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Abstract. Network embedding aims to learn the low-dimensional node repre-
sentations from high-dimensional network structures of complex systems.
Embedding in dynamic networks is a very difficult but important problem due to
the dynamics of network structures in real-world systems and the high com-
putational complexity. In this paper, we propose a novel Graph Temporal
Convolution Network (short for GTCN) for the dynamic network embedding.
In GTCN, a graph convolution network is used to learn the embedding repre-
sentations of nodes in each snapshot, while a temporal convolutional network is
adopted to parallelly reveal the evolution of node structures in dynamic net-
works. Extensive experiments on six real dynamic networks show that GTCN
has a better performance than the state-art-of-art dynamic network embedding
methods in tackling prediction tasks.

Keywords: Dynamic network � Network embedding � Graph convolution �
Temporal convolution

1 Introduction

With the development of graphics technology, networks with link structures have
become more and more worth studying [1]. In an actual system, nodes and links of a
network represent the entities and communications of the system, respectively. How-
ever, with the rapid development of the Internet and information systems, communi-
cations and entities have grown exponentially. It has been difficult to calculate or
express the structural properties of nodes and links in the network [2]. Network
embedding has been proved an effective method to learn low-dimension feature of
nodes in networks. The low-dimension feature not only preserves the structural features
of nodes, but also obtains dense feature representations [3, 4].

Previous embedding methods mainly work on static networks [2, 5–7]. These
models are usually designed to preserve local structures by GCN [7–9]. The embedding
performance of this encoder-decoder architecture is determined by a loss function
which determines the distance of local structures between the original and decoded
networks. Classical network embedding methods include the matrix factorization-based
approaches (DNR [10]) and the random walk based approaches (such as Deepwalk [5]
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and Node2vec [2]).The GCN architecture continuously merges information of neighbor
nodes by means of message propagation.

The relationship between nodes in social networks and biomolecular networks
always changes over time. Compared with static networks, dynamic networks are more
suitable for these systems, in which the addition and deletion of nodes and links
represent changes in node relationships in the system [11–13]. Moreover, in these
networks, network embedding needs to consider both the structure and temporal fea-
tures of the networks.

In recent years, some dynamic network embedding methods [14–16] have been
proposed. For instance, the methods like dynGEM [16] and dynTriad [14] generated
dynamic graph embedding based on a simplified assumption that graphs change
smoothly. [15] improved classic skip-gram method for dynamic network embedding by
updating the embedding of nodes whose links change most dramatic node embedding.
dynRNN [17] and dynAERNN [17] used a recursive layer to solve the problem of
inconsistent time spans. It is well known that Recurrent Neural Network (RNN) [18] is
difficult to train and have high computational cost. Recently, many methods have been
proposed for processing temporal data [19–21].

In this paper, we propose a novel model (called GTCN), which preserves both the
structural and the temporal feature of dynamic network. GTCN uses GCNto get the
embedding vector of each node in each snapshot. Then, it exploits TCN [22] to gen-
erate the nodes embedding that evolves over time. Extensive experiments on six real-
world networks demonstrate that GTCN outperforms the state-of-the-art methods in
link prediction.

2 Problem Definition

Adynamic network can be represented byG ¼ fG1;G2; :. . .GTg, where T is the total time
step, while Gt is the snapshot of the dynamic graph at time stamp t. Each Gt ¼ fV t; Etg
represents undirected graph, where V t denotes node set and Et denotes link set at time t.
Additionally, we can represent its links as a symmetric adjacency matrix
At ¼ ½At

ij� 2 Rn�n, where n is the number of nodes, with each entry fi; jg of the matrix as

At
ij ¼

1 if etij 2 Et

0 otherwise

�
:

Dynamic network embedding aims to obtain the latent representation of each node,
so that the latent representation embt;2i 2 Rf2�1 (the embedding of node i) can capture
both the current time graph structure information and the time information of the graph
sequence.
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3 Our Solution: GTCN

Our model consists of two parts. First, we apply GCN to deal with current time graph
structure feature. Then, we exploit TCN to obtain past time temporal information.

3.1 Current Time Graph Structure Feature

This layer is consisted of 2 GCNs [7], used to grasp the current topology features of the
graph.

For the first layer of GCN, the input are the adjacency matrix At 2 Rn�n and the
node feature matrix Ft 2 Rn�n at time t.

Because the dataset used does not have node features, in general, the identity matrix
is used as the node feature. Here, we use the following methods to calculate node
features.

F̂
t ¼ IN þAt

Ft ¼ 1þ td � Ft�1
� �

� F̂
t
;

ð1Þ

where t 2 f2; . . .; Tg, and F1 ¼ IN þA1. IN 2 Rn�n is the identity matrix, td is time
decay value, a hyper parameter and � is element-wise multiply. That means the longer
time the link remains, the higher the similarity between two nodes the link connected,
but once the link disappears, the similarity of the corresponding two nodes become zero
and re-accumulated.

The output of the first GCN layer l1 of a single snapshot is calculated as follows:

Zt;l1
s ¼ relu Â

t � Ft �Wt;l1
s

� �
; ð2Þ

where Zt;l1
s 2 Rn�d1 and Wt;l1

s 2 Rn�d1 is the parameters with dimensionality d1 of the
first GCN layer to be learned and relu is defined as:

relu xð Þ ¼ 1 if x[ 0
0 otherwise

�
;

and Â
t
is defined as:

~A
t ¼ At þ IN

~D
t
ii ¼

P
j

~A
t
ij

Â
t ¼ ð~DtÞ�

1
2 � ~At � ð~DtÞ�

1
2:

For the second GCN layer l2, the output of the first GCN layer Zt;l1
s serves as the

node feature of the second GCN layer and the output of second GCN layer is calculated
as:
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Zt;l2
s ¼ Â

t � Zt;l1
s �Wt;l2

s ; ð3Þ

where Zt;l2
s 2 Rn�d2 and Wt;l2

s 2 Rd1�d2 is the parameters with dimensionality d2 of the
second GCN layer.

Finally, we need to use the structure embedding vector [23] of each node Zt;l2
s to

reconstruct the adjacency matrix.

Â
t
s ¼ sigmoid Zt;l2

s � ðZt;l2
s ÞT

� �
; ð4Þ

where ðZt;l2
s ÞT means transpose of matrix Zt;l2

s . sigmoid is an activation function,
defined as sigmoidðxÞ ¼ 1

1þ ex.

Then, we compare the reconstructed matrix Â
t
s with the ground truth adjacency

matrix At at the current moment t as structure loss. Our goal is to minimize the structure
loss of time step t.

LS ¼
X
t¼1

normt
s Â

t
s � At

� �
� Bt

s

��� ���2
F
; ð5Þ

where normt
s is the normalization coefficient, defined as:

normt
s ¼

n� n
2 n� n� Etk kð Þ ;

Bt
s 2 Rn�n is the penalty matrix

Bt
s;ij ¼

n�n� Etk k
Etk k if etij 2 Et

0 otherwise

(
;

where Bt
s;ij is the element at the ith row and jth column of matrix Bt and � is element-

wise multiply.

3.2 Past Time Temporal Feature

In this section, we will use TCN to solve the temporal problem. In order to predict the
adjacency matrix of Gtþ 1, we need to consider all the time series information before
time tþ 1, that is fG1;G2; . . .;Gtg.

The input of this layer is the structural feature of each node of the graph at time
f1; 2; . . .; tg. Here we use the node representation Zt;l2

s obtained from the GCN above to

be the structural feature. We use Zt;l2
s;i� 2 R1�d2 , the ith row of the matrix, to represent the

structural feature of node i in Gt, then our input for the prediction of each node of Gt is
fZ1;l2

s;i�;Z
2;l2
s;i� ; . . .;Z

t;l2
s;i�g.
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Here we use 2 layers of TCN [22] as a model for processing temporal information.
Each layer of TCN consists of a dilated convolution, a causal convolution, and a skip
connection.

For convenience, we set Zt;l2
s;i� as:

Ht;0
i ¼ ðZt;l2

s;i�Þ
T ;

where Ht;0
i 2 Rd2�1 means the embedding vector of the node i of Gt in the layer 0, i.e.,

the ith row of Zt;l2
s .

For each layer l, dilated convolution and causal convolution is calculated as
follows:

Ĥ
t;l
i ¼ relu

Xk�1

j¼0

Wl
j � H

ðt�djÞ;ðl�1Þ
i

 !
; ð6Þ

where Wl
j 2 Rfl�fl�1 , fl is the number of filter (dimension of output) in lth layer, d is the

dilation factor and k is the filter size, and t � dj means the past focused step. Therefore,
you can consider d as the number of steps between two adjacent columns of the filter.
When d is equal to 1, it is equivalent to usual causal convolution. The larger d enables
an exponentially large receptive field, i.e., more information of graph dynamic
evolution.

For each layer, skip connection (residual connection) [24], add the original input to
the output,

Ht;l
i ¼ relu Wl � Ht;ðl�1Þ

i þ Ĥ
t;l
i

� �
; ð7Þ

where Wl 2 Rfl�fl�1 , used to make the dimension of original input and output equal.
Then, we use a linear layer and the output of the last TCN layer (here we use two

layer TCN, so embt;3i is the output of the last TCN layer) to reconstruct the vector
representation of the node i at the next time step tþ 1,

V̂
tþ 1
i ¼ sigmoid Wd � Ht;2

i þBd

� �
; ð8Þ

where Wd 2 Rn�f2 and Bd 2 Rn�1 are the parameters of the linear layer.
After obtaining the prediction vector representation of node i at next time step tþ 1,

we need to compare the difference between the predicted value and the ground truth,
and use this as our temporal loss to optimize,

LT ¼ normt
t

XT
t¼0

Xn
i¼0

V̂
tþ 1
i � Vtþ 1

i

� �
� Bt

t;i�

��� ���2
F
; ð9Þ
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where T is the total time step before tþ 1 and n is the number of nodes.Vtþ 1
i is the ith

row of the adjacency matrix A at time tþ 1. normt
t and B

t
t are the same as normt

s and B
t
s

separately except that it used tþ 1 nodes and edges information. And Bt
t;i� 2 Rn�1 is

the ith row of Bt
t.

3.3 Total Architecture

In this section, we will present the key components ofour overall model.

Current Time Graph Structure Feature Block: For this module, we aim to capture
the topological features and the neighbor characteristics of the nodes at each time graph
Gt. The parameters at each time step are not shared, the output of this module will be
used as input to the next temporal module.

Past Time Temporal Feature Block: In this module, we will capture the temporal
features of the graph dynamic changing. We use all the graph structure information
before tþ 1 as input, i.e., fG1;G2; . . .;Gtg, and use TCN to predict Gtþ 1.

Objective: we define the loss for optimization as:

L ¼ minðLS þ aLT þ kLregÞ; ð10Þ

where LS is the graph structure feature loss and LT is the graph dynamic feature loss.a
is the parameters to control the contribution of LS and LT , which is between 0 and 1. k
is the parameter to control contribution of Lreg and Lreg is an L2-norm regularizer to
prevent overfitting, defined as:

Lreg ¼
1
2

Wk k2F ;

where W is all the parameters that need to be learned.

Optimization: We use the adam [25] optimizer.

4 Experimental Results

In this section, firstly we introduce 6 real-world dynamic networks as our data set, and
compare 5 models including 1 static graph embedding method and 4 dynamic
embedding approaches. Then, we analyze the experimental results of the model under
different data sets.
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4.1 Experimental Settings

Datasets. It consists of 6 real-life networks that include web forums, networks for
medical, school, workplace and citation relationship. The basic properties of the data
set are described in Table 1.

Comparison Models. We compare the performance of our model with other state-of-
the-art models including one static graph embedding model (SDNE [26]) and four
dynamic graph embedding models (dynGEM[16], Dyn2vecAE [17], Dyn2vecRNN
[17] and Dyn2vecAERNN [17]).

Task. In real networks, links between nodes tend to follow time changes. Therefore, it
is very important to use past node link information to predict changes in node con-
nections at the next moment. Here, we use link prediction as the criterion for judging
the pros and cons of our model. In the experiment, we use the information of the past
nodes 1; 2; 3; . . .; t to predict the embedding of nodes at the next moment tþ 1, and
calculate the relationship between nodes at tþ 1 snapshot with the binary classification
model. Finally, we compare the predicted node association with the ground truth
connections and adopt Mean Average Precision (mAP) as judging criteria.

We conduct experiments on the tasks of link prediction in dynamic graphs. Firstly,
we train the model and acquire the corresponding learned parameters on snapshots
fG1;G2; . . .;Gtg and apply V̂tþ 1 to predict links in Gtþ 1 during evaluation. At each
snapshot of the graph, links could be disappeared or added. We compare the perfor-
mance of different models in link prediction based on their own abilities.

Metrics. To evaluate the performance of link prediction learned by our model, we use
Mean Average Precision (mAP) and precision@k as the metrics.

Detailed Settings. For our datasets with short time steps, when training the model to
predict Gtþ 1, we will exploit all the graphs before time tþ 1, i.e., fG1;G2; . . .;Gtg. In
our experiment, we predict the T , T � 1, T � 2 and T � 3 graphs for each data set, and
train 20 times for each experiment. Finally, the average of the mAPs for 20 times with
4 time steps is selected as the final assessment metric.

Table 1. Statistics of dataset used in our experiments.

Network Nodes Links Time-step

fb-forum 899 33720 7
Hypertext 113 20818 7
Hospital 75 32424 8
School 242 125773 7
Email 167 82927 7
Workplace 92 9827 8
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Here, we choose 2-layer GCNs to extract the topology structural feature of each
snapshot of graphs, and 3-layer TCNs to obtain the dynamic evolution feature.

All the experiments are conducted on Linux platform with 2 GPU cores (Tesla
P100) and 32 GB RAM.

4.2 Result and Analysis

In this section we present the performance of different models for link prediction on
different datasets.

Table 2 shows the performance (mAP) of each algorithm on each data set. Among
them, we take mAP as the criterion for judging the pros and cons of the model. The
larger the mAP, the better performance of the model has.

Table 2. Experiment results on dynamic link prediction (mAP)

Network SDNE dynGEM dynAE
Average Max Average Max Average Max

fb-forum 0.0001 0.0001 0.0001 0.0002 0.0005 0.0005
Hypertext 0.4294 0.4383 0.3690 0.3841 0.3690 0.4211
Hospital 0.4738 0.4865 0.4637 0.4730 0.4515 0.4679
School 0.3619 0.3969 0.3484 0.3548 0.2623 0.3009
Email 0.0003 0.0003 0.0001 0.0002 0.2270 0.2568
Workplace 0.4182 0.4346 0.3735 0.4005 0.1970 0.2118

Network DynRNN DynAERNN GTCN [Ours]
Average Max Average Max Average Max

fb-forum 0.0002 0.0002 0.0051 0.0054 0.0274 0.0315
Hypertext 0.3818 0.3994 0.4039 0.4102 0.4816 0.5022
Hospital 0.4826 0.5111 0.5195 0.5339 0.4716 0.4885
School 0.4526 0.4712 0.3022 0.3121 0.5214 0.5406
Email 0.1605 0.2004 0.2475 0.2517 0.2661 0.2812
Workplace 0.2966 0.3296 0.3816 0.4052 0.4882 0.5033

Table 3. Experiment results on dynamic link prediction (Precision@k part-1)

Method Fb-forum(avg) Hypertext(avg) Email(avg)

P@100 P@500 P@1000 P@100 P@500 P@1000 P@100 P@500 P@1000

SDNE 0.000 0.001 0.000 0.323 0.404 0.397 0.000 0.000 0.001
dynGEM 0.000 0.001 0.000 0.065 0.164 0.220 0.000 0.000 0.000
dynAE 0.000 0.000 0.000 0.095 0.237 0.260 0.000 0.011 0.031
dynRNN 0.003 0.001 0.000 0.373 0.340 0.354 0.090 0.174 0.190
dynAERNN 0.003 0.001 0.003 0.395 0.383 0.367 0.068 0.202 0.229
GTCN [ours] 0.003 0.006 0.005 0.425 0.387 0.372 0.138 0.122 0.125
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From Table 2, we can see that SDNE, dynGEM, dynAE, dynRNN and
dynAERNN perform very poorly on fb-forum data set (smaller than 0.01 and 20 times
or smaller than the mAP of GTCN). The reason is that the edges in fb-forum change
very sharply at each moment, and both SDNE and dynGEM just consider the adjacency
matrix of the graph at the current moment as the training set to predict the graph
structure of next time step. Therefore, the violent changes cause SDNE and dynGEM to
become very difficult to predict next snapshot of the dynamic network. The dynAE,
dynRNN and dynAERNN methods can find long historical data information, but the
structure of Auto-encoder makes it difficult for them to mine the characteristics of
sparse graph structures. However, GTCN achieves better performance since GTCN
uses TCN to discover historical information, and then adopts GCN to cooperate with
time feature to some extent to alleviate the impact of the sparse graph structure.
However, the degree of the node of fb-forum is very small which results in the adja-
cency matrix being sparse. Thus, the number of edges that can be trained is small, the
training is insufficient and the number of nodes is too large which results in lower
accuracy for prediction. Hence, all the algorithms are not very good and even the best
performance (mAP) can only reach about 0.02. For email dataset, we also find the same
situation that using only the information from the previous moment is not enough to
discover the structural characteristics of the dynamic network.

Compared to other dynamic graph embedding algorithms, GTCN performs the best
on most of data sets. We attribute this to the GCN and the preprocessing of timing
features which contain the node features of each snapshot with a rough summary of
temporal information. Compared to dynGEM mentioned above, the model only focuses
on the changes in the links of the previous 1 time step graph, which is too short-sighted.
Compared with dynAE and dynRNN, the AE and RNN structures are not as good as
GCN for capturing the neighbor structure of each node in the graph. Furthermore, the
combination of structural features and temporal features are also impossible for AE and
RNN.

Table 3 and Table 4 show the precision@ k values for various data sets. The larger
the precision@ k is, the better the model performs. As we explained above, fb-forum
has many nodes, but links between nodes are sparse and change very sharply, which
leads to poor model learning. However, our model can still achieve better performance
than other models. For other small data sets, our model can also outperform than other
models in most of the datasets in P@100, P@500 and P@1000.

Table 4. Experiment results on dynamic link prediction (Precision@k part-2)

Method School (avg) Workplace (avg) Hospital (avg)

P@100 P@500 P@1000 P@100 P@500 P@1000 P@100 P@500 P@1000

SDNE 0.313 0.340 0.320 0.270 0.275 0.245 0.350 0.408 0.387
dynGEM 0.315 0.342 0.309 0.183 0.227 0.206 0.208 0.326 0.359
dynAE 0.118 0.136 0.124 0.160 0.131 0.135 0.138 0.269 0.322
dynRNN 0.318 0.242 0.200 0.290 0.311 0.281 0.255 0.423 0.442
dynAERNN 0.330 0.251 0.218 0.258 0.232 0.224 0.350 0.445 0.453
GTCN [ours] 0.705 0.575 0.502 0.615 0.430 0.353 0.385 0.390 0.396
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5 Conclusion

In this paper, we have proposed a dynamic network embedding method GTCN. The
model first captured the topology properties of the nodes in the graph by the GCN, and
then adopted TCN to capture the dynamic temporal changes of the nodes. Experimental
results have showed that our model not only captured the topology properties of nodes,
but also extracted dynamic temporal changes. They have also indicated that our pro-
posed method outperforms the state-of-the-art methods in link predictions.
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