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Abstract. Accurate identification of drug-target interactions (DTIs) is essential
for drug development. It not only helps the researchers to understand the
mechanism of drug action, but also contributes to the innovative drug discovery
and repositioning. However, due to the limitation the high cost and long time,
the traditional experimental methods are difficult to be widely applied for DTIs
prediction. In this study, we propose an in silico method for predicting drug-
target interactions by Node2vec node embedding in molecular associations
network (MAN). Specifically, the MAN is constructed by integrating the
associations among drug, protein, disease, lncRNA and miRNA. Then, the
node2vec embedding method is employed to obtain a behavior feature vector of
each node in the network. The traditional attribute feature vector comes from the
drug molecular fingerprint and protein sequences. Finally, a random forest
(RF) classifier is performed on these features to predict potential drug-target
pairs. The experimental results show that the behavior feature could obtain
87.37% accuracy, which is obviously better than the traditional attribute feature.
This work is not only more robust and reliable for predicting DTIs, but also
provides an alternative way for other biomolecules associations prediction.
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1 Introduction

Most drug molecules usually perform their functions through the interaction with target
proteins in human body. The discovery for drug targets has become the significant
focus of innovative drugs research [1, 2]. Hence, prediction of drug-target interactions
(DTIs) is one of the most important steps in genomic drug discovery pipeline and drug
repurposing [3–5], the purpose is to discover putative new drugs and new uses of
existing drugs. Nevertheless, due to the limitation of throughput and cost, the
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traditional experimental methods are difficult to be widely applied for DTIs prediction.
It is of great significance to develop effective calculation methods to predict the
interaction between drugs and targets.

Recently, there are already a variety of calculation methods used to identify
molecular associations [6–16], especially the interaction between drugs and targets
[17–21]. Luo et al. developed a computational pipeline to detect novel DTIs from a
constructed heterogeneous network, which achieves substantial performance
improvement over other state-of-the-art methods [22]. Van Laarhoven et al. proposed a
simple machine learning method that uses Gaussian interaction profile kernel and
regularized least squares for predicting drug-target interactions [23]. Chen et al. pro-
posed a drug-target interaction prediction method by random walk on a large-scale
heterogeneous network, which combines drug-drug similarity network, protein-protein
similarity network and known drug-target interaction network [24]. Ezzat et al. provide
a comprehensive overview and empirical evaluation on the computational DTIs pre-
diction, which helps understanding the advantages and disadvantages of the state-of-
the-art methods [25]. Based on these methods, we proposed a multi-molecular network,
also called molecular associations network (MAN) [26] to detect the interactions
between drug candidate and related target proteins.

2 Materials and Methods

2.1 Datasets Construction

In the multi-molecular network, the high quality data mainly from nine open source
database, which obtained nine known relationships (shown in Table 1) and five types
of molecules (shown in Table 2). MAN contained topological relationships and dis-
tributions among all the molecules in the heterogeneous network. The drug molecular
data and target protein sequences can be collected from DrugBank database and
STRING database.

Table 1. Nine known relationships in the molecular associations network

Relationship Database Number

Drug-target DrugBank [27] 11107
Drug-disease CTD [28] 18416
Protein-disease DisGeNET [29] 25087
lncRNA-target LncRNA2Target [30] 690
lncRNA-disease LncRNADisease [31]

lncRNASNP2 [32]
1264

miRNA-target miRTarBase [33] 4944
miRNA-disease HMDD [34] 16427
miRNA-lncRNA lncRNASNP2 [32] 8374
Protein-protein STRING [35] 19237
Total N/A 105546
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2.2 Molecular Association Network

From the collection of nine known relationships between five types of biomolecules
annotated in many famous databases which mentioned above, we constructed a multi-
molecular network, also called Molecular Associations Network (MAN) by linking
arbitrary two association nodes. The complex molecular associations network is shown
in Fig. 1. Based on the known associations, some biomolecules are suggested to
interact with each other. In tfhe network graph, the heterogeneous nodes correspond to
five types of biomolecules (drug, protein, disease, miRNA and lncRNA), and edges
correspond to associations among them. The construction of systematic and MAN
network provides a new perspective for predicting interactions between drug and target.

Table 2. The number of 5 types of biomolecules from the nine known relationships

Biomolecule Number

Drug 1025
Target/Protein 1649
MiRNA 1023
LncRNA 769
Disease 2062
Total 6528

Fig. 1. Construction of multi-molecular network
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2.3 Network Embedding: Node2Vec

Grover Aditya and Jure Leskovec proposed a graph embedding method, called
Node2Vec, an algorithmic framework for learning continuous feature representations
for nodes in graphs [36]. Different from the traditional graph embedding model, it can
be seen as an extension of DeepWalk [37]. On the basis of DeepWalk, Node2Vec
introduces two biased random walk methods: breadth-first search (BFS) [38] and
depth-first search (DFS) [39], to characterize the structural equivalence and homophily
of the network. Compared with random walk without any guidance, this method
achieves the purpose of biased random walk by introducing Return Parameter and In-
out Parameter, that is, the whole random walk process moves between BFS and DFS
by setting different offsets. Take node V11 as an example, two search strategies as
shown in Fig. 2.

2.3.1 Biased Random Walk
Suppose that a random walk started with node M and end with node N. Here, due to the
use of two different search strategies (BFS and DFS), the selection of strategy will
directly affect the result of random walk. The unnormalized transition probability
algorithm is introduced to solve this problem. The transfer probability between the two
nodes can be described as follow:

pNX ¼ apqðM;XÞ � wNX ð1Þ

where, X represents the next position. w is the weight of the edge of the two nodes,
which is based on the scenario. a is search bias.

apqðM;XÞ ¼
1
p if dMX ¼ 0
1 if dMX ¼ 1
1
q if dMX ¼ 2

8<
: ð2Þ

where, dMX is the shortest distance between M and N; p is return parameter, which
controls the probability of returning to the original node; q represents in-out parameter,
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Fig. 2. Two search strategies from node V11 (step = 3)
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which controls the relationship between BFS and DFS. The setting of different p and
q determine the priority of node sequence. When training the model, to find the best
p and q by according to the needs of the scene and grid search.

(1) When d = 0, it means to return to node M from N. At this time, the search bias is 1/
p, which can be understood as returning to the previous step with a probability of 1/
p;

(2) When d = 1, X is the direct neighbor of M, which is equivalent to BFS, then the
bias is 1;

(3) When d = 2, X is the neighbor’s neighbor of M, which is equivalent to DFS, then
the bias is 1/q.

2.3.2 Feature Learning
Now, suppose there is a graph G = (V, E), where V is the set of nodes and E is the set of
edges. The objective function for maximizing log-property could be described as
follows:

max
f

X
v2V

logPrðNsðvÞ f ðvÞj Þ ð3Þ

where, function f: V —> Rd to represent the mapping from vertex to feature repre-
sentation, where d is a pre-set hyper-parameter that represents the dimension of feature
representation of each vertex. As a result, f is a matrix whose size is |V| � d. v 2 V, and
Ns(v) � V represents the neighbor vertex of vertex v under the sampling strategy s.

Assuming that the possibility of observing neighborhood nodes is independent of
the feature representation of observing any other neighborhood nodes of a given vertex,
so as to decompose this conditional probability, then

PrðNsðvÞ f ðvÞj Þ ¼
Y

ni2NSðvÞ
Pr ni f ðvÞjð Þ ð4Þ

Assuming that the influence between two vertices in the feature space is sym-
metrical, then

Pr ni f ðvÞjð Þ ¼ exp f nið Þ � f ðvÞð ÞP
x2V

expðf ðxÞ � f ðvÞÞ ð5Þ

The purpose of these two assumptions is to better handle the optimization problem.
Based on the above assumptions, the objective function can be simplified as follow:

maxf
X
v2V

�logZv þ
X

vi2NSðvÞ
f við Þ � f ðvÞ

2
4

3
5 ð6Þ
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For each node,

Zv ¼
X
x2V

expðf ðvÞ � f ðxÞÞ ð7Þ

2.4 Random Forest

Random forest (RF) is an ensemble algorithm that includes a number of decision trees
[40]. Focus on the problem of classification, each decision tree is treated as a classifier.
Each sample is input into each tree for classification, and the category with the largest
number of votes is designated as the final output.

In the process of feature importance assessment using random forest, it depends on
the contribution of each feature to each tree in the RF. The contribution usually
measured by Gini index or error rate of out-of-bag (OOB) data. Assuming that there is
n features f1, f2, f3,…, fn, the Gini variable importance measures (VIM) of each feature fi
can be described as follow:

Ginin ¼
X Mj j

m¼1

X
m0 6¼m

pnmpnm0 ¼ 1�
X Mj j

m¼1
p2nm ð8Þ

where, m represents m classes. pnm is the proportion of class k in node n.

2.5 Performance Measurement Tools

In our study, in order to size up the effectiveness and steadiness of our constructed
model, we counted the results of five parameters [41–43]: Accuracy (Acc), recall
(sensitivity, hit rate, or true positive rate (TPR)), specificity(selectivity, or true negative
rate (TNR)),precision (positive predictive value (PPV)) and Matthews’s Correlation
Coefficient (MCC), respectively. These parameters can be represented as follows:

Acc ¼ TPþ TN
TPþFPþ TN þFN

ð9Þ

TPR ¼ TP
TPþFN

ð10Þ

TNR ¼ TN
FPþ TN

ð11Þ

PPV ¼ TP
FPþ TP

ð12Þ

MCC ¼ ðTP� TNÞ � ðFP� FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþFNÞ � ðTN þFPÞ � ðTPþFPÞ � ðTN þFNÞp ð13Þ
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3 Results and Discussion

In this paper, a deep learning method was derived from the idea of molecular asso-
ciation network, and proposed for predicting DTIs. Then, the node2vec embedding
method was employed to obtain a behavior feature vector of each node from the multi-
molecular network, which is constructed by integrating the associations among drug,
protein, disease, lncRNA and miRNA. The good performance was obtained for this
method based on behavior feature than traditional attribute feature on the collected
datasets. Here, random forest classifier model was used to fulfill the experiment. During
this experiment, we set the same parameters to compare the performances of the two
different features on the model, the results as shown in Table 3 and 4. From the two
tables, it is obvious that the accuracy on behavior features is 5% higher than the
accuracy on attribute features under five-fold cross validation.

The ROC curve of random forest classifier based on attribute feature and behavior
feature with 5-fold cross-validation that is shown in Fig. 3 and Fig. 4, respectively. It is
obvious that the average of AUC is 0.8957 by using attribute information, the average
of AUC is 0.9396 by using behavior information based on MAN network. So the
behavior information of nodes play an important role in the DTIs predictions.

Table 3. Performance evaluation with RF on attribute features

5-folds Acc (%) TPR (%) TNR (%) PPV (%) MCC

1 81.91 79.97 83.84 83.19 0.6386
2 83.12 82.04 84.2 83.85 0.6626
3 82.2 80.6 83.8 83.26 0.6443
4 81.77 80.02 83.53 82.93 0.6359
5 81.75 79.95 83.55 82.94 0.6354
Average 82.15 – 0.57 80.52 – 0.89 83.78 – 0.27 83.23 – 0.37 0.6434 – 0.0113

Table 4. Performance evaluation with RF on behavior features

5-folds Acc (%) TPR (%) TNR (%) PPV (%) MCC

1 87.38 82.49 92.26 91.42 0.7511
2 87.89 83.3 92.48 91.72 0.7611
3 87.4 83.44 91.36 90.62 0.7503
4 86.72 81.37 92.08 91.13 0.7387
5 87.47 82.47 92.47 91.64 0.7532
Average 87.37 – 0.42 82.61 – 0.83 92.13 – 0.46 91.31 – 0.45 0.7509 – 0.0080
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4 Conclusion

In this study, we developed a deep learning method to discover the potential interaction
between drugs and target proteins on a large scale by investigating the relationship
among five molecules (drug, protein, miRNA, lncRNA and disease). And we construct
a novel scheme based on above five molecules and nine relationships between arbi-
trarily two molecules, which called MAN network. Focus on this network, each node
can obtain a feature vector by using node behavior information (the relationship of each
node with others could be described by node2vec graph embedding method). The
traditional attribute feature vector comes from the drug molecular fin-gerprint and
protein sequences on integrated dataset. Finally, a random forest (RF) classifier is

Fig. 3. The ROC curve of random forest on attribute feature

Fig. 4. The ROC curve of random forest on behavior feature
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performed on these features to predict potential drug-target pairs. Experimental results
indicated that the behavior feature could be performed better on random forest clas-
sifier. It is also demonstrated that the use of behavior information is very helpful for
addressing the problem of drug molecules and target proteins. This work is a new
attempt to predict DTIs and would have potential applications for drug discovery and
repositioning.
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