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Abstract. Identification of drug-disease association is crucial for drug devel-
opment and reposition. However, discovering drugs which are associated with
diseases from in vitro testing is costly and time-consuming. Accumulating
evidence showed that computational approaches can complement biological and
clinical experiments for this identification task. In this work, we propose a novel
computational method Node2Bio for predicting drug-disease associations using
a highly efficient biomolecular network representation model. Specifically, we
first construct a large-scale biomolecular association network (BAN) by inte-
grating the associations among drugs, diseases, proteins, miRNAs and IncRNAs.
Then, the network embedding model node2vec is used to extract network
behavior features of drug and disease nodes. Finally, the feature vectors are
taken as inputs for the XGboost classifier to predict potential drug-disease
associations. To evaluate the prediction performance of the proposed method,
five-fold cross-validation tests are performed on a widely used SCMFDD-S
dataset. The experimental results demonstrate that our method achieves com-
petitive performance with a high AUC value of 0.8569, which suggests that our
method is a useful tool for identification of drug-disease associations.

Keywords: Drug-disease associations + Drug reposition - Drug-disease
association * Node2Bio + Biomolecular network

1 Introduction

Drug-disease association is almost involved in the entire process of drug repositioning,
providing a theoretical basis for the discovery of new drug efficacy. Therefore, it is a
prospective task to explore as many new drug-disease associations as possible. In
recent years, several computational methods of drug-disease association based on drug
target information, drug structure information, disease semantic information and other
information sources have been proposed. For example, some methods use disease,
drug and drug target to predict drug-disease associations (TL-HGBI). Drug - disease
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association prediction based on drug target information is a popular method [1]. Drug
targets are also considered to be one of the sources of information for predicting drug-
disease interactions, but the computational conditions for these methods are that the
drug can find the corresponding drug target information. In these methods, a three-layer
heterogeneous network is typically constructed using drugs, diseases, and drug targets,
and the network is constructed based on the distribution of similarity measures [2].
Combining multiple associated sources of information provides more insight into
predictive drug-disease association than using only drug targets as sources of infor-
mation [3]. Therefore, how to effectively integrate more information sources has
attracted wide attention [4].

Inspired by graph representation learning, we re-examine some basic relational
prediction problems from the perspective of graphs to find better solutions. Graph is a
basic and commonly used data structure. Many scenes in the real world can be
abstracted into a graph structure, such as social network, traffic network, etc. [5]. The
biomolecule in the cell can also be viewed as a graph structure, with the association of
different types of biomolecules forming the edges of the graph and the biomolecules
serving as the nodes of the graph [6]. Using graph theory to develop reliable bio-
association graph technology to solve bio-association prediction problem will have a
subversive impact on current bioinformatics research [7]. There is no doubt that the
seamless integration of graph with biomacromolecules will drive the development of
the post-genomic era [8].

The prediction of nodes and edges is an important task in network analysis [9]. In
the node classification task, the most likely node label in the prediction network is the
first task [10]. For example, in the drug-target interaction network, the focus is on
predicting the functional labeling of drugs [11]. Similarly, in a molecular association
network, we want to predict whether a pair of nodes in the network should have an
edge that connects them [12, 13]. Predicting nodes and edges can help us discover new
interactions between drugs and diseases [14]. Node2vec is an algorithm framework for
learning the continuous feature representation of nodes in a network [15]. It defines a
flexible concept of node network domain and designs a biased random walk process to
effectively explore different network domains [16].

Computational methods used to find new drugs and disease associations can solve
the problem of high cost and low efficiency, so it has important practical significance
[17]. Based on the similarity of biomolecular association network and graph structure,
this paper proposes a biomolecular network representation learning model to predict
drug-disease association [18]. The model is based on the biomolecular network rep-
resentation method Node2Bio and XGboost classifier [19].

The biomolecular network consists of two parts: nodes (drugs, diseases, proteins,
ncRNA (miRNA, IncRNA)) and edges (the relationship of nodes) [20]. Each node can
be represented in two ways: attribute information of the node (such as the molecular
fingerprint of the drug and the phenotype of the disease) and a vector of relationships
with other nodes in the network embedding [21]. Finally, all node features are inte-
grated to form feature descriptors and imported into the XGboost classifier to predict
the association of each drug with all diseases [22]. It is worth noting that although the
main purpose is to predict drug-disease association, our proposed molecular association
network model and iterative update algorithm can be applied to other prediction
problems as well [23].
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2 Materials and Methods

2.1 Nine Kinds of Molecular Associations

To build a molecular association network, we need to download drugs, diseases, IncRNA,
miRNA and protein information from different data sources. Then the feature vectors of
drug, disease, IncRNA, miRNA and protein were calculated by different methods. All
known interactions are derived from existing databases [24]. Drugs and diseases are
downloaded from the CTD database and drugs SMILE is downloaded from DrugBank
[25]. Zhang et al. collated 18,416 drug-disease associations from the CTD database and
named this data set “SCMFDD-S” [26]. Drug-protein associations were collected from the
DrugBank database for a total of 11,107 associations. The Protein-protein association is
based on 19,237 associations in the STRING dataset [27]. The Protein-disease association
was collected from the DisGeNET [28] database and a total of 25,087 associations were
collected. A total of 690 IncRNA-protein associations were collected from the
LncRNA2Target [29] database. A total of 1264 IncRNA-disease associations were col-
lected from the LncRNADisease [30] database and the IncRNASNP2 [31] database.
4494 miRNA-protein associations were collected from miRTarBase [32]. The miRNA-
disease association was collected from HMDD [33] for a total of 16,427. 8374 miRNA-
IncRNA associations were downloaded from IncRNASNP2 [31].

2.2 Disease MeSH Descriptors and Directed Acyclic Graph

In this study, we used the MeSH disease descriptor downloaded from the National
Library to calculate the semantic similarity of the disease. This representation is
described by a directed acyclic graph (DAG), in which nodes in the DAG represent
disease, and the ends of each edge are the parent and child nodes, respectively [34]. If
the disease p(j) is the parent of the disease p(i), the disease p(i) can be described as:

DAG,) = (p(i), Np(i)» Eni)) (1)

where N, represents the set of points for all diseases. E,(;) contains all the edges in
DAG,;).

In DAG,,; of disease s, the contribution of any ancestral disease p(i) to disease s is
as the formula:

D,,(l)(s) 1 lfS = (l) (2)
Dyi)(s) = max{B - D, (5)|$ € children of s} if s # p(i)

In addition, disease p(i) contributes 1 to its own semantic value. Therefore, the
semantic value DV (p(i)) of the disease p(i) is defined as follows:

DY) =Y Ly Do) o)

We hypothesized that the more DAG Shared between diseases, the higher the
semantic similarity score. The DAG similarity value SV (p(i), p(j)) of the disease p(i)
and disease p(j) is calculated as:
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erNP(,‘) (o (Dp(iy(5) + Dp(j (5))

SVip(i),p()) = DV (p(i)) + DV (p(j))

2.3 Stacked Autoencoder

Stacked auto-encoder (SAE) is a multi-layer neural network and is a deep learning
model that uses modular units to create deep neural networks [35]. The purpose of
Auto-encoder is to make the value of the output as close as possible to the value of the
input. Given a drug molecular fingerprint set x, autoencoder input x through an
expression to determine the mapping of hidden:

Y = o(Wix+by) (5)

where ¢ denotes the logistic sigmoid. Y is the result of the hidden representation, and x
is the reconstructed vector after mapping:

&= a(Wax+by) (6)

The stack auto-encoder is a combination of multiple autoencoders. The principle is
to use the output of the first layer of the autoencoder as the input of the next layer of the
autoencoder, and so on, to obtain the output of the last layer of the auto-encoder. In this
paper, a drug fingerprint obtains a descriptor representing a structural feature by a
stacked autoencoder.

2.4 NcRNA and Protein Sequence

We chose to encode the sequence using a 64 (4 x 4 x 4) dimensional vector encoding
ncRNA and analyzed it with K-mer, where k is taken as 3. The 3-mer mode is a sliding
window containing 3 nucleotides to analyze each transcription. In the initial state, the
number of occurrences of all patterns is set to 0. If the window matches exactly the
string in the transcript, the count is incremented by 1 and the slide continues. Finally,
divide the number of occurrences by the length of the sequence to get the normalized
frequency.

The article by Shen et al. [36] proposes that protein sequences can be encoded into
four classes based on the polar side chains of the amino acids. Each protein sequence is
characterized by a 3-mer. The ncRNA uses the same normalized frequency calculation
method.

2.5 Node Representation

In the molecular association network, many nodes and edges are involved in the
prediction task. We chose node2vec to learn the continuous feature representation of
nodes in the network [37]. Suppose just traversed go from edge (t, v) to node v.
Assume that the transition probability of the next step edge (v, x) is m,,. We set the
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unnormalized transition probability to w,, = cqu(t,x) -y, Where dy, represents the
shortest path distance between nodes t and x:

’% lfdtx =0
opalt) = 411 o= 1 )
q lf dp =2

2.6 XGBoost

XGBoost algorithm has been widely applied in the field of bioinformatics. XGBoost is
an integration of several weak classifiers, in this case the CART regression tree model.
The objective function of XGBoost is defined as:

06 =" yuiu) + Sk Q) (8)
Q(f) =TT +0.52 0| (9)

Here [ is a differentiable convex loss function that measures the difference between
the prediction y,, and the target y,,. The complexity of the Q penalty model. The newly
generated tree is to fit the residual error predicted last time. When t trees are generated,
the prediction score is:

58 =307 + i () (10)

The target function is updated to:

£O=3 7 w5 +hilen)) +QU) (11)

m=1

In general, a second order approximation can be used to quickly optimize the target.
The approximate objective function is:

L0 570 0™ ) + 3| £00) (12

where g, is the first derivative and 4, is the second derivative.
gm = Oyl (ym, 371) (13)
= 22,1 ) (14)

Since the prediction score of the former # — 1 tree and the residual of y do not affect
the optimization of the objective function, the objective function can be simplified as:
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£ =570 o)+ 3nfon)| + 500 (15)

3 Results and Discussion

3.1 Evaluation Criteria

In order to verify the predictive power of our model. Five-fold cross-validation was
performed to verify. All samples were first randomly divided into nearly the same
number of five subsets. Each time four subsets are used as a training set and the
remaining subsets are used as test sets, the process is repeated five times so that each
subset can be used as a test set. Finally, the average of the five groups was taken as the
final result. Several evaluation criteria used in our study to estimate the predictive
power of our model, including sensitivity (Sen.), specificity (Spec.), precision (Prec.)
accuracy (Acc.) and Matthews correlation coefficient (MCC). The calculation method
is as follows:

= 1
Sen- = b FN (16)
TN
Spec. = ——— 17
PeC=Fp TN (17)
P
Prec. = ——— (18)
TP + FP
TP+ TN
Acc. = i (19)
TP+ TN + FP+FN

TP x TN — FP x FN
MCC = (20)
\/(TP +FP)(TP + FN)(TN + FP)(TN + FN)

For further evaluation, we also compute the receiver operating characteristic
(ROC) curve, sum up the ROC curve in a numerical way, and calculate the area under
the ROC curve (AUC). We compute the precision-recall (PR) curve and calculate the
area under the PR curve (AUPR).

4 Results and Discussion

4.1 Five-Fold Cross-Validation on SCMFDD-S Dataset

We performed five-fold cross-validation on the SCMFDD-S data set to evaluate the
performance of Node2Bio in predicting drug-disease association [38]. The process of
cross-validation is to divide the data set into five equal parts, select a different set as the
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test set each time, and the remaining four sets as the training set, and repeat the
experiment five times [39]. Node2Bio yielded an average accuracy of 77.42%, sensi-
tivity of 75.25%, specificity of 79.59%, precision of 78.67%, Matthews correlation
coefficient of 54.90% and AUC of 85.69% with standard deviations of 0.24%, 1.01%,
0.74%, 0.41%, 0.46% and 0.12% [40]. To evaluate the performance of Node2Bio, we
compare it to some related methods of NTSIM-C. The comparison method uses the
same data set for five-fold cross-validation. The experimental results represented by
AUC are shown in Table 1. The results from experiments demonstrate that the per-
formance of Node2Bio is significantly better than the related methods of NTSIM-C.
Unlike the comparison method, Node2Bio combines nine molecular associations and
integrates related information from a cellular perspective to achieve significant pre-
dictive effects.

Table 1. AUC comparison of Node2Bio-based method with different methods

Methods AUC (%)
NTSIM-C-target 84.40
NTSIM-C-enzyme 84.50
NTSIM-C-pathway 85.00
NTSIM-C-substructure 84.70
NTSIM-C-drug-drug interaction | 84.30
Node2Bio 85.69

5 Conclusion

In this study, we proposed a computational method for predicting drug-disease asso-
ciations using a highly efficient biomolecular network representation model. The
proposed method leverages multiple types of relational data that are biologically
associated and constructs a heterogeneous network on which a graph embedding
technique, node2vec, is applied for feature extraction. Using the embedding feature as
inputs, we adopted the XGboost algorithm to do classification for drug-disease asso-
ciation. The experimental results are the proposed method to be effective, robust and
superior to existing methodologies. It is anticipated that the model we trained can be
applied to predict drug effects on different kinds of diseases on a large scale.
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