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Abstract. The data-driven method has recently obtained great success on sal-
iency prediction thanks to convolutional neural networks. In this paper, a novel
end-to-end deep saliency prediction method named VGG-SSM is proposed. This
model identifies three key components: feature extraction, self-attention module,
and multi-level integration. An encoder-decoder architecture is used to extract the
feature as a baseline. The multi-level integration constructs a symmetric
expanding path that enables precise localization. Global information of deep
layers is refined by a self-attention module which carefully coordinated with fine
details in distant portions of a feature map. Each component surely has its con-
tribution, and its efficiency is validated in the experiments. Additionally, In order
to capture several quality factors, the loss function is given by a linear combi-
nation of some saliency evaluation metrics. Through comparison with other
works, VGG-SSM gains a competitive performance on the public benchmarks,
SALICON 2017 version. The PyTorch implementation is available at https://
github.com/caoge5844/Saliency.
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1 Introduction

Capturing the salient area in a scene is an instinctive ability of human beings. For visual
saliency, it describes the spatial location which attracts the observer most. When
observing a graph without any special tasks, as an elusive process, humans can’t pay
attention to every portion with the same intensity. Many works show that computa-
tional saliency can be found usages in a wide range of applications like object
recognition [1], tracking regions of interest [2], and image retargeting [3] and so on.

With the advent of the deep neural network, saliency prediction also achieved great
success thanks to generous data-driven methods and large annotated datasets [4].
Generally, computational saliency models predict the probability distribution of the
location of eye attention over the images. Visual saliency data are traditionally colected
by eye-trackers [5], more recently with mouse clicks [4]. No matter which kind of
method is used to collect the saliency data, where human observers look in the images
is regarded as the ground truth to estimate the accuracy of the predicted saliency maps.
Through the computation of the proposed model, the predictions use various evaluation
metrics to evaluate how best of a saliency model. The work by [6] broadly classified the
various metrics as location-based or distribution-based. Though a large variety of
metrics to evaluate saliency prediction maps exist, the main difference between them
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concerns the ground-truth representation. In this paper, seven different evaluation
metrics are used to analyze and evaluate the proposed model.

Image

Groundtruth

Fig. 1. Example results of the proposed method on images from SALICON dataset.

A novel end-to-end saliency prediction architecture is proposed to predict the
saliency maps in this paper. Three key components in this architecture are identified
respectively. First is the encoder-decoder architecture which directly extracts feature
information. The second component is the self-attention module. The proposed model
incorporates a Self-attention module that focuses on global, long-range dependencies to
refine the details at every location. Each pixel in the feature maps can carefully
coordinate with distant portions in the feature map, not limit to convolutional com-
putation. In the third aspect, multi-level integration is constructed to reuse input feature
maps for more local semantic information. Except for structural modify, the combi-
nation loss function outperform other loss function used single metric. The paper
makes the following contributions:

1. This paper proposes a novel end-to-end saliency prediction method called VGG-
SSM. The whole architecture is divided into separate components and analysis their
efficiency respectively.

2. Self-attention module is incorporated with encoder-decoder based architecture to
enhance global saliency information. The multi-level integration also improves the
ability in local feature extraction.

3. The loss function used is formulated by some existing saliency metrics. The
combined loss function makes multiple competing metrics be satisfied in concert.

Figure 1 shows examples of saliency maps predicted by the proposed method,
which called the Saliency Self-attention Model (SSM), compared with ground truth
saliency maps obtained from eye fixation. The proposed method is validated on pub-
licly available datasets: SALICON. Experiments and evaluations results show that the
proposed method improves the predictions.

The remaining content is organized as follows. Section 2 summarized the related
work. The details of each component in the whole architecture and the loss functions
used are introduced in Sect. 3. Section 4 provides the experiments details and results.
Finally, Sect. 5 concludes the paper.
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2 Related Work

Previous work on saliency prediction focused on low-level features. Far-reaching work
by Itti [7] construct the first model to predict the saliency on images, which relied on
color, intensity, orientation maps, and integrated them to get a global saliency
map. After this seminal work, generous complementary methods about combining the
low-level features were put forward. Judd [5] collected eye-tracking data to learn a
model of saliency-based on low, middle, high-level features. Borji [8] combined low-
level feature of previous best bottom-up models with top-down cognitive visual fea-
tures and learn a direct mapping from those features to human eye fixations.

Same to other related fields of computer vision, deep learning solution achieved a
far superior performance once it was proposed on saliency detection. And with the
continuous progress of deep learning techniques, especially the success of Convolu-
tional architectures, the performance of saliency detection is still steadily improving.
Ensemble of Deep Networks (eDN) model by Vig et al. [9], one of the first proposals
using a data-driving approach and richly-parameterized model, successfully predict
image saliency map and outperform the previous work. After this proposal, many
works based on convolutional neural networks emerged. Cornia et al. [10] explored
combining CNN with recurrent architectures that focus on the most salient regions of
the input image to iteratively refine the predicted saliency map. Pan et al. [11] intro-
duced the Generative Adversarial Network into saliency detection. Their work used the
generator to predict saliency maps that resemble the ground truth, and the discriminator
to judge the authenticity of the saliency map. Recently, Reddy et al. [12] identified
input features, multi-level integration, readout architecture, and loss function and
proposed neater, minimal, more interpretable architecture, and achieved state-of-the-art
performance on the SALICON [4], the largest eye-fixation dataset. This dataset con-
tributed the availability of sufficient data and designed a mouse-contingent multi-
resolutional paradigm to enable large-scale data collection.

This paper proposes a network architecture combining with attention mechanisms,
which captures global dependencies. In particular, self-attention [13], also called intra-
attention, applies in the natural language process, calculates the response at a position
in a sequence by attending to all positions within the same sequence. Zhang et al. [14]
introduced the self-attention module for image generation tasks. The proposed archi-
tecture also combines the self-attention module to efficiently find global and large-
range dependencies within saliency maps.

3 Proposed Architecture

In this section, we introduce the proposed architectures, called SSM (Saliency Self-
attention Model).

In general, the whole architecture adopts the convolutional encoder-decoder archi-
tecture. Section 3-A shows the detail of the network. The main innovation is the self-
attention module, which is described in Sect. 3-B. Section 3-C shows the details of multi-
level integration. The combination of evaluation metrics is used to evaluate the proposed
network, and it is indicated in Sect. 3-D. Figure 2 shows the architecture of the proposal.
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Fig. 2. The overview of the proposed Saliency Self-attention Model. After computing multi-
scale feature maps on the inputs image through the encoder, a self-attention module based on
attention mechanism is used to improve the global feature. Through the decoder, the model
output the saliency prediction maps.

3.1 Overall Structure

The overall structure of the proposed network is introduced in this part. For saliency
prediction, the fully convolutional framework achieves a great performance. As illus-
trated in Fig. 2, the whole network could be divided into three parts. The first is the
feature maps extraction part, which can encode the input image and generate multi-
scale feature maps. The second i the self-attention module we show in the next
part. The third is the decoder, which upsamples the feature map to the same size with
input image. The input size is initially resized to 256 x256 and the initial channel is 3.
In the encoder part, the network is identical in architecture to VGG16 [15] except the
final max-pooling layer and three fully connected layers. Through the 13 convolutional
layers and 4 max-pooling layers, the last layer of encoder have a small feature map with
16 x16. And then the feature maps are fed into the self-attention module. For the
decoder part, its layers’ order is reversed with the encoder, with the max-pooling layers
replaced by upsampling to successively restore feature maps’ size. At the final of the
network is a 1 x1 convolutional layer with sigmoid non-linearity which ultimately
produces the predicted saliency maps. There also have three U-Net like architecture
that concatenates the same scale feature maps in encoder and decoder. Except for the
weights of the encoder which are initialized with VGG-16 models pre-trained on
ImageNet [16], other components’ weights are randomly initialized. Hence VGG-SSM
is used as the name for the proposed model.
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Fig. 3. The proposed self-attention module for VGG-SSM. The ® denotes matrix multiplication.

3.2 Self-attention Module

Most saliency prediction models are built using CNN (Convolutional Neural Network)
or RNN (Recurrent Neural Network). Unlike convolutional and recurrent operations,
which both focus on building blocks that process local feature at a time, a non-local
model [17] is adapted to combine self-attention with the previous part’s network. Non-
local means computing a weighted mean of all pixels in an image or a feature map. It
allows distant pixels to contribute to the filtered response at a location based on patch
appearance similarity. The self-attention module makes pixels in the feature map con-
nect with all other pixels, no matter how distant. The approaches of the self-attention
module are shown in Fig. 3. The input feature maps x € R7*W*C from the last layers of
the encoder is firstly transformed into two feature spaces with 1 x 1 convolution.

fx) =Wy xx, g(x) = Wy xx ()

where * denotes convolutional opration, Wy and Wy are the 1 x 1 convolution kernels
with C; channels. So f(x) and g(x) could be represented as f(x), g(x) € RF*W*€1,
Then the attention map could be computed as Eq. 2.

p = exp(s)/ (Z exp(s)) @)

where s = f(x)" g(x), in which f(x) and g(x) have been reshaped to {H x W x C;},
N = H x W. So after computing the softmax operation, the shape of § and s is the
same with {H x W,H x W,C,}. For memory efficiency, the method reduce the
channel to C; = C/k when computing 1 x1 convolution, and choose k =8 (i.e.,
C, = C/8) following [14] as the default value.

0 =B h(x) *W, (3)
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where h(x) = Wy xx. In the above formulation, Wy € RE*C, W, € REC,
Wy, € REXC W, € RO*C. Additionally, the output is multiplied by a learnable scale
parameter and added with the input feature map to avoid the information-vanishing in
the computed process of the network. Hence the final output is given by Eq. 4.

y=y0+x (4)

Where v is initialized to 0. The learnable 7y is introduced to make the network learn
the optimal weights for non-local evidence instead of accepting it directly.

3.3 Multi-level Integration

VGG-SSM employs a U-Net [18] like architecture that symmetrically expands the input
feature maps after the first upsampling layer decoder. Feature maps in encoder and
decoder with the same scale are concatenated to avoid information-vanishing. As shown
in Fig. 2, there are three integrations in the whole architecture. Every step of expansion
is composed of an upsampling of the feature map and concatenation with the same scale
feature map from the encoder. Additionally, three 3 x3 convolutional layers followed
by ReLLU are used to gradually extract deeper features at the original scale. The channels
and scales are the same as the parameters of the convolutional layer before max-pooling.

3.4 Loss Function

The loss function evaluates the performance of the predicted saliency map compare
with the ground truth. This paper uses a linear combination of three different saliency
evaluation metrics: Kullback-Leibler Divergence (KLdiv), Pearson Cross-Correlation
(CC), and Similarity (SIM). The new loss function is defined as follows:

L(T, 1) — aKLdiv (7, 1) +pcc (7, 1) S 9SIM (7, 1) (5)

where T and I are predicted saliency maps and the ground truth.
KLdiv is an information-theoretic measure of the difference between two proba-
bility distributions:

KLdiv (T, 1) =" Iiog (e+ t ) (6)

I+e

where i indexes the i pixel and ¢ is a regularization constant. So KLdiv is computed
on pixel-level.

CC is a statistical method used generally in the sciences for measuring how cor-
rected or dependent two variables are.

ce(1,1)=a(1,1)/(a(I) x a(I)) (7)

where a(i, I) denotes the covariance of T and I.
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SIM, also referred to as histogram intersection, measures the similarity between two
distributions. SIM is computed as the sum of the minimum values at each pixel, after

normalizing the input maps. Given a saliency map T and its ground truth I:

SIM(T, 1) =" min (7, 1) where Y T=Y"1=1 (8)

iterating over discrete pixel location i.

The results of experiments using the proposed combined loss function are shown in
Sect. 4-C.

4 Experiments and Results

The experiments’ details and comparison results are shown in this section. Section 3-A
shows the detail of the training process and other implementation details. Section 3-B
describes the contributions of each component. The comparison between different loss
functions is shown in Sect. 3-C. Finally, Sect. 3-D compares the proposed method with
other state of the art. Here describe each part in detail.

4.1 Experimental Setup

Datasets: For training the proposed model and verify the results, we use the largest
available dataset, SALICON [5] for saliency prediction. The dataset consists of 10,000
images for training, 5,000 images for validating, and 5,000 images for testing, taken
from Microsoft COCO dataset [19]. We train the proposed model on SALICON
datasets with 10,000 training images and use 5,000 images for validating. The ground
truth maps are recorded by eye-tracker. It also provides the eye fixation simulated by
mouse-click, but this part of the data is not used in the proposed method. The ground
truth maps of test dataset are not available publicly, so the prediction only could be
tested on the newest release, SALICON 2017, from the LSUN challenge.

Loss parameters: The parameters in the proposed loss function, o, 3, y are set to 10,
—1 and —1 to balance the contribution of each components of loss function individu-
ally. Differently from the KLdiv loss which value should be minimized, the CC and the
SIM loss is maximized to obtain the higher performance in saliency prediction. The
values of the balancing weights are chosen by the target of obtaining good results on all
evaluation metrics and by the numerical variation range single metrics have at
convergence.

Evaluation metrics: This paper uses seven different evaluation metrics [6] adopted by
SALICON to evaluate the proposed model. Among them, KLdiv, CC and SIM have
been demonstrated in Sect. 3-D. AUC is the area under the ROC curve, the most
widely used metric for evaluating saliency maps. The shuffled AUC metric (sAUC)
samples negatives from other images, instead of uniformly at random. The Normalized
Scanpath Saliency (NSS) is introduced to the saliency community as a simple
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correspondence measure between saliency maps and ground truth. Information Gain
(IG) measures saliency model performance beyond systematic bias as an information
theoretic metric.

Implementation Details: The training process resizes the input images into
256 x 256 resolution and trains VGG-SSM 30 epochs with the learning rate starting
from le—4 and reducing after 3 epochs. The ADAM optimization algorithm is
employed to train the whole network with the default batch size is set to 24. All the
training and testing are conducted on one NVIDIA GeForce GTX 1080 Ti GPU with
11 GB memory.

4.2 Contribution of Each Component

The contributions of the self-attention module and the multi-level integration on
SALICON test sets are described in this part. And the proposed combined loss function
is used in the evaluation. To this end, this paper constructs three different components:
the plain encoder-decoder architecture can be regarded as a baseline (This paper use
VGGM to represent it), the self-attention module, and the multi-level integration.
Table 1 illustrates the results of VGGM, VGGM plus self-attention module (Here use
VGGSAM to represent), and the final version of the proposed model with all its
components. As Table 1 shown, the results show that the overall architecture obtains
the best grades on every evaluation metric and each component gives a great contri-
bution to the final performance. It’s obvious that the overall architecture makes a
constant improvement on all metrics. For instance, the baseline achieved a result of
0.279 in terms of KLdiv, while it achieves a relative improvement of 5.0% with a self-
attention module, and the result is improved by 1.5% when adding multi-level
integration.

Table 1. Performance comparison of different version on test set of SALICON-2017.

Model | KLdiv | |CC 7| AUC 1|NSS 1/SIM 1]1G 1 [sAUC 1
VGGM 0279 | 0.854 0.858 | 1.839 |0.745 0.750 0.727
VGGSAM | 0.265 | 0.869 0.860 | 1.891 |0.759 |0.7950.732
VGGSSM | 0.261 | 0.875|0.861 |1.909 |0.764 | 0.802 0.733

4.3 Comparison Between Different Loss Functions

In this part, this paper verifies the effects of using different combinations of the loss
function on SALICON validation set.

In Table 2, we compare the proposed loss function with its components individ-
ually as loss functions (KLdiv, CC, SIM). The results on SALICON validation set
show the superiority of the proposed loss function. Although each single metric gain
the best performance on its own evaluation term, the other evaluation terms obtain
unsatisfactory results. Apparently, the combined loss function proposed to obtain an
excellent trade-off among all the evaluation terms.
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Table 2. Comparison between proposed loss function and its components using individually as
loss function on Validation set of SALICON-2017.

Loss Function KLdiv | |[CC T |SIM T
KLdiv 0.249 0.8720.764
CcC 1.145 0.881 | 0.760
SIM 1.133 0.878 1 0.773
KLdiv+CC+SIM | 0.251 0.876 | 0.769

Table 3 illustrates the result by adding CC and SIM to the KLdiv loss. Though we

obtain better results when adding CC loss to KLdiv loss on CC evaluation metric, it

brings reductions in other evaluation metrics. Higher performance can be achieved by
adding CC and SIM terms to the loss. KLdiv+CC+SIM loss get all the results to value
bold, which represent the best result upon different loss function.

Table 3. Comparison results between various loss functions on validation set of SALICON-

2017.

Loss Function KLdiv | |[CC T |SIM T
KLdiv 0.249 0.8720.764
KLdiv+CC 0.247 0.8750.767
KLdiv+CC+SIM | 0.251 0.876 | 0.769

4.4 Comparison with State-of-the-Art

The proposed models are compared with state of the art on SALICON test sets
quantitatively. Table 4 shows the results in terms of KLdiv, CC, AUC, NSS, SIM, IG,
and sSAUC. VGG-SSM achieves great performance on two different metrics and out-
performs other works by a large margin on KLdiv and IG. The proposed model also
obtains competitive performance on other metrics.

Table 4. Performance comparison with state-of-the-art on test set of SALICON-2017.

Model KLdiv | |CC T |AUC T|NSS 7|SIM 1 |IG T |sAUC T
VGG-SSM (Ours) | 0.261 0.875/0.861 |1.909 |0.764 |0.802|0.733
EMLNET [20] 0.520 0.886 0.866 |2.050 |0.780 |0.736 |0.746
SAM-Resnet [10] | 0.610 0.899 10.865 |1.990 |0.793 |0.538 |0.741
MSI-Net [21] 0.307 0.889 1 0.865 |1.931 |0.784 |0.793|0.736
GazeNet [22] 0.376 0.87910.864 |1.899 |0.773 |0.720 | 0.736
ryanDINet [23] 0.777 0.906  0.864 |1.979 |0.800 |0.347|0.742
Jinganu [23] 0.389 0.87910.862 |1.902 |0.773 |0.718 |0.733
Lvjincheng [23] |0.376 0.856 1 0.855 |1.829 |0.705 |0.613|0.726
Charleshuhy [23] | 0.288 0.856 1 0.863 |1.845 |0.768 |0.770|0.732
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5 Conclusions

In this paper, a saliency self-attention Model VGG-SSM upon encoder-decoder
architectures is proposed to predict saliency maps on natural images. This paper
identifies three important components and does experiments to demonstrate the con-
tribution of each part. The main novelty is the proposal of the self-attention module and
its efficiency has been proved. Additionally, this paper compares the results of kinds of
loss functions and validates the efficiency of combination loss function through an
extensive evaluation. VGG-SSM achieves competitive results on SALICON test set.
A similar method could be significant for other tasks that involve image refinement.
Furthermore, the proposed model can be combined with a more recurrent network for
potential further improvements.
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