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Abstract The hydrology of a region is directly or indirectly dependent on atmo-
spheric variables. Identification of large-scale climate circulations dominating
temporal pattern in regional atmospheric variables becomes crucial for improved
precipitation forecasting for the region. The livelihood of a large population living
in the downstream reaches of Ganga basin is dependent on snow melt and precip-
itation received in the Upper Ganga basin. Therefore, the aim of this study is to
identify trends along various precipitation time series (monthly, seasonally-based,
seasonal and annual) over Upper Ganga basin using discrete wavelet transform
(DWT) approach for the period of 116 years (1901-2015). Relationship between
large-scale atmospheric oscillations and regional scale trends in precipitation series
are analysed. In the results, insignificant increasing trend is observed in monthly,
annual, monsoon and pre-monsoon time series. On the other hand, winter time series
is found to be following significant decreasing trend. The temporal trend in monthly
and seasonally-based precipitation series are found to be dominated by seasonal vari-
ations in Inter-Tropical Convergence Zone (ITCZ). Overall, El Nifio-Southern Oscil-
lations (ENSO) is having a dominant effect on most of the precipitation time series
over UGB (monsoon, annual, and pre-monsoon). The study outcomes are particu-
larly beneficial for hydro-meteorological analyses and climate impact assessment
based studies in the region.
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1 Introduction

Over the last 100 years, the global average surface temperature has experienced an
increase of 0.85 °C which has altered the precipitation patterns and other hydrolog-
ical systems, globally (Pachauri et al. 2015). As climatic variables directly or indi-
rectly defines the hydrologic response of a catchment, changes in parameters such
as temperature, precipitation, evaporation are influencing the streamflow and flow
regimes, substantially. Hydrologic variables (streamflow, precipitation, evapotran-
spiration, etc.) are particularly driven by atmospheric variables (temperature, rela-
tive humidity, pressure, perceptible water, etc.) (Sonali and Kumar 2013). Analysing
trends in hydrological variables can provide valuable insights for identifying alter-
ation in relationship between atmospheric and hydrologic variables within a region.
Identification of trends in time series of hydrologic variables is of significant scientific
and practical importance in order to plan and implement an efficient and sustainable
management practice in a river basin. In the recent past, considerable number of
studies have been focused on analysing the hydrological response to climate vari-
ability and climate change through identifying trends in hydrologic time series. Most
of these studies have employed trend detection methods such as Sen’s slope test, least
square linear regression, Mann-Kendall test, Seasonal Mann-Kendall test, etc. All
of the above mentioned techniques hold a common assumption that the hydrologic
variable is stationary during observed period of record. However, substantial anthro-
pogenic climate change and various other human disturbances have compromised the
assumption of stationarity (Milly et al. 2007). Changes in basin climate are altering
the mean and extremes of hydrologic variables resulting in tempering of probability
density function established from instrumental records. These changes in climate
are non-monotonic and non-uniform in nature, making trend detection complicated
in a non-stationary environment (Franzke 2010). Therefore, identification of trends
using conventional methods with stationarity assumption may result in erroneous
conclusions and there needed a technique independent of such assumption.

A spectral analysis method called the wavelet transform (WT) has found its appli-
cation in the analysis of non-stationary geophysical time series (Lau and Weng 1995;
Lindsay et al. 1996). The WT decomposes one-dimensional non-stationary time
series into multiple low and high frequency components to represent intra-annual,
inter-annual and decadal fluctuations. The method has been acknowledged to be supe-
rior to other conventional signal analysis techniques, for example, Fourier transform
(FT). In FT, a signal is decomposed into sine wave functions with infinite duration,
whereas, WT decomposes signals using wavelet functions with limited duration and
zero means. In recent times, the WT method has gained popularity for analysing
the time series of geophysical variables under climate change scenario (Nalley et al.
2012, 2013). The method provide insight to the different periodic components that
dominates the trend in hydrologic variables which can later be inferred to large
and regional scale climate circulations. It provides a complete picture of dynamics
contained in the signal being analysed. The present study aims to investigate relation-
ship between atmospheric circulations and trends in monthly, seasonal, and annual
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precipitation over Upper Ganga basin, India using the discrete wavelet transform
(DWT) approach. Different lower resolution (low frequency) components can be
derived from a time series using the DWT approach. DWT simplifies the decom-
position process as it is based on dyadic discretization (integer power of two) and
generates one-dimensional signal which is easier to analyse. MK trend test is applied
to the decomposed time series to assess their statistical significance. The decomposed
series having MK-Z value closest to that of original time series is considered to be
the dominant periodic component. Later, climate system(s) with similar periodicity
as that of dominant periodic component are identified in order to investigate the
relationship between the trends in precipitation and dominant climate system.

2 Study Area

The Ganga River is the longest east flowing river in India which forms at the conflu-
ence of Bhagirathi and Alaknanda River in Uttarakhand state of India within the
mountain range of the Himalayas. The entire Ganga River basin is divided into three
zones namely Upper Ganga basin, Middle Ganga basin and Lower Ganga basin. The
present study is carried out over the Upper Ganga basin (up to Haridwar) situated
in northwest Himalayan region in India. The areal extent of the region lies within
29°38'-31° 24’ N latitude and 78° 09'-80° 22’ E longitude covering an area of about
22,292 km? up to Haridwar. The Upper Ganga basin extends from snow/glacier
covered greater Himalayas in the north to forest covered Himalayan foothills in the
south. Runoff generated from snow melt and monsoon rainfall nurtures the popula-
tion living in the downstream reaches of the basin. The elevation in the river basin
ranges from 7799 m in the Himalayan mountain peaks to 277 m in the plains. In
the western Himalayas, rainfall distribution responds to moist monsoon winds from
the Bay of Bengal and moisture bearing westerlies during winters. A major frac-
tion of rainfall in Upper Ganga basin is received from the Indian summer monsoon
(ISM) extending from June to September, thus, monsoon rains have vital social and
economic consequences. Location map of study area along with topographic details
is shown in Fig. 1.

3 Materials and Methods

3.1 Data Collection

The daily precipitation gridded dataset developed by India Meteorological Depart-
ment (IMD) (Pai et al. 2014) at 0.25° x 0.25° resolution has been used to generate
basin average precipitation time series for the period from 1901 to 2015. A
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Fig. 1 Location of study area and topography of the Upper Ganga basin with IMD rainfall grid
points

total of seven time series viz. monthly, seasonally-based, pre-monsoon (March—
May), monsoon (June—September), post-monsoon (October—November), winter
(December—February) have been generated from the available daily precipitation
data to carry out various analyses. Each dataset has been tested for the presence of
seasonality and autocorrelation.

3.2 Wavelet Transform

A wavelet is a small piece of wave having zero mean and finite length in space.
Wavelet transform (WT) is a mathematical function which scales a signal into
high frequency (low pass filter) and low frequency components (high pass filter)
(Adarsh and Janga Reddy 2015). It utilises a variable-size window function which
can be enlarged and shifted in the time and frequency domain (Lau and Weng 1995).
High frequency components are captured by narrow window whereas low frequency
components are resolved by a wide window. In the process of time series decompo-
sition using WT, mother wavelet is shifted along the signal in multiple steps in order
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to generate wavelet coefficients. Wavelet coefficients store the information regarding
position and extent of different events at various scales. Different dilated versions
of the mother wavelet represent different scales. In signal decomposition, the WT is
considered advantageous over conventional signal processing technique like Fourier
transform (FT) as FT uses sine function resulting in loss of time information of the
signal being processed. The WT can be applied in two ways: continuous and discrete
wavelet transform. In the present study, discrete wavelet transform (DWT) is applied
to decomposed precipitation time series into various periodic components.

3.2.1 Discrete Wavelet Transform

Various studies have employed DWT for trend analysis and forecasting (Karthikeyan
and Kumar 2013; Nalley et al. 2013). In DWT, window function scales and translates
ondyadic scalesi.e. in integer power of 2 (Adarsh and Janga Reddy 2015). The mother
wavelet function () in DWT is described as:

r—y\ 1 t — byosg
W’”( s )_(So)gw< 56 ) .

where, ¥ represents the discrete mother wavelet, a and b are integers representing
the magnitude of enlargement (stretching) and translation (shifting) of the wavelet,
respectively, y o defines the location along the signal having value greater than zero
and sy is the dilation length with value greater than 1. The wavelet coefficients of
time series x; at discrete integer time step is given as:

Wy (a,b) = (2)a — Zx, <— - b) )

with the values of sy and y are 2 and 1, respectively (Mallat 1989; Daubechies
1992).

3.3 Test for Serial Correlation

Lag-k autocorrelation coefficient (ACF) can be computed as (Partal and Kahya 2006):
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where, R = autocorrelation coefficient (ACF) at lag-k of the time series x,. and x;
= mean of the data. Lag-1 autocorrelation coefficients (ACFs) are used to identify
the presence of significant autocorrelation. The time series is said to be independent
of serial correlation if the value of lag-1 ACF is found to be within the interval
computed using Eq. (2). Autocorrelation coefficients (ACFs) are analysed at various
lags to obtain correlograms using MATLAB®.

3.4 Mann-Kendall Test

The MK test (Mann 1945; Kendall 1975) is a non-parametric trend test widely
employed to test the significance of trend in a time series. The test statistic § is
given as:

S = sgn(xj —x,-) (5)
i=1 j=i+1

where x; and x; are data values in sequence i and j (j > 7), n is the length of data
series, and sgn(x; — x;) is sign function as:

I, for(xj—x;)>0
sgn(x; —x;)) =130, for (x;—x)=0 (6)
=1, for (x; —x;) <1

For identically distributed random variable with n > 8, test statistics closely follow
normal distribution with the mean and variance given by:

E(S) =0 (7

nn—1DQ2n+5 =Y, 66 — )24 +5)
18

Var(S) = 8)
where, #; denotes the number of ties of extent, i and m are the number of tie groups.
The standardized normal variate of test statistics Zg is computed as:

5—1
W, fO}" S>0
Zs=140, for $=0 9)
S+1
W, fOV S <0
The positive values of Zg indicate increasing trend while negative Zg indicates
decreasing trend. At a given level of significance ‘a’, the null hypothesis H, of no
trend is rejected if IZg| > Z| _ 42, where Z| _ » is the value of standard normal variate
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corresponding to a probability of a/2. In present study, the hypothesis is tested at 5%
significance level, i.e., a = 0.05. At 5% significance level, the null hypothesis of no
trend is rejected, if |Zg| > 1.96.

Hamed and Rao (1998) proposed a modified version of MK test in which effect of
autocorrelation is taken into account by using a modified variance of the test statistic.
The modified variance is described as:

N n nn—1)2n—-5) n
V*(S) = Var(S).n—* =1 (10)
S S

where, = represents a correlation in the data due to the presence ofserial correlation.
N
The % is evaluated using:
N
n—1

n 2 . . . .
Z(n—l)(n—l =D —i—=2)ps@@) (11)
i=1

n _1+n(n—l)(n—2)

where n denotes number of observations, and p, (i) is the autocorrelation function
values computed for the rank of the observations. The standardized test statistics Z
is computed as:

S

SEET "

4 Methodology

Prior to decomposition using WT, various time series of precipitation are analysed for
presence of autocorrelation and seasonality effect at 5% significance level. To identify
trends in the time series, Mann-Kendall test is applied if no serial correlation exists
and Modified Mann-Kendall test is applied if there exist significant autocorrelation.
A flow chart of methodology adopted in the present study is shown in Fig. 2. Various
monthly, seasonal and annual precipitation time series are analysed for inherent peri-
odic components using DWT. All the computations were performed in MATLAB®.
The first step in the methodology involves selection of an appropriate mother wavelet
function, level of decomposition and border extension method. Among various fami-
lies of mother wavelet, the Haar, Symlets and Daubechies families of wavelets have
found their application in analysis of trendsin geophysical time series (Nalley et al.
2013; Sang 2013; Adarsh and Janga Reddy 2015; Araghi et al. 2015). In particular,
past studies have used Daubechies (db) family of wavelets owing to its ease of appli-
cation. It provides full scaling and translation orthogonal properties with non-zero
basis function over a finite interval (Ma et al. 2003; de Artigas et al. 2006).



168

Precipitation datasets (Monthly,
Seasonal & Annual)

Auto Correlation Test & Correlation
Analysis

y

Selection of Appropriate Wavelet
Function and Level of Decomposition

h 4

Decomposition of Time Series
(Details and Approximate
Components)

A 4

Reconstruction of Signals
Combination of Detail and
Approximate Series

A 4

Mann-Kendall Trend Test (Original
and Combination of Detail and
Approximate Series)

Y

Indentification of Dominant Periodic
Component(s)
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Correlation and Seasonality Effects)
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(Using Discreet Wavelet Transform

(DWT))
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(Components having MK-Z values
closest to MK-Z value of Original
Time Series)

Different forms of db wavelets (dbl, db2, ..., db45) are available in wavelet trans-
form package of MATLAB®. For selection of appropriate mother wavelet for signal
decomposition, dbl-db10 wavelets are considered in the study. To check for the
border distortion effect introduced during decomposition of signal with finite length,
three types of border extension are available in MATLAB® viz. periodic exten-
sion, zero padding and boundary value replication (symmetrization). Symmetriza-
tion is the default extension mode in MATLAB which ensure signal recovery by
symmetric boundary replication. For identifying the adequate combination of the
above mentioned three parameters, de Artigas et al. (2006) and Nalley et al. (2012)
have proposed two different approaches, each of which are summarized in the
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following section. The method proposed by de Artigas et al. (2006) involves mini-
mization of mean relative error (MRE) between the original and approximate (A)
series corresponding to last decomposition level as:

MRE = Z |a’

1
ni Ile -

where x; is the original time series with n number of data points and a; is the
approximate component of x;.

In the second approach proposed by Nalley et al. (2012), the combination
producing minimum RE is selected, where RE is calculated as:

2y 2
| Zor|

RE = (14)

Z,, represents the MK Z-value of original time series; and Z,, is the MK Z-
value of the approximation component of the last decomposition level of DWT. The
combination of mother wavelet type, level of decomposition and border decomposi-
tion producing minimum value of MRE and RE are selected for further analyses. To
calculate the number of decomposition levels, de Artigas et al. (2006) proposed the
following equation:

_ Log (z5) (15)
~ Log(2)
where 7 is the number of records in monthly time series, v is the number of vanishing
moments and L is maximum decomposition level. In MATLAB, the number of
vanishing moments for a Daubechies (db) wavelet is half of the length of its starting
filter.

The multilevel one-dimensional wavelet analysis function in MATLAB® has been
employed to decompose precipitation time series using discrete wavelet transform
(DWT). The approximation (A) and detail (D) components are generated through
convolving the time series with low-pass and high-pass filters, followed by a dyadic
scale discretization. The detail component at each decomposition level is added with
approximate component corresponding to last level of decomposition as important
characteristics of original time series such as trend are stored in last the approximate
component. Decomposed time series are reconstructed into one dimensional signal
using multilevel one-dimensional wavelet reconstruction function in MATLAB. The
original signal is decomposed using window of scale varying by integer powers of
2 i.e. the signal is broken down in halves, then in quarters, and it continues onward
(Dong et al. 2008). The original signal (time series) is decomposed at various levels
by power of 2 and at each level, approximation (A) components of previous level are
decomposed. The periodic component dominating the trend in original time series is
identified by comparing the MK-Z value of original series with MK-Z value of detail
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component at different decomposition levels. As each detail component represents
a time series of defined periodicity (in integer power of 2), the component having
MK-Z value closest to that of original series defines the dominance of variable
with corresponding periodicity. Lastly, the existing atmospheric processes directly
or indirectly controlling the precipitation patterns in southern Asia are identified.

5 Results and Discussion

5.1 Serial Correlation and Seasonality

All seven precipitation time series (monthly, seasonally-based, annual, monsoon,
pre-monsoon, post-monsoon and winter) have been tested for the presence of serial
correlation. The computed lag-1 autocorrelation coefficients along with their upper
and lower bounds are given in Table 1. As evident from the table, significant lag-1
autocorrelation has been observed in monthly, seasonally-based and monsoon time
series, whereas, annual, post-monsoon, winter and pre-monsoon time series are found
to be independent of serial correlation. In general, monthly time series are expected
to have stronger autocorrelation than the annual data series (Hamed and Rao 1998).
Also, strong effect of seasonality has been observed in the monthly time series as
repeated patterns of semi-annual and annual cycles can be seen in its correlograms
(Fig. 3). Similarly, the correlograms of seasonally-based time series are presenting
an evidence of annual to inter-annual cyclic patterns (Fig. 3). No clear effect of
seasonality can be observed in the rest of time series. The trends in time series
following strong seasonality pattern are identified using Modified Mann-Kendall
test as discussed in previous section and time series independent of the effect of
autocorrelation are employed with Mann-Kendall test.

Table 1 Lag-1 autocorrelation coefficients for various precipitation time series for Upper Ganga
basin

Time series ACF (lag-1) Upper limit Lower limit
Monthly* 0.521 0.054 —0.054
Seasonally-based* —-0.353 0.093 -0.093
Annual —0.052 0.187 —0.187
Monsoon* 0.333 0.187 —0.187
Post-monsoon 0.116 0.187 —0.187
Winter 0.183 0.187 —0.187
Pre-monsoon —0.052 0.187 -0.187

*Significant at 5% significance level
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Table 2 Best combination of mother wavelet, decomposition level and border extension type for
different precipitation data series

Time series Daubechies wavelet Decomposition level Border extension
Monthly ‘db4’ 6 Symmetrization
Seasonally-based ‘db4’ 4 Symmetrization
Annual ‘dbs’ 4 Symmetrization
Monsoon ‘db6’ 4 Symmetrization
Post-monsoon ‘dbs’ 4 Symmetrization
Winter ‘db3’ 2 Zero padding
Pre-monsoon ‘db7’ 4 Symmetrization

5.2 Wavelet Transform of Different Time Series

In the present study, wavelet transform has been carried out using discrete wavelet
transform (DWT) with Daubechies (db) family of wavelets as mother wavelet. For
each time series, the best combination of Daubechies (db) mother wavelet, level of
decomposition and type of border extension are identified using criteria proposed by
de Artigas et al. (2006). The combination giving minimum value of MRE has been
selected for decomposition of respective time series. The best combination satisfying
the above mention criteria for different time series are given in Table 2.

In DWT, the scales are organized in dyadic format (integer powers of two) from the
lowest scale to which time series are decomposed to as 2-unit periodic components
at D1 level, 4-unit components at D2 level, 8-unit components at D3 level, and so
on (Nalley et al. 2012). For each time series, MK Z-values are computed for detail
(D) component series at each level of decomposition, approximation (A) component
series at last decomposition level, and sum of detail components at each level with
approximation components (D 4+ A). An example of WT of monthly precipitation
time series using Daubechies (db4) as mother wavelet, at six decomposition levels
with ‘symmetrization’ border extension mode is shown in Fig. 4.

5.3 Identification of Dominant Periodic Component
Affecting Trend

The modified version of Mann-Kendall (MMK) test has been applied to the monthly,
seasonally-based and monsoon time series as all these are effected by strong autocor-
relation. The original Mann-Kendall (MK) test has been applied to the remaining time
series independent of the effect of autocorrelation. The results of both MK and MMK
test are presented in Table 3. As evident from the table, monthly, annual, monsoon ad
pre-monsoon precipitation is exhibiting an insignificant increasing trend at 5% signif-
icance level, whereas, precipitation time series of seasonally-based, post-monsoon
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Table 3 MK Z-values for different original precipitation time series

Time series S Z Zn Trend
Monthly 7129 0.42 1.96 +
Seasonally-based -210 —0.06 1.96 -
Annual 209 0.5 1.96 +
Monsoon 313 0.75 1.96 +
Post monsoon =245 -0.59 1.96 -
Winter* -941 -2.01 1.96 -
Pre-monsoon 623 1.5 1.96 +

*Significant at 5% significance level
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and winter is showing falling trend in which trend in winter season are significant.
It should also be noted that trend in seasonally-based time series are so weak that it
can be regarded as to be following no trend.

In order to determine the dominant periodic component controlling trend in given
time series, the approximation component of last decomposition is added to detail
component of each decomposition level as the approximation component captures
the lowest frequency components of the signal. The strength of trend (MK Z-value) of
each detail component (approximation component added) is compared with strength
of trend (MK Z-value) in original time to assess the dominance of a particular periodic
component on the overall trend in original time series. Table 4 represents the MK Z-
values computed for original and various decomposed series of monthly precipitation
in Upper Ganga basin. For monthly precipitation time series, MK-Z value of detail
component at third level of decomposition is closest to the that of original series.
Therefore, component having periodicity of 2% i.e. 8 months is found to be dominating
the trend in monthly precipitation. Seasonal shifts in Inter-Tropical Convergence
Zone (ITCZ) is considered to be one of the responsible factors for manifestation of
monsoon over Indian sub-continent (Gadgil 2003). Since, major fraction of rainfall
over Indian sub-continent is received during monsoon months, variations in onset of
monsoon may cause change in monthly rainfall received in the region. Therefore,
seasonal variations in ITCZ may be considered as dominant climatic phenomenon
for temporal patterns in monthly rainfall over Upper Ganga basin.

Trends in original and decomposed components for seasonally-based time series
are shownin Table 5. Seasonally-based time series was decomposed using db4 mother

Table 4 MK Z-values for monthly precipitation series (original, detail, approximation, detail +
approximation)

Time series S Z 1Z,] Trend
Original 7129 0.42 1.96 +
Dl 1884 0.11 1.96 +
D2 —2304 -0.13 1.96 -
D3 —244 —0.01 1.96 -
D4 —2830 -0.17 1.96 -
D5 —882 -0.05 1.96 -
D6 —18,980 -1.11 1.96 -
A6 —11,626 —0.68 1.96 -
A6 + D1 —17,466 -1.02 1.96 -
A6 + D2 —17,604 —1.03 1.96 -
A6 + D3 8918 0.52 1.96 +
A6 + D4 —18,844 -1.10 1.96 -
A6 + D5 —18,578 -1.09 1.96 -
A6 + D6 48,496 2.84 1.96 +

4Dominant periodic component
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Table 5 MK Z-values for seasonally-based precipitation series (original, detail, approximation,
detail + approximation)

Time series S Z 1Z1 Trend
Original =210 —0.06 1.96 -
D1 —154 —0.05 1.96 -
D2 —558 -0.17 1.96 -
D3 —672 -0.20 1.96 -
D4 3130 0.95 1.96 +
A4 506 0.15 1.96 +
A4 + D1? =32 -0.01 1.96 -
A4 + D2 72 0.02 1.96 +
A4 4+ D3 -514 -0.16 1.96 -
A4 + D4 3026 0.92 1.96 +

4Dominant periodic component

wavelet up to four decomposition level with ‘symmetrization’ border extension. From
the table, the seasonally based series has been observed to be following practically no
trend. Subsequently, different trend can be seen in various decomposed components
with no series presenting any significant trend. As evident from Table 5, MK-Z value
of level-1 detail component (D1) is closest to that of original time series, therefore,
level-1 periodic component with a periodicity of 2! seasons i.e. about 8 months may
be adopted as dominant for seasonally-based precipitation. Again, shifts in ITCZ have
seasonal periodicity which corresponds to that of identified dominant component.
Therefore, trends in seasonally-based precipitation over Upper Ganga basin may be
attributable to the seasonal variations in ITCZ.

The MK Z-value for different decomposed components of annual time series are
shown in Table 6. As evident from the table, a positive trend exists in the annual
precipitation in UGB. Further, trends in all detail and approximation components are
observed to be positive in nature which shows that almost all physical processes with
various periodicities are contributing to the overall annual time series. The level-
2 detail component representing 2° years i.e. 4-year periodic component may be
adopted as dominant periodic component for annual precipitation as MK-Z value of
D2 + A component is 0.41 which is closest to that of original time series. Among
various existing atmospheric process, El-Nifio Southern Oscillations (ENSO) have
periodicity of 4-7 years (Webster et al. 1998; Gadgil et al. 2004). In addition, trends
observed in observed and decomposed time series of monsoon rainfall are same
as that of annual rainfall. These results are evident as monsoon rainfall constitutes
major portion of total annual rainfall received in the region. Subsequently, 4-year
periodic component corresponding to D2 4 A periodic component is found to the
dominant periodic component for monsoon rainfall also (Table 7). Moreover, various
past studies have documented the dominance of ENSO on Indian summer monsoon
rainfall (Sikka 1980; Pant and Parthasarathy 1981; Rasmusson and Carpenter 1983;
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Table 6 MK Z-values for annual precipitation series (original, detail, approximation, detail +

approximation)

Time series S V4 1Z| Trend
Original 209 0.50 1.96 +
D1 111 0.27 1.96 +
D2 -31 —-0.07 1.96 -
D3 163 0.39 1.96 +
D4 439 1.06 1.96 +
A4 459 1.11 1.96 +
A4 + D1 295 0.71 1.96 +
A4 + D2? 169 0.41 1.96 +
A4 + D3 281 0.68 1.96 +
A4 + D4 693 1.67 1.96 +

4Dominant periodic component

Table 7 MK Z-values for monsoon precipitation series (original, detail, approximation, detail +

approximation)
Time series S zZ 1Z,| Trend
Original 313 0.75 1.96 +
D1 11 0.02 1.96 +
D2 —-133 -0.32 1.96 -
D3 97 0.23 1.96 +
D4 247 0.59 1.96 +
A4 587 1.42 1.96 +
A4+ D1 5 0.01 1.96 +
A4 + D22 271 0.65 1.96 +
A4 4+ D3 455 1.10 1.96 +
A4 + D4 1231 2.97 1.96 +

4Dominant periodic component

Webster et al. 1998; Ashok and Saji 2007). Therefore, ENSO may be adopted as
the dominant climate cycle controlling the temporal patterns in monsoon and annual

rainfall over Upper Ganga basin.

Post-monsoon precipitation in UGB is found to be dominated by 2-year periodic
component as MK-Z value of D1 + A component is closest to that of the original
time series (Table 8). Among key atmospheric processes identified to have influence
on rainfall over Indian sub-continent, periodic cycle of seasonal variations in ITCZ,
Indian Ocean Dipole (IOD) movement and ENSO varies between 2 and 7 years.
Although, various attempts have been made by researchers to understand the physics
behind rainfall occurrence over Indian sub-continent, the interaction between these
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Table 8 MK Z-values for post-monsoon precipitation series (original, detail, approximation, detail
+ approximation)

Time series S Z |Z1 Trend
Original =245 -0.59 1.96 -
D1 151 0.36 1.96 +
D2 —223 —-0.54 1.96 -
D3 —-173 -0.42 1.96 -
D4 37 0.09 1.96 +
A4 —1931 —4.67 1.96 -
A4 + D1? —247 —0.56 1.96 -
A4 + D2 —-1075 —2.60 1.96 -
A4 4+ D3 —1119 -2.70 1.96 -
A4 + D4 —893 -2.16 1.96 -

4Dominant periodic component

individual process is not yet well understood. Therefore, attribution of change in
precipitation patters specifically among these climate patterns is difficult. As, 2-year
periodic component is found to be dominant in post-monsoon period, variability of
rainfall during this period may be due to interaction between the processes with
bi-annual periodicities.

As obtained for post-monsoon period, precipitation patterns in winter season
are also dominated by 2-year periodic component (Table 9). Subsequently, vari-
ability and temporal in precipitation during winter season may also be attributable
to climate processes with 1-2-year periodicity such as IOD, seasonal variation in
ITCZ or ENSO. In addition, the original precipitation time series for winter season
is exhibiting a significant decreasing trend with MK-Z value being —2.01. Lastly, MK
Z-values computed for original and decomposed time series of pre-monsoon precip-
itation are given in Table 10. Combination of detail and approximation components
at all four decomposition level has been observed to following significant increasing

Table 9 MK Z-values for winter precipitation series (original, detail, approximation, detail +
approximation)

Time series S Z |Zl Trend
Original —-941 —-2.01 1.96 -
D1 11 0.02 1.96 +
D2 -13 -0.03 1.96 -
A2 —985 —2.38 1.96 -
A4 + D1 -761 —1.84 1.96 -
A4+ D2 —669 —1.61 1.96 —

2Dominant periodic component
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Table 10 MK Z-values for pre-monsoon precipitation series (original, detail, approximation, detail
+ approximation)

Time series S Z 1Z1 Trend
Original 623 1.50 1.96 +
D1 27 0.06 1.96 +
D2 95 0.23 1.96 +
D3 —383 -0.92 1.96 —
D4 =35 —0.08 1.96 —
A4 1651 3.99 1.96 +
A4 + D1 937 2.26 1.96 +
A4 4+ D22 717 1.70 1.96 +
A4 4+ D3 1285 3.10 1.96 +
A4 + D4 1463 353 1.96 +

4Dominant periodic component

trend. However, MK-Z value of D2 4 A component (1.70) is closest to that of orig-
inal time series (1.50). This indicates that a climate process with 4-year periodicity
is dominating the trend observed in pre-monsoon series. Evidently, the insignifi-
cant increasing trend observed in pre-monsoon rainfall over UGB may fairly be
attributable to ENSO (4-7-year periodicity).

6 Conclusion

The wavelet transform (WT) approach which is conventionally been used for signal
processing has been applied to precipitation time series in Upper Ganga basin to
analyse trends and dominant periodic component controlling the trends. The appli-
cation of DWT to the precipitation time series is found to provide useful information
regarding inherent controlling processes. The methodology presented in the present
study can be applied to other hydro-meteorological variables also. In the results,
monthly, annual, monsoon and pre-monsoon precipitation series are found to be
exhibiting an insignificant increasing trend at 5% significance level. Whereas signif-
icant decreasing trend are observed in winter precipitation series. A fair amount of
rainfall in the region is also received during winter season from retreating north-
east monsoon in southern foothills of Himalayas and westerlies in northern Great
Himalayas. The significant decreasing trend observed in winter precipitation reveals
the drying tendency of region in western Himalayas.

The atmospheric oscillations dominating temporal trends in various seasonal and
annual precipitation series are identified by comparing the dominant periodic compo-
nents with periodicity of known atmospheric patterns. The temporal trend in monthly
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and seasonally-based precipitation series are found to be dominated by seasonal vari-
ations in Inter Tropical Convergence Zone (ITCZ). The cycles of ENSO are found
to be dominating the trends observed in pre-monsoon, monsoon and annual precipi-
tation over Upper Ganga basin. Further, temporal variations in precipitation during
remaining two seasons i.e. post-monsoon and winter are found to be influenced by
the combined effect of inter-annual scale climate processes namely ENSO, IOD and
ITCZ.

Overall, ENSO climate circulation is having a dominant effect on most of the
precipitation time series which is also supported by various past studies. The summer
monsoon rainfall over Indian subcontinent is a combined results of various climate
processes occurring simultaneously at different temporal scale. The interaction
between these processes, however, is not well studied yet. Therefore, the relation-
ship established between monsoon precipitation trends and various global climate
circulations need to be verified by carrying out correlation studies. Further, such rela-
tionships may be helpful in identifying linkages between precipitation and different
climate processes and improved precipitation forecast at regional scale.
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