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Abstract. Identification of drug-disease associations play an important role for
expediting drug development. In comparison with biological experiments for
drug repositioning, computational methods may reduce costs and shorten the
development cycle. Thus, a number of computational approaches have been
proposed for drug repositioning recently. In this study, we develop a novel
computational model WGMFDDA to infer potential drug-disease association
using weighted graph regularized matrix factorization (WGMF). Firstly, the
disease similarity and drug similarity are calculated on the basis of the medical
description information of diseases and chemical structures of drugs, respec-
tively. Then, weighted K-nearest neighbor is implemented to reformulate the
drug-disease association adjacency matrix. Finally, the framework of graph
regularized matrix factorization is utilized to reveal unknown associations of
drug with disease. To evaluate prediction performance of the proposed
WGMFDDA method, ten-fold cross-validation is performed on Fdataset.
WGMFDDA achieves a high AUC value of 0.939. Experiment results show that
the proposed method can be used as an efficient tool in the field of drug-disease
association prediction, and can provide valuable information for relevant
biomedical research.

Keywords: Drug-disease association � Graph regularization � Matrix
factorization � K-nearest neighbor

1 Introduction

New drug research and development is still a time-consuming, high-risky and
tremendously costly process [1–4]. Although the investment in new drug research and
development has been increasing, the number of new drugs approved by the US Food
and Drug Administration (FDA) has remained limited in the past few decades [5–
7]. Therefore, more and more biomedical researchers and pharmaceutical companies
are paying attention to the repositioning for existing drugs, which aims to infer the new
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therapeutic uses for these drugs [8–11]. For example, Thalidomide, and Minoxidil,
were repositioned as a treatment to insomnia and the androgenic alopecia, respectively
[12–15]. In other words, drug repositioning is actually to infer and discover potential
drug-disease associations [16].

Recently, some computational methods have been presented to identify associa-
tions of drugs with diseases, such as deep walk embedding [17, 18], rotation forest [19–
22], network analysis [23–25], text mining [26, 27] and machine learning [28–31], etc.
Martínez et al. proposed a new approach named DrugNet, which performs disease-drug
and drug-disease prioritization by constructing a heterogeneous network of intercon-
nected proteins, drugs and diseases [32]. Wang et al. developed a triple-layer hetero-
geneous network model called TL-HGBI to infer drug-disease potential associations
[33]. The network integrates association data and similarity about targets, drugs and
diseases. Luo et al. utilized Bi-Random walk algorithm and comprehensive similarity
measures (MBiRW) to infer new indications for existing drugs [34]. In fact, predicting
associations of drug with disease can be transformed into a recommendation system
problem [35–38]. Luo et al. developed a drug repositioning recommendation system
(DRRS) to identify new indications for a given drug [39]. In this work, we develop a
novel computational model WGMFDDA, which utilizes graph regularized matrix
factorization to infer the potential associations between drugs and diseases. The
experiment results indicate that the performance of WGMFDDA is better than other
compared methods.

2 Methods and Materials

2.1 Method Overview

To predict potential associations of drugs with diseases, the model of WGMFDDA
consists of three steps (See Fig. 1): (1) we measure the similarity for drugs and diseases
based on the collected dataset; (2) According to the weighted K-nearest neighbor
profiles of drugs and diseases, the drug-disease association adjacency matrix is re-
established; (3) the graph Laplacian regularization and Tikhonov (L2) terms are
incorporated into the standard Non-negative matrix factorization (NMF) framework to
calculate the drug-disease association scores.

2.2 Dataset

In this study, we obtain the dataset (Fdataset) from Gottlieb et al. [40]. This dataset is
used as the gold standard datasets for identifying drug-disease associations, which
includes 1933 known associations between 313 diseases and 593 drugs [41, 42]. In
order to more conveniently describe the drug-disease associations information, the
drug-disease association adjacency matrix Yn�m is constructed, where n and m are the
number of drugs and diseases, respectively. The element Y i; jð Þ ¼ 1 if drug ri asso-
ciated with disease dj, otherwise Y i; jð Þ ¼ 0. The similarities for drugs and diseases are
obtained from the Chemical Development Kit (CDK) [43] based on SMILES [44] and
MimMiner [45] based on the OMIM [41] database, respectively. In ten-fold cross-
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validation experiments, all known associations are random divided into ten equal sized
subsets, in which the training data set occupies 9/10, and the remaining partition is
utilized as the test set.

2.3 Reformulate the Drug-Disease Association Adjacency Matrix

Let R ¼ r1; r2; � � � ; rnf g and D ¼ d1; d2; � � � ; dmf g are the set of n drugs and m dis-
eases. Y rið Þ ¼ Yi1; Yi2; � � � ; Yimð Þ and Y dj

� � ¼ Y1j; Y2j; � � � ; Ynj
� �

are the ith row vector
and jth column vector of matrix Y , respectively. Y rið Þ and Y dj

� �
denote the interaction

profiles of drugs and diseases, respectively. Since many drug-disease pairs with
unknown associations (i.e. the value of these elements in Y is zero) may be potential
true associations, this will affect prediction performance. In order to assign associated
likelihood scores to drug-disease pairs with unknown associations, weighted K-nearest
neighbor (WKNN) is implemented to calculate new interaction profiles of drugs and
diseases [38, 46].

For each drug rp (or disease dq), the novel interaction profile can be calculated as
follows:

Yr rp
� � ¼ 1P

1� i�K SR ri;rp
� �Xk

i¼1 a
i�1 � SR ri;rp

� �
Y rið Þ ð1Þ

or

Yd dq
� � ¼ 1P

1� j�K SD dj;dq
� �Xk

j¼1 a
j�1 � SD dj;dq

� �
Y dj
� � ð2Þ

Fig. 1. Overview of the WGMFDDA framework.
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a 2 0; 1½ � denotes a decay term. SR and SD are the similarity matrices for drugs and
diseases, respectively.

Subsequently, we define the updated association adjacency matrix Y as follows:

Y ¼ max Y ; Yrdð Þ ð3Þ

where

Yrd ¼ Yr þ Ydð Þ=2 ð4Þ

2.4 WGMFDDA

The standard Nonnegative matrix factorization (NMF) aims to find two low-rank
Nonnegative matrices whose product as more as possible to approximation to the
original matrix [36, 47–49]. Y ffi ATB k�min n;mð Þð Þ, A 2 Rk�n and B 2 Rk�m. To
avoid overfitting, the graph Laplacian regularization and Tikhonov (L2) terms are
introduced into the standard NMF model. The objective function of WGMFDDA can
be constructed as follows:

min
A;B

Y � ATB
�� ��2

F þ k
Xn

i� j
ai � aj

�� ��2SR�ij þ
Xm

i� j
bi � bj

�� ��2SD�ij
� �

þ b Ak k2F þ Bk k2F
� �

s:t:A	 0;B	 0
ð5Þ

where �k kF denotes the Frobenius norm. k and b are the regularization parameters. aj
and bj are jth column of matrices A and B, respectively. SR� and SD� denote the sparse
similarity matrices for drugs and diseases, respectively.

According to the spectral graph theory, the p-nearest neighbor graph can preserve
the intrinsic geometrical structure of the original data [46]. Therefore, p-nearest
neighbors is utilized to construct the graphs SR� and SD�. The details are as follows:

WR
ij ¼

1 i 2 Np rj
� �

&j 2 Np rið Þ
0 i 62 Np rj

� �
&j 62 Np rið Þ

0:5 otherwise

8><
>:

ð6Þ

where Np rið Þ and Np rj
� �

denote the sets of p-nearest neighbors of ri and rj respectively.
Then, we define the sparse matrix SR� of drug as follows:

8i; j SR�ij ¼ SRijW
R
ij ð7Þ

Similarly, the sparse matrix SD� of disease can be expressed as follows:

8i; j SD�ij ¼ SDij W
D
ij ð8Þ
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The Eq. (5) can be written as:

min
A;B

Y � ATB
�� ��2

F þ kTr ALrAT
� �þ kTr BLdBT

� �

þ b Ak k2F þ Bk k2F
� �

s:t:A	 0;B	 0
ð9Þ

Here, Lr ¼ Dr � SR� and Ld ¼ Dd � SD� are the graph Laplacian matrices for SR�

and SD�, respectively. Dr i; ið Þ ¼P
p S

R�
ip and Dd j; jð Þ ¼P

q
SD�jq are diagonal matrices,

Tr �ð Þ denotes the trace of matrix.
In order to optimize the objective function in Eq. (9), the corresponding Lagrange

function Hf is defined as:

Hf ¼ Tr YYT
� �� 2Tr YBTA

� �þ Tr ATBBTA
� �þ kTr ALrA

T
� �þ kTr BLdB

T
� �

þ bTr AAT
� �þ bTr BBT

� �þ Tr UAT
� �þ Tr WBT

� � ð10Þ

In which, U ¼ /kif g and W ¼ wkj

� �
are Lagrange multipliers that constrain aki	 0

and bkj	 0, respectively. We calculate @Hf

@A and @Hf

@B as follows:

@Hf

@A
¼ �2BYT þ 2BBTAþ 2kALr þ 2bAþU ð11Þ

@Hf

@B
¼ �2AY þ 2AATBþ 2kBLd þ 2bBþW ð12Þ

After using Karush–Kuhn–Tucker (KKT) conditions /kiaki ¼ 0 and wkjbkj ¼ 0, the
updating rules can be obtained as follows:

aki  aki
BYT þ kASR�

bAþ kADr þBBTA
ð13Þ

bkj  bkj
AY þ kBSD�

bBþ kBDd þAATB
ð14Þ

The predicted drug-disease association matrix is obtained by Y� ¼ ATB. Generally,
the larger the element value in predicted matrix Y�, the more likely the drug is related to
the corresponding disease.

3 Experimental Results

In this study, the model of WGMFDDA has six parameters that determine by grid
search. The ROC curve and AUC value are widely used to evaluate the predictor [50–
54]. WGMFDDA produces best AUC values when P ¼ 5, K ¼ 5, a ¼ 0:5, k ¼ 160,
k ¼ 1 and b ¼ 0:02. We implement ten-fold cross-validation (CV) experiments on the
Fdataset and compare it with the previous methods: DrugNet [32], HGBI [33], MBiRW
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[34] and DDRS [39]. To implement 10-CV experiment, all known drug-disease
associations in Fdataset are random divided into ten equal sized subsets. the training
data set occupies 9/10, while the remaining partition is utilized as the test set. As shown
in Fig. 2 and Table 1, WGMFDDA achieves the AUC value of 0.939, while DrugNet,
HGBI, MBiRW and DDRS are 0.778, 0.829, 0.917and 0.930, respectively. This result
shows that compared with DDRS, MBiRW, HGBI and DrugNet, WGMFDDA obtains
the best performance.

4 Conclusions

The purpose of drug repositioning is to discover new indications for existing drugs.
Compared to traditional drug development, drug repositioning can reduce risk, save
time and costs. In this work, we present a new prediction approach, WGMFDDA,
based on weighted graph regularized matrix factorization. The proposed method casts
the problem of inferring the associations between drugs and diseases into a matrix
factorization problem in recommendation system. The main contribution of our method
is that a preprocessing step is performed before matrix factorization to reformulate the
drug-disease association adjacency matrix. In ten-fold cross-validation, experiment
results indicate that our proposed model outperforms other compared methods.

Fig. 2. The ROC curves of WGMFDDA on Fdataset under ten-fold cross-validation.

Table 1. The average AUC values of WGMFDDA and other compared methods on Fdataset.

Methods DrugNet HGBI MBiRW DDRS WGMFDDA

AUC 0.778 0.829 0.917 0.930 0.939

WGMFDDA: A Novel Weighted-Based Graph Regularized Matrix 547



Acknowledgement. This work was supported in part by the NSFC Excellent Young Scholars
Program, under Grants 61722212, in part by the Science and Technology Project of Jiangxi
Provincial Department of Education, under Grants GJJ180830, GJJ190834.

Competing Interests
The authors declare that they have no competing interests.

References

1. Li, J., Zheng, S., Chen, B., Butte, A.J., Swamidass, S.J., Lu, Z.: A survey of current trends in
computational drug repositioning. Briefings Bioinform. 17, 2–12 (2016)

2. Huang, Y.-A., Hu, P., Chan, K.C., You, Z.-H.: Graph convolution for predicting associations
between miRNA and drug resistance. Bioinformatics 36, 851–858 (2020)

3. Chen, Z.-H., You, Z.-H., Guo, Z.-H., Yi, H.-C., Luo, G.-X., Wang, Y.-B.: Prediction of
drug-target interactions from multi-molecular network based on deep walk embedding
model. Front. Bioeng. Biotechnol. 8, 338 (2020)

4. Wang, L., You, Z.-H., Li, L.-P., Yan, X., Zhang, W.: Incorporating chemical sub-structures
and protein evolutionary information for inferring drug-target interactions. Sci. Rep. 10, 1–
11 (2020)

5. Kinch, M.S., Griesenauer, R.H.: 2017 in review: FDA approvals of new molecular entities.
Drug Discovery Today 23, 1469–1473 (2018)

6. Wang, L., et al.: Identification of potential drug–targets by combining evolutionary
information extracted from frequency profiles and molecular topological structures. Chem.
Biol. Drug Des. (2019)

7. Jiang, H.-J., You, Z.-H., Huang, Y.-A.: Predicting drug − disease associations via sigmoid
kernel-based convolutional neural networks. J. Transl. Med. 17, 382 (2019)

8. Hurle, M., Yang, L., Xie, Q., Rajpal, D., Sanseau, P., Agarwal, P.: Computational drug
repositioning: from data to therapeutics. Clin. Pharmacol. Ther. 93, 335–341 (2013)

9. Huang, Y.-A., You, Z.-H., Chen, X.: A systematic prediction of drug-target interactions
using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 19, 468–478
(2018)

10. Wang, L., You, Z.-H., Chen, X., Yan, X., Liu, G., Zhang, W.: Rfdt: a rotation forest-based
predictor for predicting drug-target interactions using drug structure and protein sequence
information. Curr. Protein Pept. Sci. 19, 445–454 (2018)

11. Li, Y., Huang, Y.-A., You, Z.-H., Li, L.-P., Wang, Z.: Drug-target interaction prediction
based on drug fingerprint information and protein sequence. Molecules 24, 2999 (2019)

12. Graul, A.I., et al.: The year’s new drugs & biologics-2009. Drug News Perspect 23, 7–36
(2010)

13. Sardana, D., Zhu, C., Zhang, M., Gudivada, R.C., Yang, L., Jegga, A.G.: Drug repositioning
for orphan diseases. Briefings Bioinform. 12, 346–356 (2011)

14. Zhang, S., Zhu, Y., You, Z., Wu, X.: Fusion of superpixel, expectation maximization and
PHOG for recognizing cucumber diseases. Comput. Electron. Agric. 140, 338–347 (2017)

15. Li, Z., et al.: In silico prediction of drug-target interaction networks based on drug chemical
structure and protein sequences. Sci. Rep. 7, 1–13 (2017)

16. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: Dbmda: a unified
embedding for sequence-based mirna similarity measure with applications to predict and
validate mirna-disease associations. Mol. Therapy-Nucleic Acids 19, 602–611 (2020)

548 M.-N. Wang et al.



17. Guo, Z., Yi, H., You, Z.: Construction and comprehensive analysis of a molecular
association network via lncRNA–miRNA–disease–drug–protein graph. Cells 8, 866 (2019)

18. Chen, Z., You, Z., Zhang, W., Wang, Y., Cheng, L., Alghazzawi, D.: Global vectors
representation of protein sequences and its application for predicting self-interacting proteins
with multi-grained cascade forest model. Genes 10, 924 (2019)

19. You, Z.-H., Chan, K.C., Hu, P.: Predicting protein-protein interactions from primary protein
sequences using a novel multi-scale local feature representation scheme and the random
forest. PLoS ONE 10, e0125811 (2015)

20. Guo, Z., You, Z., Wang, Y., Yi, H., Chen, Z.: A learning-based method for LncRNA-disease
association identification combing similarity information and rotation forest. iScience 19,
786–795 (2019)

21. Wang, L., et al.: Using two-dimensional principal component analysis and rotation forest for
prediction of protein-protein interactions. Sci. Rep. 8, 1–10 (2018)

22. You, Z., Li, X., Chan, K.C.C.: An improved sequence-based prediction protocol for protein-
protein interactions using amino acids substitution matrix and rotation forest ensemble
classifiers. Neurocomputing 228, 277–282 (2017)

23. Oh, M., Ahn, J., Yoon, Y.: A network-based classification model for deriving novel drug-
disease associations and assessing their molecular actions. PLoS ONE 9, e111668 (2014)

24. Zheng, K., You, Z.-H., Li, J.-Q., Wang, L., Guo, Z.-H., Huang, Y.-A.: iCDA-CGR:
identification of circRNA-disease associations based on Chaos Game Representation. PLoS
Comput. Biol. 16, e1007872 (2020)

25. Yi, H.-C., You, Z.-H., Guo, Z.-H.: Construction and analysis of molecular association
network by combining behavior representation and node attributes. Front. Genet. 10, 1106
(2019)

26. Yang, H., Spasic, I., Keane, J.A., Nenadic, G.: A text mining approach to the prediction of
disease status from clinical discharge summaries. J. Am. Med. Inform. Assoc. 16, 596–600
(2009)

27. Chen, Z.-H., Li, L.-P., He, Z., Zhou, J.-R., Li, Y., Wong, L.: An improved deep forest model
for predicting self-interacting proteins from protein sequence using wavelet transformation.
Front. Genet. 10, 90 (2019)

28. Li, L., Wang, Y., You, Z., Li, Y., An, J.: PCLPred: a bioinformatics method for predicting
protein-protein interactions by combining relevance vector machine model with low-rank
matrix approximation. Int. J. Mol. Sci. 19, 1029 (2018)

29. Li, S., You, Z.-H., Guo, H., Luo, X., Zhao, Z.-Q.: Inverse-free extreme learning machine
with optimal information updating. IEEE Trans. Cybern. 46, 1229–1241 (2015)

30. Zheng, K., You, Z.-H., Wang, L., Zhou, Y., Li, L.-P., Li, Z.-W.: MLMDA: a machine
learning approach to predict and validate MicroRNA–disease associations by integrating of
heterogenous information sources. J. Transl. Med. 17, 260 (2019)

31. Yi, H.-C., You, Z.-H., Wang, M.-N., Guo, Z.-H., Wang, Y.-B., Zhou, J.-R.: RPI-SE: a
stacking ensemble learning framework for ncRNA-protein interactions prediction using
sequence information. BMC Bioinform. 21, 60 (2020)

32. Martinez, V., Navarro, C., Cano, C., Fajardo, W., Blanco, A.: DrugNet: network-based
drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med. 63, 41–49
(2015)

33. Wang, W., Yang, S., Zhang, X., Li, J.: Drug repositioning by integrating target information
through a heterogeneous network model. Bioinformatics 30, 2923–2930 (2014)

34. Luo, H., Wang, J., Li, M., Luo, J., Peng, X., Wu, F.-X., Pan, Y.: Drug repositioning based on
comprehensive similarity measures and bi-random walk algorithm. Bioinformatics 32,
2664–2671 (2016)

WGMFDDA: A Novel Weighted-Based Graph Regularized Matrix 549



35. You, Z., Wang, L., Chen, X., Zhang, S., Li, X., Yan, G., Li, Z.: PRMDA: personalized
recommendation-based MiRNA-disease association prediction. Oncotarget 8, 85568–85583
(2017)

36. Wang, M.-N., You, Z.-H., Li, L.-P., Wong, L., Chen, Z.-H., Gan, C.-Z.: GNMFLMI: graph
regularized nonnegative matrix factorization for predicting LncRNA-MiRNA interactions.
IEEE Access 8, 37578–37588 (2020)

37. Huang, Y., You, Z., Chen, X., Huang, Z., Zhang, S., Yan, G.: Prediction of microbe-disease
association from the integration of neighbor and graph with collaborative recommendation
model. J. Transl. Med. 15, 1–11 (2017)

38. Wang, M.-N., You, Z.-H., Wang, L., Li, L.-P., Zheng, K.: LDGRNMF: LncRNA-disease
associations prediction based on graph regularized non-negative matrix factorization.
Neurocomputing (2020)

39. Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., Wang, J.: Computational drug repositioning using
low-rank matrix approximation and randomized algorithms. Bioinformatics 34, 1904–1912
(2018)

40. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel
drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011)

41. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., McKusick, V.A.: Online
Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic
disorders. Nucleic Acids Res. 33, D514–D517 (2005)

42. Wishart, D.S., et al.: DrugBank: a comprehensive resource for in silico drug discovery and
exploration. Nucleic Acids Res. 34, D668–D672 (2006)

43. Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., Willighagen, E.: The
Chemistry Development Kit (CDK): an open-source Java library for chemo-and bioinfor-
matics. J. Chem. Inf. Comput. Sci. 43, 493–500 (2003)

44. Weininge, D.: SMILES, a chemical language and information system. 1. Introduction to
methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

45. Van Driel, M.A., Bruggeman, J., Vriend, G., Brunner, H.G., Leunissen, J.A.: A text-mining
analysis of the human phenome. Eur. J. Hum. Genet. 14, 535–542 (2006)

46. Xiao, Q., Luo, J., Liang, C., Cai, J., Ding, P.: A graph regularized non-negative matrix
factorization method for identifying microRNA-disease associations. Bioinformatics 34,
239–248 (2018)

47. Huang, Y.-A., You, Z.-H., Li, X., Chen, X., Hu, P., Li, S., Luo, X.: Construction of reliable
protein–protein interaction networks using weighted sparse representation based classifier
with pseudo substitution matrix representation features. Neurocomputing 218, 131–138
(2016)

48. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Wong, L., Yi, H.-C.: Prediction of self-
interacting proteins from protein sequence information based on random projection model
and fast fourier transform. Int. J. Mol. Sci. 20, 930 (2019)

49. Ji, B.-Y., You, Z.-H., Cheng, L., Zhou, J.-R., Alghazzawi, D., Li, L.-P.: Predicting miRNA-
disease association from heterogeneous information network with GraRep embedding
model. Sci. Rep. 10, 1–12 (2020)

50. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Qiu, Y., Hu, P.-W.: Identification of self-
interacting proteins by integrating random projection classifier and finite impulse response
filter. BMC Genom. 20, 1–10 (2019)

51. Chen, X., Yan, C.C., Zhang, X., You, Z.-H.: Long non-coding RNAs and complex diseases:
from experimental results to computational models. Briefings Bioinform. 18, 558–576
(2017)

550 M.-N. Wang et al.



52. Jiao, Y., Du, P.: Performance measures in evaluating machine learning based bioinformatics
predictors for classifications. Quant. Biol. 4(4), 320–330 (2016). https://doi.org/10.1007/
s40484-016-0081-2

53. Chen, X., Huang, Y.-A., You, Z.-H., Yan, G.-Y., Wang, X.-S.: A novel approach based on
KATZ measure to predict associations of human microbiota with non-infectious diseases.
Bioinformatics 33, 733–739 (2017)

54. You, Z.-H., Huang, Z.-A., Zhu, Z., Yan, G.-Y., Li, Z.-W., Wen, Z., Chen, X.: PBMDA: a
novel and effective path-based computational model for miRNA-disease association
prediction. PLoS Comput. Biol. 13, e1005455 (2017)

WGMFDDA: A Novel Weighted-Based Graph Regularized Matrix 551

https://doi.org/10.1007/s40484-016-0081-2
https://doi.org/10.1007/s40484-016-0081-2

	WGMFDDA: A Novel Weighted-Based Graph Regularized Matrix Factorization for Predicting Drug-Disease Associations
	Abstract
	1 Introduction
	2 Methods and Materials
	2.1 Method Overview
	2.2 Dataset
	2.3 Reformulate the Drug-Disease Association Adjacency Matrix
	2.4 WGMFDDA

	3 Experimental Results
	4 Conclusions
	Acknowledgement
	References




