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Abstract. Proteins interact with each other to play critical roles in many bio-
logical processes in cells. Although promising, laboratory experiments usually
suffer from the disadvantages of being time-consuming and labor-intensive.
Hence, a variety of computational approaches have been proposed to predict
protein-protein interactions from an alternative view. However, most of them
heavily rest on the biological information of proteins while ignoring the latent
structural features in protein interaction networks. In this paper, we propose a
novel stochastic block model for network-based prediction of protein interac-
tions. By simulating the generative process of a protein interaction network, our
approach can capture the latent structural features of proteins from the per-
spective of forming protein complexes, thus verifying whether two proteins
interact with each other or not. To evaluate the performance of the proposed
prediction approach, a series of extensive experiments have been conducted and
we have also compared our approach with state-of-the-art network-based pre-
diction model. The experiment results show that our approach has a promising
performance when applied to predict protein-protein interactions.

Keywords: Protein interaction network � Protein interaction prediction �
Stochastic block model

1 Introduction

Proteins are important component of cells, they provide the material basis for life and
undertake various functions in living organisms. Instead of functioning alone, protein
interact with each other to form complexes, thus performing their functions. Since
protein-protein interactions (PPIs) constitute most of biological processes, such as
transcription, replication and translation of DNA, it is of great significance to under-
stand the mechanisms of PPIs. Furthermore, knowing how proteins interact with other
not only allows us to get more familiar with cellular mechanisms but also facilitates the
design of novel drugs.
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A lot of efforts have been made to the prediction of PPIs. Several laboratory-based
approaches have been developed at early stage, such as two-hybrid [13], TAP-tagging
[8, 19], protein chips [25], synthetic lethal analysis [26] and correlated mRNA
expression profile [5]. Although promising, laboratory-based approaches are both time-
consuming and labor-intensive. Hence, to overcome these disadvantages, a variety of
computational approaches have been proposed recently and they are mainly classified
into three categories including sequence-based approaches [9–12], evolutionary-based
approaches [21] and network-based approaches [1, 17]. Unlike the first two categories
that heavily rest on biological information of proteins, network-based approaches are
preferred as they only perform their tasks based on protein interaction network data.

As a recent attempt in network-based approaches, L3 [17] follows the intuition that
proteins interact not if they are similar to each other, but if one of them is similar to the
other’s partners. In contrast to the traditional triadic closure principle [16] based on the
similarity of neighborhoods [2, 7, 23], L3 relies on network paths of length three and
introduces a degree-normalized score to measure the likelihood of being interacting for
two proteins. Although the experiment results show that L3 significantly outperforms
all existing link prediction methods when applied to predict PPIs, we believe that its
performance could be constrained by the assumption of network paths with length
three. To address this concern, we intend to propose a more flexible network-based
prediction model.

In fact, proteins in the same protein complex are intensively interacted with each
other, thus forming a denser structure than those from different complexes. Motivated
by this observation, a novel stochastic block model, modified from mixed membership
stochastic block model (MMSB), is proposed for network-based prediction of protein
interactions. As a well-known community detection model, MMSB analyzes latent
structural features by taking into account the memberships of entities. It captures
different communities in the network and allows each entity has its own community
distribution, which indicates that each node in the network has a K dimensional mixed
membership to represent its weight for each community. The introduction of K
dimensional community membership allows each node to be assigned to multiple
communities instead of only one community, it is reasonable for protein network,
because the same protein can participate multiple biological processes under different
conditions in real biological system. In generative process, MMSB uses a binary
adjacency matrix to represent interaction data and the mixed membership for each node
follows Dirichlet distribution. Based on the community membership, there are two
interaction indicators for each protein pair to indicate the community they belong to
which follows Multinomial distribution. Combining these indicators with a K � K
matrix of Bernoulli parameters which represent the probability of connection between
K communities, the pairwise proteins can be classified as interacting or non-interacting.

Considering the huge data of PPIs, we follow the scheme of assortative mixed
membership blockmodel (aMMSB) [6] to solve the inference problem of the proposed
stochastic block model. Moreover, when determining the complex for each of proteins,
we introduce a weighted similarity measure based on the strengths of complexes as
well as the distance between the memberships of two proteins. In order to evaluate the
performance of our model, we have applied it to three independent PPI datasets and
compared its performance with L3. The experiment results show that our prediction
approach has a promising performance in terms of several different metrics.
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The rest of the paper is organized as follows. The details of our approach are
presented in Sect. 2, following which we compare the proposed approach with L3 and
also discuss the experiment results in Sect. 3. Finally, the paper ends with a conclusion
in Sect. 4.

2 Methods

In aMMSB, protein networks are as input to the model. They are divided into K
communities to identify different protein groups and proteins in each group have their
mixed memberships, interaction between two proteins are identified by the two ele-
ments. To improve the performance of aMMSB, we changed the criterion of original
aMMSB and proposed our approach. In this section, we introduce the generative
process of aMMSB and the details of our approach.

2.1 The Generative Process of PPI Network

Though aMMSB can capture latent communities and assign each node a mixed
membership to describe its weight for each community, the performance of original
aMMSB is not good. The interaction indicator z is a K dimensional vector where only
one element equals to one, the index of which indicates its corresponding community,
and all the other elements equal to zero. In view of the fact that multiple proteins can
interact with others in different protein complexes under different conditions, it means
one protein may belong to several groups. As a criterion of interacting probability
between two proteins, the indicate vectors with only one element equals to one is too
strict, a number of interacting protein pairs are predicted to not interact and it leads to
many false negative results thus. Due to this severe criterion of original aMMSB, we
proposed an improved approach to relax standard and promote performance.

To weaken the impact of harsh criterion, we quantify the difference between two
community memberships by Euclidean distance and combine it with community
strength to calculate interacting probability. In training set, a protein network is put into
aMMSB as input, community strength and community memberships are obtained as
evaluation criterion of interacting by the model. The probability that a protein pair can
interact is determined by the two elements with normalized function.

Suppose we have observed the links between proteins, each protein can be seen as a
node and the link between them can be seen as edge represented by y. N � N binary
matrix is completed by N proteins where yij is equal to 1 if there is a link between
protein i and protein j, yij is equal to 0 otherwise. For each protein, there is a com-
munity membership p to describe its degree of membership for each community which
obeys Dirichlet distribution. For the whole network, there is community strength bk to
capture latent communities, bk is a K dimensional vector and ranges from 0 to 1, the
elements in it represent the tightness of each community. Specific process is as follows:

• For each protein i, sample community membership pi�Dirichelet að Þ. The specific
equation is: Dir pijað Þ ¼ C

PK

k¼1 ak
� �
QK

k¼1 C akð Þ
QK
k¼1

pak�1i;k
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• For each community k, sample community strength bk �Beat gð Þ. The specific

equation is: Beta bkjg0; g1ð Þ ¼ C g0 þ g1ð Þ
C g0ð ÞC g1ð Þ b

g0�1
k 1� bkð Þg1�1

• For each pair of node i and node j:

Sample link yij ¼ c�cmin
cmax�cmin, where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 bk pi;k � pj;k

� �2q

2.2 Stochastic Variable Inference

Our approach is a subclass of MMSB model with stochastic variable inference, it is a
statistical model that allows nodes to participant in multiple communities. Figure 1
shows corresponding joint distribution of variables applied. The goal of the model is to
compute the posterior distribution pðp1:N ; b1:K ; zjy; a; gÞ and the strategy adopted is
variable inference (VI) [14]. However, traditional variable inference in MMSB deals
with all the node pairs each iteration which requires a lot of time. Therefore, stochastic
variable inference (SVI) is applied in aMMSB to save time and improve efficiency,
aMMSB with SVI can also get comparable results to MMSB with VI.

SVI is a coordinate ascent algorithm that iteratively updates local and global
parameters. For each iteration, we first subsample the network and get a subset S, local
parameters are optimized given current global parameters and we then update global
parameters using stochastic natural gradient with subset S and local parameters. The
first step is called local step (L-step) and the second step is called global step (G-step).
The specific generative process is described in Algorithm 1.

The Global Step
The global step updates global parameters community strengths k and community
memberships c. For a network with N nodes, there is M ¼ N N � 1ð Þ=2 node pairs, we
extract a node pair i; jð Þ at random. In t-th iteration, the stochastic natural gradients of
global parameters are:

@cti;k ¼ ak þ 1
g i; jð Þ/

t
i!j;k � ct�1i;k

@ktk;m � gk;mþ
1

g i; jð Þ/i!j;k � /i j;k � yij;m � kt�1k;m
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where yij;0 ¼ yij and yij;1 ¼ 1� yij, we require that
P

t q
2
t \1 and

P
t qt ¼ 1, we set

qt , s0þ tð Þ�j, where j is learning rate and j 2 0:5; 1ð �, s0 downweights early itera-
tions and s0� 0. The time for a G-step is O(NK) and the memory required is O(NK).

The Local Step
The local step updates local parameters / which represents the posterior approximation
of which communities are important in determining whether there is a link. The time
for L-step is O(nK) where n is the number of node pairs sampled in each iteration.

/t
i!j;kjy ¼ 0 / exp Eq logpi;k

� �þ/t�1
i!j;kEq log 1� bkð Þ½ �

n o

/t
i!j;kjy ¼ 1 / exp Eq logpi;k

� �þ/t�1
i!j;kEq logbk½ � þ 1� /t�1

i!j;k

� �
log 2

n o

3 Results

To evaluate the performance of aMMSB and its improved version experimentally, three
protein networks including yeast [27], krogan [18] and human [17, 22] are selected
where the human dataset is composed of three human networks containing HI-II-14
[22], HI-III [22] and HI-tested [17]. We adopt 5-fold cross-validation to get more
comprehensive results. Except computational experiments in our model, we also
applied these datasets to L3 model and compared their results. It shows that aMMSB
with improved version acquires remarkable effect and outperforms L3 in numerous
evaluation measures.

Fig. 1. Graphical model of our approach
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3.1 Data Structure

Considering the diversity of structure in datasets, the experimental results may be
influenced by different protein networks. The datasets in different species are used to
get more persuasive results and the detailed analysis of three datasets applied is shown
in Table 1.

3.2 Computational Experiments

In experiments, all the datasets are divided into training set and test set, training set is as
input network and test set is used to access predictive power of the model, 5-fold cross-
validation is used to be more convincing. As for negative dataset, we keep consistent
with the strategy used in L3 to facilitate comparison. 244 non-interacting protein pairs
are selected including 100 pairs where at least one of the proteins are in the top 500 L3
predictions.

Sensitivity of K Value
To explore the relationship between number of communities and performance of
aMMSB, we take the method of traversal to get best K value. Evaluation measures
included are F1-score, AUC and PR-AUC, the results are shown in Fig. 2. Form the
figure, the best K value in yeast dataset is 9, best K value in krogan dataset is 10 and
best K value in human dataset is 9 too.

Table 1. Analysis of three datasets and their main characteristics

Dataset N E kav q C SIPs

Yeast 964 3846 7.979 0.008 0.148 0
Krogan 2708 7123 5.261 0.002 0.188 0
Human 6657 32307 9.521 0.001 0.069 616

Fig. 2. The performance of different K values
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5-Fold Cross-Validation
In 5-fold cross-validation, we split the dataset into five subsets, each of them is as test
set and the other four subsets remained are as training set, the test set and training set
are rotated five times to access performance. Precision, Recall, F1-score, AUC, PR-
AUC, AUC(L3) are used as evaluating measures where AUC(L3) is the measure used
in L3 to calculate AUC but there is a little different between it and general AUC
calculating method. AUC(L3) follows Eq. 4 where by randomly chooses n pairs of a
positive link and negative link, larger score n′ times and equal score n′′ times for the
positive link are obtained. While AUC is the area under ROC curve [4, 20] which is
plotted by the true positive rate against false negative rate and PR-AUC is the area
under P-R curve [3] which is plotted by the precision against recall. Several elements
used in other evaluation measures are explained as follows:

• TP (True Positive): the number of interacting protein pairs predicted correctly
• TN (True Negative): the number of non-interacting protein pairs predicted correctly
• FP (False Positive): the number of non-interacting protein pairs predicted as

interacting protein pairs

Fig. 3. The performance of AUC

Fig. 4. The performance of PR-AUC
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• FN (False Negative): the number of interacting protein pairs predicted as non-
interacting protein pairs

Precision ¼ TP
TPþFP

ð1Þ

Recall ¼ TP
TPþFN

ð2Þ

F1� score ¼ 2PR
PþR

ð3Þ

AUC L3ð Þ ¼ n0 þ 0:5n00

n
ð4Þ

Among all the models, aMMSB with improved version is the most excellent one.
Numerous measures are promoted by aMMSB with improved version in contrast with
original aMMSB model. By relaxing the criterion, aMMSB achieves F1-score of 0.846
with AUC of 0.757 and PR-AUC of 0.892 in yeast, F1-score of 0.575 with AUC of
0.638 and PR-AUC of 0.690 in krogan and F1-score of 0.708 with AUC of 0.733 and
PR-AUC of 0.986 in human, which outperforms original aMMSB. And our model is
also superior to L3 obviously. The detailed results are shown in Fig. 3 and 4 and
Table 2.

From Table 2, we can figure out that recall in krogan and human is in a low value
compared to yeast. That is because krogan and human networks are larger than yeast
network, when optimize parameters, mixed memberships and community strength in
small network are tend to converge and be closer to true value. Thus, there are multiple
false negative results in krogan and human, model in yeast dataset performs better.
Besides, we assign mixed memberships at random to nodes which appear in test set and

Table 2. The performance on three dataset

Dataset Model F-measure AUC PR-AUC AUC(L3)
Precision Recall F1-score

Yeast L3 0.842 0.393 0.536 0.637 0.866 0.600
aMMSB 0.773 0.111 0.194 0.504 0.775 0.480
Our approach 0.854 0.847 0.846 0.757 0.892 0.810

Krogan L3 0.942 0.185 0.309 0.570 0.909 0.520
aMMSB 0.866 0.108 0.191 0.505 0.867 0.505
Our approach 0.880 0.427 0.575 0.638 0.893 0.690

Human L3 0.982 0.388 0.556 0.612 0.979 0.605
aMMSB 0.966 0.116 0.207 0.504 0.967 0.505
Our approach 0.986 0.552 0.708 0.733 0.986 0.795
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not appear in train set, the predicted results involving these nodes are related to a
random parameter which is uncontrollable and may leads to false negative results, such
uncontrollable nodes in krogan accounts for a larger proportion than yeast and human
which leads to lower recall value in krogan.

L3 Limitations
L3 is a network-based approach to predict PPIs, it opposes the traditional idea that if
two proteins share multiple neighbors, they tend to interact with each other. The author
thinks similar proteins are not necessarily interact and interacting proteins are not
necessarily similar. Through the study of a variety of protein pairs, the author draws a
conclusion that proteins are likely to interact not if they are similar to each other, but if
one of them is similar to the other’s partners and the probability that two proteins
interact is determined by their L3 score which is calculated by Eq. 5. For each protein
pair, X and Y:

pXY ¼
X
U;V

aXUaUVaVYffiffiffiffiffiffiffiffiffiffi
kUkV
p ð5Þ

where kU is the degree of node U and aXU equals to 1 if protein X and protein U
interact, and 0 otherwise. In contrast to numerous traditional models based on the
similarity of proteins, L3 achieves better results. However, L3 is still not strong enough
and have some limitations for PPIs prediction.

L3 dependents on the known interacting protein pairs strongly, it supports the idea
that if protein A interact with protein B and protein A is similar with protein C, protein
B can interact with protein C, too. This idea requires a complete database, incomplete
PPIs dataset limits the performance of L3 vastly. Supposing there is a protein D which
appears in test set immensely, many protein pairs containing protein D need to be
predicted, but it never appears in training set. Obviously, the probability that protein

Fig. 5. A part of PPIs identified by our approach
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pairs involving protein D interact can’t be predicted. Because we don’t know which
proteins are able to interact with protein D and which proteins are similar with protein
D according to training set. If there are many proteins like protein D in test set, the
performance of L3 is greatly compromised. Nevertheless, we describe each protein
with a mixed membership in aMMSB model to represent its degree membership for
each community even when the node appears in test set and not appears in training set,
which allows us to predict interacting probability of all the protein pairs involved in test
set. In additional, for more comprehensive results, the author checked the performance
of paths up to l = 8, and l = 3 is proved to be the best path in predictive power.
Consistent with this, our model is flexible in the number of community. The com-
munity strength for PPIs network and the community membership for each node are
both K dimensional vector where K is available to set. Given different number K,
aMMSB can get different performance.

Beyond that, the hypothesis of L3 is not always correct, we show the superiority of
aMMSB over L3 with a specific example in Fig. 5. Based on the hypothesis of L3 with
the thick green lines, L3 score of LCE3C and GADD45G is not equal to zero obvi-
ously. In fact, they are predicted to interact by L3 finally. However, the truth is that
LCE3C and GADD45G are in negative test set, they don’t interact with each other,
which is correctly predicted by aMMSB. Except predictive power, aMMSB also
provides new mechanistic insights into protein function. With the thick red lines in
Fig. 5, LCE3C belongs to LCE family and it is a structural component of the cornified
envelope of the stratum corneum involved in innate cutaneous host defense. KRTAP
belongs to KRTAP family where KRTAP 1-1 and KRTAP 1-3 belongs to KRTAP type
1 family, KRTAP 2-4 belongs to KRTAP type 2 family, KRTAP 4-5 belongs to
KRTAP type 4 family and KRTAP 9-3 belongs to KRTAP type 9 family. Keratin-
associated proteins (KRTAP) consists hair keratin intermediate filaments in the hair
cortex, they are essential for the formation of a rigid and resistant hair shaft through
their extensive disulfide bond cross-linking with abundant cysteine residues of hair
keratins. The interactions between LCE3C and KRTAP 1-1, KRTAP 1-3, KRTAP 2-4,
KRTAP 4-5, KRTAP 9-3 have been proved in IntAct [15], all of them can participant
the biological process of keratinization (GO: 0031424). Their interactions are correctly
predicted by aMMSB, but they are predicted to not interact in L3.

Fig. 6. A part of PPIs predicted by our approach and not included in our dataset
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Predicted Protein Pairs Outside the Dataset
Besides the test set, our model can also predict the protein pairs out of the dataset.
aMMSB allows each protein to own a mixed membership and assign community
strength to each community. With only the two elements, the interacting probability of
any protein pairs can be predicted. That is, aMMSB can predict any combinations of
protein pairs in dataset only with their mixed memberships and community strength. If
there is N proteins in dataset, instead of being limited to test set, N N � 1ð Þ=2 protein
pairs can be predicted by our model. Figure 6 shows a part of protein pairs which is
predicted to interact and not belongs to the dataset. All the interactions in Fig. 6 have
been proved in STRING [24].

4 Conclusion

We apply a probabilistic model aMMSB to predict PPIs, this model is able to classify
protein pairs into interacting pairs and non-interacting pairs with high accuracy and
high precision, it is also available to calculate the exact probability of interacting pairs.
The basic idea of our approach is that a node may belongs to several communities, it is
common with the reality of proteins in multiple biological processes. Besides, the great
performance of our approach also provides us a new sight to cellular mechanisms
research. The success of the method is based on its ability to capture the structure of
whole network and mixed membership of each node. The experimental results show
that our approach obtains excellent performance in numerous evaluating measures and
outperforms L3 model greatly.

Funding. This work has been supported by the National Natural Science Foundation of China
[grant number 61602352], and the Pioneer Hundred Talents Program of Chinese Academy of
Sciences.
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