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Abstract. The stability of slopes is an important parameter which can affectmany
engineering projects. In this study, we employed genetic programming (GP) and
artificial neural network (ANN) techniques, based on upper bound (UB) limit
analysis, for the problem in designing solution charts for slope stability. Existing
theories of genetic programming predictive networkmodels have not been applied
in the area of slope stability. Accordingly, the main objective of this research is to
propose a new GP model to estimate the factor of safety parameter and providing
design solution charts in a two-layered cohesive slope. A dataset containing 400
UBanalysismodelswas used to train and test theGP andANNnetworks.Variables
of the GP algorithm training network parameters and weights such as population
size, number of genes, and tournament size were optimized. The input includes
d/H, (depth factor), the undrained shear strength ratio (Cu1/Cu2), and slope angle
(β), where the output was taken as a dimensionless stability number (N2c). The
predicted results for both datasets (training and testing) from the GP and ANN
models were evaluated based on two statistical indexes (root mean square error,
RMSE, and coefficient of determination, R2). Besides, the obtained results were
compared with actual values of N2c, in the form of design charts. The results
show that both the GP and ANN models are accurate enough to be used in this
field. Also, ANN performed slightly better than the GP. As a result, a formula was
derived for each GP and ANN models to assess the slope stability behaviors of
two-layered cohesive soils.

Keywords: Artificial neural network · Genetic programming · Optimization
algorithm · Slope stability

1 Introduction

The slope stability problem has been studied for years, being of considerable concern
due to its effects on geotechnical designs [1]. Generally, slopes are categorized as a
cut slope, natural slope or fill slope, and physical and geometric factors influence their
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stability. Also, the parameters which are related to soil strength affect the slope behavior
too. The safety factor (Fs) of a cohesive slope is related to a well-recognized parameter
named the dimensionless stability number (N2c). One of the first studies that led to
the development of useful design charts for the slope stability issue was implemented
by Taylor [2]. More recently, various research studies have concentrated on providing
design chart solutions (e.g., Qian et al. [3], Abuel-Naga et al. [4], Aksoy et al. [5] and
Moayedi and Hayati [6]). Some time and cost constraints are constraints of using the
new advances in mathematical and computer modeling tools. Therefore, the importance
of providing the design charts is becoming more highlighted. As a novel idea, intelligent
predictive tools (i.e., artificial neural networks (ANNs) and particle swarm optimization
(PSO)) are being employed for the subject of slope stability evaluation [7, 8]. Jiang et al.
[9] applied theUBmethod to investigate a rock slope’s seismic behavior and safety factor
with a tunnel. As a result, they found three factors, namely the horizontal seismic force
coefficient, the slope height, and the internal friction angle, to be the most influential
parameters influencing the safety factor’s sensitivity. In another study, Pan and Dias [10]
assessed the face stability for the case of a non-circular tunnel through an upper bound
limit analysis model, synthesized with the technique of strength reduction. According
to their results, this approach presents conservative results and can be applied in safety
factor evaluation in a particular design.

The number of studies concerned about the feasibility of neural network modeling
to solve slope stability is limited. The hybrid GP model that is presented in this study
has not been proposed for the problem of slope stability previously. There is almost no
study on using hybrid GP-based learning systems to predict the factor of safety and its
key parameters. In the following, the GP prediction models’ results were compared with
the results of an optimized ANN feedforward learning system. Similarly, to find the best
ANN structure, all the proposed models were evaluated with a trial and error process on
their influential parameters. Finally, each model’s design chart solution was depicted;
and the formula was presented for both the GP and ANN models to be used for slopes
with the same conditions. In this paper, optimal forms of genetic programming (GP)
and ANN models have been utilized to predict the N2c in a two-layered cohesive slope,
based on the upper bound (UB) limit analysis method. The UBmodel is broadly applied
for similar engineering problems. The slope proposed for this work was constructed
from two separate clayey layers, lying on a rigid rock bed. The ratio of the first soil
layer thickness to the full height of the slope, d/H, the slope angle, β, and the ratio of
the undrained shear strength of the first soil layer to that of the slope layer, Cu1/Cu2,
were considered as three efficacious parameters that affect the slope situation. These
parameters also form the input dataset. Meanwhile, the N2c was taken as the output of
the networks. 80% of the dataset was devoted to the training part, and the remaining
20% was selected to test the networks.

2 Artificial Intelligence Systems

Genetic Programming. Genetic programming is a powerful computing technology that
has been initiated based on genetic algorithms (GA). This model was first introduced
in 1985 by Cramer [11]. Another scholar, Ref Koza, later improves it in 1984 [12]. It
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is widely used in solving engineering problems by numerous scholars such as Johari
et al. [13], Makkeasorn et al. [14], Garg et al. [15], and Garg et al. [16]. During the
GP process, particular computer programs are applied to predict the problem’s potential
outputs by linking the input data layers and main output(s). One of the critical issues
in using the GP algorithm is that the user will have a simpler finalized algorithm. The
overall procedure of GP prediction performance is illustrated in Fig. 1. The complete
detail of the applied GP technique is well described in Ref. [12, 15–17].

Fig. 1. Typical GP tree presented for the function [(X1-5)/(X2 + X3)]2

Artificial Neural Network. The artificial neural networks (ANNs), which mainly
inspired by a biological neural network, are well established as one of the most appli-
cable approaches that have been employed in the last two decades is, which were first
introduced by McCulloch and Pitts [18]. These tools are widely employed for predic-
tion purposes [19]. Numerous scholars such as Rao [20], El-Bakry [21], Samui and
Kumar [7], and Moayedi and Hayati [22] are experiences successful use of ANN in
predicting complex engineering solutions. Overall, the primary objective is to establish
a non-linear equation (i.e., trained based on the initial learning process) between the
inputs and output(s) dataset [20]. In this sense, a neural network’s typical architecture
is prepared according to components of so-called neurons. As illustrated in Fig. 2, the
input layer includes layers of the input(s) data. As a predefined model, the number of
nodes is considered the same as the input parameters. During the neural network training
processes, there can be one or more hidden layer(s) finally, and the calculation process
will end to one or more output layer(s). More precisely, for each node, if we assume the
term X as the main input and the term W as the interconnected weight (which is also
shown as Iw), the bias (which is shown by the term of β) will be added to the summation
of WXs. In this regard, an activation function (f (I)) will be applied to the acquired term
(
∑

WX+ β) to produce the outputs. The activation function for this casewas considered
as Tan-sigmoid (Tansig) which is defined by Eq. (1):

Tansig(x) = 2

1+ e−2x − 1 (1)
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Fig. 2. Typical structure and operation of ANNs

3 Data Collection and Problem Statement

In this research, the results from the upper bound (UB) type of limit analysismethodwere
employed to assess the short-term stability situation of a cohesive slope. This method is
well discussed in other studies (e.g., Florkiewicz [23], Donald and Chen [24], Karkanaki
et al. [25], and Jiang et al. [9]). The slope is constructed from amaximum of two different
soil layers with separate material properties lying on a bedrock layer in the present case.
Besides, Fig. 3 shows a graphical description of the input data range versus the data
numbers for d/H, the slope angle of β° and the Cu1/Cu2 ratio. The analysis is performed
with new computer software calledOptumG2. It is based on finite element limit analysis
and has been widely used in other studies (e.g., Karkanaki et al. [25]; Caër et al. [26] and
Zhou et al. [27]). The analytical method used and the 2D boundary conditions applied in
this study, i.e., to illustrate the pure cohesive slope, are similar to the research performed
by Qian et al. [3]. A view of the slope model is presented in Fig. 4. As can be obtained
from this figure, the proposed slope has been formed from two cohesive soil layers
having only consistent undrained strength (cu1) with a zero undrained internal friction
angle. Cu1 and Cu2, respectively define the undrained cohesive strength for the top and
bottom soil layers. The influential parameters and an example of output from OptumG2
are illustrated in Figs. 4a and 4b, respectively.

4 Model Development for Prediction of N2c

A proper estimation process, which is used by hybrid ANN models, should be formed
from several steps such as (i) data processing and normalization, (ii) selecting a suitable
hybrid model, and finally (iii) finding an appropriate hybrid structure for the proposed
model, which can be achieved through a trial and error procedure. For the aim of pro-
ducing the design chart solutions,N2c (a dimensionless stability number, which was first
investigated by Taylor [2]) was obtained from Eq. (2):

N2c = cu1/γHFs (2)
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Fig. 3. Graphical description of the range of input data versus data numbers for (a) d/H, (b) slope
angle, (c) Cu1/Cu2
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Fig. 4. A view of the model for cohesive slope (a) schematic model, (b) OptumG2 stability output
for upper bound limit analysis

where N2c, Cu1, and Fs define the dimensionless stability number, the undrained shear
strength of the second soil layer, and the factor of safety obtained from the OptumG2
modeling, respectively. Also, γ describes the soil unit weight, which is taken as 20
kN/m3.

The dataset used is constructed from three inputs: the three influential parameters
affecting the slope stability situation. The first factor is related to depth (d/H). It defines
the ratio of both soil layer thicknesses, d, to the slope’s top layer height, H. The angle
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of the present slope (β) was considered the second parameter. The third effective factor
defines the undrained shear strength ratio (Cu1/Cu2). An example of the mentioned data
is presented in Table 1. Note that these values are derived from the OptumG2 simulation,
and, as illustrated, the three useful parameters of d/H, β, and Cu1/Cu2 are employed to
estimate the N2c in the three FEM methods of LB, UB, and LEM limit analysis.

Table 1. Example of inputs and output dataset applied for modeling purpose

Model
number

Inputs Output Model
number

Inputs Output

d/H β° Cu1/Cu2 N2c-UB
limit
analysis

d/H β° Cu1/Cu2 N2c-UB
limit
analysis

1 5 75 5 0.7779 26 3 75 4.5 0.6295

2 5 60 5 0.7663 27 5 45 4 0.6276

3 5 45 5 0.7605 28 5 30 4 0.6227

4 5 30 5 0.7547 29 4 15 4.5 0.6179

5 4 75 5 0.7450 30 4 75 4 0.6140

6 4 60 5 0.7275 31 3 60 4.5 0.6101

7 5 15 5 0.7246 32 4 60 4 0.6053

8 4 45 5 0.7217 33 3 45 4.5 0.6024

9 4 30 5 0.7139 34 5 15 4 0.6004

10 5 75 4.5 0.7091 35 4 45 4 0.5995

11 5 60 4.5 0.6994 36 2 75 5 0.5966

12 5 45 4.5 0.6945 37 4 30 4 0.5936

13 3 75 5 0.6936 38 3 30 4.5 0.5898

14 5 30 4.5 0.6887 39 3 15 5 0.5839

15 4 75 4.5 0.6780 40 5 75 3.5 0.5733

16 4 15 5 0.6722 41 3 75 4 0.5684

17 4 60 4.5 0.6664 42 5 60 3.5 0.5645

18 5 15 4.5 0.6635 43 4 15 4 0.5626

19 4 45 4.5 0.6615 44 5 45 3.5 0.5597

20 3 60 5 0.6615 45 3 60 4 0.5578

21 4 30 4.5 0.6548 46 5 30 3.5 0.5548

22 3 45 5 0.6518 47 3 45 4 0.5510

23 5 75 4 0.6412 48 4 75 3.5 0.5510

24 3 30 5 0.6383 49 2 60 5 0.5451

25 5 60 4 0.6324 50 2 75 4.5 0.5432
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5 Results and Discussion

The present study intends to evaluate the stability of a two-layered cohesive slope by
using two intelligent techniques. An MLP neural network and a GP mode were applied
to approximate the stability of the slope. The important parameter of the dimensionless
stability number (N2c) was considered the networks’ output. It was estimated to be
influenced by three effective factors, which were considered as (i) the layer’s height ratio
(d/H), (ii) the slope angle (β), and (iii) the undrained cohesive strength ratio (Cu1/Cu2)
as the input dataset. Similar to previous research, the stock dataset was randomly divided
into two parts to train and test the networks, with a ratio of 80% and 20%, respectively
(e.g., Moayedi and Hayati [28], Moayedi and Hayati [22], Koopialipoor et al. [29] and
Moayedi and Hayati [6]). Also, for each model, the performance was measured by the
index of the statistical error terms RMSE and R2. Equations (3) and (4) explain these
indices:

RMSE =
√
√
√
√ 1

N

N∑

i=1

[(
Yiactual − Yiproduced

)]2 (3)

R2 = 1−
∑N

j=1

[
(Y)actual,j − (Y)produced,j

]2

∑N
j=1

[
(Y)actual,j − (Y)mean

]2 (4)

Where Yi actual and Yi produced stand for the actual and predicted values of N2c,
respectively. N is the indicator of the number of data, and Ymean is the average of the
actual slope stability values. The mentioned indices have been widely used in other
earlier studies (e.g., Momeni et al. [30], Armaghani et al. [31], Mohamad et al. [32] and
[33]).

Optimal Hybrid GP Model Predicting N2c. Determining proper network architec-
ture is a necessary step in the utilization of artificial intelligence. For GP optimization,
many trial and error processes, including 36 various GP models, were performed to find
an appropriate GP structure for estimating the N2c. The feasibility of the GP technique
was evaluated for different numbers of generations, values of swarm sizes, and selection
tournament sizes. For all three mentioned parameters, 12 values, including 50, 100, 150,
200, 250, 300, 350, 400, 450, 500, 750, and 1000 were considered, and the performance
was evaluated by means of the RMSE reduction procedure. Regarding the trial and error
processes provided in Figs. 5, 6 and 7, the GP model with the values of 750, 200, and
250 respectively for the population size, some generations and selection tournament
size showed the best performance, as indicated by its lower RMSE value. Therefore,
this structure was introduced as the optimal architecture of the GP for any further N2c

estimation.
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Fig. 5. GP network performance results for different population sizes

Optimal Artificial Neural Network Predicting N2c. Like the GP model, the best
ANN architecture was obtained by assessing several ANN structures’ performance. For
the ANN, a multilayer perceptron network was verified with various numbers of neurons
in its single hidden layer. After a trial and error process, the network that reported the
lowest RMSE and the highest R2 was selected as the optimummodel. The results of this
are depicted in Fig. 8. Note that every structure was performed for six iterations. As a
general deduction, the MLP network with at least eight neurons in its hidden layer could
present an accruable performance for modeling the problem.
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6 Models Evaluation and Design Solution Charts

After obtaining the optimum structures of both the GP and ANN methods, they were
applied to the prepared dataset for the proposed estimation of the dimensionless slope
stability number. The training dataset did a training operation, and the performance of
each model was evaluated using the testing data. Two usual types of charts were used
to describe and analyze the results. Firstly, the accommodation of the predicted and
actual values of N2c was depicted in the form of Fig. 9. Also, Table 2 lists the calculated
RMSE and R2. As illustrated in Fig. 9 and Table 2, the GP and ANN models had a
robust prediction and sufficient reliability in the slope stability assessment. The high
values of R2 can prove this claim, and the low values of RMSE obtained from both model
performances. The training results show RMSE of 0.010274 and 0.006112 and R2 of
0.9968 and 0.9989 for the GP and ANN methods. The results of the test phase show a
good approximation for these models too. The RMSE and R2 values are 0.011146 and
0.005927, and 0.9967 and 0.9990, respectively, for the GP and ANN methods. Based
on the reported results, the optimized ANN had a slightly better performance compared
to the optimized GP model, as can be concluded from the lower RMSE and higher R2

values in both the training and testing phases.

 
(a)  

(b) 

 
(c)  

 
(d)  

Fig. 9. Training (a and b) and testing (c and d) results of GP and ANNmodels for predicting N2c

In the following, the measured results from the upper bound analysis of slope sta-
bility are compared with the predicted values obtained from the optimal GP and ANN
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Table 2. Obtained RMSE and R2 values for GP and ANN results

Model Dataset

RMSE R2 RMSE R2

GP 0.010274 0.9968 0.011146 0.9967

ANN 0.006112 0.9989 0.005927 0.9990

algorithms. Consequently, Figs. 10-a to 10-e present the measured N2c as well as the
results obtained from the GP and ANN training networks for slope angles between 15
to 75°, respectively. In this regard, according to the different values of the slope angle
(β) (i.e., 15°, 30°, 45°, 60° and 75°), separate solution of designing slope stability charts
were provided, noting that in each figure the vertical and horizontal axes stand for the
N2c and d/H ratio, respectively. To include the Cu1/Cu2 ratio parameter, Cu1/Cu2 ratios
of 0.2, 0.8, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5 were considered through the calculation steps.
Therefore, ten different curves are plotted for each of the predefined slopes.

The curves showing Cu1/Cu2 = 0.2 to 0.8 are drawn in a relatively straight path,
and the N2c does not show noticeable changes as the d/H ratio rises. In contrast, for the
remaining eight curves (especially for Cu1/Cu2= 3 to Cu1/Cu2 = 5), the N2c values have
an ascending direction as the d/H ratio rises. Note that the distance between these two
curves decreases as β rises so that in the last graph (β = 75°), they have covered each
other. Also, there is another difference in the last graph. It relates to the fluctuations of
the curves (especially for the curves determined by Cu1/Cu2 = 3.5, 4, and 5). In graphs,
a – d, a steeper tangent can be observed for d/H values less than 2.5, while it differs for
graph e, and camber can be seen in the vicinity of d/H = 2 (especially for Cu1/Cu2 = 5).

As canbeobtained fromFigs. 10a–e, both theGPandANNmodels gave a satisfactory
prediction for estimating the slope stability number. This can be concluded from the GP
and ANN curves’ appropriate proximity to the measured N2c (target data). It is worth
noting that each target curve’s general direction is well approximated by both the GP
and ANN tools. Therefore, there is good coverage for all of them.

Focusing on themeasured datasets, considering the black and red curves in Figs. 10a–
e (Cu1/Cu2 = 4.5 and 5), there are fluctuations and sudden changes for the N2c results
provided for d/H ratios, which are lower than 2.0. To evaluate the GP and ANN’s flex-
ibility, it is necessary to compare their reactions against these changes. In cases a–d,
it is observed that the GP model had maintained its main direction without significant
changes, even for critical d/H ratios (see red and black dash-dot curves). On the contrary,
the changes are well distinguished by the ANN curves, especially for the black curves
in Figs. 10a–d. In each case, the fluctuation is well followed by the ANN, and there is
excellent accommodation between them. Also, for the changes occurring in Fig. 10e (β
= 75°), the ANN gave a better approximation, and this is because its curve is closer
to the target curve. For another example, the ANN’s higher precision can be deduced
considering the grey curve (Cu1/Cu2 = 2) in cases a–c, while more distance between
the measured and predicted curves are reported for the GP. Regarding these descriptions
and also the obtained RMSE and R2 values, it can be concluded that both the GP and
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Measured - Cu1/Cu2 = 3.5 Measured - Cu1/Cu2 = 4.0 Measured - Cu1/Cu2 = 4.5
Measured - Cu1/Cu2 = 5.0 ANN - Cu1/Cu2 = 0.2 ANN - Cu1/Cu2 = 0.8
ANN - Cu1/Cu2 = 1.5 ANN - Cu1/Cu2 = 2.0 ANN - Cu1/Cu2 = 2.5
ANN - Cu1/Cu2 = 3.0 ANN - Cu1/Cu2 = 3.5 ANN -  Cu1/Cu2 = 4.0
ANN - Cu1/Cu2 = 4.5 ANN -  Cu1/Cu2 = 5.0 GP - Cu1/Cu2 = 0.2
GP - Cu1/Cu2 = 0.8 GP - Cu1/Cu2 = 1.5 GP - Cu1/Cu2 = 2.0
GP - Cu1/Cu2 = 2.5 GP - Cu1/Cu2 = 3.0 GP - Cu1/Cu2 = 3.5

Fig. 10. (continued)
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(e) 
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Measured - Cu1/Cu2 = 3.5 Measured - Cu1/Cu2 = 4.0 Measured - Cu1/Cu2 = 4.5
Measured - Cu1/Cu2 = 5.0 ANN - Cu1/Cu2 = 0.2 ANN - Cu1/Cu2 = 0.8
ANN - Cu1/Cu2 = 1.5 ANN - Cu1/Cu2 = 2.0 ANN - Cu1/Cu2 = 2.5
ANN - Cu1/Cu2 = 3.0 ANN - Cu1/Cu2 = 3.5 ANN -  Cu1/Cu2 = 4.0
ANN - Cu1/Cu2 = 4.5 ANN -  Cu1/Cu2 = 5.0 GP - Cu1/Cu2 = 0.2
GP - Cu1/Cu2 = 0.8 GP - Cu1/Cu2 = 1.5 GP - Cu1/Cu2 = 2.0
GP - Cu1/Cu2 = 2.5 GP - Cu1/Cu2 = 3.0 GP - Cu1/Cu2 = 3.5
GP - Cu1/Cu2 = 4.0 GP - Cu1/Cu2 = 4.5 GP - Cu1/Cu2 = 5.0

Fig. 10. (continued)

ANN models have sufficient applicability. Besides, the higher flexibility of the ANN in
design solution charts can be concluded due to its response against the changes.

To provide a reliable solution equation that reflects the presented design charts, an
equation was derived from both the GP and ANN trained networks to be presented in
respect of the slope stability issue. The GP and ANN formulas are presented in Eqs. (5)
and (6), respectively.

(5)

Where, X1 = d/H; X2 = β; and X3 = Cu1/Cu2.

(6)

Where, Y1, Y2 … Y8 are defined by Eqs. 7–14:

Y1 = Tansig (−1.0821× X1 − 0.4887× X2 + 2.6243× X3 + 3.1157) (7)

Y2 = Tansig (0.1386× X1 − 0.1071× X2 + 0.6546× X3 − 0.4376) (8)
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Y3 = Tansig (0.0804× X1 − 0.0947× X2 + 0.2168× X3 − 0.0942) (9)

Y4 = Tansig (2.3293× X1 − 2.0853× X2 + 2.2883× X3 − 0.0371) (10)

Y5 = Tansig (−0.0285× X1 + 0.3638× X2 − 3.0985× X3 − 1.5416) (11)

Y6 = Tansig (0.9039× X1 + 0.3419× X2 − 0.7021× X3 + 1.9361) (12)

Y7 = Tansig (−1.6865× X1 + 3.3371× X2 + 0.3808× X3 − 1.6126) (13)

Y8 = Tansig (−3.1807× X1 + 0.8723× X2 + 0.8388× X3 − 4.1277) (14)

where in each equation, X1 = d/H; X2 = β; X3 = Cu1/Cu2.
It is important to note that the proposed formula can be used in the slope stability

problem to calculate the dimensionless stability number for slopes with a maximum of
two layers with similar material conditions. Besides, there are two crucial advantages for
the GPmodel equation compared with that of the ANN. One of them is the GP equation,
which is easier to use than the ANN equation (i.e., the intermediate equations of Y1 to
Y8 need to be considered before Eq. (6) can be used). The other is the GP equation that
can be used directly and requires no normalization process (while in the ANN, the input
layers need to be normalized before any further process).

7 Conclusions

Regarding the importance of the slope stability issue in many engineering projects, the
main objective of this research was to evaluate the capability of two artificial intelligence
techniques in the assessment of cohesive slope stability. Optimized GP and optimized
ANN methods were applied to the dataset collected from a finite-element procedure
called upper bound (UB) limit analysis. Three effective factors to the cohesive slope’s
stability were considered as input data to produce the dimensionless stability number.
The first factor was the d/H ratio, where d is the slope thickness, and H is an indicator of
the topsoil layer’s height. Slope angle (β) was the second factor, and the third parameter
was the ratio of the undrained shear strength of the first soil layer to the slope layer’s
(Cu1/Cu2). Besides the use of the statistical indices of RMSE and R2, the results were
compared by the form of design charts solution. From the results, both the RMSE and
R2 values showed a slightly better approximation for the ANN than for the GP model in
training (RMSE of 0.010274 and 0.006112, and R2 of 0.9968 and 0.9989, respectively
for the GP and ANNmethods) and testing (RMSE of 0.011146 and 0.005927, and R2 of
0.9967 and 0.9990, respectively for the GP and ANN methods) phases. We also found
the ANN to be the more reliable model based on the reported results from the design
charts.

Regarding these charts, the ANN showed higher flexibility in fluctuations. In the
following, two formulas were extracted based on each of the optimized GP and ANN
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models, for use in the field of slope stability assessment, in place of the traditional
formula of the UB limit analysis method. Note that the GP formula was introduced as
the more applicable formula due to its greater brevity and simplicity.

Compliance with Ethical Standards. Conflict of Interest: The authors declare that they have
no conflict of interest.
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