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Abstract. Bacterial foraging optimization (BFO), inspired from the foraging
process of bacterium called E.coli, has been applied successfully to a variety of
real world optimization problems. However, BFO easily encounters the issue of
poor convergence when dealing with complex landscapes of optimization
problems due to its inherent fixed chemotactic strategy. Aiming at the above
issue, an adaptive bacterial foraging optimizer is presented in this paper, which
is able to obtain a good balance between exploration and exploitation during the
search. In this approach, the chemotactic step-length is adjusted dynamically,
that is a larger chemotactic step is for global search and a smaller chemotactic
step is conducive to local search. Moreover, the outstanding swarming pattern is
incorporated to perform information sharing in population during the evolution,
aiming to maintain diversity and convergence. Simulation results on a set of
benchmark functions validate the effectiveness of the proposed algorithm.

Keywords: Bacteria foraging optimization � Adaptive chemotactic step �
Swarm intelligence

1 Introduction

As an important computation paradigm in artificial intelligence, swarm intelligence
algorithms, which are usually based on bio-inspired computation paradigms, have
received a surge of attentions recently. The promising examples include Genetic
Algorithm (GA) [1], Artificial Bee Colony (ABC) [2, 3], Particle Swarm Optimization
(PSO) [4], Brain Storm Optimization (BSO) [5], Ant Colony Optimization [6], etc.
Such biologically inspired algorithms are frequently used to optimize many-objective
problems [7]. Among them, bacterial foraging optimization (BFO) algorithm [8] was
firstly proposed by Passino in 2002 [9], based on the principle of foraging behaviors of
E.coli bacteria. The bacterial swarm is essentially a complex adaptive system, where
the foraging behaviors show the features of self-organization and self-adaptation. These
interesting patterns inspire to develop an optimization paradigm based on bacterial
foraging behaviors. Up to now, many improved BFO algorithms have been proposed
such as citations [10–14]. BFO algorithm has been applied to many real-world prob-
lems, such as harmonic signal estimation [15], PID controller design [16], optimal
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power flow [17] and optimal power system stabilizers design [18], load forecasting
[19], stock market prediction [20], optimum economic dispatch [21].

BFO algorithm solves single-objective the problem, which is different from multi-
objective algorithm [22]. When dealing with complex optimization problems, however,
BFO suffers from low convergence speed and being trapped into local optima easily.
According, this paradigm can’t obtain convincing results in a certain range of opti-
mization problems, due to a chemotactic step-length is always set as a constant no
matter which phase the optimization is. For this weakness, a modified adaptive bac-
terial foraging optimization (MABFO) algorithm is devised by incorporating a modi-
fied adaptive chemotactic strategy including adaptive step-length and adaptive
tumbling in this paper.

The remainder of this paper is organized as follows: Sect. 2 provides a brief
introduction to BFO. Section 3 introduces the proposed MABFO. The simulation
results of evaluating MABFO on nine benchmark functions and discussions are shown
in Sect. 4. The conclusion is drawn in Sect. 5.

2 Bacterial Foraging Optimization

In principle, bacteria tend to gather towards the nutrient-rich areas in the living envi-
ronment. In such dynamical environment, the most adapted bacteria survive into the
next generation and have a change to reproduce via natural selection, passing on their
genetic traits to their offspring. At the same time, those that can’t survive are elimi-
nated. Some bacteria may migrate to other places, leading to extinction and migration
operations in real bacterial population. In the search process, bacteria in population
share information via cell-to-cell communication. This foraging activity can inspire the
researchers to use it as optimization process.

The classical BFO algorithm comprises four processes, namely, chemotaxis,
swarming, reproduction and elimination-dispersal. The following is brief description of
these four processes.

2.1 Chemotaxis

This process simulates swimming behavior and tumbling behavior behavior of E.coli
bacteria via flagella. The movement ways of bacteria include two types: swimming and
tumbling. Biologically, bacteria can move in the above two ways alternatively, that is,
swimming in the same direction or possibly tumbling for a period of time. Suppose
hiðj; k; lÞ represents the position of ith bacterial after the jth chemotaxis operation, kth
reproduction operation and lth extinction and migration operation. C ið Þ represents the
swimming step-length of the ith individual in random selected direction, \/ðjÞ rep-
resents a vector of random direction. The mathematical expression of bacterial
chemotaxis phase is defined as follows:

hiðjþ 1; k; lÞ ¼ hiðj; k; lÞþCðiÞ\/ðjÞ ð1Þ
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2.2 Swarming

In this process, a cell-to-cell communication is simulated by releasing different signals.
As all bacterium are on the move, they release signals to attract other bacteria swim-
ming toward it. At the same time, each bacterium releases a rejection signal to warn
other bacteria maintaining a safe distance in face of harmful substances. Bacterial
foraging optimization algorithm simulates the social behavior of information sharing
and cooperation among bacteria. In the search process, bacteria should not only
remember their own information, but also consider the information of their companions
to transmit to each other. The numerical sequence expression of the influence value of
swarming can be formulated as follows:

Jccðh;Pðj; k; lÞÞ ¼
Xs

i¼1

Jiccðh; hiðj; k; lÞÞ

¼
Xs

i¼1

½hrepelent expð�wrepelent

Xp

m¼1

ðhm � himÞ2Þ�

þ
Xs

i¼1

½�dattract expð�wattract

Xp

m¼1

ðhm � himÞ2Þ�

ð2Þ

where s is the total number of bacteria. p is the number of optimized parameters for
each bacterium, that is, the position of individuals in the popultion. dattract, wattract,
hrepelent, wrepelent are different coefficients.

2.3 Reproduction

The evolution and development of bacteria follow principle of ‘The survival of the
fittest in natural selection’. After the chemotaxis process, some selections are obviously
failed, and the individuals with weak foraging ability are eliminated. The individuals
with strong foraging ability maintain stability of population quantity and improve
quality of population through reproduction.

Health status of each bacterium is represented by sum of adaptive values of each
chemotactic step-length in its life cycle:

Jihealth ¼
XNc
j¼1

Jði; j; k; lÞ ð3Þ

In order to avoid the disappearance of good feasible solutions in the search process, this
strategy eliminates the inferior ones and retain the excellent ones. All bacteria are
ordered according to the fitness function. Half of these bacteria with poor fitness will be
eliminated, and the remaining bacteria will replicate, so as to keep the number of
bacterial population unchanged.
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2.4 Elimination-Dispersal

E.coli bacterium may trap into local optimum. In order to improve the global search
ability, the bacteria will die or migrate after Nre reproduction operation. With the
probability of Ped , bacteria are dispersed to any location within the optimized region.
This elimination-dispersal operation can reduce the possibility of bacteria falling into
local optimal solution. The number of elimination-dispersal operation is denoted as
Ned .

3 Modified Adaptive Bacterial Foraging Optimization

During the search process of BFO, the search region size of population at different
phases is shown in Fig. 1 and Fig. 2. Figure 1 shows distribution of population at the
initial phase, and Fig. 2 demonstrates distribution of population at the later period. As
the algorithm runs, the search region becomes smaller. If a chemotactic step-length is
too small, the convergence speed will be slow. On the contrary, it may occur oscillation
phenomenon, as shown in Fig. 3, causing the bacteria to trap into local optimum easily.
Therefore, it is difficult to balance exploration and exploitation with a fixed chemotactic
step-length, which affects both the accuracy and speed of algorithm search. To sum-
marize, a proper chemotactic step-length is critical to the performance of BFO.

The size of chemotactic step-length is dynamically adjusted in the reproduction
process, which ensures the bacteria moving towards the global optimum quickly at the
beginning of whole search process, and converging to the global optimum accurately in
the end. In this way, it could balance exploration and exploitation of BFO.

Based on the above-mentioned analysis about changing chemotactic step-length,
we proposed an adaptive step-length based on dynamic search region in which at each

Fig. 1. Population distribution-1 Fig. 2. Population distribution-2
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reproduction and elimination-dispersal process of algorithm. The novel adaptive
chemotactic step-length formula is shown as follows:

Ciðk; lÞ ¼ k � R
Ti

Tmax
f

Rf ¼ Rðk;lÞ
Rð1;1Þ

Rðk; lÞ ¼ 1
n �

Pn
i¼1

jxi � xbestj

8>>>><
>>>>:

ð4Þ

where k is a constant controlling the step-leng that the beginning of whole search
process. xi is position of the ith bacterium xbest is the best position in current population.
Ti is total number of motion steps of ith bacterium in current reproduction phase. Tmax

is the ideally maximal number of motion steps in a reproduction phase. If Ti is larger,
the area ith bacterium searches is more likely to get the optimal value. Thus, a large
value Ci is needed to increase ability of exploitation. On the contrary, the value of Ci

for ith bacterium is less than other bacteria. This strategy is inspired by non-uniform
mutation [23]. This means that step-length of each bacterium in population may be
different at the same time, which greatly increases the local search ability of population.

Moreover, MABFO also introduced a mechanism that new position of each bac-
terium is calculated according to Eq. (5), which makes all bacteria moving towards the
global optimum as far as possible at the beginning of the iteration and maintaining
sufficient diversity. In this way, it can obtain expected convergence and diversity in the
whole search process.

hiðjþ 1; k; lÞ ¼ hiðj; k; lÞþCðiÞ\/ði; jÞ
\/ði; jÞ ¼ ð1� Rf Þ � \/rand þRf � Di

Di ¼ xbest � xi

8<
: ð5Þ

where \/ði; jÞ is direction of movement (swimming or tumbling) of ith bacterium in
the jth chemotaxis. \/rand is a random direction.

The pseudocode of MABFO is given in Table 1. pop represents the number of
bacteria. Ns represents the maximum number of swimming, Nc represents the maxi-
mum number of chemotaxis, Nre represents the maximum number of reproduction, Ned

represents the maximum number of elimination and dispersal, Ped represents the

A 0 B

C(k,l)>|AB|

X

F(X)

Fig. 3. Oscillation phenomenon of solution
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maximum number of elimination-dispersal. The main process include: first, the ini-
tialization procedure generates pop initial solutions. It performs chemotactic process
after initialization. Then it executes reproduction process. Finally, it carries out
elimination-dispersal process. The computational complexity of MABFO isn’t signif-
icantly different compared with classic BFO, because the size of chemotactic step-
length is only dynamically adjusted in the reproduction process.

4 Simulation Studies and Discussions

4.1 The Benchmark Function

To evaluate the performance of MABFO, nine benchmark functions selected from
citation [24] as follows (Table 2):

Table 1. Pseudocode of MABFO.
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The test suite includes nine benchmark functions in this paper, encompassing uni-
modal, simple multi-modal, hybrid and composition problems. Function F1 is uni-
modal function. Functions F2–F3, which are more complex optimization problems, are
simple multi-modal functions. Functions F4–F6 are hybrid functions, and functions
F7–F9 are composition functions. Both hybrid function and composition functions
consist of a variety of basic functions, where the number of local minimum increases
exponentially with the problem dimension. So they are considered to be the most
difficult class of optimization problems. More detailed function definition is given in
citation [24].

4.2 Parameter Settings

The performance of the proposed MABFO is evaluated on the benchmark functions in
comparison with PPBSO [25], ABFO [13] and BFO [8]. Here, the total number of
iterations for each algorithm is set as 2000. Additionally, as for other specific
parameters of each algorithm, as shown in Table 3:

It can be known from the description in Sect. 3, k is important for the performance
for the proposed algorithm. We should choose an appropriate value of k to further
improve the performance of the algorithm. Table 4 shows the stimulation results of
nine functions with different values of k. There are the largest number of functions that
can get the most accurate value when coefficient (k) is set as 1.0.

Table 2. Test function formula.

Functions Formula

Shifted and Rotated Zakharov Function F1ðxÞ ¼ f3ðMðx� o3ÞÞþ 300
Shifted and Rotated Expanded Scaffer’s
Function

F2ðxÞ ¼ f20ðMð0:5ðx�o6Þ
100 ÞÞþ 600

Shifted and Rotated Lunacek Bi_Rastrig-
in Function

F3ðxÞ ¼ f7ðMð600ðx�o7Þ
100 ÞÞþ 700

Hybrid Function 1 (N = 3) F4ðxÞ ¼ f3ðM1z1Þþ f4ðM2z2Þþ f5ðM3z3Þþ 1100
Hybrid Function 5 (N = 4) F5ðxÞ ¼ f1ðM1z1Þþ f18ðM2z2Þþ f5ðM3z3Þ

þ f4ðM3z3Þþ 1500

Hybrid Function 6 (N = 5) F6ðxÞ ¼ f16ðM1z1Þþ f13ðM2z2Þþ f19ðM3z3Þ
þ f10ðM2z2Þþ f5ðM3z3Þþ 1700

Composition Function 3 (N = 4)
F7ðxÞ ¼

PN
i¼1

fxi � ½kigiðxÞþ biasi�gþ 2300

Composition Function 6 (N = 5)
F8ðxÞ ¼

PN
i¼1

fxi � ½kigiðxÞþ biasi�gþ 2600

Composition Function 10 (N = 3)
F9ðxÞ ¼

PN
i¼1

fxi � ½kigiðxÞþ biasi�gþ 2900
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4.3 Simulation Results

The merits and characteristics of MABFO are discussed in comparison with PPBSO,
ABFO and BFO as follows. Table 5 demonstrates simulation results obtained by
MABFO, PPBSO, ABFO and BFO applied on the nine benchmark functions respec-
tively. The simulation results for these benchmark functions are shown in Fig. 1, 2, 3
and 4 which describe the convergence process of MABFO, PPBSO, ABFO and BFO
respectively.

Precision of Optimization: The proposed MABFO algorithm is evaluated on the 10-
dimension and 30-dimension benchmark functions in comparison with PPBSO, ABFO
and BFO respectively. Each algorithm runs 20 times to give a mean value of the best
solutions and a standard deviation.

Table 3. Parameter settings.

Algorithm Parameter

MABFO k ¼ 1:0; C min ¼ 0:01; Ns ¼ 4; Nc ¼ 250; Nre ¼ 4; Ned ¼ 2; Ped ¼ 0:25
PPBSO m ¼ 30;Ncmax ¼ 200;K ¼ 3; p5a ¼ 0:2; p6b ¼ 0:8; p6b3 ¼ 0:4; p6c ¼ 0:5;

wpredator ¼ 0:05; pprey ¼ 0:1

ABFO C min ¼ 0:01; C max ¼ 0:1; a ¼ 4; n ¼ 4; Ns ¼ 4; Nc ¼ 250;

Nre ¼ 4; Ned ¼ 2; Ped ¼ 0:25

BFO Ns ¼ 4; Nc ¼ 250; Nre ¼ 4; Ned ¼ 2; Ped ¼ 0:25

Table 4. Results with different values of coefficient k on test functions

Functions k ¼ 0:5 k ¼ 0:6 k ¼ 0:7 k ¼ 0:8 k ¼ 0:9 k ¼ 1:0

F1 10D 3.02e + 02 3.02e + 02 3.03e + 02 3.05e + 02 3.04e + 02 3.06e + 02

30D 3.62e + 04 3.36e + 04 2.93e + 04 2.38e + 04 2.23e + 04 1.79e + 04
F2 10D 6.14e + 02 6.13e + 02 6.11e + 02 6.10e + 02 6.08e + 02 6.07e + 02

30D 6.49e + 02 6.48e + 02 6.49e + 02 6.46e + 02 6.48e + 02 6.45e + 02
F3 10D 7.34e + 02 7.29e + 02 7.28e + 02 7.30e + 02 7.28e + 02 7.30e + 02

30D 1.16e + 03 1.11e + 03 1.06e + 03 1.06e + 03 1.04e + 03 1.03e + 03

F4 10D 1.11e + 03 1.12e + 03 1.11e + 03 1.11e + 03 1.11e + 03 1.11e + 03
30D 1.39e + 03 1.36e + 03 1.34e + 03 1.37e + 03 1.34e + 03 1.35e + 03

F5 10D 1.53e + 03 1.53e + 03 1.53e + 03 1.54e + 03 1.53e + 03 1.54e + 03

30D 1.94e + 04 2.02e + 04 2.59e + 04 1.83e + 04 2.56e + 04 2.86e + 04

F6 10D 1.75e + 03 1.74e + 03 1.74e + 03 1.74e + 03 1.74e + 03 1.75e + 03

30D 2.19e + 03 2.16e + 03 2.17e + 03 2.10e + 03 2.13e + 03 2.10e + 03
F7 10D 2.79e + 03 2.77e + 03 2.78e + 03 2.68e + 03 2.69e + 03 2.74e + 03

30D 4.57e + 03 4.41e + 03 4.42e + 03 4.39e + 03 4.25e + 03 4.32e + 03

F8 10D 2.97e + 03 2.86e + 03 2.89e + 03 2.86e + 03 2.95e + 03 2.85e + 03
30D 2.88e + 03 3.17e + 03 2.90e + 03 2.90e + 03 2.91e + 03 2.92e + 03

F9 10D 3.18e + 03 3.17e + 03 3.17e + 03 3.17e + 03 3.17e + 03 3.16e + 03
30D 3.88e + 03 3.83e + 03 3.91e + 03 3.72e + 03 3.72e + 03 3.75e + 03
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From Table 5, it can be seen clearly that the average convergence value of the
proposed MABFO algorithm ranks first for 13 times in total among the nine functions,
and has small deviation at the same time. This demonstrates that the search accuracy of
MABFO algorithm is better than the other three algorithms. This is because that the

Table 5. The performance comparison of MABFO, PPBSO, ABFO and BFO.

Functions MABFO PPBSO ABFO BFO

F1 10D Mean
SD

3.0584e + 02
2.6261e + 00

3.0000e + 02
4.5829e − 14

1.3749e + 03
4.0948e + 02

8.1190e + 03
3.7756e + 03

30D Mean
SD

1.7774e + 04
5.9123e + 03

8.8504e + 03
9.3753e + 03

1.2257e + 05
1.5786e + 04

1.4437e + 05
1.9211e + 04

F2 10D Mean
SD

6.0759e + 02
4.0422e + 00

6.2205e + 02
9.5718e + 00

6.2526e + 02
6.2246e + 00

6.4604e + 02
5.9501e + 00

30D Mean
SD

6.4593e + 02
7.7749e + 00

6.5011e + 02
7.7364e + 00

6.7454e + 02
5.4036e + 00

6.6973e + 02
4.4806e + 00

F3 10D Mean
SD

7.2814e + 02
5.1883e + 00

7.8390e + 02
2.9834e + 01

7.6519e + 02
1.1577e + 01

1.0776e + 03
9.2470e + 01

30D Mean
SD

1.0340e + 03
4.8066e + 01

1.3067e + 03
1.1808e + 02

1.7438e + 03
1.2740e + 02

3.1204e + 03
2.7588e + 02

F4 10D Mean
SD

1.1105e + 03
5.1915e + 00

1.1245e + 03
1.4632e + 01

1.1108e + 03
3.9058e + 00

1.1512e + 03
2.9547e + 01

30D Mean
SD

1.3347e + 03
4.7908e + 01

1.3363e + 03
8.1675e + 01

1.5922e + 03
6.6374e + 01

1.8618e + 04
7.6777e + 03

F5 10D Mean
SD

1.5373e + 03
1.8705e + 01

1.8244e + 03
4.2506e + 02

1.6795e + 03
7.3928e + 01

1.8381e + 03
1.4335e + 02

30D Mean
SD

2.8687e + 04
1.8467e + 04

1.2391e + 04
8.9803e + 03

6.3020e + 04
2.1868e + 04

1.0596e + 08
1.1227e + 08

F6 10D Mean
SD

1.7471e + 03
1.3037e + 01

1.7490e + 03
1.2734e + 01

1.7506e + 03
1.7534e + 01

1.8156e + 03
8.1156e + 01

30D Mean
SD

2.0732e + 03
1.6597e + 02

2.5271e + 03
3.3938e + 02

2.2469e + 03
1.4962e + 02

2.9394e + 03
3.1378e + 02

F7 10D Mean
SD

2.7222e + 03
1.0978e + 02

2.7292e + 03
5.0220e + 01

2.7269e + 03
3.8044e + 01

2.9380e + 03
6.8809e + 01

30D Mean
SD

4.2918e + 03
3.2712e + 02

3.5391e + 03
2.0798e + 02

3.9840e + 03
2.3874e + 02

4.5136e + 03
2.3819e + 02

F8 10D Mean
SD

2.8836e + 03
1.7279e + 02

2.9564e + 03
3.4298e + 02

2.8490e + 03
5.6717e + 01

3.2559e + 03
4.9001e + 02

30D Mean
SD

2.9342e + 03
1.1595e + 01

3.3389e + 03
1.6167e + 03

3.3761e + 03
2.7501e + 02

1.2707e + 04
1.3268e + 03

F9 10D Mean
SD

3.1692e + 03
1.8905e + 01

3.2022e + 03
8.2237e + 01

3.1800e + 03
2.2377e + 01

3.3064e + 03
9.0455e + 01

30D Mean
SD

3.7376e + 03
2.0469e + 02

4.0253e + 03
3.0944e + 02

4.0250e + 03
1.9343e + 02

4.9156e + 03
2.9212e + 02
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modified adaptive chemotactic step strategy of MABFO can help escape from local
optimum and improve its capability of searching global optimum.

Speed of Convergence: From the results presented in Fig. 4, 5, 6 and 7, comparing
MABFO and classic BFO, the adaptive chemotactic step-length mechanism of MABFO
can balance exploration and exploitation on the whole phase. Because MABFO can use
big chemotactic step-length for fast searching feasible solution region in exploration
phase, and for local search with small chemotactic step-length in exploitation phase
quickly. On the contrary, the constant chemotactic step-length of classic BFO unable to
maintain high-speed search ability in different environments.

From Fig. 4, 5, 6 and 7, we can find that the convergence speed of MABFO is
better than PPBSO, ABFO and BFO. The convergence speed of MABFO and PPBSO
at the same level roughly in the initial search phase. Because MABFO not only adds
mechanism of adaptive chemotactic step-length, but also introduces the adaptive
tumbling mode that makes full use of the information of the global best individual.

Fig. 4. Convergence curve of F2 10-D Fig. 5. Convergence curve of F9 10-D

Fig. 6. Convergence curve of F3 30-D Fig. 7. Convergence curve of F6 30-D

50 Y. Yong et al.



A larger chemotactic step-length and more suitable movement direction can obtain a
relatively better convergence speed in the initial search phase. Moreover, MABFO also
has faster convergence speed than other three algorithms in the middle and late stage of
whole search process, because it has a desired chemotactic step-length and direction in
the whole dynamic search region.

5 Conclusions

In this paper, a modified adaptive chemotaxis strategy in dynamic search region is
proposed to improve the BFO algorithm. Nine benchmark functions were then used to
test effectiveness of the proposed improvement. Compared with PPBSO, ABFO and
BFO, the proposed MABFO algorithm has fast search performance according to its
adaptive character in whole search phase. In a large number of scientific research and
engineering application practice, people found that biologically inspired algorithm has
some problems, mainly premature convergence, and easy to fall into the local optimal.
Evaluation results obtained on benchmark functions have proved the effectiveness of
the proposed MABFO algorithm in solving problems of premature convergence and
easy to fall into the local optimal. But the performance on the 30-dimension is worse
than that on the 10-dimension. This encourages us to study further to solve higher
dimensions optimization problems.
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