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Foreword

Digital security is of utmost importance since half of the world’s population uses
smartphones. Thus, it touches the lives of common people worldwide. In this digital
age, hiding and encrypting important data is one of the major challenges. Functional
encryption schemes enhance the security, confidentiality and access control by using
the function which allows the sharing of information with authorized people. For
newcomers, students from another branch, or researchers who are new and want to
understand and learn the basics of functional encryption, the search for any source
material that fulfills these demands is often unsuccessful. Most books written on
this topic are targeted at those who already possess knowledge of the basics. This
can lead to the novice losing interest in this field because they cannot find a book
written for them. Thus, this book will satisfy these readers, as it has been written
with them in mind.

This is perhaps the first book about functional encryption written specifically for
the novice. This book covers functional encryption algorithms and its modern appli-
cations in developing secure systems. The latest functional encryption algorithms
are explained in a simple and precise manner. Examples are given to solidify the
concepts and increase understanding.

This book helps professionals, researchers, scientists, faculty members, research
scholars, graduate students, and software developers in the domain of Cryptogra-
phy/Cybersecurity/Information Security/Software Security/Database Security/Web
Security/Wireless Network Security/Cloud Security/Online Transactions/E-
Commerce Security/M-Commerce Security for better understanding of the basic
concepts and techniques to build functional encryption and various encryption
mechanisms such as identity-based encryption (IBE) and attribute-based encryption
(ABE) into real-world systems. Those who seek to understand these concepts and
techniques will find this book a valuable asset. The editors have edited this book to
provide awareness of the methods used for functional encryption in the academic
and professional communities.

Riverside, USA Mohammad Sufian Badar
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Preface

Information security is the protection of information systems, hardware, software,
and information from damages as well as theft, interruption, or misdirection to any
of these resources. In other words, cybersecurity focuses on protecting computers,
networks, programs, and data (in use, in rest, in motion) from unauthorized or
unintended access, change, or destruction (all aimed for exploitation). It is estimated
that 3300 million people are using smart mobile phones globally, which is more than
half of the world’s population. Hence, digital security is no longer limited to the
scholarly community but is now the concern of all users of computers worldwide.

In acknowledging such expansion and needs of information security, this book
is aimed to provide awareness of methods used for functional encryption in
the academic and professional community. While this book would dwell on the
foundations of functional encryption as part of security, it will also focus on
contemporary topics for Research and Development.

The chapters cover functional encryption algorithms and its modern applications
in developing secure systems, viz. entity authentication, message authentication,
software security, cybersecurity, hardware security, Internet of Thing (IoT), cloud
security, smart card technology, CAPTCHA, digital signature, and digital water-
marking. This book is organized into 15 chapters, i.e., Foundations of functional
encryption, Impact of Group Theory in Cryptosystem, Elliptic Curve Cryptography,
Hyper Elliptic Curve Cryptography (HECC), XTR algorithm: Efficient and Com-
pact Subgroup Trace Representation, Pairing-based cryptography, NTRU Algo-
rithm: Nth Degree Truncated Polynomial Ring Units, Cocks IBE scheme, Boneh-
Franklin IBE, Boneh-Boyen IBE, Sakai-Kasahara IBE, Hierarchical Identity-Based
Encryption, Attribute-based Encryption, Extensions of IBE and Related Primitives,
Digital Signatures.

Finally, it gives us great pleasure to acknowledge the contributions and supports
of many individuals. Indeed, we would like to express our gratitude to all the authors
who had contributed in the forms of the submitted chapters without which, the
production of this book is not possible. We are also thankful to the team from

vii
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Springer for the meticulous service in timely publication of this book. We would like
also to thank our college/University for their encouragement and last but not least,
we gratefully appreciate the support, encouragement, and patience of our families.

Kuala Lumpur, Malaysia Khairol Amali Bin Ahmad

Hyderabad, Telangana, India Khaleel Ahmad

Hyderabad, Telangana, India Uma N. Dulhare
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Chapter 1
Foundations of Functional Encryption

Md. Sharif Hossen

Abstract Functional encryption is an emerging paradigm of public-key encryption
that permits the enormous flexibility in accessing the ciphertext and helps to
compute the function of the ciphertext using a decryption key. Nowadays, it
contributes to protect the more large and complex data in the cloud. In this chapter,
we will discuss the functional encryption, its relationship with fully homomorphic
encryption, challenges, and future directions.

Keywords Functional encryption · Obfuscation · Prime numbers · Greatest
common divisor · Linear congruence · Multiplicative inverse

1 Introduction

With the fast advancement of technology, the number of mobile or laptop devices is
growing rapidly. The people in this modern world are daily sharing millions of files
via email and other media. Nowadays, most people are storing their resources in
the cloud. The cloud provides us many facilities free, e.g., hardware, software, use
of power. That means we can easily access our data without buying or controlling
any hardware or software. We do not need to pay for storing the data and using the
power to maintain the data in a remote high-powerful server computer. The main
problem here is the security of data we store in the remote computer as the shared
data can be any of the credential information like password, credit card details, and
personal information. This information can be controlled by third parties because
we are storing the data in the outside location where we do not have any idea about
security issues. So, we are at risk of our data [1].

The data security can be assured by encrypting the information with a common
shared secret key used by both sender and receiver, which is called encryption where
the encrypted text instead of the credential information is sent through the media

Md. S. Hossen (�)
Dept. of Information and Communication Technology, Comilla University, Comilla, Bangladesh
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2 Md. S. Hossen

so that the third parties could not be able to break the original information. This
encrypted text is read by breaking it by the receiver using the common key. This
process is termed as decryption. This overall technique of sharing the common key
to both parties is called the symmetric encryption. In two-way communication, the
conversation is compromised as we do not know the way of sharing the shared
key. So, anyone knowing the shared key can decrypt the message [2, 3]. Another
approach called public-key encryption or asymmetric encryption uses two keys,
public and private. Using this approach, someone getting the private key can retrieve
the messages sent to you, but would not be able to see what you send to others as
different key pairs are used. In an asymmetric paradigm, on the sender side, the
sender uses the receiver’s public key to encrypt the original messages, while on the
receiver side, the receiver decrypts the encrypted messages using its own private
key to get the original plaintext. In both cases, i.e., symmetric and asymmetric, if
someone does not have any idea about the key, one can learn only the message length
not the plaintext from the encrypted version of the original message [4, 5]. Different
encryption techniques, e.g., triple DES, Blowfish, AES, RSA, Diffie-Hellman, and
ECC, have been developed and implemented to ensure data security.

Accessing to the encrypted version (i.e., ciphertext) of the plaintext, traditional
asymmetric encryption can provide the details of the original message or expose
nothing. This introduces the idea of functional encryption (FE). FE is an emerging
paradigm that permits a person enormous flexibility in accessing the ciphertext and
helps to learn the function of the ciphertext using a decryption key. In FE scheme,
a trusted authority uses a master secret key (kms) and produces a secret key ks[g]
embedded with a function g. Getting ks[g], a user can determine g(m) from the
ciphertext of message m [6, 7]. Consider kpu and kpr indicate the receiver’s public
and private keys, respectively. Then, the encryption and decryption functions using
functional encryption approach are expressed as follows:

Encryption : ciphertext, c = Enc
(
kpu,m

)
(1.1)

Decryption : plaintext, p = Dec (ks [g] , c) = g(m) (1.2)

From Eq (1.2) of the decryption process, plaintext, p = g(x). So, the kms provider
can learn only about g(m) not m. Original plaintext should be m, which is derived
by p = Dec(kpr, c) = m. So, only the receiver decrypts the message.

The rest of this chapter covers the following. Section 2 discusses the syntax of
functional encryption. Section 3 shows the relationship between functional encryp-
tion, obfuscation, and fully homomorphic encryption. Challenges and applications
are elaborated in Sects. 4 and 5, respectively. Present and future directions in
functional encryption are included in Sect. 6. Sections 7 and 8 represent the details
of additive and multiplicative inverse. Sections 9 and 10 describe the matrices and
linear congruence, respectively. Prime and relatively prime numbers are mentioned
in Sec. 11. Finally, in Sect. 12, we provide the discussion of the greatest common
divisor using Euclid, Bezout, and Extended Euclid algorithms.
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2 Functional Encryption Syntax

Here, we mention the syntactic discussion of FE. The functionality G explains how
the information of plaintext can be obtained from the encrypted data.

2.1 Functionality

Assume that K and M refer to the set of all possible keys and messages, respectively.
Then, the function G is defined as G : K × M → {0, 1}, which is a deterministic
Turing Machine. In K, there is an empty key ε, which purposely tries to store the
details of the original messages from the encrypted data, e.g., the length of it. Then,
a user can get the leaked message using the following equations:

c
R← Enc

(
kpu,m

)
(1.3)

Dec (ε, c) (1.4)

Let k ∈ K, m ∈ M. Given the ciphertext of m is c, and secret key of k is ks. Then,
the decryption function will be

z = G(ks, c)

2.2 Functional Encryption Scheme

For all k ∈ K, m ∈ M, FE scheme requires four functions, setup (Set), key
generation (KeyGen), encryption (Enc), decryption (Dec) to get the messages leaked
from c. Here, the public key is kpu, the master secret key is kms, the secret key for k
is ks

(
kpu, kms

)← Set
(
1γ
)

ks ← KeyGen
(
kms,k

)

c ← Enc
(
kpu,m

)

z ← Dec (ks, c)

We need to fulfill z = G(k,m) with probability 1.
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In the above FE scheme, at first kpu and kmsare generated using the algorithm
Set. Then, ks is found by KeyGen algorithm. After that m is encrypted and we found
the ciphertext, c. Finally, Dec algorithm with ks is called to find the leaked message
G(k,m) from c.

LetK : {1, ε}. For m = 1, encrypted data is completely decrypted using ks. For
k = ε, it will return the total number of bits having in the message [5].

G(k,m) :=
{

m if m = 1
length(m) if k = ε

3 Relationship Between Functional Encryption, Obfuscation,
Fully Homomorphic Encryption

Homomorphic encryption is a type of encryption that permits the computation over
encrypted text without any need of a secret key. It ensures the data to be encrypted
even it is processed and computed. Anyone can apply the function on the ciphertext,
but the plaintext will not be revealed. Using this approach, the employee in an
organization can access and process the encrypted data and can get the text, but
it is not the original plaintext. Only, the authenticated user can understand the text
using its own secret key. That is, this approach ensures the integrity of the data as
only the key holder can access or realize the decrypted versions of the encrypted
text. This type of encryption is used in the computation of preserving privacy in the
cloud. It can be of three types, namely partially, somewhat, and fully homomorphic
encryption. In partially homomorphic encryption (which is used in RSA), a certain
operation using a selected function is applied on ciphertext many times to build a
secure connection. In somewhat homomorphic encryption, few operations (either
multiplication or addition) are applied with a limited number of times.

Fully homomorphic encryption (FHE) is an encryption technique that allows us
to perform arbitrary computations on the ciphertext with privacy where we will be
able to access our data without any permission of the service provider. It is still
under the development phase. For example, we are storing our personal data in the
cloud without any guarantee that the cloud provider can access the data. So, there
is a risk of our data. FHE can be used to prevent the cloud provider to access our
data. Using functional encryption (FE), someone can access the encrypted data to
compute the function on it but cannot reach to break the data to understand the
original text. Obfuscation is the process of blurring the original message to sense it
someone to be confused, ambiguous, and difficult to understand [6, 8].
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It is unknown to understand the construction of FE from FHE. The functionalities
used in FHE are also not known clearly because the output of it is also a result
of the encryption of the encrypted data while the output of FE is understandable.
FE is an openly discussed problem while FHE is not. FHE and FE can ensure the
confidentiality of the data, i.e., the unauthorized people cannot access the data to
use while obfuscation cannot guarantee the confidentiality of the data.

Using obfuscation, one can hide his email address (i.e., avoid as a spam email) to
be marked as a spam email by spammers or spam filters. There are many methods
of obfuscation. Some of these are reversing the text direction, adding null text,
encoding “@” and “.”, replacing “@” with “AT” and “.” with “DOT,” and using
“urlencode” method. The best appropriate scheme is to reverse the text direction.
Let us consider the email “mshossen@cou.ac.bd” to be obfuscated. At first, we will
write the email backward on the page of the website and then include it in <span>
tag as follows:

<span class=“obfuscate”>db.ca.uoc@nessohsm</span>

To see the email correctly to the visitors, the following code of CSS is written as
follows:

.obfuscate {unicode-bidi: bidi-override; direction: rtl;}
On the other hand, FE and FHE ensure data confidentiality. Using FE, the spam

filter can block the email sent from the sender to the receiver if it looks like spam
where FE does not know about the contents of email. While FHE does not block
the spam email but indicates it as spam. Hence, the importance of FE is superior to
FHE [9].

4 Challenges

An attacker tries to use different keys to compute the function on the ciphertext.
An FE system will be secure if the attacker cannot get the original message using
its keys but only read the ciphertext. There are several challenges to ensure secure
functional encryption (FE) system. Some of the challenges are mentioned below [5,
10]:

• It is a challenge to generate an efficient FE system for supporting various general
functionalities.

• The main challenge in functional encryption is the generation of public and
private keys to compute any function on the encrypted data. The creation of
such keys could help the integration of anything from a random spam filter to
the image to be used for recognition.

• Different secret keys are used to attack the FE. These attacks are called Collusion
attacks which are another challenge to build a secure FE system because they
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have the ability to merge different keys to generate a new key which tends to
break the functionality of the FE system.

• Constructing a secure FE for all the polynomial-time functionalities is also a
challenge. Hence, the predicate encryption is more realistic now. At the moment,
the construction of inner products and fully homomorphic encryption can help to
derive the functionalities of predicates.

5 Applications

Ensuring data security is a fast consideration of the system. There are lots of
applications for the FE system. Some of the areas where FE is used are mentioned
below [5, 11].

• Spam filtering.
• Increase the security of the cloud storage system.
• Privacy-preserving data mining system.
• Fine-grained access control.
• Access to the encrypted text using arbitrary policy over the sender’s personal

details.

6 Present and Future Directions in Functional Encryption

At present, the researchers are trying to develop a secure functional encryption
system. Researchers from the University of California in Los Angeles already have
built a technique of obfuscation using the FE to prevent hackers from attacking
the programs. Their developed method is very useful to make the data to be
unintelligible for the attacker [12].

The main challenge in the functional encryption is the generation of public and
private keys to compute the function on the encrypted data. The creation of such
keys could help the integration of anything from a random spam filter to the image
to be used for recognition. Hence, the certain image of a person can be used to
encrypt the text, and only the face of that person can be used to decrypt the text.
More research investigations are needed to build a more flexible real-time system
so that different accessing policies should be developed. These policies will help to
maintain the access of data by the authorized users, i.e., who are the valid users or
not to access the data. Signature verification in FE can also be taken into count to
ensure the confidentiality of data [5].
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7 Additive Inverse

In public-key encryption, we know two keys, private and public are used. In most of
the cases, these keys are calculated using modular arithmetic [13].

7.1 Modular Arithmetic

Suppose we divide the integer X by the integer Y. Then, we will get a quotient Q
and a remainder R. For cryptographic analysis, we are interested only in the value
of R. Using the modulo operator (mod), the remainder R can be calculated easily as
X mod Y = R, where Y is the modulus. For example, 18/10 = 1 remainder 8, i.e., 18
mod 10 = 8.

7.2 Addition and Subtraction Property of Modular Arithmetic

(X + Y ) mod Z = (X mod Z + Y mod Z) mod Z

(X − Y )mod Z = (X mod Z − Y mod Z) mod Z

For example, for addition mod 10,

(8 + 9) mod 10 = (8 mod 10 + 9 mod 10) mod 10 = 17 mod 10 = 7.

Figure 1.1 shows the addition modulo 10. Plaintext can be encrypted using this
addition operation. For example, for secret key k = 4, the encrypted text of plaintext
4592 is 8936.

Plaintext can be retrieved from the encrypted text, i.e., ciphertext using the
inverse of k, called the additive inverse of k. The additive inverse of a number
(k) refers to the negative (−k) of that number, and when added to the number
yields zero, k + (−k) = 0. The inverse of the number is also termed as opposite
number, negation, and sign change. There is no effect of double additive inverse of
a number, e.g., −(−k) = k. For k = 4, the inverse of k is −k = 6 since 4 + 6 = 0,
(4 + 6 = 10 mod 10 = 0). Hence, the retrieved plaintext from ciphertext 8936 using
−k = 6 is 4592.

In Fig. 1.1, the intersection of a number and its inverse will be zero, e.g., the
intersection of 6 and 4 is zero.
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+ 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 0
2 2 3 4 5 6 7 8 9 0 1
3 3 4 5 6 7 8 9 0 1 2
4 4 5 6 7 8 9 0 1 2 3
5 5 6 7 8 9 0 1 2 3 4
6 6 7 8 9 0 1 2 3 4 5
7 7 8 9 0 1 2 3 4 5 6
8 8 9 0 1 2 3 4 5 6 7
9 9 0 1 2 3 4 5 6 7 8

Fig. 1.1 Addition mod 10

8 Multiplicative Inverse

Multiplicative inverse refers to the reciprocal of a number (Z) denoted by 1
/

Z

or Z−1. When a number is multiplied by its multiplicative inverse yields 1, e.g.,

Z ×
(
1
/

Z

)
= 1, but except the number zero (0) as 1

/

0 is undefined [13].

8.1 Multiplication Property of Modular Arithmetic

(X × Y ) mod Z = (X mod Z × Y mod Z) mod Z

For example, for multiplicative mod 10,

(8 × 9) mod 10 = (8 mod 10 × 9 mod 10) mod 10 = 72 mod 10 = 2

Figure 1.2 shows the multiplication modulo 10. Plaintext can be encrypted using
this multiplication mod operation. For example, for secret key k = 3, the encrypted
text of plaintext 4592 is 2576.

The plaintext can be retrieved from the encrypted text using the reciprocal of k,
called the multiplicative inverse of k, i.e., k−1. For k = 3, the multiplicative inverse
of k is k−1 = 7 since 3 × 7 = 1, (21 mod 10 = 1). Hence, the retrieved plaintext
from the ciphertext 2576 using k−1 = 7 is 4592. In Fig. 1.2, the intersection of k and
k−1 is 1 where only the numbers {1, 3, 7, 9} satisfy this.
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× 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 0 2 4 6 8
3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6
5 0 5 0 5 0 5 0 5 0 5
6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3
8 0 8 6 4 2 0 8 6 4 2
9 0 9 8 7 6 5 4 3 2 1

Fig. 1.2 Multiplication mod 10

9 Matrices

Different approaches are used to prevent attackers so that they could not be able
to break the encoded data sent from the sender to access the original messages.
Large matrices are extremely difficult to break, so the encryption and the decryption
using matrices can be applied to ensure the data security of different organizations,
governments, or non-governments [13].

For simplicity, we consider the assignment of each letter, i.e., A to Z, by a number
sequentially.

A B C D E F G H I J K L M N O
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P Q R S T U V W X Y Z
16 17 18 19 20 21 22 23 24 25 26

For the encryption and the decryption operation, we need to choose the plaintext
and the encoding matrix in the sender side. The encrypted code is decrypted using
a decoding matrix, which is also called the inverse of encoding matrix. We have to
choose such a matrix that has the inverse of it.

Consider the plaintext is P = “ICT DEPARTMENTS” and the 3 × 3 encoding
matrix A is as follows:

A =
∣∣
∣∣∣∣

1
− 2

2 − 1
0 1

1 −1 0

∣∣
∣∣∣∣
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The inverse of A is called the inverse of encoding matrix, i.e., the decoding
matrix, A−1.

A−1 =

∣∣∣∣∣
∣∣

1
1

1 2
1 1

2 3 4

∣∣∣∣∣
∣∣

The plaintext “ICT DEPARTMENTS” corresponds to the following numbers. For
whitespace “” in the plaintext, we consider the number 27.

I C T * D E P A R T M E N T S
9 3 20 27 4 5 16 1 18 20 13 5 14 20 19

Now, we form a 3 by 1 vector, v, for the above corresponding numbers of the
plaintext as follows:

∣
∣∣∣∣∣

9
3
20

∣
∣∣∣∣∣

∣
∣∣∣∣∣

27
4
5

∣
∣∣∣∣∣

∣
∣∣∣∣∣

16
1
18

∣
∣∣∣∣∣

∣
∣∣∣∣∣

20
13
5

∣
∣∣∣∣∣

∣
∣∣∣∣∣

14
20
19

∣
∣∣∣∣∣

v =

∣∣∣
∣∣∣∣

9
3

27 16 20 14
4 1 13 20

20 5 18 5 19

∣∣∣
∣∣∣∣

To form the encrypted version of the plaintext P, we multiply the encoding matrix
by the above vector as follows:

E = A ∗ v =

∣∣∣∣∣∣
∣

1
− 2

2 −1
0 1

1 −1 0

∣∣∣∣∣∣
∣

∣∣∣∣∣∣
∣

9
3

27 16 20 14
4 1 13 20

20 5 18 5 19

∣∣∣∣∣∣
∣

After multiplying the above two matrices, we get the encoded data as follows:

E =

∣∣∣∣∣
∣∣

−5
2

30 0 41 35
−49 −14 −35 −9

6 23 15 7 −6

∣∣∣∣∣
∣∣

This encoded message is transmitted through the channel in a serial form as
follows:

−5, 2, 6, 30, −49, 23, 0, −14, 15, 41, −35, 7, 35, −9, −6
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This encoded version is then received at the receiver side where the decryption
process is performed. Here, the decoding matrix, A−1, is multiplied by the received
encrypted data where it is formed as a sequence of 3 by 1 vectors.

D = A−1 × E =

∣∣∣∣∣
∣∣

1
1

1 2
1 1

2 3 4

∣∣∣∣∣
∣∣

∣∣∣∣∣
∣∣

−5
2

30 0 41 35
−49 −14 −35 −9

6 23 15 7 −6

∣∣∣∣∣
∣∣

=

∣∣∣
∣∣∣∣

9
3

27 16 20 14
4 1 13 20

20 5 18 5 19

∣∣∣
∣∣∣∣

Writing the matrix in a linear form, we get the following:

9 3 20 27 4 5 16 1 18 20 13 5 14 20 19
I C T * D E P A R T M E N T S

10 Linear Congruence

A linear congruence (LC) [13] is a congruence of the following form to find xε Z

ax ≡ b (mod c)

where a, b, c are the set of integers, i.e., a, b, c ε Z.
LC has the following properties.

1. If gcd(a, c) = 1, LC has a unique solution.
2. If gcd(a, c) � b, LC has no solution.
3. If gcd(a, c) � b, LC has b solutions.

Example 1 Find all the solutions for 17x ≡ 3 (mod 29).
We will calculate the gcd(17, 29) at first, using Euclid’s algorithm.

29 = 1 × 17 + 12
17 = 1 × 12 + 5
12 = 2 × 5 + 2
5 = 2 × 2 + 1
2 = 2 × 1 + 0

Therefore, gcd(17, 29) = gcd (1, 0) = 1. So, it has one solution. We will now
find the multiplicative inverse of 17 mod 29 as follows:
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1 = 5 − 2 × 2
= 5 − 2 × (12 − 2 × 5)
= 5 × 5 − 2 × 12
= 5 × (17 − 1 × 12) − 2 × 12
= 5 × 17 − 7 × 12
= 5 × 17 − 7 × (29 − 1 × 17)
= 12 × 17 − 7 × 29

So, the multiplicative inverse of 17 mod 29 is 12. Multiplying both sides of the
linear congruence 17x ≡ 3 (mod 29) by 12, we get

12 × 17x ≡ 12 × 3 (mod 29)
x ≡ 36 (mod 29)

≡ 7 (mod 29) since 36 − 29 = 7

We can check the value of x whether it is correct or wrong as follows:

17 × 7 ≡ 119 = 3 (mod 29) since 119 = 4 × 29 + 3

Notice that 12 × 17x = x. Say m = 17 and multiplicative inverse
of 17 mod 29 = m−1 = 12. We know that m × m−1 = 1. Therefore,
m × m−1 = 17 × 12 = 1. That is why, 12 × 17x = x.

Example 2 Find all the solutions to the linear congruence 22x ≡ 7(mod 143).
We will calculate the gcd(22, 143) at first, using Euclid’s algorithm.

143 = 6 × 22 + 11
22 = 2 × 11 + 0

Hence, gcd(22, 143) = gcd (11, 0) = 11 and 11 � 7. So, the linear congruence
22x ≡ 7(mod 143) does not have any solution.

11 Prime and Relative Prime Numbers

When two or more numbers are multiplied to get another number, then those
numbers are called factors. For example, the factors of 12 are 1, 2, 3, 4, 6, and
12. We can find all the factors of 12 as follows:
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1 × 12 = 12
2 × 6 = 12
3 × 4 = 12

An integer number is called prime number if it has two factors, 1 and the number
itself. In other words, an integer number n > 1 is called a prime if it has two factors
±1, and ±n. For example, 5 is a prime number as it has only two factors, 1 and 5;
number 6 is not a prime number as it has more than two factors, 1, 2, 3, and 6. The
first 25 prime numbers are as follows:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53

59 61 67 71 73 79 83 89 97

Numbers X and Y are relatively primes if they have no common factor other than
1. Relatively prime numbers are also called mutually prime or coprime [13]. For
example, 15 and 17 are relatively prime numbers since they have only one common
factor.

1 × 3 × 5 = 15
1 × 17 = 17

Factors of 15 are {1, 3, 5} and of 17 are {1, 17}. Hence, the common factor is 1.
Numbers 16 and 20 are not relatively prime numbers since they have more than

1 common factor. Factors of 16 are {1, 2, 4, 8, 16} and of 21 are {1, 2, 4, 5, 10, 20}.
Hence, the common factors are {1, 2, 4}.

1 × 2 × 2 × 2 × 2 = 16
1 × 2 × 2 × 5 = 20

The product of primes is called as the prime factorization, e.g., 15 = 1 × 3 × 5

16 = 1 × 24

20 = 1 × 22 × 5
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12 Greatest Common Divisor (Euclid’s Algorithm, Bezout’s
Algorithm, Extended Euclid’s Algorithm)

12.1 Greatest Common Divisor (GCD)

GCD of two or more non-zero numbers is the largest positive number that divides
each of the numbers with zero remainders [13]. There are two ways to find GCD.
At first, it can be calculated by finding the greatest factor from the common
divisors/factors of the numbers.

All factors of 12 = 1, 2, 3, 4, 6, 12

All factors of 30 = 1, 2, 3, 5, 6, 10, 15, 30

Common divisors of 12 and 30 are 1, 2, 3, and 6. The greatest of these divisors
is 6. So, GCD (12, 30) = 6.

Secondly, we can calculate GCD by multiplying all the common prime factors.

12 = 2 × 2 × 3
30 = 2 × 3 × 5

The common prime factors of 12 and 39 are 2 and 3. GCD (12, 30) = 2 × 3 = 6.

12.2 Euclidean/ Euclid’s Algorithm

An efficient method of quickly finding the GCD between two numbers is Euclidean
algorithm [13].

Consider two numbers x and y where x > y. Then, GCD can be calculated using
Euclidean algorithm as follows:

gcd (x, y) =
{

x, if y = 0
gcd (y, x mod y) , otherwise

Here, if y �= 0, the larger number x is divided each time by the smaller number y
and then x is replaced by y, and y will be replaced by the remainder. If y = 0, x will
be the GCD between x and y. Otherwise, we will continue this process until y = 0.

Example 3 Let us find the GCD between 12 and 30 using Euclidean algorithm.
Consider x = 30, and y = 12. Here, y �= 0, then applying the above algorithm we

get,

30 ÷ 12 = 2 remainder 6 or 30 = 2 × 12 + 6
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12 ÷ 6 = 2 remiander 0 or 12 = 2 × 6 + 0

Hence, the remainder is zero, so GCD(12, 30) = GCD(6, 0) = 6.
We will now explain it more elaborately. We know that x mod y works like x % y

which will return the remainder. In the above example, gcd (x, y) = gcd (30, 12)
where x = 30, y = 12 �= 0 so, x mod y = 30 mod 12 = 6, then gcd (y,
x mod y) = gcd (12, 6) where x = 12, y = 6 �= 0, so again x mod y = 12 mod 6 = 0.
Now, gcd (y, x mod y) = gcd (6, 0), hence x = 6 and y = 0. From the Euclidean
algorithm, y = 0 indicates that x = 6 is the GCD between 12 and 30.

Example 4 Find GCD of 123 and 36 using Euclid’s algorithm.

123 = 3 × 36 + 15
36 = 2 × 15 + 6
15 = 2 × 6 + 3
6 = 2 × 3 + 0

Therefore, GCD (123, 36) = GCD(3, 0) = 3.

12.3 Bezout’s Algorithm

For two non-zero integers x and y, GCD can be represented as a linear combination
px + qx = gcd (x, y) where integers p and q are the Bezout’s coefficients [13].

If x, y are coprime, then gcd (x, y) = px + qx = 1. We can calculate the value of x
and y using Euclid’s algorithm and then applying backward and substitution process
called extended Euclid’s approach.

Example 5 Consider x = 123 and y = 36 to calculate gcd(123, 36). We apply
Euclid’s algorithm at first as follows:

123 = 3 × 36 + 15
36 = 2 × 15 + 6
15 = 2 × 6 + 3
6 = 2 × 3 + 0

So, gcd(123, 36) = gcd (3, 0) = 3
Then, we apply backward and substitution process as follows:
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3 = 15 − 2 × 6
= 15 − 2 × (36 − 2 × 15)
= 5 × 15 − 2 × 36
= 5 × (123 − 3 × 36) − 2 × 36
= 5 × 123 − 15 × 36 − 2 × 36
= 5 × 123 − 17 × 36

(iii)

Hence, gcd(123, 36) = 3 = 123p + 36q (iv)
Comparing (iii) and (iv), we get p = 5 and q = − 17.

12.4 Extended Euclid’s Algorithm

This algorithm is an extension of Euclid’s method. It is widely used in cryptography
to compute the multiplicative inverse of the polynomial expressions. The RSA
encryption approach uses the multiplicative inverse. Extended Euclidean approach
follows the steps of Euclid’s algorithm reciprocally/reversely. It is mostly used to
compute the Bezout’s coefficients p and q in the following equation [13].

px + qx = gcd (x, y)

Example 3 shows the explanation of finding p and q.
If x and y are relative primes, then gcd(x, y) = 1. Hence, gcd(x, y) = px + qy = 1.

Then, 1 ≡ qy mod p so that y is the multiplicative inverse of q mod p.
Now, we will see the implementation of computing multiplicative inverse using

extended Euclid’s approach in the following example.
.

Example 6 Find the multiplicative inverse of 8 mod 11.
We will apply the Euclid’ algorithm to find the gcd(8, 11) to check whether it is

equal to 1. If gcd(8, 11) = 1, then it has the multiplicative inverse, otherwise not.

11 = 1 × 8 + 3
8 = 2 × 3 + 2
3 = 1 × 2 + 1
2 = 2 × 1 + 0

Therefore, gcd(8, 11) = gcd (1, 0) = 1. So, 8 mod 11 has the inverse. Now, we
proceed in the reverse way as follows:
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1 = 3 − 1 × 2
= 3 − 1 × (8 − 2 × 3)
= 3 × 3 − 1 × 8
= 3 × (11 − 1 × 8) − 1 × 8
= 3 × 11 − 4 × 8
= 3 × 11 + 7 × 8

(since the additive inverse of 4 is 7 mod 11)
We ignore multiples of 11. The multiplicative inverse of 8 mod 11 is 7. Notice

that 8(7) = 56 = 1 + 5(11) ≡ 1 mod (11).

13 Conclusion and Future Work

Functional encryption (FE) is an efficient encryption system where what things a
user can learn from the ciphertext is calculated by a function of the encrypted data
and its secret key. FE is used in different applications, e.g., cloud storage system,
spam filtering, to ensure the data security. In near future, we would like to propose
and implement a secure FE system so that the challenges of FE can be overcome.
We also would like to implement the face recognition approach in FE system to
ensure the security of the data.
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Chapter 2
Impact of Group Theory in Cryptosystem

Priyanka Singh, Manju Khari, and Nikhil S. Kaundanya

Abstract This paper presents a new approach of group theory toward cryptosystem
with its application of mathematical methods and functions for cryptographic
regions. This new group theory in cryptographic paradigm is brought together with
relation to existing functional groups, fields, rings, mathematical theorems, mathe-
matical tools, etc. this study concentrated on semantic security solutions evaluation
for cryptographic systems. Such cryptographic systems are mostly designed to use
the group’s applications such as fields, ECC, functionality tests, cyclic groups, and
Schnorr groups. In this paper, we discussed some possible applications of groups
and group theory by introducing different forms of groups, fields, rings, theorems,
etc. A brief description of some mathematical tools which include functionalities
tests, methods, discrete logarithmic problems, ECC, factoring polynomials, and
baby giant algorithm is also presented in this paper. Solutions for cryptographic
problems inspired by group theory and its applications in this field are also described
in the study.

Keywords Group · Fields · Schnorr group · Lagrange’s theorem · Bilinear
mapping · Functionalities test · Discrete logarithm problem in subgroup of
Z∗

pDiscrete logarithmic problem · Sieve method

1 Introduction

Group Theory, in science and conceptual variable-based math, contemplates the
existence of the arithmetical constructions that are denoted as Groups. The idea
of a gathering is fundamental to digest polynomial math: other notable logarithmic
constructions. Examples of such arithmetic constructs include the existence of rings,
fields, and vector spaces. These constructs can theoretically all be viewed as forms
of Groups. However, their nature differs at the point that they are invested with
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extra activities and aphorisms. Groups repeat all through science, and the strategies
for Group Theory have impacted numerous pieces of variable-based math. Straight
mathematical Groups and Lie bunches are two parts of gathering hypothesis that
have encountered propel and have become branches of knowledge in their own right.

If need be, we can take examples of different physical frameworks that exist in the
natural physical world. Examples of such structures would include precious stones,
the hydrogen particles, and such novelties. They might be displayed coincidentally
by balance Groups. Hence as a result, Group Theory can be said to have enormous
impacts on many paths, and the firmly related portrayal hypothesis has been proven
to have numerous significant impacts in generating advancements for many areas.
Such areas include material science, theoretical physics, and many such areas of
science. The gathering hypothesis is likewise key to open key cryptography.

Group-based cryptography can be introduced as a method for the utilization of
groups to construct various cryptographic sequences and primitives. A group in
cryptographic context is defined as a very general algebraic structure. It is also seen
that most cryptographic algorithms and plans make use of groups in some way or the
other. If we take a particular cryptographic method as example, Diffie–Hellman key
exchange makes use of finite cyclic groups in its key exchange method and proves
as an excellent example for the benefit groups bring to cryptographic concepts.
In reality, the term group-based cryptography has found its existence mostly in
reference to cryptographic protocols that make use of infinite non-abelian groups
in their working methodology such as a braid group.

In the course of this chapter, Section 2 talks about the Group Theory, its
properties, and examples followed with Sect. 2.1 which presents Abelian group,
Sect. 2.2 briefs the Lagrange’s Theorem, Sect. 2.3 shows the Schnorr group
with its properties in cryptosystem, Sect. 2.4 briefs the finite field, and Sect. 2.5
states bilinear mapping; Section 3 discusses Functionalities (Predicate Encryption,
Equality test, Inequality Test, Inner Product Evaluation) and other methods; Section
4 states the roles of group theory in cryptosystem; and finally the whole chapter is
concluded in Sect. 5 with the future scope.

2 Group Theory

The term group was first coined by Galois during 1830s to define sets function on
finite sets that could be grouped together to form a closed set [1]. According to
the modern mathematics groups, the non-empty set lets “G” conjointly with some
operation holds two elements of G (say a and b) and when integrate them together
they generate element, i.e., third element f such that f = a*b, where * : G × G → G
is a binary operation define on G as (a, b) �→ a * b, ∀ a, b ∈ G [2].
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2.1 Group Axiom

1. Identity of elements: There exists an element “e” in G where e ∈ G holds
a * e = e * a = a ∀ a ∈ G, where “e” is considered as an identity element. In
arithmetic, an identity component, or neutral component, is an uncommon kind
of component of a set that is mainly impactful for a binary procedure on that set,
which leaves any component of the set unaltered when joined with it.

2. Associativity of elements: for any element e, f, g ∈ G, (e * f) * g = e * (f * g). The
associative property expresses that you can perform addition or multiplication
on elements of a set, paying little mind to how the numbers are assembled or
grouped. By “assembled,” we signify “how you use the parenthesis” that signifies
the step-by-step progress of the operation. At the end of the day, on the off-chance
that you are adding or multiplying, it does not make a difference where you put
the bracket.

3. Inverse of element: for any e ∈ G, there exists an element f ∈ G, thus
e*f = f*e = a, where “a” is considered as an identity element. Element “a” also
belongs to G. In the event that we consider a as any possible integer, at that point
0 + a = a + 0 = a. Zero is known as the identity element or neutral element of
addition operation in light of the fact that adding it to any integer returns back
the same integer. For each a, it should definitely contain an integer b with the end
aim that b + a = a + b = 0. The integer b is known as the inverse element of the
integer a and is signified with −a.

4. Closure of elements: for any element such as e, f ∈ G, the resultant of e*f also
belongs to G. The Closure Property expresses that when you play out an activity
(for example, addition, multiplication, and so on.) on any two elements in a set,
the consequent result of the calculation is another element in a similar set. The
fourth axiom, i.e., “closure,” is put at the fourth place for prominence. If group
constructions contain I as a subset of G group, with same operation like G, these
types of cases must include the closure check: for certain element x, y in I, x*y
is a component of group G but may or may not belongs to I.

2.2 Illustrations

The groups can be specified by defining the “set” along with the operations of group.
The groups are illustrated by following examples:

1. “Z” (Integers set) contains addition as group operation
2. R*(A set of all real numbers whereR ˆ is not − zero), with multiplication as

group operation
3. Zn (A set of Integers: 1, 2 . . . ..., n-1), through addition modulo n as group

operation.
4. Z∗

n (set of integers where {1≤ a≤ n− 1 : GCD(a, n)= 1}, multiplication modulo
n as group operation
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5. Sn(set of bijective functions [n] → [n] where [n] = {1, 2, . . . . . . , n}) with the
function composition as group operation.

2.3 Properties of Group

Groups contain some basic properties and few terms which illustrate groups and
related elements. Associativity condition of elements shows the dropping of the
parentheses completely and making the product of “n” elements of group G such
as x1 *x2 * x3 . . . xn. Since the arrangement of parenthesis does not matter. If the
operation is clear, the product can be written without operator *, i.e., x1 x2 x3 . . .

xn. Although what matters most is the “order” of elements, whereas normally it is
not that ef = fe for all e, f ∈ G. for any e, f in G where ef = fe is termed as abelian
group. The abelian groups are the commutative groups in a group theory.

2.3.1 Abelian Group

Groups can be categorized as commutative and non-commutative, and the com-
mutative groups are also known as abelian groups. In abelian groups, the law of
composition is commutative such as for all e, f ∈ G satisfies the property, i.e.,
e*f = f*e. In the formal definition of abelian group set G and operation o are
combined together, i.e., G x G → G. Two elements of set G are taken by operation
and returns element of G which satisfies the certain properties or axioms as group
[3]. The commutative axiom of Abelian group is stated as follow:

Commutativity Axiom: ∀ e, f ∈ G holds relation e ◦ f = f ◦ e. In math, the
associative and commutative properties are designed to be laws that are applied
to addition and multiplication operations that consistently exist. The associative
property expresses that in practice you can re-bunch numbers and perform the
operation to find that you will find a similar solution. The commutative property
expresses similar view point that you can move numbers around to change the order
of the operations taking place on the numbers and still show up at a similar answer.

Examples

• The most common example of abelian groups is cyclic group. These groups are
created by single element, and a finite cyclic group is isomorphic to Zn, for some
positive integer n. The generators use the successive implementation of law of
groups.

• The generator creates a cycle among the various elements of the group. For
example, the generator g with powers of set of integers Z6 are {g0, g1, g2, g3,
g4} = {g0, g1, g2, g3}. So it makes element {g0, g1, g2, g3, g4} since gx gy = gy



2 Impact of Group Theory in Cryptosystem 23

gx = gx + y are abelian groups. All cyclic groups are abelian, but not all abelian
groups are cyclic [4].

• Another example of abelian groups is Rings, according to their additive oper-
ations. An abelian group can be formed by units of rings with respect to their
multiplicative operation. For eg: a set of integers modulo n is Zn = {0, 1. ..
n − 1} and forms an Abelian group.

Remarks: In groups if two objects contain the same structure, they are termed
as isomorphic. An isomorphism φ: G → H amid dual sets GG and HH by group
operation mapping ∗H and ∗G. This mapping must also satisfy the two conditions
such as � is a bijection and ∀ e, f ∈ G, holds φ(x*Gy) = φ(x)*Hφ(y). Two groups
such as group G and H are isomorphic if they contain isomorphism between them,
i.e., G∼=H are isomorphic. Each group which is cyclic of order m can be isomorphic
to (Zn, +). If |G| is considered prime, then group G must be cyclic and ∀ g ∈ G\{1}
remain generators.

2.3.2 Lagrange’s Theorem

The Lagrange’s theorem is an extension of Euler’s theorem which can be dealt with
the power of integers, i.e., modulo positive integers. The Euler’s concept can be
used as an application in RSA cryptosystem for the generation of random number
generators. Euler’s theorem defines that for positive integer n, let x be some integer
which is relatively prime to n, then xϕ(n) = 1 mod n [5].

• ∀ G group, G itself and a is an identity element of G. Let some element g ∈ G
and also take all powers of element g. This is defined as a subgroup generated by
g and represented by: <g > = { . . . g-3, g-2, g-1, a, g1, g2, g3 . . . }.

• The order of element g can be defined for the smallest positive n for which gn = a,
o(g) = n. If G contains subgroup H and g ∈ G, then the set gH = {gh: h ∈ H} is
referred as left Coset of H in G. The range of function φg is H → G, φg(H) = g
of coset gH.

According to Lagrange’s theorem when H is a subgroup of G and group G is a
finite group, then |H| divides |G|. When G is a finite group and g ∈ G, then o(g) � � G�

and g|G| = a ∀ g ∈ G [6].

2.3.3 Schnorr Group

Claus P. Schnorr initially proposed the idea of the group that was later known as
Schnorr group. Its composition was designed as such that a big prime order Z∗

p

subgroup of Z∗
p was depicted as the Schnorr Group. The group was essentially the

multiplicative group that consists of integers modulo p that acts for a random prime
element p. If a group of such nature has to be generated, generate the elements p, q,
r in such a manner that they form the relation p = qr. + 1.
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Inputting the elements p, q as prime elements is the next step. The next step is to
choose any element h that originates in the range of 1 < h < p until that we find a
suitable element that satisfies the relationship given below:

hr �≡ 1 (modp)

This relationship value is reached subsequently

g = hr modp

It is a representation of generator of a subgroup of Z∗
p of order q.

In many depictions of such applications such as Schnorr signatures and DSA,
typically element p is taken as the chosen value. The value of the element p has
to be big enough that it is able to resist index calculus. It is also ensured that it
combats the various related methods that are available for solving the discrete log
problem. These discrete log problems all lie in the range of 1024–3072 bits. On the
other hand, the q is also large enough that it is able to resist the birthday attack.
This attack was made to work on discrete log problems. This attack can work in any
group whose range might be between 160 and 256 bits.

The Schnorr group in their essence was devised to be a group of prime order.
It contains none of the non-trivial proper subgroups which help in thwarting the
confinement attacks. These confinement attacks may take place due to the presence
of small subgroups. If there are to be implementations of the various protocols that
may employ the use of Schnorr groups, it is necessary that it must also state and
verify clearly where it is deemed appropriate that integer’s elements provided by
other groups are in truth the elements that consist the Schnorr group. It is said that x
can be said to be the member of the group, in the circumstances that it satisfies the
relation 0 < x < p and xq ≡ 1 (mod p). The other elements that pop up as members of
the group can be determined to be the generator of the group, except if the element
1 is chosen [7].

2.3.4 Finite Field

When seen from the perspective in arithmetic, a finite field or Galois field is one of
the types of a field. This variation of field is for the most part included a set number
of segments. All things considered with some other type of a field, the exercises of
increase; expansion, deduction, and partition are portrayed by their capacities and
fulfill particular fundamental rules on finite field. The utmost notable occurrences
of finite fields remain specified through the entire numbers mod p, while p stands
as prime number. Limited fields are fundamental in different zones of Mathematics
and programming building, including number theory, Algebraic geometry, Galois
speculation, finite geometry, cryptography, and coding theory [8].
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2.4 Properties of Finite Field

A finite field is a limited set that acts as a field; this recommends duplication,
advancement, end, and division (aside from division by zero) are portrayed and
fulfill the measures of number rearranging known as the field articulations. The 1
measure of parts of a determinate field is termed as one order q, a product of the
time and its size. A Finite field of order q occurs if the order q stays a prime power
pk (somewhere p remains a prime number besides a positive whole number k).
Now within a field of requesting pk, including p duplicates of any part dependably
acknowledges zero, i.e., the idea is p field.

On the off chance that each field of sales q is isomorphic. Furthermore, a field
cannot contain two grouped Finite subfields with practically identical sales. One
may thusly see each Finite field with an equivalent sale, and they are unambiguously
suggested, Fq or GF(q), where the letters GF connote the “Galois field.” In sales
q finite field, the polynomial Xq − X takes altogether q fragments as roots of
the Finite field. The non-zero portions of a Finite field structure a multiplicative
social event. This get-together remains cyclic, thus every non-zero sections could
be passed on as forces of a solitary portion called an unpleasant fragment of the
field. (With everything considered, there are several harsh fragments designed for a
certain field.)

The least inconvenient instances of Finite fields are the fields of prime demand-
ing: for each prime number p, the prime field of sales p, showed GF(p), Z/pZ, or Fp,
might be made as the whole numbers modulo p. The fragments of the prime field
of sales p might be tended to be numbers in the range 0, ..., p − 1. The total, the
separation, and the thing are the rest of the division by p of the deferred outcome
of the relating whole number activity. The multiplicative in opposite of a section
might be dealt with by utilizing the exhaustive Euclidean calculation (see Extended
Euclidean figuring § Modular whole numbers).

Dismissal F is a Finite field. For any part x in F and any number n, infers by n
x the whole of n duplicates of x. The least positive n with a definitive target that n
1 = 0 is the trademark p of the field. This awards portraying the development of a
section k of GF(p) by a fragment x of F by picking a whole number expert for k.
This extension makes F into a GF(p)-vector space. It follows that the measure of
sections of F is pn for some number n. The character [27]

(x + y)p = xp + yp

(now and then called the first-year recruit’s fantasy) is valid in a field of trademark
p. This follows from the binomial hypothesis, as every binomial coefficient of the
development of (x + y)p, except for the first and the last, is numerous of p. By
Fermat’s little hypothesis, if p is a prime number and x is in the field GF(p) at that
point xp = x. This suggests the equity [27]
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Xp − X =
∏

a∈GF(p)

(X − a)

for polynomials over GF(p). All the more, by and large, every component in GF(pn)
fulfills the polynomial condition xpn − x=0. Some Finite enlargement of a Finite
field remains separable and fundamental. That is, if E remains as Finite field and
F remains a subfield of E, by then E is obtained from F by adjoining a singular
part whose irrelevant polynomial is distinct. To use a language, Finite fields are
extraordinary.

An undeniably expansive arithmetical arrangement that satiates the different
maxims of a field, anyway whose increase is not requisite to be commutative, is
known as a division ring (or on occasion incline field). By Wedderburn’s little
theory, any Finite division ring is commutative and from now on is a Finite field.

2.5 Bilinear Mapping

In arithmetic, a bilinear Map is a capacity consolidating modules of binary vector
places to produce a component of a third vector place and is straight in its each of
one contention. Grid augmentation is a model. Its main purpose is the combination
of elements of two vector spaces. This combination is done to subsequently obtain
an element of the third vector space. The entire function strives to be linear in
all of its arguments [9]. One of the main examples of this function is the Matrix
Multiplication Method. A mapping technique considers as a bilinear map that deals
with two factors. If you have a straight Map L which is used to map a X vector space
along with one more space Y at that point you can compose, [28].

L(au→ + bv)→ = aL(u)→ + bL(v)→

Using a bilinear Map, one’s mapping of a vector space’s cartesian results to
certain further vector space. Thus let B: X × Y → Z stand as bilinear map. Then one
can write, B(au→ + bv,→cs→ + dt)→ = acB(u,→ s)→ + adB(u,→ s)→ + bcB(v,→
s)→+ bdB(v,→ t)→, [28].

A basic case of this type of a Map is the mapping f : R × R → R : (x, y) → x · y.
Where we believe that genuine numbers to be a vector space over the genuine e
field. Another case of such a mapping is the internal item (when it is confined to just
have genuine qualities). If freely observed, a bilinear Map fulfills [28]:
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B (x + y, z) = B (x, z) + B (y, z)
(
added substance in the primary"organize"

)
,

B (x, y + z) = B (x, y) + B (x, z)
(
added substance in the second"organize"

)
,

B (cx, y) = cB (x, y) = B (x, cy)
(
jelly scaling in each"arrange"

)
.

Consider B increase of genuine numbers for instance : B (a, b) = a · b
B (x + y, z) = (x + y) · z = x · z + y · z = B (x, z) + B (y, z)
B (x, y + z) = x · (y + z) = x · y + x · z = B (x, y) + B (x, z) .

B (cx, z) = (cx) · z = c · (xz) = x · (cz) = B (x, cz)

3 Mathematical Tools

3.1 Functionalities (Equality Test, Predicate Encryption,
Inequality Test, Inner Product Evaluation) and Other
Methods

Functional Encryption techniques are designed to confirm whether the created
schemes are real in existent applications. Functional Encryptions focus on practical
functionalities. Practical Functionality Testing Methods are often used for Product
Evaluation. Techniques available for these evaluations include Predicate Encryption,
Inequality Test, Equality test, and Inner Product Evaluation.

One of the new paradigms for public key encryption is Predicate Encryption.
This method involves a process that generalizes identity-based encryption. In this
process, the secret keys show a direct correspondence to predicates. On the other
hand, cipher texts display their association with attributes. This can be better
understood using a certain example:

Secret Key (SKf) directly corresponds to predicate f. It is used to decrypt a
ciphertext associated with attribute I. This will be successful only if f(I) = 1.

To guarantee the built plans are down to earth in genuine applications, we
center around useful encryption for common sense functionalities, for example,
correspondence tests, inequality tests, and inward item assessment, which are the
significant functionalities that can be applied in security safeguarded information
search and protection saved information sharing. Decisively, equality tests’ practical
encryption and tests of inequality can be functional in accessible encryption, while
296 the utilitarian encryption intended for inward item assessment can be applied
toward 1 accomplishes leveled information sharing. These utilizations of practical
encryption are extremely valuable and basic in distributed computing security [10–
12].

3.1.1 Equality Test

Functional Encryption used for Equality Tests (FE-ET) exists as a subcategory of
Functional Encryption using the usefulness displayed as follows [29]:
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f (k ∈ K; x ∈ X) = 1 if k = x;Otherwise f (k ∈ K; x ∈ X) = 0

Here we assume K to be a function key space, X represents the message space, k
represents function key, and x represents a message.

3.1.2 Inequality Test

When in doubt, the inequality test alludes to an association that expresses that
two parts are not comparable. Conclusively, it is progressively noteworthy if the
segments are in an orchestrated define with the objective that they can be taken a
gander at. Disregard S an organized set with a hard and fast solicitation ≤ and a; b
2 S. What is more, we in like manner describe a > b if b < an, and a ≥ b if b ≤ a.

3.1.3 Inner Product Evaluation

Utilitarian Encryption used for Interior Products are clarified through the accom-
panying model. Let K = X = V be a similar vector space. Utilitarian Encryption
intended for Inner Products (FE-IP) stands as a subclass of FE by the usefulness
[29].

f
(−→

k ∈ V,
−→
x ∈ V

)
=
〈−→
k ,

−→
x
〉
= −→

k · −→
x .

3.2 Wiener Theorem

Paley–Wiener hypothesis is any hypothesis that exists in mathematics. The main
focus of the hypothesis is that it identifies with rot properties of capacity or
dissemination at vastness with the analyticity of its Fourier change. The old-style
Paley–Wiener hypotheses utilize the holomorphic Fourier change on classes of
square-integral capacities bolstered on the genuine line. Officially, the thought is
to take the fundamental characterizing the (converse) Fourier change [13].

3.3 Primality Test | Set 1 (Introduction and School Method)

Check if the number is prime or not when provided a positive integer. A natural
number that is greater than 1 and one which has no positive divisors other than 1
and itself is classified as a prime number [14].

Earliest examples of prime number series are {2, 3, 5 . . . }.
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3.3.1 School Method

A straightforward arrangement is to emphasize through all numbers from 2 to n-1
and for each number check on the off chance that it isolates n. If we locate any
number that partitions, we return bogus.

3.3.2 Fermat’s Strategy

Fermat’s Little Theorem is the basis of this strategy. This strategy is a probabilistic
technique. The Fermat primality test is classified as a probabilistic test which
decides if a number is likely to be a prime number.

3.3.3 Fermat’s Little Theorem

In the event that a and n is co-prime number, at that point for each a, 1 < a < n-1.
While assuming a and n are co-prime, the following formula is generated [30]:

a ≡ 1 (mod n)OR a%n = 1

Fermat’s little hypothesis expresses that if p is prime and ‘a*n’ is not separable
by p, at that point [30].

ap−1 ≡ 1 (modp)

3.3.4 Miller-Rabin Method

The Miller–Rabin primality test or Rabin–Miller primality test is a primality test. It
is a way of figuring that chooses if a given number is prime or not. In its essence, it
is similar to the Fermat primality test and the Solovay–Strassen primality test.

This procedure is a probabilistic method (Like Fermat); anyway, it generally
preferred over Fermat’s methodology. It returns false in the case n is composite
and returns legitimate if n It is likely to prime. k is an information parameter that
chooses the exactness level. A higher estimation of k shows more precision.

3.3.5 The Solovay–Strassen Primality Test

Robert M. Solovay and Volker Strassen created the Solovay–Strassen primality
test. It is well known as a probabilistic test that decides whether a number is a
prime or most likely composite. Baillie-PSW primality test and the Miller–Rabin
primality test have taken over its popularity nowadays, but it is still valued as an
important mathematical tool. However, it still has incredible verifiable significance
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in indicating the down to earth attainability of the RSA cryptosystem. The Solovay–
Strassen test was found to be a subset of the Euler–Jacobi pseudoprime test. When
considering any prime number p and a whole number a, Euler demonstrated that
[31],

a(p−1)/2 ≡
(

a

p

)
(modp)

3.4 Discrete Logarithm Problem in Subgroup of Z∗
p

Discrete logarithmic (DL) tends to be connected through the multiplicative cyclic
set. On the off chance that “g” says some generator multiplicative set G, around
then every component “e” in set G composed such as gx used for certain x. Discrete
logarithmic problem (DLP) contains three most basic parts, for example, a gathering
or set G, a component “e” and a generator “g” to decide the base “g” discrete
logarithm of a component “e” in the G set. For example, on the off chance that a set
Z∗
6 with generator 3, then the discrete logarithm of 1 is 3. 63 ≡ 0 mod 6 scheming of

the discrete logarithm is not always a monotonous job [15]. It hinges on the group
arrangement. Z∗

6 contributes an improved combination of gatherings planned for
discrete logarithm where p is considered as a prime number. The computation of the
backward of logarithmic worth is exceptionally extreme. A framework takes a stab
at every type until the condition matches. An issue in finding discrete logarithms
be dependent upon the hardness of gatherings, e.g., a general selection of sets
intended for discrete logarithm grounded crypto-frameworks stands Zp

* in which
“p” remains as a prime number. Though, if p − 1 can be considered as a result
of little prime numbers, at that point the Pohlig–Hellman calculation is used to
determine the discrete logarithm issue capably in this gathering. Because of this
explanation, p should be a protected prime while utilizing Zp

* such as the base
of discrete logarithm manufactured crypto-frameworks. A safe prime number is a
number that matches 2q+ 1 wherever q remains as a big prime number. It infers that
p should be enormous (as a base 1024-piece) to make the safe crypto-frameworks
[16].

3.5 Baby-Step Giant-Step Algorithm

Baby-Step Giant-Step Algorithm is an important tool in group theory. In the baby-
step giant, the progression is a trade-off count for enlisting the discrete logarithm
or solicitation of a part in a restricted abelian gathering. In many systems, the most
1 usually used cryptography systems rely on the assumption made using the basis
of a discrete log. The assumption is that the discrete log is exceptionally difficult
to process; the more inconvenient it is, the more noteworthy security it gives a data
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move. One way to deal with growing the difficulty of the discrete log issue is to
assemble the cryptosystem for a greater social occasion [17].

The computation relies upon a space-time exchange off. It is a really direct
difference in primer increase, an honest method for finding discrete logarithms.
Given a cyclic social event G of solicitation n, a generator α of the get-together, and
a get-together segment β, the issue is to find a number x with the ultimate objective
that [32].

αx = β.

The baby-step giant-step algorithm is based on rewriting x :
x = im + j

m = [√n
]

0 ≤ i < m

0 ≤ j < m

Therefore,we have :
αx = β

αim+j = β

αj = β
(
α−m

)i

The calculation pre-computes aj for a few estimations of j. At that point, it fixes
an m and attempts an estimation of I in the right-hand side of the coinciding above,
in the way of preliminary duplication. It tests to check whether the compatibility is
fulfilled for any estimation of j utilizing the pre-computed estimations of aj.

3.6 Functional Field Sieve

In science, the functional field sieve was presented in 1994 as an effective method
for separating discrete logarithms over limited fields of the little trademark. Sieving
for focuses at which a polynomial-esteemed capacity is distinguishable by a given
polynomial is not significantly more troublesome than sieving over the whole
numbers—the fundamental structure is genuinely comparative, and Gray code gives
a helpful method to step through products of a given polynomial proficiently [18].

3.7 Elliptic Curve Factorization

Elliptic Curve Factorization technique stands as the fastest factorization technique.
It is also termed as Lenstra elliptic curve process among various professionals. This
method is used for the factorization of integers, which employs the elliptic curve.
ECM designed for the general-purpose factoring, in which it ranks the third fastest
factoring method. ECM is found to be the best appropriate method for calculating
small factors. Recently, it is considered as the best algorithm of divisors of decimal
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digits ranging from 10 to 40 digits, as per its smallest factor p size is dominating on
the running time rather than the number n size which can be factored. This method
is capable in deleting the minor factors commencing a group of integers having
multiple factors.

This process is on its essential enhancement of the traditional p-1 algorithm.
This algorithm determines p such as p-1 stands b-power smooth in lieu of smaller
values of b. For every “e,” several of p-1 besides some a comparatively prime to
“p,” through Fermat’s little theorem one needs ae ≡ 1(modp). Then gcd (ae − 1, n)
exists as possible factors of n. The p-1 algorithm has failed if p-1 contains large
factors, like the case of numbers having strong primes, e.g., ECM becomes about
this problem through seeing the group of the arbitrary elliptic curve above the Zp
finite field somewhat than allowing for the Zp multiplicative group of order p-1 each
time [19].

3.8 Random Square Factoring

Dixon’s factorization strategy (additionally Dixon’s random squares factoring or
Dixon’s calculation) is a universally useful whole number factorization calculation
in the number theory. It is the prototypical factor base strategy. Different from
other factor base strategies, its run-opportunity bound accompanies a thorough
verification that does not depend on guesses about the perfection properties of the
qualities taken by polynomial [20].

Dixon’s technique depends on finding a coinciding match of squares modulo to
the whole number N which is planned to factorize. Fermat’s factorization strategy
finds such a compatibility by choosing arbitrary or pseudo-irregular x esteems and
trusting that the number x2 mod N is an ideal square (in the whole numbers).

3.9 Quadratic Sieve Method

The quadratic sieve algorithm (QS) is whole number factorization estimation and,
in a little while, another speediest procedure identified (later the all-purpose number
field sifter). It is as of recently the quickest for whole numbers below 100 decimal
numbers or else close, and is generally less complex than field sifter. This is a
broadly accommodating factorization tally, recommending that this one’s successive
time relies absolutely over the magnitude of the whole number to be figured, also
not on excellent configuration or possessions. The calculation tries to established
a concordance of squares modulo n (whole number remains factorized), which
routinely prompts a factorization of n. The figuring works in two stages: the
information gathering stage, where it assembles data that might incite a closeness of
squares; and the information preparing to arrange, where it puts all the information
it has amassed into a structure and handles it to acquire a consistency of squares
[21].
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3.10 Factoring Polynomials over a Finite Field

In mathematics and computer algebra, the factorization of a polynomial over a finite
field comprises of breaking down it into a result of final elements. This disintegration
is hypothetically conceivable and is novel for polynomials with coefficients in any
field, but instead solid limitations on the field of the coefficients are expected to
permit the calculation of the factorization by methods for a calculation. By and
by, calculations have been planned distinctly for polynomials with coefficients in
a limited field, in the field of reasons or in a limitedly created field expansion of
one of them. All factorization calculations, including the instance of multivariate
polynomials over the level-headed numbers, diminish the issue to this case. It is
additionally utilized for different uses of limited fields, for example, coding hypoth-
esis (cyclic excess codes and BCH codes), cryptography (open key cryptography by
the methods for elliptic bends), and computational number hypothesis. The decrease
in the factorization of multivariate polynomials to that of univariate polynomials
does not have any particularity [22].

3.11 Irreducible Polynomials over a Finite Field Zp

Let Z be considered as finite field. As per general fields, a non-constant “f”
polynomial in finite field Z[x] is supposed to be irreducible above finite field Z if this
one is not the artifact of two polynomials of some positive degree. This is followed in
finite field computation of non-prime degree, so it required producing an irreducible
polynomial. Irreducible polynomials over Zp[x] used to bring the mathematics in
the field extension of Zp. Complexity, and coding of cryptography theories use the
computation of such extensions. To determine the irreducible polynomials of any
degree above Zp, there exists a random polynomial algorithm. Non-prime order built
finite fields is constructed by using irreducible polynomial [23].

4 Role of Group Theory in Cryptosystem

The heart of crypto encryption system RSA (Rivest, Shamir, Adleman), Diffie–
Hellman key exchange, and other schemes is algebraic structures. The algebraic
structures and statical properties of group theory are used in cryptography. The
cryptography is a concept of transmitting secret data securely, and for this purpose
security experts use algebraic structures. These algebraic structures help to make the
cryptosystem unbreakable by using structures and properties of groups [24]. Some
of the cryptographic examples of group theory are mentioned in the following.
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4.1 Use of Group Theory in RSA-Based Cryptosystem

(a) The encryption system RSA uses the unbreakable secret key for encryption and
decryption. For the generation of key two properties are used such as (a) take
two discrete prime sums q and p and (b) some integer value e which is rather
prime toward (q-1) and (p-1). respectively [25]. The p and q prime numbers
through some “e” integer which satisfies gcd(e, (q − 1)(p − 1)) = 1. Then
calculate some d integer which satisfies e × d = 1 mod (p − 1)(q − 1). For
encryption we calculate: N = Memod n and to decrypt N calculate: M = Nd

mod n.
(b) RSA uses the base of Lagrange’s theorem, i.e., the Euler’s theorem of group

theory for the theoretical implementation.
(c) The Z*

n group contain elements ϕ(n), and when n = pq which is considered as a
product of prime number p and q, then Z*

pq contain(p − 1)(q − 1) elements. If
group G = Z*

n, n = pq, then we can hold, |G| = ϕ(n) = (q-1) (p-1) and having
e integer which satisfies gcd(e, (q-1) (p-1)) = 1, then some d integer satisfies
de = 1 mod ϕ(n). So we can say that in RSA, for some message M, we hold
(Me)d mod n= 1. We can also claim that messageM cannot be divisible through
p or q since we get Mϕ(n) = 1 from the corollary of Lagrange’s theorem. The
original message during decryption is recovered by (Me)d = M.

4.2 Schnorr Group in Log-Based Cryptosystem

Schnorr groups of group theory depict their usefulness in various types of discrete
log-based cryptosystems. These cryptosystems include many different kinds of
derivatives such as Schnorr signatures and DSA [26].

4.3 Elliptic Curve and Bilinear Mapping-Based Cryptosystem

(a) The basis of DHP, RSA, elliptic curve, and bilinear curves is finite fields,
and baby-step giant algorithm is used to solve the problems such as discrete
logarithmic problem of elliptic curves and MIM attack in RSA.

(b) Bilinear mapping can be used in pairing-based cryptography scheme which is
specifically designed to solve the discrete logarithmic problem and MOV attack
in elliptic curve cryptography.

(c) The bilinear-based cryptosystem is used in many situations:

• IBE-based encryption (identity-based encryption)—hierarchal IBE, ID-
based ring signatures, ID-based blind signatures, ID-based signcryption,
ID-based hashes, etc.
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• Signature scheme—short signatures (half of original signatures), multi-
signatures, aggregate-signatures, blind signatures, ring signatures, and
authentication tree-based signatures, etc.

(d) The Diffie–Hellman key agreement variants can be constructed by using group
theory. This scheme used cyclic subgroup of finite groups and also possesses
cyclic subgroups with discrete logarithmic problem which is so hard [26].

(e) The key exchange agreements and public key cryptosystems are the main fields
where group theory can be used. Some algebraic and statistical properties of
group can also be satisfied by block ciphers used in AES and DES.

5 Conclusions

Group theory has long helped us with the activities that involve the usage of
polynomial math and other notable logarithmic constructions. The group theory and
its various properties have always helped in promoting the efficiency of solving
various variables-based mathematics. The variants formed out of group theory such
as Abelian group, Schnorr group, and Lagrange’s theorem all have made their own
impacts and contributions in various fields. Currently group theory shows enormous
promises in the field of cryptosystems. Its contributions have been proven through
various practical applications such as the RSA, Diffie–Hellman Key Exchange, IBE
schemes, and signature schemes. Based on further advancements, it is shown that
there are a lot of possibilities for application of group theory in cryptosystems in
future.
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Chapter 3
XTR Algorithm: Efficient and Compact
Subgroup Trace Representation

Pinkimani Goswami, Madan Mohan Singh, and Dimpi Biswas

Abstract In Crypto 2000, Lenstra et al. introduced the concept of XTR. The term
XTR is used for efficient and compact subgroup trace representation. The security
of the XTR cryptosystem is based on the discrete logarithm problem (DLP) and
its variants, defined over a subgroup of multiplicative group of a finite field. It is
considered as favorable alternative to RSA and elliptic curve cryptosystem. In this
book chapter, we will thoroughly discuss about the mathematics behind XTR and
its applications in cryptography.

Keywords Cryptography · XTR · ElGamal scheme · Signature scheme · DSA ·
NR scheme · Finite field · Cyclotomic polynomial · Conjugate element · Trace

1 Introduction

Cryptography is a method of storing and transmitting data in such a way that
only those it is intended for can read messages and processes. Symmetric and
asymmetric key cryptography are two main branches of cryptography that provide
confidentiality. One of the main disadvantages of symmetric key cryptosystem is
that before communicating with each other user has to agree on a shared key and
hence requires a prior communication between two parties. This is called the key
distribution problem. In 1976 [1], Diffie et al. proposed the idea of a key exchange
protocol called Diffie-Hellman (DH) key exchange protocol and hence introduced a
new branch of cryptography called asymmetric key cryptography.

The DH key exchange protocol is the first practical solution to the key distribu-
tion problem. In the DH scheme, a large prime number p and a generator g of the

P. Goswami (�) · D. Biswas
Department of Mathematics, University of Science & Technology, Meghalaya, India

M. M. Singh
Department of Basic Sciences and Social Sciences, North-Eastern Hill University, Shillong,
Meghalaya, India

© Springer Nature Switzerland AG 2021
K. A. B. Ahmad et al. (eds.), Functional Encryption, EAI/Springer Innovations in
Communication and Computing, https://doi.org/10.1007/978-3-030-60890-3_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60890-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-60890-3_3


38 P. Goswami et al.

multiplicative group GF(p)∗ of a finite field GF(p) are fixed as a system parameter.
If two parties want to share a common secret key, then each of them will generate a
random key x and y, respectively, such that 0 ≤ x, y < p − 1. Each will send gx mod p
and gy mod p to the other party. In this way, they will generate the common secret
key gxy mod p. The scheme will be secured if the size of p is at least 1024 bits such
that p − 1 contains a prime factor of 160 bits. Hence, each party sends 1024 bits to
the other party.

In 1985 [2], ElGamal suggested that a finite extension field GF(pr), r > 0 can be
used instead of prime field GF(p). In 1991 [3], Schnorr proposed a variant of the
DH scheme where a subgroup G of the multiplicative group GF(p)∗ is considered.
The order of G is a prime q, which is considered as a very small compared to p.
This reduces the computational cost of the DH scheme, but the number of bits to
be exchanged between each party remains same. In 1997 [4], Lenstra suggests that
one can generalize the Schnorr scheme by considering any multiplicative subgroup
of prime order of the finite extension field GF(pr), r > 0. In 1999 [5], Brouwer et al.
proposed a variant DH scheme in which the number of bits exchanged is reduced to
one-third of the number of bits required by the DH scheme. However, the security
of both the schemes are the same. It was shown that elements of a subgroup of order
q of GF(p6) can be represented using 2log2(p) if q � (p2 − p + 1). In the same paper,
they generalized the scheme for GF(pr). In 2000 [6], Lenstra et al. improved the
method proposed by Brouwer et al. [5]. This method is called the XTR.

The term XTR represents for Efficient and Compact Subgroup Trace Repre-
sentation (ECSTR) [6]. In XTR, a subgroup of prime order q(say G) of GF(p6)∗

is considered, where q � (p2 − p + 1). This subgroup is called the XTR group
(or XTR subgroup). In this method, an element α of G ⊆ GF(p6)∗ is represented
by their trace Tr(α) over GF(p2). As the arithmetics are computed over GF(p2),
so to represent an element of G needed 2log2p bits. That is, XTR provided a
more compact representation of the element of G. This method achieves the same
communication advantage compared to the method proposed by Brouwer et al. [5],
but with a less computational cost. Note that XTR is not the only one approach
where the elements are represented by their trace; LUC [7] also used the trace
representation of the elements, where the underlying field is GF(p2).

It is proved that the discrete logarithm (DL), Diffie-Hellman (DH), and decisional
Diffie-Hellman (DDH) problem in the XTR group are as secured as the problems are
defined over GF(p6). Therefore, the XTR group can be used in any cryptographic
protocol which is based on DLP and or its variants. It achieves the same security
with traditional DLP-based cryptographic protocol. In the same paper, Lenstra et al.
showed that XTR can be used as an alternative to both RSA [8] and ECC ( [9, 10]).
It is shown that the security of 170-bit XTR is equivalent to the security of 1024-bit
RSA. Also, the key and parameter selection of a XTR cryptosystem is more efficient
than the ECC. Therefore, one can conclude that XTR needed fewer data storage,
computation and communication overhead compared to other cryptosystems with
equivalent security.

The purpose of this chapter is to discuss thoroughly about the mathematics
behind XTR and its applications. After the preliminaries section of the chapter,
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the next section is devoted to describe the mathematics behind XTR. In the same
section, we discuss the algorithms for parameter selection and finding the generator
of a XTR group. The applications of XTR in cryptography are discussed in Sect.
4. Section 5 summarizes the recent development of XTR. The chapter concludes in
Sect. 6.

2 Some Definitions and Results from Finite Field

In this chapter, for a prime p, we denote a finite field of characteristic
p by GF(pr), where r > 0. The cardinality of GF(pr) is pr. Also, the
multiplicative group of GF(pr) is denoted by GF(pr)∗ , whose cardinality is
pr − 1. For t < r, GF(pt) ⊆ GF(pr) is a finite extension. A polynomial
f (X) = anXn + an − 1Xn − 1 + · · · + a1X + a0 ∈ GF(pt)[X] is called an irreducible
polynomial if it has no roots in GF(pt). f (X) is called monic polynomial if an = 1.

Suppose f (X) is a monic irreducible polynomial of degree s = r
t

∈ Z over GF(pt)
and ξ ∈ GF(pr) is a root of f (X), then

GF
(
pr
) ∼= GF

(
pt
)
[ξ ] ∼= GF

(
pt
)
[X]

f (X)

i.e., GF(pr) ∼= {g(X) mod f (X) : g(X) ∈ GF(pt) & deg (g(X)) < s}.
Therefore, to represent the element of GF(pr), it is enough to find the representa-

tion of the element of GF(pt). Again, an element GF(pr) can be expressed as a vector
of length s over GF(pt), where the entries are the coefficient of g(X). Therefore, to
represent an element of GF(pr) needs r log p bits.

Again, if f (X) is a monic irreducible polynomial over GF(pt) and ξ ∈ GF(pr) is a
root of f (X), then ξpi ∈ GF (pr) is a root of f (X), where i = 0, 1, 2, · · · . Therefore,
the minimal polynomial of ξ ∈ GF(pr) over GF(pt)is

m (X, ξ) = (X − ξ)
(
X − ξp

) (
X − ξp2

)
· · ·
(
X − ξpd−1

)
∈ GF

(
pt
)
[X]

where d is the smallest positive integer such that ξpd = ξ . Clearly,degm (X, ξ) ≤ r
t

. The elements ξpi
, for i = 1, 2, · · · , d − 1, are called the conjugate of ξ ∈ GF(pr).

The sum of the conjugate elements of ξ , i.e.
∑d−1

i=0 ξpi
is called trace of ξ over

GF(pt), and it is denoted by Tr(ξ ).
Let m(X, ξ ) = Xd + ad − 1Xd − 1 + · · · + a0. Since m(X, ξ ) ∈ GF(pt)[X], so

ai ∈ GF(pt), i = 0, 1, · · · , d − 1. In particular, ad−1 = −∑d−1
i=0 ξpi ∈ GF

(
pt
)
and

hence Tr(ξ ) ∈ GF(pt).
Note that one can represent an element α ∈ GF(pr) by its minimal polynomial

m(X,α) ∈ GF(pt) too. Here, deg m(X,α) must be r
t
, otherwise α ∈ GF(pk), where

GF(pt) ⊆ GF(pk) ⊆ GF(pr). Hence, this approach also requires r log p bits to
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represent an element of GF(pr). However, in some cases there exist a relationship
between the coefficients of the minimal polynomial, which allows to reduce the
number of coefficients and hence provides a compact representation [11]. This
concept is used in XTR where the elements are represented by its trace.

For the completeness of this section, let us define the following definitions:
Normal Basis [12]: An element ξ ∈ GF(pr) is called a normal element if

the conjugate ξ, ξp, · · · , ξpd−1
is linearly independent over GF(pt). For a normal

element ξ ∈ GF(pr), ξ, ξp, · · · , ξpd−1
from a basis of GF(pr) over GF(pt) and is

called normal basis.
Cyclotomic Polynomial [12]: For any positive integer n, the nth cyclotomic

polynomial, �n(X) = (X − ω1)(X − ω2)· · · (X − ωt), where ω1, ω2, · · · , ωt are

the primitive nth root of unity, i.e., Φn(X) = ∏
1 ≤ k ≤ n

gcd (k, n) = 1

(
X − e

2πi
n

k
)
. It

can also be expressed as Φn(X) = ∏
d|n
(
Xd − 1

)μ( n
d ), where μ

(
n
d

)
is the Mobius

function of n
d
.

Cyclotomic Subgroup [11]: A subgroup of order q of a multiplicative group
GF(pr)∗ over a finite field GF(pr) is called a cyclotomic subgroup if q � �r(p) and
q � r. It is denoted by Gq, p, r.

3 Fundamental of XTR

In this section, we will discuss about the mathematics behind the XTR in detail. We
will also discuss the parameter selection algorithms and the algorithm to generate a
generator of the XTR group. This chapter is based on [4, 6, 13].

3.1 XTR Group

In Crypto 2000 [6], Lenstra et al. introduced the idea of XTR. In XTR, the finite
field GF(p6) and a cyclotomic subgroup Gq, p, 6 are considered, where p ≡ 2 mod 3.
The subgroup Gq, p, 6 is called the XTR group (or XTR subgroup). By definition of
cyclotomic subgroup, q � 6 is a prime number and q � �6(p), i.e., q � p2 − p + 1 and
q > 3. In the remaining part of the chapter, we denote Gq, p, 6 as G. Clearly, G is a
cyclic group and let G = (μ), ord(μ) = q, where μ ∈ GF(p6).

As for any element η ∈ G, the conjugate elements of η are η, ηp2
, and ηp4

and
hence T r (η) = η + ηp2 + ηp4 ∈ GF

(
p2
)
. Moreover, for η1, η2 ∈ GF(p6), and c1,

c2 ∈ GF(p2)

T r (c1η1 + c2η2) = c1T r (η1) + c2T r (η2)
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In particular if η = μn, then

T r
(
μn
) = μn + μnp2 + μnp4

As p2 ≡ p − 1 mod (p2 − p + 1) and p4 ≡ − p mod (p2 − p + 1), so

T r
(
μn
) = μn + μn(p−1) + μ−np

Also, it is easy to verify that μnμn(p − 1) + μnμ−np + μn(p − 1)μ−np = Tr(μn)p.
Again the minimal polynomial of μn ∈ GF(p2) is (X − μn)(X − μn(p − 1))

(X − μ−np), which is equal to X3 − Tr(μn)X2 + Tr(μn)pX − 1 ∈ GF(p2)[X].
Therefore, the minimal polynomial of μn ∈ G can be determined uniquely by
Tr(μn) ∈ GF(p2).

Now, let us define a function G → GF(p2) as μn �→ Tr(μn), n ∈ Z. Then
by the above discussion, the function is well-defined and hence to represent an
element of G needs only 2log2p bits. Clearly the function is not one–one function as
Tr(μn) = Tr(μn(p − 1)) = Tr(μ−np). Also, the function is not group homomorphism.
In order to complete the description of the implementation of the arithmetic of G,
the following two issues need to be discussed.

1. How one can implement arithmetic operation in GF(p2)?
2. How one can translate the arithmetic operation in G to GF(p2) w.r.t. the function

defined above?

3.2 Arithmetic Operation in GF(p2)

For p ≡ 2 mod 3, f (X) = X2 + X + 1 is an irreducible polynomial over GF(p). If
β ∈ GF(p2) is a root of f (X), then

GF
(
p2
) ∼= GF(p) [β] ∼= GF(p) [X]

〈f (X)〉

So, GF(p2) ∼= {a1 + a2β : a1, a2 ∈ GF(p) & β2 + β + 1 = 0}. Since
β2 + β + 1 = 0, so a1 + a2β = a1(−β2 − β) + a2β = (a2 − a1)β + (−a1)β2.
Therefore,

GF
(
p2
) ∼=

{
a1β + a2β

2 : a1, a2 ∈ GF(p)&β2 + β + 1 = 0
}

Note that as p ≡ 2 mod 3 and β3 = 1, so the basis {β, β2} is same with the
normal basis {β, βp}. Therefore, for a1, a2 ∈ GF(p), a1β + a2βp = a1β + a2β2.
An element t ∈ GF(p) is represented as −tβ − tβ2.
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For p ≡ 2 mod 3 and a, b, c ∈ GF(p), where a = a1β + a2β2, b = b1β + b2β2

and c = c1β + c2β2, the following Table 3.1 considered from [6] summarized
the number of multiplications in GF(p) needed for the operation ap, a2, ab, and
ac − bcp.

3.3 Translation of Arithmetic Operation of G to GF(p2)

In this section, we will discuss how the arithmetic operation of G is translated to the
arithmetic operation of GF(p2) w.r.t. the trace representation Tr(μn) ∈ GF(p2) for
μn ∈ G. For this, we first define a polynomial F(λ,X) = X3 − λX2 + λpX − 1 in
GF(p2) for λ ∈ GF(p2) and discuss its properties. For the roots γ 1, γ 2, γ 3 ∈ GF(p6)
of F(λ,X) and n ∈ Z, let us define λn = γ n

1 + γ n
2 + γ n

3 .
Some of the properties of F(λ,X) and its roots are discussed below. These results

are considered from [6].

Lemma 3.3.1 [6] For n, m ∈ Z

(i) λ0 = 3
(ii) λ = λ1
(iii) γ1γ2γ3 = 1
(iv) γ n

1 γ n
2 + γ n

1 γ n
3 + γ n

2 γ n
3 = λ−n

(v) F
(
λ, γ

−p
i

)
= 0, i = 1, 2, 3.

(vi) λ−n = λnp = λ
p
n

(vii) Either all γ i ∈ GF(p2) or ord(γ i) � (p2 − p + 1) and ord(γ i) > 3, ∀ i.
(viii) λn ∈ GF

(
p2
)
.

Lemma 3.3.2 [6] For n, m ∈ Z and i = 1, 2, 3

(i) λn+m = λmλn − λpλm−n + λm−2n
(ii) F

(
λn, γ n

i

) = 0,∀i.

(iii) F(λ,X) is reducible over GF(p2) if λp + 1 ∈ GF(p).

Remark 3.3.3 By using Lemmas 3.3.1 and 3.3.2 and Table 3.1, we can conclude
the following table (see corollary 2.35 of [6]) forgiven λ, λn, λn − 1, and λn + 1 in
GF(p2).

Note that from Lemmas 3.3.1 and 3.3.2, λn is the nth term of a second-
order linear recurrence relation [14], where λ0 = 3, λ1 = λ, λ−1 = λp and
λn + m = λmλn − λpλm − n + λm − 2n.

Now, we will examine whether one can compute λn ∈ GF(p2) for given
λ ∈ GF(p2) or not, and if it is, then what will be the cost to compute it. Detailed
analysis on it is given in [6]. In [6], the authors defined the following notation:

Definition 3.3.4 [6] Let Sn(λ) = (λn − 1, λn, λn + 1) ∈ GF(p2)3.
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Table 3.1 Cost analysis of ap, a2, ab & ac − bcp in GF(p)

Operation Number of multiplications in GF(p)

ap = a2β + a1β2 0
a2 = a2(a2 − 2a1)β + a1(a1 − 2a2)β2 2
ab = (a2b2 − a1b2 − a2b1)β + (a1b1 − a1b2 − a2b1)β2 3
ac − bcp = (c1 (b1 − a2 − b2) + c2 (a2 − a1 + b2)) β

+
(
c1 (a1 − a2 + b1)

+c2 (b2 − a1 − b1) β2
) 4

For n ∈ Z and λ ∈ GF(p2), one can compute Sn(λ) by using the following
algorithm:

Algorithm 3.3.5 [6] For given λ ∈ GF(p) and n ∈ Z, the algorithm computes
Sn(λ) = (λn − 1, λn, λn + 1) as follows:

1. If n = 0, then by (i), (ii), and (v) of Lemma 3.3.1, S0(λ) = (λ−1, λ0, λ1) = (λp, 3,
λ).

2. If n = 1, then by (i), (ii), and (viii) of Lemma 3.3.1, S1(λ) = (λ0, λ1, λ2) =
(3, λ, λ2 − 2λp).

3. If n = 2, then S2(λ) = (λ1, λ2, λ3), which can be computed by using (vii) of
Lemma 3.3.1 and S1(λ).

4. For n ≥ 3, one has to compute the following steps:

(a) Compute m =
{

n−2
2 if n is even

n−1
2 if n is odd

(b) Convert m = (1 mt − 1mt − 2· · · m1m0)2
(c) Set j = 1
(d) Compute S2j + 1(λ) = (λ2j, λ2j + 1, λ2j + 2)
(e) For i = t − 1 ,

Compute S4j + 1(λ) = (λ4j, λ4j + 1, λ4j + 2), if mi = 0
or S4j + 3(λ) = (λ4j + 2, λ4j + 3, λ4j + 4), if mi = 1
Compute j = 2j + mi and go to step (iv).

(f) Repeat step (e) for i = t − 2, · · · , 1, 0.
(g) If j = m, compute S2j+1 (λ) =

{
Sn−1 (λ) if n is even

Sn (λ) if n is odd
.

5. For n < 0, −n ≥ 1. So, apply the algorithm for –n and use (vi) of Lemma 3.3.1.

Now, one can conclude the following statement by using the Algorithm 3.3.5 and
Table 3.2

Theorem 3.3.6 [6] To compute λn for given λ require 8log2(n) multiplication in
GF(p), where λ and λn are defined as above.

By (vii) of Lemma 3.3.1, it is clear that if F(λ,X) is irreducible over GF(p2)
then the roots of F(λ,X) are of the form γ, γ p2

and γ p4
, where γ ∈ GF(p6) and
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Table 3.2 Cost analysis ofλ2n, λn + 2, λ2n − 1, λ2n + 1

Operation Number of multiplications in GF(p)

λ2n = λ2n − 2λp
n 2

λn + 2 = λλn + 1 − λpλn + λn − 1 4
λ2n−1 = λn−1λn − λpλ

p
n + λ

p

n+1 4
λ2n+1 = λn+1λn − λλ

p
n + λ

p

n−1 4

ord(γ ) � (p2 − p + 1) with ord(γ ) > 3. This implies λ = γ + γ p2 + γ p4 = T r (γ ).
As ord(μ) = q > 3 and q � (p2 − p + 1), so λ = Tr(μ) ∈ GF(p2) and for n ∈ Z,
λn = μn + μnp2 + μnp4 = T r (μn) ∈ GF

(
p2
)
. Also, from (ii) of Lemma 3.3.2,

F(Tr(μn),μn) = 0, for n ∈ Z. Moreover,

Sn (T r (μ)) =
(
T r
(
μn−1

)
, T r

(
μn
)
, T r

(
μn+1

))
.

Note that, for given Tr(μ) one can use Algorithm 3.3.5 to compute Sn(Tr(μ)).
Therefore, if p ≡ 2 mod 3, then by the Theorem 3.3.6 one can conclude that for
given Tr(μ), computing Tr(μn) ∈ GF(p2) needs 8log2(n) multiplication in GF(p).
This is three times faster than the traditional exponentiation method for computing
μn from given μ [6]. Thus, in XTR, μn ∈ G is replaced by Tr(μn) ∈ GF(p2) for
n ∈ Z and for given Tr(μ), one can efficiently compute Tr(μn). Hence one can be
able to use this representation efficiently for cryptographic protocols.

In some cryptographic protocol (see Sects. 4.4 & 4.5), it is required to efficiently
compute Tr(μaμbd) for given Tr(μ) ∈ GF(p2), Sd(Tr(μ)) ∈ GF(p2)3 and unknown
d, where a, b ∈ Z. Next, we will discuss an algorithm for computing Tr(μaμbd)
efficiently. We considered the following definition and lemmas from [6, 13].

Definition 3.3.7 [6] For n ∈ Z, let us define two 3 × 3 matrix A(λ) and Mn(λ) over
GF(p2) as follows:

A (λ) =
⎛

⎝
0 0 1
1 0 −λp

0 1 λ

⎞

⎠ and Mn (λ) =
⎛

⎝
λn−2 λn−1 λn

λn−1 λn λn+1

λn λn+1 λn+2

⎞

⎠

Lemma 3.3.8 [6] For n, m ∈ Z,

(i) Sn (λ) = Sm (λ)A(λ)n−m

(ii) Mn (λ) = Mm (λ)A(λ)n−m

Proof: (By induction on n − m)

(i) For n − m = 1, Sn − 1(λ)A(λ) = (λn − 1, λn, λn + 1) = Sn(λ). If the result is
true for n − m = k, then for n − m = k + 1
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Sn−(k+1) (λ)A(λ)k+1 = (λn−k−1, λn−k, λn−k+1) A(λ)k = Sn (λ) .

Hence, by induction on n − m gives the required result.

(ii) For n − m = 1, Mn−1 (λ)A (λ) =
⎛

⎝
λn−2 λn−1 λn

λn−1 λn λn+1

λn λn+1 λn+2

⎞

⎠ = Mn (λ). If the result

is true for n − m = k, then for n − m = k + 1

Mm (λ)A(λ)k+1 = Mn−(k+1) (λ)A(λ)k+1

=
⎛

⎝
λn−k−2 λn−k−1 λn−k

λn−k−1 λn−k λn−k+1

λn−k λn−k+1 λn−k+2

⎞

⎠A(λ)k

= Mn−k (λ)A(λ)k = Mn (λ) .

Hence, by induction on n − m gives the required result.

Corollary 3.3.9 [6] Suppose C(A) denote the second column of a 3 × 3 matrix A.
Then

λn = Sm (λ)C
(
A(λ)n−m

)
.

Proof: Suppose, I3 × 3 be the 3 × 3 identity matrix.

Sm (λ)C
(
A(λ)n−m

) = Sm (λ)A(λ)n−mC (I3×3)

= Sn (λ)

⎛

⎝
0
1
0

⎞

⎠

= λn

Lemma 3.3.10 [6] Suppose �n (or �n(λ)) denote the determinant of Mn (λ).
Then

(i) �0 = λ2p+2 + 18 λp+1 − 4
(
λ3p + λ3

)− 27 ∈ GF(p)

(ii) If
�

0 �= 0 then M0(λ)−1 is equal to

1

�0

⎡

⎢
⎣

2λ2 − 6λp 2λ2p + 3λ − λp+2 λp+1 − 9

2λ2p + 3λ − λp+2
(
λ2 − 2λp

)p+1 − 9
(
2λ2p + 3λ − λp+2

)p

λp+1 − 9
(
2λ2p + 3λ − λp+2

)p (
2λ2 − 6λp

)p

⎤

⎥
⎦

(iii) �0 (T r (μ)) =
(
T r
(
μp+1

)p − T r
(
μp+1

))2 �= 0
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Proof:

(i) Using (i), (ii), (vi) of Lemma 3.3.1 and (i) of Lemma 3.3.2, we get
λ−2 = λ2p − 2λ, λ−1 = λp, λ2 = λ2 − 2λp, which implies

�0 =
∣
∣∣∣∣∣

λ2p − 2λ λp 3
λp 3 λ

3 λ λ2 − 2λp

∣
∣∣∣∣∣

= λ2p+2 + 18 λp+1 − 4
(
λ3p + λ3

)− 27

(ii) Suppose
�

0 �= 0, then M0(λ)−1 exists, and some simple computation gives the
required result.

(iii) Clearly, M0 (T r (μ)) =
⎛

⎝
T r
(
μ−2

)
T r
(
μ−1

)
T r
(
μ0
)

T r
(
μ−1

)
T r
(
μ0
)

T r (μ)

T r (μ) T r (μ) T r
(
μ2
)

⎞

⎠

=
⎛

⎜
⎝

μ−1 μ−p2
μ−p4

1 1 1

μ μp2
μp4

⎞

⎟
⎠

⎛

⎜
⎝

μ−1 μ−p2
μ−p4

1 1 1

μ μp2
μp4

⎞

⎟
⎠

T

where T denotes transpose. As the determinant of

⎛

⎜
⎝

μ−1 μ−p2
μ−p4

1 1 1

μ μp2
μp4

⎞

⎟
⎠ is

Tr(μp + 1)p − Tr(μp + 1), so
�

0(Tr(μ)) = (Tr(μp + 1)p − Tr(μp + 1))2.

Remark 3.3.11 As
�

0(Tr(μ)) �= 0, so M0(Tr(μ))−1 exist. Therefore, one can
compute A(Tr(μ))n = M0(Tr(μ))−1Mn(Tr(μ)) by using (ii) of Lemma 3.3.8 for
λ = Tr(μ) and m = 0. The following lemma state that computing A(Tr(μ))n in
GF(p2) requires a small constant number of operations.

Lemma 3.3.12 [6]: For given Tr(μ) and Sn(Tr(μ)), computing A(Tr(μ))n needs a
small constant number of operations in GF(p2).

Corollary 3.3.13 [6]

C
(
A(T r (μ))n

) = M0(T r (μ))−1(Sn (T r (μ)))T .

Proof: By (ii) of Lemma 3.3.8,

C
(
A(T r (μ))n

) = C
(
M0(T r (μ))−1Mn (T r (μ))

)

= M0(T r (μ))−1 C (Mn (T r (μ)))

= M0(T r (μ))−1(T r
(
μn−1

)
, T r(μ)n, T r(μ)n−1)T

= M0(T r (μ))−1
(
Sn(T r (μ))

)T

.
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Now, for given Tr(μ), Sd(Tr(μ)) and a, b ∈ Zwith 0 < d < q, where d is unknown,
one can compute Tr(μaμbd) as follows:

Algorithm 3.3.14

1. Compute e = ab−1 mod q
2. Compute Se(Tr(μ))
3. Compute C(A(Tr(μ))e) based on Tr(μ) and Se(Tr(μ)).
4. Compute Tr(μe + d) = Sd(Tr(μ))C(A(Tr(μ))e)
5. Compute Sb(Tr(μe + d)) and return Tr(μ(e + d)b) = Tr(μaμbd).

Using Theorem 3.3.6, we conclude that.

Theorem 3.3.15 [6] For Given M0(Tr(μ))−1, Tr(μ) and Sk(Tr(μ)), one can com-
pute Tr(μaμbd) at a cost of 8log2(ab−1 mod q) + 8log2b + 34 multiplications in
GF(p).

In [6], Lenstra et al. mentioned that Tr(μaμbd) can be computed at a cost of
16log2q multiplication in GF(p) if M0(Tr(μ))−1 is computed once and for all. For
details, see [6].

Now, there are two issues to be discussed:

1. Method to generate primes p and q such that q � (p2 − p + 1) and p ≡ 2 mod 3,
where DLP is hard to solve.

2. Method to generate a subgroup G ∈ GF(p6) of order q > 3 such that
q � (p2 − p + 1).

In the following two sections, we will consider these two issues.

3.4 Parameter Selection

In order to achieve the advantage of the representation of elements with their trace
and for the fast arithmetic over GF(p2), one needs to select the primes p and q > 3
in such a way that q � p2 − p + 1 and p ≡ 2 mod 3. Also, p and q must be chosen in
such a way that DLP over GF(p6)∗ and its subgroup of order q is difficult to solve
by a known algorithm. Hence, it is suggested to consider 6�p ≈ 1024 and �q ≈ 160,
where �p, �q denotes the size of p and q, respectively [6]. In [13], Lenstra et al.
described four algorithms to choose proper primes p and q. We have considered the
following algorithm from [13]. For details, see [6, 13].

Algorithm 3.4.1

1. Choose a random number ξ ∈ Z such that q = ξ2 − ξ + 1 is a prime of size �q.
2. Choose a random number η ∈ Z such that p = ξ + qη is a prime of size �p and

p ≡ 2 mod 3.

The above algorithm is very fast. It can be used to find p such that it satisfies a
polynomial of degree 2 with small coefficient [6]. Particularly, if η = 1, then one
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have to find ξ such that ξ2 − ξ + 1 and ξ2 + 1 are prime. Also, ξ2 + 1 ≡ 2 mod 3,
which implies ξ is even and p ≡ 1 mod 4. But such p may not be suitable to consider
as it may allow DLP variant of Number Field Sieve [6]. This disadvantage does not
work in the following algorithm.

Algorithm 3.4.2 [13]

1. Choose a prime q ≡ 7 mod 12 of size �q.
2. Find the roots ξ1, ξ2 of X2 − X + 1 mod q.
3. Compute η ∈ Z such that p = ξ i + qη for i = 1 or 2 is a prime of size �p and

p ≡ 2 mod 3.

Note that, if ξ is a root of X2 − X + 1 mod q, then ξ2 ≡ ξ − 1 mod q,
which implies the roots of X2 − X + 1 mod q are the quadratic residue. As
q ≡ 7 mod 12 ≡ 1 mod 3, this guarantees the existence of quadratic residues
and hence the existence of the root ξ1 and ξ2 (see 5. (b) of [15] page 174).
Again q ≡ 3 mod 4, so roots can be determined by using 5. (c) of page 174 of
[15].

To resist the subgroup attacks, Lenstra et al. in [13] described the following two
algorithms for the selection of p and q. For details, see [13].

Algorithm 3.4.3 [13]:

1. Choose a prime p of size �p such that p2 − p + 1 = qt, where q is a prime and
t ∈ Z is small.

Algorithm 3.4.5 [13]:

1. Choose a prime q of size �q and q ≡ 7 mod 12.
2. Compute the roots ξ1, ξ2 of X2 − X + 1 mod q.
3. Choose η ∈ Z such that p = ξ i + qη for i = 1 or 2 is a prime of size �p with

p ≡ 2 mod 3 and p2−p+1
q

= rt , where r is a prime of size at least �q and t ∈ Z of
small size.

3.5 Subgroup Selection

In this section, we will discuss the method to find a subgroup G = (μ) of GF(p6)
such that forμ ∈ GF(p6),ord(μ)= q > 3, and q � p2 − p + 1. To find such a subgroup,
it is enough to find Tr(μ) ∈ GF(p2) as for given Tr(μ), a generator μ can be
determined from any roots of F(Tr(μ),X). Therefore by (vii) of Lemma 3.3.1, to find
Tr(μ), one has to find an irreducible polynomial F(λ,X) ∈ GF(p2)[X]. In that case,
λ = Tr(x) for some x ∈ GF(p6) with ord(x) � (p2 − p + 1) and ord(x) > 3. Moreover if
λp2−p+1/q �= 3, then T r (μ) = λp2−p+1/q [6]. The resulting Tr(μ) is the trace of an
element μ ∈ GF(p6) of order q. Therefore, to find Tr(μ) one has to find λ ∈ GF(p2)
such that F(λ,X) is irreducible over GF(p2). In [6], Lenstra et al. proved that for
a randomly chosen λ ∈ GF(p2), the probability that the polynomial F(λ,X) is an
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irreducible polynomial over GF(p2) is about 1/3. The following algorithm from [6]
describes a method to compute Tr(λ) for a randomly chosen λ ∈ GF(p2)\GF(p).

Algorithm 3.5.1 [6]:

1. Choose a random number λ ∈ GF(p2)\GF(p).
2. Compute λp + 1 (using Algorithm 3.3.5).
3. If λp + 1 ∈ GF(p), then go to step (1).
4. Compute λ(p2−p+1/q) (using Algorithm 3.3.5).
5. Set T r (μ) = λ(p2−p+1/q), if λ(p2−p+1/q) �= 3. Otherwise, go to step (1).

This algorithm needs almost 3q
q−1 applications of Algorithm 3.3.5 with n = p + 1

and q
q−1 applications with n = (p2 − p + 1)/q (see Theorem 3.23 of [6]).

In order to compute Tr(μ), some other faster methods have been discussed in
[16–19], where p ≡ 2 mod 3. These methods are based on the method to test F(λ,X)
is irreducible. In [19], Lenstra et al. showed that for p ≡ 3 mod 4, Tr(μ) can be
computed as effectively as when for p ≡ 2 mod 3. Another approach to find Tr(μ)
and hence generator of an XTR group is found in [20], where p ≡ 1 mod 3.

4 Cryptographic Applications of XTR

In this section, we will discuss some encryption schemes and signature schemes,
which we have considered from [6, 13]. Note that, any scheme based on Discrete
Logarithm (DL) Problem can use XTR [6]. In the next section, we will introduce the
XTR version of DH problem and its variants. The XTR-DH key exchange scheme,
XTR-ElGamal scheme, XTR-NR signature scheme, and XTR-DSA scheme are
discussed in the remaining sections.

4.1 XTR Version of DH Problem and its Variants

From [4, 5], it is clear that the DL problem in a multiplicative subgroup (say (h)) of
a field (say GF(pr)) is as difficult as the DLP in GF(pr)∗ if (i) ord(h) is a sufficiently
large prime and (ii) the minimal surrounding subfield of (h) is GF(pt) for a large
prime p. Therefore, whenever GF(p6) is the minimal surrounding subfield of the
XTR group G and q is sufficiently large, then the DLP in G = (μ) is as difficult as
the DLP in GF(p6) and hence the DH and DDH problems too.

Now, we consider the XTR version of DH, DDH, and DL problems [6]. It is
called the XTR version as each element g of G is represented by their trace, Tr(g).

XTR-DH Problem: For given Tr(μa) and Tr(μb), the XTR-DH problem asked
to compute Tr(μab).
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XTR-DDH Problem: For given Tr(μa), Tr(μb), and Tr(μc), XTR-DDH problem
is the problem to determine whether Tr(μab) = Tr(μc).

XTR-DL Problem: For given Tr(μ) and Tr(μa), the XTR-DL problem is the
problem of finding a such that 0 ≤ a < q.

In [6], Lenstra et al. proved that the XTR-DH, XTR-DDH, and XTR-DL problem
is equivalent to the DH, DDH, and DL problem, respectively, in XTR group G (see
Theorem 5.21 of [6]).

Note that there exists an efficiently computable injective homomorphism from
CTP curves over GF(p2) [21] onto the XTR group. At Crypto 2000 rump session
[22], Menezes et al. suggested that there may exist a PPT algorithm to compute the
inverse of such homomorphism (called X2C hypothesis [23]) and in that situation,
XTR group is similar to the group of a supersingular elliptic curve. Hence, the
security XTR cryptosystem is not better than the security of the Elliptic curve
cryptosystem. In [23], Verheul showed that if X2C hypothesis hold, then one can
solve several other problems, which are believed to be hard. Hence the XTR group
provides better security than the isomorphic group on a supersingular elliptic curve.
For details see [23].

4.2 XTR-Diffie-Hellman (XTR-DH) Key Exchange Scheme

The XTR-DH protocol is described in [6]. It is based on the XTR-DH problem.
Suppose, two parties (say Alice and Bob) want to agree on a common secret key
K. Then for given XTR public key data (p, q, Tr(μ)), both Alice and Bob have to
execute the following steps:

1. Alice chooses a random integer a such that 1 < a < q − 2 and compute

Sa (T r (μ)) =
(
T r
(
μa−1

)
, T r

(
μa
)
, T r

(
μa+1

))

2. Send Tr(μa) to Bob.
3. Bob receives Tr(μa).
4. Bob chooses a random integer b such that 1 < b < q − 2 and compute

Sb (T r (μ)) =
(
T r
(
μb−1

)
, T r

(
μb
)

, T r
(
μb+1

))

5. Bob sends Tr(μb) to Alice.
6. Bob computes Sb(Tr(μa)) = (Tr(μa(b − 1)), Tr(μab), Tr(μa(b − 1))) and finds a

secret key K based on Tr(μab).
7. Alice receives Tr(μb) from Bob.
8. Alice computes Sa(Tr(μb)) = (Tr(μb(a − 1)), Tr(μba), Tr(μb(a + 1)).
9. Alice finds the secret key K based on Tr(μba).
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Efficiency: Both the communication and computational overhead of the XTR-
DH key exchange protocol are about 1/3 of the DH key exchange protocol based on
a multiplicative subgroup of a finite field [6].

4.3 XTR-ElGamal Encryption Scheme

The XTR version of ElGamal scheme is found in [6]. The scheme is based on the
XTR-DL problem. As a symmetric key is also used in this scheme, so the scheme
is considered as a hybrid version of the ElGamal scheme in a XTR group. The key
generation, encryption, and decryption algorithm are defined as follows:

Key Generation:

1. Choose two primes p and q > 3 withq � (p2 − p + 1) and p ≡ 2 mod 3.
2. Compute Tr(μ) (see Sect. 3.5).
3. Choose a such that 2 ≤ a ≤ q − 3.
4. Compute Tr(μa).

The secret key of the receiver is a and (p, q, Tr(μ),Tr(μa)) is the corresponding
public key.

Encryption: Suppose, for the given public key (p, q, Tr(μ),Tr(μa)), the sender
wants to encrypt a message M. The sender has to execute the following steps:

1. Choose a random number k such that 1 < k < q − 2.
2. .Compute Sk(Tr(μ)) = (Tr(μk − 1),Tr(μk),Tr(μk + 1))
3. Compute Sk(Tr(μa)) = (Tr(μ(k − 1)a),Tr(μka),Tr(μ(k + 1)a))
4. Choose a symmetric encryption key Ks based on Tr(μka) ∈ GF(p2).
5. Choose a symmetric encryption techniqueE with key Ks to encrypt M (say E(M)).

The pair (Tr(μk),E(M)) is the ciphertext of M.
Decryption: For a given ciphertext (Tr(μb),E(M)) and the secret key a, the

receiver execute the following steps to recover M:

1. Compute Sa(Tr(μk)) = (Tr(μ(a − 1)k),Tr(μak),Tr(μ(a + 1)k)).
2. Determines symmetric encryption key Ks based on Tr(μak) ∈ GF(p2).
3. Choose the symmetric decryption techniqueD with key Ks to decrypt E(M),

which results the message M.

Efficiency: In the XTR-ElGamal scheme, both the communication and computa-
tional overhead of encryption and decryption method are about 1/3 of the ElGamal
encryption and decryption algorithms that are based on a multiplicative subgroup of
a finite field [6]. The scheme achieves the same security level as that of the ElGamal
scheme. For details see ([6, 13]).



52 P. Goswami et al.

4.4 XTR-Nyberg-Rueppel (NR) Signature Scheme

The XTR version of NR message recovery signature scheme is discussed in [6]. The
key generation algorithm is same with the XTR-ElGamal scheme. The public key of
the signer is (p, q, Tr(μ), Tr(μa)), and a is the corresponding secret key. Also, it
is assumed that Tr(μa − 1), Tr(μa + 1) and hence Sa(Tr(μ)) is known to the verifier.
A hash function H is considered which is public for all.

Signature Generation: For a message M and secret key a, the signer executes
the following steps:

1. Choose a random integer k such that 2 ≤ k ≤ q − 3.
2. Compute Sk(Tr(μ)) = (Tr(μk − 1), Tr(μk), Tr(μk + 1)).
3. Choose a symmetric encryption key Ks based on Tr(μk).
4. Choose a symmetric encryption technique with key Ks and encrypt the message

M (say E).
5. Compute s = (a H(E) + k) mod q.

(E, s) is the signature on the message M.
Signature Verification: For a given signature (E, s) and public key of the signer,

the verifier executes the following steps:

1. Check that 0 < r, s < q, if no then reject the signature. Otherwise proceed step
(2).

2. Compute H(E) and replace by −H(E) ∈ {0, 1, · · · , q − 1}.
3. Compute Tr(μsμaH(E)) (by using Algorithm 3.3.14).
4. Determine a symmetric key Ks based on Tr(μsμaH(E)) ∈ GF(p2).
5. Choose a symmetric encryption technique with key Ks and decrypt the ciphertext

E, results M.
6. If M contains the agreed upon redundancy, then (E, s) is a valid signature.

Efficiency: The signature generation and verification algorithms of the XTR-
NR signature scheme is faster than the NR signature Scheme [24] based on the
multiplicative group of a finite field with the same security level. Note that the XTR-
NR signature generation and verification algorithm, respectively, are about three
times and about 1.75 faster than the signature generation and verification algorithm
of the NR signature Scheme [13].

4.5 XTR-DSA Signature Scheme

The XTR-DSA signature scheme is defined in (Lenstra & Verheul, 2001). The
public key of the signer is (p, q, Tr(μ), Sa(Tr(μ))), and the corresponding secret
key is a. Like the DSA signature Scheme [25], the size of the prime q is considered
as 160-bits, and the hash function SHA-1 [26] is used.
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Signature Generation: For a message M and a secret key a, the signer executes
the following steps:

1. Choose a random number k such that 2 ≤ k ≤ q − 3.
2. Compute Tr(μk) ∈ GF(p2)
3. Express Tr(μk) = x1β + x2β2

4. Compute r = (x1 + px2) mod q
5. Compute s = (H(M) + ar)k−1 mod q, if r �= 0. Otherwise, repeat the steps for a

new choice of k.

(r, s) is the resulting signature on M.
Signature Verification: For a signature (r, s), a message M and the signer public

key (p, q, Tr(μ), Sa(Tr(μ))), the verifier executes the following steps:

1. Check that 0 < r, s < q, if no then reject the signature. Otherwise proceed to step
(2).

2. Compute u = s−1 mod q.

t1 = uH(M)mod q

t2 = ur mod q

3. Compute t3 = T r
(
μt1μt2a

) ∈ GF
(
p2
)
by using Algorithm 3.3.14.

4. Express t3 = y1β + y2β2.
5. Compute t = (y1 + py2) mod q
6. If t = r, then the signature is a valid signature.

5 Recent Development of XTR

Numerous works had been done since the XTR was introduced. In 2000 [16],
Lenstra et al. improved the XTR key generation and parameter generation method
for the signature scheme. They provide a faster subgroup selection method based
on an irreducible test. They showed that by this improved method, an irreducible
polynomial can be found on average 7.2log2p multiplications over GF(p). The irre-
ducibility test proposed in [16] further improved in [17]. By this new approach, an
irreducible polynomial can be determined on an average of 2.7log2p multiplications
in GF(p). The methods to speed up XTR implementation are also discussed in [18,
19]. Another improvement of the irreducibility test can be found in [27]. In XTR,
basically p ≡ 2 mod 3 is used to improve the time complexity of irreducibility
testing. In 2004 [20], Kwon et al. presented an algorithm for fast irreducibility
testing, which can be used for p ≡ 1 mod 3. They also provide a method to compute a
generator of the XTR group without having any irreducible test by using a Gaussian
normal basis in GF(p2). A new key generation algorithm is also found in [28].

Various cryptographic protocols based on XTR has been proposed. Some of
the public key cryptosystem based on XTR are found in [29, 30], etc., and some
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signature schemes are proposed in [31–35], etc. Some other cryptographic protocols
are proposed in [36–38] and [39].

The security of XTR is also considered in several papers such as [30, 40–44],
whereas, some applications of XTR cryptographic protocol are discussed in [45–
47], etc.

In 2000 [6], Lenstra et al. also states that the idea of the XTR group over GF(p6)
can be extended to any field GF(p6e), for some e ∈ Z. In [48], it is showed that to
get the same communication and computational advantage of the generalized XTR
over GF(p6e), either both e and 2e + 1 are primes or 2e + 1 is a Fermat prime. In
[11], Bosma et al. proved that if BPH conjecture [5] holds, then a more compact
representation of the element over the field of degree 30 is possible. In 2006 [49],
Wang et al. pointed out that XTR has parameter corresponding problem. To solve
this problem, Wang et al. proposed the concept of XTR+. It is based on the finite
field GF(p8), where the arithmetic is over GF(p4). They proved that XTR+ has
achieved the same security level as XTR, and it needed less amount of data storage,
computation and communication overhead. Some other works related to XTR are
found in [50–52], etc.

6 Conclusion

In XTR, elements of a subgroup of order q > 3 of the multiplicative group GF(p6)∗

are represented by their trace over GF(p2), where q � (p2 − p + 1). It is proved that
XTR cryptosystem is more efficient than those cryptosystems which are based on
DLP on a multiplicative group over a finite field. In this chapter, we have studied the
methods and techniques for XTR. We have discussed the algorithm for parameter
selection and to generate XTR group. We also discussed the application of XTR in
cryptography. Basically, we discussed the XTR-DH key exchange protocol, XTR-
ElGamal scheme. We also discussed the XTR-NR message recovery scheme and
XTR-DSA. A short overview on the recent development of XTR is also presented.
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Chapter 4
HECC (Hyperelliptic Curve
Cryptography)

Taspia Salam and Md. Sharif Hossen

Abstract Cybersecurity plays a very important role in our daily lives to protect
our data against unauthorized access. Cryptography as the core functionality can
provide key intelligence services such as protection, authentication, key setup, and
integrity of data. We seek higher safety, efficiency, faster implementation, and low
power consumption in the field of cryptography technology. There are already many
cryptographic algorithms available that can meet these standards. Nevertheless,
the new technological systems are smaller in size and have very limited capacity
for processing and storage. The key size of RSA is somewhat large, and it takes
much longer to handle and consumes a lot of power to implement RSA in small
devices. Therefore, in practice, cryptosystems are favored which use smaller key
sizes, including many of which depend on a discrete logarithm issue throughout a
cumulative elliptical curve unit indicated in finite fields. For this, the concept of
cryptography with the elliptic curve came. It is centered over the abelian group
of curve points. The benefit of using the cryptography process of elliptic curve is
that its key size is smaller than RSA. On the other hand, the complexity of the
elliptic curve in mathematics is more involved than that of systems based at RSA.
Then, the idea of a discrete logarithm problem with hyperelliptical curves and a
cryptosystem was constructed over the Jacobian. Smaller base field size enables
hyper-elliptical curves a better choice for lightweight cryptosystems. In this chapter,
we have demonstrated the details of the cryptography of the hyper-elliptic curve and
its level of security to protect data.
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1 Introduction

While historians split human history into periods before and after Jesus, a similar
distinction can be made for cryptographic history, i.e., before and after the key
exchange of the Diffie-Hellman scheme. Humanity has long been grappling with
the central issue of distribution. Cryptography is the intellectual pursuit of creating
a crypto-system for cybersecurity. It deals with the individual protection of digital
data. This refers to the development of computer algorithm-based systems that
provide basic safety facilities for information. The symmetric (or secret key)
cryptography dominated over the people at that time, so before any verification,
face-to-face gathering or use of a trusted courier was required. Both were also
impractical and dangerous at all times. In 1976, a new way of transmitting
cryptographic keys was implemented, and the era of asymmetric cryptography
(or public-key cryptography) was shared. Their mechanism is focused on one-
way trapdoor functions and allows the user to share a private key over an unsafe
network. Throughout the dual-key cryptography, the individual requires just a
few keys, one is termed the public key, and the other is called the private key.
Hence, the private key is always numerically connected to the public. Then the
public key must be issued, whereas the private key appears hidden, suggesting a
trapdoor. The most common cryptosystem for the public key is RSA. The RSA
cryptosystem is still widely used although many years have passed since its first
implementation. Undoubtedly, in our modern information environment, the most
significant instrument is public-key cryptography. Outdated cryptosystems such as
the listed RSA depends on issues such as factoring or discrete logarithm based on
hard number theory. But due to the possible quantum computer attacks, there is
a need for additional well-organized cryptosystems for minor strategies; creating
new public-key cryptosystems, particularly those that could withstand upcoming
outbreaks using quantum computers, is a great challenge. Therefore, for the past
three decades, the question of developing a new public-key cryptosystem has
dominated the cryptographic research fields [1–3].

Elliptic curve cryptography (ECC) is a technique to encode data files so that
they can be decoded by specific individuals, and it is formulated by Neal Koblitz
and Victor Miller in 1985. ECC is dependent on elliptic curve mathematics and
utilizes point position to protect data on the elliptic curve. It uses fairly short
keys for encryption and decryption. This key is quicker, requiring less energy
in computation. But its major drawback is that it raises the size of encrypted
messages over RSA encryption. Besides, its algorithm is far more complicated
and much more difficult to manage than RSA that arises implementation errors.
Thus, it reduces the security of algorithms [3–6]. Neal Koblitz and Victor Miller
offered the usage of elliptical structures that construct public-key cryptographic
frameworks. After that time, a wealth of literature has been conducted mostly along
with the safety and active employment of elliptic curve cryptography. But against
digital threats, we need to incorporate more protection. The concept of the hyper-
elliptic curve has been developed to provide further security. This is used to fix
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passwords, factorization of the integer, and encryption of the public key. Along these
lines, the foremost objectives of this chapter are to clarify the fundamental factors
of the divisor group, hyperelliptic encryption and decryption algorithm, signature
generation algorithm, and HECC security [7, 8].

1.1 Basic Mathematical Terminologies

1.1.1 Arithmetical Closure

A field B is assumed to be arithmetically closed if B has a root in B for each
non-constant polynomial with coefficients. The arithmetical closure is an arithmetic
expansion of a field B signified as B which is arithmetically closed.

1.1.2 The Cryptography of Hyperelliptic Curve

Suppose, i is a region, i is the arithmetical closure of i, and A is a hyperelliptic curve.
This hyperelliptic curve is on genus g, and it is over i (g ≥ 1) with a set of all points
(X, Y). This curve is denoted by a formula of the subsequent procedure:

A : Y 2 + H(X)Y = f (X) where i [X, Y ] (4.1)

Here, H (X) ∈ i [X] is also a polynomial of degree g. Here, a polynomial of
degree 2 g + 1 is f (X) which concurrently gratify Y2 + H (X) Y = f (X). The
fractional derivative of the equation is 2 Y + H (X) = 0 and H′ (X) f ′ (X) = 0. A
single point over A is an explanation (X,Y) ∈ i2 which concurrently gratifies all these
circumstances. Therefore, there are no singular points in the hyperelliptic curve.

Hyperelliptic curvature is used in many important research fields such as
generators of pseudo-random numbers, coding theory, number theory algorithms,
and cryptography. We can use hyperelliptic curvatures rather than elliptic bends for
modeling cryptographic strategies. Expanded types of elliptic curves are known as
hyperelliptic curves.

1.1.3 Finite Field

Suppose, Fq is a finite field with q elements. Here, q is an integer. It satisfies q = pn,
where p and n are the prime number (characteristic of the field) and positive integer
(dimension or the extension degree), respectively. The prime number is well-defined
as the smallest probable integer such that 1 + · · · + 1︸ ︷︷ ︸

p

= 0. Here, 1 can be in any

field, and the summation is a closed procedure. We can say that 1, 1 + 1, 1 + 1 + 1,
1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1, and so on are components of the field. There are
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two prospects for this categorization of components, such as either some addition of
1’s will ascend to 0. Here the series cycles via a few finite set of values. In different
circumstances, no components of the series are similar, and we can have an infinite
quantity of components in the field. The characteristic of the field is the smallest
positive number of 1’s with sum = 0. Without this sum, we can say that the field
has characteristic zero.

1.1.4 Interpretation

Let us look at the curve,
A = Y2 + (X2 + X) Y − X5 − X4 − X2 − 1 = 0 throughout the finite field F52.
In this case, g = 2, H (x) = X2 + X and f (x) = X5 + X4 + X2 + 1.
So, the partial derivatives of the curve A are as follows:

∂A

∂x
= (2 X + 1) Y − 5X4 − 4X3 − 2 X = 0 and

∂A

∂y
= 2 Y + X2 + X = 0

As there is no point B in the field that fulfills the expression of the curve A
and therefore ∂A

∂x
and ∂A

∂y
are not equivalent to zero in any B, then A is simply a

hyperelliptic curve [9, 10].

1.2 Divisors

Suppose, Fq is a list of points of the curve A. Thus, the divisor of A will be used
as an alternative. Aimed at real-world operation, it is also significant to present an
appropriate symbol of the group fundamentals.

1.2.1 Explanation 1 (Divisor, Degree, Order at a Point)

According to the above explanation, a divisor DIV can be determined by.

DIV =
∑

B∈A
mB B, here mB ∈ Z (4.2)

In this case, mB contains non–zero value. The deg DIV is signified as the degree
of DIV. The order of DIVcan be determined by ordB(DIV) = mB.
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1.2.2 Explanation 2 (GCD of Divisors)

Suppose, the two divisors are DIV1 =∑B ∈ AmBB and DIV2 =∑B ∈ AnBB. Here, a
finite number of mB and nB are non-zero. There is a point at infinity. That is, GCD
is a divisor of degree 0. According to the explanation, the greatest common divisor
(GCD) of these two divisors is given through.

GCD (DIV 1,DIV 2) =
∑

B∈A min (mB, nB)B −
∑

B∈A min (mB, nB) ∞
(4.3)

It is informal to understand that GCD(DIV1,DIV2) ∈ DIV0.DIV0 is the collection
of divisors that has degree 0.

1.2.3 Explanation 3 (Rational Function Divisor)

Let B is a field, R is a rational function, A is a hyperelliptic curve, and B (A) is the
function field of the curve is represented by the field of the segment B(A). Likewise,
the function field B(A) over B is specified by the field of segments of B(A). The
components of B(A) are termed as rational functions on A.

Let, R ∈ B (A)∗. Here, R is the rational function, B is a field, and B is an
algebraic closure. So, the divisor of the rational function R can be determined by

DIV (R) =
∑

B∈A
(ordB R) B (4.4)

1.2.4 Explanation 4 (Primary Divisor)

Divisor DIV ∈ DIV0 is referred to as primary divisor if DIV = DIV (R) for any
logical function R ∈ B (A)∗. A subgroup of DIV0 is the set of all primary divisors,
signified as B.

1.2.5 Explanation 5 (Divisor of Jacobian)

The curve A for Jacobian (Jac) is specified as the quotient unit [11, 12].

Jac = DIV 0

B
(4.5)

When DIV1, DIV2 ∈ DIV0, then we can say DIV1 ∼ DIV2 if DIV1 − DIV2 ∈ B.
So, we can say that Divisors DIV1 and DIV2 are equivalent.
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1.3 The Jacobian of Hyperelliptic Curve

Under this group, a divisor DIV can be determined by the following accumulation
rule:

∑

B∈A
mB B +

∑

B∈A
nB B =

∑

B∈A
( mB + nB) B (4.6)

Here, DIV0 is a list of all degree 0 divisors. It becomes a subset of DIV. Likewise,
the addition of key divisors looks like multiplication of their corresponding rational
functions in A

(
Fq
)
. Here, A is the hyperelliptic curve and Fq provides us with

the closure property we need to conclude the set of principal divisors, denoted B, is
indeed a subgroup of DIV0.

Each period we have a subcategory of materials similar to principal divisors
rooted inside a more robust group. It is an exposed appeal to take the quotient. At
this point, there is no exception. We can identify the hyperelliptic curve of Jacobian
as Jac = DIV0/B. And it is a category of degree 0 divisors with B as identity [13–14].

1.3.1 A Jacobian Instruction

The Jacobian’s cardinality is the key factor that establishes the safety of a hyperellip-
tic crypto algorithm. Therefore, to choose a good curve and a good underlying finite
field for cryptographic reasons, it is necessary to know the orders of the Jacobian.

1.3.2 Theory of Hasse-Weil

Suppose, Jac is the Jacobian of hyperelliptic curve A of genus g described above Fb.
In this case, the order of Jacobian Jac

(
Fn

b

)
, denoted as #Jac

(
Fn

b

)
, is confined

through

(√
bn − 1

)2g ≤ #Jac
(
Fn

b

) ≤
(√

bn + 1
)2g

(4.7)

Henceforth, #Jac
(
Fn

b

) ≈ bng .

1.3.3 Specification of Zeta Function

Suppose, a hyperelliptic curve described over Fb is A, and mn = #A
(
Fn

b

)
, where

n ≥ 1. It is the rational number of points Fn
b on A. The power sequence of the zeta

function is as follows:
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zetaA(T ) = EXP

(∑

n≥1
mn

T n

n

)
(4.8)

The preceding procedure outlines the methodology used to calculate the Jacobian
ordering in the context of the hyperelliptic curve of genus 2. This methodology is
focused upon the zeta function principles.

1.3.4 Methodology for Ordering Genus 2 of the Jacobian Hyperelliptic
Curve

Input: Rational points m1 and m2, a field Fn
b .

Output: Jacobian order is Jacn

1. Place c1 ← m1 − 1 − b; c2 ← (
m2 − 1 − b2 + c21

)
/2.

2. Discover η1,η2 by approaching the quadratic formula x2 + c1(x)+ (c2 − 2b)= 0.
3. Figure out x2 − η1(x) + b = 0 to get a result β1.
4. Figure out x2 − η2(x) + b = 0 to get a result β2.
5. Calculate Jacn = ∣∣1 − βn

1

∣∣2∣∣1 − βn
2

∣∣2.
6. Go to Jacn..

1.4 Semi-Reduced and Reduced Divisors

We can identify a semi-reduced divisor by the following formula:

DIV =
∑

miBi −
(∑

mi

)
∞ (4.9)

In this case, every mi ≥ 0 and Bi are fixed points of the curve A. It is in the sense
that, if Bi ∈ DIV then and there B̃i /∈ DIV , except Bi = B̃i, in the instance of
mi = 1. Representation of fundamentals of the Jacobian by semi-reduced divisors,
i.e., by couples of polynomials, undergoes from a big difficulty—the depiction is
not sole. This trouble is detached if we contemplate semi-reduced divisors of this
superior kind. We can signify the semi-reduced divisor as reduced divisor by the
following formula [15]:

∑
mi ≤ g, for genus g (4.10)
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1.4.1 The Accession of Reduced Divisors

The inclusion of reduced divisors describes a collective principle of hyperelliptic
curves on Jacobians. Thereby Jacobian and the inclusion activity fulfills the
concepts of the unit, namely associativity, identity, and inverse.

So, we slightly specify the generalized Euclidean method through polynomials
because it is necessary for the move of composition in the Jacobian divisor inclusion
algorithm.

Subsequently, GCD (c1, c2, . . . , cn)= GCD (c1, GCD (c2, . . . , cn)); however, we
limit our vision to the issue where there are double polynomials c, e ∈ I [x], and
DEGx c ≥ DEGxe are provided. We would like to deal with polynomials m, n,
o ∈ I [x] where m = GCD (c, e) = nc + oe.

1.4.2 Methodology for Extension Euclidean Polynomial Methods

Input: c (x), e (x) are two non-zero polynomials where DEGxc ≥ DEGxe.
Output: m (x), n (x), o (x) are the polynomials where M = GCD (c, e) = nc + oe.

1. Place n2 ← 1; n1 ← 1; o2 ← 0; o1 ← 1.
2. Whereas e �= 0 do.
3. Using rest section to determine c = qe + r.
4. n ← n2 – qn1; o ← o2 – qo1
5. c ← e; e ← r; n2 ← n1; n1 ← n; o2 ← o1; o1 ← o.
6. End while.
7. M ← c; n ← n2; o ← o2.
8. Return m (x), n (x), o (x).

Suppose, Rd1 = DIV (c1, e1) and Rd2 = DIV (c2, e2) are two reduced divisors. A
reduced divisor calculation Rd1 + Rd2 continues in dual stages. Initial stage (termed
stage of formation) is defined as the algorithm of inclusion during which a semi-
reduced divisor Sd (c, e) in the source of Rd1 + Rd2 is calculated. The reduction
methodology is being used in the second (mitigation) stage, to convert acquired
semi-reduced divisor Sd (c, e) into such an appropriate reduced divisor.

1.4.3 Methodology for Accession

Input: Rd1 = DIV (c1, e1) and Rd2 = DIV (c2, e2) are the reduced divisors; A is the
hyperelliptic curve where A = Y2 + H (X) Y – f (X) = 0.

Output: Sd = (c, e) is the semi-reduced divisor where Sd~Rd1 + Rd2.

1. Calculate the greatest common divisor Gd,

Gd = GCD (c1, c2, e1 + e2 + h) = n1c1 + n2c2 + n3 (e1 + e2 + h) .
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2. Place c ← c1c2
G2
d
and e ←

n1c1e2+n2c2e1+n3

(
e1e2+f

)

Gd
mod c.

3. Return (c, e).

1.5 Semi-Reduced Sums Via Mumford Arithmetic

Suppose, a semi-reduced divisor is DIV = ∑
mi Bi where Bi = (xi, yi). The

Mumford identification of the divisor is a couple of polynomials of (s (x), q (x))
that entirely decides DIV. In this case, s(x) captures all the coordinates of x with
multiplicities, and y = q(x) is the outburst function through all the Bi.

Legitimately,

s(x) =
∏r

i=1
(x − xi)

mi (4.11)

(
d

dx

)j[
q(x)2 + q(x) h(x) − f (x)

]

x=xi

= 0; (0 ≤ j ≤ mi − 1) (4.12)

Highlights of the above conditions

1. s(xi) = 0, q(xi) = yi through multiplicity mi where 1 ≤ i ≤ r.
2. s(x) is monic and differences q(x)2 + h (x) q (x) – f (x).
3. DIV completely controls s(x) and q(x) mod s(x).
4. s(x) , q(x) ∈ I [x] with s(x) monic. It splits q(x)2 + h (x) q(x) – f (x) and decides

the semi-reduced divisor.

Again, suppose, DIV1 = (s1, q1), DIV2 = (s2, q2).
Targeted at any [B] happening in DIV1,

[
B
]
does not occur in DIV2 and vice

versa. Formerly DIV1 + DIV2 = (s, q) is semi-reduced and.

s = s1s2, q =
{

q1 (mod s1)

q2 (mod s2)
(4.13)

Undertake B = (x0, y0) occurs in DIV1 and B occurs in DIV2. Then, s1(x0) =
s2(x0) = 0 and q1(x0) = y0 = – q2(x0) – h(x0), so x–x0 divides s1(x),s2( x ),q1(x)
+q2(x)+ h (x).

DIV = GCD (s1, s2, q1 + q2 + h) = p1s1 + p2s2 + p3 (q1 + q2 + h) (4.14)

s = s1s2/DIV 2 (4.15)
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q ≡ 1/DIV (p1s1q2 + p2s2q1 + p3 (q1q2 + f )) (mod s) (4.16)

1.6 Reduction Via Mumford Arithmetic

Suppose, a semi-reduced divisor is DIV = (s, q) on A : y2 + h(x)y = f (x).
The pseudocode of this calculation is as follows [16, 17]:
While DEG (s) > g
Then, do the followings:

1. Shift the x coordinates of the points in DIV by those of the order intersections
points of A with q:

s ← f − qh − q2

s
.

2. Shift the new points by their reverses:

q ← (−q − h) (mod s)

2 Hyperelliptic Curves over Finite Fields

Explanation (a): Suppose, a field is I, the arithmetic closure is I and a hyperelliptic
curve is A. It is on genus g ≥ 1 with a set of all points (X,Y). This curvature can be
identified by equation (4.1) which is as follows:

A : Y 2 + H (X) Y = f (X) where I [X, Y ]

Here, H(X) ∈ I[X], and it is of degree 2g + 1. There is no (X, Y ) ∈ I × I .
Sample 1: Suppose, A is a hyperelliptic curve over I.

1. For H (X) = 0, char(I) �= 2.
2. If char(I) �= 2, then an alteration of parameters X → X, Y → (Y – H(X)/2) alters

A to Y2 = f (X) where DEGXf (X) = 2g + 1.
3. Suppose, a hyperelliptic curve of H(X) = 0 and char(I) �= 2. The curve A will be

hyperelliptic if and only if f (X) does not have frequent roots in I .

2.1 Proof of Hyperelliptic Curve

1. Suppose, H(X) = 0 and char(I) = 2, f ′(X) = 0 is the partial derivative of the
equation. Here, DEGXf ′(X) = 2 g, the root of this equation is m ∈ I, and the root
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of Y2 = f (X) is n ∈ I . After that we can see that the singular point on the curve
is (m, n).

2. If the variables on the equation of a hyperelliptic curve are changed, then

( Y − H(X)/2)2 + H(X) (Y–H(X)/2) = f (X),

It truncates that Y2 = f (X) + (H(X))2/4; so DEGX

(
f + H 2T

4

)
= 2 g + 1.

3. We have seen that (m, n) is a singular point on the curve. It should gratify
n2 = f (m),2 n = 0, and f ′(m) = 0.

Henceforth, the term n = 0 and the repetitive root of f (X) is m.
Explanation (b): Suppose, an augmentation of field I is L, which is the

assortment of L rational points on curve A. That means A(L) is the assortment of
all points B = (x, y) ∈ L × L. It fulfills equation (4.1) alongside exceptional point
at∞. In this way, the assortment of points A

(
L
)
can be distinguished by A and

these points other than ∞ are known as finite points.
Sample 2: Two cases of hyperelliptic curves over the real number field are shown

in the following figures. The genus of these curves is g = 2 and H(x) = 0.

1. The graph on the actual plane is A1 : y2 = x5 + x4 + 4x3 + 4x2 + 3x + 3= (x + 1)
(x2 + 1) (x2 + 3) which is shown in Fig. 4.1.

2. The graph on the actual plane is A2 : y2 = x5 − 5x3 + 4 x = x(x − 1)(x + 1)(x − 2)
(x + 2) which is shown in Fig. 4.2.
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Fig. 4.1 Graph of A1 : y2 = x5 + x4 + 4x3 + 4x2 + 3x + 3 = (x + 1) (x2 + 1) (x2 + 3)
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Fig. 4.2 Graph of A2 : y2 = x5 − 5x3 + 4x = x(x – 1)(x + 1)(x – 2)(x + 2)

Explanation (c): Suppose, B = (x, y) is a finite point on the curve A. The reverse
of this point is B̃ = (x, –y–h(x)). B̃ is on curve A. ∞̃ = ∞ is the reverse of ∞.
IfB = ∞̃∞̃, then this point is exceptional; otherwise, it is an ordinary point.

Sample 3: Suppose, a curve A : y2 + x y = x5 + 5 x4 + 6 x2 + x + 3 is over the
finite field F7. At this point, H(x) = x, f (x) = x5 + 5 x4 + 6x2 + x + 3, g = 2, and A
does not have any singular point without∞. Henceforth, the curve is hyperelliptic.

Here, A (F7) = {∞, (1, 1), (1, 5), (2, 2), (2, 3), (5, 3), (5, 6), (6, 4)} are the rational
points on A.

Sample 4. Suppose, F 5
2 is a finite field. Here, F 5

2 = F2 [u] /
(
u5 + u2 + 1

)
. The

primitive polynomial is u5 + u2 + 1, and β is the root of this polynomial. Here,
Table 4.1 contains the powers of β.

Suppose, A is a curve of genus g = 2 over the region F 5
2 . A : y2 + (x2 + x) y = x5

+ x3 + 1. In this case, H(x) = x2 + x and f (x) = x5 + x3 + 1. This is established
that other than ∞, curve A does not have any singular point, and it is hyperelliptic.
A
(
F 5
2

)
are the finite points, so the rational points of the curve are [16–18]:

3 Hyperelliptic Curve Key Pair Generation

3.1 Divisor Order

The divisor order D is distinct to be the least probable integer r such that
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Table 4.1 The powers of β for the above field F52 = F2 [u] /
(
u5 + u2 + 1

)

N βN N βN N βN

0 1 11 β2 + β + 1 22 β4 + β2 + 1
1 β 12 β3 + β2 + β 23 β3 + β2 + β + 1
2 β2 13 β4 + β3 + β2 24 β4 + β3 + β2 + β

3 β3 14 β4 + β3 + β2 + 1 25 β4 + β3 + 1
4 β4 15 β4 + β3 + β2 + β + 1 26 β4 + β2 + β + 1
5 β2 + 1 16 β4 + β3 + β + 1 27 β3 + β + 1
6 β3 + β 17 β4 + β + 1 28 β4 + β2 + β

7 β4 + β2 18 β + 1 29 β3 + 1
8 β3 + β2 + 1 19 β2 + β 30 β4 + β

9 β4 + β3 + β 20 β3 + β2 31 1
10 β4 + 1 21 β4 + β3

(0,1) (1,1) (β5,β15) (β5,β27) (β7,β4) (β7,β25)

(β9,β27) (β9,β30) (β10,β23) (β10,β30) (β14,β8) (β14,β19)
(β15, 0) (β15,β8) (β18,β23) (β18,β29) (β19,β2) (β19,β28)
(β20,β15) (β20,β29) (β23, 0) (β23,β4) (β25,β) (β25,β14)
(β27, 0) (β27,β2) (β28,β7) (β28,β16) (β29, 0) (β29,β)
(β30, 0) (β30,β16)

D + · · · + D︸ ︷︷ ︸
r

= div (1, 0) (4.17)

Suppose, A is a hyperelliptic curve on Fp, the Jacobian of A is J well-defined on
Fpn, and D1is a reduced divisor of order r. The public domain parameters are prime
p, field extension n, the equation of the hyperelliptic curve, and the reduced divisor
D1. k is a private key of the interval [1, r – 1], and it is an integer number. The public
key is, D2 = kD1.

Procedure: The key pair generation of a hyperelliptic curve.
Input: The public domain parameters.
Output: The two keys, especially private (k) with the public (D2) key.

1. Define an integer which is k ∈ [1, r − 1]
2. Estimate D2 = kD1
3. Arrival at the key couple (D2, k).

3.2 Principle of Hyperelliptic Curve Cryptographic
Arrangement

In this case, we consider a divisor as M which is considered as a clear text m. As
a clear text, it is encrypted by D2, and here is a randomly selected integer such as
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a ∈ [1, r]. Then the sender conveys the divisors C1 = aD1 and C2 = M + aD2 to
the receiver and figures out the private key k [19].

kC1 = k (aD1) = a (kD1) = kD2 (4.18)

Then, we recover

M = C2–aD2 (4.19)

4 Hyperelliptic Curve Encryption and Decryption

The encryption and decryption procedures of hyperelliptic curve are briefly dis-
cussed as follows [19]:

4.1 Procedure 1. Hyperelliptic Curve Encryption

Input: Domain parameters, public key D2, m as a message.
Output: The ciphertexts are C1 and C2

1. Symbolize m like a reduced divisor of the hyperelliptic curve’s Jacobian J.
2. Define a as a random integer which is a∈[1, r − 1].
3. Estimate C1 = aD1 and C2 = M + aD2.
4. Arrival at the ciphertext(C1,C2).

4.2 Procedure 2. Hyperelliptic Curve Decryption

Input: Domain parameters, private key k, ciphertext(C1,C2).
Output: Message m

1. Provide a private key to figure M = C2 − kC1.
2. Handover M into m.
3. Arrival at the clear text m.

Sample 5. Let us assume an example. Suppose, A is a hyperelliptic curve, where

A : Y 2 +
(
X2 + X

)
Y − X5 − X4–X2–1 = 0

over a finite field F52. Here, genus g = 2, H(X) = X2 + X, and F(X) = X5 + X4 +
X2 + 1. Reduced divisor D1 = DIV (X – 21, 5), order R = 482, and another reduced
divisor is a message m, where m = DIV(X – 7, 3).
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The way out is

1. From the start, we need to generate key pair:
We have taken K as a private key where K = 2. It is selected uniformly as

K ∈ [1,R − 1].
According to the algorithm, the public key D2 can be determined by

D2 = kD1 = DIV
(
X2 + 28, 2X + 10

)

2. Next, we need to start the encryption process:
A randomly selected integer, A = 1, A ∈ [1,R − 1].

Cipher text, C1 = A D1 = D1 = DIV (X–21, 5) .

Cipher text, C2 = M + A D2 = DIV
(
X2 + 13 X + 4, 22 X + 6

)
.

3. At last, we need to perform decryption as follows:
Message, m = C2 − KC1

m = C2 − 2 C1

= DIV
(
X2 + 13X + 4, 22X + 6

)+ 2
(−DIV

(
X2 + 28, 2X + 10

))

= DIV
(
X2 + 13X + 4, 22X + 6

)+ 2
(
DIV

(
X2 + 28, 2X + 10

))

= DIV (X + 7, 3)

5 HECC Signature Algorithm

5.1 Elgamal Signature Method

Elgamal is precisely aimed at the digital signature. This method is used to compute
a discrete logarithm problem that helps in both encryption and digital signature. It
is also a renowned safety scheme afterward RSA, and it is really good enough than
RSA. This is a public key encryption method and has certain investigations with
applications in digital signatures, electronic certification, and safety rules nowadays.
But, the Elgamal signature process is combined with other encryption approaches
which makes it structural. So, we can call it a hybrid encryption system that contains
an encryption algorithm for encrypting messages, and for constructing signatures
we need the Elgamal signature process. For the design issues, one can use the
elliptic curves for encrypting messages, after that produce the signature by using the
Elgamal signature process. At that moment we need to execute the digital signature
on plain text m. At first, we can choose p as a large prime number and create a
finite field for p , namely GF (p). Through it, we can also achieve a primitive root as
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g (mod p). Now, in this field, we can randomly choose a private key x as an integer
and figure out the public key, which is y = gx( mod p ) [20].

The signature procedure is given as follows:

1. Arbitrarily we choose an integer k that is a prime by p in the field.
2. Evaluate a = gk(mod p).
3. Discover s and meet the equation s = k−1(m − xa) mod p.

Now, we have the signature (a, s) from the sender. Next, we need to send the
public parameters (g, y, p) and the signature to the receiver. After receiving the
signature, it will be verified by the receiver by the following procedure:

1. Estimate m = (xa + ks) mod p.
2. Resolve gm = ( yaas ) mod p.

By getting the equation gm = ( yaas ) mod p, one can recognize that this
signature (a, s) of the message is legal, so the signature can be acknowledged, or
it is forbidden.

The Elgamal signature system is safe because we know about the public
parameters(g, y, p) and y = gx(modp). But this is difficult to explain x in the mode
of the opposite method over the procedure y = gx( mod p ).

5.2 HECC Signature Generation

To use the Elgamal method into an authentic device, the hybrid security mechanism
is generally associated with other encryption methods. Throughout this method how
HECC and Elgamal systems are combined and being used to create the HECC-
Elgamal signature model: first, we use HECC to encrypt messages, and then produce
a secure digital signature with Elgamal algorithm for ciphertext [20].

If we want to combine spontaneously HECC and Elgamal method, we would
define a one-to-one mapping between the Jacobian HECC quotient group and finite

field which are J(Fq) and GF(p), respectively. That is, J (Fq)
θ(Z)→ GF (p). It

suggests that it can map divisor D of the Jacobian quotient group to only integer
polynomial mixture of the finite field, and θ (Z) is the mapping function.

As a matter of first importance, embed plain text m to y2 + h(x)y = f (x) to
acquire divisor Dm ∈ J(Fq). From the point forward, pick a good random integer c
as a private key in the field. At that point check E = cD, where the public key is E.

Here the signature levels are as pursue:

1. In the finite field GF (p), define an integer c randomly, and it is prime of p.
2. Estimate a = k D.

3. Plot this mapping function θ ( Z ) with the estimated value which is a
θ ( Z )→ a′.

It is used to estimate a′ = θ (a) mod p.
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s = k−1 (m − ca′) mod p.

The sender generates the signature (a, s) of the message. The recipient acknowl-
edges the following materials: the message m, public key E, the Jacobian HECC
quotient group, divisor D, finite field, and finally the mapping function θ ( Z ).
And, according to defined criteria, the recipient may authenticate the accuracy and
reliability of a signature.

(i) Figure a′ = θ(a) mod p with a and mapping function θ(Z).

(ii) sa = ak−1(m−c a′)mod(p−1)
a=kD

}

⇒ sa = kDk−1 (m − ca′)mod p

⇒ as = D
(
m − ca′)mod p

(iii) sa = (Dm−Dca′) mod p

E=Dc

}

⇒ as + a′E = (a′E + Dm − Dca′)mod p

⇒ sa + a′E = Dm

(iv) Then, we really may assert the signature’s accuracy and reliability in deciding
about the equation sa + a′ E = Dm is being gratified.

5.3 HECC Signature Verification

Digital signatures including certification are designed to validate the signature
of both parts in the CA to verify the authenticity of origins of messaging and
incorporate signature authentication.

The method of signing summaries is as pursues:

1. A plain text named ma is inscribed by the user a;
2. The signature unit produces Sig (ma) as a signature which is then guided to the

CA.
3. Once the CA has checked the results, CA (Sig (ma)) will be produced for sending

it to the user b.
4. User b subsequently accepted theCA (Sig (ma)), this will confirm the signature

named Sig (ma).
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Fig. 4.3 Form and Confirmation Procedure of Signature

A signature named Sig (ma) that is acquired from plain text ma and incorporates
the information of that plain text. Authentication has been managed to add to
Sig (ma) to get there at CA (Sig (ma)) until the signature was sent to CA to verify.
CA (Sig (ma)) is an authorized signature which is from the user a.

The CA functions as just a trustee for both parties, confirming that user a or b
has signed the signature. That does not need to know user a’s and user b’s contact
material so far as the source is secure.

The signature CA (Sig (ma)) is sent by the CA to user b which will unpack the
signature to test its exactness. We know from the discrete logarithm problem that
users can produce the Sig (ma), and it cannot be retrieved by other people. This
matter confirms the signature confirmation of the user on the message ma, but this
verification is not for ma. For this reason, the content of ma cannot be denied by the
user named a [20].

The signature formation and validation process are demonstrated in Fig. 4.3.

6 Security of HECC

A digital signature is a part of the encryption of identification. This ensures the
validity and safety of the transaction. The HECC-Elgamal integrates the HECC
mechanism with the Elgamal process whose privacy arises from three parts [20]:

1. The message encryption method of the curve is exponential in the large prime
finite field.

2. This model has a high computational complexity in the large prime field. For this
reason, this signature security procedure is also very good.

3. Through offering encryption, defense of both parties’ interests.

Depending on these defenses the hackers cannot replicate the signature. Thus the
signature has no chance to be imitated. It allows for the individuality, validity, and
non-repudiation of signatures.
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7 Conclusion

The hyperelliptic curve cryptosystem is one of the rising cryptographic schemes
of the most recent years. With the exceptional increment in the quantity and
utilization of handheld gadgets, this lightweight cryptographic scheme has gone
to the spotlight. This chapter suggests that to maintain safety, this curve needs a
lower finite field as opposed to an elliptic curve. It is broadly acknowledged that
for most cryptographic applications dependent on a hyperelliptic curve, one needs
a gathering request of size at any proportion of 2160. In this way, HECC over
the finite field will require in any event g.log2q ≈ 2160. In specific, for genus 2
hyperelliptic curves, we will require a field Fq with |Fq| ≈ 280. Around the network,
security has been a top concern in the productivity of the network operations as the
threats arise. The digital signature is also a crucial factor for authentication on the
Internet. In this chapter, the hyperelliptic curve’s cryptosystem is acknowledged
as the best characteristic of a password scheme. Organically, the two methods
were merged to develop an HECC-Elgamal-based digital signature scheme. It was
implemented to validate the bipolar signature in identity authentication and also
evaluated the security efficiency of this strategy. This digital signature scheme
inherits two systems’ security technology to achieve a high-security index. This
ensures credibility, verification, and authentication of identity.
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Chapter 5
Pairing-Based Cryptography

Ansh Riyal, Geetansh Kumar, and Deepak Kumar Sharma

Abstract Following the patterns of the modern world, it is justifiable to say that
Data is one of the most valuable assets today. This change in perspective has resulted
in a usefulness and popularity boost to previously neglected fields like Information
security and cryptography. Cryptography, i.e. the protection of Data and messages
by converting them into a senseless/unreadable format, is an age-old concept. From
the Roman times where it was used for conveying covert battle plans between
generals in the army, to a much later time, when it was used for sending secret
messages in wars between nations, to now, when it is used to protect every strand
of data in a variety of uses from social messaging and networking sites to bank
accounts for the privacy of users and national secrets. Over the years, cryptography
has been modified countless times and yet, each form it has taken has had the sole
purpose of being nearly impossible to crack, i.e. decrypt without knowing the secret
keys.

Out of the many methods/algorithms used for Encryption, each one has unique
implementations, strengths and weaknesses. Pairing-based cryptography is one of
the best methods known to us. It takes advantage of the Diffie–Hellman approach
to make cracking the code difficult, and at the same time, it keeps computation
fast. It is based on the pairing of elements from two cryptographic groups (a set
based on/enveloping a binary operation which connects every two elements of the
group to a third). The Diffie–Hellman Key Exchange works on the assumption that
there are no secure channels, i.e. third parties (Hackers for instance) have access
to every encrypted message being communicated. There are many procedures used
for making groups and rings involved in the generation of our cryptographic groups
like the (modified) Weil pairing, the Tate-Lichtenbaum Pairing, Eta pairing and Ate
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pairing. The directions provided by the method implemented result in different sub-
problems and advantages which result in different security levels of our encryption
technique. The combination of these pros, cons and uniqueness acts as different
methodologies for the implementation of pairing-based cryptography. Although
modifications to algorithms and inventions to new approaches keep being explored
every day, the backbone of a vast majority of these implementations, however, has
the same concept.

This book chapter gives an introduction to pairing-based cryptography, the asso-
ciated mathematical concepts, definitions and procedures and associated algorithms
used for implementation. Since the main motive behind cryptography is to aid in
the field of Information Security, the fulcrum of issues faced/areas of judgement
for all encryption techniques to be implemented is the un-crackability/strength
of the algorithm used; the reverse-engineering methods for these algorithms will
also be discussed. Furthermore, there are many implementation techniques being
discovered everyday which when combined with existing algorithms have scope for
improvement in the future. Some of which are also mentioned.

Keywords Cryptography · Encryption · Decryption · Pairing-based
cryptography · Groups (mathematical) · Rings (mathematical) · Diffie–Hellman
key exchange

1 Introduction

Following the patterns of the modern world, it is justifiable to say that Data
is one of the most valuable assets today. In the world of Data and data flow
control, information security is one of the top priorities. This change in perspective
regarding the importance of data has resulted in a usefulness and popularity boost
to previously neglected fields like cryptography. Cryptography in a nutshell is the
protection of information by conversion into an unreadable/seemingly senseless
format having the property of being readably visible only to the intended recipient.
This was originally achieved by the use of a secret key mechanism: The two parties
communicating first establish a common secret agreed upon key, and then that key
is used to apply a function on the message. The message then gets converted to
unreadable formats which are sent by person A and received by person B who then
uses the key to reverse the encryption with the use of the inverse function. Since
then, secret key cryptography has come a long way, finding its implementation in
every data security system throughout the world ranging from locking files while
zipping to national security systems with usage access available only to the persons
with highest clearance.

Secret key cryptography however has a very big issue in its very core. There
needs to be an exchange of the secret key between the sender and the recipient before
messages can be sent via encryption. This means that the security of the whole
communication mechanism is dependent on the safe and error-free transmission of
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that secret key. The solution to this risk would be to have a lock and key mechanism,
i.e. a set of keys which make sense only when used in combination with one another.
The encryption key would encrypt the data like a lock, and the decryption key would
decrypt the encrypted message like a key. It stands to reason that with the existence
of such a mechanism, the private key is the fulcrum of safety. Thus for the sake of
convenience, public key can be open for everyone, i.e. anyone who wants to send a
message can use the encryption key that is available freely. The corresponding secret
key will however only be available to the recipient. This is the exact mechanism used
in public key cryptography.

Even though the idea of public key cryptography is a big hit, it is neither easy nor
perfect. The biggest concern with public key cryptography was the generation of a
public–private key pair which can ensure a safe data transfer pathway. The imple-
mentations of these concepts are rooted deeply into group/discrete mathematics
under the concept of pairings. Implementation of different varieties are based on the
various pairings defined in the set-up of our PBC-based system. These approaches
are described later on in the chapter. Before that, the explanations of the discrete
mathematics concepts used are very important.

2 Mathematical Terms and Concepts Used

The field of cryptography, and by extension Information Security, has deeply buried
roots in the field of mathematics. The procedure of converting secret messages
into unreadable format and their subsequent unauthorised decryption (unauthorised:
without the access to the secret key) has been analysed and evaluated by the use
of mathematical tools. This promoted the counter usage of mathematics in the
overcoming of corresponding shortcomings to form an adversarial set-up. As the
current scenario stands, every encryption technique in use either stems from or is
heavily dependent on mathematical functionalities, understanding which lays the
groundwork for understanding said cryptographic concepts and implementations.
The real meaning of these terms however is not very clearly understood when placed
out of context and thus is advised to be referenced when going through the main text
encounters the said mathematical term.

2.1 Random Oracle

An RO is a conceptually ideal black box that acts as a randomised key-value
generator which generates a uniformly distributed random output for every query
that it takes as input. Two different queries never end up with the same output, and
using the same query multiple times results in the same output. The implementation
of this idealisation has not been a 100% possible, but there are a multitude of hashing
mechanisms which offer a big realisation of the theory.
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2.2 Symmetric Encryption

Symmetric encryption (SE) is the usage of a single key for all subparts of the
procedure of cryptography of messages. The key, often called secret key, is
transferred over safe channels between the communicating authorities along with
the knowledge of its usage. The key is self-reversing and can be thus applied in a
similar manner by both the sender and the receiver. Some consider the relying on
safe transfer of a secret key to be the biggest flaw of symmetric encryption, but
the implementation is simpler and faster than its modern counterpart and is thus
preferred when the data to be transferred is very huge, especially if the safety of
initial key exchange can be ensured.

2.3 Asymmetric Encryption

Asymmetric encryption (ASE) is the replacement for single secret key cryptography.
ASE relies on a pair of keys, which divide the process of cryptography according
to the two focal points of encryption and decryption. ASE comes in contrast to
the previously prevalent SE and is considered to be a near ideal solution to the
drawbacks presented by its previously used counterpart. Asymmetric key encryption
is a widely explored field with multitudes of implementations available offering a
wide variety of safety to speed ratios.

2.4 Public Key Encryption

Public key encryption is the implementation of asymmetric encryption which
uses the existence of a pair of keys to make the encryption part of cryptography
very convenient by making one key accessible to everyone while not sharing its
counterpart to anyone. It is based on ignoring the security of a channel as a
countermeasure to the increase in hacking skills observed.

2.5 Subexponential Algorithm

A subexponential algorithm is a comparative term used to denote any computational
algorithm which has a time complexity that grows slower than bx (base: b(>1) and
no. of bits: x).
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2.6 ECDLP (EC Discrete Logarithm Problem)

EC discrete logarithm problem says that given two points P and Q belonging to an
EC E defined over a finite field Fq, we have to find an integer a (if it exists) such
that Q = aP.

ECDLP is the bedrock of ECC and pairing-based cryptography. There are always
new techniques being developed with the goal to bring the algorithm to solve
the ECDLP to a subexponential algorithm, but no definitive technique has been
developed yet. This is the reason ECC is considered state of the art.

2.7 Key Escrow

Splitting components of a single key into parts were viewed with scepticism
due to the poor transmission environments and corresponding dangers to loss of
information. To solve this, a database of key pairs is stored within a trusted central
authority so that the keys can be accessed by an authorised third party in special
circumstances. This database is called Key escrow.

2.8 Turing Machine

Turing machine is an abstract machine that models a computer algorithm. It is a
hypothetical black box that generates/manipulates an infinite length tape on the basis
of a set of rules. In terms of mathematics and cryptography, a turing machine can
model/stimulate any computer algorithm, and a turing machine can be constructed
for any algorithm [1].

2.9 Elliptic Curves

Elliptic curves (abbreviation: EC) by definition are smooth curves of degree 3
defined over a Finite Field F offering parameters a,b,c,d,e,f,g,h,i,j to satisfy the 3
degree EC.

f (x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + f xy + gy2 + hx + iy + j

(5.1)

The set of points that come under an EC satisfy the above equation defined over
a fixed Finite Field F.
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Apart from the generalised equation, there is a set of equations of ECs that are
used in cryptography, known as Weierstrass Equation:

y2 = x3 + Ax + B (5.2)

where A and B are the defining constants for our curve.

2.10 Jacobian of Hyper ECs

In the case of hyper ECs, there is no direct way of providing a group to the curve
defined over Fq with embedding k. Instead, we introduce different objects related
to the curve which when paired with each field extension k of Fq associates a group
called the Jacobian of hyper ECs (Fig. 5.1).

.5 -0.5 0.5 1.5-1 0

-2

2

4

6

-4

-6

1 2

Fig. 5.1 Hyper EC y2 = x5 + x4 + 4x3 + 4x2 + 3x + 3 (genus = 2)
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2.11 Group [2]

Groups are symmetric algebraic structures which are basically sets combined
with/equipped with binary operations (applied on the group and also having the final
results in those groups) in a way such that the four conditions (called group axioms)
are satisfied, i.e. the set must be closed, associative, has identity and corresponding
inverses for every element.

Based on their utility, groups are selected in such a way that they perform specific
operations of utility only, and those operations sometimes give the group-associated
terminologies called notations. For example in ECs, we use some groups to perform
addition on 2 points on the curve, thus getting the terminology of additive notations.

2.12 Field [3, 4]

A field is a fundamental algebraic structure having addition, subtraction, multipli-
cation and division defined and acting in the same manner as with rational/real
numbers.

Apart from these basic requirements, fields also must be closed, associative,
having an identity under addition and multiplication and have corresponding inverse
elements. Apart from this, multiplication must also be distributable over addition.
These properties are often automatically satisfied when using classic sets (real
number sets, rational number sets, etc.) but have to be defined for unique sets for
mathematically defined theorems to be applied over them.

2.13 Finite Field

A finite field can be explained as a set of positive numbers within which each
calculation must fall. In general, this acts as a range of numbers with any outliers
wrapped around to make them ultimately fall within the range [5].

Finite fields have a set of pre-definitions/properties which have been proved
through various higher-order mathematical methods.

Theoretically for every finite field, a number t exists having Σ t equals 0, i.e.

1 + 1 + 1 . . . .1 = 0.

There are many such numbers within a finite field, and the first number which
follows this property t must belong to set of prime numbers P′′ and is defined as
characteristic of the field. The modulus(mod) to a number operation used as the
fulcrum to modular mathematics is also an example of a finite field. Any operation
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Fig. 5.2 Finite field graph of EC over F59 (mod 60)

on the members of the set results in a result which is then modded w.r.t. the number
n. This finite field is represented with the (n − 1)th number in subscript, i.e. Fn − 1

For example, on making the finite field as modulo 35, and all the results have to
yield a result between 0 and 34. An operator of addition (+) on 20 and 30 gives 50
(mod 35) which results in 15, so according to modular mathematics, 20 + 30 = 15
(mod 35) or F34

In cryptography (especially PBC), we extensively use ECs, which are defined
over (wrapped around and operate on) a finite field (Fig. 5.2).

2.14 Diffie–Hellman Key Exchange and the Problem

Diffie–Hellman algorithm is a key exchange algorithm which is used for securely
exchanging keys over public communication channels [6–8]. The algorithm does
not actually share keys but rather compute a secret key using which is identical for
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both the sender and the receiver. In this section first the algorithm will be explained
and then the problems related to it with respect to pairing-based cryptography.

abbreviations: private key → PRK, public key → PBK , secret key → SK
It is an asymmetric algorithm which is used in symmetric key cryptography [9].

In this key exchange technique we have two known numbers publicly q and Pr;
Pr acts as the primitive root of the prime number q, and q is a prime number. A
primitive root of a prime number is a number whose power from 1 to p-1 modulo
p generates all numbers from 1 to p-1. Suppose there are two users A and B. Now
A randomly decides its PVK let us say Sa given that Sa < q, and then calculates
its PBK let us say Pa where Pa = (PR)Sa mod q. Similarity B also independently
decides its PVK Sb and calculates its PBK Pb = (PR)Sb mod q. Now each user
makes its PBK available to other user and keeps the PVK with itself. Now both the
users compute the secret key ‘k’ individually, for A, k = (Pb)Sa mod q and for B,
k = (Pa)Sb mod q. This SK comes to be identical for both the users, and now the key
is exchanged by computation separately on both sides. The proof of why the SK ‘k’
come out to be identical is given as follows:

Notations:
A,B: Users
q: prime number; Pr: Primitive root of this prime number
Sa, Sb: PVKs of A and B, respectively
Pa, Pb: PBKs of A and B, respectively

k = (Pb)Sa (mod q) → (calculated by A)

= ( (PR)Sb (mod q)
)Sa

(mod q)

by using rules of modulo arithmetic:

k = ((PR)Sb
)Sa

(mod q)

= (PR)Sb∗Sa (mod q)

= ( (PR)Sa
)Sb

(mod q)

using rules of modulo arithmetic

k = ( (Pr)Sa (mod q)
)Sb

(mod q)

k = (Pb)Sb mod q → (which was calculated by B)

The key exchange is based on DHP, the basic idea of DHP is that the mathemati-
cal calculations and operations are fast to compute, but it is very hard to perform
the reverse of this process. Thus it is easy to perform encryption but very hard
to reverse-engineer the computations. Since it is so hard to reverse-engineer the
key exchange, it is hard for hackers to break the systems which contain the Diffie–
Hellman problem. In this we assume that the problem cannot be solved efficiently.
Diffie–Hellman is considered to be secure from hackers for if the finite cyclic group
and the generator are chosen properly. If the group is large enough then it will be
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Fig. 5.3 Basic flow of Diffie–Hellman Key Exchange

really difficult to find generator to the power of both private keys multiplied. Hence
with proper group size, Diffie–Hellman is secure and hard to break down (Fig. 5.3).

2.15 Miller’s Algorithm

Miller’s algorithm is used to map points of an EC to an element of a finite field.
Miller’s algorithm is basically a ‘double and add’-based approach. Suppose we have
two points ‘a’ and ‘b’, then miller’s algorithm will calculate a value f (a, b) for a
particular element inside [10] the given finite field (where f is the function denoting
the algorithm).

Below is the very basic loop of Miller’s algorithm for better understanding [11]
(here ‘[2]T is written as 2.T’ for clarity):

Input: Two different P and Q on the EC E, i.e. P(∈E[r]) ! = Q(∈E[r]) and a
value s (∈N)

Output : fs,p(Q)

The algorithm: We take is equal to the summation of sj2j where j varies from 0
to L with sj as 1 or 0 and sj is equal to 1. Value of P is assigned to T and f = 1. Then
we loop through j = L-1 to j = 0, following are the contents of the loop: f = f2.
IT, T (Q)/V[2]T (Q), also T = 2.T. Check if sj is equal to 1, then f = f. IT, T (Q)/VT ⊕ P

and T = (T convolution with P). At the end of the function, we return the value of f.
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One of the main properties of Miller’s algorithm is bilinearity and hence is highly
used in pairing-based cryptography.

2.16 Elliptic Curve Cryptography (ECC) over R

Extending from RSA using modular arithmetic, EC arithmetic has been used in mul-
tiple public key cryptosystems. Many cryptosystems which have been traditionally
working with modular arithmetic, such as DSA and Diffie–Hellman, have an EC
counterpart.

ECs are curves of the form:

y2 = x3 − ax + b (5.3)

which is also called the ‘short Weierstrass form’, and is the general form to talk
about ECs (Fig. 5.4).

The other form of EC which can be brought about in discussing is the ‘Edward
form’:

x2 + y2 = 1 + dx2y2 (5.4)

This is used to ‘sign’ data in a manner that third parties can authenticate the
signature of the signer since the private key can only be created by the signer.

-0.5 0.5 1.5-1.5 -1 0

2

-2

-4

4

1 2 2.

Fig. 5.4 EC y2 = x3 + 2x + 5
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ECs have several useful properties which makes it usable for bitcoin: these can
be studied by plotting the Weierstrass form on the graph.

Two important properties of ECDSA are used to generate repetitive addition and
multiplication, those properties being point addition and point doubling.

3 Pairings and Different Pairing Methods

Pairing-based cryptography, as we know, is supposed to act on two keys: one public
and one private. When these two come together, we are able to map the combination
to the lock.

The mathematical equivalent of this notion is the usage of two additive notation
groups: G1 and G2 and one multiplicative notation group GT all three of prime order
p.

A pairing E is defined as a map between G1 × G2 → GT i.e. E(P1,P2) P1 ∈ G1;
P2 ∈ G2 if it satisfies the following properties:

(a) Bilinearity: Bilinearity is the distributive property variant of groups, espe-
cially with ECs:

e(P + Q,R) = e(P,R) × e(Q,R) and e(P,Q + R) = e(P,Q) × e(P,R)

By extension, bilinearity also means that for two constants a and b,

e ([a]P1, [b]P2) = e(P1, P2)
ab (5.5)

where [x]P refers to x times addition of P with itself
(b) Non-Degeneracy: For every P1 there exists some p2 such that e(P1,P2) !

= 1(GT )
Degeneracy is the property of getting reduced to the identity of a set, which (in

our case) makes any repeated addition meaningless on the right-hand side of Eq.
3.1.

With PBC, an EC mapping is said to be non-degenerate if:
If P1 ! = 0(G1) and P2 ! = 0(G2), then

e (P2, P2)! = 1 (GT ) (5.6)

where 0(G) refers to the identity element of an additive group and 1(G) refers to the
identity element of a multiplicative group.

In cryptography, apart from the formal requirements of pairings, the curves are
selected in such a way as to reduce the computation time and to make it near
impossible to inverse. Both of these side properties are fulfilled by ECs (explained
above).

In general, a bilinear environment is defined with the use of seven components:
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(p,G1,G2,GT , P1, P2, E )

3.1 Weil Pairing

Weil Pairing was defined by Simone Adolphine Weil as a debut effort into the world
of pairings, and even though it no longer has any practical relevance, Weil pairing
and Tate pairings serve as the basis for understanding, constructing, modifying and
improving other pairings.

Theorem: let there be an EC called E being defined over a finite field K, let r be
an integer (greater than 1 and prime to characteristics of field K) and let P and Q be
two points of r-torsion on E.

Then, ew,r = (−1)rx
(
fr,p(Q)

)
/
(
Fr,q(P )

)
(5.7)

is well defined for P ! = Q and P, Q ! = OE.
The points of discontinuity can be handled to cover the domain E[r] x E[r] by

selecting the bilinear environment in such a way that ew, r(P,OE) = ew, r(OE,Q) = e
w, r(P,P) = 1

This pairing obtained by extending ew, r over the domain to get E[r] x E[r] → ur

is called Weil Pairing.
Weil pairing is alternate, i.e.

ew,r (P,Q) = (ew,r (Q, P )
)−1 (5.8)

Since Weil pairing is defined over any field K (characteristic prime to r),
E[r] x E[r] → ur, ur is a subset of ~K. Since K is a finite field, for cryptography,
we assume K = Fq (for some prime number q). Now, ~K = Fqk is defined for
the minimum value of integer k such that ur is a subset of Fqk and k is called the
embedding degree of the EC.

From the above relation, we can also say that qk = 1 (mod r).

3.2 Tate-Lichtenbaum Pairing

The Tate-Lichtenbaum pairing was introduced by Tate by his duality pairings and
was later extended by Lichtenbaum.

Like Weil pairing, Tate-Lichtenbaum pairing (or simply Tate pairing) was
introduced into the world of cryptography as a debut mechanism for the introduction
of duality-based pairings and holds very little practical usage. The concept of duality
pairings introduced by Tate was however adopted and improved in successive
attempts at pairings [12–16].
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Theorem: let there be E (an EC), r (a prime number dividing the order of E(Fq)),
P (a point of r torsion defined over Fqk (P ∈ E[r](Fqk)) ) and Q (a point of the EC
defined over Fqk (Q ∈ E(Fqk)) ).

A point R is selected from E(Fqk) such that neither R nor Q + R is equal to P
or Oe, Then,

eT ,r (P,Q) = (fr,P (Q + R) /fr,P (R)
)((qˆk−1)/r) (5.9)

is well defined and independent of R and the pairing:

E [r]
(
Fqk

) ∗ E(Fqk)
rE(Fqk)

→ ur

(
or (P,Q) → ET,r (P,Q)

)
is called Tate pairing.

For a cryptographic system, the value of r is sufficiently high (as r is a large
prime number) so that there are no points of r2 - torsion in E(Fqk) as embedding k
(the smallest possible) is found to be much smaller than required to make the EC
defined over finite field Fqk has r2 torsion points.

Thus such a Tate pairing restricted over r-torsion points is also non-degenerate.
Since there is only one restriction on the selection of R, for practi-

cal purposes, we can select R = OE and thus the pairing gets reduced
to eT, r(P,Q) = (fr, P(Q)((q ˆ k − 1)/r), then we can apply fast exponential algorithm to
do the final exponential.

3.3 Hyperelliptic Tate-Lichtenbaum Pairing [12, 17]

In practical application, with the freedom of selecting R in Tate pairing combined
with efficient exponential algorithms, it was observed that Tate pairing takes half the
computational time as compared to Weil pairing, so for an efficient implementation,
modifications to the Tate pairing were made.

Hyperelliptic curves are generally represented in the form Y2 + M(x)y = N(x).
Here, M(x) and N(x) are polynomials with their coefficients in field Fq with

degree of M(x) < = genus of hyperelliptic curve and degree of N(x) = 2 x genus + 1
Using the Jacobian of hyperelliptical curves in place of direct groups as in the

case of ECs was one such suggestion originally given by Koblitz and subsequently
combined with existing pairings.

Hyperelliptic Tate-Lichtenbaum pairing is a class of very new pairings being
defined over a large experimental set of hyperelliptic curves like y2 = xp − x + d
(in characteristic p) to give rise to a class of hyperelliptic curves which show better
encryption and decryption speeds and more cumbersome addition operations in a
constrained atmosphere due to the small genus size making hyperelliptic curves a
very viable option for researchers to explore.
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3.4 Eta Pairing

In Tate pairing, the length of the Miller’s loop determines the speed of the pairing
taking place. So in Eta pairing that is exactly what we are trying to reduce, i.e. the
length of Miller’s loop.

In Duursma and Lee [18], the author introduced some findings and techniques
which laid the ground stone for the development of Eta Pairing [19]. In other words,
we can say that Eta pairing combines or generalises the outcome of Duursma and
Lee for Supersingular curves. So in this section we will talk about the findings of
Duursma–Lee and on the basics of Eta pairing. Duursma–Lee techniques provided
considerable enhancement to the computation for the curves of type

y2 = xp − x + d (5.10)

applied on fqk where q is taken as greater than or equal to 3 (q > =3) and gcd of k
and 2q = 1. Using the value pmp + 1, with hamming weight = 2 (base q), instead of
r is one of the critical features of the Duursma–Lee technique. The final exponent is

raised to the power q2kq−1
qqk+1

= qkq − 1, which if we say in words is just performing
a division and calculating a Frobenius [11]. This simplifies the central part of the
Miller’s algorithm but by sacrificing the number of iterations. One of the major
benefits of Duursma–Lee was they showed that the iterations can be lowered to m
iterations only from mp.

One of the ways to define Eta pairing given by Barreto et al. is the following:
Definition
Eta pairing can be defined as the relationship ηT(D,D ) = fT, D(ψ(D )), where

T belongs to Z. The equation using points P,Q is as follows:

ηT (P,Q) = ηT ((P ) − (∞) , (Q) − (∞)) . (5.11)

The main goal is to take values of T such that N is greater than T. This definition
is basically a generalisation of the idea for shortening the loop.

If we summarise Duursma–Lee, there are a few major independent contributions
we can list out; three of them are the following:

1. Introduced the use of degenerate divisors instead of simply general divisors;
2. Shortening of the loop for certain group orders;
3. Introducing Frobenius operations directly into the formulae.

Eta pairing is basically a generalisation of these which results in a simpler and
unified approach.
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3.5 Ate Pairing

Ate pairing is one of the fastest technique available to us today. It is called Ate
pairing because it is very similar to Eta pairing, but the order of arguments is
reversed as compared to Eta pairing and also if we notice Ate is exactly spelled
backwards of Eta [20]. It is like Tate pairing as well but obviously a much more
improved version and faster, so the ‘T’ is absent in Ate.

Ate pairing has similar aim as Eta pairing, i.e. to reduce the length of the loop and
make the pairing faster. Ate pairing can be applied to ECs as well as hyperelliptic
curves [21]. Thus, generalising Ate pairing for most of the ordinary curves. Ate
pairing abbreviates the range of Miller’s loop, and it is dependent on the value of
Frobenius t modulo r (where the order is taken as r for the subgroup). There are
certain pairing friendly ECs in which the value of t can be as low as r1/φk (where
k is the embedding degree). The best forms of Ate pairing have the Miller’s loop
range as worst-case scenario to be log2(r/φ(k)). We get the most efficient results
when (t − 1) mod r has a very low value.

If we generalise the optimal ate pairings, Miller’s loop has the lower bound
of r1/φk and ultimately helps in faster computation .The optimal Ate and twisted
optimal Ate pairing are faster than or as fast as the Tate pairing in any conditions.
Hence, Ate pairing is the fastest pairing we have as of now.

4 Drawbacks/Vulnerabilities of PBC

Security of modern cryptosystems is based on their mathematical implementations.
A good cryptosystem is created in a way such that illegally breaking the encryption
theoretically takes the same time as a serial exhaustive search of all possible
combinations and thus is computationally expensive [22–25]. The time graph of a
modern cryptosystem grows exponentially with length of the encryption keys. Thus
reverse engineering of pairings is also based on their mathematical implementations.

Pairing-based cryptography emerged as a system which decreases the bit size
needed while maintaining the security offered by ECs. This notion, however, is a
little misleading. ECC is defined over the base finite field Fq and so its parameters
have size O(log(q)) bits; however, PBC is defined over the extension of the field FqK
and thus its members have the parameters of bit order O(klog(q)).

This means that PBC security will depend directly on the intractable levels
(finding the complete key pair given one-half and final transmitted message) either
on the ECDLP of Fq or DLP of FqK. This is the point of inconsistency as ensuring
the immunity of Weil and Tate pairings needs the embedding degree k to be large
(>20) but that takes away the small bit size computation time advantage by a large
factor [26].

The way PBC works in implementation is by the use of a master key which
generates the user’s private keys. This generation is done with the help of a central
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trusted agency. These central agencies handle a large number of users and are
practically very few in number. So, for any system, theoretically each user’s private
key is not truly exclusive and this fact can be exploited [26].

The biggest implementation of pairing-based cryptography is found in identity-
based encryption which uses a public key (derived from the user identity). This
combined with the pseudo-exclusivity of generated keys in a system can also be
exploited as is the case with a subclass of side channel attacks [27].

The usage of pairing keys in cryptography often increases the collision probabil-
ity and thus the birthday paradox gets a special boost in the mathematics of theory
of probability. A branch of brute force attacks focusing on the collision of keys in
a network called Birthday attacks are also statistically very dangerous to pairing-
based cryptography systems [28–30].

Weil and Tate pairings have a specific weakness because of their simplistic
structure. Because of the generation of additive (and multiplicative points) of point
P belonging to Group, and the hinging of security on finding them, these systems
can convert the discrete logarithm problem on ECs to discrete logarithm problem on
finite fields where subexponential attacks are extensively researched and discovered.
A class of attacks called theMOV attacks utilise this weakness by taking a point Q of
the same order as P such that no n exists such that Q = nP (i.e. linearly independent
of P). By doing so, we can calculate e(P,Q) and e([x]P,Q) (=e(P,Q)x) since they
are both mth roots of unity and members of the field. Since P and Q are linearly
independent, the non-degeneracy of the Weil pairing dictates that e(P,Q) cannot be
unity. Thus DLP on EC is reduced to DLP on finite fields [31–33].

Hyperelliptic Tate works on the Jacobian of Hyperelliptic curves instead of a
curve defined over Fq and thus some of the computational requirements are different
and curve-dependant in the case of hyperelliptic Tate and thus sometimes do not
display the advantages of other pairing methods being implemented.

Eta and Ate have been designed to take care of the weaknesses of Weil and Tate
pairing and thus do not have many specific weaknesses.

5 Security of Pairing-Based Cryptography

Security is the most important aspect of pairing-based cryptography since the main
objective of cryptography is safety of information from the intruders. So, it becomes
increasingly important that the technique we are using for encryption and decryption
is also secure in itself. The safety of pairing-based cryptography techniques depends
on the fact that the reverse engineering of the methods used is very difficult to
figure out to crack the cryptosystem [34]. Since pairing-based techniques cannot
be cracked, so, we focus on other kinds of attacks that can be used against these
kinds of systems, and these attacks are called physical attacks.

Physical attacks include techniques like electromagnetic waves, power, clock
pulses, timing, and using change in temperature. Physical attacks are further divided
into two major parts called side channel analysis and fault attacks. These two attacks
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are further divided into more subsections [27]. In this section, we will take up these
attacks one-by-one and give a brief description about how they are used to alter
or break the cryptography system. Since we have already stressed enough on the
importance of Miller’s algorithm, so, most of the attacks are focused to disrupt the
Miller’s algorithm.

5.1 Fault Attacks

In this class of attacks, we mainly focus on disrupting the algorithm first and then
retrieving the information. The basic idea of fault attack is to introduce some errors
in the code which can eventually lead to leak of some sensitive information. Also
the hackers can change the source code as well which can help them identify some
of the key values of the cryptosystem. Fault attacks are performed with various
techniques such as errors in clock pulse and electromagnetic pulses. We will give a
brief overview of a few fault attacks here (Fig. 5.5).

5.1.1 Fault against Duursma–Lee

Since Duursma–Lee techniques hold high importance in eta and ate pairing, attacks
against it have been developed. The fault attack on Duursma–Lee is done by altering
the number of times the algorithm is executed. Some assumptions are in order to
perform this attack; some of which are given below:

1. Pairing is done publicly.
2. Constant input parameters are taken.
3. Two computations are done.

Using the results of these two computations, the secret is calculated.

Fig. 5.5 Basic fault attack mechanism
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5.1.2 Attacks against the Miller’s Algorithm

As mentioned earlier, Miller’s algorithm plays one of the most crucial parts in
pairing-based cryptography and that is why many attacks have been proposed for
it. There are two major ways in which fault attacks can be implemented against the
Miller’s algorithm. First is by trying to determine the no. of repetitions implemented
in the Miller’s loop, this can be achieved by keeping track of the timing and
after some information can be retrieved. Second is somewhat similar to what we
did against the Duursma–Lee techniques by performing two computations, one
authentic and one with the fault, and then use the results of these to get the secret.
In this method we do not alter the number of iterations; rather we inject fault in
Miller’s variables.

5.2 Side Channel Analysis

Second type of attack is the side channel analysis or the study of side channel
information which is leaked at times. Side channel information can be defined
as the information which is leaked due to certain physical characteristics of the
cryptosystem or certain physical faults in the circuit (either design or some faulty
component). Here we will discuss two types of side channel analysis.

5.2.1 Timing Attacks

Timing attack is one of the oldest known side channel analysis techniques. This is
primarily based upon the idea that the circuit behaves differently and shows various
patterns depending upon certain inputs (sensitive information). Due to the timing
attack, we can tell which kind of operation is being executed.

5.2.2 Power Analysis

In power analysis, first we take two basic assumptions: first, that the attackers
know the type of algorithms and techniques available, and second, public key
cryptography is implemented. Now since we know what kind of algorithms are
present, one can try to figure out patterns and variations by analysing power
consumption, electromagnetic waves or execution traces of the machine.

One of the main points and a drawback of side channel analysis is that in
order to implement it, we need to place the device on the circuit, transistor or any
other component of the cryptosystem in order to get the information required for
performing side channel analysis.
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6 Functional Encryption and its Impact on Cryptography

Functional encryption (FE) is the conceptual generalisation of the concept of PBC
and public key cryptography. FE’s mathematical definition is very similar to that
of public key cryptography, but in an abstracted manner, FE is the usage of some
mathematical function to generate a pair of interrelated keys which are used to
lock and unlock the encryption of mechanism of a cryptography system. One
of the fulcrum points of the generation of these keys is the lack of interrelation
between them. The pair of keys are generated and related in such a way that even
though both combine to form the encryption mechanism and thus have mathematical
cooperation, there is no interrelation through which one can be derived from the
other. FE revolutionized encryption standards, offering ease of usage (by making
the public key free for all), while increasing security (by eliminating the need to
share the second part of the puzzle) [35].

Functional encryptions are defined with a ‘functionality’ at its centre which
is basically a deterministic turing machine mapping a function between two sets
(generally groups).

FE is still far from developed and has realisation problems ranging from con-
structing robust environments for integration with existing set-ups to constructing
secure functional encryption schemes for all polynomial time predicates. These
areas of research however are not all drawbacks; in reality, FE has a huge scope
for improvement. For example, the fulcrum of functional encryption, i.e. the
functionality which maps sets of points by a turing machine can be converted
into a cleartext model (decision tree), but the challenge/scope for improvement is
to make one in a way that reveals nothing about the real data. Other scopes for
improvement include figuring out the correlation between functionalities so as to
create black boxes to separate them and thus avoid the collision problems observed
with functionalities [36].

With the introduction of functional encryption, we are no longer dependant on
designing direct operations on transmission data, and introduction of division and
subdivision with abstracted correlation among both sides of a mapping gives us a
very amicable way of increasing computational complexity of unauthorised access
while reducing the time taken for internal computation (by compartmentalisation).

7 Conclusion and Future Advancements

Pairing-based cryptography is one of the best implementations of functional encryp-
tion, and the advancement of it will only lead to betterment of functional encryption
in general. In recent years, pairing-based cryptography has grabbed a lot of attention
in the research field. Pairing-based cryptography because of its novel properties
improved the cryptosystems significantly and made things possible which were
really difficult to implement before the introduction of pairings. There are various
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types of pairing techniques available to us in the present day [37–40]; some of which
have been mentioned in this chapter. With time and more research the cryptography
community has developed better pairing techniques as well. Even though pairing-
based cryptography is very effective and secure, it is still vulnerable to some kinds to
physical attacks and techniques (such as fault attacks and side channel), but counter
measures to some of these attacks are available as well, and it is hard to implement
these kinds of attacks in a secure environment. Many major companies have adopted
pairing-based cryptography, and its commercial importance is growing rapidly.

Although it is a very fast-growing field, there are still things that can be improved
or introduced to make pairing-based cryptography better. Counter measures to more
attacks should be devised to make the cryptosystems much secure since it should be
taken care first in order to protect the information. Less expensive cryptosystems or
circuits can be developed. With further research more drawbacks are introduced, but
the advantages outweigh the disadvantages and hence with more research the future
of pairing-based cryptography looks very bright.
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Chapter 6
NTRU Algorithm: Nth Degree Truncated
Polynomial Ring Units

Afsar Kamal, Khaleel Ahmad, Rosilah Hassan, and Khujamatov Khalim

Abstract NTRU is a public key cryptosystem designed over a polynomial ring. It is
based on the polynomial algebra. NTRU operations are based on addition, modular
inverse, convolutional product, etc. The modular inverse plays an important role
in generating the public/private keys. It provides low memory use and high speed
compared to other cryptosystems. It is a lattice-based shortest vector problem. Its
security is based on the product of polynomials and reducing the coefficients using
two co-prime numbers p and q. Its smallest key size grants it better performance over
other numerical based cryptosystems. It is the first asymmetric cryptosystem that is
independent of the discrete algorithmic problem (ECC and Elgamal cryptosystem)
or factorization (RSA cryptosystem).

Keywords NTRU cryptosystem · Lattice · Polynomial · Modular inverse ·
Convolutional multiplication · Low-Hamming-weight product

1 Introduction

The origin of the word “cryptography” comes from the Greek words “Kryptos
and Graphein” which means hiding and writing, respectively. It was used for the
first time by Spartans for sending secret messages to the military operations dated
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back as 400 BC. The latest cryptography is based on the mathematics on computer
science designed to make the hard computational process such that no adversary can
break the secret communication. In this modern era, the quantum computer is able
to break any cryptosystem that is based on integer factorization or discrete logarithm
problem in polynomial time. It can affect the most commonly used asymmetric key
cryptosystem such as RSA, DSA, and ECC. RSA is the most familiar which was first
described in 1977. Cryptography algorithms have the purpose of altering in a way
that just trusted users may access the keys to read transmitted data. Cryptography
techniques are categorized into private and public as well [1–3].

The public key cryptosystem uses different keys for encryption and decryption
processes. It is different from a private key cryptosystem that has only one key for
encryption and decryption. In public key cryptosystems, the sender first encrypts
his/her messages using the receiver’s public key and then forwards it to the recipient.
After receiving the message, the recipient decrypts the messages using his/her
private key to extract the original message. This cryptosystem is very powerful,
gives more flexibility, is very different from LUC cryptosystem which is based on
Lucas functions [4], is a special form of second-order linear recurrence relation, and
uses a public key for encryption and a private key for decryption [5], as well as a
large public integer as a modulus [6]; RSA cryptosystem depends on the integer
factorization problem [7], and Elgamal cryptosystem is based on discrete logarithm
problem [7].

NTRU asymmetric key cryptosystem was developed in 1996 by three professors
J. Hoffstein, J. Pipher, and J. H. Silverman from the mathematics department of
Brown University in the United States [6]. It is a fully safe and secure cryptosystem
against any known and unknown attacks. It can resist the attacks against the quantum
calculation while ECC and RSA cannot. It is very fast and unaffected by quantum
computers which represent the powerhouses of the computer world, and which
outperform all the other classes and mainly silicon computers [8]. The institution of
NTRU declared the speed of this algorithm to be 200 times faster than other public
key cryptosystems and it is widely used for the safety of wireless communication.
Additionally, the smaller key size O(N) for the message block of length N makes
the system attractive and smart. It is named on the abbreviation for “Nth Degree
Truncated Polynomial Ring” and is also called “Number Theory Research Unit.” It
requires only O(N2) time to encrypt/decrypt the message block of length N while
RSA takes O(N3) time. It fulfills the IEEE standard as P1363 under the lattice-
based cryptography (IEEE P1363.1). It is already accepted by many institutions
such as the IEEE 802.15.3, IETF (Internet Engineering Task Force), and CEES
(Consortium for Efficient Embedded Security) [9]. It is easy for coding and building
into the hardware. It takes a little bit of memory for the software and fewer gates for
hardware. It is easily embedded in the cellular phone, smart card with low power
and low cost, radio-frequency identification device (RFID) and handheld devices,
etc. Table 6.1 concludes the complexity of the NTRU algorithm.
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Table 6.1 Complexity Block of original message in bits Nlog2(p)
Message expansion Logp q-to-1
Public key size in bits Nlog2(q)
Block of encrypted message in bits Nlog2(q)
Encryption speed O(N2)
Private key size 2Nlog2(p)
Decryption speed O(N2)

2 NTRU Cryptosystem

The NTRU cryptosystem is defined by the following symbols and mathematical
notations which are used in encryption, decryption, and key generation process.

2.1 Symbols and Notations

Symbols Descriptions

fp Polynomial inverse of f(y) modulo p
fq Polynomial inverse of f(y) modulo q
Pk Public key
Msg Original message (polynomial set in ring R having coefficients between –(p – 1)/2

and (p – 1)/2
f(y) Private key (polynomial set in ring R having coefficients 1 s > −1 s
g(y) Generator polynomial set in ring R having equal coefficients 1 s = −1 s
r(y) Blinding message (polynomial set in ring R having equal coefficients 1 s = −1 s
Me Encrypted message
Md Decrypted message
Md1 Partially decrypted message 1
Md2 Partially decrypted message 2

The whole operation in this cryptosystem is based on a truncated polynomial
ring:

R = Z[Y]/(YN-1).
The polynomial in this ring includes only integer coefficients having the highest

degree N-1:

a = a0 + a1Y + a2Y
2 + a3Y

3 + a4Y
4 + a5Y

5 + · · · + aN−3Y
N−3

+ aN−2Y
N−2 + aN−1Y

N−1

=
N−1∑

i=0

aiYi . . .

(6.1)
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The polynomial can be represented using the vector form as.

a = (a0, a1, a2, a3, a4, a5, . . . , aN−3, aN−2, aN−1) (6.2)

It represents the polynomial f as

f= a0+a1y+a2y
2+a3y

3+a4y
4 + a5y

5, . . . , aN−3y
N−3 + aN−2y

N−2 + aN−1y
N−1

The summation (+) of the polynomials is same as the ordinary addition while
the product of polynomials is a little bit different to the general multiplication. It is
also called convolutional multiplication, in which the highest degree is the degree
replaced by 1. YN is replaced by 1, YN + 1 by Y, YN + 2 by Y2, and so on. For
example: N = 7:

(
y5 + 5y4 + 2y3 + 8y2

) ∗ (3y4 + y2 + 2y
)

= 3y9 + 15y8 + 7y7 + 31y6 + 12y5 + 12y4 + 16y3

= 3y2 + 15y + 7 + 31y6 + 12y5 + 12y4 + 16y3

= 31y6 + 12y5 + 12y4 + 16y3 + 3y2 + 15y + 7

The operations on polynomials in the ring are calculated as follows:

a + b =
(

N−1∑

i=0

aiYi

)

+
(

N−1∑

i=0

biYi

)

=
N−1∑

i=0

(ai + bi)Yi (6.3)

a ∗ b =
(

N−1∑

i=0

aiYi

)

∗
(

N−1∑

i=0

biYi

)

=
N−1∑

i=0

⎛

⎝
∑

i+j=k(modN)

aibj

⎞

⎠Yk (6.4)

The basic modular arithmetic operation is also applied on polynomials which
have the following properties:

(amod m) ± (bmod m) = (a ± b)mod m (6.5)

(amod m) ∗ (bmod m) = (a ∗ b)mod m where (6.6)

a = (b mod m) describes that a and b both have the same remainder if they are
divided by m.

To perform the modular arithmetic operation on polynomial, the integer modulus
is used to divide each coefficient and the remainders are treated as the new coeffi-
cients. Applying a multiplication modulo (let) m means to reduce the polynomial
coefficient modulo m.
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Table 6.2 Recommended
parameters

Security levels
Parameters Highest High Standard Moderate

p 3 3 3 3
q 256 128 128 128
N 503 347 251 167

2.2 Parameters

There are three integer parameters, N, p, and q, in the NTRU algorithm. N restricts
the polynomial degree to be at most N-1. N is highly preferred to be the prime
number to improve the security while p and q are co-prime and used to decrease
the polynomial coefficients. The modulus p has to be less than modulus q, and the
modulus q is generally less than N. The recommended parameters of NTRU for
different security levels are shown in Table 6.2.

2.3 Algorithm

It describes the step-by-step procedure for the mathematical calculation to achieve
the key generation, encryption, and decryption process.

1. Select the parameters: N, p, and q.
2. Choose random polynomials: f(y) and g(y).
3. Compute the polynomial inverse: f(y) * fp = 1 mod p and f(y) * fq = 1 mod q.
4. Calculate public key: Pk = p * (fq * g(y)) (mod q).
5. Generate a blinding polynomial: r(y).
6. Convert the message into binary polynomial: m(y) or Msg.
7. Encrypt the message: Me = {r(y) * Pk + Msg} (mod q).
8. Decrypt the ciphertext as follows:

• Md1 = f(y) * Me (mod q), coefficient between –q/2 and q/2.
• Md2 = Md1 (mod p), coefficient between –p/2 and p/2.
• Final decrypted original message: Msg = fp * Md2 (mod p).

2.4 Key Generation

Two random polynomials f(y) and g(y) in a ring are chosen to generate the
public key. The integer coefficients of these two random polynomials must be in
−1 ≤ Int.Coif ≤1. The no. of 1 s coefficients in polynomial f(y) is greater than the
negative coefficients and the rest of the coefficients become 0. For the polynomial
g(y), the no. of both coefficients 1 s and -1 s should be equal and the rest 0. It does
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not need to be invertible or not by p and q [10]. The next step is to compute the
inverse of f(y) using modulo q and p with the given properties:

f (y) ∗ fq = 1mod q (6.7)

and

f (y) ∗ fp = 1mod p (6.8)

If f(y) does not have the exact inverse of modulo q and p then another polynomial
f(y) is randomly chosen that satisfies the above Eqs. (6.7) and (6.8). The pair of
polynomials f(y) and fp is treated as the private key while the public key Pk is
calculated as follows:

Pk = p ∗ (fq ∗ g (y)
)

(mod q) (6.9)

Example of a public and private key:

1. The public parameters N, p, and q are, respectively, 7, 3, and 41. The sender S
chooses a random polynomial f(y) that is the private key as

f (y) = −1 + y2 + y3 − y4 + y6 and

g (y) = −y − y2 + y4 + y6

2. Compute the inverse of a polynomial using modulo p and q that gives out the
exact inverse. Here we are using Wolfram Mathematica 10.4 for calculation:

fp = f(y)−1 (modulo p)

=
(
−1 + y2 + y3 − y4 + y6

)−1
(mod 3)

PolynomialMod[Algebra‘PolynomialPowerMod’PolynomialPowerMod[f(y), −1,
y, y7–1], 3] that gives the result as

fp = 1 + y + y2 + y3 + 2y5 + y6 and

fq = f(y)−1 (modulo q)

=
(
−1 + y2 + y3 − y4 + y6

)−1
(mod 41)

PolynomialMod[Algebra‘PolynomialPowerMod’PolynomialPowerMod[f(y), −1,
y, y7–1], 41] that gives the result as



6 NTRU Algorithm: Nth Degree Truncated Polynomial Ring Units 109

fq = 32 + 2y + 40y2 + 21y3 + 31y4 + 26y5 + 8y6

3. The pair of f(y) and fp is stored as the private keys. The public key is calculated
as follows:

Pk = p ∗ (fq ∗ g (y)
)

(mod q)
= 3 ∗ {(37 + 2y + 40 y2 + 21 y3 + 31 y4 + 26 y5 + 8 y6

)

× (–y–y2 + y4 + y6
)}

(mod 41)
= 3 ∗ (–37y–39y2–42y3–24y4–50y5 + 20y6–11y7 + 63y8

+47y9 + 39y10 + 26y11 + 8y12
)
(mod 41)

= 3 ∗ (–11 + 26y + 8y2–3y3 + 2y4–42y5 + 20y6
)
(mod 41) [Truncated]

= (–33 + 78y + 24y2–9y3 + 6y4–126y5 + 60y6
)
(mod 41)

= 8 + 37y + 24y2 + 32y3 + 6y4 + 38y5 + 19y6

The computation of fq * g(y) needs N2 multiplication. If any one of them has
small coefficients, then this computation is very fast.

2.5 Encryption

The message Msg is converted into a form of polynomial in which the coefficients
must be in the range of [−(p-1)/2, (p-1)/2] and the degree should not be more than
N-1. A blinding polynomial r(y) in the ring is also chosen which has equal positive
and negative coefficients. The encrypted message Me is computed as.

Me = {r (y) ∗ Pk + Msg
}
(mod q) (6.10)

Example of encryption:

• Sender wants to send a message Msg = 1 – y + y2+ y3 – y5.
• Using a bling random polynomial r(y) = − 1 + y – y5 + y6 will give

Me =
{(

–1 + y–y5 + y6
)

∗
(
8 + 37y + 24y2 + 32y3 + 6y4

+38y5 + 19y6
)

+ Msg
}

(mod q)

=
(
–8–29y + 13y2–8y3 + 26y4–40y5–10y6 + 32y7–8y8 + 26y9–32y10

+19y11 + 19y12 + Msg
)

(mod q)

=
(
24–37y + 39y2–40y3 + 45y4–21y5–10y6 + Msg

)
(mod q) [Truncated]

=
(
24–37y + 39y2–40y3 + 45y4–21y5–10y6 + 1–y + y2 + y3–y5

)
(mod 41)

=
(
25–38y + 40y2–39y3 + 45y4–22y5–10y6

)
(mod 41)

Then Me = 25 + 3y + 40y2 + 2y3 + 4y4 + 19y5 + 31y6
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2.6 Decryption

The encrypted message Me is partially decrypted using the private key f(y) as
follows:

Md1 = f (y) ∗ Me (mod q) (6.11)

The coefficients of Md1 is centered between –q/2 and q/2. Modulo q is also
applied on the partially decrypted message Md1 to reduce the coefficients of the
polynomial to take place between –p/2 and p/2 as.

Md2 = Md1 (mod q) (6.12)

The final step is to compute the original message Msg using the other part of the
private key fp as follows:

Msg = fp ∗ Md2 (mod p) (6.13)

Example of decryption:

1. Once the encrypted Me is received, the partial decryption process starts using the
private key f(y) as the following:

Md1 = f (y) ∗ Me (mod q)

=
(
−1 + y2 + y3 − y4 + y6

)
∗
(
25 + 3y + 40y2 + 2y3 + 4y4 + 19y5 + 31y6

)

(mod 41)

=
(
−25 − 3y − 15y2 + 26y3 + 14y4 + 20y5 − 40y6 + 24y7 + 86y8

+14y9 − 27y10 + 19y11 + 31y12
)

(mod 41)

=
(
−1 + 83y − y2 − y3 + 33y4 + 51y5 − 40y6

)
(mod 41)

[
Truncated concept

]

= 40 + y + 40y2 + 40y3 + 33y4 + 10y5 + y6

2. Choosing of the coefficients lying between –q/2 and q/2 or [−20,20] modulo q is
done to obtain the partial message Md2 as mentioned below:

Md2 = Md1 (mod p)
= (40 + y + 40y2 + 40y3 + 33y4 + 10y5 + y6

)
(mod 41)

= −1 + y − y2 − y3 − 8y4 + 10y5 + y6

3. Finally, the original message Msg is calculated as follows:

Msg = fp ∗ Md2 (mod p)
= (

1 + y + y2 + y3 + 2y5 + y6
) (−1 + y − y2 − y3 − 8y4 + 10y5 + y6

)
(mod 3)

= (−1 − y2 − 2y3 − 9y4 − 2y5 + 3y6 + 2y7 + 8y8 − 16y9 + 12y10 + 12y11 + y12
)
(mod 3)

= (
1 + 8y − 17y2 + 10y3 + 3y4 − y5 − 3y6

)
(mod 3)

[
Applying truncated concept

]

= 1 + 2y + y2 + y3 − y5
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Choose the coefficients centering between [−1,1] or –p/2 and p/2. Hence, the
original message after decryption is Msg = 1 – y + y2 + y3 – y5.

2.7 Working Method

In this process, the partially decrypted message Md1 satisfies the following:

Md1 = f (y) ∗ Me (mod q)
= f (y) ∗ (r (y) ∗ Pk + Msg

)
(mod q)

[
using (10)

]

= f (y) ∗ (r (y) ∗ p ∗ (fp ∗ g (y)
)+ Msg

)
(mod q)

[
using (9)

]

= p ∗ r (y) ∗ g (y) + f (y) ∗ Msg (mod q)
[
using (8)

]

All the coefficients of the f(y), g(y), r(y), Msg, and p are much smaller than q. It
is to be ensured that the coefficients are in –q/2 and q/2. Also

Md2 = Md1 (mod p)
= (p ∗ r (y) ∗ g (y) + f (y) ∗ Msg

)
(mod p)

= (f (y) ∗ Msg
)
(mod p)

Md = fp ∗ Md2 (mod p)
= fp ∗ f (y) ∗ Msg (mod p)
= Msg (mod p)

[
using (7)

]

3 NTRU Optimization

To enhance the speed of NTRU algorithm, some optimization techniques may be
applied as follows:

1. Formation changing of p and f:
The random polynomial f(y) must be invertible by modulo q and p with small

coefficients. Hence it can be chosen in the form of f(y) = 1 + p * F(y). Here F(y)
is a random polynomial of message space with small coefficients. As described
in Eq. (6.7), f(y) should have inverse modulo p because the inverse of fp is equal
to 1. This process decreases the time complexity in key generation because there
is no need to calculate the inverse modulo p. It also saves the time in decryption
process, since there is no requirement of last step (13) to multiply fp * Md2. It
means no need to save fp as the private key [11].

2. Polynomial Form of P
p can be taken as a polynomial instead of an integer type. It needs to have

small coefficients in ring R and the principles produced by q and p must be
relatively prime. The most suitable form of polynomial p is p = 2 + Y. The
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binary polynomial [0, 1] is used for p instead of a trinary polynomial [−1, 0, 1].
It makes the encoding of messages simple to use.

3. Product of Low Hamming Weight
The highly time-consuming process in the NTRU algorithm involves a prod-

uct of r(y) * Pk and f(y) * Me to encrypt and decrypt the messages, respectively.
Low-Hamming-weight products can be used to increase the speed of encryption
and decryption. Because the private key f(y) and the bling message r(y) both have
small coefficients, the time consumptions for these product calculations may be
reduced by the low-Hamming-weight product and the following operations:

f = 1 + p (f1 ∗ f2 + f3) (6.14)

r = r1 ∗ r2 (6.15)

f1, f2, and f3 are chosen carefully to convert f = 1 + p (f1 * f2 + f3) into
pure binary polynomial. If the polynomials r1 and r2 both have equal binary
coefficients 1 s then r will also be a binary polynomial having coefficients 1 s
[12].

4 Security

The security of the NTRU algorithm comes from the mixing of polynomial
multiplication in reduction with modulo q and p. Security also depends on the
lattices wherein finding out the extremely short vector is very difficult. It is an
important step to consider gcd(q,p) = 1 rather than gcd(q,p) > 1 because it will
decrease the security level [13]. Silverman and Hoffstein provided different ways to
counter the attacks [14]:

• Repetition of key changing: Each and every time the sender uses a new public
key with a digital certificate along his/her message to the recipients verifying
the key origin. This process restricts communication via off-line and secures the
information.

• Distribution analysis of coefficient: The total number of coefficients in the
resultant polynomial p * r(y) * g(y) + f(y) * Msg lying to the range (−q/2, q/2)
is larger than usual. Hence it is easy to identify the attacker counting the number
of coefficients between the ranges.

• Failure of decryption track: Decryption failure is possible in a normal situation.
However it is different when an attack occurs. Anyone can detect the ongoing
attack and be forced to change the public key.

• Message concealing: This is useful to hide the message by adding a random
polynomial to the plain text. This process produces a different message and
misleads the attacker when optimal asymmetric encryption padding is used. It
is also able to produce errors in attack.
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5 Improvements

Many researchers tried to enhance its performance during the past 15 years and
many good alternatives were introduced based on a similar configuration of NTRU.
They are designed to enhance the performance by changing the original polynomial
ring over Z [15] and by many variant polynomial rings rather than Z. All of them
have an aim to design a secure cryptosystem like NTRU using a small key size
and provide security against lattice-based attacks [16]. P. Gaborit et al. presented a
CTRU cryptosystem in 2002 that is based on the polynomial ring over a finite field
[17]. M. Coglianes et al. introduced MaTRU in 2005 that depends on the ring of
(m × m) matrices of a polynomial on order n [18]. In 2009, the QTRU cryptosystem
was presented by Malekian et al., which depends on the quaternion algebra [19].
They have also presented OTRU in 2010 based on the octonion algebra [20]. In
the same year, NNRU was presented by Vats, which is basically a noncommutative
operation on the noncommutative ring R = Rk (Z[x])/(X n − Ik × k). He claimed
that his recommended system is fully protected against any lattice attack [21]. K.
Jarvis proposed ETRU in 2011 based on the Eisenstein integers [22]. Alsaidi et
al. proposed a cryptosystem in 2015 based on commutative quaternion algebra that
is called CQTRU [23]. In this same year, Karbasi et al. also introduced a public
key cryptosystem like NTRU with provable security based on the hardness worst
case of the approximate both closest vector problem (CVP) and shortest vector
problem (SVP) and named it as ILTRU [24]. In 2015, Yasuda et al. also proposed
an NTRU variant using the group ring called GR-NTRU [25]. In 2016, Thakur et al.
presented BTRU, in which Z is replaced by a polynomial ring with a single variable
α over a rational field to make it faster than NTRU [26]. The same year, Al-Saidi
et al. proposed a new alternative of an asymmetric key cryptosystem that is called
BITRU. It is also based on a new algebraic structure like the mathematical structure
of NTRU that is called binary algebra. It is associative as well as commutative. This
new algebraic structure provides higher security and complexity for BITRU [27].
In 2017, they also presented a new look of the NTRU cryptosystem in the name
of HXDTRU that depends on hexadecnion algebra. It is used to create a highly
performed public key with higher security among a small key size [28]. In 2018,
Atani et al. presented a new public key cryptosystem based on the finite field. It
is a noncommutative variant of CTRU. In this cryptosystem, the encryption and
decryption both are noncommutative that makes the system secure against any linear
algebra attack such as the lattice-based attack. It provides a higher level of security
using the two-sided matrix multiplication [29]. In that year, Karbasi presented a new
form of public key cryptosystem PairTRU based on the lattice [30].
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6 Conclusion

The NTRU algorithm is simple to use with little resources and very fast in key
generation, encryption, and decryption processes. All the operations performed on
this algorithm are modular arithmetic, convolutional multiplication, and addition.
All the polynomial coefficients are reduced by modulo q that results mostly in 11-bit
integers. Hence NTRU computation does not require any additional multi-precision
library. It requires low memory use compared to other cryptosystems. Decryption
failure is extremely low. It is more safe and secure for known and unknown attacks.
This algorithm proves that it is highly secure against different types of attacks such
as a meet-in-the-middle attack, lattice-based attack, and brute force attack.

Acknowledgement This work was supported by the Universiti Kebangsaan Malaysia under the
grant DIP-2018-040.

References

1. Samar, K., Masri, A., Siti, N., Huda, S., Abdullah, & Zulkifli, A. (2018). Challenges in multi-
layer data security for video steganography revisited. Asia Pacific Journal of Information
Technology and Multimedia, 7(2), 53–62.

2. Nguyen, H. B. (2014). An overview on the Ntru cryptographic system. PhD diss. Sciences.
3. Zhao, N., & Shenghui, S. (2011). An improvement and a new design of algorithms for

seeking the inverse of an NTRU polynomial. In 2011 seventh international conference on
computational intelligence and security, pp. 891–895. IEEE.

4. Ali, Z. M., Othman, M., Said, M. R. M., & Sulaiman, M. N. (2008). An efficient computation
technique for cryptosystems based on Lucas functions. In Proceedings of the international
conference on computer and communication engineering, ICCCE08: Global links for Human
Development.

5. Md Ali, Z., & Makhzoum, N. M. A. (2012). Computation of private key based on divide-by-
prime for Luc cryptosystems. Journal of Computer Science, 8(4), 523–527.

6. Ali, Z. M., Othman, M., Said, M. R. M., & Sulaiman, M. N. (2008). Parallel computation
for LUC cryptosystems on distributed memory multiprocessor machine. In Proceedings of the
4thIASTED international conference on advances in computer science and technology, ACST.

7. Ahmed, J. M., & Md Ali, Z. (2011). The enhancement of computation technique by combining
RSA and El-Gamal cryptosystems. In International conference on electrical engineering and
informatics, Bandung, Indonesia.

8. Aisar, M., MMI, Fauzi, S. S. M., Baharin, H., Sobri, W. A. W. M., Suali, A. J., Gining, R. A.
J. M., & Jamaluddin, M. N. F. (2018). Performance analysis between quantum computers and
silicon computers: A preliminary investigation? In IOP conferences series, journal of physics.

9. Bu, S. Y., & Zhang, H. (2009). Research on the method of choosing parameters for NTRU. In
2009 international conference on multimedia information networking and security, vol. 2, pp.
334–337. IEEE.

10. Pipher, J. (2002). Lectures on the ntru encryption algorithm and digital signature scheme:
Grenoble june 2002. In Brown University, Providence RI 02912, report.

11. Shen, X., Zhenjun, D., & Chen, R. (2009). Research on NTRU algorithm for mobile java
security. In 2009 international conference on scalable computing and communications; eighth
international conference on embedded computing, pp. 366–369. IEEE.



6 NTRU Algorithm: Nth Degree Truncated Polynomial Ring Units 115

12. Jha, R., & Saini, A. K. (2011). A Comparative Analysis & Enhancement of NTRU algorithm
for network security and performance improvement. In 2011 international conference on
communication systems and network technologies, pp. 80–84. IEEE.

13. Hoffstein, J., Pipher, J., Joseph, H., & Silverman. (1998). NTRU: A ring-based public key
cryptosystem. In International algorithmic number theory symposium (pp. 267–288). Berlin,
Heidelberg: Springer.

14. Jaulmes, Éliane, and Antoine Joux. “A chosen-ciphertext attack against NTRU.” In Annual
international cryptology conference, pp. 20–35. Springer, Berlin, Heidelberg, 2000.

15. Nevins, M., Karimianpour, C., & Miri, A. (2010). NTRU over rings beyond $${\mathbb {Z}}
$$. Designs, Codes and Cryptography, 56(1), 65–78.

16. Coppersmith, D., & Shamir, A. (1997). Lattice attacks on NTRU. In International conference
on the theory and applications of cryptographic techniques (pp. 52–61). Berlin, Heidelberg:
Springer.

17. Gaborit, Philippe, Julien Ohler, and Patrick Solé. “CTRU, a polynomial analogue of NTRU.”
(2002).

18. Coglianese, M., & Goi, B.-M. (2005). MaTRU: A new NTRU-based cryptosystem. In
International conference on cryptology in India (pp. 232–243). Berlin, Heidelberg: Springer.

19. Malekian, Ehsan, Ali Zakerolhosseini, and Atefeh Mashatan. “QTRU: a lattice attack resistant
version of NTRU PKCS based on quaternion algebra.” preprint, Available from the Cryptology
ePrint Archive: http://eprint. iacr. org/2009/386. pdf (2009).

20. Malekian, E., & Zakerolhosseini, A. (2010). OTRU: A non-associative and high speed public
key cryptosystem. In 2010 15th CSI international symposium on computer architecture and
digital systems, pp. 83–90. IEEE.

21. Vats, N. (2009). NNRU, a noncommutative analogue of NTRU.“ arXiv preprint arXiv:0902 (p.
1891).

22. Jarvis, K. (2011). NTRU over the Eisenstein integers. Ottawa: University of Ottawa.
23. Alsaidi, N., Saed, M., Sadiq, A., & Majeed, A. A. (2015). An improved NTRU cryptosystem

via commutative quaternions algebra. In Proceedings of the international conference on
security and management (SAM) (p. 198). The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing (WorldComp).

24. Karbasi, A. H., & Atani, R. E. (2015). ILTRU: An NTRU-like public key cryptosystem over
ideal lattices. IACR Cryptology ePrint Archive, 2015, 549.

25. Yasuda, T., Dahan, X., & Sakurai, K. (2015). Characterizing NTRU-variants using group ring
and evaluating their lattice security. IACR Cryptology ePrint Archive, 2015, 1170.

26. Thakur, K., & Tripathi, B. P. (2016). BTRU, a rational polynomial analogue of NTRU
cryptosystem. International Journal of Computer Applications, 12, 145.

27. Alsaidi, N. M., & Yassein, H. R. (2016). BITRU: Binary version of the NTRU public key
cryptosystem via binary algebra. International Journal of Advanced Computer Science &
Applications, 1(7), 1–6.

28. Al-Saidi, N. M. G., & Hassan, R. (2017). Yassein. ”a new alternative to NTRU cryptosystem
based on highly dimensional algebra with dense lattice structure.“ Malaysian. Journal of
Mathematical Sciences, 11, 29–43.

29. Atani, R. E., Atani, S. E., & Karbasi, A. H. (2018). NETRU: A non-commutative and secure
variant of CTRU cryptosystem. ISeCure, 1, 10.

30. Karbasi, A. H., Atani, R. E., & Atani, S. E. (2018). PairTRU: Pairwise non-commutative
extension of the NTRU public key cryptosystem. International Journal of Information Security
Science, 7(1), 11–19.



Chapter 7
Cocks IBE Scheme

Deepak Kumar Sharma, Bhanu Tokas, Venkata Rohit Jakkinapalli,
and Ritvik Nagpal

Abstract Until the 1970s, the symmetric key ciphers were the golden standard of
encryption. But all this changed with the rise of the asymmetric key ciphers (i.e.,
R.S.A.) which provided a level of security unimaginable by symmetric key ciphers.
Yet, these ciphers could only be utilized by the military as it was not practical
for the general public to keep records of public keys of various individuals they
communicate with. Apart from the extreme complexity of such a system, it also
faced another challenge in the form of the cost of storage of the said collection
of keys. This led to the call for IBE (identity-based encryption) wherein a public
identity of a user could be converted into a public key by an appropriate hashing
function.

Adi Shamir proposed an asymmetric scheme in 1984 but an effective imple-
mentation of this scheme could only be formed in 2001. These included the
Boneh-Franklin scheme and Cocks scheme, both of which were introduced in
2001. This scheme that was proposed by Adi Shamir had a lot of advantages over
traditional public key-based systems. These systems eliminated the problem of prior
distribution of keys. It thus reduced the complexity significantly and also reduced
the cost relative to public key-based schemes.

Through this chapter we explore the Cocks IBE, the mathematical working of
the algorithm, its correctness, and its security. This will not only be limited to the
working of the Cocks scheme but we shall also discuss the mathematical proof and
security of this scheme.
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1 Introduction

1.1 Identity-Based Encryption (IBE)

In IBE technology, the public address of a user is used in the encryption technique.
It works by generating the public key of the user from their public address. The
public address that is used in IBE techniques is always in the form of a string. In
IBE technique private key generator (PKG), a trusted third-party system, is used
to generate the private key of the user. The private key generator gives the private
key only to authorized parties. After getting the private key, the message is obtained
by using it. This is a basic introduction to working with IBE [2]. It can be better
understood through an example:

1. Ritvik performs the encryption of the message and sends it to Rohit with his
public address as the public key.

2. Rohit requests the private key from the key server after receiving the message
from Ritvik.

3. The key server authenticates Rohit’s identity and allows him to access the private
key.

4. Rohit decrypts the ciphertext after receiving the private key from the key server,
and for future messages the same private key can be used between Ritvik and
Rohit [3].

1.2 Cocks IBE

In the modern world the pace with which technology is progressing humans are
generating more and more data. Security of information is becoming more and more
relevant. Considering the volume of data being produced and recent global events,
the security of a user’s data needs to be ensured. One way to protect the user’s data
is to use encryption techniques. The Cocks IBE scheme was one of the first secure
IBE schemes developed and it was proposed in 2001 by Clifford Cocks. Cocks
IBE scheme is based on two mathematical concepts: quadratic residuosity problem
and integer factorization [1]. Before discussing the Cocks IBE scheme we need to
understand the IBE.

1.3 Working of Cocks IBE

Cocks IBE scheme is done in four steps: setting up parameters, extraction of private
key, encryption of the plaintext, and decryption of the ciphertext [4]:
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• Setting up of parameters in the Cocks IBE scheme is used to initialize the
parameters that are required for the algorithm.

• In the extraction phase the private key of the user is generated.
• Encryption phase is used to encrypt the plaintext bit by bit. After this phase a

ciphertext is generated. Ciphertext is another name for the encrypted message.
• Decryption is the last phase of the Cocks IBE scheme. This phase is executed

at the receiver end. In this phase the message is obtained from the ciphertext
through the private key [3–5].

1.4 Features of Cocks IBE

Cocks IBE scheme does not use bilinear pairings [5, 6]. This scheme does not
have much of a practical use however due to high degree of ciphertext expansion.
Ciphertext expansion means there is an increase in the number of bits when a
message is encrypted. The number of bits is doubled in Cocks IBE scheme; how
it does will be explored in the encryption phase [7].

2 Mathematical Concepts

Before progressing into its working there is a need to understand some of the
mathematical concepts that are required to understand the working of all the four
phases.

1. Number theory: Number theory is a mathematical concept that is mainly
concerned about the properties of numbers, especially integers.

2. Congruence modulo: Congruence modulo is a mathematical concept that is
represented as x ≡ y(mod z). It means that x and y when divided by z give the
same remainder [8].

For example:

8 ≡ 18 ≡ −2 (mod 10)

These three have the same remainder −2 when divided by the value 10.
3. Relative Prime Numbers: Relative Prime Numbers Are Two Numbers whose

HCF or Highest Common Factor Is Equal to One [9–12].
For example:
HCF of 98 and 95 is 1.

4. Euler phi: It denotes the total number of integers that are relative prime numbers
of n and are less than the value of n with a condition that n is a positive number.
It is represented by ø(n) [13, 14].
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5. Quadratic residue: It is represented by x2 ≡ a(mod n) where a belongs to a set
of positive integers and a is not equal to 0. The value a is called a quadratic
nonresidue when there exists no such value of x [7, 15, 16].

6. Legendre symbol: Legendre symbol can be represented as a/p where a is
represented by an integer while p is represented by an odd prime number [17,
18]. Its value can be defined as follows:

• 0 if p is divisible by a.
• If the value of a is a quadratic residue modulo of p then (a/p) = +1.
• If the value of a is a quadratic nonresidue modulo of p then (a/p)= − 1.

7. Jacobi symbol: It is a generalized form of Legendre symbol that is used in the
case of non-prime numbers [19–21].

In Jacobi symbol we take the value of n as

n =
k∏

i=1

p
ai

i

Here, n is a positive odd number and a is an integer. Jacobi symbol can be
defined as

a

n
=
∏k

i=1
(a/pi)

ai

This algorithm is helpful as the factors of n are not required to be known
to calculate the value. Jacobian symbol (a/n) value can be calculated using this
algorithm:

• The input constraints are that n should be an odd integer that is ≥3 and a
should be an integer between 0 and n.

• If the value of a is equal to zero, return zero.
• If the value of a is equal to one, return one.
• Else, write a in the form of a = 2ka1 such that a1 is odd.
• Case 1: value of k is even, then s ← 1.
• Case 2: n ≡ 1(mod 8) or n ≡ 7(mod 8), s ← 1.
• Case 3: n ≡ 3(mod 8) or n ≡ 5(mod 8), s ← − 1.
• Then compute the value n1 as n1 ← nmoda1.
• Return s· Jacobi symbol (n1,a1).
• The output that will be returned by this recursive function will be the Jacobi

symbol value for (a/n).
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3 Setting up of Parameters

The setting up phase in Cocks IBE algorithm is the first step in the entire IBE
framework. The algorithm setup phase is when initialization of the parameter
required for the various calculations is done. In this phase, the master secret (the
PKG uses this to calculate the private keys) is also initialized. It is run only one time
and it is used to set up the entire IBE environment. Both the public and the private
keys are generated in this phase. Only the PKG has the private key in this phase [4,
22].

Table 7.1 describes all the parameters in Cocks IBE scheme.

3.1 How it Works

In the setup phase of Cocks IBE there are a few requirements. Two prime numbers,
p and ,q are required, such that they are congruent to 3 mod ulo 4. Then the value
of n is calculated as a product of p and q. The obtained value of n is public while
the values of p and q are known only to the private key generator. In this phase the
identity ID of the user is sent through a hash function to obtain a value a. After this,
we obtain the Jacobi symbol value as

(
a
n

)
is equal to +1. When the Jacobi symbol is

equal to +1 it guarantees that the value a (positive or negative) is the square modulo
n. To achieve the above condition, we use a hash function on the identity to obtain
the integer a and we keep adding 1 to a till we obtain the Jacobi symbol value as
+1.

The explanation is as follows:
First case: a is positive.
By the properties of Jacobi symbol and that n is equal to p times q, we know that

(a/n) = (a/p) · (a/q) (7.1)

As a square modulo n has to be +1 we have two possibilities:

• Values of both a square modulo p and a square modulo q have to be +1 or
• Values of both a square modulo p and a square modulo q have to be .−1

Table 7.1 Cocks IBE parameters

Parameter type Parameter Properties

Private global parameters p, q primes = 3(mod 4)
Public global parameter n n = p. q

Public hash function H1 H1 : {0, 1}∗ − > Zn; (H1(ID)/n) = + 1

Per-user public key a
(

a
n

) = +1

Per-user private key r r2 = a(mod n)
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Substitute the values of (a/p) and (a/q) into Eq. 7.1 for both the cases.
Case 1:

(a/n) = (a/p) · (a/q) = (+1) (+1) = +1

Case 2:

(a/n) = (a/p) · (a/q) = (−1) (−1) = +1

Second case: a is negative.
We know that p and q are congruent to 3 mod ulo 4; thus we can write

(−1/p) = (−1/q) = −1 (7.2)

Now the same set of equations should be written for −a being the square modulo
of n. This implies

(−a/n) = (−a/p) · (−a/q)
= (a/p) · (−1/p) · (a/q) · (−1/q)

Using Eq. (7.2)

= (a/p) · (−1) · (a/q) · (−1)

= (a/p) · (a/q) = (+1) (+1) = +1

From this we can infer that −a is a square because it is the product of two
numbers that are squares.

The two possible values of a can lead to a lot of confusion, as in which value to
consider as it is the user public key. As it will be seen later in this chapter, it will lead
to extra computation in the encryption section. Also, this is the reason for ciphertext
carrying two values in order to account for each of these two cases.

The resulting value in either case is the value a which will become the
corresponding public key to identity ID [3, 7, 23].

4 Extraction of Private Key

In the phase two, the user obtains the private key from the PKG. PKG uses a
user’s identity, and the private variables p and q for the extraction of private keys
(mentioned in Table 7.1). The private key is usually delivered through a secure
channel [4, 22].
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4.1 How it Works

Extraction phase involves the calculation of private key, in correspondence to the
public key a, by calculation of either square root a or −a modulo of n. Now, we
know that both p and q are equivalent to 3 mod ulo 4 OR both p − 1 and q − 1 are
equivalent to 2 mod ulo 4. Thus,

p = 4k1 + 2 (7.3)

and

q = 4k2 + 2 (7.4)

Now, we have n = p · q, and ø(n) = (p − 1) · (q − 1); thus

ø(n) + 4 = (p − 1) (q − 1) + 4

Using the values from Eqs. (7.3) and (7.4)

= (4k1 + 2) · (4k2 + 2) + 4

= (2k1k2 + k1 + k2 + 1) · 8

such that ø(n) is divisible by 8.
From the above equation, we can calculate a square root modulo of n as

r = a((ø(n)+4)/8)mod n (7.5)

Now, we have a square root modulo of n, as squaring Eq. (7.5) on both sides:

r2 = a2((ø(n)+4)/8)

= a((ø(n)+4)/4)

= (aø(n)
)1/4

.a

= ±a (mod n) (Using Euler Theorem)

So, if a is the square root modulo of n, then r2 is congruent to a(mod n), and if
−a is a square root modulo of n, then r2 is congruent to −a(modn) [3, 7, 23].

5 Encryption

This is the third phase of the Cocks IBE scheme. The main aim of this phase is to
encrypt and obtain the ciphertext. In this phase, the message is encrypted bit by bit
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and for each bit we obtain two integers. The reason for getting two integers is that
we need to know if either a or −a is the square root modulo of n [4, 22].

5.1 How it Works

If we take a bit from the message, say m, to encode it as x = (−1)m, then bit 0 will
become +1 and bit 1 will become −1. After the encoding step is completed two
random integers t1 and t2 are picked such that both

(t1/n) = x

and

(t2/n) = x

The values of t1 and t2 so obtained are used to calculate the ciphertext which is
represented by (s1, s2). The ciphertext so obtained is sent to the recipient. The values
s1 and s2 are calculated using the following formula:

s1 = (t1 + a/t1)mod n (7.6)

and

s2 = (t2 + a/t2)mod n (7.7)

Out of these two ciphertext values the recipient will decrypt s1 or s2 depending
on the value of a. The value s1 will be chosen if a is the square root modulo of n;
else s2 will be chosen.

We need to make sure that we take two separate values t1 and t2 instead of just
one value t. The reason for this is that it becomes easier for someone to decrypt the
message from the ciphertext if we use only one integer. This is how it works:

replacing t1 and t2 with t in Eqs. (7.6) and (7.7)

s1 = (t + a/t)mod n

and

s2 = (t − a/t)mod n

So, for a hacker to hack the ciphertext and obtain the message he/she has to
calculate
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s1 + s2

2
= 1

2
((t + (a/t)) + (t − a/t))mod n = t mod n

After this, the hacker can compute x using the value of t obtained:

t/n = x

Therefore, the message can be decrypted in this way [3, 7, 23].

6 Decryption

This is the last phase of Cocks IBE scheme; it happens on the recipient side. We
decrypt the encrypted message with the help of the private key which is given to the
recipient after authentication by the key server. The decryption phase is dependent
on the value of r as mentioned in encryption. Based on the two conditions the
method for derivation of the plaintext varies [4, 22].

6.1 How it Works

Now, after the recipient receives the pair of s1 and s2, he/she decides upon the two
choices that he/she needs to decrypt:

Making

s = s1 if r2 = a (mod n) , and

s = s2, if r2 = −a (mod n)

1. In the first case (where r2 = a(mod n), the user calculates

x = ((s + 2r) /n) (7.8)

In this case, we must note that using Eq. (7.6) we get

s + 2r = (t1 − a/t1) + 2r
= t1 + 2r − a/t1

= t1
(
1 + 2 r/t1 − a/(t1)

2)

≡ t1
(
1 + 2 r/t1 + (r)2/(t1)

2)mod n

≡ t1(1 + r/t1)
2mod n

So, we have s + 2r as a square modulo n whenever t1 is such that
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(s + 2r) /n = t1/n = x

So using Eq. (7.8), we can recover the plaintext bit x
2. In the second case (where r2 = − a(mod n)), we must note that

using Eq. (7.7) we get

s + 2r = (t2 − a/t2) + 2r
= t2 + 2r − a/t2

= t2
(
1 + 2 r/t2 − a/(t2)

2)

= t2
(
1 + 2 r/t2 + (r)2/(t2)

2)mod n

≡ t1(1 + r/t2)
2mod n

So, we have s + 2r as a square modulo n whenever t2 is such that

(s + 2r) /n = t2/n = x

So, using Eq. (7.8), we can recover the plaintext bit x [3, 7, 23].

7 Examples

Now, we have seen the four steps of the algorithm. There are three possible cases
that can emerge considering the conditions mentioned in the Cocks IBE algorithm.
The first case is when r2 ≡ a(mod n).

We follow the four steps of the algorithm in the following order:

• In the setting up phase we assume two prime integers p = 7 and q = 11. Both
p and q satisfy the condition 3(mod 4). The value n = p · q = 7 · 11=. Let us
assume that the public key value is a = 9.

• We have to calculate the value of the private key r as mentioned in the extraction
phase. It is given by the equation r = a((ø(n) + 4)/8) mod n.

ø(77) = Ø(7) · Ø(11).

– φ(77) = 6 · 10 = 60 (using Euler function properties for prime numbers).
– So r = 9((60 + 4)/8) mod 77.

r = 98 mod 77.

r = 25

• In this case r2 ≡ a(mod n).
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• Let us assume that the bit “0” is to be encrypted with the public key; the bit “0”
has to be encoded as +1. We then pick two values t1 and t2 which satisfy the
condition mentioned in the encryption phase.

• We choose t1 and t2 as 4 and 6 as

– The Jacobi value (4/77) = + 1
– The Jacobi value (6/77) = + 1

• Now the ciphertext value is calculated as substituting the values of t1and t2 in
Eqs. (7.6) and (7.7):

s1 = (t1 + a/t1)mod n

= (4 + 9/4)mod 77 = 64

s2 = (t2 − a/t2)mod n

= (6 − 9/6)mod 77 = 43

• After this we move on to the decryption step. The first step is to check which
condition the private key satisfies. It is of the form r2 ≡ a(mod n).

– So, to decrypt the message the recipient uses the formula x = ((s + 2r)/n)
where s = s1:

x = (s1 + 2r) /n = (64 + 50) /77

= (114/77) = +1

Then this is decoded to obtain the bit 0 as plaintext.
The first example shows how each step works and how the message bit “0” is

sent from the sender to the recipient using Cocks IBE.
Now we need to look at another example with same parameters, that is, p and q,

but of the condition r2 ≡ − a(mod n).

• The first step is to set up the parameters. Let p = 7 and q = 11; then we obtain
the value of n as 77. We assume that the public key a = 10.

• We have to calculate the value of the private key r as mentioned in the extraction
phase. It is given by the equation r = a((ø(n) + 4)/8) mod n.

Ø(77) = Ø(7) · Ø(11).

– φ(77) = 6 · 10 = 60 (using Euler function properties for prime numbers).
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– So r = 10((60 + 4)/8) mod 77.

r = 108 mod 77.

r = 23

• In this case r2 ≡ − a(mod n).
• Let us assume that the bit “1” is to be encrypted with the public key; the bit “1”

has to be encoded as −1 and so we pick two values t1 and t2 which satisfy the
condition mentioned in the encryption phase.

• We choose t1 and t2 as 8 and 2 as

– The Jacobi value (8/77) = − 1.
– The Jacobi value (2/77) = − 1.

• Now the ciphertext value is calculated as substituting the values of t1 and t2 in
Eqs. (7.6) and (7.7):

s1 = (t1 + (a/t1))mod n = (8 + 10/8)mod 77 = 67

s2 = (t2 + (a/t2))mod n = (2 − 10/2)mod 77 = 74

• After this we move on to the decryption step. The first step is to check which
condition the private key satisfies. It is of the form r2 ≡ − a(mod n).

– So, to decrypt the message the recipient uses the formula x = ((s + 2r)/n)
where s = s2:

x = (s2 + 2r) /n = (74 + 46) /77 = 120/77 = −1

– Then this is decoded to obtain the bit 1 as plaintext.

Through the first two examples we have observed two cases and how the Cocks
IBE works under the condition where r2 ≡ a(mod n) and r2 ≡ − a(mod n).
However, decryption does not work every time. There are some cases under which
the plaintext cannot be obtained. We will be using the same parameters as the
previous example and check what is the condition where an incorrect answer comes
and we will also obtain the probability of an incorrect answer.

• The first step is to set up the parameters. Let p = 7 and q = 11; then we obtain
the value of n as 77. We assume that the public key a = 10.

• We have to calculate the value of the private key r as mentioned in the extraction
phase. It is given by the equation r = a((Ø(n) + 4)/8) mod n.

ø(77) = Ø(7) · Ø(11).
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– ø(77) = 6 · 10 = 60 (using Euler function properties for prime numbers).
– So r = 10((60 + 4)/8) mod 77.

r = 108 mod 77.

r = 23

• In this case r2 ≡ − a(mod n).
• Let us assume that the bit “1” is to be encrypted with the public key; the bit “1”

has to be encoded as −1 and so we pick two values t1 and t2 which satisfy the
condition mentioned in the encryption phase.

• We choose t1 and t2 as 12 and 5 as

– The Jacobi value (12/77) = − 1.
– The Jacobi value (5/77) = − 1.

• Now the ciphertext value is calculated as substituting the values of t1and t2 in
Eqs. (7.6) and (7.7):

s1 = (t1 + (a/t1))mod n = (12 + 10/12)mod 77 = 0

s2 = (t2 + (a/t2))mod n = (5 − 10/5)mod 77 = 3

• After this, we move on to the decryption step. The first step is to check which
condition the private key satisfies. It is of the form r2 ≡ − a(mod n).

– So, to decrypt the message the recipient uses the formula x = ((s + 2r)/n)
where s = s2:

x = ((s2 + 2r) /n) = (3 + 46) /77 = 49/77 = 0.

So, we see that we are not getting the right answer after decryption; the answer
is supposed to be −1 but we have obtained 0. This is because gcd(s2 + 2r, n) �= 1.
This case arises when either p or q is a factor of s1 + 2r or s2 + 2r (depending on the
value of r). Total number of cases where this condition arises q − 1 + p − 1 + − 1
(for the total number multiples of p and q) is equal to p + q − 3. So, the probability
of decryption failure is

Pr = (p + q − 3) /n

So, in the real-world cases with n having 1024f bits and 512Ä bit values for p
and q, the probability is extremely small. So, there is no use for special cases within
Cocks IBE in order to handle this situation.
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8 Correctness of Cocks IBE

Now that the Cocks IBE algorithm and the examples have been explored, we need
to understand the accuracy of this algorithm and check if we are able to obtain the
plaintext using the algorithm.

Choose the values of p and q such that they satisfy the conditions mentioned in
the setting up of parameters.

Therefore r is the square of either a or −a.
We know this by

r2 = a((n+5−p−q)/8)2

r2 = a((n+5−p−q−Φ(n))/8)2

r2 = a((n+5−p−q−(p−1)(q−1))/8)2

r2 = a(0.5)2

r2 = ±a

Now we check if the decryption step can give the plaintext. Let us assume the
case as

r2 ≡ a mod n

Therefore s = t + a/t

(s + 2r) /n = (t + (a/t) + 2r) /n

= t
(
1 + a/t2 + 2 r/t

)
/n

We know a = r2 so replacing a with r2 and converting it to a whole square we
get

t(1 + r/t)2/n = (t/n) ((1 + r/t) /n)2

= (t/n) (±1)2 = t/n

So, we have obtained the plaintext using the equation mentioned in the decryption
phase so the algorithm works [24].
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9 Security

9.1 Quadratic Residuosity Problem

Cocks IBE system can be defeated by a person if he/she is able to figure out the
modulus n. This will allow him/her to do the calculation of the private keys, in
turn leading the adversary to decrypt any intercepted messages. However, it is
not obvious that Cocks IBE system’s security is due to the problem of quadratic
residuosity. We know that the adversary’s ability to handle the decryption of a
message encrypted with Cocks IBE system is on deciding upon whether the value
of user public key a is square modulo n or not [25]. We know

1/n = (t/n) · ((1/t) /n) = +1

Such that

(t/n) = ((1/t) /n)

Thus,

((a/t) /n) = (a/n) ((1/t) /n)

= (a/n) (t/n)

Now, we have the following solutions:

t1 = t.e1 + t.e2

t2 = t.e1 + (a/t) .e2

t3 = (a/t) .e1 + t.e2

t4 = (a/t) .e1 + (a/t) .e2

where e1 and e2 have the following property:

e1 ≡ 1 (mod p)

or

e2 ≡ 0 (mod p)
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e1 ≡ 0 (mod q)

or

e2 ≡ 1 (mod q)

Now, the solutions to the above equations will also be having the following
properties:

t1/n = (t/p) (t/q)

t2/n = (t/p) ((a/t) /q) = (t/p) (a/q) (t/q)

t3/n = ((a/t) /p) (t/q) = (a/p) (t/p) (t/q)

t4/n = ((a/t) /p) ((a/t) /q) = (a/p) (t/p) (a/q) (t/q)

If a is a square, then we will be having

a/p = (a/q) = +1

Such that

t1/n = (t2/n) = (t3/n) = (t4/n)

If a is not a square, then we will be having

a/p = (a/q) = −1

Such that

t1/n = (t4/n)

with

t2/n = (t3/n)

but

t1/n = − (t2/n)

We should note that if any of t1, t2, t3, or t4 is used as the random input in our
encryption, the ciphertext created will be the same in all the cases.

For instance, if we use t1 as the random input,
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s = (t1 + a/t1)

= (t.e1 + t.e2 + a/ (t.e1 + t.e2))

= t + a/t

However, if we use t2 as the random input,

x = ((s + 2r) /n)

= (t.e1 + (a/t ) .e2 + a/ (t.e1 + (a/t ) .e2))

= t + a/t

Similarly, same value for s will be calculated if we use t3 and t4 as the random
inputs.

Thus, in the case of a not being a square, the same value of ciphertext can come
from different values of plaintext. To distinguish between these different cases, there
is only one way, which is the process of determining if a is a square modulo n, and
hence the problem of quadratic residuosity.

9.2 Chosen Ciphertext Security

Because of the encryption of a single bit at a point of time by the Cocks IBE
scheme, the scheme is prone to a chosen ciphertext attack. For instance, let us
say that there is an attacker Rohit having a plaintext (ma,mb, . . . . ,mk) and the
corresponding ciphertext (ca, cb, . . . . , ck) which has been encrypted to a user Ritvik,
who wants the plaintext of the ciphertext (ca2, cb2, . . . , ck2). Rohit can send a
message (ca2, cb, . . . , ck) to Ritvik and check his reaction. Rohit can observe if
Ritvik uses the ciphertext as the shared secret that he uses to derive a session key.
In a similar way, Rohit can repeat this entire process of recovering a single bit each
time, to recover all the bits of decryption [25, 26].

9.3 Proof of Security

It can be easily found out using the random oracle model that solving the quadratic
residuosity problem is almost equivalent to defeating the Cocks IBE scheme, where
an adversary can use his/her Cocks IBE decryption algorithm to solve the problem
of quadratic residuosity [24, 27]. Thus, if we can prove the intractability of quadratic
residuosity problem, we can prove that Cocks IBE scheme is sufficiently secure.
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10 Summary

Here is a summary of all the mentioned algorithms in the Cocks IBE scheme:

1. Cocks IBE Setup
INPUT: A parameter κ

OUTPUT: p, q, n and H1

(a) Pick a random prime number p where p is congruent to 3 (mod 4), and
satisfies the security parameter criteria.

Table 7.2 denotes the size of Cocks IBE ciphertext corresponding to the
symmetric key lengths

(b) Pick a random prime number q where q is congruent to 3 (mod 4), and
satisfies the security parameter criteria.

(c) Let n = p. q.
(d) Choose the hash function appropriately H1 : {0, 1}∗ → Zn so that

((H1 (ID))/n) = + 1 for any ID ∈ {0, 1}∗ .

2. Cocks IBE Public Key Calculation.
INPUT: n, a character string ID representing the identity, and a hash function

H1

(a) H1Calculation of H1(ID).

3. Cocks IBE Private Key Extraction.
INPUT: a, p, and q
OUTPUT: r

(a) Calculate the value of r:

r = a(φ(n)+4)/8mod n = a(pq−p−q+5)/8 mod n

4. Cocks IBE Encryption
INPUT: n, and a plaintext bit m

Table 7.2 Output of Ciphertext Size for different size key lengths

Symmetric Key Length Cocks IBE Ciphertext 
Size

80 bits 166,710 bits

112 bits 458,752 bits

128 bits 768,432 bits

256 bits 7,864,320 bits
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OUTPUT: Ciphertext (s1, s2), an integer modulo n for each component

(a) Encode m as x = (−1)m.
(b) Pick t1 and t2 randomly using.

(t1/n) = (t2/n) = x

(c) Calculate s1 using.

s1 = (t1 + (a/t1) ) mod n

(d) Calculate s2 using.

s2 = (t2 − (a/t2) ) mod n

5. Cocks IBE Decryption
INPUT: Private key r, ciphertext (s1, s2), and n
OUTPUT: Plaintext bit m

(a) If r2 is equivalent to a(mod n), then s = s1; otherwise s = s2.
(b) Calculation of plaintext bit x will be done using.

x = ((s + 2r) /n)

(c) If x is equal to −1, the value of m will be equal to 0; otherwise the value m
will be 1.
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Chapter 8
Boneh-Franklin IBE

Deepak Kumar Sharma, Bhanu Tokas, Venkata Rohit Jakkinapalli,
and Ritvik Nagpal

Abstract There has been an unprecedented rise in insecure computer networks in
the last few decades. This has led to a rise in the need for large-scale cryptography to
improve security. Public key encryption is a relatively new concept that has risen in
prominence due to the limitations in the more traditional symmetric cryptographic
methods like key management which becomes impractical when used at a large
scale.

Identity-based encryption (IBE) systems are defined as a category of public key
encryption wherein the user’s public key is derived from a distinctive identity of a
user (for example, email ID). In this chapter, we will talk about the first IBE scheme
with the comprehensive analysis that will include reviewing all the four stages
involved: setup, extract, encrypt, and decrypt. We will also discuss the different
conceptions of security, such as chosen ciphertext security and semantically secure
identity-based systems, with detailed examination about the security of this scheme.

Keywords Identity-based encryption IBE · Private key extraction ·
Boneh-Franklin scheme · Encryption · Decryption · Security

1 Introduction

As some of the readers may already know, Boneh-Franklin was amongst the first
secure and practical IBE schemes to be invented in the early 2000s. Now, many
readers may wonder if, in our fast-changing world, something decades old is still
relevant. Well, the Boneh-Franklin IBE is far from optimized. It is a part of the full-
domain hash family of the IBE schemes. This means that the identity used ID is
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mapped onto an elliptic curve [1] at a point QID which is subsequently applied in
the encrypting and decrypting process. This process of transforming an identity to
an elliptic curve requires modular exponentiation, thus making it quite expensive to
calculate. Hence, recent works tend to focus more on systems that can translate an
ID to an integer, rather than using an expensive full-domain hash function. Another
shortcoming of the Boneh-Franklin IBE is its requirement of calculation of pairings,
a fairly expensive operation during encryption as well as decryption stage.

The reader might be contemplating if Boneh-Franklin IBE is indeed so expensive
to perform and better alternatives exist, then what is the point of studying it. Well,
the reason is the same as to why we are still taught Bohr’s model of an atom
because firstly, we must start from the basics and secondly, older models, though
inefficient, are able to help us realize the thought process and reasoning followed
in the development of the newer models. Keeping this in mind, let us start with this
fascinating IBE scheme.

Boneh-Franklin IBE has adopted some of its attributes from “ElGamal encryp-
tion” [2] and “Joux’s three-way key exchange” [3]. Similar to the ElGamal
encryption, which encrypts a plaintext message using a key fromDiffie-Hellman key
exchange [4], Boneh-Franklin IBE also utilizes the shared secret key to encrypt the
plaintext messages. Just like the exchange, which generalizes the “Diffie-Hellman
key exchange” to three parties, Boneh-Franklin also has three secret keys involved.
One is a random key generated by the sender, other refers to a master key used in the
system, and lastly the final key is a discrete logarithm of the identity of the receiver.

Some readers who might have read or are interested in reading the original paper,
“Identity-Based Encryption from the Weil Pairing” [5, 6], should note that there is
a slight difference in the notation used here as compared with the original paper.
Namely, the values represented by the variables p and q have been replaced. In
the original paper, p was used to denote the finite field p’s order and q was a prime
integer denoting the order of the group E(Fp)[q]. Subsequent works interchanged the
terms such that now q is used to denote the finite field Fq’s order and p now denotes
the order of group G1. Thus, the author advises the readers to clearly understand the
meaning of all variables before referring to another text, in order to avoid confusion.

1.1 Identity-Based Encryption (IBE)

Before we further delve into Boneh-Franklin IBE scheme, let us understand the IBE
scheme by discussing how it works and who proposed it.

In this category of public key cryptography, some unique parameter is extracted
from the user’s public addresses (i.e., their name or their address), so as to create the
public key. This allows the sender who knows the public parameters of the scheme
to encrypt communication to use a key that is based on a public identity of the
person who is receiving the message such as their email address or full name. The
decryption key is imparted using a private key generator (PKG), which generates
secret keys for every user and hence needs to be trusted.
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Fig. 8.1 IBE system

The basic functioning of an IBE system is demonstrated in Fig. 8.1.
Adi Shamir [7] first introduced the IBE system in 1984. However, he was able to

only provide an instance of ID-based signatures. Thus, IBE systems persisted to be
an unsolved problem for a long time until the Boneh-Franklin IBE [5, 8] and Cocks
IBE [8, 9] were introduced in 2001.

2 Boneh-Franklin (Basic Scheme)

Before we dive deep into the Boneh-Franklin scheme, we should take a look into the
Boneh-Franklin basic scheme. Herein, the sender and receiver shall use a secretly
shared key to perform the encryption and decryption of the message data. This
scheme is simpler than the full Boneh-Franklin scheme but as you may have guessed
it is also much less secure.

2.1 Setting up the Parameters

Like any other scheme, the first step of Boneh-Franklin scheme is setup of
parameters. We begin with a security criterion that will help indicate the order of bit
strength provided by the scheme. Next, we define groups GT and G1, and a pairing
e∧ such that e∧ : G1 × GT . This is achieved by using an elliptic curve E\Fq which
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has an embedding degree of k. Further, we require a prime integer p that satisfies the
conditions p | #E(Fq) andp2 | #E(Fq). This is to make sure that the identities are
hashed into a unique subgroup of the order p. Therefore, groups GT and G1 have an
order p wherein GT is a subgroup of F ∗

qk .
Then a point P ε E(Fq)[p] is randomly selected and let G1 = �P � andGT =

� e∧ ( P,P ) �, which are cyclic groups of prime order p. Then we randomly select an
integral value s, such that s ∈ F ∗

p . Thus, we can easily calculate sP. Since a message
is usually a collection of bits belonging to the set {0,1}, we require a cryptographic
hash function H1 : { 0, 1 }∗ → G1, which will enable us to map an identity ID to
a point QID on the elliptic curve [10]. To encrypt messages of size n, we will also
need a hash function such that H2 : GT → { 0, 1 }n. This allows for transformation of
elements of GT into n bit strings that are of the same size as the plaintext message
and hence can be combined with it. Apart from the integer s, which denotes the
master secret, the remaining parameters are public. All of these are mentioned in
Table 8.1.

Now, some of our eagle-eyed readers may have noticed that the above table
is filled with dependencies. This is beneficial to us as it allows us to reduce all
parameters to a function of

(
e∧, n, H1,H2, sP,G1,GT

)
without the introduction

of uncertainty.

2.2 (Basic Scheme) Private Key Extraction

After the master key and public parameters are defined one can find the equivalent
private key for an ID by mapping it to a point P on the elliptic curve E. Thus, we
use the formula

Table 8.1 Setting up parameters

Element Type Comments

q Prime power Order of finite field Fq

E/Fq Elliptic curve E(Fq) has embedding degree k

p Prime p � # E(Fq), p2 � # E(Fq)
G1 Cyclic group Subgroup of E(Fq), G1 = 〈P〉
GT Cyclic group Subgroup of Fq

∗,GT = 〈e∧ (P, P )
〉

e∧ Pairing e∧ : G1 × G1 → GT

n Integer Length of plaintext (in bits)
P Point on elliptic curve Pε G1

sP Point on elliptic curve sPε G1

H1 Cryptographic hash function H1 : {0.1}∗ → G1

H2 Cryptographic hash function H2 : GT → {0.1}n
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QID = H1(ID)

And we deduce the private key by simply multiplying QID with the private key s.

2.3 Encryption (Basic Scheme)

Obtaining of the corresponding ciphertext of message M using the receiver’s ID is
described below:

1. Select a random integer r ∈ Z∗
p and use it to calculate value rP.

2. Use the recipient’s identity ID to find the value of QID using the formula

QID = H1(ID)

3. Use QID from the Previous Step, to Calculate K Using the Formula

K = H2
(
e∧ (rQID, sP )

)

4. Set the Equivalent Ciphertext C to C = ( C1,C2 ) where C1 and C2 Are Defined
by

C1 = rP

C2 = M ⊕ K

2.4 Decryption (Basic Scheme)

On obtaining the ciphertext C, the recipient follows the below-mentioned steps to
obtain the plaintext message:

1. Uses his/her private key sQID and ciphertext component C1 to calculate K using
the formula

K = H2
(
e∧ ( sQID, C1 )

)

2. Calculates M = C2 ⊕ K

Herein, plaintext M is recovered as the sender is able to deduce the value of K
using the equation

K = H2
(
e∧( QID, sP )rs

)
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Subsequently the receiver deduces the value of K using the formula

K = H2
(
e∧( QID, P )rs

)

3 Boneh-Franklin IBE (Full Scheme)

As some of our readers may have already noted, a chosen ciphertext attack may be
effective against the Boneh-Franklin basic scheme as the value of K is independent
of the message M. Therefore, if someone can decrypt the ciphertext (C1,C2 ⊕ ∈)
to obtain plaintext message M ⊕ ∈ and subsequently from the plaintext text they
can obtain the original message sent by the user M as M = (M ⊕ ∈) ⊕ ∈. This
vulnerability is eliminated by using the “Fujisaki-Okamoto transform.” Using this
extra level of hashing, as required by Fujisaki-Okamoto transform, adds more
complexity to the IBE scheme. While this transformation secures our scheme
against chosen ciphertext attack, it also increases the complexity of the encryption
and decryption stages.

3.1 Setup of Parameters

While we retain all the parameters from the basic scheme, mentioned in Table 8.1,
we need to introduce two additional hash functions to add more complexity to the
IBE scheme:

H3 : {0, 1}n × {0, 1}n → Z∗
p

and
H4 : {0, 1}n × {0, 1}n → Z∗

p

3.2 (Full Scheme) Private Key Extraction

The process for extraction of parameters in the full scheme is indistinguishable from
the one followed in the basic scheme.

3.3 Encryption (Full Scheme)

Obtaining of the corresponding ciphertext of message M using the receiver’s ID is
described below:



8 Boneh-Franklin IBE 143

1. Calculate the corresponding private key for the recipient’s identity ID using the
formula

QID = H1(ID)

2. . Select a random value σ , such that σ ∈ {0, 1}n. Using this, define r as

r = H3 (σ,M )

3. Define C1 as

C1 = rP .

4. Define C2 as

C2 = σ ⊕ H2
(
e∧ (rQID, sP )

)

5. Define C3 as

C3 = M ⊕ H4 (σ )

6. Finally, define ciphertext C as

C = (C1, C2, C3 )

3.4 Decryption (Full Scheme)

After obtaining the ciphertext C, the recipient follows the below-mentioned steps to
obtain the plaintext message:

1. Calculate σ using the formula

σ = C2 ⊕ H2
(
e∧ (sQID, C1 )

)

2. Find the plaintext message M, using the formula

M = C3 ⊕ H4 (σ )

3. Calculate rP where r = H3(σ ,M ). If rP �= C1, then ciphertext is invalid and
should be rejected.
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4 Security

It would be appropriate to state that the difficulty of solving this scheme is directly
proportional to the difficulty of the “bilinear Diffie-Hellman Problem” (BDHP).

We can say that for a particular (unknown) value of t, QID = tP. Thus, we can
also say tha

e∧ (rQID, sP ) = e∧ (rtP , sP ) = e∧(P, P )rst

This means that the ciphertext C can also be represented as

C =
(
rP,M ⊕ H2

(
e∧(P, P )rst

)

While P and tP can be easily obtained by an adversary from the public parameters
and using the recipient’s identity, QID = tP can be calculated further, and one can
observe the ciphertext for rP. Thereafter, if one is able to compute e∧(P, P )rst

from the above-deduced parameters, then it would be possible to find the plaintext
message M recovered by using the following formula:

(
M ⊕ H2

(
e∧(P, P )rst

) ⊕ H2
(
e∧(P, P )rst = M

Alas, to calculate e∧(P, P )rst using the above approach would essentially mean
solving the BDHP. So, as long as the assumption that the BDHP is adequately
difficult holds true, it is safe to assume that it will be difficult for an external
agent to successfully perform the decryption of the encrypted message to obtain
the plaintext. This is easily achieved by careful selection of G1 and GT .

In the original Boneh-Franklin paper, the random oracle model was used
to demonstrate that an attacker who is capable of decrypting a communication
encrypted using the Boneh-Franklin IBE will be capable of solving the BDHP using
his decryption algorithm, so as long as solving BDHP remains adequately difficult,
decrypting the Boneh-Franklin IBE would also remain adequately difficult. Both the
basic scheme and the full scheme are almost impervious to adaptive chosen identity
attacks and chosen ciphertext attacks.

5 Further Works on Boneh-Franklin IBE

Just like any other result of the human mind, the Boneh-Franklin IBE is not flawless.
Given that it was introduced almost two decades ago in 2001, it is obvious that
other researchers have introduced new variants or improvements in the original IBE
scheme. In this section, we will be looking at some of these new and improved IBE
schemes.
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Using subgroups of curves:
We can significantly improve the efficiency of the Boneh-Franklin IBE system

by using subgroups of the curve instead of the whole curve. To further explore this
idea, let us take an example wherein we choose two primes p and q, where q is a
160-bit prime and p is a 1024-bit prime with p = aq − 1 and p = 2 mod 3. We then
choose point P such that it is of order q. Every ID is mapped to a point Q using a
hash function and multiplied by a to get a group point. As long as P generates a
group that satisfies the BDH assumption, it can be assumed to be secure. Since the
Weil computation is applied to points of a smaller order, it is much faster and hence
efficient.

Distributed master key:
Much like the private key in a certificate authority system, the master key in the

standard implementation of Boneh-Franklin IBE must be protected. We can achieve
this by using threshold cryptography to distribute the master key in numerous
sites. This process can be extremely robust and efficient in the Boneh-Franklin
IBE system. Thus PKG, by computing Qpriv = sQID, generates the private key.
Thereafter, we can give each PKG a share (si) of the Shamir’s secret sharing of
s mod q; this allows us to easily distribute the private key. When we need to
generate the private key for x PKGs, we can do so following the simple principle
Qpriv(i) = siQID. The user can calculate Qpriv using the formula Qpriv = ∑

λiQpriv(i),
where λi represents the Lagrange coefficients.

It is worth noting that because in the case of G1 decisional Diffie-Hellman
[11] (DDH) assumption is easy, we can easily make the scheme robust in case
of dishonest PKGs. In the setup, for each PKG a unique Ppub is defined such
that Ppub(i) = siP. In the key generation stage, a user may verify the validity of
response for each PKG using the formula e∧ (Qpriv(i), P

) = e∧ (QID, Ppub(i)

)
.

Therefore, any corrupted or malicious PKG can be detected instantaneously. Thus,
unlike conventional robust threshold Schemes [12], herein there is no requirement
of any zero-knowledge proof [13]. Using the processes described by Rabin [14],
one can create the master key for the PKGs. Another interesting fact worth noting
is that with a distributed master key, it is possible to perform threshold decryption
[15] on a per-message basis, such that we would not be required to calculate the
correspondent decryption key.

Use of IBE as Signature:
As observed by Moni Naor, we can easily construct a public key signature

Scheme [14, 16] that is based on this IBE scheme. Let us have a look at the process
required to achieve this. The master key of the IBE scheme acts as the signature
scheme’s private key. The global system parameters of the IBE scheme act as the
signature scheme’s public key. The IBE decryption key is used as the signature for
message M for ID = M. The verification of a signature is carried out through the
ensuing process; choose a random message Mk and use the public key ID = M to
encrypt it after which we try decrypting the ciphertext by defining the decryption
key as the signature for M. In case of chosen message attacks, the signature scheme
should be practically impossible to forge as long as it follows the scheme IND-ID-
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CCA. An important point worth noting here is that the verification process in this
instance is randomized contrary to conventional signature schemes.

Using other pairings:
Boneh-Franklin IBE system, considering the BDH assumption to be valid, can

be used with other more computationally efficient bilinear pairings of the form
e∧ : G1 × GT → G2. There exist several curves, mostly belonging to the
Abelian variety [17] that can be used for this specific application. An example of
the abovementioned variety of curves would be Tate pairing [18–20].

6 Examples

1. If we take an elliptic curve E, E/Fq : y2 = 1 + x3 where q is represented using
q ≡ 11(mod 12) , q is a prime number, and G1 is a subgroup of order p of E(Fq).
The hash function H1 can be defined as H1 : {0, 1}∗ → G1. We first use the hash
function to create a string in order to represent the public address of the user as
an integer modulo of q. We can obtain the value of H in two possible ways either
by going through the different values for H till we get a value that exists within
the required range or by reducing the integral output of H to integer modulo of
q. The value of H thus obtained denotes the y coordinate for Q ε E(Fq) and we
can deduce the value of the x coordinate from the curve

x = (y2 − 1
)1/3

aq−1 ≡ 1 (mod q) (Euler Theorem)

a2q−1 ≡ a (mod q)

a(2q−1)/3 ≡ a1/3 (mod q)

We require a value (2q − 1) which divides 3; the condition q ≡ 11(mod 12)
satisfies the above requirement. We can obtain the x coordinate for the point QID
using the following formula:

QID =
(
#E
(
Fq

)

P

)

Q

With the curve E/Fq: y2 = x3 + 1 we can write #E(Fq) = q + 1 so the value of
QID can be written as

QID =
(

q + 1

p

)
Q

So this means we need a value p � # E(Fq), and we already have a unique order
p, so this results in QIDε G1 as needed.
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2. If we do want to hash the value of the identity onto an elliptic curve, we can try to
hash the value of the identity ID into an integer value, say t. We can then use the
point tP as the public key. However, there is a problem with this method. This
method will make it easier for the hacker to calculate the shared secret which
means that the scheme’s security is defeated.

3. All elements of GT belong to the finite field Fqk . So an element of the group
GT can be expressed to be of the form α = (α1,α2, . . . . . . ..,αk) and for every
αiε Fq. So, we create a hash function H2 : {0, 1}n → GT by concatenating the
coordinates α as an input for the hash function and reducing it to a value that is
in between the range of 0 to 2n − 1, by truncating the value of the hash function
to give an output of only n bits.

4. For instance, Ritvik wants to perform encryption of a data to send it to
Rohit using Boneh-Franklin IBE. Assuming E to be an elliptic curve such
that E/F131 : y2 = x3 + 1, P = (98, 58) ∈ E(F131)[11], G1 = 〈P 〉, and
GT = 〈e ˆ (P,P )〉, e ˆ : G1 × G1 → GT refers to the reduced modified Tate
pairing such that

eˆ (P,Q ) = e(P,φ (Q ))1560

such that φ refers to distortion map φ(x, y) = (zx, y) for z = 65 + 112i.
Let us suppose that integer s = 7 is the master secret of this system,
such that sP = (33, 100), and suppose that Rohit’s identity reveals that
H2(IDRohit) = QID = (128, 57). So, Rohit’s private key is sQID = (113, 8)
Table 8.2.

Using the values discussed above, Ritvik can encrypt a message for Rohit.
Suppose that he generates the random r = 5 ∈ Z∗

11 to do this. Ritvik then calculates
rQID = (5)(128, 57) = (98, 73) and uses it to calculate

rP = 5P = (34, 23)

and

K = H2
(
e∧ (rQID, sP )

) = H2
(
e∧ (98, 73) , (33, 100)

)) = H2 (49 + 58i )

Table 8.2 Brief description of example 5 values

Parameters Type Value Comments

P Elliptic curve point (98,58) PεE(F131) [12]
sP Elliptic curve point (33,100)
QID Elliptic curve point (128,57) QIDεE(F131) [12]
sQID Elliptic curve point (113,8) Rohit’s private key
r Integer 5 Generated randomly by Ritvik
s Integer 7 Master secret
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which he then uses to create the ciphertext (C1,C2 ) where C1 = rP and
C2 = M ⊕ K. When Rohit receives this ciphertext, he then calculates

K = H2
(
eˆ (sQID,C1 )

) = H2
(
eˆ (113, 8) , (34, 23)

)) = H2 (49 + 58i )

which he then uses to recover the plaintext M using the following formula:

M = C2 ⊕ K = (M ⊕ K ) ⊕ K

7 Conclusion

In this chapter, we have explored the Boneh-Franklin IBE scheme. In our explo-
ration, the processes of both the basic scheme and full scheme are divided into
four stages: setup, extraction of parameters, encryption, and decryption. We also
discussed the security of this scheme and observed that it is dependent on the
“bilinear Diffie-Hellman problem” (BDH), such that the complexity in decrypting
the message encrypted by Boneh-Franklin IBE is directly proportional to the
complexity of solving the BDH problem. Further, we also noted that while the IBE
system is a quite efficient and reliable system, it is still far from an optimum state;
hence we have explored the possibilities of using different curves (such as Tate),
using subgroups of the curve, and using a distributed master key. There still remain
several topics that were out of the scope of this book and thus the author would like
to suggest the readers explore the references for further increasing their knowledge.
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Chapter 9
Boneh-Boyen IBE

Ankita Karale, Vladimir Poulkov, Milena Lazarova, and Pavlina Koleva

Abstract Identity-based encryption (IBE) is a form of public key infrastructure
(PKI) which has become a hot topic of research among the research community
as IBE enables senders to encode data without interfering with the public key
certificate. IBE computes the public key from the unique recipient’s identity and
authenticates by a third party so as to overcome the limitations faced by traditional
cryptographic techniques. In 2004, D. Boneh and X. Boyen worked towards IBE
without using random oracles which is one of the most popular and efficient IBE
techniques. This chapter focuses on the Boneh-Boyen IBE technique which is based
on selective identity and gives good results in standard model. It also enlightens on
the basic IBE model introduction and its working to get a clear idea about IBE. Later
on, this document covers the Boneh-Boyen basic scheme that is classified into two
categories, additive scheme and multiplicative scheme. These schemes are explained
in detail with the help of four main stages: parameter setup, extraction, encryption,
and decryption process. Apart from the basic scheme, Boneh-Boyen full scheme is
explained here which helps to compute the public key of the receiver. At the end,
the chapter emphasizes on the security concept of the Boneh-Boyen IBE.

Keywords Public key infrastructure · Identity-based encryption · Random
oracles · Cryptography · Decryption

1 Introduction

An identity-based encryption (IBE) is one of the popular types of public key encryp-
tion. This technique mostly addresses the limitation of public key infrastructure and
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has evolved as a better solution to cryptography-related issues which makes IBE
suitable to work in real time. The IBE system provides featured key evaluation when
compared to traditional public key systems and offers an economic solution to the
problems like PKI need and communication overhead which are difficult to resolve
with the traditional public key systems.

Public key infrastructure (PKI):
If sender and receiver are unknown to each other there is a communication

gap to share keys with each other. Hence a successful public key encryption
process demands reliable third-party key distribution authority which will ensure
authenticity of keys. To overcome these limitations there is the necessity of trusted
third parties to distribute public keys. This need emerges from the public key
infrastructure (PKI). One of the most popular methods of encryption is public
key encryption named by researchers as public key infrastructure [1] also known
as PKI. PKI uses certification authorities (CA). User registers himself/herself to
the registration authority. Authority will check its authenticity and the verifier will
verify his/her identity and after verification CA will issue corresponding keys to
the user for encryption purpose. So, this trusted third party will deliver keys to the
sender which further works like the public key encryption technique stated above.
Figure 9.1 shows the key generation process in the traditional public key system.

1.1 Limitation

PKI is the most powerful secure technique but the main problem with PKI is certifi-
cate size and its management. Wherever communication-established certificates get
stored in RAM, it leads to large space consumption and communication overhead
while distributing the certificate. Also, certificate processing consumes processor
capacity which affects computation cost and connectivity with certificate authority
(CA).

But to obtain the data privacy it requires public keys of approved users so as to
transmit data independently to the target user which ultimately increases the demand
for bandwidth [2]. To provide a solution to this drawback broadcast encryption was
introduced. This technique addresses the mentioned issue but it is mostly applicable
when the data provider has prior knowledge of the target user. It uses a public key
for the process of encryption and original data is retrieved by decryption by using
only a single secret key. So the more advanced encryption solutions are required.

1.2 Identity-Based Encryption (IBE)

Research is always thrust towards betterment. Can there be a better solution to
implement public key encryption? This question is answered by smart innovation of
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Key Recovery Agent

Key Generation Agent

Certificate Authority

User

Certificate Repository

Fig. 9.1 Key generation process in a traditional public key system

identity-based encryption (IBE). A. Shamir [3] introduced an encryption technique
based on identity also known as IBE.

Without interfering with the public key certificate here sender can encode data
which simplifies the process. Due to this feature of IBE it is appropriate for real-time
applications. Here a combination of character is treated as identity. So ultimately A
can send a message to B without the help of PKI and it can work smoothly as it
reduces communication overhead. The concept is to use the user’s identity as a
public key, for example email ID of the user. Identity of the user will be considered
as a public key and the centralized key server will be responsible for creation of a
private key. Here the basic difference between PKI and IBE is that IBE eliminates
the need of the certificate lookup process required by PKI.

For example A has the identity of himself as an email address: a@example.com.
This identity of A will be used by him to get a private key from a centralized key
server. Email address of A will be used by B to encrypt the message. Only A can
decrypt the encoded message as email address which acts as an identity belonging
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to A only. A has access to his identity a@example.com so he is authenticated to
get a private key from the key server in order to decode the encrypted message
sent by B. Here key server is the center of attraction. Security of key servers is the
main concern in order to make IBE a successful mechanism of encryption which is
successfully tackled by Boneh-Boyen IBE technique.

IBE technique is executed with the help of four basic algorithms given in the
following section. These are usually named as setup, extraction, encryption, and
decryption.

1.3 Setup Algorithm

A centralized key server runs the Setup algorithm and generates its master secret
(s) and public parameters <params>. It is shown in Fig. 9.2.

1.4 Extract Algorithm

PKG also generates a private key (dID) for users from the parameters introduced in
the setup phase that calculates its master secret (s) and public parameters <params>
along with user ID. It is shown in Fig. 9.3.

Fig. 9.2 Setup algorithm

Fig. 9.3 Extract algorithm
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Fig. 9.4 Encryption
algorithm

Fig. 9.5 Decryption
algorithm

1.5 Encryption Algorithm

Parameters introduced in the setup phase are used to evaluate the IBE public key
which is referred by senders (users) to encrypt the message (M) and the user’s
identity and generate ciphertext (C). It is shown in Fig. 9.4.

1.6 Decryption Algorithm

A recipient’s identity and the private key of the PKG are used to compute IBE
secret key; along with it the receiver decrypts the message (M) and then generates
the plaintext. It is shown in Fig. 9.5.

1.7 Boneh-Boyen IBE

Boneh and Boyen [4] introduced two effective techniques which are proved secure
against selective-identity attack. They are named as BB1-IBE and BB2-IBE, and
their speciality is that they are designed without using random oracles. The
concept of BB1-IBE is dependent on commutative blinding [5] schema. Here secret
coefficients and blinding factors commute with one another under the pairing:
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e (aP, bQ)

e (bP, aQ)

In a Boneh-Boyen IBE scheme, the sender encrypts the message and calculates
its value using public parameters. After computing a ratio of pairings, the same
value is evaluated by the recipient using the resultant encrypted data along with its
secret key. Instead of evaluating the ratio of two pairing individuals, it will be more
efficient to compute the ratio of two pairs together. Integer value is hashed with ID
as a part of the encryption and decryption phases.

Modular exponentiation is avoided by the above method. Due to the modular
exponentiation method such systems are more efficient than full-domain hash
schemes, similar to the Boneh-Franklin scheme which needs hashing of an identity
to a point that resides on an elliptic curve.

The basic Boneh-Boyen scheme can be described in two ways: additive notation
and multiplicative notation. The additive notation is generally a part of elliptic
curve operation set and it is utilized in various cryptographic standards. This is
a very simplified version of the Boneh-Boyen technique. Another scheme is the
multiplicative notation which can be described as the additive notation scheme.
Multiplicative notation has been commonly utilized in recent literature on pairing-
based cryptography.

1.8 Classification of IBE Schemes

This section gives a classification of IBE systems. These classification schemes
support fundamental safety reduction in standard model or in random oracle model.

1.8.1 “Quadratic Residuosity” IBE

This is the only scheme of IBE which does not use bilinear pairings because of
Cocks [6]. This system depends upon the toughness of the quadratic residuosity
problem. This problem is deciding whether ∃yx = y2 (mod N), where x ∈ ZN and
N = N1N2 are given. Here x is the modular residue and N is the composite modulus.
Speed of this system is fast enough but consumption of bandwidth is very high. Also
security is a major issue in this system, as it is not reliable against identity attacks.

1.8.2 “Full Domain Hash” IBE

Boneh and Franklin [7] introduced the first real-time practical IBE system. This
system depends on wise complexity hypothesis and it makes use of pairings. This
system is efficient and it uses minimal bandwidth when compared with Cocks,
which makes it effective and popular. Wide utilization of cryptographic hashes is
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the main disadvantage of BF systems. It suffers from the shortcoming that it makes
an assumption that hash functions are dispersed uniformly with images on elliptic
curve like in h = H(ID) ∈ G. Here ID represents a string and G denotes bilinear
group. This hashing is expensive for utilization, and choices of curves are limited to
users. This drawback degrades the performance of the overall system.

1.8.3 “Exponent Inversion” IBE

Sakai and Kasahara [8] proposed the idea of this scheme. In this perspective various
IBE schemes have been suggested that depend on the common idea that it is a tough
task to invert exponents. For example it is difficult to calculate g1/x when g and gx

are known. So, by using pairing, exponents can be cancelled even without exploring
them (by passing g1/x). The objective is to encrypt identities as fragments of this x,
so that we can omit the necessity of hashing right on the curve.

To evaluate the performance of the scheme in terms of security is a tough job.
Sakai and Kasahara [9] suggested the first technique of this method but there was a
lack of security proof. Boneh and Boyen [4] proposed the first relatively protected
IBE scheme established on the reversal idea. The main goal of designing this system
is to achieve security and that too without random oracles. Later, Chen et al. [10]
gave a proof of the novel SK system by initializing random oracles in the BB2 proof.
Gentry [11] suggested a variant of the general theme, with improved security than
earlier systems.

In all the schemes depending on the “exponent inversion” one common feature
could be observed: they needed strong hypotheses. According to standard hypothe-
sis it is difficult to calculate

g1/x (or e(g, g)1/x) given g, gx, and also gx2 , gx3 up to gxq
Here q is a max number

of private key holders that the opponent may destroy. Here q should be of large
value in order to prove meaningful but simultaneously it will make supposition less
reliable.

1.8.4 “Commutative Blinding” IBE

Boneh and Boyen [4] introduced the commutative blinding scheme with BB1
technique. This scheme overcomes disadvantages of Boneh-Franklin and SK/BB2
techniques. Boneh-Boyen and Boneh-Franklin assume an equivalent weak hypothe-
sis. They allow encryption of identities as integers by avoiding hashing on the curve.

Approximately blinding factors are generated by the BB1 concept with two or
more secret coefficients which can be able to apply in any order. Many versions
of the basic scheme are suggested with diverse modifications. Sahai and Waters
[12] suggested a fuzzy IBE system which replaces the receiver identity. In an
associated result, Waters [13] proved that strong security can be achieved by a slight
modification to BB1. Chatterjee and Sarkar [14] and Naccache [15] have given
succeeding enhancements of Waters’ proof.
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2 Boneh-Boyen IBE (Basic Scheme: Additive Notation)

Basic scheme of Boneh-Boyen IBE makes use of secret parameters. Sender and
receiver can calculate this shared secret at their end which is used to encode
plaintext data. The public parameters along with receiver’s identity are used by
the sender to compute the shared secret of the message, whereas the recipient’s
private key and the ciphertext are used to calculate the shared secret of the message.
Though it is comparatively easy than the full Boneh-Boyen IBE scheme, security is
compromised.

2.1 Additive Notation

Here description of additive notations is given; these operations are generally used
in the elliptic curve:

E
(
Fq

) = Elliptic curve groups

P,Q = Elements in E
(
Fq

)

P + Q = Group operation of E
(
Fq

)

aP = Point P multiplication by value a where a is an integer

2.2 Setup of Parameters (Basic Scheme: Additive Notation)

For the execution of Boneh-Boyen IBE technique, there is a requirement of a
security parameter. This parameter will describe the bit strength level which will
be provided by the encryption. Then groups G1 and GT are needed to define the
pairing ê : G1 × G1 → GT . To implement elliptic curve E � Fq is taken with k as
the degree of embedding and prime p so as p � # E(Fq). Scope of the sets G1 and
GT will be described by the security parameter.

P is the point which is randomly picked up where P ∈ E(Fq)[p] .
Let G1 = 〈P〉 and GT = 〈ê (P, P )

〉
. These are cyclical sets of order p.

There is a necessity of a hash function which can perform mapping of strings
to symbolize identities to integers. So we use H1 : {0, 1}∗ → Zp which is a
cryptographic hash function.
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For encryption of a message using Boneh-Boyen IBE, there is a requirement
of one more hash function defined by H2 : GT → {0, 1}n. This function performs
hashing on the elements of GT to merge it with the original data in the form of bit
string having length n. α, β, γ ∈ Zp are three integer values which are master secret.
By using them public parameters αP, βP, γ P can be calculated.

υ = ê (P1, P2) = ê (αP, βP ) = ê(P, P )αβ is a constant.

This υ can be provided to the user as an element of public parameters. Otherwise
constants are pre-calculated by users before performing encryption. It will be
assumed that constant υ is an element of public parameter; this is the case where
βP need not be enumerated in a public parameter. Table 9.1 gives public parameters
and Table 9.2 gives master secret.

Attributes of Table 9.1 are interdependent among each other. For example
ingroup definition of G1, p, q, and E values is implicit. Due to this it is able
to decrease the count of public parameters required to a smaller list. So it is
possible to define public parameters of BB1 basic scheme: additive notation =(
G1,GT , ê, n, P, P1, P3,H1,H2, υ

)
without having any ambiguity.

Table 9.1 Basic scheme—additive notation parameters

S no. Attribute Type Description

1 q Prime power Order of finite field q

2 E/Fq Elliptic curve E(Fq) has embedding degree k
3 p Prime p � # E(Fq)
4 G1 Cyclic group Subgroup of E(Fq), G1 = 〈P〉
5 GT Cyclic group Subgroup of ∗ qk:GT = 〈ê (P, P )

〉

6 ê Pairing ê : G1 × G1 → GT

7 n Positive integer Length of plaintext (in bits)
8 P Point on elliptic curve P ∈ G1

9 P1 Point on elliptic curve P1 = αP

10 P2 Point on elliptic curve P2 = βP

11 P3 Point on elliptic curve P3 = γ P

12 H1 Cryptographic hash function H1 : {0, 1}∗ → Zp

13 H2 Cryptographic hash function H2 : GT → {0, 1}n

14 v Element of ∗ qk v = ê (P1, P2) = ê (αP, βP )

= ê(P, P )αβ

Table 9.2 Basic
scheme—additive notation
master secret

S no. Attribute Type Description

1 α, β, γ Integer α, β,
γ ∈ Zp
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Table 9.3 Private key for Boneh-Boyen IBE system

S no. Attribute Description

1
DID = (qID.rP 1 + αP2 + rP 3, rP )

= (D0,D1)
Private key analogous to identity ID,
qID = H1(ID)

2.3 Extraction of the Private Key (Basic Scheme: Additive
Notation)

When all the public parameters (attributes) as mentioned in Table 9.1 and the master
secret as mentioned in Table 9.2 are firm, then the private key can be calculated. This
secret key is linked with the identity ID. By calculation of qID ∈ Zp per-user random
value r ∈ Zp is produced. It is used to compute the two private key components
DID = (qID. rP1 + αP2 + rP3, rP) = (D0,D1). Refer Table 9.3 for the same.

2.4 Encryption with Boneh-Boyen IBE (Basic Scheme:
Additive Notation)

For the encryption of message the sender will execute the following listed steps to
the receiver with identity ID where message =M ∈ {0, 1}n.

1. Evaluate qID = H1(ID).
2. Choose random s ∈ Zp.
3. Evaluate k = υs.
4. Evaluate M ⊕ H2(k).
5. Evaluate C0 = sP.
6. Evaluate C1 = qID(sP1) + sP3.
7. Set ciphertext to C = (c,C0,C1).

2.5 Decrypting with Boneh-Boyen IBE (Basic Scheme:
Additive Notation)

After receiving ciphertext C = (c,C0,C1) the following phases are executed:

1. Evaluate k = ê(C0,D0)
ê(C1,D1)

.
2. Evaluate M = c ⊕ H2(k).
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Take into consideration that

ê (C0,D0) = ê (sP, qID.rP 1 + αP2 + rP 3)

= ê (sP, qID.rP 1) ê (sP, αP2) ê (sP, rP 3)

= ê (sP, αqID.rP ) ê (sP, αβP ) ê (sP, γ rP )

= ê(P, P )αqID.rs ê(P, P )αβs ê(P, P )γ rs

And also

ê (C1,D1) = ê (qID.sP 1 + sP 3, rP )

= ê ( αqID.sP + γ sP, rP )

= ê ( αqID.sP, rP ) ê ( γ sP, rP )

= ê
(
(P, P )αqID.rs

)
ê( P, P )γ rs

This gives

ê(C0,D0)
ê(C1,D1)

= ê (P,P )αqID.rs ê(P,P )αβs ê(P,P )γ rs

ê(P,P )αqID.rs ê(P,P )γ rs

= ê(P , P )αβs = υs

vs enables the receiver to decode the ciphertext accurately.

3 Boneh-Boyen IBE (Basic Scheme: Multiplicative Notation)

Basic scheme of Boneh-Boyen IBE makes use of secret parameters. Sender and
receiver can calculate this shared secret at their end which is used to encode
plaintext data. The public parameters along with receiver’s identity are used by
the sender to compute the shared secret of the message, whereas the recipient’s
private key and the ciphertext are used to calculate the shared secret of the message.
Though it is comparatively easy than the full Boneh-Boyen IBE scheme, security is
compromised.

The following part explains the common notations:

E
(
Fq

) = Elliptic curve groups

g1,g2 = Elements in E
(
Fq

)

g1g2 = Group operation of E
(
Fq

)

To indicate multiplying of the point g1 with the integer value a, we can say that
g1g2 indicates the group operation of E(Fq) applied to the group’s elements g1, g2
and ga.
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3.1 Setup of Parameters (Basic Scheme: Multiplicative
Notation)

For implementing Boneh-Boyen IBE technique, there is a requirement of a security
parameter. This parameter will describe the bit strength level which will be provided
by the encryption. Then groups G1 and GT are needed to define the pairing ê :
G1 × G1 → GT . For implementation of elliptic curve E(Fq) is taken with k as the
degree of embedding and prime p so as p � # E(Fq). P is the point which is randomly
picked up where P ∈ E(Fq)[p].

Let G1 = 〈P〉 and GT = 〈ê (P, P )
〉
. These are cyclical sets of order p.

There is a requirement of a hash function which can perform mapping of strings
to symbolize identities to integers. So, we use

H1 : {0, 1}∗ → Zp = cryptographic hash function.

For encryption of a n bit message using Boneh-Boyen IBE, there is a requirement
of one more cryptographic hash function that can be defined as H2 : GT → {0, 1}n.
This function performs hashing on the elements of GT to merge it with the original
data in the form of string of length n.

The Boneh-Boyen scheme needs three integers α, β, γ ∈ Zp which are master
secret and these integers are used to compute three extra public parameters αP, βP,
γ P and extra constant υwhich can be elaborated like υ = ê (g1, g2) = ê

(
gα, gβ

) =
ê(g, g)αβ . This υ can be provided to users as an element of public parameters.
Otherwise constants may be pre-calculated by users before performing encryption.

It will be assumed that constant υ is an element of public parameter; this is the
case where g2 need not be enumerated in public parameter because it is only used
for calculating υ outside a PKG. Table 9.4 gives public parameters and Table 9.5
gives master secret.

Attributes of Table 9.4 are interdependent among each other. For example
in G1 group definition p, q, E values are implicit. Due to this, it is able to
minimize the count of needed public parameters to an extremely short list.
It can be stated that public parameter of a Boneh-Boyen IBE multiplicative
basic scheme notation can be defined to be BB1 Basic Params Multiplicative
= (G1,GT , ê, n, g, g1, g3,H1,H2, υ

)
.

3.2 Extraction of the Private Key (Basic Scheme:
Multiplicative Notation)

When all the public parameters (attributes) as mentioned in Table 9.4 and the master
secret as mentioned in Table 9.5 are firm, then the private key can be calculated. This
private key is connected with the identity ID. Computing the qID = H1(ID), we can
calculate the secret key linked with the identity ID and it is mapped with an integer,
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Table 9.4 (Basic scheme—additive notation) parameters

S no. Attribute Type Description

1 q Prime power Order of finite field Fq

2 E/Fq Elliptic curve E(Fq) has embedding degree k
3 p Prime p � # E(Fq)
4 G1 Cyclic group Subgroup of E(Fq), G1 = 〈g〉
5 GT Cyclic group Subgroup of ∗ qk, GT = 〈ê (g, g)

〉

6 ê Pairing ê : G1 × G1 → GT

7 n Positive integer Length of plaintext (in bits)
8 g Point on elliptic curve g ∈ G1

9 g1 Point on elliptic curve g1 = gα

10 g2 Point on elliptic curve g2 = gβ

11 g3 Point on elliptic curve g3 = gγ

12 H1 Cryptographic hash function H1 : {0, 1}∗ → Zp

13 H2 Cryptographic hash function H2 : GT → {0, 1}n

14 υ Element of ∗ qk v = ê (P1, P2) = ê (αP, βP )

= ê(P, P )αβ

Table 9.5 Master secret (basic scheme—multiplicative notation)

S no. Attribute Type Description

1 α, β, γ Integer α, β, γ ∈ Zp

Table 9.6 Private key (basic scheme—multiplicative notation)

S no. Attribute Description

1 dID = (ggID.r

1 gα
2 gr

3g
r
) = (d0,d1

)
Private key analogous to identity ID qID = H1(ID)

and then per-user random value r ∈ Zp is produced. It is used to compute the two
private key components as mentioned in Table 9.6:

dID = (gqID. r

1 gα
2 gr

3g
r
) = (d0,d1

)

3.3 Encrypting with Boneh-Boyen IBE (Basic Scheme:
Multiplicative Notation)

For the encryption of message to the receiver with identity ID, the sender will
execute the subsequent listed steps, where message =M ∈ {0, 1}n:

1. Evaluate qID = H1(ID).
2. Choose random s ∈ Zp.
3. Evaluate k = υs.
4. Evaluate c = M ⊕ H2(k).
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5. Evaluate c0 = gs.
6. Evaluate c1 = g

gID.s

1 + gr
3.

7. Assign ciphertext to C = (c, c0, c1).

3.4 Decrypting with Boneh-Boyen IBE (Basic Scheme:
Multiplicative Notation)

After receiving ciphertext C = (c, c0, c1) the following phases are executed:

1. Evaluate k = ê(c0,d0)
ê(c1,d1)

.
2. Evaluate M = c ⊕ H2(k).

Consider that

ê (c0, d0) = ê
(
gs, g

qID.r

1 gα
2 gr

3

)

= ê
(
gs, g

qID.r

1

)
ê
(
gs, gα

2

)
ê
(
gs, gr

3

)

= ê
(
gs, g

qID.r

1

)
ê
(
gs, gαβ

)
ê (gs, gγ r )

= ê(g, g)αqID.rs ê(g, g)αβs ê(g, g)γ rs

ê (c1, d1) = ê
(
g

qID.r

1 gs
3, g

r
)

= ê (gαqID. s gγ s, gr )

= ê (gαqID. s , gr ) ê ( gγ s, gr )

= ê(g, g)αqID.rs ê(g, g)γ rs

Also consider that

ê(c0,d0)
ê(c1,d1)

= ê(g,g)αqID.rs ê(g,g)αβs ê(g,g)γ rs

ê(g,g)αqID.rs ê(g,g)γ rs

= ê(g, g)αβs = υs

4 Boneh-Boyen IBE (Full Scheme)

The first introduced basic Boneh-Boyen technique is susceptible to a chosen
ciphertext attack. Consider a case where the opponent desires to compute plaintext
into ciphertext (c, c0, c1). This ciphertext (c, c0, c1) relates to the message M which
consists of plaintext data. For achieving the goal he/she can decode the ciphertext
(c + ∈, c0, c1) to retrieve the original message M ⊕ ∈ and M can be recovered as
M = (M ⊕ ∈) ⊕ ∈.

This possibility of being attacked can be simply removed by using the Fujisaki-
Okamoto transform.
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For the description of full Boneh-Boyen scheme one can refer multiplicative
notation defined in Sect. 3. The full scheme is strong against various attacks like
chosen identity and chosen ciphertext.

4.1 Setup of Parameters (Full Scheme)

Along with the attributes enlisted in Table 9.7, there is a need of an auxiliary hash
function to enhance the security of chosen ciphertext. That hash function is

H3 : GT → {0, 1}n × G1 × G1 → Zp

Public parameters for the full scheme are enlisted in Table 9.7. The master secret
is the same as stated in the basic scheme, and is given in Table 9.8.

Table 9.7 Parameters of Boneh-Boyen IBE system (full scheme)

S no. Attribute Type Description

1 q Prime power Order of finite field Fq

2 E(Fq) Elliptic curve E(Fq) has embedding degree k
3 p Prime p � # E(Fq)
4 G1 Cyclic group Subgroup of E(Fq), G1 = 〈P〉
5 GT Cyclic group Subgroup of ∗ qk:GT = 〈ê (P, P )

〉

6 ê Pairing ê : G1 × G1 → GT

7 n Positive integer Length of plaintext (in bits)
8 g Point on elliptic curve g ∈ G1

9 g1 Point on elliptic curve g1 = gα

10 g2 Point on elliptic curve g2 = gβ

11 g3 Point on elliptic curve g3 = gγ

12 H1 Cryptographic hash function H1 : {0, 1}∗ → Zp

13 H2 Cryptographic hash function H2 : GT → {0, 1}n

14 H3 Cryptographic hash function H3 : : GT → {0, 1}n × G1 × G1 → Zp

15 υ Element of ∗ qk v = ê (P1, P2) = ê (αP, βP )

= ê(P, P )αβ

Table 9.8 (Boneh-Boyen
IBE system full scheme)
master secret

S no. Attribute Type Description

1 α, β, γ Integer α, β,
γ ∈ Zp
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Table 9.9 Private key for Boneh-Boyen IBE system

S no. Attribute Description

1 dID = (gqID.r

1 gα
2 gr

3, g
r
) = (d0, d1) Private key analogous to identity ID, qID = H1(ID)

Attributes of Table 9.8 are interdependent among each other.
For example ingroup definition of G1, p, q, E values is implicit. Due to this,

it is able to decrease the count of public parameters needed to a smaller list. So
it is possible to define Boneh-Boyen IBE system public parameters to be Boneh-
Boyen parameters = (

G1, GT , ê, n, g, g1, g3,H1,H2,H3, υ
)
without having any

ambiguity.

4.2 Extraction of the Private Key (Full Scheme)

When all the public parameters as mentioned in Table 9.7 and the master secret
mentioned in Table 9.8 are firm, then the private key can be calculated. This private
key is connected with the identity ID. Computing the qID = H1(ID).we can calculate
the secret key linked with the identity ID and it is mapped with an integer, and then
per-user random value r ∈ Zp is produced. It is used to compute the two private key
components mentioned in Table 9.9:

dID = (gqID.r

1 gα
2 gr

3, g
r
) = (d0, d1)

4.3 Encrypting with Boneh-Boyen IBE (Full Scheme)

For the encryption of message M to the receiver with identity ID, the sender will
execute the subsequent listed steps:

1. Evaluate qID = H1(ID).
2. Choose random s ∈ Zp.
3. Evaluate k = υs.
4. Evaluate c = M ⊕ H2(k).
5. Evaluate c0 = gs.
6. Evaluate c1 = g

qID.s

1 + gs
3.

7. Evaluate t = s + H3(k, c, c0, c1).
8. Assign ciphertext to C = (c, c0, c1, t).
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4.4 Decrypting with Boneh-Boyen IBE (Full Scheme)

After receiving ciphertext C = (c, c0, c1, t) the following phases are executed by the
receiver:

1. Evaluate k = ê(C0,d)
ê(C1,d1)

.
2. Evaluate s = t − H3(k, c, c0, c1).
3. Verify that k = υs and c0 = gs. If any of the conditions fails, raise an error

condition and exit.
4. Compute M = c ⊕ H2(k).

5 Security of the Boneh-Boyen IBE Scheme

The security concept of the Boneh-Boyen IBE can be implemented under selective-
ID model [l]. As this is the selective-ID model, the intruder will declare the duplicate
ID* which is the ID of the user whom the intruder wants to attack.

As explained earlier, IBE works by using four algorithms; setup is the first and
most important algorithm to generate key pairs of the user.

Here, we are using a few different notation for the brief description of the setup
phase to elaborate the security concept in IBE.

• Randomly, select three integers g, h, u; G will be a group that must be in prime
order p such as p : g, h, u ∈ G.

• Then choose arbitrary a, b ∈ ZP.
• MSK would be the master secret key such that MSK = gab.
• Pp is a public parameter such that Pp = (g, h, u, e(g, g)ab .
• The hash function can be represented as f (ID) = uIDh where ID ∈ Zp.

The Boneh-Boyen challenger will have few parameters like g, A = ga, B = gb,
and C = gc and T is a random element from GT or T ∈ GT whereas T = e(g, g)abc.
We must check whether an intruder on the Boneh-Boyen system is able to resolve
the decisional bidirectional Diffie-Hellman problem. To find out the solution
to DBDH, the intruder has to generate half plus more than minor probability
appropriately through T = e(g, g)abc or it may be generated randomly.

Early setup for the simulator will have the following terms:

• Select a random y ∈ ZP.
• Pp is a public parameter; it can be evaluated as

Pp =
(
g, e(g, g)ab = e (A,B) , u = A, h = A−ID∗

. gy.

• Remember that the attacker will attack with the identity ID* earlier.
• The hash function f (ID) = uIDh = AID−ID∗

gy .
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However the previous declarations become very different for the simulator.
Initially, f (ID∗) = gy; this is a significant parameter. We use the random parameter
gy in the hash function; as a result the intruder does not acquire f (ID∗) = 1 and
stops.

Furthermore, from the simulator’s point of view, ciphertext can be as follows:

CT = (C0, C1, C2) =
(
Me(g, g)abs , gs, ga.ΔID sgys

where �ID = ID − ID.
Note that as we attempt to achieve the blinding factor e(g, g)abs, we cannot

decrypt CT, if �ID = 0 as a simulator. However, if �ID �= 0, it yields

(
C2

C
y

1

) 1
ΔID

=
(
ga.ΔID.s

) 1
ΔID = gas

We can compute the blinding factor e(gb, gabs) by taking e(gb, gas). We cannot
do it, if �ID = 0.

During the key generation phase, key must be randomly added. The intruder
assumes that keys are disseminated randomly. Initially we can generate a key for a
specific ID; further keys can be randomly generated and can be derived from public
parameters as well as the previous key.

Let us provide the next key along with random parameter r : K1 = gabf (ID)r,
K2 = gr. So that we can select a random t ∈ Zp and randomly generate a key
rr

′ = t + r. It can be likely as below:

K ′
1 = gabf (ID)r+t

= gabf (ID)rf (ID)t

= K1f (ID)t

K ′
2 = gr+t = grgt = K2 gt

“Decisional BDH is hard ⇒ Boneh-Boyen IBE is CPA selective-ID secure,” as
stated in Boneh-Boyen IBE.

Few parameters are provided by the simulator (the DBDH intruder); those
parameters are A = ga, B = gb, C = gc, and T as T = e(g, g)abs or it may be random.
Let us consider that the intruder has worked on setup and key generation phases, as
the concept explained earlier. The next step will be evaluating the challenge phase.

The intruder sends two messages M0 and M1 to the simulator for encryption. Υ
will be selected randomly as Υ ∈ {0, 1}. Later, authenticated encryption Mv and the
intruder will be presented by the simulator. To pursue the same, the simulator must
compute the following:

C0 = MvT.
C1 = gc = C: here, c plays the role of s | simulator.
C2 = f (ID∗)c = gyc = Cy: y is known because we select it randomly.
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The intruder receives CT = = (C0,C1,C2) from the simulator and then the
intruder predicts Υ and replies with Υ ’. Actually, before the simulator acts the
intruder may ask for various set of secret keys for many different identities apart
from ID* and then the simulator can reply with a random secret key.

If the DBDH combination were followed by the (A, B, C, T) values then the
intruder will answer with Υ ’ = Υ ; also probably, the simulator will agree, hence
solving DBDH. In other situations, if T were chosen randomly, then both intruder
and simulator will answer but the intruder replies with 0.5 probability whereas the
simulator will respond appropriately in half of the situations. Remember, unlike
Boneh-Franklin proof, reply with probability 0 will be aborted because whatever ID
the intruder wishes to attack, beforehand we will be aware of that ID*. This is the
odd thing identified in the selective-ID model.

At the end of security proof we can conclude that the success ratio of the Boneh-
Boyen intruder is 1

2+ ∈, whereas ∈ is not negligible.
After evaluation of DBDH, the probability is

Pr (success) = Pr

(
success| T = e(g, g)ab

)

Pr

(
T = e(g, g)ab

)+ Pr ( success| T = R)Pr (T = R)

=
(
1
2+ ∈

)
1
2 + 1

2 .
1
2 = 1

2 + ∈
2

6 Conclusion and Future Scope

This chapter has covered IBE techniques that are proved secure with respect to
selective-identity attacks in the standard model without using random oracle. Here,
the BB1 scheme of the Boneh-Boyen IBE has been concentrated that is based
on the decisional bilinear Diffie-Hellman (BDH) assumption. The Boneh-Boyen
IBE scheme and other commutative blinding schemes in which the user’s ID is
hashed with randomly selected integer are used in the encryption and decryption
operations. Basically, two basic notation schemes of Boneh-Boyen, additive scheme
and multiplicative scheme, are explained in detail with its standard algorithms.
Additive notation scheme is utilized for elliptic curve and multiplicative notation
scheme is used in pairing-based cryptography which is followed by a fully secure
version of the scheme with its algorithm. At the end, by considering the intruder
attack, we have examined whether an intruder on the Boneh-Boyen system is
capable to resolve the decisional bidirectional Diffie-Hellman problem and the
security concept of the Boneh-Boyen IBE is implemented under selective-ID model.

It is observed that security parameters should be raised to prevent inefficiencies
of security reduction. There is a need for constructive research on developing a
fully secure IBE scheme which is safe against adaptive ID attacks without random
oracles. Though Boneh-Boyen scheme is proven secured in the standard model
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the more practical and real-time solution to this problem could be an important
research direction. To provide strong security, the performance of the system must
be excelled and attaining security with inheriting complexity by preserving the
performance is an open research topic.
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Chapter 10
Sakai-Kasahara IBE

Hamza Mutaher and Mahmoud E. Hodeish

Abstract Public key cryptography (PKC) provides a very robust encryption in
networking and electronic communication. The strength of PKC comes from the
idea of paired keys that are independent (but mathematically dependent). The
encryption-decryption process of PKC requires both parties of communication,
i.e., sender and receiver, to provide each other with its public key and the digital
certificate of authority, and each party has to keep a directory to store all parties’
public keys so these requirements are considered as drawbacks of PKC. To
overcome these drawbacks, the identity-based encryption (IBE) came to existence.
IBE is a form of PKC which uses a third-party server to distribute the public
parameters to all the parties and extract the private key from the arbitrary public
key. To encrypt the message, the sender will use the receiver public key, and to
decrypt the message, the receiver will use the extracted private key. In this chapter,
we discuss the Sakai-Kasahara IBE and how it differs from other IBE schemes.
The additive, multiplicative, and full schemes of IBE are explained along with the
encryption and decryption process. The security of this scheme is also discussed and
proved.

Keywords Cryptography · IBE · Encryption · Decryption · Additive ·
Multiplicative · Security

H. Mutaher (�)
Department of Computer Science and Information Technology, Maulana Azad National Urdu
University, Hyderabad, India

M. E. Hodeish
Faculty of Computer & Information Technology, Al-Razi University, Sana’a, Yemen

Department of Computer, Faculty of Education-Zabid, Hodeidah University, Hodeidah, Yemen

© Springer Nature Switzerland AG 2021
K. A. B. Ahmad et al. (eds.), Functional Encryption, EAI/Springer Innovations in
Communication and Computing, https://doi.org/10.1007/978-3-030-60890-3_10

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60890-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-60890-3_10


172 H. Mutaher and M. E. Hodeish

1 Introduction

Identity-based encryption (IBE) or the so-called ID-based encryption is a scheme
that uses public key encryption in which any bit string can be represented as a public
key in which the public key of a user can be some unique meaningful identity like
name and email address.

The motivation of introducing the IBE scheme is to solve such problems
of traditional public key systems like the necessity for directories and digital
certificates to manage public keys and the expensive computations of generating
public-private key pairs. However, Shamir [1] was the first who introduced the
concept of IBE that eliminates the use of directories and digital certificates. He
considered the receiver identity as the representation of the public key. Despite
solving some of the related problems of identity-based signature, IBE proved much
more challenging.

The Cocks IBE scheme [2] is one of the encryption algorithms. This type of
encryption algorithm encrypts the plaintext into ciphertext. The assurance of this
algorithm depends on the durability of the quadratic residuosity problem and the
computational difficulty of integer factorization as well. The system authority of
this algorithm generates a modulus m which is universally available. To create this
modulus, system authority calculates two primes p and q; thus the modulus m will
be the product of this calculation, where both primes p and q must be congruent to
3 mod 4. This system ensures the use of a universally available hash function to the
text that needs to be encrypted to represent it as a value to a modulo m. Therefore,
when the user A wants to get encrypted data, he/she needs to send any of his/her
identities such as (username or email address) to the system authority. Mutually,
user A will receive a private key from the system authority. The user B who seeks
to send an encrypted data to user A will be able to deliver it by knowing only the
public identity of user A and universal public parameters where there is no need to
know the public key.

On the other hand, there is another type of IBE algorithm called Boneh-Franklin
IBE [3]. It is an algorithm-based identity that encrypts the data for security. It is
considered as the first secure and practical scheme of IBE and it is an example
of an IBE full domain hash scheme family. This scheme maps the identity to the
elliptic curve to accomplish the process of encryption and decryption. Modular
exponentiation is required to start the process of mapping between the identity and
the point in the elliptic curve. The expensive calculation is considered as a drawback
for the performance of the full domain hash scheme.

The Boneh-Boyen IBE scheme [4] is also used to encrypt the identity of the
users. In this scheme, the sender and receiver have to use the same value to encrypt
and decrypt the identity where the receiver also uses its private key at the decryption
side. In this scheme, the user identity is hashed to an integer to be used in the process
of encryption and decryption. The hashed integer avoids the calculation of modular
exponentiation and it is considered more rapid than the full domain hash scheme.

This chapter aims to discuss in detail the Sakai-Kasahara IBE scheme [5, 6].
This scheme depends on the bilinear pairing and elliptic curve to provide security
solutions. The private key is the system element that is responsible to decrypt the
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ciphertext. It is one of the security solutions that belong to the exponent inversion
scheme family. The encryption and decryption procedures are applied through a
hashed integer on an identity in a form of string. Such algorithms like Boneh-
Franklin IBE use the full domain hashed scheme which is considered slower
than Sakai-Kasahara IBE. Due to the avoidance of modular exponentiation, Sakai-
Kasahara IBE is quite faster than Boneh-Franklin IBE [7] which is going to be
discussed in this chapter. Before the discussion of Sakai-Kasahara IBE, we have
to explain the procedure that occurs in the IBE system to encrypt and decrypt the
message.

When the sender A wants to send an encrypted message to receiver B, he/she
simply encrypts the message using B’s public identity, for example email address,
and there is no need for A to check the B’s public key certificate. When B receives
the encrypted message, he/she will communicate the private key generator (PKG),
also called system authority, which will send him/her a private key to allow him/her
to decrypt the message. Note that A and B have to authenticate themselves to the
PKG before starting the message exchange procedure; see Fig. 10.1.

IBE has four major operations explained as follows:

1. Setup of parameters: PKG will generate public parameters θ and master
secret S and distribute public parameters to both A and B.

2. Extraction of the private key: PKG will use the master secret S to extract the
private key SIDB

which corresponds to an arbitrary public identity of string
IDB.

3. Encryption: The sender A will encrypt the message using the receiver B’s
public identity IDB.

4. Decryption: The receiver B will decrypt the message using the correspond-
ing private key SIDB

that has been sent by the PKG.

Fig. 10.1 IBE operations
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This chapter is divided into two main parts; the first one discusses the encryption
and decryption of Sakai-Kasahara IBE basic scheme with its additive notation and
multiplicative notation. The second part discusses encryption and decryption of the
Sakai-Kasahara IBE full scheme with its security proof. Both parts will explain the
setup of the parameters to accomplish the encryption and decryption process.

2 Sakai-Kasahara IBE (Basic Scheme: Additive Notation)

The S-K IBE basic scheme is less secure than the S-K IBE full scheme but easier to
understand. In the basic scheme, two parties need to exchange encrypted messages
safely. Both parties must agree on a unique shared secret to encrypt the message in
plaintext form. The first party (sender) calculates the shared secret from its public
parameters and identity of the second party (receiver). The receiver gets the shared
secret by calculating the ciphertext and its private key.

2.1 Setup of Parameters

This scheme deals with additive notation; thus E(Fq) is an elliptic curve group, σ 1,
σ 2 are two elements of the elliptic curve, and σ 1 + σ 2 indicates the E(Fq) group
operation to be applied to the group elements σ 1, σ 2 and multiply σ by integer s
which is indicated as sσ .

To implement this scheme, we need to define some basic essential elements
shown in Table 10.1 and explained as follows:

1. Security parameters to define the level of the bit durability which will be
provided by the encryption process.

2. Define G1 and GT groups.
3. Pair ê : G1 × G1 → GT .
4. Define p � # E(Fq), where E/Fq denotes an elliptic curve along with embedding

degree k and p is prime.
5. Define the size of G1 and GT groups by the security parameters.
6. Let σ ∈ E(Fq)[p], where σ is a random point on the elliptic curve.
7. Let G1 and GT be a cyclic group of order σ such as G1 = 〈σ 〉 and GT =〈

ê (σ, σ )
〉
.

8. Define a cryptographic hash function one h1 to map the string of the identity to
an integer such as h1 : {0, 1}∗ → Zp.

9. Define a cryptographic hash function two h2 to hash the element of GT such as
h2 : GT → {0, 1}n, so we can associate the plaintext with it, where n is the bit
string of the plaintext.

10. Define S integer as a master secret such as S ∈ Zp, which is shown in Table
10.1.

The public parameters of this scheme are
(
G1,GT , ê, σ, sσ, h1, h2, v

)
.
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Table 10.1 Parameters of Sakai-Kasahara IBE scheme

Element Description

p Prime
q Prime power
E/Fq Elliptic curve
G1 Cyclic group
GT Cyclic group
ê Pairing
n Positive integer
σ A point on elliptic curve
sσ A point on elliptic curve
h1 A cryptographic one-way hash function
h2 A cryptographic one-way hash function
h3 A cryptographic one-way hash function
h4 A cryptographic one-way hash function
v Element of F ∗

qk

S Master secret S ∈ Zp

PrivID = 1
S+qID

σ A private key for additive notation

PrivID = σ 1/(S+qID) A private key for multiplicative notation and full scheme

Algorithm 11.1: Parameters _Setup ()
Input: A security parameter, an elliptic curve E, and a plaintext length n
Output: Public parameters θ1 = (

G1,GT , ê, σ, sσ, h1, h2, v
)
and a master

secret S.
Procedure:
Begin

1. Select a primep and a prime power q with p � # E(Fq) which meets
the security parameter requirement.

2. Pick up a random σ ∈ E(Fq)[p] and let G1 = 〈σ 〉.
3. Embed the degree k to F ∗

qk and pair ê : G1 × G1 → F ∗
qk .

4. Let GT = 〈ê (σ, σ )
〉
.

5. Pick up a random S ∈ Zp.
6. Use cryptographic hash functions:

(a) h1 : {0, 1}∗ → Zp

(b) h2 : GT → {0, 1}n

End
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2.2 Extraction of the Private Key

The extraction of the private key is the responsibility of the receiver party. After
listing out the security parameters, elements, and master key, the receiver party
extracts the private keys as follows:

1. Map the ID to the integer qID ∈ Zp by calculating qID = h1(ID).
2. Use master secret S to calculate the private key such as PrivID = 1

S+qID
σ ,

where the calculation of 1
S+qID

occurs inZ∗
p.

Algorithm 11.2: Private_Key_Extraction ()
Input: An identity ID, public parameters θ1 = (G1,GT , ê, σ, sσ, h1, h2, v

)
, and

a master secret S
Output: A private ID PrivID

Procedure:
Begin

1. Calculate PrivID = 1/S + qID.

End

2.3 Sakai-Kasahara IBE Encryption

In this section, the sender needs to encrypt the message M ∈ {0, 1}n and send it to
the receiver along with identity ID, so the sender will perform some steps to encrypt
the message as follows:

1. Map the identity to an integer and hash it using hash function one as
qID = h1(ID).

2. Pick up a random number R ∈ Zp.
3. Calculate L = R (sσ + qIDσ ) = R (S + qIDσ ).
4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Define C = (L,ω) as a ciphertext.

Algorithm 11.3: Encryption ()
Input: A plaintext message M ∈ {0, 1}n, a string ID, public parameters θ1 =(

G1,GT , ê, σ, sσ, h1, h2, v
)
, and a master secret S

Output: A ciphertext C = (L,ω)
Procedure:
Begin

1. Calculate qID = h1(ID).
2. Pick up a random number: R ∈ Zp.
3. Calculate L = R (sσ + qIDσ ) = R (S + qIDσ ).
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4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Calculate C = (L,ω).

End

2.4 Sakai-Kasahara IBE Decryption

In the section, the receiver needs to decrypt the message that has been sent by the
sender to get the plaintext by performing the following steps:

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

Note that

ê (L, P rivID) = ê

(
R (S + qID) σ,

1

S + qID

σ

)
= ê(σ, σ )R

So, step 5 of the encryption section and step 2 of the decryption section are
calculating the same λ that permits the receiver to decrypt the ciphertext correctly.

Algorithm 11.4 Decryption ()
Input: A ciphertext C = (L,ω), public parametersθ1 = (

G1,GT , ê, σ, sσ, h1,

h2, v), and a private key PrivID

Output: A plaintext messageM
Procedure:
Begin

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

End

3 Sakai-Kasahara IBE (Basic Scheme: Multiplicative
Notation)

The S-K IBE basic scheme is less secure than the S-K IBE full scheme but easier to
understand. In the basic scheme, two parties need to exchange encrypted messages
safely. Both parties must agree on a unique shared secret to encrypt the message in
plaintext form. The first party (sender) calculates the shared secret from its public
parameters and identity of the second party (receiver). The receiver gets the shared
secret by calculating the ciphertext and its private key.
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3.1 Setup of Parameters

This scheme deals with multiplicative notations; thus E(Fq) is an elliptic curve group
and σ 1, σ 2 are two elements of the elliptic curve; then we consider σ 1σ 2 to point
out E(Fq) group operation to be applied to the group elements σ 1,σ 2 and multiply
σ by integer s indicated as σ s.

To implement this scheme, we need to define some basic essential elements
shown in Table 10.1 and explained as follows:

1. Security parameters to define the level of the bit durability which will be
provided by the encryption process.

2. Define G1 and GT groups.
3. Pair ê : G1 × G1 → GT .
4. Define p � # E(Fq), where E/Fq denotes an elliptic curve along with the

embedding degree k and pis prime.
5. Define the size of G1 and GT groups by the security parameters.
6. Let σ ∈ E(Fq)[p] where σ is a random point on the elliptic curve.
7. Let G1 and GT be a cyclic group of order σ such as G1 = 〈σ 〉 and GT =〈

ê (σ, σ )
〉
.

8. Define a cryptographic hash function one h1 to map the string of the identity to
an integer such ash1 : {0, 1}∗ → Zp.

9. Define a cryptographic hash function two h2 to hash the element of GT such
ash2 : GT → {0, 1}n, so we can associate the plaintext with it, where n is the bit
string of the plaintext.

10. Define S integer as a master secret such as S ∈ Zp, which is shown in Table
10.1.

The public parameters of this scheme are
(
G1,GT , ê, n, σ, σ s, h1, h2, v

)
.

Algorithm 11.5 Parameters_ Setup ()
Input: A security parameter, an elliptic curve E, and a plaintext length n
Output: Public parameters θ2 = (

G1,GT , ê, n, σ, σ s, h1, h2, v
)
and a master

secret S
Procedure:
Begin

1. Select a prime p and a prime power q with p � # E(Fq) which
meets the security parameter requirement.

2. Pick up a random σ ∈ E(Fq)[p] and let G1 = 〈σ 〉.
3. Embed the degree k to F ∗

qk and pair ê : G1 × G1 → F ∗
qk .

4. Let GT = 〈ê (σ, σ )
〉
.

5. Pick up a random S ∈ Zp.
6. Use cryptographic hash functions:

(a) h1 : {0, 1}∗ → Zp

(b) h2 : GT → {0, 1}n

End
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3.2 Extraction of the Private Key

The extraction of the private key is the responsibility of the receiver party. After
listing out the security parameters, elements, and master key, the receiver party
extracts the private keys as follows:

1. Map the ID to the integer qID ∈ Zp by calculatingqID = h1(ID).
2. Use master secret S to calculate the private key such as PrivID =

σ 1/(S+qID).

Algorithm 11.6 Private_Key_Extraction ()
Input: An identityID, public parametersθ2 = (

G1,GT , ê, n, σ, σ s, h1, h2, v
)
,

and a master secret S
Output: A private ID PrivID

Procedure
Begin

1. Calculate PrivID = σ 1/(S+qID).

End

3.3 Sakai-Kasahara IBE Encryption

In this section, the sender needs to encrypt the message M ∈ {0, 1}n and send it to
the receiver along with identityID, so the sender will perform some steps to encrypt
the message as follows:

1. Map the identity to an integer and hash it using hash function one as
qID = h1(ID).

2. Pick up a random number R ∈ Zp.

3. Calculate L = R
(
σSσqID

)R = σR(S+qID).
4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Define C = (L,ω) as a ciphertext.

Algorithm 11.7 Encryption ()
Input: A plaintext message M ∈ {0, 1}n, a string ID, public parameters θ2 =(

G1,GT , ê, n, σ, σ s, h1, h2, v
)
, and a master secret S

Output: A ciphertext C = (L,ω)
Procedure
Begin

1. Calculate qID = h1(ID).
2. Pick up a random number: R ∈ Zp.

3. Calculate L = R
(
σSσqID

)R = σR(S+qID).
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4. Calculate λ = h2(v)R.
5. Calculate ω = M ⊕ λ.
6. Calculate C = (L,ω).

End

3.4 Sakai-Kasahara IBE Decryption

In the section, the receiver needs to decrypt the message that has been sent by the
sender to get the plaintext by performing the following steps:

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

Note that

ê (L, P rivID) = ê
(
σR(S+qID), σ 1/(S+qID)

)
= ê(σ, σ )R

So, step 5 of the encryption section and step 2 of the decryption section are
calculating the same λ that permits the receiver to decrypt the ciphertext correctly.

Algorithm 11.8 Decryption ()
Input: A ciphertextC = (L,ω), public parameters

θ2 = (G1,GT , ê, n, σ, σ s, h1, h2, v
)
, and a private key PrivID

Output: A plaintext message M
Procedure
Begin

1. Calculate λ = h2
(
ê (L, P rivID)

)
.

2. Calculate M = (ω ⊕ λ).

End

4 Sakai-Kasahara IBE (Full Scheme)

The basic scheme is insecure to chosen ciphertext attack: if an attacker wants to
get the plaintext back, the attacker will decrypt the ciphertext C(L,ω ⊕ ε) to get
the plaintext M ⊕ ε, and the attacker reconstructs M as M = (M ⊕ ε). The full
scheme is intended to overcome this insecurity by adding the Fujisaki-Okamoto
transformation technique [8] to the basic scheme [7].
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4.1 Setup of Parameters

The setup of parameters in the full scheme is similar to the basic scheme along
with some extra parameters. We need extra hash function parameters to impose the
security against chosen ciphertext attack. Principally, we need two hash functions
h3 : {0, 1}n → Zp and h4 : {0, 1}n → {0, 1}n and need to add these two hash
functions into the list of public parameters of the full scheme. The master secret
remains the same as in the basic scheme. The public parameters of this scheme are(
G1,GT , ê, n, σ, σ s, h1, h2, h3,h4,v

)
.

Algorithm 11.9 Parameters _Setup ()
Input: A security parameter, an elliptic curve E, and a plaintext length n
Output: Public parameters θ3=

(
G1,GT , ê, n, σ, σ s, h1, h2, h3,h4,v

)
and a mas-

ter secret S
Procedure
Begin

1. Select a prime p and a prime power q with p � # E(Fq) which meets
the security parameter requirement.

2. Pick up a random σ ∈ E(Fq)[p] and let G1 = 〈σ 〉.
3. Embed the degree kto F ∗

qk and pair ê : G1 × G1 → F ∗
qk .

4. Let GT = 〈ê (σ, σ )
〉
.

5. Pick up a random S ∈ Z
∗
p.

6. Use cryptographic hash functions:

(a) h1 : {0, 1}∗ → Zp

(b) h2 : GT → {0, 1}n

(c) h3 : {0, 1}n → Zp

(d) h4 : {0, 1}n → {0, 1}n

End

4.2 Extraction of the Private Key

The extraction of the private key in the full scheme occurs as follows:

1. Map the ID to the integer qID ∈ Zp by calculating qID = h1(ID).
2. Use master secret S to calculate the private key such as PrivID = σ 1/(S+qID).

Note that the extraction of the private key in the full scheme is similar to the
extraction of the private key in the basic scheme.

Algorithm 11.10 Private_Key_Extraction ()
Input: An identity ID, public parameters θ3=

(
G1,GT , ê, n, σ, σ s, h1,

h2, h3,h4,v
)
, and a master secret S
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Output: A private ID PrivID

Procedure
Begin

1. Calculate PrivID = σ 1/(S+qID).

End

4.3 Sakai-Kasahara IBE Encryption

In this section, the sender needs to encrypt the message M ∈ {0, 1}n and send it to
the receiver along with identityID, so the sender will perform some steps to encrypt
the message as follows:

1. Map the identity to an integer and hash it using hash function one as
qID = h1(ID).

2. Pick up a random number τ ∈ Zp.
3. Calculate R = h3(τ ,M).
4. Calculate L = (σSσqID

)R = σR(S+qID).
5. Calculate λ = τ ⊕ h2(v)R.
6. Calculate ω = M ⊕ h4(τ ).
7. Calculate δ = h4(M).
8. Define C = (L,ω, δ) as a ciphertext.

Algorithm 11.11 Encryption ()
Input: A plaintext message M ∈ {0, 1}n, a string ID, public parameters

θ3=
(
G1,GT , ê, n, σ, σ s, h1, h2, h3,h4,v

)
, and a master secretS

Output: A ciphertext C = (L,ω, δ)
Procedure
Begin

1. Calculate qID = h1(ID).
2. Pick up a random number: τ ∈ Zp.
3. Calculate R = h3(τ ,M).
4. Calculate L = (σSσqID

)R = σR(S+qID).
5. Calculate λ = τ ⊕ h2(v)R.
6. Calculate ω = M ⊕ h4(τ ).
7. Calculate δ = h4(M).
8. Calculate C = (L,ω, δ).

End
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4.4 Sakai-Kasahara IBE Decryption

In this section, the receiver needs to decrypt the message that has been sent by the
sender to get the plaintext by performing the following steps:

1. Calculate qID = h1(ID).
2. Calculate N = ê (L, P rivID).
3. Calculate τ = λ ⊕ h2(N).
4. Calculate M = δ ⊕ h4(τ ).
5. Calculate R = h3(τ ,M).
6. If L �= (σqIDσS

)R
, then an error has occurred, so exit.

7. Else assign the plaintext to M.

Algorithm 11.12 Decryption ()
Input: A ciphertext C = (L,ω, δ), public parameters θ3=

(
G1,GT , ê, n, σ, σ s,

h1, h2, h3,h4,v
)
, and a private key PrivID

Output: A plaintext message M
Procedure
Begin

1. Calculate qID = h1(ID).
2. Calculate N = ê (L, P rivID).
3. Calculate τ = λ ⊕ h2(N).
4. Calculate M = δ ⊕ h4(τ ).
5. Calculate R = h3(τ ,M).
6. If L �= (σqIDσS

)R
exit.

7. Else plaintext =M.

End

5 Security of the Sakai-Kasahara IBE Scheme

In this section, we are going to prove that the S-K IBE scheme is secure against the
adversary Ē using the random oracle model (ROM); therefore we have to define the
one-way hash function (OWH) before we start the analysis.

Definition 1.1: The OWH function f : {0, 1}∗ → {0, 1}n that is considered to be
infeasible to invert is that which can take any input x ∈ {0, 1}∗ of arbitrary length
and give an arbitrary-length output value y = f (x) ∈ {0, 1}n which is called digest
or hash value. While using the hash function, we have to consider the following
properties:

1. y = f (x) ∈ {0, 1}n is irreversible.

y = h(x) �= h
(
x’
)

.
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2. It is impossible to get h(x’) ifx �= x’.

Theorem 1.1: We assume that the OWH function closely operates as a random
oracle. According to our assumption, the Sakai-Kasahara IBE scheme is provably
secure against an adversary Ē to derive the message M.

Proof 1.1: We assume that the adversary Ē can derive the message M that has
been sent from the sender to the receiver. To find out the message M, an adversary
Ē has to use the experimental algorithm

EXPT
h3(τ,M)
HASH,φ

The probability of success of the experimental algorithm is defined as

∣∣
∣SUCCESS

h3(τ,M)
HASH,φ = Pr

[
EXPT

h3(τ,M)
HASH,φ = 1

]
− 1
∣∣
∣

where Pr denotes the probability of success of EXPT
h3(τ,M)
HASH,φ . The experimental

algorithm is dependent on the advantage function that is defined as

ADV AT
h3(τ,M)
HASH,φ (et, qR) = maxφ

{
SUCCESS

h3(τ,M)
HASH,φ

}

where max is specified by three factors:

1. Overall Ā
2. The number of queries (qR) obtained from the execution time (et)
3. Reveal oracle

We can say that the S-K IBE scheme is vulnerable to the adversary Ē to derive
the message M if

ADV AT
h3(τ,M)
HASH,φ(et) ≤ ε,∀ε > 0.

Contemplating Algorithm 11.1, the adversary Ē can derive the message M if and
only if it can invert the OWH function. According to Definition 11.1, the OWH
function is infeasible to be inverted by cause of

ADV AT
h3(τ,M)
HASH,φ (et, qR) ≤ ε

Since ADV AT
h3(τ,M)
HASH,φ (et, qR) depends on ADV AT

h3(τ,M)
HASH,φ(et), the S-K IBE

scheme is provably secure against the adversary Ēs to derive the message M.
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Chapter 11
HIBE: Hierarchical Identity-Based
Encryption

Tawseef Ahmed Teli, Faheem Syeed Masoodi, and Alwi M. Bahmdi

Abstract Cryptosystems fundamentally deal with the issue of securing data com-
munication. Public key infrastructure (PKI) model requires an authenticated public
key for encryption that has to be obtained prior to initiating communication. The
identity-based encryption (IBE) essentially removes the public key distribution
by using an arbitrary string, e.g., an email address or a phone number, as the
public key. A private key generator (PKG) delegates private keys to corresponding
users for decryption. In trivial identity-based encryption schemes, a single private
key generator for all the users makes key generation computationally inefficient.
The hierarchical identity-based encryption (HIBE) eliminates this bottleneck of
verifying the proofs of identity, generating private keys and establishing secure paths
to transfer these keys. In HIBE, a root PKG with a secret master key distributes
the workload by mirroring an organization hierarchy, delegating the process of key
generation, and authenticating identities of users to lower level PKGs.
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1 Introduction

1.1 Public Key Cryptography

Cryptosystems, based on the visibility of key, are generally classified into two types,
viz. symmetric (private key) systems and asymmetric (public key) systems [1]. The
public key cryptosystems use the concepts of digital certificates to work with public
keys. The key pair (public key, private key) is generated randomly by a user or a
third-party entity. In a traditional public key cryptosystem scenario, if Alice wants
to send a message to Bob, Alice uses Bob’s public key, which can be any randomly
generated string. The public key and the owner’s identity are used as certificate,
digitally signed by a certificate authority (CA), for key management. Alice obtains
the authenticated key from a certificate repository that is designated to store public
keys and the identity of the owners of the public keys (digital certificates) in a
traditional public key encryption scheme as shown in Fig. 11.1. The private keys
may also be stored by a recovery system to cater for the lost private keys or keys that
may be unavailable due to some unforeseeable reasons. Like public keys, if private
keys are generated by a centrally designated authority/agent, they are also archived
and a copy of the private key is sent to the owner by the certificate authority.

Certificate 
Authority CA

User

Key Creation

Key Recovery

Repository

Fig. 11.1 Traditional public key encryption (key generation)
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Key Validation 
Server

Alice

Repository

Bob

Message

Fig. 11.2 Validation of keys

The digital certificates come with expiry dates that are usually kept as long
periods of time due to the high computational and verification costs. The expiration
in digital certificates asks for a validation check on keys before using it. If Alice
desires to transmit a message to Bob, she receives the certificate from the CA and
before she can use it to encrypt the message, she needs to verify the key validity
from a validation authority as shown in Fig. 11.2.

The traditional public key encryption can thus be defined in terms of three main
algorithms: key generation, encryption, and decryption. The key generation involves
the creation of key pair (public-private). In this step a key is generated randomly
by the user or a third-party entity while the other key is derived from the already
generated key. Before the encryption step is implemented, a certificate authority
(CA) digitally signs the public key and the owner’s identity to create a digital
certificate. The public key in the digital certificate is used for encryption after the
keys are successfully validated in the validation step. Finally, the decryption is done
using the private key.
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1.2 Pitfalls of Public Key Cryptosystems

The cost incurred in generating the key pairs in traditional public key cryptosystems
is very high. Also, issuing a digital certificate to a user requires careful verification
of the user which is highly complex and expensive. For example, the generation of
a fairly secure 1024-bit key in RSA requires the use of two prime numbers that are
512 bits long. The generation of such large prime numbers is a very expensive task.
In addition to this, the task of validation of keys is complex and difficult.

1.3 Identity-Based Encryption

In 1854, A. Shamir conceptualized the idea of identity-based encryption [2] and the
fundamental thought behind the introduction of this new scheme was to simplify and
streamline the certificate management in public key encryption schemes. The idea is
simple: when Alice wants to send a message to Bob, she encrypts the message using
Bob’s email address (a known identity), e.g., bob@abc.com. Unlike the traditional
public key encryption schemes, there is no need for Alice to acquire Bob’s public
key from the certificate authority as shown in Fig. 11.3. It may be noted that in
traditional public key encryption, all the parameters that are required to use the keys
are contained in the public keys while in case of IBE, a trusted third party is used to
get a set of parameters.

After receiving the message from Alice, Bob obtains his private key from a
neutral entity called as private key generator (PKG) but not before authenticating
himself to the private key generator (PKG). A master secret key in addition to the
user’s identity is used by PKG to calculate the private key which is then transmitted
to the authorized user (Bob). Now Bob uses the private key to decipher the text
shown in Fig. 11.4.

In this new public key encryption system, there are four algorithms that define
the whole scheme:

1. Setup
2. Extraction
3. Encrypt
4. Decrypt

In the setup algorithm, an initialization of many necessary global parameters
is performed that are used for the calculations of IBE; for example, the master
secret key is initialized which is used to calculate the private keys by the PKG.
The extraction algorithm mainly deals with the generation of the private key
corresponding to a particular user, using the parameters initialized in the setup
algorithm that includes the identification of the user and master secret key. The
encryption algorithm uses the user’s identity and the public key calculated in the
setup algorithm to encrypt the message. The decryption algorithm uses the private
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Basic Parameters 
Server

AliceBob

Encrypted Message Plain  Message

Fig. 11.3 Encryption

key calculated in the IBE extraction algorithm and the user’s identity from the PKG
to decrypt the message.

Even though Shamir introduced IBE in 1984 it was not until after the contribu-
tions of Boneh and Franklin [3, 4] and Cocks [5] in 2001 that we saw a practical
identity-based encryption scheme. Cocks uses quadratic residuosity problem as the
basis of his scheme, achieving fast speeds for encryption and decryption, but the
message length becomes profoundly large. Boneh-Franklin scheme is essentially
based on the bilinear Diffie-Hellman problem [6–8], achieving fast speeds and
reasonable ciphertext lengths using Weil or Tate pairings. It is pertinent to note
here that IBE replaced the problem of acquiring the public keys with the problem of
obtaining public parameters of PGSs. With just a fewer number of PKGs, the latter
problem should not be as cumbersome as the former one.

A common issue in traditional public key encryption schemes is key validation.
IBE consists of keys that are short lived, which means that the keys are valid for just
12 hours or a day and cannot be revoked or suspended during this period of time.
Although this scheme takes away the ability to revoke or suspend a key immediately
it makes the implementation and key validation fairly simple.

Key recovery is yet another issue in traditional public key encryption schemes
that needs to be resolved when the keys are lost or unavailable due to any
unforeseeable situations [9]. The issue is catered by archiving the copies of keys
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Private Key Server

Bob

Encrypted Message Plain  Message

Fig. 11.4 Decryption

that can be recovered as required. It is a difficult task to securely archive keys
and provide controlled access to these keys. Identity-based encryption solves this
problem as the keys are generated as needed. From the master key and the identity
of the owner, PKG can easily calculate the private keys, making the whole task much
easier than the traditional PKI schemes. IBE is thus equipped with the capabilities of
cost reduction in terms of computations and maintenance than the traditional public
encryption schemes.

1.4 Hierarchical Identity-Based Encryption

Private key generator is the single most significant entity in identity-based encryp-
tion that is burdened with most of the work. PKG calculates private keys for the
users from the master secret key and the users’ identities, which then transmit the
extracted private keys to the authorized users after verifying the identities of the
users successfully. The task of calculating thus becomes very expensive and if a
single PKG exists for a large network with tens of thousands of users, it would be a
bottleneck to the whole network. In hierarchical identity-based encryption (HIBE)
[10], a root PKG has the capability to distribute its workload to lower level PKGs.
The distribution of workload is done by adding a hierarchy of PKGs. The root PKG
calculates private keys for PKGs in its domain and the PKGs in turn generate private
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Root PKG

Level 1 PKG

Level 2 PKG
Level 1 user

Level 1 user

Level 2 user

Fig. 11.5 Two-level hierarchy

keys for their respective users. Hence the verification of users and the transmission
of keys are done locally. The master secret key of more than one PKG is used to
generate all private keys.

Some of the important contributions in hierarchical identity-based encryption
schemes were introduced by Hanaoka et al. [11, 12]. A two-level scheme with a
total and partial collision resistance at the first and second levels, respectively, was
introduced by Horwitz and Lynn [13] as shown in Fig. 11.5.

It can be seen that the work done by a particular PKG at a specific level depends
on the work done by the PKGs that are above in its hierarchy. With different
security policies at different levels of hierarchy, a security policy at a higher level
in hierarchy can enforce it on all its subordinate levels. Also, a breach/compromise
in that happened in one level will not necessarily affect other parts of the hierarchy.
Hence, the recovery from such a breach is easy as only a part of the system needs to
be recreated rather than the whole system.
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In hierarchical identity-based encryption, there are five algorithms that define the
whole scheme:

1. Root setup
2. Lower level setup
3. Extraction
4. Encrypt
5. Decrypt

In the root setup algorithm, an initialization of parameters is performed necessary
for the operations of upper levels of hierarchy. Lower level setup algorithm creates
and initializes all the other necessary parameters that are used for the operation of
lower levels and hence this algorithm may be executed separately for each lower
level. The extraction algorithm mainly deals with the generation of the private key
corresponding to a particular user/lower level PKG, using the parameters initialized
in the root setup or lower level setup algorithm. The encryption algorithm is used
to encrypt the message. The decryption algorithm uses the private key calculated in
the extraction algorithm to decrypt the message.

2 HIBE Based on Boneh-Franklin IBE

Notation: Let us define the notation that we are going to use in the next sections.
Let pp represent the prime power and Ec/f represent the elliptic curve. A prime is
denoted as pr and e represents pairing of CG1 and CG2 denoting the cyclic groups.
An integer designating the length of text in bits is represented as b1. Two points on
elliptic curve are represented as pt1 and pt2 belonging to CG1 and CG2, respectively.
HS1 and HS2 represent two hash functions. Finally, the master secret is represented
as MS.

2.1 HIBE (Based on Boneh-Franklin IBE) Root Setup

In the root setup algorithm of HIBE based on Boneh-Franklin [14] IBE, the
following parameters are defined:

Basic Parameters

• CG1 | Cyclic group #1
• CG2 | Cyclic group #2
• e | Pairing,
• bl | Plaintext length
• pt1 | Elliptic curve point #1
• pt2 | Elliptic curve point #2
• HS1 | Hash function #1
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• HS2 | Hash function #2

In the root setup step, the master key is also defined as MS.

2.2 HIBE (Based on Boneh-Franklin IBE) Lower Level Setup

Since there are multiple levels in the hierarchy and at each level there shall be PKGs,
a lower level setup needs to be performed. All the PKGs in the lower levels shall
have the same parameters as the root level with the additional parameter of master
secret defined for its level. For example, at level i, the master secret parameter is
MS1 which belongs to Z∗ p.

2.3 HIBE (Based on Boneh-Franklin IBE) Extraction
of the Private Key

For a hierarchy with l levels, the identity of a user is l-tuple; for example, for a single
user u, the identity can be defined as U = (I1, I2, . . . , In) where n ≤ l. After applying
HS1 on the identity components of U, DIK is calculated as

DIK = HS1 (I1, I2, . . . , In)

Hence the private key for U shall comprise n components from the n identities of
the user which is defined as follows:

PK = (K0,K1, . . . , Kn−1)

The first element of PK is calculated as

K0 =
l∑

i=1

MSi−1DIi

The rest of the elements are calculated as

Ki = MSi pt1 where 1 ≤ i ≤ n − 1

2.4 HIBE (Based on Boneh-Franklin IBE) Encryption

The encryption in a HIBE scheme with l levels can be achieved as follows:
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If the plaintext MSG needs to be encrypted using the identity of a user U the
identity is defined as

U = (I1, I2, . . . , In) where n ≤ 1

Let r = e (MS0 pt1,DU1).
A number x is picked randomly from Zp and the k + 1(M,N0,N1,N2, . . . NK)

elements of the ciphertext CT are calculated as follows:

M = MSGe ⊕ HS2
(
rx
)

N0 = x pt1

Ni = x Dui where 2 ≤ i ≤ k

2.5 HIBE (Based on Boneh-Franklin IBE) Decryption

Being private at the receiving end, the ciphertext CT= (M,N0,N1,N2, . . . NK) is
received by the receiver and he/she has to decipher it back to the plaintext.

The process of deciphering is done making the following calculations:

M ⊕ HS2

(
e (N0,K0)

∏l
i=2 e (Ki−1, Ni)

)

= M ⊕ HS2

⎛

⎝
e
(
xpt1,

∑l
i=1 MSi−1Dui

)

∏l
i=2 e (MSi−1pt1, xDui)

⎞

⎠

= M ⊕ HS2

(∏l
i=1 e (xpt1,MSi−1Dui)

∏l
i=2 e (MSi−1pt1, xDui)

)

= M ⊕ HS2

(∏l
i=1 e(pt1,Dui)

xMSi−1

∏l
i=2 e(pt1,Dui)

xMSi−1

)

= M ⊕ HS2

(
e(pt1,Dui)

xMS0
)

= M ⊕ HS2
(
rx
)
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= MSG ⊕ HS2
(
rx
)⊕ HS2

(
rx
)

= MSG

3 HIBE Based on Boneh-Boyen IBE

Notation: Let us define the notation that we are going to use in the next section for
BB-IBE (additive notation).

Let pp represent the prime power, and Ec/f represent the elliptic curve. A prime
is denoted as pr and e represents pairing of CG1and CG2 denoting the cyclic groups.
An integer designating the length of the text in bits is represented as bl. Four points
on elliptic curve are represented as pa, pb, pc, and pd where pa belongs to CG1,
pb = α pa, pc = βpa, and pd=γ pa. HS1 and HS2 represent two hash functions:
ν = e(pb, pc) = e(α pa,β pa) = e(pa, pa)αβ . Finally, the master secret is represented
by α, β, and γ which are the elements of Zp.

3.1 HIBE (Based on Boneh-Boyen IBE) Setup

In the setup algorithm for Boneh-Boyen IBE [15], the following parameters
(additive notation) are defined:

Basic Parameters

• CG1 | Cyclic group #1
• CG2 | Cyclic group #2
• � | Pairing,
• bl | Plaintext length
• pa | Elliptic curve point #1
• pb | Elliptic curve point #2
• pd | Elliptic curve point #4
• HS1 | Hash function #1
• HS2 | Hash function #2
• ν | Element of F∗ q.

In order to extend this scheme to HIBE, the following randomly generated
parameters need to be added to the list of parameters defined above:

S1, S2, . . . , Sl

It is pertinent to mention that all the new parameters belong to the cyclic group
CG1 and the final list of parameter setup for the HIBE is as follows:
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Basic Parameters Boney-Boyen = (CG1, CG2, � , bl, pa, pb, pd, S1, S2, . . . ,
Sl, HS1, HS2, ν )

3.2 HIBE (Based on Boneh-Boyen IBE) Extraction
of the Private Key

The algorithm for generating private key for a user is executed in this step of HIBE.
Suppose the identity of a user is defined as U = (I1, I2, . . . , Il) for l levels of
hierarchy, and the private key for the user u is defined as Ku=(K1,K2). A random
number x is generated by the root PKG that belongs to Zp and the following
calculations are made by the root PKG:

ppIi = HS1 (I1) where 1 ≤ i ≤ k

K1 = xpa and
K2 = apa + x

∑k
(i=1)ppIiSk

3.3 HIBE (Based on Boneh-Boyen IBE) Encryption

The encryption of plaintext that needs to be sent to the receiver is performed in
this step. Alice has to send a message to Bob with identity U = (I1, I2, . . . , Ik),
where k ≤ l. A random element m is picked up from Zp to calculate the ciphertext
CT from the plaintext MSG:

CT = (M,N1, N2)

And the elements are calculated as follows:

M = MSG ⊕ HS2
(
νm
)

N1 = mpa

N2 = m
∑k

i=1
ppIkSk
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3.4 HIBE (Based on Boneh-Boyen IBE) Decryption

At the receiving end the ciphertext CT = (M,N1,N2) is received by Bob and he has
to decipher it back to the plaintext.

The process of deciphering is done making the following calculations:

M⊕HS2

(
e (N1,K2)

e (K1, N2)

)
=M⊕HS2

⎛

⎝
e
(
mpa, αpc + x

(∑k
i=1 ppIiSi + pd

))

e
(
xpa,m

(∑k
i=1 ppIiSi + pd

))

⎞

⎠

= M ⊕ HS2 (e (mpa, αpc))

= M ⊕ HS2
(
e(pa, pc)

αm
)

= M ⊕ HS2
(
e
(
αpa, pc

)m)

= M ⊕ HS2
(
e
(
αpa, pc

)m)

= M ⊕ HS2
(
νm
)

= MSG ⊕ HS2
(
νm
)⊕ HS2

(
νm
)

= MSG

4 Master Secret Sharing

In hierarchical identity-based encryption scheme, a user at a specific level in the
hierarchy can have multiple identities pertaining to each separate level. For a
hierarchy with n levels, the identity of a user is n-tuple; for example, for a single
user U with n levels, the identity can be defined as U = (I1, I2, . . . , In), where each
entry in the tuple may be distinct.

In HIBE, the master secret key that is used to calculate private keys of the users
is shared and distributed among PKGs. A system with m PKGs will share master
secret and each of the PKG will contribute to generating a part of the private key for
the user known as a share. Whenever a user requests a private key from PKGs, each
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PKG #2

Bob

Private Key

PKG #1

PKG #n

Fig. 11.6 Master key sharing

PKG sends a share and the user combines all the shares to calculate the private key.
If a user receives p of the m possible shares and generates the private key from these
p shares, the same private key cannot be calculated from any p − 1 shares which
significantly means not a single share from p shares can be dropped out to calculate
the same private key. It may also be noted that for any p − 1 PKGs, it is impossible
to recreate the master secret as shown in Fig. 11.6.

Sharing of the secret master key removes the single point of failure or security
breach point. For example if one of many m PKGs sharing the master secret key
is compromised, it would be far less worse a situation than if the master key was
stored on a single PKG and that PKG is compromised. Hence, one can easily grasp
the advantages of sharing the master secret key. For an attacker to access the master
secret key it will require him/her to gain access to all the p of the m possible PKGs
which would be fairly easy if only one PKG is used.

Mathematically, it was Boneh et al. [15] and Shamir [16] who showed how a
master secret can be shared among many PKGs. Suppose there are m PKGs, and
a user is required to get p, p < = m, and shares to generate his/her private key.
Suppose there is a polynomial of degree p − 1; then the master secret can be
represented as the coefficients of the polynomial. Each PKG in the hierarchy is
assigned a point (xi, yi) that solves the polynomial and a user containing p of these
points can calculate all the coefficients of the polynomial and hence generate his/her
private key. It is important to note that any PKGs with p − 1 share cannot calculate
the same private key.
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Consider the polynomial in which the master secret is put as the constant
coefficient of the polynomial:

f (x) = MS + c1x + c2x
2 + c3x

3 + · · · + cp−1x
p−1

A master secret MS is thus divided and shared among the PKGs as follows:
A total of m numbers are randomly generated and the pair (xi, yi), where

1 ≤ i ≤ m and yi =f (xi), is assigned to the ith PKG. A user with user identity DI

can request the ith PKG for his/her share and the PKG replies with (xi, yiDI). After
receiving the similar pairs p from such PKGs, the user can calculate his/her private
key by using Lagrange’s interpolation as MSDI = (0)DI .

Now,

f (x) =
∑

i

gi(x)yi

Multiplying both sides by DI , we get

f (x)DI =
∑

i

gi(x)yiDI

For x = 0, we get

MSDI = f (0)DI =
∑

i

gi(0)yiDI

And hence MSDI is the private key for the user with identity DI that was
generated after receiving p pairs of (xi, yiDI) from the PKGs.

5 Security of the Hierarchical IBE

Identity-based encryption (IBE) has been discussed as the cryptosystem [2] in which
the encryption key (public key) is any arbitrary string. In this cryptosystem, there is
a central authority that issues decryption keys (private keys) to the users. Another
variation of this scheme is the hierarchical identity-based encryption in which there
can be many levels of hierarchy. In the initial implementations of hierarchical
identity-based encryption schemes, the security of the system was attributed to the
bilinear Diffie-Hellman (BDH) assumption in the random oracle model [10]. In one
of the other constructions of HIBE also known as selective-ID secure HIBE, the
security is due to the bilinear Diffie-Hellman (BDH) assumption without random
oracles.

In identity-based encryption, it is assumed that an adversary can request for
private keys and in the process, the adversary can acquire the private key corre-
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sponding to a particular identity. Similarly, in hierarchical identity-based encryption,
an adversary is assumed to be able to execute queries for the extraction of private
keys and it can choose a specific identity for which the adversary can be challenged
[4]. There are two ways in which an adversary can pick its target identity; one is
adaptive and the second is nonadaptive. An adversary with no particular designated
target starts finding its target by executing hash and extraction queries in order to
choose a target adaptively based on the results of these hash and extraction queries.
The chosen target may not even be associated to an entity and the adversary can
still be successful in acquiring some identity. As far as nonadaptive adversary is
concerned, the target is selected beforehand. The adversary has prior knowledge on
who its target is and there is no need to execute hash and extraction queries first.
The motive behind such an attack can be personal. It is pertinent to mention here
that the security is considered stronger for an adaptively chosen target as compared
to an adversary that has chosen the target nonadaptively.

In CHK [17], a user is required to update the private keys at regular intervals
of time such that a message that has been encrypted at time t cannot be read using
any private key from time t1 > t. Now for Q = 2n periods, n is the depth and the
identities are represented as binary vectors with a length of at most n. Encryption at
time t takes place using the identity associated with the tth node of depth in a binary
tree. Dodis and Fazio [18] cover NNL [19] into a public key broadcast system.

References

1. Masoodi, F. S., & Bokhari, M. U. (2019). Symmetric Algorithms I. In Emerging Security
Algorithms and Techniques (p. 79). CRC Press.

2. Shamir, A. (1984). Identity-based cryptosystems and signature schemes. In Advances in
Cryptology – Crypto ‘84, Lecture Notes in Computer Science 196 (pp. 47–53). Springer.

3. Boneh, D., & Franklin, M. (2001). Identity based encryption from the Weil pairing. In
Advances in Cryptology – Crypto 2001, Lecture Notes in Computer Science 2139 (pp. 213–
229). Springer.

4. D. Boneh and M. Franklin. Identity based encryption from the Weil pairing. http://
www.cs.stanford.edu/~dabo/papers/ibe.pdf.

5. Cocks, C. (2001). An identity based encryption scheme based on quadratic residues. In
Cryptography and Coding, Lecture Notes in Computer Science (pp. 360–363). Springer.

6. Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions on
Information Theory, IT-22, 6, 644–654.

7. Joux, A., & Nguyen, K. (2003). Separating decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. Journal of Cryptology, 16(4), 239–247.

8. Boneh, D. (1998). The decision Diffie-Hellman problem. In Algorithmic Number Theory Third
International Symposium, Portland, OR, June 21–25 (pp. 48–63).

9. Nielsen, R. (2005). Observations from the deployment of a large scale PKI. In Proceedings of
the 4th Annual PKI R&D Workshop, Gaithersburg, MD, August 19–21 (pp. 159–165).

10. Gentry, C., & Silverberg, A. (2002). Hierarchical ID-based cryptography. In Proceedings of
ASIACRYPT 2002, Queenstown, New Zealand, December 1–5 (pp. 548–566).

11. Hanaoka, G., Nishioka, T., Zheng, Y., & Imai, H. (1999). An efficient hierarchical identity
based key-sharing method resistant against collusion-attacks. In Advances in Cryptology –
Asiacrypt 1999, Lecture Notes in Computer Science (pp. 348–362). Springer.

http://www.cs.stanford.edu/~dabo/papers/ibe.pdf


11 HIBE: Hierarchical Identity-Based Encryption 203

12. G. Hanaoka, T. Nishioka, Y. Zheng, and H. Imai, A hierarchical non-interactive key-sharing
scheme with low memory size and high resistance against collusion attacks, to appear in The
Computer Journal

13. Horwitz, J., & Lynn, B. (2002). Toward Hierarchical Identity-Based Encryption. In Advances
in Cryptology – Eurocrypt 2002, Lecture Notes in Computer Science 2332 (pp. 466–481).
Springer.

14. Boneh, D., & Franklin, M. Identity based encryption from the weil pairing. SIAM Journal of
Computing, 32(3), 586–615.

15. Boneh, D., Boyen, X., & Goh, E. Hierarchical identity-based encryption with constant size
ciphertext. In Proceedings of EUROCRYPT 2005, Aarhus, Denmark, May 22–26 (pp. 440–
456).

16. Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(1), 612–613.
17. Canetti, R., Halevi, S., & Katz, J. (2003). A forward-secure public-key encryption scheme. In

E. Biham (Ed.), Proceedings of Eurocrypt 2003, volume 2656 of LNCS. Springer.
18. Dodis, Y., & Fazio, N. (2002). Public key broadcast encryption for stateless receivers. In J.

Feigenbaum (Ed.), Proceedings of the digital rights management workshop 2002, volume 2696
of LNCS (pp. 61–80). Springer.

19. Naor, D., Naor, M., & Lotspiech, J. (2001). Revocation and tracing schemes for stateless
receivers. In J. Kilian (Ed.), Proceedings of crypto 2001, volume 2139 of LNCS (pp. 41–62).
Springer.



Chapter 12
Extensions of IBE and Related Primitives

Syed Taqi Ali

Abstract Identity-based encryption can be extended to various other primitives,
such as identity-based key agreement protocol, fuzzy identity-based encryption,
keyword search enabled public key encryption, threshold keyword search enabled
public key encryption, wildcard identity-based encryption, identity-based condi-
tional proxy re-encryption, and so on. Every extension has its own application in
real world. In this chapter, we discussed all these extended primitives with their
formal definitions and basic security requirements.

Keywords Extensions of IBE · Fuzzy IBE · Keyword search · Wildcards key
derivation

1 Introduction

Identity-based encryption (IBE) can be extended to the various other primitives.
Few of them are discussed in this chapter. Usually, the key agreement protocols
are used for establishing secret session key in public environment between two or
more parties, to enable secure communications among them. The basic property
that any key agreement protocol needs to be achieved is the inability of the passive
eavesdropper to compute secret session key. To be more secure, the key agreement
protocol should not allow an adversary to distinguish between the given, session
key and a random string, with non-negligible probability. Normally, the parties
established the secret session key with the help of their long-term keys. If the long-
term key gets compromised, then the future session keys can be compromised. To
avoid this, a property called perfect forward secrecy is incorporated on the long-term
keys, which allows us to update the long-term keys. In this chapter, we discussed
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various identity-based key agreement protocols [10–12, 20] with their short comings
and strengths.

Fuzzy identity-based encryption (FIBE) is a type of IBE where the identities
are replaced by the set of attributes, each associated with some description. Fuzzy
IBE allows user to decrypt the ciphertext even his/her identity partially matched till
some limit with the secret key, which we called as error-tolerance property. Fuzzy
IBE facilitates us to apply it in bio-metric authentication applications and attribute-
based cryptographic schemes. The security requirement for the FIBE is that given
the ciphertext of one of the two plain texts, the adversary should unable to map the
challenge ciphertext with its exact plain text with non-negligible probability. In this
chapter, we will discuss few constructions of FIBE [6, 19, 21, 22] with its security
properties.

Nowadays, data owners transfer their huge data on the cloud in encrypted form.
To enable searching on the encrypted data, a Public Key Encryption with Keyword
Search (PEKS) was introduced, in which keywords are also encrypted. Then, to
search the data, user sends the corresponding keyword’s trapdoor to the cloud
server, which enables server to perform search operation. Broadcast Encryption
with Keyword Search is a PEKS where the keyword is encrypted for the set of
users, so that any user from the set can generate the trapdoor for search operation.
To reduce the ability of generating search keyword trapdoor from a single user, a
threshold policy was added, called “Threshold Public Key Encryption with Keyword
Search” (TPEKS) [13, 25, 26]. In this, the set of users and threshold value is fixed. In
“Threshold Broadcast Encryption with Keyword Search” (TBEKS), the data owner
for each document chooses the set of users and the threshold value “l” to encrypt a
keyword. Then, to search a certain keyword, at least “l” users of that set need to pool
their share to enable the cloud server to perform search operation of that keyword.
The security requirement for TBEKS is the inability of the adversary to guess that
the encrypted keyword belongs to which keyword among two chosen keywords,
with non-negligible probability. In this chapter, we see all the related constructions
of this.

The asymmetric encryption schemes, such as public key encryption (PKE),
identity-based encryption (IBE), attribute-based encryption (ABE), and other
similar schemes, whose decryption algorithm has linearity property, i.e.,
D(SK,C1, . . .)t = D(SKt, C1, . . .), can be converted to Linear Encryption
with Keyword Search (LEKS) scheme [27]. These features enable us to convert
existing asymmetric encryption scheme to the corresponding searchable encryption
schemes. Similar to any searchable encryption scheme, this scheme also obeys the
basic security properties, such as chosen keyword attack. In this chapter, we look
few of these conversions.

“Public Key Encryption with Keyword Search” (PEKS) [7, 9] enables server to
search the presence of encrypted keyword in the cloud data without learning any-
thing about the data or keyword. In this, three parties are involved, sender, receiver,
and server. Sender creates and uploads encrypted keywords with ciphertexts. Server
stores ciphertexts with encrypted keywords and performs search operation upon
receiving trapdoors from the receiver. Receiver creates trapdoors and sends to the
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server. In the literature, PEKS schemes avoid static trapdoors, and this is to prevent
server from learning any partial information from the trapdoor, such as frequency
of searching same keyword or which other document contains same keyword, etc.
There are PEKS schemes that allow to search keywords in range and with relational
operators too. In this chapter, we see various constructions of such schemes.

“Wildcard Identity-Based Encryption” (WIBE) [4, 5, 8] allows sender to encrypt
a message with the pattern such that the range of receivers whose identity matches
the pattern they can only decrypt it. The pattern includes strings with wildcards.
Normally, the WIBE is the generalization of Hierarchical IBE scheme where the
ancestor of the matching identity is able to derive the secret key of their descendant
identities in the same hierarchy.

In “Identity-Based Encryption with Wildcards Key Derivation” (WKD-IBE) [1,
2], the user possessing the secret key for the pattern P can derive the secret key for
other patterns P’, if P’ contains in P. There introduces one key derivation algorithm
that enables this feature, as compare to WIBE.

In “Identity-Based Conditional Proxy Re-encryption” (IBCPRE) [15, 23], proxy
can convert the ciphertext of one user to the other user if the prescribed condition, set
by the delegator, satisfied. This will add extra security over identity-based proxy re-
encryption (IBPRE), so that proxy may not able to transform the ciphertext to any
unauthorized user. In this chapter, we see all the constructions of above schemes
along with their security proofs.

2 Identity-Based Key Agreement (IBKA)

Key agreement protocols are used to establish a secure communication between two
or more parties in insecure environment. Using this, a shared secret session key is
generated between the parties. Then, all parties use this shared key to secure their
communication using a well private key encryption scheme. In identity-based key
agreement (IBKA), the public key is the user identity (an arbitrary string such as
email or phone number), which is well known to all, and the corresponding private
key is generated under the unique setup of identity-based key generation with a
fixed master key. This way it extends the concept of identity-based encryption to
key agreement protocols. There are many identity-based key agreement protocols
in the literature [10, 11, 14, 16, 20]. The identity-based key agreement protocols
have applications in vehicular ad hoc networks [12], where two or more vehicles
interested in establishing a secure communication under common setup.

Intuition In IBKA, two or more users can establish a shared secret key using their
public identity and corresponding secret key, generated under common setup or with
common master key. It is similar to any other key agreement protocol, but the public
key is not generated, and it is his/her identity.

Next, we give the formal model of IBKA followed by its basic security
properties.
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2.1 Formal Model

Any identity-based key agreement protocol contains 3 stages [20]: setup,private key
extraction, and key agreement.

– Setup : In this phase, under decided security parameter λ, the trusted authority
generates the fixed public values PP and master secret key MK.

– Private key extraction: Here, a user with his/her unique ID (an arbitrary string)
approaches a trusted authority, and the trusted authority using the master key
MK generates the user’s secret key for his/her ID, say SKID , and we call it as
long-term secret key.

– Key agreement: This is the interactive protocol phase between the users. Each
user with his/her secret key associated with his/her ID under the common trusted
authority setup will participate in this protocol. Users exchange the messages and
finally agree upon some secret shared key, say SKID1,ID2,....

The above three phases vary in their constructions with respect to the various
research papers.

2.2 Security Requirements

For any identity-based key agreement protocol to be used in real-time application
should satisfy few security properties, as per the requirement of the application
environment. The security properties in identity-based key agreement are

1. Known-key security (K-KS). It says that the revealing of one session key should
not affect the security of the other session key. That is, no partial information
should be revealed from the session key of the other session key.

2. Forward secrecy (FC). It says that the revelation of long-term secret key should
not compromise the previous session keys. This has 3 flavors,

– Partial forward secrecy. Revelation of few users’ long-term secret keys
should not reveal any partial information of the previous session keys.

– Perfect forward secrecy. Revelation of all users’ long-term secret keys
should not reveal any partial information of the previous session keys.

– Master key forward secrecy. Revelation of master secret key should not
reveal any partial information of the previous session keys. This also implies
perfect forward secrecy.

3. Key-compromise impersonation resilience (K-CI). If any user’s secret key gets
compromised, then it should not allow adversary to impersonate any other user
other than the secret key user. That is, no user should be able to impersonate other
user.

4. Unknown key-share (UK-S) resilience. Each user should truly identify each
other while sharing the secret key.
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5. No key control. This disallows any user to precompute the session key.
6. Ephemeral secrets reveal resistance (ESRR). Ephemeral secret keys are the

short-lived keys. The key agreement protocol should be resistant to the disclosure
of any user’s ephemeral secret key. That is, session secret keys should not get
compromised of the sessions where that disclosed ephemeral secret key not used.

The key agreement protocol is said to be secure which obeys the maximum
security properties. It is difficult for any protocol to achieve all the above security
requirements.

2.2.1 Oracles

In the adversary modeling of these security properties, they involved few oracles.
Let

∏i
A,B denote the behavior of the user B at i-th time when A is communicated

to him/her. Then, the common oracles are

– Extract(ID). Upon adversary query with ID, it generates the secret key SKID

for the ID and gives it to the adversary.
– Send(

∏i
A,B ,M). It replies with the response of user A on the message M when

user B sends to A at i-th time during the session.
– Reveal(

∏i
A,B ). It reveals the session key of that session, where

∏i
A,B belongs to

the session.
– Corrupt(ID). It reveals the secret key of the existing user with identity ID.

3 Fuzzy Identity-Based Encryption (FIBE)

“Fuzzy identity-based encryption” was first introduced by Sahai et al. [22], where
identity is treated as a set of descriptive attributes. The attributes can be any feature
of a user, like age, gender, designation, city, etc., through which we can uniquely
or approximately identify the user. In this FIBE scheme, it allows multiple users to
decrypt the ciphertext which encrypted using certain attributes if they possess some
prescribed similarity with those attributes. Later, many other FIBE schemes were
developed [6, 19, 21]. This has applications in encryption schemes where biometric
inputs are used as identities, since it can tolerate some error. Later, attribute-based
encryptions were derived from it.

Intuition In FIBE, a user can decrypt the data if his/her identity matched till at least
the allowed level or percentage, using his/her secret key. Here, data user identity
may not be exactly matched but till some percentage with the identity associated
with ciphertexts.

The formal definition and security properties of it are discussed below.
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3.1 Formal Model

The FIBE model is similar to the IBE model, and it consists of the following
algorithms:

– Setup(): It takes security parameter as input and generates master key MK and
public parameters PP . Note that the tolerance parameter d was included in PP .

– Extract(MK, ID): Upon input MK and ID, it generates secret key associated
with ID, say SKID.

– Encrypt(PP, ID,M): It generates a ciphertext C for the users with similar
identities to ID (similarity up to the tolerance parameter d).

– Decrypt(PP, SKID′ , C): The user with identity ID′ is able to decrypt C if
|ID′ ∩ ID| ≥ d, else the algorithm outputs ⊥, invalid.

Correctness It says that for all properly generated secret keys of the users,
all properly generated ciphertext, the user should able to correctly decrypt the
ciphertext if the similarity, between the user identity and the identity associated
with ciphertext, is up to the prescribed tolerance parameter. More formally, it is as
given below:

(MK,PP = {. . . , d}) $← Setup() ∧ (SKID′)
$← Extract(MK, ID′) ∧

C
$← Encrypt(PP, ID,M) then Decrypt(PP, SKID,C) → M

3.2 Security Properties

Primary security requirement of FIBE is that given a ciphertext encrypted under the
one identity of any two of the messages, it should be difficult to map ciphertext with
the correct message. This we may called as “IND-FSID-CPA—indistinguishability
of encryptions under fuzzy selective-ID, chosen plain text attack.” More formally,

[IND-FSID-CPA]: It is the game between the challenger and the adversary.

– Phase 1/Selection Phase: Adversary selects a challenged identity ID∗ of her/his
choice and gives it to challenger.

– Phase 2/Setup Phase: Here, challenger sets all the parameters PP , MK , and
PP is given to the adversary.

– Phase 3/Query Phase: Adversary makes some queries related to private key
extraction of some identities ID′ with the restriction that |ID′ ∩ ID∗| � d, and
finally adversary outputs two messages of her/his choice M0 and M1.

– Phase 4/Challenge Phase: Challenger encrypts message Mb under the identity
ID∗, where b is random bit from {0, 1} and outputs a challenge ciphertext C∗.

– Phase 5/Output Phase: In this phase, adversary again can query the private key
extraction queries with the same restrictions and finally output a bit b′, claiming
that Mb′ is encrypted in C∗.
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Adversary is said to be successful if b′ = b. As a security requirement of FIBE,
we want the advantage of adversary AdvIND−FSID−CPA

A (1λ) = Pr[b′ = b] − 1/2
to be negligible. Similarly, the above security property can be defined for CCA
adversary, where we also allowed decrypt queries to adversary, and it is said to be
stronger notion than above.

4 Threshold Broadcast Encryption with Keyword Search

In “threshold broadcast encryption with keyword search” (TBEKS) [26], the data
owner of each document chooses the set of users and also the threshold value lki

while encrypting a keyword ki . Then, when there is a search query for the keyword
kj , at least lkj

number of users need to pool their secret share to enable cloud
server to perform this search. This restriction of involvement of threshold number of
authorized users in searching some keyword is because to reduce the trust from any
single user for avoiding disclosure of some sensitive data. It has many applications,
for example, research team of a company, which do not want any single user to
access the sensitive data but in a group of users. The similar schemes to TBEKS
are [24, 25], but not completely same. This is also similar to threshold broadcast
encryption scheme [13], where we encrypt the message, and here in TBEKS we
encrypt the keyword.

Intuition In TBEKS, encrypted data can be combinedly decrypted by the minimum
defined number (threshold value) of authorized users. Here, single user cannot
decrypt the data. Data owner decides minimum how many and which set of users
need to pool their secret shares to decrypt the data.

The formal definition and desirable security properties are discussed below.

4.1 Formal Model

TBEKS involved the data owner, the data users Uk , and the cloud server. It consists
of following probabilistic polynomial time algorithms:

– PP
$← Setup(1λ): It generates the public parameters PP upon input security

parameter λ.

– (PKi, SKi)
$← KeyGen(PP ): Each user runs this algorithm and generates

his/her secret key and public key.

– Ck
$← T BEKS({PKij }nj=1, lk,Wk): Here, k-th keyword Wk is encrypted under

n user’s public key so that at least lk users among them are required to decrypt it.

– Ti,j
$← T rapdoor(SKi,Wj ): It generates the trapdoor for the i-th user and j -

keyword. It runs by an individual user.
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– 1/0←T est ({Tij ,k}≥lk
j=1, Ck): It returns 1 if sufficient trapdoors are matched with

the k-th keyword ciphertext.

Correctness We say that the above scheme is correct if the following statement is
true:

∀PP
$← Setup(1λ) ∧ ∀(PKi, SKi)

$← KeyGen(PP ) ∧ ∀n, lk ∈ Z
+ ∧ lk ≤ n

∧∀Wk ∈ {0, 1}∗ then T est ({Tij ,k}≥lk
j=1|Tij ,k

$← T rapdoor(SKij ,Wk),

Ck|Ck
$← T BEKS({PKij }nj=1, lk,Wk)) = 1

4.2 Security Requirements

The basic security requirement is, adversary having inability to map the ciphertext
to the correct keyword among the two chosen keywords. Here, we assume server is
honest but curious, always interested in knowing the keyword that is encrypted into
ciphertext, which is being currently searched by the set of users. We give formal
definition of this security model below, and it requires few oracles viz.,

– OKeyGen(i): It registered and generates key pair for the new honest user i. It gives
only public key to the adversary.

– OCorrupt (i): It returns secret key of the registered user i. Now, this user is no
more in honest list.

– OT rapdoor (i, k): It returns honest user’s i trapdoor for the k-th keyword to the
adversary.

“Indistinguishability in the Threshold setting against Chosen Keyword Attack”
(IND-T-CKA) It is a game between the challenger and the adversary,

– Phase 1/Setup Phase: Challenger runs Setup algorithm and generates system
parameters PP . It is given to the adversary.

– Phase 2/Query Phase: Adversary is given the following oracle accesses—
OKeyGen(i),OCorrupt (i), and OT rapdoor (i, k). At the end, adversary outputs
users set S∗, two keywords W ∗

0 and W ∗
1 , and a threshold value l∗0,1 : l∗0,1 ≤ |S∗|.

– Phase 3/Challenge Phase: Challenger randomly selects a bit b and executes

C∗
b

$← T BEKS({PKij }Uij
∈S∗ , l∗0,1,W ∗

b ). Challenger gives C∗
b to adversary.

– Phase 4/Output Phase: Adversary outputs a bit b′.

We say that the advantage of adversary in winning the above game is
AdvIND−T −CKA

A (1λ) = |Pr[b′ = b] − 1/2|.
We say that the TBKES scheme is secure against IND − T − CKA adversary if
AdvIND−T −CKA

A (1λ) is negligible.
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5 Linear Encryption with Keyword Search

“Linear encryption with keyword search” (LEKS) scheme is more or less a
searchable encryption scheme, which is indeed a PEKS. In [27], the authors
have given a general template that converts few types of encryption schemes to
a searchable encryption schemes by encrypting keywords without re-encrypting
whole data again.

Intuition In LEKS, data owner encrypts the message and also encrypts the keyword
with desirable list of identities, so that the user with matching identity can generate
a trapdoor for that keyword and enable the search operation on encrypted keywords.
Here, data owner decides the list of data user who can search their keyword.

We give formal definition and security requirement below.

5.1 Formal Model

It involved data owner, server, and user. It consists of the following algorithms:

– (MK,PP )
$← Setup(1λ): It generates master secret key MK and public

parameters PP , by taking security parameter λ as input.

– SKi
$← KeyGen(MK, IDi): It generates secret key for the user with identity

IDi.

– Cj,k
$← LEKS(PP, Sj ,Wk): It encrypts the keyword Wk for the set of users (in

Sj ).

– Ti,k
$← Trapdoor(SKi,Wk): This generates the trapdoor value for the i-th user

on the k-th keyword.
– 1/0 ← Test(Cj,k, Ti,k): It returns 1 if IDi ∈ Sj , else returns 0.

Correctness We say that the above scheme is correct if the following statement is
true:

∀(MK,PP )
$← Setup(1λ) ∧ ∀Wk ∈ {0, 1}∗ ∧ ∀IDi ∈ Sj then

Test(LEKS(PP, Sj ,Wk),Trapdoor(KeyGen(MK, IDi),Wk)) = 1

5.2 Security Requirements

Any LEKS can be secured against the “Indistinguishable Adaptive Chosen Keyword
Attack” (IND-CKA) adversary or “Indistinguishable Selective-ID Adaptive Chosen
Keyword Attack” (IND-sCKA) adversary. When compared to former, later adver-
sary chooses the challenged ID prior to the security game setup phase. Here, we
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formally define IND-CKA adversary model. To model this adversary, we require
few oracles as follows:

– OCorrupt (i): It returns secret key of the registered user i. Now, this user is no
more in honest list.

– OT rapdoor (i, k): It returns honest user’s i trapdoor for the k-th keyword to the
adversary.

“Indistinguishable Adaptive Chosen Keyword Attack” (IND-CKA) adversary It is
a game between the challenger and the adversary,

– Phase 1/Setup Phase: Challenger runs Setup algorithm and generates master
key MK and system parameters PP . PP is given to the adversary.

– Phase 2/Query Phase: Adversary is given the following oracle accesses—
OCorrupt (i) and OT rapdoor (i, k). At the end, adversary outputs users set S∗ and
two keywords W ∗

0 and W ∗
1 .

– Phase 3/Challenge Phase: Challenger randomly selects a bit b and executes

C∗
b

$← LEKS(PP, S∗, ,W ∗
b ). Challenger gives C∗

b to adversary.
– Phase 4/Output Phase: Adversary can make similar queries as in Query Phase

with the restriction that he/she cannot query W0,W1 toOT rapdoor (., .) oracle and
also cannot make query on user i secret key to OCorrupt (i) oracle if i ∈ S∗. At
the end, adversary outputs a bit b′.

We say that the advantage of adversary in winning the above game is
AdvIND−CKA

A (1λ) = |Pr[b′ = b] − 1/2|. We say that the LEKS scheme is

secure against IND − CKA adversary if AdvIND−CKA
A (1λ) is negligible.

6 Public Key Encryption with Keyword Search

“Public key encryption with keyword search” (PEKS) enables the user to search
encrypted keywords without decrypting the data [7, 9]. It has many applications
such as delegation of monitoring urgent emails. Suppose, Ali wants to read only
important emails with “urgent” keyword during his holiday duration, he does not
want to read all emails. Then, using PEKS, Ali can send “urgent” keyword trapdoor
to the server, so that the server can search the emails with this keyword and forward
it to Ali′s mobile or intimate him by any other mean. Therefore, in this whenever
sender is sending any email, he/she needs to encrypt the appropriate keyword along
with the encryption of email under the receiver’s public key. In [9], PEKS was
first introduced, and in [7], the authors have pointed out three issues. First one is
what happens if server stores the trapdoor and uses it in future to learn some partial
information of the messages. Second, Ali and server need to communicate using
secure channel that is quite expensive and not suitable in many applications. Third,
the PEKS scheme is not given for multiple keywords that are connected through
some OR or AND gate. These issues have been solved in [7].



12 Extensions of IBE and Related Primitives 215

Intuition In PEKS, data owner will upload his/her encrypted data with encrypted
keywords so that the data user with suitable trapdoor related the keyword can search
that keyword with the help of cloud server. Data user gives keyword trapdoor to the
server for search operation.

We give formal model of PEKS and its security requirements below.

6.1 Formal Model

It consists of the following algorithms:

– PP
$← Setup(1λ): It generates common public parameters upon input security

parameter λ.

– (SKS, PKS)
$← KeyGenServer (PP ): It generates key pair for the server, secret

key and public key.

– (SKRi
, PKRi

)
$← KeyGenReceiver (PP ): It generates key pair for the receivers,

secret key and public key.

– Ci,k
$← PEKS(PP, PKRi

, PKS,Wk): It generates searchable ciphertext of k-th
keyword for i-th receiver.

– Ti,k
$← Trapdoor(PP, SKRi

,Wk): This takes input as receiver secret key,
keyword Wk and outputs the trapdoor value.

– 1/0←Test(PP, Ti,k, SKS,Ci,k): It returns 1 if keyword present in ciphertext
matches with the keyword trapdoor.

Correctness We say that the above scheme is correct if the following statement is
true:

∀PP
$←Setup(1λ)∧∀Wk ∈ {0, 1}∗ ∧

∀(SKS, PKS)
$←KeyGenServer (PP ) ∧ ∀(SKRi

, PKRi
)
$←KeyGenReceiver (PP )

then Test(PP,Trapdoor(PP, SKRi
,Wk), SKS,PEKS(PP, PKRi

, PKS,Wk))=1

6.2 Security Requirements

The PEKS scheme is said to be secure against indistinguishable—chosen keyword
attack if the advantage of adversary winning the following game is negligible.

IND-CKA Game
– Phase 1/Setup Phase: Challenger sets up the PEKS scheme by running the algo-

rithm Setup(1λ). It also generates the receiver’s key pairs, say (SKRi
, PKRi

)

and gives only public keys to the adversary.
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– Phase 2/Query Phase: In this phase, adversary can make trapdoor queries for
the keyword Wk on the receiver i. At the end of this phase, adversary outputs two
keywords (W ∗

0 ,W ∗
1 ) and receiver id i∗.

– Phase 3/Challenge Phase: Challenger generates ciphertext by randomly picking

one keyword under receiver i∗, i.e., Ci∗,b
$← PEKS(PP, PKR∗

i
, PKS,W ∗

b ) and
gives it to the adversary.

– Phase 4/Output Phase: Here, adversary can make similar queries as in Phase 2
with obvious restrictions, and finally adversary outputs a bit b′.
We say that adversary wins the game with advantage AdvIND−CKA

A (1λ) =
|Pr[b′ = b]−1/2|. The above scheme is said to be secure if there does not exist any
probabilistic polynomial time adversary who can distinguish two keywords given a
ciphertext of one of it.

7 Identity-Based Encryption with Wildcards (WIBE)

Abdalla et al. [4] have proposed a “wildcard identity-based encryption” (WIBE),
which allows sender to encrypt a message with the pattern such that the range
of receivers whose identity matches the pattern can decrypt it. Here, the pattern
includes the strings with wildcards. Later, many other such schemes were developed
[5, 8]. It has many applications, such as professor Ali can send an encrypted
email to entire computer engineering department by encrypting it under the identity
*@cse.vnit.ac.in, and so on.

Intuition In WIBE, sender can encrypt a message with some pattern so that the
receivers with their identities matching to that pattern can decrypt it with their
decryption keys.

Next, we give formal definition of WIBE scheme.

7.1 Formal Model

Pattern is denoted by a vector P = (P1, . . . , Pl) ∈ ({0, 1}∗ ∪ {∗})l, where ∗ is used
as a wildcard character. The identity ID = (ID1, . . . , IDl′) is said to be matched
with the above P , denoted by ID ∈∗ P, if l′ ≤ l and for every i = 1 to l′ in ID

that IDi = Pi or Pi = ∗. Here we say user with identity ID′ = (ID1, . . . , IDl′+1)

is a child of the user with identity ID = (ID1, . . . , IDl′). WIBE scheme consists
of the following four algorithms:

– (MSK,MPK)
$← Setup(1λ): It generates the master key pairs (master secret

key and master public key) upon input security parameters.
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– dID′
$← KeyDer(dID, IDl+1): It generates decryption key for the ID′ =

IDl+1 ∪ ID, where ID = (ID1, . . . , IDl) and dID is being the decryption
key for ID. Thus, ID′ = (ID1, . . . , IDl+1) and dε = MSK .

– CP
$← Encrypt(MPK,P,M): It encrypts the message M under the pattern P .

– M/⊥←Decrypt(dID, CP ): It decrypts the ciphertext using the decryption key
dID such that ID ∈∗ P and returns M . If encryption is invalid, then returns ⊥.

Correctness We say that the above scheme is correct if the following statement is
true:

∀(MSK,MPK)
$← Setup(1λ) ∧ ∀0 ≤ l ≤ L,∀P ∈ ({0.1}∗ ∪ {∗})l,

∀ID : ID ∈∗ P ∧ ∀M ∈ {0, 1}∗, we have

Decrypt(KeyDer(MSK, ID),Encrypt(MPK,P,M)) = M

7.2 Security Requirements

Here we define formal security model called IND-WID-CPA security model,
through the following game between the challenger and the adversary,

– Phase 1/Setup Phase: Challenger generates the master key pairs by running the

algorithm, (MSK,MPK)
$← Setup(1λ). Challenger gives MPK to adversary.

– Phase 2/Query Phase: Adversary is given access to key derivation oracle,
through which adversary can get decryption key dID of any identity ID =
(ID1, . . . ., IDl). At the end of this phase, adversary outputs two messages
(M0,M1) and a challenge pattern P ∗.

– Phase 3/Challenge Phase: Challenger randomly selects a bit b ∈R {0, 1} and

generates challenge ciphertext, C∗
P ∗

$← Encrypt(MPK,P ∗,Mb).
– Phase 4/Output Phase: Adversary can make queries similar to Phase 2 with the

obvious restrictions. Finally, adversary outputs a bit b′.

We say that the adversary wins the game if b′ = b, and the adversary never queries
the key derivation oracle for the keys of identities that match the target pattern (i.e.,
ID ∈∗ P ∗). The advantage of adversary in winning the above game is defined as
AdvIND−WID−CPA

A (1λ) = |Pr[b′ = b] − 1/2|. We say that the WIBE scheme is

secure against IND − WID − CPA adversary if the AdvIND−WID−CPA
A (1λ) is

negligible. The above game can be converted to IND-WID-CCA security model by
giving access to the adversary the decryption oracle.
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8 Identity-Based Encryption with Wildcard Key Derivation
(WKD-IBE)

“Identity-based encryption with wildcard key derivation” (WKD-IBE) was intro-
duced by Abdalla et al. in [1, 2], which allows key delegation pattern in more general
way in HIBE. Here, the secret keys are attached with patterns consisting of identity
strings and wildcards (∗). Then, the owner of the key can derive keys for other
identity that matches the pattern attached to his/her secret key. This is an extension
of HIBE and has many applications, such as, suppose that one wants to allow the
university head to derive secret keys for all the departments head email addresses of
the form, head@∗ .vnit.ac.in, where ∗ is a wildcard character that can be replaced
with any string (i.e., it can be head@cse.vnit.ac.in or head@ece.vnit.ac.in or etc.).
Later on, more efficient schemes were developed [3].

Intuition In WKD-IBE, a user A can derive secret key for the user B, if A is an
ancestor of B. Thus, user A can also decrypt the ciphertexts intended for his/her
descendant B. The ancestor and descendant relation is defined with the help of
pattern with wildcard character.

The formal model of WKD-IBE is given below followed by security require-
ments.

8.1 Formal Model

The main idea in WKD-IBE is that a user with secret key of pattern P can generate
a secret key for any pattern P ′ that matches P. That is, if P ′ = (P ′

1, . . . , P
′
l′) and

P = (P1, . . . , Pl) ∈ ({0, 1}∗ ∪ {∗})l , then we say that P ′ matches P , denoted by
P ′ ∈∗ P , if l′ ≤ l and ∀i ∈ [1, l′], P ′

i = Pi or Pi = ∗; and ∀i ∈ [l′ + 1, l], Pi = ∗.

Formally, WKD-IBE consists of the following algorithms:

– (MSK,MPK)
$← Setup(1λ): It generates the master key pairs (master secret

key and master public key) upon input security parameters.

– skP ′
$← KeyDer(skP , P ′): It generates secret key for the P ′ : P ′ ∈∗ P . The

secret key for the root identity is MSK = sk(∗,...,∗).

– CID
$← Encrypt(MPK, ID,M): It encrypts the message M intended for the

identity ID = (ID1, . . . , IDl), so that any user with secret key associated with
the pattern P : ID ∈∗ P can decrypt the ciphertext.

– M/⊥←Decrypt(skP , CID, ID): It decrypts the ciphertext using the secret key
skP such that ID ∈∗ P and returns M . If encryption is invalid, then returns ⊥.

Correctness We say that theWKD-IBE scheme is correct if the following statement
is true:
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∀(MSK,MPK)
$← Setup(1λ) ∧ ∀0 ≤ l ≤ L,∀P ∈ ({0.1}∗ ∪ {∗})l,

∀ID : ID ∈∗ P ∧ ∀M ∈ {0, 1}∗, we have

Decrypt(KeyDer(MSK,P ),Encrypt(MPK, ID,M)) = M

8.2 Security Requirements

Here we define formal security model called IND-WKID-CPA security model,
through the following game between the challenger and the adversary,

– Phase 1/Setup Phase: Challenger generates the master key pairs by running the

algorithm, (MSK,MPK)
$← Setup(1λ). Challenger gives MPK to adversary.

– Phase 2/Query Phase: Adversary is given access to key derivation oracle,
through which adversary can get secret key skP of any pattern P =
(P1, . . . ., Pl). At the end of this phase, adversary outputs two messages
(M0,M1) and a challenge identity ID∗.

– Phase 3/Challenge Phase: Challenger randomly selects a bit b ∈R {0, 1} and

generates challenge ciphertext, C∗
ID∗

$← Encrypt(MPK, ID∗,Mb).
– Phase 4/Output Phase: Adversary can make queries similar to Phase 2 with the

obvious restrictions. Finally, adversary outputs a bit b′.

We say that the adversary wins the game if b′ = b, and the adversary never queries
the key derivation oracle for the secret keys of patterns that match the target identity
(i.e., ID∗ ∈∗ P ). The advantage of adversary in winning the above game is defined
as AdvIND−WKID−CPA

A (1λ) = |Pr[b′ = b] − 1/2|. We say that the WIBE scheme

is secure against IND−WKID−CPA adversary if the AdvIND−WKID−CPA
A (1λ)

is negligible. The above game can be converted to IND-WKID-CCA security model
by giving access to the adversary the decryption oracle.

9 Identity-Based Conditional Proxy Re-Encryption
(IBCPRE)

“Identity-based conditional proxy re-encryption” (IBCPRE) was introduced by
Shao et al. in [23], which allows proxy to convert the ciphertexts of one user to
another user if the prescribed condition met (set by the delegator). This will add
extra security over identity-based proxy re-encryption (IBPRE). It has applications
related to, suppose the sender wants to encrypt an email content with Ali′s identity
and condition c to get the ciphertext CA. Then, the proxy with re-encryption key
related to condition c can transform CA intended for Ali to another ciphertext CB ,
which can be opened by Bob. Later on, many other efficient IBCPRE schemes were



220 S. Taqi Ali

proposed [15, 17, 18], either with enhanced security or with extra feature related to
underling condition.

Intuition In IBCPRE, sender will encrypt the message with some condition c to
produce conditional ciphertext such that if proxy with suitable re-encryption key
related to the condition c wants to transform that conditional ciphertext to some
other targeted receiver’s public key as a regular ciphertext can do so. Then, that
targeted receiver can decrypt the regular or transformed ciphertext with his/her
secret key.

Next, we give the formal definition of the scheme followed by security require-
ments.

9.1 Formal Model

It consists of the following algorithms:

– (MPK,MSK)
$← KeyGen(1λ): This algorithm generates the master key

pairs—master public key and master secret key, upon input security parameter
λ.

– dID
$← Extract(MSK, ID): It generates the private key dID for the identity

ID.

– rk
IDi

c→IDj

$← ReKeyGen(IDi, dIDi
, IDj , c): It generates re-encryption key

for the delegator IDj from the delegator IDi under the condition c.

– ĈIDi

$← Encryptc(IDi, c,M): It encrypts the message intended for the user
with identity IDi under the condition c and outputs the conditional ciphertext.

– CIDi

$← Encrypt(IDi,M): It does the regular encryption of the message M to
the user with identity IDi and outputs regular ciphertext.

– CIDj

$← ReEncrypt(rk
IDi

c→IDj
, c, ĈIDi

) : It re-encrypts the ciphertext and

outputs a regular ciphertext intended for the IDj .
– M←Decryptc(dIDi

, c, ĈIDi
): It decrypts the conditional ciphertext intended for

the identity IDi.

– M←Decrypt(dIDj
, CIDj

): It decrypts the regular ciphertext intended for the
identity IDj .

Correctness The correctness of this scheme requires the following 3 statements to
be met:

∀(MPK,MSK)
$← KeyGen(1λ)

Decrypt(Extract(MSK, IDj ),Encrypt(IDj ,M)) = M

Decryptc(Extract(MSK, IDi), c,Encryptc(IDi, c,M)) = M
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Decrypt(dIDj
,ReEncrypt(ReKeyGen(IDi, dIDi

, IDj , c), c,

Encryptc(IDi, c,M))) = M

9.2 Security Requirements

Here we give formal security model for the Chosen Ciphertext and Identity security
for IBCPRE (IBCPRE-CCIA) [23] security. It involved 5 oracles given as below:

– OExtract : Private key extract oracle, on input ID, it returns Extract(MSK, ID).
– ORK : Re-encryption key generation oracle, on input (IDi, IDj , c), it returns

ReKeyGen(IDi,Extract(MSK, IDi), IDj , c).

– ORE : Re-encryption oracle, on input (IDi, IDj , c, ĈIDi
), it returns

ReEncrypt(ReKeyGen(IDi,Extract(MSK, IDi), IDj , c), c, ĈIDi
).

– OCDec: Conditional decryption oracle, on input (IDi, c, ĈIDi
), it returns

Decryptc(Extract(MSK, IDi), c, ĈIDi
).

– ODec: Regular decryption oracle, on input (IDi, CIDi
), it returns

Decrypt(Extract(MSK, IDi), CIDi
).

[IBCPRE-CCIA Game]: It is a game between the challenger and the adversary,

– Phase 1/Setup Phase: In this phase, challenger sets up the IBCPRE scheme by
generating master key pair through KeyGen(1λ). Challenger gives master public
key to the adversary.

– Phase 2/Query Phase: Here adversary is given access to the above 5 oracles—
{OExtract ,ORK,ORE,OCDec,ODec}, through which adversary can make
his/her desirable queries. At the end of this phase, adversary outputs 2 messages
(M0,M1), a condition c∗, and an identity ID∗, such that ID∗ is uncorrupted,
and no query of the form (ID∗, �, c∗) is made to ORK.

– Phase 3/Challenge Phase: Challenger picks a random bit b ∈ {0, 1}, and
for conditional challenge ciphertext, it outputs Encryptc(ID∗, c∗,Mb), and for
regular challenged ciphertext, it outputs Encrypt(ID∗,Mb).

– Phase 4/Output Phase: Adversary again can make queries as did in phase 2 with
the obvious restrictions related to challenge ciphertext. At the end, adversary
outputs a bit b′.

We say that the adversary wins the game if b′ = b, and the advantage of adversary
in winning this game is defined as AdvIBCPRE−CCIA

A (1λ) = |Pr[b′ = b] −
1/2|. To say that the above scheme is secure against IBCPRE-CCIA adversary,
AdvIBCPRE−CCIA

A (1λ) needs to be negligible.
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10 Summary

The chapter discusses the various cryptographic primitives derived from IBE. The
summary of these primitives is discussed below.

In IBKA, two or more users can establish a shared secret key using their public
identity and corresponding secret key, generated under common setup or with
common master key. It is similar to any other key agreement protocol, but the public
key is not generated, and it is his/her identity.

In FIBE, a user can decrypt the data if his/her identity matched till at least the
allowed level or percentage, using his secret key. Here, data user identity may
not be exactly matched but till some percentage with the identity associated with
ciphertexts.

In TBEKS, encrypted data can be combinedly decrypted by the minimum defined
number (threshold value) of authorized users. Here, single user cannot decrypt the
data. Data owner decides minimum how many and which set of users need to pool
their secret shares to decrypt the data.

In LEKS, data owner encrypts the message and also encrypts the keyword with
desirable list of identities, so that the user with matching identity can generate a
trapdoor for that keyword and enable the search operation on encrypted keywords.
Here, data owner decides the list of data user who can search their keyword.

In PEKS, data owner will upload his/her encrypted data with encrypted keywords
so that the data user with suitable trapdoor related the keyword can search that
keyword with the help of cloud server. Data user gives keyword trapdoor to the
server for search operation.

In WIBE, sender can encrypt a message with some pattern so that the receivers
with their identities matching to that pattern can decrypt it with their decryption
keys.

In WKD-IBE, a user A can derive secret key for the user B, if A is an ancestor
of B. Thus, user A can also decrypt the ciphertexts intended for his/her descendant
B. The ancestor and descendant relation is defined with the help of pattern with
wildcard character.

In IBCPRE, sender will encrypt the message with some condition c to produced
conditional ciphertext such that if proxy with suitable re-encryption key related to
the condition c wants to transform that conditional ciphertext to some other targeted
receiver’s public key as a regular ciphertext can do so. Then, that targeted receiver
can decrypt the regular or transformed ciphertext with his/her secret key.

For each of these primitives, we defined suitable security model in formal way.
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Chapter 13
Attribute-Based Encryption

Ankita Karale, Vladimir Poulkov, and Milena Lazarova

Abstract In today’s world data is growing enormously. With the advancement in
data, there is need of effective data security mechanism to handle this stored or
transmitted information. This necessity introduced science of cryptography. Being
an effective cryptographic system attribute-based encryption (ABE) became hot
topic of research among the researchers. ABE is a kind of public key cryptography
system. It uses ciphertext and private key of user for the encryption purpose. This
scheme hooked up ciphertext with attributes (e.g., e-mail id, country name) which
ensures high level of protection. This ABS scheme ensures data confidentiality and
exclusive access policy. This chapter studies basic ABS system followed by brief
introduction of few popular algorithms like Public Key Encryption, Public Key
Infrastructure, and Identity Based Encryption. It also enlightened two major types
of ABE, i.e., Key Policy-ABE (KP-ABE) and Ciphertext Policy-ABE (CP-ABE).
Finally, it is concluded with security model of ABE with its comparative popular
schemes.

Keywords Attributes · Attribute-based encryption · Cryptography · Public key
cryptography · Key policy-ABE · Ciphertext policy-ABE

1 Introduction

With the evolution of technology data is increasing tremendously. Security of
growing data which is to be transmitted or stored is the most important issue
nowadays. Data Owner desires to address various security concerns in order to
provide confidentiality of data. Protection of confidential data can be achieved using
various mechanisms. To provide security to the data, information is encrypted so
that it must be read by a specific party in order to control who can access the data.
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Encryption is conversion of original data or information to the coded form that is
not readable by human beings. It is also known as encoding too. The decoding of
encoded information into original form is known as decryption. Only authenticated
person will have the right to access or translate the information by using encryption.
Therefore it gives data privacy. There are many advanced versions of it available
until now. Every version has different applications and benefits. But ABE is most
popular and reliable among them.

ABE is attribute-based encryption. It uses one to many key encryptions. It will
have specific policies or attributes related with every key of decryption. To retrieve
data well, every attribute should fulfill access policy and if these attributes of key
are identical with attributes of coded text, then only information can be decoded.

Let us have a quick review of a few popular techniques related to encryption
before going in deep about ABE.

1.1 Encryption

The translation of data from simple plaintext form to unreadable coded form is
known as encryption of data. After encryption of data, only an authenticated person
having the private decode key can access the data. Usually this secret key is known
as decryption key, and the coded text is known as cipher text. This is the most
widely used and effective method of data security. There are basically two types of
encryption, Symmetric Encryption and Asymmetric Encryption.

Asymmetric encryption is popular by name of public key encryption.

1.2 Public Key Encryption

This technique uses a pair of keys generated by a cryptographic algorithm. Messages
can be encrypted using public key or private key, but it will be only decrypted with
receiver’s private key which is generated randomly by mathematical cryptographic
algorithms. This will provide security to the data as the private key is available only
with the intended receiver.

In Fig. 13.1, we can see all public keys are available with each of the users. When
B intends to send any secret information to C, B will encode it with the public key
of C. When information is delivered to C, he can decrypt it with the help of his own
private key. Only C can decode the message as C is the only one who has knowledge
of C’s secret key.
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Fig. 13.1 Public key encryption

1.2.1 Limitation

We can observe that this technique uses two different keys: public and private. When
B sends a message to C, he uses the public key of C. When C wants to decode
the message, he uses his own private key. When B knows the public key of C in
advance, then only this method can work efficiently. In short, if A and B are known
to each other, then only they can have communication to share public keys by some
authenticated media. But there may be a situation when both parties do not know
each other at all, then this method will fail.

1.3 Public Key Infrastructure (PKI)

To overcome abovementioned limitations, there is the necessity of trusted third
parties to distribute public keys. This need emerges from the public key infras-
tructure (PKI) (Fig. 13.2). The most popular method of encryption is public key
encryption named by researchers as public key infrastructure [1] also known as PKI.
PKI uses certification authorities (CA). User registered himself to the registration
authority. Authority will check its authenticity, and the verifier will verify his
identity, and after verification CA authority will issue corresponding keys to the
user for encryption purpose. So this trusted third party will deliver keys to the sender
which further works like the public key encryption technique stated above. But to
obtain the data privacy, it requires public keys of approved users so as to transmit
data independently to the target user which ultimately increases the demand for
bandwidth [2]. To provide a solution to this drawback, broadcast encryption [3] was
introduced. This technique addresses the mentioned issue, but it is mostly applicable
when the data provider has prior knowledge of the target user. It uses a public key
for the process of encryption, and original data is retrieved by decryption by using
only a single secret key. So the more advanced encryption solutions are required.
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Fig. 13.2 Public key infrastructure

1.4 Identity-Based Encryption (IBE)

Research is always thrust toward betterment. Can there be a better solution to
implement public key encryption? This question is answered by smart innovation of
identity-based encryption (IBE). A. Shamir [4] introduced an encryption technique
based on identity also known as IBE. Without interfering with the public key
certificate here, sender can encode data which simplifies the process. Due to this
feature of IBE, it is appropriate for real-time applications. Here combination of
character is treated as Identity. So ultimately A can send a message to B without
the PKI help, and it can work smoothly as it reduces communication overhead.

The concept is to use the user’s identity as a public key, for example, e-mail Id of
the user. Identity of the user will be considered as a public key, and the centralized
key server will be responsible for creation of a private key. Here the basic difference
between PKI and IBE is that IBE eliminates the need of the certificate look up
process required by PKI.

For example, A have the identity of him as an e-mail address: a@example.com.
This identity of A will be used by him to get a private key from a centralized
key server. E-mail address of A will be used by B to encrypt the message. Only
A can decrypt the encoded message as e-mail address which is acting as an
identity belonging to A only. A has access to its identity a@example.com, so he
is authenticated to get a private key from the key server in order to decode the
encrypted message sent by B. Here key server is the center of attraction. Security
of key server is the main concern in order to make IBE a successful mechanism of
encryption.
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2 Attribute-Based Encryption (ABE)

The concept of IBE is further improved by ABE. This technique was proposed by
scientist Sahai and Waters [5]. They introduced an advanced version of IBE known
as FIBE. It is the first idea of ABE. Instead of using a single string as identity, it
uses a set of attributes. Most of the features of ABE match with IBE like the way
of handling identities as sequences of characters. It is a comprehensive form of
IBE, but more expressive when compared with it. To encrypt the plaintext, it uses
a collection of different attributes. Key servers having master keys only distribute
private keys after authentication of attributes possessed by the user. So every private
key will have its own set of attributes associated with it. To decrypt the message sent
by sender, attributes should be matched then only cipher text could be decoded.

Let us take an example to understand it.
Arya has the attributes “Role = Manager” and “Age > 25.” Anjali uses these

attributes (“Role = Manager” AND“Age > 25”) to encrypt the message. Arya is
able to decrypt the information because she can satisfy both the specified attributes.
Anjali sends another message with the help of encryption by using attributes
(Role =Director OR Role=Chairman). This time Arya cannot retrieve the message
as she does not fulfill requirements of attributes.

So we can observe the key role that is played by attributes here.
What are the working expectations that should be fulfilled by the ideal ABE

method, what type of functioning should be executed by ideal ABE is concluded by
[6]. They are as follows:

1. Confidentiality of Data:

• Cipher text should be confidential to provide security from unauthorized
access.

2. Fine-grained access control:

• Though users belong to the same type of group, their right to access
information should not be the same. So that it will provide good access
control.

3. Scalable:

• Technique should be scalable in terms of performance. When the number of
users using the system increases suddenly or dynamically, it should be able
to handle load efficiently. Number of increasingly approved users should not
degrade the performance of the scheme.

4. Consumer/Attribute Elimination:

• If any user leaves the system, it should be able to cancel the user’s access
right. Same in case of attribute also.

5. Security in forward and Backward mode:
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• Any existing user eliminated from the system should not be permitted to
access any data going to be published in future, also new users should be
prevented from accessing old data published before they joined the system.

6. Accountability:

• Fraudulent users can leak data by distributing their keys or part of keys. So
there should be a track to observe who had distributed keys. This problem
of key abuse also called as Boye problem. There should be solution to this
problem using accountability.

7. System should be safe from fraud users who can decrypt the ciphertext.
8. Computational cost of the whole system should be minimal.

2.1 Basic Model of ABE

In this section let us discuss the basic model of ABE. The first model introduced
by Sahai and Waters [5] known as FIBE is considered as the basic model of ABE.
Here collection of attributes is treated as identity. Here we will see complexity rules
stated in the basic model, and then we will go for algorithms on it.

2.1.1 Complexity Assumptions

Definition 1 DBDH supposition
It is also known as Diffie-Hellman decisional bilinear supposition. Suppose

competitor selects p, q, r, z ∈Zq randomly. The supposition stated that in polynomial
time, no opposition is able to differentiate the tuple.

(P = gp,Q = gq,R = gr, Z = e(g, g)pqr from the tuple (P = gp, Q = gq, R = gr,
Z = e(g, g)z.

With a minor advantage.

Definition 2 MBDH supposition
It is also known as modified decisional bilinear supposition of Diffie-Hellman.
Suppose competitor selects p, q, r, z ∈ Zq randomly. The supposition stated that

in polynomial time, no opposition is able to differentiate the tuple.
P = gp,Q = gq,R = gr, Z = e(g, g)pq/r. From the tuple P = gp,Q = gq,R = gr,

Z = e(g, g)Zwith minor advantage.

2.2 Access Policy

Policy means rules or strategy. The access policy [7] here outlines which kind of
users can have rights to access or read the information. Let us understand it by taking
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Fig. 13.3 Access policy

an example. A regular academic student’s progress record might be accessible
with only teaching faculty and trainee teachers of that particular course. The same
condition can be expressed using predicate (Refer Fig. 13.3).

((T eacher AND CE dept) OR (T rainee teacher AND (CE dept OR IT dept)) .

Here we will consider all variables mentioned above by the name of attributes.
The predicate above is nothing but access policy of the academic condition. As an
example, we have used the simplest access policy but in practical used its complex,
and can own quite a huge amount of attributes. So access policy can deny a user
from accessing information, can restrict it from using data or allows it depending on
fulfillment of condition. It will ensure security of data transmitted or stored over the
network.

2.3 ABE Working

As per Sahai and Waters [5], ABE technique is made up of four basic algorithms,
mainly Setup, algorithm for Generation of Keys, algorithm for Encryption and
Decryption. Process is shown in Fig. 13.4.

Whole process will have a data owner, centralized authority for key generation,
and recipient. Data owner is the source of data and have authority to send data, so
he is also known as sender of the data. Plaintext is encrypted by data owner with the
help of encryption key for defining the access policy of data. Receiver can access
data after the decryption of data with the help of decryption key and after satisfying
access policy of the data. Key generation authority is responsible for the generation
of public and private keys as per attribute group. Access rights are granted as per
satisfaction of attributes. Refer Fig. 13.4 for the basic model of ABE.

Algorithm

1. Setup(d):

(a) G1, G2Bilinear groups. Here prime order is p
(b) gis the originator or source of G1
(c) e : G1 × G1 → G2is Bilinear map.
(d) d=threshold value.
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Fig. 13.4 Encryption of symmetric key using ABE

(e) From t1, . . . , tn are randomly chosen
(f) PK is Public key here. PK = (T1 = gt

1, . . . .., Tn = gt
n, Y = e(g, g)y

)
where

y ∈ Zqand MK is master key, (MK = (t1, . . . tn, y).

2. Key_Gen(AU ,PK,MK).

(a) Authority generates Private key for users U.
(b) polynomial q is chosen randomly

q(0) = y where degree=d − 1.

(c) D is Private key,

Di = gq(i)/t
i, where i ∈ AU.

3. Encrypt (ACT ,PK,M):

(a) Message M ∈ G2 is encrypted with set of attributes ACT

(b) Randomly chosen, s ∈ Zq

(c) Encrypted data is published as

CT = ACT , E = MYs = e(g, g)ys, Ei = gt
i
s where i ∈ ACT

4. Decrypt (CT, PK, D):

(a) CT is decrypted with private key D.
(b) d is randomly chosen fromi ∈ AU ∩ ACT to solve.

e(Ei,Di) = e(g, g)q(i)s), if �AU ∩ ACT � ≥ d
and Ys = e(g, g)q(0)s) = e(g, g)yswith the Lagrange coefficient

M = E/Y s
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Example:
For example, for class of expressive attributes {CSE,Prof, IT,M − Tech Scholar}

(refer Fig. 13.3) of an encoded data, threshold value is 3. The encrypted data can be
only decrypted if the private key satisfies at least three or more than three number
of attributes in the encrypted data. So, receiver may have private key with any three
number of attributes to achieve decryption and obtain the original data [10].

The basic ABE model for the decryption of coded text decryption key will only
work for decoding of the message if at least d attributes satisfy criteria. For the
KP-ABE or CP-ABE scheme, the decryption criteria are that the access structure
belongs to a secret key, or cipher text must be satisfied by the attribute set.

3 ABE Categories

The FIBE technique introduced by Sahai and Waters [5] was inspired by IBE
scheme [4] and became popular with its descriptive nature. It is considered as rich
and strong expression wise. In this scheme, a set of cipher texts are characterized
with a group of attributes α and threshold value d and another collection of attributes
ά both are adjoined with the secret key of the user. In the basic ABE model for the
decryption of coded text, decryption key will only work for decoding if at least d
attributes satisfy criteria of overlapping between coded text and private key. There is
no flexible policy for access control to support various operations in this scheme. In
the FIBE threshold is the access policy which stated as constant in the setup phase.
So it does not satisfy the high-demanding need of real-time applications. To answer
this limitation of ABE, more advanced schemes are introduced.

ABE technique works by using attributes, so attributes are a vital part of this
technique. Public key which is used for encryption purposes is generated by using
attributes. Not only that they are also used as an access policy. Depending on the
access policy, researches can be divided into two main types. The two main types
[8] observed are Key Policy-ABE (KP-ABE) and Ciphertext Policy–ABE (CP-
ABE) schemes. The first concept of KP-ABE was proposed by Goyal et al. [8].
Bethencourt et al. [9] suggested the first CP-ABE technique. This section will give
a brief outline of the mentioned techniques.

3.1 Key Policy-ABE (KP-ABE)

The first most concept of KP-ABE was proposed by Goyal et al. [8]. Data is
encrypted using a collection of attributes, and access policy is built using the secret
key of the user. To decrypt the cipher text using the decryption algorithm, the
attribute set of the cipher text must be able to satisfy access policy in the secret key
of the user. Refer Fig. 13.5 for complete understanding of process. Key generation
algorithm of KP-ABE is different from the Key_Gen algorithm of basic ABE. As
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Fig. 13.5 KP-ABE access control

Key production technique is different, so the decryption technique is also changed
than basic ABE. Attribute set of cipher text is used to run the decryption algorithm
here.

Algorithm for KP-ABE

1. Setup (d):

(a) G1, G2 Bilinear groups. Here prime order is p.
(b) g is the originator or source of G1.
(c) e : G1 × G1 → G2 is Bilinear map.
(d) d= threshold value.
(e) From t1, . . . .., tn are randomly chosen.
(f) PK is Public key here. (PK = T1 = gt

1, . . . .., Tn = gt
n, Y = e(g, g)y) where

y ∈ Zq and MK is master key, MK = (t1, . . . ., tn, y).

2. Key_Gen (AU − KP,PK,MK):

(a) Authority generates Private Key for users U.
(b) Authority generates private key components in the access design for every

node x.
(c) Polynomial qx with d − 1 degree is chosen randomly such that

qx(0) = qparent (x) (index(x)) .

where x’s parent node is parent(x) and index(x) is linked with node x.

(d) D is Private key.

Dx = gq (0)/t
x i , Where i = leaf node.

3. Encrypt (ACT ,PK,M):

(a) Message M ∈ G2 is encrypted with set of attributes ACT

(b) Randomly chosen, s ∈ Zq

(c) Encrypted data is published as
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CT = (ACT ,E = MYs = e(g, g)ys, Ei = gt s
i A
)
where i ∈ ACT

4. Decrypt (CT,PK,D):

By using recursion technique decryption can be achieved.

(a) CT is decrypted with private key D.
(b) If i= leaf node and is included in the access design of the user’s private key.

e (Ei,Dx) = e(g, g)s.q (0)
x

Also if i �=leaf node, the decrypt node function will be called, and calculate
e(g, g)s.q (0)

x by utilizing Lagrange coefficient.
Ys = e(g, g)q(0)s = e(g, g)ys will be evaluated only if the access design in

user’s secret key is satisfied by the attributes of encrypted data.
The message M = E/Ys is retrieved.

Example:
For example, the attributes of the encoded data are {CSE ∧ M. tech scholar}, and

the users’ secret key with access policy are {CSE ∧ (M. tech scholar ∨ Prof )}.
Message can be retrieved by the decryption only when the access policy of
recipient’s private key is fulfilled by the attribute accompanied with the encrypted
data.

3.2 Ciphertext Policy-ABE (CP-ABE)

CP-ABE is the most famous type of ABE technique introduced by Bethencourt et
al. [9]. There are four basic pillars of this system. Working of CP-ABE is same as
of KP-ABE, but only difference is CP-ABE access structure is in encrypted data.
Refer Fig. 13.6 for more details.

1. Centralized authority of attributes:

• Responsible for production of private keys for the purpose of decryption of
data. It also produce public key as well as master key.

2. Data Source:

• As a source key role of a data owner is to decide an access policy to define
access of users on data. It will also provide encryption of information using
the same policy.

3. Data user:

• Can decode data using access policy specified by source and using its own
secret key. Data can be retrieved using private key and proper match of
attributes.
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Fig. 13.6 (CP-ABE) Access Control

4. Centralized Server.

• Management of smooth overall operations.

Algorithm of CP-ABE The following algorithm defines the complete working
process of CP-ABE [23].

1. Setup:

(a) G0 Bilinear group. Here prime order is p
(b) g is the originator or source of G0
(c) Exponents α, β are chosen randomly from Zq

(d) PK is Public key here. PK =
(
G0, g, h = gβ,

∫ = g
1
β , e(g, g)α

)
and MK

is master key, MK = (β, gα).

2. Key_Gen (AU ,MK):

(a) Authority generates Private Key for users U.
(b) Randomly choose s ∈ Zq and sj for every attribute j
(c) Polynomial q with d − 1 degree is chosen randomly such that

q(0) = y.

(d) D is Private key where,
D = (DK = g(α + s)/β , where j ∈ AU

and Dj = gs. H(j)sj, D∗
j = gs

j is output.
3. Encrypt (ACT − CP,PK,M):

(a) Randomly chosen, y ∈ Zq,

qr(0) = y.
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(b) Root node=r and I=set of leaf nodes in ACT − CP

(c) Encrypted data is published as

CT = ACT − CP,
Ć= Me(g, g)αy , C = hy

where Ci = gq(0)
i and C∗iCi = C∗ I = H(att(i)q)i(0)

5. Decrypt (CT,D):

(a) CT is decrypted with private key D.
(b) x= leaf node and k = att(x), k ∈ AU

(c) Decrypt node (CT,D, x)

(e (Dk, Cx)) ÷ (e (D∗
k , C∗

x

)) = e(g, g)sq (0)
x

By utilizing Lagrange coefficient ( CT,D, s) = e(g, g)ys.

Ć/ ((e (C,DK))÷( e(g, g)ys = M

Example:
Source of data willing to send confidential information to data users in the

system. This huge data is deposited in the cloud. Instead of providing direct access
to the data in the cloud, owners of data will give access to the users willing to access
data only when they have suitable identifications which are nothing but the correct
group of attributes. Access policy is given to the private information. To retrieve
information, access policy should match the attribute set of the data user. If this
condition satisfies, then only data users may have access to the information.

For example, private keys with access design = {CSE ∧ (Prof ∨ M. Tech
scholar)} and attributes set of the encrypted data = {CSE ∧ M. Tech scholar}.
To decrypt ciphertext in order to obtain the plaintext information access design of
encoded data satisfied by selected attributes set in recipient private key.

4 Difference between CP-ABE and KP-ABE

Table 13.1 gives basic difference between two policies KP-ABE and CP-ABE (Table
13.1).

Table 13.1 Difference between KP-ABE and CP-ABE with respect to access policy and attribute
association

Key-policy ABE Ciphertext-policy ABE

Ciphertext Attribute association Ciphertext Policy association

Private key Policy association Private key Attribute association
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5 Literature Review of KP-ABE and CP-ABE

Goyal et al. [8] proposed concept of more generalized key-policy attribute-based
encryption. It is more efficient in terms of encrypted data sharing. This scheme is
proven secured under the DBDH supposition. The name KP-ABE is given to this
scheme as there is a tree access structure with which every private key is linked.
This will define the nature of cipher texts which can be decoded by this private key,
which are characterized by a collection of expressive attributes. Cipher text can be
decoded only when the access group of attributes can match the access structure of
the private key. This is a powerful encryption technique with real-time application.
But this scheme will lead to the drawback that the sender cannot decide who can
retrieve the message. He can only go for choosing attributes.

Ostrovsky et al. [11] introduced a system in which private keys can be character-
ized with positive as well as negative attributes. Here the access policy they used is
more complex. Though having all these advantages, it suffers from the drawback
that it increases the size of private key and cipher text. Which will also create
encoding/decoding overheads. Lewko et al. [12] gave a solution to this drawback.
This scheme attained user reversal and developed efficient KP-ABE technique.

Most of the techniques of KP-ABE suffer from the size issue. Size of cipher text
increases with the number of attributes. This is the most common problem whose
effective solution is provided by Attrapadung et al. [13]. Technique proposed by
him possesses fixed cipher text size.

Goyal et al. [8] proposed the concept of ciphertext policy–ABE technique, but
it does not suggest any actual constructed framework. In this scheme, a private
key will be connected with a random number of attributes, and coded text will be
connected with access structure. For successful decryption of coded text, attributes
should satisfy the access structure of it.

The construction of the first CP-ABE scheme was proposed by Bethencourt et al.
[9] in 2007. This scheme provides features of KP-ABE [8]. It also provides feature
access control policies which are flexible.

A comparatively secured technique is suggested by Cheung and Newport [14].
As an access policy AND gate is supported by this technique not only for the positive
attributes but also for negative attributes. The missing attributes from AND gate are
indicated by the do not care component. If compared with Bethencourt et al. [9], this
technique proves its security. But efficiency decreases if equated with Bethencourt
et al. [9] because of increase in number of attributes size of privacy key and cipher
text also.

By considering Cheung and Newport’s Scheme [14] as base, Nishide et al. [15]
upgraded the efficiency and Emura et al. [16] attained the secret policies. Nishide
et al. [15] suggested a technique for multivalued attributes using AND gates. Using
similar access policy, Emura et al. [16] proposed improved technique which has the
special feature that they achieve constant length of coded text.

Goyal et al. [17] and Liang et al. [18] proposed a technique by using tree structure
mainly bounded one. In this scheme, Goyal et al. [12] introduced a bounded
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technique of CP-ABE which gives a comprehensive transition method which is
able to make a transformation of KP-ABE method to a CP-ABE method. It faces
a limitation that the sender is limited to make use of the access tree only where the
depth of the access tree is fixed at the time of setup. Liang et al. [18] enhanced the
bounded technique of CP-ABE [17] by enhancing encoding/decoding process in the
algorithm.

Ibraimi et al. [19] suggested approach to eliminate the border constrictions in
[17, 18]. In this technique, they make use of or and and nodes to represent the
access tree which outlines the privacy preserving policy. If contrasted with Cheung
and Newport’s [14], it is found that it needed a smaller number of overheads in
encoding, decoding, and other phases.

Later Waters [20] suggested a new procedure for understanding CP-ABE under
a solid and non-collaborative environment. Access control is expressed by using the
attributes over the matrix M in the system. But if compared deeply, this technique
gives comparatively similar performance as Bethencourt et al.’s [9].

Lewko et al. [21]. recommended an ABE method that attains adaptive safety
inspired from the technique of Later Waters [20]. But when this method is compared
with Later Waters [20], practically it shows less efficiency.

J. Zhang and Z. F. Zhang [22] suggested a new technique. This method works
on AND gates though too without making use of bilinear pairings. This method
gives proven solutions to the problems related to security. Where most of the
other techniques work using bilinear pairing, this technique gives the probability
of solving tough security problems without making use of bilinear pairing.

6 Comparison of ABE, KP-ABE, CP-ABE

As we can observe by the above analysis, all three schemes ABE, KP-ABE, and
CP-ABE are different in application, complexity measures, flexibility, etc. We can
draw a few conclusions from the above study.

The basic model of ABE technique supports only threshold policy. So this model
is appropriate for those applicants who require simple policy. And other models like
KP-ABE, CP-ABE do support the complex approaches, and are suitable for their
use in data distribution which requires more attention.

In KP-ABE systems, the private key of a user is used for construction of access
policy. That is the reason data sources cannot decide the third-party individual who
can decode the data. When compared CP-ABE with KP-ABE, CP-ABE techniques
are more feasible to use in real-time applications.

Let us define it in general form. The KP-ABE techniques are more query-oriented
applications, e.g., they are used in TV systems, access to databases, broadcasting
having specific targets. While CP-ABE techniques are used for those applications
which need access control, e.g., access to different social networking sites.

Comparison of KP-ABE and CP-ABE with respect to performance (Table 13.2).
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Table 13.2 Parameter-wise comparison of KP-ABE and CP-ABE

S. No. Factors KP-ABE CP-ABE

1. Proficiency Ordinary, but high in case of broadcasting use Ordinary
2. Fine-grained access control Low Ordinary
3. Resistance to collusion Good Good
4. Computational overhead Good Ordinary

7 The Security Model

Here to prove security of technique the chosen set model is used against the selected
plaintext attack [5]. Competitor and an opponent played a chosen ID game.

7.1 Fuzzy Model for ABE

Initial phase.
The competitor announces his identity Į, using which he is willing to challenge.
Setup:
Setup algorithm is run by the opponent, he tells the competitor public parameters.
Stage 1:
For the purpose of private keys, competitors can issue queries.
Challenge: The competitors submit M1 and M2 off the same length where M1 and

M2 are two messages. Random coin is flipped by the opponent for choosing value
b. It encrypts message Mb with identity Į, Coded text is transferred to competitor.

Stage 2:
Stage 1 is repeated.
Guess:
Benefit of Competitor in this game,

Benf C = ∣∣ pr
[
ḃ = b

]− 1/2
∣∣

Definition: In the security model of fuzzy selective-ID, technique is safe if all
polynomial-time oppositions have minor benefit majorly in the above game.

CPA security of basic ABE technique is proved by Sahai and Waters [5]. DBDH
assumption is used for basic ABE technique and KP-ABE technique [8, 11] also.

CP-ABE systems are more complicated. It is difficult to prove security of CP-
ABE techniques as these are complicated one to handle. To prove its security under
standard assumption, the main focus of research is on access structure. Depending
on access structure, the three main types of research can be observed: Tree, AND
gate, and LSSS matrix.
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8 Conclusion

Data security is the most crucial aspect in every field in today’s world. The need
of confidentiality of data demands fine-grained access control. With the evolution
in technology, various schemes of encryption were introduced. This chapter gives
a brief overview about various encryption techniques like PKE, PKI, and IBE. It
mainly studies ABE with its algorithm process and features of it including two
main schemes of Key Policy-ABE (KP-ABE) and Ciphertext Policy-ABE (CP-
ABE) followed by their working models and algorithms. It also enlightened on
some popular techniques in literature review. We have also focused on comparison
of ABE, CP-ABE, and KP-ABE with each other. Finally this chapter ended with
security models of these schemes.

ABE technique is one of the most successful encryption techniques which
ensures data security and high-level access control. Still many problems can be
addressed and studied as a future works. Almost all ABE techniques use bilinear
pairing as construction method, but high computational complexity of bilinear
pairing reduces efficiency of algorithm to some extent. That is why if amount of
bilinear pairing operations can be reduced to obtain improved scheme. Improving
the construction technique of CP-ABE systems is also important research topic that
can be studied extensively. Attempt to make access structure complex added extra
redundancy to it. So to prove its security is difficult task. Hence optimization is
necessary. Key misuse and key duplicating problem are major headache which can
be effectively addressed by accountability. But existing techniques are proved to be
safe in the selective model. So there is a need to provide solution to this problem.
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Chapter 14
Digital Signatures

Pinkimani Goswami, Madan Mohan Singh, and Khandakar Tahidur Rahman

Abstract A digital signature is a cryptographic protocol that ensures the authentic-
ity of a message. In this book chapter, we will discuss some algorithms for digital
signature. We will also discuss some algorithms for the blind signature scheme,
undeniable signature schemes, short signature schemes, and Hierarchical identity-
based signature schemes. We will also discuss Signcryption.

Keywords Signature schemes · Blind signature schemes · Undeniable signature
schemes · Short signature scheme · HIBS schemes · Signcryption

1 Introduction

A digital signature is a procedure of signing a message stored in electronic form.
It is a cryptographic protocol that shows the authenticity of a message. That is the
digital signature schemes give the grantee to the receiver that the message was sent
by the claimed sender. Therefore, the digital signature schemes provide a way to
detect forgery or tampering. The four main security services of a security system
are as follows [1]:

1. Confidentiality, i.e., information is kept secret from all but the authorized parties.
2. Message authentication, i.e., the sender of a message is authentic.
3. Integrity, i.e., message has not modified during communication.
4. Non-repudiation, i.e., the sender of a message cannot deny the creation of the

message.
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Note that the message authentication codes (MACs), which are based on
symmetric key cryptography, provide the authenticity and integrity of a message.
But MACs cannot prevent the verifier from creating forgeries as they (the signer and
the verifier) share the same key. Also, the signer can deny the creation of the message
as they are sharing the same key, i.e., it does not achieve non-repudiation. Another
disadvantage of MACs is that one cannot prove the authenticity of a message
without sharing the secret key. One approach to remove these disadvantages is by
replacing the symmetric key cryptography into asymmetric key cryptography. A sig-
nature scheme is a security scheme that is based on asymmetric key cryptography. A
digital signature scheme achieved not only authenticity and integrality of a message
but also non-repudiation. A signature scheme consists of three algorithms:

1. Key generation algorithm: It is a PPT algorithm. For a given security parameter
�, the algorithm produces a private key (called signing key) Kpr and the
corresponding secret key (called verifying key) Kpub.

2. Signature Generation: It may be a probabilistic algorithm. For a given message
M and secret key Kpr, the algorithm produces a signature s on M.

3. Signature Verification: It is a deterministic algorithm. For a message M, a
signature s and public key Kpub, the algorithm answer “accept” if (M, s) is a valid
signature.

As the verification is done by the signer’s public key, so anyone can prove the
authenticity of the message. Also, no one can create forgeries as the sender used his
secret key to sign a message. Note that the sender can get public key from a trusted
authority such as a government agency.

1.1 Security Models for Signature Schemes

In this section, we discuss the security models for a signature scheme. Here we
list possible goals and attack models of an attacker. Note that a signature scheme
cannot be unconditionally secure, and hence the main goal is to construct a signature
scheme which is computationally or provably secure [2].

The following are the main goals of an attacker:

• Total break: Adversary can determine the sender public key and therefore he can
create a signature of any message.

• Selective forgery: Given a message M, an adversary can determine s such that
(M, s) is a valid signature from the sender.

• Existential forgery: Adversary is able to create s for some M such that (M, s) is a
valid signature from the sender.

The following are the attack models commonly considered:

• Key-only attack: Adversary only has the sender’s public key, i.e., he has accessed
the verification algorithm.
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• Know-message attack: Adversary only has a list of messages signed by the
sender.

• Chosen-message attack: Adversary chooses messages M1, M2, · · · and request
the sender to sign. Therefore, he has the corresponding signatures of each
message which he has chosen.

One can see [2–4], for security analysis of signature schemes.

1.2 Signature Schemes with Hash Functions

In practical implementation, asymmetric key algorithms are often too inefficient to
sign a document. One approach to sign a long message M is to break the message
into small parts and use the signature algorithm to each of these parts separately. But
it is not a secure approach as the adversary may interchange the position of the parts
of the message or may get other information. Also, it will be time-consuming for
a long message. One solution to this problem is somehow “compress” the message
M prior to signing and hence the hash function comes into picture. Note that a hash
function H is a function H : {0, 1}∗ → {0, 1}r, where a bit string of arbitrary length
is converted to a bit string of length r ∈ N. So, using a cryptographic hash function,
a message with arbitrary length is converted to a fixed length, which is called a
message digest. A hash function should have the following properties to prevent the
attacks on the signature scheme:

1. Pre-image resistance (or one-wayness): To prevent the existential forgery on the
signature scheme using a key-only attack.

2. Second pre-image resistance (or weak-collision resistance): To prevent the
existential forgery on the signature scheme using a known-message attack.

3. Collision resistance: To prevent the existential forgery on the signature scheme
using a chosen message attack (Fig. 14.1).

1.3 Organization of the Chapter

The main aim of this chapter is to provide a brief idea of signature schemes. Section
2 introduced some well-known signature schemes based on the integer factorization
problem (IFP) and discrete logarithm problem (DLP). Section 3 deals with blind
signature schemes, where we described the three important blind signature schemes.
Section 4 introduced undeniable signature schemes. In Sect. 5, we will discuss
Short signature schemes. Section 6 deals with hierarchical identity-based signature
schemes, and some other types of signature schemes are briefly mentioned in Sect.
7. Another cryptographic primitive, namely signcryption, is introduced in Sect. 8.
The chapter concludes in Sect. 9.
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Fig. 14.1 Protocol for signature scheme with hash function

2 Signature Schemes Based on IFP and DLP

In this section, we will discuss some of the signature scheme based on IFP and DLP.
We will consider RSA signature scheme, which is based on IFP, ElGamal signature
scheme, and some of its variants, which are based on DLP.

2.1 RSA Signature Scheme

We will start with the RSA signature scheme. In 1978 [5], Rivest et al. proposed
this scheme. The key generation algorithm of the RSA signature scheme is same as
the RSA cryptosystem. The public key of the sender is (p, q, d), and the private key
is (n, e), where ed ≡ 1 (mod φ(n)). A hash function H is considered which is public
for all.

Signature generation Signature verification

Consider a message M
1. Find the massage digest m = H(M)
2. Compute s = md mod n
s is the signature on the message M

1. Compute m = H(M)
2. Compute m = se mod n

Accept the signature if m = m.

Let us consider one small example to illustrate the RSA signature scheme.
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Example: Suppose n = 18923 = 127 × 149 and e = 1261. Then
φ(18923) = 18648 and d = 5797. Suppose the signer wishes to sign a
message m = H(M) = 8990. She computes s = 89905797 mod 18923 = 7212.
Therefore, 7212 is the signature on 8990.

Anyone can verify the signature by checking 72121261 mod 18923 = 8990.
Hence, the signature is valid.
Efficiency: Both the signature generation and verification algorithm needed one

modular exponentiation. The size of a signature is around 1024 bits for a 1024-
bit modulo. It is recommended to use e like 3, 257, and 65,537 to speed up the
verification algorithm.

Security: The RSA signature scheme is based on IFP. If a secure hash function
is used, then the scheme is secure against existential forgery attack.

2.2 ElGamal Signature Scheme

In 1985 [6], ElGamal described a signature scheme named as ElGamal Signature
scheme, which is based on DLP. The key generation algorithm is the same as the
ElGamal cryptosystem. The secret key of the sender is a, and the public key of
the sender is (p, g,A), where A = ga (mod p). A hash function H : {0, 1}∗ → Zp

is considered, which is public to all. The signature generation and verification
algorithms of the ElGamal signature scheme are as follows:

Signature generation Signature verification

For a message M
1. Compute m = H(M).
2. Select a random integer k such that
gcd(k, p − 1) = 1.
3. Compute s = gk(mod p).
t = k−1(H(m) − as)(mod p − 1)
(s, t) is the signature on M.

For the signed message (M, (s, t))
1. Compute m1 = gH(m) (mod p)
m2 = Asst(mod p).
Accept the signature
If m1 ≡ m2 (mod p)

Let us consider one small example to illustrate the ElGamal signature scheme.
Example: Suppose p = 31847, α = 5, a = 7459, then β = αa mod p = 25703.

Suppose the singer wishes to sign the message m = H(M) = 8990. Suppose she
chooses k = 1165 randomly. She computes

s = 51165 mod 31847 = 23972mod 31847

and t = (8990 − 7456 × 23972)1165−1 mod 31846 = 31396 mod 31846.Therefore
the signature of the message 8990 is (23972, 31396).

Anyone can verify the signature by checking

58990 mod 31847 = 10262
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and 2570323972 × 2397231396 mod 31847 = 10262
Hence, the signature is valid.
Security: The security of ElGamal signature is based on DLP. If a secure hash

function is used in ElGamal signature scheme, then it is secure against existential
forgery. However, the security of the ElGamal signature scheme can be broken if k
is not secret or if k is reuse. If k is not secret and (s, p − 1) = 1, then from

t = k−1 (m − as)mod p − 1

one can find the secret key a of the signer. Again, suppose the signer used the
same k to signed messages m1 and m2. Let (s, t1) and (s, t2) be the signatures on
m1 and m2, respectively, where s = gk mod p, t1 = k−1(m1 − as) mod p − 1, and
t2 = k−1(m2 − as) mod p − 1. Then from t1and t2, one can compute

k = (m1 − m2) (t1 − t2)
−1 mod p − 1

and hence can find the secret key of the signer. A detailed description on the security
of ElGamal signature scheme is found in [2].

2.3 The Schnorr Signature Algorithm

In 1989 [7], Schnorr proposed a new signature scheme named as the Schnorr
signature scheme. It is a modification of the ElGamal signature scheme. For a
message of length 1024 bit, the length of a Schnorr signature is around 320 bits,
whereas an ElGamal signature is around 2048 bits. The key generation algorithm
is similar to the ElGamal Signature scheme. But here instead of considering a
cyclic group Z

∗
p, of order p, a cyclic subgroup 〈α〉 of order q is considered, where

q � p − 1. Basically, for p of size 1024 bits, the size of q is 160 bits. We can find

α by computing α = g
p−1

q mod p, where g is a generator of Z∗
p. The secret key of

the signer is a where 1 ≤ a ≤ q − 1 and the corresponding public key is (p, q,α,β),
β = αa mod p. A secure hash function H : {0, 1}∗ → Zq is considered, which is
public for all. The signature generation and verification algorithms are as follows:

Signature Generation Signature Verification

Choose a message M
1. Choose a secret random integer k such
that 1 ≤ k ≤ q − 1
2. Compute r = H(M‖1 αk mod p)
s = (k + ar) mod q
(M, (r, s)) is the signed message.

For the signed message (M, (r, s))
1. Compute
t = H(M ‖ αsβ−r mod p)
Accept the signature if t = r.

Here we are considering one small example to illustrate the scheme.
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Example: Suppose q = 15923 and p = 2q + 1 = 31847. 5 is a primitive root
modulo 31847. So α = 52 mod 31847 = 25 such that ord(α) = 15923. Suppose,
a = 101. Then β = 25101 mod 31847 = 30484. Suppose the singer wishes to sign
the message M = 8990. Suppose she chooses k = 27 randomly. She computes

r = H
(
M ‖ 2527 mod 31847

)
= H (M ‖ 12401mod 31847) = 3438 (say)

and s = (27 + 101 × 3438) mod 15923 = 12882 mod 15923.
Therefore, the signature of the message 8990 is (3438, 12882).
Anyone can verify the signature by checking

2512882 × 30484−3438 mod 31847 = 12401mod 31847

and t = H(M ‖ 12401 mod 31847) = 3438
Hence, the signature is valid.
Security: The Schnorr signature scheme is based on DLP. However, one can

attacks the Schnorr signature scheme in the following approach too:

1. Given a signature (r, s) on a message m, if one can find m
′
such that

H(m ‖ αsβ−r) = H(m
′ ‖ αsβ−r), then (r, s) is a valid signature for m

′
. To

resist this attack, the hash function should be second pre-image resistant.
2. One can choose any (r, s) and compute αsβ−r and then try to find m such that

H(m ‖ αsβ−r) = r. To resist this attack, the hash function should be pre-image
resistant.

Efficiency: The signature algorithm needed one exponentiation, one hash func-
tion evaluation, and one computation modulo q, Whereas the verification algorithm
needed to performs a multi-exponentiation αsβ−r and one hash function. The
signature algorithm is faster than verifying algorithm.

We refer [8] for a detailed description of the Schonrr signature scheme.

2.4 Nuberg-Rueppel Digital Signature Algorithm

The Nuberg-Ruepple (N-R) signature Scheme [9] is another modification of the
ElGamal signature scheme, which is based on DLP. The size of the signature is
same as Schnorr signature. The scheme is described as follows:

Key Generation
1. Choose a large p prime and q such that q � (p − 1).
2. Choose α ∈ Z

∗
p such that ord(α) = q.

3. Choose a such that 2 ≤ a ≤ q − 1.
4. Compute A = αa mod p.
5. Choose a function F : G → Zq defined as F(m) = m mod q.
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The Public key is (p, q,α,A,F), and the corresponding secret key is a.

Signature generation Signature verification

Choose a message M
Choose a random integer k such that
2 ≤ k ≤ q − 1
Compute
r = (H(M) + F(gk mod p)) mod q
s = (k − ar) mod q
(M, (r, s)) is the signed message.

Compute u = gsAr mod p
t = (H(M) + F(u mod p)) mod q
If t = r, then the signature is a valid
signature.

Here we are considering one small example to illustrate the scheme.
Example: Suppose p = 31847, then q = 15923. Let g = 25 and a = 101. Then

A = 5905. Suppose the singer wishes to sign the message m = H(M) = 8990.
Suppose she chooses k = 1165 randomly. She computes

r = (8990 + 9516)mod 15923 = 2583mod 15923

and s = (8990 − 101 × 2583) mod 15923 = 10973 mod 15923. Therefore, the
signature of the message 8990 is (2583, 10973).

Anyone can verify the signature by checking

u = 2510973 × 59052583 mod 31847 = 9516

and t = (8990 + 9516) mod 15923 = 2583.
Hence, the signature is valid.
The security and efficiency of N-R signature scheme is similar with the Schnorr

signature scheme.

2.5 Digital Signature Standard (DSS)

The DSS [10] is another variant of ElGamal signature scheme, which is published
in 1994. It is a modification of ElGamal signature scheme. The key generation
algorithm is same with ElGamal signature scheme.

Key Generation
1. Choose a large prime p (1024 bits).
2. Choose another prime q (160 bits) such that q � p − 1.
3. Find α of order q.
4. Choose a such that 0 ≤ α ≤ q − 1.
5. Compute β = αa mod p.

The public key is (p, q,α,β), and the corresponding secret key is a.



14 Digital Signatures 251

Signature generation Signature verification

Choose a message M
Choose a random integer k such that
2 ≤ k ≤ q − 1
Compute r = (αk mod p) mod q
s = (H(M) + ar)k−1 mod q
(M, (r, s)) is the signed message.

Compute u = s−1 mod q
t1 = uH(M) mod q
t2 = ur mod q
t = (αt1βt2 mod p

)
mod q

The signature is a valid signature if
t = r.

Let us discuss the following example to illustrate DSS.
Example: Suppose p = 31847, q = 15923, α = 25, and a = 101, then

β = 25101 mod 31847 = 30484. Suppose the singer wishes to sign the message
m = H(M) = 8990. Suppose she chooses k = 1165 randomly. She computes

r =
(
251165 mod 31847

)
mod 15923 = 9516mod 15923

and s = (8990 + 101 × 9516)1165−1 mod 15923 = 327 mod 15923. Therefore, the
signature of the message 8990 is (23972, 31396).

Anyone can verify the signature by checking

(
259182304843389 mod 31847

)
mod 15923 = 9516mod 15923

Hence, the signature is valid.
Security: It is based on DLP over a prime field and its subgroups. DSS is secure

under random oracle model. Like ElGamal signature scheme, the signer should not
use same k for different messages. The hash function used for DSS is SHA-1 [11].

Efficiency: The DSS signature generation required one modular exponentiation,
where verification algorithm required two modular exponentiations. It is as fast as
Schnorr signature scheme and N-R signature scheme. For a 1024-bit modulo, the
DSS signature is 320 bits long.

3 Blind Signature Scheme

In a Blind signature scheme, the signer and the user (who create the message)
are different parties. In this scheme, the message is hiding from the signer. In
Crypto’82 [12], Chaum introduced the concept of the blind signature scheme. The
security of this scheme is based on IFP. In 1994 [13], Camenisch et al. proposed two
blind signature schemes, which are based on DLP. Among these ones is based on
modified RSA and the other is based on N-R Signature scheme. An ElGamal-based
blind signature scheme is proposed in [14]. In [15], Pointcheval et al. described a
blind signature scheme based on the Schnorr’s signature scheme (called Schnorr’s
blind signature scheme). In the same paper, he proposed the Okamoto-Schnorr
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blind signature scheme, which is based on Okamoto Scheme [16]. The scheme is
secured under the random oracle model. Numerous blind signature schemes have
been proposed [17–21].

A blind signature scheme comprises of three algorithms:

1. Key generation: It is a PPT algorithm, that on given 1�, for a security parameter
�, the signer produces a pair of keys (Kpub, Kpr), where Kpub is a public key, and
Kpr is the corresponding private key.

2. Blind signature generation: It is a PPT algorithm. The user and signer execute
the following steps:

• Blinding: The user who wants a signature in a message M, first blind that
message (say m

′
) and sends the blind message to the signer.

• Signature generation: Given a blind message m
′
and the private key Kpr, the

signer evaluate the signature s
′
and sends to the user.

• Unblinding: The user unblind the signature on the blind message and produces
the signature s of the original message M.

3. Signature verification: It is a deterministic polynomial time algorithm. For the
message M, the signature s, and the public key Kpub of the singer, the verification
algorithm yield “true” or “false.”

The two main security requirement of a blind signature scheme are blindness
(i.e., the signer should not access the message), and one-more forgery, i.e., the user
should not create more signature form the signature provided by the signer [22].
The security of a blind signature scheme is studied in [23–26]. Blind signatures
have various applications such as in electronic payment systems [12] and electronic
voting systems [27].

3.1 Chaum’s RSA Blind Signature Scheme

This is the first blind signature scheme, and it is based on the IFP. The Key
Generation algorithm is the same as the RSA key generation algorithm. The
secret key of the signer is (p, q, d) and corresponding public key is (n, e), where
ed ≡ 1 mod φ(n).

Let us consider one small example to illustrate the Chaum’s RSA blind signature
scheme.

Example: Suppose n = 18923 = 127 × 149 and e = 1261. Then
φ(18923) = 18648 and d = 5797. Suppose the user needs a signature on a
message m = H(M) = 8990. The user first blind the message by executing the
following steps:

Suppose k = 101, then m
′ = 8990 × 1011261 mod 18923 = 8703 mod 18923.

The signer generates the signature s
′ = 9338 mod 18923 on m

′ = 8703.
The user computes s = 7212 mod 18923. So, 7212 is the signature on 8990.
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Blind signature generation Signature verification

Blinding: Suppose m ∈ Zn be a message.
1. Choose a random k ∈ Zn such that
(k, n) = 1.
2. Compute m

′ = mke mod n
The user sends the blind message m

′
to the

signer.
Signature Generation: For the message m

′
,

the signer
1. Compute s

′ = (m
′
)d mod n

s
′
is the signature on m

′
.

Unblinding: Using s
′
, the user

1. Compute s = k−1s
′
mod n

s is the signature on m.

For a message m and signature s
1. Compute m = se mod n

2. Accept the signature if m = m.

Anyone can verify the signature by checking 72121261 mod 18923 = 8990.
Hence, the signature is valid.

3.2 Schnorr Blind Signature Protocol

This signature scheme is based on DLP. In this scheme the message M is never
sent to the signer, so blinding and unblinding algorithm is not required. The hash
function H : {0, 1}∗ → Zq is public for all.

Key Generation
1. Choose two large primes p and q such that q � (p − 1).
2. Choose an element g ∈ Z

∗
p such that ord(g) = q.

3. Choose d such that 2 ≤ d ≤ q − 1 and compute A = gd mod p.
Here the signing key d and corresponding verification key is (q, g,A).

Signature Generation
Suppose M is the message to be signed. The user asks the signer to initiate a
communication. The signer has to execute the following steps:

1. Choose a random integer d ∈ [2, q − 1].
2. Compute u = gd mod p.

The signer sends u to the user.
The user has to execute the following steps:

1. Select two random numbers α, β ∈ Zq.
2. Compute u = ugαAβ mod p

3. Compute s = H(M ‖ u) and s = (s − β)mod q.

The user sends s to the signer.
The signer computes t = d − ds mod q and sends t to the user.
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The user computes t = (t + α
)
mod q. The blind signature on M is (s, t).

Signature Verification
1. Compute t1 = H(M ‖ gtAs)
2. If t1 = s, the signature is a valid signature.

Correctness
1. Compute gtAs = gt+αAs+β = u, so t1 = H(M ‖ u) = s.

3.3 Okomoto-Schnorr Blind Signature Protocol

This scheme is the modification of the Schnorr blind signature, which is based on
DLP.

Key Generation
1. Choose two large primes p and q such that q � (p − 1).
2. Choose two elements g1, g2 ∈ Z

∗
p such that ord(g1) = ord(g2) = q.

3. Compute A = g
d1
1 g

d2
2 mod q, where 2 ≤ d1, d2 ≤ q − 1.

Here the secret key is (d1, d2), and the public key is (q, g1, g2,A).

Signature Generation
The user asks the signer to initiate a communication. The signer executes the
following steps:

1. Chose random numbers d1, d2 ∈ {2, 3, · · · , q − 1}.
2. Compute u = g

d1
1 g

d2
2 mod q and send u to the user.

The user executes the following steps:

1. Select three random integers α, β, γ ∈ Zq.

2. Compute u = u gα
1 g

β
2 Aγ mod p

3. Compute s1 = H(M ‖ u) and s1 = (s − γ )mod q.
4. Send s1 to the signer.

The signer executes the following steps:

1. Compute s2 = (d1 − d1s1
)
mod q and s3 = (d2 − d2s1

)
mod q.

2. Sends s2 and s3 to the user.

The user executes the following steps:

1. Compute s2 = (s2 + α)mod q and s3 = (s3 + β)mod q.

The blind signature on M is (s1, s2, s3).
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Signature Verification
1. Compute t1 = H

(
M ‖ g

s2
1 g

s3
2 ys1

)
.

2. If t1 = s1, then the signature is a valid signature.
Correctness

g
s2
1 g

s3
2 ys1 = g

s2+α
1 g

s3+β
2 ys1+γ = u

So, t1 = H(M ‖ u) = s1 and hence signature is verified.

4 Undeniable Signature Schemes

The signature schemes which we have discussed in the last two sections have the
property that anyone who has the knowledge of signer public key and message-
signature pair can verify the signature. However, this is not suitable for many other
situations such as licensing software, where a software vendor might want to sign
on their products such that only the paying customer can verify the validity of
these signatures. The undeniable signature scheme is useful in such scenario. In
an undeniable signature scheme, the verification algorithm depends on the active
participation of the signer. In this type of signature scheme, a verifier can not only
verify signature but also check whether the signature is forged or the signer is trying
to deny his signature.

In 1989 [28], Chaum et al. introduced the concept of the undeniable signature
scheme. It is based on the DLP over a prime field. Various undeniable signature
schemes have been proposed since its introduction. The most of the undeniable
signature scheme is based on DLP (e.g. [29–32]). In 1991 [33], Boyen et al.
suggested a research direction for construction of undeniable signature schemes
based on RSA. In 1997 [34], Gennaro et al. proposed the first RSA-based undeniable
signature scheme. After that various undeniable signature scheme was proposed
which are based on RSA or related problems (e.g., [35–37]). Some other undeniable
signature schemes have been proposed based on some other intractable problems
like [38–41]. The various notion of security had been discussed in [42]. For the
recent work on the undeniable signature scheme, one can check [43–46].

An undeniable signature scheme comprises of four algorithms:

1. Key generation: It is a PPT algorithm, where for given security parameter �, the
signer generates a pair of keys(Kpub,Kpr), where Kpr is the secret key and Kpub is
the corresponding public key of the signer.

2. Signature generation: It is a PPT algorithm, where for a given message m and the
signer private key Kpr, which produces a signature s for the message m.

3. Signature verification: For a given message M, signature s and public key Kpub
of the signer, the verifier executes the following steps:

• Challenge: The verifier sends a challenge (say z) to the signer.
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• Response: Given the challenge z, the message M, and his private key Kpr, the
signer evaluates a response (say r) and sends it to the verifier.

• Verification: Given a massage m, the signature s, the signer public key Kpub
and response r, the signature verification algorithm returns an answer “true”
or “false” depending on s is a valid signature or not. If the verification return
“false,” the verifier executes the following steps:

4. Denial protocol: Here the verifier will check whether the signature s is forged
or the signer is trying to deny his valid signature by sending challenges and
checking responses of the signer.

4.1 Chaum-Van Antwerper Undeniable Signature Scheme

In this section, we will consider the Chaum-Van Antwerper (CvA) undeniable
signature scheme proposed in [28]. We have considered the algorithm from [3, 22].

Key Generation
1. Choose a large prime p of the form p = 2q + 1, where q is prime.
2. Choose g ∈ Z

∗
p such that ord(g) = q.

3. Choose a ∈ Zq such that gcd(a, q) = 1
4. Compute A = ga mod q
5. Select a hash function H : {0, 1}∗ → Zp, which is public to all.

The Public key (p, q, g,A) and the corresponding secret key a.
Signature Generation: For a given message M and public key (p, q, g,A).

1. Compute m = H(M)
2. Compute s = ma mod p

(M, s) is the signed message on M.

Signature Verification
• Challenge: The verifier selects two random integers u, v ∈ Zq and compute

z = suAv mod p. The verifier sends the challenge z to the signer.

– Response: Given the challenge z, the signer evaluates w = za−1 mod q mod p

and sends the response w to the verifier.

• Verification: If w = mugv mod p, then the verifier accepts the signature.
Otherwise, he rejects it.

Denial Protocol
Suppose u and w are the challenge and response, respectively, generated in the
verification algorithm. If the verification fails, then there are two possibilities either
(i) the signature is forged or (ii) the signer trying to deny the signature. In that case,
the verifier performs a second verification as follows:

• Challenge: The verifier
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(i) selects two random integers u
′
, v

′ ∈ Zq,
(ii) computes z′ = su′

Av′
mod p.

The verifier sends the challenge z
′
to the signer.

• Response: Given the challenge z
′
, the signer evaluates

w′ = z′a−1 mod q mod p

The signer sends the respond w
′
to the verifier.

• Verification: If
(
wg−v

)u′ =
(
w′g−v′)u

, then the verifier concludes that the

signature is forged. Otherwise, he concludes that the signer is trying to deny
the signature.

Correctness.
The correctness of the denial protocol is based on the following two lemmas [3]:

Lemma 4.1.1:

1. For any z ∈ Z
∗
p, there are q pairs (u, v) such that z ≡ suAv mod p.

2. If s �≡mamod p and if z ∈ Z
∗
p, then for each w ∈ Z

∗
p there is exactly one pair

(u, v) such that w ≡ mugv mod p and z ≡ suAv mod p.

Lemma 4.1.2:
If s = ma mod p and w is fixed with w �≡mugvmod p, then for every w′ ∈ Z

∗
p

there is exactly one pair (u
′
, v

′
) ∈ Zq × Zq such that

(
wg−v

)u′ ≡
(
w′g−v′)u

mod p.

From the lemma 4.1.1, the signer knows that for a given z, the verifier has q
possible choices of pairs (u, v) ∈ Zq × Zq. Also, for any two distinct pairs (u1, v1)
and (u2, v2), the value of w is different. So, the probability to choose the correct
(u, v) by the signer is 1

q
, which is very small for large q.

Suppose the signature is a valid signature but the signer wants to deny the

signature, then he has to respond w
′
for challenge z

′
such that

(
wg−v

)u′ =(
w′g−v′)u

, but the verification fails. By Lemma 4.1.1, there are q pairs (u
′
, v

′
) that

gives z
′
. By Lemma 4.1.2, for every w

′
, there is exactly one pair (u

′
, v

′
) such that

(
wg−v

)′ =
(
w′g−v′)u

. The signer has no idea which pair (u
′
, v

′
) was chosen by

the verifier and hence no idea which w
′
to choose. The best he can do is to select

w
′
randomly and hence he has 1

q
chances to obtain the right w

′
, which is very small

for large q. Therefore, if
(
wg−v

)u−1 =
(
w′g−v′)u

, then the verifier accepts that

the signature is invalid; otherwise, he knows with probability at least 1 − 1
q
that the

signer trying to deny the signature.
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Example: Suppose p = 31847 = 2 × 15923 + 1 and g = 25. Suppose a = 101.
Then A = 25101 mod 31847 = 30484. Suppose the singer wants to sign the message
M = 8990. She computes s = 8990101 mod 31847= 15457. Therefore, the signature
of the message 8990 is 15457.

To verify the message, verifier chooses two random values u = 39 and v = 7932
and sends the challenge z = 1545739304847932 mod 31847 = 17205 mod 31847 to
the signer. Signer responds with w = 17205101

−1 mod 15923 mod 31847 = 21486.
The verifier checks the response and verifies the signature by checking

899039257932 mod 31847 = 21486

Hence, the signature is valid.

4.2 RSA-Based Undeniable Signature Schemes

In 1997 [34], Gennaro et al. proposed an undeniable signature scheme (called GKR
scheme) based on RSA. We have considered the scheme from [3, 22]. The scheme
is defined as follows:

Key Generation
1. Choose two large random primes p and q such that both p′ = p−1

2 and q ′ = q−1
2

are also primes.
2. Compute n = pq
3. Select two integers e and d such that ed ≡ 1 mod φ(n).
4. Choose g ∈ Z

∗
n and compute A ≡ gd mod n.

Public key (n, g,A) and secret key (e, d).

Signature Generation
1. Choose a message M.
2. Compute m = H(M)
3. Compute s = md mod n

(M, s) is the signed message on M.

Signature Verification
• Challenge: The verifier

(i) computes m = H(M)
(ii) selects two random integers i, j ∈ {1, 2, · · · , n},
(iii) computes u = s2iAj mod n.

The verifier sends the challenge u to the signer.
• Response: Given the challenge u, the signer evaluates.

(i) w = ue mod n and sends it to the verifier.

• Verification: The verifier evaluates
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w′ = m2igj mod n

(i) If w = w
′
, then the verifier concludes that the signature is a valid signature.

• Denial protocol: Suppose u and w are the challenge and response, respectively,
generated in the verification algorithm. The verification fails, then there are two
possibilities either (i) the signature is forged or (ii) the signer is trying to deny
the signature. In that case, the verifier performs a second verification as follows:

• Challenge: The verifier

(i) selects two random integers i ∈ {4, 8, 12, · · · , 4k} and j ∈ {1, 2, · · · , n},
(ii) computes w1 = migj mod n and w2 = siAj mod n.

The verifier sends the challenge (w1,w2) to the signer.
• Response: Given the challenge (w1,w2), the signer evaluates

(i) i
′ ∈ {4, 8, 12, · · · , 4k} such that

w1w
−e
2 = (ms−e

)i′
mod n

The respond i
′
sends to the verifier.

• Verification: If i = i
′
, then the verifier concludes that the signature is forged.

Otherwise, he concludes that the signer is trying to deny the signature.

Correctness
In order to see how this protocol prevents the signer from denying a valid

signature, first let us consider the case that (M, s) is a valid signature on M. In that
case,

we
2 ≡ (siAj

)e
mod n

≡ migj mod n

≡ w1 mod n

Again,

se ≡ mmod n

Therefore, for any i
′ ∈ {4, 8, · · · , 4k}

w1w
e
2 ≡ (ms−e

)i′ ≡ 1mod n

Thus, the signer can guess that the secret value i was chosen by the verifier, and
the guess is correct with a probability of 1

k
. On the other hand, if (M, s) is a forged
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signature, then w1w
e
2 ≡ (

ms−e
)i′ ≡ 1mod n holds only for a single i

′
, i.e., i

′ = i.
Therefore, the verifier concludes that the signature is forged.

Note that there exists at least one i
′
such thatw1w

e
2 ≡ (ms−e

)i′ ≡ 1mod n holds.

Therefore if the signer could not find one such i
′
, then it implies that the verifier sent

at least one of the value of w1 or w2 wrongly.
In order to reduce the probability of successful cheating, it is suggested to repeat

the protocol a few times instead of increasing k. If k = 1024, the signer can
successfully cheat in eight executions of the denial protocol with a probability of
2−80 [22].

5 The Short Signature Scheme

The shortest possible signature is needed when a human is asked to manually key
in a signature. Note that the two most commonly used signature schemes are RSA
and DSS. But the size of the signature is too large to be keyed. For example, an
RSA signature scheme and a standard DSS or ECDSS (elliptic curve DSS) produce
a signature of length 1024 bit and 320 bit, respectively, for a 1024-bit modulus.

Various approaches have been made to shorten the signature of a signature
scheme with the same level of security. In 2000 [47], Naccache et al. proposed a
variant of the DSS, where the signature is approximately 240 bits long. Another
variant of the DSS, which is secure in a random oracle model, is proposed in
[48]. But the length of the signature generated by this scheme is the same as in
[47]. Signature with message recovery is an another method for minimizing the
length of a signature (e.g., [5, 49]). By this method, one can minimize the length
of the signature for a long message, but for short messages, the length is the same
with the DSS signature [50]. In 2001 [51], Boneh et al. introduced the idea of a
short signature scheme by using bilinear pairing. Their signature scheme (called
BLS short signature scheme or BLS signature scheme) generates a signature of
approximately 160-bit-long with a similar level of security to 320-bit DSS signature.
The security of the BLS signature scheme is based on the difficulty of solving
CDH assumption over elliptic curves, and it is proved that the scheme prevents the
existential forgery under a chosen message attack in the random oracle model [51].
In 2003 [52], Choon et al. presented a variant of BLS (called identity-based BLS)
signature scheme where the user’s public ID was used as a public key. Goh et al. [53]
also proposed a signature scheme based on CDH assumption. In 2004 [54], Boneh
et al. proposed another short signature scheme where the length of the signatures
is almost same with the BLS signature scheme, but the security does not need a
random oracle model. Their scheme is based on the strong Diffie-Hellman (SDH)
assumption. Numerous short signature schemes have been proposed, and most of
them are based on either the DLP and its variants or the problem for Bilinear pairing
(e.g., [55–58]). In 2010 [59], Yu et al. proposed a short signature scheme which is
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based on IFP. Their scheme is secure under the strong RSA subgroup assumption,
and it produces a signature of length 420 bit.

In the next two sections, we will discuss the BLS signature scheme and the
Boneh-Boyen signature scheme.

5.1 The Boneh-Lynn-Shacham Short Signature Scheme

We will recall some definitions before presenting the BLS short signature scheme.

5.1.1 Bilinear Pairing [51]

Let q be a prime number and let G1, G2, and GT be cyclic groups of order q.
Let G1, G2 be two additive groups and GT be a multiplicative group. A mapping
e : G1 × G2 → GT is called a bilinear map if it satisfies the following conditions:

1. Bilinearity: e (aP, bQ) = e(P,Q)ab, ∀P ∈ G1, ∀Q ∈ G1& a, b ∈ Z
∗
q .

2. Non-degeneracy: e(P,Q) �= 1, i.e., if P, Q are the generators of G1 and G2,
respectively, then e(P,Q) is a generator of GT .

3. Computable: There exists an efficient algorithm to compute e(P,Q) ∀ P ∈ G1,
∀ Q ∈ G2.

Note that if G1 = G2, then the pairing is called symmetric, otherwise it is said
be to asymmetric pairing. The modified Weil pairing and Tate pairing are some
examples of cryptographic bilinear maps.

5.1.2 Computation Assumptions [51]

Definition 1 [11]: For given (P, aP, bP) for some a, b ∈ Z
∗
q , the computational

Diffie-Hellman (CDH) problem asked to find abP.
Definition 2 [11]: The CDH assumption states that for every PPT algorithm A,

SuccCDHA,G1
= Pr

[
A (P, aP, bP, abP ) = 1 : a, b ∈ Z

∗
q

]
is negligible.

Definition 3 [11]: For given (P, aP, bP, cP) for some a, b, c ∈ Z
∗
q , the Decisional

Diffie-Hellman (DDH problem) asked to check c = ab mod q or not.
Definition 4 [11]: The DDH assumption states that for every PPT algorithm A,

SuccCDHA,G1
is negligible, where

SuccCDHA,G1
=
∣∣∣Pr [A(P, aP, bP, cP )=1 ]−Pr[A (P, aP, bP, abP )=1] : a, b∈Z

∗
q

∣∣∣ .
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5.1.3 The Boneh-Lynn-Shacham Short Signature Scheme

Let G1, G2, and GT be cyclic groups of order q and e : G1 × G2 → GT be a
cryptographic bilinear map. Let P and Q be the generators of G1 and G2, receptively.
Consider a hash function H : {0, 1}∗ → G1, which is public for all. The BLS short
signature scheme works as follows:

Key generation Signature generation Signature verification

Choose a random number
x ∈ Z

∗
q

Compute A = xP ∈ G2
The public key is (P,A) and
the secret key is x.

Given a secret key x and a
message m ∈ {0, 1}∗ ,
Compute s = xH(m) ∈ G1.
(m, s) is the signed message
on m.

Given a public key (P,A), a
message m and a signature s,
if
e(Q, s) = e(A,H(m)),
then the signature is a valid
signature, otherwise the
signature is invalid

The signature s is an element of G1. Hence to construct a short signature, the
elements of the group G1 must have a short representation. In [51], Bonehet et al.
constructed such group over elliptic curve E modulo q, where q = 3l, l ≥ 1 (i.e.,
G1 and G2 are the subgroups of the group of points on E). In that case, instead of
taking s as a signature, one can store the x-coordinate of s (say σ ) as signature. In
the verification, one can consider a point s having σ as x-coordinate. Since there
are two points having σ as x-coordinate, so it is possible picked –s too. Therefore,
a signature is considered as a valid signature even if e(s,Q)−1 = e(A,H(m)). For
details, see [51].

Efficiency: The key generation algorithm of the BLS signature scheme required
one scalar multiplication inG1. Again, it required one hash operation and one scalar
multiplication in G1 to generate a signature. The verification algorithm required one
hash operation and two pairing computation.

Security: The BLS short signature scheme is secure against existential forgery
under adaptive chosen message attack in the random oracle model assuming the
CDH problem is hard in G1 [51]. Note that G1 is a GAP group, i.e., there is an
efficient PPT algorithm to solve DDH problem, but hard to solve CDH problem in
G1. One can see [51] for the security analysis of the BLS signature scheme.

5.2 The Boneh-Boyen Short Signature Scheme

In 2004 [54], Boneh et al. described a short signature scheme based on pairing. The
length of the signature generated by their scheme is the same as [51], but it is more
efficient. Also, the security of their scheme is based on the SDH problem without
using a random oracle model. Boneh et al. present two versions of their signature
scheme, a basic scheme and a full scheme. Before presenting the schemes, let us
recall some definitions.
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5.2.1 Computational Assumption

The following definitions are considered from [54, 60].
Definition 1: Let G1, G2 be two cyclic groups (not necessarily distinct) of prime

order p. Let g1, g2 be the generator of G1 and G2, respectively. For a randomly

chosen element x ∈ Z
∗
p and a given (q + 2)-tuple

(
g1, g2, g

x
2 , · · · , gxq

2

)
∈ G1 ×

G
q+1
2 , the strong Diffie-Hellman (q-SDH) problem in (G1,G2) is asked to find a pair(
c, g

1
x+c

1

)
where c ∈ Z

∗
p.

Note that an algorithm A has advantage ε in solving q-SDH in(G1,G2) if

Pr

[
A
(
g1, g2, g

x
2 , gx2

2 , · · · , gxq

2

)
=
(

c, g
1

x+c

1

)]
≥ ε

where the probability is over the random choice of x in Z
∗
p and the random bits

consumed by A.
Definition 2: If there is no t- time algorithm has the advantage at least ε in solving

the q-SDH problem in (G1,G2), then we called (q, t, ε)-SDH (or q-SDH) assumption
holds in (G1,G2).

5.2.2 The Boneh-Boyen Short Signature Scheme

The Basic Signature Scheme

Let (G1,G2) be bilinear groups of prime order p. Let g1 be a generator of G1 and g2
is a generator of G2.

Key Generation
1. Choose a random numberx ∈ Z

∗
p

2. Compute A = gx
2 ∈ G2

The public key is (g1, g2,A) and the secret key is x.
Signature Generation: Suppose m ∈ Z

∗
p be the messages to be signed.

1. Compute s = g
1

x+m
mod p

1 ∈ G1. If x + m ≡ 0 mod p, then s = 1.

(m, s) is the signed message on m.
Signature Verification
For the signed message (m, s), verify that

e
(
s, A · gm

2

) = e (g1, g2)

The signature is a valid signature if equality holds. Again, for s = 1, ifA·gm
2 = 1,

then the signature is a valid signature.
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The Full Signature Scheme

Let (G1,G2) be bilinear groups of prime order p. Let g1 and g2 be the generators
of G1 and G2, respectively. Suppose that a message m is considered from Z

∗
p. The

domain can be extended to all of {0, 1}∗ using a collision-resistant hash function
H : {0, 1}∗ → Zp [54].

Key Generation
1. Choose two random numbers x, y ∈ Z

∗
p.

2. Compute A = gx
2 ∈ G2 and B = g

y

2 ∈ G2.

The public key is (g1, g2,A,B), and the secret key is (x, y).
Signature Generation: For a given message m ∈ Z

∗
p,

1. Choose a random number r ∈ Z
∗
p.

2. Compute s = g
1

x+m+yr
mod p

1 ∈ G1. If x + m + yr ≡ 0 mod p, then choose a
different random r.

(m, (s, r)) is the signed message on m.
Signature Verification
For the signed message (m, s), verify that

e
(
s, A · gm

2 · Br
) = e (g1, g2)

The signature is a valid signature if the equality holds, otherwise the signature is
invalid.

Efficiency: The key generation and signature generation algorithm required
the same times with BLS signatures. The verification algorithm requires only
one pairing and one multi-exponentiation, and therefore it is faster than the BLS
signature scheme. One can compute the value e(g1, g2) at initialization time. A
signature produced by the Boneh-Boyen signature scheme contains two elements
(s, r), where the length of each of the elements has approximately log2p bits,
therefore the size of the signature is approximately 2log2p [54].

Security: The scheme is secure against existential forgery under chosen message
attacks provided that the q-SDH assumption holds in (G1,G2) [54]. The basic
signature scheme is secure against existential forgery under a weak chosen message
attack [54]. For details, see [54]. In [61], it is proved that the forging the Boneh-
Boyen signature is equivalent to solving the q-SDH problem.

6 Hierarchical Identity-Based Signature Scheme

In 1984 [62], Shamir introduced the notion of identity-based signature (IBS)
scheme. In an IBS scheme, a public key can be extracted from user ID, and a
corresponding secret key can be assessed by the public key generator (PKG).
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PKG Level 0
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Level t

Level (t + 1)

Level 2

PKG

PKG PKG

PKGPKG

A PKG at Level i  generates the private key of a PKG at Level (i  +  1) and an entity at Level i
is identified by ID-tuple (ID1, ID2, ...,IDi).

PKG PKG

PKG PKG

PKG PKG PKG

Fig. 14.2 Protocol for HIBS scheme

Numerous IBS schemes have been presented (e.g., [63–68]). Since a single PKG
is used in IBS schemes, so they are impractical for a large organization. The
hierarchical identity-based signature (HIBS) scheme has removed this problem by
introducing multiple PKGs, which are arranged in a tree structure (Fig. 14.2). Each
PKG can generate secret keys for its next lower-level PKGs. Hence it diminishes
the workload of the root PKG and is very useful for an enormous group.

In 2002 [69], Gentry et al. presented the first HIBS scheme, which is based on the
difficulty of solving Bilinear Diffie-Hellman (BDH) problem. In 2004 [70], Chow
et al. proposed a HIBS scheme, which is provably secure under a random oracle
model. Various HIBS schemes have been proposed since it is introduced along with
their security (e.g., [19, 71–77]).

A HIBS scheme comprises of five algorithms [69]:

1. Root setup: For a security parameter �, the root PKG generates (msk, param),
where the secret key of the root PKG is msk and param is the system parameters,
which is publicly available. The description of message space M and the
signature space S is also contained in a system parameter.



266 P. Goswami et al.

2. Lower-level setup: With the knowledge of system parameters, a lower-level PKG
can generate a lower-level secret. For each extraction, it can also generate a
random one-time secret.

3. Extraction: On inputting an ID-tuple of a PKG, it returns the corresponding
private key SKID for any of its children by using param and its private key.

4. Signature Generation: A signer inputs param, the private key SKID, and a
message M, and generates a signature s ∈ S .

5. Signature Verification: For a given signer identity ID-tuple, a message M, and
signature s, a verifier accepts the signature if s is a valid signature on M.

One can read the security notion for the HIBS scheme from [69]. We now
consider the scheme proposed by [69]. Suppose levelt denotes the set of entities
at level t, where level0 = {rootPKG}. Suppose for a given security parameter �, the
setup algorithm produces a BDH parameter generator IG. Two hash functions H1
and H2 are considered, which are public for all.

Root Setup: The root PKG

1. For given �, runs IG to generate two prime order groupsG1, G2 with order q and
a bilinear map e : G1 × G2 → G2.

2. Choose an arbitrary generator P0 ∈ G1.
3. Choose a random s0 ∈ Zq and sets Q0 = s0P0.
4. Choose two hash functions H1 : {0, 1}∗ → G1 and H2 : {0, 1}∗ → G1.

The signature scheme space is S = Gt+1
1 , where t denotes the level of signer. The

system parameters param = (G1,G2, e,P0,Q0,H1,H2) and s0 ∈ Zq is the secret key
of root PKG.

Lower-level setup: Entity Et ∈ Levelt picks an integer st ∈ Zq, which it keeps
secret.

Extraction: Let Et be an entity in Levelt with ID-tuples (ID1, ID2, · · · , IDt)
where (ID1, ID2, · · · , IDi) for 1 ≤ i ≤ t is the ID-tuple of Et’s ancestor at level
Leveli. Suppose,S0 denotes the identity element of G1. Then Et’s parent:

1. computes Pt = H1(ID1, ID2, · · · , IDt) ∈ G1
2. sets Et’s secret point Stto be St−1 + st−1Pt =∑t

i=1siPi and
3. also gives Et the values of Qi = siP0, 1 ≤ i ≤ t − 1.

Signing: To sign a message M with ID-tuple (ID1, ID2, · · · , IDt), the signer at
levelt executes the following steps:

1. Compute PM = H2(ID1, ID2, · · · , IDt,M) ∈ G1
2. Compute Sig(ID − tuple,M) = St + stPM

3. Send Sig(ID − tuple,M) and Qi = siP0, 1 ≤ i < t.

[Sig,Q1, · · · ,Qt ] ∈ S is the signature for (ID − tuple,M).
Verification: For a signature [Sig,Q1, · · · ,Qt ] ∈ S on a message(ID − tuple,

M), if e (P0,Sig) = e (Q0,P1) e (Q0,PM)Πt
i e (Qi−1, Pi), then the signature is a

valid signature.
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Note that the size of the signature is proportional to the depth of the signer in the
hierarchy [69]. In the same paper, the author discussed some methods to reduce the
length of the signature.

7 Other Signature Schemes

There are some other notions of signature schemes, which are beyond the scope of
this chapter. We will briefly discuss some of them for interested readers.

One-time signature (OTS): Lamport [78] proposed the first OTS scheme. The
OTS scheme can be used to sign one message per key pair. The signature can be
verified an arbitrary number of times. It can be constructed from one-way function
and the signature generation and verification algorithm is fast.

Online/off-line signature: Even et al. [79] proposed the concept of online/off-
line signature scheme. Here the signature generation algorithm performs two faces:
online and off-line face. The first face is off-line and when message to be signed is
known, then the online face is executed. It is useful for smart card application.

Group signature: In 1991 [80], Chaum et al. proposed the first Group signature
scheme. In a group signature scheme, any member of the groups can sign messages
in place of the group, and the receiver can verify the signature, but cannot discover
which member of the group has signed. If required, the trusted authority can identify
the signer with or without the help of group members.

Ring signature scheme: Rivest et al. [81] introduce the notion of ring signature
scheme. This is similar with the group signature scheme. But in this scheme, there
is no way to identify the signer.

Threshold signature scheme (TSS): Here, the secret key is assigned among
n groups with or without the help of trusted authority by running an interactive
protocol among all groups. In a (t, n)-threshold signature scheme, any t or more
signer can sign a message in place of a group of n singers. It does not reveal the
identification of group members who has signed the message.

Multisignature scheme: Here, a group of signers can together sign a message
such that a verifier is convinced that each of the subgroup engaged in signing. This
is more compact than a collection of signatures from all signers.

Unique signature scheme: Goldwasser et al. [82] introduced the notion of
unique signature scheme, which is also called as invariant signature scheme. It is
a building block of constructing a verifiable random function.

Proxy signature scheme: Mambo et al. [83], proposed the notion of proxy
signature scheme. Here, a proxy signer is allowed to sign a message on behalf of an
original signer within a given context.
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8 Signcryption

In 1997 [84], Zheng proposed the idea of a new protocol in asymmetric key
cryptography called signcryption. The main idea of this protocol is to transmit
a message in a secure and authenticated way with more efficiency. That is a
signcryption scheme must satisfy the properties of encryption and digital signature
scheme. Note that a sign-and-encrypt scheme also ensures the confidentiality
and authenticity of a message, where a sender first signed the message and the
signed message is encrypted (called sign-and-encrypt alg.), whereas the receiver
first decrypts the message and then verify (called decrypt-and-verify alg.). The
main motivation of a signcryption scheme is to construct a scheme that has the
same properties with a sign-and-encrypt scheme but with lower computational
cost compared to sign-and-encrypt scheme. In a signcryption scheme, both the
encryption and signature generation algorithms are performed together in a well-
organized way.

A signcryption scheme comprises of three algorithms:

1. Key generation: It is a randomized algorithm that for given 1k, where k is a
security parameter produces a pair of key (Kpub,Kpr), Kpub is the public key
and Kpr is the corresponding private key. Both the sender and the recipient
of a message must execute the key generation algorithm before they can
communicate. Suppose the key pair for sender is

(
KpubS

,KprS

)
and the receiver

is
(
KpubR

,KprR

)
.

2. Signcryption Algorithm: It is a randomized algorithm that for given a message
M, the sender’s secret key KprS , and the receiver’s public key KpubR

produce a
signcrypted message C.

3. Unsigncryption Algorithm: It is a deterministic algorithm that for the given
signcrypted message C, sender’s public key KpubS

and the receiver’s secret key
KprR produce the message M.

Signcryption is based on a shortened DSS. SDSS1 and SDSS2 are two different
shortened digital signature schemes which are obtained by applying the shortening
method. Both SDSS1 and SDSS2 schemes are described in Table 14.1. We
considered the following table from [85].

Note that both SDSS1 and SDSS2 schemes produce a signature of length
|H(·)| + |q|, whereas the signature generated by DSS is 2|q|. Now, we describe
Signcryption scheme with Shortened signature [85] as follows:

Key Generation
1. Choose a prime p of large size.

2. Choose a prime factor q of p − 1.

3. Choose g ∈ Zp such that ord (g) = q.

4. Choose a one-way hash function H whose output has at least 128 bits.

5. Choose a keyed hash function KH.

6. The (E,D) is the encryption and decryption algorithms of a symmetric cipher.
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Table 14.1 SDSS1 and SDSS2 Schemes

Algorithms SDSS1 SDSS2

Key generation 1. Choose two large primes p
andq such that q � (p − 1). 2.
Choose g ∈ Z

∗
p such that

ord(g) = q 3. Choose a
one-way hash function H 4.
Choose ea ∈ {1, · · · , q − 1} and
compute da = gea mod pPublic
key (p, q, g, ea,H) and the
corresponding private key da.

Signature generation For a message M,
Choose d ∈ {1, · · · , q − 1}
Compute

r = H
(
gd ′

mod p,M
)

s = d(r + da)−1 mod q

For a message M,
Choose d ∈ {1, · · · , q − 1}
Compute

r = H
(
gd ′

mod p,M
)

s = d(1 + dar)−1 mod q

Signature verification For a signature (r, s) and
message M, compute
k = (eagr)s mod p
Verify if r = H(k,M)

For a signature (r, s) and
message M, compute
k = (ger

a

)s mod p

Verify if r = H(k,M)

The sender executes the following steps to construct a key pair.

1. Choose a random integer da ∈ [1, p − 1].

2. Compute ea ≡ gda mod p.

ea is the sender public key and da is the sender corresponding secret key.
The receiver executes the following steps to a construct key pair.

1. Choose a random integer db ∈ [1, p − 1].

2. Compute eb ≡ gdb mod p.

eb is the receiver public key and db is the corresponding secret key.
Signcryption Algorithm:

1. Choose a random integer d ∈ [1, q − 1].

2. (k1, k2) = H
(
ed
b mod p

)

3. c = Ek1(m)

4. r = KHk2(m)

5. s =
{

d(r + da)
−1 mod q if SDSS1 is used

d(1 + rda)
−1 mod q if SDSS2 is used

The signcrypted message is (c, r, s).
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Unsigncryption Algorithm:

1. Recover (k1, k2) =
⎧
⎨

⎩

H
(
(eag

r)sdb mod p
)
if SDSS1 is used

H
((

ger
a

)sdb mod p
)
if SDSS2 is used

2. m = Dk1(c)

3. If KHk2(m) = r , then accept m.

Note that there are two signcryption schemes described together, one is named
SCS1 when SDSS1 is used and the other is called SCS2 [85]. The signcryption
algorithm is more efficient than sign-and-encrypt scheme in the sense that it required
only one modular exponentiation, whereas in sign-and-encrypt scheme, at least
one or more modular exponentiations are required separately for each signature
generation and encryption algorithm. The unsigncryption algorithm required two
modular exponentiations, whereas decrypt-and-verify algorithm required at least
one or more modular exponentiations for each decryption and verification algorithm.
The advantages of signcryption over sign-and-encrypt scheme are thoroughly
discussed in [85]. For the completeness of this section, we have mentioned Table
14.2, which shows the advantage of SCS1 and SCS2 over RSA-based sign-and-
encrypt schemes and DLP-based sign-and-encrypt schemes in terms of average
computational cost and communication overhead. Table 14.2 is the combination of
Tables 4 and 5 of [85].

A signcryption scheme is considered to be secure if it satisfies the conditions:
unforgeability, non-repudiation, and confidentiality. In [85], it is proved that if the
keyed hash function (KH) behaves like a random function, then both the SCS1
and SCS2 are unforgeable against adaptive attacks. The detailed description of the
security of signcryption can be found in [85]. Some works on signcryption scheme
can be found in [86–95], etc.

9 Conclusion

Signature scheme is a cryptographic primitive, which provides authenticity of
a message. It is categorized as signature scheme with message recovery and
signature scheme with appendix [22]. The signature schemes with hash function
are considered in the second category. In this chapter, we have studied the signature
schemes with hash function. We have discussed some example of signature scheme
whose security is based on IFP and DLP like RSA signature scheme, ElGamal
signature scheme, and some of its variants.

We have also presented some special signature schemes. Blind signature
schemes, where the singer and the user are two different parties and the signer
does not know about the message. In this chapter, we have described Chaum’s RSA
blind signature scheme, Schnorr blind signature scheme, and Okomoto-Schnorr
blind signature scheme.
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In an undeniable signature scheme, the verification algorithm depends on the
active participation of the signer. It also can check whether a signature signed by
the signer is forged or the signer is trying to deny his signature. In this chapter, we
have explained two undeniable signature schemes, namely Chaum-Van Antwerper
undeniable signature scheme and RSA-based undeniable scheme.

The RSA and DSS are the two most frequently used signature schemes, which
produce a signature of large size. But in some situations, one needed a short
signature. The concept of short signature scheme is introduced by Boneh et al.
We discussed two short signature schemes: Boneh-Lynn-Schacham short signature
scheme and Boneh-Boyen short signature scheme.

We also provide a short introduction to hierarchical identity-based signature
scheme. We have briefly mentioned some other signature schemes like one-
time signature, online/off-line signature, group signature, ring signature, threshold
signature, multisignature, unique signature, and proxy signature scheme.

Signcryption is a cryptographic protocol which provide authenticity and con-
fidentiality of a message with more efficiency than the sign-and-encrypt scheme.
Zheng proposed the idea of signcryption. We have introduced a short introduction
to signcryption.
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Chapter 15
QUIET: Quatro-Inverse Exponential
Cipher Technique

Harshit Bhatia, Rahul Johari, and Kalpana Gupta

Abstract Majority of the available traditional symmetric key cipher techniques
rely on a single key encoding scheme to secure the data before transmitting it over
insecure channel. Here, in this chapter a new symmetric shared key cipher technique
“QUIET: Quatro-Inverse Exponential Cipher Technique” has been proposed. The
technique makes use of multiple keys such as User’s Personal keys, his geographical
location along with dynamic session key (256 bit to 512 bit), all of which play
a very significant role in the process of hiding user’s critical information before
transmitting it on the network. The newly introduced cryptographic technique is
symmetric key technique that deals with encrypting and decrypting the text message
by using a set of four keys blended with a set of mathematical operations on those
keys. The simulation of the proposed QUIET, Quatro-Inverse Exponential Cipher
Technique, was successfully performed in Java programming language and the
results, when compared with Triplicative Cipher technique, have been positive and
encouraging.
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1 Introduction

The world has been exponentially progressing toward a digital era, with most
of the day-to-day activities involving humongous data propagating through the
networks(s) every second. This has led to an ever-increasing demand of securing
user’s or client information shared over the web. As the saying goes “Data never
Sleeps,” thereby meaning that every day, on 24 × 7 × 365 basis, user’s data is
continuously processed on the web by Banks, Insurance Companies, Educational
Institutions, Hospitals, Hotels, etc. This increase in network traffic calls for better
and safer protection by designing and developing efficient techniques that can secure
user’s data before it is sent out onto the network. The science of cryptography comes
to the rescue by securing the data against such attacks [1, 2]. In lieu of this, this
chapter aims at proposing a symmetric key technique that can be deployed in the
real-world to secure the sensitive data from invulnerabilities of the attackers that
aim to steal information. This technique makes use of multiple keys on the plaintext
to encrypt the data before it can be sent to the receiver over an unsecure network.

For the sake of simplicity and clarity, the rest of the paper is organized as
follows: Sect. 2 describes the Problem Statement; Sect. 3 describes the proposed
cryptosystem; Sect. 4 describes the Methodology Adopted; Sect. 5 describes Key
Selection; Sect. 6 describes Key Sharing; Sect. 7 describes Encoding and Decoding;
Sect. 8 describes Algorithm Formulated; Sect. 9 describes Encryption Simulation;
Sect. 10 describes Encryption Flow Chart; Sect. 11 describes Results; Sect. 12
describes Conclusion and Future Work followed by References.

2 Problem Statement

With growing commercial transaction on the Web, the security of the user’s data is
of paramount importance. Today the customer performs online shopping, perform
online banking transactions, uses digital wallet for online and offline payments,
pays the premium of his insurance policies and performs n number of transactions
where his personal information as well as credit and debit card information is
always available on the web. As security expert, it is a big challenge to protect
customer information. To protect and safeguard the customer data, Quatro-Inverse
Exponential Cipher technique has been proposed in this chapter. It is a symmetric
cipher technique that uses rotational dynamic keys and exponential mathematical
operations to encrypt a plaintext message over a wide array of networks and com-
puter devices. The keys are chosen to be different with every message transmission
to make the network secure. The transmission of the chosen keys between the
sender and the receiver is done by using the enhanced Diffie-Hellman key exchange
technique with digital signatures. Even though the Quatro-Inverse Exponential
Cipher technique uses complex exponential operations, yet the technique is able
to perform well when encrypting the plain text.
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3 Proposed Cryptosystem

The cryptosystem that is introduced in this chapter is an extension of a previously
proposed system [3] in which the encryption and decryption mechanism used a
set of three private keys. The technique introduced here makes use of four private
keys with basic mathematical operations to encrypt the plaintext before being sent
to the receiver and uses the inverse mathematical operations with the same set
of four keys to decrypt the cipher text received by the receiver to finally obtain
the intended plain text message. The technique makes use of four private keys
and exponential mathematical operations and hence is named as “QUIET: Quatro-
Inverse Exponential Cipher Technique.” Increasing the number of keys from a single
key to four disjoint keys increases the security of the cryptosystem. The basic idea
is to preserve the privacy of the data while outsourcing the data and making use of
well-defined yet hard to decipher keys for securing the data. The “QUIET: Quatro-
Inverse Exponential Cipher Technique” is a lightweight cryptographic technique
that can easily be plugged in any network or onto any device to secure the data that
is being transmitted on an otherwise insecure network.

The cryptosystem makes use of lightweight basic mathematical operations.
These mathematical operations like addition, subtraction, multiplication, division
and Exclusive OR (XOR) that can directly be implemented on the hardware and
hence are fast and consume smaller CPU cycles for computations. Therefore, the
cryptosystem is fast and lightweight, and owing to this fact, the technique can even
be plugged into a portable handheld device with limited battery power.

4 Methodology Adopted

The technique is a symmetric key cipher technique implying that the same set of
keys will be used in the process of encrypting the plain text message as well as
during the decryption of the ciphertext message. These set of keys are private and
are shared only between the sender and the receiver via a secure channel with no
one else having access to them. The Quatro-Inverse Exponential Cipher Technique
is a lightweight symmetric cipher technique that uses pre-defined mathematical
operations along with the set of four unique keys to secure the plaintext message.

5 Key Selection

The cryptosystem has four private keys that are secret and only known to the sender
and the receiver. A strong cryptosystem is highly dependent on the set of chosen
keys for the process and keeping this view in mind the Quatro-Inverse Exponential
Cipher Technique makes use of a combination of strong private keys that are long
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and hard to guess, and are based on inputs that are provided by the sender. The
keys are strategically extracted from personal information of the user which are
both private as well as hard to guess by the hacker. The set of four keys is given as
K1,K2, K3, and K4:

K1 = Passport Number XOR current latitude location
K2 = Social Security Number AND current longitude location
K3 = Sequential sum of digits*current Epoch Timestamp
K4 = Unique session key re-generated for every session

The user input is limited to two private information—passport number and social
security number. These two sets of input values are private and known to the
user, however, to limit the “social engineering attacks,” the cryptosystem introduces
variables that are not known to the user like the dynamic session key, current latitude
and longitude and the chosen current timestamp. Since this information is concealed
from the end user, it is difficult for the attacker to guess this information. The “social
engineering cryptography attacks” are aimed at getting the information from the
people instead of the traditional crypt attacks. It has been identified that the humans
are one of the weakest links of even a string cryptosystem [4]. Therefore, by not
allowing the users to choose their keys, the technique chooses the secure keys itself
and encrypts the plaintext using these chosen keys. Authors in [5] analyzed various
social attacks and conducted them on the social networking websites to further
conclude that humans are a weak link to the security as they may reveal secret
information to the attacker. Hence, removing the human element from the equation
adds to the strength of the cryptographic technique.

The only restriction exists that the K1 key must be a co-prime with the number of
characters in the character set. The keys are chosen to be the private information of
the sender which would not be readily available to the attacker and the introduction
of the variable factor like the current timestamp and location coordinates with this
information make up for a hard to guess keys and thus increasing the security of the
cryptosystem.

The fourth key is a unique SHA256 hash key that is generated for every session.
Each transmission of the cipher text from sender to receiver uses a different hash
key. This hash key is called as a dynamic session key because it is a rotational
key which is generated for every session and then immediately discarded once
the transfer is successful and then re-generated for next transmission. Making the
session key unique per transmission greatly increases the security of the technique.
This is because any interceptor would not be able to guess the pattern of the cipher
text in cryptosystem since each transmission has a randomly generated session key.
This key serves two purposes, it ensures that the keys are always different per
transmission, thereby making the cryptosystem free from redundancies, and helps
the receiver to validate the identity of the sender that is sending the message.

The third key makes use of the fourth dynamic key to calculate the sum of its
digits. However, the sum of digits of dynamic session key is chosen according to
the iteration (or character position). If the character position is even, then the even
position digits are chosen from the dynamic session key (fourth key) and their sum
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is calculated. For odd positioned characters, the odd positioned digits are chosen
from the dynamic session key, and their sum is calculated in similar fashion. This
obtained sum is then multiplied with the current epoch timestamp to obtain the
third key. The product will always be a unique number since the timestamp will
always be different. Making use of two unique keys, the security of the technique is
increased by making it extremely difficult for the attacker to recognize the pattern
in the encryption keys.

6 Key Sharing

The four private keys that are generated by the cryptosystem need to be shared
between the sender and the receiver so that only the two parties have the information
of these private keys and no one else knows about them. One of the most pressing
question with symmetric key ciphers that arises is how the common keys are shared
between the sender and the receiver. Since, symmetric key ciphers employ the use
of same keys for both encryption on the sender’s end as well as decryption of the
cipher text on the receiver’s end. The eco-cipher technique uses the Diffie-Hellman
Key exchange algorithm for the transfer of the keys from sender to receiver [6].
Since Diffie-Hellman Key exchange is susceptible to the man in the middle attack,
hence the key exchange algorithm is bundled together with the digital signatures
to authenticate the two users and only upon the verification of identity, the key
exchange happens.

The signing authority generates the pair of public and private keys which are used
in the Digital Signature Algorithm (DSA) [7]. A hash function generates a message
digest which is further used to create the actual digital signature on both the receiver
and the sender end. This signature is sent along with the keys, and each end user can
verify the authenticity of where the keys came from with the help of this digital
signature.

7 Encoding and Decoding Operation

The “QUIET: Quatro-Inverse Exponential Cipher Technique” allows all characters
to be inserted as the plain text. However, since the technique involves mathematical
operations as an exponential value hence the plaintext domain is restricted to 26
alphabets and 10 numerical characters where the alphabets are encoded as “A” = 1,
“B” = 2, “C” = 3, and so on till “Z” = 26 comprising a total of 26 characters. If the
character set is assumed to be large such as ASCII values, then the exponential
value increases and the computations become heavier. Hence, for systems with
fast processing speeds the character set can easily be increased to include more
characters. However, for systems with limited computation power and limited
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battery, like the portable handheld devices, the encoding scheme of limiting the
character set to A–Z is much suited.

7.1 Encryption Operation

The encryption operation involves taking the plaintext and the four keys as the input
and returns a cipher text that can be then transmitted to the receiver’s end. If the
encryption operation is depicted as a function, it can be denoted as follows:

C(y) ← f (p, k)

The above function dictates that the cipher function C(y) is obtained by the
encryption function on the input set of plaintext “p” and keys “k.”

The encryption operations involve simple mathematical operations that are
performed on the chosen set of four keys in a pre-defined order which are briefly
described below with the help of equations. The plaintext is denoted by Pt, and the
four keys are denoted by K1, K2, K3, K4. The intermediary encryption steps are
given by En, and final cipher text is denoted by Ct. The “N” denotes the number of
characters in the assumed character set. For the basic version of the technique, value
of N for alphabet is 26 and for numerals is 10.

E1 = (Pt ∗ K1)mod N

E2 = E1 ∗ K2

E3 = E2 + K3

E4 = E3XOR K4

Ct = eE4

∴ C = e[{(P∗E1)mod N∗K2}+K3 XOR K4]

The above mathematical operation can be better illustrated as a small example.
It has been assumed that size of N is 26 in examples, and for simplicity of
mathematical calculations the values for key are assumed to be small.

Pt = ENCRYPT
N = 26
K1 = 5
K2 = 7
K3 = 13
K4 = 8

Table 15.1 depicts the example with the above plaintext and keys:



15 QUIET: Quatro-Inverse Exponential Cipher Technique 285

Ta
bl

e
15

.1
E
nc
ry
pt
io
n
Ta
bl
e

P t
E
1

E
2

E
3

E
4

C
t

E
(5
)

(5
*5
)
m
od

26
=

25
25
*7

=
17
5

17
5

+
13

=
18
8

18
8

⊕
8

=
18
0

e1
80

=
1.
48
93
84
20
07
81
83
83
E
78

N
(1
4)

(1
4*
5)

m
od

26
=

18
18
*7

=
12
6

12
6

+
13

=
13
9

13
9

⊕
8

=
13
1

e1
31

=
7.
80
86
71
07
35
19
15
1E

56
C
(3
)

(3
*5
)
m
od

26
=

15
15
*7

=
10
5

10
5

+
13

=
11
8

11
8

⊕
8

=
12
6

e1
26

=
5.
26
14
41
18
26
66
38
6E

54
R
(1
8)

(1
8*
5)

m
od

26
=

12
12
*7

=
84

84
+

13
=

97
97

⊕
8

=
10
5

e1
05

=
3.
98
95
19
57
05
47
21
6E

45
Y
(2
5)

(2
5*
5)

m
od

26
=

21
21
*7

=
14
7

14
7

+
13

=
16
0

16
0

⊕
8

=
16
8

e1
68

=
9.
15
10
92
80
52
95
63
4E

72
P
(1
6)

(1
6*
5)

m
od

26
=

2
2*
7

=
14

14
+

13
=

27
27

⊕
8

=
19

e1
9

=
1.
78
48
23
00
96
31
87
25
E
8

T
(2
0)

(2
0*
5)

m
od

26
=

22
22
*7

=
15
4

15
4

+
13

=
16
7

16
7

⊕
8

=
17
5

e1
75

=
1.
00
35
39
18
06
14
32
95
E
76



286 H. Bhatia et al.

The sender sends the string of numbers as the cipher text to the receiver as
follows:

1.4893842007818383E78 7.808671073519151E56 5.261441182666386E54
3.989519570547216E45 9.151092805295634E72 1.7848230096318725E8
1.0035391806143295E76

7.2 Cipher Text Decoding: Decryption Operation

The “QUIET: Quatro-Inverse Exponential Cipher Technique” is a symmetric key
cipher and hence it would use the same set of four private keys for decryption on
receiver’s end as the keys that sender used to encrypt the plaintext message. The
decryption function can be seen as an inverse encryption function that would yield
the plaintext message. It can be represented as a mathematical function that accepts
the cipher text and keys as input and yields the plaintext. The inverse on function
denotes that decryption is inverse of encryption function.

P(y) ← f −1 (c, k)

The inverse operations point to the special pair of operations which counter the
effect of each other and when used on same set of numbers will cancel each other out
reversing each other’s effect. They are extremely helpful in symmetric cryptography
wherein one operation (for instance, addition) is used to encrypt the number to
result in a different number and then the other counterpart operation (for instance,
subtraction) when used on the second number will cancel out the first operation and
result in the first number. This counterpart operation is used in decrypting the cipher
text to get the intended plaintext message. The decryption operation for Quatro-
Inverse Exponential Cipher Technique is a series of mathematical operations,
and they can be best described as mathematical equations for each step. Each
intermediary decryption step is denoted by Dn, and the keys are denoted as K1

−1,
K2, K3, K4. The mathematical equations are described as follows:

D1 = loge (Ct )

D2 = D1XOR K4

D3 = D2 − K3

D4 = D3/K2

Pt = (D4 ∗ K1
−1
)
mod N

∴ P = [(loge(C) XOR K4 − K3
)
/K2

] ∗ K1−1 mod N
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Continuing along the same example that was used in the encryption operation,
we try to depict the decryption operation that happens on the receiver’s end to obtain
the plaintext message.

The decryption operation needs an Inverse Modulo of the key K1. This key is
the multiplicative inverse and is denoted as K1

−1. In order to find the modular
multiplicative inverse, the Extended Euclidean algorithm is used.

The modular multiplicative inverse of an integer K1 must satisfy the following
condition:

(
K1 ∗ K1

−1
)

≡ 1mod N

and, gcd (K1, N) = 1 (K1 and N should be co-primes)
The modular multiplicative inverse of 5 mod 26 is 21, hence K1

−1 = 21 (Table
15.2).

The plain text that is obtained at the receiver’s end is “ENCRYPT” which is same
as the original plaintext message that was transmitted by the sender.

8 Algorithm Formulated

8.1 Key Generation Algorithm

The Quatro-Inverse Exponential Cipher Technique is a symmetric key technique
with four private keys. These keys are generated by the cryptosystem automatically
based on the input of the user. The key selection and sharing algorithm are described
in the steps that follow:

Step 1: start.
Step 2: accept Passport Number from user → P.
Step 3: accept Social security Number from user → S.
Step 3: current longitude → Lx.
Step 4: current latitude → Ly.
Step 5: current timestamp → T.
Step 6: P XOR Lx → K1.
Step 7: S AND Ly → K2.
Step 8: Dynamic session key (variable: To be kept as 512 bits for networks with

better computing power, and for networks with limited computation power the
size is limited to 256 bits) → K4.

Step 9: IF character position IS even THEN.
Step 10: Calculate sum of even digits of K4 → Sum.
Step 11: ELSE.
Step 12: Calculate sum of odd digits of K4 → Sum.
Step 13: Sum * T → K3.
Step 14: Generate a SHA256 hash for digital signature.
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Step 15: Transfer digitally signed keys using Diffie-Hellman key exchange algo-
rithm.

Step 14: end.

8.2 Encryption Algorithm

The Quatro-Inverse Exponential Cipher Technique uses the four private keys
generated in the previous section to encrypt the plain text and create a cipher text
which is then sent over to the receiver. The steps of the encryption algorithm are
described in the text that follows:

Step 1: start.
Step 2: accept first key from generation algorithm → K1.
Step 3: accept second key from generation algorithm → K2.
Step 3: accept third key from generation algorithm → K3.
Step 4: accept fourth key from generation algorithm → K4.
Step 5: accept plaintext from user → PT.
Step 6: Number of characters in encoder → N.
Step 7: Encode (PT) → P.
Step 8: Multiply (P, K1) mod N → E1.
Step 9: Multiply (E1, K2) → E2.
Step 10: Addition (E2, K3) → E3.
Step 11: XOR (E3, K4) → E4.
Step 12: exp (E4) → CT.
Step 13: return final Cipher Text as stream of numbers.
Step 14: end.

9 Encryption Simulation

The Quatro-Inverse Exponential Cipher Technique was simulated on a Java platform
as a standalone application. The simulation was carried out on a smaller set of input
keys, and the key generation mechanism was not incorporated in the simulation
runs to simplify the runs. However, it is always possible to incorporate the same by
using the key generation algorithms provided in the previous section. The simulation
environment is detailed in Table 15.3:

The simulation runs of the encryption and decryption are briefly described below
on three different text messages with different key combinations.

Simulation 1: Refer Tables 15.4 and 15.5.
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Table 15.3 Simulation
environment specifications

Specifications Java

O.S. used Windows 10 Enterprise
Device model Dell latitude 7400
Processor Intel i7-8665U
RAM 32 GB
Development IDE IntelliJ IDEA
IDE version Build #IC-193.6911.18
Compile SDK JDK 11
Language Java

Pt = CIPHER
N = 26

K1 = 11 and K1
−1 = 19

K2 = 23
K3 = 9
K4 = 17

Cipher text is as follows: 1.633308100216833E81 1.1373425541353215E221
2.000349215698554E196 2.045494911349825E110 1.8112390828890233E41
2.2182652975385555E156

The plain text that is obtained at the receiver’s end is “CIPHER” which is same
as the original plaintext message that was transmitted by the sender.

Simulation 2: Refer Tables 15.6 and 15.7.

Pt = INVERSE
N = 26

K1 = 17 and K1
−1 = 23

K2 = 12
K3 = 19
K4 = 5

Cipher text is as follows: 8.818602191274965E125 2.515438670919167E30
4.675374784632515E61 3.637970947608805E42 6.0975343934414735E113
2.5526681395254553E63 3.637970947608805E42

The plain text that is obtained at the receiver’s end is “INVERSE” which is same
as the original plaintext message that was transmitted by the sender.

Simulation 3: Refer Tables 15.8 and 15.9.
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Fig. 15.1 Simulation results of Quatro-Inverse Exponential Cipher Technique: CIPHER

Fig. 15.2 Simulation results of Quatro-Inverse Exponential Cipher Technique: INVERSE

Pt = QUATRO
N = 26

K1 = 5 and K1
−1 = 21

K2 = 7
K3 = 13
K4 = 8

Cipher Text is as follows: 2.830753303274694E23 1.446257064291475E12
2.091659496012996E24 1.0035391806143295E76 3.989519570547216E45
1.2384657367292132E72.

The plain text that is obtained at the receiver’s end is “QUATRO” which is same
as the original plaintext message that was transmitted by the sender.

The simulation results (Simulations 1, 2, and 3) are detailed in Figs. 15.1, 15.2
and 15.3:
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Fig. 15.3 Simulation results of Quatro-Inverse Exponential Cipher Technique: QUATRO

START

Enter Plain Text (Pt)

E1 = (P * K1) mod N
E2 = E1 * K2
E3 = E2 + K3

E4 = E3 XOR K4
Load Keys K1, K2, K3, K4

C = e ∧ E4

Enter Passport
Enter Social Security

Encode the Plaintext (P)

STOP

Fig. 15.4 Encryption flowchart

10 Encryption Flowchart

The detailed steps of the encryption process can be denoted as form of a flowchart
that is shown in Fig. 15.4.
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11 Result

An illustrative comparison graph is drafted to highlight the difference in the running
time of Quatro-Inverse Exponential Cipher Technique for three different types of
input data, namely for alphabets, numerals, and alpha numerals (Fig. 15.5). Com-
parison is also drawn between Quatro-Inverse Exponential Cipher Technique and
its predecessor cipher technique—Triplicative cipher technique on three different
input texts (Fig. 15.6; Table 15.10). The comparison of the two techniques reveals
that the Quatro-Inverse Exponential Cipher Technique is able to perform more
complex mathematical operations on four keys with a very small fraction of increase
in the running time. Increasing the number of keys and making the mathematical
operations more complex than the predecessor makes the technique arithmetically
stronger as well as secure at the cost of very small increase in running time. The
space complexity of the two techniques is same on same input set. For “n” number of
characters in plain text, the space complexity for both techniques is Bi-Oh of n-O(n).
Furthermore, the Quatro-Inverse Exponential Cipher Technique was simulated in
Java, and the running time of the technique is summarized and briefed to portray the
output of executing the source code on the mentioned simulation in Java language.
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Fig. 15.5 Comparison of Running Time
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3.2 Number
Triplicative
Alphabet
Triplicative

Alphabet
Quadriplicative

Alphanumerical
Triplicative

Alphanumerical
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Fig. 15.6 Comparison of the results of Triplicative and Quatro-Inverse Exponential Cipher
Technique

Table 15.10 Running time details

Triplicative Cipher time (in ms) Quatro-Inverse Exponential Cipher (in ms)

Numeric: 2.45 Numeric: 2.5
Alphabet: 2.5 Alphabet: 2.7
Alphanumerical: 2.9 Alphanumerical: 3.1

12 Conclusion and Future Work

The presented technique in this chapter uses a standardized key sharing algorithm
for sharing the keys between the sender and the receiver. However, in the future
a custom key sharing algorithm would be introduced in the scope of Quatro-
Inverse Exponential Cipher Technique which would make the technique completely
independent and thus can be plugged into any kind of network and work seamlessly.

The Quatro-Inverse Exponential cipher will be enhanced in the future to accept
more keys and will be optimized of handheld devices as an extension of the “Energy
efficient Cipher technique” [8] wherein five keys were used, and the technique was
further optimized for handheld devices.

Furthermore, the Quatro-Inverse Exponential cipher currently uses basic math-
ematical operations, and these operations would be replaced with more complex
ones for networks and devices with higher computation power to further enhance
the security of the presented technique.
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