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Abstract. Due to the huge amount of available omic data, classifying samples
according to various omics is a complex process. One of the most common
approaches consists of creating a classifier for each omic and subsequently
making a consensus among the classifiers that assigns to each sample the most
voted class among the outputs on the individual omics.
However, this approach does not consider the confidence in the prediction

ignoring that a biological information coming from a certain omic may be more
reliable than others. Therefore, it is here proposed a method consisting of a tree-
based multi-layer perceptron (MLP), which estimates the class-membership
probabilities for classification. In this way, it is not only possible to give rele-
vance to all the omics, but also to label as Unknown those samples for which the
classifier is uncertain in its prediction. The method was applied to a dataset
composed of 909 kidney cancer samples for which these three omics were
available: gene expression (mRNA), microRNA expression (miRNA) and
methylation profiles (meth) data. The method is valid also for other tissues and
on other omics (e.g. proteomics, copy number alterations data, single nucleotide
polymorphism data). The accuracy and weighted average f1-score of the model
are both higher than 95%. This tool can therefore be particularly useful in
clinical practice, allowing physicians to focus on the most interesting and
challenging samples.
Data availability: the code is freely accessible at https://github.com/

Bontempogianpaolo1/Consunsus-on-multi-omics, while mRNA, miRNA and
meth data can be obtained from the GDC database [2] or upon request to the
authors.
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1 Introduction

In recent years, the reduction of costs for the sequencing of biological molecules
including DNA, RNA and proteins has allowed the widespread of huge amounts of
data both in the form of large structured databases and in the form of repositories
specially created for the study of particular pathologies [1–3].

In this context, various omic data can be taken into account for the study and
analysis of samples, either tumor or healthy: gene expression data (mRNA), microRNA
expression data (miRNA), methylation data (meth), copy number alterations data
(CNA), single nucleotide polymorphism data (SNV), proteomics and phosphopro-
teomics data.

Two large strands are typically available in multi-omics analysis: first the subdi-
vision of the samples into its own classes [8–11] and second, the identification of
specific pathways and gene patterns in the dataset [12, 13].

This work is focus exclusively on the first strand; in particular, some methods are
presented for the classification of kidney cancer samples by simultaneously exploiting
the information from the mRNA, miRNA, and methylation (meth) data. Although the
work is focused on mRNA, miRNA and meth omics, it must be noticed that the same
algorithms can be applied to a greater number of omics or other omics in place of them.

In the multi-omics classification approach, a crucial step is represented by the
algorithm by which to integrate the classification results from each omic. One of the
standard approaches is to make a consensus among the various omics, such that the
multi-omic class is the most voted class among the outputs on the individual omics
[14, 15]. However, this approach has two main limitations. At first, it is difficult to
attribute to the multi-omic class in the case in which all the outputs of the individual
omics are completely disjoint or more than one class is equally voted among all the
omics. Secondly, each omic carries characteristics that may not be present in the other
omics. For classification purposes, therefore, the contribution of a single omic should
be considered according to the certainty in its classification.

This work proposes the use of a learning method that for each omic returns not only
the corresponding class, but also its membership probability to that class, overcoming
the main problem of standard consensus when the same sample is assigned to different
classes across the omics or when there is no clear class prevalence.

In addition, the use of the class-membership probability allows to filter samples
according to the class probability and consequently postpone for further analyses those
samples on which there is not enough certainty in the classification across all the omics.
This approach is particularly useful in creating automatic tools that, integrating dif-
ferent omic information, may favor clinical practice, by proposing a classification label
when all the omics are enough certain in their classification and, an Unknown label
when discrepancies are found across the omics. In this way, physicians can have a
quick look at well-defined samples and focus more on the most interesting and chal-
lenging cases where human control is crucial.
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2 Biological Data

Although the proposed method can be applied to any tissue and pathology, this work is
deal with the study of kidney tumor samples freely available in the Genomic Data
Commons (GDC) database [2]. The samples used in this study belong to three main
kindney tumor subtypes: kidney renal papillary cell carcinoma (KIRP), kidney renal
clear cell carcinoma (KIRCH) and kidney chromophobe (KICH). In addition, a reduced
number of healthy samples is available both for KIRP and KICH subtypes (usually
these tissues are healthy areas surrounding a KIRP or KICH tumor).

For KIRP, KIRCH and KICH subtypes, only samples samples available are
selected for mRNA, miRNA and meth data, obtaining a final dataset of 909 samples.

The mRNA, miRNA and meth data are tabular data commonly represented as
matrices, where the value in position (i, j) represents the amount of a specific biological
product or the intensity of a phenomenon (mRNA, miRNA and meth respectively) in a
specific sample. The mRNA, miRNA and meth matrices carry different biological
information.

The mRNA expression value is strictly related to the amount of its protein (higher is
the number, higher the amount of the protein) which regulates a specific pathway in the
cell life cycle.

The miRNA expression value indicates the amount of a specific miRNA, a small
noncoding RNA molecule which intervenes in the post-transcriptional process, regu-
lating the amount of produced final protein.

Methylation value refers to the methylation beta value, an estimate of the methy-
lation level computed as the ratio of intensities between methylated and unmethylated
alleles. The biological effect of the methylation consists of the change of the activity of
a DNA segment without changing its sequence (when methylation occurs, it reduces
the DNA transcription, thus consequently reducing the amount of protein).

It must be noticed that many biological molecules act together in order to regulate
the cell activity and that changes in the values of one or more omics can be correlated
to a specific pathology or a tumor subtype.

2.1 Data Preprocessing

After downloading and selecting samples for which both mRNA, miRNA and meth
data are available, the following preprocessing is performed:

– mRNA: 5000 features � 909 samples. Raw count data have originally about 60000
mRNA genes and have been normalized using the Variance Stabilizing Trasfor-
mation (VST) [16]. Then all not protein coding genes have been discarded reaching
about 20000 mRNA genes and z-score transformation has been performed. In the
end, the top 5000 mRNA genes with the highest standard deviation are selected.

– miRNA: 1200 features � 909 samples. The miRNA data have about 2000 miRNAs
and have been normalized using deseq [17]. Then pseudo-counts have been com-
puted as log2 count valueþ 1ð Þ. In the end, z-score transformation has been per-
formed and the top 1200 miRNAs with the highest standard deviation have been
selected.
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– meth: 5000 features � 909 samples. Among the 27000 features in methylation
array data obtained with Illumina Human Methylation 27 platform, the top 5000
with the highest standard deviation are selected. Since original data are intrinsically
normalized, no further normalization is required.

The 909 samples belong to 5 classes: tumor KIRCH: 509, tumor KIRP: 288,
tumor KICH: 65, healthy KIRCH: 24, healthy KIRP: 23.

They have been further divided into training set (75% of the samples) and test set
(25% of the samples) such that the latter includes the same proportion of samples
belonging to the different classes.

In order to test the model on samples that do not belong to the kidney classes, 37
stomach samples have been obtained from GDC [2], by applying the same prepro-
cessing steps described in 2.1. This dataset is used only as test test, without re-training
the kidney model to evaluate the ability of the probabilistic approaches, such as the tree
MLP classifier, to recognize unseen classes.

3 Method

An extension of the multi-layer perceptron (MLP) combining several MLPs in a tree
architecture (tree MLP) is here proposed. Such an architecture has been designed to
face with the classification of samples where no clear class prevalence was obtained
through the consensus of the various omic-based classifiers. Moreover, it aims at
identifying and filtering out samples uncertainly classified.

Since a MLP equipped with a cross-entropy loss function, with associated either
logistic sigmoid (two class problem) or softmax (multiclass problem), outputs the class-
membership posterior probabilities of the inputs [21], the proposed tree MLP classifier
is therefore able to return the class label and the associated probability of the sample
belonging to a class.

As it can be seen in Fig. 1, a tree-like architecture was created with MLP models as
nodes and trained separately on subsets of the training set. For this specific problem,
there are a root node (trained to recognize healthy from tumor samples) and two leaf
nodes. The former is trained on healthy samples and classifies them into KIRP and
KIRCH healthy tissues. The latter is trained on tumor samples and classifies them into
KIRP, KIRCH, and KICH tumors.

Therefore, given a new sample S, it will be classified by the root MLP as healthy or
tumor (yroot) with a class-membership probability Pr. After selecting the leaf node
corresponding to yroot, it returns the subclass label yleaf (tumor_KIRP, tumor_KIRCH,
and tumor_KICH for tumor leaf MLP; healthy_KIRP and healthy_KIRCH for normal
leaf MLP) with its class-membership probability Pleaf . The final class ypred is equal to
yleaf .
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Once the classification on each individual omic is performed, the final consensus is
built taking into account the final probabilities on each omic. Given:

– n: the number of the omics,
– m: the number of the classes,
– th: threshold on the omics, in order to filter predictions with low probabilities across

all the omics,
– tr: threshold on the classes, in order to select only samples with a not uniform

distribution of the class-membership probabilities across the m classes,
– Pij: the class membership probability for class i and omic j,
– Si = sumn

j¼1Pij: the sum of the probabilities on all the omics for a single class,
– Sa ¼ summ

i¼1Si: the sum of the probabilities on all the omics and all the samples,
– Sm ¼ Si=n: the mean of the probabilities on all the omics for a single class.

The consensus for a sample is built according to the next formula:

Unknown; if max
i

Smð Þ\thormax
i

Si=Sað Þ\tr

argmax
i

Sið Þotherwise

(

In that way, a sample with a low mean probability across all the omics is labelled as
Unknown.

In addition, when a sample receives similar Si values for more than one class, the
model is uncertain in its prediction. Therefore, a tr threshold is set in order to select
only samples with a not uniform distribution of the class-membership probabilities
across the m classes.

Fig. 1. Proposed tree MLP model: i) each node is trained on three different subsets of the
original dataset. (X, y) aims to distinguish between healthy and tumor samples, (X′, y′) between
subtypes of healthy samples and (X″, y″) between subtypes of tumor samples; ii) the output of
each node consists of the predicted label ypred and the class-membership probability P.
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This final consensus can be applied using any number of omics as long as each
omic represents different points of view of the same sample. Obviously, the larger the
number of the omics, the more reliable the consensus prediction can be.

Very small architectures in the implemented neural networks were used (e.g. MLP
with a single hidden layer with 20 neurons and a single activation layer) since the
chosen number of main PCA components is low. This structure is the same for all the
nodes of the tree MLP. Many hyper-parameters configurations have been considered.
In the end, gradient descent with back propagation and the cross entropy as loss
function were used. The optimizer was Adam.

In order to have a baseline for the results, a support vector machine (SVM) and a
random forest (RF) classifier have been applied to the training set (with hyper-
parameters optimization). Unless these models do not output a class-membership
probability, they can provide valuable insights onto the data. Since they are unable to
estimate the certainty of their prediction, the implementation of the consensus has been
slightly modified. The final consensus for SVM and RF classifiers is given by the
majority voting between the different omics.

On the other hand, to compare the tree MLP architecture with other methods that
return a class-membership probability, a standard MLP classifier and a Bayesian neural
network (BNN) were built.

The BNN model has the same structure as the MLP; however, it works in a
completely different way. Indeed, as the loss is modified with a Bayesian regularization
term, its weights are no longer deterministic like a standard MLP, but probabilistic, and
each neuron learns to follow probabilistic distributions.

Therefore, it is possible to infer the level of uncertainty of the class-membership
probability estimation of the input, which represents how much a sample belongs to a
given class. The model is applied to the sample n times and the median value among all
the output probabilities is selected as the final probability. For instance, if the median
value is 0.95, it means that the output is highly stable and its classification uncertainty
is very low.

All models have been tested both on the test set, consisting of kidney samples
belonging to the 5 classes of the training set, and on the 37 stomach cancer samples.

All models were implemented in Pytorch framework [22]. In addition, the Pyro
library [23] was used for the BNN to transform the parameters into random variables
and to run stochastic variational inference.

4 Results

In this section, the results related to the proposed method are presented, as well as those
of SVM, RF, MLP and BNN models. All performance metrics are obtained setting th =
0.9 and tr = 0.25. For tree MPL, MLP and BNN classifiers, all metrics are computed
discarding Unknown samples.

In detail, concerning the tree MLP classifier, it is reported the confusion matrix with
the classification results as well as the final consensus both on kidney test set (Fig. 2 (a))
and on 37 stomach samples (Fig. 2 (b)). Globally, the tree MLP method reached the
98% of accuracy and 97% of weighted average f1-score (Table 1). The metrics were
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computed disregarding Unknown samples as they had not been assigned to any classes.
The tree MLP classifier selected as Unknown the 21, 49% of kidney test set samples and
misclassified the 2% of the not Unknown samples.

Concerning the 37 stomach samples, all of them were correctly labelled as
Unknown (Table 1).

Consensus confusion matrices for SVM and RF classifiers on kidney samples are
reported in Fig. 3 (a-b). Both SVM and RF reached the 95% of accuracy and weighted
average f1-score.

It should be noticed that the consensus creation for SVM and RF is different from
that used in tree MLP, MLP and BNN models, since SVM and RF does not output the
class-membership probabilities. Therefore, for SVM and RF classifiers the consensus is
based on the majority voting on the three omics without considering class probabilities.
As a consequence, the results for SVM and RF on stomach samples are not reported,
since all the 37 stomach samples will be forced to one of the five kidney classes.

Fig. 2. Confusion matrices for tree MLP classifier on (a) kidney test set and (b) stomach set.

Fig. 3. Consensus confusion matrices on kidney test set on (a) SVM, (b) RF classifiers.
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In addition, the performances with standard MLP model on the kidney test set were
evaluated. After proper hyper-parameter tuning, the results obtained for the consensus
are reported in Fig. 4 (a). Globally, it reached the 99% of accuracy and 99% of
weighted average f1-score. All metrics were computed disregarding Unknown samples.
Standard MLP model classified as Unknown the 22, 80% of kidney samples and
misclassified the 1, 10% of the not Unknown samples. Concerning the 37 stomach
samples, all of them were correctly labelled as Unknown (see in Fig. 5 (a)).

Consensus performances obtained with the BNN model are reported in Fig. 4 (b).
The BNN model classified as Unknown the 20, 17% of kidney samples and mis-

classifies the 2% of the not Unknown samples. In addition, it achieved the 98% of
accuracy and the 98% of weighted average f1-score. However, concerning the 37
stomach samples, only the 73% of them were correctly labelled as Unknown (see in
Fig. 5 (b)).

Fig. 4. Consensus confusion matrices on kidney test set on (a) MLP, (b) BNN classifiers.

Fig. 5. Confusion matrices for (a) MLP classifier and (b) BNN on 37 stomach samples.
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In the end, the main results achieved for all the classifiers are reported in Table 1.

5 Discussion

As reported above, all the classifiers perform generally well. In fact, the accuracy and
weighted average f1-score is always higher or equal to 95% (see Table 1).

In detail, SVM and RF models reached high classification rates on the kidney test
set with accuracy and weighted average f1-score equal to 95%. Since these two models
always force a prediction, they prevent labelling samples as Unknown. Although it
could seem a minor issue, in real clinical practice, it is suitable to receive an Unknown
label when the classifier is uncertain in its prediction.

Compared to the majority voting consensus used for SVM and RF classifiers, the
proposed method analyses the probability values obtained on each omic and provides
an integrated assessment of all the probability values. Considering tree MLP, standard
MLP and BNN classifiers, they labelled as Unknown a similar percentage of kidney test
set samples (21.49%, 22.80%, 20.17%, respectively) and had a similar weighted
average f1-score (97%, 99%, 98%, respectively).

It should be noticed that, considering a tissue which the classifiers were not trained
on (stomach samples), tree MLP and MLP classifiers labelled all the 37 stomach
samples as Unknown, against the 73% of the BNN classifier.

Unlike the standard MLP, in a tree MLP model it is possible to retrain one of its
nodes separately. This aspect is crucial in the biological domain. In fact, new molecular
subtypes of the same tumor are continually redefined. In this case, the tree MLP model
can be updated on the new classes retraining only the involved nodes and not the entire
classifier, avoiding spare of time. In the MLP architectures, the threshold represents a
cut with respect to the class-membership point-wise posterior probabilities of the
inputs. On the other hand, in the BNN architecture, all the output probabilities esti-
mated for each sampling are summarized by a median value. This scalar can be used for
recognition thresholding. However, even if both techniques look identical, the proba-
bility value on which they act is completely different in nature. Therefore, a direct
comparison between the two MLP-based methods and the BNN architecture is not
completely possible. In the presented results, same th and tr values were applied to the

Table 1. Comparison between all the methods on the kidney test set. All the reported metrics
are computed with weighted average only on not Unknown samples. The support metric, or the
number of not Unknown samples, is the value on which the other metrics are based.

Precision Recall F1-score Accuracy Support Unknown

RF 95% 95% 95% 95% 228 –

SVM 95% 95% 95% 95% 228 –

tree MLP 97% 98% 97% 98% 179 21.4%
MLP 98% 99% 99% 99% 176 22.8%
BNN 98% 98% 98% 98% 182 20.17%
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three probabilistic approaches for the sake of comparison. This choice probably leaded
the BNN to be less selective in the classification of stomach samples.

In addition, it can be noticed that a key role in the results is played by the criteria
that has been used to obtain the final consensus across all the omics. In fact, the
proposed consensus algorithm labels as Unknown samples with a low mean probability
across all the omics or with similar sum probabilities on the classes (Si). In that way, it
prevents an unsafe labelling.

6 Conclusions

In the multi-omics classification task, the main limitation of the standard consensus is
given by the absence of a measure to check the relevance of each individual omic in the
classification.

Here, to overcome this problem, a tree MLP architecture is proposed to take into
account the reliability of the classification on the individual omics exploiting
uncertainty-aware models. Compared to the standard MLP and BNN architectures to
classify kidney test set, the tree MLP represents a good compromise in terms of
percentage of samples labelled as Unknown, and misclassification rate on the remaining
samples (21, 49% and 2% respectively). In addition, the tree MLP model significantly
outperforms the BNN model when predicting samples coming from a tissue on which
the model has not been trained. This aspect is particularly relevant in clinical practice,
since usually it is preferable to receive an Unknown label instead of a wrong prediction.
Moreover, compared to a standard MLP, the tree structure is particular effective in
applications where there is an ever-evolving knowledge, such as genetic complex
diseases studies, preventing the classifier to be trained from scratch.
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