
Automatic Pose Estimation ofMicro Unmanned
Aerial Vehicle for Autonomous Landing

Manish Shrestha1, Sanjeeb Prasad Panday2(&), Basanta Joshi2(&),
Aman Shakya2, and Rom Kant Pandey3

1 Nepal College of Information Technology, Pokhara University, Lalitpur, Nepal
2 Pulchowk Campus, Institute of Engineering, Tribhuvan University,

Lalitpur, Nepal
{sanjeeb,basanta,aman.shakya}@ioe.edu.np

3 Sanothimi Campus, Tribhuvan University, Bhaktapur, Nepal

Abstract. The guided navigation has enabled users with minimal amount of
training to navigate and perform flight mission of micro unmanned aerial vehicle
(MAV). In non-urban areas, where there are no other aerial traffic and con-
gestion, MAV take-off & travel does not need much Global Positioning System
(GPS) accuracy. The critical part seems to be during the landing of the MAV,
where slight GPS inaccuracy can lead to landing of the vehicle in the dangerous
spot, causing damage to the MAV. This paper aims to propose a low cost
portable solution for the Autonomous landing of the MAV, using object
detection and machine learning techniques. In this work, You Only Look Once
(YOLO) has been used for object detection and corner detection algorithm along
with projective transformation equation has been used for getting the position of
MAV with respect to the landing spot has been devised. The experiments were
carried with Raspberry Pi and the estimation shows up to 4% of error in height
and 12.5% error in X, Y position.

Keywords: Micro unmanned aerial vehicle � UAV � GPS � Autonomous
landing � Object detection � CNN � YOLO

1 Introduction

Micro Unmanned Aerial Vehicles (MAV) or drones has been using Global Positioning
System (GPS) to execute flight missions easily. Even though there are some fluctua-
tions in GPS readings from time to time even for the same spot, they are commonly
being used in such missions. Instead of GPS, the landing at specified spot can also be
done with the help of other sensors, like camera. Takeoff, hovering, moving forward
and landing are some of the basic phases for autonomous flight of MAV. Among them,
landing visually on a specified target is especially complex because it requires robust
recognition of the landing pad and precise position control; and a slight offset of few
meters can also cause crash landing of the vehicle.

Vision based approach was also used by Yang et al. [1] presented an on- board
vision system that can detect a landing pad consisting of the letter “H” surrounded by a
circle, from images captured by a monocular camera on a MAV and determine the 6

© Springer Nature Switzerland AG 2020
D.-S. Huang and P. Premaratne (Eds.): ICIC 2020, LNAI 12465, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-60796-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60796-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60796-8_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60796-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-60796-8_1

DOF pose of the MAV relative to the landing pad using projective geometry. The 5
DOF pose is estimated from the elliptic projection of the circle. The remaining geo-
metric ambiguity is resolved by incorporating the gravity vector estimated by the
inertial measurement unit (IMU). The last degree of freedom pose, yaw angle of the
MAV, is estimated from the ellipse fitted from the letter “H”. A neural network was
used to initially detect the landing pad. The structure of the neural network is a
multilayer perceptrons with 196 input units (one per pixel of patterns resized to
14 � 14), only one hidden layer consisting of 20 hidden units and three output units.

In another paper, Yang et al. [2] presented a solution for micro aerial vehicles
(MAVs) to autonomously search for and land on an arbitrary landing site using real-
time monocular vision. The autonomous MAV is provided with only one single ref-
erence image of the landing site with an unknown size before initiating this task. The
autonomous navigation of MAV was achieved by implementing a constant-time
monocular visual SLAM framework, while simultaneously detecting an arbitrarily
textured landing site using ORB features, and estimating its global pose.

Daniel et al. [3] employed visual odometry techniques with feature-based methods
to compute the aircraft motion and thereby allowing the position estimation in GPS
denied environments. With regards to GPS inaccuracy, Stark et al. [4] showed that
almost half (49.6%) of all �68,000 GPS points recorded with the Qstarz
Q1000XT GPS units fell within 2.5 m of the expected location, 78.7% fell within 10 m
and the median error was 2.9 m.

Traditional object detection systems are variants of the following pipeline: Firstly,
find potential objects and their bounding boxes, then do feature ex- traction, and finally
classify using a good classifier. Selective Search (SS) [5] enjoyed being the state-of-
the-art for detection on PASCAL VOC etc. competitions. HOG [6] and SIFT [7] are the
popular choices for feature extractions. A classifier is applied on image pyramid to
overcome problems with scale.

The current state-of-the-art object detectors such as Fast R-CNN [8], YOLO [9],
SSD [10] etc. are based on convolutional neural networks (CNN) and have outper-
formed the traditional techniques. The key to the success of CNNs is their ability to
extract/learn generic features. Furthermore, the advancement in computational
resources such as high-performance GPUs and its easy availability through the use of
high-performance cloud computing platforms played an important role in the recent
success of neural networks.

In this work, monocular vision based system has been proposed to localize the
MAV position with respect to the landing spot. Detection of the landing spot has been
carried out with more advanced and recent classifiers known as You Only Look Once
(YOLO) [9]. A simpler projective transform with 3-DOF variables based on rectan-
gular feature points of a simple landing spot has been used. The proposed system also
aims to develop effective system using a simple camera (Raspberry Pi camera) instead
of advanced camera (with global shutter).

4 M. Shrestha et al.

2 Methodology

This work is divided into two phases: Learning Phase and Implementation phase.

2.1 Learning Phase

As shown in Fig. 1, the learning phase involves data collection, pre-processing and
training and evaluating two classifiers, namely YOLO v3 and YOLO Tiny v3.

A custom landing pad of dimension 142 cm � 112 cm with 4 rectangular regions
of color red, blue, white and black of equal size was designed. Images of the landing
spot in various background and orientation is captured from different height, using
simple web camera in a flying MAV, for object detection training. For pose estimation,
images will be captured along with roll, pitch and yaw angle using a handheld MAV.
Data augmentation technique like rotation, etc. is done to increase the samples of our
captured data set for verifying the corner detection phase. For training the object
detection classifier, the images has been classified to contain the landing spot and those
images are also tagged with the bounding box that indicates the location of the landing
spot within the image.

Using the pre-trained available weights and collected datasets, the neural networks
YOLO v3 and YOLO tiny v3 have been trained to detect our custom landing spot.
The YOLO Tiny v3 has been made to detect the landing spot in Raspberry Pi 3
hardware too.

2.2 Implementation Phase

During the real time application phase, the object detection of the landing spots will be
followed by corner detection phase and then the pose estimation phase as shown in
Fig. 2.

2.3 Object Detection

Whenever the MAV arrives near the final landing spot as reported by GPS, the task for
object detection comes into action. The live images from the camera installed in the
MAV are feed into the object detection classifier (YOLO). The classifier, using the

Fig. 1. Learning phase diagram.

Automatic Pose Estimation of Micro Unmanned Aerial Vehicle 5

already trained weights, calculates the bounding box position of the landing spot from
the image. The bounding box position constitutes a rough approximate of x, y position
of the landing spot in the image and the height and the width of the bounding box.

2.4 Corner Detection

The information about the bounding box and the image from the first phase would be
feed into the Corner estimation algorithm. In this phase, the top left, top right, bottom
left and bottom right corners of the landing spot will be identified in the image. The
section of the image, which is slightly larger than the detected bounding box area and
which encompasses the detected bounding box, should be chosen for the corner
detection. Here, the width and height of the selected section of the image can be 1.5
times that of the detected bounding box. The steps for acquiring the corners from the
selection section of the image is listed below:

1. Converting to gray scale image.
2. Application of Canny edge detection to get the edges of the landing spot.
3. Perform Hough lines detection to find the lines of the landing spot.
4. Augment the image with the detected lines. The lines to be augmented are chosen

such that they are among the top 14 lengthiest lines among the detected lines.
5. Perform Harris corner detection on the augmented image.
6. Take the top leftmost, top rightmost, bottom leftmost, bottom rightmost as the four

corners in the images as the corresponding points of the landing spot.

In order to calculate the effectiveness of both methods, the difference between the
ground truth value and detected positions of each of the four corners would be cal-
culated. Then mean error distance for each corner detected will be calculated, which is
the average of the distance from ground truth calculated for each of the four points.

Fig. 2. Implementation phase diagram of the system

6 M. Shrestha et al.

2.5 Pose Estimation

The position of the four corners detected in the image using the previous phase is used,
to get the pose of the camera with respect to the landing spot. The pose information
contains the x, y, z position and the rotation around x, y & z axis. Estimating of the
pose of a calibrated camera, given a set of n 3D points in the world and their corre-
sponding 2D projections in the image, is a Perspective- n-Point problem. Since the
camera position is fixed with respect to the MAV frame, the pose of the camera also
gives the pose of MAV with respect to the landing spot.

After solving the Perspective-n-Point problem using the 4 point correspondence
between the detected four corners and the actual four corners in the world coordinate,
more accurate estimation of the x, y, z positions of the MAV with respect to the landing
spot is obtained. This position information would finally be used by the landing
mechanism for landing the MAV into the landing spot. The equation governing this
projective transformation is shown below:

s
u
v
1

2
4

3
5 ¼

fx c u0
0 fy v0
0 0 1

2
4

3
5

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

2
4

3
5

x
y
z
1

2
664

3
775:

Here, s is the scaling factor. fx and fy are the x and y focal length in pixels. x, y, z
are the world coordinate of a given point and u, v are the x and y locations of the point
in an image. The transformation in x, y, z direction is given by t1, t2, and t3.

Since obtaining the ground truth data for the flying MAV is difficult in absence of
state-of-the-art object tracking laboratory, the ground truth data of the x, y, z position of
the MAV with respect to the landing spot needs to be obtained using hand-held MAV.
The difference in the x, y and z position of the calculated observed value and the
ground truth value needs to be calculated. The error percentage in x, y and z positions
would be given by the formula below:

Error percent in X position ¼ Xg � Xcð Þ � 100%
Xg

Error percent in Y position ¼ Yg � Ycð Þ � 100%
Yg

Error percent in Z position ¼ Zg � Zcð Þ � 100%
Zg

Here, Xg, Yg, Zg denotes the ground truth value of the measured distance between
the MAV and landing spot. Xc, Yc, Zc, represents the calculated distance from the pose
estimation phase.

Automatic Pose Estimation of Micro Unmanned Aerial Vehicle 7

3 Experimental Setup

3.1 Development of Experimental MAV for Handheld Experiment

Before making actual outdoor flights, the indoor testing was carried with an experi-
mental setup up consisting of MAV, Raspberry Pi3, Raspberry Pi Camera as shown in
the Fig. 3a. An existing MAV was fitted with Raspberry Pi3, and its camera. The
existing MAV had 4 motors, 4ESC units, flight controller based on PixHawk, GPS,
telemetry unit and LiPo battery. Also a landing pad of 1/4 th of the original size was
also made for indoor and handheld experiments as shown in Fig. 3b.

3.2 Software Setup

The Raspberry Pi3 was installed with the operating system Raspbian Stretch with
desktop (release date 20180418). OpenCV 3.3 was compiled and installed into it. Also
picamera module was also installed for accessing the Raspberry Pi Camera.

Since the object detection is based on YOLO, darknet system had to be compiled. It
was compiled in Linux, Windows and Raspberry Pi. Also in order to take advantage of
GPU based calculation, NVIDIA CUDA Deep Neural Network library (CuDNN) had
to be installed in both Windows and Linux machine.

3.3 Camera Calibration

Before sending the recorded image through a set of image processing pipeline, a
process to correct the image from deformations resulting from camera geometry, image
plane placement, etc. needs to be done. For this camera calibration is done to determine
extrinsic and intrinsic parameters [11]. The Raspberry Pi Camera was calibrated using a
simple checkerboard pattern and the API provided by OpenCV.

3.4 Experiment Parameters

The experiments were performed in three separate environments with the specified
parameters as shown in Table 1. The training was done in Environment 1 and

(a) MAV setup for experiments (b) Mini Landing pad

Fig. 3. MAV and landing pad for indoor and handheld experiments.

8 M. Shrestha et al.

Environment 2. Due to low hardware resources, Raspberry Pi3 has been only used for
testing purpose with trained weights from Environment 2. Since YOLO v3 network
requires minimum of 4 GB of RAM, it could not be tested in Raspberry Pi3.
The YOLO was only tested in Environment 1 with the Windows 10 machine with GTX
1060 Nvidia graphics card.

4 Dataset Collection and Pre-processing

4.1 Images of Landing Spot for Object Detection

In order to train the neural network for recognizing the landing spot, images of the
landing spot from different height was needed. First, video in mp4 format using GoPro
Hero 3 camera was taken at the resolution of 1920 * 1080. Then the mp4 format video
was converted to still images using YOLO mark tools and using OpenCV API. Then
some images in the original size were used, while some of the images were down sized
to 448 * 448, using OpenCV API. Then each of those images were labeled with class
name and bounding box. Also in order to test the output of our pose estimation
algorithm, images were captured from different height using a simple web camera at
resolution of 680 � 480.

Table 1. Experiment environment and parameters

Parameters Environment 1 Environment 2 Environment 3
Hardware Laptop with

16 GB RAM
Alienware Ddsktop Raspberry Pi3

Operating
System

Windows 10 Ubuntu 16.04 Ubuntu 16.04

Graphics
card

Nvidia GTX
1060

Nvidia GTX 1080 Ti NA

Used for Training/Testing Training Testing
Detection
Type

YOLO v3 YOLO v3 Tiny YOLO v3 Tiny

1. S. Yang S. A. Scherer
and A. Zell

“An onboard monocular vision
system for autonomous takeoff

hovering and
landing of a aerial
vehicle

No of
training
Image

351 320 N/A

Network
input size

416 by 416 448 by 448 448 by 448

Batch
Iteration

3100 21000 N/A

Batch size 64 64 N/A
Training
Time

9 h 4 h N/A

Automatic Pose Estimation of Micro Unmanned Aerial Vehicle 9

Labeling of Landing Spot for Yolo Training: The labeling of the landing spot in the
captured images was done using an open source tool called Yolo mark. The YOLO
mark was tool was obtained from and was compiled in Windows 10 machine.

4.2 Pre-trained Weights

In order to make the training with few amount of custom images, we use pre- trained
weights, that had been created using thousands of images from standard image dataset.
The pre-trained weights for YOLO v3 and YOLO tiny v3 were darknet53.conv.74 and
yolov3-tiny.weights and were taken from official site of darknet.

4.3 Images of Landing Spot for Pose Estimation

Since it is not possible to obtain the ground truth value of the x, y, z position of a flying
MAV in a simple lab setup, the handheld MAV was used to capture the image of the
mini landing spot from different height and angle. During the capture, the roll, pitch
and yaw angles were also noted. The position, from where the images were taken, was
also measured with the help of measuring tape. The images were taken from around 6,
10 and 16 m of height from a building. These images and the measured distances are
used to validate the results of the object detection phase.

Marking the Landing Spot Corners in Images: In order to generate the ground truth
data for the corner detection phase, all the images used for the verification the corner
detection phase, was one by one marked with the x, y position in the image. A Python
program was written in order to display the image, on which four corners can be
clicked by mouse and then the clicked positions would be recorded. For each image,
four points representing the top left, top right, bottom right and bottom left were to be
clicked sequentially.

5 Results and Analysis

5.1 Training on Environment 1

YOLO version 3 was trained on Environment 1 with parameters as mentioned in
Table 1 with pre-trained weight obtained from official site of YOLO. Images that were
directly converted from the video of 1080p, with the resolution of 1920 * 1080 were
used. It took around 9 h of training in the Windows machine. The average loss in the
network was around 0.08 to 0.07 for about an hour, and hence the training was stopped.

While testing against the test image set, the Intersection over Union (IoU) was
calculated. For different IoU detection thresholds, the resulting Average IoU% F1 score
are tabulated as shown in Table 2. It can be observed that even for high IoU threshold
like 0.95, the results are quite satisfactory with F1-score of 0.99 and False negative of
only 1.

10 M. Shrestha et al.

5.2 Training on Environment 2

YOLO Tiny version 3 was trained on Environment 2 with parameters as mentioned in
Table 1. The final average loss was also around 0.08. In the training hardware, the
trained network of YOLO v3 tiny was able to detect low resolution images (640 pixels
* 480 pixels) taken from the web-camera at different height.

5.3 Object Detection

A comparison of the object detection using YOLO version 3 and YOLO Tiny version 3
is tabulated in Table 3.

With Environment 1, Yolo V3 was able to detect the landing spot within 0.0451 s,
resulting about 22 Frames per Seconds. A slight modification in the original YOLO v3
code was done in order to get the position of the detected bounding box and the size of
the bounding box. Here 0.707 and 0.858 are the relative x and y position of the detected
bounding box with respect to original image size. And similarly 0.258 and 0.271 are
the width and height of the bounding box detected. An image depicting the bounding
box is detected by the trained YOLO v3 in Environment 1.

With Environment 3(Raspberry Pi3), Yolo Tiny version took 10.9 s to detect the
landing spot resulting in 0.09 frames per seconds of speed. An image depicting the
bounding box is detected by the YOLO tiny v3.

Table 2. Comparison of validation results while mapping the YOLO v3 trained network with
the test set using different IoU thresholds.

S
No

Threshold
%

Average IoU
%

True
positive

False
positive

False
negative

F1-
score

1 0.25 88.85 38 0 0 1
2 0.5 88.85 38 0 0 1
3 0.75 88.85 38 0 0 1
4 0.85 88.85 38 0 0 1
5 0.9 89.14 37 0 1 0.99
6 0.95 89.14 37 0 1 0.99
7 0.99 89.4 33 0 5 0.93

Table 3. Object Detection Comparison of YOLO v3 versus YOLO Tiny v3.

S No Detector type Environment on Detection time in seconds Frames per seconds

1 Yolo v3 Environment 1 0.0451 22.172949
2 Yolo v3 tiny Environment 3 10.901 0.0917347

Automatic Pose Estimation of Micro Unmanned Aerial Vehicle 11

5.4 Corner Detection

After the object detection phase, the x, y position of the landing spot with its height and
width is obtained. This gives rough location of the landing spot in the image. Then for
the area that is 1.5 times of the indicated dimensions (by the object detection) is
considered for the corner detection.

For estimating corners, Canny edge detection, Hough Transform and Harris Corner
detection is used. The result of Canny edge detection is shown in Fig. 4a. After the
lines are detected using Hough transform, those lines are super imposed on the edge
detected image, as shown in Fig. 4b. Then applying Harris corner on this superimposed
image, results in the 16 corners as shown in Fig. 4c. Finally, 4 corners obtained after
this step is shown in Fig. 4d. The results gave mean error distance of 4 pixels and
standard deviation of 2 pixels.

5.5 Pose Estimation

Camera Calibration. The calibration of Raspberry Pi camera v2.1 was done by taking
various images in 640 x 480 pixels and then detecting the corners in the checker board
pattern using OpenCV API. The focal length in x & y direction are at 499 and 501. The
optical center position in x & y are at 323 and 234 pixels, which sounds reasonable. The
radial distortion parameters k1, k2 and k3 are 0.17, −0.27, −0.20 respectively. And
tangential distortion coefficients are −0.0043 and 0.0006 respectively.

(a) Canny edge detection (b) Lines detected from Hough transform
super imposed on the probable area.

(c) Harris Corner detection in the super
imposed image. (d) Four Corner detection

Fig. 4. Corner detection for landing spot

12 M. Shrestha et al.

Pose Estimation Calculation. After the 4 corners in the 3D world coordinate of the
landing spot and corresponding 4 corners in the 2D image has been found, the
homogeneous matrix obtained was calculated. The homogenous matrix was decom-
posed to get the rotation and translation vector between the world coordinate and the
camera coordinate. The obtained position of the camera (which also represents the
position of the MAV) has been tabulated as shown in Table 4. The ground truth values
can also be seen in the table. Here the errors in x, y, z is within reasonable boundary
when the yaw angle from which the picture was taken is not much different than in the
landing pad. Since a valid constraint, that Y axis MAV should be pointing to Y axis of
the landing pad during landing, can be added, this error can be eliminated. From this
table it can be concluded that

– Rows 1, 2 show high percentage of error due to high Yaw Difference between the
landing spot and MAV. This can be eliminated if the landing is done with Y axis of
MAV pointing in the Y axis of the world coordinate.

– Up to 8% of error in height estimation, and up to 30% and 41% error in X, Y
estimations are obtained in normal conditions without any correction.

– It can be seen that when the image is corrected by pitch angle of the MAV, the error
in X, Y and Z position reduces from 30%, 40% and 8% to 19%, 6% and 5%
respectively. The row 4 depicts the result after normal calculation and row 5 depicts
result of the same calculation after image correction by pitch angle.

After the pitch angle correction is done, it can be seen that the average error across
many images in x, y, z position of the MAV is 12%, 13% and 4% respectively, which
should be practically acceptable for calculating the position of the MAV using low cost
approach described here. Hence, the correction of the captured image, by the pitch
angle of the camera or the MAV, is recommended before the pose estimation calcu-
lation is done, for better approximation.

Table 4. Comparison of final x, y & z positions obtained from the pose estimation with the
ground truth.

Ground truth (in
meter)

Calculated result
(in meter)

Error percent
(Error/GT * 100%)

S N Height X Y Height X Y Z X Y

1 10.85 3.6 2.3 11.38 1.72 0.78 4.88 52.22 66.09
2 16.1 0.6 0.85 14.05 4.19 4.48 12.73 598.33 427.06
3 6.65 3.65 0.05 6.72 3.78 0.06 1.05 3.56 20.00
4 10.85 3.6 2.3 9.99 4.7 3.26 7.93 30.56 41.74
5 10.85 3.6 2.3 10.28 4.3 2.16 5.25 19.44 6.09

Automatic Pose Estimation of Micro Unmanned Aerial Vehicle 13

6 Conclusion

There are challenges for landing of Micro Unmanned aerial vehicle (MAV) and robust
recognition of the landing pad and precise position control is necessary. This work
proposes a new visual based approach for MAV for estimating the approximate x, y, z
positions of the MAV from the landing spot using recorded camera images, thereby
assisting in the landing of MAV. You Only Look Once (YOLO) v3 has been used for
object detection of the landing spot in the image, which indicates sub section in the
image where the landing spot can be found. Then Harris corner detector has been
applied around the subsection, in order to get the four corners of the landing spot in the
image. Then after some pre- processing, the pose estimation of the MAV from the
planar landing spot has been done by decomposing the homogeneous matrix obtained
from 4 points correspondence. The experiments were carried with Raspberry Pi and the
estimation shows up to 4% of error in height and 12.5% error in X, Y position. The
present work doesn’t analyze the performance in adverse lighting condition. The
techniques for mitigating the effect of low light and very bright light while taking
images from the low-cost camera can be studied in future. Also, the pose estimation can
be improved using stereo camera instead of the single camera.

Acknowledgement. This work has been supported by the University Grants Commission,
Nepal under a Collaborative Research Grant (UGC Award No. CRG-74/75-Engg-01) for the
research project “Establishment of a Disaster Telecommunications Research and Educational
Facility Advancing a Scientifically Sound Disaster Telecommunication Infrastructure and Pro-
cesses in Nepal”.

References

1. Yang, S., Scherer, S.A., Zell, A.: An onboard monocular vision system for autonomous
takeoff, hovering and landing of a micro aerial vehicle. J. Intell. Robot. Syst. 69(1–4), 499–
515 (2013)

2. Yang, S., Scherer, S.A., Schauwecker, K., Zell, A.: Autonomous landing of MAVs on an
arbitrarily textured landing site using onboard monocular vision. J. Intell. Robot. Syst. 74
(12), 27–43 (2014)

3. Villa, D.K., Brandao, A.S., Sarcinelli-Filho, M.: A survey on load transportation using
multirotor UAVs. J. Intell. Robot. Sys. 98, 267–296 (2019)

4. Schipperijn, J., Kerr, J., Duncan, S., Madsen, T., Klinker, C.D., Troelsen, J.: Dynamic
accuracy of GPS receivers for use in health research: a novel method to assess GPS accuracy
in real-world settings. Front. Pub. Health 2, 21 (2014)

5. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object
recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)

6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (2005)

7. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the
Seventh IEEE International Conference on Computer Vision (1999)

8. Girshick, R.: Fast R-CNN. In: Proceedings of IEEE International Conference on Computer
Vision (2015)

14 M. Shrestha et al.

9. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time
object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016)

10. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46448-0_2

11. Joshi, B., Ohmi, K., Nose, K.: Comparative study of camera calibration models for 3D
particle tracking velocimetry. Int. J. Innov. Comput. Inf. Control 9(5), 1971–1986 (2013)

Automatic Pose Estimation of Micro Unmanned Aerial Vehicle 15

https://doi.org/10.1007/978-3-319-46448-0_2

	Automatic Pose Estimation of Micro Unmanned Aerial Vehicle for Autonomous Landing
	Abstract
	1 Introduction
	2 Methodology
	2.1 Learning Phase
	2.2 Implementation Phase
	2.3 Object Detection
	2.4 Corner Detection
	2.5 Pose Estimation

	3 Experimental Setup
	3.1 Development of Experimental MAV for Handheld Experiment
	3.2 Software Setup
	3.3 Camera Calibration
	3.4 Experiment Parameters

	4 Dataset Collection and Pre-processing
	4.1 Images of Landing Spot for Object Detection
	4.2 Pre-trained Weights
	4.3 Images of Landing Spot for Pose Estimation

	5 Results and Analysis
	5.1 Training on Environment 1
	5.2 Training on Environment 2
	5.3 Object Detection
	5.4 Corner Detection
	5.5 Pose Estimation

	6 Conclusion
	Acknowledgement
	References

