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Abstract. For the camera-LiDAR-based three-dimensional (3D) object detec-
tion, image features have rich texture descriptions and LiDAR features possess
objects’ 3D information. To fully fuse view-specific feature maps, this paper
aims to explore the two-directional fusion of arbitrary size camera feature maps
and LiDAR feature maps in the early feature extraction stage. Towards this
target, a deep dense fusion 3D object detection framework is proposed for
autonomous driving. This is a two stage end-to-end learnable architecture,
which takes 2D images and raw LiDAR point clouds as inputs and fully fuses
view-specific features to achieve high-precision oriented 3D detection. To fuse
the arbitrary-size features from different views, a multi-view resizes layer
(MVRL) is born. Massive experiments evaluated on the KITTI benchmark suite
show that the proposed approach outperforms most state-of-the-art multi-sensor-
based methods on all three classes on moderate difficulty (3D/BEV): Car
(75.60%/88.65%), Pedestrian (64.36%/66.98%), Cyclist (57.53%/57.30%).
Specifically, the DDF3D greatly improves the detection accuracy of hard dif-
ficulty in 2D detection with an 88.19% accuracy for the car class.
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1 Introduction

This paper focuses on 3D object detection, which is a fundamental and key computer
vision problem impacting most intelligent robotics perception systems including
autonomous vehicles and drones. To achieve robust and accurate scene understanding,
autonomous vehicles are usually equipped with various sensors (e.g. camera, Radar,
LiDAR) with different functions, and multiple sensing modalities can be fused to
exploit their complementary properties. However, developing a reliable and accurate
perception system for autonomous driving based on multiple sensors is still a very
challenging task.

Recently, 2D object detection with the power of deep learning has drawn much
attention. LiDAR-based 3D object detection also becomes popular with deep learning.
Point clouds generated by LiDAR to capture surrounding objects and return accurate
depth and reflection intensity information to reconstruct the objects. Since the sparse
and unordered attributes of point clouds, representative works either convert raw point
clouds into bird-eye-view (BEV) pseudo images [1–4], 2D front view images [2], or
structured voxels grid representations [5–7]. Some references [8–10] directly deal with
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raw point clouds by multi-layer perceptron (MLP) to estimate the 3D object and
localization. However, due to the sparsity of point clouds, these LiDAR-based
approaches suffer information loss severely in long-range regions and when dealing
with small objects.

On the other hand, 2D RGB images provide dense texture descriptions and also
enough information for small objects based on high resolution, but it is still hard to get
precise 3D localization information due to the loss of depth information caused by
perspective projection, particularly when using monocular camera [11–13]. Even if
using stereo images [14], the accuracy of the estimated depth cannot be guaranteed,
especially under poor weather, dark and unseen scenes. Therefore, some approaches
[15–19] have attempted to take the mutual advantage of point clouds and 2D images.
However, they either utilize Early Fusion, Late Fusion, or Middle Fusion is shown in
Fig. 1 to shallowly fuse two kinds of features from 2D images and point clouds. Their
approaches make the result inaccurate and not stable.

MV3D [2] and AVOD [6] fuse region-based multi-modal features at the region
proposal network (RPN) and detection stage, the local fusion method causes the loss of
semantic and makes its results inaccurate. Conversely, ContFusion [20] proposed a
global fusion method to fuse BEV features and image features from different feature
levels, it verifies the superiority of the full fusion of 2D image and point clouds.

(a) Early Fusion           (b)   Late Fusion                      (c)   Middle Fusion 1

(d)   Middle Fusion 2             (e)   Middle Fusion 3             (f)   Deep Dense Fusion

Fig. 1. A comparison of existed fusion methods and the deep dense fusion (proposed).
Compared with methods (a–e), the deep dense fusion moves forward to the feature extraction
phase and becomes denser. The proposed fusion method fully integrates each other’s
characteristics.
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However, ContFusion [20] is only unidirectional fusion. Based on logical experience, a
bidirectional fusion will be even more superior than the unidirectional fusion. The
challenge lies in the fact that the image feature is dense at discrete state, while LiDAR
points are continuous and sparse. Thus, fusing them in both directions is non-trivial.

This paper proposes a two-stage multi-sensor 3D detector, called DDF3D, which
fuses image feature and BEV feature at different levels of resolution. The DDF3D is an
end-to-end learnable architecture consisting of a 3D region proposal subnet (RPN) and
a refined detector subnet in the order illustrated in Fig. 2. First, the raw point clouds are
partitioned into six-channel pseudo images and 2D images are cropped based on the
central region. Second, two identical fully convolutional networks are used to extract
view-specific features and fuse them by the MVRL simultaneously. Third, 3D anchors
are generated from BEV, and anchor-dependent features from different views are fused
to produce 3D non-oriented region proposals. Finally, the proposal-dependent features
are fused again and fed to the refined subnetwork to regress dimension, orientation, and
classify category.

Here, the contributions in this paper have summarized in 3 points as follows:

1. A highly efficient multi-view resizes layer (MVRL) designed to resize the features
from BEV and camera simultaneously, which makes real-time fusion of multiple
view-specific feature maps possible.

2. Based on the MVRL, a deep dense fusion method is proposed to fully fuse view-
specific feature maps at different levels of resolution synchronously. The fusion
method allows different feature maps to be fully fused during feature extraction,
which greatly improves the detection accuracy of small size object.

3. The proposed architecture achieves a higher and robust 3D detection and local-
ization accuracy for car, bicycle, and pedestrian class. Especially the proposed
architecture greatly improves the accuracy of small classes on both 2D and 3D.

Fig. 2. The architecture of deep dense fusion 3D object detection network.
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2 The Proposed Architecture

The main innovation of proposed DDF3D, depicted in Fig. 2, is to fully fuse view-
specific features simultaneously based on the MVRL, and the fused features are fed
into the next convolutional layers at BEV stream and camera stream respectively, the
detailed procedure is shown in Fig. 1f. After feature extractor, both feature maps are
fused again and the 3D RPN is utilized to generate 3D non-oriented region proposals,
which are fed to the refined detection subnetwork for dimension refinement, orientation
estimation, and category classification.

Birds Eye View Representation Like MV3D [2] and AVOD [15], a six-channel BEV
map is generated by encoding the height and density in each voxel of each LiDAR frame.
Especially, the height is the absolute height relative to the ground. First, the raw point
clouds are located in �40; 40½ � � 0; 70½ � m and limited to the field of camera view.
Along X and Y axis, the point clouds are voxelized at the resolution of 0.1 m. Then, the
voxelized point clouds are equally sliced 5 slices between [−2.3, 0.2] m along the Z axis.

Finally, the point density in each cell computed as min 1:0; log Nþ 1ð Þ
log 64

� �
, where N is the

number of points in a pillar. Note that the density features are computed for the whole
point clouds while the height feature is computed for 5 slices, thus a 700 � 800 � 6BEV
feature is generated for each LiDAR frame. In addition to output a feature map, each
LiDAR frame also outputs the voxelized points to construct the MVRL.

2.1 The Feature Extractor and Multi-view Resize Layer

This section will introduce the feature extractor and MVRL. The MVRL is used to
resize the view-specific features at a different resolution, then view-specific features are
concatenated with the features resized from different views. Finally, the fused features
are fed into the next convolutional layers.

The Multi-view Resize Layer. To fuse feature maps from different perspectives is not
easy since the feature maps from different views are of different sizes. Also, fusion
efficiency is a challenge. So, the multi-view resize layer is designed to bridge multiple
intermediate layers on both sides to resize multi-sensor features at multiple scales with
highly efficient. The inputs of MVRL contains three parts: the source BEV indices
Ibev=ori and LiDAR points Pori obtained during a density feature generation, the camera
feature fcam, and the BEV feature fbev. The workflow of the MVRL shown in Fig. 3.
The MVRL consists of data preparation and bidirectional fusion. In data preparation,
the voxelized points Pori are projected onto the camera plane, the process is formulated
as Eq. 1 and Eq. 2, and the points Pcam in original image size 360� 1200 are kept. The
points Pcam=fusion in image size Hi �Wi are used to obtained image indices Icamcam=fusion
based on bilinear interpolation. A new BEV index Ibev=fusion are obtained based on BEV
indices Ibev=ori and BEV size Hb �Wb. Then, a sparse tensor Ts with Hb �Wb shape is
generated by image indices Icam=fusion and BEV indices Ibev=fusion. Finally, a feature
multiplies the sparse tensor to generate the feature which can be fused by a camera
feature map or an image feature map formulated as Eq. 3 and Eq. 4.
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u; vð ÞT¼ M � x; y; zð ÞT; ð1Þ

M ¼ Prect � Rcam
velo tcamvelo
0 1

� �
; ð2Þ

fb2c ¼ S Matmul T�1
s ; fbev

� �� �
; ð3Þ

fc2b ¼ R Matmul Ts;G fcam; Icam=fusion
� �� �� �

; ð4Þ

where (x, y, z) is a LiDAR point coordinate and (u, v) is image coordinate, Prect is a
project matrix, Rcam

velo is the rotation matrix from LiDAR to the camera, tcamvelo is a trans-
lation vector, M is the homogeneous transformation matrix from LiDAR to the camera,
S and G represent scatter operation and gather operation, respectively, Matmul means
multiplication, R means reshape operation, fb2c is the feature transferred from BEV to
the camera, Conversely, fc2b is the feature transferred from the camera to BEV.

The Feature Extractor. The backbone network follows a two-stream architecture [22]
to process multi-sensor data. Specifically, it uses two identical CNNs to extract features
from both of 2D image and BEV representation in this paper. Each CNNs includes two
parts: an encoder and a decoder. VGG-16 [23] is modified and simplified as the encoder.
The convolutional layers from conv-1 to conv-4 are kept, and the channel number is
reduced by half. In the feature extraction stage, the MVRL is used to resize two-side
features. A little of information is retained for small classes such as cyclists and
pedestrians in the output feature map. Therefore, inspired by FCNs [24] and Feature
Pyramid Network (FPN) [25], a decoder is designed to up-sample the features back to the
original input size. To fully fuse the view-specific features, The MVRL is used again to
resize features after decoding. The final feature map has powerful semantics with a high
resolution, and are fed into the 3D RPN and the refined subnetwork.

Fig. 3. Multi-view resize layer: it includes data preparation and bidirectional fusion.
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2.1.1 3D Region Proposal Network

3D Anchor Generation and Fusion. Unlike MV3D [2], this paper directly generates
3D plane-based anchors like AVOD [15] and MMF [22]. The 3D anchors are
parameterized by the centroid cx; cy; cz

� �
and axis aligned dimensions dx; dy; dz

� �
. The

cx; cy
� �

pairs are sampled at intervals of 0.5 m in the BEV, while cz is a fixed value that
is determined according to the height of the sensor related to the ground plane. Since
this paper does not regress the orientation at the 3D proposal stage, the dx; dy; dz

� �
are

transformed from (w, l, h) of the prior 3D boxes based on rotations. Furthermore, the
(w, l, h) are determined by clustering the training samples for each class. For the car
case, each location has two sizes of anchors. While each location only has one size of
anchor for pedestrians and cyclists.

3D Proposal Generation. AVOD [15] reduces the channel number of BEV and image
feature maps to 1, and aims to process anchors with a small memory overhead. The
truncated features are used to generate region proposals. However, the rough way loses
most of the key features and causes proposal instability. To keep proposal stability and
small memory overhead, we propose to apply a 1 �1 convolutional kernel on the view-
specific features output by the decoder, and the output number of channels is the same
as the input. Each 3D anchor is projected onto the BEV and image feature maps output
by the 1 �1 convolutional layer to obtain two corresponding region-based features.
Then, these features are cropped and resized to equal-length vectors, e.g. 3� 3. These
fixed-length feature crop pairs from two views fused by concatenation operation.

Two similar branches [15] of 256-dimension fully connected layers take the fused
feature crops as input to regress 3D proposal boxes and perform binary classification.
The regression branch is to regress Dcx;Dcy;Dcz;Ddx;Ddy;Ddz

� �
between anchors and

target proposals. The classification branch is to determine an anchor to capture an
object or background based on a score. Note that we divide all 3D anchors into
negative, positive, ignore by projecting 3D anchors and corresponding ground-truth to
BEV to calculate the 2D IoU between the anchors and the ground truth bounding
boxes. For the car class, anchors with IoU less than 0.3 are considered negative
anchors, while ones with IoU greater than 0.5 are considered positive anchors. Others
are ignored. For the pedestrian and cyclist classes, the object anchor IoU threshold is
reduced to 0.45. The ignored anchors do not contribute to the training objective [21].

The loss function in 3D proposal stage is defined as follows:

Loss ¼ kLcls þ cLbox; ð5Þ

where Lcls is the focal loss for object classification and Lbox is the smooth l1 loss for 3D
proposal box regression, k = 1.0, c = 5.0 are the weights to balance different tasks.

Followed by two task-specific branches, 2D non-maximum suppression (NMS) at
an IoU threshold of 0.8 in BEV is used to remove redundant 3D proposals and the top
1,024 3D proposals are kept during the training stage. At inference time, 300 3D
proposals are kept for the car class, and 1,024 3D proposals are used for cyclist and
pedestrian class.

138 L. Wen and K.-H. Jo



2.2 The Refined Network

The refined network aims to further optimize the detection based on the top K non-
oriented region proposals and the features output by the two identical CNN to improve
the final 3D object detection performance. First, the top K non-oriented region pro-
posals are projected onto BEV and image feature maps output by feature extractors to
obtain two corresponding region-based features. The region-based features are cropped
and resized to 7 � 7 equal-length shapes. Then, the paired fixed-length crops from two
views are fused with element-wise mean method. The fused features are fed into a three
parallel fully connected layers for outputting bounding box regression, orientation
estimation, and category classification, simultaneously. MV3D [2] proposes an 8-
corner encoding, however, it does not take into account the physical constraints of a 3D
bounding box. Like AVOD [15], a plane-based 3D bounding box is represented by a
10-dimensional vector to remove redundancy and keep the physical constraints.
Ground truth boxes and 3D anchors are defined by x1 � � � x4; y1 � � � y4; h1; h2; hð Þ. The
corresponding regression residuals between 3D anchors and ground truth are defined as
follows:

Dx ¼ xgc � xac
da

;Dy ¼ ygc � yac
da

;Dh ¼ log
hg

ha

� �
; ð6Þ

Dh ¼ sin hg � hað Þ; ð7Þ

where da ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 � x2ð Þ2 þ y4 � y1ð Þ2

q
is the diagonal of the base of the anchor box.

The localization loss function and orientation loss function [7] as follows:

Lbox ¼
X

b2 x1���x4;y1���y4;h1;h2;hð Þ SmoothL1 Dbð Þ; ð8Þ

Ldir ¼
X

SmoothL1 Dhð Þ: ð9Þ

For the object classification loss, the focal loss is used:

Lcls ¼ �aa 1� pað Þclog pað Þ; ð10Þ

where pa is the class probability of an anchor, we set a = 0:25 and c = 2, the total loss
for the refined network is, therefore,

Loss ¼ 1
Npos

b1Lbox þ b2Lcls þ b3Ldirð Þ; ð11Þ

Where Npos is the number of positive anchors and b1 = 5.0, b2 = 1.0, b3 = 1.0.
In refined network, 3D proposals are only considered in the evaluation of the

regression loss if they have at least a 0.65 2D IoU in bird’s eye view with the ground-
truth boxes for the car class (0.55 for pedestrian/cyclist classes). NMS is used at a
threshold of 0.01 to choose out the best detections.
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3 Experiments and Results

3.1 Implementation Details

Due to the 2D RGB camera images are with different size, the images are center-
cropped into a uniform size of 1200 � 360. Each point clouds are voxelized as a
700 � 800 � 6 BEV pseudo image. For data augmentation, it flips images, voxelized
pseudo images, and ground-truth labels horizontally at the same time with a probability
of 0.5 during the training. The DDF3D model is implemented by TensorFlow on one
NVIDIA 1080 Ti GPU with a batch size of 1. Adam is the optimizer. The DDF3D
model is trained for a total of 120K iterations with the initial learning rate of 0.0001,
and decayed by 0.1 at 60K iterations and 90K iterations. The whole training process
takes only 14 h, and the DDF3D model is evaluated from 80K iterations to 120K
iterations every 5K iterations.

3.2 Quantitative Results

To showcase the superiority of the deep dense fusion method, this paper compares its
approach with the existing state-of-the-art fusion methods (MV3D [2], AVOD [15],
F-pointNet [17], ContFusion [20], MCF3D [16]) based on the RGB images and point

Table 1. Comparison of the 3D Object and BEV performance of DDF3D with state-of-the-art
3D object detectors.

Class Method Time 3D AP (%) BEV AP (%)
E M H E M H

Car MV3D [2] 0.36 71.29 62.68 56.56 86.55 78.10 76.67
AVOD [15] 0.10 84.41 74.44 68.65 – – –

F-PointNet [17] 0.17 83.76 70.92 63.65 88.16 84.02 76.44
ContFusion [20] 0.06 84.58 72.33 67.50 93.84 86.10 82.00
MCF3D [16] 0.16 84.11 75.19 74.23 88.82 86.11 79.31
Proposed (Ours) 0.12 84.65 75.60 68.64 89.81 88.65 79.88

Ped. MV3D [2] 0.36 – – – – – –

AVOD [15] 0.10 – 58.80 – – – –

F-PointNet [17] 0.17 70.00 61.32 53.59 72.38 66.39 59.57
ContFusion [20] 0.06 – – – – – –

MCF3D [16] 0.16 68.54 64.93 59.47 68.56 64.98 59.55
Proposed (Ours) 0.12 70.04 64.36 59.55 70.05 66.98 59.66

Cyc. MV3D [2] 0.36 – – – – – –

AVOD [15] 0.10 – 49.70 – – – –

F-PointNet [17] 0.17 77.15 56.49 53.37 81.82 60.03 56.32
ContFusion [20] 0.06 – – – – – –

MCF3D [16] 0.16 78.18 51.06 50.43 78.18 51.09 50.45
Proposed (Ours) 0.12 79.19 57.53 50.99 79.19 57.30 50.99
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clouds as inputs only. Table 1 shows the comparing results on the 3D and BEV per-
formance measured by the AP. According to KITTI’s metric, the DDF3D increases
0.41% in 3D performance and 2.54% in BEV performance in the “Moderate” difficulty
on the car class, respectively. For pedestrian/cyclist classes, DDF3D achieves 2.00%
growth in BEV performance on the “Moderate” difficulty for pedestrian class and 1.04%
growth in 3D performance on the “Moderate” difficulty for cyclist class. In the easy
difficulty of 3D performance, DDF3D surpasses the second-best 1.50% for the pedestrian
class and 1.01% for the cyclist, respectively. However, F-pointNet [17] is slightly better
than DDF3D in BEV performance for cyclist. F-pointNet [17] utilizes the ImageNet
weights to fine-tune its 2D detector, whereas DDF3D model is trained from scratch.
Some 2D detection results in RGB images, 3D detection results are illustrated in Fig. 4.

3.3 Ablation Study

To analyze the effects of optimal deep dense fusion, an ablation is conducted on
KITTI’s validation subset with massive experiments. Table 2 shows the effect of
varying different combinations of the deep dense fusion method on the performance
measured by the AP. As shown in Fig. 2, Each encoder has 4 convolution blocks in
order: Conv1, Conv2, Conv3, Conv4. Each decoder also has 4 deconvolution blocks in
order: Deconv1, Deconv2, Deconv3, Deconv4. To ensure the DDF3D high efficiency,
the combinations of deep dense fusion are only designed shown in Table 2.

Fig. 4. Visualizations of DDF3D results on RGB images, point clouds.

Table 2. Ablation study for the combinations of the deep dense method on KITTI’s validation
subset. All results are in moderate difficulty in the car class.

Deep dense fusion 2D 3D BEV
Deconv4 Conv4 Conv3 Conv2 Conv1

86.93 72.43 85.78p
88.11 72.73 86.06p p
88.28 74.02 86.25p p p
88.96 75.60 88.65p p p p
88.57 73.55 86.08p p p p p
87.44 72.18 86.49
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To explore the effects of fusion method in different directions, two more sets of
experiments are conducted based on the best combinations in Table 2. The first set of
the experiment only projects features from BEV to the camera view. In contrast, the
second set of the experiment only projects feature from camera view to BEV. Table 3
demonstrates that two-way fusion method is better than one-way fusion. The effect of
different fusion methods on it is very limited for 2D and BEV performance, but they
have a significant impact on the accuracy of 3D detection.

Besides, the DDF3D model converges faster and the experimental values keep
steadily after 80K iterations. Based on the attribute, the model can be checked good or
not good within 12 h. Figure 5 shows the evaluation results are extracted every 5K
iterations from 80K iterations to 120K iterations on the validation subset.

Table 3. Ablation study for the fusion method in different directions. B2C means the one-way
fusion from BEV to the camera view. C2B means the one-way fusion from the camera view to
BEV. Both mean bidirectional fusions.

Method 2D (%) 3D (%) BEV (%)
E M H E M H E M H

B2C 90.00 87.97 86.33 83.12 74.18 68.08 89.30 85.17 78.84
C2B 89.67 87.07 86.15 82.08 72.56 66.96 88.51 84.98 78.77
Both 90.33 88.96 88.19 84.65 75.60 68.64 89.81 88.65 79.88

Fig. 5. 3D detection accuracy of DDF3D for car class from 80K iterations to 120K iterations.
The light coral color, medium aquamarine color, and Navajo white color denote the Easy,
Moderate, Hard difficulty respectively. (Color figure online)
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4 Conclusion

This work proposed DDF3D, a full fusion 3D detection architecture. The proposed
architecture takes full consideration of the mutual advantages of RGB images and point
clouds in the feature extraction phase. The deep dense fusion is two-directional fusion
at the same time. A high-resolution feature extractor with the full fusion features, the
proposed architecture greatly improves 3D detection accuracy, specifically for small
objects. Massive experiments on the KITTI object detection dataset, DDF3D outper-
forms the state-of-the-art existing method in among of 2D, 3D, and BEV.
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