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Abstract. Protein-protein interactions (PPIs) play major roles in most biolog-
ical processes. Although a number of high-throughput technologies have been
established for generating PPIs, it still has unavoidable problems such as time-
consuming and labor intensive. In this paper, we develop a novel computational
method for predicting PPIs by combining dual-tree complex wavelet transform
(DTCWT) on substitution matrix representation (SMR) and weighted sparse
representation-based classifier (WSRC). When predicting PPIs of Yeast and
Human datasets, the proposed method obtained remarkable results with average
accuracies as high as 97.12% and 97.56%, respectively. The performance of the
proposed method is obviously better than the existing methods. Furthermore, we
compare it with the superior support vector machine (SVM) classifier for further
evaluating the prediction performance of our method. The promising results
illustrate that our method is robust and stable for predicting PPIs, and it is
anticipated that it would be a useful tool to predict PPIs in a large-scale.

Keywords: Protein-protein interactions � Protein sequence � Dual-tree complex
wavelet transform � Weighted sparse representation

1 Introduction

Identification of protein–protein interactions (PPIs) is crucial for studying protein
function and deep understanding of biological processes in a cell. In recent years, plenty
of high-throughput technologies, such as Yeast two-hybrid (Y2H) screens [1, 2], tandem
affinity purification (TAP) [3] and mass spectrometric protein complex identification
(MS-PCI) [4], have been developed for the large-scale PPIs detection. However, these
previous methods are expensive and require a great deal of human effort. In addition,
only a small part of the whole PPIs have been identified. Thus, we can draw a conclusion
that only using experimental methods is difficult to identify unknown PPIs.

In recent years, researchers have developed different types of computational
methods for the prediction of PPIs [5–16]. For example, Li et al. proposed a novel
computational model combining Position Weight Matrix (PWM) and Scale-Invariant
Feature Transform (SIFT) algorithm [17]. An et al. proposed an effective algorithm that
using Gray Wolf Optimizer–Based Relevance Vector Machine to identify PPIs [18].
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Zhu et al. proposed a useful tool which used the Position-Specific Scoring Matrices
(PSSMs) and ensemble learning algorithm Rotation Forest (RF) [19]. You et al.
developed a novel method for detecting PPIs by integrating a new protein sequence
substitution matrix feature representation and ensemble weighted sparse representation
model classifier [20]. Huang et al. proposed a sequence-based method based on the
combination of weighted sparse representation based classifier (WSRC) and global
encoding (GE) of amino acid sequence [21]. Wen et al. proposed an effective method
based on similar network fusion (SNF) model to integrate the physical and chemical
properties of proteins [22]. Leon Wong et al. presented a novel computational approach
that combining a Rotation Forest Model with a novel PR-LPQ Descriptor [23]. Huang
et al. developed an effective algorithm, which is based on Extreme Learning Machine
(ELM) and combined the concept of Chou’s Pseudo-Amino Acid Composition
(PseAAC) composition [24].

In this paper, we propose a novel computational method for predicting PPIs, which
combines weighted sparse representation based classifier (WSRC) and the dual-tree
complex wavelet transform (DTCWT). Specifically, we first select substitute matrix
representation (SMR) based on BLOSUM62 to represent protein sequences. Then, we
adopt the DTCWT to extract feature vectors from each SMR matrix. Finally, we utilize
WSRC to predict PPIs on two different biological datasets: Yeast and Human. Our
model achieves excellent performance results which obtain average accuracies of
97.12% and 97.56%, respectively. In order to further evaluating the proposed method,
we compared the WSRC with the state-of-the-art support vector machine
(SVM) classifier. The promising results demonstrated that the proposed method is
robust and stable for the prediction of PPIs.

2 Materials and Methodology

2.1 Godden Standard Datasets

The first dataset that we chose in this paper is gathered from publicly available database
of interacting proteins (DIP). We removed the protein pairs whose length are less than
50 residues because these might be fragments. The pairs with � 40% sequence identity
have been deleted too. In this way, the positive dataset is constructed by the remaining
5594 protein pairs. Moreover, we selected 5594 additional protein pairs of different
subcellular localizations to build the negative dataset. Consequently, the whole dataset
is made up of 11188 protein pairs.

In order to demonstrate the generality of the proposed method, we validated our
method on another PPI dataset. We collected the dataset from the Human Protein
References Database (HPRD). Those protein pairs which have � 25% sequence iden-
tity have been removed. Finally, we used the remaining 3899 protein-protein pairs of
experimentally verified PPIs from 2502 different human proteins, so that we can
comprise the golden standard positive dataset. Following the previous work [25], we
assume that the proteins in different subcellular compartments will not interact with each
other and finally obtained 4262 protein pairs from 661 different human proteins as the
negative dataset. As a result, the Human dataset is constructed by 8161 protein pairs.
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2.2 Substitution Matrix Representation

Substitution matrix representation (SMR) is a modified version of representation
method reported by [26]. In this novel matrix representation for proteins, we generated
a N � 20 matrix to represent the N-length protein sequence, which are based on a
substitution matrix. BLOSUM62 matrix is a powerful substitution matrix and has been
utilized in this work for the sequence alignment of proteins. SMR can be defined as
follows:

SMRði:jÞ ¼ BðPðiÞ; jÞ i ¼ 1 � � �N; j ¼ 1 � � � 20 ð1Þ

In this formula, B means the BLOSUM62 matrix, it is a 20 � 20 substitution
matrix and Bði; jÞ represents the value in row i and column j of BLOSUM62 matrix,
this value represents the probability rate of amino acid i converting to amino acid j in
the evolution process; P ¼ ðp1; p2 � � � pNÞ is the given protein sequence constructed by
N amino acids.

2.3 The Dual-Tree Complex Wavelet Transform

The dual-tree complex wavelet transform (DTCWT) [27] is a variant of the traditional
complex wavelet transform (DWT). It inherited the characteristics of the Multi-scale
and Multi-resolution of discrete wavelet transform. At the same time, it makes up for
the deficiencies of complex wavelet transform with large amount of calculation and
high complexity. Different with the traditional DWT, DTCWT utilized two real DWTs
to form a complex transform [28]. The first part symbolizes the real component and the
second part represents the imaginary component of this transform.

The DTCWT settled the matters about the “shift-invariant problems” and “direc-
tional selectivity in two or more dimensions,” which are both weak points of con-
ventional DWT [29]. It acquired directional selectivity by using approximate analytic
wavelets. It also has the skills to generate a total of six directionally discriminating sub-
bands oriented in the �15�, �45� and �75� directions, for both the real ðRÞ and
imaginary ðIÞ parts. Let hiðnÞ and giðnÞ be the filters in the first stage. Let the new stage

response of the first filter bank be HðkÞ
newðejwÞ and second filter bank be H
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A 2D image f ðx; yÞ can be decomposed by 2D DTCWT over a series of dilations and
translations of a complicated scaling function and six complex wavelet function uh

j;l;
that is:

f ðx; yÞ ¼
X
l2Z2

sj0;l/j0 l
ðx;yÞ þ

X
h2H

X
j� j0

X
l2Z2

chj ; l
uh
j ; lðx;yÞ ð4Þ

where h 2 H ¼ �15�; �45�; �75�f g gives the directionality of the complex wavelet
function.

2.4 Weighted Sparse Representation-Based Classification

In the past twenty years, sparse representation based classifier (SRC) [30, 31] has
earned considerable attention in the field of signal processing, pattern recognition and
computer vision because of the great development of linear representation methods
(LRBM) and compressed sensing (CS) theory. Sparse representation attempts to
optimize matrix to reveal the relationship between any given test sample and the
training set. Therefore, it would be a good trial to use it for building a prediction system
for PPIs. In this work, we build a computational model by employing weighted sparse
representation-based classifier (WSRC).

Given a training sample matrix x 2 Rm � n which is made up of n samples of m
dimensions. If there are sufficient training samples belonging to the kth class, then the
sub-matrix constructed by the samples of the kth class can be symbolized as
Xk lk1; lk2 � � � lknk½ �, where li denotes the class of ith sample and nk is the number of
samples belonging to kth class. Thus, X can be further rewritten as X ¼ X1;X2 � � �XK½ �,
where K is the class number of the whole samples. Given a test sample y 2 Rm and it
can be represented as

y ¼ ak;1lk;1 þ ak;2lk;2 þ � � � þ ak;nk lk;nk ð5Þ

when considering the whole training set representation, Eq. (5) can be further sym-
bolized as

y ¼ Xa0 ð6Þ

where a0 ¼ 0; . . .0; ak;2; � � � ; ak;nk ; 0; � � � 0
� �T

. For these reason that the nonzero entries
in a0 are only associated with the kth class, so if class number of samples become large,
the a0 would come to be sparse. The key question of SRC algorithm is searching the a
vector which can subject to Eq. (6) and minimize the ‘0-norm of itself:

ba0 ¼ argmin ak k0
subject to y ¼ Xa

ð7Þ

Problem (7) is an NP-hard problem and it can be achieved but difficultly to be solved
precisely. According to the theory of compressive sensing [32, 33] show, if a is sparse

Predicting Protein-Protein Interactions 135



enough, we can solve the related problem convex l1-minimization problem instead of
solving the l0-minimization problem directly.

ba1 ¼ argmin ak k1
subject to y ¼ Xa

ð8Þ

When dealing with occlusion, we should extend Eq. (8) to the stable ‘1-mini-
mization problem

ba1 ¼ argmin ak k1
subject to y� Xak k	 e

ð9Þ

where e[ 0 represent the tolerance of reconstruction error. Given the solution from
Eq. (9), the SRC algorithm assigns the label of test sample y to class c with the
reconstruction residual:

min
c

rcðyÞ ¼ y� X ba1 ck k; c ¼ 1 � � �K ð10Þ

Besides sparse representation, Nearest Neighbor (NN) is another popular classifier
which only considering the influence of the Nearest Neighbor in training data to
classify the test sample and SRC uses the linearity structure of data and overcomes the
drawback of NN. Some researches shows that locality is more essential than sparsity in
some cases [34, 35]. Lu et al. [36] have proposed a modified version of traditional
sparse representation based classifier called weighted sparse representation based
classifier (WSRC), it integrates the locality structure of data into basic sparse repre-
sentation. Specifically, Gaussian distance between single sample and the whole training
samples will be first computed and WSRC can use it as the weights of each training
sample. The Gaussian distance between two samples, s1 and s2 can be described as
follow:

dGðs1; s2Þ ¼ e� s1�s2k k2=2a2 ð11Þ

where r is the Gaussian kernel width. In this way, weighted sparse representation based
classifier can retain the locality structure of data and then it turned to solve the fol-
lowing problem:

ba1¼ argmin Wak k1
subject to y ¼ Xa

ð12Þ

specifically,

diagðWÞ ¼ dGðy; x11Þ; . . .; dGðy; xknk Þ
h iT

ð13Þ
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where W is a block-diagonal matrix of locality adaptor and nk is the sample number of
training set in class k. Dealing with this occlusion, we can eventually solve the fol-
lowing stable ‘1-minimization problem:

ba1¼ argmin Wak k1
subject to y� Xak k	 e

ð14Þ

where e [ 0 is the tolerance value.
In summary, the WSRC algorithm can be summarized by the following steps:

3 Results and Discussion

In order to evaluate the performance of the proposed method, the overall prediction
accuracy (Acc.), sensitivity (Sen.), precision (PR.), and Matthews’s correlation coef-
ficient (MCC.) were calculated. They are defined as follows:

Acc: ¼ TPþ TN
TPþFPþ TN þFN

ð15Þ

Sen: ¼ TP
TPþFN

ð16Þ

PR: ¼ TP
TPþFP

ð17Þ

MCC: ¼ TP� TN � FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ TNÞ � ðTN þFNÞ � ðTPþFPÞ � ðTN þFNÞp ð18Þ

In these algorithm, true positive (TP) represents the number of true samples which
are predicted correctly; false negative (FN) is the number of samples predicted to be
non-interacting pairs incorrectly; false positive (FP) is the number of true non-
interacting pairs predicted to be PPIs falsely; and true negative (TN) is the number of
true noninteracting pairs predicted correctly. What’s more, the receiver operating
characteristic (ROC) curves are also calculated to evaluate the performance of proposed
method. In order to summarize ROC curve in a numerical way, the area under an ROC
curve (AUC) was computed.
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3.1 Assessment of Prediction Ability

For the sake of fairness, when predicting PPIs of Yeast and Human, we set the same
corresponding parameters of weighted sparse representation-based classifier. We set the
r ¼ 1:5 and e ¼ 0:00005. In addition, 5-fold cross-validation [37] was employed in our
experiments in order to avoid overfitting and get a stable and reliable model from the
proposed method. Specifically, we divided the whole dataset into five subsets. Four of
the subsets are used for training and the last part was used for testing. By this way, the
results of these experiments in which we used the proposed model to predict PPIs of
Yeast and Human datasets are shown in Tables 1 and 2.

When using the proposed method to predict PPIs of the Yeast dataset, we obtained
the prediction results with average accuracy, precision, sensitivity, and MCC of
97.12%, 100%, 94.24% and 94.40%. The standard deviations of these criteria values
are relatively low, which of accuracy, precision, sensitivity and MCC are 0.35%,
0.00%, 0.69%, and 0.67%, respectively. Form Table 2, when exploring the Human
dataset, the proposed method yielded results of average accuracy, precision, sensitivity
and MCC of 97.56%, 99.49%, 95.40%, and 95.23%. The standard deviations are
0.63%, 0.32%, 1.21%, and 1.19%, respectively. The ROC curves performed on these
two datasets are shown in Fig. 1. To better evaluate the prediction performance of the
proposed method, we computed the AUC values of Yeast and Human datasets, which
are 97.14% and 97.31%, respectively.

Table 1. 5-fold cross-validation results obtained by using proposed method on Yeast dataset.

Testing set Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%)

1 96.65 100 93.24 93.50 96.59
2 97.63 100 95.14 95.36 98.01
3 97.18 100 94.43 94.52 96.92
4 97.00 100 94.02 94.18 97.04
5 97.14 100 94.38 94.44 97.16
Average 97.12 � 0.35 100 � 0.00 94.24 � 0.69 94.40 � 0.67 97.14 � 0.53

Table 2. 5-fold cross-validation results obtained by using proposed method on Human dataset.

Testing set Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%)

1 98.28 99.86 96.44 96.60 97.89
2 97.43 99.32 95.19 94.95 96.73
3 96.63 99.74 93.45 93.47 96.20
4 97.49 99.05 95.57 95.07 97.61
5 97.98 99.48 96.35 96.03 98.10
Average 97.56 � 0.63 99.49 � 0.32 95.40 � 1.21 95.23 � 1.19 97.31 � 0.81
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The high accuracies show that WSRC based model combining the SMR-DTCWT
descriptors is feasible and effective for predicting PPIs. All experimental results
demonstrate the feasibility, effectiveness and robustness of the proposed method.

3.2 Comparison with SVM-Based Method

In order to further evaluate the performance of the proposed method, we compared the
prediction performance of the proposed method with the state-of-the-art SVM classifier
on the dataset of Human and Yeast. We utilized the same feature extraction method and
a grid search method to optimize two corresponding parameters of SVM c and g. Here,
we set the c ¼ 0:3 and g ¼ 0:3.

Table 3 shows that when using SVM to predict PPIs of Yeast dataset, we obtained
relatively poor results with the average accuracy, precision, sensitivity, MCC, and
AUC of 84.74%, 83.44%, 86.71%, 74.11%, and 91.99%, respectively. When exploring
the Human dataset with the SVM-based method yielded relatively low results with the
average accuracy, precision, sensitivity, MCC, and AUC of 83.14%, 81.92%, 83.08%,
71.92%, and 90.57%, respectively. Considering the comparison result and higher
values for criteria and lower standard deviations, the prediction performance of SVM-
based method is lower than that of WSRC. The ROC curves performed by SVM
classifier on the two datasets are shown in Fig. 2.

Fig. 1. ROC from proposed method result for Yeast and Human PPIs dataset.

Table 3. Comparison with support vector machine on Yeast and Human datasets

Dataset Classifier Acc. (%) PR. (%) Sen. (%) MCC (%) AUC (%)

Yeast SVM 84.74 � 0.78 83.44 � 0.96 86.71 � 1.61 74.11 � 1.08 91.99 � 0.74
WSRC 97.12 � 0.35 100.00 � 0.00 94.24 � 0.69 94.40 � 0.67 97.14 � 0.53

Human SVM 83.14 � 0.83 81.92 � 1.19 83.08 � 2.17 71.92 � 1.09 90.57 � 0.41
WSRC 97.56 � 0.63 99.49 � 0.32 95.40 � 1.21 95.23 � 1.19 97.31 � 0.81
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4 Conclusions and Discussion

It is becoming more and more important to develop an effective and accurate method
for predicting PPIs. In this work, we explore a novel computation model for predicting
PPIs by combing weighted sparse representation-based classifier and the dual-tree
complex wavelet transform. In the step of feature extraction, it has been proven that it is
effective to combine the SMR matrix and dual-tree complex wavelet transform.
Compared with the previous methods, the main improvement of the proposed method
is to adopt a novel protein feature representation and utilizing a powerful classifier. In
addition, good experiment results indicate that the proposed method performs well in
PPIs prediction and has great generalization ability.
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