly 1500
(for UNI and threshold 0.6) and 2.6 (AOL, threshold 0.9). Only ENRO, FLIC,
LIVE and ORKU reveal comparably short index lengths for a threshold of 0.9.
The low speedup of SPOT can be explained by data access patterns which can
improve or prevent prefetching. Our implementation probes the inverted index
for each prefix token in each record. If there are sufficiently many entries in the
postings list, the CPU can guess that they are needed subsequently. If there is
only a small number contained, prefetching does not apply and wait can occur.
Longer postings lists in the inverted index give better scaleups as we show in
the following section.

4.3 Impact of Data Size

We enlarge our datasets synthetically as described in Sect. 4.1. With 5× larger
data, the runtime increases between 3.6× and 44×; the numbers for 10× larger
data are 6.1× and 182×. In most cases, the runtime does not increase linearly
with respect to data size. This is expected because SSJ is a quadratic opera-
tion. The filter-verification framework only optimizes the operation depending
on favorable data characteristics.

Only ENRO, FLIC, LIVE, ORKU, SPOT, and ZIPF show roughly a lin-
ear runtime increase for a threshold of 0.9; for SPOT we observe linear runtime
increases under thresholds 0.75 and 0.6. As we have shown in the previous section
with the original datasets, SPOT was not well parallelizable. The relative run-
time increase for 5/10× larger data is below 5/10× for all thresholds, hence the
scalability is better for the enlarged datasets. With larger datasets, the postings
list lengths in the inverted index also increase. We attribute the reason to be
that this makes it easier for the CPU to prefetch the larger SPOT datasets.

4.4 Impact of Inlining

Inlining only has a positive impact on runtime for a minority of our experi-
ments. It has a generally positive impact on experiments with the AOL dataset.
Figures 3–4 show the runtime gain of AOL compared to the non-inlined version
relative to the parameters method (single-threaded [allp], multithreaded [allph],
multithreaded with CPU affinity [allps]) and threshold. There are no clear inter-
dependencies to the other parameters number of threads, batching and position
filter. The figures show that the biggest runtime gain occurs for a threshold of
0.6. Furthermore, only the multicore implementations profit from inlining. BPOS
shows a similar behavior like AOL. We omit the figures for brevity. DBLP shows
only small positive effects using inlining. The biggest runtime gain occurs for a
threshold of 0.9. For KOSA, there is only a positive effect at 0.6. SPOT only
shows a positive effect for 0.9. Inlining has a generally neutral or negative effect
on the runtimes of ENRO, FLIC, LIVE, NETF, ORKU, UNI, and ZIPF.

We expected inlining to have a positive effect on the filter phase, because it
saves pointer chasing to obtain the prefix tokens. It helps the CPUs to perform
prefetching. However, if prefixes are much shorter than the complete records,
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many tokens must be skipped to read the next record. As shown in Table 1,
AOL has the smallest average record size of 3. For such short lengths, the prefix
is usually not much shorter than the record. Thus, prefetching may increase the
runtime if there are many short records in the input dataset.

4.5 Impact of Batching

We grouped the experimental results by all variables except the batch size and
computed the percentaged difference between the lowest and the highest runtime.
It varies between 0.7% and 1%. Thus, we consider the impact of batching on the
runtime as rather low. Our runtime experiments suggest that the batch size of
125 is the best in most cases (23 times) and 250 is the second best (10 times). We
could not find a pattern that tells us when which batch size is optimal. It seems
to be a complex relation with other variables and with the data characteristics.
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Fig. 3. AOL: Runtime gain of inlining
relative to single-threaded (allp), mul-
tithreaded without (allph), and with
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Fig. 4. AOL: Runtime gain of inlining
relative to thresholds.

4.6 Position Filter

Using position filter is benefitial in most cases with thresholds of 0.6 and 0.75.
Figure 5 shows the relative runtime gains using the position filter grouped by
threshold. For a threshold of 0.6 the runtime gain varies between 20–50% except
for SPOT, where the median is close above zero. The position filter only has a
small impact on SPOT for all thresholds. This can be explained by the number
of candidates. For SPOT 0.6 the position filter saves roughly 8% of candidates,
or in absolute numbers 50 000. The verification of this number of additional
candidates is cheaper than to filter them out before. On other datasets this filter
saves 28% of candidates on average. Only for AOL, the savings with the position
filter are equally low with 7%. However, the absolute number of saved candidates
is orders of magnitude higher with 86 600 000, so the position filter pays off for
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Fig. 5. Runtime gain/loss of using the position filter grouped by similarity threshold.

AOL. The maxFreq of tokens (cf. Table 1) gives a hint on the effectiveness of
the prefix filter. The most frequent token in SPOT occurs roughly 9 700 times,
which is very low compared to all other datasets. This implies that the prefix
filter generates few candidates. The position filter only pays off if the prefix filter
is less effective, which is the case for all other datasets and thresholds below 0.9.
For a threshold of 0.75, the gain varies between 5-50% for all datasets except for
SPOT (as discussed before) and AOL. For AOL the number of saved candidates
relative to the number of candidates without position filter is 0.3% and thus
comparably low. For a threshold of 0.9, all gains are close to zero except for
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Fig. 6. Runtime gain/loss of using
CPU affinity on the ENRO dataset.
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Fig. 7. Reduction of LLC misses using
CPU affinity on the ENRO dataset.

DBLP and NETF where there is still a gain of 40% to 50%. One explanation is
also the number of saved candidates.

We compared the effect of the position filter between the single-threaded SSJ
vs. the multithreaded (using average runtimes). For brevity, we omit the detailed
results. The effect is the same for the majority of cases. However, for AOL 0.75,
FLIC 0.9, KOSA 0.9, ORKU 0.9, and SPOT 0.6 and 0.75 the position filter has
a positive effect in the multicore case, while it does not have a positive effect in
the single-core case. This observation suggests that the overhead of the position
filter pays off more often in the multicore case. There is no obvious relationship
between the runtimes using the position filter and the remaining parameters
inlining, batching, the number of threads, and CPU affinity.

4.7 Impact of Thread Placement

By statically assigning the CPU affinity we expected a more optimal use of the
cores and prevent thread migrations. However, our experiments reveal that stati-
cally assigning the CPU affinity is only benefitial for the runtime in a minority of
cases. Figure 6 shows the performance gain using CPU affinity for ENRO exem-
plarily. There is a performance gain for 2 to 4 threads. This gain decreases down
to 12 threads, stays nearly the same up to 24 threads, and decreases for more
threads. This can be explained by the saved cache misses. Figure 7 shows the
percentage of saved LLC misses with CPU affinity. The runtime is generally the
best from a number of threads starting from 24. Our results show that manually
setting CPU affinity is not very helpful for optimizing SSJ algorithms.

5 Conclusion

Filter-verification based SSJ algorithms were either single-threaded or dis-
tributed, wasting much computing capability provided by multicore processors.
In this paper, we fill the gap to explore the potential of parallelizing SSJ on
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multicores. We propose a data-parallelization execution model along with var-
ious design considerations, including the use of filters, CPU affinity, record
inlining and batching. Experiments using real-world datasets revealed several
important insights. Using multithreading improves SSJ runtime by 2–10× on a
12-core machine; the optimal number of threads is often the number of hard-
ware threads (hyperthreads). Surprisingly, unlike in many other workloads, using
hand-crafting data structures (e.g., using inlining) or CPU affinity do not always
lead to significantly higher performance. We also find that the position filter is
more effective than in the single-core scenario and should generally be used for
parallel SSJ. One interesting direction of future work is to use a multithreaded
CPU and GPU parallelization for the computation of the SSJ and find the opti-
mal point (i.e., number of candidates) from where the usage of the GPU is
benefitial.
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Abstract. Tensor Core Units (TCUs) are hardware accelerators devel-
oped for deep neural networks, which efficiently support the multipli-
cation of two dense

√
m × √

m matrices, where m is a given hardware
parameter. In this paper, we show that TCUs can speed up similar-
ity search problems as well. We propose algorithms for the Johnson-
Lindenstrauss dimensionality reduction and for similarity join that, by
leveraging TCUs, achieve a Ω(

√
m) speedup up with respect to tradi-

tional approaches.

Keywords: Similarity search · Tensor core units · Dimensionality
reduction · Similarity join · Locality sensitive hashing

1 Introduction

Several hardware accelerators have been introduced to speed up deep neural net-
work computations, such as Google’s Tensor Processing Units [13] and NVIDIA’s
Tensor Cores [16]. The most important feature of these accelerators is a hardware
circuit to efficiently compute a small and dense matrix multiplication between
two

√
m × √

m matrices, where m is a given hardware parameter. On mod-
ern chips m can be larger than 256 [13]. Matrix multiplication is indeed one
of the most frequent operations in machine learning, and specialized hardware
for supporting this operation can significantly reduce running times and energy
requirements [12]. We refer to these accelerators as Tensor Core Units (TCUs).

Recently, several studies have been investigating how to use TCUs in other
domains. For instance, TCUs have been used for scanning and prefix computa-
tions [10], linear algebra primitives like matrix multiplication and FFT [9,15],
and graph problems [9]. The key designing goal when developing TCU algo-
rithms is to decompose the problem into several small matrix multiplications of
size

√
m × √

m, which are then computed on the accelerator. Such algorithms
also imply fast external memory algorithms, though not the other way around,
since the matrix multiplication chip can be seen as a restricted cache [9].
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The goal of this paper is to show that TCUs can also speed up similarity
search problems. As case studies, we propose TCU algorithms for the Johnson-
Lindenstrauss dimensionality reduction and for similarity join. In both cases,
our results improve the performance by a factor

√
m with respect to state of the

art approaches without hardware accelerators.
We analyze our algorithms on the (m, τ)-TCU model, which is a computa-

tional model introduced in [9] and capturing the main hardware features of TCU
accelerators. In the (m, τ)-TCU model, it is possible to compute the matrix mul-
tiplication between two matrices of size

√
m × √

m in time τ , where m and τ
are given parameters. In a traditional machine, without accelerators, we have
τ = Θ(m3/2).1 In contrast, with TCUs, we have τ = O(m) (i.e., input size
complexity) or even sublinear time under some assumptions.

The Johnson-Lindenstrauss (JL) dimensionality transform reduces the
dimension of a vector x ∈ R

d to roughly k = ε−2 log(1/δ) while preserving
its norm up to a factor 1 ± ε with probability at least 1 − δ. It is an impor-
tant primitive in many learning algorithms, since it dramatically reduces the
number of trained variables, while preserving important characteristics of the
feature vectors, such as their pairwise inner products. The JL transform can be
represented as a multiplication of the input vector x ∈ R

d by a k × d matrix.
This naively takes time Ω(dk). In this paper we use recent breakthroughs in
dimensionality reduction techniques, combined with TCU’s to reduce the time
to O(dk/

√
m+d+k2 log3 d

k ). This is significant, since TCUs typically cut a fac-
tor

√
m off matrix-matrix multiplication, but here we cut

√
m off matix-vector

multiplication! When
√

m ≥ k our dimensionality reduction takes time linear in
the input dimension. This improves upon even the famous “Fast Johnson Lin-
denstrauss” transform [6], which takes time Ω(d log d + k2+γ) for any γ > 0 [7],
or Ω(d log d

log m ) with TCU optimized FFT [9].
The Similarity Join on two sets P and Q of n points each in R

d, asks us
to find all pairs (x, y) ∈ P × Q whose distance is below a given threshold r
(i.e., all near pairs). Similarity join occurs in numerous applications, such as
web deduplication and data cleaning. As such applications arise in large-scale
datasets, the problem of scaling up similarity join for different metric distances
is getting more important and more challenging. Exact similarity join cannot be
faster than brute force [4], but by leveraging Locality Sensitive Hashing (LSH),
we will develop a TCU approximate algorithm that, under some assumptions,
finds all pairs in expected time O(( n√

m
)ρ( |P��rQ|d√

m
+ n)), where |P �	r Q| is the

number of near pairs. When τ = O(m), the TCU algorithm exhibits a Ω(
√

m)
speedup with respect to traditional approaches (even those based on LSH).

1 Fast matrix multiplication algorithms require O(mω/2) time with ω ∈ [2, 3], [8], but
they exhibit poor experimental performance than traditional Θ(m3/2) algorithms.
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2 Preliminaries

2.1 The TCU Model

(m, τ)-TCU model is a RAM model with an instruction to multiply two dense
matrices of size

√
m × √

m in time τ , where m and τ are given parameters
depending on the underline platform.2 It is reasonable to assume that τ = O(m),
that is matrix multiplication takes linear time: indeed, on TCUs, the cost of the
operation is upper bounded by the time for reading/writing the

√
m × √

m
matrices, while the cost of the m3/2 elementary products is negligible due to the
high level of parallelism inside TCU accelerators (e.g., systolic array). Moreover,
under some conditions on high bandwidth connections, we might have τ to be
even sublinear (e.g., O(

√
m)). We recall a result from [9] that will be used later:

Theorem 1. Let A and B be two matrices of size p × r and r × q with p, r, q ≥√
m, then there exists an algorithm for computing A ·B on a (m, τ)-TCU model

in time O(prqm−3/2τ).

2.2 Johnson-Lindenstrauss Dimensionality Reduction

We say a distribution over random matrices M ∈ R
k×d is a (ε, δ)-Johnson-

Lindenstrauss (JL) distribution, if we have Pr [|‖Mx‖2 − 1| ≤ ε] ≥ 1 − δ for
all unit vectors x ∈ R

d In this section we will note some definitions and lem-
mas related to building and combining random matrices in ways related to JL
distributions. The first property was introduced by Kane and Nelson [14]:

Definition 1 (JL-moment property). We say a distribution over random
matrices M ∈ R

k×d has the (ε, δ, p)-JL-moment property, when E[‖Mx‖22] = 1

and
(
E

[∣∣∣‖Mx‖22 − 1
∣∣∣
p])1/p

≤ εδ1/p for all x ∈ R
d, ‖x‖2 = 1.

A distribution with the (ε, δ, p)-JL-moment property is (ε, δ)-JL because of

Markov’s inequality: Pr [|‖Mx‖2 − 1| > ε] ≤ E
[∣∣∣‖Mx‖22 − 1

∣∣∣
p]

/ε ≤ δ.

An interesting property of the JL Moment Property is related to the tensor
product of matrices. The tensor (or Kronecker) product between two matrices
A ∈ R

m×n and B ∈ R
k×� is defined as below. In particular, if we take the tensor

product Ik ⊗ A, where Ik is the k × k identity matrix, we get a km × kn block
matrix with A on the diagonal:

A ⊗ B =

⎡
⎢⎣

A1,1B · · · A1,nB
...

. . .
...

Am,1B · · · Am,nB

⎤
⎥⎦ , Ik ⊗ A =

⎡
⎢⎢⎢⎢⎣

A 0 · · · 0

0 A
. . .

...
...

. . . . . . 0
0 · · · 0 A

⎤
⎥⎥⎥⎥⎦

.

2 The model in [9] is slightly different, and we use here a simplified version for the
clarity of exposition.
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The tensor product relates to the JL-moment property by the following sim-
ple lemma from [1]:

Lemma 1 (JL Tensor lemma). For any matrix, Q, with (ε, δ, p)-JL moment
property, Ik ⊗ Q has (ε, δ, p)-JL moment property.

By the simple property A ⊗ B = (I ⊗ B)(A ⊗ I) this lemma allows studying
the JL properties of general tensor products, as long as we can also handle matrix
products. The following generalization of the JL Moment Property will be key
to doing exactly that:

Definition 2 ((ε, δ)-Strong JL Moment Property). Let ε, δ ∈ [0, 1]. We say
a distribution over random matrices M ∈ R

m×d has the (ε, δ)-Strong JL Moment

Property, when E
[
‖Mx‖22

]
= 1 and

(
E

[∣∣∣‖Mx‖22 − 1
∣∣∣
p])1/p

≤ ε
e

√
p

log 1/δ , for all

x ∈ R
d, ‖x‖2 = 1 and all p such that 2 ≤ p ≤ log 1/δ.

Note that the (ε, δ)-Strong JL Moment Property implies the (ε, δ, log 1/δ)-JL
Moment Property, since then εδ1/p = ε/e. Similarly, having the (ε

√
2/e, δ, p)-JL-

moment property for all p ∈ [2, log 1/δ] implies the Strong JL Moment Property,
since δ1/p ≤ 1√

2e

√
p

log 1/δ .

The key workhorse is the following lemma by Ahle and Knudsen [2]. Note
that the original lemma required the (ε/(C0

√
k), δ)-Strong JL Moment Property,

but a quick scan of the proof shows that (ε/(C0

√
i), δ)-Strong suffices.

Lemma 2 (JL Product lemma). There exists a universal constant C0, such
that, for any constants ε, δ ∈ [0, 1] and positive integer k ∈ Z>0. If M (1) ∈
R

d2×d1 , . . . ,M (k) ∈ R
dk+1×dk are independent random matrices satisfying the

(ε/(C0

√
i), δ)-Strong JL Moment Property, then the matrix M = M (k) · . . . ·M (1)

has the (ε, δ)-Strong JL Moment Property.

Intuitively this says that combining k JL reductions, we don’t get an error of
εk, as we would expect from the triangle inequality, but only ε

√
k, as we would

expect from a random walk.

2.3 Locality Sensitive Hashing

Much of recent work on similarity search and join has focused on Locality Sen-
sitive Hashing: at a high level, similar points (i.e., with distance ≤ r) are more
likely to collide than far points (i.e., with distance ≥ cr for a given approximation
factor c). Formally, an LSH is an (r, cr, p1, p2)-sensitive hashing scheme:

Definition 3. Fix a distance function D : U × U → R. For positive reals
r, c, p1, p2, and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-sensitive
if for uniformly chosen h ∈ H and all x, y ∈ U:

– If D(x, y) ≤ r then Pr [h(x) = h(y)] ≥ p1;
– If D(x, y) ≥ cr then Pr [h(x) = h(y)] ≤ p2.
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We say that H is monotonic if Pr [h(x) = h(y)] is a non-increasing function of
the distance function D(x, y).

LSH schemes are characterized by the ρ = logp2
p1 value, with ρ ∈ [0, 1]: small

values of ρ denote LSHs that well separate near points from far points. Term c
is the approximation factor.

3 Dimensionality Reduction

We will describe a construction of a matrix M ∈ R
k×d which is (ε, δ)-JL as

described in the preliminaries, and for which there is an efficient algorithm for
computing the matrix vector product Mx on a TCU. We first give a general
lemma describing the construction, then show how it applies to TCUs:

Lemma 3. Let T (a, b, c) be the time for multiplying two matrices of size (a× b)
and (b × c). For a constant C > 0 and for any d, ε, δ > 0, there exists a matrix
M ∈ R

k×d, with k = 	Cε−2 log 1/δ
, such that |‖Mx‖2 − ‖x‖2| ≤ ε‖x‖2 for any
x ∈ R

d with probability 1−δ (i.e., M is (ε, δ)-JL). The multiplication Mx can be
computed in time

∑�
i=1 T (ik, ζik, ζ�−i) for any ζ > 1 and � such that ζ� = d/k.

Note that, depending on the speed of the rectangular matrix multiplication,
it might be beneficial to pick different values for ζ.

Proof. We define the JL transformation by the following matrix:

M = (Ir�
⊗ A�) · · · (Ir1 ⊗ A1) ∈ R

rmk�×r1c1 ,

where r1, . . . , r� is a sequence of positive integers, Ir is the r × r identity
matrix, and A1, . . . , A�−1 are independent ki × ci matrices, where Ai has the
(ε/(C0

√
i), δ)-Strong JL Moment Property (SJLMP). By Lemmas 1 and 2 we

get that the tail (Ir�−1 ⊗ A�−1) · · · (Ir1 ⊗ A1) ∈ R
rmk�×r1c1 has the (ε/

√
C0, δ)-

SJLMP. We further assume A� has the (ε/(
√

2C0), δ)-SJLMP. Again by
Lemmas 1 and 2 we get that M has the (ε, δ)-SJLMP, and thus M is a JL
reduction as wanted.

Next we prove the running time of the matrix-vector multiplication. The key
is to note that I ⊗ A is the “block identity matrix” with A copied along the
diagonal. The following figure should give some some intuition:

(Iri
⊗ Ai)x = ri

blocks

⎧
⎨
⎩

⎡
⎣

ki

{
Ai︸︷︷︸
ci

Ai

Ai

⎤
⎦ x � Ai

[
x1 . . . xri

]}
ci =

[
y1 . . . yri

]}
ki.

By splitting x into ri blocks, the multiplication (Iri
⊗ A)x corresponds to

reducing each block of x by identical JL matrices. Repeating this process for a
logarithmic number of steps, we get the complete dimensionality reduction.

To make sure the matrix sizes match up, we have

d = r1c1, r1k1 = r2c2, r2k2 = r3c3, . . . , r�−1k�−1 = r�c�, r�k� = k.
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We will define k = 	Cε−2 log 1/δ
, ki<� = ik, k� = k, c1 = kζ, ci>1 = ζki−1,
ri = ζ�−i and � = log(d/k)

log ζ such that c1r1 = kζ� = d. The constant C depends on
the constant of the JL lemma we use for the individual Ai, but in general 10C2

0

will suffice, where C0 is the constant of Lemma 2.
Recall the assumption that rectangular multiplication takes time T (a, b, c),

and hence the ith step thus takes time T (ki, ci, ri). Adding it all up we get

�∑
i=1

T (ki, ci, ri) = T (k, ζk(� − 1), 1) +
�−1∑
i=1

T (ik, ζk max(1, i − 1), ζ�−i)

which is then upper bounded by
∑�

i=1 T (ik, ζik, ζ�−i). The claim follows.

By the above theorem and by using the matrix multiplication algorithm of
Theorem 1, we get the following theorem (see the full version [5] for the proof).

Theorem 2. For any d, ε, δ > 0, there exists a (ε, δ)-JL matrix M ∈ R
k×d such

that the product Mx can be computed in time O((dk + k2
√

m log3 d
k ) τm−3/2),

on the (m, τ)-TCU model, assuming k ≥ √
m.

In particular for τ = O(m) it takes time O(dk/
√

m + k2 log3 d
k ). If

√
m > k we

can “pad” the construction by increasing k to
√

m and simply throw away the
unneeded rows. The running time is then O(d + k2 log3 d

k ). We observe that if
τ = O(m) and d dominates k2, then we get time O(dk/

√
m)), which improves a

factor
√

m over a standard application of the standard JL transform in the case
of dense vectors, and for m ≈ k this even improves upon the so-called “Fast JL
transform” [6].

Finally, we note the following extra properties of the construction:

1. In the case of sparse vectors, where many blocks of x are empty, we can skip
them in the computation.

2. The computation can be easily parallelized, with different blocks of x being
reduced on different machines. Our construction also implies a O(dk/

√
m)

upper bound in the external memory model.
3. Our construction improves upon the standard matrix-vector multiplication

for JL, even in the RAM model, by using the Coppersmith-Winograd method
for fast matrix multiplication. In particular we can do JL in time dkε + k2+ε

if matrix multiplication takes time n2+ε.
4. The construction works with any distribution of matrices that have the Strong

JL Moment Property. This means we can use random ±1 matrices or even
ε-Sparse JL matrices.

4 Similarity Join

We now study the similarity join problem: given two sets P and Q of n points
each in R

d and a distance function D : Rd → R+
0 , compute the set P �	r Q =

{(x, y) : x ∈ P, y ∈ Q,D(x, y) ≤ r}. We consider distance functions that can be
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computed with an inner product on a suitable transformation of the two points: a
distance function D is an ip-distance is there exist two functions f, g : Rd → R

d′

such that D(x, y) = f(x) · g(y) for each pair x, y ∈ R
d For the sake of simplicity,

we assume d′ = Θ(d). Notable examples of ip-distances are Hamming, squared
L2 distance, and cosine similarity: for Hamming, f(x) = (x0, 1 − x0, x1, 1 −
x1, . . . , xd−1, 1−xd−1) and g(x) = (1−y0, y0, 1−y1, y1 . . . , 1−yd−1, yd−1); for the
squared L2 distance, f(x) = (x2

0, 1,−2x0, x
2
1, 1,−2x1 . . . , x2

d−1, 1,−2xd−1) and
g(x) = (1, y2

0 , y0, 1, y2
1 , y1 . . . , 1,−y2

d−1, y2); for cosine similarity, f(x) = g(x) =
x/||x||2.

The simplest way to exploit TCUs is a brute force approach, where all pair
distances are computed. As ip-distance computations can be translated into
inner products, we can reduce the similarity join problem to a simple matrix
multiplication between two n × d′ matrices FP and GQ: FP and GQ are the
matrices representing, respectively, the sets {f(p),∀p ∈ P} and {g(q),∀q ∈ Q}.
By exploiting TCUs, we can compute P · QT in time O(dn2m−3/2τ).

A more efficient approach uses LSH for reducing the number of candidate
pairs for which we have to compute distances. The proposed algorithm finds all
P �	r Q pairs in expectation, but it can be easily modified to return all near
pairs with high probability by running O(log n) instances of the algorithm and
merging the results.

The standard LSH approach for similarity join (see e.g. [11,17]) partitions the
points in P ∪ Q into buckets using an (r, cr, p1, p2)-sensitive monotone LSH. A
brute force algorithm is then used for searching similar pairs within each bucket.
The procedure is repeated L times with independent LSHs to guarantee that all
near pairs are found. The LSH is usually set so that p2 = 1/n, which implies that
each point collides once (in expectation) with a point at distance larger than cr
(i.e., a far point), while L is set to Õ

(
p−1
1

)
= Õ

(
p−ρ
2

)
= Õ (nρ) to guarantee

that each near pair is found once (in expectation).
As for similarity join in the external memory model [17], we can improve the

performance in the TCU model by increasing the value of p2 (i.e., by allowing
for more collisions between far points), which implies that the number L of
repetitions decreases since L = p−1

1 = Õ
(
p−ρ
2

)
. We observe that a TCU unit

can multiply two matrices of size
√

m′ ×√
m′ in a TCU(m, τ) in τ time for each

m′ ≤ m, and we exploit this fact by increasing the number of collisions with far
points. We set p2 = m3/2/(τn): each point collides in expectation with at most
m3/2/τ far points, but the overhead due to the respective inner products do not
dominate the running time.

As an LSH is usually given as a black box H′ with fixed probability values
p′
1 and p′

2, we can get the desired probability p2 = m3/2/(τn) by concatenating
k = logp′

2
p2 hash functions. However, if k is not an integer, the rounding gives

L = O(nρp−1
1 ). A more efficient approach has been recently proposed in [3] that

uses Lhigh hash tables by concatenating 	k
 LSHs H′, and Llow hash tables by
concatenating �k� LSHs H′, and where L = Llow + Lhigh = O(nρp

−(1−ρ)
1 ). The

right values of Llow and Lhigh depend on the decimal part of k.
We have the following result (see the full version [5] for the proof).
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Theorem 3. Given two sets P,Q ⊂ Rd of n points, with n, d ≥ √
m, a threshold

value r > 0, and an (r, c, p1, p2)-sensitive monotone LSH, then the set P �	r Q
for an ip-distance can be computed on a TCU(m, τ) in expected time:

O(pρ−1
1 (nτm−3/2)ρ

( |P �	r Q|τ
m3/2

+ n

)
+ τm−3/2|P �	cr Q|).

When τ = O(m), there are at least n
√

m near pairs, and the number of pairs
with distance in [r, cr] is at most linear with the number of near pairs (which
happens in several datasets [17]), the cost is O(pρ−1

1 (n/
√

m)ρ|P �	r Q|/√
m),

a factor at least
√

m faster than an LSH solution without TCU (e.g.,
O(pρ−1

1 nρ|P �	r Q|)).

5 Conclusion

In this paper, we have investigated from a theoretical point of view how to exploit
TCU accelerators for similarity search problems, showing a Ω(

√
m) improvement

over algorithms for traditional architectures. As future work, we plan to exper-
imentally evaluate our algorithms on common TCU accelerators, such as the
GPU Nvidia Tesla.
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Abstract. A Locality-Sensitive Hash (LSH) function is called (r, cr,
p1, p2)-sensitive, if two data-points with a distance less than r collide with
probability at least p1 while data points with a distance greater than cr
collide with probability at most p2. These functions form the basis of the
successful Indyk-Motwani algorithm (STOC 1998) for nearest neighbour
problems. In particular one may build a c-approximate nearest neighbour
data structure with query time Õ(nρ/p1) where ρ = log 1/p1

log 1/p2
∈ (0, 1).

This is sub-linear as long as p1 is not too small. Such an algorithm is sig-
nificant, since most high dimensional nearest neighbour problems suffer
from the curse of dimensionality, and can’t be solved exact, faster than
a brute force linear-time scan of the database.

Unfortunately many of the best LSH functions tend to have very low
collision probabilities, including the best functions for Cosine and Jac-
card Similarity. This means that the nρ/p1 query time of LSH is often
not sub-linear after all, even for approximate nearest neighbours!

In this paper, we improve the general Indyk-Motwani algorithm to
reduce the query time of LSH to Õ(nρ/p1−ρ

1 ) (and the space usage cor-
respondingly.) Since nρ/p1−ρ

1 < n ⇔ p1 > n−1, our algorithm always
obtains sublinear query time, for all collision probabilities at least 1/n.
For p1 and p2 small enough, our improvement over all previous methods
can be up to a factor n in both query time and space.

The improvement comes from a simple change to the Indyk-Motwani
algorithm, which we call “LSH with High-Low Tables”. This technique
can easily be implemented in existing software packages.

Keywords: Locality-sensitive hashing · Nearest neighbour · Similarity
search

1 Introduction

Locality Sensitive-Hashing (LSH) [16] is one of the most efficient approaches to
the nearest neighbour search problem in high dimensional spaces. It comes with
theoretical guarantees, and it has the advantage of easy adaption to nearly any
metric or similarity function one might want to use for search.
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The (r1, r2)-near neighbour problem is defined as follows: Given a set X of
points, we build a data-structure, such that given a query, q we can quickly find
a point x ∈ X with distance < r2 to q, or determine that X has no points with
distance ≤ r1 to q. Given a solution to this “gap” problem, one can obtain a
r1/r2-approximate nearest neighbour data structure, or even an exact1 solution
using known reductions [2,13,15].

For any measure of similarity, the gap problem can be solved by LSH: we find
a distribution of functions H, such that p1 ≥ Prh∼H [h(x) = h(y)] when x and
y are similar (distance ≤ r1), and p2 ≤ Prh∼H [h(x) = h(y)] when x and y are
dissimilar (distance ≥ r2). Such a distribution is called (r1, r2, p1, p2)-sensitive.
If p1 > p2 the LSH framework gives a data-structure with query time Õ(nρ/p1)
for ρ = log 1/p1

log 1/p2
, which is usually significantly faster than the alternatives.

At least when p1 is not too small.
The two most common families of LSH is Cross-Polytope (or Spherical)

LSH [6] for Cosine similarity and MinHash [10] for Jaccard Similarity.
Cross-Polytope is the basis of the Falconn software package [19], and solves

the (r, cr)-near neighbour problem on the sphere in time Õ(n1/c2/p1). Here
p1 = exp(− τ2

4−τ2 (1 − o(1)) log d), where τ = ‖p − q‖2 ∈ [0, 2] is the distance
between two close points. We see that already at τ ≈ √

2 (which corresponds
to near orthogonal vectors) the 1/p1 factor results in a factor d slow-down. For
larger τ ∈ (

√
2, 2] the slow-down can grow arbitrary large. Using dimensionality

reduction techniques, like the Johnson Lindenstrauss transform, one may assume
d = ε−2 log n at the cost of a factor 1+ε distortion of the distances. However if ε
is just 1/100, the slow-down factor of d is still worse than, say, n1/2 for datasets
of size up to 108, and so if c ≤ √

2 we get that nρ/p1 is larger than n. So worse
than a brute force scan of the database!

The MinHash algorithm was introduced by Broder et al. for the Alta Vista
search engine, but is used today for similarity search on sets in everything from
natural language processing to gene sequencing. MinHash solves the (j1, j2) gap
similarity search problem, where j1 ∈ (0, 1) is the Jaccard Similarity of similar
sets, and j2 is that of dissimilar sets, in time Õ(nρ/j1) where ρ = log 1/j1

log 1/j2
.

(In particular MinHash is (j1, j2, j1, j2)-sensitive in the sense defined above.)
Now consider the case j1 = n−1/4 and j2 = n−3/10. This is fairly common
as illustrated in Fig. 1a. In this case ρ = log 1/j1

log 1/j2
= 5/6, so we end up with

nρ/j1 = n13/12. Again worse than a brute force scan of the database!
In this paper we reduce the query time of LSH to nρ/p1−ρ

1 , which is less
than n for all p1 > 1/n. In the MinHash example above, we get nρ/p1−ρ

1 =
n5/6+1/4(1−5/6) = n7/8. More than a factor n0.208 improvement(!) In general the
improvement of p−ρ

1 may be as large as a factor of n when p1 and p2 are both
close to 1/n. This is illustrated in Fig. 1b.

The improvements to LSH comes from a simple observation: During the
algorithm of Indyk and a certain “amplification” procedure has to be applied

1 In general we expect the exact problem to be impossible to solve in sub-linear time,
given the hardness results of [1,5]. However for practical datasets it is often possible.
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κ = log n
log 1/p2

times. When log 1/p2 does not divide n, which is extremely likely,
the amount of amplification has to be approximated by the next integer. We
propose instead an ensemble of two kinds of LSH tables with respectively �κ	
and 
κ� concatenations of the hash function. We call those respectively “High”
and “Low” tables. When analysed sufficiently precisely yields the improvements
described above.

1.1 Related Work

We will review various directions in which LSH has been improved and general-
ized, and how those results related to what is presented in the present article.

In many cases, the time required to sample and evaluate the hash functions
dominate the time required by LSH. Recent papers [11] have reduced the number
of distinct calls to the hash functions which is needed. The most recent paper in
the line of work is [11], which reduces the number of calls to ( log n

log 1/p2
)2/p1. On

top of that, however, they still require nρ/p1 work, so the issue with small p1 isn’t
touched upon. In fact, some of the algorithms in [11] increase the dependency
from nρ/p1 to nρ/(p1 − p2).

Other work has sought to generalize the concept of Locality Sensitive Hashing
to so-called Locality Sensitive Filtering, LSF [9]. However, the best work for set
similarity search based on LSF [4,12] still have factors similar in spirit to p−1

1 .
E.g., the Chosen Path algorithm in [12] uses query time Õ(nρ/b1), where b1 is
the similarity between close sets.

A third line of work has sought to derandomize LSH. The result is so-called
Las Vegas LSH [3,20]. Here the families H are built combinatorially, rather than
at random, to guarantee the data structure always return a near neighbour, when
one exists. While these methods don’t have probabilities, they still end up with
similar factors for similar reasons.

As mentioned, the reason p−1
1 shows up in all these different approaches, is

that they all rely on the same amplification procedure, which has to be applied an
integer number of times. One might wonder if tree based methods, which do an
adaptive amount of amplification, could get rid of the 1/p1 dependency. However
as evidenced by the classical and current work [7,8,13,14] these methods still
have a factor 1/p1. We leave it open whether this might be avoidable with better
analysis, perhaps inspired by our results for “High-Low” tables.

2 Preliminaries

Before we give the new LSH algorithm, we will recap the traditional analysis. For
a more comprehensive introduction to LSH, see the Mining of Massive Datasets
book [17], Chap. 3. In the remainder of the article we will use the notation
[n] = {1, . . . , n}.

Assume we are given a (r1, r2, p1, p2)-sensitive LSH family, H, as defined in
the introduction. Let k and L be some integers defined later, and let [m] be the
range of the hash functions, h ∈ H. Let n be an upper bound on the number
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(a) Density plots of all pairwise Jaccard similarities in the datasets studied by Mann et
al. [18] written in terms of the size of their corresponding datasets. Curiously the largest
datasets, like Orkut and Spotify, have the smallest median Jaccard similarities, even
when expressed in terms of the dataset size.
We see that reasonable values for j1=p1 range between n−1/3 and n−1/6.

(b) p−ρ
1 : The possible improvements in query time and space, over

classical LSH, as a function of p1 and p2. With p1 = n−1/4 and
p2=n−1/3 we save a factor of n3/16=n0.1875.

Fig. 1. Overview over available savings
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of points to be inserted.2 The Indyk-Motwani data-structure consists of L hash
tables, each with mk hash buckets.

To insert a point, x, we draw L · k functions from H, denoted by
(hi,j)i∈[L],j∈[k]. In each table i ∈ [L] we insert x into the bucket keyed by
(hi,1(x), hi,2(x), . . . , hi,k(x)). Given a query point q, the algorithm iterates over
the L tables and retrieves the data points hashed into the same buckets as q.
The process stops as soon as a point is found within distance r1 from q.

The algorithm as described has the performance characteristics listed below.
Here we assume the hash functions can be sampled and evaluated in constant
time. If this is not the case, one can use the improvements discussed in the
related work.

– Query time: O(L(k + npk
2)) = O(nρp−1

1 log n).
– Space: O(nL) = O(n1+ρp−1

1 ) plus the space to store the data points.
– Success probability 99%.

To get these bounds, we have defined k = � log n
log 1/p2

	 and

L = �p−k
1 	 ≤ exp

(
log 1/p1 · � log n

log 1/p2
	
)

+ 1 ≤ nρ/p1 + 1.

It’s clear from this analysis that the p−1
1 factor is only necessary when log n

log 1/p2

is not an integer. However in those cases it is clearly necessary, since there is
no obvious way to make a non-integer number of function evaluations. We also
cannot round k down instead of up, since the number of false positives would
explode: rounding down would result in a factor of p−1

2 instead of p−1
1 — much

worse.

3 LSH with High-Low Tables

The idea of the main algorithm is to create some LSH tables with k rounded
down, and some with k rounded up. We call those respectively “high probability”
tables and “low probability” tables. In short “LSH with High-Low Tables”.

The main theorem is the following:

Theorem 1. Let H be a (r1, r2, p1, p2)-sensitive LSH family, and let ρ =
log 1/p1
log 1/p2

. Assume p1 > 1/n and p2 > 1/n. Then High-Low tables give a solu-
tion to the (r1, r2)-near neighbour problem with the following properties:

– Query time: O(nρ/p1−ρ
1 log n).

– Space: O(nL) = O(n1+ρ/p1−ρ
1 ) plus the space to store the data points.

– Success probability 99%.

2 If we don’t know how many points will be inserted, several black box reductions
allow transforming LSH into a dynamic data structure.
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Proof. Assume r1, r2, p1, p2 are given. Define ρ = log 1/p1
log 1/p2

, κ = log n
log 1/p2

, and
α = �κ	−κ ∈ [0, 1). We build 
a�+ �b	 tables (for a, b ≥ 0 to be defined), where
the 
a� tables are “Low” tables, which use the hash function concatenated 
κ�
times as keys, and the remaining �b	 are “High” tables, which use it concatenated
�κ	 times.

The total number of High and Low tables to query is then �b	 + 
a�. The
expected total number of far points we have to retrieve is

n(
a�p�κ�
2 + �b	p�κ�

2 ) = n(
a�pκ−1+α
2 + �b	pκ+α

2 )

= 
a�p−1+α
2 + �b	pα

2

≤ ap−1+α
2 + (b + 1)pα

2

≤ ap−1+α
2 + bpα

2 + 1.

For the second equality, we used the definition of κ: pκ
2 = 1/n. We only count

the expected number of points seen that are at least r2 away from the query.
This is because the algorithm, like classical LSH, terminates as soon as it sees a
point with distance less than r2.

Given any point in the database within distance r1 we must be able to find it
with high enough probability. This requires that the query and the point shares
a hash-bucket in one of the tables. The probability that this is doesn’t happen
in any of the 
a� low tables, and not any of the �b	 high tables is

(1 − p
�κ�
1 )�a�(1 − p

�κ�
1 )�b� ≤ (1 − p

�κ�
1 )a−1(1 − p

�κ�
1 )b

≤ exp(−ap
�κ�
1 − bp

�κ�
1 )(1 − p

�κ�
1 )−1

= exp(−(ap−1+α
1 + bpα

1 )n−ρ)(1 − p
�κ�
1 )−1

≤ exp(−(ap−1+α
1 + bpα

1 )n−ρ) · 2.

For the first inequality we used that 1 − x ≤ exp(−x). For the equality, we
used the definition of κ and ρ: pκ

1 = pρκ
2 = n−ρ. For the last inequality we have

assumed p2 > 1/n so 
κ� ≥ 1, and that p1 < 1/2, since otherwise we could just
get the theorem from the classical LSH algorithm.

We now define a and b, both ≥0, such that

ap−1+α
2 + bpα

2 = a + b and (1)

ap−1+α
1 + bpα

1 = nρ. (2)

By the previous calculations this will guarantee the number of false positives is
not more than the number of tables, and a constant success probability.

We can achieve this by taking
[
a
b

]
=

[
p−1+α
2 − 1 pα

2 − 1

p−1+α
1 pα

1

]−1 [
0
nρ

]
=

nρ

(p−1+α
2 − 1)pα

1 + (1− pα
2 )p

−1+α
1

[
1− pα

2

p−1+α
2 − 1

]
.

We can check that both values are non-negative, since α ∈ [0, 1], so the definition
is meaningful.
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When actually implementing “LSH with High-Low Tables”, these are the
values you should use for the number of respectively the high and low probability
tables. That will ensure you take full advantage of when α is not worst case, and
you may do even better than the theorem assumes.

To complete the theorem we need to prove a+b ≤ nρpρ−1
1 . For this we bound

a + b

nρ
=

p−1+α
2 − pα

2

(p−1+α
2 − 1)pα

1 + (1 − pα
2 )p−1+α

1

≤
(

(p1 − p2) log 1/p1
(1 − p1) log p1/p2

)ρ (
(1 − p2) log p1/p2
(p1 − p2) log 1/p2

)

= exp
(

D

(
ρ

∥∥∥∥
1/p1 − 1
1/p2 − 1

))

≤ pρ−1
1 .

Here D(r‖x) = r log r
x + (1 − r) log 1−r

1−x is the Kullback-Leibler divergence. The
two inequalities are proven in the Appendix in the full version of the paper.
The first bound comes from maximizing over α ∈ [0, 1], so in principle we might
be able to do better if κ = log n

log 1/p2
is close to an integer. The second bound is

harder, but the realization that the left hand side can be written on the form of
a divergence helps a lot, since those have known properties we can exploit. The
bound is tight up to a factor 2, so no significant improvement is possible.

Bringing it all together the expected query time is equal to the number of
tables we have to query plus the number of far points to inspect. Using Eq. (1)
we have:


a� + �b	 + n(
a�p�κ�
2 + �b	p�κ�

2 ) ≤ (a + b + 1) + (ap1−α
2 + bpα

2 + 1)
= 2(a + b) + 2

≤ 2nρ/pρ−1
1 + 2.

Similarly, recall that to succeed the data structure must be able to find a near
point when one exists. Recalling the previous computations and Eq. (2) we have:

1 − (1 − p
�κ�
1 )�a�(1 − p

�κ�
1 )�b� ≥ 1 − exp(−ap

�κ�
1 − bp

�κ�
1 )(1 − p

�κ�
1 )−1

= 1 − exp(−1) · 2
≥ 0.26.

Finally we can boost the success probability from 26% to 99% by repeating the
entire data-structure 16 times.
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1 Introduction

Locality-sensitive hashing [13] (LSH) is the leading theoretical approach to near-
est neighbor problems in high dimensions. In nearest neighbor search we seek to
preprocess a point set P such that given a query point q, we can quickly return
the point in P that is closest to q according to some distance measure dist(·, ·).
Theoretical results are typically formulated as approximation algorithms that
allow a point at distance cr to be returned if the nearest neighbor has distance r
from the query point, where c > 1 is a user-specified approximation factor. In
practice the quality parameter of interest is the recall, i.e., the empirical proba-
bility of retrieving the nearest neighbor (see e.g. [1]). As we will see below is not
hard to show that LSH methods can obtain recall arbitrarily close to 1 if param-
eters are suitably chosen according to the given query and data set. However,
choosing parameters well, in an efficient way, is a challenge [15].

Background on Locality-Sensitive Hashing. A locality-sensitive family of
hash functions H (an “LSH family”) has the property that hash collision proba-
bility decreases as distance increases. Specifically, for h ∼ H the “hash bucket”
Sh(q) = {x ∈ P | h(x) = h(q)} is more likely to contain the nearest neighbor
of q than any other element of P . For a given data set P one would typically
use a family H such that the expected size of Sh(q) is constant (for every q or
on average for a certain query distribution) [17]. Given such a family H, sup-
pose the nearest neighbor is x1 ∈ P , and define p1 = Pr[x1 ∈ Sh(q)] to be the
probability of a hash collision with the nearest neighbor. Then inspecting Shi

(q)
for a sequence of hash functions h1, . . . , hL independently sampled from H we
will fail to find x1 with probability (1 − p1)L ≈ exp(−p1L). To make this as
efficient as possible we can use a hash table that given q allows us to retrieve
Shi

(q) in time O(1 + |Shi
(q)|). If we assume that the distance between q and

x ∈ P can be computed in constant time, the expected time for this procedure
is O(LE[1 + |Sh(q)|]). There are several issues with the above construction:

– If p1 is large then the query algorithm still goes through L hash buckets, even
though we expect to see x1 within the first O(1/p1) buckets.

– If p1L is small, the recall 1 − exp(−p1L) is close to zero.

Notice that p1 depends on the nearest neighbor that we are searching for, result-
ing in a chicken-and-egg situation: we would like to conduct the search with
knowledge of p1, but we only know p1 if the search finds x1 (and we know how
the collision probability depends on dist(q, x1)). We will introduce a technique
called confirmation sampling for dealing with the former problem of when to ter-
minate the search when we have no knowledge of p1. The latter problem requires
us to take a new look at how to query the so-called LSH forest data structure,
described below.

Approximation Versus Recall. Early theoretical work on high-dimensional
nearest neighbor search dealt with the simpler case of near neighbor search where
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it is assumed that a maximum distance r to the nearest neighbor is known and
a point within distance cr must be returned. A reduction with logarithmic over-
head in time and space extends this to solve the approximate nearest neighbor
problem with unknown distance r [12,13]. These reductions increase the approx-
imation factor by 1+γ, with space usage proportional to 1/γ, and do not seem to
provide any guarantee on recall even if used with a near-neighbor data structure
with approximation factor c = 1.

A data structure known as LSH forest, first described by Charikar [7] and
later generalized and baptized by Bawa et al. [6], removes the logarithmic over-
head in space but the query algorithm still only provides c-approximate results
and does not guarantee a specific recall. Indeed, it is not hard to construct exam-
ples where there are many c-approximate nearest neighbors and the probability
of returning the exact nearest neighbor is negligible.

LSH Forest. Since we will describe a new query algorithm for the LSH Forest
data structure we review the data structure here. We will again make use of
an LSH family H, but this family can be “weak” in the sense that collision
probabilities are large, say, Pr[h(q) = h(x)] = Ω(1) for x ∈ P . Assume for
simplicity that we can sample h ∼ H and evaluate h(x) in constant time. For
parameters K and L and (i, j) ∈ {1, . . . , K} × {1, . . . , L}, independently sample
hash functions hi,j ∼ H. Associate each point x ∈ P with a string hj(x) =
h1,j(x)h2,j(x) . . . hK,j(x). For j = 1, . . . , L the jth part of the LSH Forest is a
trie that stores prefixes of the set of strings hj(P ) = {hj(x) | x ∈ P}. Specifically,
for each x ∈ P it stores the shortest prefix of hj(x) that is unique among strings
in hj(P ) (if such a prefix exists, otherwise the whole string hj(x)). A pointer to
x is placed in the leaf corresponding to a prefix of hj(x). The space for the data
structure, not counting space for storing the n points in P , is O(nKL) words
näıvely, and can be improved to O(nL) words using path compression [6].

Querying LSH Forest. For a given query q and a parameter i ∈ {1, . . . , K},
LSH Forest allows us to retrieve the hash bucket Si,j(q) of points in P match-
ing a length-i prefix of hj(q) in time O(i + |Si,j(q)|). We will use p(q, x) =
Prh∼H[h(q) = h(x)] as shorthand for the collision probability between q and x.
We have

E[|Si,j(q)|] =
∑

x∈P

p(q, x)i . (1)

The larger the “level” i, the smaller Si,j(q) is in expectation. Conversely the
probability of finding x1 in the hash bucket is Pr[x1 ∈ Si,j(q)] = p(q, x1)i which
decreases exponentially with i. The query algorithm described in [6] chooses the
level i0 to inspect as the smallest level where the number of collisions is linear,
i0 = min{i | ∑L

j=1 |Si0,j(q)| ≤ cL}, for some constant c. The probability of
failing to find the nearest neighbor by inspecting all buckets Si,1, . . . , Si,L at
level i is (1 − pi1)

L ≈ exp(−pi1L), so to bound the failure probability we need to
choose L large enough. For example, if the nearest neighbor of q is in a dense
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cluster of 2cL points whose points almost surely reside in the same LSH bucket,
the algorithm fails to find the nearest neighbor almost surely. So LSH Forest is
only “self-tuning” to a limited extent if high recall is desired: choosing a suitable
parameter L requires at least approximate knowledge of the distance distribution
from q to points of P . Instead, we would like L to be simply a parameter that
determines the space usage, and use a query algorithm that adapts to the data.

Our Results. LSH methods work by performing many iterations, each inspect-
ing a hash table Di with a small (and unknown) probability p1 of finding the
nearest neighbor. To stress that p1 depends on the query we will sometimes
denote it p1(q). It is easy to see that after ln(1/δ)/p1(q) iterations the nearest
neighbor will be retrieved with probability at least 1−δ. We show that this num-
ber of iterations can be matched in expectation without knowledge of p1(q), and
in fact even without estimating any collision probabilities. Using a technique we
call confirmation sampling we obtain the following result on LSH-like methods:

Theorem 1. Suppose there is a sequence of independent, randomized data struc-
tures D1,D2, . . . , such that on query q, Di returns the nearest neighbor of q in P
with probability at least p1(q) and each other point in P with probability at most
p1(q). Let δ > 0 be given. There is an algorithm that depends on δ but not on
p1(q) that on input q queries data structures D1, . . . ,Djq , performs jq distance
computations, where E[jq] = O(ln(1/δ)/p1(q)), and returns the nearest neighbor
of q with probability at least 1 − δ.

Theorem 1 shows that if we use quadratic space to store a sufficiently long
sequence of data structures Di, it suffices to focus on minimizing the product of
the expected time for Di and the number 1/p1(q) of iterations.

In practice one would of course not have access to an unbounded sequence of
data structures, but rather to a fixed number L of data structures. If these data
structures offer a trade-off between query time and probability of returning the
nearest neighbor it is still possible to apply Theorem1: For i = 1, 2, . . . , log n run
confirmation sampling in rounds of L steps with time budget 2i for each data
structure Di. Terminate as soon as confirmation sampling returns a result—by
a union bound over the log n rounds the error probability is at most δ log n.

Our second result addresses how to adapt not only to the collision probability
of the nearest neighbor, but to the whole distance distribution from q to points
in P . In particular, we design and analyze a new adaptive query algorithm for
the LSH Forest data structure [6,7] discussed above. LSH Forest is known to be
able to adapt to the distance distribution to some extent, but previous work has
required the query algorithm to depend on the distance to the nearest neighbor
in P . In contrast our query algorithm is independent of properties of the data.
The only requirement is that the LSH family used is monotone in the sense that
collision probability is non-increasing with distance. We compare our adaptive
algorithm to an optimal algorithm in a class of natural algorithms that choose a
level i∗ and a number of tries j∗ (which may depend on the distance distribution
between q and P ) and inspect the first j∗ buckets at level i∗.
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Theorem 2. Let OPT (L,K) denote the optimal cost of a natural algorithm
that queries an LSH Forest data structure with L trees and K levels and returns
the nearest neighbor with probability at least 1 − 1/n. Further assume that the
LSH family is monotone. Then there is an adaptive algorithm that queries an
LSH Forest data structure with O(L) trees and K levels that returns the nearest
neighbor using time O(OPT (L,K)) with probability 1 − 1/n.

LSH Forest is not an asymptotically optimal data structure for approxi-
mate nearest neighbor search in general. For example, it is known that data-
dependent methods can be asymptotically faster in several important spaces,
and data structures obtaining better space-time trade-offs are known [2,3]. Gen-
eralizing our results for exact nearest neighbors to a data-dependent setting, say,
in Euclidean space, is an interesting open direction. Note that the data structures
Di in Theorem 1 could be data dependent, though present data-dependent LSH
techniques rely on knowing the (approximate) distance to the nearest neighbor.

1.1 Related Work

There is a large literature on using LSH for nearest neighbors search in practice,
often generalized to the k-nearest neighbor problem where the k closest points in
P must be returned. For simplicity we concentrate on the case k = 1, but most
results extend to arbitrary k. Many heuristics that work well in practice come
without guarantees on either result quality or query time in high dimensions, or
provides guarantees only under certain assumptions on the data set.

Guarantees on Recall. In practice, the performance of locality-sensitive hash-
ing techniques is usually measured by their recall: the fraction of the true k-
nearest neighbors found on average, see e.g. [1,4]. From a theoretical point of
view it is natural to bound the expected recall, i.e., the probability that the
nearest neighbor is found. We are only aware of very few works that provide
theoretical guarantees on expected recall in conjunction with sublinear query
time in high dimensions and without assumptions on data.

Dong et al. [11] outline an “adaptive” method for achieving a given expected
recall in the context of multiprobe LSH (with no formal statement of guarantees).
The idea is to determine, after inspecting i buckets, whether to terminate or to
inspect bucket i+1 based on the collision probability p(q, x̂1) between q and the
nearest neighbor x̂1 found in the first i buckets. This requires an efficient method
for computing p(q, x̂1), which might not be known, especially for small collision
probabilities. This is not just a theoretical problem: Prominent LSH methods
such as p-stable LSH [10] and cross-polytope LSH [1] do not have closed-form
expressions for collision probabilities. Our adaptive algorithm is similar in spirit,
but entirely avoids having to compute collision probabilities.

Recently, Aumüller et al. [5] introduced a practical implementation of the
adaptive method of Dong et al. with several additional optimizations from the
literature such as b-bit hashing for faster distance estimation [14] and LSH-
pooling [8] for reducing the number of independent LSH evaluations by recycling.
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They circumvent the problem of computing collision probabilities by instead
relying on estimated collision probabilities from synthetic data, using the LSH
property that collision probabilities only depend on the distance between points.

A downside of previous adaptive approaches is that they proceed by searching
all L tries of the LSH Forest in a bottom-up fashion starting at level K. This
approach results in an overhead of O(LK) even if the desired recall can be
achieved at a lower expected cost by searching i∗ < L tries at a level j∗ < K.
Our adaptive algorithm avoids this overhead and is able to match the running
time of an algorithm that chooses a number of tries to search i∗ and the depth
j∗ in order to minimize the expected cost of finding the nearest neighbor with
high probability, even when that cost is dominated asymptotically by O(LK).

Parameter Tuning. Since the performance of LSH data structures depends
on parameter choices, a lot of work has gone into devising ways of choosing good
parameters for a given data set, both during data structure construction and
adaptively for the query algorithm. Slaney et al. [17] propose to select parameters
based on the “distance profile” of a data set, but needs a bound on the distance
to the nearest neighbor to function.

The state-of-the-art FALCONN library [1] uses grid search over parameters
to empirically estimate the best parameters, assuming that the data and query
distributions are identical.

We note that the adaptive method of Dong et al. [11] does not adapt search
depth to the distance distribution from the query point q. Choosing good param-
eters for LSH and especially multi-probe LSH was mentioned by Lv et al. [15]
as a challenge in the paper celebrating their VLDB 10-year Best Paper Award.

2 Confirmation Sampling

Let Q denote a probability distribution with finite support S. Further assume
that elements of S are equipped with a total ordering relation ≺, and define
x1 = min(S) as the smallest element in the support with respect to the order-
ing ≺. Consider the problem of identifying x1 given that we only have access

Algorithm 1: ConfirmationSampling(Q, t,≺)
1 β ← ∞, count ← 0
2 while count < t do
3 sample X ∼ Q
4 if X = β then
5 count ← count + 1
6 else if X ≺ β then
7 β ← X
8 count ← 0

9 return β
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to samples from the distribution Q and to the ordering, i.e., given elements
x, y ∈ S we can determine whether x ≺ y, x = y, or y ≺ x. We propose a
simple randomized algorithm for solving this problem that we call confirmation
sampling. The algorithm works by drawing samples from Q while keeping track
of the smallest element seen so far together with the number of times it has been
sampled in addition to the first sample—the number of confirmations. Once the
smallest element has been confirmed t times, the algorithm reports that element
and terminates. We use ∞ to denote an element that is larger than all elements
of S.

Theorem 3. Let Q denote a probability distribution with finite support S. For
x1 = min(S) and X ∼ Q let p1 = Pr[X = x1] and let p2 = max{Pr[X = x] | x ∈
S\{x1}} be the largest sampling probability among elements of S\{x1}. Then:

Pr[ConfirmationSampling(Q, t) �= x1] ≤ (1 − p1)
(

p2
p1 + p2

)t

The expected number of samples made by ConfirmationSampling is bounded
by (t + 1)/p1.

Before we show Theorem 3 we observe that it implies Theorem 1: Define an
ordering on P by x 	q y ⇐⇒ dist(q, x) ≤ dist(q, y). It can be turned into a total
ordering ≺q by an arbitrary but fixed tie-breaking rule. Choose t = �log2(1/δ)
and run ConfirmationSampling(Q, t,≺q) with the ith sample from Q being
produced by querying Di for the nearest neighbor of q. Since p1 ≥ p2 we have
that the error probability is bounded by 2−t ≤ δ.

Proof. If the algorithm fails to report x1 it must have happened at least t times
that the confirmation counter was incremented (line 5) due to a sample X sat-
isfying the condition X = β for β �= x1. We will refer to such events as false
confirmations and proceed by upper bounding the probability that the algorithm
performs t false confirmations. Prior to each sample the probability of perform-
ing a false confirmation is maximized if β = x2 for some x2 �= x1 maximizing the
sampling probability, i.e., Pr[X = x2] = p2. Note also that the first sample can
never result in a false confirmation. The probability of the algorithm performing
t false confirmations before sampling x1 can therefore be upper bounded by the
probability that the first sample is not equal to x1 and that we in the following
samples observe t samples of x2 before sampling x1. The probability that we
sample x2 conditioned on sampling either x1 or x2 is exactly p2

p1+p2
, and the

probability of this happening t times in a row is
(

p2
p1+p2

)t

.
To analyze the number of samples, consider an infinite sequence of indepen-

dent samples X1,X2, · · · ∼ Q, and suppose that in the ith iteration the algorithm
uses sample Xi. Observe that the algorithm terminates no later than iteration
i if x1 is sampled t + 1 times in X1, . . . , Xi. The expected number of iterations
needed to sample x1 t + 1 times is exactly (t + 1)/p1.
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Theorem 3 is tight in the case where Q only assigns non-zero probability to
two elements. The exact distribution of the output of ConfirmationSampling
is derived in Appendix A of the arXiv version of this paper [9]. We observe that
for the proof to work, the distribution from which samples are drawn does not
need to be the same in each iteration of ConfirmationSampling, as long as
p1 is a lower bound on sampling x1 and p2 is an upper bound on sampling each
element other than x1. If for some γ ∈ [0, 1] we have that every distribution
satisfies p2/(p1 + p2) ≤ γ then we can upper bound the error probability by γt.

2.1 Application to Locality-Sensitive Hashing

Assume that we have an LSH family that is tuned to give few collisions between
query and non-neighbor points for a given query and data distribution. Such
a “tuned” LSH family may be obtained if the query distribution is known as
discussed in Sect. 1.1. We can use confirmation sampling to adjust query time
according to the distance to the nearest neighbor.

Let (V,dist) denote a distance space. That is, V is equipped with a distance
function dist : V × V → R. We define locality-sensitive hashing [13] as follows:

Definition 1. Let H denote a distribution over functions h : V → R. We say
that H is locality-sensitive over (V,dist) if there exists a non-increasing f : R →
[0, 1] such that for all x, y ∈ V we have that

Pr
h∼H

[h(x) = h(y)] = f(dist(x, y)).

We use the ordering ≺q defined above and define a distribution Qq that is most
easily described as a sampling procedure. For now we will not care about the
efficiency of implementing the sampling. To create a sample X ∼ Qq, sample
h ∼ H, compute the “bucket”

S(q) = {x ∈ P | h(x) = h(q)} .

Now define X as the element of S(q) closest to q, if such an element exists, and
otherwise a random element in P .1 More precisely: If S(q) �= ∅ we pick X as
the unique minimum element in S(q) according to the total order ≺q, and if
S(q) = ∅ we pick X uniformly at random from P .

Lemma 1. For X ∼ Qq and any x2 ∈ P , Pr[X = x1] ≥ Pr[X = x2].

Proof. Since H is locality-sensitive we have that Pr[h(q) = h(x1)] ≥ Pr[h(q) =
h(x2)]. Thus

Pr[X = x1] = Pr[h(q) = h(x1)] +
Pr[S(q) = ∅]

n

≥ Pr[h(q) = h(x2)] +
Pr[S(q) = ∅]

n
= Pr[X = x2] .

1 The sampling of a random element ensures compatibility with ConfirmationSam-
pling, which requires a sample to be returned even if there is no hash collision. It
is not really necessary from an algorithmic viewpoint, but also does not hurt the
asymptotic performance.
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Theorem 3 implies that confirmation sampling succeeds with good probability:

Lemma 2. Let x1 be the nearest neighbor of q in P (breaking ties according to
≺q). ConfirmationSampling(Qq, t,≺q) returns x1 with probability ≥ 1− 2−t.
The expected number of samples from Qq is bounded by (t + 1)/p1, where p1 ≥
Pr[h(q) = h(x1)].

To efficiently sample from Qq we independently sample h1, h2, · · · ∼ H, and
construct a sequence of hash tables D1,D2, . . . that allow us to find Si(q) =
{x ∈ P | hi(x) = hi(q)} in time O(1 + |Si(q)|). Random samples from P can be
realized using an array of pointers to elements of P .

We note that the above is not an entirely satisfactory solution, since the
number of data structures needed cannot be bounded ahead of time (or rather,
Ω(n) data structures may be needed to succeed, resulting in quadratic space
usage). A possible remedy if the algorithm does not terminate after inspecting L
hash tables is multi-probing [15,16] where more than one bucket is inspected in
each hash table. Multiprobing increases the probability p1 of finding the nearest
neighbor in each hash table. In the next section we consider another approach
to dealing with a space-bounded data structure.

3 Fully Adaptive Nearest Neighbor Search

We present an adaptive algorithm for nearest neighbor search in an LSH For-
est that succeeds with high probability2 (w.h.p.) and matches the minimum
expected running time that can be obtained by a natural algorithm that has full
knowledge of the LSH collision probabilities between the query point and all the
data points, provided we are are allowed a constant factor increase in the number
of trees used by the algorithm. We define OPT (L,K) as the minimum expected
search time that can be achieved by an algorithm with access to an LSH Forest
of L trees of depth K where the algorithm can choose to search j ≤ L trees at
level i ≤ K with the requirement that the nearest neighbor should be reported
with probability at least 1 − 1/n.

OPT (L,K) = min
{

i +
∑

x∈P p(q, x)i

p(q, x1)i
ln n

∣∣∣∣ 0 ≤ i ≤ K, p(q, x1)iL ≥ ln n

}

We note that OPT (L,K) only reflects the optimal running time under the
assumption that p1 is bounded away from 1. If for example we had p1 = 1
the multiplicative overhead of lnn in the running time would not be needed.

2 For every choice of constant c ≥ 1 there exists a constant n0 such that for n ≥ n0

we can obtain success probability 1 − 1/nc where n = |P | denotes the size of the set
of data points.
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Overview of Our Approach. The algorithm works by measuring the number
of collisions at different levels in the LSH Forest and w.h.p. adapting to search at
a level that will result in O(OPT (L,K)) running time. Ideally, given sufficiently
many trees, we would like to search the level i that balances the number of
hash function evaluations and the expected number of collisions with the query
point. However such a level might not exist as the expected number of collisions
can decrease by more than a constant factor as we increase the level. We begin
by introducing some notation. Let p1 = p(q, x1), where x1 denotes the nearest
neighbor to q in P and define:

C(i) =
∑

x∈P

p(q, x)i, T (i) = (i + C(i))/pi1 .

Observe that C(i) is the expected number of collisions with the query point at
level i, and T (i) is the expected running time of an algorithm that searches at
level i and guarantees reporting the nearest neighbor of q with some constant
probability. If we let i∗ denote the choice of level resulting in the minimum value
of OPT (L,K) then OPT (L,K) = T (i∗) ln n. Finally, define i′ to be the smallest
integer i such that C(i) ≤ i.

Given that the number of trees L is sufficiently large we can show that search-
ing either the first 1/pi

′
1 trees at level i′ or the first 1/pi

′−1
1 trees at level i′ − 1

results in an expected running time that is bounded by O(T (i∗)) while we report
the nearest neighbor with constant probability at least 1 − 1/e. That is, one of
the two levels right around where the number of hash function evaluations and
the number of collisions balance out (we have C(i′) ≤ i′ and C(i′ − 1) > i′ − 1)
result in optimal running time for constant failure probability. Since we don’t
know p1 we can search both of these levels using confirmation sampling, in paral-
lel, until one of them terminates. This gives us an algorithm that with constant
probability terminates in time O(T (i∗)) and reports the nearest neighbor. In
order to reduce the failure probability to 1/n while obtaining optimal running
time in the high probability regime we can perform O(log n) independent rep-
etitions, so that conceptually there are O(log n) independent forests, and stop
the search once a constant fraction terminates.

Query Algorithm and Parameters. There are two circumstances that pre-
vent us from being able to use the approach outlined above. The primary problem
is that we don’t know the value of i′ and estimating it appears to be difficult.
The solution proposed by our algorithm is to instead search the “empirical” i′

and i′ − 1: we measure the number of collisions at different levels and search
level i and i − 1 where i is set to the minimum level where the average number
of collisions is smaller than i. This procedure is described in pseudocode in the
for-loop section of Algorithm 2.

The second problem is that restrictions on L and K can make it necessary
for us to search a level i < i′ − 1, either because K < i′ − 1 or because L is too
small to ensure that we find the nearest neighbor by searching at level i′ −1. The
second part of Algorithm 2 that runs when j = L′ deals with this problem by
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searching through the LSH forests bottom-up until a level that results in optimal
running time is encountered.

Algorithm 2: AdaptiveNearestNeighbor(q)
1 for j ← 1, 2, 4, . . . , L′ do
2 find the smallest level i such that the first j trees in at least half of the

forests have at most 10ij collisions. If such a level does not exist set i = K.
3 in each forest run confirmation sampling at level i and i − 1 with a time

budget of 10ij (looking at no more than j buckets and at no more than
10ij collisions).

4 if confirmation sampling terminated in 1/4 of the forests at level i or level
i − 1 then

5 report the closest point seen so far and terminate.

6 if j = L′ then
7 run confirmation sampling in lock-step across the forests starting at

level i − 1, decreasing the level and starting over once 1/2 of the
searches have explored tree number L′. Do this until confirmation
sampling terminates in 1/4 of the forests.

We aim for matching the running time of OPT (L,K) up to constant factors
when we are allowed to use O(L) trees. Algorithm 2 operates on Θ(log n) LSH
Forests that each has L′ trees where L′ = O(L/ log n) is a sufficiently large power
of two. The confirmation sampling used to search in these forests has a parameter
setting of t = 3 since we only need each search to terminate and correctly report
the nearest neighbor with a sufficiently large constant probability.

The proof of Theorem2 is based on two arguments. First we will show that
the stopping condition that 1/4 of the forests at a given level terminates within
the time budget ensures that w.h.p. the nearest neighbor is reported. Second,
we show that w.h.p. the algorithm terminates in time O(OPT (L,K)).

Correctness. The choice of i made by the algorithm always satisfies i ≤ n since
there can be no more than n collisions at any level. If we show correctness w.h.p.
at a fixed level then we can use a simple union bound over the first n levels to
show that w.h.p. at every level where 1/4 of the searches terminate we have found
the nearest neighbor of the query point. The instances of confirmation sampling
used by Algorithm 2 use t = 3 confirmations before terminating. According to
Lemma 2 the probability of terminating and reporting a point different from the
nearest neighbor is at most 1/8. By applying a standard Chernoff bound we can
show that over O(log n) independent runs of confirmation sampling w.h.p. less
than 1/4 the instances will fail to report the nearest neighbor.

Bounding the Running Time. We remind the reader that we use i∗ to
denote the underlying choice of level that minimizes OPT (L,K), that i′ denotes
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the minimum level such that C(i′) ≤ i′, and that i is the choice of level made
by the query algorithm.

Consider line 2 of Algorithm2 where the level i is set to the smallest level
where the first j trees in at least half the forest have at most 10ij collisions. This
operation can be completed in O(ij) time per forest by proceeding top-down
across all the forests and for each forest summing up the number of collisions
across all its tries at the current level until level i is reached. We make use of
constant-time access to the size of buckets/subtrees as we search down in an LSH
Forest trie (either by explicitly storing the size of subtrees when we construct the
trie, or by inspecting the pointers to the bucket associated with a given prefix).

We will now argue that w.h.p. Algorithm2 terminates in time O(OPT (L,K))
in each of the two following cases:

Case 1: C(i∗) ≤ i∗. We will show that there exists a value of j ≤ L′ such that
w.h.p. the algorithm terminates at this value (or earlier) and in O(OPT (K,L))
time. Consider the first iteration of the for-loop where 100/pi

∗
1 ≤ j ≤ L′.

Such a j exists by the restrictions underlying the choice of level that minimizes
OPT (L,K) and by our freedom to set L′ = O(L/ log n). By Markov’s inequality
the probability that the number of collisions in the first j trees of a forest at
level i′ is greater than 10i′j is at most 1/10. Therefore it happens w.h.p. that the
algorithm sets i ≤ i′ ≤ i∗ where the last inequality follows from the definition
of i′ and the assumption that C(i∗) ≤ i∗. By our choice of j we know that con-
firmation sampling at level i will terminate in each forest with a large constant
probability, say, 9/10. w.h.p. we therefore have that in at least 1/4 of the forests
confirmation sampling at level i terminates within the budget of 10ij. To bound
the total running time we use that w.h.p. i ≤ i′ for every value of j and since
j is doubled at every step of the for loop we can bound the running time in all
O(log n) LSH forests by O(i′j log n) = O(T (i∗) log n) = O(OPT (L,K)).

Case 2: C(i∗) > i∗. Consider first the sub-case where i∗ = i′ − 1. Suppose
there exists a minimum j ≤ L′ such that i′j ≥ 100T (i′ − 1), j is an integer
power of 2, and j ≥ 100/pi

′−1
1 (the latter condition holds by the assumption

i∗ = i′ − 1). We previously argued that w.h.p. the algorithm sets i ≤ i′. In the
first iteration of the for-loop where j takes on this value the following holds: If
i = i′ then level i′ −1 is searched with a sufficiently large budget to w.h.p. ensure
termination. If i < i′ then level i′ − 1 is searched up until tree number j, again
w.h.p. ensuring termination. In both of these cases the running time is bounded
by O(OPT (L,K)). Otherwise, if L′i′ < T (i′ −1)/100 then w.h.p. the time spent
in the for-loop part of the algorithm is upper bounded by O(T (i′ − 1) log n) =
O(OPT (L,K)), and if level i′ −1 was not searched in the for-loop then it will be
searched in the first step of the bottom-up part of the algorithm (because i ≤ i′

w.h.p.) and w.h.p. we are guaranteed to terminate in optimal time.
Consider now the sub-case where i∗ < i′ − 1. Let î denote the largest level

satisfying î < i′ − 1 and 100/pî1 ≤ L′. The query algorithm will terminate w.h.p.
when having searched sufficiently many trees at level î ≥ i∗. We will proceed by
bounding the cost up to the point where 100/pî1 trees have been searched in half
of the forests at level î. The cost of running the for-loop part of the algorithm is
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w.h.p. bounded by O(L′i′ log n). The number of collisions encountered through
the bottom-up search when having searched level î + 1 is w.h.p. bounded by
O(C (̂i+1)L′ log n) = O((C (̂i+1)/pî+1

1 ) log n) since 100/pî+1
1 > L′ by our choice

of î. Finally, the cost of searching at level î until 1/4 of the forests terminate is
w.h.p. bounded by O(T (̂i) log n).

Next we show that the sum of all these costs is bounded by O(OPT (L,K)).
For every x ∈ P it holds by monotonicity that p1 = p(x1, q) ≥ p(x, q) and it
follows that for every i we have C(i+1) ≤ p1C(i). Applying this inequality we get
the bound C (̂i + 1)/pî+1

1 ≤ C(i∗)/pi
∗
1 ≤ T (i∗) that is used to bound the number

of collisions from the bottom-up search. The same approach also gives a bound
on the number of collisions at level î. In order to bound the contribution from the
for-loop note that C (̂i+1) ≥ C(i′ −1) > i′ −1 where the last inequality holds by
the definition of i′. It also holds that L′ < 100/pî+1

1 by the choice of î. Combining
these two inequalities L′i′ ≤ 100 (C (̂i + 1) + 1)/pî+1

1 = O(T (i∗)). The bound on
the total running time is then given by O(T (i∗) log n)) = O(OPT (L,K)).

4 Conclusion and Open Problems

We have introduced confirmation sampling as a technique for identifying the
minimum element from a discrete distribution. Confirmation sampling works
particularly well when the minimum element is at least as likely to be sampled as
other elements. Combining confirmation sampling with locality-sensitive hashing
we obtain a randomized solution to the exact nearest neighbor search problem
that works without knowledge of the probability of collision between pairs of
points. We use these techniques to design a new adaptive query algorithm for
the LSH Forest data structure with L trees that returns the nearest neighbor of
a query point with the same time bound that is achieved if the query algorithm
has access to an LSH forest of Ω(L) trees with internal parameters specifically
tuned to the query and data.

We can use confirmation sampling with LSH to solve the k-nearest neighbor
problem w.h.p. in k by keeping track of the top-k closest points and requiring
each to be confirmed O(log k) times. If we are able to compute the collision
probabilities we can use the adaptive stopping rule of Dong et al. [11] to stop the
search once we have sampled j ≥ ln(1/δ)/p̂k buckets, where p̂k is the collision
probability between the query point and the kth nearest neighbor candidate
found by the query algorithm. This stopping rule guarantees that if x is a k-
nearest neighbor to the query point, and the LSH family is monotone, then x is
reported with probability at least 1−δ. It would be interesting to find a similarly
efficient stopping rule for δ = Θ(1) that works without knowledge of the collision
probabilities.

Our adaptive query algorithm for the LSH Forest data structure makes use of
union bounds over the K levels of the data structure when showing correctness
and uses that w.h.p. it does not search too far (which could potentially cost time
O(n)). When we compare our performance against an optimally tuned algorithm
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that must succeed w.h.p. we can afford to pay for this extra overhead. It remains
an open problem to find an adaptive query algorithm that matches an optimally
tuned algorithm when we only require constant success probability, even if we
can compute collision probabilities.
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Abstract. In metric search, worst-case analysis is of little value, as the
search invariably degenerates to a linear scan for ill-behaved data. Conse-
quently, much effort has been expended on more nuanced descriptions of
what performance might in fact be attainable, including heuristic base-
lines like the AESA family, as well as statistical proxies such as intrinsic
dimensionality. This paper gets to the heart of the matter with an exact
characterization of the best performance actually achievable for any given
data set and query. Specifically, linear-time objective-preserving reduc-
tions are established in both directions between optimal metric search
and the minimum dominating set problem, whose greedy approximation
becomes the equivalent of an oracle-based AESA, repeatedly selecting
the pivot that eliminates the most of the remaining points. As an illus-
tration, the AESA heuristic is adapted to downplay the role of previously
eliminated points, yielding some modest performance improvements over
the original, as well as its younger relative iAESA2.

Keywords: Metric indexing · Baselines · Hardness · Dominating set

1 Introduction

Mapping out the complexity of a computational problem is generally a two-
pronged affair. On the one hand, there will be algorithms solving the prob-
lem, whose performance is evaluated theoretically or empirically, providing ever-
tightening pessimistic bounds on what is possible. On the other hand, there may
be lower bounds, based on reasonable complexity-theoretical assumptions, as in
the case of edit distance, for example [1], or on reasoning about the fundamentals
of the computational model, as in the case of sorting [11]. The endgame is when
these bounds meet, showing some algorithm to be optimal.

Such bounds generally apply to the worst case, as the best-case performance
tends to be trivial. For metric search, however, both the best case and the worst
are quite uninformative. For a range query, one could always construct an input
where examining a single object is enough—or one where there is no escaping
a full linear scan. The main thrust of research attempting to describe what
performance is possible has thus been directed toward empirical baselines like
the AESA family [10,25] and statistical hardness measures such as intrinsic
c© Springer Nature Switzerland AG 2020
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dimensionality [5],1 or in some cases restricting the type of structure studied, to
permit a more nuanced analysis [20].

It is, however, possible to describe exactly what performance is attainable
for a given data set and query, as I show in what follows. The main equiva-
lence result, between metric search and dominating sets, provides just such a
description, i.e., the lowest number of distance computations that can resolve
the query. This performance will not, in general, be attainable without some
lucky guesses, but it is attainable. In addition, it is possible to give a bound on
how close to this performance a polytime algorithm may come in the worst case,
under reasonable complexity assumptions. The bound is tight for a sufficiently
precise pivot selection heuristic, i.e., one that is able to predict which point will
eliminate the most of the remainder, if used as a pivot.

In the AESA method, the index is a distance matrix, and search alternates
between heuristically selecting points close to the query and eliminating remain-
ing objects that are shown to be irrelevant. The results in this paper are based
on an idea developed by Ole Edsberg,2 which involves computing an elimination
matrix for a given query, with which one may implement an “oracle AESA,”
selecting pivots greedily based on elimination power, rather than on similarity
to the query object. I build on this idea, establishing equivalence to the mini-
mum dominating set problem.3 The main results and contributions of the paper
are summarized in the following.

Reduction to Domination. Sections 2 and 3 establish a linear-time objective-
preserving reduction from the problem of resolving metric range queries (and
certain kNN queries) with as few distance computations as possible to that of
finding minimum dominating sets in directed graphs. This reduction applies to
an offline variant of metric search, where all query–object distances are already
known. It does, however, make it possible to compute the exact optimum attain-
able for the online version as well. Some experimental results are provided as an
illustration.

Reduction from Domination. Section 4 describes a reduction in the other direc-
tion, from the dominating set problem in undirected graphs to minimizing dis-
tance computations, establishing the hardness of metric search. While it may
in many cases still be feasible to determine the optimum using efficient solvers
of various kinds, this does mean that under reasonable complexity-theoretical
assumptions, no search method can, in general, guarantee attaining this
optimum.

The reduction preserves the objective value, and for range search, the number
of data objects equals the number of vertices, which means that inapproxima-
bility results for the dominating set problem carry over to metric search, with

1 Other measures include the distance exponent [24] and the ball-overlap factor [21].
2 Personal communication, July 2012.
3 Note that the reductions are to and from two different versions of the dominating set

problem (the directed and undirected version, respectively). At the price of slightly
looser bounds, one could stick with just one of these.
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approximation bounds for the former applying to the performance of the latter,
i.e., the number of distance computations. Thus, for range search, one cannot
even expect to get closer than within a log-factor of the optimum.

AESA and Greedy Approximation. Because the objective is preserved also in
reducing to domination, and the number of objects equals the number of vertices,
approximability results also translate, meaning that in principle the standard
greedy selection strategy would yield the best feasible metric range search algo-
rithm (or very close to it), in terms of distance computations in the worst case.4

As discussed in Sect. 5, the greedy approach corresponds to the AESA family of
algorithms, given the right selection heuristic, i.e., one that accurately estimates
the elimination power of a potential pivot, among the remaining objects. An
exact estimate here is, of course, not possible without knowing the query–pivot
distances, but this correspondence does demonstrate that, in the limit, AESA
is, indeed, as good as it gets. As an illustration, inspired by the greedy approx-
imation, greedy AESA (gAESA) is proposed, taking into account which points
remain to be eliminated.

2 Pivoting Is, of Course, Optimal

A range search using a metric δ over a set X means finding all points x ∈ X
within some search radius r of a given query point q, i.e., all points x for which
δ(q, x) � r. Given the distances between a query q and a set P of pivots, the
distance δ(q, x) for any point x is bounded as follows:

maxp∈P |δ(q, p) − δ(p, x)| � δ(q, x) � minp∈P δ(q, p) + δ(p, x) (1)

Leaving q and P implicit, we may refer to the lower and upper bounds as �(x) and
u(x), respectively. If our search radius falls outside this range, there is no need
to compute δ(q, x); either the radius is small enough that we simply eliminate x
(r < �(x)), or it is great enough that x is “eliminated” by adding it to the search
result, sight unseen (r � u(x)).

This very direct approach of using exact, stored distances δ(p, x), pivoting, is
the gold standard for minimizing the number of distance computations needed.
Other approaches, which all involve coarsening the stored information in some
way, may reduce the computational resources needed to eliminate candidate
objects, but it should be obvious that they cannot require fewer distance com-
putations. As the following lemma shows, the lower and upper bounds are neces-
sarily valid values for δ(q, x), so if �(x) � r � u(x), x cannot safely be eliminated.

Lemma 1. Let (X, δ) be a metric space, with X = {p1, . . . , pm, q, z}, and let the
distances δ1, δ2 : X × X → R�0 be defined as follows:

δ1(x, y) =

{
maxi |δ(q, pi) − δ(pi, z)| if {x, y} = {q, z};
δ(x, y) otherwise.

4 This is the worst case given that the optimal number of distance computations is
some value γ, not the more general, non-informative worst-case of Ω(n).



114 M. L. Hetland

δ2(x, y) =

{
mini δ(q, pi) + δ(pi, z) if {x, y} = {q, z};
δ(x, y) otherwise.

Then δ1 is a pseudometric and δ2 is a metric. If δ(q, pi) �= δ(pi, z) for some i,
or if q = z, then δ1 is a metric.

Proof. We have δj(x, y) = δj(y, x) and δj(x, x) = 0, for x, y ∈ X, j ∈ {1, 2}.
We also have δ2(x, y) = 0 =⇒ x = y, and if δ(q, pi) �= δ(pi, z) for some i,
or if q = 0, then δ1(x, y) = 0 =⇒ x = y. We have δ1(q, z) � δ(q, z), so
triangularity can only be broken for δ1 in the cases δ1(q, pk) � δ1(q, z) + δ1(z, pk)
or δ1(z, pk) � δ1(z, q) + δ1(q, pk), for some k. Consider the first of these. We
maximize over i, so we need only show the following for some choice of i:

δ(q, pk) � |δ(q, pi) − δ(pi, z)| + δ(z, pk) (2)

This is satisfied for k = i. The other case is handled symmetrically. For δ2,
we have δ(q, z) � δ2(q, z), so triangularity can only be broken in δ2(q, z) �
δ2(q, pk) + δ2(pk, z). We minimize over i, so this need only hold for some choice
of i, and again we may choose i = k, producing an equation. ��
Corollary 1. No search method can resolve a metric range query with fewer
distance computations than pivoting.

Proof. From Lemma 1, we know that after a set of distance computations making
pivots p1, . . . , pm available, the pivoting bounds are tight ; if pivoting cannot
eliminate an object, no method can safely do so. (Note that an adversary would
be free to let q = z in the case where δ(q, z) = �(z) = 0, ensuring that we are
indeed dealing with a metric space.) And given that no method can eliminate
more objects than pivoting for any distance count, no method can eliminate all
the objects with a lower distance count than pivoting. ��

In other words, any method using fewer distance computations than pivoting
could be made to fail by an adversary in charge of the data set. This argument
covers range queries, and it is not hard to translate it to the kNN case, where
the k nearest neighbors of q are sought, as long as the result set is uniquely
determined. A radius must then exist, separating the k nearest neighbors from
the others, and the tightest possible upper bound on this radius is the maximum
of the k lowest pivoting bounds we have. Pivoting must then be able to eliminate
all points outside this radius, or our adversary might strike again. The following
corollary covers the more general case.

Corollary 2. No search method can resolve a metric kNN query with fewer
distance computations than pivoting.

Proof. We need to establish δ(q, x) � δ(q, y) for every x in the result and every y
outside it. Assume that, given some pivot set P, there is one such inequality that
cannot be established by pivoting, i.e., u(x) > �(y). An adversary could then
ensure δ(q, x) > δ(q, y), as follows. First, let δ(q, x) = u(x). The only effect on
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the valid range for δ(q, y) is found in the lower bound δ(q, y) � |u(x) − δ(x, y)|.
If δ(x, y) � u(x), then the relevant lower bound is u(x)−δ(x, y), which is strictly
less than δ(q, x) = u(x) (because δ(x, y) > 0, as x �= y), and so it is still possible
to have δ(q, y) < δ(q, x).

If, however, δ(x, y) > u(x), the relevant lower bound is δ(x, y) − u(x). Let p
be the pivot that produced the pivoting bound u(x). We then have:

δ(x, y) − u(x) = δ(x, y) − (
δ(q, p) + δ(p, x)

)
=

(
δ(x, y) − δ(p, x)

) − δ(q, p) � δ(p, y) − δ(q, p) � �(y)

In other words, δ(q, y) = �(y) is still a valid choice for the adversary, yielding
the desired δ(q, y) < δ(q, x). ��
The upshot is that the optimal distance count (for range and kNN queries) can
be found by considering only elimination using individual pivots.

The range and kNN search modes are closely related, and yet there are cases
where they behave quite differently, as shown in Fig. 1.

Fig. 1. Differences between range search and kNN in the presence of ties for the kth
position, using (R2, L1). In both configurations, we have r = 8. In (a), a range search
need only compute δ(q, p), while kNN much also compute δ(q, xi) for all but one of
the xi. In (b), the kNN search need only compute δ(q, p) and δ(q, xi) for one of the xi,
while a range search must compute all distances δ(q,−)

It is, however, possible to establish some correspondence between the two,
when the kNN result set is uniquely determined.

Lemma 2. If the kNN result is uniquely determined, the optimum number of
distance computations for kNN is no worse than for a range search with the
smallest possible kNN radius, even if the radius is unknown initially. Further-
more, there is a radius for which range queries and kNN will produce the same
search result using the same number of distance computations.

Proof. When the kNN result is unique, there is a radius r corresponding to the
k resulting objects. Resolving a range query with radius r must necessarily yield
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upper bounds of at most r for returned objects and lower bounds greater than r
for the remainder. These same bounds can also be used to separate the k nearest
objects from the remainder, without a specified radius, so kNN cannot require
more distance computations.

Conversely, consider a kNN query. By Corollary 2, no method requires fewer
distance computations than pivoting, so in the optimal case we will have actual
distance bounds available, strictly separating the k nearest from the remainder.
Any range query with a search radius falling between the upper and lower bounds
can then be resolved with the same number of distance computations. ��
It is possible to increase the radius such that a range query would require addi-
tional distance computations, while still just returning k objects (cf. Fig. 2).

3 Elimination as Domination

Given a (directed) graph G = (V, E), a vertex u is said to dominate another ver-
tex v if the graph has an edge from u to v. The (directed) minimum dominating
set problem involves finding a set D ⊆ V of minimum cardinality, such that every
vertex v ∈ V \ D is dominated by some vertex u ∈ D. We call γ(G) = |D| the
(directed) domination number of G.

For a given range query, computing the distance to a point may eliminate
one or more other points. There are no interactions between such eliminations
(see Sect. 2), so an exhaustive listing of the potential eliminations gives us all the
relevant information needed to determine which points to examine and which to
eliminate. This corresponds to a directed graph—the elimination graph—whose
minimum dominating set is the smallest pivot set, and thus the minimum number
of distance computations, needed to resolve the query (cf. Fig. 3).

Proposition 1. There is a linear-time reduction from the metric range search
problem to the directed minimum dominating set problem, which preserves the
objective values of the solutions exactly. ��

If the result of a kNN query is uniquely determined, and we ignore elimina-
tion based on upper bounds (usually done in practice), the number of distance
computations correspond to a range query with the smallest kNN radius.5 Of
course, finding a minimum dominating set is NP-hard,6 and given the rather
unusual clash between large-scale information retrieval and combinatorial opti-
mization, we may quickly end up with overwhelming instance sizes. Still, with a
suitable mixed-integer programming solver, for example, the optimization may
very well be feasible in many practical cases. As an example, Fig. 4 shows some
computations made using the Gurobi solver [12]. Many of these optima were
found rather quickly, as presumably the structure of the elimination graph was
amenable to the solution methods of the solver. Others, such as those for the
5 Optimal kNN with upper bounds does not map as cleanly to dominating sets.
6 The undirected version is most commonly discussed, with a reduction, e.g., from set

covering [13, Th.A.1]. A similar reduction to the directed version is straightforward.
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Fig. 2. The nearest neighbor can be
determined by examining x1 and p, as
we then have u(x1) < �(x2). Range
search with r1 can be resolved simi-
larly, but using r2 requires three dis-
tance computations, while still return-
ing the single nearest neighbor

Fig. 3. The directed elimination graph
G resulting from a specific range query,
with the domination number γ(G) = 5
corresponding to the minimum num-
ber of distance computations needed
to separate relevant objects from irrel-
evant ones

DNA data set, took several days to compute. And even for some of the easier
cases, there were outliers. For example, for the 2NN radius in 15-dimensional
Euclidean space, all of the 10 randomly selected queries led to computations
lasting 10–200 s, except for one, which took almost twenty hours. As with many
such cases, however, being satisfied with a solution that is a couple of percentage
points shy of perfect could drastically cut down on the computation time (i.e.,
by setting the absolute or relative MIP gap), as illustrated in Fig. 5.

Figure 4 also includes results for several other methods, beyond the optimum.
These are all versions of the AESA approach [25], as discussed in more depth in
Sect. 5. At the opposite end of the spectrum of the optimum, there’s the incre-
mental random selection of pivots. Separating the feasible from the infeasible,
is an oracle AESA, which has access to the elimination power of each poten-
tial pivot, i.e., how many of the remaining objects will be eliminated if a given
pivot is selected. In the feasible region we find AESA, iAESA2 [10], and the new
gAESA, which is explained in Sect. 5.

It is worth noting that γ(G) is a more precise lower bound than an ordi-
nary best-case analysis, which only takes input size into account, and which is
therefore always 1. Rather, this is the lowest possible number of distance compu-
tations needed for a given dataset and query. In order to guarantee using at most
γ(G) distance computations, you would need to somehow determine G, which is
quite unrealistic. And, as the next section shows, it is also far from enough.

4 Metric Search Is Hard, Even If You’re Omniscient

Obviously, a major challenge in choosing the right pivots is that you don’t know
what the elimination graph looks like—you can only make heuristic guesses. But
what if you did know? As it turns out, that wouldn’t be the end of your worries.
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Fig. 4. Number of distance computations as a function of k, the number of nearest
neighbors covered by the chosen radius used for a range query. The first four datasets
are uniformly random vectors, while the last two are taken from the SISAP dataset
collection [9], with queries withheld. The listeria string lengths vary from 39 to 6579.
The results are the average over 10 randomly selected queries. The oracle AESA uses
elimination power among remaining points as its heuristic

Section 3 showed that it is possible to find the optimum by framing the
problem as that of looking for a minimum directed dominating set. Of course,
this is an NP-hard problem, so there’s no real surprise in that we can reduce to
it. But what about reducing in the other direction? That is, unless P = NP, is
there any hope of finding some feasible way of determining the optimum? Alas,
no: reducing from the general minimum undirected dominating set problem to
finding the optimum for metric search is quite straightforward, and the reduction
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Fig. 5. Bound on relative error (MIP gap) as a function of time, when computing
the optimal number of distance computations in a particularly difficult instance with
k = 2 over uniformly random vectors in 15-dimensional Euclidean space. Finding the
optimum took over nineteen hours. After 41 s, the gap was 39.1 %, but already at 44 s,
it was down to 4.34 %. Getting to 1% took 2.21 h

preserves the both the objective value and the problem size exactly,7 meaning
that approximation hardness results apply as well.

Theorem 1. There is a linear-time reduction from the undirected minimum
dominating set problem on n vertices to the metric range search problem on n
objects, which preserves the objective values of the solutions exactly.

Proof. We first consider range search. To encode any instance G = (V, E) of the
minimum dominating set problem, we construct a metric space (X, δ), where
X = V ∪ {q}, with q �∈ V, and design the metric so that the elimination graph
corresponds to G. We define the metric as follows:

δ(x, y) =

⎧⎪⎨
⎪⎩

0 if x = y ;
1 if {x, y} ∈ E ;
2 otherwise.

In particular, δ(q, x) = 2 for all x ∈ V. This definition of δ satisfies all the
metric properties. Specifically, note that triangularity holds, because for any
objects x, y, z ∈ X, we have δ(x, z) � 2 � δ(x, y) + δ(y, z) (assuming x �= y �= z;
otherwise triangularity is trivial).

It should be clear that the elimination graph for q with r < 1 corresponds
exactly to the original graph G.8 The closed neighborhood N[x] of x (that is, x
and the set of objects dominated or eliminated by x) is {y : δ(q, x) − δ(x, y) � 1},
which corresponds exactly to the cases where δ(x, y) = 0 (that is, x = y) and
where δ(x, y) = 1 (that is, {x, y} ∈ E). In other words, any set of pivots that
eliminate the remaining objects corresponds to a dominating set in G, and vice

7 In terms of vertices, not edges.
8 Note that only the lower bound is relevant, as the upper bound is always greater

than the search radius.
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versa. If we find such a pivot set of minimum cardinality, we will have solved the
undirected minimum dominating set problem. In other words, we have a valid
reduction from the undirected dominating set problem to metric range search.
It should also be obvious that the reduction can be performed in linear time,
and that the size of the optimal solutions are identical.9 ��
The previous reduction can be extended to a polytime reduction to kNN search
quite easily, showing NP-hardness (though not necessarily preserving approx-
imation results). We simply set k = 1 and add another object x̄ so that
δ(q, x̄) = r < 1 and δ(x̄, y) = 2 for any other object y. Now the minimum kNN
radius will automatically be r, which gives us the same reduction as before.

The reduction in the proof of Theorem1 constructs a metric range search
problem on n objects from an undirected dominating set problem on n nodes, so
that if (and only if) we can solve the search problem (that is, find a minimum
pivot set), we have also solved the minimum dominating set problem. Approx-
imation bounds thus carry over from the dominating set problem, so for any
ε > 0, finding solutions that are within a factor of (1 − ε) ln n is unfeasible,
unless NP ⊆ DTIME(nO(lg lg n)) [6].

Corollary 3. For instances of the metric range search problem over n objects
where the optimal number of distance computations is γ, the worst-case running
time of any algorithm is Ω(γ log n), unless NP ⊆ DTIME(nO(lg lg n)).

Proof. An algorithm with a (polynomial) running time of o(γ log n) would neces-
sarily use o(γ log n) distance computations, yielding an approximation algorithm
for the dominating set problem with an approximation ratio o(log n). ��
Note that the worst-case running time in general is still Ω(n), as we may very
well have γ = n, in degenerate workloads.

5 Omniscience Is Overrated

In the discussion so far, what has been described is a scenario where all potential
eliminations are known. Even then, as we have seen, it is only realistically feasible
to get to within a log-factor of the optimum. And as it turns out, achieving this
log-factor is possible, even without knowing all the potential eliminations. What
is assumed instead is a more limited oracle that can tell us which of the remaining
points has the highest elimination power, that is, the highest out-degree among
the remaining vertices.

The thing is, a minimum dominating set may be approximated to within a
log-factor using a simple greedy strategy—a strategy that most likely cannot be
significantly improved upon; it gets within a factor of lnn + 1, and as discussed
in the previous section, we have a lower bound of (1 − ε) ln n for any ε > 0.10

9 If the new distance is allowed to use the original graph as part of its definition, the
reduction can be performed in constant time—it is merely a reinterpretation.

10 The upper bound is easily shown by reinterpreting the minimum dominating set
problem for a directed graph G = (V, E) as the problem of covering V with the closed
out-neighborhoods of G, translating the standard set covering approximation [26].
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What is more, this is exactly the approach taken by the AESA family of
indexing methods: they greedily pick one point at a time, based on estimated
elimination power, eliminating others as they go (cf. Fig. 6). In other words,
full omniscience wrt. the elimination graph is not needed; if we can formulate
a heuristic returning the most useful next pivot at each step, the algorithm is
already as good as it realistically can be, or at least very nearly so.

Proposition 2. Greedily selecting pivots based on high elimination power is an
asymptotically optimal polytime strategy for minimizing distance computations
in metric range search, unless NP ⊆ DTIME(nO(lg lg n)). ��
To say that AESA picks pivots based on elimination power may be overstating it,
however. Rather, Vidal Ruiz talks about “successive approximation to nearest
points” [25], while Figueroa et al. state that their goal is “to define an order
such that the first element is very close to the query,” because “[t]he closer
the pivot to the query q, the more effective the pruning is” [10]. Of course, all
manner of regression and learning methods might be used with the specific goal
of estimating which points are close to the query [8,16], or which are likely to
be part of the search result [17].

Fig. 6. Side-by-side comparison of the AESA metric search algorithm and the greedy
approximation for the directed minimum dominating set problem

There has been work on pivot selection focusing directly on elimination
power [4], but this does not seem to have been central in AESA-like meth-
ods, using a full distance matrix. One selection method, which maximizes the
lower bound used for elimination, and skips over pivots that don’t contribute,
has been explored in the fixed, initial pivot list of PiAESA [22], but the sec-
ond phase, where pivots are selected dynamically, still follows the heuristic of
selecting those that seem close to the query.

Following the analogy with the greedy approximation for the directed domi-
nating set problem, there are two modifications one might make. The first is to
look for high elimination power in the data set overall, rather than closeness to
the query. For example, it is quite possible that a pivot that is far away might
be able to eliminate an entire nearby cluster. The second modification, which
I will briefly explore, is to modify the selection based on redundancy, i.e., how
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much of a point’s elimination power actually applies to remaining points. If one
selects pivots that are as similar to the query as possible, they are bound to be
similar to each other as well; and even if a pivot is able to eliminate many other
points, that is of little use if those points have already been discarded.

A simple version of this second modification is the following: rather than
merely minimizing the sum of lower bounds, as in AESA, we divide this by the
sum of distances to remaining points. This will not only prefer pivots that seem
to be close to q, but those that seem close to q relative to how far they are from
the remaining points, meaning they ought to be able to eliminate more of them.
Some preliminary results on the performance of this greedy AESA (gAESA) are
shown in Fig. 4. As can be seen, it does seem to perform on par with AESA and
iAESA2, at times outperforming both. Given the rather arbitrary nature of the
heuristic, better variants might very well exist.

6 Concluding Remarks and Future Work

The previous sections have established an equivalence between the minimal num-
ber of distance computations needed to resolve an exact metric range query, on
the one hand, and the size of a minimum dominating set in a directed graph
on the other.11 The result also applies to uniquely determined kNN queries, if
upper bounds are ignored. One might object that the scenario is too limited—
that in practice, one would be contented with an approximate or probabilistic
search. In fact, the results do also apply for certain approximations, such as those
that merely modify the query, resulting in a new, simpler exact search [18]. But
beyond this, the main uses of these results are precisely in establishing the limits
of exact search for given workloads; if one can show that any exact algorithm
must examine an excessively large portion of the data set, that is a forceful argu-
ment in favor of approximation or randomization. What is presented here only
scratches the surface, however. What follows is a sketch of possible directions
for future research based on the established equivalence.

Heuristic Development. The gAESA heuristic is somewhat arbitrary. While it
picks pivots that seem close to the query, relative to the remaining points, the
goal is to pick the pivot with the highest elimination power. There may be many
ways of estimating this more directly, either using hand-crafted heuristics (e.g.,
including pivots that are far away from the query compared to remaining points)
or machine learning (which has so far been focused on distance or relevance).

Algorithm Development. In the interest of constructing better baselines, one
might take the development further. Rather than going with the AESA app-
roach, one might attempt to solve the dominating set problem without actually
knowing the graph. This would be different from the more common forms of

11 That is, for any range search instance, there is a directed graph with the objects as
its nodes for which the equivalence holds. Reducing in the other direction preserves
the objective value, but not necessarily the number of nodes/objects.
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online dominating set problems [3], where vertices are provided in some arbi-
trary order. Rather, this would presumably involve link prediction [15], at each
step selecting a pivot deemed likely to be included in the optimal solution or to
provide good support for future predictions.

Problem Variants. The dominating set problem provides a new perspective on
the problem of metric search, and variants of the former might find analogies
for the latter. For example, the weighted dominating set problem can also be
approximated greedily, and the analogous metric search method would be a
weighted AESA, where selection is based on the ratio of weight to elimination
power. The weight could, for example, represent the actual cost of computing the
query–pivot distance, which is the effort that is being minimized, after all. For
many distances, this cost is identical for all points, but for, e.g., the signature
quadratic form distance [2], it may vary wildly.

One might also look for analogies in the other direction. For example, prob-
abilistic methods (such as probabilistic iAESA [10]) do not aim to eliminate all
vertices; in these cases, one could instead consider partial domination [7].

Probabilistic Analysis. There is a substantial literature on the topic of random
graphs. For example, it is known that for random digraphs whose edges are
independent Bernoulli variables with probability p,12 the domination number is
logarithmic, with base 1/(1−p) [14]. In fact, it is not hard to modify the results of
Telelis and Zissimopoulos [23] to show that in this scenario, even AESA selecting
pivots arbitrarily would yield a logarithmic number of pivots, staying within a
doubly logarithmic additive term of the optimum, results that match those of
Navarro [19].

Workload Descriptions. Beyond finding γ, the dominating set perspective may
inspire other hardness measures and workload descriptions. For example, the
greedy approximation is, more precisely, logarithmic in the maximum degree
Δ(G), a value that could be used as an indicator of how hard it is to get close to
the optimum. And although the independence assumption on elimination may be
too strong, one could still use the elimination probability p, perhaps estimated
by averaging over several queries, as an indication of general workload hardness.
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Another Tutorial on Metric Indexing
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Abstract. A follow-up to my previous tutorial on metric indexing, this
paper walks through the classic structures, placing them all in the context
of the recently proposed sprawl of ambits framework. The indexes are
presented as configurations of a single, more general structure, all queried
using the same search procedure.

Keywords: Metric indexing · Tutorial · Sprawls · Ambits

1 Introduction

About ten years ago, I wrote a tutorial on metric indexing [12], and last year, I
finally finished a unifying framework for metric indexing and other comparison-
based indexing [13]. That paper, however, is perhaps not the most inviting, con-
taining quite a bit of detail and formalism, so in this paper, I’ll revisit my earlier
tutorial, in light of this new framework. This approach has two main benefits.
First, the result should ideally be a streamlined, unified tutorial, rather than a
smorgasbord of disjoint techniques; and, second, it provides an example-based
introduction to the framework of sprawls and ambits, which might be useful to
researchers who are already familiar with metric indexing. I focus primarily on
“the classics”; for an overview of many variants, see, e.g., the recent paper by
Chen et al. [6].

In contrast to the full paper introducing sprawls and ambits [13], I will try
to keep this tutorial brief and to the point—more so, even, than my previous
tutorial. In keeping with that, let’s get going!

2 Framework

This section presents a thumbnail sketch of the framework used throughout. It
may be easier to understand after you’ve read some of the example applications,
so feel free to skim it, then skip ahead to Sect. 3, returning here later.

We have a data set V drawn from some universe U with an associated metric,
i.e., a symmetric function δ : U × U → R�0, where δ(u, v) = 0 iff u = v, and

δ(u, v) � δ(u, w) + δ(w, v) , (2.1)
c© Springer Nature Switzerland AG 2020
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for all u, v, w ∈ U. The problem we are trying to solve is storing V in some data
structure, which we may later traverse to efficiently extract those points relevant
to some query. Intuitively, we view this data structure as a bipartite digraph of
points and regions, i.e., sets of points. This is referred to as a sprawl of regions.1

A region R with parents p1, . . . , pm is then defined in terms of these. That
is, whether u ∈ R depends on the distances x = [δ(u, p1), . . . , δ(u, pm)], a vector
in the so-called pivot space of p1, . . . , pm. Specifically, we use a linear function
f(x) and a threshold, or radius r, so u ∈ R iff f(x) � r. Such a region is called
a linear ambit.

The regions partition the space, representing a coarsening of the data. For a
query in the form of a ball Q = {u : δ(q, u) � s} of relevant points, we are only
interested in the contents of a region R if it intersects Q. The idea, then, is to
have the children of R point the way to smaller subsets of the data set. Search
becomes a traversal of our graph, where each region is checked for overlap with
the query before possibly traversing its children.

What is more, because a region is defined by its parents, we require all the
parents to be traversed before traversing the region, and possibly its children.
When we traverse a point u, we compute δ(q, u), so that when we traverse a
region, we have all of δ(q, p1), . . . , δ(q, pm) available, giving us a distance vector
z representing the query. If we assume, for now, that f is nondecreasing, Q and
R intersect only if:2

f(z) � r + f(s) (2.2)

For more advanced queries (kNN), and when we permit elimination, the order
of traversal is significant. In these cases, we’d use a priority queue of nodes to
traverse, updating their priorities each time we encounter them. In the basic
scenario sketched out here, though, we might as well use a depth-first approach,
as in the following mutually recursive procedures:

In general, the idea is that δ is memorized in some way, so once δ(q, u) is com-
puted on line 1 of Visit-Point, it is subsequently available when we gather

1 Equivalently, a hyperdigraph on V, with one region per hyperedge [13,
Remark 2.3.12].

2 Here f(s) is shorthand for f(s, . . . , s).
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up z in Visit-Region. Normally, one would have one or more designated root
nodes, and call Visit-Point on them in turn to initiate the search.

The way this is set up, one would need to run a reinitialization in-between
queries, resetting the memo, coloring nodes white and setting counts to zero.
There are many ways of handling this, of course. One could have actual attributes
in the nodes, and maint a list of those that need resetting, requiring constant
amortized time. An even simpler approach might be to simply use hash tables
that are reset between searches. With some additional memory, one could even
do the reset in actual constant time, using the standard trick for constant-time
array initialization. In this case, one could keep a stack of nodes whose attributes
are valid, and let each node keep its index in the stack. Then the reset would
simply require setting the stack length to zero.

3 Ball Trees

A metric ball tree is a form of search tree where subtrees and their points are
enclosed in balls. A subtree is then only explored if its ball intersects the query.
For example, the simple BS-tree is a tree where each node is associated with a
single point and a radius that covers the points below it in the tree [14]. The
idea of a sprawl is for the graph (in this case, a tree) to express dependencies,
where we have edges from points to the regions they tell us about, and from
regions to the points they tell us to explore (if we intersect them). In the case
of the BS-tree, then, each BS-tree node would be split into two sprawl nodes:
one for the point, and one for the radius (i.e., region). For example:

p r becomes
p

1 r

Handling a BS-node then means first computing δ(q, p) and considering p for
inclusion in the result, and then determining whether δ(q, p) is greater than
r + s. If so, no further action is taken, as the query ball Q does not overlap the
region (i.e., ball) R. Otherwise, the two child pointers are followed recursively.

In the sprawl version, we’ve split out the point p as a parent node of the
region. Initially, we visit this node, compute z = δ(q, p), and increment a counter
associated with the child node. In general, we’ll need to hang on to the z value
as well as the counter; we could keep those in some separate memo, or perhaps
store them in the nodes themselves. The counter is only useful if a region has
multiple parents, so we know when we’ve visited them all; in this case, as soon
as the counter goes from 0 to 1, we’re done. Also, storing z is mostly useful if
we’re not going to use it immediately, and so it may be a bit wasted in this case.

Be that as it may, once the counter hits the threshold m (the number of
parents of the region), we visit the region node. Here we store the radius r, but
also one or more coefficients in a vector a. Note that m here is the number of



Metrics and Ambits and Sprawls, Oh My 129

entries in a, stored as part of the vector (or implicit, if the length is fixed). In
this case, m = 1, a = [1] and f(x) = ax = x. That means the overlap check
reduces to that of the BS-tree:

f(z) � r + f(s) ⇐⇒ az � r + as ⇐⇒ z � r + s

There is no magic in the use of two children here; we may very well increase
this number, as in the M-tree, for example [7]. (The M-tree adds another twist,
which we’ll return to in Sect. 4.)

There’s also the VP-tree [22,24] and its relatives such as LC [5], where there’s
a single ball that separates the inside from the outside. In that case, we get a
different transformation:

The idea here is that the center point p is shared between the ball (left subtree)
and its complement, the outside (right subtree). The only difference between the
two region nodes is that the outside one has its coefficient and radius negated.3
At this point, a slight revision is in order. We have previously assumed that f
is nondecreasing, i.e., that a � 0. That is no longer the case! The more general
version of the overlap check then uses |a|s, rather than as. What happens, then,
is that the overlap criterion for the left subtree is still z � r + s, but for the right
one, we get:

az � −r + |a|s ⇐⇒ −z � −r + s ⇐⇒ z � r − s

This is exactly as in the VP-tree, except that the surface of the ball is included
both for the inside and the outside; we’d really like z > r − s. This is a detail
not handled by the framework (though it easily could be amended to); however,
it could only (presumably in rare cases) lead to false positives, i.e., exploring
subtrees unnecessarily, which won’t produce any wrong results. However, except
for the goal of emulating the VP-tree, there is no need to use the same radius in
both regions. One could use r1 and −r2, for example, and adapt each to cover
only the points in each subtree.

4 Intersections

In Sect. 3, our regions were individual balls and their complements.4 We can
combine these two kinds of regions to create shell regions, by turning a and r
into column vectors:

a =
[−1

1

]
r =

[−r′

r′′

]

3 Here is a space-saving shorthand for −x.
4 Strictly speaking, the closure of their complements, as we don’t use strict inequalities.
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This gives a shell region around the single parent point p, as follows:

r′′r′

p

The membership check for a point u with distance x = δ(p, u) is still ax � r,
but in this case, that means:

−x � −r′

x � r′′

This is, of course, equivalent to r′ � x � r′′. For the overlap check, we take the
absolute value for each row separately, so we still have az � r + s, which becomes
(with some simplification):

z + s � r′

z − s � r′′

That is, q must be so far away (z) that the s-ball around it reaches the inside
radius (r′) but not so far away that it ends up beyond the outside radius (r′′).

A classic metric index—the Burkhard–Keller tree—branches out using mul-
tiple shells around a single center [3]. In this case, we’d simply use multiple shell
regions, all with the same parent point.

There’s not much point in using more than two rows when we have a single
focus, i.e., a center, as we’ll only end up with a single ball, inverted ball or shell,
anyway. However, if we have more than one focus, we can add multiple columns
to represent the intersection of multiple shells with different centers, yielding a
coefficient matrix A. For simplicity, let’s say we wish to represent the intersection
of two balls, with respective centers p1 and p2. We use those points as the region’s
parents, and region membership becomes Ax � r, with coefficients and radii as
follows:

A =
[
1 0
0 1

]
r =

[
r1
r2

]

The intersection of multiple shells has been used in, e.g., Brin’s GNAT [2] and
its descendants, as well as the PM-tree family of structures [20] (see also Sect. 5),
and was later dubbed a cut region by Lokoč et al. [15].

The M-tree combines balls and shells in an interesting way. Before even com-
puting δ(q, u) to perform the overlap check δ(q, u) � r + s, it executes a prelim-
inary filtering step, with the check

|δ(q, p) − δ(p, u)| � r + s ,
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or, with our established notation, |z − x| � r + s. The intuition here is that
|z − x| is a lower bound for d(q, u), a fact used in the standard pivot filtering
check |z − x| � s (see Sect. 5). Here, however, it’s plugged in as a lower bound
in our ball overlap check (with u as our ball center), creating a weakened, pre-
liminary version. This might seem like it requires introducing some new concept
or indirection, but that is not so. The check is still linear and is equivalent to a
standard shell region. This is easily seen by rewriting the check as follows:

−z + x � r + s

z − x � r + s

We can rewrite this to match our previous shell overlap check:

z + s � x − r

z − s � x + r

In other words, we here simply have a shell region with inner radius x − r and
outer radius x + r, corresponding to our knowledge of the r-ball around u before
computing δ(q, u):

p u

It would seem like we now have to store additional distances. Rather than just
keeping x and r, we need to store r, x − r and x + r. But is that really so?
Given our M-tree to sprawl translation, each point node is now the center of
multiple (quite possibly overlapping) shell regions, as well as a single ball region
enclosing them all. The only reason to keep this ball region is if its radius is lower
than the greatest radius of the shells. If we stuck rigidly to our translation, this
could happen—but if we simply kept our shells as tight as possible around the
subtrees, it could not. We then end up storing just two distances per subtree,
once more, and have a structure with a behavior quite similar to, and no worse
than, the M-tree.

5 Elimination

The most common purpose of a pointer in an index structure is to lead you
toward further data to explore. There is a certain genre of structures, however,
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that do the exact opposite—where instead of discovering data, you eliminate
it. Take, for example, the LAESA structure [17]: a table of distances between
so-called pivots and the other points in the data set. The query is compared to
each of these pivots, and the computed query–pivot distances, along with the
stored pivot–data-point distances, are used to determine whether any given data
point may possibly be relevant. In sprawl terms, each pivot–data-point distance
represents a region:

p

x u becomes

p

u

a r

In this case, the region is a sphere, a shell of width zero (i.e., with identical inner
and outer radii):

a =
[

1
−1

]
r =

[
x

−x

]

As before, our overlap check is az � r + s, or:

z � x + s

−z � −x + s

Combined, this is the standard pivoting bound, s � |x − z|. Now, however, we
get to the more interesting point. The dotted pointer indicates that we’ve got
a potential elimination on our hands. That is, rather than saying “if there’s
overlap, let’s look at u, otherwise, let’s ignore it” we turn it around, and say “if
there’s overlap, let’s ignore it, otherwise, let’s eliminate it.” In the terminology
of our earlier pseudocode, that essentially means setting u.color to black. The
exact implementation here could be done in several ways. One could have dif-
ferent region node types, for positive and negative regions (leading to discovery
and elimination, respectively), or have separate lists of positive and negative
child-edges, so the same region could both discover and eliminate points. These
are possible optimizations, but they don’t substantially change the behavior of
the search.

It’s possible to combine discovery and elimination, such as in the PM-tree. A
simplified version would consist of a ball tree, such as in Sect. 3, along with a set
of pivots with eliminating regions around the subtrees. Specifically, the PM-tree
uses shells around each subtree, with global pivots, yielding something like the
following:
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An important thing to note about elimination is that it may be performed
lazily. That is, we need not check for overlap with the various shell regions
associated with the shared, global points in the PM-tree until we’ve established
that we intersect the ball region in the tree itself. This kind of laziness could
be implemented by having pointers in the reverse direction, without a need for
counter updating. When considering a point, we would simply look at the region
parents and see if they had been examined yet (i.e., if they were colored black).

It’s possible to implement such things in different ways, of course; one could,
for example, have some parents of a region be lazy, explored on demand, or the
like. Having such a mechanism, one could simply use the global pivots of a PM-
tree as lazy parents of every region in the tree, turning them from balls into cut
regions, removing the need for elimination altogether.

The elimination perspective in LAESA could similarly be turned on its head,
if instead of multiple regions, we use a single region for each point, with all pivots
as its parents. This region would then be the intersection of all the spheres, and
a point would simply not be discovered if there were no intersection.

This does not mean that we can do entirely without elimination, however. In
any scenario where we at one time are able to traverse a point, and at a later
time are not, this is the result of elimination. To my knowledge, the only current
structure where it is truly needed, even if one were to introduce various forms
of laziness optimization, is the AESA family of indices [23], where all points
are available initially, and the set of candidates is gradually whittled down. The
order of traversal then becomes crucial, as discussed in the next section.

6 Priority

The AESA family of indexing methods are all based on the same simple data
structure: a complete distance matrix between the data points.5 The points are
explored one by one, and at every step we eliminate any of the remaining points
we’re able to. The elimination works just as in LAESA; the difference is that the
pivots aren’t kept separate from the objects. Rather than simply examining all
the pivots in an arbitrary order, we now need to be quite careful about which
object to examine next, to minimize the number of objects explored overall.

5 Because of symmetry, one need only store half of it, of course.
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A ubiquitous simplification here is to only focus on the elimination power of the
next object and select the one that will give us the most bang for our buck.

We don’t know which one that is, though. Rather, we must perform this
choice heuristically, based on the information gathered so far, i.e., the distances
from each examined point to the query and to the candidates for examination.
If we represent these distances by vectors z and x, the original AESA used
‖z −x‖1 while a revised version used ‖z −x‖∞, simply choosing the object whose
filtering lower bound is the smallest, i.e., the one that’s furthest away from being
eliminated. Later, there was iAESA [11], which instead used Spearman’s footrule
between permutations of the previously examined objects, sorted by distance
to the query and the candidate. Even more recently, Socorro et al. introduced
the two-phase PiAESA method [21], which initially uses a set of preselected
pivots (like LAESA), chosen for their general filtering power; once enough objects
have been explored, it switches to the classic AESA behavior. Many variations
are possible here, of course; for example, one might use regression or machine
learning to estimate distances or filtering power or the like [10,18].

From a sprawl-of-ambits point of view, these methods are essentially the
same: A complete directed graph of elimination edges, where each edge has a
single sphere region. The priority or heuristic used to select the next available
point is left unspecified. What is relevant, however, is when and how to compute
or update the heuristic. In the simplest, most naive implementation, on might
merely iterate over all available objects in each step, computing an arbitrary
black-box priority for each, based on the knowledge gathered so far. It’s possible,
however, to let priority updates piggyback on other traversal operations.

For example, if the heuristic is based on how hard a point is to get rid of, one
might update the priority every time the point is rediscovered and every time
one fails to eliminate it. In each of these cases, a lower bound on the distance is
computed, and one may then simply keep the sum or maximum, as in AESA.

For structures without elimination, such as the majority of search trees, pri-
ority is not relevant to the number of distance computations needed to resolve a
range query; the behavior will be the same, regardless of the ordering. For kNN
queries, however, priority can be crucial, as the covering radius of the result set
tends to shrink as good candidates are found, and this will improve the chances
of eliminating subtrees.

7 Non-trees

Index structures tend to be tree-shaped, more or less, especially if we ignore
the eliminating parts. One early exception is the excluded middle vantage point
forest introduced by Yianilos [25]. This structure is still mostly tree-shaped—or,
as the name implies, forest-shaped. That is, it primarily consists of a collection
of trees. However, these trees are connected to each other, making the whole
thing a directed, acyclic graph.
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The trees are essentially VP-trees with three regions rather than two: an inner
ball, a middle shell, and an outer inverted ball. For queries whose radius is less
than half the width of the middle shell, the search will never traverse more than
one of the inner and outer subtrees—a major selling-point of the structure. There
may still be points located in the separating shell, though, and these must also
be indexed!

The idea is to gather up all the points that end up in any separating shell
throughout the tree, and build a new tree from those, in the same manner
(possibly leading to a third tree, and so on). We then simply make the root of
this new tree the single child of every shell region in the first tree, as in the
following, where a = [−1 1]t and r = [−r′ r′′]t:

An essentially equivalent structure, at least from a bird’s-eye view, is the D-
index [9]. There, too, we have a multitude of shell regions separating inner and
outer subsets, with the shells leading to a secondary structure, and so on. The
main difference is that where the excluded middle vantage point forest uses
tree traversal to determine which intersection of inner and outer regions a given
point falls into, with the centers found along the path from the root, the D-index
provides a fixed set of shared centers from the beginning, in a manner similar to
the so-called fixed-queries tree [1]. Several levels are, in essence, collapsed, and
the correct subtrees or leaves, representing the intersection of multiple shell or
ball regions, are found directly, using hashing. This is an optimization that does
not affect the high-level behavior (i.e., which points are examined).

8 Hyperplanes

In Sect. 5, we created sphere and shell regions by having two radii, and thus
two rows in our coefficient matrix, ending up with a column vector [1 −1]t. But
we could also just use a row vector a = [1 −1], along with a single radius. This
means we need two parents, or foci, p1 and p2, and we finally get a pivot vector
z = [z1 z2]t. The overlap check becomes:

az � r + ‖a‖1s
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Here ‖a‖1 is the sum of absolute values. If we use r = 0, this corresponds to a
metric half-space, separated by a midset or hyperplane. The overlap check then
simplifies to the standard one [22]:

z1 − z2 � 2s

We are here defining the region of points closer to p1 than p2. If we wish to
have multiple contrasting objects, modeling general Voronoi cells or Dirichlet
domains [19], we can just add parent points, as well as some rows and columns.
Let’s say, for example, we wish to describe the region of points that are closer
to p1 than both p2 and p3. We’d then use all three as parents of our region, and
use the following coefficients and radii:

A =
[
1 −1 0
1 0 −1

]
r =

[
0
0

]

This corresponds to the following overlap check, where both inequalities must
hold for there to be overlap:

z1 − z2 � 2s

z1 − z3 � 2s

One may extend this to an arbitrary number of foci in the obvious manner.

9 Other Conics

The hyperplane case is easy enough to extend to (generalized) ellipses [8,22],
by using coefficients a = [1 1] and the appropriate radius, yielding the following
overlap check:

az � r + ‖a‖1s ⇐⇒ z1 + z2 � r + 2s

Or we can get shifted half-spaces, what amounts to metric hyperbolas [8,16], by
adjusting the radius away from 0. That is, we still have a = [1 −1] but we have
r �= 0, yielding the following slightly more general check:

z1 − z2 � r + 2s

This, then, represents not the points that are closer to z1 than to z2, but where
the distances differ by a given value (i.e., the radius). That is, membership for
a point with distance vector x is ax � r, i.e., x1 − x2 � r.

10 Other Queries

Nearest neighbor queries (kNN) have been mentioned briefly already. A general
approach is to maintain the (up to) k points closest to q found so far, letting the
search radius s be an upper bound on the distance to the kth nearest neighbor.
Beyond updating s during the search, the procedure is the same.
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A generalization that does not seem to have been explored is using other
regions than balls as queries. After all, if a ball query works well in a tree built
from hyperplanes, there’s nothing stopping us from using a hyperplane query in
a tree built from balls. That is, we might have a prototypical example object q,
and a prototypical counter-example q′, and we then search our index for objects
closer to q than q′. (Such queries were briefly mentioned by Uhlmann [22].) Or
maybe we have two prototypes, and wish to find the k objects with the lowest
average distance to q and q′, resulting in an ellipsoid query.

More generally, our query might consist of a weighted combination of query
objects, looking for points with a low weighted sum of query distances. In other
words, we may use an arbitrary linear ambit as our query [13, Subsect. 3.2.1].
As long as the ambit coefficients of the query, or those in the tree, are all non-
negative, determining query–region overlap is straightforward, as we shall see.

11 . . . and Beyond

It ought to be quite clear that the sprawls and ambits used so far have been
quite limited. The sprawls have mostly been tree-like, and the coefficients of
the ambits have been 1 or −1, with at most two nonzero coefficients to a row.
Countless variations are possible, both in how the sprawls are put together and
in how the ambits are parameterized.

Determining whether an arbitrarily constructed sprawl is correct is a hard
problem [13, Theorem 2.3.2]. However, extrapolating from existing index struc-
tures, we may quite easily ensure that the sprawls we construct are responsible,
in which case they are guaranteed to be correct. Roughly, responsibility means
that for every point p, there is a set of edges we can traverse that will lead us
to it, and that the regions of those edges contain p, as do the regions of any
negative edges that might disrupt that traversal. For the case where the posi-
tive edges of our structure are acyclic, this can be dealt with locally, where the
responsibilities of a node’s incoming edges depend only on those of the outgoing
ones [13, Observation 2.3.10]. Thus it ought to be possible to mix and match
quite freely, perhaps even using heuristic search to look for efficient structures
automatically.

As for regions, any coefficient matrix and radius vector yields a valid linear
ambit, usable as a region or a query. For a query ambit Q with coefficient vector
c and radius s, and a region ambit R with coefficient vector a and radius r, with
a or c non-negative and ‖a‖1, ‖c‖1 = 1, if R and Q intersect, then

r + s � aZct , (11.1)

where zij is the distance between focus pi of R and focus qj of Q [13, The-
orem 3.1.2]. With this overlap check, one can use ambit queries with existing
index structures, and one could extend existing indexes with additional regions,
without adding any distance computations. In an tree structure where several
points are explored when deciding which subtrees to visit, arbitrary subsets of
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these could be used to construct additional filtering predicates for any subtrees,
merely by adding radii and possibly coefficients.6

Finally, one may go beyond the limits of linearity. For example, using
any (multi-parameter) non-decreasing metric-preserving function f to calculate
remoteness, we may still use the original overlap check (2.2) [13, Subsect. 3.5].
This opens the door to a wide range of learning and optimization methods for
adapting regions to points in ways that improve search performance.
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Abstract. Diversified similarity searching embeds result diversification
straight into the query procedure, which boosts the computational per-
formance by orders of magnitude. While metric indexes have a hidden
potential for perfecting such procedures, the construction of a suitable,
fast, and incremental solution for diversified similarity searching is still
an open issue. This study presents a novel index-and-search algorithm,
coined diversity browsing, that combines an optimized implementation of
the vantage-point tree (VP-Tree) index with the distance browsing search
strategy and coverage-based query criteria. Our proposal maps data ele-
ments into VP-Tree nodes, which are incrementally evaluated for solving
diversified neighborhood searches. Such an evaluation is based not only
on the distance between the query and candidate objects but also on
distances from the candidate to data elements (called influencers) in the
partial search result. Accordingly, we take advantage of those distance-
based relationships for pruning VP-Tree branches that are themselves
influenced by elements in the result set. As a result, diversity browsing
benefits from data indexing for (i) eliminating nodes without valid can-
didate elements, and (ii) examining the minimum number of partitions
regarding the query element. Experiments with real-world datasets show
our approach outperformed competitors GMC and GNE by at least 4.91
orders of magnitude, as well as baseline algorithm BRIDk in at least
87.51% regarding elapsed query time.

Keywords: Similarity searching · Result diversification · Metric spaces

1 Introduction

Similarity searching is a widely employed paradigm supporting modern com-
putational applications that rely on data that are “alike” but not “equal”,
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e.g., instance-based learning, and content-based image retrieval [1,15]. An effi-
cient approach for querying such data is the metric space model [9], where objects
are mapped into a known domain and become comparable by a distance function.
In practice, the most requested search is the neighborhood (or k-nearest neigh-
bors – k-NN) query [3,12] that retrieves the k closest elements to a given object.
Exact neighborhood searches are efficiently carried out by index-and-query algo-
rithms [4], but they may present a semantic drawback in the querying of dense
datasets. For instance, suppose a film student runs a search to recover the ten
most similar movies to the “Leone’s western The Good, the Bad and the Ugly” in
a social repository of videos and retrieves remakes, versions, and parodies of the
same motion picture. Although the answer is correct from a neighborhood view-
point, the result is semantically redundant. A diversified neighborhood query,
on the other hand, could consider not only the nearest films but also those of
distinct styles, i.e., different collections within the queried dataset.

Diversification strategies fit into one or more of the following cate-
gories: (i) distance-based, (ii) novelty-based, and (iii) coverage-based [18,20].
Approaches from the first and second groups require a two-phase execution in
which an enlarged subset of candidates is selected and filtered to secure result
diversification, while coverage-based methods separate candidates according to
a similarity threshold at runtime and may be seamlessly embedded into low-level
search routines. Thus far, however, no study has been conducted on designing
an incremental algorithm to be coupled with index solutions for enhancing the
execution of diversified similarity searches [6,7,20].

In this paper, we fill that gap by designing a browsing algorithm for influence
and coverage-based query criteria [15,16]. We model influences as closed balls in
metric spaces [9,16], in which every ball is centered at a single result set element
with a radius defined as the distance between the query object and the ball
center. In our diversified k-NN search, data are retrieved by order of proximity
to the query element, and objects are outside the influence of the previous object.
Such a model allows the pruning of influenced regions by matching them with
disjoint and indexed partitions of the search space.

Accordingly, we define an incremental routine for inspecting query-matched
regions with the concept of distance browsing [10] extended to influence, whose
implementation is loosely coupled on top of the vantage-point tree (VP-Tree)
indexing structure [19]. Our approach maintains two priority queues for (i) sort-
ing VP-Tree internal nodes according to their minimum and maximal distances
to the query element, and (ii) ordering leaf nodes’ elements regarding the queried
object. After the root insertion in the first queue, every incremental step exam-
ines only the queue whose top (partition or element) is the closest to the queried
object. Non-influenced VP-Tree branches are inserted into the partitions’ queue,
whereas objects within examined leaf nodes are added to the second queue. A
top element is selected as the next diversified neighbor only if it is not influenced
by the partial result, and influence regions are constructed one entry at a time.

Experiments on real-world datasets indicate our approach outperformed nov-
elty-based approaches Greedy with Marginal Contribution (GMC) and Greedy
Randomized with Neighborhood Expansion (GNE) [18] by at least 4.91 orders
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of magnitude, as well as coverage-based approach Better Result with Influence
Diversification (BRIDk) [16] by at least 87.51% regarding elapsed query time.
Results also indicate balanced VP-Trees with pivots of maximal distance variance
are most suitable than other VP-Tree settings for diversified k-NN searching.

The remainder of the paper is organized as follows. Section 2 describes the
background and related work. Section 3 introduces diversity browsing. Section 4
presents the experimental findings, while Sect. 5 provides the conclusions.

2 Preliminaries and Related Work

A metric space is a pair 〈O, δ〉 for a given domain O, and distance function δ
that complies with properties of (i) symmetry, δ(oi, oj) = δ(oj , oi); (ii) non-
negativity, δ(oi, oj) ≥ 0; (iii) identity, δ(oi, oj) = 0 ⇔ oi = oj ; and (iv) triangle
inequality, δ(oi, oh) + δ(oh, oj) ≥ δ(oi, oj), for any objects oh, oi, oj ∈ O. Exam-
ples of distance functions include the Lp family, which operates on d-dimensional
spaces, i.e., O = R

d. Given a dataset O ⊆ O, a rangequery(Rq) returns
every element in O that is at most a given radius ξ ∈ R+ from a query
object oq ∈ O, i.e., Rq(oq, ξ,O, δ) = {oi | oi ∈ O, δ(oi, oq) ≤ ξ}. Likewise, a
neighborhoodquery(k-NN) retrieves k ∈ N, elements in O whose distances to
the query object oq ∈ O are the smallest, i.e., a range query with an initially
unknown radius ξ so that |Rq| = k [9]. The pair 〈oq, ξ〉 defines a closed ball
in O that covers more or fewer elements depending on ξ. Therefore, a k-NN
query is an alternative to a range search whenever the choice of a suitable ξ is
unclear. The side-effect, however, is the sorting of distances to filter the k closest
elements, which can be boosted by the partitioning of the search space [5].

Pivot-based and ball-partitioning indexes adopt distinct criteria for splitting
data elements into partitions so that, given a similarity query, only partitions
related to the query ball are inspected [3,5,11]. Vantage-point trees (VP-Trees)
are particularly versatile in this scenario since they organize the search space in a
hierarchical and disjoint fashion [19]. The ball partitioning principle of VP-Trees
is to use a pivot element p from a dataset O ⊆ O, the median μp of distances
from elements oi ∈ O to p, and the maximum distance Mp between p and any
oi ∈ O to divide the dataset into two disjoint partitions, namely left and right
nodes. Elements whose distance to p fall inside [0, μp) interval are assigned to
the left node, while the remaining objects are placed in the right node, within
distance interval [μp,Mp]. Left and right nodes are recursively divided until
a user-provided number of elements per partition is reached. Therefore, VP-
Tree parameters that fundamentally affect similarity searching are (i) the pivot
selection criteria, which defines how pivots are chosen, e.g., random, convex-
hull or maximal variance [17,19], and (ii) overflow support in leaf nodes, which
enforces tree balance for cases of non-unique medians [19].

2.1 The Distance Browsing Strategy

The order that partitions are traversed is crucial for the execution of k-NN
queries since their query balls are dynamically constructed. The distance brows-
ing strategy [10] employs two priority queues for retrieving one nearest neighbor
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at the time and limiting the total of examined partitions. The first queue sorts
unvisited partitions and the second the elements from inspected partitions. Sec-
ond queue entries are ordered by their distances to the query object, whereas
partitions in the first queue are sorted by the minimum (δmin) and maximum
(tie-break – δmax), distances between their boundaries and the query element.

At each iteration, the decision to select the potential next nearest neighbor
is made upon the evaluation of both queues. If the top of the second queue is
closer to the query object than the minimum distance to the partition in the
head of the first queue, the top element in the second queue is returned as the
next nearest neighbor. Otherwise, the top partition in the first queue is loaded
from the disk, and its elements are inserted into the second priority queue.

2.2 Result Diversification

Unlike classical neighborhood searches, diversity queries ensure elements in the
result set are of different collections, which ultimately generates new query crite-
ria. Given a function div and a quantity k ≤ |O|,O ⊆ O, a diversified result set R
is a subset of O that complies with Eq. 1 [20]. Diversification algorithms for such
an optimization problem are categorized into (i) distance-based, (ii) coverage-
based, and (iii) novelty-based.

R = argmaxR′⊆O,|R′|=kdiv(R′) (1)

Distance-based approaches formulate argument div(R′) of Eq. 1 as an aggre-
gation of distances, e.g., minimum sum as in div(R′) = minoi,oj∈R′ δ(oi, oj).
While such distance aggregation approaches can be solved as a variant of the
p-dispersion problem [7,14], they target the exploration of the entire dataset O
and disregard the perspective of a user-posed query object [15,16].

Coverage-based strategies exploit the perception of coverage, which can be
modeled in metric spaces in terms of coverage radii from closed balls [8,9]. For
instance, the r-DisC algorithm [8] that takes a user input r, r ∈ R+ for retrieving
a set R of diversified elements in which ∀ oi ∈ O,∃ oj ∈ R | δ(oi, oj) ≤ r, oi �= oj ,
and ∀ oi, oj ∈ R, δ(oi, oj) > r. Figures 1(a–b) compare k-NN and r-DisC queries
for the same input. Notice r-DisC returns objects spaced among themselves but
disregards both query element oq and cardinality k.

Novelty-based methods employ a score function (fdiv) for evaluating the
diversified set R′ regarding the distances of elements oi ∈ R′ ⊆ O ⊆ O and the
query object oq ∈ O. The score is modeled as a linear combination of distance
and diversity, whose weights are ruled by a λ parameter, as in Eq. 2.

fdiv(oq,R′) = (k − 1) · (1 − λ) ·
∑

oi∈R′
δ(oq, oi) + 2 · λ · div(R′) (2)

Since finding set R = R′ with the highest score is an NP-hard problem [2],
heuristics are usually employed for discovering well-diversified result sets [7,18].
Those strategies reduce R′ candidates by using (i) a sample O′ ⊆ O of the
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Fig. 1. Results produced by different search routines with setup δ = d = L2, λ = .25,
and r = .75. BRIDk is the only approach requiring no extra user-provided parameters.

dataset, and (ii) a disconnection between similarity δ and diversity d metrics,
which may be set as the same distance function, i.e., δ = d [20].

A baseline solution to that rationale is the Maximal Marginal Relevance
(MMR) algorithm. It includes the nearest neighbor to the query object in the par-
tial result set R′ and incrementally selects the remaining candidates oi ∈ O′ with
the highest contribution MMR(oi, oq) = (1−λ) ·δ(oi, oq)+2 ·λ ·∑oj∈R′ d(oi, oj)
in k − 1 steps. Figure 1(a–c) shows the output of a diversified MMR query in
contrast to that of a standard k-NN query. GMC [18] extends the MMR algo-
rithm by weighting the impact of elements left outside the partial result set R′.
Such weighting is carried out by the GMC contribution function GMC(oi, oq) =

(1−λ) ·δ(oi, oq)+(λ/(k − 1)) ·
(∑

oj∈R′ d(oi, oj) +
∑j≤k−|R′|

j=1,oj∈O′\R′ d(oi, oj)
)

that
considers the k−|R′| highest values for d(oi, oj) : oj ∈ O′ \R′. Figure 1(d) shows
the GMC output for the same query element in Fig. 1(c).

Another MMR extension is the GNE [18] algorithm, which replaces the incre-
mental evaluation of R′ by a GRASP-oriented heuristic. GNE uses the GMC
contribution function, but instead of selecting the oi entry with the highest score,
a random element among the top-ranked objects is chosen. Such rationale leads
to a two-phase execution in which a candidate list is kept in memory and is
greedily refined by random picks. Figure 1(e) shows a GNE result set avoiding a
couple of local maxima (border elements) that drew both MMR and GMC.

Better Results with Influence Diversification (BRIDk) [16] algorithm relies
on the influences generated by the diverse neighbors in the search space for
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defining dynamic separation thresholds between similarity and diversity as in
coverage-based approaches. The intuition is data elements mutually influence
each other (in the sense of being similar) at a ratio proportional to their distance,
and, formally, the mutual influence between two elements oi, oj ∈ O is given by
I(oi, oj) = 1/δ(oi, oj). BRIDk assumes distances between result set and query
elements are not independent, and the influences from a candidate element to
both query object and result set entries constitute a ternary-relationship that
determines whether or not the element is a valid diversified neighbor.

Given a dataset O ⊆ O, BRID sorts candidates o1, . . . , on ∈ O, n = |O|,
according to their distances to a query object oq ∈ O, and traverses that ordered
list targeting the elements that are more influenced by oq than any other object
in a (partial) result set R. Since R is initially empty, the nearest object o1 is
added into the result as an influencer and defines the first strong influence set
over O. Strong influence sets enable discarding candidates oj ∈ O \ R that are
more influenced by a result set entry oi ∈ R than by the query object oq itself,
i.e., the strong influence set Ïoi,oq covers every candidate element that satisfies
definition Ïoi,oq = {oj ∈ O \ R | I(oi, oj) ≥ I(oi, oq) ∧ I(oi, oj) ≥ I(oj , oq)}.
Accordingly, BRID extends k-NN into diversified k-NN queries as follows.

Diversified k-NN Query. A diversified k-NN query retrieves the k non-
influenced and nearest objects in O to oq such that R = {ri ∈ O | (∀ oj ∈
R ⇒ ri /∈ Ïoj ,oq ) ∧ (∀ oi ∈ O \ R ⇒ (δ(ri, oq) ≤ δ(oi, oq) ∨ ∃ oj ∈ R ⇒ oi ∈
Ïoj ,oq )) ∧ (|R| ≤ k)}. Objects ri ∈ R are influencers, while those in Ïoq,ri are
influenced elements. Figure 1(f) shows an example of the result set returned by
BRIDk in contrast to those of MMR, GMC, and r-Disc.

3 Diversity Browsing

This section describes diversity browsing, our approach for extending the dis-
tance browsing strategy into an algorithm that efficiently solves diversified k-NN
queries. Diversity browsing shares diversity definitions with BRIDk, includ-
ing those of influencers and influenced elements. We extend distance browsing
because it guarantees that candidates oi ∈ O ⊆ O are incrementally retrieved
according to their distances to the query object oq ∈ O. That way, we can nat-
urally reduce strong influence sets into generic partitions defined by closed balls
in the search space as in Lemma 1.

Lemma 1. Let the neighbor oi ∈ O be the last influencer in result set R, the
problem of checking if the next distance browsing neighbor oi+1 ∈ O\∪j∈RÏoj ,oq
is within influence set Ïoi,oq is reduced to examine the closed ball 〈oi, δ(oi, oq)〉
in O \ ∪j∈RÏoj ,oq , i.e., Ïoi,oq ≡ 〈oi, δ(oi, oq)〉 regarding set O \ ∪j∈RÏoj ,oq .

Proof. Distance browsing ensures δ(oi, oq) ≤ δ(oi+1, oq) for any pair of consecu-
tive neighbors oi, oi+1 ∈ O, so that I(oi, oq) ≥ I(oi+1, oq) is valid and inequalities
I(oi, oi+1) ≥ I(oi, oq) ≥ I(oi+1, oq) hold whenever δ(oi, oi+1) ≤ δ(oi, oq). �
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Fig. 2. Influence vs. closed ball partitions. (a–b) Querying set O. (c) Querying O\Ïo1,oq .

Figure 2 shows that the exclusion of ∪j∈RÏoj ,oq generates empty regions in O.
Consequently, rules derived from triangle inequality and strong influence sets
can be applied for pruning both partitions and data elements, as follows.

Lemma 2. Let elements o1, . . . , on ∈ O be sorted by distances to oq and influ-
encer oi ∈ O be the farthest diverse neighbor to oq in R, then oi+1 ∈ O can be
safely assumed as the next nearest influencer whenever δ(oi+1, oq) > 2 · δ(oi, oq).

Proof. Since δ(oi+1, oq) > 2 ·δ(oi, oq) > δ(oi, oq) then oi+1 is an influencer to oi,
otherwise δ(oi, oq) ≥ δ(oi+1, oi), i.e., oi+1 ∈ Ïoi,oq . From the triangle inequality
follows 2 ·δ(oi, oq) ≥ δ(oi+1, oi)+δ(oi, oq) ≥ δ(oi+1, oq), which is a contradiction.
Finally, oi+1 /∈ Ïoj ,oq , oj ∈ R \ {oi} since δ(oi, oq) ≥ δ(oj , oq). �

Lemma 3. An index partition modeled as a closed ball 〈p, ξp〉 is within a strong
influence set Ïoi,oq defined by result entry oi ∈ R if δ(oi, oq) ≥ δ(p, oi) + ξp.

Proof. If closed ball 〈oi, δ(oi, oq)〉 in O\∪j∈RÏoj ,oq covers 〈p, ξp〉 then δ(oi, oq) ≥
δ(oi, p); δ(oi, oq) ≥ δ(oi, oj); and ξp ≥ δ(p, oj),∀ oj ∈ 〈p,Mp〉. From the triangle
inequality follows δ(oi, oq) ≥ δ(oi, p) + ξp ≥ δ(oi, p) + δ(p, oj) ≥ δ(oi, oj) . �

Lemma 4. If a partial and sorted result set R contains k−1 entries and the dis-
tance from diverse candidate ok′ ∈ O\∪oj∈RÏoj ,oq to oq is known, then partition
〈p, ξp〉 can be pruned from the diversified search if δmin(〈p, ξp〉, oq) > δ(ok′ , oq).

Proof. Let ok′ ∈ O \∪oj∈RÏoj ,oq then δ(ok′ , oq) ≥ δ(oi, oq),∀ oi ∈ R. Moreover,
if δmin(〈p, ξp〉, oq) > δ(ok′ , oq) then δ(oi, oq) > δ(ok′ , oq),∀ oi ∈ 〈p, ξp〉. Therefore,
δ(oj , oq) > δ(ok′ , oq) ≥ δ(oi, oq),∀ oi ∈ R, and the sorted list of influencers is
o1, . . . , ok−1, ok′ , oh, where every oh ∈ 〈p, ξp〉 is after the kth candidate. �

We take full advantage of Lemmas 1–4 for designing our diversity browsing
routine. We also loosely coupled our implementation on top of VP-Trees for
experimental purposes, but other indexes can benefit from the search algorithm
as well. The only requirement is defining how minimum (δmin) and maximum
(δmax) distances from index partitions to query elements are calculated. In the
case of VP-Trees, such values depend on determining where oq is located with
regards to a partition centered at pivot p: (i) oq is outside the maximum distance
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Fig. 3. Values δmin and δmax calculated for VP-Tree left and right nodes.

covered by the partition, i.e., δ(oq, p) > Mp; (ii) oq is within the right node, i.e.,
μp < δ(oq, p) ≤ Mp; and (iii) oq is within the left node, i.e., δ(oq, p) < μp.
Figure 3 illustrates those scenarios and how minimum and maximum distances
are obtained for the left (δmin(lp), δmax(lp)) and right (δmin(rp), δmax(rp)) nodes.

diversity browsing(Root node proot, query object oq, diverse neighbors k);

1 proot.δmin ← 0.0; proot.δmax ← ∞; R′ ← ∅;
2 nodeQ ← {proot} /* Sorted queue for VP-Tree nodes */

3 candidateQ ← ∅ /* Sorted queue for candidate elements */

4 while |nodeQ| > 0 ∨ |candidateQ| > 0 do
5 if |candidateQ| = 0 then
6 node ← topAndPop(nodeQ);
7 if isLeaf(node) then candidateQ ← {node.elements} ;
8 else

/* Set δmin and δmax for left and right partitions */

9 setδminδmax(node.left); setδminδmax(node.right);
10 nodeQ ← nodeQ ∪ {node.left} ∪ {node.right};

11 else if |nodeQ| > 0 ∧ δmin(top(nodeQ)) < δ (oq, top(candidateQ)) then
12 node ← topAndPop(nodeQ);

/* Pruning by Lemmas 3-4 */

13 if node � ∪oj∈R′ Ïoj ,oq ∧ |R′| < k then

14 if isLeaf(node) then
15 candidateQ ← candidateQ ∪ {node.elements};
16 else
17 setδminδmax(node.left); setδminδmax(node.right);
18 nodeQ ← nodeQ ∪ {node.left} ∪ {node.right};

19 else
20 oi ← topAndPop(candidateQ);

/* Pruning by Lemma 2 */

21 if oi /∈ ∪oj∈R′ Ïoj ,oq ∧ |R′| < k then R′ ← R′ ∪ {oi} ;

22 return R′;

Algorithm 1: The diversity browsing routine.
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Algorithm 1 presents the diversity browsing implementation as a walkthrough
inspection of dataset O, in which two priority queues are used for ordering
(i) candidates according to their distances to oq, and (ii) VP-Tree partitions
by using δmin, with ties broken by δmax. Partitions are traversed in a closest-
first manner, and elements are inserted into the candidates’ queue only when
the leaves they belong are examined. Initially, both partition and candidate
queues are empty, and the VP-Tree root node is inserted for evaluation. Then,
Algorithm 1 triggers a loop procedure that traverses the index searching for the
closest node to oq while keeping the visited path of partitions and elements sorted
by distance. Figure 4 illustrates how Algorithm 1 examines VP-Tree nodes in a
diversified k-NN query example for a given query object oq and k = 3.

Fig. 4. Running of diversity browsing for a test-table query.

Figure 4(a–c) shows the two-dimensional queried set O, and how data ele-
ments are organized in a VP-Tree index with distance function L2 and support
for two objects per leaf. In Fig. 4(d), Algorithm 1 splits root node p1 into right
and left nodes rp1 and lp1 , node rp1 into rp3 and lp3 , and node lp3 into rp6 and
lp6 . Elements within lp6 are, then, inserted into the candidates’ queue. Since o7
is closest to oq than any possible element within lp1 , rp6 or rp3 it is retrieved
as the first diversified neighbor and included in the partial result set R′. Can-
didate o6 is the next nearest neighbor since it is closer to oq than any node in
the partitions’ queue, but diversity browsing dismisses o6 as influenced because
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δ(o7, oq) ≥ δ(o7, o6). The algorithm does not consider element o8 immediately
because δ(o8, oq) > δmin(lp1), which requires traversing the partitions’ queue
and loading objects o17, o19, o18, o16 and o20 into the candidates’ queue.

Candidate o8 is, then, straightforwardly retrieved as the next influencer
because δ(o8, oq) > 2 · δ(o7, oq), which complies with Lemma 2. The nearest
candidate o9 becomes closer to oq than any uninspected partition, but it is also
influenced by o8 and discarded – Fig. 4(e). In the next step, Algorithm 1 eval-
uates the partitions’ queue because δ(o17, oq) > δmin(rp6) and loads objects o4
and o5 into the candidates’ queue. The top of first queue becomes o4, while the
partition on top of second queue is rp3 with δ(o4, oq) > δmin(rp3).

Table 1. Description of queried datasets.

Name |O| |O′| |O′′| Rd δ D Description

SINT10 1M 70K 7K 10 L1 10 Random iid. dimensions in the [0, 1] interval

MNIST 70K 70K 7K 784 L2 12 Handwritten digits in the [0 − 9] interval

YAHOO 2M 70K 7K 400 L2 08 Features from Yahoo R© images

COPHIR 10M 70K 7K 282 L1 15 Color features from photos

Accordingly, diversity browsing splits rp3 into rp7 and lp7 , and rp7 element
o11 is inserted into the candidates’ queue. At this point, Algorithm 1 retrieves
o4 as the next influencer and, then, discards entry lp7 on top of the parti-
tions’ queue because δ(o4, oq) ≥ δ(o4, p7) + μp7 , which complies with Lemma 3.
Finally, Algorithm 1 discards farther partitions lp4 and lp5 by Lemma 4 because
δmin(lp5) > δmin(lp4) > δ(o4, oq). As a result, elements R = {o7, o8, o4} are
returned as the nearest influencers of the diversified k-NN query example.

4 Experiments

This section provides an empirical diversity browsing evaluation regarding one
synthetic (SINT10) and three real-world (MNIST, YAHOO, and COPHIR) datasets.
Table 1 describes the datasets, their original cardinality |O|, sample sizes |O′| and
|O′′| dimensions R

d, associated distance function δ, and data intrinsic dimension
D. The number of elements per leaf was set to 100 in every VP-Tree construction.

Data samples are required because current novelty-based competing algo-
rithms examine a factorial-based number of combinations on data cardinality
and, consequently, empirical runs would not finish within a reasonable time
(months). Moreover, datasets were reduced to their intrinsic dimension through
PCA for avoiding distance concentration [1,13]. The intrinsic dimension was cal-
culated by using the dataset distance distribution mean and standard deviation,
as in [3]. All compared approaches were implemented under the same framework
by using Java with JDK 13. The experiments were single-thread executed in our
local cluster, a QLustar Debian-based server with two nodes, each one with 48
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AMD Opteron 6320 hyper-thread processing cores, 96 GB of shared memory,
and a local 01 TB SATA disk.

Three distinct aspects of diversity browsing are discussed in the following
experiments. First, we examine possible tunings of VP-Tree parameters and
their impact on diversified k-NN searches. Then, we compare diversity browsing
on top of VP-Tree with novelty-based algorithms GMC and GNE, as well as
with influence-driven approach BRIDk. Finally, we analyze VP-Tree construction
costs and their effects on diversified k-NN search optimization.

VP-Tree Tuning. We evaluate distinct VP-Tree settings to verify if index con-
struction parameters may enhance diversity browsing performance. Accordingly,
we examine (i) the pivot selection criteria, which was set as one of the random
(RND), convex-hull (CVX) or maximal variance (MAX) choices, and (ii) the presence
(BAL) or absence (UBAL) of overflow support in leaf nodes.

Fig. 5. Average (ln scale) measures for diversity browsing on top of distinct VP-Trees.

Figure 5 details the behavior of diversity browsing over distinct VP-Trees for
diversified k-NN searches with values k = {5, 10, 15, 20, 25}. Such comparison is
made with sampled datasets O′ following a holdout strategy, in which 90% of
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elements in O′ were indexed, and the remaining 10% were employed as query
objects. Results indicate that the pivot selection criteria have a more significant
impact on performance compared with overflow support since both VP-Trees
with maximal variance pivots outperformed other VP-Trees.

In particular, VP MAX BAL outperformed VP RND BAL regarding distance calcu-
lation by, at least, 18.36%, 12.83%, 14.76%, and 9.26% in datasets SINT10, MNIST,
YAHOO, and COPHIR, respectively. VP MAX BAL also outperformed VP CVX BAL by, at
least, 15.76%, 12.21%, 12.92%, and 10.12% in the same scenario – Figs. 5(a–
d). Similar findings were observed for the number of nodes examined during
the search – Figs. 5(e–h). In this case, VP MAX BAL outperformed the closest non-
maximal variance index VP RND UBAL by, at least, 17.57%, 13.56%, 19.28%, and
11.82% in datasets SINT10, MNIST, YAHOO, and COPHIR. Finally, no evidence of
convex-based VP-Trees being systematically superior to those with random piv-
ots was observed regarding either distance calculations or nodes visited.

Fig. 6. Average (ln scale) measures for a diversified k-NN query executed by routines
diversity browsing, BRIDk, and GMC and GNE with parameter λ = .25.

The average elapsed query time varied mostly in comparison to distances
calculated, due to the cost of maintaining priority queues and the dynamical
construction of strong influence sets by diversity browsing. Nevertheless, maxi-
mal variance indexes also outperformed competitors in every evaluated dataset.
However, no significant differences were observed regarding overflow support in
maximal variance structures, with VP MAX UBAL being slightly superior in for MNIST
and VP MAX BAL providing better results for SINT10, YAHOO, and COPHIR. Therefore,
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we pick VP MAX BAL as a suitable VP-Tree tuning for diversity browsing to be
evaluated against existing result diversification algorithms.

Diversity Browsing vs. Other Result Diversification Methods. We com-
pare diversity browsing, BRIDk, GMC, and GNE approaches in the querying of
datasets in Table 1. Diversity browsing and BRIDk were evaluated over sampled
datasets O′, following the holdout strategy in which a random 90% of elements
were indexed, and the remaining entries were used as query objects for diver-
sified k-NN searches with k = {5, 10, 15, 20, 25}. Novelty-based GMC and GNE
methods were tested over a smaller sample of candidates O′′, |O′′| = 0.1 × |O′|
with the same holdout validation strategy.

Figure 6 shows a comparison between the aforementioned approaches regard-
ing average distance calculations and elapsed query time, in which diversity
browsing outperformed the competitors for every value of k. In particular, our
approach has required up to 2.01, 3.79, 14.71, and 0.59× less distance calcula-
tions than BRIDk in datasets SINT10, MNIST, YAHOO, and COPHIR, respectively.
Similar differences were observed regarding elapsed query time, in which diver-
sity browsing was, at least, 87.51% superior to BRIDk.

Fig. 7. Elapsed building time for distinct VP-tree settings.

Diversity Browsing also outperformed algorithms GMC and GNE regarding
elapsed query time. In particular, our approach was, at least, 5.67, 5.41, 6.07,
and 4.91 orders of magnitude faster than GMC for querying datasets SINT10,
MNIST, YAHOO, and COPHIR, respectively. Our approach was also, at least, 5.69,
5.42, 6.1, and 5 orders of magnitude faster than GNE in the same context.

Index Construction Costs. In the last experiment, we evaluate the construc-
tion costs of VP-Trees and their impact on diversity browsing. Figure 7 reports
building time box-plots (100 runs) for every dataset and VP-Tree examined in
previous experiments. Results indicate that VP MAX BAL is the most expensive
index to build, and VP RND UBAL is the cheapest structure to construct. Such find-
ings reveal a trade-off for maximal variance pivots, i.e., they boost diversified
k-NN queries but are more expensive to build. In the case of diversity browsing,
the construction of VP-Trees with maximal variance pivots pays off when the
number of issued queries surpasses the costs of performing a BRIDk search. For
instance, diversity browsing accumulated query time with VP MAX BAL plus the
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index building cost becomes smaller, on average, than the total BRIDk elapsed
time after 2379, 1104, 1061, and 2351 queries (just 2.74% of the total of indexed
elements) over datasets SINT10, MNIST, YAHOO, and COPHIR, respectively.

In real similarity-based applications, the ratio query/index is expected to
be much higher and, hence, the use of maximal variance pivots with diversity
browsing is recommended. Nonetheless, coupling our approach with low-cost VP-
Trees may also be an alternative for the running of fewer queries. For instance,
diversity browsing with the most inexpensive structure VP RND UBAL was still at
least 14% faster than BRIDk in the experiments of Figs. 5 and 6.

5 Conclusions

This study has proposed diversity browsing, an algorithm that combines the dis-
tance browsing search strategy with metric indexes and influence-based query
criteria to provide result diversification. Diversity browsing uses distance-based
relationships for pruning indexes’ branches that are themselves influenced by ele-
ments in the result set, according to their proximity to the query object. Empiri-
cal evaluations showed diversity browsing expressively outperformed approaches
GMC and GNE, as well as the baseline diversity algorithm BRIDk. Such exper-
imental gains are also related to the tuning of the VP-Trees, the underlying
index we loosely coupled to diversity browsing in our implementation. Empirical
findings pinpoint VP MAX BAL, i.e., the use of maximal variance pivots, is the most
suitable tuning for VP-Trees running diversity browsing.

Future works include the parallelization of diversity browsing and its exten-
sion to similarity-joins in a Map-Reduce framework, e.g., Apache Spark.
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Abstract. Similarity search for data streams has attracted much atten-
tion recently in the area of information recommendation. This paper
studies a continuous set similarity search which regards the latest W
items in a data stream as an evolving set. So far, a top-k similarity
search problem called CEQ (Continuous similarity search for Evolving
Query) has been researched in the literature, where the query evolves
dynamically and the database consists of multiple static sets. By con-
trast, this paper examines a new top-k similarity search problem, where
the query is a static set and the database consists of multiple dynamic
sets extracted from multiple data streams. This new problem is named
as CED (Continuous similarity search for Evolving Database). Our main
contribution is to develop a pruning-based exact algorithm for CED.
Though our algorithm is created by extending the previous pruning-
based exact algorithm for CEQ, it runs substantially faster than the one
which simply adapts the exact algorithm for CEQ to CED. Our algo-
rithm achieves this speed by devising two novel techniques to refine the
similarity upper bounds for pruning.

Keywords: Data stream · Set similarity search · Sliding window ·
Pruning

1 Introduction

Similarity search for data streams has become significant these days, because
it has many applications in the area of information recommendation. Typical
similarity search problems [3,5,8] regard a single data stream as a pool of data,
that is, a database which allows addition and/or removal of data. Their goals
are to keep on seeking similar data to a query out of this dynamic database, i.e.,
the data stream.

Recently, another direction of similarity search which measures the similar-
ity between a pair of data streams has attracted much attention. It views a
single data stream as a set of data [2] and searches similar data streams by
means of set similarity search. For instance, Efstathiades et al. [1] searched
similar user pairs by measuring the similarity between their tweet sets. Wang
et al. [4] studied how to generate memory-efficient sketches for streaming sets.
c© Springer Nature Switzerland AG 2020
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Yang et al. [9] models a POI (Point of Interest) as a stream of visitors and labels a
new POI semantically by searching similar known POIs. Xu et al. [6] formulated
the Continuous similarity search problem for Evolving Queries (abbreviated as
CEQ hereafter). In CEQ, one item is added to the data stream per time instant
and its latest W items form the query set. Thus, every time a new item is added
to the stream, the query evolves. The task of CEQ is to continuously find the
top-k most similar sets to the query from the static database composed by n sets.
For the evolving query, the CEQ demands to update the top-k most similar sets.
The CEQ models a scenario in which recommendation systems must adapt to the
changing preference of a user. The evolving query corresponds to the changing
preference of the user, whereas the top-k most similar sets abstract the objects
recommended to the user. For CEQ, Xu et al. [6] proposed a pruning-based exact
algorithm.

In CEQ, the dynamic query originates from a single data stream, while the
database consists of multiple static sets. By contrast, this paper examines a new
top-k similarity search problem such that the query Q is a single static set and
the database consists of multiple data streams with a fixed sliding window size
W . This new problem purposes to continuously search the top-k data streams
whose last W items are the most similar to the static query Q. Since the database
evolves, we name this problem as the “Continuous similarity search problem for
Evolving Database” abbreviated as CED hereafter. CED has realistic applica-
tions as follows. Consider the situation when, given a web ad, we would like
to choose a group of users to whom the web ad should be delivered. Assume
that the ad is assigned multiple keywords presenting the categories and that
the preference of a user u is estimated from the history of web pages browsed
by u. Then, the preference of u is viewed as a data stream. Here, if each web
page is summarized with a few keywords, the sliding window of the data stream
expresses the recent preference of u and forms a dynamic set of keywords. Thus,
we can find the top-k users who should see the ad by solving the CED instance
where the ad is given as the query.

In this paper, we develop a pruning-based exact algorithm for CED. Though
we create it by extending the previous pruning-based exact algorithm for CEQ,
we incorporate two novel techniques into it which refine the similarity upper
bounds for pruning in order to reduce similarity computations. Experimentally,
our algorithm runs substantially faster than the one which simply adapts the
previous exact algorithm for CEQ to CED.

This paper is organized as follows. Section 2 reviews the known CEQ problem
and the previous exact algorithms for CEQ. Section 3 formally defines the CED
problem. Then, Sect. 4 presents our exact method for CED. Section 5 reports the
experimental evaluation. Section 6 concludes this paper.

2 Continuous Similarity Search for Evolving Queries

This section reviews the CEQ problem formulated in [6]. Throughout this paper,
let Φ = {x1, x2, · · · , x|Φ|} be a set of alphabets. To the data stream, exactly one
new item from Φ is added at every time instant. We denote an item added at
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time t by et. In CEQ, the latest W items in the data stream become the query
QT at time T . That is, QT = {eT−W+1, eT−W+2, · · · , eT }. On the other hand,
the database D stores n static sets of alphabets {S1, S2, · · · , Sn} which do not
change over time. The task of CEQ is to search for the top-k most similar sets
to QT in D at every T . Here, the similarity value between the query QT and a
set S in D is measured with the Jaccard similarity

sim(S,QT ) =
|S ∩ QT |
|S ∪ QT | . (1)

In case either S or QT is a multiset, the extended Jaccard similarity is used,
where |S ∩ QT | =

∑|Φ|
i=1 min(si, qi) and |S ∪ QT | =

∑|Φ|
i=1 max(si, qi). si and qi

symbolize the numbers of the i-th alphabet xi in S and QT respectively. When
the time advances from T to T + 1, the top-k most similar sets to the query in
D must be updated, because the query evolves from QT to QT+1.

CEQ is trivially solved if we compute the similarity values between the query
and all the sets in D at every time instant. However, this brute-force solution is
forced to compute the similarity values too many times. In the literature, two
faster exact algorithms have been proposed. The first one is a pruning-based
algorithm in [6] which will be explained in Sect. 2.1 in details.

The second algorithm EA-FIL in [7] makes use of the inverted lists. [7] proves
that, if a set Si contains neither eT nor eT−W , sim(Si, QT ) = sim(Si, QT−1) and
EA-FIL does not have to calculate sim(Si, QT ) at T . EA-FIL uses the inverted
lists to access quickly such sets having either eT or eT−W for which EA-FIL need
to compute the similarity value at T . Though EA-FIL runs faster than GP, the
inverted lists in EA-FIL exploit the property that the database is static.

2.1 Pruning-Based Exact Algorithm

Xu et al. [6] developed an exact algorithm named GP (General Pruning-based)
which reduces the number of similarity computations between the query and the
sets in D. For any set Si in D, GP keeps on managing an upper bound of the
similarity value sim(Si, QT ) at every time instant T .

Denote the similarity value of the k-th most similar set at T by sim topk(T ).
Then, GP omits the computation of sim(Si, QT ), in case the corresponding upper
bound falls below the lower bound of sim topk(T ).

2.1.1 Upper Bound of Similarity Value
GP derives the upper bound of sim(Si, QT ) in the following way. Suppose that
the similarity value for Si was computed at time ti for the last time before the
current time T . Thus, ti < T . Just after ti, GP knows both sim(Si, Qti) =
|Si ∩ Qti

|
|Si ∪ Qti

| and sim topk(ti). From these two values, GP computes the minimum
time steps min stepi after which the similarity value of Si has a chance to exceed
sim topk(ti). Since at most min stepi items are replaced after the min stepi

steps, the similarity value of Si never goes beyond |Si ∩ Qti
|+min stepi

|Si ∪ Qti
| −min stepi

for the
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time interval (ti, ti+min stepi]. Thus, min stepi is defined as the smallest integer
satisfying |Si ∩ Qti

|+min stepi

|Si ∪ Qti
| −min stepi

≥ sim topk(ti). GP specifies |Si ∩ Qti
|+min stepi

|Si ∪ Qti
| −min stepi

as
the upper bound of sim(Si, QT ) for any T in (ti, ti + min stepi],

2.1.2 Extraction of Top-k Most Similar Sets at Time Instant T

At T , GP first chooses a group of sets R ⊂ D such that R = {Si|ti +min stepi =
T}. R contains at least k sets, because the top-k most similar sets at T −1 belong
to R. Next, GP determines the top-k most similar sets C = {R1, R2, · · · Rk} in
R. C is going to memorize the candidates of the top-k most similar sets at T .
Let τ be the minimum similarity value of the k sets in C. Because C holds k
sets, τ works as the lower bound of sim topk(T ).

For a set Si in the remaining D\R, if the upper bound of sim(Si, QT ) exceeds
τ , GP computes sim(Si, QT ). Otherwise, GP omits computing sim(Si, QT ).
When sim(Si, QT ) is computed and sim(Si, QT ) > τ , GP replaces the least
similar set in the current C with Si and increases τ accordingly. After all the
sets in D\R are processed, the k sets in C are returned as the final top-k most
similar sets to QT at T . In this way, GP shortens the execution time by omitting
the similarity computations for some sets in D\R.

3 Problem Statement

In our CED problem, a single static set of alphabets serves as a query Q. The
database D consists of n data streams {S1, S2, · · · , Sn}. Each data stream Si

manages a sliding window which stores the last W items added to Si. We denote
the contents stored in the sliding window of Si at time T by ST

i . At every time
T , CED demands to find the top-k most similar sets to the query set Q from
the n sets DT = {ST

1 , ST
2 , · · · , ST

n }, where the similarity between ST
i and Q is

evaluated with the Jaccard similarity sim(ST
i , Q) = |ST

i ∩ Q|
|ST

i ∪ Q| . Because DT evolves
with T , we must search the top-k most similar sets continuously. To simplify the
problem, we assume that the n data streams are synchronized so that exactly
one new item from Φ is added to every data stream at every time instant.

This paper is interested only in pruning-based exact algorithms. Algorithms
based on the inverted lists are out of scope, because the inverted lists look
improper for the dynamic database in CED: Because one item enters and another
item leaves every set in the database at every time instant, the inverted lists have
to handle many insertions and deletions of sets all the time. Thus, the inverted
lists will suffer from enormous management costs.

In this research, we implement the sliding window of a data stream Si as a fifo
list, because the fifo list is the easiest to implement. For example, the fifo list is
the optimal in terms of memory usage in storing the sliding window ST

i and can
update it in O(1) time at every time instant. However, the fifo list is alphabet-
ically unordered. It is known that the time complexity to compute the Jaccard
similarity between two sets of size W amounts to a big O(W 2) time, when they
are represented as unordered lists. To cope with this issue, we decide to manage
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ST
i as an unordered list usually and to sort it temporarily in the alphabetical

order just before sim(ST
i , Q) need be computed. This approach reduces the time

complexity to compute the Jaccard similarity up to an O(W log W + 2W ) time,
where the W log W term covers the sorting of ST

i and the 2W term presents the
time spent to compute the Jaccard similarity between two ordered lists.

4 Our Exact Algorithm for CED

This section explains our exact algorithm for CED. First, Sect. 4.1 claims that the
known exact algorithm GP [6] for CEQ can be adapted to CED. We name this
adapted version as GPD (General Pruning-based method for dynamic Database).
Then, Sects. 4.2 and 4.3 introduce two novel techniques that decrease the fre-
quency of similarity computations by tightening the similarity upper bounds.
We call the first technique as the incremental update, while the second one is
termed as the common element method.

4.1 Extension of Exact Algorithm for CEQ to CED

Whereas the previous CEQ problem considers a dynamic query and the static
database, our CED problem treats a static query and the dynamic database.
Therefore, CED is the same as CEQ in that one of the query and the database
is static and the other is dynamic. Thus, we can make an exact algorithm for
CED by modifying the known exact algorithm GP for CEQ. What we have to
do is to replace (1) the dynamic query QT in GP with the static query Q and
(2) the static database D = {S1, S2, · · · , Sn} in GP with the dynamic database
DT = {ST

1 , ST
2 , · · · , ST

n }. We name this exact algorithm for CED as GPD.

For example, suppose that GPD computes sim(Sti
i , Q) = |Sti

i ∩ Q|
|Sti

i ∪ Q| at time ti.

GPD first derives the minimum time steps min stepi which satisfies

|Sti
i ∩ Q| + min stepi

|Sti
i ∪ Q| − min stepi

≥ sim topk(ti). (2)

Then, GPD specifies |Sti
i ∩ Q|+min stepi

|Sti
i ∪ Q| −min stepi

as the upper bound of similarity value

between Q and the stream Si in the time period (ti, ti + min stepi]. Like GP,
GPD uses this similarity upper bound for Si for the whole period (ti, ti +
min stepi].

The left-hand side of Eq. (2) is derived by replacing Si and Qti in the upper
bound formula for GP with Sti

i and Q respectively. In the same way, the proce-
dure of GP to select the top-k most similar sets at time T in Sect. 2.1.2 can be
migrated to CED by replacing Si with ST

i and QT with Q.

4.2 Incremental Update

Without updating the similarity upper bound for the period (ti, ti + min stepi],
GPD minimizes the overhead of managing the similarity upper bounds.
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Fig. 1. Similarity upper bounds

Instead, the similarity upper bound in GPD is rather loose as follows: Let j
be an integer satisfying 1 ≤ j ≤ min stepi. At ti + j, an upper bound of

|Sti
i ∩ Q| + j

|Sti
i ∪ Q| − j

≤ |Sti
i ∩ Q| + min stepi

|Sti
i ∪ Q| − min stepi

. (3)

is available, because j items have changed inside the sliding window of Si before
ti + j.

By updating the similarity upper bound incrementally at every time instant,

our incremental update technique uses |Sti
i ∩ Q|+ j

|Sti
i ∪ Q| − j

at time ti + j. Figure 1 illus-

trates how the similarity upper bounds differs between GPD and the incremen-
tal update. While GPD always keeps the similarity upper bound around the
top-k similarity value at ti, the incremental update increases it gradually from
sim(Sti

i , Q).
We expect the incremental update to accelerate the similarity search by less-

ening the similarity computations in exchange for the extra overhead to update
similarity upper bounds. Fortunately, we can update the upper bound in O(1)
time per time instant by remembering |Sti

i ∩Q| and |Sti
i ∪Q| at ti. Therefore, the

overhead to update the upper bound once becomes much less than that incurred
in computing the Jaccard similarity.

Besides, the incremental update allows us to exclude the variable min stepi,

because |Sti
i ∩ Q|+ j

|Sti
i ∪ Q| − j

does not contain this variable. To remove “min stepi” com-

pletely, we need to define R as the top-k most similar streams at time T − 1.

4.3 Common Element Method

Here, we refine the incremental update in Sect. 4.2 so that the similarity upper
bound may lower more. This technique is named as the common element method.
We would point out that both the incremental update and GPD assume pes-
simistically that items which will depart from the sliding window in near future
are unknown. However, in practice, any similarity search algorithm can recognize
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Fig. 2. Common elements

them, because they exist in the current sliding window. In particular, we exploit
the property that, if the item which departs at time t is a common element
between St−1

i and Q, |St
i ∩ Q| ≤ |St−1

i ∩ Q| so that sim(St
i , Q) ≤ sim(St−1

i , Q).

4.3.1 Common Elements
When St−1

i are multisets, which items in St−1
i are common with Q is unclear.

Thus, we first define the common elements rigorously: Consider the scenario
such that the similarity is computed between Si and Q at time ti. At ti, the
sliding window Sti

i = {eti−W+1, eti−W+2, · · · , eti−1, eti}. To ease the exposition,
we rewrite {eti−W+1, eti−W+2, · · · , eti−1, eti} as {a1, a2, · · · , aW−1, aW } by sub-
stituting al for eti−W+l for 1 ≤ l ≤ W . al is going to depart the sliding window
at ti + l. Definition 1 below defines the common elements.

Definition 1 (Common Element). If the intersection size between Si and Q
is decreased by 1 when al departs at ti + l, al is a common element with Q.

If aj is a common element, |Sti+l−1
i ∩ Q| ≤ |Sti+l

i ∩ Q| without regard to the
arrival of an element at ti + l, because the departure at ti + l decreases the
intersection size by 1.

Suppose al has an alphabet label, say α. Whether al is a common element
depends on the numbers of α characters in Q and Sti+l−1

i . We denote the number
of α characters in Q by #αQ and that in Sti+l−1

i by #αl
Si

. al is a common
element if and only if #αl

Si
≤ #αQ. See Fig. 2 as an example. While Q holds 3

instances of α, St−1
1 and St−1

2 have 4 and 2 instances of α respectively. Thus,
|St−1

1 ∩ Q| = 3 and |St−1
2 ∩ Q| = 2. After the circled elements at the head left

St−1
1 and St−1

2 , only S2 reduces the intersection size from 2 to 1.
According to the above discussion, we may judge if al is a common element

only at ti + l − 1 by comparing #αl
Si

with #αQ. However, this scheme is hard
to implement efficiently, when dynamic sets are represented with unordered lists
as mentioned in Sect. 3, because we must scan the list Sti+l−1

i to obtain #αl
Si

.
In addition, this scheme requires to scan one list every time instant.

So that we may estimate the similarity upper bound without troubled by
this difficulty, we introduce a notion of common element candidates as follows.
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Definition 2 (Common Element Candidate). At time t < ti + l, if al still
has a potential to become a common element at ti + l, al is called a common
element candidate between Si and Q at t.

Again, suppose that al has a label of α. Definition 2 tells that al is no longer a
common element candidate at t, if at least #αQ instances of α appear behind
al in St

i , because it guarantees that #αl
Si

> #αQ at ti + l − 1. By contrast, al

is still a common element candidate at t, if less than #αQ instances of α exist
behind al in St

i .
The point of the common element candidate is that, instantly sim(Sti

i , Q) is
computed at ti, we can decide if each element ai (1 ≤ i ≤ W ) in the sliding
window is a common element candidate by scanning only one unordered list Sti

i

from back to front.

4.3.2 Estimation of Upper Bounds
This subsection describes our method to estimate the similarity upper bound. By
scanning the unordered list Sti

i in an O(W ) time, our method first identifies all
the common element candidates in Sti

i at ti, just when sim(Sti
i , Q) is computed

for the stream Si. After that, we can create an array ARi such that ARi[j]
records how many common element candidates appear in the prefix of Sti

i whose
length equals j for 1 ≤ j ≤ W .

Theorem 1 below relates the number of common element candidates in the
prefix of Sti

i to the intersection size.

Theorem 1. Let j ≤ W and {a1, a2, · · · , aj} be a prefix of Sti
i . If the number

of common element candidates in this prefix equals v, |Sti+j
i ∩ Q| ≤ |Sti

i ∩ Q| +
(j − v).

Theorem 1 immediately derives that sim(Sti+j
i , Q) ≤ |Sti

i ∩ Q| + (j − v)
|Sti

i ∪ Q| − (j − v)
. Thus,

we got a similarity upper bound tighter than that for the incremental update in
Eq. (3). See Fig. 1 for illustration. Unlike the incremental update, the common
element method occasionally does not increase the similarity upper bound.

Proof. The period [ti + 1,ti + j] accompanies exactly j item departures and j
item arrivals. Here, one item departure either decreases the intersection size by
1 or keeps it unchanged. On the other hand, one item arrival either increases
the intersection size by 1 or keeps it unchanged. Therefore, |Sti+j

i ∩Q| takes the
maximum value of |Sti

i ∩ Q| + j, if all the j departures keep the intersection size
unchanged and all the j arrivals increase it by 1.

Conversely, let f1 be the number of departures that decrease the intersection
size and f2 be the number of arrivals which keep the intersection size unchanged.
Then, it holds that |Sti+j

i ∩ Q| = |Sti
i ∩ Q| + j − (f1 + f2). Thus, Theorem 1 is

correct if we can prove f1 + f2 ≥ v.
Suppose that v′ out of the v common element candidates finally departed as

common elements, and the remaining v−v′ candidates departed as non-common
elements. Obviously v′ = f1 from the definition of common elements.
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Fig. 3. Behavior of GP CE at T

Next, consider the latter v − v′ candidates. Let aj be any one of them and
have a label of α. Since aj was a common element candidate at ti and left the
sliding window as non-common elements at ti + j, there must be a time instant
t′ ∈ [ti +1, ti + j − 1] when aj becomes no longer a candidate. At t′, the number
of α behind aj increased from #αQ − 1 to #αQ. Therefore, the item arriving at
t′ must have a label of α. Note that this fact also tells that there exist #αQ − 1
instances of α behind aj at t′ − 1 in the sliding window. Because these #αQ

instances including aj never departs before ti + j, they all remain in the sliding
window at t′ regardless of the item departure at t′. Thus, the item arrival at
t′ cannot increase the intersection size. In this way, with each of the v − v′

candidates, we can associate one distinct item arrival which does not increase
the intersection size. Hence, f2 ≥ v − v′.

Thus, f1 + f2 ≥ v′ + (v − v′) = v and Theorem 1 is proved. �	

4.4 Whole Image of Our Algorithm

Figure 3 illustrates the way how our exact algorithm returns the top-k most sim-
ilar data streams to Q at time instant T in the pseudocode style. Our algorithm
is named as GP CE (General Pruning supported by Common Elements).

At the beginning, GP CE calculates the similarity values for the k data
streams which were the most similar to Q at T − 1. In the 4th line, the least
similarity value for these k streams is set to τ as the initial lower bound of
sim topk(T ), i.e., the similarity value of the k-th most similar stream at T .

Then, after updating the similarity upper bounds for all of the remaining
streams incrementally in the 6th line, GP CE actually computes similarity values
only for such streams whose similarity upper bounds exceed the current lower
bound of sim topk(T ). In the 2nd and 8th lines, when the Jaccard similarity is
computed, GP CE checks the number of common candidate elements that help
to tighten the similarity upper bounds.
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5 Experiments

We evaluate our GP CE experimentally with synthetic datasets and two real
datasets. The experimental platform is a PC with Intel Core i7-4770 CPU@
3.40 GHz, 16 GB memory. As the baselines for comparison, we also implement
(1) the brute-force method BFM which computes the Jaccard similarity n times
at each time instant and (2) GPD in Sect. 4.1 which simply adapts the pruning-
based exact algorithm in [6] for CEQ to CED. To examine the effect of common
element method, we also developed an algorithm which only makes use of the
incremental update in Sect. 4.2. This algorithm is called “IU-only”. Since BFM
was much slower than GPD, BFM will be displayed in only one graph reporting
the execution time in the subsequence.

5.1 Results with Synthetic Datasets

We construct the synthetic database D with n data streams as follows. After
fixing the sliding window size W , we first make a pool P of 1000 random sets
which choose their elements from the alphabet Φ with the IBM Quest data
generator, where the average set cardinality in P is set to W . Then, we prepare
n long sequences of alphabets by randomly concatenating the sets in P . One
data stream is simulated by passing one element from a long sequence at each
time instant. The query Q is specified by pick up one set in the pool P randomly.

We evaluate the efficiency of an algorithm by measuring the total processing
time to perform the continuous top-k similarity search 1000 times for the time
period from T = 1 to T = 1000. Since Q is randomly chosen from P , we report
the average processing time over 10 different queries.

Here, we fix n to 10000 and W to 100, whereas we vary the alphabet size
|φ| and k, since |φ| and k highlight the property of GP CE well. Intuitively, |Φ|
controls the number of common elements between Q and the dynamic sets. As
|φ| becomes larger, the number of common elements tends to decrease.
Experiment (1) When |Φ| is changed.

With fixing k to 10, we change |Φ| in the range {200, 400, 800, 1600, 3200,
6400}. Figure 4(a) displays the total processing time.

For any |Φ|, our GP CE runs more than 4 times faster than GPD. Interest-
ingly, as |Φ| becomes larger, GPD and IU-only behave more differently. We infer
that this result is caused by the difference of similarity upper bound between
GPD and IU-only: Roughly speaking, GPD sets the similarity upper bound for
a data stream Si to sim topk(ti) from the beginning, whereas IU-only gradu-
ally increases it from sim(Sti

i , Q) towards sim topk(ti). For large |Φ| values, the
expectation of sim(Sti

i , Q) becomes small, because E[|Sti
i ∩ Q|] reduces. Thus,

GPD is to specify a much higher similarity upper bound than IU-only. As the
result, GPD has to compute the similarity values more often than IU-only.

By contrast, for small Φ values, E[|Sti
i ∩ Q|] becomes larger so that the

expectation of sim(Sti
i , Q) gets closer to sim topk(ti). Thus, when Φ is small,

the effect of incremental update is restricted. Remarkably even when Φ is small,



Continuous Similarity Search for Evolving Database 165

Fig. 4. Processing time for synthetic datasets

GP CE retains its advantage over GPD successfully, because the common ele-
ment method makes a big contribution when E[|Sti

i ∩Q|] is large and covers the
deterioration of the incremental update.
Experiment (2) When k is changed.

We change k in the range {1, 5, 10, 20, 50, 100} for |Φ| = 800. Figure 4(b)
shows the total processing time for various k values. Also in this experiment,
GP CE outperforms GPD for any k value. The relative gain of IU-only to GPD
shrinks as k increases. This result can be also attributed to the difference of simi-
larity upper bound between GPD and IU-only. As k becomes larger, sim topk(ti)
decreases and gets nearer to sim(Sti

i , Q), so that IU-only performs more simi-
larly to GPD. Interestingly, GP CE definitely defeats GPD even for large k
values thanks to the common element method that does not depend much on k.
Thus, the common element method complements the incremental update again.

5.2 Results with Real Datasets

Next, we evaluate GP CE with two real datasets: a Market Basket dataset1 and
a Click Stream dataset2. Both of them were also used in the previous work [6].

The Market Basket dataset is a collection of itemsets each of which presents a
set of items purchased by one customer. This dataset consists of 88162 itemsets,
where |Φ| = 16470 denotes the number of distinct item kinds. To apply the
Market Basket dataset to GPD, we emulate each of n = 10000 data streams
in D by concatenating itemsets in the dataset randomly. The sliding window
size W is set to 10, since the average set cardinality equals 10.3. The query is
generated by choosing one itemset randomly from the dataset.

The Click Stream dataset is a collection of sequences of web pages (URLs)
visited by some users. By associating each web page with some predefined cat-
egory such as “news” and “tech”, a sequence of web pages visited by a user is
1 http://fimi.ua.ac.be/data/.
2 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php.

http://fimi.ua.ac.be/data/
http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php
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Fig. 5. Processing time for real datasets

represented as a multiset of alphabets, where |Φ| = 17 corresponds to the number
of categories. This dataset consists of 31790 multisets. With this dataset, 10000
data streams in D are synthesized completely in the same way as the Market
Basket dataset. W is set to 13 which almost equals the average set cardinality.
One multiset chosen from this dataset serves as a query.

The dynamic sets in D have few common elements with Q for the Market
Basket dataset whose |φ| is quite huge. By contrast, they share many common
elements with Q for the Click Stream dataset as |Φ| is only 17. We evaluate an
algorithm with the total time to process the continuous top-k similarity search
over the time period of length 1000. We vary k in the range {1, 5, 10, 20, 50, 100}.
Again, we report the average processing time over 10 different queries.

Figure 5(a) shows the processing time for the Market Basket dataset. While
GP CE outperforms GPD, it runs slightly slower than IU-only. This is because
the common element method in GP CE is not rewarded, when the dynamic sets
in D rarely share common elements with Q. However, the extra overhead caused
by the common element method is moderate since the gap between GP CE and
IU-only is slight. Figure 5(b) shows the processing time for the Click Stream
dataset. Again, GP CE is superior to GPD for any k value. For this dataset,
GP CE runs faster than IU-only, because the common element method can han-
dle the dynamic sets having many common elements with Q efficiently.

6 Conclusion

This paper investigates the Continuous similarity search for Evolving Database
(CED) for the first time, where the query is a static set and the database consists
of dynamic sets which correspond to the sliding window of data streams. In the
past, the previous researches considered only the Continuous similarity search
for Evolving Queries (CEQ) problem which deals with the dynamic query and
the database of static sets.
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Especially, we design a pruning-based exact algorithm GP CE for the CED.
Here, we not only adapt the known pruning-based exact algorithm for CEQ
to CED, but also incorporate two techniques into GP CE: (1) the incremental
update and (2) the common element method both of which improve the efficiency
of pruning by refining the similarity upper bound. The incremental update lowers
the upper bound by increasing it stepwise according to the elapsed time since
the last similarity calculation. The common element method reduces the upper
bound further by monitoring the common elements in the current sliding window.

We show experimentally that GP CE always runs faster than the baseline
algorithm which simply adapts the previous exact algorithm for CEQ to CED.
Interestingly, the common element method often complements the incremen-
tal update, especially when the incremental update cannot decrease the upper
bound well for the reason that the top-k similarity value is not far from the
average similarity value of dynamic sets.

One interesting future direction of this research is to decide whether or not
to apply the common element method adaptively on a set-by-set basis.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Number
JP18K11311, 2020.
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Abstract. Incompleteness harms the quality of content-based retrieval
and analysis in similarity queries. Missing data are usually evaluated
using exclusion and imputation methods to infer possible values to com-
plete gaps. However, such approaches can introduce bias into data and
lose useful information. Similarity queries cannot perform over incom-
plete complex tuples, since distance functions are undefined over miss-
ing values. We propose the SOLID approach to allow similarity queries
in complex databases without the need neither of data imputation nor
deletion. First, SOLID finds highly-correlated metric spaces. Then, SOLID
uses a weighted distance function to search by similarity over tuples of
complex objects using compatibility factors among metric spaces. Exper-
imental results show that SOLID outperforms imputation methods with
different missing rates. SOLID was up to 7.3% better than the competi-
tors in quality when querying over incomplete tuples, reducing 16.42%
the error of similarity searches over incomplete data, and being up to
30.8 times faster than the closest competitor.

Keywords: Missing data · Similarity search · Complex · Metric spaces

1 Introduction

Advances in data collection and sharing have substantially increased the amount
of available data in the last decades. Datasets of complex data such as images,
time series, and audios have been the target of several studies [3,11]. Similarity
queries explore complex objects using low-level data representations and compare
them using distance functions to retrieve the relevant objects by their content
[3]. However, problems in data acquisition, recording, and management may
lead to missing values in the data. As data quality poses significant challenges
for content-based retrieval, analysis, and management, missing data is a relevant
issue [10]. A common approach to query over incomplete datasets is to remove
the tuples or attributes with missing values. Applications can also maintain the
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S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 168–176, 2020.
https://doi.org/10.1007/978-3-030-60936-8_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60936-8_13&domain=pdf
https://doi.org/10.1007/978-3-030-60936-8_13


Similarity Queries over Incomplete Databases 169

attribute and ignore only the missing values [2], but removing tuples from the
dataset may also discard relevant information.

Figure 1 shows an example of a database of complex attributes extracted from
drawn characters, with missing values. Distance functions can not measure the
similarity of incomplete tuples. Imputation approaches replace missing values
following predetermined criteria, filling the data, for traditional analyses. Mean
imputation [4] is one of the most common approaches, replacing missing values
with the corresponding dimension’s average or mode. Other techniques include
the K-Nearest Neighbor (kNN) imputation [2], which estimates missing values
based on the most similar objects considering the existing dimensions, fuzzy sets,
interpolation functions, or regression methods [5]. However, ignoring or imputing
values can introduce bias in the data and harm similarity searches [10].

Fig. 1. Example of the problem of missing values in similarity searches.

In this work, we propose the SOLID method to retrieve the most similar tuples
comparing complex attributes over incomplete databases. SOLID implements
our CorDiS method to compute the correlation among metric spaces defined over
complex attributes, and generates compatibility factors to yield more importance
to the most correlated attributes. Experiments show that SOLID is three orders
of magnitude better than the baseline approach when querying over incomplete
tuples, being up to 7.3% better than the Decision Tree Imputation method, on
average. In datasets with large amounts of missing values, SOLID reduced the
error by 26.3% and 16.4% compared with the baseline approach and the closest
competitor, respectively. Also, SOLID was faster than all competitors.

Paper Outline. The remaining sections of this work are organized as follows:
Sect. 2 describes the background and related work. Section 3 proposes the SOLID
method. Section 4 shows the experiments. Section 5 concludes this work.

2 Background and Related Work

Database Management Systems (DBMS) compare scalar data using identity and
order operators, but those are not adequate to compare complex data. Similarity-
based comparisons of complex data rely on the data representation obtained by
Feature Extraction Methods (FEM), and object comparisons carried out
by Distance Functions (δ). Table 1 shows the symbols employed in this work.
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FEMs extract discriminative features from complex data, often represented
by numerical feature vectors. There are several FEMs dedicated to images, such
as the ones defined by the MPEG-7 [9]. Distance functions (δ) measure the
similarity between pairs of feature vectors, and output a real value R+, where
the smaller the distance, the greater the similarity. Euclidean and Manhattan
are examples of widely used distance functions [11]. A distance function is called
a metric when it meets the properties of metric spaces, following Definition 1.

Definition 1. Metric Space (M). A Metric Space is a pair M = 〈S, δ〉, where
S is the domain of complex data and δ : Rm × R

m is a distance function. A δ
is a metric if, for any complex objects si, sj , sk ∈ S, it meets the following prop-
erties: (i) Non-Negativity: δ(si, sj) � 0; (ii) Identity of the indiscernible:
δ(si, si) = 0 ⇒ si = sj; (iii) Symmetry: δ(si, sj) = δ(sj , si); (iv) Triangular
Inequality: δ(si, sj) � δ(si, sk) + δ(sk, sj).

Table 1. Main symbols employed in this work.

Symbol Description Symbol Description

M Metric space S Domain of complex objects

M Set of metric spaces d Dimensionality of D
δ Distance function ω Compatibility factor of a metric space

si Complex attribute Ω Set of compatibility factors

φ Correlation function ψ SOLID’s distance function

S Feature vector set γ Threshold for the compatibility factors

D Dataset Υ Set of consolidated compatibility factors

n Cardinality of D 	 Consolidated compatibility factors

Let D be a dataset of complex objects S ∈ S, and δ be a metric distance func-
tion. The Range and k-Nearest Neighbor are the most employed similarity
queries. Let sq and si be two complex attributes in domain S, where sq is the
query center. A Range Query (Rq) retrieves every element si ∈ S whose similar-
ity to sq is less or equal than a similarity threshold ξ, that is δ(sq, sj) � ξ. Given
an amount k of objects and a query center sq, a k -NN Query (Knnq) retrieves
the k objects si ∈ S most similar to sq measured by δ.

Traditional distance functions cannot measure the similarity between incom-
plete complex objects, drastically reducing both the available data and the effi-
ciency of similarity queries. Many existing methods treat incompleteness based
on data deletions or imputation [5]. The Mean Imputation is the simplest app-
roach, which infers an average value of the available attributes in a tuple. Regres-
sion Imputation involves incorporating knowledge, such as data correlation, for
inferring missing values [5]. The kNN Imputation searches for the k-nearest
neighbors to the missing value, computing and inserting the average of the can-
didates into the missing spot [2]. Imputation methods based on Decision Trees
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Imputation partition the data based on its correlation, looking for the best can-
didates for each partition to infer values [7]. However, imputation methods may
lead to biased results when it increases the rate of missing values [10].

3 The Proposed Method

SOLID (Search Over Correlated and Incomplete Data) allows similarity queries
over incomplete databases by taking advantage of highly correlated search spaces.
The method does not discard nor replace missing values. Instead, it weights
compatible metric spaces to give an approximation of the missing complex object
location in each search space. We describe each step of SOLID next.

Defining Metric Spaces. SOLID extracts features from the d complex
attributes in a dataset D with the chosen FEM. SOLID defines a metric space
Mi for every complex attribute, i.e every image, using the corresponding dis-
tance function. Let M = M1,M2, · · · ,Md be the set d of metric spaces defined
over the attributes of D. We represent the ith metric space defined over D as
Mi = 〈S, δ〉 ∈ M, 1 ≤ i ≤ d, and δ is the corresponding distance function.

Measuring the Correlation. SOLID implements CorDiS (Algorithm 1) to map
the correlation between pairs of metric spaces, working with a sample D′ from D
and the set of extracted features (Line 2). Function GetSetOfAverageDistances
computes the average distances (Lines 3–4), comparing each object to every
other element in the feature set (Lines 8–10), and returning the set of mean
distances of each element in the feature set (Lines 7–12). After obtaining the

Algorithm 1: CorDiS (Correlation of Distance Spaces)
Input : A pair of metric spaces (< Mi,Mj >), the distance function (δ), the

correlation function (φ)
Output: The correlation map Fcorr

1 begin
// Generate sets of average distances Ai and Aj

2 Let Si and Sj be the feature vector sets from Mi and Mj ;
3 Ai ← GetSetOfAverageDistances(Si, δ);
4 Aj ← GetSetOfAverageDistances(Sj , δ);
5 Fcorr ← φ(Ai,Aj); // Compute the correlation

6 return Fcorr;

7 Function GetSetOfAverageDistances(S, δ)
8 foreach object si in S do
9 foreach object sj in S do

10 Di ← Di ∪ [ δ(si, sj) ]; // Get distances to si

11 A ← A ∪ MEAN(Di); // Compute the mean distance

12 return A;
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distance of every object to all elements in D′, CorDiS computes and returns the
correlation Fcorr between both metric spaces (Line 5–6).

Generating Compatibility Factors. SOLID’s mapping step obtains a cor-
relation matrix relating all metric spaces. SOLID normalizes each row of the
matrix’s correlation values, which corresponds to the compatibility factors of
that attribute. The compatibility factor is given by Definition 2.

Definition 2. Compatibility Factor (ω). Let a and b be two attributes of D,
such that 0 ≤ a, b ≤ d. The compatibility factor ωa,b is the complement to one of
the normalized correlation considering the metric spaces < Ma,Mb >.

Accordingly, Ωa is the set of compatibility factors of attribute a over each
attribute from D, and ωa,b ∈ Ωa is the compatibility factor of a over attribute
b. A minimum threshold parameter γ allows removing low correlation values.

Querying over Incomplete Tuples. To compare a pair of tuples < tq, ti >,
1 ≤ i ≤ n, SOLID considers that zero or more attributes in each tuple may have
missing values. Algorithm 2 looks for the attributes with missing values in each
tuple. It accumulates the compatibility factors ω corresponding to the missing
dimensions in ti (Lines 3 to 5), adding it to the consolidated set of factors Υi.
The algorithm returns the set of consolidated compatibility values Υi of ti (Line
7). Let v be a feature vector. SOLID compares each pair of tuples using the
SOLID-dist distance ψ, according to Definition 3.

Definition 3. SOLID-dist (ψ). Let < va,q, va,i > be a pair of feature vectors
from attribute a, 1 ≤ a ≤ d. Let Υq, Υi be the sets of consolidated compatibility
factors of tq and ti, respectively. The distance between < tq, ti > is given by:

ψ(tq, ti) =
d∑

a=1

	q,a × 	i,a × δ(va,q, va,i), (1)

where 	q,a ∈ Υq and 	i,a ∈ Υi are the consolidated compatibility factors for a.

Algorithm 2: SOLID (Consolidated Compatibility Factors of a Tuple)
Input : ti: A tuple
Output: Υ : The set of consolidated compatibility factors of ti.

1 begin
2 Let Pi be the set of missing attributes in ti;
3 foreach attribute a in the ti do
4 foreach missing attribute p in pi do
5 Wp[a]+ = ωa,p;

6 Υi.add(Wp[a]);

7 return Υi;
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4 Experimental Analysis

Material and Methods. We employed the four image datasets described in
Table 2, composed of tuples of complex attributes, ensuring alignment of fea-
tures when comparing tuples. We explored the Euclidean distance and the FEMs
Local Binary Pattern, Edge Histogram, Haralick, Zernike, Color Layout, Scal-
able Color, Color Structure, Texture Spectrum, and Color Histogram. CorDiS
ran over ten random combinations of FEMs, and choose those with the highest
correlation sum as the features of every complex attribute. We employed the
Pearson coefficient, since it presented higher correlation values than the Spear-
man coefficient. The source code, datasets and the detailed description of features
are provided in the Git repository github.com/lsrusp/SOLID-Method.

Our competitors are: Deletion (baseline), which removes missing attributes;
Mean Imputation; kNN Imputation [2]; kNN-Regression Imputation [5]; and
the Decision-Tree Imputation [7]. We split the datasets into train and test:
70%/30% split proportion for DS-LibraGestures, and 50%/50% for the remaining
datasets. The correlation threshold was γ = 0.5 for all experiments.

Quantitative Analysis. First, we analyzed how well SOLID retrieves informa-
tion from complete datasets using a query tuple with missing values. We ran-
domly placed missing values into the query center, with 10%, 20%, 30%, 40%,
and 50% missing rates. We measured the query quality using the Jaccard coef-
ficient between the Knnq results posed over the complete tuples and the results
of each approach. Figure 2 shows the results for different k values, where the
higher the values, the better. SOLID presented the best results in most cases,
being up to 3 orders of magnitude better than the Deletion approach, and up to
7.3% better than the Decision Tree Imputation, on average. SOLID is better and
faster at reducing the missingness impact when performing queries.

Table 2. Datasets used in the experiments

Dataset Imgs n d Description

DS-MSTSpine [8] 540 54 10 Lumbar muscles and vertebral bodies MRIs

DS-HandPD [6] 594 66 9 Handwritten image to detect Parkinsons diseases

DS-LibraGestures [1] 4800 120 40 Images of hand gestures

DS-Letters a 15340 295 52 Font types of alphabetic letters
a https://www.kaggle.com/killen/bw-font-typefaces?select=BRLNSR

Next, we evaluated whether SOLID reduces the error of similarity queries
posed over databases containing high amounts of missing data. We randomly
inserted missing values into the database, with 10%, 20%, 30%, 40%, and 50%
of missing rates. The error was computed as one minus the Jaccard coefficient
between query results over the complete and the incomplete databases for each
approach. Figure 3 shows the results, where the lower the values, the better.

https://www.kaggle.com/killen/bw-font-typefaces?select=BRLNSR
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Fig. 2. Incomplete query tuple (the higher, the better): SOLID ties or outperforms
the competitors in most experiments, for every percentage of missing values.

Fig. 3. Incomplete databases (the lower the error, the better): SOLID presented
the lowest error rates in most experiments.
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SOLID reduced the error in most of the analyzed scenarios because it takes advan-
tage of correlated attributes given by the metric spaces’ compatibility factors.
Our method outperformed its competitors for high values of k, reducing the error
by 26.3% on average when compared to the Deletion approach, and being 16.4%
more precise than the Decision Tree Imputation.

Performance Analysis. We computed the average time of 100 runs of each
approach over a dataset with 15% of missing values. Figure 4 shows the execution
time results of Knnq with k = 15, with a 50/50 train and test division. The fastest
approach was the Deletion, which drops the objects with missing values. SOLID
was the fastest approach among the remaining ones. It was up to 30.8 times
faster than its direct competitor, the Decision Tree Imputation.

DS-MSTSpine DS-HandPD DS-LibraGestures DS-Letters
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Fig. 4. Execution time of all approaches, for each dataset.

5 Conclusions

In this work, we proposed the SOLID approach to answer similarity queries over
complex attributes with missing values, without discarding elements. SOLID com-
putes the correlation of metric spaces by implementing our CorDiS correlation
method. The approach gives higher importance to attributes that more likely
present correlated spatial distribution of data concerning the missing attribute.
Experimental results over four representative datasets show that SOLID improved
the similarity search quality by 7.3% regarding its best competitor. Even in
datasets with missing rates as high as 50%, SOLID reduced the error by up to
16.4%, and was up to 30.8 times faster than other approaches. Thus, SOLID has
proved to be well-fitted for similarity search over incomplete data.
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Abstract. This paper is about similarity between objects that can be
represented as points in metric measure spaces. A metric measure space
is a metric space that is also equipped with a measure. For example,
a network with distances between its nodes and weights assigned to its
nodes is a metric measure space. Given points x and y in different metric
measure spaces or in the same space, how similar are they? A well known
approach is to consider x and y similar if their neighborhoods are similar.
For metric measure spaces, similarity between neighborhoods is well cap-
tured by the Gromov-Hausdorff-Prokhorov distance, but it is NP-hard to
compute this distance even in quite simple cases. We propose a tractable
alternative: the radial distribution distance between the neighborhoods of
x and y. The similarity measure based on the radial distribution distance
is coarser than the similarity based on the Gromov-Hausdorff-Prokhorov
distance but much easier to compute.

Keywords: Metric measure space · Gromov-Hausdorff-Prokhorov
distance · Radial distribution

1 Introduction

A metric measure space is a metric space that is also equipped with a measure.
Such spaces play an important role in geometry, especially after Gromov’s works
[8], and they have proven to be useful in other areas of mathematics, for example,
in optimization theory [2] and in probability theory [4]. Metric measure spaces
are also used to model real-world systems and processes, for example, in image
recognition [11], in genetics [15], in machine learning [3], etc.

A natural example of a metric measure space is given by a connected graph
G in which all vertices and edges are labeled with numbers: the number assigned
to a vertex is its “weight” and the number assigned to an edge is its “length”.
The corresponding metric space is formed by the set of all vertices with the
shortest path metric in G: the distance between two vertices is the length of a
shortest path between them. A measure on this space is defined on all subsets
of the vertices: the measure of a subset A is the total weight of all vertices of A.
The weights and lengths can be interpreted in various ways. For example, if G is
a communication network, then the weight of a vertex can describe the traffic at
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-60936-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60936-8_14&domain=pdf
https://doi.org/10.1007/978-3-030-60936-8_14


178 E. Dantsin and A. Wolpert

this vertex. Another example: if G is a propagation network in epidemic models,
then the weight can be the number of infected individuals.

Consider objects that can be modeled by points in metric measure spaces:
suppose one object is represented by a point x in a space X and another object
is represented by a point y in a space Y. How similar are these objects? How can
we measure similarity between them if the only information we have is the pairs
(X , x) and (Y, y)? Such pairs are called rooted metric measure spaces or rooted
mm spaces for short, see Sect. 2 for precise definitions. In this paper we address
the question of similarity between objects modeled by rooted mm spaces.

The most obvious type of similarity between (X , x) and (Y, y) is an isomor-
phism between them, which means that there is a bijection from X to Y that
maps x to y and preserves the metric and measure. This is an “all or noth-
ing” measure of similarity: any two rooted mm spaces are either similar or not.
Clearly, this measure is not a good solution for applications because real-world
objects, like social, biological, or technological networks, are very rarely, if ever,
isomorphic to one another.

Can we improve the isomorphism-based approach to make it more flexible?
How could we measure to what extent (X , x) and (Y, y) look isomorphic? The
concept of “approximate isomorphism” between rooted mm spaces can be imple-
mented using the idea proposed by Edwards [6] and Gromov [7]. To compare
(X , x) and (Y, y), we embed X and Y into another metric measure space Z and
compare their images in Z. More exactly, we take embeddings f and g that
preserve the metric and measure and compare the images f(X ) and g(Y) in Z.
We consider (X , x) and (Y, y) similar if their images are close to each other in
the following sense:

– the point f(x) is close to the point g(y) in the space Z;
– the set of points of f(X ) is close to the set of points of g(Y) in the space Z;
– the measures induced by f and g in Z are close to one another.

The second condition is formalized using the Hausdorff distance and the third
condition is formalized using the Lévy-Prokhorov distance, see Sect. 2. Taking
the infimum over all possible spaces Z and embeddings f and g, we obtain a
distance function on rooted mm spaces called the Gromov-Hausdorff-Prokhorov
distance (the GHP distance for short).

Both the isomorphism-based similarity measure and the GHP-based similar-
ity measure have the following disadvantage for applications. Most real-world
systems have the distance decay effect, also called the gravity model, which is
often expressed as “all things are related, but near things are more related than
far things”. For example, when comparing points x and y in metric spaces, the
role of their local neighborhoods is more important than the role of points that
are far away from x and y. However, neither the isomorphism approach nor the
GHP distance capture this effect: all points are considered equally important,
independently of their distance from x and y.

This disadvantage is eliminated using the distance defined in [1]. Loosely
speaking, this distance between two rooted mm spaces combines the GHP dis-
tance with an exponential decay: a point is taken into account with a weight
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that exponentially decreases with increasing its distance from the root. We call
it the neighborhood-based distance and describe it in Sect. 2.

Intuitively, the neighborhood-based distance is the best approach to capture
similarity between points in metric measure spaces. To put this distance to
work in practical applications, we need to compute it efficiently. However, it is
NP-hard to compute the neighborhood-based distance, which follows from [12].
Moreover, under standard complexity-theoretic assumptions, it is not possible
to approximate it with a reasonable factor in polynomial time [16].

In Sect. 3, we propose a tractable alternative to the neighborhood-based dis-
tance: namely, we define the radial distribution distance between rooted mm
spaces. This distance can be viewed as a coarser variant of the neighborhood-
based distance or, more exactly, as a lower bound on the neighborhood-based
distance. The advantage of the radial distribution distance is that it can be
computed efficiently: a straightforward algorithm that computes this distance
between finite rooted mm spaces takes time quasilinear in the total number of
points.

What is the idea of radial distribution distance? First, we view a point x in
a metric measure space X as the center of a ball of radius r around x. This ball
has its own measure (its “mass”) and we consider how such masses change with
increasing r. Second, we consider this change of masses with an exponential
distance decay, which means that the “contribution” of points exponentially
decreases with increasing their distance from x. The radial distribution distance
between (X , x) and (Y, y) is basically the distance between two functions that
describe the change of masses around x in X and around y in Y.

2 Neighborhood-Based Distance

A metric measure space is usually defined as a complete separable metric space
with a Borel measure on this metric space. However, in this paper, we deal
with only compact metric spaces and finite measures. Therefore, to simplify
terminology, we use the term “metric measure space” to refer to this restricted
case.

Definition 1 (mm space). Let X be a set and d be a metric on X such that
(X, d) is a compact metric space. Let μ be a Borel measure on this metric space.
The triplet (X, d, μ) is called a metric measure space (an mm space for short).

We use the following notation for balls in metric spaces: for every number
r ∈ [0,∞) and every point x ∈ X,

– Br(x) = {y ∈ X | d(x, y) < r} is an open ball of radius r around x;
– Br(x) = {y ∈ X | d(x, y) ≤ r} is a closed ball of radius r around x.

For every number r > 0 and every nonempty subset S ⊆ X, the r-neighborhood
of S, denoted by Nr(S), is the union of open balls of radius r around the points
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of S. Let S1 and S2 be nonempty subsets of X. The Hausdorff distance between
them is defined by

dH(S1, S2) = inf{r ∈ [0,∞) | S1 ⊆ Nr(S2) and S2 ⊆ Nr(S1)}.

Given two subsets of points in a metric space, the Hausdorff distance shows
how close they are. Given two measures on a metric space, how close are they?
This question is answered by the Lévy-Prokhorov distance, a measure-theoretic
analogue of the Hausdorff distance, defined as follows. Let μ1 and μ2 be finite
Borel measures on a metric space (X, d). Let B be the Borel σ-algebra on (X, d).
The Lévy-Prokhorov distance (sometimes called the Prokhorov distance) between
these measures, denoted by π, is given by

π(μ1, μ2) = inf{r ∈ [0,∞) | μ1(S) ≤ μ2(Nr(S)) + r and
μ2(S) ≤ μ1(Nr(S)) + r for all S ∈ B}.

Measuring similarity between points in different mm spaces or in the same
space, it is convenient to deal with rooted mm spaces (sometimes called pointed
mm spaces).

Definition 2 (rooted mm space). A rooted mm space is a pair (X , o) where
X is an mm space and o is a designated point in X called the origin of X .

A general approach to comparing rooted mm spaces was outlined in Sect. 1.
This approach combines the idea of Gromov-Hausdorff distance with the idea of
Lévy-Prokhorov distance. The combination was introduced in [13] and has slight
variations. The following definition is the version from [9].

Definition 3 (GHP distance). Let (X1, o1) and (X2, o2) be rooted mm spaces
with X1 = (X1, d1, μ1) and X2 = (X2, d2, μ2). The Gromov-Hausdorff-Prokhorov
distance (the GHP distance for short), denoted dGHP , is defined by

dGHP ((X1, o1), (X2, o2)) =
infY,f1,f2{d(o1, o2) + dH(f1(X1), f2(X2)) + π

(
μ1 ◦ f−1

1 , μ2 ◦ f−1
2

)}
where the infimum is taken over all mm spaces Y and all measurable isometries
f1 : X1 → Y and f2 : X2 → Y. The distances d, dH , and π denote respectively
the distance, the Hausdorff distance, and the Lévy-Prokhorov distance in Y. The
measures μ1 ◦ f−1

1 and μ2 ◦ f−1
2 are the push-forward measures.

As noted in Sect. 1, the GHP distance has the disadvantage that dGHP does
not capture the distance decay effect occurring in most real-world systems. This
disadvantage is eliminated in the distance defined in [1]. We define a simplified
version of this distance below and call it neighborhood-based distance. Its idea can
be informally described as follows. When comparing rooted mm spaces (X1, o1)
and (X2, o2), we consider the restrictions of X1 and X2 to closed balls of radius
r around o1 and o2. For every radius r, we consider the GHP distance between
the corresponding restrictions and sum up these distances over all values of r
with an exponential decrease when r increases.
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Let B be a closed ball in an mm space X = (X, d, μ). This ball, along with
the metric and measure obtained by restricting d and μ to B, form the mm space
called the restriction of X to B.

Definition 4 (neighborhood-based distance). Let (X1, o1) and (X2, o2) be
rooted mm spaces. For every number r ∈ [0,∞), let δr denote the GHP distance
between the restriction of X1 to Br(o1) and the restriction of X2 to Br(o2). The
neighborhood-based distance, denoted dnb, is defined by

dnb((X1, o1), (X2, o2)) =
∫ ∞

0

e−r δr dr

It follows from the definition that

dnb((X1, o1), (X2, o2)) = 0

for isomorphic (X1, o1) and (X2, o2) even if they are different. Therefore, dnb is
not a metric but, as shown in [1], dnb is a pseudometric.

3 Radial Distribution Distance

Can we compute the neighborhood-based distance dnb efficiently? Note that an
efficient algorithm for computing dnb could also be used to compute the Gromov-
Hausdorff distance efficiently. However, as shown in [10,12], it is NP-hard to
compute the Gromov-Hausdorff distance for finite metric spaces (see Proposi-
tion 3.16 in [12]). Moreover, under standard complexity-theoretic assumptions,
there is no polynomial-time approximation algorithm with a reasonable factor
for computing this distance [16].

In this section, we define another distance between rooted mm spaces called
the radial distribution distance and denoted by drd. On the one hand, drd is
coarser than dnb, more exactly, drd is a lower bound on dnb. On the other
hand, drd can be computed efficiently: computing the radial distribution distance
between finite rooted mm spaces takes time quasilinear in the total number of
points.

Definition and Properties. Consider rooted mm spaces (X1, o1) and (X2, o2)
where X1 = (X1, d1, μ1) and X2 = (X2, d2, μ2). To define the radial distribu-
tion distance between them, we first define the following functions m1 and m2

from [0,∞) to itself: for every number r ∈ [0,∞),

m1(r) = μ1

(
Br(o1)

)
= μ1 ({x ∈ X1 | d1(x, o1) ≤ r})

m2(r) = μ2

(
Br(o2)

)
= μ2 ({x ∈ X2 | d2(x, o2) ≤ r})

That is, m1(r) is the measure (we could call it “mass” or “weight”) of the ball
of radius r around the origin o1 and, similarly, for m2(r). The functions are non-
decreasing and bounded. Also, m1 and m2 are càdlàg functions, i.e., they are
right continuous with left limits, see Lemma 2.8 in [1]. Therefore, the distance
function in the definition below is well defined.
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Definition 5 (radial distribution distance). Let (X1, o1) and (X2, o2) be
rooted mm spaces. The radial distribution distance, denoted drd, is defined by

drd((X1, o1), (X2, o2)) =
∫ ∞

0

e−r |m1(r) − m2(r)| dr

We use the term “radial distribution distance” keeping in mind radial distri-
bution functions from physics where they are used to measure the probability
of finding a particle at distance r from a certain “origin” particle. In the set-
ting of metric measure spaces, a radial distribution function describes how the
total “mass” (“weight”) of points at distance r from a center x changes when
r increases. The radial distribution distance is basically a combination of the
L1 distance between the cumulative versions of the radial distribution functions
and an exponential distance decay. Theorems 1 and 2 show basic properties of
the radial distribution distance.

Theorem 1. The function drd is a pseudometric on the set of rooted mm spaces.

Proof. It is obvious that drd is a distance function. The triangle inequality for
drd can be seen from the following two facts:

– The functions e−rm1(r) and e−rm2(r) are measurable functions on [0,∞)
such that the integrals

∫ ∞
0

e−r m1(r) dx and
∫ ∞
0

e−r m2(r) dx are finite.
– The distance function

d(f1, f2) =
∫ ∞

0

|f1(x) − f2(x)| dx

is the L1 metric on the set of measurable functions f such that the integral∫ ∞
0

|f(x)| dx is finite.

�	
Theorem 2. For all rooted mm spaces (X1, o1) and (X2, o2),

drd((X1, o1), (X2, o2)) ≤ dnb((X1, o1), (X2, o2)). (1)

Proof. Let Br(o1), Br(o2), and δr be the same as in Definition 4. Let μ1 and
μ2 be the measures in X1 and X2 respectively. We prove the following inequality
that implies claim (1):

|μ1(Br(o1)) − μ2(Br(o2))| ≤ δr. (2)

By the definition of the GHP distance, we have

δr ≥ π(μ1 ◦ f−1
1 , μ2 ◦ f−1

2 ) (3)

where f1 and f2 are arbitrary measurable isometries of the corresponding restric-
tions to an arbitrary mm space Y and π is the Lévy-Prokhorov distance in Y.
By the definition of π,

π(μ1 ◦ f−1
1 , μ2 ◦ f−1

2 ) = γ (4)
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where γ is the infimum of all ε ≥ 0 such that
{

μ1

(
Br(o1)

) ≤ μ2

(
Br+ε(o2)

)
+ ε

μ2

(
Br(o2)

) ≤ μ1

(
Br+ε(o1)

)
+ ε

Both inequalities above hold if we take

ε = |μ1(Br(o1)) − μ2(Br(o2))|
and, therefore, we have

γ ≥ |μ1(Br(o1)) − μ2(Br(o2))|. (5)

Now, combining (3)–(5), we obtain inequality (2). �	
The theorem above shows that drd is a lower bound on dnb. This bound is

strict, which can be seen from the following simple example. Consider a rooted
mm space on a set of three points: {a, b, c} where a is the origin. The distance
between any two points is 1. The measure assigned to each point is 1. Consider
another rooted mm space that differs from the first one in only the measure of
b and c: in the second space, the measure of b is 0.5 and the measure of c is 1.5.
It is easy to see that the radial distribution distance between these spaces is 0,
while the neighborhood distance is not zero.

Computing the Radial Distribution Distance. There is a straightforward algo-
rithm that computes the radial distribution distance between finite rooted mm
spaces efficiently, namely taking O(n log n) steps where n is the number of points
in the input spaces. However, due to space limitation for this paper, we have to
omit its description here.

Extension for Feature Vectors. The radial distribution distance drd can be used
to measure similarity between points in a metric space if points are described
with a single feature: a value of this feature for a given point is viewed as the
point’s “weight”. However, it is more typical that a point is described by a feature
vector rather than a single feature. Each component of the vector corresponds to
a measure on the metric space. For example, consider a recommender system for
movies that uses item-item collaborative filtering. A metric on movies is based
on the similarity between them calculated using people’s ratings. In addition
to the metric, each movie is described by a feature vector that can include, for
example, the number of reviews, budget, box office, etc. [14].

How can we compare points in a metric space if points are described using
feature vectors? Suppose a feature vector consists of k components that corre-
spond to measures μ1, . . . , μk. Each measure μi determines the radial distribution
distance d

(i)
rd and we can consider their sum

d∗
rd = d

(1)
rd + . . . + d

(k)
rd . (6)

The value d∗
rd((X , x), (Y, y)) essentially shows the distance between the neigh-

borhoods of x and y if we compare points by their feature vectors. Note that
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the sum of pseudometrics is also a pseudometric. Also note that instead of the
sum in (6), we could take any other norm, for example, the Euclidean norm or
the maximum.
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2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows. In: Metric Spaces and in the
Space of Probability Measures. Lectures in Mathematics. Birkhäuser (2005)

3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: Proceedings of the 34th International Conference on Machine Learning, ICML
2017, pp. 214–223 (2017)
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Abstract. The demand for searching, querying multimedia data such
as image, video and audio is omnipresent, how to effectively access data
for various applications is a critical task. Nevertheless, these data usually
are encoded as multi-dimensional arrays, or Tensor, and traditional data
mining techniques might be limited due to the curse of dimensionality.
Tensor decomposition is proposed to alleviate this issue, commonly used
tensor decomposition algorithms include CP-decomposition (which seeks
a diagonal core) and Tucker-decomposition (which seeks a dense core).
Naturally, Tucker maintains more information, but due to the denseness
of the core, it also is subject to exponential memory growth with the
number of tensor modes. Tensor train (TT ) decomposition addresses
this problem by seeking a sequence of three-mode cores: but unfortu-
nately, currently, there are no guidelines to select the decomposition
sequence. In this paper, we propose a GTT method for guiding the ten-
sor train in selecting the decomposition sequence. GTT leverages the
data characteristics (including number of modes, length of the individ-
ual modes, density, distribution of mutual information, and distribution
of entropy) as well as the target decomposition rank to pick a decom-
position order that will preserve information. Experiments with various
data sets demonstrate that GTT effectively guides the TT-decomposition
process towards decomposition sequences that better preserve accuracy.

Keywords: Low-rank embedding · Tensor train decomposition

1 Introduction

Tensors are commonly used to represent multi-dimensional sets and tensor
decomposition operations, such as CP [5,10] and Tucker [24] form the basis of
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Fig. 1. Effect of the decomposition order on the accuracy for a 3-mode tensor from
the Wisconsin Diagnostic Breast Cancer data [9]: ID(modeA), Diagnosis(modeB) and
Radius(modeC). See Sect. 6 for more details

many dimensionality reduction techniques for multi-modal data sets to support
similarity search and retrieval [4,11]. In the Tucker-decomposition, for example,
given a tensor with d modes, each entry in the resulting r1 × r2 × . . . × rd dense
core encodes the strength of the d-way relationship among the groups consisting
of elements of the individual modes.

Tucker decomposition has been shown to be highly effective in many appli-
cations [4,11,18,25], but due to the denseness of the core, it also is subject to
exponential memory growth with the number of tensor modes. The tensor train
(TT ) decomposition addresses this problem, by seeking a sequence of 3-mode
cores [23]: while, collectively, this sequence (or “train”) of cores capture the
high-modal information, they require fewer resources. Consequently, the TT-
decomposition has been used in various applications of similarity search and
retrieval, including deep learning [6,21], crowdsourcing [16], and recommenda-
tion systems [22].

1.1 Impact of the Decomposition Order

One critical challenge with the TT-decomposition, however, is the fact that find-
ing an optimal TT representation is non-trivial [27]. Figure 1 illustrates this
issue: given a 3-mode (modeA: ID, modeB : Diagnosis and modeC : Radius) tensor
from the Wisconsin Diagnostic Breast Cancer data set in UCI Machine Learning
Repository [9]; the figure compares the relative Frobrenius norm difference (ratio
of the norm of the difference tensor to the norm of the original tensor) between
the input tensor and the reconstructed tensor for different TT-decomposition
orders. As the figure shows, the ordering of the TT-decomposition has a signif-
icant impact on the ability of the final representation in preserving the original
information: in this case, the order ACB is (0.77 − 1.02)/1.02 = 24.5% better
than the closest alternative.

1.2 Our Contributions

In this paper, we propose a novel approach for guiding the tensor train (GTT)
in selecting the mode sequence for tensor train decompositions:
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Fig. 2. TT-decomposition for converting a 3-mode tensor X l1×l2×l3

– we identify significant relationships among various data characteristics and
the accuracies of different tensor train decomposition orders;

– we propose four order selection strategies, (a) aggregate mutual information
(AMI), (b) path mutual information (PMI), (c) inverse entropy (IE), and (d)
number of parameters (NP), for tensor train decomposition; and

– we show that good tensor train orders can be selected through a hybrid (HYB)
strategy that takes into account multiple characteristics of the data.

Experiments reported in Sect. 6 show that the proposed HYB strategy provides
an effective order selection strategy, without any additional decomposition time
overhead.

2 Related Work

Tensor decomposition has been shown to be effective in multi-aspect data anal-
ysis and similarity search by capturing high-order structure in high-dimensional
data [4,11,18]. However, a major challenge is its high computational complex-
ity and large memory overhead [12,14,15]. Tensor-train decomposition [23]
provides a memory-saving representation called TT-format, with linear space
complexity (see Fig. 2). TNrSVD [2] adapts the randomized SVD to imple-
ment TT-decomposition, and FastTT [19] computes the TT-decomposition of
a sparse tensor by its sparsity. However, as discussed in the introduction, TT-
decomposition involves strictly sequential multi-linear products over latent cores
and this makes it difficult to search for best TT representation for a given ten-
sor. [20] and [27] extended TT-decomposition by adding auxiliary variables to
obtain an alternative data structure, Tensor Ring (TR), which provides circu-
lar dimensional permutation invariance – the sequence can be shifted circularly
without changing the result [1], however, it does not eliminate the need to pick
a (circularly-arranged) permutation of modes.
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In this paper, we focus on the problem of selecting a tensor decomposition
order, which is superficially related to feature ordering and feature selection [3,
17,26], which search for the most relevant attributes of the data set (for a given
application) to reduce the dimensionality. Entropy, for example, tends to be
low for data that contain tight clusters [7,8]. Various other data characteristics,
such as variance, mutual information, have been used for selecting the order of
decisions in supervised machine learning, such as decision trees [4].

Table 1. Notations used in the paper

Description

X A tensor

ρX Density of tensor X
X(i) A mode-i unfolding matrix of a tensor X
li Length of mode i in a tensor

mi The mode i in a tensor

ri TT-rank of mode i

rmax Given maximum TT-rank

X A discrete random variable with possible values {x1, . . . , xn}
U Left factor matrix

S Singular matrix

V Right factor matrix

Gi 3-mode core for mode i of TT-decomposition

Hi Shannon entropy of random variable for mode i

Hi|j Conditional entropy for mode i given mode j

H(i,j) Averaged conditional entropy for Hi|j and Hj|i
MI(i,j) Mutual information between mode i and mode j

Algorithm 1. TT-SVD (adapted from [23])
Input:
A d-mode tensor X ∈ R

l1×l2×···×ld ; a target tt-rank, r; a permutation, Π
Output:
TT-format with TT-cores G1, G2, . . . Gd.
• numel(C) : number of elements in C.
• reshape(A, [d1, . . . , dk]) : reshape a tensor A into shape d1 × d2 × · · · × dk .
• min(a, b) : return a if a < b, else return b.

1: procedure TT-SVD(X , r, Π)
2: Initialize r0 = rd = 1, C = X .
3: for k ← 1 to d − 1 do

4: C ← reshape(C, [rk−1 × lπk
,

numel(C)
rk−1×lπk

]).

5: U, S, V = SV D(C, rk = min(rmax, lπk
)).

6: Gk ← reshape(U, [rk−1, lπk
, rk]).

7: C ← SV T .
8: end for
9: Gd ← C.
10: return TT-format with TT-cores G1, . . . , Gd.
11: end procedure
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3 Preliminaries

Table 1 summarizes the key notations. Intuitively, the tensor model maps a
schema with d attributes to a d -modal array (where each potential tuple is
a tensor cell). TT-decomposition [23] is obtained by applying a sequence of
singular value decompositions (SVD) to approximate the original tensor: given
(i) an input tensor, X ∈ R

l1×l2×···×ld , (ii) a permutation, Π = 〈π1, π2, . . . , πd〉,
of modes, and (iii) a sequence of decomposition ranks, 〈r0, r1, r2, . . . , rd〉, where
r0 = rd = 1, the tensor train decomposition approximates the input tensor, X ,
with a sequence of tensor cores Gk ∈ R

rk−1×lπk
×rk , k = 1 . . . d, where X ≈ X̂Π =

G1 · G2 · · · · Gd. In this paper, without loss of generality, we will assume that all
ranks (except r0 = rd = 1) have the same value, r. Note that, while there are
several non-parametric decomposition techniques, such as [13] which can learn
also the appropriate rank, this is outside of the scope of this paper – most tensor
decomposition (in fact most latent semantic search) literature takes the number
of latent-semantics as input. Algorithm 1 presents the pseudocode and Fig. 2
visualizes the TT-SVD process for a 3-mode tensor X ∈ R

l1×l2×l3 .

Accuracy. To evaluate the accuracy, we use the Frobenius norm of the difference
between mode-i unfolding X(i), of the original tensor and mode-i unfolding X̂Π(i)

of the reconstructed tensor, X̂Π : Error(X̂Π ,X ) = ‖X(i) − X̂Π(i)‖Frob. This term
gives the same value independently of the mode i selected for matrix unfolding.

4 Problem Statement

In this paper, we aim to seek a decomposition sequence that minimizes the
reconstruction error:

Problem 1 (Tensor Train Decomposition Sequence Selection). Let us
be given a d-dimensional tensor, X ∈ R

l1×l2×···×ld , and a target decomposition
rank, r. Our goal is to find a permutation, Π = 〈π1, π2, . . . , πd〉, which minimizes
the approximation error; i.e., argminΠ∈P

(
Error(X̂Π ,X )

)
, where P denotes

the set of all possible d! permutations.

5 GTT: Guiding the Tensor Train

In this paper, we propose a novel approach to guide the tensor trains (GTT)
in selecting the decomposition sequence. GTT leverages the various characteris-
tics/statistics of the input data tensor (sparse or dense) to identify and recom-
mend a mode ordering for the TT-decomposition process.

5.1 Data Characteristics

In this subsection, we describe data characteristics, or features, relevant for tensor
train mode sequence selection. Note that these data characteristics are very
general and can be computed for any data set with categorical entries. We leave
the extension to non-categorical data to future work.
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Mode Length. Given a d-mode tensor, X ∈ R
l1×l2×···×ld , we compute the average

of the mode lengths, along with the absolute and relative standard deviations:

μlength(X ) = average(l1, l2, . . . , ld), (1)
σlength(X ) = stdev(l1, l2, . . . , ld), (2)
φlength(X ) = σlength/μlength. (3)

Intuitively, the larger the lengths of the modes, the larger will be the number of
parameters to be sought. The absolute and relative standard deviations indicate
how discriminative the mode length feature is in the given tensor.

Mode Entropy. Given a data set with d modes, let Xi be a discrete random
variable with possible values {x1, . . . , xni

} for mode i. Given this, we can com-
pute the Entropy for mode i as Hi = H(Xi) = −∑ni

j=1 pi(j) log2 pi(j), where
pi(j) represents the probability that xj occurs in the given mode i. Given the
entropy statistics for each mode of the tensor, we then compute the average and
standard deviation statistics as follows:

μentropy(X ) = average(H1, H2, . . . , Hd), (4)
σentropy(X ) = stdev(H1, H2, . . . , Hd), (5)
φentropy(X ) = σentropy/μentropy. (6)

Intuitively, entropy indicates how easy it is to have a low-rank approximation of
a tensor along a given mode and the absolute and relative standard deviations
indicate how discriminative the mode entropy feature is.

Tensor Density. Note that the above definition of entropy is meaningful espe-
cially for sparse tensors1. Therefore, we also compute a density statistic. Given
a d-mode tensor X ∈ R

l1×l2×···×ld , we compute the density ρ of X as

ρ(X ) =
# of nonzero values in X

l1 × l2 × · · · × ld
. (7)

Pairwise Average Conditional Entropy. The tensor train representation links
consecutive modes in the sequence; therefore, pairwise statistics may also be
needed. Given a data set with a d-mode tensor, let Xi be a discrete random
variable with possible values {x1, . . . , xni

} for mode i. The conditional entropy
of Xi given Xj is defined as:

Hi|j = H(Xi|Xj) =

nj∑

h=1

pj(xh)H(Xi|Xj = xh). (8)

We compute average pairwise conditional entropy as ACE(i,j) = Hi|j+Hj|i
2 . Given

this, we can then compute the average and standard statistics for ACE as follows:

μace(X ) = average(ACE(i,j) | i �= j), (9)
σace(X ) = stdev(ACE(i,j) | i �= j), (10)
φace(X ) = σace/μace. (11)

1 Alternative definitions of entropy may be used for dense tensors.
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Note that at each step of the TT-decomposition process, the algorithm creates a
core that links two modes of the tensor. Intuitively, the average pairwise entropy
(ACE) indicates the ease with which one can obtain the low-rank decomposition
of a pair of modes. The average and standard deviation statistics then indicate
how significant this feature is in the data and how discriminative the feature is
to help select pairs of modes to consider in sequence.

Pairwise Mutual Information. A related measure to conditional entropy is the
pairwise mutual information. Given a d-mode tensor, let Xi be a discrete random
variable with possible values {x1, . . . , xni

} for mode i. The mutual information
of Xi and Xj is defined as

MI(i,j) =
∑

x∈Xi

∑

y∈Xj

p(Xi,Xj)(x, y) log(
p(Xi,Xj)(x, y)

pXi(x)pXj (y)
) (12)

= Hi − Hi|j = Hj − Hj|i. (13)

where p(Xi,Xj) is the joint probability mass function of Xi and Xj . We then
compute that average and standard statistics for mutual information as follows:

μmi(X ) = average(MI(i,j) | i �= j), (14)
σmi(X ) = stdev(MI(i,j) | i �= j), (15)
φmi(X ) = σmi/μmi. (16)

Intuitively, mutual information can be used to measure how closely related the
rows and columns of a given matrix are; the more closely related two modes are,
the better are the chances to obtain a more accurate decomposition.

5.2 GTT-NP: Number of Parameters

Consider the TT-decomposition process depicted in Fig. 2. Here a 3-mode input
tensor X ∈ R

l1×l2×l3 is being converted into TT-format with a given decom-
position sequence (mode1 → mode2 → mode3) following Algorithm 1. In this
example, the total number of parameters that the two SVD algorithms involved
in the process have to solve for is the sum of the number of variables for U , SV T ,
U

′
and SV

′T , which is (r0 × l1 × r1) + (r1 × l2 × l3) + (r1 × l2 × r2) + (r2 × l3).
It is easy to generalize this to

NPΠ(X ) =

d−1∑

i=1

(
ri−1 × lπi × ri︸ ︷︷ ︸

U

+ ri ×
d∏

j=i+1

lπj

︸ ︷︷ ︸
SV T

)
.

GTT-NP computes the number, NPΠ(X ) of parameters for each possible per-
mutation, Π, and selects an order with the least number of parameters.

5.3 GTT-AMI and GTT-PMI: Mutual Information

Aggregate Mutual Information (AMI). Mutual information (Eq. 12) can be seen
as a measure of dependency between the two variables. GTT-AMI guides the
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TT-decomposition process based on the aggregate mutual information each mode
has with the rest of the modes in the tensor. More specifically, given a d-mode
tensor, the AMI value for mode i is computed as AMIi =

∑d
j=1 MI(i,j). A

potential strategy to guide the ordering of the modes in the TT-decomposition
would be to (a) first find the mode with the largest AMI value and (b) then
select this as the first mode. The process is, then, continued by (c) recomputing
the AMI values among the remaining modes, (d) finding the mode with the
largest (updated) AMI value among the remaining modes, and (e) selecting this
as the next mode in the sequence. The process is repeated until all the modes
have been ordered (when only two modes remain, the order is picked randomly).
Figure 3 illustrates an example for a 3-mode (Mode 1: m1, Mode 2: m2, Mode
3: m3) categorical data set. First, we compute AMI for each mode, which are:
AMI1 = 1.5 + 0.2 = 1.7, AMI2 = 1.5 + 0.7 = 2.1, and AMI3 = 0.2 + 0.7 = 0.9.
In this case, AMI strategy described above would select mode m2 as the first
mode followed by m1 or m3. Intuitively, this process ensures that, at each step of
the process, we consider and factorize a matrix where the rows have the highest
statistical dependency with the columns.

Fig. 3. GTT-AMI computation for a 3-mode tensor

Fig. 4. GTT-PMI computation for a 3-mode tensor

Path Mutual Information (PMI). Note that the above process, which first picks
the mode with the highest aggregate mutual information with the rest of the
modes, is likely to lead to orderings where the total mutual information along the
sequence is low: Figure 4 illustrates an example, where MI(1,2) = 1.5, MI(1,3) =
0.2, and MI(2,3) = 0.7. With a total MI of (1.5 + 0.7) = 2.2, the orders m1 →
m2 → m3 and m3 → m2 → m1 have the highest total mutual information.
In fact, surprisingly, permutations with a low total MI tend to lead to higher
accuracies than orders with a high total MI. This somewhat counter-intuitive
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result (which we experimentally validate in the “Experimental Results” section),
indicates that the accuracies of initial decomposition steps are very important
in obtaining high accuracy in TT-decompositions. We refer to this strategy as
path mutual information (GTT-PMI).

5.4 GTT-IE: (Inverse) Entropy

Remember that at the first step of the process, we matricize the given tensor X
and then apply SVD to obtain U and SV T matrices: here U represents clusters
along the first selected mode and SV T represents tensor X except the first mode.
In the following steps of the algorithm, we apply several other clustering steps on
the remaining matrix SV T . It is therefore important that the matrix SV T lends
itself to a good clustering. One indicator of this is the entropy: if SV T has high
entropy, it is likely that it will lead to better clusters. Since the overall entropy
in X is fixed, this implies that the matrix U should ideally have low entropy.

This leads to a third strategy, GTT-IE, which guides the TT-decomposition
process based on the (inverse) entropy of each mode: at each step the algorithm
selects the mode with the lowest entropy among the remaining modes. Again,
Fig. 5 depicts an example of GTT-IE, given a 3-mode (m1, m2, m3) categorical
data set, IE strategy computes the entropy for each mode (H1, H2, H3), and
then decides a TT-decomposition sequence base on entropy in ascending order.

Fig. 5. GTT-IE computation for a 3-mode tensor

5.5 GTT-HYB: Hybrid Strategy

In Table 3, we list the data sets we use in our experiments along with along
with the (non-hybrid) strategy with the best accuracy performance. As we see
in the table, none of the strategies lead to a universally accurate order. While
this is initially disappointing, the facts that different strategies work well for
different data sets and that, often, where one strategy fails to lead to an accurate
decomposition, another strategy excels, indicate that a hybrid strategy which
carefully switches between the different approaches can lead to a better accuracy
than any of the individual strategies.
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To show the feasibility of such a hybrid technique, for each strategy2, S, we
have considered the data characteristics described earlier Sect. 5.1 as features
and train a (linear) SVM classifier (with L1-regularization) that separates the
data sets for which the strategy provides better accuracies than the rest (i.e.,
strategy S vs. rest). In particular, for each scenario we consider the top-20% of
the tensor instances for which the given strategy returns the best results against
the lowest-20% of the tensor instances for which the given strategy returns the
worst results. Intuitively, the separator can be interpreted as a feature selector
that describes the data characteristics that best matches the given strategy. For
each decomposition scenario, we then select the strategy that is recommended
collectively by the trained separators; for any scenario for which the classifiers
recommend more than one strategy, we pick the strategy that has the largest
margin from the corresponding separator.

5.6 Complexity of GTT Decomposition

Let X be a d-mode input tensor and t = |X | indicates the number of non-zero
entries in data set. Let al.so ni denote the size of mode di and n denote the
average mode size.

Guidance Step. The time complexities for the various strategies are as follows:

– GTT-AMI makes a pass over t data and for each it computes its contribution
to the mutual information among d(d−1)

2 mode pairs; therefore its cost is

O
(
t × d(d−1)

2

)
.

– GTT-PMI also computes mutual information for all pairs of modes, but then
it further computes a minimum path on the resulting graph with d nodes and
d(d−1)

2 edges; therefore its cost is O
((

t × d(d−1)
2

)
+

(
d(d−1)

2 + d log d
))

.
– GTT-NP enumerates d! many sequences and, for each sequence computes the

corresponding number of variables at O(d) time – therefore it costs O(d!×d).
– GTT-IE requires one pass over the entire data for computing all of the mode

entropies – i.e., its cost is O(t).

Note that, as we experimentally show in the next section (Table 4), the time
complexity for statistics collection is negligible relative to the time needed to
decompose the tensor.

Decomposition Step. GTT provides a decomposition order which is then fed
into TT-SVD to obtain the actual decomposition. The decomposition time com-
plexity is therefore equal to that of TT-SVD [23], which is O(dnr3) and the
number of parameters will be O(dnr + (d − 2)r3).

2 Note that the two mutual information based strategies, GTT-AMI and GTT-PMI,
are hard to separate; since, as we see in Tables 4 and 5 in Sect. 6, GTT-PMI is
overall more accurate among the two, we omit emphGTT-AMI in hybrid selection.
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Table 2. Data sets [9]

Data set #Inst. #Modes Data set #Inst. #Modes

Dermatology 366 34 Flare 1395 11

Mushroom 8124 23 House-votes 435 17

Soybean 307 36 Tic-tac-toe 958 10

Breast 699 10 Nursery 12960 9

Balance-scale 625 5 Primary-tumor 339 18

Hayes-roth 160 6 Lymphography 148 19

Car 172 7 Spect 267 23

Chess 3196 37

6 Experimental Results

Here, we present experimental evaluations of the proposed GTT strategies3. Note
that (once the decomposition order is selected) the data tensors are decomposed
using TT-SVD [23] on a 4-core CPU (2.7 GHz each) machine, with 16 GB RAM.

6.1 Competitors

We compare five order selection strategies (GTT-AMI, GTT-PMI, GTT-IE,
GTT-NP, GTT-HYB) and a baseline strategy, ARB, which represents the “aver-
age” decomposition performance of uninformed (i.e. arbitrary) order selection.

Evaluation Criteria. For accuracy, we adapt the reconstruction error introduced
in Sect. 3. We report and compare average reconstruction errors for each strategy
and the percentage improvement over ARB:

– Given a d-mode tensor, we enumerate ALL (d!) permutations and compute
error for each permutation.

– We use the mean of all these d! reconstruction errors as the (average) error
for arbitrary selection, ARB.

In addition to the absolute values of reconstruction errors, we also report per-
centages of decompositions with better than (B) and worse than (W ) the average
ranking by arbitrary selection, ARB. We further report the ratio gain = B/W
– the value of gain indicates how well a given strategy promotes good decom-
position, while avoiding the bad ones.

We also report the average decomposition times for the decomposition orders
selected by the various strategies.

3 Our implementation and data sets can be found: https://shorturl.at/DMOSY.

https://shorturl.at/DMOSY
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Table 3. The relative average ranking against ARB for each data set (we normalize
average ranking of ARB strategy as 1, and the bold number means the best ranking
within four proposed strategies - the lower, the better) and the percentage improve-
ment in reconstruction error (RE % impr.) against ARB using the GTT-HYB strategy
- the higher, the better. *Inst. weighted average = (# of instances for a data set *
Relative average ranking or RE % impr. for a strategy)/(total # of instances).

Relative average ranking RE % impr. using HYB

(Lower, the better) (Higher, the better)

r = 3 r = 5 r = 3 r = 5

Data set IE NP PMI AMI IE NP PMI AMI % impr. % impr.

Tic-tac-toe 0.68 1.04 0.97 0.93 0.67 1.04 0.98 0.94 45% 49%

Balance-scale 0.56 1.12 0.97 0.71 0.55 1.02 0.93 0.71 16% 16%

Breast 0.75 1.01 0.99 0.92 0.74 1.03 0.97 0.94 10% 12%

Hayes-roth 0.66 0.75 0.75 0.75 0.65 0.73 0.74 0.69 4% 10%

Primary-tumor 0.97 0.68 0.92 0.93 0.98 0.66 0.90 0.93 10% 5%

Nursery 0.96 0.79 0.92 0.82 1.00 0.90 0.93 0.81 4% 5%

Dermatology 0.82 0.96 1.01 1.12 0.84 0.96 0.99 1.13 4% 4%

Spect 0.98 1.00 0.96 0.95 0.97 1.00 0.95 0.94 8% 4%

Flare 0.83 0.86 0.96 1.10 0.84 0.85 0.96 1.11 4% 3%

House votes 0.92 1.05 0.99 1.21 0.89 1.06 1.00 1.22 2% 3%

Soybean 0.92 0.88 0.97 1.02 0.96 0.92 0.97 0.99 2% 3%

Mushroom 1.00 0.90 0.87 1.12 1.05 0.85 0.90 1.13 3% 3%

Lymphography 0.77 0.88 0.97 1.03 0.77 0.92 0.97 1.03 5% 1%

Car 1.10 0.87 0.98 0.66 1.15 1.14 0.99 0.71 0% −2%

Chess 0.91 0.97 0.98 1.02 0.90 0.96 0.98 1.02 −16% −6%

Average 0.86 0.92 0.95 0.95 0.86 0.94 0.94 0.95 6.7% 7%

*Inst. weighted 0.88 0.91 0.96 1.00 0.89 0.93 0.96 1.01 7% 7%

Average

Data Sets. Table 2 lists the 15 data sets we use in these experiments. The data
sets are taken from the UCI Machine learning repository [9]. From each data
set, we extracted randomly selected 3-, 4-, and 5-mode tensor instances (up to
100 each, as allowed by the dimensionality of the data set). The total number of
tensors extracted from these data sets and used in the experiments is 3632.

Target Ranks. Here, we consider two target ranks, 3 and 5. As discussed in
Sect. 3, we assume the target TT-rank is given and fixed for each mode. While
there are several non-parametric decomposition techniques, such as [13] which
can learn also the appropriate rank, this is outside of the scope of this paper.
We leave this to the future works.

6.2 Evaluations and Analysis

Accuracy. In Table 3, we first list the relative average ranking for each proposed
strategy against ARB (lower, the better), as we can see, the best single strategy
can vary from data set to data set – this motivates the need for a hybrid strategy
(GTT-HYB) to select an effective combined strategy. As shown in Table 3, GTT-
HYB provides improvements for all data set except the car and chess data sets.
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Table 4. Average reconstruction error, rate of improvement against arbitrary selection
(ARB) and average decomposition time.

Average reconstruction error Rate of improvement Avg. Dec. Time

(Lower, the better) (Higher, the better) (ms)

Method r = 3 r = 5 r = 3 r = 5 r = 3 r = 5

ARB 5.18 5.37 – – 82.9 85.3

IE 4.94 5.1 4.7% 5.0% 78.6 81.8

NP 5.07 5.29 2.1% 1.5% 84.4 82.5

PMI 5.1 5.29 1.6% 1.5% 81.5 84.3

AMI 5.14 5.34 0.8% 0.4% 82.1 82.3

HYB 4.86 5.05 6.2% 6.0% 80.7 82.3

Table 5. Percentages of decompositions with better than (B) and worse than (W ) the
rank of decomposition returned on average by an uniformed, arbitrary ARB selection
strategy)

Method r = 3 r = 5

B W Gain B W Gain

IE 54.0 34.0 1.6 53.0 35.0 1.5

NP 38.0 25.0 1.5 37.0 27.0 1.4

PMI 46.0 34.0 1.4 46.0 34.0 1.4

AMI 45.0 43.0 1.0 45.0 42.0 1.1

HYB 54.5 29.2 1.9 52.4 30.8 1.7

To get a more general view of the benefit of proposed strategies, in Table 4, we
aggregate all data sets and report average reconstruction errors and percentage
of improvements against the baseline (ARB). As we see in the table, all proposed
GTT strategies improve reconstruction performance against ARB, with GTT-IE
providing the highest improvement among the single criterion strategies. The
table also shows that the hybrid strategy (GTT-HYB, described in Sect. 5.5)
provides the highest overall improvement in accuracy. Table 3 also depicts the
percentage improvement of reconstruction error (RE) against ARB using the
GTT-HYB strategy for each data set, and we further see that the proposed
hybrid strategy is indeed beneficial for 13 out of 15 of the considered data sets.

Again, with aggregating all data sets, in Table 5, we report the percentage
of tensors for which each strategy returns better than (B) and worse than (W )
the arbitrary selection, ARB, and the overall gain (gain = B/W ). As we see,
the GTT-IE strategy provides the largest gain among the four strategies and
as before GTT-HYB strategy provides the best overall gain for both target tt-
ranks.
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Note that, among the two mutual information, based strategies, GTT-PMI
is more effective than GTT-AMI in terms of both reconstruction error (Table 4)
and gain (Table 5). Therefore, as reported in Sect. 5.5, we do not consider GTT-
AMI, when constructing a hybrid strategy.

Decomposition Time. Table 4 reports the average decomposition times for dif-
ferent strategies. As we discussed in Sect. 5.6, the proposed strategies do not add
any overhead to the decomposition time over arbitrary selection, ARB. In fact,
the hybrid strategy, GTT-HYB, appears to reduce the decomposition time over
ARB, we plan to explore this further in future work.

Table 6. Three major contributors to the GTT-IE, GTT-NP, and GTT-PMI strategies
(positive values indicate positive, negative values indicate negative contribution)

IE σace[3.9]; φace[−2.7]; ρ[−1.9]

NP φlength[3.1]; ρ[−2.0]; σentropy[−1.1]

PMI σace[3.2]; φace[−2.0]; μlength[1.8]

Top-Contributors to Each Strategy. In Table 6, we present the top-3 posi-
tive and/or negative contributors (among the various statistics considered in
Sect. 5.1) for the GTT-IE, GTT-NP, and GTT-PMI strategies:

– For GTT-IE, the two main contributors are σace and φace. This echos the
argument in Sect. 5.4: GTT-IE prefers that the entropies of the modes are
considered in ascending order and thus GTT-IE is more effective when the
discriminatory power of ACE is high.

– As discussed in Sect. 5.2, the number of parameters that needs to be learned
depends on the length of the modes and the more discriminative the mode
length parameter is, the more effective GTT-NP – this explains the positive
contribution of φlength to the GTT-NP selection criterion.

– For the mutual information based strategy, GTT-PMI, the higher the spread
of ACE, the higher the impact of GTT-PMI. This confirms our discussion in
Sect. 5.3: mutual information can be considered as a measure of dependency
and, since the entropy of a mode is fixed, its dependency with the adjacent
mode (mutual information) is constrained by the conditional entropy between
them. Hence, the more the parameter ACE is (i.e., the larger is the value of
σace), the higher the benefits of GTT-PMI.

7 Conclusion

While the TT-decomposition promises a good trade-off between accuracy and
resource requirements, the final accuracy is highly dependent on the order of the
tensor modes in the tensor train. In this paper, we proposed a novel approach
for guiding the tensor train (GTT) in selecting the decomposition sequence.
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We have shown that we can leverage the various characteristics of the given
data set to identify an effective order strategy. In particular, we proposed three
order selection strategies and have shown that a hybrid (HYB) strategy that
combines these three strategies taking into account the specific characteristics
of the given data set can lead to decomposition sequences with high accuracy.
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Abstract. Tensor decomposition is a multi-modal dimensionality reduc-
tion technique to support similarity search and retrieval. Yet, the decom-
position process itself is expensive and subject to dimensionality curse.
Tensor train decomposition is designed to avoid the explosion of interme-
diary data, which plagues other tensor decomposition techniques. How-
ever, many tensor decomposition schemes, including tensor train decom-
position is sensitive to noise in the input data streams. While recent
research has shown that it is possible to improve the resilience of the
tensor decomposition process to noise and other forms of imperfections
in the data by relying on probabilistic techniques, these techniques have
a major deficiency: they treat the entire tensor uniformly, ignoring poten-
tial non-uniformities in the noise distribution. In this paper, we note that
noise is rarely uniformly distributed in the data and propose a Noise-
Profile Adaptive Tensor Train Decomposition (NTTD) method, which aims
to tackle this challenge. NTTD leverages a model-based noise adaptive ten-
sor train decomposition strategy: any rough priori knowledge about the
noise profiles of the tensor enable us to develop a sample assignment
strategy that best suits the noise distribution of the given tensor.

1 Introduction

Tensors and tensor decomposition (such as CP [16] and Tucker [36]) are increas-
ingly being used for data-intensive tasks, including anomaly detection, correla-
tion analysis [34], pattern discovery [21,22], and similarity retrieval [19].

1.1 Tensor Train Decomposition

A common problem faced by tensor decomposition techniques, such as Tucker,
which generates dense core tensors, is that, even when the input is sparse, the
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intermediary and final steps in the decomposition may lead to very large datasets.
Recent research has shown that several generalizations of higher order tensors’
low-rank decompositions, such as hierarchical Tucker (HT) [20] and the Tensor
Train (TT) [32] format, are effective solutions to this problem. Intuitively, the
TT decomposition (which can be interpreted as a special case of HT, without a
recursive formulation) avoids the creation of a high-modal dense core, by splitting
the core into a sequence of low (3) modal cores (Fig. 1). Since, computation
and storage are exponential in the number of modes, TT is widely used for
decomposition in various applications [35,38].

Fig. 1. Illustration of the Tensor Train (TT) decomposition

1.2 Challenge: Noisy Data

The problem the tensor train decomposition faces is that the overall decomposi-
tion process can be negatively affected by the noise and low quality in the data,
which is especially a concern for sparse web and web-based user data [6,39].
Recent research has shown that it may be possible to avoid such over-fitting
by relying on probabilistic techniques [37]. Unfortunately, existing probabilistic
approaches have one major deficiency: they treat the entire tensor uniformly,
ignoring possible non-uniformities in the distribution of noise in the given ten-
sor. [30] has shown that if available, even rough a priori knowledge about the
noise profiles of the tensor may enable CP-based decomposition strategies that
are robust against noise, but these uni-core techniques are not applicable to the
multi-core tensor train decomposition process, which results in a sequence of
low-modal cores.

1.3 Noise-Profile Adaptive Tensor Train Decomposition (NTTD)

In this paper, we propose a Noise-Profile Adaptive Tensor Train Decomposition
(NTTD) method, which leverages rough a prior information about noise in the
data (which may be user provided or obtained through automated techniques)
to improve decomposition accuracy. NTTD decomposes each mode matricization
probabilistically through Bayesian factorization – the resulting factor matrix are
then reconstructed to obtain the tensor approximations. Most importantly,
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Algorithm 1. PTTD
Input: d dimensional tensor X , Rank R = {r1, ..., rd−1}
Output: Decomposed factors U (1), . . ., U (d) of
TT-approximation X̃
1. generate the appropriate sampling number for each mode ,S = {s1, ...., sd1} with intelligent

sampling assignment strategy
2. Temporary Tensor: M = X
3. for k = 1 to d-1 do

(a) M := reshape(M, [rk−1nk,
numel(M)
rk−1nk

])

(b) apply the Probabilistic Matrix Factorization (PMF) on the matrix M with pre-given rank

rk and sampling number sk to get the U (k)andV (k)

(c) New core: U (k) = reshape(U, [rk−1, nk, rk])

(d) M := SV (k)T

4. Ud = M
5. Return tensor X̃ in TT-format with scores U (1), . . ., U (d)

NTTD provides a resource allocation strategy, which accounts for the impacts
of (a) the noise density of each mode and (b) inherent approximation error
of the Tensor Train decomposition process, on the overall decomposition
accuracy of the input tensor.

In other words, a priori knowledge about noise distribution on the tensor and
the inherently approximate nature of the tensor train decomposition process are
both considered to obtain a decomposition strategy, which involves (a) the order
of the modes and (b) the number of Gibbs samples allocated to each step of the
decomposition process, that best suits the noise distribution of the given tensor.

2 Background and Notations

The tensor model maps a schema with N attributes to an N-modal array and the
decomposition process generalizes the matrix decomposition process to tensors.
The two most popular tensor decomposition algorithms are the Tucker [36] and
the CANDECOMP/PARAFAC (CP) [16] decompositions.

2.1 Tensor Train Decomposition

A major difficulty with the Tucker decomposition is that the dense core can be
prohibitively large and expensive for high-modal tensors. While several tensor
network approaches [7,8,18,28,29,31,32] (where network have been proposed
to avoid large, dense core tensors, the tensor train (TT) format [32,35], which
creates a linear tensor network (or a matrix product state, MPS [15]) avoids the
deficiencies of many other complex decomposition structures:

Definition 1 (Tensor Train (TT) Format). Let X ∈ R
n1×n2×···×nd be a

tensor of order d. As we see in Fig. 1 (in Introduction), the tensor train decom-
position decomposes X into d matrices Un1 ,Un2 , . . . ,Und

such that,

X ≈ X̃ = Un1 ◦ Un2 ◦ · · · ◦ Und
, (1)
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where Un1 ∈ R
n1×r1 , Uni

∈ R
ri−1×ni×ri(i = 2, . . . , d−1), and Und

∈ R
rd−1×nd .

♦

Tensor train decomposition proceeds with matricizations along one mode at
a time: at each step, a low-dimensional core corresponding to the current mode
is obtained and the remainder of the data (which now has one less mode) is
passed to the next step in the process [32].

3 Probabilistic TT Decomposition (PTTD)

Given the limitations of SVD on sparse and noisy tensors, the first step is to intro-
duce a probabilistic TT decomposition scheme (PTTD), which extends TT tensor
train decomposition framework with probabilistic matrix factorization [33].

PTTD replaces the SVD decomposition step in tensor train decomposition
with probabilistic matrix factorization, in order to avoid over-fitting due to data
sparsity and noise. More specifically, we first matricize the tensor X and we
apply probabilistic matrix factorization on the resulting matrix, M . Under a
Bayesian formulation, the prior distributions over U and V are assumed to be
Gaussian:

p(U |μU , ΛU ) =
n1∏

i=1

N (Ui|μU , Λ−1
U ) (2)

A similar formulation holds for V . The resulting factor matrix, U , is assigned
as the first TT factor matrix. The matrix V is reshaped into the matrix Mnext

to be factorized in the next step. This probabilistic factorization and reshape
processes are repeated until the decomposition is completed. The pseudo code of
the algorithm is presented in Algorithm 1. Note that since the exact evaluation of
the probabilistic factorization process is intractable, we instead seek to approx-
imate the solution. While variational methods [17,23] are possible, they can
produce inaccurate results because they tend to involve overly simple approxi-
mations to the posterior. MCMC-based methods [40], however, where the factor
matrix {U

(k)
i , V

(k)
j } are sampled by running a Markov chain, have been shown

to asymptotically approach the exact results.
It is important to note that, in and of itself, PTTD does not leverage a priori

knowledge about noise distribution and internal decomposition interaction, but
it provides the framework in which noise-profile based adaptation can be imple-
mented. More specifically, each row of factor matrices U and V follows a Gaussian
distribution and this Gaussian is related to the uncertainty in the corresponding
element and, thus, provides an opportunity to discover the distribution of data
noise across the tensor, as we discuss in the next section.

4 Noise Adaptive Probabilistic Tensor Train
Decomposition (NTTD)

One key advantage of the probabilistic decomposition framework presented
above is that it can simultaneously uncover (Gaussian) noise while obtaining
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Fig. 2. Two types of errors propagate to downstream matricizations in tensor train
decomposition: (internal) approximate factorization error and (external) data noise
error

the decomposition [32]. Yet, it fails to account for the potentially available (user-
provided or automatically discovered) knowledge about (a) the distribution of the
external data noise across the tensor and (b) the noise generated internally due
to the inherent imperfections in the decomposition process at the different steps
of the tensor train network.

4.1 External and Internal Noise

External (Data) Noise. In this paper, we define, (external data) noise density
as the ratio of the cells that are subject to noise. Without loss of generality, we
assume noise exists only on cells that have values (i.e., the observed values can
be faulty, but there are no spurious observations) and, thus, we formalize noise
density as the ratio of the non-null cells that are subject to noise. Note that
noise may impact the observed values in the tensor in different ways: in value-
independent noise [30], the correct data may be overwritten by a completely
random new value, whereas in value-correlated noise, existing values may be
perturbed (often with a Gaussian noise, defined by a standard deviation, σ). We
refer to the amount of perturbation as the noise intensity.

Internal (Decomposition) Noise. As we discussed in Sect. 2.1, in the tensor
train format, the network structure acts as a “train” or “chain” of tensors: the
core tensors only interact with their neighboring cores as illustrated in Fig. 1.
The corresponding tensor train decomposition relies on sequential projections
(formulated as sequential matrix factorizations) and the decomposition accuracy
of the intermediate matrix, Mk, depends on the accuracy of the previous matrix
Mk−1’s (approximate) decomposition; similarly, the factorization error of Mk

propagates to the following sequence of (intermediate) matrices, Mk+1, ...,MN ,
of the chain. This implies that a predecessor matrix which is poorly decomposed
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due to data noise or approximation error may negatively impact decomposition
accuracies also for the successor matrices.

4.2 Noise Adaptation Through Sample Assignment

Consequently, the inaccuracies resulting from each intermediate decomposition
along the chain (whether due to data noise or factorization approximation error,
Fig. 2) need to be carefully considered during planning and resource alloca-
tion. The proposed noise-profile adaptive tensor decomposition (NTTD) algorithm
adapts to (user provided or automatically discovered) a priori knowledge about
noise by selecting a resource assignment strategy that best suits to the internal
and external noise profiles. More specifically, NTTD assigns Gibbs samples to the
decompositions of the various individual matricizations in a way that maximizes
the overall decomposition accuracy of the whole tensor.

4.3 Gibbs Sampling and (Internal) Decomposition Error

As we discussed in Sect. 3, the probabilistic tensor train decomposition process
consists of several sequential probabilistic matrix decompositions. Consequently,
any inaccuracies generated in any of the upstream decompositions will propagate
to the downstream matrix decompositions along the “train” structure. In this
section, we ignore the external data noise and focus on the impact of this internal
noise generated due to decomposition inaccuracies. More specifically, we aim
to investigate how to allocate Gibbs samples in a way that is sensitive to (a)
the internal noise generated by the individual matrix factorizations, (b) the
downstream (internal) noise propagation, and (c) their impacts to the accuracy
of the overall tensor train decomposition.

As discussed in Sect. 3, Gibbs sampling is used for tackling the challenge
of evaluating the predictive distribution of the posterior by approximating the
expectation by an average of samples drawn from the posterior distribution
through a Markov Chain Monte Carlo (MCMC) technique. As we see in Fig. 2,
for each intermediate matrix decomposition in PTTD, two factor matrices are
generated: The U factor matrix is used to construct the core tensor corresponding
to the current mode, whereas the V factor matrix is re-shaped as an input matrix
for the successor decomposition step. Therefore,

– the accuracy of the Uk matrix has direct impact on the accuracy of one of the
cores, whereas

– the accuracy of the Vk matrix indirectly influences accuracies of all down-
stream cores,

This observation, along with the observation that more samples can help
provide better accuracy (to certain degree) in matrix factorization, can be used
to improve the overall decomposition accuracy, to help allocate Gibbs samples
to the different steps in tensor decomposition. More specifically, we argue that
the number of samples for an intermediate matrix, Mk, should be allocated
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proportional to the size of the factor matrix, size(Uk) + size(Vk), which reflects
the number of unknowns to be discovered during the factorization of matrix
Mk. In other words, the internal decomposition error sensitive sampling number,
Li err(Mk), for matrix Mk can be computed as

Li err(Mk) = Lmin(Mk) + �γi err × (size(Uk) + size(Vk))�,

where γi err is a scaling parameter such that the sum of all the sample counts
is equal to the total number, Li err(total), of samples allocated for dealing with
internal decomposition errors for the whole tensor decomposition:

Li err(total) =
d−1∑

k=1

Li err(Mk) (3)

Fig. 3. Illustration of the decomposition noise error propagation and reconstruction
noise error for the first decomposition step

4.4 Gibbs Sampling and (External) Noise

Equation 7, above, helps allocate samples across intermediate decomposition
phases. However, it ignores one crucial piece of information that may be avail-
able: distribution of the noise across the input tensor.

The basic probabilistic tensor train decomposition (Sect. 3) assumes the noise
is uniformly distributed across the tensor. In the real world, however, noise
is rarely uniformly distributed along the entire tensor. More often, we would
expect that noise would be clustered across slices of the tensor (corresponding, for
example, to unreliable information sources or difficult to obtain data). In many
cases, even if we do not have precise knowledge about the cells that are subject to
such noise or the amount of noise they contain, we may have a rough idea about
the distribution of noise across the different modes [30]. As we experimentally
show in Sect. 5, there is a direct relationship between the noise distribution
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across the tensor and the number of Gibbs samples it requires for accurate
decomposition. Consequently, given a tensor with non-uniform noise distribution
across different modes, uniform assignment of the number samples, Ln err(Mk) =
Ln err(total)

d−1 (where Ln err(total) is the total number of Gibbs samples for tackling
the impact of noise) becomes ineffective. Therefore, in this section, we aim to
answer the question

can we leverage rough information that may be available about noise distri-
bution in improving the accuracy of the overall tensor train decomposition?

Noise taints accuracy through two distinct mechanisms: (a) impact of noise
during decomposition and, for applications (such as recommendation and pre-
diction) that involve the recovery of missing entries in the tensor, (b) impact of
noise during reconstruction. As we see in Fig. 3, the noise in the input matrix
partitions itself into the resulting factor matrices U and V . The factor matrix Vi

is reshaped as input matrix for the following tensor train decomposition steps,
therefore is involved in the propagation of the noise to downstream steps during
the decomposition process (Fig. 4). The matrix, Ui, however, is separated into a
factor matrix (for U1) or more generally to a core tensor for factor i > 1, and
thus impacts accuracy during reconstruction. We discuss these next.

Impact of Noise During Reconstruction. The noise reconstruction error
taints the overall accuracy in the reconstruction process due to the matrix tensor
multiplication operations involved in the recomposition of the (approximate)
tensor. For example, if the ith object of Uk is polluted by the noise, after the
reconstruction process, the complete slice X̃ ∗,...,∗,k(i),∗,...,∗ will be tainted by the
noise pollution from column Uk(i) due to the matrix and tensor multiplication.
Consequently, to account for the noise reconstruction error, the number of Gibbs
samples should be proportional to the mode noise density, ndk.

Impact of Noise During Decomposition. A naive approach to allocate the
number of samples for a noisy matrix, Mk, is to allocate it proportional to its
noise density, ndk. However, since the probabilistic tensor train decomposition
process follows a “train” structure, errors propagate downstream as shown in
Fig. 4. Consequently, allocating sampling number proportional to the noise den-
sity maybe not the best strategy.

As mentioned earlier, the Gibbs sampling algorithm cycles through the latent
variables, sampling each one from its distribution conditional on the current
values of all other variables. Due to the use of conjugate priors for the parameters
and hyperparameters in the Bayesian PMF model, the conditional distributions
derived from the posterior distribution are easy to sample from. In particular,
the conditional distribution over the feature vector Ui, conditioned on the other
features Vi, observed matrix cell value Mi, and the values of the hyperparameters
are Gaussian:
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p(Ui|M,V,ΘU , α) = N (Ui|μi, Λ
−1
i )

≈
n1∏

i=1

(
[N (M̃i,j |UT

i , Vi, α
(−1))]ni,j

× p(Ui|μU , Λ−1
U )

)
.

(4)

Note that the conditional distribution over the latent feature matrix U factorizes
into the product of conditional distributions over the individual feature vector:

p(U |M,V,ΘU ) =
n1∏

i=1

p(Ui|M,V,ΘU ). (5)

We see that the conditional distributions over the V feature vectors and the V
mode hyperparameters have exactly the same form.

Fig. 4. Illustration of the noise error propagation

Equations 4 and 5, along with Fig. 4, indicate how errors propagate down-
stream. In particular, in Fig. 4, red columns of the first matricization, M1, show
the columns that are noise polluted. During the decomposition, the correspond-
ing columns of resulting factor matrix V1 (highlighted also in red) are also tainted
with stronger noise than other columns of V1. This tainting process flows down-
stream (subject to matrix re-shape operations) as shown in Fig. 4. Consequently,
for decomposition phase k, the number of samples should be proportional to

d−1∑

j=k

d∏

i=j+1

ndi, (6)

where,
∏d

i=j+1 ndi is the noise density of matricization of Vk on mode k. The
∑d−1

j=k operation, above, takes into account the accumulation process of the noise
on all downstream decomposition steps.
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Combining Decomposition and Reconstruction Impacts of Noise.
Assuming that the decomposed tensor will be utilized for an application (such
as recommendation) which necessitates reconstruction of the approximate ten-
sor, we need to consider reconstruction and decomposition errors together when
assigning the number of Gibbs samples. In other words, for an intermediate
matrix, Mk, the number of samples must be allocated proportional to the sum
of reconstruction and decomposition errors, i.e, ndk +

∑d−1
j=k

∏d
i=j+1 ndi. This

leads to the following formula for the number Ln err(Mk) of samples:

Lmin(Mk) + �γn err × (
d−1∑

j=k

d∏

i=j+1

ndi + ndk)� × Ln err(total),

where γn err is a scaling parameter such that the sum of all the sample counts
is equal to the total number, Ln err(total), of samples allocated for dealing with
noise errors:

Ln err(total) =
d−1∑

k=1

Ln err(Mk). (7)

4.5 Overall Sample Assignment

While considering the error propagation, both internal decomposition error
(Sect. 4.3) and external noise error (Sect. 4.4) need to be accounted for. There-
fore, the combined sample assignment equation, for matricization, Mk, in the
tensor train decomposition process, can be written as

L(Mk) = �γn err × (
d−1∑

j=k

d∏

i=j+1

ndi + ndk)� × Ln err(total)

+ �γi err × (size(Uk) + size(Vk))� × Li err(total)

+ Lmin(Mk)

(8)

where Lmin(Mk) is the minimum number of samples a (non-noisy) tensor of the
given size would need for accurate decomposition and γn err and γi err are two
scaling parameters, selected such that the total number of samples is equal to
the number, Ltotal, of samples allocated for the whole tensor:

Ltotal =
d−1∑

k=1

L(Mk).

The parameters, γn err and γi err, also control the relative impacts of the internal
and external noise. In the experiments, they are set such that the number of
samples allocated to handle internal and external noise are the same.

5 Experimental Evaluation

In this section, we report experiments that aim to assess the effectiveness of the
proposed noise adaptive tensor train decomposition approach.
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5.1 Experiment Setup

Key parameters and their values are reported in Table 1.

Table 1. Parameters – default values, used unless otherwise specified, are highlighted

Parameters Alternative values

Dataset Ciao; BxCrossing; MovieLens

Noise density 10%; 20%; 30%;

Noise intensity (σ) 1, 3, 5

Total samples (Ltotal) 90; 135; 180;

Min. samples (Lmin(Mk)) Ltotal/(3 × (d − 1)) = Ltotal/9

Fig. 5. RMSE with different data sets and noise densities (Ltotal = 90)

Data Sets. In these experiments, we used three user-centered datasets:
Ciao [43], MovieLens [41] and BxCrossing [42]. Ciao dataset is represented
in the form of 143 × 200 × 12 × 4 (density 5.68E−04) with the schema
〈user, product, category, helpfullness〉. BxCrossing dataset is represented in
the form of 2599 × 34 × 16 × 76 (density 2.48E−0.5) with the schema
〈user, book, publishedyear, userage〉. The MovieLens dataset is represented in
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the form of 247 × 112 × 48 × 21 (density 8.86E−06) with the schema
〈user,movie, age, location〉. In Ciao and MovieLens data sets, the tensor cells
contain rating values between 1 and 5 or (if the rating does not exist) a special
“null” symbol. And for the BxCrossing dataset, the tensor cells contain rating
values between 1 and 10.

Noise. To observe the different degrees of noise, we selected a random portion of
the non-null cells and randomly perturbed the value. It is a worst-case scenario
for NTTD, where the noise is distributed uniformly on the tensor; but the experi-
ments show that even in this case, NTTD can take into account the noise density
difference across the data modes, implied by the difference in corresponding data
densities. Therefore, in the experiments, the noise density for different modes is
approximated by the corresponding data density.

Alternative Strategies. We compare the proposed approach against other
sampling strategies: uniform, internal-noise only, and external-noise only sample
assignment:

– In uniform strategy (UNI), Ltotal is uniformly divided among the three matri-
cizations in the tensor train decomposition and default PTTD is used for decom-
position.

– In internal-noise only strategy (I ERR), γn err is set to zero in Eq. 8, focusing
the assignment to only internal decomposition error.

– In external-noise only strategy (N ERR), γi err is set to zero in Eq. 8, focusing
sample assignment to the impact of noise and its propagation.

Evaluation Criterion. We use the root mean squares error (RMSE) inaccuracy
measure to assess the decomposition effectiveness. Each experiment was run 10
times with different random noise distributions and averages are reported.

Hardware and Software. We ran experiments on an eight-core CPU Nehalem
Node with 16.00 GB RAM. Codes were implemented in Matlab and run using
Matlab R2016b. We used MATLAB Tensor Toolbox Version 2.6.

5.2 Discussion of the Results

Overview. In Fig. 5, we compare the performance of NTTD with noise-adaptive
sample assignments against other strategies for different noise densities. As we
see in this figure, the proposed NTTD strategy is able to allocate Gibbs samples
effectively to significantly reduce RMSE relative to PTTD with uniform sample
assignment. Moreover, we also see that internal- and external-only strategies
that ignore part of the error can actually hurt the accuracy and perform worse
than the uniform strategy. These show that the proposed noise-adaptive strategy
is effective in leveraging rough knowledge about external noise distributions and
internal decomposition errors to better allocate the Gibbs samples.
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Fig. 6. (a) RMSE with different num. of samples; i.e. Ltotal is 90, 135, or 180 (noise
density 10%, noise intensity 1; (b) RMSE with different noise intensities; i.e., σ is 1, 3,
or 5 (noise density 10%)

Impact of the Total Number of Samples. A key parameter of the NTTD
algorithm is the number of total Gibbs samples. As we see in Fig. 6(a), as we
would expect, increasing the number of Gibbs samples helps reduce the overall
decomposition error. Note that, among the four strategies, NTTD is the one that
provides most consistent and quickest drop in error. The figure shows the result
for the MovieLens data; the results are similar also for the other data sets.

Impact of the Noise Intensity. In Fig. 6(b), we consider the MovieLens data
set with different noise intensities. As we expect, increased noise corresponds to
increased RMSE. However, NTTD provides the best results for all noise intensities
considered. NTTD is also the best strategy for the other two data sets.

6 Conclusion

Tensor train decomposition is a latent space embedding technique that promises
a good trade-off between accuracy and resource requirements – but can be sub-
ject to overfitting and be impacted of data noise. Recent research has shown
that probabilistic techniques can ease the problem of overfitting caused by
noise, especially on sparse data. However, existing techniques ignore potential
non-uniformities in the noise distribution. In this paper, we proposed a novel
noise-adaptive tensor train decomposition (NTTD) technique that leverages rough
information about noise distribution to improve the tensor decomposition per-
formance. NTTD decomposes each intermediate matrix probabilistically through
Bayesian factorization. The noise profiles of tensor and their alignments are then
leveraged to develop a strategy that considers the internal decomposition error
as well as external to obtain a Gibbs sample assignment data noise best suits
the noise profile of a given tensor.
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Abstract. The intrinsic dimensionality refers to the “true” dimension-
ality of the data, as opposed to the dimensionality of the data represen-
tation. For example, when attributes are highly correlated, the intrinsic
dimensionality can be much lower than the number of variables. Local
intrinsic dimensionality refers to the observation that this property can
vary for different parts of the data set; and intrinsic dimensionality can
serve as a proxy for the local difficulty of the data set.

Most popular methods for estimating the local intrinsic dimensional-
ity are based on distances, and the rate at which the distances to the
nearest neighbors increase, a concept known as “expansion dimension”.
In this paper we introduce an orthogonal concept, which does not use
any distances: we use the distribution of angles between neighbor points.
We derive the theoretical distribution of angles and use this to construct
an estimator for intrinsic dimensionality.

Experimentally, we verify that this measure behaves similarly, but
complementarily, to existing measures of intrinsic dimensionality. By
introducing a new idea of intrinsic dimensionality to the research com-
munity, we hope to contribute to a better understanding of intrinsic
dimensionality and to spur new research in this direction.

1 Introduction

Intrinsic Dimensionality (ID) estimation is the process of estimating the dimen-
sion of a manifold embedding of a given data set either at each point of the
data set individually or for the entire data set at large. The dimension of a
given algebraic set is a well-understood problem in algebra [21], but lifting these
methods to a sample of an unknown function is not trivially possible. Therefore
methods that are very different from functional analysis are required to grasp
the dimensionality of a discrete data set. Prior work in the field is largely focused
on analyzing the differential of point counts in changing volumes [1,10,12,14], as
linear algebra gives estimates of these differentials assuming a certain dimension-
ality. These approaches rely on distances between points and assume the data to
be uniformly sampled from their defining space. The resulting ID describes the
dimension required to embed a point and its neighborhood in a manifold with
small loss of precision. In our novel approach for ID estimation, we derive an
estimate based on the cosines between directional vectors of a point to all points
c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 218–232, 2020.
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in its neighborhood. The idea is illustrated in Fig. 1: in two-dimensional dense
data, we see all directions evenly, whereas in a linear subspace we mostly see
similar or opposite directions. Hence we aim at deriving an estimator capable of
computing the angles between observed data points. It differs from the distance-
and volume-based approaches as it describes the least dimensions required to
connect a given point to the rest of the data set. It can, therefore, be understood
as a description of the simplicial composition of the data set. Besides describing
a different notion of local dimensionality, we provide evidence that our app-
roach is more robust and gives stable estimates on smaller neighborhoods than
the volume-based approaches. We hope that in the future the new angle-based
interpretation of intrinsic dimensionality will be combined with expansion-rate-
based approaches and spur further research in intrinsic dimensionality.

Fig. 1. Motivation of angle-based intrinsic dimensionality: in two-dimensional dense
data, we observe all directions evenly, in noised one-dimensional linear data arrows go
either in similar or in opposite directions.

2 Related Work

Intrinsic dimensionality has been shown to affect both the speed and accuracy of
similarity search problems such as approximate nearest-neighbor search and the
algorithms developed for this problem [4,7,18]. Intrinsic dimensionality has also
been employed to improve the quality of embeddings [19], to detect anomalies
in data sets [15], to determine relevant subspaces [6], and to improve generative
adversarial networks (GANs) [5]. Distance-based estimation of intrinsic dimen-
sionality is the “short tail” equivalent of extreme value theory [12,13], and many
techniques can be adapted from estimators originally devised for extreme values
on the long tail of (censored-) distributions [2], as previously used in disaster con-
trol. Important estimators include the Hill estimator [10], the aggregated version
of it [16], the Generalized Expansion Dimension [14], method of moments estima-
tors [1], regularly varying functions [1], and probability-weighted moments [1].
ELKI [20] also includes L-moments [11] based adaptations of this and improves
the bias of these estimators slightly. A noteworthy recent development is the
inclusion of pairwise distances as additional measurements [9] and the idea of
also taking virtual mirror images of observed data points into account [3]. We
will note interesting parallels between these methods and our new approach.

Angle-based approaches have been successfully used for outlier-detection in
high-dimensional data, for example with the method ABOD [17], which consid-
ers points with a low variance of the (distance-weighed) angle spectrum to be
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anomalous, with the assumption that such points are on the “outside” of the data
set. Our approach brings ideas from this method to the estimation of intrinsic
dimensionality (which in turn has been shown to relate to outlierness [15]).

Fig. 2. Three data sets with corresponding ID estimate histograms. The dashed vertical
lines correspond to the ID estimate of the point at (0, 0).

3 On the Dimensionality of Functions and Data

The dimensionality of a vector field R
d is the number of components d; a quan-

tity referred to as representational dimensionality because it characterizes the
data representation more than the underlying data. Manifolds are embeddings
of lower dimensional vector spaces into some higher-dimensional space. These
can be linear embeddings, but we can also consider curves such as (x, sin x),
which we consider to be a one-dimensional manifold. This aligns with human
intuition, for example when differentiating a circle (the outline) from the corre-
sponding disc (the contained area). The concept of local intrinsic dimensionality
(LID) [12,13] captures the need for allowing different parts of a data set to have
different dimensionality. Nevertheless, the “correct” answer to the question of
dimensionality is all but unambiguous, e.g., when considering a point on the
surface of a ball, or the crossing point of the figure eight.

While existing work focuses on the analysis of distances in enclosing neighbor-
hoods, our novel approach uses the distribution of pairwise angles of neighboring
points. The different nature of the resulting ID estimates is showcased in Fig. 2.
Both the distance-based (IDMLE, [10]) and the angle-based (IDABID, this article)
approach consider the second data set to be dominantly one-dimensional and the
other to be mostly two-dimensional. The outlying point (0, 0) in the third data
set, however, is judged very differently by both approaches. The distance-based
approach IDMLE considers its environment to be almost ten-dimensional (≈9.78)
as all distances are very close, whereas our novel angle-based approach IDABID

considers it to be one-dimensional (≈1.18) as the observed neighborhood lies in
a narrow cone, similar to the second data set. With increased neighborhood size
this cone widens and the ID gets closer to two. This effect is similar to visual
details of a surface disappearing at a distance.
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We will now lay the mathematical foundations for our novel ID estimator.
When estimating the ID of a given point from a data set, the general app-
roach is to consider a number of nearby points as an enclosing neighborhood.
An assumption shared by all ID estimators is that this neighborhood should be
“representative” of an underlying manifold (e.g., uniformly sampled from some
parameter space). As angles are independent of vector lengths, assuming a uni-
form random distribution over the (d-1)-sphere or the d-ball is the same. It is
noteworthy that the unit n-sphere contains all unit n′-spheres with n′ ≤ n as
a subset which allows for lower dimensional submanifolds. In the following, we
assume the local neighborhood to originate from a unit (d-1)-sphere, and use the
distribution of pairwise angles of Cai, Fan, and Jiang [8].

Theorem 1 (Distribution of random angles in a (d-1)-sphere). The dis-
tribution of angles θ between two random points sampled independently and
uniformly from a (d-1)-sphere converges, as the number of samples goes to
infinity, to

P (θ) =
Γ (d

2 )
Γ ( 12 )Γ (d−1

2 )
· sin(θ)d−2 (1)

where Γ is the gamma function and θ is defined on [0, π].

Proof. See Cai, Fan, and Jiang [8] for a detailed proof.

Because angles are invariant of the vector lengths, this also holds for points
sampled from a d-ball instead of the (d-1)-sphere as well as other rotation invari-
ant distributions such as spherical Gaussians, as long as the origin point is not
included in the data (for which the angle is undefined). Note that such points
at distance 0 cause problems for most estimators of intrinsic dimensionality and
are commonly removed for such estimators, too.

As popularly known from the curse of dimensionality, all angles tend to
become approximately orthogonal as dimensionality approaches infinity. This
causes Eq. (1) to concentrate around π

2 [8]. The distribution above is unwieldy
and expensive to compute (as we need to compute the arcus cosines). We, there-
fore, prefer to work directly on the cosines. By applying the Legendre duplication
formula and doing a change of variables, we obtain the distribution of cosines.

Theorem 2 (Distribution of cosine similarities of points in a (d-1)-
sphere). The distribution of pairwise cosine similarities C between random
points sampled independently and uniformly from a (d-1)-sphere is

P (C) = 1
2B( 1+C

2 ; d−1
2 , d−1

2 ) (2)

where B(x;α, β) is the beta distribution p.d.f. and C is defined on [−1, 1].
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Proof. For this proof, we modify the well known Legendre duplication formula:

Γ (x)Γ (x + 1
2 ) = 21−2xΓ ( 12 )Γ (2x)

Γ (x + 1
2 )

Γ (x)Γ ( 12 )
=

21−2xΓ (2x)
Γ (x)2

=
1

B(x, x)
· 1
2

2x−1 (3)

where B(·, ·) is the beta function. By using this in Eq. (1) for x = d−1
2 , we obtain

P (θ) =
1

B(
d−1
2 ,

d−1
2 ) · (

1
2 sin(θ)

)d−2

We can now substitute θ with arccos(C) by a change of variable:

P (C) =
1

B(
d−1
2 ,

d−1
2 ) · (

1
2 sin(arccos(C))

)d−2 · ∣
∣ ∂
∂C arccos(C)

∣
∣

=
1

B(
d−1
2 ,

d−1
2 ) · ( 12

√
1 − C2)d−2 · 1√

1−C2

=
1

B(
d−1
2 ,

d−1
2 ) · ( (1−C)(1+C)

2·2 )
d−2
2 · ((1 − C)(1 + C))− 1

2

=
1

B(
d−1
2 ,

d−1
2 ) · (1 − 1+C

2 )
d−1
2 −1 · ( 1+C

2 )
d−1
2 −1 · 1

2

= 1
2B

(
1+C
2 ; d−1

2 , d−1
2

)

which is a beta distribution rescaled to the interval [−1, 1], on which C is defined.

Based on this, we can easily obtain the following helpful corollary:

Corollary 1. The average cosine similarity of two random points sampled inde-
pendently and uniformly from a d-ball is given by

E[C] = 0.

The variance and the non-central second moment are given by

Var(C) = E[C2] = 1
d .

Proof. This follows immediately from the central moments of beta distributions.
By Theorem 2 we have 1+C

2 ∼ B(d−1
2 , d−1

2 ). This symmetric beta distribution
has a mean of 1

2 , and hence E[C] = 0. The variance of this beta distribution
given α = β = d−1

2 is Var(1+C
2 ) = 1

4d , and hence E[(1+C
2 − 1

2 )2] = E[C2

4 ] = 1
4d .

Because the mean is 0, the variance and the second non-central moment agree
trivially.

4 Estimating Intrinsic Dimensionality

Based on this theoretical distribution of cosine similarities in a d-ball, we pro-
pose new estimators of intrinsic dimensionality based on the method of moments.
Similar to other estimators, we assume the data sample comes from the local
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neighborhood of a point; usually from a ball. The first moment of Corollary 1
cannot be used for estimation because it does not depend on d. Both the variance
and the second non-central moment, however, are suitable for estimating intrin-
sic dimensionality, as they depend inversely on d. This simple dependency stands
in contrast to the expansion-rate based approaches, which generally obtain an
exponential relation to the dimensionality, as the volume of a d-ball has d in its
exponent. Hence, we hope to obtain a more robust measure even with smaller
neighborhood sizes (fewer samples); and as we do not need to compute loga-
rithms it can be computed more efficiently. But we still have two choices: we can
either estimate using the variance d̂ = 1/Var(C) or using the non-central second
moment d̂ = 1/E[C2], which only agrees if E[C] = 0 as expected for a uniform
ball.

Consider the scenario of many points sampled from a hyperplane, but the
point of interest is not on this hyperplane. The local neighborhood will then
consist of samples in a circular region on this plane. If we move the point of
interest away from the plane, the average cosine tends to 1, and the variance
to 0. The variance-based estimate would hence tend to infinity, while the second
non-central moment estimate will tend to 1. We argue that this is the more
appropriate estimate, as the data concentrates in a single far away area.

Inspired by Amsaleg et al. [3], we investigated the idea of considering the
reflections of all points with respect to the point of interest. Such a reflection
causes the average cosine in this example to be 0, as every pair of points can
be matched to the pair with the second point reflected. In the above example,
we would obtain two opposite discs of points and the resulting variance would
tend to 1. When adding reflected points, the variance and the non-central second
moment become equivalent: Since c(xi,−xj) = −c(xi, xj) = c(−xi, xj), adding
reflections yields two positive and two negative copies of each cosine. The result-
ing average then is 0, and hence Var(C ′) = E[C ′2] − E[C ′]2 = E[C ′2] = E[C2].
We, therefore, do not further consider using such reflections of points, besides
their implicit presence in the non-central second moment.

Instead of discussing the limit cases of distributions, we will now work with
a fixed data sample of k points, centered around a point of interest. For simplic-
ity, we assume that the data has been translated such that the point of interest
is always at the origin, and that this point and any duplicates of it have been
removed from the sample. We now use all pairwise cosine similarities in a k × k
matrix denoted C. The diagonal of this matrix is usually excluded from compu-
tations. We use the term C1 when the ones on the diagonal are to be included.
By C2, we denote the individual squaring of cosines. The next theorem will use
both a fixed sample and the matrix C1 with the diagonal included.

Theorem 3 (Upper bound). Let X = {x1, . . . , xk} ⊂ R
D be a sample from a

d-dimensional subspace embedded in R
D for some d ≤ D. Formally, let X contain

at least d linearly independent vectors and let all xi be linear combinations of a
given set of d orthonormal basis vectors. Then the following inequality holds

E[C2
1 ]−1 ≤ d.
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Proof. Let X̃ be the k × d matrix obtained from X by first performing a change
of basis to the given orthonormal basis of size d, then normalizing each vector to
unit length to produce x̃i. Neither the change of basis (which is a rotation) nor
the posterior normalization affects the cosine similarities, and we hence have

c(x̃i, x̃j) = c(xi, xj). (4)

It immediately follows that X̃ has a rank of d, as we still have d linearly indepen-
dent vectors. The matrix C̃1 = X̃X̃T then contains entries of the form 〈x̃i, x̃j〉.
As all x̃i are normalized, C̃1 is equal to the cosine similarities. Per Eq. (4) it
then follows that C̃1 is exactly C1. Because C1 is a cosine similarity matrix, the
diagonal entries are all 1, and we have tr(C1) = k. Since X̃ is a k×d matrix with
rank d, we know that the rank of C1 is d as well. Therefore C1 has d eigenvalues
λ1, . . . , λd with

∑d
i=1 λi = tr(C1) = k. The sum of squared entries ‖C1‖22 equals

the sum of squared eigenvalues
∑d

i=1 λ2
i and is minimized if every eigenvalue

equals k
d , which means we have the following lower bound:

‖C1‖22 =
∑d

i=1 λ2
i ≥ d · (

k
d

)2
= k2

d (5)

and by taking the inverse we obtain the upper bound E[C2
1 ]−1 ≤ d.

This is an upper bound for estimating the intrinsic dimensionality using C1,
and we can use this to also obtain an upper bound for C.

Corollary 2. Let X = {x1, . . . , xk} ⊂ R
D be a sample from a d-dimensional

subspace embedded in R
D as defined in Theorem 3. If k > d, then

E[C2]−1 ≤ k−1
k−d · d. (6)

Proof. As the difference between C and C1 is the diagonal of ones, Eq. (5) yields

‖C‖22 = ‖C1‖22 − k ≥ k2

d − k = k(k−d)
d

and hence the average of the remaining k2 − k cells is

E[C2] ≥ k−d
k−1 · 1

d

which is equivalent to the inequality above. For k = d we obtain a trivial bound.

The difference of including the diagonal or not vanishes for large enough k.
One could attempt to regularize E[C2] with k−1

k−d . The major problem therein is
that we do not know d in advance. To control the maximal overestimation of d,
a sufficiently large neighborhood can be used to lower the margin of error. For
example, to bound E[C2]−1 ≤ d + c, at least k ≥ 1

cd2 + (1 − 1
c )d neighbors are

required. For the bound d + 1 (c = 1), this means we require k ≥ d2 samples.
To solve this self-referential problem, we can also attempt an iterative refine-

ment. It turns out that the fixed point of this regularization yields exactly the
result we obtain by using C1 instead of C. Because using C1 corresponds to using
a regularized version and because it has a very elegant upper bound, we base
our method on this estimate:
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Definition 1 (ABID). Given a data set X = {x1, . . . , xn}⊂R
D, the regularized

angle-based intrinsic dimensionality estimator for a point xi is:

IDABID(xi; k) := E[C1(Bk(xi))2]−1

where Bk(xi) are the directional vectors from xi to the k nearest neighbors of xi

and C1(Bk(xi)) are the pairwise cosine similarities within Bk(xi).

By choosing the neighborhood of any point in the specified set by the k
nearest neighbors, the measure is invariant under scaling. Analogously, one can
instead define the neighborhood by a maximum distance to the central point.
The sole restriction thereby is that the size of the neighborhood has to be greater
or equal to d+2 as for any smaller neighborhood, the estimator does not need to
be properly regularized. Since the error of the non-regularized estimate is limited
for any neighborhood with size quadratic in the intrinsic dimension, we further
introduce a non-regularized version for comparative analysis.

Definition 2 (RABID). Given a data set X = {x1, . . . , xn} ⊂ R
D, the raw

angle-based intrinsic dimensionality estimator for a point xi is defined as

IDRABID(xi; k) := E[C(Bk(xi))2]−1

where Bk(xi) are the directional vectors from xi to the k nearest neighbors of xi

and C(Bk(xi)) are the pairwise cosine similarities of different vectors in Bk(xi).

Beware that this estimator can cause a division by zero if all k vectors are
pairwise orthogonal, and can return values larger than k. In such cases, it is
recommended to treat the estimate as k, because the input vectors span a k
dimensional subspace. Nevertheless, this estimator is likely unstable for small k,
and for large k, it converges to IDABID.

To interpret the estimates by the new method, it is important to consider
the domain they operate on. The angle-based measure is bounded by the span-
ning dimensionality of the point set. While distributions of angles are usually
distorted by non-linear transformations, many transformations such as rota-
tions will retain this bound. Hence the bound may nevertheless apply—at least
approximately—for many projections of lower-dimensional manifolds in higher
dimensional embeddings. It is easy to see that angle-preserving transformations
do not affect our measure, while distance-preserving transformations will not
affect distance-based estimators. Our new measure is less affected by local non-
linear contractions and expansions such as the decreasing density on the outer
parts of Gaussian distributions, but it tends to estimate higher dimensionality
than distance-based-approaches when the transformations are non-linear. We
do not consider this to be a flaw, just a different design that may or may not
have advantages: a common assumption in many methods and applications like
manifold learning is to have locally linear transformations that preserve small
neighborhoods, which will then affect neither angles nor densities. Our estima-
tor, which can be seen as estimating how many dimensions such a locally linear
embedding needs to have, is arguably very close to the idea of such applications.
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5 Evaluation

In our comparative evaluation, we consider several ID estimators on many stan-
dard evaluation data sets of both artificial and natural origin. As measures of
quality, we analyze the estimated ID’s consistency both with expected values
(for synthetic data) and with each other (for natural data with no true value).
We will further inspect the stability of ID estimates for varying neighborhood
sizes. Depending on the density of data sets, approaches that require a large
neighborhood to stabilize, tend to be inapplicable.

The histograms shown in this section are limited to a region of interest in
both x and y direction for interpretability. Outside of the presented range along
the x-axis, the distributions always show a smooth drop to zero with no further
peaks but may have a long tail.

Fig. 3. Histograms of ID estimates of points sampled from a Koch snowflake using the
10 (left) respectively 200 (right) nearest neighbors.

5.1 Reference Estimators

We compare IDABID and IDRABID to the Hill estimator IDMLE [10], the measure-
of-moments-based estimator IDMOM [1], the generalized expansion dimension
IDGED [14], the augmented local ID estimator IDALID [9] and its successor, the
tight LID estimator IDTLE [3] using the implementations in the ELKI frame-
work [20]. All of these alternative estimators are based on the expansion rate.
The IDTLE is supposed to reduce the necessary sample size in the neighborhood
to acquire a good estimate, yet in our experiments tends to give higher estimates
than the other distance-based approaches.

5.2 Dimensionality of Fractal Curves

In line with the theoretical foundation of this work and to demonstrate the
different semantics of angle-based and distance-based ID estimation, we ana-
lyze the estimated ID of a well-known fractal, the Koch snowflake. As seen
in Fig. 3, most distance-based approaches estimate a dimensionality roughly
around log 4

log 3 ≈ 1.26, which is the Hausdorff dimension of the Koch snowflake,
when we consider enough neighbors (k = 200). This result is not surprising, as
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the distance-based approaches are conceptually closely related to classical frac-
tal dimensions. Our angle-based estimates, however, estimate a dimensionality
of ≈1.6 for larger neighborhoods, which is larger than the fractal dimension, yet
smaller than the representation dimension. The difference can be explained by
the highly non-linear shape of the snowflake, as two consecutive line segments are
overlapping in a singularity. Whilst points sampled from a finite recursion Koch
snowflake lie on a curve, they might be locally indistinguishable from samples
from R

2. A higher ID estimate may turn out to be more robust for downstream
applications such as manifold learning. The results on further fractals were
similar.

It is noteworthy that the scale of the neighborhood has a large impact on the
estimates. When choosing a neighborhood small enough to mostly stay within
a line segment of the fractals (here k = 10), the ID estimates approximate
1, as most neighborhoods lie on straight lines. For larger neighborhoods, the
estimates approach a proper representation of the manifold space. For too large
neighborhoods, however, boundaries of the point set as well as observing points
distant on the manifold, yet close in the embedding space, tend to corrupt the
estimates.

Fig. 4. Histograms of ID estimates of the m6 set with 30 resp. 150 neighbors.

Fig. 5. Trails of estimates of 1000 points for varying neighborhood sizes on the m6 set.
Trail colors are assigned in order of ID estimates at 200 neighbors.
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5.3 Synthetic Data

Amsaleg et al. [2,3] provide a collection of synthetic and real data sets. The m6
data set consists of points sampled from a 6-dimensional manifold non-linearly
embedded in a 36-dimensional space. As can be seen in Fig. 4, for k = 150 all
estimators agree on the data set to be inherently 6-dimensional at most points.
Where distance-based estimators tend to have a long tail towards higher dimen-
sions, the angle-based approaches have an upper bound. Even though this non-
linearity shifts the upper bound beyond 6, the angle-based approaches tend to
have a shorter upper tail and drop off faster to zero. When comparing the esti-
mates of each method at different neighborhood sizes between 30 and 300, the
angle-based approaches achieve higher scores than the distance-based approaches
on both Spearman’s and Pearson’s correlation of estimates with adjacent neigh-
borhood sizes. In this sense, the angle-based approaches are more stable both in
the value as well as the order when varying neighborhood sizes. In more extreme
neighborhoods (<30 and >300), artifacts from having too few samples for a reli-
able estimate and reaching the boundaries of the data set, respectively, cause
results to become less stable. The stability is visualized in Fig. 5 using trails
of ID estimates for individual points when varying the neighborhood size. In a
perfectly stable result, all lines would be parallel; instability causes lines that
cross outside their own color range (which represents the order at k = 200)
and hence the mixing of the colors. The improved stability of the angle-based
estimates is shown by a fairly stable plot from 125 to 300 neighbors, whereas
the distance-based estimates deviate much more at ≤150 and ≥250 neighbors
respectively already. Additionally, we can see in this plot that the average (the
purple region) of the distance-based estimates tends to increase with growing
neighborhood size whereas the distribution of IDABID appears stable upwards of
100 neighbors. We can observe the upper bound property of IDABID compared
to IDRABID. The higher stability means that smaller neighborhoods suffice for
estimation and that the neighborhood parameter is easier to choose.

Fig. 6. Histograms of ID estimates of the m10c data for 100 resp. 500 neighbors.

The data set of Amsaleg et al. [3] with the highest intrinsic dimension, m10c,
is a 24-dimensional hypercube embedded in 25 dimensions. Here, we observed a
larger discrepancy between the approaches, shown in Fig. 6. However, m10c con-
sists of only 10000 points, which is the number of corners of a log2(10000) ≈ 13
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dimensional hypercube. Hence, we doubt that this small sample can reliably
represent a full 24-dimensional manifold, but the data likely is of much lower
dimensionality. The estimates of the distance-based approaches move towards
this value as the neighborhood size increases. Each of these 10000 points then is
essentially the corner of a 13-dimensional hypercube; and will see the other data
points as forming a hypercone, producing smaller angles than if the data would
evenly surround the point. We believe it is because of this effect (essentially a
variant of the curse of dimensionality) that the angle-based approaches estimate
a far lower ID.

Fig. 7. Histograms of ID estimates of points on an 8-dimensional noisy lattice using
100 respectively 500 nearest neighbors.

To support this theory, we created a data set consisting of one point sampled
from each cell an 8-dimensional grid of 48 = 65536 points. We obtain a data set
that is more evenly distributed than uniform random sampling and truly spans
an 8-dimensional space. On this data set, only the angle-based approaches were
able to estimate the correct dimension for most points as can be seen in Fig. 7.
The points where IDABID and IDRABID estimate lower values are likely the many
points at the corners, edges, and sides of this lattice.

Fig. 8. Histograms of ID estimates of nested hypercubes with a neighborhood size of
100 colored by the hypercube from which they were sampled.

To test the reliability of estimators in a mixture of manifolds, we cre-
ated instances of 1- through 5-dimensional hypercubes linearly projected
into the same 5-hypercube. The projection was chosen such that every
di-dimensional hypercube intersects every dj-dimensional hypercube in a
min(di, dj)-dimensional subspace. For every hypercube, we sampled 5000 points
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uniformly at random and computed ID estimates using a neighborhood of dif-
ferent sizes. In all experiments, the angle-based approaches were visibly more
capable of differentiating between the different dimensional subspaces, which
can be seen from the sharper spikes in Fig. 8. Being capable of separating lower-
dimensional subspaces is an important feat, as noise in the embedding space can
be considered a high-dimensional manifold containing the manifold of interest,
and we believe this new ID estimate may help subspace discovery approaches
that, based on intrinsic dimensionality (e.g, [6]). We observe that the angle-based
approaches are more robust against noise and in the presence of overlapping sub-
spaces.

5.4 Real Data

We also analyzed the ID estimates on real data such as the MNIST data set.
Our proposed approach estimates an ID of about 6 for most points, whereas
the distance-based approaches peak around 10 to 11. From neighborhood sizes
of 100 upwards, the distance-based approaches, however, start forming a sec-
ond peak at the same ID as the angle-based approaches, visible in Fig. 9. A
possible explanation could be that the MNIST data set is not uniformly ran-
dom on the manifold, whereby small environments are too noisy for distance-
based approaches. On the 5000-dimensional variant Gisette of this data set, the
added noise harshly increased the estimates of the distance-based approaches.
The angle-based approaches, however, estimate a slightly lower ID of about 4
for most points. We consider the smaller change of the angle-based estimates
as more plausible, even though the proposed estimates for the Gisette data set
might be slightly too low as the high-dimensional noise might have sparsened
the local neighborhoods too much. Nevertheless, we observe that the angle-based
approach can be more robust against noise in such a semi-real scenario.

Fig. 9. Histograms of ID estimates for MNIST and Gisette with 300 neighbors.

5.5 Estimator Interactions

These experiments can also give some insight into the differences and interac-
tions of the different estimators. As expected from theory, IDABID and IDRABID

converge towards the same value for sufficiently large neighborhood sizes.
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Because it is trivial to compute both estimators at once, we can use the differ-
ence of the estimates to assess the quality; if they differ much we may need larger
sample sizes, if they are close the sample size should be sufficient for this dimen-
sionality. Because the angle-based estimators appear to require fewer samples
than the distance-based approaches, this may also help to choose neighborhood
sizes for these methods. Secondly, if the angle-based estimates are much smaller
than the distance-based estimates, the data set might not be sufficiently densely
sampled for this dimensionality; if the angle-based estimates are much larger
than the distance-based estimates, the embedding may be highly non-linear (as
in the Koch snowflake example), or may not preserve local density.

6 Conclusions

In this paper, we propose a novel approach to estimate local intrinsic dimension-
ality, along with two estimators, IDABID and IDRABID. Instead of analyzing the
expansion rate, as previous distance-based approaches do, the novel approach
focuses on the geometry characterized by pairwise angles. We have given an
a priori derivation of the novel estimators derived from integral geometry. Our
experimental evaluation suggests that the novel approach may be more robust
against noise, computes a bit stabler estimates, and gives estimates as reason-
able as distance-based estimators, albeit of a different nature. We have further
discussed how the difference between estimates can hint at particular effects in
the data. The presented approach does not yet fully utilize all interactions of
the pairwise angles within a neighborhood, which could lead to an improved ID
estimation in future work by incorporating ideas of [3]. Future work may also
investigate using higher-order moments, as well as robust estimation techniques
for the second moment, such as the median average deviation or L-moments [11].
As E[C] 
 0 indicates points remote from their neighbors, this can be interesting
to integrate into an outlier detection method based on intrinsic dimensionality,
which would yield a hybrid of ABOD [17] and LID outlier detection [15].
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Abstract. Similarity search using metric indexing techniques is largely
a solved problem in low-dimensional spaces. However techniques based
only on the triangle inequality property start to fail as dimensionality
increases.

Since proper metric spaces allow a finite projection of any three
objects into a 2D Euclidean space, the notion of angle can be validly
applied among any three (but no more) objects. High dimensionality
is known to have interesting effects on angles in vector spaces, but to
our knowledge this has not been studied in more general metric spaces.
Here, we consider the use of angles among objects in combination with
distances.

As dimensionality becomes higher, we show that the variance in sam-
pled angles reduces. Furthermore, sampled angles also become correlated
with inter-object distances, giving different distributions between query
solutions and non-solutions. We show the theoretical underpinnings of
this observation in unbounded high-dimensional Euclidean spaces, and
then examine how the pure property is reflected in some real-world high
dimensional spaces. Our experiments on both generated and real world
datasets demonstrate that these observations can have an important
impact on the tractability of search as dimensionality increases.

Keywords: Metric search · High dimensional space

1 Introduction

The context of interest is searching a (large) finite set of objects S which is a
subset of an infinite set U , where (U, d) is a metric space: that is, a pair (U, d),
where U is a domain of objects and d is a total distance function d : U ×
U → R, satisfying postulates of non-negativity, identity, symmetry, and triangle
inequality. The general requirement is to efficiently find members of S which
are similar to an arbitrary member of U given as a query, where the distance
function d gives the only way by which any two objects may be compared. There
are many important practical examples captured by this general mathematical
framework, see for example [4,14]. There are two main types of query: range and
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nearest-neighbour search. The range search for some query q ∈ U and threshold
t ∈ R is defined as having the solution set R = {s ∈ S| d(q, s) ≤ t}. More
practical in many contexts is the nearest-neighbour (kNN) search where the
solution set comprises the k closest objects to a query.

The essence of metric search is to spend time pre-processing the finite set S
so that solutions to queries can be efficiently calculated. In all cases distances
among members of S and selected reference or pivot objects are calculated during
pre-processing. At query time the relative distances between the query and the
same pivot objects can be used to make deductions about which data values
may, or may not, be candidate solutions to the query. Such deductions are based
upon the triangle inequality property of the metric.

1.1 Distances and Angles

In this paper we consider not just the measured distances among objects, but
also the angles implied by these distances. In any metric space, the triangle
inequality property also implies a finite 3-embedding in 2D Euclidean space [5],
and so it is valid to discuss the angles of a triangle constructed according to
the distances among any three objects selected from the space. It is important
to stress that, in this paper, this is the only notion of angle that we use; thus
our discussion is valid with respect to any proper metric space, not just vector
spaces.

In the context of metric search, we are interested in the distribution of angles
∠pqsi where objects p and q are fixed, and si is sampled within a relatively small
bounded distance from q. This is typical of a situation where p represents some
reference object, q represents a query object, and si is sampled from the solution
objects of the query. Note that the situation described generalises to both range
and nearest-neighbour queries.

In general, we compare this distribution of angles with the alternative distri-
bution of ∠pqxi where the same p and q are selected, but where xi is sampled
from the entire metric space without constraint. We find that in many cases,
especially in high-dimensional spaces, these distributions differ significantly. This
information can be used to effect within existing metric access methods, and fur-
thermore gives a geometric explanation to phenomena that have been previously
observed, but not previously explained, in approximate indexing techniques.

The main observation of this paper is that the following usually hold in
high-dimensional metric spaces:

– if three values p, q, x are randomly sampled, then the mean of the angle ∠pqx
is 60◦, and the variance in this measurement decreases as dimensionality
increases;

– however if values p, q are fixed, and then si is sampled from a sufficiently
small fixed distance bound of q, then the mean of the angle ∠pqsi is greater
than 60◦, and again the variance decreases as dimensionality increases.

We show how these observations can be used to effect in approximate search
techniques.
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1.2 Contributions

It is generally known that, as the dimension of a vector space increases, the prob-
ability of two independently selected vectors being close to orthogonal increases.
In Sect. 3 we show that in an unbounded Euclidean space, for any values of a and
b, and c sampled within a distance bound t of b, the mean angle ∠abc is 90◦, and
the variance decreases according to the dimension of the space. This corollary
allows the angles to be calculated using only the distances among three objects,
rather than from the values of two vectors, and thus allows the possibility of
extension into general metric spaces.

We show that this effect can be used to determine an upper bound on the
probability of a randomly selected point lying in the intersection of hyperspheres
centred on a and b, and how this probability may be used to construct approxi-
mate search mechanisms. We show that this probability is related to the function
sinn θ where n is the Euclidean dimension. This can lead to very low probabilities
in some cases, and thus highly accurate approximations.

In Sect. 4 we show by experiment that this theory holds perfectly in a
bounded uniform Euclidean space, as long as the position of b and the distance
d are fixed to ensure that the hypersphere described by <b, d> is fully enclosed
in the space. However, in many high-dimensional search spaces, this does not
hold. This is because the hypersphere <q, t>, where q is a query object and t is
a distance bound which includes elements of the finite search space, may include
a significant region that lies outside the boundaries of the space. Nonetheless for
such spaces there still exists a predictable distribution of sampled angles which
is different from randomly sampled angles. We introduce an observed correlation
between outlierness and the distribution of angles in these spaces.

Finally in Sect. 5 we study some “real-life” high-dimensional metric search
spaces to check if the theoretical observations still hold. We find that, while
compromised from the pure model, there is still a useful distinction between the
angle distributions of query solutions and non-solutions, and furthermore this is
observable in non-Euclidean metric spaces as well as Euclidean spaces. We show
some experiments which use a variant of LAESA to demonstrate a practical
application of our observations. For all of the datasets used, a relaxation on the
exclusion condition based on the angle-enhanced analysis allows substantially
more exclusion while still maintaining almost perfect accuracy.

2 Related Work

The distribution of vectors within high-dimensional vector spaces is discussed in
a book chapter by Hopcroft and Kannan [2]. This introduces the notion of the
90◦ angle norm in discussion of an “annulus” within the hypersphere. However,
the subtleties of the hypersphere being only partially embedded within the data
space are overlooked.

In [3], the authors state that it is “a matter of folklore” that “all high
dimensional random vectors are almost always nearly orthogonal to each other”.
They quantify this with a probability density function, directly proportional to
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sin(n−2) θ, for the angle between two vectors randomly sampled from a uniform
distribution on the surface of an n-dimensional hypersphere. This is consistent
with our distribution, which is proportional to sinnθ, considering points uni-
formly distributed within a segment of the hypersphere. They also observe the
close relationship between the function sinnθ and a related normal distribution,
as we use in Sect. 3.

Pramanik et al. [12] give an expression for the volume of a hypersphere in
an n-dimensional Euclidean space, and imply a derived PDF for angles which
is proportional to sinnθ. They do not give a derivation of their volume formula.
Perhaps as a result of this, their implication of the relationship between volume
and probability is incorrect, and in fact the density function should be propor-
tional to sin(n−2)θ as above.

They go on to use an angle-based relaxation of a ball partitioning mechanism
to improve performance of a single-pivot mechanism, the AB Tree, which they
show to be effective in terms of increased performance versus a small loss in
accuracy. There are however a number of issues with their presentation which we
clarify in our work. First, they overlook the fact that as dimensions increase the
theoretical distribution becomes ever less true due to the inability of a bounded
data space to contain the query hypersphere. They present graphs showing a
perfect distribution over a search space which we have been unable to reproduce.
Most importantly, the conceptual basis of their optimisation depends on the
angle ∠qpisj , where q is the query, pi is the centre of a ball partition, and sj is a
potential solution to the query. This implies that the radius of the search space
around the query object is larger than the radius of the data which is being
pivoted by pi, which could not occur in a high-dimensional space.

We have been able to synthesise large numbers of uniformly distributed val-
ues within very low-volume hyperspheres thanks to a technique shown by Voelker
et al. [13]. This has been extremely valuable as, in high dimensions, it is effec-
tively impossible to otherwise find uniformly distributed points within a given
hypersphere.

Finally, there are many papers that give results based on relaxing the strict
condition of triangle inequality in ball partitioning, increasing the efficiency of
the mechanisms at cost of giving approximate results. We believe that our work
here goes a long way to explain the effectiveness of such mechanisms in high-
dimensional spaces.

3 Unbounded Euclidean Spaces

The orthogonality of vectors in high dimensional spaces, once quantified, can
give useful insights with respect to single pivot exclusion, in particular towards
assessing the probability of an object lying within the intersection of two hyper-
spheres. Traditional metric search techniques allow only that this is zero when
the sum of the radii is greater than the distance between the centres; we are
interested in quantifying the probability of an object from the finite space lying
within an intersection of the infinite space. However given a high probability of
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restricted angles in high dimensional spaces, many overlapping hyperspheres will
have a very low probability of the geometric intersection containing any elements
of a given finite space.

Fig. 1. On the left hand side, the figure shows how the intersection of the hyperspheres
is contained in the segment of the hypersphere around q defined by θ. The graph on
the right hand side shows the probability of a randomly selected point from within the
hypersphere also being in this segment, as x in the left hand figure varies between 0
and 2t. This therefore gives an upper bound on the probability of such an object in
the intersection.

The left hand side of Fig. 1 shows how a restriction of angles is useful in metric
search. p and q represent hypersphere centres, where a finite metric space S has
been divided during pre-processing into Sout and Sin according to a distance
m from a pivot p. q represents a query, to which solutions are being sought
within the threshold distance t. Since the hyperspheres intersect, according to
the distance d(p, q) calculated at query time, Sin cannot be excluded using the
metric properties alone.

With respect to the hypersphere centred around q, consider the segment
defined by the angle θ. If, for all elements si ∈ S such that d(q, si) ≤ t, the angle
∠pqsi is greater than θ, then the finite intersection is empty and the set Sin can
be excluded from the search. If there is a high probability of vectors pq and qsi

being close to orthogonal, there will be a correspondingly high probability of the
intersection being empty.

In a general Euclidean space of course this can never be guaranteed; however
as we will show, as the dimension of the space increases, the probability of
an individual point from a uniform distribution being within the intersection
may become very small. The right hand side of Fig. 1 gives probability density
functions (PDFs), in various dimensions of Euclidean space, for the displacement
x for a randomly selected point within the solution space.

It can be seen that, for higher dimensions, the probability of a point lying
with the intersection is very low. We will proceed to give a quantification of
an upper bound which is easily calculated. In the remainder of this section, we
derive a PDF and quantify the examples shown in the figure.
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3.1 Volume of a Hypersphere

The volume of a hypersphere of radius r can be expressed in terms of the volume
of the unit hypersphere (i.e. r = 1) as

Vn(r) = vnrn (1)

where vn is the volume of the unit hypersphere. Equation (1) is well known in a
more general context, and straightforward to demonstrate1.

The intersection of a hyperplane in R
n with a n-ball is an (n − 1)-ball.

Considering a unit (n − 1)-ball bn−1 centred on the origin, the volume of the
unit n-ball can be written as an integral of volumes of (n−1)-balls by considering
hyperplanes orthogonal to the X1-axis:

vn =
∫

b

dx1 . . . dxn =
∫ 1

−1

(∫
bn−1 ∩ {X1=z}

dx2 . . . dxn

)
dz (2)

As depicted in the left-hand side of Fig. 2, the intersection bn ∩ {X1 = x}
is an (n − 1)-ball of radius r =

√
1 − x2, thus its volume is Vn−1(

√
1 − x2) and

Eq. (2) can be rewritten as

vn =
∫ 1

−1

Vn−1(
√

1 − x2)dx

which then, according to Eq. 1 gives

vn = vn−1

∫ 1

−1

(√
1 − x2

)n−1

dx

as vn−1 may be removed from the integral as it is a constant.

x

y

r = 1

(−1, 0) (1, 0)

f(x) =
√
1 − x2

x

y

r = 1

θ

f(x) = sin θ

Fig. 2. Volume of a (3D) unit sphere:
∫ 1

−1
π

(√
1 − z2

)2
dz =

∫ π

0
π sin3 θ dθ

Finally, by considering, as shown on the right hand side of Fig. 2, that x can
be written as cos θ and then f(x) = sin θ, integrating by substitution we have

∫ 1

−1

(√
1 − x2

)n−1

dx =
∫ 0

π

(√
(1 − cos2 θ)

)n−1

(− sin θ)dθ =
∫ π

0

(sinθ)ndθ

1 Vn(R) =
∫

Bn(R)
1 dx1 . . . dxn =

∫
Bn(1)

Rn dy1 . . . dyn = RnVn(1), where we inte-

grate by substitution with xi = Ryi for all i.
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So finally putting all the pieces together we have an expression for the volume
of a hypersphere of radius r in n dimensions:

Vn(r) = rnk

∫ π

0

sinnxdx (3)

for a constant k.

3.2 Derivation of the PDF

To construct a PDF, we note that Eq. 3 derives from a Riemann integral of
infinitesimal hyperspheres, in n − 1 dimensions, each orthogonal to a diame-
ter through the centre of the n-dimensional hypersphere. Considering the left-
hand side of Fig. 1, the integration may notionally be performed along the axis
pq within any (n − 1)-dimensional hyperplane containing p and q. Then the
angle θ in the figure corresponds to the integral variable x in Eq. 3. Thus, the
volume in the green-shaded area of the figure is given by the definite integral
tnk

∫ θ

0
sinnxdx. Within a uniformly populated space, the PDF of a point being

within the defined segment, with respect to the angle θ, is therefore directly
proportional to h(x) = sinnx, x ∈ [0, π].

The PDFs shown in the right hand side of Fig. 1 are produced by applying
this function to cos x

t , where x is the distance from q along the line pq, in order
to convert the angular dependence to a distance along the pq axis. The outcome
is then divided by the volume of the hypersphere around q to normalise the area
under the curves.

Quantifying this PDF is non-trivial. However, for high values of n, the func-
tion sinn x becomes almost indistinguishable from a related Gaussian, and in
turn the related PDF becomes almost indistinguishable from that of a normal
distribution, and thus readily available. For large n, for example n > 15, the
PDF function is almost indistinguishable from that of a normal distribution
with μ = π

2 and σ = 1√
n
. This observation has also been made by [3], and is

discussed in [1].

3.3 Examples of Overlap in Unbounded Euclidean Spaces

Table 1 gives probability calculations, for Euclidean spaces of various dimensions,
for the situation shown in Fig. 1, where d(p, q) = m + t

2 . These figures corre-
spond with the probability density functions shown in the Figure. Two points are
notable: first, how small the probabilities become as dimensions increase, even
with this significant amount of overlap; secondly, how the normal distribution
estimate gives an increasingly small error as the dimension increases.



240 R. Connor and A. Dearle

Table 1. Probability of Inclusion

Dimension Probability Normal estimate

2 0.195 0.228

10 0.0405 0.0479

20 0.0074 0.0093

30 0.0015 0.0020

Table 2. Proportion of queries within unit cube

Metric Inside cube Outside cube

Euc10 87.57% 12.43%

Euc20 51.15% 48.85%

Euc30 35.88% 64.12%

4 Experiments in Generated Euclidean Spaces

In the following experiments we use a number of different generated Euclidian
spaces with individual coordinates drawn from a Gaussian distribution. Data
points in these spaces have 10, 20 and 30 coordinates and are referred to as
EUC10, EUC20 and EUC30.

In the following experiments we examine the mean and variance of angles abc
within various spaces. In the first experiment a, b and c are sampled uniformly
from within the space. The results of this experiment are shown in the brown
(left hand) distributions in Fig. 3. In all cases the average angle is close to 60◦

with standard deviations of 16.5◦, 11.25◦, 9.11◦ for Euc10, 20 and 30 respec-
tively. As can be observed from the figure the standard deviation drops as the
dimensionality of the data-set increases.

In the second experiment a and b are sampled uniformly from the space
but the third point c is constrained to be both within a threshold of the query
point b and within the unit cube. For each experiment the radius of the hyper-
sphere is calibrated to return one-millionth of the data-set. For EUC10, EUC20
and EUC30 these are: 0.229, 0.602 and, 0.727 respectively.2 The results of this
experiment are shown in the blue (right hand) distributions in Fig. 3. As can
be seen the angle is close to 90◦ and like the earlier experiment the standard
distribution of angles reduces with increasing dimensionality of the data-set.

4.1 Query Regions Lying Outwith the Unit Cube

In the above experiment we constrained the third points c to be within the
sampled space. To determine the proportion of the query ball that lies outwith

2 If the radius of the hypersphere is constrained to be within the unit cube rather
than at the defined radii the results are identical.
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Fig. 3. Distance distributions for constrained and unconstrained triples

the unit cube we performed the following experiment on each of the Euclidean
spaces. We randomly sampled one thousand points from within the space. For
each point we uniformly sampled a further thousand points from within the
hypercube of radius set to be the standard thresholds (described above) and
measured if the point is within the unit cube or not. The results of running the
experiment is shown in Table 2. As can be seen, the proportion of the hypersphere
outwith the unit cube increases dramatically as the dimensionality of the data-
set increases.

4.2 Prediction of the Angle Distribution

To understand the effect of the relationship between where queries are in the
space and the resultant angles we conducted the following experiment. We sweep
a hyper sphere up the diagonal of the unit hyper cube (in some dimension) from
the origin to the opposite corner (1, .., 1) in intervals of 0.01. The radius of the
hypersphere is set using the standard thresholds used above. We examine the
mean and variance of angles ∠abc as follows. a is a fixed viewpoint which is
always the centre of the unit cube3, b is set to be a point along the diagonal of
the cube (0, 0, ..., 0) to (1, 1, ..., 1), and for each instance of b, c is sampled from
within a fixed hypersphere centred around b as before. As before, we discard any
points that are not within the (0, .., 0) − (1, .., 1) hypercube – i.e. those points
3 We separately established that the viewpoint does not affect the measured angles.
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that cannot be legal solutions to the query. In each case 1 million points from
within the hyper sphere are chosen randomly and those lying outwith the unit
cube are discarded. During this process we also measure outlierness using a Local
Intrinsic Dimensionality (LIDIM) maximum likelihood estimator due to Levina
& Bickel [9]. To determine outlierness, we apply this formula using distances to a
set of reference points rather than calculating LIDIM using a set of neighbouring
points.

Fig. 4. Constrained Angles in the EUC20 Dataset

The results of these experiments are shown in Fig. 4. These four plots demon-
strate a number of different interesting facets of the query solutions. Firstly, it
can be seen that angles ∠abc are far from uniform. At the edge of the unit cube
they rise and fall rapidly as the hyper sphere approaches the vertices of the unit
cube. When the hypersphere approaches the centre of the cube the angles tend
towards 90◦. Secondly the distribution of angles are not constant. As the sphere
approaches the centre of the cube they rise to a relatively constant variation of
approximately 13.1◦. Thirdly, the number of points inside the cube vary greatly.
Close to the vertices of the cube the number of legal points tend towards zero
whereas in the centre all of the 1 million sampled points are within the cube.
Lastly, a good approximation to how much of an outlier a point is can be made
by using the LIDIM formula with a fixed set of reference points as described
above.
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5 Experiments in Other Spaces

In this section we test the value of the angle analysis by examining pivot exclu-
sion, enhanced by angle analysis, in a LAESA-like framework. We should stress
that these experiments are to test the proof of the concept only; we believe that
more sophisticated mechanisms can take advantage of the angle information to
much better effect.

Table 3. Data sets

Name Dimensions Derivation Preparation Metric

MfAlex 4096 MirFlickr fc6 layer AlexNet, no RELU Euclidean

DeCaf 4096 Profiset fc7 layer AlexNet, post-RELU Euclidean

AnnSift 128 MirFlickr �2 normalised Euclidean

MfGist 480 MirFlickr �1 normalised Jensen-Shannon

We used four different high-dimensional data sets with different properties,
as summarised in Table 3. MfAlex is derived from the application of the AlexNet
[8] convolutional neural network on the MirFlickr image collection4. The data
used is extracted from the first fully connected layer (fc6). DeCaf descriptors
[7] are extracted from the Profiset image collection5 using AlexNet, from which
the fc7 post-Relu layer is extracted. AnnSift descriptors [10] are taken from the
ANN SIFT1M dataset6. Although queried with the �2 distance, these vectors
are �2 normalised and thus this metric acts as a proxy for Cosine distance.
MfGist is derived using GIST [11] image descriptors over the MirFlickr 1M image
collection. These descriptors are queried using the Jensen-Shannon distance,
which has been shown to be the best metric for near-duplicate detection [6].

Of the four data sets, only the first therefore represents a true Euclidean
space where each dimension contains a range of positive and negative values. We
have deliberately chosen this range of data sets to examine whether the angular
properties which are clear in unbounded Euclidean spaces follow in more general
metric spaces. The four spaces all contain one million objects, and in each case
a ground truth is known for one thousand queries, each of which has 100 known
nearest neighbours.

The queries are divided into two equal sets, the first of which is used to
perform analysis over the space, and the second of which is used to test a search
mechanism using that analysis.

5.1 Correlation of Outlierness and Angle

Our hypothesis is that for any high-dimensional space, the distribution of angles
∠piqsj , where pi is selected from a set of reference points, q is a query and
4 https://press.liacs.nl/mirflickr.
5 http://disa.fi.muni.cz/profiset/.
6 http://corpus-texmex.irisa.fr/.

https://press.liacs.nl/mirflickr
http://disa.fi.muni.cz/profiset/
http://corpus-texmex.irisa.fr/
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Fig. 5. Correlation between query outlierness and mean angle ∠piqsj , where sj is a
solution to query q. The lines show the best-fit quadratics, used in the experiments in
Sect. 5.

Fig. 6. Correlation between query outlierness and mean angle ∠piqsj for the non-
Euclidean spaces.

sj is selected from solutions to that query, will be constrained in comparison
with randomly sampled angles from the space, and will be correlated with the
outlierness of the query (Figs. 5, 6).

A randomly selected set of 256 objects was selected from the dataset to act
as reference objects. For each query q, for each pi in the reference set, and for
each sj in the known solution set, the angle ∠piqsj was measured and the mean
and variance recorded.

For each q, an approximation to the outlierness was calculated based on the
distances d(pi, q) for each reference object using the maximum likelihood esti-
mator as described above [9]. The scatter plots in Fig. 6 show a clear relationship
between query outlierness and the mean angle. It is clear in all cases that the
majority of angles are greater 60◦ and are thus distinct from the angles within a
randomly selected triplet. The angles depicted on the scatters are averaged over
the query’s 100 nearest neighbours, and in all cases the standard deviation is
quite low - almost always less than 10◦. The implication, in terms of the analysis
shown in Sect. 3, is that exclusion may safely occur in many situation where its
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safety cannot be guaranteed by triangle inequality alone. We quantify this in the
next section.

5.2 Use in Querying

In this section, a simple search mechanism is applied in order to give experimental
validation of the principles outlined7.

The search mechanism used is a variant of LAESA. From the data set S,
a randomly selected subset P of 256 reference objects8 is removed. The pre-
processing phase comprises the calculation of a distance table between each
reference object pi ∈ P and each remaining member sj of S. At query time,
the distance between the query and pi is calculated. The possibility of exclusion
of each object sj is determined by scanning the appropriate row of the pre-
calculated distance table. In the normal LAESA algorithm, exclusion may occur
if and only if |d(pi, sj) − d(pi, q)| > t, where t is the threshold distance for that
query. In that case, it is impossible for the hypersphere of radius t centred on q
to contain sj , and the distance d(q, sj) does not require to be calculated.

The pure LAESA mechanism is adapted to perform exclusion even in some
cases where |d(pi, sj) − d(pi, q)| ≤ t, as depicted in Fig. 1. For each query q,
the set of distances d(q, pi) is calculated as usual. These distances are first used
to measure an estimate of outlierness, as described in Sect. 5.1, and thus to
determine an estimate γ of the mean angle ∠pqsi in cases where d(q, si) is small.
In our experiments, a fixed amount of variance τ is allowed, with the intent
that, for all solutions, the angle ∠pqsi is highly likely to lie within the bounds
γ ± τ . Now, for all values sj from the finite set, and for each pi, the angle θ is
calculated9 from the values d(pi, sj), d(pi, q) and t. If the angle θ lies outside the
range γ ± τ , then sj is excluded without performing the calculation d(q, sj).

In the experiments over all the data sets we report outcomes using a range of
fixed tolerances between 0.3 and 0.65 rad. Finally, each experiment is repeated
with a tolerance of π

2 radians, which effectively makes exclusion impossible other
than when allowed by the pure LAESA mechanism.

Results for the four data sets are shown in Fig. 7. The left hand graph shows
the cost per query for the different tolerances; as expected, a smaller tolerance,
resulting in a larger cutoff angle θ, gives a lower cost. The right hand graph
shows recall for the same tolerances. As noted, this mechanism always gives
perfect precision.

The results fully justify our derived model. For all data sets, a tolerance
value of around 0.6 rad gives almost perfect recall. This value implies that all
query solutions, in these spaces, do indeed lie within an arc of 1.2 rad in the

7 Source code is available from https://github.com/aldearle/SISAP2020 angles or
from the authors.

8 The same number is used across all sets to allow fair comparison, even although for
example the cost of performing an exclusion for AnnSift may be greater than the
cost of measuring the distance directly.

9 Unless |d(pi, sj) − d(pi, q)| > t, when exclusion can occur in any case.

https://github.com/aldearle/SISAP2020_angles
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Fig. 7. Test results with LAESA with increasing tolerance. The left figure shows cost,
as the number of distance calculations performed divided by the size of the data. The
right hand figure shows recall. The values at the right hand side of each graph equate
to those for an unmodified LAESA mechanism.

2D projection, implying that over half of the angular space is empty. It is also
noteworthy that the data sets with higher costs for the unmodified LAESA give
perfect recall with lower tolerance levels. It is reasonable to assume that this is
a consequence of a higher inherent dimensionality leading to a tighter clustering
of the angles within the 2D projection.

6 Conclusions and Future Work

We have taken an observation from high-dimensional vector spaces and applied
it to general metric spaces by way of a derived approximate search paradigm. We
have shown an underlying mathematical model which explains a related effect in
unbounded, uniform Euclidean spaces, and demonstrated it experimentally. We
have shown that, unfortunately, the effect does not hold perfectly in bounded
high dimensional search spaces. This is because the radius required to capture
query solutions in a finite space far exceeds the boundaries of the space.

We have demonstrated nonetheless an interesting restriction in the distribu-
tion of angles in metric spaces, and in particular that the angles from a reference
point, via a query, to a query solution are significantly different from angles ran-
domly sampled from the space.

We have outlined how this may be used to conduct a probabilistic search,
and a trade-off is shown between query efficiency and accuracy in spaces which
are otherwise intractable for exact search. We believe that this topic has much
further promise; our present analysis of the spaces is based on a relatively crude
measure of query outlierness, and we believe a more sophisticated analysis of
the space may result in a finer-grained understanding of the angle distribution,
as well as further query mechanisms based on it. In particular, we have not yet
examined the effect of the restricted angles on hyperplane exclusion mechanisms,
nor in conjunction with the four-point property of supermetric spaces.
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Abstract. In artificial intelligence, machine learning, and other areas
in which statistical estimation and modeling is common, distributions
are typically assumed to admit a representation in terms of a probability
density function (pdf). However, in many situations, such as mixture
modeling and subspace methods, the distributions in question are not
always describable in terms of a single pdf. In this paper, we present a
theoretical foundation for the modeling of density ratios in terms of the
local intrinsic dimensionality (LID) model, in a way that avoids the use
of traditional probability density functions. These formulations provide
greater flexibility when modeling data under the assumption of local
variation in intrinsic dimensionality, in that no explicit dependence on a
fixed-dimensional data representation is required.

1 Introduction

1.1 Probability Density and Dimensionality

Modelers in computer science disciplines such as artificial intelligence, machine
learning, and pattern recognition typically base their analyses on a distributional
view of their data sources, either in terms of parametric approaches involving
standard distributions, or through nonparametric approaches.

For applications in which the data is continuous in nature, and in the sup-
porting domains of continuous statistical modeling and probability theory, the
concept of probability density is ubiquitous. In continuous domains, the absolute
probability associated with any single event is typically zero, due to the infinite
number of possible outcomes. For this reason, theoreticians and practitioners
alike have been concerned with the relative likelihood of generation of one given
sample value compared to another, as taken over infinitesimally-small volumes
of positive probability measure that contain the values of interest. These density
values, when integrated over the domain, account for its full probability measure,
which is 1 by definition.

Not all distributions of interest admit a probability density function (pdf).
Perhaps the most famous and important example is that of mixture distributions
derived from a collection of random variables. Sampling from a mixture distri-
bution involves a two-stage process, in which a distribution is first selected from
c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 248–260, 2020.
https://doi.org/10.1007/978-3-030-60936-8_19
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∫ 1

0

dy dx = dy → 0

(a) Unit interval

∫∫ 1

0

dy dx = 1

(b) Unit square

∫∫∫ 1

0

dy dx =
1
dz

→ +∞

(c) Unit cube

Fig. 1. Application of a 2-D pdf in uniform distributions in 1-D, 2-D, and 3-D domains.
A 2-D pdf expresses probability density as a ratio between probability mass and area.
Since the 1-D interval has area 0, and since the 3-D cube has infinite area, integration
of the 2-D pdf over the interval and the cube (in terms of the infinitesimal product
dy dx) would produce the values 0 and +∞, respectively.

the mixture according to some probability associated with it, and then a value is
generated from the selected distribution. Although each of the constituent dis-
tributions of the mixture can be associated with a probability density function,
in general the mixture distribution as a whole may not. As an illustrative exam-
ple, consider the situation in Fig. 1 in which with equal probability a sample can
be selected from one of three uniform distributions: over a 1-dimensional unit
interval, over a 2-dimensional unit square, or over a 3-dimensional unit cube.
Each of the three pdfs of the mixture, when integrated over its own domain
(interval, square, or cube), would return a value of 1. However, taking the 2-D
pdf of the square domain and integrating it over the 1-D interval domain would
produce a result of 0, whereas its integration over the 3-D cube would diverge to
+∞. Accordingly, it is not possible to devise a single probability density function
capable of representing this mixture distribution as a whole.

Standard techniques for the direct estimation of probability density (such
as multivariate kernel density estimation [35]) can be problematic when the
data dimensionality is assumed to be large and fixed. As the example in Fig. 1
shows, standard formulations of probability density as an integrand over the
distribution domain explicitly depend on the dimensionalities of the infinitesi-
mal volumes over which the integration is performed. In settings for which the
numbers of features is very large, data analysis models that rely on forms of
density estimation can exhibit bias in terms of the number of features that are
relevant to individual localities within the domain, and the degree of correla-
tion and other interactions among these features. Variations in the numbers of
relevant features from locality to locality within the domain, together with vast
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differences between the (local) relevant feature dimension and the total (global)
feature dimension, can greatly degrade the effectiveness of the distributional
model in data analysis applications.

1.2 Volume, Dimensionality, and Similarity

Although direct estimation of probability density can be problematic, data anal-
ysis that relies on a comparison between two probability densities can (explicitly
or implicitly) benefit from modeling in terms of their ratios. In recent years,
density ratio estimation has been well-studied as an important area in its own
right [34], and has been widely adopted throughout AI and machine learning.
In addition to being used to compare the relative concentration of data between
two locations within a common distribution, it has also served as the foundation
of popular measures of the similarity between two data distributions on com-
patible domains, such as the Kullback-Leibler (KL) divergence [27] and other
f -divergences [28]. Although direct estimation of ratios has been shown to be
inherently biased for small sample sizes [9,33], division of one probability den-
sity by another has the advantage of producing a unitless quantity independent
of local dimensional assumptions. Nevertheless, it should be noted that KL-
divergence and other distributional similarity measures typically integrate these
ratios of probability density over the entire domain (of one of the two distri-
butions), thereby reintroducing fixed-dimensional infinitesimal volumes into the
data model.

The domains of continuous distributions are typically equipped with a sim-
ilarity (or dissimilarity) measure through which the interrelationships among
data are modeled and assessed. In many situations in machine learning/and
data mining, modelers and practitioners tend to view similarity-based density
estimation as an acceptable proxy for volume-based density estimation. How-
ever, in general this is not the case: volume tends to increase not linearly with
distance radius, but with that radius raised to the power of the data dimension.

In this paper, we explicitly acknowledge this disparity between radius and
volume by investigating the issue of density ratios from the perspective of the
recent Local Intrinsic Dimensionality (LID) [15,16] model. LID is a distributional
form of intrinsic dimensional modeling in which the volume of a ball of radius
r is taken to be the probability measure associated with its interior, denoted by
F (r). The function F can be regarded as the cumulative distribution function
(cdf) of an underlying distribution of distances.

Theoretical properties of LID in multivariate analysis have been studied
recently [17]. LID and related expansion-based measures of intrinsic dimensional-
ity [18] have also seen applications in such areas as similarity search [3,8,19–22],
dependency analysis [31], feature selection and ranking [4,13,23], outlier detec-
tion and its analysis [11,24,32], and deep learning [29,30]. Practical estimators
of LID have been developed based on interpoint distances within neighborhood
samples [1,2], which trace their roots to the estimation of the generalized pareto
distribution (GPD) shape parameter [14] developed within the statistical disci-
pline of extreme value theory (EVT).
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1.3 Overview

The goal of the paper is to introduce a theoretical foundation that can serve
for modeling density ratios in terms of LID, without recourse to the traditional
formulation of probability density. After first briefly surveying of the LID model
in the next section, in Sect. 3 we present several results relating the limits of
functions with properties appropriate to density ratio modeling: namely, the
functions are assumed to be smooth (continuously differentiable), positive, van-
ishing at zero, and of the form of a cdf of an induced distance distribution relative
to a reference location in a distribution of interest. In each theoretical statement,
the local intrinsic dimensionality is shown to influence the density ratio model
in a natural way. The paper is then concluded in Sect. 4.

2 Local Intrinsic Dimensionality

In this section, we give a brief overview of the extreme-value-theoretic LID model
of intrinsic dimensionality first introduced in [15]. For more information on the
model and its connections to the statistical theory of extreme values, please see
[10,16,17].

The LID model falls into the expansion family of intrinsic dimensional esti-
mation [18,26]. Like earlier expansion models, LID draws its motivation from
the relationship between volume and radius in an expanding ball around points
of interest. Unlike these models, the LID interprets volume as a function of the
same form as a univariate cumulative distribution function (cdf), representing
the probability measure F (r) captured by a ball of radius r. Although motivated
by applications involving the distribution of distance values, the model formu-
lation (as stated in [16]) generalizes this notion even further, to any smooth
real-valued function that is non-zero in the vicinity of r �= 0.

Definition 1 ([16]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. The intrinsic dimensionality of F at r is
defined as follows whenever the limit exists:

IntrDimF (r) � lim
ε→0

ln (F ((1+ε)r)/F (r))
ln ((1+ε)r/r)

= lim
ε→0

ln (F ((1+ε)r)/F (r))
ln(1+ε)

.

Under the same assumptions on F , when F can be interpreted as the cdf
of a distance distribution, the definition of LID can be regarded as equivalent
to a notion of indiscriminability. Intuitively, if an underlying distance measure
is indiscriminative at a given distance r, then expanding the distance by some
small factor should incur a relatively large increase in probability measure as
a proportion of the current value, F (r). Accordingly, the indiscriminability of
the distance variable is defined as the limit of the ratio of two quantities: the
proportional rate of increase of F (r), and the proportional rate of increase in r.
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Definition 2 ([16]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. The indiscriminability of F at r is defined
as follows whenever the limit exists:

InDiscrF (r) � lim
ε→0

[
F ((1+ε)r) − F (r)

F (r)

/
(1+ε)r − r

r

]
= lim

ε→0

F ((1+ε)r) − F (r)
ε · F (r)

.

When F satisfies certain smoothness conditions in the vicinity of r, its intrin-
sic dimensionality and indiscriminability have been shown to be identical:

Theorem 1 ([16]). Let F be a real-valued function that is non-zero over some
open interval containing r ∈ R, r �= 0. If F is continuously differentiable at r,
then

IDF (r) � r · F ′(r)
F (r)

= IntrDimF (r) = InDiscrF (r).

Let x be any reference location within a data domain S equipped with a
distance measure d. To any point y ∈ D we can associate the distance r =
d(x,y); in this way, any global data distribution over D induces a local distance
distribution with respect to x. Motivated by a need to characterize the local
intrinsic dimensionality in the vicinity of individual reference points, we are
interested in the limit of IDF (r) as the distance r tends to 0. For convenience,
for non-zero distances r we refer to IDF (r) as the indiscriminability of F at r,
and to ID∗

F � limr→0 IDF (r) as the local intrinsic dimension (or LID) of F.
In the ideal case where the data in the vicinity of x is distributed uniformly

within a submanifold in D, ID∗
F would equal the dimension of the submanifold;

however, in general these distributions are not ideal, the manifold model of data
does not perfectly apply, and ID∗

F is not necessarily an integer. Nevertheless,
the local intrinsic dimensionality would give an indication of the dimension of
the submanifold containing x that would best fit the data distribution in the
vicinity of x.

The indiscriminability function IDF can be seen to fully characterize its asso-
ciated function F .

Theorem 2 (LID Representation Theorem [16]). Let F : R → R be a
real-valued function, and assume that ID∗

F exists. Let x and w be values for
which x/w and F (x)/F (w) are both positive. If F is non-zero and continuously
differentiable everywhere in the interval [min{x,w},max{x,w}], then

F (x)
F (w)

=
( x

w

)ID∗
F · GF (x,w), where

GF (x,w) � exp
(∫ w

x

ID∗
F − IDF (t)

t
dt

)
,

whenever the integral exists.

In [16], conditions on x and w are provided for which the GF (x,w) can be seen
to tend to 1 as x,w → 0. The function GF (x,w) is related to the slowly-varying
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functions of long-standing interest within the EVT research community [10,25],
as it governs the rate of convergence of F to its ideal (asymptotic) form. Next,
we revisit this issue so as to prove statements useful for the analysis of limits of
density ratios, that do not explicitly rely on formulations involving GF .

3 LID-Aware Density Ratios

In this section, we present statements concerning the limits of ratios of two func-
tions, with properties that allow them to be applied to situations in which density
ratios are to be modeled. Instead of considering the ratio of pdfs over an infinites-
imal volume whose dimensions depend on knowledge of a full-dimensional coor-
dinate system (as in the usual sense of density ratio estimation), we instead
consider as the underlying volume spheres with infinitesimal radii. Local density
ratios can be then be described as ratio of two cdf functions of distance distri-
butions, each representing the probability measure captured by a sphere, whose
radii (the function arguments) both tend to zero in some fashion.

Although this work is motivated by an interest in modeling limits of density
ratios, the theoretical statements will be presented in a more generally applica-
ble way. Here, we assume only that the functions are smooth (continuously dif-
ferentiable), positive, and vanish at zero—all properties that are assumed, either
explicitly or implicitly, in traditional pdf-based density ratio estimation. For each
of the statements, we show how the existence of ratio limits relates to the underly-
ing local intrinsic dimensionalities of the two functions involved, in a natural way.

3.1 Limits of Ratios of Different Functions

Intuitively speaking, the first result to be presented shows that for a density
ratio limit to be greater than zero, the LID values of the numerator function
and denominator function must be the same—any difference in the LID values
would result in the limit either vanishing or diverging.

Lemma 1. Let α, β : R≥0 → R
≥0 be functions such that α(0) = β(0) = 0, and

for some value of r > 0, their restrictions to the interval (0, r) are continuously
differentiable and positive. Let us also assume that ID∗

α and ID∗
β both exist and

are positive. Further, let Δ = ID∗
β − ID∗

α, and let β0 be the function obtained by
decomposing β into β(u) = uΔ · β0(u). Consider the limits of ratios

λ � lim
u→0

β(u)
α(u)

and λ0 � lim
u→0

β0(u)
α(u)

.

If λ exists and is positive, then ID∗
α = ID∗

β. Alternatively, if λ0 exists and is
positive, then the following statements hold:

1. λ = 0 if and only if ID∗
α < ID∗

β (in which case Δ > 0);
2. λ > 0 if and only if ID∗

α = ID∗
β (in which case Δ = 0 and λ = λ0);

3. λ diverges to +∞ if and only if ID∗
α > ID∗

β (in which case Δ < 0).
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Proof. For the limit λ0 to exist, α(0) = 0 implies that β0(0) = 0 as well. Note also
that β0 must be continuously differentiable and positive over the full range (0, r).
L’Hôpital’s rule can therefore be applied together with Theorem 1, yielding

λ0 = lim
u→0

β0(u)
α(u)

= lim
u→0

β′
0(u)

α′(u)
= lim

u→0

IDβ0(u) · β0(u)
IDα(u) · α(u)

.

The right-hand limit can be separated to produce

λ0 = lim
u→0

β0(u)
α(u)

=
ID∗

β0

ID∗
α

lim
u→0

β0(u)
α(u)

=
ID∗

β0

ID∗
α

· λ0.

These equalities imply that whenever λ0 > 0, we have that ID∗
α = ID∗

β0
, and also

that ID∗
β = ID∗

β0
+Δ. Similar arguments also show that ID∗

α = ID∗
β whenever λ

exists and is positive.
The existence of limit λ0 has implications for the existence of λ, which can

be expressed as

λ = lim
u→0

β(u)
α(u)

= lim
u→0

uΔ · β0(u)
α(u)

= λ0 lim
u→0

uΔ.

Whenever λ0 exists and is positive, we have that λ behaves as the limit of uΔ

as u → 0, in that λ = 0 if and only if Δ > 0, and λ diverges to +∞ if and only
if Δ < 0. Otherwise, λ > 0 if and only if Δ = 0, in which case λ = λ0. ��

Lemma 1 tells us that in an asymptotic sense, density ratios are only meaning-
ful when the local intrinsic dimensionalities of the two functions are equal. This
accords well with what is already known of standard density ratios as defined
using probability densities. However, the LID model has a distinct advantage in
that it is implicitly defined for any locality that admits a ‘local’ distance distri-
bution, and that when modeling a ‘global’ distribution, no arbitrary universally-
fixed local intrinsic dimensionality need be imposed.

3.2 Parameterized Limits Involving a Single Function

Next, we turn our attention to the effect of applying a common function to the
numerator and denominator of an existing ratio. Equivalently, this situation can
be regarded as the effect on an existing ratio of two parameterized values of the
same function, as the common parameter tends to zero. Here, we state and prove
results showing that the LID Representation Theorem applies with simplified
conditions, in terms of the existence of a limit involving the parameterization
itself.

Lemma 2. Let F : R≥0 → [0, 1] be a non-decreasing function, and assume that
ID∗

F exists. Let α, β : R≥0 → R
≥0 be functions such that α(0) = β(0) = 0, and

for some value of r > 0, their restrictions to the interval [0, r) are continuously
differentiable and strictly monotonically increasing. For any constant c �= 0,

lim
u→0

(
β(u)
α(u)

)c

· GF (α(u), β(u)) = lim
u→0

(
β(u)
α(u)

)c

= λc (1)
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whenever the limit λ = limu→0
β(u)
α(u) exists and is positive. If instead c > 0 and

λ diverges to +∞, or if c < 0 and λ = 0, then the limits in Eq. 1 both diverge to
+∞. Otherwise, if c > 0 and λ = 0, or if c < 0 and λ diverges to +∞, then the
limits in Eq. 1 are both zero.

Proof. Since ID∗
F is assumed to exist, for any real value ε ∈ (0, r) there must

exist a value 0 < δ < ε < r such that t < δ implies that | IDF (t) − ID∗
F | < ε.

Therefore, when 0 < α(u) < δ and 0 < β(u) < δ,

ln GF (α(u), β(u)) =
∫ β(u)

α(u)

ID∗
F − IDF (t)

t
dt

|ln GF (α(u), β(u))| ≤ ε ·
∣∣∣∣∣
∫ β(u)

α(u)

1
t

dt

∣∣∣∣∣ = ε ·
∣∣∣∣ln β(u)

α(u)

∣∣∣∣ .

Exponentiating, and multiplying through by (β(u)/α(u))c, we obtain

(
β(u)
α(u)

)c−ε0

≤
(

β(u)
α(u)

)c

· GF (α(u), β(u)) ≤
(

β(u)
α(u)

)c+ε0

,

where ε0 = ε if β(u) ≥ α(u), and ε0 = −ε otherwise.
Let us assume that the limit λ = limu→0 β(u)/α(u) exists. If λ > 0, then

limu→0 (β(u)/α(u))c also exists, and equals λc. In this case, as ε and δ tend to
0, the monotonicity of α(u) and β(u) implies that u is driven to 0 as well. Thus,
we have that

lim
u→0

(
β(u)
α(u)

)c

· GF (α(u), β(u)) = λc = lim
u→0

(
β(u)
α(u)

)c

.

However, if λ = 0 or diverges to +∞, then similar arguments show that the
limits in Eq. 1 both diverge to +∞ (if c > 0 and λ diverges, or c < 0 and λ = 0)
or both converge to 0 (if c > 0 and λ = 0, or c < 0 and λ diverges). ��

Lemma 2 states conditions for which the LID representation function GF can
be ignored. Using the lemma leads to the following simplified restatement of the
LID Representation Theorem itself.

Theorem 3. Let F : R
≥0 → [0, 1] be a non-decreasing function, and assume

that ID∗
F exists and is positive. Let α, β : R

≥0 → R
≥0 be functions such that

α(0) = β(0) = 0, and for some value of r > 0, their restrictions to the interval
[0, r) are continuously differentiable and strictly monotonically increasing. Then

lim
u→0

F (β(u))
F (α(u))

= lim
u→0

(
β(u)
α(u)

)ID∗
F

= λID∗
F (2)

whenever the limit λ = limu→0
β(u)
α(u) exists. If instead λ diverges to +∞, then the

limits in Eq. 2 both diverge to +∞.
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Proof. Applying Theorem 2 to the first limit in Eq. 2 yields

lim
u→0

F (β(u))
F (α(u))

= lim
u→0

(
β(u)
α(u)

)ID∗
F

· GF (α(u), β(u)) .

The result then follows from Lemma 2, with c = ID∗
F . ��

3.3 Limits of Ratios of Inverse Functions

We next show the effect of taking the limit of ratios of the inverse of functions,
in terms of the original functions as well as their local intrinsic dimensionalities.
Here, we find that the limit of the ratio of the functions equals that of the ratio
of their inverses, raised to the power of the local intrinsic dimension of either
function.

When the original function limits are interpreted as the probability mea-
sure captured within neighborhoods whose radii tend to zero, the limits of their
inverse functions can be regarded as the radii associated with neighborhoods
whose captured probability measure tends to zero (as the neighborhoods shrink).
Assessing the limits of ratios involving inverse functions thus gives modelers
greater flexibility in designing estimators for density ratios.

Theorem 4. Let α, β : R≥0 → R
≥0 be functions such that α(0) = β(0) = 0, and

for some value of r > 0, their restrictions to the interval [0, r) are continuously
differentiable and strictly monotonically increasing. Let us also assume that ID∗

α

and ID∗
β both exist and are positive. If the limit ratio λ � limu→0

β(u)
α(u) exists,

then

λ = lim
p→0

(
α−1(p)
β−1(p)

)ID∗
α

= lim
p→0

(
α−1(p)
β−1(p)

)ID∗
β

. (3)

In addition, the limits in Eq. 3 diverge to +∞ whenever λ diverges to +∞.

Proof. Since α(0) = β(0) = 0, the strict monotonicity of α and β over the range
[0, r) imply that their inverse functions α−1(p) and β−1(p) both exist for all
p ∈ [0, s), where s � min{α(r), β(r)}). Moreover, the inverse function theorem
implies that α−1 and β−1 are themselves continuously differentiable over [0, s).

Consequently, using Theorem 3, the limit ratio λ can be expanded as follows:

λ = lim
u→0

β(u)
α(u)

= lim
u→0

α(α−1(β(u)))
α(β−1(β(u)))

= lim
p→0

(
α−1(p)
β−1(p)

)ID∗
α

= lim
p→0

(
α−1(p)
β−1(p)

)ID∗
β

,

after the substitution of p = β(u). Hence, Theorem 3 guarantees that all these
limits exist and equal λ if the limit λ exists; otherwise, if λ diverges to +∞, then
the limits all diverge. Note that the last equality holds due to Lemma 1, which
states that ID∗

α = ID∗
β for the case when λ > 0. ��
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It is worth noting here that, as shown by Lemma 1, these limits are only pos-
itive when the LID values of the two original functions are identical; otherwise,
the limits either both vanish or both diverge.

4 Conclusion

In this paper, we presented theoretical statements that can serve as a founda-
tion for modeling density ratios in terms of local intrinsic dimensionality. These
formulations give greater flexibility when modeling data under the assumption
of local variation in intrinsic dimensionality, in that no explicit dependence on
a fixed-dimensional data representation is required. In particular, the result of
Theorem 4 on the existence and nature of the ratio of inverse functions allows
modelers to move flexibly and interchangeably between a distance-based model
of local probability density on the one hand, and a probability-based model of
neighborhood radius ratios on the other—all taking into proper account the
effect of local intrinsic dimensionality.

As mentioned earlier, distributional modeling of density ratios is already a
well-established strategy within the machine learning community [34]. The den-
sity ratio formulation considered in this paper can (in principle) be substituted
for conventional pdf-based density ratios in models involving smooth (continu-
ously differentiable) distributions—the ratio of pdfs thereby being replaced by
the limits of ratios of cdfs of distance distributions. In data mining and other
settings where the data is not explicitly modeled in terms of smooth distribu-
tions, the connection to LID-aware density ratios can still be made, albeit less
directly. A data set consisting of n points can be regarded as a sample drawn
from some unknown global distribution that, from any given point of interest x,
induces a distribution of distances. Letting F denote the cdf of the distribution
of distances to x, the expected number of data points lying within distance r of
x is simply n · F (r). If r is the radius of the k-nearest neighborhood of x, then
k/n can serve as a (crude) estimate of F (r). In this sense, within the underlying
continuous model, formulations involving k, n and r can be viewed as sample-
based estimators of formulations involving F and IDF . Continuous limit-based
and LID-aware forms such as those considered in this paper can consequently
be applied to yield explanations of asymptotic behavior, as the sample size n
tends to infinity. Moreover, an LID-aware asymptotic analysis could conceivably
suggest alternative heuristics with improved performance characteristics.

In the data mining setting of outlier detection [7], density ratio modeling
has already assumed a place of central importance. The classic (and still state-
of-the-art) LOF family of outlier detection methods [5] assess the outlierness
of a test data point through a ratio of densities, one at the test point, and
the other with respect to an aggregation of points in the vicinity of the test
point. LOF formulations essentially estimate density using neighborhood-based
criteria, in terms of the radii within which a predetermined number of points are
captured. However, for those settings where the dimensional characteristics are
assumed to vary from locality to locality, Theorem 4 implies that any use of the
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ratio of distances to estimate density ratios should also take the local intrinsic
dimensionality into account. The theoretical results of this paper underscore the
need for the development of LID-aware local outlier detection techniques; work
in this direction is already underway.

LID-aware density ratio modeling may also have useful applications in
density-based clustering [6] and other non-parametric unsupervised learning set-
tings that exploit similarity information. One such possibility involves the well-
known DBSCAN family of clustering methods [12], which relies on absolute den-
sity thresholding to determine clusters, where density is (typically) estimated in
terms of the numbers of points enclosed within neighborhoods of fixed radius.
Extension of the DBSCAN strategy to account for LID-aware density would
potentially allow for the formation of clusters whose densities are not necessar-
ily high in an absolute sense, but instead high relative to the density within
some background distribution. This has the advantage that locally-dense config-
urations of data points within sparse regions may still be discoverable as clusters,
even in the presence of other clusters in regions that are much more dense.

In the larger sense, with its unification of the notions of distance, probability,
and local dimensionality, LID-aware modeling presents an opportunity to rec-
oncile established heuristics in the area of data mining with the distributional
framework that serves as the foundation of machine learning and other areas
in AI. By breaking the dependence of models on a global dimension parameter,
it also offers better support in subspace-based modeling and other contexts in
which sparse-featured solutions are sought. The theoretical results presented in
this paper on LID-aware density ratios will hopefully encourage and support
further research in this direction.
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Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp.
247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8 22

14. Hill, B.M.: A simple general approach to inference about the tail of a distribution.
Ann. Stat. 3(5), 1163–1174 (1975)

15. Houle, M.E.: Dimensionality, discriminability, density and distance distributions.
In: Proceedings of the 13th IEEE International Conference on Data Mining Work-
shops, ICDM Workshops, Dallas, TX, pp. 468–473 (2013)

16. Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic founda-
tion for similarity applications. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T.
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Abstract. The TriGen algorithm is a general approach to transform
distance spaces in order to provide both exact and approximate sim-
ilarity search in metric and non-metric spaces. This paper focuses on
the reduction of intrinsic dimensionality using TriGen. Besides the well-
known intrinsic dimensionality based on distance distribution, we inspect
properties of triangles used in metric indexing (the triangularity) as well
as properties of quadrilaterals used in ptolemaic indexing (the ptolemaic-
ity). We also show how LAESA with triangle and ptolemaic filtering
behaves on several datasets with respect to the proposed indicators.

1 Introduction

The real-world datasets for similarity search often exhibit high intrinsic dimen-
sionality manifested by distance distribution with low variance and high
mean [5]. The reason could be the high complexity of the similarity model within
a given domain (lot of independent features), but often this is just a consequence
of automated feature extraction processes, e.g., the inference of deep features [6].
Intrinsically high-dimensional data cannot be used for efficient exact search but,
luckily, there have been developed many approximate methods [9] to tackle this
problem for the price of a lower retrieval precision. Some of these methods ele-
gantly avoid the direct problem of high intrinsic dimensionality by not indexing
actual distances, but just permutations of pivots [4,7]. These methods enabled
competitive application of similarity search in real-world domains where maxi-
mal retrieval precision is not as critical as the performance. However, we must
keep in mind these methods are limited in tuning the precision at runtime (from
query to query) as well as they are restricted to pivot-based indexing schemes.

The TriGen algorithm [11] was proposed as a universal method for fast exact
and approximate search in metric and non-metric spaces. So far, it was not
analyzed as a method for (intrinsic) dimensionality reduction. In this paper
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we empirically analyze this missing aspect. We also investigate the impact of
TriGen modifications on the potential of ptolemaic indexing [8] that achieves
better performance than metric indexing (though limited to ptolemaic metrics).

2 Background

When indexing data for fast similarity search, we face two fundamental concepts
– the data indexability and the indexing model.

2.1 Indexability

The indexability generally refers to an ability to search efficiently a dataset S ⊂ U

under a similarity model (U, d), regardless the indexing method used. The key
is the distribution of data or, specifically, in case of similarity search it is the
distribution of distances d(x, y) among data objects x, y ∈ S. The classic index-
ability indicator for a metric space model (U, d) is the intrinsic dimensionality
[5], defined as the ratio of squared mean and doubled variance of the distance
distribution; iDim(S, d) = μ2

2σ2 . The lower iDim, the better indexability.
Alternatively, the ball overlap factor (BOF) [11] describes the ability to par-

tition the dataset into non-overlapping ball-shaped regions. The BOF counts for
how many object pairs will constitute overlapping balls (each ball radius is the
distance to the ball center’s kth nearest neighbor).

2.2 TriGen Transformation

The TriGen algorithm [11] transforms the input distance space (U, d) by use of
triangle-generating or -violating modifiers and a dataset sample S

∗ ⊆ S ⊂ U into
a target space (U, f(d)). A modifier f : R → R+

0 must be an increasing function
with f(0) = 0 to preserve the ordering of distances1 and thus search results with
respect to sequential scan. The triangle-generating (concave) modifiers “inflate”
all the triangles in the space to become more equilateral; then the dataset is less
indexable as the intrinsic dimensionality increases. The triangle-violating (con-
vex) modifiers have the opposite effect – “squeezing” the triangles and lowering
the intrinsic dimensionality. The idea behind the triangle-violating modifiers is
that they lower the intrinsic dimensionality (more efficient search) for the price
of a retrieval error (some triangles break which shows in incorrect filtering by
querying). The indexability indicators, like the intrinsic dimensionality or BOF,
together with the T-error measuring the ratio of broken triangles, guide TriGen
to determine the right modifier.

Unlike other methods that map the source distance space into the Euclidean
space, the TriGen model is based solely on transformation of distances, hence
there is no need for an expensive and static embedding of metric objects into
vectors. In consequence, once a modifier is computed for a particular problem, its

1 Ranking of objects xi ∈ U based on d(q, xi) is the same as based on f(d(q, xi)).
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change (e.g., a precision guarantee) can be easily recomputed and the already
created index just updated (no change in descriptors). This allows to switch
between several TriGen modifiers at query time, providing thus flexible exact-
to-approximate search (e.g., the NM-tree [10]). Other TriGen follow-ups include
extensions to non-symmetric distances [3], and the genetic TriGen variants [1,2].

In this paper, we inspect the TriGen in the role of dimensionality reduction
method. In high-dimensional datasets (as measured by intrinsic dimensionality),
all of the non-trivial triangles tend to be almost-equilateral. Then application
of TriGen with triangle-violating modifiers could act as a lossless dimensionality
reduction method by squeezing the triangles without the violation of triangle
inequality (breaking the triangles by squeezing them too much). Our hypothesis
is, the higher the (intrinsic) dimensionality of data is, the more almost-equilateral
the triangles are, and so the more aggressive modifier could be applied while still
keeping the triangles unbroken. Simply said, we analyze the question if TriGen
could “cancel” the curse of dimensionality (to some extent) in similarity search.

2.3 Metric and Ptolemaic Indexing

The metric access methods (metric indexes) [5] use some construction of lower
bounds using the triangle inequality. In the simplest case of pivot tables (aka
LAESA), the three objects in the triangle are the query object q, a dataset
object x, and a pivot p (i.e., LB�(q, x) = |d(q, p) − d(p, x)|). If the triangle
is equilateral, LB�(q, x) = 0 and so the dataset object x cannot be filtered
by the lower bound. On the other hand, if the triangle is (squeezed to) a line
segment, the lower bound gets maximal (i.e., LB�(q, x, p) = d(q, x)) and so it
is “super-effective” for filtering.

Similarly, ptolemaic access methods (ptolemaic indexes) [8] use some con-
struction of lower bounds using the Ptolemy’s inequality that operates on quadri-
laterals (quadruplets, respectively). In the simplest (LAESA) case there are four
objects in the quadrilaterals: the query object q, a dataset object x, and two
pivots p1, p2, while a lower bound can be derived as

LBpt(q, x, p1, p2) =
|d(q, p1) · d(x, p2) − d(q, p2) · d(x, p1)|

d(p1, p2)
(1)

As the quadrilaterals are more complex than triangles, there is not a single
best or worst quadrilateral example for the lower bound construction. Also the
inflating and squeezing effect of TriGen modifiers is not clear in case of quadri-
laterals, and so for ptolemaic indexing.

3 Triangle and Quadrilateral Distribution

The intrinsic dimensionality, as an indexability indicator, considers only dis-
tances themselves but does not consider that some distance combinations cannot
be present in triangles at the same time, which is important for the filtering by
metric access methods. The BOF compensates this issue, but it cannot be easily
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generalized for Ptolemaic inequality or non-metric cases. Therefore, we define the
triangularity to quantify the shape of triangle on a real-value scale from equi-
lateral triangle, through line segment to broken triangle. Similarly, we define
Ptolemaicity to quantify the shape of quadrilateral on a scale from tetrahedron,
through line segment to broken equilateral.

Hence, we need to aggregate three distances forming a triangle into one num-
ber, with extremes for equilateral triangles and line segments. We could adopt
the TriGen criteria (presented in [5]) used for determining the number of trian-
gles that do not satisfy the triangle inequality. The triangularity is defined for a
triangle a = d(x, y), b = d(y, z), c = d(x, z) by Eq. 2 – this ratio determines how
“equilateralish” (or “inflated”) a triangle is. The triangularity is 1 for equilateral
triangle, 1/2 means the triangle forms line segment (“squeezed”), and for values
below 1/2 the triangle is broken (does not satisfy the triangle inequality).

Triangularity(a, b, c) =
a + b

2c
, where a ≤ b ≤ c (2)

After TriGen preprocessing, we expect the distribution will be shifted to
line segments (“squeezed”) instead of almost-equilateral triangles. Knowledge of
this common property makes the triangularity a good indicator of datasets with
statistically high probability to exhibit bad indexability.

Moreover, we try TriGen for Ptolemaic indexing, though the TriGen mod-
ifiers were originally proposed for indexing using the lower bounds based on
triangle inequality and not the Ptolemy’s inequality (Eq. 3). We would like
to find out how the Ptolemy’s inequality holds in comparison with the tri-
angle inequality. We define ptolemaicity of a quadrilateral as Eq. 4, where
d(w, x)d(y, z), d(w, y)d(x, z) ≤ d(w, z)d(x, y). The greatest ptolemaicity value
is 1, which represents regular tetrahedron and results in bad indexability. ptole-
maicity 1/2 represents a line segment and for values below 1/2 the equilateral is
broken (does not satisfy Ptolemy’s inequality).

(∀w, x, y, z ∈ U) d(w, x)d(y, z) + d(w, y)d(x, z) ≥ d(w, z)d(x, y) (3)

Ptolemaicity(w, x, y, z) =
d(w, x)d(y, z) + d(w, y)d(x, z)

2d(w, z)d(x, y)
(4)

4 Analysis of High-Dimensional Data

We have analyzed several datasets and looked at the intrinsic dimensionality
and the retrieval efficiency (using the LAESA algorithm). Two low-dimensional
datasets are from SISAP datasets: the 20-dimensional NASA dataset, and the
112-dimensional Colors dataset. As high-dimensional datasets we used a sam-
ple of the 2048-dimensional AlexNet image (V3C1) dataset, and several artifi-
cial datasets of dimensionality 2 to 2048 (randomly generated vectors). For all
datasets we have used the Euclidean space, which is both metric and ptolemaic.
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Table 1. Datasets statistics (iDim, distance computations with metric LAESA).

Dataset (dim) without TriGen with TriGen (zero error)

iDim Dist. Comp. iDim Dist. Comp.

NASA (20) 5.184 ± 0.007 2.12% 4.593 ± 0.007 1.15%

Colors (112) 2.742 ± 0.003 2.63% 2.553 ± 0.003 2.08%

Random (128) 181.328 ± 0.304 100% 28.663 ± 0.022 95.78%

Random (2048) 1967.66 ± 184.295 100% 37.035 ± 0.175 99.3%

V3C1 (2048) 30 ± 0.050 86.65% 9.215 ± 0.012 45.39%

In Table 1 on the left, we present intrinsic dimensionality comparison and
efficiency improvement of the metric LAESA (with randomly chosen 50 piv-
ots) against sequential search. The iDim of Colors dataset is lower than iDim
NASA dataset, however, LAESA performs better on NASA. Note the embedding
dimensionality and iDim are dramatically different in case of V3C1 and Colors.
Figure 1 shows distance distribution histograms for all datasets.

In Fig. 2a (dashed), we present triangularity distribution. As we expected,
the distribution is shifted to the right side for high-dimensional datasets. This
is the main assumption for transforming metric space using the TriGen into a
more indexable one. Similarly, we have visualized the ptolemaicity distribution
in Fig. 2b (dashed), which displays the same properties.

Fig. 1. Distance distribution comparison

Both triangularity and ptolemaicity distributions are similar, which means
TriGen could be used for modification of Ptolemaic space, too. If the TriGen
transforms both spaces consistently then, based on figures, Ptolemy’s inequality
is violated earlier, because there is a higher number of line segments.
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Fig. 2. Distribution of triangularity or ptolemaicity in datasets before (dashed) and
after (solid) TriGen modifications.

Fig. 3. Dist. distribution before (dashed) and after (solid) TriGen modifications.

4.1 TriGen Modifications

In the first part of our experiment, we have configured TriGen to zero error
tolerance. The measured retrieval error (as defined in [11]) was also zero, hence,
we achieved faster and still exact search. Figure 3 shows the change of distance
distributions in datasets after TriGen modifications were made.

Table 1 on the right describes basic indicators after TriGen modifications, and
we observe that triangle-violating modifications reduced the intrinsic dimension-
ality. The retrieval efficiency improved for all datasets (for some only slightly,
but two times for NASA and V3C1). It indicates the presence of an inner struc-
ture beyond all conventional indicators, except for Random (2048) that is not
indexable for exact search. However, TriGen can still transform a seemingly not-
indexable dataset (V3C1, Random(128)) into partially indexable even for exact
search.
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Both triangularity (Fig. 2a) and ptolemaicity (Fig. 2b) distributions are flat-
ter and shifted to the left as we expected. The ptolemaicity distribution is flatter
than triangularity distribution, which means that Ptolemy’s inequality is more
prone to a violation when used with TriGen.

4.2 Comparison of Real Performance

The TriGen algorithm controls the ratio of triangles satisfying the triangle
inequality (so-called T-error tolerance) by a weight parameter that determines
the convexity/concavity of the modifier. In the previous experiments we set T-
error tolerance = 0 that (empirically) guarantees zero retrieval error. In Fig. 4a,
we can see the dependence of distance computations and retrieval error on the
weight (V3C1 dataset). We used just the triangle-violating (squeezing) modi-
fications where −10 weight is heavy squeezing and −0.1 weight is almost no
squeezing. We used LAESA with 50 randomly chosen pivots utilizing metric fil-
tering, ptolemaic filtering, or both, and compared it with the sequential search.

The important observation is the ptolemaic filtering2 has a similar pattern as
the metric filtering. The general difference is in the shift of the ptolemaic curves
to the right. The combination of triangle and ptolemaic filtering utilizes the
benefits of both approaches. Triangle filtering deals with retrieval error caused by
the Ptolemy’s inequality violation and the Ptolemy’s filtering deals with better
efficiency, because of its ability to create better lower bounds.

Fig. 4. Efficiency and retrieval error (LAESA with 50 pivots on V3C1 dataset).

Another point of view is presented in Fig. 4a, where pairs of efficiency and
retrieval error values from Fig. 4b are aggregated into single efficiency per error
value. So, we get rid of the TriGen weight parameter and only observe how
the real efficiency is dependent on real retrieval error, obtaining more readable
results than when depicted individually.
2 We used simple random selection of pivot pairs in ptolemaic filtering instead the

better but slower Balanced heuristic [8].
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4.3 Discussion

The intrinsic dimensionality is not always sufficient to predict the real efficiency
of an indexing algorithm. First, because of some inner structure that can hardly
be described by a single number. Second, the high number of low distances, trian-
gularities, or ptolemaicities does not imply better indexability. A good example
can be randomly generated vectors with one outlier, which will shift the whole
histogram to the left.

The TriGen can be used for both precise and approximate search. The combi-
nation of both filtering inequalities improves not only efficiency but also lowers
the retrieval error. There is a possibility in the future to try other kinds of
inequalities and their ability to scale with TriGen.

5 Conclusions

We have introduced structure-sensitive empirical measures for the analysis of
metric and Ptolemaic spaces and defined the triangularity and the ptolemaic-
ity as the quantifiers of triangle and quadrilateral shapes. Analysis of high-
dimensional data shows that it is possible to use TriGen as dimensionality reduc-
tion method that improves the efficiency of similarity search.

Although the TriGen was designed for transforming non-metric spaces into
metric ones, we have shown that the inverse application on high-dimensional
data is possible as well and efficient for both exact and approximate search.
Moreover, experiments indicate that TriGen could be used with different types
of filtering inequalities (like Ptolemy’s). The combination of several filtering
inequalities synergically deals with the advantages (better efficiency) and dis-
advantages (worse precision) of the individual methods.
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Abstract. The estimation of local intrinsic dimensionality has applica-
tions ranging from adversarial attack disclosure to clustering and outlier
detection, indexing, and data fingerprinting. In this paper, we analyze
measures of network centrality in the kNN graph and their relation to
LID measures. Our method ranks the dataset by its centrality, measured
as the number of reverse or mutual kNN of each object. The computa-
tion of these measures involves only kNN queries, allowing a speedup in
its computation using probabilistic indexing. A property of independent
interest is the rank being independent of k for a wide range of k values,
leading to parameter-free density estimation and applications.

Keywords: Similarity search · Local intrinsic dimensionality

1 Introduction

Metric access methods use the properties of metric spaces and precomputed
information to avoid the sequential scan of the collection in searches. Search per-
formance depends directly on the collection’s intrinsic dimensionality [6,14,18],
which therefore measures its indexability. The performance can be close to that
of a sequential scan when the intrinsic dimensionality is high. The literature on
similarity search usually refers to this as the curse of dimensionality [19]. The
intrinsic dimensionality depends on the nature of the data and the distance func-
tion. When the distances between any two objects tend to concentrate around
the mean of the distance distribution, the discriminative capacity of the distance
function is lower and the intrinsic dimensionality is higher.

The intrinsic dimensionality has been studied as a property of the entire
collection. However, Houle [2,9] proposed the concept of local intrinsic dimen-
sionality (LID), which involves only the distances in the neighbourhood of a
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specific object. Amsaleg et al. [2] proposed different ways of estimating the local
intrinsic dimensionality based on the distribution of the distances. The concept
of local intrinsic dimensionality has many applications. For example, Houle et al.
[12] used it in the proposal of a fingerprinting method for secure search. Hoyos
et al. [13] showed that LID can be used for partitioning of a collection based on
the indexability of its objects, and showed that objects in the collection can be
ranked according to their centrality in the half-space proximal graph (HSP) [5].

In this paper, we focus on two centrality measures of objects in the general
kNN graph: the number of mutual nearest neighbours, and the number of reverse
nearest neighbours. These two measures give us information about the density
of different regions in the space. Regions of the space with high values for the
number of reverse near neighbours are regions with a high density. This may have
important applications for random sampling algorithms, for example, to detect
bias in datasets. We show that there is a relationship between these measures and
the LID. However, the purpose of these measures is not estimating the LID, but
to rank the objects of the collection according to their indexability, so different
subsets can be indexed in different ways depending on their complexity.

The paper is structured as follows: Sect. 2 presents related work. Section 3
defines two measures to rank objects according to their indexability, and Sect. 4
presents experimental results on different datasets. Section 5 presents the con-
clusions of the paper.

2 Background and Related Work

The intrinsic dimensionality is a recurrent topic in similarity search. The intrin-
sic dimensionality of a collection is determined by the nature of the data and the
distance function. In high-dimensional spaces, the distances tend to be close to
the mean of the distance distribution, so the distance function has low discrimi-
native power. These scenarios deteriorate the performance of indexing methods
since their pruning criteria tend to fail when all distances are too similar. How-
ever, the problem of high-dimensional spaces is not just that of performance,
since distance functions with low discriminative power can affect the quality of
the results of the application where that distance is being used [3].

The intrinsic dimensionality has been studied as a property of the entire
collection, typically estimated using the mean and standard deviation of the dis-
tance distribution [6]. In this case, its estimation can give us no more information
than the collection’s indexability. Houle defined the local intrinsic dimensionality
as a measure of the dimensionality in the neighbourhood of an object [9–11], and
showed it is not necessarily uniform in the collection. Amsaleg et al. [2] proposed
LID estimators based in the distance distribution. Let X be a distance random
variable in [0, w), and x1 ≤ · · · ≤ xm observations of X. The maximum likelihood
estimator (MLE) of LID is defined in [2] as: ̂IDX = − (

1
m

∑m
i=1 ln xi

w

)−1.
Since dimensionality is not necessarily uniform, the indexability can also be

different in different regions. This assumption opens the possibility of index-
ing different parts of a collection differently, depending on their complexity.
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For example, Brisaboa et al. [4] showed empirically the existence of nested met-
ric spaces, and that indexing them independently can improve the search per-
formance. Hoyos et al. [13] proposed to partition the collection in terms of its
indexability by ranking the objects in the collection depending on their central-
ity in the half-space proximal graph, and showed that the centrality measure
could be used for identifying harder objects in the dataset.

3 Collection Partitioning Based on Centrality Measures

In this paper, we analyze the use of two centrality measures in the general kNN
graph to rank the objects by their indexability. Let (U, d) be a metric space, and
S ⊆ U a finite collection of n = |S| objects. The kNN-graph on a metric dataset
connects each object u ∈ S to its k nearest neighbors, kNN(u).

– Number of reverse neighbors (REVERSE): this centrality measure counts for
each object u ∈ S the number of objects v ∈ S for which u ∈ kNN(v). The
number of reverse neighbours (RkNN) has already been used, for example,
for identifying boundary objects in multidimensional datasets [7].

– Number of mutual neighbors (MUTUAL): this measure counts for each object
u ∈ S the number of objects v ∈ S for which u ∈ kNN(v) ∧ v ∈ kNN(u).

These two measures give us information about the density of objects in the
neighbourhood of an object. We hypothesise that, since the values of these mea-
sures depend on the density of the neighbourhood of an object, they can be used
to rank the objects in the collection by their indexability.

Both measures can be obtained directly on a kNN graph on S. Building the
graph can be expensive. However, to rank objects by their indexability, we build
an approximation of the kNN graph by indexing the collection with HNSW [15]
and then running approximate kNN queries for each u ∈ S. The values the
measures are conditioned by the value of k. A small k makes its computation
cheap but would give too few values to discriminate.

4 Experimental Evaluation

Experimental Setup. We used collections of feature vectors from images with L2:

– COLORS: included in the metric space library [8], it contains 112, 544 vectors
of 112 features extracted from the color histograms of the images.

– SIFT: ANN SIFT1B contains 1 billion images represented by 128-dimensional
feature vectors [16]. We used 100, 000 vectors from the base set.

– DeepFeatures: contains a subset of 100, 000 vectors of dimension 4, 096 from
the DeepFeatures collection [1], where each vector contains features extracted
using a convolutional neural network trained on images and places.
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For each collection, we used 100, 000 vectors, where 90% of them were used
for indexing and the remaining 10% were used as queries (kNN, k = 10). The
kNN graph was built on each collection using values of k of 10, 512, and 1, 024.
Then, the objects in each collection were ranked in ascending and descending
order on the value of MUTUAL and REVERSE. We also estimated the LID in
the neighbourhood of each object using MLE and ranked them on this value. In
this case, we used the same settings of [2], computing MLE with the distances
from each object to its 1, 000 kNNs in a sample of 10, 000 objects.
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Fig. 1. Search cost in COLORS for increasing/decreasing values of MUTUAL.

We created subsets of each collection with sizes ranging from 10, 000 to 90, 000
by selecting objects at random, and in increasing and decreasing orders of MLE,
MUTUAL, and REVERSE. Each subset was indexed with the Spatial Approx-
imation Tree (SAT) [17], an efficient structure that recursively partitions the
collection by proximity to the root of each subtree, and has no parameters.

Experimental Results. Figures 1 and 2 show the search cost (expressed as the
% of the DB explored) for COLORS. For sizes 10, 000–30, 000, the objects with
a low number of mutual neighbours showed a higher search cost. For subsets
of size 40, 000 and higher, the differences are not so significant. The results are
similar for the subsets created attending to the value of MLE, which suggests
that there exists a relationship between LID and the centrality measures. Notice
that for size 90, 000, the results are different for each configuration, since the
objects are processed in a different order that can affect the index.

Figures 3 and 4 show the results for SIFT. SIFT is harder than COLORS,
although they have a similar dimension (128 and 112 respectively). The search



274 O. Pedreira et al.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10000  20000  30000  40000  50000  60000  70000  80000  90000

# 
of

 d
is

ta
nc

es
 (

as
 %

 o
f t

he
 s

iz
e 

of
 th

e 
co

lle
ct

io
n)

Number of objects indexed

Partitioning based on # of reverse kNNs (COLORS, 100,000 objects)

Random selection
Increasing degree (k=10)

Decreasing degree (k=10)
Increasing degree (k=512)

Decreasing degree (k=512)
Increasing degree (k=1024)

Decreasing degree (k=1024)
Increasing degree (MLE)

Decreasing degree (MLE)

Fig. 2. Search cost in COLORS for increasing/decreasing values of REVERSE.
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Fig. 3. Search cost in SIFT for increasing/decreasing values of MUTUAL.

cost was around 20%–25% for COLORS and between 50%–60% for SIFT. The
results regarding MUTUAL and REVERSE are very similar to those obtained in
COLORS. Both measures can distinguish subsets with higher and lower search
costs. Another difference with COLORS is that in SIFT the results do not depend
that much on the value of k in REVERSE. The results obtained with both mea-
sures have a relationship with those obtained with MLE. However, notice that
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Fig. 4. Search cost in SIFT for increasing/decreasing values of REVERSE.

for sizes 10, 000 to 40, 000 the number of mutual and reverse neighbours present
better results than MLE in identifying easily indexable objects.

Figures 5 and 6 show the results for DeepFeatures. This collection is the hard-
est in our setup, with a search cost around 95%–99%. In this collection, the
differences between a random selection and a selection guided by MUTUAL and
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REVERSE are not so significant as in COLORS and SIFT. However, we can see
that both measures can identify the most and least costly objects.

5 Conclusions and Future Work

We have analyzed how centrality measures on the kNN graph can be used to
rank the objects in a collection by their indexability. The experimental results
show that number of mutual and reverse nearest neighbours can be used for this
purpose. The results also suggest that there exists a relationship between these
measures and the MLE estimation of the LID. An important difference of these
two measures compared to that based on centrality on the HSP graph [13] is
that the construction of the kNN graph using a probabilistic approximate index
like HNSW is cheaper than that of the HSP.

We are working on an extended evaluation with more collections and indexes.
Also, in this paper, we computed the MLE estimator of LID in the same way
for all the collections, but it should be explored how other configurations would
affect its value in each collection. Future work also includes exploring how we
could index separately the subsets of different complexity within each collection.
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8. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007). http://www.
sisap.org/Metric Space Library.html

9. Houle, M.E.: Dimensionality, discriminability, density and distance distributions.
In: Proceedings of 13th International Conference on Data Mining Workshops, pp.
468–473. IEEE (2013)

10. Houle, M.E.: Local intrinsic dimensionality I: an extreme-value-theoretic founda-
tion for similarity applications. In: Beecks, C., Borutta, F., Kröger, P., Seidl, T.
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partitioning. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP
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Abstract. BIRCH clustering is a widely known approach for clustering,
that has influenced much subsequent research and commercial products.
The key contribution of BIRCH is the Clustering Feature tree (CF-Tree),
which is a compressed representation of the input data. As new data
arrives, the tree is eventually rebuilt to increase the compression. After-
ward, the leaves of the tree are used for clustering. Because of the data
compression, this method is very scalable. The idea has been adopted
for example for k-means, data stream, and density-based clustering.

Clustering features used by BIRCH are simple summary statistics that
can easily be updated with new data: the number of points, the linear
sums, and the sum of squared values. Unfortunately, how the sum of
squares is then used in BIRCH is prone to catastrophic cancellation.

We introduce a replacement cluster feature that does not have this
numeric problem, that is not much more expensive to maintain, and
which makes many computations simpler and hence more efficient. These
cluster features can also easily be used in other work derived from
BIRCH, such as algorithms for streaming data. In the experiments, we
demonstrate the numerical problem and compare the performance of the
original algorithm compared to the improved cluster features.

1 Introduction

The BIRCH algorithm [23–25] is a widely known cluster analysis approach, that
won the 2006 SIGMOD Test of Time Award. It scales well to big data even
with limited resources because it processes the data as a stream and aggregates
it into a compact summary of the data. BIRCH has inspired many subsequent
works, such as two-step clustering [10], data bubbles [7], and stream clustering
methods such as CluStream [1] and DenStream [9]. Clustering is the unsuper-
vised learning task aimed at discovering potential structure in a data set when
no labeled data or pattern examples are available. It is inherently underspecified
and subjective [5,12] and, unfortunately, also very difficult to evaluate. Instead,
it is best approached as explorative data analysis, generating hypotheses about
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potential structures in the data, that afterward need to be verified by some
other procedure, which is domain-specific and may require a domain expert to
inspect the results. Many clustering algorithms and evaluation measures have
been proposed with unclear advantages of one over another. Because many of
the underlying problems (e.g., k-means clustering) are NP-hard, we often use
approximation techniques and great concern is directed at the scalability.

Scalability is where the BIRCH algorithm shines. It is a multi-step procedure
for numerical data that first aggregates the data into a tree-based data structure
much smaller than the original data. This condensed representation is then fed
into a clustering method, which now is faster because of the reduced size. The
main contribution of BIRCH is a flexible logic for aggregating the data so that an
informative representation is retained even when the size is reduced substantially.

When studying BIRCH closely, we noticed that it is susceptible to a numer-
ical problem known as “catastrophic cancellation”. This arises when two large
and similar floating-point values are subtracted: many bits of the significand
(mantissa) cancel out, and only few bits of valid result remain. In this paper, we
show how to avoid this numerical problem and demonstrate that it can arise in
real data even at low dimensionality. We propose a replacement cluster feature
tree (BETULA) that does not suffer from this numeric problem while retaining
all functionality. Furthermore, it is often even easier to use. This structure can
easily be integrated into most (if not all) derived methods, in particular also for
data streams.

2 Related Work

The BIRCH algorithm was presented at the SIGMOD conference [24], then
expanded in a journal version [25]. Still, both versions omit integral details of the
algorithm (e.g., Eqs. 15 to 17 below to compute distances using cluster features),
which are found only in their technical report [23] or their source code. Never-
theless, the intriguing ideas of the clustering features and the CF-Tree inspired
a plethora of subsequent work. Bradley et al. [6] use the same “clustering fea-
tures” as BIRCH, but call them “sub-cluster sufficient statistics”. The CF-Tree
has also been used for kernel density estimation [26], with a threshold set on the
variance to guarantee approximation quality. In two-step clustering [10], BIRCH
is extended to mixed data, by adding histograms over the categorical variables.

Because BIRCH is sequentially inserting data points into the CF-tree, the
tree construction can be suspended at any time. The leaves can then be pro-
cessed with a clustering algorithm; when new data arrives the tree construction
is continued and we trivially obtain a stream clustering algorithm [15]. CluS-
tream [1] extends this idea with pyramidal time frames to enable the clustering
of parts of the data stream by integrating temporal information. HPStream [2]
extends CluStream to projected/subspace clustering. DenStream [9] uses clus-
tering features for density-based stream clustering to detect clusters of arbitrary
shape (in contrast to earlier methods that focus on k-means-style clustering).
Breunig et al. [8] adopt clustering features to perform hierarchical density-based
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OPTICS clustering [3] on large data. The ClusTree [17] combines R-trees with
BIRCH clustering features to process data streams. BICO [13] aims at improv-
ing the theoretical foundations (and hence, performance guarantees) of BIRCH
by combining it with the concept of coresets. For this, it is necessary to add
reference points to the clustering features and use a strict radius threshold.

3 BIRCH and BETULA

In this section, we will describe the basic BIRCH tree building algorithm, and
introduce the changes made for BETULA to become numerically more reliable.

3.1 BIRCH Clustering Features

The central concept of BIRCH is a summary data structure known as Clustering
Features CFBIRCH = (LS, SS,N). Each clustering feature represents N data
points, summarized using the linear sum vector LS ∈ R

d (with LSi =
∑

x xi),
the sum of squares SS ∈ R (originally not a vector, but a scalar SS =

∑
i

∑
x x2

i )
and the count N ∈ N. The center of a clustering feature can be trivially computed
as LS/N . By the algebraic identity Var(X) = E[X2]−E[X]2, BIRCH computes
the variance of a clustering feature as Var(X) = 1

N SS − ( 1
N

∑
i LSi)2. We will

discuss the numerical problems with this approach in Sect. 3.5.
A new data sample x can be easily integrated into the clustering feature using

CFBIRCH + x = (LS + x, SS +
∑

i x
2
i , N + 1). Because all of these are sums, two

clustering features can also easily be combined (c.f., additivity theorem in [24])
CFBIRCH

A + CFBIRCH
B = (LSA + LSB, SSA + SSB, NA + NB). A single data point

x can hence be interpreted as the clustering feature containing (x,
∑

i x
2
i , 1).

3.2 Clustering Feature Tree (CF-Tree)

The cluster features are organized in a depth-balanced tree called CF-Tree. A leaf
stores a set of clustering features (each representing one or many data points),
while the inner nodes store the aggregated clustering features of each of its
children. The tree is built by sequential insertion of data points (or, at a rebuild,
the insertion of earlier clustering features). The insertion leaf is found by choosing
the “nearest” clustering feature at each level (five different definitions of closeness
will be discussed in Sect. 3.4). Within the leaf node, the data point is added to
the best clustering feature if it is within the merging “threshold”, otherwise
a new clustering feature is added to the leaf. Leaves that exceed a maximum
capacity are split, which can propagate to higher levels of the tree and cause
the tree to grow when the root node overflows. If the tree exceeds the memory
limit, a new tree is built with an increased merging threshold by reinserting
the existing clustering features of the leaf level. After modifying a node, the
aggregated clustering features along the path to the root are updated.

The discussion of BIRCH in textbooks ends with the CF-Tree, although we
do not yet have clusters. This is because the outstanding idea of BIRCH is that
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of data aggregation into clustering features, and we can run different clustering
algorithms afterward. The BIRCH authors mention hierarchical clustering, k-
means, and CLARANS [20]. For best results, we would want to use an algorithm
that not only uses the mean of the clustering feature, but that also uses the
weight and variance. The weight can be fairly easily used in many algorithms,
but the variance is less obvious to integrate. In Sect. 3.7 we will propose how to
perform Gaussian Mixture Modeling and use the variance information.

3.3 BETULA Cluster Features

The way variance is computed from BIRCH cluster features using the popular
equation Var(X) = E[X2] − E[X]2 is prone to the numerical problem known as
“catastrophic cancellation”. This equation can return zero for non-constant data,
and because of rounding even negative values (and hence, undefined standard
deviation). In the context of BIRCH, we cannot resort to the numerically more
reliable textbook definition for variance, Var(X) := 1

N

∑
(x − μ)2, because this

requires two passes over the data set (one to find μ, then one for Var). But we also
cannot just ignore the problem, because not all clustering features will be close
to 0, where the numerical accuracy is not a problem. Schubert and Gertz [21]
discuss methods to compute variance and covariance for weighted data, which
forms the base for our approach. For this, they collect three running statistics,
very similar to the three components of BIRCH clustering features: (i) the sum
of weights, (ii) the weighted mean (centroid vector), and (iii) the weighted sum of
squared deviations from the mean. Clearly (i) corresponds to N in the clustering
feature, (ii) is equivalent to LS/N , but (iii) is S :=

∑
x nx ‖x − μ‖2 (where nx

is the weight of the data point, often simply 1). Hence, we propose the following
replacement cluster feature for BETULA:

CFBETULA := (n, μ, S) (1)

where n is the aggregated weight of all data points (BETULA also allows for
weighted data samples), μ denotes the current mean vector, and S is the sum
of squared deviations from the mean. The last component can either be a scalar
value as in BIRCH (the sum over all components) or a vector of squared devi-
ations. For our experiments, we chose the latter option; a similar modification
to BIRCH can be found in various publications (e.g., [1,2,9,16,17]). A single
data point of weight nx is equivalent to a cluster feature CFBETULA

x = (nx, x, 0)
(because it has zero deviation from the mean). Similar to the additivity theorem
of BIRCH, we can efficiently combine two BETULA cluster features into one:

nAB = nA + nB (2)
μAB = μA + nB

nAB
(μB − μA) (3)

SAB = SA + SB + nB(μA − μB)(μAB − μB) (4)

The derivation of these equations follows directly from the update equations for
the weighted (co-) variance of [21]. Because their experiments indicate that using
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the sum of squared deviations, S :=
∑

x nx(x − μ)2 has slight computational
advantages, we follow suit. We could also have stored Var = S/n instead (we did
not measure a noticeable performance difference between these two options).

3.4 Distance and Absorption Measures

The BIRCH algorithm uses two different measures during tree construction.
The first is a distance between two clustering features, which is used to find
the closest leaf in the tree. The second is an absorption criterion, used together
with a threshold to decide when to add the new data to an existing or as a new
clustering feature. Both measures can be defined on the original data, but also
in terms of the clustering feature values to compute them efficiently.

Distance Measures: BIRCH proposes five different distance measures enumer-
ated as D0 to D4. The first two correspond simply to the Euclidean distance of
the centers (D0) and the Manhattan distance of the centers (D1). The third, aver-
age inter-cluster distance (D2), is based on the quadratic mean distance between
points of different clusters, while the average intra-cluster distance (D3) uses the
quadratic mean distance within the combined cluster. Variance-increase distance
(D4) is the variance of the resulting cluster minus the variance of the separated
clusters. Similar ideas can be found in hierarchical clustering: centroid linkage
(D0, D1), average linkage (D2, D3), and Ward linkage (D4).

D0(A,B) = ‖μA − μB‖ =
√∑

i(μA,i − μB,i)2 (5)

D1(A,B) = ‖μA − μB‖1 =
∑

i |μA,i − μB,i| (6)

D2(A,B) =
√

1
nAnB

∑
x∈A

∑
y∈B ‖x − y‖2 (7)

D3(A,B) =
√

1
nAB (nAB−1)

∑
x,y∈AB ‖x − y‖2 (8)

D4(A,B) =
√

∑
x∈AB ‖x − μAB‖2 −∑

x∈A ‖x − μA‖2 −∑
x∈B ‖x − μB‖2 (9)

Absorption Criteria: Absorption in BIRCH is based on a second criterion and
a threshold. Conceptually, the threshold can be seen as a maximum radius of a
cluster feature; if adding a point would increase the radius beyond the allowed
maximum, a new cluster feature is created instead of merging. Intuitively, the
radius should be defined as maxx ‖x − μ‖; but this value cannot be efficiently
computed from the summary statistics. Instead, the “radius” can be approxi-
mated using different criteria. In BIRCH, these criteria were defined on a single
clustering feature AB; they are computed by virtually merging two clustering
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features and evaluating the criteria on the result. We can easily remove the dis-
tinction between distance and absorption criteria, but one may nevertheless want
to choose them differently (e.g., choosing the nearest leaf by Euclidean distance,
but thresholding on minimum variance), as they serve a different purpose. The
first criterion proposed in BIRCH is called “radius” R (Eq. 10), the second is the
“diameter” D (Eq. 11). Both this “radius” and “diameter” are not maximum
values, but averages: the average distance to the center is (R), and the average
distance of any two points is (D), which happens to be the same as D3(A,B).
Many implementation attempts (such as sklearn’s) of BIRCH simply use the
distance between the two cluster centers instead (E) – this cannot be defined in
the original BIRCH architecture but is easy to add.

R(AB) = R(A,B) =
√

1
nAB

∑
x∈AB ‖x − μAB‖2 (10)

D(AB) = D3(A,B) =
√

1
nAB (nAB−1)

∑
x,y∈AB ‖x − y‖2 (11)

E(A,B) = D0(A,B) = ‖μA − μB‖ (12)

The values of D and R are almost identical (use Eq. 13 below): they differ only
by a factor of 2n

n−1 ; similar to the regular radius and diameter. Because of the
way they are used in BIRCH, we cannot expect them to perform very differently.

3.5 Catastrophic Cancellation in BIRCH

The numerical problem in BIRCH arises from the “textbook” equation for vari-
ance, Var(X) = E[X2] − E[X]2. This equation—while mathematically correct—
is prone to catastrophic cancellation when used with floating-point arithmetic,
unless E[X]2 � E[X2] holds [21]. In clustering, we cannot assume that all clus-
ters are close to the origin, and the ideal leaves have a small variance and rep-
resent the data by their differences in the mean. Because of this, it may not be
sufficient to center the data globally. Furthermore, we do not know the center
beforehand, and in BIRCH we only want to do a single pass over the data for
performance.

Unfortunately, both of the original absorption criteria R and D, as well as
distance measures D2–D4 are computed using the above “textbook” equality

Var(X) = 1
2n2

∑
x,y∈X ‖x − y‖2 = 1

n

∑
x∈X ‖x − μX‖2 (13)

which yields the following equalities for BIRCH (equivalent to n·Var(X) = S)

S =
∑

x∈X
‖x − μX‖2 = 1

2n

∑
x∈X ‖x − y‖2 = SS − 1

n ‖LS‖2 . (14)
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The BIRCH authors hence proposed to compute these measures (we omit
D0, D1, and E as they do not involve squares) based on clustering features as:

D2(A,B) =
√

1
NANB

(NBSSA + NASSB
!�−2LST

ALSB) (15)

D3(A,B) =
√

2
NA+NB−1 (SSA + SSB

!�− 1
NA+NB

‖LSA + LSB‖2) (16)

D4(A,B) =
√

1
NA

‖LSA‖2 + 1
NB

‖LSB‖2 !�− 1
NA+NB

‖LSA + LSB‖2 (17)

R(AB) =
√

1
NAB

(SSAB
!�− 1
NAB

‖LSAB‖2) (18)

D(AB) =
√

2
NAB−1 (SSAB

!�− 1
NAB

‖LSAB‖2) (19)

The subtractions flagged with a warning symbol !� can suffer from catastrophic
cancellation and hence numerical problems. It may come unexpected that in the
“variance increase” equation (D4) all SS terms cancel out, and we only get the
vector product of the linear sums, but this is the König-Huygens theorem.

The effect of the catastrophic cancellation usually leads to an underestima-
tion of the actual variance, and hence of the distances. Because of this, data
points may be assigned to the wrong branch or node. While the result will not
be completely off, it is easy to avoid these problems in the first place. More severe
problems arise when using the resulting variance in the subsequent steps, such as
in clustering. Because most implementations of BIRCH only use the centers of
the leaf entries for clustering (e.g., scikit-learn does not even use the weight, and
only supports Euclidean distance D0), this has not been observed frequently.

Much of the later work based on BIRCH is prone to the same problem in one
way or another. In CF-kernel density estimation [26], the variance is bounded
to guarantee approximation quality – underestimating the variance invalidates
this guarantee. The (diagonal) Mahalanobis distance used in [6] divides by the
standard deviation, which can become 0 due to instabilities; the division tends
to amplify the errors. CluStream [1] uses the standard deviation of the arrival
times, estimated with the unstable equation. HPStream [2] relies on per attribute
standard deviations for subspace clustering. DenStream [9] uses the radius R
to estimate density, while data bubbles [8] rely on the standard deviation to
estimate the extent. ClusTree [17] estimates the variance in this unstable way.
All of these methods can easily be modified to use BETULA cluster features.

Using the improved BETULA cluster features introduced in Sect. 3.3, which
we will simply denote by CF, we can easily avoid these numerical problems,
because these features directly aggregate the squared errors instead of the sum
of squares, as previously used for online estimation of variance [21].
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3.6 Improved Distance Computations

In BETULA cluster features, we use the mean μ instead of the linear sum because
this makes the subsequent operations more efficient (and elegant). The update
equations for merging CFs also involve the mean (c.f. Eq. 4), and we can now
compute the BIRCH distances in a more numerically stable way. Using BETULA
cluster features CF = (n, μ, S), and Eq. (14), we can compute the distances and
absorption criteria now as follows (the derivation is included in the preprint
[19]):

D0(A,B) = ‖μA − μB‖ (20)
D1(A,B) = ‖μA − μB‖1 (21)

D2(A,B) =
√

1
nA

SA + 1
nB

SB + ‖μA − μB‖2 (22)

D3(A,B) =
√

2
nAB (nAB−1) (nAB (SA + SB) + nAnB ‖μA − μB‖2) (23)

D4(A,B) =
√

nAnB
nAB

‖μA − μB‖2 (24)

RAB =
√

1
nAB

SAB =
√

1
nAB

(SA + SB + nA·nB
nAB

‖μA − μB‖2) (25)

DAB =
√

2
(nAB−1)SAB = D3(A,B) (26)

With these numerically more stable equations, we can build a CF-Tree using
BETULA cluster features instead of the original BIRCH clustering features.

3.7 Gaussian Mixture Modeling with BETULA Cluster Features

Gaussian Mixture Modeling (GMM) with the EM algorithm [11] is a popular,
but fairly expensive clustering algorithm. Every iteration, the probability den-
sity functions (pdfs) of each Gaussian are evaluated at every data point, then
the distribution parameters are updated based on all points weighted by their
probabilities. Because this is a soft clustering, a tolerance threshold or an itera-
tion limit are used for convergence. Formally, the method is linear in the number
of data points, but in practice, it is fairly expensive because of the many pdfs to
compute and the number of iterations. To scale this algorithm to large data sets
(large n) as well as many clusters k, it is beneficial to use a data summarization
technique such as BIRCH or BETULA. Several variations of GMM exist: we can
restrict cluster shapes and we can have independent or shared model parameters.
MAP estimation can be employed to improve the robustness [14], because there
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are other numerical pitfalls that can lead to degenerate clusters. We only con-
sider some of the more popular variants in this work: the spherical model with
varying weight and identical volume in each dimension (IGMM), the diagonal
model with varying weight and different volume in each dimension (DGMM),
and the fully variable model that models covariance (CGMM). If we only have a
scalar for SS, then this is well-suited for the simplest model: A spherical model,
in which the direction of variance does not matter. When using a vector for S,
we can incorporate this per-axis information into the cluster models. For the
arbitrarily oriented model, we would need to use a covariance in each cluster
feature. This is possible using the corresponding equations for the covariance of
[21], but the memory requirement increases to 1 + d +

(
d
2

)
= 1 + d(d+1)

2 values
per cluster feature. Because of this, we do not include this in the experiments.

For clustering, the main tree structure is usually discarded, and only the
cluster features within the leaf nodes are kept. For the initialization of the algo-
rithm, we apply the kmeans++ [4] initialization on the leaf entries. Afterward,
the Gaussian Mixture Modeling algorithm is executed.

In classic GMM, we usually process a single data sample at a time. When
processing cluster features, these represent multiple objects. To improve the
quality of the clustering, rather than just using the cluster mean to represent
a Cluster Feature, we use the Gaussian distribution of the data in the CF,
which we assume is better (at least for GMM). To estimate the responsibilities
of each cluster for each clustering we then use

∫
x

N (x|μ1, σ
2
1)N (x|μ2, σ

2
2)dx =

N (μ1|μ2, σ
2
1 +σ2

2). Using the law of total probability, these values are normalized
to sum to 1, exactly as in the usual EM procedure. When updating the cluster
models, the weight of the cluster features is trivially usable as additional weight,
and we can update the model variance using Eq. (4).

By utilizing BETULA cluster features and EM-GMM it is possible to clus-
ter big data sets with limited memory and high numerical stability as shown
in Section 4. It is also possible to distribute this procedure into a cluster by
partitioning the data and aggregating the models of all nodes (c.f. [21]).

4 Evaluation

We compare the following alternative implementations of GMM:
Textbook Standard EM [11] using the equation E[X2]−E[X]2

Stable Numerically stable EM implementation (from ELKI [21,22])
BIRCH EM-style using the original BIRCH clustering features
BETULA EM-style using our new BETULA cluster features

The evaluation of clustering algorithms is inherently difficult because they are
used in an unsupervised context, where no labeled data is available. Real data
is usually dirty and contains undesirable artifacts (such as anomalies, duplicate
values, and discretization effects) that can cause problems for methods that
assume continuous data. GMM is no exception: e.g., constant attributes will
break many implementations. In these experiments, we do not aim at showing the
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superiority of Gaussian Mixture Modeling over other approaches. The limitations
of it are well understood, in particular when data has non-convex clusters.

Instead, we focus on the following research questions:

RQ1 How numerically (un-)stable is BIRCH and does BETULA help?
RQ2 Is the quality of BETULA comparable with BIRCH and regular GMM?
RQ3 How does BETULA scale with data set size (and compare to BIRCH)?
RQ4 Are the results applicable to real data?

4.1 Experimental Setup

We modify the existing implementations of BIRCH and GMM clustering of ELKI
0.7.5 [22]. By keeping most of the code shared, we try to minimize the effects
caused by implementation differences, as recommended for comparing algorithms
[18]. All computations are executed on a small cluster with Intel E5-2697v2
CPUs, we do not use multithreading, and we repeated each experiment 10 times
with varying random seeds and data input order, and give the average results.
All the CF-Trees are built using the variance-increase distance (D4, Eq. 9) in
combination with the radius absorption criterion (R, Eq. 10). This combination
yields subclusters with low variance as input for the GMM clustering. We do
not present results with other distances and absorption criteria here because of
redundancy; they were similar. The size of CF-Trees is by default limited to 5000
leaf entries unless specified differently; when this number is exceeded the tree
is rebuilt with a bigger threshold as in BIRCH. For the GMM clustering step,
all algorithms are initialized by kmeans++ [4]. After 100 iterations or when no
further improvement can be made the optimization is stopped.

4.2 Numerical Stability

First, we demonstrate the numerical instability using synthetic data with two
Gaussian clusters in R

3 of 150 000 points. Both clusters have standard deviations
[43 , 1, 3

4 ], and the only variable in the test is how far the clusters are shifted away
from the mean. For small separation, both clusters overlap but with increasing
distance, the clustering gets trivial until numerical stability comes into play.

The impact of the increasing distance between the clusters can be seen in
Fig. 1 where all algorithms provide good results until first the Textbook IGMM
implementation at 5·106 and then BIRCH IGMM at 2·107 begin to deteriorate.
The degeneration of BIRCH IGMM begins a bit later than Textbook IGMM
because of the aggregation in the CF-Tree helping a bit, but it then fails even
worse. A deterioration at 107 is to be expected from double-precision because of
the squared values; with single-precision floating-point, it is to be expected to
occur at a separation of 103. Both the “Stable” regular GMM and BETULA are
not affected and solve this idealized toy problem without difficulties (RQ1).
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Fig. 1. The log-likelihood goodness of fit of the model with increasing distance between
the clusters demonstrates the numerical instability of some algorithms.

4.3 Quality Comparison on Synthetic Data

We now address the question of result quality (RQ2) in a scenario where all
algorithms are stable. For the evaluation, two synthetic data sets are used, which
are similar to data used for the evaluation of the original BIRCH algorithm [24]
but larger and with increased variability. We use the data generator of ELKI [22],
which has a convenient size multiplier parameter for this experiment.

The first data set is called “Grid” and consists of a 10 by 10 grid of clusters
with a distance of 5 between the means of the clusters on each axis. Each cluster
consists of 10 000 points with a variance per attribute randomly drawn from
N (1, 0.25). The second data set, “Random”, consists of 100 clusters in a 50 by 50
area with the cluster means distributed by Halton sampling, which produces
a pseudo-random uniform distribution. The variance of each cluster is again
specified by a normal distribution N (1, 0.15). This time the size of each cluster
varies and is randomly drawn from between 5000 and 15 000 points.

Figure 2 shows the log-likelihood of the models on these data sets. For both, it
can be seen that the data set size has next to no influence on the quality of the fit.
The models with diagonal variance (Stable DGMM and BETULA DGMM) pro-
duce a better fit than the models that are restricted to using the same variance in
each attribute. On the “Random” data set, all IGMM approaches perform sim-
ilar (as expected). On the “Grid” data set, both BETULA IGMM and BIRCH
IGMM unexpectedly achieve a higher likelihood than the standard IGMM algo-
rithms. This difference can be explained by the fact that the implementations
using cluster features converge faster (because there are fewer objects) than the
approaches that use the raw data; the latter have not yet converged within the
maximum number of iterations. However, this experiment is designed to test if
BETULA performs similar to BIRCH on the same test data that the BIRCH
publications used, and to detect programming errors.
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Fig. 2. Log-Likelihood goodness of fit of the model on both synthetic data sets.

4.4 Runtime Evaluation on Synthetic Data

When evaluating the runtime of BETULA with GMM clustering two measure-
ments are of interest: The time to build the CF-Tree only, and the time for
the entire clustering procedure. Figure 3 shows the build time BETULA and
BIRCH need for various tree sizes. It can be seen that the time for building the
tree increases with the size of the data set and also with the size of the tree due
to an increasing number of distance calculations for the insertion of new points.
The construction time for BETULA is shorter than for BIRCH—despite using
a vector to store variances—because of the more efficient distance calculations.
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Fig. 3. Build time with a varying number of leaf entries on the random data set.

When looking at the complete runtime of BIRCH (respectively BETULA)
including GMM clustering, shown in Fig. 4, we can see that the standard GMM
algorithms have a much higher runtime by a factor of 10 to 50 on these data sets,
due to the compression achieved by the CF-Tree (which improves with data set
size). We use a log-log plot to see the differences between BIRCH and BETULA,
which perform very similar (RQ3). BETULA is about 12% faster than BIRCH
because the BETULA cluster features can be used directly for clustering, while
more additional computations are necessary with BIRCH clustering features to
obtain mean and variance on the fly.
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Fig. 4. Runtime of the clustering on both synthetic data sets.

4.5 Clustering Real Data

To test the algorithm on real data, we use the location information of the UK
“Road Safety Data” from 1979 to 2004 from data.gov.uk.1 This data set has
about 6.2 million entries and contains data on road accidents from Great Britain.
The location information in this data set is given in the OSGR grid reference
system which is only used in Great Britain; which we convert to the appropri-
ate UTM coordinate system. For this experiment, we reduced the cluster feature
precision from double precision to single precision in both BIRCH and BETULA
to demonstrate the numerical instabilities on real data. The regular GMM clus-
tering is performed with double precision to get a more precise reference value.
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Fig. 5. Log-Likelihood goodness of fit of the models and runtime on the traffic accident
data with 15000 leaf entries (Stable GMM only up to 50 clusters because of runtime).

Figure 5 shows that Stable DGMM and Stable IGMM achieve a better fit
than the CF-Tree based approximations (which is to be expected, as they use
the individual points and double precision). But the runtime of this method is
much higher, and hence was only computed up to k = 50 clusters. BETULA
with DGMM and IGMM obtain only slightly worse results, showing that the
BETULA cluster features provide a reasonably close approximation of the data.

1 https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f.

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f


294 A. Lang and E. Schubert

BIRCH IGMM on the other hand shows its numerical instability and with an
increasing number of clusters, the quality deteriorates compared to BETULA.
For numerous clusters (and a large value makes sense on this data set), BETULA
with DGMM delivers the best results at an acceptable runtime: As seen in Fig. 5,
all GMM with Stable, BIRCH, and BETULA scale approximately linear in the
number of clusters k; but since the CF-Trees reduce the data set from 6.2 million
to at most 15000 cluster features (a factor of over 400), we obtain good results
at a much smaller run time than with regular Stable DGMM or IGMM (RQ4).

Fig. 6. Convex hulls of clusters with BETULA DGMM on the traffic accident data
with 100 clusters (three clusters omitted for a cleaner visualization).

Figure 6 shows the convex hulls and cluster centroids of an exemplary clus-
tering of the traffic data set with k = 100 clusters, using BETULA DGMM and
visualized with ELKI. We removed three clusters containing only input data
errors to improve readability. The shape of Great Britain can be recognized;
small and dense clusters are found around the larger British cities, especially
London. Larger clusters with lower density on the other hand cover rural areas
with fewer accidents (it is typical behavior of GMM to nest dense clusters with
low variance inside “background” clusters with high variance and fewer data
points).

5 Conclusion

Big data analysis and data stream clustering are hot topics in today’s research.
The CF-Tree of BIRCH is a popular technique for this that inspired many

subsequent works. Recently, the reliability of machine learning is receiving
increased attention; unfortunately, we found that “catastrophic cancellation”
is a major problem when calculating variances in BIRCH and derived methods,
which can cause the results to deteriorate. In this article, we propose BETULA
cluster features, that can serve as a drop-in replacement. These no longer exhibit
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this numerical problem, while also increasing the performance. We also show how
to use BETULA to accelerate Gaussian Mixture Modeling, while using the vari-
ance information from the cluster features for improved quality, compared to the
standard approach of only using the centroids of each leaf entry.
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Abstract. The k-means clustering is a well-known problem in data min-
ing and machine learning. However, the de facto standard, i.e., Lloyd’s
k-mean algorithm, suffers from a large amount of time on the dis-
tance calculations. Elkan’s k-means algorithm as one prominent app-
roach exploits triangle inequality to greatly reduce such distance cal-
culations between points and centers, while achieving the exactly same
clustering results with significant speed improvement, especially on high-
dimensional datasets. In this paper, we propose a set of triangle inequali-
ties to enhance the filtering step of Elkan’s k-means algorithm. With our
new filtering bounds, a filtering-based Elkan (FB-Elkan) is proposed,
which preserves the same results as Lloyd’s k-means algorithm and addi-
tionally prunes unnecessary distance calculations. In addition, a memory-
optimized Elkan (MO-Elkan) is provided, where the space complexity
is greatly reduced by trading-off the maintenance of lower bounds and
the run-time efficiency. Throughout evaluations with real-world datasets,
FB-Elkan in general accelerates the original Elkan’s k-means algorithm
for high-dimensional datasets (up to 1.69x), whereas MO-Elkan outper-
forms the others for low-dimensional datasets (up to 2.48x). Specifically,
when the datasets have a large number of points, i.e., n ≥ 5M, MO-Elkan
still can derive the exact clustering results, while the original Elkan’s k-
means algorithm is not applicable due to memory limitation.

Keywords: K-means · Clustering accelerating · Triangle inequalities

1 Introduction

The k-means clustering is one of the popular problems in data mining and
machine learning due to its simplicity and applicability. The de facto k-means
algorithm, i.e., Lloyd’s k-means algorithm [12], performs two steps repeatedly: 1)
the assignment step matches each point to its closest center, and 2) the update
step calibrates the center for each cluster with the assigned points. However,
the bottleneck in terms of time complexity, is to identify the closest center for
each input data point, which leads to significantly high time complexity, i.e.,
O(nkd), where n is the number of data points, k is the number of centers and
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d is the number of dimensions. In many situations, those numbers are big, e.g.,
data on health status of patients, on earth observation, on computer vision, etc.
Therefore, efficient k-mean clustering algorithms are indeed desired.

In order to accelerate the k-means algorithm, two distinctive categories are
widely-studied in the literature. 1) Approximated solution: Instead of acceler-
ating the exact k-means algorithm, the proposed techniques in this category
perform approximated solutions, e.g., [15,17,18], which indeed accelerate k-
means algorithms, but the final clustering results cannot be guaranteed to be
the same as Lloyd’s k-means algorithm. 2) Acceleration with exact results: The
proposed techniques in this category accelerate the calculation procedure while
preserving the exact results as Lloyd’s k-means algorithm. For example, Kanungo
et al. [11] and Pelleg et al. [14] propose to accelerate the nearest neighbor search
without computing distances to all k centers by using the properties of spe-
cial data structures. However, the overhead of preprocessing becomes significant
when the input datasets are high-dimensional. Alternatively, several accelera-
tion techniques exploit bounds on distance between data points and centers,
e.g., [3,5,7,8,10,13,16]. By maintaining lower and upper bounds on the dis-
tances to the cluster centers, most of distance calculations can be skipped. In
particular, Elkan’s k-means algorithm [8] as one prominent approach of them
can still dominate the others on high-dimensional datasets [13]. Nevertheless,
Elkan’s k-means algorithm is apparently infeasible when the number of data
point (n) or centers (k) is large due to the size of memory footprint for storing
the lower bounds, where the space complexity is O(nk).1

With the above pros and cons, we are motivated to revisit Elkan’s k-means
algorithm and propose a set of new filtering bounds based on triangle inequalities
to improve the filtering step.
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Fig. 1. Overview of the optimized Elkan’s k-means algorithm, which illustrates inter-
actions between different components. Our contributions focus on the filtering step,
which are highlighted in green. (Color figure online)

1 The O(nd) space complexity of the input points is ignored in our complexity analysis.
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Our Contributions: Figure 1 illustrates an overview of our contributions. We
aim at the filtering step in Elkan’s k-means algorithm highlighted in green,
detailed as follows:

– Three filtering bounds are proposed based on triangle inequalities to over-
come shortcomings of Elkan’s k-means algorithm, by which the most unnec-
essary distance calculations between points and centers during the iterations
of Elkan’s k-means algorithm can be pruned (see Sect. 4).

– We present how to optimize the original Elkan’s k-means algorithm to alle-
viate the time and space overheads by applying above filtering bounds. Two
optimized algorithms are proposed: runtime optimized Elkan (FB-Elkan) and
memory optimized Elkan (MO-Elkan). Specifically, the MO-Elkan has the
space complexity O(n+k2+kd), whereas Elkan’s k-means algorithm requires
O(nk + kd), where n is number of the input data points, d is number of
dimensions and k is number of clusters (see Sect. 5).

– Throughout evaluation we show that FB-Elkan is faster than the original
Elkan’s k-means algorithm on high-dimensional datasets in general, whereas
MO-Elkan can outperforms the others on low-dimensional datasets consid-
erably. Specifically, MO-Elkan can derive the exact clustering results when
the number of data points is large, i.e., n = 5M while the original one and
FB-Elkan may not be applicable due to memory limitation. (see Sect. 6).

The rest of this paper is organized as follows: In Sect. 2, we review related
work regarding the bound-based accelerated algorithms with the exactly same
clustering results as the standard (Lloyd’s) k-means algorithm. Section 3 defines
the notation used in this paper and presents a short, general overview of Elkan’s
k-means algorithm as we use it as a backbone. Section 4 presents our new filtering
conditions. In Sect. 5 we discuss how to use the proposed bounds to optimize the
original Elkan’s k-means algorithm. In Sect. 6, extensive evaluation results and
discussions on different real-world datasets are presented. Finally, we conclude
the paper in Sect. 7.

2 Related Work

In this section, we review related work regarding accelerating Lloyd’s k-means
algorithm with the triangle inequality so called bound-based acceleration, listed
as follows:

– Elkan’s k-means algorithm [8] takes advantage of lower bounds and upper
bounds to reduce the redundant distance calculations.

– Hamerly in [10] proposes to keep only one lower bound on the distance
between each point and its second closest center instead of keeping lower
bounds per point. Actually, it is a simplified version of Elkan’s k-means algo-
rithm, but it is more efficient for low-dimensional datasets.

– Drake and Hamerly [7] extend the above approach [10] to keep a variable
number of lower bounds, which is automatically adjusted on the fly. Drake
later on proposes Annulus algorithm in [6] to prune the search space for each
point by annular region.
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– Yinyang k-means algorithm [5] groups a number of cluster centers, which
balances the time of filtering and the time of distance calculations.

– Fast Yinyang k-means algorithm [3] further proposes to approximate
Euclidean distances by using block vectors, which can achieve good improve-
ments when the dimension of data is high.

– Newling and Fleuret in [13] simplify Yinyang and Elkan k-means algorithms
and provide tighter upper and lower bounds for updating. They also pro-
pose an Exponion algorithm, which improves Yinyang and Elkan’s k-mean
algorithms for low-dimensional datasets.

– Ryšavý and Hamerly in [16] propose a few methods to accelerate all aforemen-
tioned algorithms, such as producing tighter lower bounds, finding neighbor
centers and accelerating k-means in the first iteration.

– Fission-Fusion k-means algorithm [19] keeps bounds for subgroups of clusters.
It performs better for low-dimensional datasets.

Elkan’s k-means algorithm is known to suffer from the required space com-
plexity O(nk) to store the lower bounds, which may be infeasible for large k,
demonstrated in [5,13]. However, Elkan’s k-means algorithm performs the best
in terms of run-time among the aforementioned accelerated k-means algorithms,
for high-dimensional datasets, as shown in [13], e.g., Gassensor (d = 128), KDD-
cup98 (d = 310), and MNIST784 (d = 784).2 Therefore, we are motivated to
continue this same vain to make Elkan’s k-means algorithm even faster or with
less memory footprint to improve the scalability.

3 K-means Clustering and Elkan’s K-means Algorithm

For k-means clustering, we are given a positive integer k and a set X of
n d-dimensional data points. The objective is to partition data points in X
into k clusters while minimizing within-cluster variances, which are defined as
Euclidean distance between each data point and the center of the cluster it
belongs to. In this paper, we use t = 0, 1, 2, . . . to identify the discrete iterations,
and each of the given data points in X is classified into one of the k clusters in
each iteration t. Specifically, Elkan’s k-means algorithm [8] accelerates Lloyd’s
k-means algorithm using triangle inequality.

We use Ci(t) to denote the set of data points that are classified into the i-th
cluster at the end of the t-th iteration. The i-th cluster at the end of the t-th
iteration is defined by its cluster center ci(t). A data point x is classified into the
cluster Ci(t) if the Euclidean distance between the data point x and the cluster
center is the shortest among all cluster centers. That is, x ∈ Ci(t) if δ(x, ci(t)) ≤
δ(x, cj(t)), ties being broken arbitrarily, where δ(x, y) is the Euclidean distance
between two points x and y. For any t, we have ∪k

i=1Ci(t) = X and Ci(t)∩Cj(t) =
∅ when i �= j. In this paper, we assume that calculation of the distance of any
two points can be done in O(d) time complexity and O(1) space complexity.

2 In fact, Elkan’s k-means algorithm using the ns-bounds derived from the norm of a
sum in [13] sometimes outperforms the original Elkan’s k-means algorithm.
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Initially, when t = 0, k seeds are chosen as the initial cluster centers and each
of the data points in X is classified into one of the k clusters. At the beginning
of the next iteration, i.e., t+1, the i-th cluster center is positioned to ci(t+1) by
calculating the means of the data points in Ci(t). The shift of the cluster center
is δ(ci(t), ci(t+1)). To update the clustering at the end of the t-th iteration, the
time complexity is O(nkd) in the above procedure.

Elkan’s k-means algorithm can reduce a large number of distance calculations
by applying triangle inequality based on the upper bound and lower bounds
decided by each point in each cluster. More precisely, in the t-th iteration, for
every data point x in X, instead of calculating the distance of x to the k cluster
centers, the algorithm maintains two types of bounds:

– An upper bound ub(x, ci(t)) to the cluster center ci(t) when x is classified
into the i-th cluster, i.e., x ∈ Ci(t).

– k − 1 lower bounds lb(x, cj(t)) to the other cluster centers cj(t) for any x /∈
Cj(t).

The elegance of Elkan’s k-means algorithm is to apply triangle inequality to
maintain these bounds without calculating the distances. If x remains in the
same cluster, i.e., x ∈ Ci(t) and x ∈ Ci(t + 1), instead of updating the distance
information precisely, we simply apply the triangle inequality by setting

– ub (x, ci(t + 1)) to ub (x, ci(t)) + δ(ci(t), ci(t + 1)) and
– lb(x, cj(t + 1)) to lb(x, cj(t)) − δ(cj(t), cj(t + 1)) for any j �= i.

Elkan [8] proves that a data point x in cluster Ci(t) is not going to be assigned
to another cluster Cj(t + 1) in the following lemma.

Lemma 1 (Elkan [8]). Suppose that t is a non-negative integer and x ∈ Ci(t).
Then, x is not going to be classified into another cluster Cj(t + 1) at the end of
the (t + 1)-th iteration if

ub(x, ci(t + 1)) <
1
2
δ(ci(t + 1), cj(t + 1)) (1)

or
ub (x, ci(t + 1)) ≤ lb(x, cj(t)) − δ(cj(t), cj(t + 1)) (2)

We note that a significant drawback of Elkan’s k-means algorithm is that the
space complexity is O(nk) due to the storage of the lower bounds, in addition to
the O(nd) input data. The algorithm may not be applicable when nk (or even
k) is sufficiently large.

4 New Filtering Bounds

Although Elkan’s k-means algorithm can greatly avoid unnecessary distance cal-
culations, its has two shortcomings. First, for an iteration, i.e., fixed t, solely
applying Eq. (1) to decide the impossibility of relocating a data point to another
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cluster can be inefficient. In Sect. 4.1, we propose a simple condition, which can
be used to filter out centers that no data in Ci(t) will be relocated to, at the end
of the (t+1)-th iteration. Moreover, the maintained lower bounds lb(x, cj(t)) can
be very expensive, i.e., it requires O(nk) space complexity, and even become too
inaccurate in some scenarios. In Sect. 4.2, we present two new lower bounds that
can be independently applied to improve the space complexity and inaccuracy.

4.1 Filtering for Clusters of Points

The following theorem provides a new filtering condition to ensure that a point
that is not assigned to a cluster Cj(t) is not assigned to another cluster Cj(t+1)
at the end of the (t + 1)-th iteration as well.

Theorem 1. Suppose that t is a non-negative integer and x ∈ Ci(t) and some
j �= i. Moreover, assume that

ub(x, ci(t)) <
1
2
δ(ci(t), cj(t)). (3)

The data point x is not going to be classified into another data cluster Cj(t + 1)
at the end of the (t + 1)-th iteration, if

1
2
δ (ci(t), cj(t)) + δ (ci(t), ci(t + 1)) ≤ 1

2
δ (ci(t + 1), cj(t + 1)) . (4)

Proof. Recall that the the i-th center is shifted from ci(t) to ci(t + 1) after one
iteration. By triangle inequality, we have

δ(x, ci(t + 1)) ≤ δ(x, ci(t)) + δ(ci(t), ci(t + 1))
≤

definition of ub
ub(x, ci(t)) + δ(ci(t), ci(t + 1))

≤
Eq. (3)

1
2
δ (ci(t), cj(t)) + δ (ci(t), ci(t + 1))

≤
Eq. (4)

1
2
δ (ci(t + 1), cj(t + 1)) .

By the above condition, i.e., δ(x, ci(t + 1)) ≤ 1
2δ (ci(t + 1), cj(t + 1)), we

can apply the key property from Elkan [8] (summarized in Lemma 1), which
concludes that the data point x is not going to be classified into cluster Cj(t+1)
whenever the conditions in Eq. (3) and Eq. (4) hold. �	

The condition in Eq. (3) is always ensured by applying the original Elkan’s
k-means algorithm as this property is ensured by Lemma 1. The difference here
is to apply a tighter bound if the condition in Eq. (4) holds. This theorem is
useful when the distance δ (ci(t + 1), cj(t + 1)) is larger than δ (ci(t), cj(t)).
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Corollary 1. Suppose that t is a non-negative integer and the upper bound on
the Euclidean distance of every data point in cluster Ci(t) is at most UBi(t), i.e.,
UBi(t) = maxx∈Ci(t) ub(x, ci(t)). If UBi(t) < 1

2δ(ci(t), cj(t)) and the condition
in Eq. (4) holds ∀x ∈ Ci(t), then none of the data points in cluster Ci(t) is going
to be classified into another data cluster Cj(t + 1) at the end of the (t + 1)-th
iteration.

Proof. This comes directly from Theorem 1.

4.2 Additional Lower Bounds

In Elkan’s k-means algorithm, to ensure the impossibility that a data point x in
Ci(t) is going to be classified into a new cluster Cj(t + 1) for some j �= i in the
next iteration is to make sure that the upper bound of the distance δ(x,Ci(t+1))
is no more than the lower bound of the distance δ(x,Cj(t + 1)). To ensure that,
lb(x, cj(t)) − δ(cj(t), cj(t + 1)) is used as a lower bound of δ(x,Cj(t + 1)), as
stated in Eq. (2) in Lemma 1.

However, this lower bound becomes very small if the shift of the j-th center
is significant. In fact, when δ(cj(t), cj(t+1) is large, it is possible to find a tighter
(i.e., larger) lower bound of δ(x,Cj(t+1)), as presented in the following theorem:

Theorem 2. Suppose that t is a non-negative integer and x ∈ Ci(t). The data
point x is not going to be classified into another data cluster Cj(t+1) at the end
of the (t + 1)-th iteration for any j �= i, if

ub (x, ci(t + 1)) ≤ δ(ci(t), cj(t + 1)) − ub(x, ci(t)) (5)

Proof. By triangle inequality

δ(ci(t), cj(t + 1)) − ub(x, ci(t)) ≤ δ(ci(t), cj(t + 1)) − δ(x, ci(t))
≤ δ(x, cj(t + 1))

Therefore, if the condition in Eq. (5) holds, we ensure that δ(x, ci(t + 1)) ≤
δ(x, cj(t + 1)) and the theorem is proved. �	

Moreover, the lower bound lb(x, cj(t)) may be not available if we do not want
to keep tracking the distance between x and the other k − 1 cluster centers that
x does not belong to. In fact, if ci(t) and cj(t) are quite distant, the lower bound
in the following lemma can be applied:

Theorem 3. Suppose that t is a non-negative integer and x ∈ Ci(t). The data
point x is not going to be classified into another data cluster Cj(t+1) at the end
of the (t + 1)-th iteration for any j �= i, if

ub (x, ci(t + 1)) ≤ δ(ci(t), cj(t)) − ub(x, ci(t)) − δ(cj(t), cj(t + 1)) (6)
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Proof. By triangle inequality

δ(ci(t), cj(t)) − ub(x, ci(t)) − δ(cj(t), cj(t + 1))
≤ δ(x, cj(t)) − δ(cj(t), cj(t + 1))
≤ δ(x, cj(t + 1))

Therefore, if the condition in Eq. (6) holds, we ensure that δ(x, ci(t + 1)) ≤
δ(x, cj(t + 1)) and the theorem is proved. �	

We note that the two new lower bounds introduced in Theorems 2 and 3
only require the information of ub(x, ci(t)) and distances of the cluster centers.
Therefore, they can be used to reduce the space complexity when maintaining
the lower bounds lb(x, cj(t)),∀x ∈ X and x �= Cj(t) is too expensive, i.e., O(nk),
detailed in Sect. 5.

5 Optimized Elkan’s K-means

In this section we present how to optimize the original Elkan’s k-means algo-
rithm to alleviate the time and space overheads by applying different triangle
inequalities presented in Lemma 1, Theorems 1, 2, and 3, and Corollary 1. We
note that the triangle inequalities based on lb(x, cj(t)), for all x ∈ X and Cj(t)
with x /∈ Cj(t), are only applicable when these O(nk) lower bounds are main-
tained, which can be problematic for the memory usage when nk is large. That
is, whenever Eq. (2) is applied, the space complexity may become a bottleneck.

Algorithm 1 presents the pseudocode of our optimized algorithms. After the
initialization (Line 3), the clustering procedure keeps repeating until the process
converges, i.e., all centers stop changing. If Eq. (2) is not used in the algorithm
(in Line 27), we can skip the maintenance of the lower bounds in Lines 13, 18,
and 35. The pseudocode consists of two procedures, one for the initialization
when t is 0 (i.e., Line 8 to Line 13) and one for the t′ ← (t+1)-th iteration (i.e.,
Line 14 to Line 35). We focus our explanation on the latter procedure.

Line 15 updates each of the k centers by calculating the Euclidean mean value
of the points assigned to the cluster in the previous iteration. Line 16 calculates
different distances between different centers in the last iteration t and in this
iteration t′ = t + 1. Line 17 updates the upper bound of the distance from x to
its shifted center ci(t+1) by applying a triangle inequality. The time complexity
of the above steps is O((n + k2)d) and the space complexity is O(n + k2 + kd).

Moreover, Line 18 updates the lower bounds of the distance from x to other
centers with x �= Cj(t) using a triangle inequality if necessary. Line 18 requires
O(nk) space and time complexity.

For the simplicity of presentation, we use an auxiliary set Ci(t′) which is
initialized as Ci(t) in Line 19 for every i = 1, . . . , k. We then go through each of
the i-th center in the loop described between Line 20 and 35. Line 21 defines a set
Seti based on Corollary 1. That is, it is guaranteed that, for any j /∈ Seti, there
is no possibility that a data point in Ci(t) is classified into Cj(t + 1). Line 21
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Algorithm 1. Optimized Elkan’s K-means
1: Input: data set X, integer k
2: Output : cluster centers ci...ck

3: Initialization(X,k, t ← 0)
4: repeat
5: One-kmeans-Iteration(X, k, t + 1)
6: t ← t + 1
7: until the process converges

8: procedure Initialization(X,k, t ← 0)
9: Randomly select k initial centers ci(0), . . . , ck(0);

10: for every x ∈ X do
11: Let i∗ be the closest center ci∗(0) from data point x, ties arbitrarily broken
12: x is assigned to Ci∗(t) and ub(x, ci∗(t)) ← δ(x, ci∗(t))
13: If necessary, lb(x, cj(t)) ← δ(x, cj(t)) for every j �= i∗

14: procedure One-kmeans-Iteration(X, k, t′)
15: ci(t

′) ← mean(Ci(t)) for every i = 1, . . . , k;
16: Calculate δ(ci(t), ci(t

′)), δ(ci(t′), cj(t′)), and δ(ci(t), cj(t
′)), for every i =

1, . . . , k and j = 1, . . . , k
17: ub(x, ci(t

′)) ← ub(x, ci(t)) + δ(ci(t), ci(t
′)) for every x ∈ Ci(t) and i = 1, . . . , k

18: If necessary, lb(x, cj(t
′)) ← lb(x, cj(t)) − δ(cj(t), cj(t

′)) for every point x when
x was assigned to cluster Ci(t) for every 1 ≤ j ≤ k and j �= i

19: Ci(t
′) ← Ci(t) for every i = 1, . . . , k

20: for i ← 1, 2, . . . , k do
21: Seti ← {j|1 ≤ j ≤ k, j �= i, Corollary 1 does not hold}
22: if Seti �= ∅ then
23: for each data point x ∈ Ci(t) do
24: Temp ← ∅
25: for each center j ∈ Seti do
26: if Eq. (1) holds: continue
27: if Eq. (2) (or Eq. (6)) holds: continue
28: if Eq. (5) holds: continue
29: if δ(x, ci(t

′)) > δ(x, cj(t
′)) then

30: Temp ← Temp ∪ {j}
31: if Temp �= ∅ then
32: Let j∗ be argminj∈Tempδ(x, cj(t

′))
33: Ci(t

′) ← Ci(t
′) \ {x} and Cj∗(t′) ← Cj∗(t′) ∪ {x}

34: ub(x, cj∗(t′)) ← δ(x, cj∗(t′));
35: If necessary, lb(x, cj(t

′)) ← δ(x, cj(t
′)) for every j �= j∗

requires O(k) time/space complexity, provided that UBi(t) is always maintained.
For each j ∈ Seti, there are two possibilities in the presented algorithms between
Line 26 and Line 30:

– We can apply Eq. (1), Eq. (2), and Eq. (5). For a given x and j, each of
them takes O(1) time/space complexity. Line 29 takes O(d) time complexity.
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However, this requires the lower bounds maintained in Lines 13, 18, and 35.
We denote this option as filtering-based Elkan, FB-Elkan.

– We can apply Eq. (1), Eq. (5), and Eq. (6). For a given x and j, this takes O(1)
time/space complexity. Line 29 takes O(d) time complexity. This combination
does not require the lower bounds maintained in Lines 13, 18, and 35. We
denote this option as memory-optimized Elkan, MO-Elkan.

In the pseudo-code, for the simplicity of presentation, we use an auxiliary
set Temp to store the indexes of the possible new centers for a data point x,
which are maintained in Line 24 and Line 30. The data point x is assigned to
the closest center in Lines 31 to 35. The time complexity between Line 25 and
Line 35 is O(|Seti|d) = O(kd) and the space complexity is O(k). Please note
that Temp is just introduced for better readability in the pseudocode. A simple
implementation regarding Temp can directly calculate and store the closest index
j∗ on the fly using a buffer (instead of calculating the distance again in Line 32).

With the above discussion, we have the following conclusion for one iteration
when n ≥ k and t ≥ 1:

– FB-Elkan: time complexity O(nkd) and space complexity O(nk + kd).
– MO-Elkan: time complexity O(nkd) and space complexity O(n + k2 + kd).

We note that the above time complexity analysis is asymptotic and does not
reflect the actual run-time efficiency of these two algorithms and the lower bound
in Elkan’s k-means algorithm, i.e., Eq. (2), is usually stronger than Eq. (6).
Therefore, if the space complexity is affordable, using Eq. (2) is more run-time
efficient than using Eq. (6), further explained in Sect. 6.

6 Evaluation and Discussion

In this section, we first present our evaluation setup. Afterwards, we present the
evaluation results of normalized speed-up. Specifically, we show the scalability
of MO-Elkan on large n datasets, i.e., SUSY and HIGGS. Please note that the
ns-bounds provided in [13] can also be included in our algorithms, but we decide
not to involve them here due to the page limit.

6.1 Evaluation Setup

We compared two optimized Elkan’s k-means algorithms with the original
Elkan’s k-means algorithm (denoted as Elkan) [8]: FB-Elkan represents the com-
bination of Eq. (1), Eq. (2), and Eq. (5) in Algorithm 1. MO-Elkan represents
the combination of Eq. (1), Eq. (5), and Eq. (6) in Algorithm 1. The presented
speed-up factors are all normalized according to Elkan. If the normalized value
is greater than 1, the considered algorithm is faster than Elkan. Otherwise, it is
slower than Elkan.

To evaluate the runtime efficiency, we considered several datasets from the
following repositories: the UCI machine learning repository [2], clustering basic
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datasets [9], and LIBSVM [4]. To show the scalability of MO-Elkan, we specif-
ically consider two additional datasets, i.e., SUSY (n = 5M) and HIGGS
(n = 11M). For each of dataset (excluding SUSY and HIGGS), we tested over 50
times3 for each k ∈ {10, 50, 100, 500} and calculated the variance to show how
spread out the measured results are. Although most datasets are given number
of classes, which could be used as a natural choice of k, testing over various k is
to demonstrate the computational performance. All tested algorithms were exe-
cuted under the same initialization via k-means++ [1], and the clustering results
of all algorithms were eventually the same as expected. All approaches were
implemented in the same programming language, i.e., C++, and executed on the
same machine, i.e., Intel Core i7-8550U with 1.8 GHz and 16 GB RAM.

Table 1. Speed-up normalized to Elkan and variances with high-dimensional datasets.
For the simplicity of the presentation, the shown variance is set to 0 if the calculated
value is less than 10−4.

Dataset n d k MO-Elkan Variance FB-Elkan Variance

Covtype 150000 54 10
50
100
500

0.33
0.44
0.56
0.67

0.006
0.49
0.41
4.07

1.14
1.18
1.19
0.70

0.0004
0.04
0.23
1.23

KDDcup98 95412 56 10
50
100
500

0.32
0.39
0.49
0.53

0.008
0.12
1.28
6.33

1.40
1.18
1.09
0.83

0.004
0.017
0.22
0.25

KDDcup04 145751 74 10
50
100
500

0.26
0.25
0.24
0.18

0.43
19.81
200.13
339.76

1.05
1.10
1.09
1.17

0.005
0.60
2.35
8.71

Gassenor 14000 128 10
50
100
500

0.36
0.37
0.43
0.47

0
0.002
0.002
0.049

1.25
1.31
1.22
1.06

0
0.0003
0.0009
0.07

Usps 7291 256 10
50
100
500

0.33
0.27
0.39
0.56

0.003
0.05
0.12
2.28

1.11
1.48
1.69
1.28

0.0003
0.002
0.015
0.68

MNIST784 60000 784 10
50
100
500

0.57
0.3
0.43
0.45

0.088
1.36
9.69
15.73

1.19
1.28
1.10
1.38

0.003
0.15
0.13
1.23

3 Due to the amount of required time for each test, we can reach this number for all
setups to fairly demonstrate the statistical significance of the differences.



308 Q. Yu et al.

Table 2. Speed-up normalized to Elkan and variances with low-dimensional datasets.
For the simplicity of the presentation, the shown variance is set to 0 if the calculated
value is less than 10−4.

Dataset n d k MO-Elkan Variance FB-Elkan Variance

birth 100000 2 10
50
100
500

1.03
1.64
1.90
1.69

0.0001
0.0006
0.018
0.038

0.94
0.92
0.90
0.89

0
0.011
0.0006
0.008

skin noneskin 245057 3 10
50
100
500

0.95
1.42
1.43
1.49

0
0.002
0.0036
0.61

0.90
0.92
0.93
0.95

0
0.002
0.0036
0.078

3D spatial network 434874 4 10
50
100
500

1.36
2.30
2.48
1.27

0
0
0.001
0.005

0.91
0.86
0.91
0.93

0
0
0.004
0.001

6.2 Runtime Efficiency Evaluation

With high-dimensional datasets (see Table 1), FB-Elkan can mostly outperform
the others and achieve up to 1.69x. The trends of variances also follow the
increase of k for each dataset. However, when the number of clusters k is as large
as 500, we observe that the benefit of filtering routines, i.e., avoiding unnecessary
distance calculations, is mitigated by the overhead of calculating the filtering
bounds. For Covtype dataset, the additional time for calculating Eq. 5 increases
from 11% to over 20% when k increases from 50 to 500, whereas the original
Elkan’s k-means algorithm has no such overhead.

For low-dimensional datasets (see Table 2), we can notice that the variance
of the measured results is almost negligible. Moreover, MO-Elkan can reach
up to 2.48x, whereas FB-Elkan performs slightly worse than Elkan. In fact, the
overhead of checking additional filtering bounds in FB-Elkan is higher than the
benefit of filtering unnecessary distance calculations. With a similar reason, MO-
Elkan only requires less memory accesses to the filtering bounds. Therefore, it
is faster than Elkan for such datasets.

6.3 Scalability Evaluation

In order to demonstrate the improvement of scalability, we specifically evaluated
Elkan, FB-Elkan and MO-Elkan with two additional datasets with large n, i.e.,
SUSY (n = 5M) and HIGGS (n = 11M). We tested over different numbers of
clusters k, where k = {5, 10, 50, 100, 500} and report the normalized speed-up
factor. In case Elkan halted due to out of memory, we mark the corresponding
entry with “v” if FB-Elkan or MO-Elkan can be successfully executed till comple-
tion. Otherwise, if FB-Elkan or MO-Elkan also halted, the corresponding entry
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is marked with “-”. As shown in Table 3, Elkan and FB-Elkan essentially out-
perform MO-Elkan when their required memory footprints are affordable. When
the number of data points n multiplied with k becomes bigger, e.g., SUSY with
k = 500 or HIGG with k ≥ 100, the required memory footprints clearly become a
critical issue, whereas MO-Elkan can still finish the k-means clustering. We note
that the memory footprint of MO-Elkan was mainly dominated by the number
of data points, and the increased size respect to k was tolerable, i.e.,  1.44
GB for SUSY and  2.57 GB for HIGGS. However Elkan required 4.608 GB
for SUSY with k = 100 and 6.72 GB for HIGGS with k = 50, and FB-Elkan
required slightly more than Elkan.

Table 3. Speed-up normalized to Elkan with large n datasets.

Dataset n d k MO-Elkan FB-Elkan

SUSY 5M 18 5
10
50
100
500

0.19
0.15
0.20
0.28
v

1.17
1.05
0.96
0.95
–

HIGGS 11M 28 5
10
50
100
500

0.14
0.11
0.07
v
v

1.10
1.08
1.10
–
–

7 Conclusion and Outlook

In this paper, we present new filtering bounds to optimize Elkan’s k-means
algorithm. Specifically, two different combinations of the proposed bounds are
proposed to either filter more unnecessary distance calculations (FB-Elkan), or
reduce the space complexity (MO-Elkan) to improve the scalability of the orig-
inal Elkan’s k-means algorithm. Throughout extensive evaluations with several
real-world datasets, we reach the conclusion that FB-Elkan improves the runtime
efficiency of Elkan for high-dimensional datasets and MO-Elkan outperforms the
others for low-dimensional datasets while improving the scalability of Elkan, i.e.,
the memory footprint is mainly dominated by the number of data points.

In the future work, we plan to integrate the proposed filtering bounds into
other bounds-based accelerated k-means algorithms. For example, an integration
with Fission-Fusion k-means algorithm [19] may additionally refine the bounds
not only for each data point but also for each cluster. Integrating our bounds
with Yingyang [5] and Fast Yingyang k-means algorithms [3], can be expected
to greatly reduce computation time of distance calculations.
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Abstract. The amount of data increases steadily, and yet most cluster-
ing algorithms perform complex computations for every single data point.
Furthermore, Euclidean distance which is used for most of the cluster-
ing algorithms is often not the best choice for datasets with arbitrarily
shaped clusters or such with high dimensionality. Based on ABOD, we
introduce ABC, the first angle-based clustering method. The algorithm
first identifies a small part of the data as border points of clusters based
on the angle between their neighbors. Those few border points can, with
some adjustments, be clustered with well-known clustering algorithms
like hierarchical clustering with single linkage or DBSCAN. Residual
points can quickly and easily be assigned to the cluster of their nearest
border point, so the overall runtime is heavily reduced while the results
improve or remain similar.

1 Introduction

If there are clusters in a dataset, most of the points lie rather in the middle
of a cluster than at its border, and if the clusters of the border points are
known, the assignment of inner points is easy and fast using a simple 1NN
classification. To identify border points we suggest an angle based approach
inspired by Angle-Based Outlier Detection (ABOD) [4], which is robust even for
higher dimensionalities.

Our new clustering method ABC (Angle-Based Clustering), consists of three
steps: First, by assessing the angles between difference vectors of points to their
kNN, we can reliably identify points located at the boundaries of clusters. Sec-
ondly, we apply existing clustering techniques on those border points only, which
allows us to reduce the number of points to be clustered severely. Finally, inner
points are assigned to the same cluster as their nearest border point. As clus-
tering has a higher complexity than the angle-based border point extraction as
well as inner point assignment, the total runtime is dramatically reduced by
clustering only a small fraction of all data points.

Our main contributions are as follows:

– Based on angles between a point and its kNN we detect the border points
bounding clusters

– We apply adapted versions of DBSCAN and Hierarchical Single-Linkage Clus-
tering on the border points

c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-60936-8_24
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– In experiments we show not only the speedup of algorithms using only the
border points, but also the improvement of results regarding quality

2 Related Work

ABOD [4] was the first algorithm to use angles for outlier detection by regarding
the variance of angles between the difference vectors of a point to all pairs of
other points. Several works extended it regarding, e.g., acceleration [8], streams
[13], and or stability [5]. ABSAD [14] uses angles between points and axis-parallel
lines for an angle-based subspace anomaly detection method.

We could only find one work which uses angles in the field of clustering:
SCUBI [11] combines classical clustering with detecting boundary information
using angles to create a highly scalable clustering scheme. In contrast to our app-
roach, they use the angles only for an approximation to an intrinsically density-
based boundary extraction. Furthermore, we consider the previously calculated
angles also for the clustering step by improving the distance function.

There are diverse approaches to identify border points: density based [11,12],
hull based [7], and graph based [6] . Nevertheless, they lead to problems for higher
dimensionalities, either regarding meaningfulness, or complexity.

3 Mathematical Background

Angles Between Data Points. Angles in a finite-dimensional real Euclidean vec-
tor space V

R(� R
d, d ∈ N, d ≥ 2) are defined between any pair of vectors

A,B ∈ V
R with:

cosΘ(A,B) =
(A,B)R
|A| |B| , (1)

where (A,B)R =
∑d

k=1 AkBk is the scalar product between the two vectors and
|A| =

√
(A,A)R [9]. For the resulting (real) angle Θ(A,B) the following holds

true: 0 ≤ Θ ≤ π.

Directional Angle and Enclosing Angle. Figure 1 (left) shows the minimal angle
for a point X between two difference vectors to its neighboring points which
“encloses” all other neighboring points (green shape). We call it the enclosing
angle Θenc of a point. One way to calculate the enclosing angle in two dimensions
requires to calculate the directional angle between two vectors. In a 2d vector
space with vectors

−−→
XY = (u1, u2),

−−→
XZ = (v1, v2) ∈ V2, the counter-clockwise

directional angle from
−−→
XY to

−−→
XZ is ΘY Z(X) = atan2(u2, u1)−atan2(v2, v1). If

the resulting Θdir is negative, we add 2π to receive only positive values between
0 and 2π. Figure 1 shows an example directional angle Θdir. Note, that if the
directional angle is less than π, it will be equal to the cosine angle.

To obtain the enclosing angle of a point X, we calculate the directional angle
between difference vectors to all pairs of neighbors and differentiate two cases:
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First, if ∃Y ∈ kNN(X) : ∀Z ∈ kNN(X) : ΘY Z ≥ π as illustrated in Fig. 1 (mid-
dle), the enclosing angle can be calculated as 2π − min({ΘY Z |Y,Z ∈ kNN(X)}).
Otherwise, the enclosing angle can be calculated as 2π − max({min({ΘY Z |Z ∈
kNN(X)})|Y ∈ kNN(X)}), as shown in Fig. 1 (right). We can use the concept
behind enclosing angle to characterize the relative position of neighboring points.
Points in the center of a cluster tend to have much larger enclosing angles.

Fig. 1. Left: Enclosing Angle θenc and counter-clockwise Directional Angle θdir. Middle
and Right: Example calculation of the enclosing angle θenc. (Color figure online)

4 ABC: Angle-Based Clustering Approach

ABC consists of three steps: First we calculate an angle-based border degree,
see Sect. 4.1. The top β points with the highest border degree are the border
points. Secondly, we cluster the border points using either an adapted DBSCAN
or Hierarchical-Single Linkage Clustering, see Sect. 4.2. Finally, inner non-border
points are assigned to cluster of their nearest border point. With a k-d tree this
can be done in O(n log n).

4.1 Border Point Detection Based on Enclosing Angles

Because the nearest neighbors are all located in a similar direction for border
points, their enclosing angle (see Sect. 3) tends to be much smaller compared
to inner points. As we work with higher dimensionalities we use the following
approximation: The enclosing angle based border degree is calculated as the max-
imum of all angles between the vector formed by query point to the kNN-mean
and the vector from query point to one of the neighbors. Figure 2 (left) shows a
simplified 2d example. The approximated enclosing angle θenc for border points
tends to be much smaller than for inner points. The green shape encompasses
the enclosed points.

The complete enclosing angle based border point extraction process proceeds
as follows: For each point the kNN, the average distance to them, and the enclos-
ing angles are calculated. For the direction of a border point, we use the vector
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from the query point to the kNN-mean. Border points are then sorted by border
degree and the β · n points with the highest border degree are returned as the
Boundary. Figure 2 (middle and right) shows an example on a two dimensional
dataset, where darker points imply a higher border degree.

Parameter Analysis. Small values for k can lead to inner points being falsely
identified as border points, high values can lead to inter-cluster border points not
being recognized as such, i.e., we only find the global boundary of all clusters.
For datasets with many close clusters a small k should be preferred, while far
separated clusters yield better results with a larger k.

The parameter β determines the separation threshold between border and
inner points. Too high values yield more border points leading to a longer exe-
cution time of the subsequent clustering step. Too small values will fail to cor-
rectly identify enough cluster boundaries. In general, we have found values for
β between 5–20% to yield optimal results.

4.2 ABC-DBSCAN/ABC-Hierarchical-SL

To cluster the boundary points we can use an adaption of DBSCAN [1] in which
we regard also the direction of each border point to its neighbors. As border
points that lie close to each other but have opposing directions are unlikely
to belong to the same cluster, we use the following new the distance function
instead of the Euclidean:

Definition 1. Direction-Angle modified Distance Function
Given two border points A,B ∈ D and their respective direction vectors a, b
as well as the Euclidean distance d(A,B)eucl between the points and the angle
Θ(A,B) between their direction vectors. Then, given a direction-angle modifier
σmod , the direction-angle modified distance d(A,B)mod is calculated as:

d(A,B)mod = d(A,B)eucl ∗ (1 + (
σmod − 1

π
) ∗ cosΘ(A,B)) (2)

A larger angle between the direction vectors a and b results in a larger
modified distance, where σmod controls the maximum. A higher σmod leads to
more influence of direction-angle similarity compared to the Euclidean distance.
When σmod = 1, then d(A,B)mod = d(A,B)eucl. A value of σmod < 1 increases
the distance between points with different angle. Note, that this distance function
does not represent a metric, since the triangle inequality does not always hold.

Another well suited approach to cluster border points is hierarchical agglom-
erative clustering using single linkage (Hierarchical-SL) [3]. Again with a com-
plexity of O(n2), potential time savings using Angle-Based border point cluster-
ing are high. Also here we use the modified distance as described in Definition 1.
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Fig. 2. Left: Approximated Enclosing Angles for border point and inner point. The
red cross marks the mean of the blue kNN of the regarded gray point. Right: Border
degree and selected border points (k = 15, β = 0.2). (Color figure online)

Complexity Analysis. Calculating the border degree requires an kNN query with
complexity O(n log n) using a k-d tree [10]. The border degree calculation itself
has complexity O(n∗k), as an angle between each nearest neighbor of each point
and the mean of all its kNN is calculated. The sorting and selection of border
points is O(n log n). In total, we get O(n log n+nk). As k is typically very small
(k ≤ log n) the overall complexity is then O(n log n).

5 Experiments and Results

The following Sect. 5.1 covers results of experiments analyzing the runtime of
algorithms. The quality on different kinds of datasets, both synthetic and real,
are compared in Sect. 5.2 based on the Adjusted Rand Index (ARI).

5.1 Runtime

As ABC only requires to cluster a small fraction of all data points it is highly scal-
able and well suited for big datasets. Figure 3 (left) summarizes the experiments
on how long each of the main three steps (border degree calculation, border
point clustering and inner point assignment) take for an increasing number of
points. As clustering is the most time consuming task with growing number of
observations, reducing the amount of points having to be clustered significantly
saves time.

As seen in Fig. 3 (right), ABC-DBSCAN outperforms the naive implemen-
tation of DBSCAN with time complexity O(n2). Even with the use of optimized
index structures, the complexity of DBSCAN cannot be reduced below O(n4/3)
for higher dimensional data [2]. Thus, for large enough datasets, the ABC version
with O(n log n) outperforms even optimized variants of DBSCAN.
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Fig. 3. Left: ABC-DBSCAN components runtime with d = 5, β = 0.2, k = 10. Right:
Total runtime of DBSCAN and ABC-DBSCAN.

5.2 Quality

Datasets. First, we compare the quality of results on synthetic Gaussian data
while modifying either cluster count, dimension count or standard deviation
(the last one was left out due to the lack of space, even though ABC constantly
outperformed the competitors slightly). The default dataset consists of n = 1000
data points, c = 5 clusters, d = 5 dimensions and a standard deviation σ = 0.1.
Then, we test the algorithms on synthetic complex shaped data sets with and
without noise. Finally, we investigate how they perform on real data sets.

Algorithms. We compare ABC-DBSCAN to the classic DBSCAN. Addition-
ally, we compare it to ABC-SCUBI-DBSCAN, for which we adapt the idea
of [11] and exclude a point from the DBSCAN ε-range if its angle is greater than
π/2 (instead of our combined distance measure), but still use our border-degree
measurement. Then, we compare the ABC-Hierarchical-SL approach to the
classic Hierarchical-SL algorithm.

For ABC-DBSCAN and DBSCAN the same range of parameters is tested
and the best result is kept. ABC-Hierarchical-SL and Hierarchical-SL get the
correct amount of clusters given as the maximum cluster parameter. For the
border point calculation, we used parameters β = 0.3 and k = 15. For the
direction-angle modifier for ABC-DBSCAN and ABC-Hierarchical, we tested
values σmod ∈ {0.1, 0.2, 0.3, 0.5, 1, 2, 5} for different weightings of the angle com-
pared to distance and kept the best result.

5.3 Synthetic Gaussian Distributed Data

Based on the dataset described above we varied the number of clusters c from 1
to 500, as shown in Fig. 4 (top). ABC-Hierarchical-SL outperforms the classical
Hierarchical-SL, especially for higher c, where the latter only performs poorly.
For the DBSCAN versions, the overall performance decreases with increasing c,
but the ABC versions yield constantly better results than the original DBSCAN.
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For varying dimensionalities d ∈ [2, 1000]. ABC-Hierarchical-SL as well as
Hierarchical-SL converge towards an ARI of 1. The ABC version works slightly
better even for small d. All DBSCAN based algorithms suffer from the “curse of
dimensionality”, dropping to an ARI of 0 for high d ≥ 70. ABC-DBSCAN still
performs well for a much higher d than the classic DBSCAN.

5.4 Benchmark Datasets

To evaluate more complex cluster shapes, we also tested our algorithms with
the Complex9 dataset and its noisy version Cluto-t7. Both contain nine dif-
ferent types of clusters including blobs, moons and anisotropically distributed
shapes. As depicted in Fig. 4 (bottom), ABC-Hierarchical-SL achieves near per-
fect results and outperforms the original, since the single link effect connecting
two different Hierarchical-SL clusters is prevented by using our adapted distance
measure. ABC-DBSCAN and ABC-SCUBI-DBSCAN are slightly outperformed
by the original DBSCAN. In such cases, ABC could still be chosen with a trade-
off between a huge improvement of the runtime and a rather small decrease of
the quality. Results for the noisy dataset Cluto-t7 show similar behavior, except
for a significant improvement from ABC-Hierarchical-SL over the original.

Finally, we applied all algorithms on the real datasets Iris, Seed, and Ecoli
from the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml). In
summary, the ABC versions performed at least comparatively well, in many
cases even better than the original, as shown exemplarily in Fig. 4.

Fig. 4. Top: ARI of synthetic Gaussian distributed data for increasing number of clus-
ters Bottom: ARI of Complex9 (left), Noisy Cluto-t7 (middle) and Ecoli (right)

http://archive.ics.uci.edu/ml
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6 Conclusion

We developed ABC, an angle-based clustering method, which is based on com-
mon clustering algorithms like DBSCAN and hierarchical Single-Link clustering,
but many times faster as only the few cluster border points, have to be clus-
tered by the respective algorithm. The points lying in the middle of a cluster can
easily be assigned to the cluster of their nearest border point. We developed a
method to detect those border points based on the angle enclosing their nearest
neighbors, which is significantly smaller for points bordering a cluster than for
those lying in the inner part. Experiments show that the results are similar or
slightly better than those of the original algorithms on synthetic as well as on
real world data.
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Education and Research (BMBF) under Grant No. 01IS18036A. The authors of this
work take full responsibilities for its content.
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Abstract. Similarity search in high-dimensional spaces is an important
task for many multimedia applications. Due to the notorious curse of
dimensionality, approximate nearest neighbor techniques are preferred
over exact searching techniques since they can return good enough results
at a much better speed. Locality Sensitive Hashing (LSH) is a very popu-
lar random hashing technique for finding approximate nearest neighbors.
Existing state-of-the-art Locality Sensitive Hashing techniques that focus
on improving performance of the overall process, mainly focus on min-
imizing the total number of IOs while sacrificing the overall process-
ing time. The main time-consuming process in LSH techniques is the
process of finding neighboring points in projected spaces. We present a
novel index structure called radius-optimized Locality Sensitive Hashing
(roLSH ). With the help of sampling techniques and Neural Networks,
we present two techniques to find neighboring points in projected spaces
efficiently, without sacrificing the accuracy of the results. Our extensive
experimental analysis on real datasets shows the performance benefit of
roLSH over existing state-of-the-art LSH techniques.

Keywords: Approximate nearest neighbor search · High-dimensional
spaces · Locality Sensitive Hashing · Neural Networks

1 Introduction

Finding nearest neighbors is an important problem in many domains such as
information retrieval, computer vision, machine learning, multimedia retrieval,
etc. For low-dimensions (<10), popular tree-based index structures, such as KD-
tree, Quad-tree, etc. are effective, but for higher number of dimensions, these
index structures suffer from the well-known problem, curse of dimensionality
(where the performance of these index structures is often out-performed even
by linear scans) [3]. One solution to this problem is to search for approximate
results instead of exact results. In many applications where strictly correct results
are not necessary, approximate results can produce good enough results while
achieving much better running times. The goal of the c-approximate version of
the Nearest Neighbor problem (ANN) is to find nearest neighbors for a given
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query point that are within c ∗ R distance (where c > 1 is the approximation
ratio and R is the search radius).

1.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [8] is a very popular technique for solving the
Approximate Nearest Neighbor problem in high-dimensional spaces. LSH uses
random projections to map high-dimensional points to lower dimensional repre-
sentations. The intuition behind LSH is that nearby points in high-dimensional
spaces will map to same (or nearby) hash buckets in the projected lower dimen-
sional space with a high probability (and vice-versa). Since the original LSH
index structure was proposed for Hamming distance, LSH families have been
proposed for other popular distances such as the Euclidean distance [6]. The
main benefits of LSH are three-fold: 1) LSH provides theoretical guarantees on
the accuracy of the results, 2) LSH can answer ANN queries in sub-linear time
with respect to the dataset size, and 3) LSH can be easily implemented as exter-
nal memory-based index structures, thus making them more scalable [13]. While
the original LSH design suffered from large index sizes [16], recent works [4,7,9]
have either improved theoretical bounds or introduced techniques such as Col-
lision Counting (Sect. 3) to reduce the number of required hash functions. Due
to the popularity of LSH in diverse applications [18,22], several research works
have been proposed to improve the search efficiency and/or accuracy of LSH
techniques [4,7,9,10,13,14,16,23].

1.2 Motivation of Our Work: Improving the Efficiency of Existing
State-of-the-Art LSH Techniques

One of the important benefits of LSH is their ease of implementation as exter-
nal storage based algorithms. State-of-the-art external memory-based algorithms
(namely C2LSH [7], QALSH [9], and I-LSH [13]) use a bucket-expansion strat-
egy to find points from neighboring buckets. C2LSH and QALSH use a bucket
exponential expansion strategy, whereas I-LSH uses an incremental expansion
strategy. While I-LSH is the state-of-the-art algorithm that minimizes disk I/Os,
it achieves this optimization at the expense of a costly overall processing time
as shown in Sect. 6.1 Additionally, random I/Os (disk seeks) are known to be
bottleneck in query processing [11] and much more expensive than sequential
I/Os [12]. I-LSH reduces overall I/Os by mainly reducing sequential I/Os. In
this paper, our goal is to design an LSH external memory technique, roLSH,
that can reduce overall IOs, mainly random I/Os, (by finding neighboring points
efficiently) which improves the overall query processing time.

1 There is no existing work that compares the overall performance of C2LSH, QALSH,
and I-LSH. We present a detailed performance analysis between these works as a
technical report (https://arxiv.org/abs/2006.11285).

https://arxiv.org/abs/2006.11285
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1.3 Contributions of This Paper

In this paper, we propose a novel approach, called radius-optimized Locality
Sensitive Hashing (roLSH ) for efficiently finding top-k approximate nearest
neighbors in high-dimensional spaces. Our main contributions are as follows:

– We present a sampling-based technique, roLSH-samp, that reduces the overall
random disk I/Os which improves the query processing time while satisfying
the theoretical guarantees of LSH. We provide the theoretical analysis for the
correctness of roLSH-samp.

– We further improve the efficiency by proposing a Neural Network-based tech-
nique, roLSH-NN, for an improved prediction of projected radiuses (and thus
further reduction in random disk I/Os), and hence further improving the per-
formance without affecting the query accuracy. To the best of our knowledge,
we are the first work to improve LSH parameters by using Neural Networks.

– Lastly, we experimentally evaluate both techniques of roLSH on real high-
dimensional datasets and show that roLSH can outperform the state-of-the-
art solutions in terms of performance while providing similar query accuracy.

2 Related Work

Locality Sensitive Hashing is a popular technique for solving the Approximate
Nearest Neighbor (ANN) problem in high-dimensional spaces. It was first intro-
duced in [8] for the Hamming distance and later extended to the Euclidean
distance (E2LSH) [6]. These structures suffered from large index sizes due to the
need to have large number of hash functions in multiple hash tables [7]. Addi-
tionally, a magic radius need to be inputted to find the neighboring projected
points, and in order to find the desired number of results, this magic radius
was arbitrarily chosen to be very high. Multi-Probe LSH [16] presented a tech-
nique to probe neighboring buckets if enough number of results were not found.
C2LSH [7] introduced a Collision Counting approach that reduced the need to
have multiple hash tables, and hence reduced the overall index size. SK-LSH [14]
introduced a linear ordering on the disk pages with the help of Z-order curve in
order to reduce the overall I/Os. The drawback of SK-LSH was that it was cre-
ated on the original LSH design, and hence also suffered from the magic radius
problem. QALSH [9] introduced query-aware hash functions and further reduced
the number of hash functions necessary to achieve theoretical guarantees. The
work closest to our proposed idea is I-LSH [13], which introduces an incremental
strategy for finding nearest neighbors in the projected space, as explained in
the next Sect. 3.1. Recently, PM-LSH [23] developed a novel tunable confidence
interval while using a PM-tree to solve c-ANN queries.

3 Background and Key Concepts

In this section, we describe the key concepts behind LSH. We mainly use the
notations and formulations described in the seminal paper on Euclidean LSH
families [6] and C2LSH [7].
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Hash Functions: A hash function family H is (R, cR, p1, p2)-sensitive if it
satisfies the following conditions for any two points x and y in a d-dimensional
dataset D ⊂ R

d: if ||x−y|| ≤ R, then Pr[h(x) = h(y)] ≥ p1, and if ||x−y|| > cR,
then Pr[h(x) = h(y)] ≤ p2.

Here, p1 and p2 are probabilities and c is an approximation ratio. In order
for LSH to work, c > 1 and p1 > p2. The above definition states that the two
points x and y are hashed to the same bucket with a very high probability ≥ p1
if they are close to each other (i.e. the distance between the two points is less
than or equal to R), and if they are not close to each other (i.e. the distance
between the two points is greater than cR), then they will be hashed to the same
bucket with a low probability ≤ p2. In the original LSH scheme for Euclidean
distance, each hash function is defined as ha,b(x) =

⌊
a.x+b

w

⌋
, where a is a d-

dimensional random vector with entries chosen independently from the standard
normal distribution N(0, 1) and b is a real number chosen uniformly from [0, w),
such that w is the width of the hash bucket [6]. This leads to the following
collision probability function [6], which states that if ||x − y|| = r, then the
probability that x and y map to the same hash bucket for a given hash function

ha,b(x) is: P (r) =
∫ w

0
1
r

2√
2π

e
−t2

2r2 (1 − t
w )dt. Here, the collision probability P (r)

is decreasing on r for a given w. For a t, which is the largest absolute value of
a coordinate of point in D, and for every b uniformly drawn from the interval
[0, c�logc td�w2] and R = cn for some n ≤ �logc td� we have that hR(x) =

⌊
ha ,b(x)

R

⌋

is (R, cR, p1, p2)-sensitive, where p1 = p(1) and p2 = p(c) [7].

Collision Counting: In [7], authors theoretically show that two close points x
and y collide in at least l hash layers (out of m hash layers) with a probability
1 − δ. Further, only those points that collide at least l times with the query
point, where l is the collision count threshold, are chosen as candidates. We
refer the reader to [7] for further details. Since C2LSH creates only one hash
function per hash layer, the number of hash functions are equal to the number
of hash layers.

3.1 Existing Techniques for Finding Neighboring Projected Points

C2LSH [7] also introduced the concept of Virtual Rehashing that finds neighbor-
ing points that collide in neighboring hash buckets. The naive solution to finding
neighboring points is to use a large projected radius such that enough neighbor-
ing points are found to return top-k results. The projected radius is entirely
dependent on the data distribution, and as we show in Fig. 2, these projected
radiuses can vary significantly. Hence, using an arbitrarily large radius results
in wasted I/Os and unnecessary processing. Instead, Virtual Rehashing starts
with a very small radius (R = 1), and then exponentially increases the radius in
the following sequence: R = 1, c, c2, c3.... If at level-R, enough candidates are not
found, the radius is increased until enough query results are found. C2LSH [7]
and QALSH [9] follow this exponential expansion strategy. I-LSH [13] introduces
an incremental strategy where, instead of expanding the search radius exponen-
tially, they find the nearest point to the query in each projection. C2LSH and
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QALSH store points in hash buckets which are stored in disk pages. I-LSH stores
each data point separately and hence instead of reading disk pages that store a
group of data points, only reads a point (which effectively is the same as reading
a disk page of 4 bytes). While they save on disk I/O operations by this method,
this is a very costly operation (as shown in Sect. 6) since this process has to be
done thousands of times for larger radiuses.

4 Problem Specification

The approximate version of the nearest neighbor problem, also called c-δ -approx-
imate Nearest Neighbor search, aims to return points that are within c∗R distance
from the query point with probability at least 1 − δ, where c > 1 is a user-
defined approximation ratio, R is the distance of the query point from its nearest
neighbor, and δ is a user-defined error probability.

In this paper, our goal is to return c-δ-ANNs for a given query q while
reducing the overall processing time and satisfying the theoretical guarantees.
In Sect. 5, we present the processing cost breakdown of the LSH process based
on which we design our proposed index structure, radius-optimized Locality
Sensitive Hashing (roLSH ).
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Fig. 1. Frequency (Y-axis) of Final Radius Values (X-axis) for finding Top-100 Points
for 1000 Point Queries on Different Datasets using C2LSH

5 roLSH

In this section, we present the design of roLSH, which consists of two strategies
for efficiently finding neighboring points in the hash functions. We introduce and
describe these two strategies in this section: a sampling-based strategy, called
roLSH-samp, and a Neural Network-based strategy, called roLSH-NN.

5.1 Sampling-Based Improved Virtual Rehashing Strategy

In Sect. 2, we explained the original Virtual Rehashing strategy (denoted as oVR
strategy) as proposed in C2LSH [7]. The initial radius is set to 1, and if sufficient
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results are not found, then the radius is increased in an exponential sequence:
R = 1, c, c2, c3... until sufficient number of results are found. The main drawback
of this approach is when the values of R become larger (i.e. when the difference
between two consecutive radius values is large - e.g., 4096 and 8192). In such
situations, it happens frequently that very few (or no) nearest neighbor points
are found at radius value 4096 but all (and lot more) are found at radius 8192.
Thus, for example, if the actual radius of the kth-nearest point was near 5000,
then index files corresponding to radius 5000–8192 will be read unnecessarily
from the disk, leading to expensive wasted IO operations. Instead, we propose a
sampling-based improved Virtual Rehashing strategy (denoted as roLSH-samp)
based on the following observation:

Observation 1. For high-dimensional datasets, the required radius values for a
k value are similar to each other for different query points for a given dataset.

This observation was also noted by a very recent paper [23] where the authors
show that the homogeneity of the distance distributions of data points in dif-
ferent high-dimensional datasets is very high. Figure 1 shows our observation on
popular real high-dimensionsal datasets with varying cardinalities and dimen-
sionalities (Audio [1], Color [5], Deep [2]). For 1000 randomly chosen query
points, we report the final radius values (using the Virtual Rehashing technique
from C2LSH [7]) for top-100 points. By leveraging the above observation, we
design an improved and effective Virtual Rehashing technique: we execute a
sample set of randomly chosen queries for a given k and count the number of
occurrences of the final radius value. We choose our initial radius value that is
before the radius with the maximum count of sampled queries. E.g. in the Audio
dataset (Fig. 1), the radius with the maximum count is 8192. For these queries,
it means that the optimal radius would be between 4096 and 8192. Hence we
choose our initial radius value to be 4096. Thus, instead of starting at the initial
radius of 1, we find an improved initial starting radius (denoted as i2R) based
on sampling queries. Note that, since this is done during the indexing phase, it
has no overhead during query execution. Once the initial starting radius (i2R)
is found, we leverage the same exponential sequence strategy as C2LSH (using
x as the expansion step counter), such that:

R =

{
i2R + 2x 0 ≤ x ≤ log2 i2R

2x x > log2 i2R

Thus, for 1000 random queries on the Audio dataset, using the oVR tech-
nique, the average final radius is 7450 for c = 2 and k = 100. On the other
hand, using our improved strategy, the average final radius is 6083, which leads
to significant savings in the IO.

Note that, one disadvantage of this approach is that there potentially can be
queries that finish with a radius value much lower than the chosen initial radius.
E.g., in the Color dataset (Fig. 1), our strategy will choose i2R = 1024. As you
can see, there were 2 out of 1000 queries whose final radius value to find top-100
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points was 512. In this case, the improved Virtual Rehashing strategy (denoted
as iVR strategy) will do wasted work by starting (and ending) at 1024.

Lemma 1. For those queries whose required radius in oVR is at least (2× i2R),
iVR strategy will generate less IOs than the oVR strategy.

Proof. Set R = i2R. By construction of the sequence of radii in oVR, it is enough
to assume that the required radius is 2R, that is, the actual radius r of the kth-
nearest point satisfies R < r ≤ 2R. In the oVR, the sequence of radii needed to
find the kth-nearest point has log2 R+2 elements, that is, 1, 2, 4, . . . , 2R. On the
other hand, for the same query q, iVR analyzes at most log2 R +1 radii, that is,
R + 1, R + 2, . . . , 2R. This finishes the proof.

While I-LSH [13] still generates less disk I/Os than roLSH-samp, roLSH-samp
is significantly faster than I-LSH (due to less overall processing time) and also
generates less disk seeks than I-LSH for bigger datasets (Sect. 6).
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Fig. 2. Frequency (Y Axis) of radiuses (X Axis) for 10,000 Top-100 Queries

5.2 Drawbacks of roLSH-samp

The main benefit of roLSH-samp is that it is effective in reducing the disk I/Os,
especially when the radiuses are large (e.g., the Audio dataset in Fig. 1). There
is a minor overhead of utilizing the sampling-based method during the indexing
phase. Additionally, we found that we also get good sampling representatives
even with a small sampling size (e.g., 100). There are two main drawbacks of
roLSH-samp: 1) roLSH-samp works best when Observation 1 holds true. We
found out that Observation 1 holds true for many datasets, but not all. For
example, as seen in Fig. 2, the radiuses for top-100 queries on the LabelMe
dataset are quite different leading to inefficient performance of roLSH-samp (as
shown in Sect. 6), 2) It is not easy to do sampling for different k values since the
radius changes for different k values. It is not trivial to build a single model and
extend it to multiple k values to find the radius for a particular k value. Instead
a model needs to be built for each k value.
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Table 1. Performance comparison of learning techniques

MLP Linear Reg. RANSAC Decision tree Gradient boosting

MSE 0.0265 0.3543 0.3542 0.7057 0.2117

R2 0.9687 0.5826 0.5827 0.1698 0.7504

5.3 Neural Network-Based Prediction of Projected Radiuses

To remedy these two drawbacks, we present a Neural Network-based strategy,
roLSH-NN, that can better predict starting radiuses based on the query location
(in each hash function) for any given k value. The main intuition behind roLSH-
NN is that nearby points in the original space will have similar projected radiuses
to find the desired number (k) of nearest neighbors. Hence, our goal is to predict
the projected radiuses given the hash locations of a query for a given k.

Formally, let hi(q) denote the bucket location of q in the ith hash projection.
Thus, H(q) = h1(q), ..., hm(q) denotes a vector of size m (since there are m
hash projections) that contains m bucket locations for a given query point q.
Let Ract(q, k) denote the smallest radius in the projected space that satisfies
the desired number of results (k). Let Qtr be the set of training queries, where
for each query q ∈ Qtr, we also find the ground truth (i.e. Ract(q, k)), which is
entered as a target value into the neural network during training. This step is
done in the indexing step, and hence does not affect the query processing time.
We train a Neural Network with Qtr queries such that for each query q, we input
H(q) and k and the Neural Network outputs the predicted radius, Rpred(q, k).
We explain the different characteristics of our Neural Network in Sect. 6.

Justification for Choosing Neural Networks: Since the problem of pre-
dicting radiuses given the hash function is a regression problem, we tried several
machine learning techniques. Table 1 shows that Neural Networks (denoted by
MLP since we use a Multilayer Perceptron Neural Network) have the best MSE
and R2 for a sample dataset (Deep) for Qtr = 10, 000 among different machine
learning techniques (using 10-fold cross validation). Hence, we choose Neural
Networks over other techniques in the design of roLSH-NN.

Underestimation of Radius: When the radius is underestimated (i.e.
Rpred(q, k) < Ract(q, k)), the desired number of results are not found and hence
we have to enlarge the radius in all projections. One strategy is to follow the same
expansion pattern of roLSH-samp presented in Sect. 5.1, where the predicted
radius is set as i2R. We call this strategy roLSH-NN-iVR. The drawback of this
strategy is that it can lead to excessive (and expensive) disk seeks if the predicted
radius is much lower than the actual radius. Since we observe that Rpred(q, k)
is close to Ract(q, k), we also adopt another strategy where we increase the pre-
dicted radius, Rpred(q, k), linearly by Rinc such that Rinc = Rpred(q, k)×λ. This
strategy is referred to as roLSH-NN -λ in the rest of this paper.
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Overestimation of Radius: While overestimation of the projected radius by
the Neural Network leads to wasted disk I/Os during query processing, we exper-
imentally show in Sect. 6 that these wasted disk I/Os are still less than the expo-
nential strategy of C2LSH/QALSH and the improvement in the query processing
time (as compared with I-LSH) offsets the disk I/Os significantly.

Extension to any k: In order to train the Neural Network to work for any
number of desired results (k), we need to include k as an input feature in the
training set. In order to simplify the training procedure, we only consider few
values of k in the training set Qtr. In Sect. 6, we experimentally show that as
more diverse k values are included in the training set, the MSE decreases. Also,
we explain the training setup and the different k values in our training set.

6 Experimental Evaluation

In this section, we evaluate the effectiveness of our proposed index structure,
roLSH, on three real diverse high-dimensional datasets. All experiments were
run on the nodes of the Bigdat cluster2 with the following specifications: two
Intel Xeon E5-2695, 256 GB RAM, and CentOS 6.5 operating system. We
implement our work on top of C2LSH [7] since we found it to be the fastest
external memory-based LSH algorithm (while achieving high accuracy for high-
dimensional datasets). Note that, our method is orthogonal to the LSH algorithm
and can be used in any state-of-the-art LSH algorithms. All codes were written
in C++11 and compiled with gcc v4.7.2 with the -O3 optimization flag. We
compare our three strategies, roLSH-samp, roLSH-NN-iVR, and roLSH-NN-λ
with the state-of-the-art LSH algorithms C2LSH [7] and I-LSH [13].3,4

Table 2. Comparison of (a) Index Construction Time (in sec) and (b) roLSH Index
Time Breakdown (in sec) on Different Datasets

Index Time LabelMe Deep Mnist

roLSH-samp 83.5 93.5 1480.8

roLSH-NN 88.6 98.4 1488

C2LSH 80.6 69 1430.2

I-LSH 20.8 25.7 1359.9

Index Time

Breakdown
LabelMe Deep Mnist

Base Index Time 80.6 69 1430.2

Sampling 2.9 24.5 50.6

NN Training 8 29.4 57.8

6.1 Datasets

We use the following three popular real datasets to evaluate the proposed
method:

2 Supported by NSF Award #1337884.
3 PM-LSH code is not yet released; hence, we do not compare with it.
4 The source code for roLSH is available at: https://3m.nmsu.edu/rolsh.

https://3m.nmsu.edu/rolsh
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Fig. 7. Accuracy Ratio (Y axis) for different k (X Axis) on 3 datasets

– LabelMe [19] consists of 181, 093 512-dimensional points which were gener-
ated by running the GIST feature extraction algorithm on annotated images.

– Deep consists of 1, 000, 000 96-dimensional points that were randomly chosen
from the Deep1B dataset introduced in [2].

– Mnist [15] This dataset contains 8, 100, 000 784-dimensional points that rep-
resent images of the digits 0 to 9 which are grayscale and of size 28 × 28.

6.2 Evaluation Criteria and Parameters

The goal of roLSH is to improve the performance efficiency without sacrificing
the accuracy of existing LSH techniques. The performance and accuracy of the
technique used in this paper are evaluated using the following metrics:

– Query Processing Time (QPT ): We break down the Query Processing
Time into the Index I/O cost, the Algorithm time (AlgT ime), and the neg-
ligible false positive removal cost (denoted by FPRemTime, which consists
of the cost of reading the data point candidates and computing their exact
Euclidean distance for removing false positives). Following [13], we further
break down Index I/O cost into the number of disk seeks (i.e. random I/O
reads, noDiskSeeks) and the amount of data (i.e. index files, dataRead)
read in MB. We observed that the index I/O times were not consistent
(i.e. running the same query multiple times, which needed the same index
I/Os, would return drastically different results, mainly because of disk cache
and instruction cache issues). Therefore, following [20], for a Seagate 1TB
HDD with 7200 RPM, we assume a random seek to cost 8.5 ms on aver-
age, and the average time to read data to be 0.156 MB/ms. Thus, we have
QPT = noDiskSeeks ∗ 8.5 + dataRead ∗ 0.156 + AlgT ime + FPRemTime.

– Accuracy: We follow the accuracy ratio definition followed by many previ-
ous works [7,9,14]: 1

k

∑k
i=1

||oi−q||
||o∗

i −q|| . Here, oi is the ith point returned by the
technique and o∗

i is the true ith nearest point from q (ground truth). Ratio
of 1 means the returned results have the same distance from the query as the
ground truth. The closer the ratio is to 1, the higher is the accuracy.

For the state-of-art methods, we used the same parameters suggested in their
papers (w = 2.719 for QALSH and w = 2.184 for C2LSH). Also, as roLSH is
built on top of C2LSH, it uses the same parameters as C2LSH. We set the allowed
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error probability, δ, to be 0.1. The Multilayer Perceptron (MLP) Neural Network
is implemented using the Scikit-learn Python package [17]. In this paper, we use
the default parameters and options (i.e. 100 hidden layers, ReLU activation
function, and the Adam optimization algorithm). We leave the hyper-parameter
tuning analysis to future work. We choose 10,000 training queries randomly from
the dataset. 50 different queries were randomly chosen from the dataset for the
evaluation. We report an average of the results on these 50 queries.

6.3 Effect of Different Parameters on Performance of roLSH-NN-λ

In this section, we present the performance of roLSH-NN-λ under different
parameters for the Deep dataset.

Effect of Training Size: We consider three different training sizes (5K, 10K,
50K). In our experiments, the MSE reduces (by 18.4% between 5K and 50K
training size) as the training size increases and since the MSE decreases (i.e.
the predicted radius is close to the actual radius), the overall Query Processing
Time (QPT) also decreases (by 33% between 5K and 50K training size). In the
following experiments, we choose 10K as the default training size. Due to space
limitations, we do not present the results in Sect. 6.3 in detail.

Effect of Number of Different k in Training: We analyze the performance of
roLSH-NN -λ for different values of k that are present in the training data while
keeping the total training size and λ constant. We chose {1, 50, 100}, {1, 25, 50,
75, 100}, and {1, 10, 25, 50, 75, 90, 100} as three different settings. The MSE
reduces as more diverse k are included: by 33% between the first two settings,
but only by 14% between the last two settings since the neural networks are
capable of adequately predicting the radiuses for different k even for the second
setting (which is our default in the following experiments).

Effect of Different Radius Increment (λ): We experiment using λ values
of 5%, 10%, and 20%. As λ increases, the number of disk seeks decrease (by
32%) since a higher λ eventually results in a larger radius and in turn makes the
algorithm stop sooner without processing all projections, but the algorithm time
and the amount of I/O increases (by 4% and 1% respectively) since more hash
buckets are processed. We choose 10% as our default in further experiments.

6.4 Discussion of the Results

Table 2 (a) shows the time taken to finish the index construction. The reported
times show that the sampling and training overhead for roLSH-samp and roLSH-
NN are only 3.4% and 3.9% for the largest dataset (Mnist). Table 2 (b) shows
the break-down of index construction time for roLSH-samp and roLSH-NN (i.e.
overhead of the techniques used in each method) for all datasets. The index size
of our techniques are similar to C2LSH since we use C2LSH as our underlying
LSH implementation. The index size overhead of roLSH-samp is 0.1 MB for all
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datasets, and overhead of roLSH-NN is 0.4 MB for LabelMe and 0.5 MB for
Deep and Mnist datasets.

Number of Disk Seeks: Figure 3 shows the number of disk seeks (random
I/Os) required by these different techniques. It is very interesting to note that
while I-LSH performs the best (roLSH-NN-λ is a close second) for LabelMe, their
performance degrades as the dataset size increases. I-LSH produces significant
more disk seeks as the dataset size increases. We believe this is mainly due to
the fact that more points need to be accessed incrementally to find the candi-
dates. roLSH-NN-λ significantly performs the best for Deep and Mnist datasets
because it can accurately predict the radius for different k. Every time roLSH-
NN-λ underestimates the radius (Sect. 5.3), it has to increment the radius by λ
resulting in a disk seek in each projection. Also, as expected, roLSH-NN-iVR
produces more disk seeks due to radius underestimation (Sect. 5.3).

Amount of Data Read: Figure 4 shows the total amount of data (index files)
read. Since I-LSH incrementally increases the search to the nearest point in the
projected space (instead of an empirically chosen number, such as λ), it results in
the least amount of data read for all datasets. These savings in the I/O are offset
due to the expensive search for the nearest point as shown in Fig. 5. Especially
for lower k, roLSH-NN-iVR and roLSH-NN-λ read less data than C2LSH, but as
k increases the overall data read is similar for both techniques. It is interesting to
note that roLSH-samp reads significantly more data for LabelMe dataset. This
is due to choosing of a bad starting radius due to the unique distribution of the
LabelMe radiuses (Fig. 2 (a)). Moreover, roLSH-NN-iVR and roLSH-NN-λ read
similar amount of data since their starting radius is the same.

Algorithm Time: Figure 5 shows the time needed by the algorithms to find
the candidates (excluding the time taken to read the index files). Note the log
scale of this figure because the algorithm time for I-LSH was orders of magnitude
more than the other techniques. This is because I-LSH expands the radius incre-
mentally in each projection which creates a significant overhead. Figure 5 shows
that the overhead of our methods is negligible when compared with C2LSH.

Query Processing Time: Figure 6 shows the overall time required to solve
a given k-NN query. I-LSH works well for smaller datasets (LabelMe) but is
significantly slower as the dataset size increases (due to high overhead in incre-
mentally finding the next neighbor in each projection). roLSH-samp is always
faster than C2LSH because of the savings in disk seeks. roLSH-NN-iVR and
roLSH-NN-λ are always much faster than roLSH-samp and C2LSH because of
their ability to accurately predict radiuses, resulting in significantly less disk
seeks and lesser (or similar in some cases) data read than C2LSH. roLSH-NN-λ
has better performance compared to roLSH-NN-iVR, mainly because of having
lesser disk seeks as discussed before. This figure shows the performance benefit
of roLSH-NN-λ over its competitors for different datasets, and confirms that the
design of roLSH-NN-λ leads to improvement in overall efficiency.

Accuracy: Figure 7 shows the accuracy of all techniques. roLSH-samp gives
the worst accuracy for LabelMe dataset. We found that this is due to the fact
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that LabelMe dataset has queries with very different large radiuses. roLSH-samp
is unable to work well for datasets that have differing radiuses because if the
starting radius is chosen wrong, then roLSH-samp can significantly overestimate
the radius for larger radiuses leading to lower accuracy. roLSH-NN-λ always
returns similar accuracy to that of C2LSH. I-LSH returns a better accuracy
for Mnist dataset due to their usage of query-aware hash functions, but the
performance is significantly slower as shown in Fig. 6.

7 Conclusion

Locality Sensitive Hashing is a popular technique for efficiently solving Approxi-
mate Nearest Neighbor queries in high-dimensional spaces. State-of-the-art LSH
techniques improve the overall disk I/Os at the expense of algorithm time. In
this paper, we present a unique index structure called radius-optimized Local-
ity Sensitive Hashing (roLSH ). The goal of roLSH is to improve the efficiency
of LSH techniques by improving the random disk seeks without any significant
overhead in algorithm time. We propose two novel strategies, roLSH-samp and
roLSH-NN that are based on sampling and Neural Networks respectively. Exper-
imental results on real datasets show the benefit of roLSH in improving overall
performance over existing state-of-the-art techniques, C2LSH and I-LSH.
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Abstract. We present a similar image retrieval (SIR) platform that is
used to quickly discover visually similar products in a catalog of mil-
lions. Given the size, diversity, and dynamism of our catalog, product
search poses many challenges. It can be addressed by building super-
vised models to tagging product images with labels representing themes
and later retrieving them by labels. This approach suffices for common
and perennial themes like “white shirt” or “lifestyle image of TV”. It
does not work for new themes such as “e-cigarettes”, hard-to-define ones
such as “image with a promotional badge”, or the ones with short rel-
evance span such as “Halloween costumes”. SIR is ideal for such cases
because it allows us to search by an example, not a pre-defined theme.
We describe the steps - embedding computation, encoding, and indexing
- that power the approximate nearest neighbor search back-end. We also
highlight two applications of SIR. The first one is related to the detection
of products with various types of potentially objectionable themes. This
application is run with a sense of urgency, hence the typical time frame
to train and bootstrap a model is not permitted. Also, these themes are
often short-lived based on current trends, hence spending resources to
build a lasting model is not justified. The second application is a variant
item detection system where SIR helps discover visual variants that are
hard to find through text search. We analyze the performance of SIR in
the context of these applications.

Keywords: Content-based image retrieval · Information retrieval ·
Visual search · e-Commerce · Deep learning

1 Introduction

Product data in catalogs owned by online retailers consist of text (title-
description etc.), key-value pairs (attributes), and images. A number of internal
systems and customer-facing applications leverage images to search and discover
product(s) of interest. In some cases, the inherent nature of the application war-
rants a search through images. Also, the results of an image search usually
complement that of a text search in most use cases.

In this paper, we present a visual similarity-based product search and
retrieval system built and deployed to address a number of business use cases at
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Walmart. Image search has come a long way with the recent advances in deep
learning. However, building such a system that has the ability to scan through
millions of images in a few seconds is a challenging task. The deep learning based
fingerprints (or embeddings) created from images contain rich and complex infor-
mation, but creating them is a compute-intensive task until GPUs are available
in excess. Creating a search index on top of such large floating point arrays is
not straightforward either. We present in this paper our process of encoding
the embeddings so that they lend themselves well to popular search indexes like
Elasticsearch and can be used to retrieve approximate nearest neighbors.

Our system is currently used in two business-critical applications. In this
application-focused paper, we highlight how image similarity search plays a cen-
tral role such applications.

– Offensive or non-compliant product search: The quality and compliance
of our catalog are maintained through scheduled and on-demand searches
for potentially offensive products. This discovery process demands a quick
turnaround which makes the path of building supervised classifiers unattrac-
tive. Rather, a search tool that would accept one or a few known examples
as a query and return more products with similar images is needed.

– Variant grouping: In this classic e-commerce problem, items varying by
color, size etc. are grouped together and presented to the customer at once
on a single page. To create such groups from the catalog, we often start with
a seed item and try to limit the search space to a pool of similar items. This
pool of similar candidates can be created by text or image search or both.
Our experiments suggest that image search often retrieves candidates that
complement the ones retrieved by text search.

Our system SIR has the potential to be used in other applications as well. With
visual exploration emerging as an upcoming trend in retail, our image search
index based on catalog product images can eventually become the back-end
of a customer-facing visual search system. Also, SIR is used by data scientists
to augment their training datasets with similar images. They often deal with
machine learning problems where the data distribution across classes is highly
skewed. This tool helps find training examples for poorly represented classes.

We optimize SIR for two objectives: search accuracy and query performance.
We achieve high search accuracy by finding the most optimal deep learning
based embedding after examining a few candidates. We achieve near real-time
performance by encoding and indexing those embeddings in a scalable manner.
The following sections of the paper delve into the technical details of the system
and showcase its performance with appealing case studies of real applications.

2 Related Work

In recent years, content-based image retrieval from large data sets has bifurcated
into two distinct approaches. Systems like FAISS [12] and NMSLib [13] treat
embeddings as first class citizens. At the time of this writing, these systems are
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typically scaled vertically by taking advantage of GPU based parallelisms. On
the other hand, the older, mature search systems like Elasticsearch and Solr come
with built-in support for scaling text-based searches to millions of documents.
The above two approaches have been empirically compared by Mu et al. [15]. As
combining image and text searches (multi-modality) was an integral part of our
overall solution, we decided on leveraging the second approach. Also, given the
size of our catalog, a distributed system with in-built sharding was preferred.

Many state-of-the-art image retrieval systems rely on very high dimensional
features, known as embeddings extracted either from a pre-trained network or by
fine-tuning a deep neural network [2]. Our system has experimented with a num-
ber of popular models such as VGG16 [17], Resnet50-v2 [10], Inception-v2 [18]
and EfficientNet [19]. Deep learning based hashing, binarizing or a combination
of them [3,4,23] are applied to the embeddings to reduce their storage cost and
to improve the retrieval performance of indexes built on them.

From core functionality perspective, our system is a close neighbor to the
visual search systems developed by various e-commerce companies [11,20,22].
However, a very important difference between those and SIR is that we apply
our system to internal stakeholders; hence, the user interaction flow and other
design choices are optimized for them. The actions taken with our system’s
results are very different from that of customer-facing visual search platforms.

3 Technical Details

The core of the system (Fig. 1) revolves around fingerprinting every image to
capture salient features and persisting it in a search index that would allow for
efficient search and retrieval of nearest neighbors. We have the ability to use
shallow fingerprinting techniques like phash [21] or deep learning based embed-
dings [17]. Most of our use cases require the ability to be invariant to slight
changes in the image including positional and rotational variations. Also, the
deeper and semantic aspects to embedding based fingerprinting was preferred.

3.1 Embedding Generation

In this step, we convert each image into a fingerprint or signature or unique
descriptor. Under the hood, the fingerprints are essentially embeddings computed
from a suitable deep neural network. We have experimented with a large number
of techniques for embedding generation and settled down on VGG16 as our
primary network. The embeddings are taken off the final fully connected layer
of VGG16.

3.2 Index Creation

A typical embedding is a high dimensional vector consisting of floating point
numbers. At search time, both the high dimensionality and the need to numer-
ous floating point comparisons are big hindrances to a scalable, near real-time
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Fig. 1. System architecture of similar image retrieval tool (SIR). The top block outlines
the back-end process of computing, encoding, and indexing embeddings. The bottom
block shows the search interface.

implementation. In order to solve this, we employ a variant of locality sensi-
tive hashing (LSH) [9] that binarizes the embedding vector by partitioning the
embedding space using random projections. By constraining the dimensional-
ity of this new binarized space, we can also mimic the effects of dimensionality
reduction on the scalability of the search system. In its binarized form, the
embeddings are further split into smaller subcodes [16] and ingested into the
Elasticsearch index (Fig. 2). The subcoding enables us to take advantage of the
pigeonhole principle and enforce early abandonment of search candidates which
in turn helps us achieve sub-linear search times [16]. At retrieval time, we also
take advantage of Elasticsearch’s ability to compute efficient hamming distance
calculations in the form of bit operations.

Our product catalog is an ever-changing system. The business applications
focus mostly on the images that were added to the catalog in last few weeks.
Hence, we have designed the index creation as a rolling process so that the new
and recently updated images are always indexed. The current deployed system
listens to a Kafka [1] topic that streams new and updated images. On receiving
an image, we compute its embedding, transform it into the suitable format and
store in Elasticsearch [7]. A rolling index (last 3 months) of newly created images
is maintained for subsequent search and retrieval.

The rolling nature of the application makes hash-based indexing a prefer-
able choice over techniques that learn representations collectively from a static
dataset such as principal component analysis (PCA). As the catalog changes, the
optimal principal components change as well, requiring frequent re-computation
of them.
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Fig. 2. Process of generation of subcodes from an image embedding followed by index
creation on Elasticsearch.

3.3 Image Retrieval

In the retrieval phase, a query image (also called seed image) is provided to the
system through the front end. In the back end, the query image is converted into
an embedding and its nearest neighbors are retrieved from the indexed store. The
retrieved images are presented in a grid in order of similarity with the query.
Each result image is shown with a checkbox, allowing the user to select only the
relevant ones from the grid.

4 Applications

SIR is designed as a generic image-based similarity platform. The analysis of
the core algorithm can be found in Mu et al. [16]. In this paper, we focus on
two implementations of SIR deployed to address two business application. Its
performance is a function of a number of factors including the data on which
the index is created. Hence, we present the system’s performance in the context
of specific applications.

4.1 Non-compliant Product Detection

In a large company like Walmart, it is a common practice to identify offen-
sive themes in products and mark them on a regular basis. Given the size and
the diversity of our catalog, this daunting task is akin to finding a needle in a
haystack. Product search deals with two distinct types of themes. The first one
is characterized by well-defined requirements, with a decent availability of train-
ing data. Also, these themes are usually relevant throughout the year. Hence, we
address this type of themes by building supervised models [5,8]. The second type
of themes is characterized by ill-defined requirements. They are usually volatile
and relevant for a short period of time (e.g., unauthorized sale of products at
a specific time of the year). Given the sense of urgency which they come with,
training and bootstrapping a new model is often too slow. Also, only one or two
examples are usually available, hence finding enough data for training a model
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is nearly impossible. SIR is an ideal solution for addressing these ephemeral
themes. We have built and deployed a platform with SIR at the core to address
such issues. The platform consists of following two modes of operation:

– Streaming: The new products that get added to our catalog need to be
constantly monitored for various issues. We provide a version of SIR that
leverages the image similarity technique described in Sect. 3 to quickly identify
such issues in new products. We accomplish this by listening to triggers that
are generated as new products get ingested into our catalog. We fingerprint
each new product and store them in an Elasticsearch index. The index is
engineered to have a rolling window (currently set at past 3 months) of new
products.

– Full Catalog Scan: In addition of checking new products, business often
needs to scan large parts of the catalog to find products similar to an example
at hand. For this purpose, we provide a portal where an analyst can define
rules based on image and text. An example rule would be an image of an
e-cigarette and a filter that says “product title contains e-cigarette”. We use
these rules to fetch parts of the catalog and then scan them in more detail.
The fingerprinting technique discussed in Sect. 3 is used in two distinct ways
in this portal. Simulation: Given a rule, we first scan a rolling index of
sampled products to provide real-time feedback on the effectiveness of a rule
as it get defined by the analyst. This is accomplished by maintaining an
index of a good representation of the catalog. The simulation results help the
analyst fine tune her rule and also the similarity thresholds that would lead
to expected precision and recall. Sweep: Once the simulation is done, a full-
fledged scan of the catalog is triggered, preferably on a GPU cluster, where we
stream and compare every product to the set of finalized rules defined by the
analyst. Empirically, the combination of image fingerprinting and text based
filtering has proven to be very effective in identifying and flagging offensive
products.

Analysis of Search Quality. We present the precision-recall characteristics of
the image similarity technique in the context of our trust and safety application.

Given an application, search quality of the image similarity technique is
dependent on two factors: the model used to generate embeddings and the level of
binarization. We have repeated the following experiment for five different types
of embeddings. For each embedding type, we populated the Elasticsearch with
the embeddings from 1.5 million images of top-selling products. In order to test,
we also ingested 10000 offensive images that were related to 3600 query images.
For each query image, we compared the retrieved results against the ground
truth to compute three metrics: Mean R-Precision, Mean Average Precision@K
and Recall.

– R-Precision [6] is useful when the number of relevant images varies from query
to query. For example, if R images are relevant to a query image, R-precision
(r/R) is computed based only on the top R images returned by the system.
Mean R-Precision is the average of R-Precisions of all the queries.
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– Precision@K [14] is computed based on the first K returned results. Average
Precision@K is the average of AP for 1 to K. Average precision takes into
account the position of the relevant documents, making it very useful for
measuring the quality of search systems. Mean average precision@K is the
average of AP@K over all the queries.

– We also compute approximate recall@1000 with the assumption that all the
relevant documents are either returned within top 1000 or not.

The results of this experiment is shown in Table 1. As the table indicates, we
achieved best search quality with VGG16 embeddings. We then experimented
with two binarized variations of VGG16 to understand the impact of binarization
on search quality. The results, presented in Table 2, indicate that both MAP and
R-Precision is impacted by only about 2% with the subcoded embeddings.

Table 1. Comparison of SIR search quality for different embedding types

Embedding type MAP@1 MAP@5 MAP@10 Mean R-Precision Approx. recall

VGG16 0.993 0.79 0.779 0.827 0.989

Inception-v2 0.993 0.688 0.663 0.711 0.801

ResNet-50v2 0.993 0.774 0.761 0.81 0.986

EfficientNet-b4 0.995 0.592 0.576 0.62 0.631

Custom 0.992 0.772 0.76 0.806 0.993

Table 2. Comparison of SIR search quality for different levels of subcodings

Embedding type MAP@1 MAP@5 MAP@10 Mean R-Precision Approx. recall

VGG16 0.993 0.79 0.779 0.827 0.989

VGG16 with 512 subcodes 0.993 0.784 0.774 0.824 0.984

VGG16 with 256 subcodes 0.993 0.772 0.758 0.806 0.979

Analysis of Query Response Time: We also study the trade-off between
search quality and query performance in the context of the same application. As
Table 3 indicates, The mean query time of VGG16 is higher than Inception-v3
and Resnet50-v2. However, the mean query time reduces by 20% as we switch
to 512 subcodes of VGG16 from original VGG16 embeddings. It reduces by a
massive 70% as we move to 256 subcodes of VGG16. Table 2 has shown that this
performance gain has been achieved with less than 2% reduction in precision
and recall.
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Table 3. Comparison of SIR Elastic Search Query times for different embeddings.

Embedding type Min time (ms) Max time (ms) Mean time (ms) Total time (hrs)

ResNet-50v2 4764 5608 5201.644 5.538

Custom 4448 5920 5458.125 5.500

Inception-v3 4227 5552 4622.075 4.525

VGG16 4892 6117 5600.235 5.560

VGG16 with 512 subcodes 4112 4827 4481.130 4.449

VGG16 with 256 subcodes 1568 1862 1631.270 1.112

Performance Improvement with Text Filters: In real applications, both
image and text (mainly product title) contain information valuable for search.
We have experimented with composite indexes. In this version, we create an
image-based index as described earlier as well as a traditional Elasticsearch index
of textual keywords. At the query retrieval phase, the image search space is first
narrowed down by applying keyword-based text filters. Figure 3 shows the trends
of query performance with and without the text filter. As the data size on which
the indexes are built increases, the benefit of text filters on top of images becomes
apparent. This early but promising result has opened up possibilities of turning
this application into a multi-modal one.

Fig. 3. Query performance on different index sizes with and without text based filtering
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4.2 Variant Detection

When shopping online, customers expect all item variants, for example, the
same T-shirt in different sizes, on one item page so that they can easily make a
well-informed shopping decision. Incorrect variant assortment in the item pages
could result in poor customer experience and affect GMV due to an increased
bounce rate as customers leave the site without any action. Traditionally, internal
experts have been manually creating, consolidating, and updating the variant
groups. This task is error-prone and time-consuming due to the volume of our
catalog. To increase the variant grouping accuracy and efficiency, we developed
a machine learning system to automatically generate variant suggestions so that
experts only need to review a set of suggested variants instead of exploring the
entire catalog.

This variant grouping system consists of two stages: high-recall stage and
high-precision stage. In the first stage, given a query product, a set of candi-
date variants is generated to narrow down the variant search space from the
entire catalog to a few hundreds or thousands of products. In the second stage,
high-precision classifiers are used to identify variants from the candidate set
previously generated. In the first stage, a text similarity search was originally in
place to retrieve candidates with similar product name and descriptions as the
reference item. We deployed an implementation of the similar image retrieval
(SIR) system to retrieve candidates that are visually similar to the reference
item. Our hypothesis was that these two retrieval systems would fetch comple-
mentary variant candidates.

Performance Analysis: To test our hypothesis, we measured the performance
of the candidate generation system on a production-level dataset consisting of
about 5,000 groups from thousands of product categories. For each reference
item, we fetched about 1000 image and about 500 text based candidates (this
discrepancy is due to the limitation of the library used to implement the text-
retrieval system) independently and then combined them as well. It turned out
that the recall based on the image-based candidates were already 13% higher
than that of the text-alone retrieval. The recall increased by 24% after combining
text and image-based candidate. Even with the discrepancy mentioned above,
the numbers indicate that the image-based retrievals add significant value to
the system. Figure 4 shows an example where the variant is retrieved in the
image SIR but is missed in text-alone retrieval. Though the text information for
both products are semantically similar, the actual words, phrases, and writing
style are so different that it is challenging for text-alone retrieval system. This
challenge is prevalent in marketplace settings where multiple sellers for a single
product are active. For such cases, product images are less subjective and harder
to modify, hence image-base retrievals are critical.

We take a suggestion of suggestions strategy where a few image candidates
are retrieved for each text candidate. This strategy has two parameters: number
of text-based candidates (shown as NMSLIB neighbors in the plots), namely N
and the number of image-based nearest neighbors for each text-based candidate,
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Fig. 4. The query product (on the right) and the variant candidate (on the left) have
similar product image, but different product text information, especially the product
descriptions. This variant candidate is only retrieved by SIR.

namely K. If we keep increasing N , a single retrieval system tends to saturate
as the blue line shown in Fig. 5. The recall increases little even though the
number of searched items is doubled. Our experiment shows that a “suggestion of
suggestions” approach can efficiently break through this saturation. Specifically,
each retrieved text-based candidate becomes the reference item for SIR. The top
K neighbors retrieved in SIR are added into the candidate set. Figure 5 shows
how recall is increased for k = 1, 2, 3, 4. Figure 6 shows that this “suggestion of
suggestions” strategy significantly increase the recall that surpass the saturated
point with insignificant increment in the number of fetched candidates. The y-
axis of this plot shows the number of candidates averaged over all the queries
used for testing.

4.3 Visual Examples from Applications

Both the above mentioned applications regularly use SIR to discover products
similar to a query example that is of interest to one of the users. The retrieval
is based on an index of products that entered the catalog in the last one month
or so. Figure 7 showcases a few such examples and corresponding search results.

The top one with a table lamp, Fig. 7a, shows how SIR retrieves similar
products with subtle variations in shape, size, and color. Such variations either
make them variants of the queried product or help in discovering products with
a certain shape or style catering to the customer’s choice.
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Fig. 5. Recall of any retrieval system saturates as we keep increasing number of can-
didates. Combining image-based retrieval with text elevates recall significantly over a
text-alone system.

Fig. 6. Image and text together increases recall of text retrieval system with relatively
small increase in number of candidates fetched.

Figure 7b showcases a search for sports t-shirts where variations in the text on
the t-shirt are captured. This is a relatively difficult example since our underlying
embeddings were not trained to detect letters and numbers. However, SIR still
identifies the graphic as a key feature and is able to fetch t-shirts with a similar
graphic.

The third example in Fig. 7c is an attempt to find cosmetic products, most
likely coming from different brands. All the results returned are near duplicates
to the query, but not identical.

The last example in Fig. 7d retrieves tablet computers based on an example.
This example actually highlights a limitation of our system. Since the underlying
embeddings do not recognize the content being shown inside the screen of the
tablet, it retrieved images primarily based on the overall shape of the object. If
the user were looking for other tablets showing similar content on the screen,
this search result would not satisfy her.
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(a) Discovery and retrieval of table lamps similar to the query.

(b) Discovery and retrieval of variants of a sports t-shirt.

(c) Retrieval of cosmetic products that are likely to be variants from different brands.

(d) Retrieval of tablets similar to an example

Fig. 7. A number of examples demonstrating product search capability of SIR
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5 Discussion and Future Work

The focus of this paper is on building systems using an embedding based image
similarity algorithm [16]. Hence, we present the performance of our system in
the context of specific applications. Internal product datasets are used for the
experiments. Even if the exact numbers change a bit when a similar system is
built for another application, we are confident that the key insights will hold
(such as the impact of sub-coding on precision-recall and query performance,
or the benefit of text-based pre-filtering). We also skip the comparison between
deep learning embeddings and conventional image hashes because there is enough
evidence in the literature that conventional image hashes cannot perform nearly
well beyond exact or near duplicated.

The image search platform we have built and deployed is constantly under-
going improvements. On the algorithm side, we are experimenting on making
the embeddings aware of regions of interest so that the users can submit queries
with annotated regions of attention. We intend to upgrade the binarization of
the embeddings to a learnable process using one of the deep hashing networks.
Can we also intend to scale the embedding computation and the image search
using serverless compute offerings from various cloud enterprises. More involved
text search is also underway.

6 Conclusion

In this paper, we present a similar image retrieval (SIR) tool designed and
deployed to support a number of internal applications that need to discover
products from Walmart’s enormous product catalog. The system is developed
by skillfully combining knowledge of deep learning, data management, and user
experience. The core idea behind SIR can be used to build similar visual search
tools for many other domains.
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Abstract. Deep Learning models proved to be able to generate highly
discriminative image descriptors, named deep features, suitable for
similarity search tasks such as Person Re-Identification and Image
Retrieval. Typically, these models are trained by employing high-
resolution datasets, therefore reducing the reliability of the produced
representations when low-resolution images are involved. The similar-
ity search task becomes even more challenging in the cross-resolution
scenarios, i.e., when a low-resolution query image has to be matched
against a database containing descriptors generated from images at dif-
ferent, and usually high, resolutions. To solve this issue, we proposed
a deep learning-based approach by which we empowered a ResNet-like
architecture to generate resolution-robust deep features. Once trained,
our models were able to generate image descriptors less brittle to reso-
lution variations, thus being useful to fulfill a similarity search task in
cross-resolution scenarios. To asses their performance, we used synthetic
as well as natural low-resolution images. An immediate advantage of our
approach is that there is no need for Super-Resolution techniques, thus
avoiding the need to synthesize queries at higher resolutions.

Keywords: Cross resolution · Similarity search · Deep convolutional
neural networks · Image retrieval

1 Introduction

Content-Based Image Retrieval (CBIR) is one of the most active research fields
in the multimedia community [9,20]. Key aspects that greatly affect a CBIR
system performance are the quality of the used image descriptors and its ability
to scale. Before the advent of Deep Learning (DL) techniques, the Scale-Invariant
Feature Transform (SIFT) [16] based methods were among the most frequently
used to generate image descriptors. It has only been after the breakthrough in
2012 [14] that the scientific community has turned its attention towards DL
techniques as a possible approach to the Image Retrieval (IR) problem [3,19].
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Since then, DL algorithms were employed in a variety of other fields such
as object recognition [10], speech recognition [7], natural language process-
ing [8], etc. Among the various architectural designs, Convolutional Neural Net-
works (CNNs) experienced the greatest success in the field of computer vision-
related tasks. These models are largely used to fulfill CBIR tasks, too, thanks
to their ability to create image representations, called deep features, that can
be employed as global descriptors for similarity searches [2,9]. Despite their
success, a well-known problem of CNN models is that the discriminative abil-
ity of the extracted features degrades when a model is fed with low-resolution
images [17,18,22]. A reasonable explanation for this issue is that the datasets
typically used to train the CNNs to contain images predominantly at high
resolutions.

To overcome this issue, in this paper, we presented the approach we employed
to solve the cross-resolution IR task. Specifically, we experimented with the
effectiveness of our method in the scenario of Face Image Retrieval (FIR), which
is of particular concern, for example, for surveillance systems [6,22] that rely on
probe images extracted from cameras with limited resolution. To conduct our
experiments, we leveraged a ResNet-50 architecture [11], equipped with Squeeze-
and-Excitation blocks [12], pre-trained on the VGGFace2 dataset [5]. Starting
from the state-of-the-art model [5], we fine-tuned it to make its deep features
less brittle to resolution variations of the input images.

The remaining part of the paper is organized as follows. In Sect. 2, we briefly
reviewed some related works. In Sect. 3, we presented the experimental procedure
alongside the results. In Sect. 4, we concluded the paper with a summary of the
main results and future perspectives.

2 Related Works

Before the advent of the Machine Learning (ML), CBIR was based on the extrac-
tion and use of low-level feature descriptors, such as color and edge features [13]
or local features [4,16]. With the advent of DL models, researchers started to use
their inner activations, called deep features, as descriptors for the input images.
The similarity search was then directly carried out among features employing
specific metrics.

Lin et al. [15] proposed a two steps-based framework in which they did a
first coarse-level search followed by a fine-level one. For each query image, the
authors considered two features vectors: a binary and global ones. The former
was employed to perform a quick search in the database, while the latter was
used to perform the fine-level search. In Ahmad et al. [1], the authors pro-
posed a bilinear model in which image features were accumulated at various
locations and scales using the convolutional activations extracted from different
inner layers of a CNN. With such an approach, the authors were able to extract
image descriptors with high discriminative power. Tzelepi et al. [21] proposed a
method to retrain a model to empower it to generate descriptors better suited
for CBIR applications. Specifically, they proposed three basic model retraining
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approaches: Fully Unsupervised Retraining; Retraining with Relevance Informa-
tion; Relevance Feedback based Retraining.

3 Experiments

Our starting point was the state-of-the-art SeNet-50 architecture [5] trained on
the VGGFace2 [5] dataset. Subsequently, we fine-tuned it employing our training
procedure, and finally, we tested the performance of the model on the FIR task
using the deep features extracted from its penultimate layer.

3.1 Dataset

The VGGFace2 [5] dataset consists of ∼3.31 million images shared among ∼9K
identities. It is divided into two splits, one for training and one for test purposes
only. The latter contains ∼170K images divided into 500 identities, while all
the other images belong to the remaining ∼8K classes available for training.
The entire dataset is characterized by a very low label noise and by a high
intra-class variance, especially among head poses. These characteristics make
it a suitable choice for training DL models on face-related tasks. Despite these
qualities, the dataset mainly comprises high-resolution images. Indeed, training
set images have an average resolution of ∼137 × 180 pixels with less than 1%
at a resolution below 32 pixels. As it is shown later, this makes the internal
representations of a neural network trained on this dataset brittle to resolution
variations in the input data.

3.2 Training Details

To fine-tune the model, we made a first trial in which we kept the entire net
frozen except for the last fully connected layer, and we fed it with low-resolution
images. To obtain the desired inputs, we leveraged the bilinear interpolation
algorithm, implemented in the PIL python library, to down-sample the images
at a specific (low) resolution. However, we obtained better results by fine-tuning
the entire neural network. The intuition was that there were patterns in the new
low-resolution images that the model needed to adjust for. We initially set the
value of the learning rate at 5 · 10−4 and dropped its value by a factor of 5 every
time the loss reached a plateau. We used a batch size of 256, a weight decay of
10−5, and a momentum of 0.9.

By only using low-resolution input images, we noticed that the models lost
the ability to recognize images at high resolution. For this reason, we introduced
a new hyperparameter to control the probability with which to down-sample
an image. In this way, the CNNs were trained on both low and high-resolution
images at the same time. More specifically, the algorithm we employed to resize
images was based on two random extractions: the first one used to decide whether
or not to give the image at full resolution, and the second one utilized to set the
final resolution at which the image would then be resized in the [8] pixels range.
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After this first preprocessing phase, the input images were resized so that the
size of the shortest side was 256 pixels, later a random crop was applied to select
a 224 × 224 pixels region which matches the input of the network. We split the
training dataset into training and validation sets. Specifically, during the training
phase, we employed two versions of the latter to monitor the performance of the
model on both low and high-resolution domains.

3.3 Similarity Search

After the training phase, we assessed the models’ performance on the FIR task.
We trained several models with different values of the hyperparameter that con-
trolled the probability with which an image was down-sampled. Specifically, we
considered probabilities of 0.1, 0.3, 0.5, 0.7 and 1.0. For each scenario, we took
the best models and compared their performance on the FIR task with the
baseline model.

3.4 Experimental Results

In Fig. 1, we reported a comparison between the queries results obtained by the
original pre-trained model and by our fine-tuned ones. Specifically, the results
correspond to the first five images returned when the query was downsampled at
resolutions of 16 pixels (shortest side). Clearly, the deep representation produced
by our model was much more discriminative compared to the one generated by
the original model.

Query 
Image 16 pixels Original 

Model

ft  
Model

Fig. 1. Comparison of the top query results returned by the original and a fine-tuned
model considering a query resolution of 16 pixels.

In Fig. 2 and Fig. 3, we reported the precision and the recall scores, for
each fine-tuned model and for the original pre-trained one. Each plot in the
figures corresponds to a specific query resolution. As it is clear from Fig. 2
and Fig. 3, the original pre-trained model experienced a noticeable degradation
of its performance when tested against a cross-resolution scenario. With our
approach, we have been able to improve upon its performance up to about one
order of magnitude, considering queries with resolutions down to 8 pixels, with
a negligible loss at higher resolutions.



356 F. V. Massoli et al.

Finally, in Table 1, we showed the results from the mean Average Precision
(mAP) measurements, as a function of the query resolution, for each of the fine-
tuned models. Moreover, the first column of the table reported the mAP for the
original pre-trained model as a term of comparison. According to Table 1, it is
remarkable to notice that our models had higher performance concerning the
original pre-trained model in the range between 8 and 24 pixels.

Fig. 2. Precision@k. The baseline model has been reported as “no ft” while the “ft”
models are the fine-tuned ones. The value after the “@” symbol represents the proba-
bility we used during training to decide whether reducing or not the input resolution.

Fig. 3. Recall@k. The baseline model has been reported as “no ft” while the “ft” models
are the fine-tuned ones. The value after the “@” symbol represents the probability we
used during training to decide whether reducing or not the input resolution.

So far, we have considered down-sampled images that have been generated
by interpolation methods. Other than that, it is interesting to test our models’
performance on datasets composed of native low-resolution images. As a prelimi-
nary study, we considered the training set available from the TinyFace dataset1.
1 https://qmul-tinyface.github.io/.

https://qmul-tinyface.github.io/
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Table 1. mAP results, as function of the query resolution, for each model. The baseline
model has been reported as “no ft” while the “ft” models are the fine-tuned ones. The
value after the “@” symbol represents the probability we used during training to decide
whether reducing or not the input resolution.

no ft ft @ 0.1 ft @ 0.3 ft @ 0.5 ft @ 0.7 ft @ 1.0

Query resolution (pixels) 8 0.01 0.05 0.08 0.09 0.09 0.10

16 0.15 0.34 0.40 0.43 0.42 0.44

24 0.56 0.62 0.64 0.65 0.65 0.66

32 0.74 0.75 0.73 0.74 0.75 0.76

64 0.85 0.84 0.84 0.84 0.84 0.84

128 0.86 0.85 0.84 0.85 0.84 0.85

256 0.86 0.85 0.84 0.85 0.84 0.85

It contains about 8K images with an average height of 20 pixels, distributed
among ∼2K different identities. Following the same procedure adopted in the
previous measurements, we randomly selected one image for each class as a
query, thus extracting the deep features from them and all the other images in
the set, to construct the descriptors database. Differently from what was done
previously, we did not apply any down-sampling algorithm in this case, since
the images were already at low resolution. The precision and recall results were
reported in Fig. 4, while in Table 2 we reported the mAP values for the fine-tuned
models as well as for the original pre-trained model.

Fig. 4. Precision@k (left) and Recall@k (right) for each fine tuned model. The baseline
model has been reported as “no ft” while the “ft” models are the fine-tuned ones. The
value after the “@” symbol represents the probability we used during training to decide
whether reducing or not the input resolution.

From the results showed in Table 2 it is noticeable that, even though we
trained our models on synthetic low-resolution images, their performance was
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consistent when tested against native low-resolution images and still higher than
the original pre-trained model, thus confirming the effectiveness of our training
procedure.

Table 2. mAP results obtained for each model.

no ft ft @ 0.1 ft @ 0.3 ft @ 0.5 ft @ 0.7 ft @ 1.0

0.68 0.73 0.72 0.74 0.74 0.75

4 Conclusion and Future Perspectives

In this paper, we proposed a strategy to train a DL model to generate image
descriptors robust against a cross-resolution scenario that can be used to fulfill
IR tasks. Specifically, to assess the effectiveness of our method, we considered the
task of the FIR, being of particular interest for applications such as surveillance
systems. Indeed, in such cases, a probe image that is typically acquired from
a security camera has to be matched against a database of known identities,
typically characterized by high-resolution image descriptors. Since the security
cameras do not usually shoot at very high resolution, and considering that they
are often far from the scene, the extracted image can be at resolutions as low as
16 pixels, or even below.

We showed that training a model on a vast dataset, even though it has
low noise level and high intra-class variance such as VGGFace1 [5], does not
guarantee the robustness of its representations against resolution variations. By
using our training method, we were able to improve upon a state-of-the-art CNNs
performance on the FIR task, considering a cross-resolution scenario, up to one
order of magnitude for query resolutions ranging from 8 to 24 pixels. Besides, we
noticed a negligible drop in the performance at resolutions higher than 64 pixels.
Therefore, the models trained by embodying our idea were able to produce deep
features to be used as global descriptors for images, with sufficient discrimination
power among a wide range of resolutions.

Concerning our study, it is clear that the problem of cross-resolution IM is
still an open issue. We plan to continue towards this direction by testing new
training procedures and by considering new and larger datasets that consist
of native low-resolution images to train and test the CNNs in more realistic
situations.
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Abstract. Efficient indexing and retrieval in generic metric spaces often
translate into the search for approximate methods that can retrieve rele-
vant samples to a query performing the least amount of distance compu-
tations. To this end, when indexing and fulfilling queries, distances are
computed and stored only against a small set of reference points (also
referred to as pivots) and then adopted in geometrical rules to estimate
real distances and include or exclude elements from the result set. In
this paper, we propose to learn a regression model that estimates the
distance between a pair of metric objects starting from their distances
to a set of reference objects. We explore architectural hyper-parameters
and compare with the state-of-the-art geometrical method based on the
n-simplex projection. Preliminary results show that our model provides
a comparable or slightly degraded performance while being more efficient
and applicable to generic metric spaces.

Keywords: Distance estimation · Metric spaces · Regression · Deep
neural networks · Pivoted embeddings

1 Introduction

Thanks to the impetus given by recent developments in deep learning, machine
learning has gained unprecedented popularity and spread into unimaginable num-
ber domains of computing. Perhaps one of the most unexpected application
domains is that of index structures. In an exploratory research paper, Kraska et al.
[8] showed how machine learning models, including deep learning ones, can fully
or partially replace existing index structures, such as B-Tree or Bloom filters. This
work paved the way for a whole new area of research in index structure, termed
learned index. The core idea of learned indexes is to obtain a more compact index
representation or performance gains by learning from data distribution.

In particular, Kraska et al. show that an index can be seen as a model f
that predicts the position y of a record x, i.e. y = f(x). Seen with the eyes of
machine learning, this problem is known as a regression problem. Therefore, in
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this context a learned index is simply an ML model (such as linear regression
or a neural network) that replaces a B-Tree and predicts the position of query
key. In this work, we would like to generalize the concept of learned index by
providing a broader definition, in which the regression allows us to predict the
representation of metric objects in vector form from the knowledge of distances
from some anchors. This type of transformation of data is useful in the problems
of searching in large-scale metric spaces, where a compromise between accuracy
and speed of response to queries is often required. In large-scale scenarios, the
amount of distance computations between objects needed for an exact search
tends to saturate the available computational budget for obtaining reasonable
response times, considering also that in metric spaces, distance functions are
often expensive to compute.

The idea of reconstructing the distance between any pair of objects in a metric
space by exploiting distances with a group of reference objects was probably first
addressed in [9]. The authors proposed an embedding into another metric space
where it is possible to deduce upper and lower bounds on the actual distance
of any pair of objects. Connor et al. [4–6] observed that for a large class of
metric spaces, distances to a set of n pivots can be used to project the data
objects into a n-dimensional Euclidean space such that in the projected space
the Euclidean distance between any two points is an upper or lower bound of
the actual distance. They called this approach n-Simplex projection, and they
proved that it can be used in all the metric spaces meeting the n-point property
[2]. As also pointed out in [3], many common metric spaces meet the desired
property, like Cartesian spaces of any dimension with the Euclidean, cosine or
quadratic form distances, probability spaces with the Jenson-Shannon or the
Triangular distance, and more generally any Hilbert-embeddable space [2,10].
This approach has recently been used in an inverted index for approximate
research on the n-nearest neighbors to obtain an estimate of the real distances
of the objects present in the results of a query [12].

We intend to develop a similar approach to the n-simplex projection, however
instead of using a handcrafted deterministic algorithm, in this paper we test a
machine learning approach based on deep neural networks to probe their capa-
bilities in this context. The rest of the paper is structured as follows. Section 2
describes the general idea of method developed and the model used. Section 3
presents the dataset and experimental evaluation. Section 4 concludes.

2 Method

2.1 Model Definition

Let X a metric space with distance function d : X × X → R
+ and P = { pi ∈

X : i = 1 . . . N } a set of reference points (or pivots) in X . We define the pivoted
embedding e(x,P) of an object x ∈ X w.r.t P as an N -dimensional real-valued
vector where the i-th component is the distance between x and the i-th pivot, i.e.

e(x,P) = [ d(x, p1), . . . , d(x, pi), . . . , d(x, pN ) ] ∈ R
N . (1)
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We are interested in estimating the distance d(x, y) between a pair of objects
x, y ∈ X given their pivoted embeddings ex = e(x,P), ey = e(y,P) with respect
to a common set of reference objects P. We formulate this task as a regression
problem: we define a parametric model f that outputs the estimated distance
given the pivoted embeddings and optimize its parameters on a training set via
gradient descent. In addition to ex and ey, we include the distances between
pivots { d(pi, pj) : i = 1 . . . N, j = 1 . . . N, i < j } in the inputs of our model
as a real-valued vector p ∈ R

N(N−1)
2 is commonly computed once offline and

available. Formally,
d̃(x, y) = f(ex, ey,p; θ) , (2)

where d̃(x, y) indicates the estimate for d(x, y) of the model f having parameters
θ. Following common practice in metric learning, we define

f(ex, ey,p; θ) = |Φ(ex,p; θ) − Φ(ey,p; θ)|2 , (3)

where Φ(e,p; θ) is a neural network that takes as input a pivoted embed-
ding e and the distances between pivots p and outputs a real-valued vector
representation.

As the architecture of Φ(e,p; θ), we choose a two-branch fully-connected
residual network: e and p are independently processed by two MLPs with resid-
ual connections whose outputs are then merged by concatenation and followed
by one or more additional fully-connected layer. Each branch comprises multi-
ple residual blocks [7] having the structure reported in Fig. 1a. We explore and
evaluate architectural hyperparameters such as depth and branch merging point
in Sect. 3.

2.2 Model Training

We train our model with mini-batch gradient descent. Given a training set Xtr ⊂
X , to form a training batch we randomly draw N objects as pivots P and B
pairs of objects (xi, yi), i = 1 . . . B, xi, yi ∈ Xtr, and we adopt the original metric
distance d to obtain the inputs (the pivoted embedding of the objects exi

, eyi

and distances between pivots p) and the target (exact distances between objects
d(xi, yi)) of our model. We optimize the loss function

L =
1
B

B∑

i=1

SmoothL1 ( f(exi
, eyi

,p), d(xi, yi) ) , (4)

with

SmoothL1(a, b) =

{
1
2 (a − b)2, if |a − b| < 1
|a − b| − 1

2 , otherwise .
(5)

We choose the SmoothL1 function to avoid huge gradients in the early phase
of training that often lead to numerical instabilities. At each batch, we sample
new pivots and couples and repeat the procedure. We periodically evaluate our
model on a test set Xts by measuring the estimation error, and we adopt early
stopping when the test error stops decreasing.
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3 Experiments

3.1 Dataset

Throughout all experiments, we adopt a subset of the YFCC100M-HNfc6 deep
features dataset [1]—a dataset of 100M 4096-dimensional features extracted from
YFCC100M [11] images using the HybridCNN [13] deep convolutional pretrained
network and selecting the output of the fc6 layer. In the original space, features
are compared with the L2 distance, i.e. d = L2. We select the first 1M features
and divide them in training, validation and test sets with a 750K/150K/100K
split. As a metric of performance, we report the mean absolute error and the
mean absolute percentage error (MAPE) computed on the test set together with
their standard deviations.

3.2 Choice of the Φ Network

We perform experiments to evaluate two main architectural hyperparameters of
Φ—the depth of the network and the fusion strategy of the two branches. For the
former, we test a number of intermediate layers in {1, 2, 4}, while for the latter,
we test concatenation of the two branches at the input level (early fusion), at
half depth (mid fusion), and right before the final layer (late fusion). Figure 1
depicts the tested architectures for each parameter combination. We decided
not to apply any bottleneck layer to reduce the dimensionality of the input, thus
every layer keeps the dimensionality of its input except for the last projection.
We are aware this leads to prohibitive memory requirements as N increases, as
the dimensionality of p is O(N2), but in this preliminary phase, this reduces
the architectural search space and enables us to evaluate the model without
introducing performance caps. We train all models with SGD with momentum
0.9, learning rate of 0.05 (divided by 10 when the validation loss plateaus),
batch size 100 for 10K iterations, validating every 100 iterations. We adopt early
stopping by monitoring the MAPE on the validation set and selecting the model
reaching the minimum1. On our single-GPU configuration, we were able to test
all variations with N up to 128, as larger values are prohibitively expensive in
terms of GPU memory required for training (+10GB); we left the exploration
of larger values with reduced models to future work. Results in terms of MAPE
and MAE are reported in Table 1. We notice that on average, an early fusion
strategy is able to reach slightly better results with more performance gains with
deeper networks. On the other hand, deeper networks with other fusion strategy
suffer from numerical instabilities leading to divergence; we left to future work
the tuning of optimization hyperparameters that may alleviate this phenomenon.
Among shallower (and thus more efficient) ones, the model with late fusion and
depth = 1 shows good overall performance on all tested N values with respect
to other variants.

1 The code for reproducing our results is available at https://github.com/fabiocarrara/
pivoted-estimation.

https://github.com/fabiocarrara/pivoted-estimation
https://github.com/fabiocarrara/pivoted-estimation
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Fig. 1. Explored architectures for Φ(e,p)
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Table 1. Performance of architectural variations of our model on YFCC100M-HNfc6
features test subset. Bold entries indicate the model reaching the best mean absolute
percentage error (MAPE) for each N . Dashes (-) indicate configurations that do not
converge.

N

arch 2 4 8 16 32 64 128

ea
rl
y 1 36.7±24.3 28.1±20.1 23.0±16.4 18.4±13.1 16.4±12.1 16.1±12.1 14.8±11.3

2 36.9±24.7 27.2±20.5 22.8±17.1 19.2±14.3 18.2±14.2 17.9±16.7 18.0±14.3

4 36.3±25.0 25.0±20.0 18.7±15.2 14.0±11.7 12.7±11.5 12.9±11.8 15.3±15.7

m
id 2 37.4±26.2 39.6±28.2 33.8±26.1 25.9±18.8 32.9±30.1 30.0±29.2 31.1±28.1

4 39.1±26.4 - - - - - -

la
te

1 37.1±24.9 27.0±19.9 21.3±15.8 17.4±12.4 15.6±11.4 13.6±10.3 12.9±9.9

2 35.6±24.7 25.7±21.9 48.8±46.1 88.9±70.9 - - -
4 56.3±36.3 - - - - - -

(a) Absolute Percentage Error (%, mean and standard deviation)

N

arch 2 4 8 16 32 64 128

ea
rl
y 1 0.46±0.30 0.35±0.25 0.29±0.20 0.23±0.16 0.21±0.15 0.20±0.15 0.19±0.14

2 0.46±0.31 0.34±0.25 0.29±0.21 0.24±0.18 0.23±0.18 0.23±0.21 0.23±0.18

4 0.46±0.31 0.32±0.25 0.23±0.19 0.18±0.15 0.16±0.14 0.16±0.15 0.19±0.19

m
id 2 0.47±0.33 0.50±0.36 0.43±0.33 0.33±0.24 0.42±0.39 0.38±0.37 0.39±0.35

4 0.49±0.33 - - - - - -

la
te

1 0.47±0.31 0.34±0.25 0.27±0.20 0.22±0.15 0.20±0.14 0.17±0.13 0.16±0.12

2 0.45±0.31 0.32±0.27 0.62±0.57 1.13±0.89 - - -
4 0.71±0.46 - - - - - -

(b) Absolute Error (mean and standard deviation)

3.3 Comparison with the State of the Art

We compare in Fig. 2 our models selected from Table 1 (the best for each N)
with the n-Simplex projection on the same dataset. The n-Simplex projection
provides geometrical upper (simplex-U) and lower (simplex-L) bounds for dis-
tance estimates in super-metric spaces given e and p. We also report the estima-
tion obtained by averaging the upper and lower bound (simplex-M) that usually
provides a finer estimate. A main drawback of this technique is the iterative
O(N3) simplex building procedure that needs to be executed for each value of p
we are willing to use. Our approach provides a comparable or slightly degraded
performance, but once trained, it can cope with different values of p without the
need of expensive procedures. Moreover, our approach can be applied to generic
metric spaces.
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(a) Mean Absolute Percentage Error
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Fig. 2. Comparison with the state-of-the-art n-Simplex estimator: simplex suffixes -U,
-L, and -M indicate estimation using respectively the upper bound, lower bound, and
their mean.

4 Conclusion

We explored the use of neural regressors for estimating distances from pivoted
embedding in generic metric spaces. Preliminary experiments on deep-learned
image descriptors suggest that the proposed approach can be used in approxi-
mated regimes providing a performance comparable to exact geometrical bounds
while being more efficient. Moreover, our formulation is not limited to super-
metric spaces and can be applied seamlessly to different set of reference points—
properties that pave the way to advanced indexing structures including dynam-
ically chosen reference points sets. Future work comprises the development of
more compact architectures for higher dimensionalities and extended experi-
mentation on additional metric and retrieval datasets.
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ranking via local embeddings: a use case with permutation-based indexing and the
nSimplex projection. Inf. Syst. 101506 (2020)

13. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features
for scene recognition using places database. In: Advances in Neural Information
Processing Systems, pp. 487–495 (2014)

https://doi.org/10.1145/3001583
https://doi.org/10.1007/978-3-319-46759-7_4
https://doi.org/10.1007/978-3-319-46759-7_4
https://doi.org/10.1007/978-3-319-68474-1_7
https://doi.org/10.1016/0167-8655(94)90095-7
https://doi.org/10.1016/0167-8655(94)90095-7


Demo and Position Papers



Visualizer of Dataset Similarity Using
Knowledge Graph
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Abstract. Many institutions choose to make their datasets available
as Open Data. Open Data datasets are described by publisher-provided
metadata and are registered in catalogs such as the European Data Por-
tal. In spite of that, findability still remain a major issue. One of the
main reasons is that metadata is captured in different contexts and with
different background knowledge, so that keyword-based search provided
by the catalogs is insufficient. A solution is to use an enriched querying
that employs a dataset similarity model built on a shared context rep-
resented by a knowledge graph. However, the “black-box” dataset simi-
larity may not fit well the user needs. If an explainable similarity model
is used, then the issue can be tackled by providing users with a visuali-
sation of the dataset similarity. This paper introduces a web-based tool
for dataset similarity visualisation called ODIN (Open Dataset INspec-
tor). ODIN visualises knowledge graph-based dataset similarity, offering
thus an explanation to the user. To understand the similarity, users can
discover additional datasets that match their needs or reformulate the
query to better reflect the knowledge graph. Last but not least, the user
can analyze and/or design the similarity model itself.

1 Introduction and Motivation

The number of datasets available in so-called Open Data Catalogs1 increases
dramatically. Every dataset in the open data catalog has associated metadata
provided by the dataset publisher. However, many of the open data catalogs offer
only basic search tools using the metadata like facets or fulltext search. This may
be inefficient as the user context, in which the user interest is specified (query),
often does not fit the context used by publisher to create the metadata. The
simplest context mismatch can be caused by using different languages, synonyms
or using different level of abstraction. To tackle this issue, dataset metadata and
user query can be mapped to a shared knowledge graph while a similarity of the
two mappings can be evaluated for querying purposes [2].

However, the general paradigm of content-based similarity search assumes
a black-box model, in sense that it hides the features from the user and only

1 e.g., European Data Portal, https://www.europeandataportal.eu.

c© Springer Nature Switzerland AG 2020
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provides overall similarity scores [5]. An imperfect model of similarity may intro-
duce false dismisals and/or false positives in the search process, and thus it may
discourage the user to keep using the similarity-based search method. This is a
classic issue of trust, explainability and understanding that is gaining attention
over the last few years, especially in the field of artificial intelligence [1]. At the
same time, there are fields like bioinformatics, where we can find examples of
visually explainable similarity. These similarity models allow user not only to
trust and understand them, but also to be an active participant in the process
of modeling. From certain perspective it is not the model that on its own creates
the final outcome. Instead, the final outcome is created by model-user interac-
tion, where the model provides visually explainable results and the users use
them to gain the final outcome, i.e., understanding.

1.1 Visually Explainable Similarity Models

In general, to provide visual explanation of a particular similarity model, the
black-box similarity model abstraction needs to be replaced by a model struc-
tured for a user. Within such a similarity model the (features of) data entities
are mutually mapped using a data structure that is suitable for visualizations.

Sequence Alignment. In many fields (e.g., bioinformatics) the data enti-
ties are modeled by sequences (strings, time series) while the basic task is to
match the sequences by means of alignment. Elements of the sequences are
“aligned” (monotonously mapped) in order to achieve the best overall match of
the sequences. A similarity value could be derived from a particular alignment
as a measure of how good the alignment is, however, the primary outcome is the
alignment structure itself. The alignment is achieved by dynamic programming
where the alignment structure is represented by a matrix. Various algorithms for
alignment were developed [3], for example the dynamic time warping (DTW),
longest common subsequence, etc. The resulting alignment could be visualized
directly as a path in the matrix (see Fig. 1a left) or could be shown as links
between the sequences’ elements (see Fig. 1a right). Hence, the sequence align-
ment represents an explainable similarity model that is easy to visualize.

The concept of alignment might be applied for datasets, where the alignment
would be performed through the shared concepts in a knowledge graph. However,
unlike sequences, Open Data datasets do not have linear representations and thus
monotonous sequence alignment cannot be simply reused.

Alluvial Diagram. An alternative could be to consider Open Data datasets
as changes to the knowledge graph. For this scenario we can define subset of the
knowledge graph induced by the dataset mapping. We can cluster the mapped
entities using a hierarchical distance, utilizing the fact that close concepts should
be close to each other. We can then employ alluvial diagram (see Fig. 1b) to
visualise similarity of multiple datasets as a change of the induced knowledge
graph. The advantage of this methods is that the alluvial diagram can easily
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Fig. 1. Examples of visually explainable similarity models

capture similarity of multiple datasets. The main limitations to this method are:
the visualisation dependency on the clustering, bad visualisation when only few
entities are shared.

1.2 Paper Contribution

In this paper we present Open Dataset Inspector (ODIN); an open-source2 tool
for visualisation of the explainable dataset similarity. ODIN builds upon our pre-
viously proposed navigational similarity using knowledge graph [2] and allows
user to visually explore the similarity. As the visually explainable dataset simi-
larity is a new topic, there are no standard visualisation techniques. That is why
ODIN provides three visualisation modes. Two of them are easy to understand
but suffer from certain drawbacks. To address those drawbacks we designed a
new dataset similarity visualisation based on vertical tree-like graph projection.

2 Model of Explainable Dataset Similarity

In our previous work [2], we have introduced a framework for modeling explain-
able dataset similarity with the help of a knowledge graph. The framework intro-
duced mapping of datasets’ features onto nodes of a knowledge graph (such as
Wikidata). A navigational similarity was then defined on top of the mapped
features (the sets of nodes, respectively) and provided explainable similarity in
the form of paths in the graph “om one dataset to the other”. In this paper,
we continue by introducing a visualization model for the framework within the
ODIN tool.

2.1 Visualisation

All visualisations take as an input the datasets’ mappings into a knowledge graph
nodes and a structure of the graph. Nodes in the graph are connected with edges
that represent specialization, generalization or is-instance relation. In the ideal

2 https://github.com/mff-uk/open-dataset-inspector.

https://github.com/mff-uk/open-dataset-inspector
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scenario the graph should be a tree with related nodes close together, creating
topic-based clusters. As a result, two datasets with similar topics should be
mapped to nodes in the same parts of the graph. This may not be true, if dataset
do not share similar topics. Alternatively, there may be no single dominant topic
in the dataset, causing mappings to be scattered around the graph. In order to
address those situations, ODIN implements three different visualisation models:
the network-based visualisation, horizontal tree-based visualisation and vertical
tree-based visualisation.

The network-based visualisation utilizes a network that is a subgraph
of the entire knowledge graph the nodes of which are involved in the dataset
mapping and their common ancestors. The network utilizes force field layout.
Nodes in the network that are mapped for a given dataset are colored by the
color of the dataset. If two datasets are similar they should map to nodes that
are close together in the network. The network visualisation should be easy
to understand and provide good visual hint of the dataset similarity. On the
contrary, it does not allow user to easily see to what the datasets are mapped.
That is why it may be harder for a user to actually understand the content of
the dataset. Nevertheless, the main issue is that some datasets map to nodes
scattered in the knowledge graph. As a result, the visualisation contains a lot of
visual noise making it almost useless for the user.

The horizontal tree-based visualisations is similar to the network visual-
isation, but utilizes different visual layout. One of the main issues of the network
visualisations is that force field layout focuses on spacing out the visualisation
while preserving proximity to nodes that are connected with edges. That is a
problem if the mapped nodes are scattered around the graph and there are two
many connected nodes. In such situation, the network visualisation fails to cap-
ture the tree-like nature of the graph. The main objective of the horizontal tree
visualizations is to promote this information. It utilizes tree layout with the root
being the nodes’ shared ancestor and leaves being nodes the datasets are mapped
to. The main problem of this visualisation is similar to the network visualisation
but in a different way. If the hierarchy is too wide, the tree becomes too big to
easily visually comprehend. However, if we focus only on a subset of mapped
entities, it can provide a great way to visualise the relations as it provides clear
hint of the hierarchy.

The vertical tree-based visualisation is designed to address the issue
with visual noise and reduce the amount of information shown to the user. The
main idea is to utilize node nesting for visualization of hierarchy, i.e., visuali-
sation of a given node is enclosed in its parent node. Another way of how to
describe the visualisation is that we have a tree hierarchy as in the horizontal
tree visualisation, but instead of “looking at the tree from a side” we “look on the
tree from above”. At the beginning the user sees only root of the hierarchy and
the first level of nodes. User can then navigate by zooming down/up the nodes.
We employ arrows to show mapping of dataset features into the nodes/sub-
trees. For given pair of nodes this allows user to see common ancestors (topics)
on given level or zoom down to gain additional details. The main drawback of
this visualisation is its novelty, where user needs to learn how to navigate and
perceive the hierarchy.
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3 Open Dataset Inspector (ODIN)

ODIN allows user to visualise the explainable dataset similarity with the
above described visualisation methods using Wikidata3 as the knowledge graph.
ODIN consists of three components, the web-based application (vis-component),
the component for computing dataset similarity (sim-component), and the
component responsible for the data preparation (prep-component). The prep-
component takes a dataset and Wikidata graph and produces mapping of fea-
tures into the Wikidata graph nodes. The sim-component takes mappings of two
datasets and computes similarity using paths between the mapped nodes. The
vis-component implements three visualisation models described in Subsect. 2.1:
network-based, horizontal tree-based and vertical tree-based.

Fig. 2. Visualisation of DBohumin, DTheater datasets. A) network visualisation, B)
similarity details, C) loaded datasets, D) show options dialog, E) visualisation menu.

We illustrate the use of ODIN on examples from our previous work [2]. The
first dataset DBohumin

4 is called “What, when, where” and it covers cultural,
sports and free-time events in the Bohumı́n city in Moravian-Silesian Region.
The second dataset DTheater

5 is called “Program of the National Moravian-
Silesian Theater” and contains the program of the National Moravian-Silesian
Theater. Both datasets are registered in Czech National Open Data portal with

3 https://wikidata.org.
4 https://data.gov.cz/zdroj/datove-sady/Bohumin/3384768.
5 https://data.gov.cz/zdroj/datove-sady/https---opendata.ostrava.cz-api-3-action-

package show-id-program-narodniho-divadla-moravskoslezskeho.

https://wikidata.org
https://data.gov.cz/zdroj/datove-sady/Bohumin/3384768
https://data.gov.cz/zdroj/datove-sady/https---opendata.ostrava.cz-api-3-action-package_show-id-program-narodniho-divadla-moravskoslezskeho
https://data.gov.cz/zdroj/datove-sady/https---opendata.ostrava.cz-api-3-action-package_show-id-program-narodniho-divadla-moravskoslezskeho
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all metadata in Czech. All data processing was executed in Czech, here we trans-
late some of the metadata to English for international readers of the paper. For
a more detailed presentation of the ODIN functionality we refer readers to the
screencast that is reachable from the ODIN web app (see Footnote 6).

Fig. 3. Visualisation of DBohumin, DTheater datasets in vertical tree visualization. A)
loaded datasets, B) vertical tree visualisation, C) list of features, D) path selector.

First we employ the prep-component to prepare the datasets. The prep-
component adds to main extensions to the early prof of concept from our previous
work [2]. We utilize UdPipe [4] to get canonical tokenization of all features
(keywords from the title, description and keywords of a dataset’s metadata)
as a bag of words in order to increase effectiveness of the mapping procedure.
In addition we also perform node reduction, where every mapped node with
only instanceof relation is replaced with the value of instanceof ; we call those
node Reduced, while other Directly mapped. The second modification addresses
the issue where features map to street names or nodes connected to Wikimedia
disambiguation page.
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Once both datasets are processed they can be loaded into the ODIN visual-
isation component. DBohumin, DTheater datasets can be added one at the time
or they can be pre-loaded using URL query; to make it easy we prepared a link
to load both datasets automatically6.

Fig. 4. ODIN configuration dialogs.

As we can see from Fig. 2 the DBohumin maps to 92 nodes and DTheater maps
to 111 nodes. Nodes are colored red for DTheater, cyan for DBohumin and yellow
for shared. We can toggle over the nodes to get their descriptions, and additional
mapping information. Many of the nodes are mapped by short features, we can
filter them using the options dialog (Fig. 4a) with the following filter function:

(mapping) => mapping.metadata.group.map(item => item.length)
.reduce((left, right) => Math.max(left, right)) > 2

This reduces the number of mapped nodes to 44 for DBohumin and 98 for dataset
DTheater. This is about 50% decrease in number of nodes for DBohumin, still the
number is quite large.

Many of the nodes are of type Reduced, i.e., none of the features is directly
mapped to them. We can filter them out using the Keep only directly mapped
options in the options dialog (Fig. 4a). With this additional filter the number
of nodes drops to 10 and 41. As it is not clear how close they are in the graph,
we can switch to horizontal (Fig. 5) or vertical (Fig. 3) tree visualisation to
get more details. As the horizontal tree visualisation is suitable only for small
hierarchies (with small nodes’ fan-out), we choose the vertical tree visualisation.
Here we can select the mapped features and manually explore the navigational
dataset similarity by browsing the hierarchy along the paths involved. We could
also reduce the set of paths used to compute the similarity to get only nodes
that are close together using similarity options menu (Fig. 4b). We choose to
select only the shortest path for each mapped node with maximum path size
of 2. There is actually only one such path between nodes Q1656682 (event)

6 http://skoda.projekty.ms.mff.cuni.cz/dataset-similarity/example-000.

http://skoda.projekty.ms.mff.cuni.cz/dataset-similarity/example-000
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Fig. 5. Example of horizontal tree visualisation. Example of horizontal tree
visualisation.

and Q35140 (performance), that we can select from the path selector to see its
detail. By doing so we get the same similarity explanation: one dataset contains
information about performances, i.e., cultural events, while the other contains
information about events related to the culture.

4 Conclusions

In this demo paper we introduced a visualization model for explainable dataset
similarity using a knowledge graph. We implemented this model into a tool
called Open Dataset INspector (ODIN) that is available to the readers as a web
application. We described the user interface of ODIN on a real-world example.

Acknowledgments. This research has been supported by Czech Science Foundation
(GAČR) project Nr. 19-01641S.
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Abstract. vitrivr is an open-source system for indexing and retrieving
multimedia data based on its content and it has been a fixture at the
Video Browser Showdown (VBS) in the past years. While vitrivr has
proven to be competitive in content-based retrieval due to the many dif-
ferent query modes it supports, its functionality is rather limited when it
comes to exploring a collection or searching result sets based on content.
In this paper, we present vitrivr-explore, an extension to the vitrivr stack
that allows to explore multimedia collections using relevance feedback.
For this, our implementation integrates into the existing features of vit-
rivr and exploits self-organizing maps. Users initialize the exploration
by either starting with a query or just picking examples from a collec-
tion while browsing. Exploration can be based on a mixture of semantic
and visual features. We describe our architecture and implementation
and present first results of the effectiveness of vitrivr-explore in a VBS-
like evaluation. These results show that vitrivr-explore is competitive for
Ad-hoc Video Search (AVS) tasks, even without user initialization.

Keywords: Self-organizing maps · Relevance feedback · Ad-hoc video
search

1 Introduction

With the tremendous increase of video recording devices and the resulting abun-
dance of digital video, finding a particular video sequence in ever-growing collec-
tions is a major challenge [10]. One research problem for multimedia retrieval sys-
tems aiming to make large collections accessible is Ad-hoc Video Search (AVS),
where a description of a segment is given and users are tasked with finding as
many matching segments as possible. Relevance feedback, which allows users to
return feedback to the results retrieved for the given query and reflects it to the
subsequent retrieval, is particularly well-suited for this kind of task since the

c© Springer Nature Switzerland AG 2020
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aim is to find more candidates similar to the initially retrieved positive results
rather than narrowing down the search to a single correct result.

Interactive Retrieval based on relevance feedback has been an active area
of systems research and used by participants of evaluation campaigns such as
the Video Browser Showdown (VBS) in the past [7–9]. Two prominent examples
include the winner of the 2020 VBS campaign SOMHunter [6] and Exquisitor [5].

vitrivr [3] is an open-source full-stack content-based multimedia retrieval sys-
tem, which has also participated successfully in VBS in previous years [11]. One
limitation of vitrivr has always been that, in contrast to the aforementioned sys-
tems, it did not offer support for the exploration of collections and sophisticated
relevance feedback.

In order to overcome the limitations of vitrivr, and inspired by these systems,
we have extended vitrivr by adding support for guided content-based exploration
that uses a combination of deep features and self-organizing maps. The result,
vitrivr-explore, allows users to provide relevance feedback to better steer the
retrieval process.

In this paper, we present vitrivr-explore, elaborate on the mechanisms used
for training set selection, discuss semantic features we employed, and present
results as to how effective this approach proved to be in AVS tasks compared to
the regular system. In our evaluation, we have mimicked the VBS competition
with queries of all types from VBS 2020, and compared the new SOM features
of vitrivr-explore to a plain vitrivr instance as well as a complete system encom-
passing all vitrivr features plus the new SOM-based relevance feedback. We also
discuss lessons learned for future distributed evaluations.

The remainder of this paper is structured as follows: Sect. 2 describes the
theoretical foundation of our approach. Section 3 discusses the implementation
and user interface of vitrivr-explore. In Sect. 4 we present the evaluation results
and Sect. 5 concludes.

2 Methods

2.1 Architecture

vitrivr-explore builds upon the vitrivr architecture, which is depicted in Fig. 1.
It makes additions to all three components of vitrivr. The database Cottontail
DB [1] has newly implemented API calls for random sampling, which are required
for SOMs without user initialization, and supports batched k-Nearest Neighbors
(kNN ) queries, which is a very useful performance optimization.

Cineast has received new feature modules, which we will cover in the next
section, and newly implemented relevance feedback and training processes. Addi-
tionally, there is a new user interface to facilitate the exploration, which will be
discussed in Sect. 3.

2.2 Available Features

All vector-based feature modules of Cineast, such as color- or edge-based ones can
be used for both relevance feedback and training of the SOM. Additionally, we
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Fig. 1. System overview for vitrivr and its three major components (adapted from [2])

are using deep features which are based on MobileNet V11 [4]. Usually, semantic
features are used for relevance feedback, while the SOM is then trained with
either visual or semantic features.

Feature extraction was performed on the most representative element per
shot, which was pre-processed by first cropping the image to square and then
resizing it to 192 × 192 pixels. The features are extracted from the last hidden
layer resulting in a feature vector with 512 components.

2.3 Relevance Feedback

Figure 2 provides an overview of the flow of relevance feedback in vitrivr-explore.
In vitrivr-explore, users can mark segments either as positive (i.e., “more-like-
this”), negative (i.e., “less-like-this”), or choose to not mark them at all. Addi-
tionally, users can exclude entire videos, as vitrivr tends to over-segment, which
can be a problem for long videos with homogeneous content. Based on the list of
positively marked segments P and negatively marked segments N , the training
set of vectors for the SOM is generated as follows: Two kNN queries are per-
formed, the first one returning k = n

|P | elements per positively marked segment
p ∈ P , and the second one returning k = α elements per negatively marked
segment, where n is the upper bound for the number of desired elements α is a
user-defined threshold that should be chosen based on collection size and n. This
results in two sets of vectors; R and I, consisting of the relevant and irrelevant
vectors, respectively. Subsequently, T , the set of vectors for training, is calcu-
lated by the formula T = R \ (I ∪ B), where B is the set of blocked elements.

1 https://tfhub.dev/google/imagenet/mobilenet_v1_050_192/quantops/feature_ve
ctor/3.

https://tfhub.dev/google/imagenet/mobilenet_v1_050_192/quantops/feature_vector/3
https://tfhub.dev/google/imagenet/mobilenet_v1_050_192/quantops/feature_vector/3
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If the SOM is to be trained on different features than the relevance feedback is
performed on, those vectors are fetc.hed for all segments t ∈ T .

Overview Mode

SOM Training

Query / Exploration Mode

50'000 segments
(random sample)

    Feedback Determination:

marking positive /
negative segments
adding video to blacklist

Segments of kNN
search on negatively

marked items

Segments of kNN search
on positively marked items

All segments of
blocked videos

-

-

Any query methods
(by text, sketch, ...)

Fig. 2. Interaction of a user with vitrivr-explore

3 Implementation

In the backend, we have made improvements to Kohonen4j2, which avoid com-
pletely imbalanced clusters and overfitting, to train the SOM. Users are able to
choose multiple parameters such as the size of the SOM, which vectors should be
used for relevance feedback and SOM training, and the degree α that indicates
how much exploration the user is willing to do. We set α to a fixed value of
1,000 empirically, while the upper bound n is defined as n = min(m · |P |, l). m is
a factor depending on the selected exploration depth and provides some initial
amount of nearest neighbours that will be used per segment. There is an upper
limit l of segments used for training. Multiple modes available which differ in
how much results are retrieved and how wide exploration should be, ranging from
query close (m = 1,000, l = 6,000) to explore wide (m = 10,000, l = 40,000). All
of these parameters are then sent to the backend, which selects the new segments
the SOM should be trained on, requests the feature vectors for those segments,
and performs the training. Figure 3 depicts a sample screenshot containing a
resulting map with two churches and a church tower that were positively marked,
a negatively marked crane as well as a video that should be entirely excluded.
Users can inspect temporal context by clicking on the thumbnail, which plays
the video from the start of the shot.

2 https://github.com/dashaub/kohonen4j.

https://github.com/dashaub/kohonen4j
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Fig. 3. Screenshot of a SOM based on relevance feedback in vitrivr-explore

4 Evaluation

4.1 Setup

For the evaluation, we performed a VBS-like competition with 6 participating
teams. Two teams used the current iteration of vitrivr [3]; two teams used vitrivr-
explore, meaning no possibility for initialization of positive examples using, e.g.,
tag-based retrieval; two teams were allowed to combine vitrivr-explore and regu-
lar vitrivr. We used the Distributed Retrieval Evaluation Server (DRES3), which
is designated as the successor to the VBS-Server to perform the competition.

DRES is currently still under development; its motivation is twofold: i) it
stems of the desire to improve participant experience at VBS and ii) due to the
fact that the current vbs-server4 does not enable remote participation, which
would have made an evaluation impossible due to COVID-19 related restrictions.

Multiple AVS tasks from the 2020 iteration of VBS (VBS20) were used. In
order to provide a level playing field, we selected participants that were not
part of VBS20. However, all participants received an introduction to the system
beforehand and some had prior experience in using vitrivr.

In VBS, there is no groundtruth for AVS tasks, but submissions are judged.
In our case, participants and judges of VBS20 served as judges and were given
the task description, the submitted shot and additional context video material
before and after the submitted frame. Shot segmentation was taken from the
dataset [12]. Based on this information, they had to assess a submission as either

3 https://github.com/lucaro/DRES.
4 https://github.com/klschoef/vbsserver.

https://github.com/lucaro/DRES
https://github.com/klschoef/vbsserver
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correct, if there was any frame matching the task description, or incorrect, i.e.,
not matching the task description. Additionally, judges could mark a submission
as unsure—an enhancement provided by DRES—in case of doubt or inability to
reach a verdict. Such submissions neither increase nor penalize the total score
and are treated as if they had never been submitted.

There are some limitations to the evaluation results. We show results only
for retrieval performance, and not retrieval time, memory usage or other sys-
tem metrics due to the challenge of collecting and analyzing meaningful data
from the heterogeneous hardware used by participants. Additionally, it would
have been ideal to benchmark vitrivr-explore also against other systems such
as SOMHunter. With the development of DRES, we are working on making it
easier and more reproducible to compare different systems with a larger number
of participants. Third, it would be interesting to gain qualitative feedback from
participants. All of these limitations are being actively tackled in the context of
designing future iterations of evaluation campaigns.

4.2 AVS Results

The results from the evaluation have been analyzed using four metrics: preci-
sion, videos from which segments were correctly submitted, uniquely submitted
correct videos, and score. The reason for reporting on videos instead of segments
is that vitrivr tends to over-segment, and therefore users often submit segments
very close to one another, which makes numbers of uniquely submitted segments
less meaningful. As already discussed in analyses of AVS tasks at VBS [8], mea-
suring the actual recall is not possible due to the lack of a ground truth.

Figure 4 shows all metrics per task and team. Metrics were combined per
system category for readability. The maximum score achievable per task is 50.
Scoring for AVS Tasks at VBS is relative to the performance of other teams.

We think vitrivr is a reasonable baseline for AVS tasks as it has been very
competitive in past evaluation campaigns. The teams which were able to use
a combination of vitrivr and vitrivr-explore had the highest score in three out
of four tasks, showing that the SOM interface adds to AVS performance in
this case. The results also show that without initialization, vitrivr-explore has
difficulties in finding positive elements and that the more specific the query was,
the harder the challenge. For the first task, the description was Find shots of a
kid smiling, with no adults visible in the shot and for the last task Find selfie
shots (i.e., showing face or at least head of the person filming) of someone on a
paraglider. These are both tasks with important restrictions, where in addition
to the initialization challenge, the lack of tag-based querying was also conceived
as a difficulty. This is reflected in the score, with no shots being found for Task
1 and only segments out of two videos for Task 4. Additionally, as the deep
feature extraction is trained a general classification dataset, these features can
miss out on information present in the video frame that was not in the training
set, making relevance feedback harder.

Our evaluation has similar problems as VBS had in the past: Due to different
approaches by users with the same level of knowledge, results can vary widely
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between tasks. Additionally, due to the small number of participants and the
vast collection size, it is relatively easy to find unique parts of a video that have
not been submitted by other teams and performance can vary between users of
the same system.

Fig. 4. Competition metric for all AVS tasks per team. The best metric is always
highlighted in boldface font.

Due to DRES being in early development, the advanced interaction logging of
VBS was not applied. As a consequence, we do not have access to more detailed
information such as whether correct segments would have been present in the
displayed result sets, but overlooked by users.

5 Conclusion

In this paper, we have introduced vitrivr-explore, a first implementation for
content-based multimedia collection exploration in vitrivr. We have shown that
using relevance feedback in combination with SOMs retrieves different results
than regular vitrivr, which increases performance for AVS tasks. While perfor-
mance varies across tasks due to both task definitions and search strategies by
users, vitrivr-explore has shown its effectiveness and competitiveness for cer-
tain (types of) tasks. This is in line with lessons learned from past evaluation
campaigns which have shown that a diversity in retrieval approaches is key for
interactive multimedia retrieval.

For future work, we plan to perform an evaluation with more participants of
vitrivr and vitrivr-explore against other systems using DRES. One focus should
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be to make sure that participants have approximately the same level of experi-
ence and finding ways to account for varying performance between team mem-
bers. Additionally, the training set selection is currently kNN -based and might
benefit from interactive learning.
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Abstract. Analyzing data from large experimental suites is a daily task
for anyone doing experimental algorithmics. In this paper we report on
several approaches we tried for this seemingly mundane task in a simi-
larity search setting, reflecting on the challenges it poses.

We conclude by proposing a workflow, which can be implemented
using several tools, that allows to analyze experimental data with
confidence.

The extended version of this paper and the support code are provided
at https://github.com/Cecca/running-experiments.
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1 Introduction

One of the peculiar aspects of experimental algorithmics [17] is that the object of
the study (an algorithm and its implementation) is often crafted by the same peo-
ple carrying out the analysis. This has the advantage that the insights obtained
from preliminary investigations of early versions of an algorithm can be used to
improve the algorithm itself. In fact, the understanding required for an imple-
mentation may uncover features of the algorithms that would otherwise go unno-
ticed [17], giving insights about aspects not easily described by theoretical models
of computation [15]. At the same time, this feedback-based process leads to the
accumulation of obsolete data, referring to old versions of algorithms and their
implementations. Not mixing results from different versions of an algorithm or
implementation is an obvious requirement, which however requires some care
in practice. In fact, a study often involves different algorithms and datasets,
each evolving at a different pace: weeks-old results might be up to date for one
algorithm, and obsolete for another.

As we shall see, the literature is mainly concerned with the design and anal-
ysis of experiments and with reproducibility. In this position paper, instead, we
report on our experience with the day to day tasks that have to be carried out in
between those tasks, and the approaches we developed to tackle the perils and
frustrations of this often menial work.
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Fig. 1. Overview of the different stages of an experimental study; adapted from [16].

We do not advocate for any specific technology. Rather, we propose a work-
flow that can be implemented with a variety of tools that can be easily integrated
into existing setups. We demonstrate such a setup with a toy project that con-
cerns an efficient implementation of a brute-force nearest neighbor search.

2 Related Work

Moret and Shapiro [17] advocate for the importance of complementing the the-
oretical analysis of algorithms with their implementation. McGeoch [16] gives
several guidelines on how to design and carry out experimental analyses of algo-
rithms. The book [3] collects several contributions on the characterization and
analysis of algorithm performance. Earlier, a Dagstuhl seminar was devoted to
the discussion of the experimental evaluation of algorithms [10]. More recently,
a structured approach to experimental analysis was discussed in [4].

In recent years there has been a discussion about the lack of reproducibility
of research findings in several areas, including computer science [8,12]. Much
effort has been devoted to finding a solution to this issue. Several contributions
have been collected in [19] and [13]. Among the tools to support reproducible
research, VisTrails [7] allows to explicitly define reproducible workflows. knitr
and Jupyter take a literate programming approach, allowing experiment’s code,
analysis, and text to be interleaved in a single “executable” document. To solve
the issues deriving from software dependencies, some tools aim at capturing
the execution environment at runtime [9,11,18], while others such as Docker [5]
and Singularity [14] follow a declarative approach, where the description of the
execution environment is part of the code base.
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3 Challenges in Large Scale Experimental Evaluation

We define the following challenges of running large-scale experiments:

(C1) Feedback Loops-by-Design. Implementations and tools support the
iterative nature of an experimental study.

(C2) Economic Execution. Exactly those experiments that change through
code changes have to be re-run, but nothing else. Moreover, only the chang-
ing parts of the experimental evaluation should be recomputed.

(C3) Versioning. The ability to go back in time and compare old results to
more recent ones, finding regressions or bugs; the workflow is append-only.

(C4) Machine Independence. Code and tools are designed in a way that
allow them to run in a general setting.

(C5) Reproducibility-by-Design. We strive for an automatic workflow that
processes an experimental setup into measurements used for evaluating the
experiment. Results to be included into a publication should not require
manual work to transform these measurements into tables and plots.

Typically, an experimental evaluation spans several weeks, if not months. An
overview of a typical experimental evaluation is given in Fig. 1. During this
time, the experiments being run have different meanings: early on during initial
development, experiments are useful to find out the most appropriate parame-
ter ranges, find bugs, and check assumptions; later on, experiments collect the
results of the study. This is not a process that proceeds linearly from start to
finish. Rather, the analysis of the results might prompt the modification of an
algorithm or dataset, or the introduction of new algorithms and datasets into
the study, followed by a new round of experiments. Together with the algorithms
and the datasets, also the parameterizations and the quantities being measured
are subject to evolution during the lifetime of a project (C1).

For the analysis to be sound, it is of paramount importance not to mix results
related to different versions of the algorithms and datasets (C3), in particular
when experiments are run on a set of different machines (C4). The simplest
solution would be to re-run the entire experimental suite whenever something is
modified. This usually takes a very long time, and a change might affect only a
small part of the results, making this solution wasteful of time, energy, computa-
tional resources and money if computing resources are rented (C2). A potential
solution might be to divide the experimental suite in smaller components, each
investigating a particular aspect, re-running only those affected by a change.
While this works in the short term, as the experimental study progresses the
subdivision of the experimental suite will evolve with it, leading to the need of
re-arranging the results. On the other hand, manually re-running only parts of
an experimental suite, while reusing results from old runs, requires much care in
order to exclude obsolete results from the analysis, undermining the confidence
in the soundness of the whole analysis. The situation worsens in the rushed final
days preceding a submission: some last minute changes are made, there is no
time to re-run all the experiments, the possibility of erroneously mixing results
is very concrete. Additionally, reviewers will often demand running a new set of
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experiments, reporting on some other quality measures, or experimentation using
different computer architectures (C2, C3, C4). Reproducibility-By-Design (C5)
requires that such wishes can be accommodated since the whole process from
starting at an experimental design to a published table or figure is automated.

As for the analysis itself, it is usually executed on a machine different from
the experimental code, using a different programming language (C4). The input
of the analysis is the set of results produced by the experimental suite, which is
usually quite large due to the fact that many parameter combinations need to
be evaluated. While the analysis code may not need the computational resources
of the experimental code, it still needs to execute reasonably fast, in order to be
able to examine the results interactively. This implies that the results produced
by the experiments need to be stored in a convenient format that is at the same
time easily manageable, convenient to transfer, and efficient to access (C2, C4).

4 Case Study: Engineering a Linear Scan

As our toy project, we engineer a nearest neighbor search algorithm that just
carries out a linear scan over the dataset1.

Formally, we are given a dataset S ⊂ R
d of n points in a d-dimensional space

with a distance measure dist : Rd × R
d → R, such that given a query q ∈ R

d we
want to return a point p ∈ S that minimizes dist(p′, q) over all p′ ∈ S. Solving
this problem via a linear scan is a straight-forward exercise in an introduction to
programming class: Compare all points p′ ∈ S one by one to q, and keep track
of the point that is closest to q. This results in a running time O(nd) per query.

To make this problem more interesting, we consider engineering choices to
speed up a linear scan under inner product similarity distIP(p, q) =

∑
1≤i≤d xiyi

on unit vectors, similar to Cosine similarity. For the purpose of this project, we
consider (i) input representation, (ii) parallelization, and (iii) saving distance
computations as factors of the experiment.

Input Representation. A vector in R
d is traditionally represented as d 64-bit

floating point values (double) or 32-bit floating point (float). Since we guaran-
tee 0 ≤ xi ≤ 1 for normalized vectors, we also consider a 16-bit representations
of the value �xi ·216�/216 (which could of course affect the accuracy of the result).

Parallelization. Näıvely, the CPU has to carry out d multiplications and d− 1
additions to compute the distance of two vectors. However, we notice that the
structure is inherently parallel because the multiplications are data independent.
This is an ideal setup for using so-called SIMD instructions (single instruction
multiple data). We split up each vector into blocks of size B, and carry out d/B
parallel multiplications, d/B parallel additions to aggregate terms in a register
of size B, and one horizontal sum. Depending on the CPU architecture used in
the experiment, B is usually 128, 256, or—very recently—512 bits.

1 We would like to thank Michael Vesterli for the many code optimizations that we
are using, that he developed for PUFFINN [2].
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Saving Distance Computations. Computing the distance between two vec-
tors is certainly the most expensive operation in our linear scan. Hence, if we
could decide for a data point p′ that it probably is not the nearest neighbor faster
than carrying out a distance computation could increase the performance of our
linear scan. We include experiments with SimHash sketches with probabilistic
quality guarantees in our experiments (see the extended version for details).

We consider this toy project representable for an experimentation task in
a similarity search setting. The different choices of input representation, paral-
lelization, and distance filter methods provide an evolutionary setting in which
we start with a standard linear scan and add features to the code base one by one.
From starting with a measurement of running time, we quickly end up focusing
on the quality of the achieved result when using a low-precision input represen-
tation, or analyzing the effectivity of the sketch by counting distance computa-
tions. The experiment has to be carried out on different machines because of the
hardware dependencies, which might mean to rent cloud instances to carry out
measurements on recent hardware with B = 512 bit AVX512 support.

Fig. 2. Dimensions for running large-scale experimental evaluations.

For the scope of this paper, we consider the support code that takes care
of handling the setup as the main contribution. For the interested reader, the
evaluation of the toy project is given in the extended version of this paper.

5 Approaches to Experimental Evaluation

We now describe a workflow we developed to address the challenges outlined
in the previous sections, demonstrating it with our case study. We remark that
this workflow does not directly deal with issues like parameter tuning, predic-
tion of runtimes, and trade-off evaluations, which are the topic of experimental
design [16]. Rather this workflow aims to ease and aid all the aforementioned
tasks, along with the analysis. We split up the discussion into different dimen-
sions of running a successful experimental study. These dimensions are summa-
rized in Fig. 2. In the following, each dimension will be introduced with general
guidelines and a discussion of our actual solution.
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5.1 Manage the Datasets and Workloads Efficiently

• Dataset download and preprocessing should be automated as much as possi-
ble, ideally with a single script responsible to manage all the datasets. This
makes reproducibility easier, allows to share preprocessing steps between
similar datasets, makes it easy to relocate the experiments on a different
machine, and makes all the decisions about datasets explicit. Furthermore, it
enables the community to change the datasets to observe how these changes
are reflected in the experiments.

• It must be possible to create all datasets locally, but the preprocessed datasets
should also be shared, for instance using plain http or a service such as S3.
This makes it easier for collaborators, reviewers, and the community to re-run
the experiments without incurring the set-up cost of the datasets.

• Datasets should be annotated with meta-data necessary in the evaluation,
such as workloads and the related ground truth answers.

• To ease debugging, a small dataset of random data that can be created in a
few seconds should also be included. This dataset can be run via Continuous
Integration (CI), and results on it can be stored to enable regression testing.

In our code, the main C++ code calls a Python script (datasets.py) that
takes care of preprocessing datasets in a well-defined manner. It checks for the
existence of a shared dataset (of the same version) and computes it locally if such
a dataset is not available. It supports the creation of tiny random datasets that
allows to run all parts of the workflow on actual data. The query set that is later
used for experimentation is created in this process as well, and data is stored as
an HDF5 file for efficient processing in many different programming languages.

5.2 Manage the Experimental Configurations Clearly

• Never run experiments from the command line. Direct command line execu-
tion should be limited to testing.

• Experiments should be described in one or more files. This makes it easier to
reproduce the entire experimental suite. There are several options, which we
both demonstrate in the associated code:

◦ Files in a declarative language such as YAML listing all the combinations
of parameters to be tested. These files are then interpreted by a script that
spawns the appropriately configured experimental code. This approach
has the advantage of being declarative, and the disadvantage of requiring
some additional software.

◦ Shell scripts that directly invoke the experimental code using the appro-
priate parameters. This is a more procedural approach, which however
has the advantage of requiring very little setup.

• All the aforementioned experimental files should be tracked with version
control along with the code. Before running the experiments, any pending
changes should be committed.
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• There should be a mechanism allowing to skip already-run configurations.
This allows both to save time (C2) without having to continuously edit the
configuration files to remove the configurations that do not need to be run.

Example files can be seen in the code repository. While a direct experimental
file written in Bash is straight-forward, the YAML structure gives a much more
structured overview. The YAML file is run through an additional Python script
that invokes the main implementation with the correct parameters. Using ver-
sioning and the result database (Subsect. 5.5) the code can decide whether an
algorithm has to be rerun.

5.3 Infrastructure Management

Any implementation will likely depend on many different environmental set-
tings, such as the correct versions of libraries/compiler/OS. To allow a machine
independent workflow, we suggest to:

• Provide a containerized development environment2.
• Consider different container formats for running experiments [1].
• Use continuous integration to test all parts of the workflow.

Our code provides a Dockerfile that installs a well-defined Linux environment
and sets up the correct compilers and libraries. Each component is run from the
local system via a dockerrun script that will run the intended process within
the container.

Sometimes an implementation relies on system dependent libraries (such as
CUDA or MPI): in such cases tracking the version of these libraries helps in
handling updates to the underlying system.

5.4 Version Everything

To address challenges (C2) and (C3), version control systems might not be suffi-
cient, since source code revisions lack both a semantic meaning and a total order.
Furthermore, different components of a project might evolve independently, thus
needing independent versioning to address challenge (C2). Therefore, we suggest
to keep track of the versions of individual components of the project, including
datasets, algorithms, and database schemas, alongside the versioning provided
by the version control system.

In our code, each dataset and database schema provides their own version
number. Additionally, components of the implementation such as input repre-
sentation type or SIMD definitions are versioned. This allows us to map each
parameter set for the linear scan to a unique identifier. As an example, during
continuous integration we found a bug that only affected the AVX2 inner prod-
uct computation with floating point numbers. An update of the version number
2 Recently, such environments are included in programming IDE such as https://code.

visualstudio.com/docs/remote/containers.

https://code.visualstudio.com/docs/remote/containers
https://code.visualstudio.com/docs/remote/containers
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of this part of the code led to a re-run of all parameter configurations that used
that particular combination. Each measurement obtained is versioned with its
git identifier, the algorithm version in question, and the dataset version.

5.5 Manage the Experimental Results Thoughtfully

As for the management of experimental results, structured text file formats like
CSV address challenge (C4), but are expensive to parse and require to be fully
loaded in main memory prior to the analysis, even when only a subset is needed.
Moreover, it is hard to evolve the structure of these files together with the
project.

• Use a database to store the results: it presents data conveniently indexed and
removes the need for expensive parsing.

• Using schema migrations the database can evolve along with the rest of the
project (C3), as demonstrated in our case study’s code.

• For simple projects, an embeddable database like SQLite addresses challenge
(C4): the results are stored in a single file which can be easily moved between
machines, and many languages used for the analysis (like Python and R)
provide facilities to access it, as shown in our code. For larger projects, where
experimental code is executed on different machines, a database with a client-
server architecture (such as PostgreSQL) might be more suitable.

• The experimental code can query the database to detect whether an experi-
ment has already been run with the current version (C2).

• Track the provenance [6] of each result, by storing alongside the parameters
also the configuration file (and its version) that generated the result (C5).

• By means of database views we can enforce that the analysis code has access
only to the most recent results related to each algorithm/dataset (C3): our
code demonstrates how to embed a query in the database so to present only
the results related to the most recent version of algorithms and datasets.
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Abstract. The analysis of similar trajectories in a network provides use-
ful information for different applications. In this study, we are interested
in algorithms to efficiently retrieve similar trajectories. Many studies
have focused on retrieving similar trajectories by extracting the geomet-
rical and geographical information of trajectories. We provide a similarity
function by making use of both the temporal aspect of trajectories and
the structure of the underlying network. We propose an approximation
technique offering the top-k similar trajectories with respect to a query
in a specified time interval in an efficient way. We also investigate how
our idea can be applied to similar behavior of the tourists, so as to offer
a high-quality prediction of their next movements.

Keywords: Temporal-structural similarity · Graph · PoI prediction

1 Introduction

Studying and presenting efficient methodologies for querying similar trajectories
is important as brings the potential applicability to support different applica-
tions. Trajectories are complex objects with useful information. Most of the
existing works who study the behavior of network constrained trajectories, they
map trajectories into a spatial network assigned to geographical information,
which can impose high-dimensional indexing challenges and large overall size of
data. In this study, we present each network constrained trajectory as a sequence
of nodes with no spatial information. Determining the similarity between tra-
jectories on networks is a difficult task, and the naive exact solutions do not
scale to large applications. In this study we specify the similarity between two
trajectories with any arbitrary length, taking into account the temporal aspect
of trajectories and the location of trajectories on graphs, in a single linear-time
function [3]. While, the existing functions in the literature (e.g., [10,12,14,15])
are quadratic by computing temporal and spatial distances in a linear combina-
tion, which can impose some unnecessary computations.

Goal. In this paper for a given query trajectory as a sequence of nodes on a
graph with the corresponding time intervals, we aim at answering two following

c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 399–404, 2020.
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research questions: RQ1: finding k most similar trajectories to query in a spec-
ified time interval in an efficient way; RQ2: identifying the node (i.e. Point of
Interest (in short, PoI)) that the trajectory (i.e. a tourist) will visit with the high-
est probability in the future. Usually, this problem is solved by using machine
learning-based techniques [1,4,7,8,16]. The overall performance of these tech-
niques depends on the effectiveness of the proposed feature set. In particular,
given a trajectory dataset, this model needs to extract a set of useful features for
prediction, which is a challenging task. Thus, the objective of the RQ2 task is to
reflect the structural-temporal similar behavior of the past tourists to provide
an effective prediction.

Contributions. In this study our main contributions can be summarized as fol-
lows: (1) we propose a low complexity similarity function considering temporal
aspect and the location of trajectories on the graph, directly in a single function;
(2) we propose a storage scheme to speed up searching for similar trajectories [6];
(3) we use the Network Voronoi Diagram to accelerate the query processing by
computing the minimum number of shortest path distances [3]; (4) we propose a
technique to predict the next movement of a tourist, by taking into account the
structural-temporal similarities between tourists, outperforming state-of-the-art
machine-learning based competitors by providing at least twice more accurate
results [13].

2 Preliminaries and Definitions

Definition 1 (Structural-Temporal Trajectory). Given a graph G(V,E),
a Structural-Temporal trajectory T is defined as a sequence of pairs of the
form (vi, ti), where vi is a node and ti a time interval, i.e., T = 〈(v1, t1),
(v2, t2), · · · , (vl, tl)〉 such that, 1 ≤ i ≤ l − 1, we have (vi, vi+1) ∈ E and ti
and ti+1 are two consecutive time intervals. Letting t1 = [s1, e1] and tl = [sl, el],
we refer to s1 and el as the starting time and ending time of T .

We restrict the given trajectory T in a specified time interval t as a sequence
of nodes are traversed by T in t as T [t]. Thus, we can compute the distance
between a given node on the graph and a trajectory in a given time inter-

val as dist(v, T, t) =
min(vi,ti)∈T [t] d(vi, v)

DG
, where DG is the diameter of the

graph. This distance always is a value between 0 and 1. Having this distance
we determine our linear similarity function between two query trajectory Q
and target trajectory T in a specified time interval t in an exponential way as

Sim(Q,T, t) =

∑
(vi,ti)∈Q[t] |ti| × e−dist(vi,T [ti])

|t| .

We define k-MsTraj query, as the k trajectories with maximum similarity
score to the query with respect to the proposed function.
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Managing the Structural-Temporal Trajectories. Facing with a new type of data
as the Structural-Temporal trajectories, how to efficiently organize this data to
process queries is a challenge. As the existing indexing methods [2,5,9,17], which
typically designed for geo-located (spatial) trajectories, and none of them con-
sider the time intervals spent by objects in the nodes of the network, could be
either infeasible or inefficient on structural-temporal trajectories. In this study,
we build an indexing structure (i.e. NTrajI) based on the interval tree to store
the trajectories on graphs. We model our structure in the main memory to
support short response time, although it is possible to extend the methods con-
sidering the external memory interval tree. In NTrajI, we build an Interval
Tree ITu assigned to each node u ∈ V . Each ITu stores the time intervals of the
trajectories in dataset spent in either u or the neighbors of u, and maintains the
corresponding trajectory ids.

The Baseline Method (BASE). Due to the lack of competitors, since there is
no linear time similarity function considering structural-temporal trajectories,
we design a pruning technique as the baseline method to quickly find exact
k-MsTraj. First, BASE finds a set of trajectories are close to the query by
searching through NTrajI within the corresponding time interval. Then, by
computing the similarity score for each discovered trajectory, reports top-k ones.
We use this method as a baseline in the experimental evaluation of our methods.

3 RQ1: Approximate Computation of k-MsTraj

To accelerate the searching process, we propose an approximated method with
two main steps.

• First, by making use of Voronoi Diagrams for graphs, we partition G into
disjoint groups of nodes, precomputing the distances among the centers of
each group in O(m · n1/2) time, when n,m are the number of nodes and
edges of G, respectively. In comparison to the state-of-the-art [11,12] that
precomputes the all-to-all pairwise node shortest path distances.

• Second, we represent each trajectory in the dataset with the Voronoi centers
as the shrunk trajectory. Therefore, we need to adjust the NTrajI indexing
to support the shrunk trajectories called VoTrajI. In VoTrajI, for each center
node, we build an interval tree maintaining the time intervals are spent by
trajectories through the nodes of the corresponding Voronoi group.

In the query processing phase, we search through VoTrajI and find the
trajectories are most likely to be top-k similar trajectories, with respect to the
query. We have two variants to proceed with the discovered trajectories: SHQ:
estimating similarity scores of the trajectories by considering shrunk query in
place of the exact query; SHQT: estimating the scores of the trajectories consid-
ering shrunk query and shrunk trajectories. We evaluate the effectiveness of both
variants in comparison with the baseline method in terms of the time needed to
process k-MsTraj and the precision of the produced results.
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Table 1. The average time for answering a query for each method (in sec.)

Datasets BASE SHQ SHQT

Facebook 1.09 0.74 0.43
Milan 380.03 376.15 85.48
Rome 26.19 19.42 15.83

(a) IR (b) SSR

Fig. 1. The quality of the results in terms of IR and SSR ratio vs k in Rome.

3.1 Experiments

We conduct the experiments on real-world datasets: a set of synthetic trajectories
on Facebook,1 a real set of trajectories of private cars in Milan2 and a real set of
Flickr geotagged photos provided by [8], containing tourist trajectories in Rome.
Regarding the time needed for query processing, Table 1 reports our results,
showing the average query time over 100 queries in each dataset. As it can
be seen, both SHQ and SHQT outperform BASE, while the running time by
SHQT dramatically is less than BASE and SHQ. This is due to that SHQT uses
precomputed distances between Voronoi centers. We evaluate the precision of the
produced solution by SHQ and SHQT with respect to BASE. The effectiveness
of the methods is assessed by means of two metrics. Let γ1 and γ2 be two output
sets containing top-k trajectories, e.g., the exact and approximated solutions.

We define the similarity score ratio as SSR(γ1, γ2) =

∑
T∈γ1

Sim(Q,T, t)
∑

S∈γ2
Sim(Q,S, t)

, and

the intersection ratio as IR(γ1, γ2) =
|γ1 ∩ γ2|

k
. In both ratios, the values close to

1 are more desirable. Due to the lack of space, we present only the results of the
experiments in terms of the SSR and IR ratios on Rome as a function of k. As
shown in Fig. 1(a), SHQT has the best performance for smaller values of k and
outperforms SHQ. However, we observe that the lower values of IR correspond
to SSR values that are close to 1. Indeed, Fig. 1(b) shows SSR which is almost
always very close to 1 for both variants SHQ and SHQT, which confirms the
effectiveness of the proposed model.

1 https://snap.stanford.edu/data/ego-Facebook.html.
2 https://sobigdata.d4science.org/catalogue-sobigdata?path=/dataset/gps_track_

milan_italy.

https://snap.stanford.edu/data/ego-Facebook.html
https://sobigdata.d4science.org/catalogue-sobigdata?path=/dataset/gps_track_milan_italy
https://sobigdata.d4science.org/catalogue-sobigdata?path=/dataset/gps_track_milan_italy
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4 RQ2: Predicting the Next-PoI

Given a trajectory T = 〈(v1, t1), · · · , (vl, tl)〉 on graph, we aim at finding the next
node will visit by T in future. To this end, we solve k-MsTraj for the query
T within the time interval tl, when k= 1. Then after, we specify the recently
visited node by the most similar trajectory to T in tl (i.e. 1-MsTraj), as the next
position of T . To evaluate our method we use three different datasets provided in
[8] containing tourist movements in three Italian cities Pisa, Rome, Florence. We
compare our method with a probability baseline Prob [8] and Learnext [8].
Although there are two important state-of-the-art techniques Wherenext [7]
and Random Walk [4], we do not include them in our experimental study, since
Learnext outperforms them. We follow the same evaluation strategy adopted
in [8] over the three aforementioned datasets, which is a standard training/test
evaluation strategy. For each city, we consider 80% of trajectories as a training
set and 20% of trajectories as the test set. The effectiveness of the methods is
assessed by means of Success@k (i.e., the percentage of times that the correct
answer is in the top-k ranked PoIs). Specifically, we will use k = 1 in our evalua-
tions, which is the topmost PoI. Results of the experiments are provided for our
proposed method MsTraj along with two methods (Prob and LearNext).
Table 2 shows the results of the experiments, where we show that our method
outperforms the competitors. As we can observe, MsTraj provides almost twice
more accurate results than LearNext in terms of Success@1 in each city. While
MsTraj provides almost six times more accurate results than Prob for Pisa
and Rome, and almost ten times more for Florence, confirming the effectiveness
of the proposed method.

Future Direction. Finally, we would like to present an exact solution for the
proposed query by taking benefit of the dominant relationship between trajecto-
ries taking into account the time duration trajectories spent close to the query
and their location on the underlying graph. In this way, we are able to elimi-
nate unnecessary computations and consecutively reduce the total running time.
Moreover, we would like to conduct the case study for validation of our model
in other applications: real-time detection of trajectories of people, news, events,
and virus outbreaks.

Table 2. Effectiveness in terms of Success@1 of the proposed method (MsTraj) along
with the competitors.

Predictors Pisa Rome Florence

Prob 15.57 12.59 4.96
LearNext 40.70 30.95 37.56
MsTraj 67.33 77.96 53.57
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Abstract. With the advent of deep learning, multimedia information
processing gained a huge boost, and astonishing results have been
observed on a multitude of interesting visual-textual tasks. Relation
networks paved the way towards an attentive processing methodology
that considers images and texts as sets of basic interconnected elements
(regions and words). These winning ideas recently helped to reach the
state-of-the-art on the image-text matching task. Cross-media informa-
tion retrieval has been proposed as a benchmark to test the capabilities
of the proposed networks to match complex multi-modal concepts in the
same common space. Modern deep-learning powered networks are com-
plex and almost all of them cannot provide concise multi-modal descrip-
tions that can be used in fast multi-modal search engines. In fact, the
latest image-sentence matching networks use cross-attention and early-
fusion approaches, which force all the elements of the database to be
considered at query time. In this work, I will try to lay down some
ideas to bridge the gap between the effectiveness of modern deep-learning
multi-modal matching architectures and their efficiency, as far as fast and
scalable visual-textual information retrieval is concerned.

Keywords: Cross-media retrieval · Deep features · Neural networks

1 Introduction

Image-text matching has shown impressive results on many image-sentence
retrieval benchmarks, where the objective consists in retrieving images given
a sentence as a query, or vice versa. The image-sentence retrieval task has been
used to evaluate the network’s ability to correctly match together relevant images
and sentences. However, the image-sentence retrieval problem is interesting in
itself, as it lays the basis for efficient search engines working with multi-modal
data.

Search engines must be fast and scalable, as they need to process queries
on huge databases in few milliseconds. However, state-of-the-art image-sentence
matching approaches usually employ cross-attention mechanisms in the early
stages of the data pipeline that makes it impossible to separately forward the
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visual and the textual information (Fig. 1). This separation is needed to disen-
tangle the offline indexing phase, usually very expensive, from the online query
processing, that instead should be completed in milliseconds.
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Fig. 1. The overall architecture of state-of-the-art proposals concerning image-text
matching. Cross attention in early stages makes the matching function outputting
image-text similarity score very complex. It is not possible to extract separately visual
and textual features.

Despite the overall loss in efficiency, the use of cross-attention produces an
effective multi-step reasoning process that is highly beneficial for producing good
matches. As shown in previous works such as Relation Networks [16], trying to
infer a relational bias between the basic building blocks of the visual and textual
inputs helps in developing abstract links between multi-modal concepts to gather
a relational view of the world.

Furthermore, it is possible that the optimal image-sentence representation
for good indexing is not a fixed-sized vector, but a variable-length set of vectors
describing the images and the texts as sets of concepts. This poses new challenges
as far as the indexing structures are concerned.

In this work, I will try to pave the way towards the use of effective relational
multi-modal descriptions obtained from state-of-the-art self-attentive architec-
tures in scalable retrieval contexts, where efficiency is a key requirement.

2 Related Work

Many works in computer vision and natural language processing works intro-
duced high-level complex reasoning mechanisms [16,19], mainly addressing
Visual Question Answering. More recently, the basic ideas behind these reason-
ing schemes have been implemented in self- and cross-attentive modules [18], and
employed in many language-vision tasks [3,7,15]. These works achieved state-
of-the-art results on image-sentence retrieval. However, they do not consider
efficiency aspects.
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On the other hand, many works tackled the problem of indexing visual fea-
tures coming from deep architectures. As far as content-based image retrieval
(CBIR) is concerned, [1,2] addressed the indexability problem of deep visual
features coming from Convolutional Neural Networks (CNNs), like [17]. In par-
ticular, [1] showed the performances achieved with the quantization of RMAC
features, and they compared this methodology to the deep permutation approach
[2], using an inverted file as an indexing structure. Standard CNN features do not
embed complex relational biases. Furthermore, multi-modality is not addressed
in these works.

3 Explored Approaches

In previous publications [10–12] I explored the effectiveness of a relational visual
descriptor extracted from a relation-aware architecture reasoning on a scene with
multiple objects. This relational descriptor obtained best results in the intro-
duced Relational-CBIR task, which consists in finding all the images having
objects in similar spatial relationships, given an image as query. The proposed
relational feature defeated common CBIR deep features such as RMAC [17] on
this task. This work tackled the problem of producing a compact and effec-
tive visual descriptor that could carry very complex scene information, includ-
ing inter-object relationships, and that could be indexed using already-existing
CBIR frameworks.

Given the increasing interest in multi-modal relational information process-
ing, my research is now focused on complex cross-modal retrieval scenarios. The
excellent results obtained by recently introduced self- and cross-attentive models
made me concentrate on the transformer architecture [18] for processing visual-
textual data using multi-step reasoning pipelines.

Although current efficient retrieval methods assume fixed-sized descriptors
(e.g., RMAC [17]), the latest works in cross-modal analysis treat images and
texts as sets of basic interconnected elements (image regions and words) pro-
cessed using attentive mechanisms. The native representation available becomes
therefore a variable set of features, called concepts, for every image or sentence.

One of my recent key contributions in this direction is the introduction of
the Transformer Encoder Reasoning Network (TERN) [14]. TERN employs self-
attentive mechanisms to produce both a global fixed-size deep feature and sets
of fine-grained concepts that are independent of their source modality. Unlike
most works in this field, TERN lacks cross-attentive links. Doing so, two well-
distinguished pipelines, a visual and a textual one, are created and can be used
separately in the online search and in the offline indexing phases. The produced
cross-modal representations are compared with simple dot-products so that the
similarity search can be very efficient by employing already existing indexing
schemes working on standard metric spaces (Fig. 2).

Concerning the global fixed-size description of images and sentences, in [13]
we applied the scalar quantization or deep permutation approaches to multi-
modal global features as explained in [1]. These representations can be then easily
used in inverted lists without further modifications to the indexing structure.



408 N. Messina

A tennis 
player serving 
a ball on the 

court

...

...

Image
Feat.

Extractor

Text
Feat.

Extractor

D
ot product

s(I, T)

Visual Pipeline

Textual Pipeline

Matching 
Function

regions attention layers

Feature extraction endpoints
(global    + per-region/per-word   )

words attention layers

Fig. 2. An high-level overview of the proposed TERN architecture.

On the other hand, TERN can also treat images and sentences as sets and
sequences of basic interconnected concepts, coming from regions and words
respectively. In this case, TERN does not output a compact global description of
images and sentences, but a variable-sized set of features, one for every concept,
in the same abstract common space.

The concepts can be clustered to create a dictionary. Following this direction,
in [13] we also introduced a model similar to the Bag of Words, that we called
Bag of Concepts, for producing image and sentence representations for efficient
indexing using inverted lists.

3.1 Early Results

In [11] we were able to obtain a good relation aware descriptor, that reached
a Spearman-Rho correlation value of 0.28 against −0.15 of the RMAC features
on the Relational-CBIR benchmark built on the CLEVR dataset [5]. We thus
showed the efficacy of a relational architecture in producing a fixed-size relation
aware image descriptor.

In the recent work on visual-textual information retrieval [13] we used the
proposed TERN architecture [14] as a multi-modal feature extractor, both for
global fixed-sized descriptors and for the variable-sized set of concepts. In these
first experiments, we tested the stability of the extracted features by simulating
strong sparsification, as this is the key element for the production of efficient
inverted indexes.

On the visual-textual MS-COCO dataset [6], the scalar quantization and
the deep permutation approaches on the fixed-sized global feature behaved very
similarly (72.7 Recall@10 in the sentence-to-image retrieval and 81.3 in image-
to-sentence). When the sparsity rate achieves 99% (only 20 dimensions out of
2048 are not zero), the deep permutation approach loses around 27% on the
Recall@10 metric, while scalar quantization loses 23%. At the same very high
sparsification rate of 99%, the Bag of Concepts model shows better results than
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the scalar quantization approach during the re-ranking phase of the sentence-to-
image retrieval scenario. The reranking using the non sparsified vectors can be
performed efficiently using GPUs on the subset of results selected by the initial
approximate search, therefore it defines an overall good compromise between
efficiency and effectiveness.

4 Conclusions

In this work, I tried to pave the way towards efficient and effective multi-modal
retrieval using state-of-the-art technologies from computer vision and natural
language processing worlds. The emphasis is placed on attentive architectures.
They are able to implement a multi-step high-level relational reasoning proce-
dure, gaining a lot in effectiveness but creating efficiency problems when scalable
information retrieval is addressed.

In my research, I first tried to produce a fixed-sized relational visual descrip-
tor that defeated RMAC on the Relational-CBIR task. Then, considering the
interesting cross-modal retrieval problem, I tried to extract powerful fixed- and
variable-sized features using the proposed TERN architecture, using existing
methods (scalar quantization, deep permutations) when addressing global fixed-
sized features and proposing the Bag of Concepts model for producing indexable
representations out of the variable-sized sets of multi-modal concepts.

4.1 Next Steps

In the near future, I manage to extensively evaluate the efficiency of the proposed
approaches when implemented in inverted indexes structures. To do so, a large
multi-modal dataset containing matching images and sentences is needed. MS-
COCO can be augmented with Flickr30k [20], obtaining a total of around 36k
images annotated with 180k sentences. For further validating these approaches, a
whole set of distracting images can be added from available huge image datasets
such as MIRFlickr1M1.

Further experimentation is needed as far as the Bag of Concepts is concerned.
An extension of the TERN architecture that I am implementing involves the fine-
grained alignment of regions and words at training time. In this case, a precise
similarity matrix between every image region and every word is available. It
is therefore possible that a custom indexing structure can be built using the
region-word alignment matrix. It is furthermore possible to learn this indexing
structure imposing some sparsification constraints directly at training time.

Another line of research can be derived by the approaches by [8,9]. In these
works, the transformer encoder in the BERT architecture [4] is split in an offline
and an online processing stages by partitioning the attention links so that they do
not create cross-connections between the two pipelines. In this way, the complex
activations produced from the offline pipeline can be stored during the indexing

1 http://press.liacs.nl/mirflickr/.

http://press.liacs.nl/mirflickr/
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phase and efficiently retrieved at query time. They applied this methodology
for textual document retrieval. However, this approach can be directly applied
to state-of-the-art visual-textual processing architectures based on the BERT
model, such as [3,7,15].
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