
Chapter 10
Sakai-Kasahara IBE

Hamza Mutaher and Mahmoud E. Hodeish

Abstract Public key cryptography (PKC) provides a very robust encryption in
networking and electronic communication. The strength of PKC comes from the
idea of paired keys that are independent (but mathematically dependent). The
encryption-decryption process of PKC requires both parties of communication,
i.e., sender and receiver, to provide each other with its public key and the digital
certificate of authority, and each party has to keep a directory to store all parties’
public keys so these requirements are considered as drawbacks of PKC. To
overcome these drawbacks, the identity-based encryption (IBE) came to existence.
IBE is a form of PKC which uses a third-party server to distribute the public
parameters to all the parties and extract the private key from the arbitrary public
key. To encrypt the message, the sender will use the receiver public key, and to
decrypt the message, the receiver will use the extracted private key. In this chapter,
we discuss the Sakai-Kasahara IBE and how it differs from other IBE schemes.
The additive, multiplicative, and full schemes of IBE are explained along with the
encryption and decryption process. The security of this scheme is also discussed and
proved.
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1 Introduction

Identity-based encryption (IBE) or the so-called ID-based encryption is a scheme
that uses public key encryption in which any bit string can be represented as a public
key in which the public key of a user can be some unique meaningful identity like
name and email address.

The motivation of introducing the IBE scheme is to solve such problems
of traditional public key systems like the necessity for directories and digital
certificates to manage public keys and the expensive computations of generating
public-private key pairs. However, Shamir [1] was the first who introduced the
concept of IBE that eliminates the use of directories and digital certificates. He
considered the receiver identity as the representation of the public key. Despite
solving some of the related problems of identity-based signature, IBE proved much
more challenging.

The Cocks IBE scheme [2] is one of the encryption algorithms. This type of
encryption algorithm encrypts the plaintext into ciphertext. The assurance of this
algorithm depends on the durability of the quadratic residuosity problem and the
computational difficulty of integer factorization as well. The system authority of
this algorithm generates a modulus m which is universally available. To create this
modulus, system authority calculates two primes p and q; thus the modulus m will
be the product of this calculation, where both primes p and q must be congruent to
3 mod 4. This system ensures the use of a universally available hash function to the
text that needs to be encrypted to represent it as a value to a modulo m. Therefore,
when the user A wants to get encrypted data, he/she needs to send any of his/her
identities such as (username or email address) to the system authority. Mutually,
user A will receive a private key from the system authority. The user B who seeks
to send an encrypted data to user A will be able to deliver it by knowing only the
public identity of user A and universal public parameters where there is no need to
know the public key.

On the other hand, there is another type of IBE algorithm called Boneh-Franklin
IBE [3]. It is an algorithm-based identity that encrypts the data for security. It is
considered as the first secure and practical scheme of IBE and it is an example
of an IBE full domain hash scheme family. This scheme maps the identity to the
elliptic curve to accomplish the process of encryption and decryption. Modular
exponentiation is required to start the process of mapping between the identity and
the point in the elliptic curve. The expensive calculation is considered as a drawback
for the performance of the full domain hash scheme.

The Boneh-Boyen IBE scheme [4] is also used to encrypt the identity of the
users. In this scheme, the sender and receiver have to use the same value to encrypt
and decrypt the identity where the receiver also uses its private key at the decryption
side. In this scheme, the user identity is hashed to an integer to be used in the process
of encryption and decryption. The hashed integer avoids the calculation of modular
exponentiation and it is considered more rapid than the full domain hash scheme.

This chapter aims to discuss in detail the Sakai-Kasahara IBE scheme [5, 6].
This scheme depends on the bilinear pairing and elliptic curve to provide security
solutions. The private key is the system element that is responsible to decrypt the
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ciphertext. It is one of the security solutions that belong to the exponent inversion
scheme family. The encryption and decryption procedures are applied through a
hashed integer on an identity in a form of string. Such algorithms like Boneh-
Franklin IBE use the full domain hashed scheme which is considered slower
than Sakai-Kasahara IBE. Due to the avoidance of modular exponentiation, Sakai-
Kasahara IBE is quite faster than Boneh-Franklin IBE [7] which is going to be
discussed in this chapter. Before the discussion of Sakai-Kasahara IBE, we have
to explain the procedure that occurs in the IBE system to encrypt and decrypt the
message.

When the sender A wants to send an encrypted message to receiver B, he/she
simply encrypts the message using B’s public identity, for example email address,
and there is no need for A to check the B’s public key certificate. When B receives
the encrypted message, he/she will communicate the private key generator (PKG),
also called system authority, which will send him/her a private key to allow him/her
to decrypt the message. Note that A and B have to authenticate themselves to the
PKG before starting the message exchange procedure; see Fig. 10.1.

IBE has four major operations explained as follows:

1. Setup of parameters: PKG will generate public parameters θ and master
secret S and distribute public parameters to both A and B.

2. Extraction of the private key: PKG will use the master secret S to extract the
private key SIDB

which corresponds to an arbitrary public identity of string
IDB.

3. Encryption: The sender A will encrypt the message using the receiver B’s
public identity IDB.

4. Decryption: The receiver B will decrypt the message using the correspond-
ing private key SIDB

that has been sent by the PKG.

Fig. 10.1 IBE operations
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This chapter is divided into two main parts; the first one discusses the encryption
and decryption of Sakai-Kasahara IBE basic scheme with its additive notation and
multiplicative notation. The second part discusses encryption and decryption of the
Sakai-Kasahara IBE full scheme with its security proof. Both parts will explain the
setup of the parameters to accomplish the encryption and decryption process.

2 Sakai-Kasahara IBE (Basic Scheme: Additive Notation)

The S-K IBE basic scheme is less secure than the S-K IBE full scheme but easier to
understand. In the basic scheme, two parties need to exchange encrypted messages
safely. Both parties must agree on a unique shared secret to encrypt the message in
plaintext form. The first party (sender) calculates the shared secret from its public
parameters and identity of the second party (receiver). The receiver gets the shared
secret by calculating the ciphertext and its private key.

2.1 Setup of Parameters

This scheme deals with additive notation; thus E(Fq) is an elliptic curve group, σ 1,
σ 2 are two elements of the elliptic curve, and σ 1 + σ 2 indicates the E(Fq) group
operation to be applied to the group elements σ 1, σ 2 and multiply σ by integer s
which is indicated as sσ .

To implement this scheme, we need to define some basic essential elements
shown in Table 10.1 and explained as follows:

1. Security parameters to define the level of the bit durability which will be
provided by the encryption process.

2. Define G1 and GT groups.
3. Pair ê : G1 × G1 → GT .
4. Define p � # E(Fq), where E/Fq denotes an elliptic curve along with embedding

degree k and p is prime.
5. Define the size of G1 and GT groups by the security parameters.
6. Let σ ∈ E(Fq)[p], where σ is a random point on the elliptic curve.
7. Let G1 and GT be a cyclic group of order σ such as G1 = 〈σ 〉 and GT =〈

ê (σ, σ )
〉
.

8. Define a cryptographic hash function one h1 to map the string of the identity to
an integer such as h1 : {0, 1}∗ → Zp.

9. Define a cryptographic hash function two h2 to hash the element of GT such as
h2 : GT → {0, 1}n, so we can associate the plaintext with it, where n is the bit
string of the plaintext.

10. Define S integer as a master secret such as S ∈ Zp, which is shown in Table
10.1.

The public parameters of this scheme are
(
G1,GT , ê, σ, sσ, h1, h2, v

)
.



10 Sakai-Kasahara IBE 175

Table 10.1 Parameters of Sakai-Kasahara IBE scheme

Element Description

p Prime
q Prime power
E/Fq Elliptic curve
G1 Cyclic group
GT Cyclic group
ê Pairing
n Positive integer
σ A point on elliptic curve
sσ A point on elliptic curve
h1 A cryptographic one-way hash function
h2 A cryptographic one-way hash function
h3 A cryptographic one-way hash function
h4 A cryptographic one-way hash function
v Element of F ∗

qk

S Master secret S ∈ Zp

PrivID = 1
S+qID

σ A private key for additive notation

PrivID = σ 1/(S+qID) A private key for multiplicative notation and full scheme

Algorithm 11.1: Parameters _Setup ()
Input: A security parameter, an elliptic curve E, and a plaintext length n
Output: Public parameters θ1 = (

G1,GT , ê, σ, sσ, h1, h2, v
)
and a master

secret S.
Procedure:
Begin

1. Select a primep and a prime power q with p � # E(Fq) which meets
the security parameter requirement.

2. Pick up a random σ ∈ E(Fq)[p] and let G1 = 〈σ 〉.
3. Embed the degree k to F ∗

qk and pair ê : G1 × G1 → F ∗
qk .

4. Let GT = 〈
ê (σ, σ )

〉
.

5. Pick up a random S ∈ Zp.
6. Use cryptographic hash functions:

(a) h1 : {0, 1}∗ → Zp

(b) h2 : GT → {0, 1}n

End
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2.2 Extraction of the Private Key

The extraction of the private key is the responsibility of the receiver party. After
listing out the security parameters, elements, and master key, the receiver party
extracts the private keys as follows:

1. Map the ID to the integer qID ∈ Zp by calculating qID = h1(ID).
2. Use master secret S to calculate the private key such as PrivID = 1

S+qID
σ ,

where the calculation of 1
S+qID

occurs inZ∗
p.

Algorithm 11.2: Private_Key_Extraction ()
Input: An identity ID, public parameters θ1 = (

G1,GT , ê, σ, sσ, h1, h2, v
)
, and

a master secret S
Output: A private ID PrivID

Procedure:
Begin

1. Calculate PrivID = 1/S + qID.

End

2.3 Sakai-Kasahara IBE Encryption

In this section, the sender needs to encrypt the message M ∈ {0, 1}n and send it to
the receiver along with identity ID, so the sender will perform some steps to encrypt
the message as follows:

1. Map the identity to an integer and hash it using hash function one as
qID = h1(ID).

2. Pick up a random number R ∈ Zp.
3. Calculate L = R (sσ + qIDσ ) = R (S + qIDσ ).
4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Define C = (L,ω) as a ciphertext.

Algorithm 11.3: Encryption ()
Input: A plaintext message M ∈ {0, 1}n, a string ID, public parameters θ1 =(

G1,GT , ê, σ, sσ, h1, h2, v
)
, and a master secret S

Output: A ciphertext C = (L,ω)
Procedure:
Begin

1. Calculate qID = h1(ID).
2. Pick up a random number: R ∈ Zp.
3. Calculate L = R (sσ + qIDσ ) = R (S + qIDσ ).
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4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Calculate C = (L,ω).

End

2.4 Sakai-Kasahara IBE Decryption

In the section, the receiver needs to decrypt the message that has been sent by the
sender to get the plaintext by performing the following steps:

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

Note that

ê (L, P rivID) = ê

(
R (S + qID) σ,

1

S + qID

σ

)
= ê(σ, σ )R

So, step 5 of the encryption section and step 2 of the decryption section are
calculating the same λ that permits the receiver to decrypt the ciphertext correctly.

Algorithm 11.4 Decryption ()
Input: A ciphertext C = (L,ω), public parametersθ1 = (

G1,GT , ê, σ, sσ, h1,

h2, v), and a private key PrivID

Output: A plaintext messageM
Procedure:
Begin

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

End

3 Sakai-Kasahara IBE (Basic Scheme: Multiplicative
Notation)

The S-K IBE basic scheme is less secure than the S-K IBE full scheme but easier to
understand. In the basic scheme, two parties need to exchange encrypted messages
safely. Both parties must agree on a unique shared secret to encrypt the message in
plaintext form. The first party (sender) calculates the shared secret from its public
parameters and identity of the second party (receiver). The receiver gets the shared
secret by calculating the ciphertext and its private key.
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3.1 Setup of Parameters

This scheme deals with multiplicative notations; thus E(Fq) is an elliptic curve group
and σ 1, σ 2 are two elements of the elliptic curve; then we consider σ 1σ 2 to point
out E(Fq) group operation to be applied to the group elements σ 1,σ 2 and multiply
σ by integer s indicated as σ s.

To implement this scheme, we need to define some basic essential elements
shown in Table 10.1 and explained as follows:

1. Security parameters to define the level of the bit durability which will be
provided by the encryption process.

2. Define G1 and GT groups.
3. Pair ê : G1 × G1 → GT .
4. Define p � # E(Fq), where E/Fq denotes an elliptic curve along with the

embedding degree k and pis prime.
5. Define the size of G1 and GT groups by the security parameters.
6. Let σ ∈ E(Fq)[p] where σ is a random point on the elliptic curve.
7. Let G1 and GT be a cyclic group of order σ such as G1 = 〈σ 〉 and GT =〈

ê (σ, σ )
〉
.

8. Define a cryptographic hash function one h1 to map the string of the identity to
an integer such ash1 : {0, 1}∗ → Zp.

9. Define a cryptographic hash function two h2 to hash the element of GT such
ash2 : GT → {0, 1}n, so we can associate the plaintext with it, where n is the bit
string of the plaintext.

10. Define S integer as a master secret such as S ∈ Zp, which is shown in Table
10.1.

The public parameters of this scheme are
(
G1,GT , ê, n, σ, σ s, h1, h2, v

)
.

Algorithm 11.5 Parameters_ Setup ()
Input: A security parameter, an elliptic curve E, and a plaintext length n
Output: Public parameters θ2 = (

G1,GT , ê, n, σ, σ s, h1, h2, v
)
and a master

secret S
Procedure:
Begin

1. Select a prime p and a prime power q with p � # E(Fq) which
meets the security parameter requirement.

2. Pick up a random σ ∈ E(Fq)[p] and let G1 = 〈σ 〉.
3. Embed the degree k to F ∗

qk and pair ê : G1 × G1 → F ∗
qk .

4. Let GT = 〈
ê (σ, σ )

〉
.

5. Pick up a random S ∈ Zp.
6. Use cryptographic hash functions:

(a) h1 : {0, 1}∗ → Zp

(b) h2 : GT → {0, 1}n

End
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3.2 Extraction of the Private Key

The extraction of the private key is the responsibility of the receiver party. After
listing out the security parameters, elements, and master key, the receiver party
extracts the private keys as follows:

1. Map the ID to the integer qID ∈ Zp by calculatingqID = h1(ID).
2. Use master secret S to calculate the private key such as PrivID =

σ 1/(S+qID).

Algorithm 11.6 Private_Key_Extraction ()
Input: An identityID, public parametersθ2 = (

G1,GT , ê, n, σ, σ s, h1, h2, v
)
,

and a master secret S
Output: A private ID PrivID

Procedure
Begin

1. Calculate PrivID = σ 1/(S+qID).

End

3.3 Sakai-Kasahara IBE Encryption

In this section, the sender needs to encrypt the message M ∈ {0, 1}n and send it to
the receiver along with identityID, so the sender will perform some steps to encrypt
the message as follows:

1. Map the identity to an integer and hash it using hash function one as
qID = h1(ID).

2. Pick up a random number R ∈ Zp.

3. Calculate L = R
(
σSσqID

)R = σR(S+qID).
4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Define C = (L,ω) as a ciphertext.

Algorithm 11.7 Encryption ()
Input: A plaintext message M ∈ {0, 1}n, a string ID, public parameters θ2 =(

G1,GT , ê, n, σ, σ s, h1, h2, v
)
, and a master secret S

Output: A ciphertext C = (L,ω)
Procedure
Begin

1. Calculate qID = h1(ID).
2. Pick up a random number: R ∈ Zp.

3. Calculate L = R
(
σSσqID

)R = σR(S+qID).
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4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Calculate C = (L,ω).

End

3.4 Sakai-Kasahara IBE Decryption

In the section, the receiver needs to decrypt the message that has been sent by the
sender to get the plaintext by performing the following steps:

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

Note that

ê (L, P rivID) = ê
(
σR(S+qID), σ 1/(S+qID)

)
= ê(σ, σ )R

So, step 5 of the encryption section and step 2 of the decryption section are
calculating the same λ that permits the receiver to decrypt the ciphertext correctly.

Algorithm 11.8 Decryption ()
Input: A ciphertextC = (L,ω), public parameters

θ2 = (
G1,GT , ê, n, σ, σ s, h1, h2, v

)
, and a private key PrivID

Output: A plaintext message M
Procedure
Begin

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

End

4 Sakai-Kasahara IBE (Full Scheme)

The basic scheme is insecure to chosen ciphertext attack: if an attacker wants to
get the plaintext back, the attacker will decrypt the ciphertext C(L,ω ⊕ ε) to get
the plaintext M ⊕ ε, and the attacker reconstructs M as M = (M ⊕ ε). The full
scheme is intended to overcome this insecurity by adding the Fujisaki-Okamoto
transformation technique [8] to the basic scheme [7].
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4.1 Setup of Parameters

The setup of parameters in the full scheme is similar to the basic scheme along
with some extra parameters. We need extra hash function parameters to impose the
security against chosen ciphertext attack. Principally, we need two hash functions
h3 : {0, 1}n → Zp and h4 : {0, 1}n → {0, 1}n and need to add these two hash
functions into the list of public parameters of the full scheme. The master secret
remains the same as in the basic scheme. The public parameters of this scheme are(
G1,GT , ê, n, σ, σ s, h1, h2, h3,h4,v

)
.

Algorithm 11.9 Parameters _Setup ()
Input: A security parameter, an elliptic curve E, and a plaintext length n
Output: Public parameters θ3=

(
G1,GT , ê, n, σ, σ s, h1, h2, h3,h4,v

)
and a mas-

ter secret S
Procedure
Begin

1. Select a prime p and a prime power q with p � # E(Fq) which meets
the security parameter requirement.

2. Pick up a random σ ∈ E(Fq)[p] and let G1 = 〈σ 〉.
3. Embed the degree kto F ∗

qk and pair ê : G1 × G1 → F ∗
qk .

4. Let GT = 〈
ê (σ, σ )

〉
.

5. Pick up a random S ∈ Z
∗
p.

6. Use cryptographic hash functions:

(a) h1 : {0, 1}∗ → Zp

(b) h2 : GT → {0, 1}n

(c) h3 : {0, 1}n → Zp

(d) h4 : {0, 1}n → {0, 1}n

End

4.2 Extraction of the Private Key

The extraction of the private key in the full scheme occurs as follows:

1. Map the ID to the integer qID ∈ Zp by calculating qID = h1(ID).
2. Use master secret S to calculate the private key such as PrivID = σ 1/(S+qID).

Note that the extraction of the private key in the full scheme is similar to the
extraction of the private key in the basic scheme.

Algorithm 11.10 Private_Key_Extraction ()
Input: An identity ID, public parameters θ3=

(
G1,GT , ê, n, σ, σ s, h1,

h2, h3,h4,v
)
, and a master secret S
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Output: A private ID PrivID

Procedure
Begin

1. Calculate PrivID = σ 1/(S+qID).

End

4.3 Sakai-Kasahara IBE Encryption

In this section, the sender needs to encrypt the message M ∈ {0, 1}n and send it to
the receiver along with identityID, so the sender will perform some steps to encrypt
the message as follows:

1. Map the identity to an integer and hash it using hash function one as
qID = h1(ID).

2. Pick up a random number τ ∈ Zp.
3. Calculate R = h3(τ ,M).
4. Calculate L = (

σSσqID
)R = σR(S+qID).

5. Calculate λ = τ ⊕ h2(v)R.
6. Calculate ω = M ⊕ h4(τ ).
7. Calculate δ = h4(M).
8. Define C = (L,ω, δ) as a ciphertext.

Algorithm 11.11 Encryption ()
Input: A plaintext message M ∈ {0, 1}n, a string ID, public parameters

θ3=
(
G1,GT , ê, n, σ, σ s, h1, h2, h3,h4,v

)
, and a master secretS

Output: A ciphertext C = (L,ω, δ)
Procedure
Begin

1. Calculate qID = h1(ID).
2. Pick up a random number: τ ∈ Zp.
3. Calculate R = h3(τ ,M).
4. Calculate L = (

σSσqID
)R = σR(S+qID).

5. Calculate λ = τ ⊕ h2(v)R.
6. Calculate ω = M ⊕ h4(τ ).
7. Calculate δ = h4(M).
8. Calculate C = (L,ω, δ).

End
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4.4 Sakai-Kasahara IBE Decryption

In this section, the receiver needs to decrypt the message that has been sent by the
sender to get the plaintext by performing the following steps:

1. Calculate qID = h1(ID).
2. Calculate N = ê (L, P rivID).
3. Calculate τ = λ ⊕ h2(N).
4. Calculate M = δ ⊕ h4(τ ).
5. Calculate R = h3(τ ,M).
6. If L �= (

σqIDσS
)R

, then an error has occurred, so exit.
7. Else assign the plaintext to M.

Algorithm 11.12 Decryption ()
Input: A ciphertext C = (L,ω, δ), public parameters θ3=

(
G1,GT , ê, n, σ, σ s,

h1, h2, h3,h4,v
)
, and a private key PrivID

Output: A plaintext message M
Procedure
Begin

1. Calculate qID = h1(ID).
2. Calculate N = ê (L, P rivID).
3. Calculate τ = λ ⊕ h2(N).
4. Calculate M = δ ⊕ h4(τ ).
5. Calculate R = h3(τ ,M).
6. If L �= (

σqIDσS
)R

exit.
7. Else plaintext =M.

End

5 Security of the Sakai-Kasahara IBE Scheme

In this section, we are going to prove that the S-K IBE scheme is secure against the
adversary Ē using the random oracle model (ROM); therefore we have to define the
one-way hash function (OWH) before we start the analysis.

Definition 1.1: The OWH function f : {0, 1}∗ → {0, 1}n that is considered to be
infeasible to invert is that which can take any input x ∈ {0, 1}∗ of arbitrary length
and give an arbitrary-length output value y = f (x) ∈ {0, 1}n which is called digest
or hash value. While using the hash function, we have to consider the following
properties:

1. y = f (x) ∈ {0, 1}n is irreversible.

y = h(x) �= h
(
x’

)
.
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2. It is impossible to get h(x’) ifx �= x’.

Theorem 1.1: We assume that the OWH function closely operates as a random
oracle. According to our assumption, the Sakai-Kasahara IBE scheme is provably
secure against an adversary Ē to derive the message M.

Proof 1.1: We assume that the adversary Ē can derive the message M that has
been sent from the sender to the receiver. To find out the message M, an adversary
Ē has to use the experimental algorithm

EXPT
h3(τ,M)
HASH,φ

The probability of success of the experimental algorithm is defined as

∣∣∣SUCCESS
h3(τ,M)
HASH,φ = Pr

[
EXPT

h3(τ,M)
HASH,φ = 1

]
− 1

∣∣∣

where Pr denotes the probability of success of EXPT
h3(τ,M)
HASH,φ . The experimental

algorithm is dependent on the advantage function that is defined as

ADV AT
h3(τ,M)
HASH,φ (et, qR) = maxφ

{
SUCCESS

h3(τ,M)
HASH,φ

}

where max is specified by three factors:

1. Overall Ā
2. The number of queries (qR) obtained from the execution time (et)
3. Reveal oracle

We can say that the S-K IBE scheme is vulnerable to the adversary Ē to derive
the message M if

ADV AT
h3(τ,M)
HASH,φ(et) ≤ ε,∀ε > 0.

Contemplating Algorithm 11.1, the adversary Ē can derive the message M if and
only if it can invert the OWH function. According to Definition 11.1, the OWH
function is infeasible to be inverted by cause of

ADV AT
h3(τ,M)
HASH,φ (et, qR) ≤ ε

Since ADV AT
h3(τ,M)
HASH,φ (et, qR) depends on ADV AT

h3(τ,M)
HASH,φ(et), the S-K IBE

scheme is provably secure against the adversary Ēs to derive the message M.
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