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Abstract We discuss random geometric structures obtained by percolation of
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of conjectures for the cases d = 3, 4, 5 and prove some results when d > 6.
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1 Introduction

Field theory has been remarkably successful in describing features of many
models of statistical physics at their critical points. In that approach, the focus
is put on correlation functions between the values taken by the field at a certain
number of given points in space. In many instances, these functions correspond to
experimentally measurable macroscopic quantities (such as for instance the global
magnetization in the Ising model).

1The content of this paper corresponds to the last of my talks that Vladas attended in 2017 and
2018. Like so many of us in the mathematical community, I remember and miss his enthusiasm as
well as his contagious, warm and charming smile.
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Some of these correlation functions can also be directly related to features of
conjectural (and sometimes physically relevant) random fractal geometric objects;
for instance, a 2-point function F(x1, x2) can describe the asymptotic behaviour
as ε → 0 of the probability that x1 and x2 are both in the ε-neighbourhood of
some “random cluster” in a statistical physics model—and the critical exponent that
describes the behaviour of F as y → x is then related to the fractal dimension of the
scaling limits of those clusters. This type of more concrete geometric interpretation
is however not instrumental in the field-theoretical set-up (and for some fields,
there is actually no underlying geometric object). It remained for a long time rather
hopeless to go beyond this aforementioned partial description of these geometric
structures via correlation functions, due to the lack of other available mathematical
tools to define such random geometric objects in the continuum.

In the very special case of two-dimensions (which is related to Conformal Field
Theory (CFT) on the field theory side), this has changed with Oded Schramm’s
construction of Schramm–Loewner Evolutions (SLE processes) in [32]. These are
concrete random curves in the plane defined via some mathematical conformally
invariant growth mechanism, and that are conjectured to be relevant for most critical
systems in two dimensions. The Conformal Loop Ensembles (CLE) that were
subsequently introduced in [34, 35] are random collection of loops, or equivalently
random connected fractal sets that are built using variants of SLE, and that describe
the (conjectural) scaling limit of the joint law of all clusters in critical lattice models.
It should be stressed that all these SLE-based developments rely on conformal
invariance in a crucial manner, so that they are specific to the two-dimensional case.

In this study of two-dimensional and conformal invariant random structures, the
following two random objects have turned out to be very closely related to the SLE
and CLE:

• The Gaussian Free Field (GFF): As shown in a series of work by Schramm-
Sheffield, Dubédat and Miller-Sheffield starting with [9, 27, 33], this random
generalized function essentially turns out to host (in a deterministic way) most
SLE-based structures. There exists for instance a procedure that allows to
deterministically draw a CLE, starting from a sample of a GFF. In particular,
it was pointed out by Miller and Sheffield (see [5] and the references therein)
that the CLE4 appears naturally as a collection of generalized level lines of the
GFF. Of course, it should be recalled that the GFF is also an elementary and
fundamental building block in field theory.

• The Brownian loop-soups: This object, introduced in [21], is a Poissonian cloud
of Brownian loops in a domain D. If, as proposed in [38] and shown in [35], one
considers clusters of Brownian loops, and their outer boundaries, one constructs
also a CLEκ where κ = κ(c) varies between 8/3 and 4 as the intensity c of the
loop-soup varies between 0 and 1. This intensity plays the role of the central
charge in the CFT language.

There is actually a close relation between these two constructions of CLE4 (via
the GFF or via the Brownian loop-soup with intensity c = 1), see [30] and the
references therein. We will come back to this later, but roughly speaking, starting



On Clusters of Brownian Loops in d Dimensions 799

from a sample of a Brownian loop-soup, one can construct a GFF in such a way that
the Brownian loop-soup clusters can be interpreted as “excursion sets” of the GFF,
a little bit like the excursion intervals away from 0 of one-dimensional Brownian
motion, see [4] and the references therein.

The starting point of the present paper is the observation that both the Brownian
loop-soup and the Gaussian Free Field can be defined in any dimension. This leads
naturally to wonder what natural random fractal subsets of d-dimensional space
for d ≥ 3 can be built using these special and natural objects. In particular, one
can guess that just as in two dimensions, clusters of Brownian loops (for a loop-
soup of intensity c = 1) will have an interesting geometry, and argue that they
should be fundamental structures within a GFF sample. A first immediate reaction
is however to be somewhat cautious or even sceptical. Indeed, Brownian loops in
dimensions 4 and higher are simple loops, and no two loops in a Brownian loop-
soup will intersect, so that a Brownian loop-soup cluster will a priori consist only of
one single isolated simple loop. But, as we shall explain in the present paper, things
are more subtle, and, if properly defined, it should still be possible to agglomerate
these disjoint Brownian loops into interesting clusters when the dimension of the
space is 4 and 5.

The structure of the present paper is the following: We will first review some
basic facts about Lupu’s coupling of the GFF and loop-soups on cable graphs. After
discussing heuristically some general aspects of their scaling limits and reviewing
the known results in d = 2, we will make conjectures about the cases d = 3, 4, 5.
Then, we will state and derive some results for d > 6.

We conclude this introduction with the following remark: It is interesting that this
loop-soup approach to the GFF bears many similarities with the random walk rep-
resentations of fields as initiated by Symanzik [37] and further developed by many
papers, including by Simon [36], the celebrated work by Brydges, Fröhlich and
Spencer [7] or Dynkin [11]. Their motivation was actually to understand/describe
“interacting fields” (i.e., beyond the free field!) via their correlation functions; given
that the correlation functions of the GFF are all explicit, there was then not much
motivation to study it further, while the question of existence and constructions
of non-Gaussian fields was (and actually still is) considered to be an important
theoretical challenge.

2 Background: Lupu’s Coupling on Cable-Graphs

A crucial role will be played here by the cable-graph GFF and the cable-graph loop-
soup, that have been introduced by Titus Lupu in [24, 25]. Let us briefly review their
main features in this section, and we refer to those papers for details.

In this section, we consider D to be a fixed connected (via nearest-neighbour
connections) subset of Zd (the case of subsets of δZd is then obtained simply by
scaling space by a factor δ) on which the discrete Green’s function is finite. We can
for instance take D to be all (or any connected subset) of Zd when d ≥ 3, or a
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bounded subset of Z2. The set ∂D is the set of points that is at distance exactly 1 of
D . The Green’s function G(x, y) = GD (x, y) is the expected number of visits of y

made by a simple random walk in Z
d starting from x before exiting D (if this exit

time is finite, otherwise count all visits of y).
The cable graph Dc associated to D is the set consisting of the union of D with

all edges (viewed as open intervals of length 1) that have at least one endpoint in
D . One can define also Brownian motion on the cable graph (that behaves like one-
dimensional Brownian motion on the edges and in an isotropic way when it is at
a site of D). One can then also define the Green’s function GDc

for this Brownian
motion (this time, the boundary conditions correspond to a killing when it hits ∂D)
and note that its values on D ×D coincide with that of the discrete Green’s function
GD for the discrete random walk.

One can then on the one hand define the Gaussian Free Field (GFF) on the
cable graph (φ(x))x∈D as a centred Gaussian process with covariance given by the
Green’s function GDc

on the cable graph. This is a random continuous function on
Dc that generalizes Brownian motion (or rather Brownian bridges) to the case where
the time-line is replaced by the graph Dc. The process (φ2(x))x∈Dc

is then called a
squared GFF on Dc. The connected components of {x ∈ Dc, φ(x) �= 0} are called
the excursion sets of φ (or equivalently of φ2).

On the other hand, one can also define a natural Brownian loop measure on
Brownian loops on Dc, and then the Brownian loop-soups which are Poisson point
processes with intensity given by a multiple c of this loop measure. In all the sequel,
we will always work with Brownian loop-soups with intensity equal to c = 1
(in the normalization that is for instance described in [40]—in the Le Jan-Lupu
normalization that differs by a factor 2, this would be the loop-soup with intensity
α = 1/2), which is the one for which one can make the direct relation to the GFF.
Let us make two comments about this loop-soup L on the cable-graph:

(i) When one considers a given point on the cable-graph, it will be almost
surely visited by an infinite number of small Brownian loops in the loop-
soup. However, it turns out that there almost surely exist exceptional points
in the cable-graph that are visited by no loop in the loop-soup (what follows
will actually show that the set Z of such points has Hausdorff dimension
1/2). Another equivalent way to define these sets is to first consider clusters
of Brownian loops: We say that two loops γ and γ ′ in a loop-soup belong
to the same loop-soup cluster, if one can find a finite chain of loops γ0 =
γ, γ1, . . . , γn = γ ′ in L such that γj ∩ γj−1 �= ∅ for j = 1, . . . , n. Then,
loop-soup clusters are exactly the connected components of Dc \ Z .

(ii) Just in the same way in which the occupation time measure of one-dimensional
Brownian motion has a continuous density with respect to Lebesgue measure
(the local time of Brownian motion, see e.g. [31]), each Brownian loop γ will
have an occupation time measure with a finite intensity 	γ on the cable graph,
so that for all sets A, the total time spent by γ in A is equal to

∫
A

	γ (x)dx

where dx denote the one-dimensional Lebesgue measure on Dc. One can then
define the “cumulative” occupation time density Γ of the loop-soup as Γ :=
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∑
γ∈L 	γ . This is a continuous function on the cable-graph, that is equal to

0 on all points of ∂D . Simple properties of Brownian local time show that
Z = {x ∈ Dc, Γ (x) = 0}.

Lupu’s coupling between the cable-graph loop-soup and the GFF can now be
stated as follows.

Proposition 1 (Le Jan [22] and Lupu [24]) Suppose that one starts with a Brow-
nian loop-soup L on the cable-graph Dc. Then the law of its total occupation
time density Γ is that of (a constant multiple) of a squared GFF. Furthermore, if
one then defines the function U = √

Γ and tosses i.i.d. ± fair coins εj (one for
each excursion set Kj of Γ ), then if we write ε(x) = εj for x ∈ Kj , the function
(ε(x)U(x))x∈Dc

is distributed exactly like (a constant multiple of) a GFF on the
cable-graph.

In the sequel, we will always implicitly assume that a GFF φ on a cable-system is
coupled to a loop-soup L in this way. We can note that the excursion sets of φ are
then exactly the loop-soup clusters of L .

We see that in this setting, the only contribution to the correlation between φ(x)

and φ(y) comes from the event that x and y are in the same loop-soup cluster (we
denote this event by x ↔ y), i.e., one has

E[φ(x)φ(y)] = E[ε(x)ε(y) × |φ(x)| × |φ(y)|] = E[|φ(x)| × |φ(y)| × 1x↔y]

for all x, y in Dc. In the last expression, all quantities are functions of the loop-soup
only (and do not involve the εj coin tosses). Similarly, all higher order correlation
functions and moments can be expressed only in terms of the cable-graph loop-soup.

Conversely, since the law of the GFF is explicit and the correlations between
ε(x) = sgn(φ(x)) is given in term of cable-graph loop-soup connection events, one
gets explicit formulas for those connection probabilities. For instance, Proposition 1
immediately shows that for all x, y in Dc,

E[sgn(φ(x))sgn(φ(y))] = E[ε(x)ε(y)] = P [x ↔ y],

from which one readily deduces that:

Corollary 2 (Part of Proposition 5.2 in [24]) For all x �= y in Dx ,

P [x ↔ y] = arcsin
G(x, y)√

G(x, x)G(y, y)
.

In particular, if one considers the cable-graph loop-soup in Z
d for d ≥ 3, we see

that

P [0 ↔ x] ∼ C

‖x‖d−2
(1)
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for some constant C as x → ∞.
We can note that in this case of Z

d for d ≥ 3, P [0 ↔ x] and
E[|φ(0)||φ(x)|10↔x] are comparable when x → ∞. Loosely speaking, this
means that when one conditions on 0 ↔ x (and lets x → ∞), the number of
small Brownian loops (say of diameter between 1 and A for a fixed A) that pass
through the origin does not blow up (this type of considerations can easily be made
rigorous—the conditional law of |φ(0)| in fact remains tight as x → ∞).

Remark Throughout this paper, we will always work with loop-soups defined under
the very special intensity c = 1 that makes its occupation time related to the GFF
as described above. Understanding features of the “percolation phase transition”
when the loop-soup intensity varies is a question that will not be discussed here (see
[8, 10, 23] and the references therein for results in this direction).

3 The Fine-Mesh and Continuum Limit

When D is a connected subset of R
d , in which the continuum Green’s function

GD(x, y) is finite when x �= y (one can for instance think of D to be the unit disk
in R

2, or the whole of R
d when d ≥ 3), instead of sampling a Brownian loop-

soup or a continuum GFF directly in D, we will consider a Brownian loop-soup
and a GFF defined on the cable-graph of a connected fine-grid approximation of D

in δZd . For instance (this slightly convoluted definition is just to avoid issues with
“thin” boundary pieces), if z0 is a given point in D, when δ is small enough, we
can choose Dδ to be the connected component of the set of points in δZd that are at
distance at least δ from the complement of D, and that contains the points that are
at distance less than δ from z0. One can then consider its cable graph Dδ,c and the
corresponding GFF and loop-soups as in the previous section (just scaling space by
a factor δ).

We now discuss what happens in the fine-mesh limit (when δ → 0). To avoid
confusion, we will use the following terminology:

• The cable-graph loop-soup and the cable-graph clusters will respectively be the
soup of Brownian loops defined on the cable graph Dδ,c and the corresponding
collection of clusters.

• The Brownian loop-soup will be the usual continuum Brownian loop-soup in
D. The clusters that are created via intersecting Brownian loops will be called
Brownian loop-soup clusters.

Now, when the mesh of the lattice δ goes to 0, one can consider the joint limit in
distribution of the cable-graph loop-soup, of the corresponding cable-graph clusters
and of the cable-graph GFF, and make the following observations:

(i) About the limit of the loop-soup. If one sets any positive macroscopic cut-
off a, then the law of the loops in the cable-graph loop-soup which have a
diameter greater than a does converge to that of the loops with diameter greater
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than a in a (continuum) Brownian loop-soup in D. This follows from rather
standard approximations of Brownian motion by random walks (see [20] for
this particular instance). So, in that sense, the scaling limit of the cable graph
loop-soup is just the Brownian loop-soup in D. By Skorokhod’s representation
theorem, we can also view a Brownian loop-soup in D as an almost sure limit
of cable-graph loop-soups.

(ii) About the limit of the cable-graph GFF. The cable-graph GFF does converge in
law to the continuum GFF, because the correlation functions of the cable-graph
GFF converge to those of the continuum GFF (all this is due to elementary
consideration on Gaussian processes). It should however be stressed that the
continuum GFF is not a random function anymore (see for instance [40]) so
that this weak convergence has to be understood in the appropriate function
space.

(iii) A warning when d ≥ 4. While the GFF and the Brownian loop-soup are
well-defined in any dimension, it is possible to make sense neither of the
(renormalized) square of the GFF nor of the (renormalized) total occupation
time measure of the Brownian loop when d ≥ 4. This is due to the fact that the
total occupation time of the Brownian loops of diameter in [2−n, 2−n+1] inside
a box of size 1 will have a second moment of the order of a constant times
2n(d−4), which is not summable as soon as d ≥ 4 (so that the fluctuations
of the occupation times of the very small loops will outweigh those of the
macroscopic ones). Since the relation between the cable-graph GFF and the
cable-graph loop-soup did implicitly involve the square of the cable-graph
GFF, this indicates that some caution is needed when one tries to tie a direct
relation between the continuum GFF and the Brownian loop-soup in R

d when
d ≥ 4.

Despite (iii), one can nevertheless always study the joint limit of the coupled
cable-graph GFF and cable-graph loop-soup (and its clusters). The correlation
functions of the cable-graph GFF do provide information on the structure of the
cable graph clusters, and therefore on their behaviour as δ → 0, as illustrated by
Corollary 2. One key point is that the scaling limit of the cable graph clusters (if
they exist) might be strictly larger than the Brownian loop-soup clusters. Indeed,
cable graph clusters may contain loops of macroscopic size (say, some of the finitely
many loops of diameter greater than some cut-off value a), but they will also contain
many small loops, for instance of diameter comparable to the mesh-size δ, or to δb

for some positive power b. All these small loops do disappear from the loop-soup
in the scaling limit if one uses the procedure described in (i), but (just as critical
percolation does create macroscopic clusters made of union of edges of size equal
to the mesh-size, while each individual edge does “disappear” in the scaling limit)
their cumulative effect in terms of contributing to create macroscopic cable graph
clusters does not necessarily vanish.
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In the fine-mesh limit, there a priori appear to be four possible likely scenarios
(for presentation purposes, we will consider in the remaining of this section that D

is the hypercube (0, 1)d ):

• Case 0. There is no limiting joint law for the cable graph clusters when δ → 0.
This should for instance be the case when the number of macroscopic cable graph
clusters in Dδ tends to infinity as δ → 0. We will come back to this interesting
case later. In the remaining cases 1, 2a and 2b, we will assume that the number of
cable graph clusters of diameter greater than any fixed a remains tight, and that
their joint law has a scaling limit as δ → 0.

• Case 1: The limit of the family of macroscopic cable graph clusters is exactly the
family of macroscopic clusters Brownian loop-soup clusters. This means that in
this case, the effect of the microscopic loops disappears as δ vanishes.

• Case 2: The limit of the cable graph clusters consists of macroscopic Brownian
loops that are somehow agglomerated together also by the effect of the micro-
scopic loops (i.e., the limit of the cable graph clusters are strictly larger than
the clusters of macroscopic Brownian loops). Here, the limit of the cable graph
clusters would consist of a combination of macroscopic effects and microscopic
effects. There are actually two essentially different subcases:

– Case 2a: The glueing procedure does involve additional randomness (i.e.,
randomness that is not present in the Brownian loop soup).

– Case 2b: The glueing procedure of how to agglomerate the macroscopic loops
is a deterministic function of these macroscopic loops (i.e., the limit of the
cable-graph clusters is a deterministic function of the corresponding Brownian
loop-soup).

Let us summarize here already the conjectures that we will state more precisely
in the next sections. We will conjecture that each of the four cases 0, 1, 2a and 2b
do occur for some value of the dimension. More specifically, in dimension d = 2,
it is known that Case 1 holds, and we believe that this should also the case when
d = 3, although a proof of this fact appears to remain surprisingly elusive at this
point. So, in those lower dimensions, only the macroscopic (in the scaling limit,
Brownian) loops prevail to construct the excursion sets of the GFF. For intermediate
dimensions, microscopic loops will start to play an important role: As we will try
to explain, it is natural to expect that Case 2b holds for d = 4 and that Case 2a
holds for d = 5. These are two quite fascinating instances, with an actual interplay
between microscopic and macroscopic features.

In higher dimensions, one can adapt some ideas that have been developed in the
context of (ordinary) high-dimensional percolation to show that Case 0 holds. There
is no excursion decomposition of the continuum GFF anymore, but a number of
instructive features can be highlighted. A “typical” large cable graph cluster will
actually contain no macroscopic Brownian loop (even though some exceptional
clusters will contain big Brownian loops). Hence, this loop-soup percolation
provides a simple percolation-type model that somehow explains “why” general
high-dimensional critical percolation models should exhibit “Gaussian behaviour.
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Indeed, the collection of all these cable-graph clusters is actually very similar to
that of ordinary percolation (as they are constructed using only small loops of
vanishingly small size at macroscopic level). This in turn sheds some light onto
some of the lace-expansion ideas.

We will now discuss separately the different dimensions. We will first briefly
review what is known and proved when d = 2 and mention the conjectures for
d = 3. We will then heuristically discuss the cases d = 4 and d = 5 and make some
further conjectures, based on some analogies with features of critical percolation
within Conformal Loop Ensembles. Finally, we will state and prove some results in
the case where the dimension is greater than 6. We note that we will (as often in
these percolation questions) not say anything about the “critical” case d = 6 here.

4 Low and Intermediate Dimensions

4.1 Low Dimensions

4.1.1 Review of the Two-Dimensional Case

This is the case where the behaviour of the scaling limit of cable-graph loop-soup
clusters is by now essentially fully understood. Indeed, in this case, one has an
additional direct good grip on features of the continuum GFF that are built on its
coupling with the SLE4 curves (as initiated in [33]) and the CLE4 loop ensembles.
The paper [35] provides an explicit description of the Brownian loop-soup clusters
as CLE4 loops, so that one can deduce some explicit formulas (such as in [41])
for the laws of these clusters. These formulas turn out to match exactly the ones
that appear in the scaling limit of cable-graph clusters (in the spirit of the formulas
by Le Jan [22]), so that one can conclude (this is one of the main results of [26])
that the scaling limit of the cable-graph loop-soup clusters are exactly the Brownian
loop-soup clusters (see also some earlier discussion of this problem without the
cable-graph insight in [6]).

It is then actually possible to push this further: One important result in [3, 4] is
that if one associates to each Brownian loop-soup cluster Cj a particular “natural”
measure μj supported on Cj (which is a deterministic function of this cluster Cj ),
then, if (εj ) are i.i.d. ±1 fair coin flips, the sum

∑
j εjμj (viewed as an L2 limit) is

actually a continuum GFF. In other words, the Brownian loop-soup clusters provide
indeed a loop-soup based “excursion decomposition” of the continuum GFF despite
the fact that the GFF is not a continuous function (it is only a generalized function).

4.1.2 Conjectural Behaviour in Dimension 3

When d = 3, one can recall that Brownian paths (and loops) have many double
points (the Hausdorff dimension of the set of double points in actually equal to
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1). Hence, a Brownian loop in a Brownian loop-soup will almost surely intersect
infinitely many other Brownian loops in this loop-soup. From this, one can actually
deduce that the Hausdorff dimension Δ of the Brownian loop-soup clusters is almost
surely greater than 2 (0−1 law arguments show that this dimension actually always
takes the same constant value). On the other hand, Corollary 2 can be used to prove
that Δ can not be larger than 5/2. It is natural to conjecture that:

Conjecture A Just as in two dimensions, the scaling limit of the cable-graph loop-
soup clusters in three dimensions should exactly be the collection of Brownian loop-
soup clusters. The dimension Δ of these clusters should be equal to 5/2.

One difficulty in proving this conjecture is to be able to exclude the somewhat
absurd-looking scenario that in the limit δ → 0, there might exist infinitely many
disjoint dense (and “very skinny”) cable-graph loop-soup clusters.

4.1.3 A Further Open Question

When d = 2, it is known that the obtained loop-soup clusters are in fact a deter-
ministic function of the continuum GFF (based on the fact that their boundaries are
level lines of this GFF in the sense of [27]), so that this “excursion decomposition”
of the GFF is indeed unique (see [3, 4]).

Let us also recall that when d = 2 and d = 3, it is possible to define the
(renormalized) square of the continuum GFF (or equivalently, the renormalized total
occupation time measure of the loop-soup), see for instance [30] and the references
therein. Let us now mention a related open question (also to illustrate that some
questions remain also in the two-dimensional case).

Open Question B In dimension d = 2 and d = 3: Are the (scaling limits of
the) loop-soup clusters a deterministic function of this (renormalized) square of the
continuum GFF? If not, what is the missing randomness?

In dimension d = 3: Are the (scaling limits of the) loop-soup clusters a
deterministic function of the continuum GFF?

4.2 Intermediate Dimensions

4.2.1 Some a Priori Estimates

Again, the cable-graph loop-soup clusters do not proliferate in the δ → 0 limit, then
it is to be expected, based on estimates such as Corollary 2 that the dimension of the
scaling limits would be Δ = 1 + (d/2). In particular, when d = 4 and d = 5, if one
adds another independent macroscopic Brownian loop to an existing loop-soup, this
additional loop will almost surely intersect infinitely many of these limits of cable-



On Clusters of Brownian Loops in d Dimensions 807

graph clusters. From this, it is easy to deduce that a limit of cable-graph clusters
would actually contain infinitely many Brownian loops.

Recall however that a Brownian loop is almost surely a simple loop and that
almost surely, any two loops in the loop-soup will be disjoint, so that Brownian loop-
soup clusters will all consist of just one loop each (and therefore have Hausdorff
dimension equal to 2).

Finally, self-similarity of the construction suggests that Brownian loops will be
part of the scaling limit of the cable graph loop-soups at every scale, and that if one
removes all Brownian loops of size greater than a say, then as a → 0, the size of
the largest limiting cluster will also vanish. In other words, the “macroscopic” loops
are instrumental in the construction of the Brownian loop-soup clusters.

Let us summarize part of this in terms of a concrete conjecture.

Conjecture C When d = 4 and d = 5, the limit in distribution of the cable-graph
clusters in (0, 1)d ∩ δZd does exist, and it is supported on families of clusters of
fractal dimension 1 + (d/2) with the property that for all small a, the number of
clusters of diameter greater than a is finite.

The main additional heuristic question that we will now discuss is whether the
disjoint Brownian loops in the loop-soup get agglomerated into these scaling limit
of cable-graph clusters in a deterministic manner or not (i.e., are the scaling limit of
the cable-graph clusters a deterministic function the collection of Brownian loops
or not?).

4.2.2 Background and Analogy with CLE Percolation

It is worthwhile to draw an analogy with one aspect of the papers [28, 29] about the
existence of a non-trivial “critical percolation” model in a random fractal domain.
Here, one should forget that CLEκ for κ ∈ (8/3, 4] is related to loop-soups or to the
GFF, and one should view it as an example of random fractal “carpet” in the square
[0, 1]2. The CLEκ carpet Kκ in [0, 1]2 is obtained by removing from this square a
countable collection of simply connected sets, that are all at positive distance from
each other. It can be therefore be thought of as a conformal randomized version of
the Sierpinski carpet. The following features are relevant here:

• The larger κ is, the smaller the CLEκ tends to be. It is actually possible (this
follows immediately from the CLE construction via loop-soups in [35]) to couple
them in a decreasing way i.e., Kκ ⊂ Kκ ′ when 8/3 < κ ′ ≤ κ ≤ 4.

• There is one essential difference between CLEκ for κ < 4 and CLE4: When
κ < 4, there exists a positive u(κ) such that for all a > 0, the probability
that there exists two holes in Kκ that have diameter greater than a and are at
distance less than ε from each other does decay (at least) as εu+o(1) as ε → 0.
This property fails to hold for CLE4 (this probability will decay logarithmically)
which intuitively means that exceptional bottlenecks are more likely in that CLE4
case.
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One of the results of [28] is the construction of a process that can be interpreted
as a critical percolation process within the random set Kκ . One can view this either
as defining a collection of clusters that live within Kκ , or if one looks at the dual
picture, as a collection of clusters that “glue” the different CLE loops together (in
the original percolation picture, the loops and their interior are “closed” and in the
dual one, they are now “open”). In this dual picture, this does therefore construct
a natural way to randomly regroup these holes (or their outer boundaries, that are
SLE-type loops) into clusters.

One of the results of [29] is that this percolation/clustering procedure is indeed
random (i.e., the obtained clusters are not a deterministic function of the CLEκ ) as
long a κ < 4. On the other hand, it is shown in [28] that no non-trivial clustering
mechanism can work for CLE4.

4.2.3 Conjectures

The complement of a Brownian loop-soup in (0, 1)d for d ≥ 4 has some similarities
with the previous CLEκ case. It is the complement of a random collection of disjoint
simple loops, with a fractal structure. When d ≥ 5, the “space” in-between the loops
is much larger than in the 4-dimensional case, in the sense that the probability that
two macroscopic loops are ε-close decays like a power of ε, while it only decays in
a logarithmic fashion in 4 dimensions. Further analogies can also be made, that lead
to:

Conjecture D When d = 5, we conjecture that “critical percolation” in the space
defined by “contracting all the loops in a loop-soup” (or equivalently, percolation
that tries to glue together the loops in a loop-soup) should exist and be non-trivial.
In other words, by observing the Brownian loop-soup only, one does not know which
Brownian loops do belong to the same clusters.

When d = 4, we conjecture that the glueing mechanism is deterministic. In other
words, by observing the Brownian loop-soup only, one knows which Brownian loops
do belong to the same clusters.

Let us finally conclude with the same question as for d = 3:

Open Question E When d = 4, 5: In the scaling limit (taking the joint limit of
the cable-graph clusters and of the GFF), are the limits of the cable-graph clusters
determined by the limiting GFF?

5 High Dimensions (d > 6)

5.1 General Features

As opposed to the cases d = 3, 4, 5 where most features are conjectural, it is
possible to derive a number of facts when the dimension of the ambient space
becomes large enough (note that we will not discuss the somewhat complex case
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d = 6 here). As opposed to the lower-dimensional cases, these results do not say
anything about geometric structures within the continuum GFF, but they provide
insight into the asymptotic behaviour of the cable-graph loop-soup clusters in Z

d

(or in large boxes in Z
d ). Actually, when the dimension of the space is large enough,

we expect that the Brownian loop-soup in R
d (appearing as the scaling limit of the

cable-graph loop-soup) and the GFF (appearing as the limit of the cable-graph GFF
constructed using the cable-graph loop-soup) become asymptotically independent.

It is worth first recalling some of the results about usual (finite-range) critical
percolation in high dimensions (see [1, 12–18] and the references therein). A
landmark result in the study of those models is that when d is large enough,
the “two-point function” (i.e., the probability that two points x and y belong to
the same cluster) behaves (up to a multiplicative constant) like 1/‖x − y‖d−2 as
‖x − y‖ → ∞. This is known to hold for (sufficiently) spread-out percolation in
Z

d for d > 6, and in the case of usual nearest-neighbour percolation for d ≥ 11.
The existing proofs are based on the lace-expansion techniques (that have also been
successfully applied to other models than percolation) as developed in this context
by Hara and Slade [13, 15–17]). This estimate is then the key to the following
subsequent statements that we describe in rather loose terms here (see Aizenman
[1]): If one considers a finite-range percolation model restricted to [−N,N ]d , for
which the two-point function estimates is shown to hold, then as N → ∞:

• Clusters with large diameter (say, greater than N/2) will proliferate as N →
∞—their number will be greater than Nd−6+o(1) with high probability.

• With high probability, no cluster will have more than N4+o(1) points in it.

Note also that the geometry of large clusters can be related to superbrownian
excursions.

As we shall explain now, similar results hold true for the loop-soup clusters in the
cable-graph of Zd when d > 6. The general feature is that the behaviour of the two-
point function in this case is given for free by Corollary 2, so that the difficult lace-
expansion ideas are not needed here. One just has to adjust ideas such as developed
by Aizenman in [1] on how to extract further information from the estimate on the
two-point function.

5.2 Some Results

Let us now explain how to adapt some arguments of [1] to the case of loop-soup
percolation. It is convenient to work in the following setting: We define ΛN to be
the set of integer lattice points in [−N,N ]d , and ΛN,c the cable graph associated
to it. We will consider the cable-graph loop-soup on ΛN,c and study its clusters and
connectivity properties. We denote by n0 the number of cable-graph clusters that
contain at least one point of ΛN , and we order them using some deterministic rule
as C1, . . . , Cn0 . We denote by |C| the number of points of ΛN that lie in a set C, and
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when x ∈ ΛN , we call C(x) the cluster that contains x. In the sequel, x ↔ y will
always denote the event that x and y are connected via the cable-graph loop-soup in
ΛN,c (the dependency on N will always be implicit). Note that for all k ≥ 1,

E[|C(x)|k] =
∑

y1,...,yk∈ΛN

P [x ↔ y1, . . . , x ↔ yk].

and also that

E[
∑

n≤n0

|Cn|k+1] =
∑

x∈ΛN

E[|C(x)|k|].

Corollary 2 then implies (using simple bounds on the Green’s function in a box)
immediately that there exist constants v1, v2 such that for all sufficiently large N ,

v1N
2 ≤ min

x∈ΛN/2
E[|C(x)|] ≤ max

x∈ΛN/2
E[|C(x)|] ≤ max

x∈ΛN

E[|C(x)|] ≤ v2N
2

and then summing over x in ΛN and in ΛN/2, one gets the existence of v3, v4 such
that for all large N ,

v3N
d+2 ≤ E[

∑

n≤n0

|Cn|2] ≤ v4N
d+2.

Let us first show the following analogue of (4.10) in [1]:

Proposition 3 For some fixed large c0, with probability going to 1 as N → ∞, no
loop-soup cluster (in ΛN ) contains more than c0N

4 log N points.

Proof This is based on the fact that the Aizenman-Newman diagrammatic proce-
dure [2] used in [1] to bound the moments of |C(x)| can be adapted to this loop-soup
percolation setting. Let us first explain this in some detail the case of the second
moment. As mentioned above, one has

E[|C(x)|2] =
∑

y1,y2∈ΛN

P [x ↔ y1, x ↔ y2].

When x ↔ y1, x ↔ y2 both occur, then it means that for some loop γ in the cable-
system loop-soup the events γ ↔ x, γ ↔ y1 and γ ↔ y2 occur disjointly (i.e.,
using disjoint sets of loops—the loops may overlap, but each event is realized using
different loops); we call T this event. [To see this, one can first choose a “minimal”
chain of loops that join x to y1 (this means that one can not remove any these loops
from the chain without disconnecting x to y1) and then use a second “minimal”
chain of loops that join y2 to this first chain. The loop γ will be the loop of the first
chain that this second chain joins y2 to.]

In particular, it means that for at least one loop γ in the cable-system loop-soup,
one can find integer points x0, x1 and x2 in ΛN that are at distance at most 1 from γ
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Fig. 1 Compared to the “usual” Aizenman–Newman tree expansion, one has also to sum over the
loops that play the role of nodes of the tree, but this additional sum converges

such that x ↔ x0, y1 ↔ x1 and y2 ↔ x2 occur disjointly (see Fig. 1). We are going
to treat differently the case where γ visits at least two points of Zd from the case
where it visits less than two points.

Let us introduce some notation and make some further preliminary comments:
For each cable-system loop γ that visits at least two integer points, one can look at
its trace on Z

d that we denote by l(γ ), which is a discrete loop in ΛN . Note that
the collection L of all l(γ )’s for γ in the loop-soup L is a discrete random walk
loop-soup in ΛN , and that when an integer point is at distance at most 1 from γ , it
is also at distance at most 1 from l(γ ). If |l| ≥ 2 denotes the number of steps of the
discrete loop l(γ ), there are therefore at most |l| × (2d + 1) possibilities for each of
x0, x1 and x2.

For each given x, y1 and y2, we can now use the BK inequality to bound P [x ↔
y1, x ↔ y2] by the sum of the contributions described in (a) and (b) below:

(a) The sum over all x0, x1 and x2 that are all at distance at least 2 from each other
of the product

P [x0 ↔ x]P [x1 ↔ y1]P [x2 ↔ y2].

This sum corresponds to the contribution to the event T of the cases where
γ visits at most one point of Z

d . Note that for a given x0, there are at most
(2d + 1)2 choices (corresponding to the two steps or less needed to go from x0
to x1) for x1 and (2d + 1)2 choices for x2.

(b) The sum over all discrete loops l with |l| ≥ 2 steps, of the sum over all x0, x1,
x2 that lie at distance at most 1 of l, of the product

P [l ∈ L]P [x0 ↔ x]P [x1 ↔ y1]P [x2 ↔ y2].

This sum corresponds to the case where the loop γ in the event T visits at least
two integer points (and we sum over all possible choices for l(γ )).
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Equation (1) shows the existence of a constant w0 independent of N , such that for
all y, y′ ∈ ΛN (as it is easier to create a connection in Z

d than in ΛN ), P [y ↔
y′] ≤ w0/(1 + ‖y − y′‖d−2); it follows immediately (summing over all y′ that are
in y + Λ2N ) that for some constant w1, for all N ≥ 1 and all y ∈ ΛN ,

∑

y′∈ΛN

P [y ↔ y′] ≤ w1N
2, (1)

which is an inequality that we will now repeatedly use. For each choice of x0, x1
and x2 (and possibly l if we are in the case (a)), if we now sum over all choices of
y1 and y2 in ΛN , we can use (1) to see that

E[|C(x)|2] ≤
∑

x0∈ΛN

P [x0 ↔ x](2d + 1)4(w1N
2)2

+
∑

(x0,l)∈U

[
P [x ↔ x0] × P [l ∈ L] × (|l|(2d + 1))2 × (w1N

2)2
]

where U is the set of pairs (x0, l) satisfying (i)–(iii) where (i) x0 ∈ ΛN , (ii) the
discrete loop l has at least 2 steps, and (iii) x0 is at distance at most 1 from l; the
term (2d + 1)4 comes from the bound on the number of possible choices for x1 and
x2 for a given x0 in (a), and the term (|l|(2d + 1))2 comes from the possible choices
for x1 and x2 in (b) for a given discrete loop l with |l| ≥ 2 steps).

The first sum over x0 is bounded (2d+1)4w3
1N

6 (using (1) again). For the second
one, we can first note that for each given x0, the expected number of discrete loops of
length m in a loop-soup in the whole of Zd that pass through x0 is given by the total
mass of such loops under the discrete loop-measure, which is in turn expressed in
terms of the probability that a random walk started from x0 is back at x0 after m steps
(see for instance [19, 40] for such elementary considerations on loop-measures),
which is bounded by some constant w2 times m−d/2. Hence, if we regroup the sum
over all loops with the same length m, we see that the second sum over (x0, l) in U
is bounded by

∑

x0∈ΛN

[
(2d + 1)P [x ↔ x0]w2

1N
4
∑

m≥2

[w2m
−d/2(m(2d + 1))2]

]
.

The key point is now that when d/2 − 2 > 1, i.e., d > 6, then
∑

m m2−d/2 < ∞,
so that finally, we see that this sum over (x0, l) in U is bounded by some constant
times

N4
∑

x0∈ΛN

P [x ↔ x0]
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which in turn is also bounded by some constant times N6 (using (1) again). Together
with the bound for the sum in (a), we can therefore conclude that for some constant
w3, for all N ≥ 2 and all x ∈ ΛN ,

E[|C(x)|2] ≤ w3N
6.

In summary, we see that d > 6 is also the threshold at which the extended nature of
the Brownian loops does not essentially influence the estimates compared to finite-
range percolation.

Similarly, for any k ≥ 3, by enumerating trees, and expanding in a similar way
(this time, one has to sum over k −1 loops in the loop-soup that will be the nodes of
the tree) using the Aizenman-Newman enumeration ideas, one obtains the existence
of constants w4 and w5 such that for all N , x and k,

E[|C(x)|k] ≤ w4k!wk
5N

4k−2. (2)

If we then finally sum over all x in ΛN , we get that

E[
∑

n≤n0

|Cn|k+1] =
∑

x∈Λn

E[|C(x)|k] ≤ w4k!wk
5N

d+4k−2.

In particular, if M denotes max |Cn|, we get an upper bound for E[Mk+1] from
which one readily deduces the proposition by using Markov’s inequality and
choosing the appropriate k (of the order of a constant times log N ).

Let us now turn to the proliferation of large clusters:

Proposition 4 With probability that tends to 1 asN tends to infinity, there exist more
than Nd−6/ log2 N disjoint loop-soup clusters with diameter greater than N/2.

The proof proceeds along the same lines as the analogous result (4.8) in [1]:

Proof One can for instance define B1 and B2 to be the boxes obtained by shifting
ΛN/4 along the first-coordinate axis by −N/2 and N/2 respectively. Each of the
two boxes has circa (N/2)d points in it, they at distance at least N/4 from ∂ΛN ,
and they are at distance circa N/2 from each other. Now, Corollary 2 readily shows
that if we define

X :=
∑

n

|Cn ∩ B1| × |Cn ∩ B2|,

then for some positive finite constant b1,

E[X] = E[
∑

x1∈B1,x2∈B2

1x1↔x2] ∼ b1N
d+2
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as N → ∞. On the other hand, one can bound the second moment

E[X2] =
∑

x1,y1∈B1,x2,y2∈B2

P [E (x1, x2, y1, y2)]

where E (x1, x2, y1, y2) := {x1 ↔ x2, y1 ↔ y2} using the following remark (call
the truncation lemma in [1]): To check if E holds, one can first discover C(x1). If
it does contain x2, y1 and y2 (we call this event E1), then we know already that
E holds. The only other scenario (we call this event E2 = E \ E1) for which E
holds is that y1 ∈ C(x1), that neither y1 nor y2, are in C(x1), and then that for the
remaining loop-soup percolation in the complement of C(x1) in the cable-graph, y1
is connected to y2. Clearly,

P [E2] = P [E ] − P [E1] ≤ P [x1 ↔ y1]P [x2 ↔ y2]

(the first probability in the product is an upper bound for the probability that y1 ∈
C(x1) and that neither y1 nor y2 are in C(x1), and the second probability is an
upper bound for the conditional probability that x2 ↔ y2 in the remaining domain).
Summing this inequality over all x1, x2, y1, y2, and using (2) one immediately gets
that

E[X2] − E[X]2 =
∑

x1,y1∈B1,x2,y2∈B2

[P [E (x1, x2, y1, y2)] − P [x1 ↔ y1]P [x2 ↔ y2]]

≤
∑

x1,x2,y1,y2∈ΛN

P [E1(x1, x2, y1, y2)]

= E[
∑

n≤n0

|Cn|4]

≤ b2N
d+10

for some constant b2 independent of N . Combining this bound of the variance of X

with the estimate of its mean (and noting that d + 10 < 2(d + 2) because d > 6),
we see that for all ε,

P [X ∈ [(b1 − ε)Nd+2, (b1 + ε)Nd+2]] → 1

as N → ∞. If X denotes the number of clusters that intersect both B1 and B2,
noting that with high probability, all quantities |Cn ∩ B1| and |Cn ∩ B2| are smaller
than c0N

4 log N (because of Proposition 3), we deduce that with a probability that
goes to 1 as N → ∞,

X ≥ (b1/2) × Nd+2

(c0N4 log N)2 = (b1/2c2
0) × Nd−6

log2 N
.
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5.3 Some Final Comments

We conclude with the following comments: On the one hand, we have seen that
when N → ∞, there will typically be a large number of large clusters (say of
diameter greater than N/2), but on the other hand, only a tight number of Brownian
loops of diameter comparable to N . In fact, when a ∈ (0, d), the Na-th largest
Brownian loop will have a diameter of the order of N ×N−a/d+o(1). This means for
instance that an overwhelming fraction of the numerous large clusters will contain
no loop of diameter greater than Nb for b > 6/d. In other words, if we remove
all loops of diameter greater than Nb, one will still have at least Nd−6+o(1) large
clusters, and the estimates for the two-point function will actually remain valid. If
we fix b ∈ (6/d, 1), since Nb is also much smaller than the size N of the box,
we can interpret this cable-graph loop-soup percolation with cut-off as a critical (or
near-critical) percolation model: If we scale everything down by a factor N : We
are looking at a Poissonian family of small sets, and for the chosen parameters one
observes macroscopic clusters (as N → ∞).

We plan to discuss further aspects of loop-soup cluster percolation and the
structure of the GFF in high dimensions in forthcoming work. In particular, when
d ≥ 9, the relation with the integrated superbrownian excursions can be made more
precise.
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