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Abstract. In this work a monocular machine vision based pose estimation
system is developed for industrial robots and the accuracy of the estimated pose
is improved via sparse regression. The proposed sparse regression based method
is used improve the accuracy obtained from the Levenberg-Marquardt
(LM) based pose estimation algorithm during the trajectory tracking of an
industrial robot’s end effector. The proposed method utilizes a set of basis
functions to sparsely identify the nonlinear relationship between the estimated
pose and the true pose provided by a laser tracker. Moreover, a camera target
was designed and fitted with fiducial markers, and to prevent ambiguities in pose
estimation, the markers are placed in such a way to guarantee the detection of at
least two distinct non parallel markers from a single camera within ±90° in all
directions of the camera’s view. The effectiveness of the proposed method is
validated by an experimental study performed using a KUKA KR240 R2900
ultra robot while following sixteen distinct trajectories based on ISO 9238. The
obtained results show that the proposed method provides parsimonious models
which improve the pose estimation accuracy and precision of the vision based
system during trajectory tracking of industrial robots’ end effector.

Keywords: Machine vision � Pose estimation � Industrial robots � Trajectory
tracking � Sparse regression

1 Introduction

In the near future industrial robots are projected to replace CNC machines for
machining processes due to their flexibility, lower prices and large working space. The
required accuracy for robotic machining is around �0:20mm based on aerospace
specifications, but in reality, only accuracies around 1 mm are obtained [1]. Therefore,
the robot’s relatively low accuracy hinders them from being used in high precision
applications.

Some works in literature proposed implementation of static calibration or usage of
secondary high accuracy encoders installed at each joint for increasing the accuracy of
industrial robots [2, 3]. However, disturbances acting on the robots during processes
are not taken into account in static calibration methods, and installation of secondary
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encoders is very expensive and not feasible for all robots. Thus, real time path tracking
and correction based on visual servoing is a feasible alternative to achieve the desired
accuracies in manufacturing processes [4]. Many works in literature utilize highly
accurate sensors such as laser trackers or photogrammetry sensors in the feedback loop
of visual servoing [5, 6]. However, these sensors are very expensive and sometimes
more than the industrial robot. Hence, relatively cheaper alternatives based on
monocular camera systems were proposed by many works in literature. Nissler et al. [7]
proposed utilization of AprilTag markers attached to the end effector of a robot. In their
work they used optimization techniques to reduce positioning tracking errors to less
than 10 mm. However, they used only planar markers thus faced rank deficiency
problems in pose estimation and their work was not evaluated during trajectory
tracking. Moreover, two data fusion methods based on multi sensor optimal informa-
tion algorithms (MOIFA) and Kalman filter (KF) were proposed by Liu et al. [8]. These
methods were used for fusing orientation data acquired from a digital inclinometer and
position data obtained from a photogrammetry system during positioning of a KP 5 Arc
Kuka robot’s end effector at seventy six points in a one meter cube space. However,
they did not report orientation errors and did not evaluate their approach for trajectory
tracking. In general, these works in literature assume the dynamics or kinematics of the
industrial robots are known in the proposed eye in hand approaches. As for the KF type
methods, they assume a linear dynamic process model along with the process and
measurement noise to be known as well. Some works in literature utilized extended
Kalman filter (EKF) [9], and adaptive Kalman filter (AKF) [10] to overcome these
shortcomings in the estimation of an industrial robot’s pose. However, an accurate
dynamic process model required for EKF is hard to obtain, and in the proposed AKF
based methods measurement noise and time varying effects due to the robot’s trajec-
tories are not considered, which in turn degrades their effectiveness. In these cases, data
driven modeling techniques that can take into account all kinds of sensor errors, sensor
noise and uncertainties have been found to be more effective [11–14].

In this work, an eye to hand camera based pose estimation system is developed for
industrial robots through which a target object trackable with a monocular camera
with ±90° in all directions is designed. The designed camera target (CT) is fitted with
fiducial markers where their placement guarantees the detection of at least two non-
planar markers from a single frame, thus preventing ambiguities in pose estimation.

Moreover, a data driven modeling method based on sparse regression is proposed
for improving the pose estimated by the Levenberg Marquardt (LM) based algorithm
[15], where the ground truth is obtained from a laser tracker. Using the proposed
method, one can train all the camera based systems using a single laser tracker in a
factory where several industrial robots are required to perform the same task.

The rest of the manuscript is structured as follows: In Sect. 2, a method for
improving vision based pose estimation based on sparse regression is presented. The
effectiveness of the proposed approach is validated by an experimental study in Sect. 3
where design and detection of the camera target for pose estimation are also described,
followed by the conclusion in Sect. 4.
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2 Improved Vision Based Pose Estimation Using Sparse
Regression

This work proposes to improve the pose estimation accuracy of vision based systems
through a data driven approach based on sparse regression. Using this method existing
camera based systems can be made to provide better accuracies when trained using the
ground truth pose TX ; TY ; TZ ; a; b; cð Þ such as the one provided by a laser tracker. In
order to formulate this problem under a sparse regression framework, the inputs and
ground truth of the system needs to be determined properly. The ground truth in pose
estimation problem can obtained through the highly accurate laser tracker systems. As

for inputs, the estimated pose bTX ; bTY ; bTZ ; ba; bb; bc
� �

provided by the vision system can

be obtained through standard pose estimation algorithms in literature such as the
Levenberg Marquardt (LM) based algorithm [15].

As for the proposed method based on sparse regression, this work builds upon the
work presented by Brunton et al. in which they formulated sparse identification of
nonlinear dynamics (SINDy) [16] for discovering governing dynamical equations from
data. They leverage the fact that only a few terms are usually required to define
dynamics of a physical system. Thus, the equations become sparse in a high dimen-
sional nonlinear function space. Their work is formulated for dynamic systems where
large data is collected for determining a function in state space which defines the
equations of motion. In their formulation, they collect a time-history of the state X tð Þ
and its derivative from which candidate nonlinear functions are generated. These
functions can be constants, higher order polynomials, sinusoidal functions,…, etc.
Afterwards, they formulate the problem as sparse regression and propose a method
based on sequential thresholded least-squares algorithm [16] to solve it. This method is
a faster and robust alternative to the least absolute shrinkage and selection operator
(LASSO) [17] which is an ‘1-regularized regression that promotes sparsity. Using their
proposed method, the sparse vectors of coefficients defining the dynamics can be
determined, showing which nonlinearities are active in the physical system. This results
in parsimonious models that balance accuracy with model complexity to avoid
overfitting.

However, in this work the sparse regression problem is formulated for sparse
identification of nonlinear statics (SINS). In particular, the relationship between the
pose estimated by the vision system and the pose provided by the laser tracker is
assumed to be represented by the following static nonlinear model:

Y ¼ W Xð ÞU ð1Þ
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where x1 to x6 are the bTX ; bTY ; bTZ ; ba; bb and bc estimated by the LM based pose esti-
mation algorithm, y1 to y6 are the ground truth TX ; TY ; TZ ; a; b; and c measured by the
laser tracker, U contains the sparse vectors of coefficients, XP2 denotes the quadratic
nonlinearities in the variable X, and W Xð Þ is the library consisting of candidate non-
linear functions of the columns of X.

Each column of the augmented library W Xð Þ represents a candidate function for
defining the relationship between the estimated and the ground truth pose. There is total
freedom in choosing these functions and in this work the augmented library was
constructed using up to 2nd order polynomials (XP2 ) with cross terms and thus the
resulting size of the sparse regression problem using m samples is as follows:

Ymx6 ¼ W Xmx6ð Þmx28U28x6 ð5Þ

The sequential thresholded least-squares based algorithm proposed by Brunton
et al. [16] starts with finding a least squares solution for U and then setting all of its
coefficients smaller than a threshold value (k) to zero. After determining the indices of
the remaining nonzero coefficients, another least squares solution for U onto the
remaining indices is obtained. This procedure is performed repeatedly for the new
coefficients using the same k until the nonzero coefficients converge. This algorithm is
computationally efficient and rapidly converges to a sparse solution in a small number
of iterations. Moreover, only a single parameter k is required to determine the degree of
sparsity in U. The overall flowchart of the proposed method is shown in Fig. 1.
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3 Experimental Results

In this section the design of the camera target for pose estimation, detection of the camera
target and improved pose estimation results using the proposedmethodwill be presented.

3.1 Design of the Camera Target for Pose Estimation

In this work the pose of a KUKA KR240 R2900 ultra robot’s end effector was tracked
in real time using a vision based pose estimation system utilizing a Basler acA2040–
120 um camera and was compared with the measurements obtained from a Leica
AT960 laser tracker as shown in Fig. 2. The laser tracker works in tandem with the T-
MAC probe which is rigidly attached to the end effector and the system has an accuracy
of ±10 lm. A target object fitted with markers was designed and fixed to the end
effector of the robot so as to estimate its pose from the camera. Since vision based pose

Fig. 1. The proposed sparse identification of nonlinear statics (SINS) for improving vision
based pose estimation.
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estimation algorithms require the exact location of markers on the image plane, it is
crucial to design and distribute the markers properly on the target to be tracked by the
camera. Therefore, this work proposes utilization of fiducial markers generated from
the ArUco library that can be detected robustly in real time. ArUco markers are 2D
barcode like patterns usually used in robotics and augmented reality applications [18].

The camera target (CT) was designed to have 5 faces with each face holding 8 ArUco
markers. In order to produce nonplanar markers in each face, they were fitted with 4
planar markers and the other 4 were placed at 60° with the horizontal axis. This was
designed so as to avoid ambiguities in pose estimation algorithms resulting from the
usage of points extracted from a single plane. In literature it has been proven that pose
estimation algorithms can provide a unique solution when points extracted from at least
two distinct non-parallel planes are used. The CT was built using 3D printing with a size
of 250� 234� 250mm and had a weight of 500 g. The markers were generated from
ArUco’s 4� 4� 100 library and were fixed into 30mm2 holes made in the constructed
target object. Using this CT, the locations of all the markers in the object frame can be
obtained from the CAD model and used in the vision based pose estimation algorithms.

3.2 Detection of the Camera Target

In the experiments, the vision based pose estimation and synchronization of data with
the laser tracker was performed in LabVIEW [19] software. The images were acquired
from the Basler ac2040–120 um camera at 375Hz with a resolution of 640� 480
pixels. These images were then fed into the python [20] node inside LabVIEW where
the ArUco marker detection and Levenberg Marquardt based pose estimation algorithms
were both operated at 1000Hz. Moreover, the proposed method can work at 6000Hz for
a single frame as well. Therefore, the total processing time1 for each image is 0:00216 s
or about 463Hz. The estimated pose of the camera target (CT) as well as the detected
markers are shown in Fig. 3. These results clearly show that the designed CT allows the
detection of multiple nonplanar markers with a viewing angle of ±90° from all sides,
hence rank deficiency problem is prevented in the pose estimation algorithm.

Fig. 2. Experimental setup.

1 Tested on a workstation with Intel Xeon E5-1650 CPU @ 3.5 GHz and 16 GB RAM.
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3.3 Pose Estimation Results

In order to evaluate the accuracy and precision of the camera based system, a trajectory
tracking experiment based on ISO 9238 standard was conducted using a KUKA KR240
R2900 robot. The accuracy and repeatability of industrial robots are typically evaluated
using the ISO 9238 standard during which the robot is tasked with following a set of
trajectories multiple times while changing or not changing the orientation of the robot’s
end effector. To evaluate the effectiveness of the proposed SINS algorithm and the
constructed vision based system, the robot’s end effector was set to follow 16 distinct
trajectories based on the ISO 9238 standard while changing its orientation continuously.
As per the ISO 9238 guidelines, each of these trajectories contained 5 specific points at
which the robot was stopped for 5 s and the experiment took 105.9 min to complete.

First the LM based pose estimation algorithm was implemented for the trajectory
tracking of the KUKA KR240 R2900 robot’s end effector. Then, the proposed sparse
identification of nonlinear statics (SINS) method was used to improve the pose esti-
mated by the LM based algorithm. In order to evaluate the robustness of the proposed
method, the training phase was performed three times using 30%, 50%, and 70% of the
data and was validated on the remaining 70%, 50%, and 30% of the data based the time

Fig. 3. (a)–(d) Samples showing marker detection (detected corners are in red) and estimated
pose (red, green, blue coordinate axes) of the target object with respect to the camera frame.
(Color figure online)
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series cross validation [21] approach. The training was performed for 10 iterations
using a threshold value (k) of 0:001 for the each of the three aforementioned cases and
the obtained results are tabulated in Table 1, 2 and 3 for the trajectory tracking based
on ISO 9238. The errors given in these tables which are denoted as EX , EY , EZ , ERoll,
EPitch, and EYaw are the absolute errors between the ground truth pose provided by the
laser tracker and the estimated pose by the LM based algorithm and improved with
SINS. These tracking errors are given in mm for translation (EX , EY , EZ ) and in degrees
(�) for orientation (ERoll, EPitch, EYaw).

Table 1. Pose tracking errors during trajectory tracking based on ISO 9238, trained with 30% of
the dataset and validated on the rest.

Training size 30% of the dataset
Error for the validation set
(70% of the dataset)

EX mmð Þ EY mmð Þ EZ mmð Þ ERoll
�ð Þ EPitch

�ð Þ EYaw
�ð Þ

LM 9.84
(9.86)

7.30
(6.61)

16.44
(14.07)

0.93
(0.33)

1.02
(0.89)

1.15
(0.72)

LM with SINS 8.01
(8.98)

6.19
(5.76)

11.62
(9.80)

0.20
(0.18)

0.85
(0.78)

0.56
(0.46)

The () below the errors contain their standard deviation

Table 2. Pose tracking errors during trajectory tracking based on ISO 9238, trained with 50% of
the dataset and validated on the rest.

Training size 50% of the dataset
Error for the validation set (50%
of the dataset)

EX mmð Þ EY mmð Þ EZ mmð Þ ERoll
�ð Þ EPitch

�ð Þ EYaw
�ð Þ

LM 9.85
(9.87)

7.35
(6.62)

16.23
(13.60)

0.92
(0.32)

1.01
(0.88)

1.14
(0.71)

LM with SINS 7.85
(8.70)

6.04
(5.72)

10.32
(9.20)

0.19
(0.17)

0.82
(0.74)

0.53
(0.46)

The () below the errors contain their standard deviation

Table 3. Pose tracking errors during trajectory tracking based on ISO 9238, trained with 70% of
the dataset and validated on the rest.

Training size 70% of the dataset
Error for the validation set (30%
of the dataset)

EX mmð Þ EY mmð Þ EZ mmð Þ ERoll
�ð Þ EPitch

�ð Þ EYaw
�ð Þ

LM 10.11
(10.20)

7.39
(6.78)

15.794
(13.69)

0.91
(0.33)

1.04
(0.87)

1.10
(0.67)

LM with SINS 7.98
(8.98)

6.01
(5.84)

9.66
(8.67)

0.19
(0.17)

0.81
(0.73)

0.51
(0.46)

The () below the errors contain their standard deviation
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Fig. 4. Position tracking results based on ISO 9238. (Color figure online)

Fig. 5. Orientation tracking results based on ISO 9238. (Color figure online)

As seen from the errors in these tables, the proposed method is able to reduce the
position tracking errors at least by 1.23, 1.18, and 1.42 times and up to 1.26, 1.23, and
1.64 times for X, Y, and Z axes, respectively when compared with the pure LM based
algorithm using 30% and 70% of the data for training the models. This is in addition to
reducing the standard deviation of the position errors by up to 1.14, 1.16, and 1.58
times for X, Y, and Z axes, respectively. Furthermore, the orientation tracking errors
were reduced by at least 4.65, 1.20, and 2.05 times and up to 4.79, 1.28, and 2.16 times
for Roll, Pitch and Yaw axes, respectively. Moreover, the standard deviation of ori-
entation errors were reduced by up to 1.94, 1.19, and 1.46 times for the Roll, Pitch and
Yaw axes, respectively. From these results, it is seen that the proposed method is able
to improve the position and orientation tracking accuracies even when 30% of the data
is used for training the proposed method, thus proving its robustness.

Figure 4 and Fig. 5 show the position and orientation trajectories of the laser target as
tracked by the laser tracker in blue. The gray trajectories are the ones estimated by the
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camera system using LM based pose estimation algorithm and the red trajectories show
the improved pose by the proposed SINS method. These images were obtained by
training the proposed method with 70% of the data and evaluating it on the whole dataset.

It should be noted that the conducted experiment based on ISO 9238 is very
challenging for vision based pose estimation due to the distance between the tracked
target and the camera increasing a lot, thus decreasing the estimated pose’s accuracy.
This is particularly the case in the conducted experiment due to the robot covering a
large working space of 1140� 610� 945mm along the X, Y , and Z axes, respectively.
Owing to this and the fact that the camera had to be placed 1 m away from the closes
point of the work space due to viewing angle restrictions, the distance between the
robot’s end effector and the camera changed from 1 m to 3 m during the 16 trajectories
followed by the robot, thus making the position errors relatively high.

Moreover, the determined sparse coefficients for training the model with 70% of the
data are shown in Table 4. As seen, for position (/1;/2;/3) only about 50% and for

Table 4. The identified sparse coefficients for training a model with 70% of the data.

/1 /2 /3 /4 /5 /6

1 −0.54955 5.483865 −2.34268 −0.80253 0.169695 −0.76172
X(t) 0.984231 0.01329 0.006688 0 0 0
Y(t) −0.00315 0.994628 −0.00959 0 −0.00201 0
Z(t) 0.001783 −0.00849 0.934572 0 0 0
Roll(t) 2.207604 −1.73696 1.395375 0.889916 −0.15587 −0.17946
Pitch(t) 0.008375 −0.18872 0.4609 −0.01473 0.980488 −0.008
Yaw(t) 0.519546 −0.77316 0.382094 −0.01947 −0.06671 0.892436
X(t)X(t) 0 0 0 0 0 0
X(t)Y(t) 0 0 0 0 0 0
X(t)Z(t) 0 0 0 0 0 0
X(t)Roll(t) 0 −0.00318 0 0 0 0
X(t)Pitch(t) 0 0 0 0 0 0
X(t)Yaw(t) 0 −0.00111 0 0 0 0
Y(t)Y(t) 0 0 0 0 0 0
Y(t)Z(t) 0 0 0 0 0 0
Y(t)Roll(t) −0.00285 0 −0.00246 0 0 0
Y(t)Pitch(t) 0 0 0 0 0 0
Y(t)Yaw(t) 0 0 0 0 0 0
Z(t)Z(t) 0 0 0 0 0 0
Z(t)Roll(t) 0 0 0 0 0 0
Z(t)Pitch(t) 0 0 0 0 0 0
Z(t)Yaw(t) 0 0 0 0 0 0
Roll(t)Roll(t) 0.129671 −0.33664 0.133981 −0.0037 −0.00789 −0.02765
Roll(t)Pitch(t) −0.11072 0.008094 −0.12339 −0.00193 0.018478 0.00901
Roll(t)Yaw(t) 0.085 −0.23532 0.099387 0 −0.00359 −0.02075
Pitch(t)Pitch(t) −0.00346 −0.00202 0.004847 0 0 0
Pitch(t)Yaw(t) −0.01809 −0.07036 0 0.006763 0.005202 −0.0072
Yaw(t)Yaw(t) 0.006045 −0.03945 0.021693 0 0 −0.00299
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orientation (/4;/5;/6) only around 30% of the coefficients are active. This makes the
model sparse in the space of possible functions thus determining only the fewest terms
to accurately represent the data. Furthermore, such a method is very intuitive in that one
can clearly see the coefficients defining the nonlinear relationship and thus provides
more insight into the structure of the problem at hand. Besides, training such a model in
MATLAB [22] took only 0:35; 0:68; and 0:87 s for 30%; 50%; and 70% of the data
containing 63551 samples.

4 Conclusion

In this work a monocular machine vision based system was developed for estimating
the pose of industrial robots’ end effector in real time. A camera target guaranteeing the
detectability of at least two non-parallel markers within ±90° in all directions of the
camera’s view was designed and fitted with fiducial markers. Moreover, sparse iden-
tification of nonlinear statics (SINS) based on sparse regression was proposed to
determine a model with the least number of active coefficients relating the pose esti-
mated by Levenberg-Marquardt (LM) to ground truth pose provided by a laser tracker.
Thus, providing a parsimonious model to increase the accuracy and precision of the
vision based pose estimation.

The proposed method was validated by tracking an industrial robot’s end effector
for 16 distinct trajectories based on ISO 9238. The trajectories were followed by a
KUKA KR240 R2900 ultra robot and the ground truth data was provided by the Leica
AT960 laser tracker. As seen from the experimental results, the proposed method was
able to reduce the position tracking errors by up to 1.26, 1.23, and 1.64 times for X, Y,
and Z axes, respectively when compared with the pure LM based algorithm. This is in
addition to reducing the orientation tracking errors by up to 4.79, 1.28, and 2.16 times
for Roll, Pitch and Yaw axes, respectively. Moreover, by using the proposed method
the standard deviation of the position errors were reduced by up to 1.14, 1.16, and 1.58
times for X, Y, and Z axes, respectively. All the while reducing the standard deviation
of the orientation errors by up to 1.94, 1.19, and 1.46 times for the Roll, Pitch and Yaw
axes, respectively. Therefore, the proposed method is able to increase the accuracy and
precision of the standard LM based pose estimation algorithm during trajectory
tracking of industrial robots’ end effector.

The determined sparse coefficients for training the model showed that only about
50% of the coefficients were active for position improvement, whereas for orientation,
only around 30% of the coefficients were active. Thus, only the most important terms
accurately representing the data were determined using the proposed method. This
resulted in obtaining simple and robust models very fast, where one can clearly see the
coefficients defining the nonlinear static system.
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