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Abstract For directed last passage percolation on Z
2 with exponential passage

times on the vertices, let Tn denote the last passage time from (0, 0) to (n, n).
We consider asymptotic two point correlation functions of the sequence Tn. In
particular we consider Corr(Tn, Tr) for r ≤ n where r, n → ∞ with r � n or
n − r � n. Establishing a conjecture from Ferrari and Spohn (SIGMA 12:074,
2016), we show that in the former case Corr(Tn, Tr) = Θ(( r

n
)1/3) whereas in the

latter case 1 − Corr(Tn, Tr) = Θ((n−r
n

)2/3). The argument revolves around finer
understanding of polymer geometry and is expected to go through for a larger class
of integrable models of last passage percolation. As a by-product of the proof, we
also get quantitative estimates for locally Brownian nature of pre-limits of Airy2
process coming from exponential LPP, a result of independent interest.
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1 Introduction and Statement of Results

We consider directed last passage percolation on Z
2 with i.i.d. exponential weights

on the vertices. We have a random field

ω = {ωv : v ∈ Z
2}

where ωv are i.i.d. standard Exponential variables. For any two points u and v with
u � v in the usual partial order, we shall denote by Tu,v the last passage time from
u to v; i.e., the maximum weight among all weights of all directed paths from u to
v (the weight of a path is the sum of the field along the path). By Γu,v , we shall
denote the almost surely unique path that attains the maximum- this will be called a
polymer or a geodesic. This is one of the canonical examples of an integrable model
in the so-called KPZ universality class [7, 18], and has been extensively studied
also due to its connection to Totally Asymmetric Simple Exclusion process on Z.
For notational convenience let us denote (r, r) for any r ∈ Z by r and T0,n by Tn and
similarly Γ0,n by Γn. It is well known [18] that n−1/3(Tn − 4n) has a distributional
limit (a scalar multiple of the GUE Tracy–Widom distribution), and further it has
uniform (in n) exponential tail estimates [1, 24]. Although the scaled and centered
field obtained from {T0,(x,y)}x+y=2n using the KPZ scaling factors of n2/3 in space
and n1/3 in polymer weight has been intensively studied and the scaling limit as n →
∞ identified to be the Airy2 process (minus a parabola), much less is known about
the evolution of the random field in time i.e., across various values of n. However
very recently there has been some attempts to understand the latter, see [2, 20–
23, 25, 26] for some recent progress.

In this paper, we study two point functions describing the ‘aging’ properties of
the above evolution. More precisely we investigate the correlation structure of the
tight sequence of random variables n−1/3(Tn − 4n) across n. In particular, let us
define for r ≤ n ∈ N

ρ(n, r) =: Corr(Tn, Tr).

We are interested in the dependence of ρ(n, r) on n and r as they become large.
Observe that the FKG inequality implies that ρ(n, r) ≥ 0. Heuristically, one would
expect that ρ(n, r) is close to 1 and 0 for |n − r| � n and r � n respectively.

Our main result in this paper establishes the exponents governing the rate of
correlation decay and thus identifies up to constants the asymptotics of ρ in these
regimes establishing a prediction from [16]. Namely we show

ρ(n, r) = Θ((
r

n
)1/3) if 1 � r � n and ρ(n, r) = 1 − Θ((

n − r

n
)2/3) if 1 � n − r � n.

It turns out that the upper bound in the former case is similar to the lower bound
in the latter case, and the lower bound in the former case is similar to to the upper
bound in the latter case. We club these statements in the following two theorems.
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Theorem 1 There exists r0 ∈ N and positive absolute constants δ1, C1, C2 such
that the following hold.

(i) For r0 < r < δ1n and for all n sufficiently large we have

ρ(n, r) ≤ C1

( r

n

)1/3
.

(ii) For r0 < n − r < δ1n and for all n sufficiently large we have

1 − ρ(n, r) ≤ C2

(
n − r

n

)2/3

.

Theorem 2 There exists r0 ∈ N and positive absolute constants δ1, C3, C4 such
that the following hold.

(i) For r0 < r < δ1n and for all n sufficiently large we have

ρ(n, r) ≥ C3

( r

n

)1/3
.

(ii) For r0 < n − r < δ1n and for all n sufficiently large we have

1 − ρ(n, r) ≥ C4

(
n − r

n

)2/3

.

1.1 Note on the History of This Problem and This Paper

These exponents were conjectured in [16] using partly rigorous analysis, and as far
as we are aware was first rigorously obtained in an unpublished work of Corwin
and Hammond [10] in the context of Airy line ensemble using the Brownian Gibbs
property of the same established in [11]. A related work studying time correlation
for KPZ equation has since appeared [12]. Days before posting the first version of
this paper on arXiv in July 2018, we came across [15] which considers the same
problem. Working with rescaled last passage percolation [15] analyzes the limiting
quantity r(τ ) := limn→∞ Corr(Tn, Tτn). They establish the existence of the limit
and consider the τ → 0 and τ → 1 asymptotics establishing the same exponents
as in Theorems 1 and 2. The approach in [15] uses comparison with stationary LPP
using exit points [9] together with using weak convergence to Airy process leading
to natural variational formulas. In the limiting regime they get a sharper estimate
obtaining an explicit expression of the first order term, providing rigorous proofs
of some of the conjectures in [16]. In contrast, our approach hinges on using the
moderate deviation estimates for point-to-point last passage time to understand local
fluctuations in polymer geometry following the approach taken in [3, 6] leading to
results for finite n, also allowing us to analyze situations r � n or n−r � n, which
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can’t be read off from weak convergence. Our work is completely independent of
[15].

The ideas in this paper has since been further developed in a joint work with
Lingfu Zhang [5] to treat the case of flat initial data (i.e., line-to-point last passage
percolation) in the τ → 0 limit, and the remaining conjectured exponent from [16]
has been established there. As it turns out, the upper bound in the case of flat initial
data requires rather different arguments, but the lower bound in [5] further develops
the same line of arguments as in the original version of this paper, and improves
upon some of the estimates proved there. As such, in this version, we have decided to
omit some of the details of the proof of Theorem 2, and we refer to the relevant steps
in [5] instead. We expect this class of ideas and estimates to be crucial in further
enhancing our understanding of temporal correlations in the KPZ universality class
with more general initial conditions.

1.2 Local Fluctuations of the Weight Profile

In the process of proving Theorems 1 and 2 we prove a certain auxiliary result
of independent interest. Namely, we establish a local regularity property of the pre-
limiting profile of Airy2 process obtained from the exponential LPP model. We need
to introduce some notations before making the formal statement. For n ∈ N, s ∈ Z

with |s| < n we define

Ln,s := T0,(n+s,n−s).

It is known [7] that

Ln(x) := 2−4/3n−1/3(Ln,x(2n)2/3 − 4n)

converges in the sense of finite dimensional distributions to the A2(x) − x2 where
A2(·) denotes the stationary Airy2 process (tightness, and hence weak convergence
is also known, see e.g. [14]). It is known that the latter locally looks like Brownian
motion [17, 27] and hence one would expect that Ln(x) − Ln(0) will have a
fluctuation of order x1/2 for small x. We prove a quantitative version of the same at
all shorter scales.

Theorem 3 There exist constants s0 > 0, z0 > 0 and C, c > 0 such that the
following holds for all s > s0, z > z0 and for all n > Cs3/2:

P

(
sup

s′:|s′|<s

Ln,s′ − Ln,0 ≥ zs1/2

)
≤ e−cz4/9 .

Such an estimate was first obtained in [17] for Brownian last passage percolation
using the Brownian Gibbs resampling property of the pre-limiting line ensemble in
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that model (a more refined version appears in a very recent work [8]). Observe that
one would expect the Gaussian exponent z2 in the upper bound of the probability in
the statement of the theorem and that is what is obtained in [17]. We, on the other
hand, use a cruder argument to obtain only a stretched exponential decay. However,
we have not tried to optimize the exponent 4/9 which is not even sharp for our
arguments.

1.3 Key Ideas and Organization of the Paper

Before jumping in to proofs, we present the key reasons driving the exponents
and the main ingredients of the proofs of Theorems 1 and 2. Since the reasons
governing the behaviour of ρ(n, r) when r � n and ρ(n, r) when n − r � n

are almost symmetric, in this section we will mostly discuss the former case for the
sake of brevity. The key realization driving the argument is that Γn should overlap
significantly with Γr up to the region {x + y ≤ 2r}. Then at a very high level one
can speculate that Cov(Tr , Tn) should be of the order of the variance of the amount
of overlap, which because of the previous sentence should be of the same order as
Var(Tr) = O(r2/3) (using the well known sharp estimates of the variance). All of
this points to a correlation of the order of ( r

n
)1/3.

We nowmention a few key ingredients used to make the above heuristic rigorous.
The upper bound is relatively straightforward. For convenience, as we shall do
throughout the paper, let us denote Tr by X and let Tn = Z + W where Z is the
weight of the first part of the polymer Γn i.e. the part from 0 to the line x + y = 2r
andW is the weight of the path from x+y = 2r to n. See Fig. 1. Let v = (r+s, r−s)

(r, r)

(n, n)

x+ y = 2n

x+ y = 2r

(0, 0)

v

X

Y

Z

W

(r, r)

(n, n)

x+ y = 2n

x+ y = 2r

(0, 0)

Fig. 1 The figure illustrates the polymers of interest, Γr with weight X, Γr,n, with weight Y, Γn

comprised of Γ0,v and Γv,n with weights Z and W respectively where v is the point of intersection
of Γn with the line x + y = 2r. The second figure illustrates our strategy to create barriers (deep
blue) around a narrow strip (light blue) to ensure that Γr and Γ0,v stay localized inside the latter
and hence overlaps significantly creating a situation where the covariance between X and Z + W

is approximated by the variance of the former
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be the vertex at which Γn intersects the line x + y = 2r . It is well known since the
work of Johansson [19] that if r is say n/2 then |s| = O(r2/3). However the polymer
is in some sense self similar and hence one expects that the above result should also
hold even when at scales r � n. Indeed a quantitative version of such a result was
established in [6]. This tells us that |X − Z| = O(r1/3) by standard results about
polymer fluctuations at scale r2/3 around the point r. Moreover relying on this we
also prove the local Brownian-like square root fluctuations of the distance profile
Tw,n as w varies over vertices of the form (r+s, r−s) when |s| = O(r2/3) showing
that |W − Y | = O((r2/3)1/2) = O(r1/3) where Y is Tr,n (hence is independent
of X). Given the above information, the upper bound, i.e., Theorem 1 is a simple
consequence of Cauchy–Schwarz inequality.

However, the lower bound is significantly more delicate since one has to rule out
cancellations to show that indeed the heuristic mentioned at the beginning of the
section is correct. At a very high level the strategy is to condition on a large part
of the noise space in a way which allows us to control cancellations and prove the
desired lower bound on ρ(n, r). To do this the first thing to come to our aid is the
FKG inequality. If with positive probability β (independent of r, n) the conditioned
environment is such that ρ(n, r) ≥ Θ( r

n
)1/3, then since ρ(n, r) ≥ 0 pointwise on

the conditioned environment (using the FKG inequality), averaging over the latter
yields the lower bound ρ(n, r) ≥ βΘ( r

n
)1/3. Our strategy of choosing the part of the

environment to condition on consists of ensuring that, with positive probability, the
polymer Γr is localized i.e., it is confined to a thin cylinder Rθ of size r × θr2/3 for
some small θ and ensuring Γn essentially agrees with Γr up to the line x + y = 2r.
This is obtained by creating a bad region (barrier) around the thin cylinder making it
suboptimal for the polymer to venture out of Rθ . This then implies that under such a
conditioning, up to certain correction terms Cov(Tr , Tn) is equal to Var(Tr). At this
point we prove a sharp estimate on variance of polymer weights constrained to lie
in Rθ showing that it scales like θ−1/2r2/3 as θ goes to 0. Thus for θ small enough,
the variance term is large enough and dominates all the correction terms yielding
the sought lower bound of Θ(r2/3) on the covariance and hence Theorem 2.

We now briefly describe how to use the exact same strategy to bound ρ(r, n) in
the regime n − r � n. We will discuss the more delicate Theorem 2. Note that in
this case we are aiming to prove a lower bound on 1 − ρ(n, r) and hence an upper
bound on ρ(n, r). Thus the natural strategy to adopt would be to show that even
after conditioning on Tr , Tn is not completely determined and there is still some
fluctuation left. In fact, as expected, our arguments will show that the latter is of the
same order as the fluctuation of Tr,n i.e., Var(Tn|Tr) = Θ((n − r)2/3) on a positive
measure part of the space. Thus we get

Θ((n − r)2/3) ≤ inf
λ
Var(Tn − λTr) = (1 − Corr2(Tr , Tn))Var(Tn).

This, along with the fact that Var(Tn) = Θ(n2/3), completes the proof.
It is worth emphasizing that while we do crucially make use of the integrability

of the exponential LPP model, it is done only in a rather limited nature via the
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input of weak convergence to Tracy–Widom distribution [18] and the moderate
deviation estimates coming from [1, 24]. Therefore we expect our methods to be
applicable to a large class of integrable LPP models where such estimates are
known. In particular, we do not use any information about the limiting Airy process.
As already mentioned, our approach hinges on the fine understanding of the local
polymer geometry, following the sequence of recent works [3, 4, 6]. By virtue of
being geometric, our proof is also robust, and as already mentioned, similar ideas
have already been used in [5] to treat the case of flat initial condition, which does
not yet seem accessible by any other method. We extensively draw from some of the
estimates derived in those previous works, while introducing some new elements
to advance the understanding of polymer geometry. Crucial ingredients include
moderate deviations estimates to establish concentration for passage times across
parallelograms. This idea originated in [3] and the particular estimates required for
the time correlation problems are gathered in [5, Section 4]; we shall be extensively
quoting from that source.

1.4 Organization of the Paper

The rest of the paper is organized as follows. We first prove Theorem 3 in Sect. 2.
Then we use Theorem 3 to prove Theorem 1 in Sect. 3. Proof of Theorem 2 is done
in Sect. 4.

2 Local Fluctuations of Weight Profile: Proof of Theorem 3

As alluded to before, in the case s = Θ(n2/3), one can read off a qualitative version
of this result from the limiting Airy process which ceases to provide any relevant
information when s � n2/3. Although it is known that Brownian motion arises as a
week limit at some shorter scale [27], we need some finer estimates for finite n. Such
a result was indeed achieved in [17] in the special case of Brownian LPP crucially
relying on the Brownian Gibbs property of the pre-limiting line ensemble. We shall
take a more robust, geometric approach which hinges on establishing that the profile
{Ln,s′ − Ln,0 : |s′| < s} is with high probability determined by the vertex weights
in the region

{(x, y) : 2n − C∗s3/2 ≤ (x + y) ≤ 2n}

for some large constant C∗. To this end we have the following proposition.

Proposition 1 In the set-up of Theorem 3, consider Γ = Γ0,(n+s′,n−s′). Let t ≥ 1
and let v = (v1(s

′, t, s), v2(s′, t, s)) denote the point at with Γ intersects the anti-
diagonal x + y = 2n − 2t∗s3/2. There exists s0 > 0, y0 > 0 and c, C > 0 such that
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Fig. 2 The figure illustrates
the setting of Proposition 1
where the geodesic from 0 to
any point in an interval L of
length 2s centered at n on the
line x + y = 2n is unlikely to
intersect the line
x + y = 2(n − ts3/2) outside
the line segment Lt,s,y of
length 2yt2/3s centered at
(n − ts3/2, n − ts3/2). Thus it
is unlikely that the black path
would be a geodesic

(n, n)

x+ y = 2n

(0, 0)

2s

t,s,y
2yt2/3s ts3/2

the following holds for all s > s0, t ≥ 1, y > y0 and for all n > Cr3/2:

P

(
sup

|s′|<s

|v1(s′, t, s) − (n − t∗s3/2)| ≥ yt2/3s

)
≤ e−cy2

where t∗ = min{t, n
s3/2

}.
See Fig. 2 for an illustration of the setting in Proposition 1 and the associated event.

Proof Clearly, the case t∗ �= t is trivial by the directed-ness of the geodesic. For
the other case, observe first that by polymer ordering, it suffices to prove the result
for s′ = ±r . This case can be read off from the proof of Theorem 3 in [6] (see also
Remark 1.3 there about the non-optimality of the exponent).

As in Fig. 2, let L denote the line segment joining (n+s, n−s) and (n−s, n+s)

and Lt,s,y denote the line segment joining (n− t∗s3/2 −yt2/3s, n− t∗s3/2 +yt2/3s)

and (n− t∗s3/2+yt2/3s, n− t∗s3/2−yt2/3s) . Clearly on the large probability event
(for large y) implied by Proposition 1, the profile:

{Ln,s′ − Ln,0 : |s′| < s}
can be upper bounded by using the passage times Tu,v where u ∈ Lt,s,y and v ∈ L.
The next proposition states a concentration result for these passage times around
their expectations.

Proposition 2 Let δ ∈ (0, 1
3 ) be fixed. Set L

′ := Lt,s,tδ . Then there exists s0, y0 > 0
and c > 0 such that for all s > s0, y > y0 and t ≥ 1 we have

P

(
sup

u∈L′,v∈L
|Tu,v − ETu,v| ≥ yt1/3+δ/2s1/2

)
≤ e−cy .



Time Correlations in LPP 109

The same bound holds for u = 0 if t �= t∗.

Proof This follows from [5, Theorem 4.2] by observing that the slope between any
two pair of points in L and L

′ remain between 1/2 and 2 (here we use the fact that
δ < 1

3 , and s is sufficiently large).

We can now complete the proof of Theorem 3. The basic strategy is the following.
To bound Ln,s′ − Ln,0 we back up a little bit and look at where the geodesic
Γ0,(n+s′,n−s′) intersects the line L

′ from Proposition 2 for an appropriate choice
of the parameters. Calling that u∗ the proof proceeds by bounding |Tu∗,v − Tu∗,n|
and using the simple observation that Ln,0 ≥ T0,u∗ + Tu∗,n.

Proof of Theorem 3 Let z > 0 sufficiently large be fixed. Let t = z4/3 and let A
denote the event that

{
sup

s′:|s′|<s

|v1(s′, t, s) − (n − t∗s3/2)| ≥ z10/9s

}

Use Proposition 1 with the above value of t and y = z2/9 to conclude that P(A ) ≤
e−cz4/9 (as z is sufficiently large). We shall now consider two cases separately: (i)
t = t∗ and (ii) t �= t∗.

In case (i), let L′ be defined as in Proposition 2 with δ = 1/6 (any arbitrary
choice for δ ∈ (0, 1/3) would work, but would give a different tail exponent) and
the choice of t as before. Let B denote the event that

{
sup

u∈L′,v,v′∈L
|Tu,v − Tu,v′ | ≥ zs1/2

}
.

Observe now that, for u = (u1, u2) and v = (v1, v2) as above, we have, by Basu et
al. [5, Theorem 4.1], that

|ETu,v − (
√

v1 − u1 + √
v2 − u2)

2| ≤ Ct1/3s1/2

for some C > 0. By a Taylor expansion, it follows that, for u, v, v′ as above we
have for some C′

sup
u∈L′,v,v′∈L

|ETu,v − ETu,v′ | ≤ C′t1/3s1/2 ≤ z

2
s1/2

where the final inequality follows from our choice of t and z sufficiently large. Using
Proposition 2 with the choices above, y = z4/9, we get from the above that for z

sufficiently large, we have P(B) ≤ e−cz4/9 . It remains to prove that onA c ∩Bc we
have

{
sup

s′:|s′|<s

Ln,s′ − Ln,0 ≤ zs1/2

}
.
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To see this, let s∗ with |s∗| ≤ s be such that

Ln,s∗ = sup
s′:|s′|<s

Ln,s′ .

Let v := (n + s∗, n − s∗). On A c, the geodesic Γ0,(n+s∗,n−s∗) intersects the line
segment L′, let u∗ be the intersection point. OnBc we have |Tu∗,v −Tu∗,n| ≤ zs1/2.
The claim is established by observing that Ln,0 ≥ T0,u∗ + Tu∗,n.

1

In case (ii), we proceed as before but now notice that u∗ = 0. The same argument
now can be repeated withB′ defined as

{
sup

v,v′∈L
|T0,v − T0,v′ | ≥ zs1/2

}
.

Observe now that since t �= t∗, we must have n ≤ ts3/2. Using [5, Theorem 4.1] as
before it follows that for some C > 0

sup
v,v′∈L

|ET0,v − ET0,v′ | ≤ Cn1/3 ≤ Ct1/3s1/2 ≤ z

2
s1/2

where the last inequality follows as before by taking z sufficiently large and our
choice of t . Using the above and Proposition 2 as before we show that P(B′) ≤
e−cz4/9 . The rest of the proof is identical with the previous case.

3 Proof of Upper Bounds

In this section we shall prove Theorem 1 using Theorem 3 and Proposition 1. As we
shall see, the proofs of parts (i) and (ii) rely on much of the same ingredients. Before
proceeding further let us introduce some notation that will be used throughout this
section.

Before diving in to the proofs we adopt the convention of ignoring the values of
the vertices {ω(x,y) : x + y = 2r}. This would enable us to write cleaner equations
of the form Tn = T0,v + Tv,n where v is the unique vertex Γn ∩ {x + y = 2r}.
However since by definition, the random v can be one of 2r possible vertices, whose
maximum value is no more than log r with an exponential tail, it does not create
any change in the computations throughout the paper since all the objects that we
deal with, have fluctuations of the order of r1/3. We shall adopt this convention
throughout the remainder of this paper, and not comment further on this topic. It
will be easy to verify the minor details in each case, and we leave that to the reader.

For any path γ , we shall denote by �(γ ), the weight of the path. Let Γ := Γn

denote the polymer from 0 to n. Let v = (v1, v2) denote the point at which Γ

1We shall ignore the contribution of the vertex u∗, one can check that this does not change any of
the asymptotics.
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intersects the line {x + y = 2r}. Recall from Sect. 1 that Tr := T0,r. Let us define
(see Fig. 1)

X := Tr, Y := Tr,n, (1)

Z := �(Γ0,v) and W := �(Γv,n).

Thus by definition Tn = Z + W .2 Finally we shall denote by X∗ the weight of the
polymer, denoted by Γ ∗, from 0 to the line {x + y = 2r}.

We shall need some preparatory results. First we want to show that (Z − X)+ is
tight at scale r1/3. Observing that X∗ ≥ Z, this is a consequence of [5, Theorem
4.1] that r−1/3(X∗ − X) has stretched exponential tails: for all y large enough and
for all r large enough

P(X∗ − X ≥ yr1/3) ≤ e−cy1/3 . (2)

The next lemma shall show that W − Y is also typically of order r1/3. Notice
that if r � n, now we can no-longer replace W by the weight of the line-to-point
polymer from the line {x + y = 2r} to n. This is where we shall need the full power
of Proposition 1 and Theorem 3.

Lemma 1 There exists positive constants r0, y0 and C, c > 0 such that for all
r > r0 and y > y0 and n > Cr we have

P(W − Y > yr1/3) ≤ e−cy1/3 .

Proof For z > 0, let Az denote the event |v1 − r| ≥ zr2/3 andBz denote the event
that

sup
|s|≤zr2/3

T(r+s,r−s),n − Tr,n ≥ yr1/3.

Clearly for every z > 0,

P(W − Y > yr1/3) ≤ P(Az) + P(Bz).

The lemma follows by taking z = y1/6 and using Proposition 1 and Theorem 3 to
bound P(Az) and P(Bz) respectively. Note that in the last application, Theorem 3
is applied for the inverted ensemble i.e., replace n by 0, 0 by n and r by n − r .

We can now prove the following proposition which immediately implies Theo-
rem 1, (i) as Var Tn = Θ(n2/3), and Var Tr = Θ(r2/3).

2This is first of the many situations we ignore the weights on the line x + y = 2r , as mentioned
above we shall not comment on this issue henceforth.
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Proposition 3 There exists absolute constants r0, δ1 and C such that we have for
all r0 < r < δ1n and n sufficiently large

Cov(Tn, Tr) ≤ Cr2/3.

Proof We need to upper bound

Cov(X,Z + W) = Cov(X,Z) + Cov(X,W).

we bound the two terms separately. Clearly, by Cauchy–Schwarz inequality and
the observation Var X = Θ(r2/3), to prove Cov(X,Z) ≤ Cr2/3, it suffices to
show that Var Z = O(r2/3). Now notice that, Var(Z) ≤ 2(VarX + E(X − Z)2).
Observing Y − W ≤ Z − X ≤ X∗ − X, and using (2) and Lemma 1 it follows that
E(X −Z)2 = O(r2/3) which in turn implies Cov(X,Z) ≤ Cr2/3 for some absolute
constant C.

For the second term in the above decomposition observe that

Cov(X,W) = Cov(X,W − Y )

because X and Y are independent. Using Cauchy–Schwarz inequality again, it
suffices to show that E(Y − W)2 = O(r2/3). Observing as before that W − Y ≥
X − Z ≥ X − X∗, this follows from (2) and Lemma 1. This completes the proof of
the proposition.

To prove Theorem 1, (ii) we shall need the following easy observation.

Observation 1 For any two random variables U and V we have

Var(U − V ) ≥ (1 − Corr2(U, V ))Var(U).

The observation follows from noticing that

(1 − Corr2(U, V ))Var(U) = inf
λ∈RVar(U − λV ) ≤ Var(U − V ).

Using Observation 1, the following Proposition immediately implies Theorem 1,
(ii).

Proposition 4 There exists r0 ∈ N and positive absolute constants δ1, C, for all r

such that δ1n > (n − r) > r0, and all n sufficiently large we have

Var (Tn − Tr) ≤ C(n − r)2/3.

Proof Recalling X, Y,Z,W as defined at the beginning of this section, we need to
upper bound Var(Z + W − X). Expanding we get that,

Var(Z + W − X) = Var(Z − X) + Var(W) + 2Cov(Z − X,W).
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We shall show each of the terms above is O((n − r)2/3) separately. In fact, by
Cauchy–Schwarz inequality it suffices to only show that bound for the first two
terms. Notice that the picture is same as before except the roles of r and (n − r) has
been reversed. Using the proof of Lemma 1 we can now show that

P(Z − X ≥ y(n − r)1/3) ≤ e−cy1/4

and using (2) again it follows that

P(W − Y ≥ y(n − r)1/3) ≤ e−cy1/4

for all y sufficiently large. As in the proof of Proposition 3, this is then used to
argue that Var(Z − X) = O((n − r)2/3), and E[W − Y ]2 = O((n − r)2/3), which
together with the observation that Var Y = O((n − r)2/3) completes the proof of
the proposition.

4 Proof of Lower Bounds

We now move towards proving Theorem 2. As in the proof of Theorem 1, parts (i)
and (ii) of Theorem 2 have rather similar proofs as well (after exchanging the roles
of r and n − r). In this section we describe in detail the line of argument leading to
the proof of Theorem 2, (i). We shall first complete the proof modulo the key result
Proposition 6. We shall give a sketch of how the same strategy is used to prove
Theorem 2, (ii). The final subsection will be dedicated to the proof of Proposition 6.

For the readers’ benefit, we recall briefly the strategy outlined in Sect. 1.3. By
the FKG inequality, it should suffice to obtain a lower bound on the conditional
correlation on an event with probability bounded uniformly below. By the trivial
observation Cov(X,X + Y ) = Θ(r2/3), a very natural way to construct such an
event is to ask that v is very close to r which will imply X ≈ Z and Y ≈ W (using
Theorem 3). However one needs to be careful so that there will be enough fluctuation
left in the conditional environment. To this end, it turns out one can construct such
an event measurable with respect to the configuration outside a thin strip of width
Θ(r2/3) around the straightline joining 0 to r.

For θ > 0, let Rθ ⊆ Z
2 be defined as follows:

Rθ := {(x, y) ∈ Z
2 : 0 ≤ x + y ≤ 2r and |x − y| ≤ θr2/3}.

Let ωθ = {ωv : v ∈ �0, n�2 \ Rθ } denote a weight configuration outside Rθ . LetFθ

denote the σ -algebra generated by the set of all such configurations Ωθ . Observe
that events measurable with respect to Fθ can be written as subsets of Ωθ , and we
shall often adopt this interpretation without explicitly mentioning it. The major step
in the proof is the following proposition.
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Proposition 5 There exist absolute positive constants β, δ1, θ, C > 0 sufficiently
small such that for δ1n > r > r0 and n sufficiently large there exists an event E
measurable with respect to Fθ with P(E ) ≥ β and the following property: for all
weight configuration ω ∈ E we have

Cov(Tn, Tr | ω) > Cr2/3.

The proof of Theorem 2, (i) using Proposition 5 is straightforward.

Proof of Theorem 2, (i) Observe that for each fixed weight configuration ω ⊂ Ωθ

on the vertices outside Rθ , both Tn and Tr are increasing in the weight configuration
on Rθ . Observe also that E[Tn | Fθ ] and E[Tr | Fθ ] are both again increasing in
the configuration ω. Applying the FKG inequality twice (in the third and fifth lines
of the following computation) together with Proposition 5 (in the third line of the
following computation while dealing with the integral over E ) then implies

ETnTr = E (E[TnTr | Fθ ])
=

∫

E
E[TnTr | Fθ ]dω +

∫

E c

E[TnTr | Fθ ]dω

≥
∫

E
E[Tn | Fθ ]E[Tr | Fθ ]dω + Cβr2/3 +

∫

E c

E[Tn | Fθ ]E[Tr | Fθ ]dω

= E (E[Tn | Fθ ]E[Tr | Fθ ]) + Cβr2/3

≥ E[Tn]E[Tr ] + Cβr2/3;

which is what we set out to prove.

4.1 Constructing a Suitable Environment

The key step in the proof of Proposition 5, is the construction of E , towards which
we now move. For easy reference we recall the notations already introduced in
Sect. 3, that we will use again.

X := Tr, Y := Tr,n, Z := �(Γ0,v) and W := �(Γv,n).

X∗ := max{�(Γ0,w) : w ∈ Lr},

where Lr denote the line {x + y = 2r}. We shall also denote by X∗ (resp. Xθ )
the weight of the best path from 0 to r that does not exit R2θ (resp. Rθ ). Finally
for φ > θ , Lr,φ shall denote the line segment joining (r − φr2/3, r + φr2/3) and
(r + φr2/3, r − φr2/3). We shall denote by Xφ the weight of the best path from 0 to
Lr,φ , and by Yφ the weight of the best path from Lr,φ to n.
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The event E will depend on a number of parameters φ0, φ, L, c0 (and naturally
θ ), the choices of which shall be specified later.

The event will consist of two major parts.

1. Regular fluctuation of the profile {Tw,n : w ∈ Lr,φ}: Let E1 denote the event
that

{
sup

w∈Lr,φ0

Tw,n − Tr,n ≤ φ
1/2
0 log9(θ−1)r1/3

}
∩

{
sup

w∈Lr,φ\Lr,φ0

Tw,n − √|w1 − w2| log9(θ−1) ≤ Tr,n

}
,

where w = (w1, w2). Our choice of parameters (see below) would ensure φ0 �
φ. Observe that E1 only depends on the weight configuration above the line Lr .

2. Barrier around Rθ : Let U1 (resp. U2) denote a r × (φ − θ)r2/3 rectangle whose
one set of parallel sides are aligned with the lines x + y = 0 and x + y = 2r
respectively and whose left (resp. left right) side coincides with the right (resp.
left) side of Rθ .3 For any point u = (u1, u2) ∈ Z

2, let d(u) := u1 + u2. Also,
for any region U , and points u, v ∈ U , let us denote, by T U

u,v to be the weight of
the best path from u to v that does not exit U . Let E2 denote the following event
measurable with respect to the configuration in U1:

T
U1
u,u′ − ETu,u′ ≤ −Lr1/3 ∀u, u′ ∈ U1 with |d(u) − d(u′)| ≥ r

L
.

Let E3 denote the same event with U1 replaced by U2. We set E4 := E2 ∩ E3.

4.1.1 Choice of Parameters

We need to fix our choice of parameters appearing in the definitions of the above
events before proceeding to proving probability bounds for the same. Throughout
the sequel c0 is a small enough universal constant, we shall choose θ to be an
arbitrarily small constant; andL � φ � φ0. We need to choose φ0 poly-logarithmic
in θ−1, φ a large inverse power of θ , and L a much larger inverse power of θ

depending on φ. For concreteness we shall fix φ0 = log10( 1
θ
), φ = ( 1

θ
)30 and

L = φ30. Given all of these we shall take r sufficiently large, and r/n sufficiently
small. Throughout the remainder of this paper we shall work with this fixed choice
of parameters.

3In keeping with the often used practice, left and right are defined after rotating the picture counter-
clockwise by 45 degrees, so that the line x = y becomes vertical.
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4.2 Construction of E

We are now ready to define the event E . First we define certain nice events
conditioned on E4 towards the proof of Proposition 5.

1. Let E5 denote the set of all ω = ωθ ∈ E1 ∩ E4 such that

E[(X∗ − X∗)2 | ω] ≤ 10r2/3,

2. Let E6 denote the set of all ω = ωθ ∈ E4 ∩ E1 such that

E[(Z + W − Y − X∗)2 | ω] ≤ 40φ2
0r

2/3.

3. Let E7 denote the set of all ω ∈ E4 ∩ E1 such that

Var (X∗ | ω) ≥ c0θ
−1/2r2/3

where c0 is a sufficiently small constant to be chosen appropriately later
(independent of θ ) and θ will be chosen sufficiently small.

We shall set

E := E5 ∩ E6 ∩ E7. (3)

4.3 Proof of Proposition 5

It remains to prove Proposition 5 using the E defined above. First we need to state
the desired lower bound for P(E ).

Proposition 6 There exists β > 0 depending on all parameters such that P(E ) >

β.

Deferring the proof of this proposition to Sect. 4.4, we first finish the proof of
Proposition 5.

Proof of Proposition 5 Let E be as defined above. By Proposition 6 we know
that P(E ) is bounded below as required. Fix ω = ωθ ∈ E . Observe that Y is
a deterministic function of ω. Using linearity of covariance and Cauchy–Schwarz
inequality, we have for each ω ∈ E ,

Cov(X,Z + W | ω) = Cov(X,Z + W − Y | ω)

= Cov(X∗, Z + W − Y | ω)

+Cov(X − X∗, Z + W − Y | ω)

= Var(X∗ | ω)
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+Cov(X∗, Z + W − Y − X∗ | ω)

+ Cov(X − X∗, X∗ | ω)

+Cov(X − X∗, Z + W − Y − X∗ | ω)

≥ Var(X∗ | ω) − √
Var(X∗)

×
(√

Var(X − X∗ | ω) + √
Var(Z + W − Y − X∗ | ω)

)

−√
Var(X − X∗ | ω)

√
Var(Z + W − Y − X∗ | ω).

By definition of E5, and the observation that X∗ ≥ X ≥ X∗ we get that for each
ω ∈ E , Var(X − X∗ | ω) ≤ 10r2/3. By definition of E6, Var(Z + W − Y − X∗ |
ω) = O(φ2

0r
2/3). The proof is completed by the definition of E7, observing that by

our choices of parameters θ−1/4 � φ0 (whch ensures that the first term dominates
in the above expression).

We now illustrate how the proof of Theorem 2, (ii) can be completed along the
same lines. We shall only provide a sketch.

Proof of Theorem 2, (ii) First observe that in the notation of the above proof, using
Cauchy–Schwarz inequality, and the fact that Y is a deterministic function of ω, we
have, as above, that for all ω ∈ E ,

Var(Z + W | ω) ≥ Var(X∗ | ω) − 2
√
Var(Z + W − Y − X∗ | ω)

√
Var(X∗ | ω).

By definition of E6 and E7, we get that for θ sufficiently small and for all ω ∈ E ,
we have Var(Z + W | ω) ≥ c(θ)r2/3 for some c(θ) > 0. Now we make the
same definitions as before, but interchange the roles of r and (n − r). Let the event
corresponding to E be now denoted Ẽ . The analogue of Proposition 6 and the above
observation now implies that for 1 � n − r � n there exists a positive probability
set Ẽ such that for each ω ∈ Ẽ , Var(Tn | ω) ≥ c(n− r)2/3 (and Tr is a deterministic
function of ω ∈ Ẽ ). This implies for some constant c′ > 0 we have

c′(n − r)2/3 ≤ inf
λ
Var(Tn − λTr) = (1 − Corr2(Tr , Tn))Var(Tn);

which completes the proof.

The remainder of the paper is devoted to the proof of Proposition 6.

4.4 Proof of Proposition 6

The proof has two parts. First we consider the event E1 ∩ E4 and show that it has
probability bounded below. Then we show that conditional on E1 ∩ E4 each of the
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events E5, E6 and E7 has probability close to one. Since E1 and E4 are independent
it suffices to lower bound their probabilities separately.

Lemma 2 There exists positive constants r0, δ1 such that for all δ1n > r > r0, we
have

P(E1) ≥ 1 − e−c log4(θ−1).

Proof Recall the two events whose intersection E1 consists of. That the first of those
has probability at least 1− e−c log4(θ−1) is an immediate consequence of Theorem 3.
The probability lower bound for the second event also follows by writing the
line segment Lr,φ as an increasing union over Lr,i for i = 1, 2 . . . , φ, applying
Theorem 3 for each and taking a union bound.

The next lemma, quoted from [5] without proof, shows that E4 occurs with positive
probability.

Lemma 3 ([5, Lemma 6.5]) There exists ε = ε(φ, L) > 0 such that P(E4) > ε.

Let us now move towards bounding the conditional probabilities of E5,E6 and
E7 given E1 ∩ E4. Notice that E5 is independent of E1 and hence for those it suffices
to consider conditional probability given E4 only. We need the following result from
[5].

Lemma 4 ([5, Lemma 6.6]) There exists positive constants r0, δ1 such that for all
δ1n > r > r0, and θ sufficiently small, we have

E[(X∗ − X∗)2 | E4] ≤ r2/3.

Lemma 5 There exists positive constants r0, δ1 such that for all δ1n > r > r0, we
have

E[(Z + W − Y − X∗)2 | E1 ∩ E4] ≤ 4φ2
0r

2/3.

We shall come back to the proof of Lemma 5 at the end of this subsection.

Lemma 6 There exists positive constants r0, δ1 and c0 such that for all δ1n > r >

r0, we have

P[Var[X∗ | ωθ ] ≥ c0θ
−1/2r2/3 | E1 ∩ E4] ≥ 0.9.

Essentially the same statement is proved in [5, (43)] and we shall omit the proof.
See the proofs of [5, Lemma 6.9, Lemma 6.10].

We can now complete the proof of Proposition 6.

Proof of Proposition 6 Observe that by Markov inequality (and the fact that E1 is
independent of E4 and E5) we have P(E5 | E1∩E4) ≥ 0.9 and P(E6 | E1∩E4) ≥ 0.9
and P(E7 | E1 ∩ E4) ≥ 0.9 using Lemmas 4, 5, and 6 respectively. Combined,
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these give P(E | E1 ∩ E4) ≥ 0.7. Observe further that by Lemmas 2 and 3 and
the fact that E1 and E4 are independent implies that for θ sufficiently small we have
P(E1 ∩ E4) ≥ ε/2. The proof of the proposition is completed by choosing β = ε/4.

It remains to prove Lemma 5. It is in spirit similar (in fact somewhat easier) to
the proof of [5, Lemma 6.7] but several ingredients are different.

Proof of Lemma 5 Let A denote the event that the point v where the geodesic Γn

from 0 to n intersects Lr lies in Lr,φ0 . We write

E[(Z + W − Y − X∗)2 | E1 ∩ E4]
= E[(Z + W − Y − X∗)21A | E1 ∩ E4] + E[(Z + W − Y − X∗)21Ac | E1 ∩ E4]
≤ E[(Z + W − Y − X∗)21A | E1 ∩ E4] + E[(Z + W − Y − Xθ)

21Ac | E1 ∩ E4]

where the inequality is a consequence of 0 ≤ Z +W −Y −X∗ ≤ Z +W −Y −Xθ .
To bound the first term, we notice that, on A, |Z − Y | ≤ supw∈Lr,φ0

|Tw,n − Y |,
and consequently

E[(Z + W − Y − X∗)21A | E1 ∩ E4]

≤ O

(
E

[
sup

w∈Lr,φ0

|Tw,n − Y |2 | E1
]

+ E[(X∗ − X∗)2 | E4]
)

= O(φ0r
2/3)

where in the first inequality we use the fact that supw∈Lr,φ0
|Tw,n−Y |2 is independent

of E4 and the last inequality is a consequence of Theorem 3, Lemmas 2 and 4.
Now for the second term, using Cauchy–Schwarz inequality we get

E[(Z+W −Y −Xθ)21Ac | E1∩E4] ≤ P[Ac | E1∩E4]1/2E[(Z+W −Y −Xθ)4 | E1∩E4]1/2.

Now we claim that P(A | E1 ∩ E4) ≥ 1 − e− log2(θ). This is proved in Lemma 7
below. Also notice that since E1 and E4 are independent, Lemma 2 implies that for θ

sufficiently small we haveE[(Z+W−Y−Xθ)
4 | E1∩E4] ≤ 2E[(Z+W−Y−Xθ)

4 |
E4]. Further observe that the event E4 is decreasing in the configuration Rθ , and the
FKG inequality implies that conditioning on E4 makes the configuration outside Rθ

stochastically smaller. Since (Z + W − Y − Xθ) is positive and increasing in the
configuration outside Rθ , we thus have

E[(Z + W − Y − Xθ)
4 | E4] ≤ E[(Z + W − Y − Xθ)

4].
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Finally, as Z ≤ X∗ and Z + W − Y − Xθ ≥ 0

E[(Z + W − Y − Xθ)
4] ≤ E[(X∗ + W − Y − Xθ)

4]
≤ O(E[(X∗ − Xθ)

4] + E[(W − Y )4])
= O(θ−4r4/3).

For the last equality we use [5, Proposition 4.5] to show E[(Xθ − 4r)4] =
O(θ−4r4/3), use [5, Theorem 4.1] to get E[(X∗ − 4r)4] = O(r4/3) and deduce
E[(W − Y )4] = O(r4/3) from Lemma 1 as in the proof of Proposition 3. By taking
θ sufficiently small, this concludes the proof of the proposition modulo Lemma 7
below.

Lemma 7 In the set up of the proof of Proposition 6, we have P(A | E1 ∩ E4) ≥
1 − e− log2(θ) for all θ sufficiently small.

For this proof we make numerous uses of the estimate in [5, Theorem 4.2] which
states that for an r × r2/3 rectangle (or parallelogram) R and for pairs of u,w ∈
R such that the slope joining u,w is bounded away from 0 and infinity we have
infu,w r−1/3(Tu,w − ETu,w) and supu,w r−1/3(Tu,w − ETu,w) both have stretched
exponential tails.

Proof We shall construct a number of large probability events which together will
imply A. Let Aloc,φ denote the event that for some w ∈ Lr \ Lr,φ1/2 we have

T0,w + Tw,n ≥ Xθ + Tr,n.

LetAθ,1 denote the event that for all v′ = (v′
1, v

′
2) ∈ Rθ with 2r−2θ3/2r ≤ d(v′) ≤

2r − θ3/2r , we have

T
Rθ

v′,r ≥ 2(2r − d(v′)) − θ1/2r1/3 log5(
1

θ
).

Let Aθ,2 denote the event that for all v′ as above and for all w ∈ Lr,φ1/2 \ Lr,φ0 we
have

Tv′,w − ETv′,w ≤ θ1/2r1/3 log10(
1

θ
).

Finally, let Ẽ denote the event that for any w′ ∈ Lr,φ1/2 \ Lr,φ0 and the geodesic Γ ′
from 0 to w′ there exists v′ ∈ Rθ ∩ Γ ′ with 2r − 2θ3/2r ≤ d(v′) ≤ 2r − θ3/2r such
that from 0 to v′, Γ ′ is entirely contained in R2θ .
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We first claim that E1 ∩ Ẽ ∩ Aθ,1 ∩ Aθ,2 ∩ (Aloc,φ)c ⊆ A. Indeed, observe
first that (Aloc,φ)c implies that v := Γ ∩ Lr ∈ Lr,φ1/2 . Then notice that for any

w′ = (w′
1, w

′
2) ∈ Lr,φ1/2 \ Lr,φ0 , Ẽ implies that

T0,w′ − X∗ ≤ sup
v′

[Tv′,w′ − T
Rθ

v′,r]

where the supremum is taken over all v′ ∈ Rθ such that 2r − 2θ3/2r ≤ d(v′) ≤
2r − θ3/2r .

Recall, for w′ as above, the lower bound on Y − Tw′,n given by the definition

of E1. Using this together with the fact that ETv′,w′ ≤ 2(2r − d(v′)) − |w′
1−w′

2|2
50θ3/2r

(this is a consequence of the moderate deviation estimate [5, Theorem 4.1]) and the
definitions of Aθ,1 and Aθ,2, it follows that on E1 ∩ Aθ,1 ∩ Aθ,2 we have

sup
v′

[Tv,w′ − T
Rθ

v′,r] ≤ Y − Tw′,n

where the supremum over v′ is as before. It therefore follows that on E1 ∩ E ′ ∩
Aθ,1 ∩ Aθ,2 we have

T0,w′ − X∗ ≤ Y − Tw′,n

for each w′ ∈ Lr,φ1/2 \ Lr,φ0 . This completes the proof of the claim.
Now the barrier event E4 is designed in such a way that a path from 0 to w′

as above is penalised more heavily than a path constrained to stay within Rθ (as
L � φ � 1

θ
). Formalising this, [5, Lemma 6.12] implies (the event Ẽ defined there

is slightly different, where the starting point of the geodesic is also allowed to vary
around 0 but the same proof works) P((Ẽ )c | E4) ≤ e− log3(1/θ). It follows from
[5, Theorem 4.2] that P(Aθ,1)

c ≤ e− log5/2(1/θ) for all θ small. Next, notice that by
dividing Lr,φ1/2 \Lr,φ0 into intervals of length θr2/3, applying [5, Theorem 4.2] and
taking a union bound and using the FKG inequality it follows that P((Aθ,2)

c | E4) ≤
e− log3(1/θ). It remains to upper bound P(Aloc,φ | E4).

To this end, set Sj := Lr,j+1 \ Lr,j . Our objective is to show that with high
probability, Y + Xθ ≥ supw∈Sj

T0,w + supw∈Sj
Tw,n. Let Cj denote the event that

supw∈Sj
T0,w − Xθ ≥ infw∈Sj

Y − Tw,n. Clearly, for j > φ1/2, we can upper bound
P(Cj ) by

P( sup
w∈Sj

T0,w − 4r ≥ −0.001j2r1/3)

+ P(Xθ ≤ 4r − 0.001j2r1/3) + P( inf
w∈Sj

Y − Tw,n ≤ −0.002j2r1/3).
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Using [5, Theorem 4.2] for j < 0.9r1/3 and [5, (13)] together with a union
bound for j ≥ 0.9r1/3, we can show that the first probability is upper bounded by
e−cj3/2 (and the same is true conditionally on E4 by the FKG inequality). By Basu
et al. [5, Theorem 4.2] and a simple concentration inequality for sums of θ−3/2

many independent subexponential variables at scale θ1/2r1/3 (see the proof of [5,
Proposition 4.5]) we get that the second probability is upper bounded by e−cj2θ ,
whereas the third probability, by Theorem 3, is upper bounded by e−cj2/3 . Notice
also that the second and third events above are independent of E4. Summing over
all j > φ1/2 and using that φ is a large power of θ−1 gives the result gives that
P(A

φ
loc | E4) ≤ e− log3(1/θ).

Combining all these together and using E1 is independent of E4 together with
Lemma 3 gives us P(A | E1 ∩ E4) ≥ 1 − e− log2(θ) for all θ sufficiently small, as
desired.

4.5 A Note on the Variance of Constrained Last Passage Time

Before concluding we also comment that the proof of Lemma 6 (see the proof of [5,
Lemma 6.9]) can be used to obtain the sharp order of variance of the weight of the
best path constrained to stay within a thin cylinder. In particular one can show that
for θ ≤ 1 and r sufficiently large, Var Xθ = Θ(θ−1/2r2/3) answering a question
raised in [13]. The lower bound in the above statement can be proved using a simpler
version of the argument used in the proof of [5, Lemma 6.9]. Upper bound follows
from a Poincaré inequality argument after revealing θ3/2r ×θr2/3 rectangles one by
one and using [5, Theorem 4.2].
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