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Abstract We investigate the effect of disorder on the Curie-Weiss model with
Glauber dynamics. In particular, we study metastability for spin-flip dynamics on
the Erdős-Rényi random graph ERn(p) with n vertices and with edge retention
probability p ∈ (0, 1). Each vertex carries an Ising spin that can take the values −1
or +1. Single spins interact with an external magnetic field h ∈ (0,∞), while pairs
of spins at vertices connected by an edge interact with each other with ferromagnetic
interaction strength 1/n. Spins flip according to a Metropolis dynamics at inverse
temperature β. The standard Curie-Weiss model corresponds to the case p = 1,
because ERn(1) = Kn is the complete graph on n vertices. For β > βc and
h ∈ (0, pχ(βp)) the system exhibits metastable behaviour in the limit as n →∞,
where βc = 1/p is the critical inverse temperature and χ is a certain threshold
function satisfying limλ→∞ χ(λ) = 1 and limλ↓1 χ(λ) = 0. We compute the
average crossover time from the metastable set (with magnetization corresponding
to the ‘minus-phase’) to the stable set (with magnetization corresponding to the
‘plus-phase’). We show that the average crossover time grows exponentially fast
with n, with an exponent that is the same as for the Curie-Weiss model with external
magnetic field h and with ferromagnetic interaction strength p/n. We show that the
correction term to the exponential asymptotics is a multiplicative error term that is
at most polynomial in n. For the complete graph Kn the correction term is known
to be a multiplicative constant. Thus, apparently, ERn(p) is so homogeneous for
large n that the effect of the fluctuations in the disorder is small, in the sense that
the metastable behaviour is controlled by the average of the disorder. Our model is
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the first example of a metastable dynamics on a random graph where the correction
term is estimated to high precision.

Keywords Erdős-Rényi random graph · Glauber spin-flip dynamics ·
Metastability · Crossover time

1 Introduction and Main Results

In Sect. 1.1 we provide some background on metastability. In Sect. 1.2 we define our
model: spin-flip dynamics on the Erdős-Rényi random graph ERn(p). In Sect. 1.3
we identify the metastable pair for the dynamics, corresponding to the ‘minus-
phase’ and the ‘plus-phase’, respectively. In Sect. 1.4 we recall the definition of
spin-flip dynamics on the complete graph Kn, which serves as a comparison object,
and recall what is known about the average metastable crossover time for spin-flip
dynamics onKn (Theorem 1.3 below). In Sect. 1.5 we transfer the sharp asymptotics
for Kn to a somewhat rougher asymptotics for ERn(p) (Theorem 1.4 below). In
Sect. 1.6 we close by placing our results in the proper context and giving an outline
of the rest of the paper.

1.1 Background

Interacting particle systems, evolving according to a Metropolis dynamics associ-
ated with an energy functional called the Hamiltonian, may end up being trapped
for a long time near a state that is a local minimum but not a global minimum.
The deepest local minima are called metastable states, the global minimum is
called the stable state. The transition from a metastable state to the stable state
marks the relaxation of the system to equilibrium. To describe this relaxation,
it is of interest to compute the crossover time and to identify the set of critical
configurations the system has to visit in order to achieve the transition. The critical
configurations represent the saddle points in the free energy landscape: the set of
mini-max configurations that must be hit by any path that achieves the crossover.

Metastability for interacting particle systems on lattices has been studied inten-
sively in the past three decades. Various different approaches have been proposed,
which are summarised in the monographs by Olivieri and Vares [12], Bovier and
den Hollander [4]. Recently, there has been interest in metastability for interacting
particle systems on random graphs, which is much more challenging because the
crossover time typically depends in a delicate manner on the realisation of the graph.

In the present paper we are interested in metastability for spin-flip dynamics
on the Erdős-Rényi random graph. Our main result is an estimate of the average
crossover time from the ‘minus-phase’ to the ‘plus-phase’ when the spins feel
an external magnetic field at the vertices in the graph as well as a ferromagnetic
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interaction along the edges in the graph. Our paper is part of a larger enterprise in
which the goal is to understand metastability on graphs. Jovanovski [11] analysed
the case of the hypercube, Dommers [7] the case of the random regular graph,
Dommers, den Hollander, Jovanovski and Nardi [10] the case of the configuration
model, and den Hollander and Jovanovski [6] the case of the hierarchical lattice.
Each case requires carrying out a detailed combinatorial analysis that is model-
specific, even though the metastable behaviour is ultimately universal. For lattices
like the hypercube and the hierarchical lattice a full identification of the relevant
quantities is possible, while for random graphs like the random regular graph and
the configuration model so far only the communication height is well understood,
while the set of critical configurations and the prefactor remain somewhat elusive.

The equilibrium behaviour of the Ising model on random graphs is well
understood. See e.g. Dommers et al. [8, 9].

1.2 Spin-Flip Dynamics on ERn(p)

Let ERn(p) = (V ,E) be a realisation of the Erdős-Rényi random graph on |V | =
n ∈ N vertices with edge retention probability p ∈ (0, 1), i.e., each edge in the
complete graph Kn is present with probability p and absent with probability 1− p,
independently of other edges (see Fig. 1). We write PERn(p) to denote the law of
ERn(p). For typical properties of ERn(p), see van der Hofstad [13, Chapters 4–5].

Each vertex carries an Ising spin that can take the values −1 or +1. Let Sn =
{−1,+1}V denote the set of spin configurations on V , and letHn be theHamiltonian
on Sn defined by

Hn (σ) = −1

n

∑

(v,w)∈E

σ(v)σ (w)− h
∑

v∈V

σ(v), σ ∈ Sn. (1.1)

In other words, single spins interact with an external magnetic field h ∈ (0,∞),
while pairs of neighbouring spins interact with each other with a ferromagnetic
coupling strength 1/n.

Fig. 1 A realization of the
Erdős-Rényi random graph
with n = 12 and p = 1

3
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Let � = {−1}V and � = {+1}V denote the configuration where all spins are
−1, respectively, +1. Since

Hn (�) = −|E|
n
+ hn, (1.2)

we have the geometric representation

Hn (σ) = Hn (�)+ 2

n
|∂Eσ | − 2h |σ | , σ ∈ Sn, (1.3)

where

∂Eσ = {(v,w) ∈ E : σ(v) = −σ(w) = +1} (1.4)

is the edge-boundary of σ and

|σ | = {v ∈ ERn(p) : σ(v) = +1} (1.5)

is the vertex-volume of σ .
In the present paper we consider a spin-flip dynamics on Sn commonly referred to

asGlauber dynamics, defined as the continuous-timeMarkov process with transition
rates

r
(
σ, σ ′

) =
{
e−β[Hn(σ ′)−Hn(σ)]+ , if

∥∥σ − σ ′
∥∥ = 2,

0, if
∥∥σ − σ ′

∥∥ > 2,
σ, σ ′ ∈ Sn, (1.6)

where ‖ · ‖ is the �1-norm on Sn. This dynamics has as reversible stationary
distribution the Gibbs measure

μn (σ) = 1

Zn

e−βHn(σ), σ ∈ Sn, (1.7)

where β ∈ (0,∞) is the inverse temperature and Zn is the normalizing partition
sum. We write

{ξt }t≥0 (1.8)

to denote the path of the random dynamics and Pξ to denote its law given ξ0 = ξ .
For χ ⊂ Sn, we write

τχ = inf{t ≥ 0 : ξt ∈ χ, ξt− /∈ χ}. (1.9)

to denote the first hitting/return time of χ .
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We define the magnetization of σ by

m (σ) = 1

n

∑

v∈V

σ(v), (1.10)

and observe the relation

m (σ) = 2 |σ |
n

− 1, σ ∈ Sn. (1.11)

We will frequently switch between working with volume and working with mag-
netization. Equation (1.11) ensures that these are in one-to-one correspondence.
Accordingly, we will frequently look at the dynamics from the perspective of the
induced volume process and magnetization process,

{|ξt |}t≥0 , {m(ξt )}t≥0 , (1.12)

which are not Markov.

1.3 Metastable Pair

For fixed n, the Hamiltonian in (1.1) achieves a global minimum at � and a local
minimum at �. In fact, � is the deepest local minimum not equal to � (at least for
h small enough). However, in the limit as n → ∞, these do not form a metastable
pair of configurations because entropy comes into play.

Definition 1.1 (Metastable Regime) The parameters β, h are said to be in the
metastable regime when

β ∈ (1/p,∞), h ∈ (
0, pχ(βp)

)
, (1.13)

with (see Fig. 2)

χ(λ) =
√
1− 1

λ
− 1

2λ
log

⎡

⎣λ

(
1+

√
1− 1

λ

)2
⎤

⎦ , λ ≥ 1. (1.14)

We have limλ→∞ χ(λ) = 1 and limλ↓1 χ(λ) = 0 (with slope 1
2 ). Hence, for

β →∞ any h ∈ (0, p) is metastable, while for β ↓ 1/p or p ↓ 0 no h ∈ (0,∞) is
metastable. The latter explains why we do not consider the non-dense Erdős-Rényi
random graph with p = pn ↓ 0 as n→∞. �
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Fig. 2 Plot of λ 
→ χ(λ)

1

1

The threshold βc = 1/p is the critical temperature: the static model has a phase
transition at h = 0 when β > βc and no phase transition when β ≤ βc (see e.g.
Dommers et al. [9]).

To define the proper metastable pair of configurations, we need the following
definitions. Let

Γn = {−1,−1+ 2
n
, . . . , 1− 2

n
, 1},

In(a) = − 1
n
log

( n
1+a
2 n

)
, Jn(a) = 2β(pa + h)− 2I ′n(a).

(1.15)

Define

mn = min {a ∈ Γn : Jn(a) ≤ 0} ,
tn = min {a ∈ Γn : a > mn, Jn(a) ≥ 0} ,
sn = min {a ∈ Γn : a > tn, Jn(a) ≤ 0} .

(1.16)

The numbers in the left-hand side of (1.16) play the role of magnetizations. Further
define

Mn = n

2
(mn + 1), Tn = n

2
(tn + 1), Sn = n

2
(sn + 1), (1.17)

which are the volumes corresponding to (1.16), and

Ak = {σ ∈ Sn : |σ | = k} , k ∈ {0, 1, . . . , n− 1, n}, (1.18)

the set of configurations with volume k. Define

Rn(a) = −1

2
pa2 − ha + 1

β
In(a) (1.19)

and note that

R′n(a) = −pa − h+ 1

β
I ′n(a) = − 1

2β
Jn(a). (1.20)
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The motivation behind the definitions in (1.15), (1.16) and (1.19) will become clear
in Sect. 2. Via Stirling’s formula it follows that

Jn(a) = 2β(pa + h)+ log

(
1− a + 1

n

1+ a + 1
n

)
+O(n−2), a ∈ Γn. (1.21)

We will see that, in the limit as n → ∞ when (β, h) is in the metastable regime
defined by (1.13), the numbers in (1.16) are well-defined: AMn

is the metastable
set, ASn

is the stable set, ATn
is the top set, i.e., the set of saddle points that lie in

between AMn
and ASn

. Our key object of interest will be the crossover time from
AMn

to ASn
via ATn

.
Note that

Γn → [−1, 1], In(a) → I (a), Jn(a) → Jp,β,h(a), n→∞, (1.22)

with

Jp,β,h(a) = 2β(pa + h)+ log

(
1− a

1+ a

)
(1.23)

and

I (a) = 1− a

2
log

(
1− a

2

)
+ 1+ a

2
log

(
1+ a

2

)
. (1.24)

Accordingly,

mn → m, tn → t, sn → s, n→∞, (1.25)

withm, t, s the three successive zeroes of J (see Fig. 4 and recall (1.16)). Define

Rp,β,h(a) = −1

2
pa2 − ha + 1

β
I (a). (1.26)

Note that Rp,β,h(a) plays the role of free energy: − 1
2pa2−ha and 1

β
I (a) represent

the energy, respectively, entropy at magnetisation a. Note that I (a) equals the
relative entropy of the probability measure 1

2 (1+ a)δ+1+ 1
2 (1− a)δ−1 with respect

to the counting measure δ+1 + δ−1. Also note that

R′p,β,h(a) = −pa − h+ 1

β
I ′(a) = − 1

2β
Jp,β,h(a). (1.27)

Remark 1.2 As shown in Corollary 3.6 below, if h ∈ (p,∞), then (1.6) leads
to non-metastable behaviour where the dynamics ‘drifts’ through a sequence of
configurations with volume growing fromM to S within time O(1). �
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1.4 Metastability on Kn

Let Kn be the complete graph on n vertices (see Fig. 3). Spin-flip dynamics on Kn,
commonly referred to as Glauber dynamics for the Curie-Weiss model, is defined as
in Sect. 1.2 but with the Curie-Weiss Hamiltonian

Hn(σ) = − 1

2n

∑

1≤i,j≤n

σ (i)σ (j)− h
∑

1≤i≤n

σ (i), σ ∈ Sn. (1.28)

This is the same as (1.1) with p = 1, except for the diagonal term
− 1

2n

∑
1≤i≤n σ (i)σ (i) = − 1

2 , which shifts Hn by a constant and has no effect
on the dynamics. The advantage of (1.28) is that we may write

Hn(σ) = n

[
−1

2
m(σ)2 − hm(σ)

]
, (1.29)

which shows that the energy is a function of the magnetization only, i.e., the Curie-
Weiss model is a mean-field model. Clearly, this property fails on ERn(p).

For the Curie-Weiss model it is known that there is a critical inverse temperature
βc = 1 such that, for β > βc, h small enough and in the limit as n → ∞, the
stationary distribution μn given by (1.7) and (1.28) has two phases: the ‘minus-
phase’, where the majority of the spins are −1, and the ‘plus-phase’, where the
majority of the spins are+1. These two phases are themetastable state, respectively,
the stable state for the dynamics. In the limit as n → ∞, the dynamics of the
magnetization introduced in (1.12) (which is Markov) converges to a Brownian
motion on [−1,+1] in the double-well potential a 
→ R1,β,h(a) (see Fig. 4).

The following theorem can be found in Bovier and den Hollander [4, Chapter
13]. For p = 1, the metastable regime in (1.13) becomes

β ∈ (1,∞), h ∈ (
0, χ(β)

)
. (1.30)

Fig. 3 The complete graph
with n = 9
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1−1

Fig. 4 Plot of Rp,β,h(a) as a function of the magnetization a. The metastable set AM has
magnetization m < 0, the stable set AS has magnetization s > 0, the top set has magnetization
t < 0. Note that Rp,β,h(−1) = − 1

2p + h, Rp,β,h(0) = −β−1 log 2, Rp,β,h(+1) = − 1
2p − h and

R′p,β,h(−1) = −∞, R′p,β,h(0) = −h, R′p,β,h(+1) = ∞

Theorem 1.3 (Average Crossover Time on Kn) Subject to (1.30), as n → ∞,
uniformly in ξ ∈ AMn

,

Eξ

[
τASn

]

= [1+ on(1)] π
1+t

√
1−t2
1−m2

1

β
√

R′′1,β,h(m)[−R′′1,β,h(t)] e
βn[R1,β,h(t)−R1,β,h(m)]. (1.31)

Figure 4 illustrates the setting: the average crossover time from AMn
to ASn

depends
on the free energy barrier R1,β,h(t) − R1,β,h(m) and on the curvature of R1,β,h at
m and t. Note that m, s, t in Fig. 4 are the limits as n →∞ of mn, sn, tn defined in
(1.16) for p = 1.

1.5 Metastability on ERn(p)

Unlike for the spin-flip dynamics on Kn, the induced processes defined in (1.12) are
not Markovian. This is due to the random geometry of ERn(p). However, we will
see that they are almost Markovian, a fact that we will exploit by comparing the
dynamics on ERn(p) with that on Kn, but with a ferromagnetic coupling strength
p/n rather than 1/n and with an external magnetic field that is a small perturbation
of h.

As shown in Lemma 2.2 below, in the metastable regime the function a 
→ Rp(a)

has a double-well structure just like in Fig. 4, so that the metastable state AM and
the stable state AS are separated by a free energy barrier represented by AT.

We are finally in a position to state our main theorem.
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Theorem 1.4 (Average Crossover Time on ERn(p)) Subject to (1.13), with
PERn(p)-probability tending to 1 as n→∞, and uniformly in ξ ∈ AMn

,

Eξ

[
τASn

] = nEn eβn[Rp,β,h(t)−Rp,β,h(m)] (1.32)

where the random exponent En satisfies

lim
n→∞PERn(p)

(
|En| ≤ β(t−m)

11

6

)
= 1. (1.33)

Thus, apart from a polynomial error term, the average crossover time is the same as
on the complete graph with ferromagnetic interaction strength p/n instead of 1/n.

1.6 Discussion and Outline

We discuss the significance of our main theorem.

1. Theorem 1.4 provides an estimate on the average crossover time from AMn

to ASn
on ERn(p) (recall Fig. 4). The estimate is uniform in the starting

configuration. The exponential term in the estimate is the same as on Kn, but
with a ferromagnetic interaction strength p/n rather than 1/n. The multiplicative
error term is at most polynomial in n. Such an error term is not present on Kn,
for which the prefactor is known to be a constant up to a multiplicative factor
1+ o(1) (as shown in Theorem 1.3). The randomness of ERn(p) manifests itself
through a more complicated prefactor, which we do not know how to identify.
What is interesting is that, apparently, ERn(p) is so homogeneous for large n

that the prefactor is at most polynomial. We expect the prefactor to be random
under the law PERn(p).

2. It is known that onKn the crossover time divided by it average has an exponential
distribution in the limit as n → ∞, as is typical for metastable behaviour. The
same is true on ERn(p). A proof of this fact can be obtained in a straightforward
manner from the comparison properties underlying the proof of Theorem 1.4.
These comparison properties, which are based on coupling of trajectories, also
allow us to identify the typical set of trajectories followed by the spin-flip
dynamics prior to the crossover. We will not spell out the details.

3. The proof of Theorem 1.4 is based on estimates of transition probabilities
and transition times between pairs of configurations with different volume, in
combination with a coupling argument. Thus we are following the path-wise
approach to metastability (see [4] for background). Careful estimates are needed
because on ERn(p) the processes introduced in (1.12) are not Markovian, unlike
on Kn. The proof is based on a double coupling strategy: (1) a sandwich
of the Erdős-Rényi dynamics between two small perturbations of the Curie-
Weiss dynamics, with the goal to identify the leading order term of the average
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crossover time with the help of Theorem 1.3; (2) a two-level coupling (defined
in Sect. 6), with the goal to prove asymptotic independence from the starting
configuration (see also the beginning of Sects. 5.2 and 7).

4. Bovier et al. [5] use capacity estimates and concentration of measure estimates
to show that the prefactors form a tight family of random variables under the
law PERn(p) as n → ∞, which constitutes a considerable sharpening of (1.32).
The result is valid for β > βc and h small enough. The starting configuration is
not arbitrary, but is drawn according to the last-exit-biased distribution for the
transition from AMn

to ASn
, as is common in the potential-theoretic approach to

metastability. The exponential limit law is therefore not immediate.
5. Another interesting model is where the randomness sits in the vertices rather

than in the edges, namely, Glauber spin-flip dynamics with Hamiltonian

Hn(σ) = −1

n

∑

1≤i,j≤n

σ (i)σ (j)−
∑

1≤i≤n

hiσ (i), (1.34)

where hi , 1 ≤ i ≤ n, are i.i.d. random variables drawn from a common
probability distribution ν on R. The metastable behaviour of this model was
analysed in Bovier et al. [3] (discrete ν) and Bianchi et al. [1] (continuous ν).
In particular, the prefactor was computed up to a multiplicative factor 1 + o(1),
and turns out to be rather involved (see [4, Chapters 14–15]). Our model is even
harder because the interaction between the spins runs along the edges of ERn(p),
which have an intricate spatial structure. Consequently, the so-called lumping
technique (employed in [3] and [1] to monitor the magnetization on the level sets
of the magnetic field) can no longer be used. For the dynamics under (1.34) the
exponential law was proved in Bianchi et al. [2].

Outline The remainder of the paper is organized as follows. In Sect. 2 we define
the perturbed spin-flip dynamics on Kn (Definition 2.1 below) and explain why
Definition 1.1 identifies the metastable regime (Lemma 2.2 below). In Sect. 3 we
collect a few basic facts about the geometry of ERn(p) and the spin-flip dynamics
on ERn(p). In Sect. 4 we derive rough capacity estimates for the spin-flip dynamics
on ERn(p). In Sect. 5 we derive refined capacity estimates. In Sect. 6 we show
that two copies of the spin-flip dynamics starting near the metastable state can be
coupled in a short time. In Sect. 7 we prove Theorem 1.4. In Sect. 8, finally, we do
a technical computation of hitting times that is needed in the proof.

2 Preparations

In Sect. 2.1 we define the perturbed spin-flip dynamics on Kn that will be used as
comparison object. In Sect. 2.2 we do a rough metastability analysis of the perturbed
model. In Sect. 2.3 we show that Rp,β,h has a double-well structure if and only if
(β, h) is in the metastable regime, in the sense of Definition 1.1 (Lemma 2.2 below).

Define
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J ∗n (a) = 2β

(
p

(
a + 2

n

)
+ h

)
+ log

(
1− a

1+ a + 2
n

)
, a ∈ Γn. (2.1)

We see from (1.21) that Jn(a) = J ∗n (a) + O(n−2) when βp = 1
1−a2

. This will be
useful for the analysis of the ‘free energy landscape’.

2.1 Perturbed Curie-Weiss

Wewill compare the dynamics on ERn(p) with that on Kn, but with a ferromagnetic
coupling strength p/n rather than 1/n, and with an external magnetic field that is a
small perturbation of h.

Definition 2.1 (Perturbed Curie-Weiss)

(1) Let

Hu
n (σ ) = − p

2n

∑

1≤i,j≤n

σ (i)σ (j)− hu
n

∑

1≤i≤n

σ (i), σ ∈ Sn, (2.2)

Hl
n (σ ) = − p

2n

∑

1≤i,j≤n

σ (i)σ (j)− hl
n

∑

1≤i≤n

σ (i), σ ∈ Sn, (2.3)

be the Hamiltonians on Sn corresponding to the Curie-Weiss model on n

vertices with ferromagnetic coupling strength p/n, and with external magnetic
fields hu

n and hl
n given by

hu
n = h+ (1+ ε) log(n11/6)

n
, hl

n = h− (1+ ε) log(n11/6)

n
, (2.4)

where ε > 0 is arbitrary. The indices u and l stand for upper and lower, and the
choice of exponent 11

6 will become clear in Sect. 4.
(2) The equilibrium measures on Sn corresponding to (2.2) and (2.3) are denoted

by μu
n and μl

n, respectively (recall (1.7)).
(3) The Glauber dynamics based on (2.2) and (2.3) are denoted by

{ξu
t }t≥0, {ξ l

t }t≥0, (2.5)

respectively.
(4) The analogues of (1.16) and (1.17) are written mu

n, t
u
n, s

u
n, M

u
n,T

u
n,S

u
n and

ml
n, t

l
n, s

l
n, M

l
n,T

l
n,S

l
n, respectively. �

In what follows we will suppress the n-dependence from most of the notation.
Almost all of the analysis in Sects. 2–7 pertains to the dynamics on ERn(p).
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2.2 Metastability for Perturbed Curie-Weiss

Recall that {ξu
t }t≥0 and {ξ l

t }t≥0 denote the Glauber dynamics for the Curie-Weiss
model driven by (2.2) and (2.3), respectively. An important feature is that their
magnetization processes

{
θu
t

}
t≥0 = {m(ξ l

τ l
s
)}t≥0,{

θ l
t

}
t≥0 = {m(ξu

τu
s
)}t≥0, (2.6)

are continuous-time Markov processes themselves (see e.g. Bovier and den Hollan-
der [4, Chaper 13]) with state space Γn = {−1,−1 + 2

n
, . . . , 1 − 2

n
} and transition

rates

qu
(
a, a′

) =

⎧
⎪⎨

⎪⎩

n
2 (1− a) e−β[p(−2a− 2

n
)−2hu]+ , if a′ = a + 2

n
,

n
2 (1+ a) e−β[p(2a+ 2

n
)+2hu]+ , if a′ = a − 2

n
,

0, otherwise,

(2.7)

ql
(
a, a′

) =

⎧
⎪⎨

⎪⎩

n
2 (1− a) e−β[p(−2a− 2

n
)−2hl ]+ , if a′ = a + 2

n
,

n
2 (1+ a) e−β[p(2a+ 2

n
)+2hl ]+ , if a′ = a − 2

n
,

0, otherwise,

(2.8)

respectively. The processes in (2.6) are reversible with respect to the Gibbs measures

νu (a) = 1

zu
eβn( 12pa2+hua)

(
n

1+a
2 n

)
, a ∈ Γn, (2.9)

νl (a) = 1

zl
eβn( 12pa2+hla)

(
n

1+a
2 n

)
, a ∈ Γn, (2.10)

respectively.
Define

Ψ u (a) = −1

2
pa2 − hua, a ∈ Γn, (2.11)

Ψ l(a) = −1

2
pa2 − hla, a ∈ Γn. (2.12)

Note that (2.7) and (2.9) can be written as

qu

(
a, a + 2

n

)
= n

2
(1− a) e−βn[Ψ u(a+ 2

n
)−Ψ u(a)]+ ,

νu (a) = 1

zu
e−βnΨ u(a)

(
n

n
2 (1+ a)

)
, (2.13)
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and similar formulas hold for (2.8) and (2.10). The properties of the function
νu : Γn → [0, 1] can be analysed by looking at the ratio of adjacent values:

νu
(
a + 2

n

)

νu (a)
= exp

(
2β

(
p

(
a + 2

n

)
+ hu

)
+ log

( 1− a

1+ a + 2
n

))
, (2.14)

which suggests that ‘local free energy wells’ in νu can be found by looking at where
the sign of

2β

(
p

(
a + 2

n

)
+ hu

)
+ log

(
1− a

1+ a + 2
n

)
(2.15)

changes from negative to positive. To that end note that, in the limit n → ∞, the
second term is positive for a < 0, tends to∞ as a → −1, is negative for a ≥ 0,
tends to−∞ as a → 1, and tends to 0 as a → 0. The first term is linear in a, and for
appropriate choices of p, β and hu (see Definition 1.1) is negative near a = −1 and
becomes positive at some value a < 0. This implies that, for appropriate choices
of p, β and hu, the sum of the two terms in (2.15) can change sign + → − → +
on the interval [−1, 0], and can change sign + → − on [0, 1]. Assuming that our
choice of p, β and hu corresponds to this change-of-signs sequence, we define mu,
tu and su as in (1.16) with h replaced by hu. This observation makes it clear that the
sets in the right-hand side of (1.16) indeed are non-empty.

The interval [mu, tu] poses a barrier for the process {θu
t }t≥0 due to a negative

drift, which delays the initiation of the convergence to equilibrium while the process
passes through the interval [tu, su]. The same is true for the process {ξu

t }t≥0. Similar
observations hold for {θ l

t }t≥0 and {ξ l
t }t≥0. Recall Fig. 4.

2.3 Double-Well Structure

Lemma 2.2 (Metastable Regime) The potential Rp,β,h defined in (1.26) has a
double-well structure if and only if βp > 1 and 0 < h < pχ(βp), with χ defined in
(1.14).

Proof In order for Rp,β,h to have a double-well structure, the measure ν must
have two distinct maxima on the interval (−1, 1). From (1.22), (1.27) and (2.14)
it follows that

Jp,β,h(a) = 2λ

(
a + h

p

)
+ log

(
1− a

1+ a

)
, λ = βp, (2.16)
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must have one local minimum and two zeroes in (−1, 1). Since

J ′p,β,h(a) = 2

(
λ− 1

1− a2

)
, a ∈ [−1, 1], (2.17)

it must therefore be that λ > 1. The local minimum is attained when

λ = 1

1− a2
, (2.18)

i.e., when a = aλ = −
√
1− 1

λ
(aλ must be negative because it lies in (m, t); recall

Fig. 4). Since

0 > Jp,β,h(aλ) = 2λ

(
aλ + h

p

)
+ log

(
1− aλ

1+ aλ

)
, (2.19)

it must therefore be that

h

p
< χ(λ) (2.20)

with χ(λ) given by (1.14). �

3 Basic Facts

In this section we collect a few facts that will be needed in Sect. 4 to derive capacity
estimates for the dynamics on ERn(p). In Sect. 3.1 we derive a large deviation
bound for the degree of typical vertices ERn(p) (Lemma 3.2 below). In Sect. 3.2 we
do the same for the edge-boundary of typical configurations (Lemma 3.3 below). In
Sect. 3.3 we derive upper and lower bounds for the jump rates of the volume process
(Lemmas 3.4–3.5 and Corollary 3.6 below), and show that the return times to the
metastable set conditional on not hitting the top set are small (Lemma 3.7 below).
In Sect. 3.4 we use the various bounds to show that the probability for the volume
process to grow by n1/3 is almost uniform in the starting configuration (Lemma 3.8
and Corollary 3.9 below).

Definition 3.1 (Notation) For a vertex v ∈ V , we will write v ∈ σ to mean σ(v) =
+1 and v /∈ σ to mean σ(v) = −1. Similarly, we will denote by σ the configuration
obtained from σ by flipping the spin at every vertex, i.e., σ(v) = +1 if and only
if σ(v) = −1. For two configurations σ, σ ′ we will say that σ ⊆ σ ′ if and only if
v ∈ σ ⇒ v ∈ σ ′. By σ ∪σ ′ we denote the configuration satisfying v ∈ σ ∪σ ′ if and
only if v ∈ σ or v ∈ σ ′. A similar definition applies to σ ∩ σ ′. We will also write
σ ∼ σ ′ when there is a v ∈ V such that σ = σ ′ ∪ {v} or σ ′ = σ ∪ {v}. We will say
that σ and σ ′ are neighbours. We write deg(v) for the degree of v ∈ V . �
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3.1 Concentration Bounds for ERn(p)

Recall that PERn(p) denotes the law ERn(p).

Lemma 3.2 (Concentration of Degrees and Energies) With PERn(p)-probability

tending to 1 as n→∞ the following is true. For any ε > 0 and any c >

√
1
8 log 2,

pn− (1+ ε)
√

n log n < deg(v) < pn+ (1+ ε)
√

n log n ∀ v ∈ V, (3.1)

1

n

(
2p|ξ |(n− |ξ |)− cn3/2

)
− 2h|ξ | ≤ Hn(ξ)−Hn(�) (3.2)

≤ 1

n

(
2p|ξ |(n− |ξ |)+ cn3/2

)
− 2h|ξ | ∀ ξ ∈ Sn.

Proof These bounds are immediate from Hoeffding’s inequality and a union bound.
�

3.2 Edge Boundaries of ERn(p)

We partition the configuration space as

Sn =
n⋃

k=0
Ak, (3.3)

where Ak is defined in (1.18). For 0 ≤ k ≤ n and −pk (n− k) ≤ i ≤
(1− p) k (n− k), define

φk
i = |{σ ∈ Ak : |∂Eσ | = pk (n− k)+ i}| , (3.4)

i.e., φk
i counts the configurations σ with volume k whose edge-boundary size |∂Eσ |

deviates by i from its mean, which is equal to pk (n− k). For 0 ≤ k ≤ n, let Pk

denote the uniform distribution on Ak .

Lemma 3.3 (Upper Bound on Edge-Boundary Sizes) With PERn(p)-probability
tending to 1 as n→∞ the following are true. For−pk(n−k) ≤ j ≤ (1−p)k(n−k)

and � : N→ R+,

Pk

[
φk

j ≥ � (n)

(
n

k

)
ppk(n−k)+j (1− p)(1−p)k(n−k)−j

(
k(n− k)

pk(n− k)+ j

)]
≤ 1

�(n)

(3.5)
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and

Pk

[∑
j≥i φk

j ≥ � (n)
(
n
k

)
e−

2i2
k(n−k)

]
≤ 1

�(n)
,

Pk

[∑
j≤−i φk

j ≥ � (n)
(
n
k

)
e−

2i2
k(n−k)

]
≤ 1

�(n)
.

(3.6)

Proof Write� to denote equality in distribution. Note that if σ � Pk , then |∂Eσ | �
Bin (k (n− k) , p), and hence

Pk [|∂Eσ | = i] = pi (1− p)k(n−k)−i

(
k (n− k)

i

)
. (3.7)

In particular,

Ek

[
φk

j

]
= Ek

[∑
σ∈Ak

1{|∂Eσ |=pk(n−k)+j}
]

= (
n
k

)
ppk(n−k)+j (1− p)(1−p)k(n−k)−j

(
k(n−k)

pk(n−k)+j

)
.

(3.8)

Hence, by Markov’s inequality, the claim in (3.5) follows. Moreover,

Ek

[∑

j≥i

φk
j

]
= Ek

⎡

⎣
∑

σ∈Ak

1{|∂Eσ |≥pk(n−k)+i}

⎤

⎦ ≤
(

n

k

)
e−2

i2
k(n−k) , (3.9)

where we again use Hoeffding’s inequality. Hence, by Markov’s inequality, we get
the first line in (3.6). The proof of the second line is similar. �

3.3 Jump Rates for the Volume Process

The following lemma establishes bounds on the rate at which configurations in Ak

jump forward to Ak+1 and backward to Ak−1. In Sect. 8 we will sharpen the error
in the prefactors in (3.10)–(3.11) from 2n2/3 to O(1) and the error in the exponents
in (3.10)–(3.11) from 3n−1/3 to O(n−1/2). The formulas in (3.13) and (3.14) show
that for small and large magnetization the rate forward, respectively, backward are
maximal.

Lemma 3.4 (Bounds on Forward Jump Rates) With PERn(p)-probability tending
to 1 as n→∞ the following are true.
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(a) For 2n1/3 ≤ k ≤ n− 2n1/3,

(
n− k − 2n2/3

)
e−2β[ϑk+3n−1/3]+

≤∑
ξ∈Ak+1 r (σ, ξ) ≤ (

n− k − 2n2/3
)
e−2β[ϑk−3n−1/3]+ + 2n2/3, σ ∈ Ak,

(3.10)

and

(
k − 2n2/3

)
e−2β[−ϑk+3n−1/3]+

≤∑
ξ∈Ak−1 r (σ, ξ) ≤ (

k − 2n2/3
)
e−2β[−ϑk−3n−1/3]+ + 2n2/3, σ ∈ Ak,

(3.11)

where

ϑk = p

(
1− 2k

n

)
− h. (3.12)

(b) For n− n
3 (p + h) ≤ k < n,

∑

ξ∈Ak+1
r (σ, ξ) = n− k, σ ∈ Ak. (3.13)

(c) For 0 < k ≤ n
3 (p − h),

∑

ξ∈Ak−1
r (σ, ξ) = k, σ ∈ Ak. (3.14)

Proof The proof is via probabilistic counting.

(a) Write P for the law under which σ ∈ Sn is a uniformly random configuration
and v ∈ σ is a uniformly random vertex. By Hoeffding’s inequality, the
probability that v has more than p |σ | + n2/3 neighbours in σ (i.e., w ∈ V

such that (v,w) ∈ E and σ (w) = +1) is bounded by

P

[
|E(v, σ )| ≥ p |σ | + n2/3

]
≤ e−2n1/3 , (3.15)

where

E(v, σ ) = {w ∈ σ : (v,w) ∈ E} . (3.16)

Define the event

R+ (σ ) =
{
∃ ζ ⊆ σ , ζ ∈ A2n2/3 : |E(v, σ )| ≥ p |σ | + n2/3 ∀ v ∈ ζ

}
,

(3.17)
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i.e., the configuration σ has at least 2n2/3 vertices like v, each with at least
p |σ | + n2/3 neighbours in σ . Then, for 0 ≤ k ≤ n− 2n2/3,

P
[
R+ (σ )

] ≤
( |σ |
2n2/3

)(
e−2n1/3

)2n2/3 ≤ 2ne−4n. (3.18)

Hence the probability that some configuration σ ∈ Sn satisfies condition R+(σ )

is bounded by

P

⎡

⎣
⋃

σ∈Sn

R+ (σ )

⎤

⎦ ≤ 4ne−4n ≤ e−2n. (3.19)

Thus, with PERn(p)-probability tending to 1 as n → ∞ there are no configura-
tions σ ∈ Sn satisfying condition R+(σ ). The same holds for the event

R− (σ ) =
{
∃ ζ ⊆ σ , ζ ∈ A2n2/3 : |E(v, σ )| ≤ p |σ | − n2/3 ∀ v ∈ ζ

}
,

(3.20)

for which

P

⎡

⎣
⋃

σ∈Sn

R− (σ )

⎤

⎦ ≤ e−2n. (3.21)

Now let σ ∈ Ak , and observe that σ has n − k neighbours in Ak+1 and k

neighbours in Ak−1. But if ξ = σ ∪ {v} ∈ Ak+1, then by (1.3),

Hn (ξ)−Hn (σ) = 2

n

(
|E(v, σ )| − |E(v, σ )|

)
− 2h (3.22)

= 2

n

(
deg (v)− 2 |E(v, σ )| )− 2h

≤ 2

n

(
pn+ n1/2 log n− 2 |E(v, σ )| )− 2h,

where the last inequality uses (3.1) with �(n) = log n. Similarly,

Hn (ξ)−Hn (σ) ≥ 2

n

(
pn− n1/2 log n− 2 |E(v, σ )|

)
− 2h. (3.23)

The events R+(σ ) in (3.17) and R−(σ ) in (3.20) guarantee that for any
configuration σ at most 2n2/3 vertices in the configuration σ can have more
than n2/3 neighbours in σ . In other words, the configuration σ has at most
2n2/3 neighbouring configurations in Ak+1 that differ in energy by more than
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6n−1/3 − 2h. Since on the complement of R+(σ ) with σ ∈ Ak we have
|{w ∈ σ : (v,w) ∈ E}| ≤ 2pk + 2n1/3 (because n1/2 log n ≤ n2/3 for n

large enough), from (3.19) and (3.21) we get that, with PERn(p)-probability at
least 1− e−2n,
∣∣∣
{
ξ ∈ Ak+1 : ξ ∼ σ, Hn (ξ)−Hn (σ) ≥ 2

n

(
pn− 2pk + 3n2/3

)− 2h
}∣∣∣ ≤ 2n2/3,

∣∣∣
{
ξ ∈ Ak+1 : ξ ∼ σ, Hn (ξ)−Hn (σ) ≤ 2

n

(
pn− 2pk − 3n2/3

)− 2h
}∣∣∣ ≤ 2n2/3,

(3.24)

and hence, by (1.6), the rate at which the Markov chain starting at σ ∈ Ak jumps
to Ak+1 satisfies

∑

ξ∈Ak+1
r (σ, ξ) ≥ (

n− k − 2n2/3
)
e−2β[ϑk+3n−1/3]+ , (3.25)

∑

ξ∈Ak+1
r (σ, ξ) ≤ (

n− k − 2n2/3
)
e−2β[ϑk−3n−1/3]+ + 2n2/3. (3.26)

Here the term n − k − 2n2/3 comes from exclusion of the at most 2n2/3

neighbours in configurations that differ from σ in energy by more than 6n−1/3−
2h. Similarly, with PERn(p)-probability at least 1− e−2n,
∣∣∣
{
ξ ∈ Ak−1 : ξ ∼ σ, Hn (ξ)−Hn (σ) ≥ 2

n

(−pn+ 2pk + 3n2/3
)+ 2h

}∣∣∣ ≤ 2n2/3,

≤ 2
n

(−pn+ 2pk − 3n2/3
)+ 2h

}∣∣∣ ≤ 2n2/3,

(3.27)

and hence, by (1.6), the rate at which the Markov chain starting at σ ∈ Ak jumps
to Ak−1 satisfies

∑

ξ∈Ak−1
r (σ, ξ) ≤ (

k − 2n2/3
)
e−2β[−ϑk−3n−1/3]+ + 2n2/3, (3.28)

∑

ξ∈Ak−1
r (σ, ξ) ≥ (

k − 2n2/3
)
e−2β[−ϑk+3n−1/3]+ . (3.29)

This proves (3.10) and (3.11).
(b) To get (3.13), note that for ξ = σ ∪ {v} with v /∈ σ ,

Hn (ξ)−Hn (σ) = 2

n

(
|E(v, σ )| − |E(v, σ )|

)
− 2h (3.30)

= 2

n

(
2 |E(v, σ )| − deg (v)

)
− 2h

≤ 2
(
2(n− k)− p + n−1/2 log n− h

)
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for n large enough, which is ≤ 0 when n− k ≤ n
3 (p + h), so that r (σ, ξ) = 1

by (1.6).
(c) To get (3.14), note that for ξ = σ \ {v} with v /∈ σ ,

Hn (ξ)−Hn (σ) = 2

n

(
|E(v, σ )| − |E(v, σ )|

)
+ 2h (3.31)

= 2

n

(
2 |E(v, σ )| − deg (v)

)
+ 2h

≤ 2
(
2k − p + n−1/2 log n+ h

)

for n large enough, which is ≤ 0 when k ≤ n
3 (p − h), so that r (σ, ξ) = 1 by

(1.6). �
The following lemma is technical and merely serves to show that near AM

transitions involving a flip from −1 to +1 typically occur at rate 1. Write ξv to
denote the configuration obtained from ξ by flipping the sign at vertex v ∈ V .

Lemma 3.5 (Attraction Towards the Metastable State) Suppose that |ξ | = [1+
on(1)]M. Then r (ξ, ξv) = 1 for all but O(n2/3) many v ∈ ξ .

Proof We want to show that

Hn

(
ξv

)
< Hn (ξ) (3.32)

for all but O(n2/3) many v ∈ ξ . Note that by (3.20) and (3.21) there are at most
2n2/3 many v ∈ ξ such that |E(v, ξ)| ≤ p(n− |ξ |)− n2/3, and at most 2n2/3 many
v ∈ ξ such that |E(v, ξ)| ≥ p|ξ | + n2/3. Hence, by (1.3), for all but at most 4n2/3

many v ∈ ξ we have that

Hn

(
ξv

) = Hn (ξ)+ 2

n

(|E (v, ξ)| − ∣∣E
(
v, ξ

)∣∣)+ 2h (3.33)

= Hn (ξ)+ 2p

n
(2 |ξ | − n)+ 2h+ on(1)

= Hn (ξ)+ 2p

n
(2M− n)+ 2h+ on(1)

= Hn (ξ)+ 2pm+ 2h+ on(1),

where we use (1.17). From the definition ofm in (1.16) it follows that 2pm+ 2h+
on(1) < 0, where we recall from the discussion near the end of Sect. 2.2 thatm < 0
and hence log( 1−m1+m ) > 0. Hence (3.32) follows. �

We can now prove the claim made in Remark 1.2, namely, there is no metastable
behaviour outside the regime in (1.13). Recall the definition of Sn in (1.17), which
requires the function J in (1.23) to have two zeroes. If it has only one zero, then
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denote that zero by a′ and define Sn = n
2 (a′ + 1). Let ASn+O(n2/3) be the union of

all Ak with |k − Sn| = O(n2/3).

Corollary 3.6 (Non-metastable Regime) Suppose that β ∈ (1/p,∞) and h ∈
(p,∞). Then {ξt }t≥0 has a drift towards ASn+O(n2/3). Consequently, Eξ0 [τs] =
O(1) for any initial configuration ξ0 ∈ Sn.

Proof If β ∈ (1/p,∞) and h ∈ (p,∞), then the function a 
→ Jp,β,h(a) =
2β(pa+h)+log( 1−a

1+a
) has a unique root in the interval (0, 1). Indeed, Jp,β,h(a) > 0

for a ∈ [−1, 0], J ′p,β,h(0) = 2(βp − 1) > 0, while a 
→ log( 1−a
1+a

) is concave and
tends to −∞ as a ↑ 1. We claim that the process {ξt }t≥0 drifts towards that root,
i.e., if we denote the root by a′, then the process drifts towards the set An

2 (a′+1),
which by convention we identify with ASn . Note that if h ∈ (p,∞), then ϑk =
p(1− 2k

n
)− h < 0 for all 0 ≤ k ≤ n (recall (3.12)) and so, by Lemma 3.4,

∑

ξ∈Ak+1
r (σ, ξ) ≥ n− k − 2n2/3, (3.34)

∑

ξ∈Ak−1
r (σ, ξ) ≤ (

k − 2n2/3
)
e−2β[−ϑk−3n−1/3] + 2n2/3.

Thus, for k ≤ n
2 − 4n2/3,

∑
ξ∈Ak+1 r(σ, ξ) >

∑
ξ∈Ak−1 r(σ, ξ). Similarly, for

k ≥ n
2 + 4n2/3, the opposite inequality holds. Therefore there is a drift towards

ASn+O(n2/3). �
We close this section with a lemma stating that the average return time to AMn

conditional on not hitting ATn
is of order 1 and has an exponential tail. This will

be needed to control the time between successive attempts to go from AMn
to ATn

,
until the dynamics crosses ATn

and moves to ASn
(recall Fig. 4).

Lemma 3.7 (Conditional Return Time to the Metastable Set) There exists a
C > 0 such that, with PERn(p)-probability tending to 1 as n → ∞, uniformly in
ξ ∈ AMn

,

Pξ

[
τAMn

≥ k | τAMn
< τATn

] ≤ e−Ck ∀ k. (3.35)

Proof The proof is given in Sect. 8. �

3.4 Uniformity in the Starting Configuration

The following lemma shows that the probability of the event {τA
k+o(n1/3)

< τAk
} is

almost uniform as a function of the starting configuration in Ak .
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Lemma 3.8 (Uniformity of Hitting Probability of Volume Level Sets) With
PERn(p)-probability tending to 1 as n → ∞, the following is true. For every
0 ≤ k < m ≤ n,

maxσ∈Ak
Pσ

[
τAm < τAk

]

minσ∈Ak
Pσ

[
τAm < τAk

] ≤ [1+ on(1)] e
K(m−k)n−1/3 (3.36)

with K = K(β, h, p) ∈ (0,∞).

Proof The proof proceeds by estimating the probability of trajectories from Ak to
Am. Observe that

e−2β[ϑk+3n−1/3]+ ≥ e−2β[ϑk]+
(
1− 6βn−1/3

)
∀ n, (3.37)

e−2β[ϑk−3n−1/3]+ ≤ e−2β[ϑk]+
(
1+ 7βn−1/3

)
n large enough,

and that similar estimates hold for e−2β[−ϑk+3n−1/3]+ and e−2β[−ϑk−3n−1/3]+ . We will
bound the ratio in the left-hand side of (3.36) by looking at two random processes
on {0, . . . , n}, one of which bounds maxσ∈Ak

Pσ

[
τAm < τAk

]
from above and the

other of which bounds minσ∈Ak
Pσ

[
τAm < τAk

]
from below. The proof comes in

three Steps.

1. We begin with the following observation. Suppose that {X+t }t≥0 and {X−t }t≥0
are two continuous-time Markov chains taking unit steps in {0, . . . , n} at rates
r−(k, k ± 1) and r+(k, k ± 1), respectively. Furthermore, suppose that for every
0 ≤ k ≤ n− 1,

r− (k, k + 1) ≤ min
σ∈Ak

∑

ξ∈Ak+1
r (σ, ξ) ≤ max

σ∈Ak

∑

ξ∈Ak+1
r (σ, ξ) ≤ r+ (k, k + 1) ,

(3.38)
and for every 1 ≤ k ≤ n,

r− (k, k − 1) ≥ max
σ∈Ak

∑

ξ∈Ak−1
r (σ, ξ) ≥ min

σ∈Ak

∑

ξ∈Ak−1
r (σ, ξ) ≥ r+ (k, k − 1) .

(3.39)
Then

maxσ∈Ak
Pσ

[
τAm < τAk

]

minσ∈Ak
Pσ

[
τAm < τAk

] ≤ P
X+
k [τm < τk]

P
X−
k [τm < τk]

. (3.40)

Indeed, from (3.38) and (3.39) it follows that we can couple the three Markov
chains {X+t }t≥0, {X−t }t≥0 and {ξt }t≥0 in such a way that, for any 0 ≤ k ≤ n and
any σ0 ∈ Ak , if X−0 = X+0 = |σ0| = k, then

X−t ≤ |σt | ≤ X+t , t ≥ 0. (3.41)
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This immediately guarantees that, for any 0 ≤ k ≤ m ≤ n,

P
X−
k [τm < τk] ≤ min

σ∈Ak

Pσ

[
τAm < τAk

] ≤ max
σ∈Ak

Pσ

[
τAm < τAk

] ≤ P
X+
k [τm < τk] ,

(3.42)

which proves the claim in (3.40). To get (3.38) and (3.39), we pick r− (i, j) and
r+ (i, j) such that

r−(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
n− i − (2+ 6β) n2/3

)
e−2β[ϑi ]+

+ (2+ 6β) n2/31{
i≥n

(
1− 1

3 (p+h)
)}, j = i + 1,

min
{
i,

(
i + (−2+ 7β) n2/3

)
e−2β[−ϑi ]+ + 2n2/3

}
, j = i − 1,

0, otherwise,
(3.43)

and

r+(i, j) =

⎧
⎪⎨

⎪⎩

min
{
n− i,

(
n− i + (−2+ 7β) n2/3

)
e−2β[ϑi ]+ + 2n2/3

}
, j = i + 1,(

i − (2+ 6β) n2/3
)
e−2β[−ϑi ]+ , j = i − 1,

0, otherwise,
(3.44)

and note that, by Lemma 3.4, (3.37)–(3.39) are indeed satisfied.
2. We continue from (3.40). Our task is to estimate the right-hand side of (3.40).

Let G be the set of all unit-step paths from k to m that only hit m after their final
step:

G =⋃
M∈N

{
{γi}M−1i=0 : γ0 = k, γM = m, γi ∈ {0, . . . , m− 1}

and |γi+1 − γi | = 1 for 0 ≤ i < M
}
.

(3.45)

We will show that

P
X+
k

[
X+t follows trajectory γ

]

P
X−
k

[
X−t follows trajectory γ

]

≤ exp
([
24β + 4e2β(p+h+1)] (m− k) n−1/3

) ∀ γ ∈ G ,

(3.46)

which will settle the claim. (Note that the paths realising {τm < τk} form a subset
of G .) To that end, let γ � ∈ G be the path γ � = {k, k + 1, . . . , m}. We claim that

sup
γ∈G

P
X+
k

[
X+t follows trajectory γ

]

P
X−
k

[
X−t follows trajectory γ

] ≤ P
X+
k

[
X+t follows trajectory γ �

]

P
X−
k

[
X−t follows trajectory γ �

] .

(3.47)
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Indeed, if γ = (γ1, . . . , γM) ∈ G , then by the Markov property we have that

P
X+
k

[
X+t follows trajectory γ

] =
M−1∏

i=0
P

X+
γi

[
τγi+1 < τγi

]
, (3.48)

with a similar expression for PX−
k [X−t follows trajectory γ ]. Therefore, noting

that γi − 1 = 2γi − γi+1 when γi+1 = γi + 1 and γi + 1 = 2γi − γi+1 when
γi+1 = γi − 1, we have

P
X+
k

[
X+t follows trajectory γ

]

P
X−
k

[
X−t follows trajectory γ

] =
M−1∏

i=0

P
X+
γi

[
τγi+1 < τγi

]

PX−
γi

[
τγi+1 < τγi

] (3.49)

=
M∏

i=1

(
r+ (γi , γi+1)

r+ (γi , γi+1)+ r+ (γi , 2γi − γi+1)

)(
r− (γi , γi+1)

r− (γi , γi+1)+ r− (γi , 2γi − γi+1)

)−1
.

Since, whenever γi+1 = γi − 1,

r−(γi ,γi+1)
r−(γi ,γi+1)+r−(γi ,2γi−γi+1)

= r−(γi ,γi−1)
r−(γi ,γi−1)+r−(γi ,γi+1)

≥ r+(γi ,γi−1)
r+(γi ,γi−1)+r+(γi ,γi+1)

= r+(γi ,γi+1)
r+(γi ,γi+1)+r+(γi ,2γi−γi+1)

,

(3.50)

we get

∏M−1
i=0

(
r+(γi ,γi+1)

r+(γi ,γi+1)+r+(γi ,2γi−γi+1)

) (
r−(γi ,γi+1)

r−(γi ,γi+1)+r−(γi ,2γi−γi+1)

)−1

≤∏m−1
i=k

(
r+(i,i+1)

r+(i,i+1)+r+(i,i−1)
) (

r−(i,i+1)
r−(i,i+1)+r−(i,i−1)

)−1

= P
X+
k

[
X+t follows trajectory γ �

]

P
X−
k

[
X−t follows trajectory γ �

] .

(3.51)

This proves the claim in (3.47).
3. Next, consider the ratio

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
= A

B
(3.52)
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with

A = (
n− i − (2+ 6β) n2/3

)
e−2β[ϑi ]+ + (2+ 6β) n2/31{

i≥n
(
1− 1

3 (p+h)
)}

+ (
i + (−2+ 7β) n2/3

)
e−2β[−ϑi ]+ + 2n2/3,

B = (
n− i + (−2+ 7β) n2/3

)
e−2β[ϑi ]+ + 2n2/3

+ (
i − (2+ 6β) n2/3

)
e−2β[−ϑi ]+ ,

(3.53)
and the ratio

r+ (i, i + 1)

r− (i, i + 1)
= C

D
(3.54)

with

C = (
n− i + (−2+ 7β) n2/3

)
e−2β[ϑi ]+ + 2n2/3,

D = (
n− i − (2+ 6β) n2/3

)
e−2β[ϑi ]+ + (2+ 6β) n2/31{

i≥n
(
1− 1

3 (p+h)
)}.

(3.55)

Note from (3.52) that for ϑi ≥ 0 (i.e., i ≤ n
2 (1 − p−1h), in which case also

i < n(1− 1
3 (p + h))),

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
≤ 1+ 13βe2β(p−h)

n1/3
, (3.56)

and from (3.54) it follows that in this case

r+ (i, i + 1)

r− (i, i + 1)
≤ 1+ 3 (3+ 13β) e2β(p−h)

n1/3 (p + h)
. (3.57)

Similarly, for ϑi < 0 we have that

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
≤ 1+ 2e2β(p+h)

n1/3
(3.58)

and

r+ (i, i + 1)

r− (i, i + 1)
≤ 1+ 6 (2+ 6β)

n1/3 (p + h)
. (3.59)
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Combining (3.56)–(3.59), we get that, for all 1 ≤ i ≤ n− 1,

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
× r+ (i, i + 1)

r− (i, i + 1)
≤ 1+Kn−1/3, (3.60)

where

K = max

{
e2β(p−h)

(
9+ 39β

p + h
+ 13β

)
, 2e2β(p+h) + 12+ 36β

p + h

}
. (3.61)

Therefore

P
X+
k

[
X+t follows trajectory γ �

]

P
X−
k

[
X−t follows trajectory γ �

] ≤
m−1∏

i=k

(
1+ K

n1/3

)
≤ eKn−1/3(m−k).

(3.62)

�
An application of the path-comparison methods used in Step 2 of the proof of

Lemma 3.8 yields the following.

Corollary 3.9 With PERn(p)-probability tending to 1 as n → ∞ the following is
true. For every 0 ≤ k < m ≤ n,

maxσ∈Ak
Eσ

[
τAm < τAk

]

minσ∈Ak
Eσ

[
τAm < τAk

] ≤ [1+ on(1)] e
K(m−k)n−1/3 (3.63)

with K = K(β, h, p) ∈ (0,∞).

4 Capacity Bounds

The goal of this section is to derive various capacity bounds that will be needed to
prove Theorem 1.4 in Sects. 6–7. In Sect. 4.1 we derive capacity bounds for the
processes {ξ l

t }t≥0 and {ξu
t }t≥0 on Kn introduced in (2.6) (Lemma 4.1 below). In

Sect. 4.2 we do the same for the process {ξt }t≥0 on ERn(p) (Lemma 4.2 below).
In Sect. 4.3 we use the bounds to rank-order the mean return times to AMl , AM
and AMu , respectively (Lemma 4.3 below). This ordering will be needed in the
construction of a coupling in Sect. 6.

Define the Dirichlet form for {ξt }t≥0 by

E (f, f ) = 1

2

∑

σ,σ ′∈Sn

μ (σ ) r
(
σ, σ ′

) [
f (σ)− f

(
σ ′
)]2

, f : Sn → [0, 1] ,

(4.1)
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and for {θu
t }t≥0 and {θ l

t }t≥0 by

E u (f, f ) = 1

2

∑

a,a′∈Γn

νu (a) qu
(
a, a′

) [
f (a)− f

(
a′
)]2

, (4.2)

E l (f, f ) = 1

2

∑

a,a′∈Γn

νl (a) ql
(
a, a′

) [
f (a)− f

(
a′
)]2

, f : Γn → [0, 1] .

For A,B ⊆ Sn, define the capacity between A and B for {ξt }t≥0 by

cap (A,B) = min
f∈Q(A,B)

E (f, f ) , (4.3)

where

Q(A,B) = {
f : Sn → [0, 1] , f|A ≡ 1, f|B ≡ 0

}
, (4.4)

and similarly for capu (A,B) and capl (A, B).

4.1 Capacity Bounds on Kn

First we derive capacity bounds for {ξ l
t }t≥0 and {ξu

t }t≥0 on Kn. A useful reformula-
tion of (4.3) is given by

cap (A,B) =
∑

σ∈A

∑

σ ′∈Sn

μ (σ ) r
(
σ, σ ′

)
Pσ (τB < τA) . (4.5)

Lemma 4.1 (Capacity Bounds for {ξu
t }t≥0 and {ξ l

t }t≥0) For a, b ∈ [mu, su] with
a < b,

(
1− b + 2

n

)

2n (b − a)2
≤ capu (a, b)

C� (b)
≤ n (1− b)

2
(4.6)

with

C� (b) = 1

zu
e−βnΨ u(b)

(
n

n
2 (1+min (b, tu))

)
. (4.7)

For a, b ∈ [
ml , sl

]
with a < b, analogous bounds hold for capl (a, b).
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Proof We will prove the upper and lower bounds only for capu (a, b), the proof for
capl (a, b) being identical. Note from the definition in (4.3) that

capu (a, b) (4.8)

= min
f∈Q(a,b)

n
2 (b−a)−1∑

i=0
νu

(
a + 2i

n

)
qu

(
a + 2i

n
, a + 2 (i + 1)

n

)

×
[
f

(
a + 2i

n

)
− f

(
a + 2 (i + 1)

n

)]2
,

where it is easy to see that the set Q(a, b) in (4.4) may be reduced to

Q(a, b) =
{
f : Γn → [0, 1] , f (x) = 1 for x ≤ a, f (x) = 0 for x ≥ b

}
.

(4.9)

Note that for every f ∈ Q(a, b) there is some 0 ≤ i ≤ n
2 (b − a)− 1 such that

∣∣∣∣f
(

a + 2i

n

)
− f

(
a + 2 (i + 1)

n

)∣∣∣∣ ≥
(n

2
(b − a)

)−1
. (4.10)

Also note that, by (2.13),

νu

(
a + 2i

n

)
qu

(
a + 2i

n
, a + 2 (i + 1)

n

)
(4.11)

= 1

zu

n

2

(
1− a − 2i

n

)
e−βnmax

{
Ψ u

(
a+ 2i

n

)
,Ψ u

(
a+ 2(i+1)

n

)}(
n

n
2 (1+ a)+ i

)
,

and that, for any δ ∈ R,

Ψ u (a + δ)− Ψ u (a) = −δ
(
pa + hu + p

2
δ
)

, (4.12)

so that

max

{
Ψ u

(
a + 2i

n

)
, Ψ u

(
a + 2 (i + 1)

n

)}
≤ 2

n

(
pa + h+ p

n

)
+ Ψ u

(
a + 2i

n

)
.

(4.13)
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Combining, (4.9)–(4.13) with δ = 2
n
, we get

capu (a, b) (4.14)

≥ min
0≤i≤ n

2 (b−a)−1

2
(
1− b + 2

n

)
e−2β(p+hu)

nzu (b − a)2
e−βnΨ u

(
a+ 2i

n

)(
n

n
2 (1+ a)+ i

)

=
2
(
1− b + 2

n

)
e−2β(p+hu+ p

n
)

nzu (b − a)2
e−βnΨ u(min(b,tu))

(
n

n
2 (1+min(b, tu))

)
,

where we use (4.12) plus the fact that, by the definition of mu, tu, su, for a, b ∈
[mu, su] with a < b, the function i 
→ e

−βnΨ u
(
a+ 2i

n

)(
n

n
2 (1+a)+i

)
is decreasing on

[mu, tu] and increasing on [tu, su]. This settles the lower bound in (4.6).
Arguments similar to the ones above give

capu (a, b) ≤ νu

(
min(b, tu)− 2

n

)
qu

(
min(b, tu)− 2

n
,min(b, tu)

)

≤ n (1− b) e2β(p+hu)

2zu
e−βnΨ u(min(b,tu))

(
n

n
2 (1+min(b, tu))

)
,

(4.15)

where for the first equality we use the test function f ≡ 1 on
[
−1,min(b, tu)− 2

n

]

and f ≡ 0 on [min(b, tu), 1] in (4.9). �

4.2 Capacity Bounds on ERn(p)

Next we derive capacity bounds for {ξt }t≥0 on ERn(p). The proof is analogous to
what was done in Lemma 4.1 for {θu

t }t≥0 and {θ l
t }t≥0 on Kn.

Define the set of direct paths between A ⊆ Sn and B ⊆ Sn by

LA,B =
{
γ = (γ0, . . . , γ|γ |) : A→ B : |γi+1| = |γi | + 1 for all γi ∈ γ

}
,

(4.16)

which may be empty. Recall from (3.12) that ϑk = p(1− k
n
)− h.

Lemma 4.2 (Capacity Bounds for {ξt }t≥0) With PERn(p)-probability tending to 1
as n →∞ the following is true. For every 0 ≤ k < k′ ≤ n and every � : N→ R+
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satisfying limn→∞ � (n) = ∞,

cap (Ak,Ak′) ≤ 1

Z
e−βHn(�) O

(
�(n)n11/6

)( n

km

)
e−β 2kmϑkm , (4.17)

cap (Ak,Ak′) ≥ 1

Z
e−βHn(�) Ω

(
n−1e−

(
β+ 1√

3

)√
log n

)(
n

km

)
e−β 2kmϑkm ,

where

km = argmink≤j≤k′

(
n

j

)
e−β 2jθj . (4.18)

Proof Recall from (4.1) and (4.3) that

cap (Ak,Ak′) = min
f∈Q

E (f, f ) = min
f∈Q

1

2

∑

σ,ξ∈Sn

μ (σ ) r (σ, ξ) [f (σ)− f (ξ)]2 ,

(4.19)
where

Q(Ak,Ak′) =
{
f : Sn → [0, 1] : f |Ak

≡ 1, f |Ak′ ≡ 0
}
. (4.20)

The proof comes in three Steps.

1. We first prove the upper bound in (4.17). Let B = ⋃km−1
j=k Aj , and note that, by

(1.7),

cap
(
Ak,Ak′

) ≤ 1

2

∑

σ,ξ∈Sn

μ (σ ) r (σ, ξ) [1B (σ)− 1B (ξ)]2

=
∑

σ∈Akm−1

∑

ξ∈Akm

μ (σ) r (σ, ξ)

= 1

Z

∑

σ∈Akm−1

∑

ξ∈Akm,ξ∼σ

e−β max{Hn(ξ),Hn(σ )}

= 1

Z

⎛

⎜⎜⎝
∑

σ∈Akm−1

∑

ξ∈Akm
,ξ∼σ

Hn(σ)≥Hn(ξ)

e−βHn(σ) +
∑

σ∈Akm−1

∑

ξ∈Akm
,ξ∼σ

Hn(σ)<Hn(ξ)

e−βHn(ξ)

⎞

⎟⎟⎠

≤ 1

Z
max {km, n− km}

⎛

⎝
∑

σ∈Akm−1
e−βHn(σ) +

∑

ξ∈Akm

e−βHn(ξ)

⎞

⎠ .

(4.21)
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Recall from (3.4) that φk
i denotes the cardinality of the set of all σ ∈ Ak with

|∂Eσ | = pk (n− k)+ i. Note from (1.3) that for any ξ ∈ Akm such that |∂Eξ | =
pkm (n− km)+ i,

e−βHn(ξ) = e−βHn(�)e−β (2kmϑkm+ 2i
n

). (4.22)

There are
(

n
km

)
terms in the sum, and therefore we get

∑
ξ∈Akm

e−βHn(ξ) = e−βHn(�)
∑(1−p)km(n−km)

i=−pkm(n−km) φ
km

i e
−β

(
2kmϑkm+ 2i

n

)

= e−βHn(�)
(∑

i<−Y φ
km

i e
−β

(
2kmϑkm+ 2i

n

)

+∑
i≥−Y e

−β
(
2kmϑkm+ 2i

n

))

≤ e−βHn(�)
((

n
km

)
e−β(2kmϑkm− 2Y

n
) +∑

i<−Y φ
km

i e
−β

(
2kmϑkm+ 2i

n

))

(4.23)

with Y = √
log(�(n)2n5/6)km(n− km). The choice of Y will become clear

shortly. The summand in the right-hand side can be bounded as follows. By the
sandwich in (3.2) in Lemma 3.2, the sum over i < −Y can be restricted to
−cn3/2 ≤ i < −Y , since with high probability no configuration has a boundary
size that deviates by more than cn3/2 from the mean. But, using Lemma 3.3, we
can also bound from above the number of configurations that deviate by at most
Y from the mean, i.e., we can bound φ

km

i for −cn3/2 ≤ i < −Y . Taking a union
bound over 0 ≤ k ≤ n and −cn3/2 ≤ i < −Y , we get

P

⎡

⎣
n⋃

k=0

−Y⋃

i=−cn3/2

{
φ

km

i ≥ � (n) n5/2
(

n

km

)
e−

2i2
km(n−km)

}⎤

⎦ ≤ 1

� (n)
. (4.24)

Thus, with PERn(p)-probability at least ≥ 1− 1
�(n)

,

∑
i<−Y φ

km

i e
−β

(
2km θkm+ 2i

n

)

≤∑
i>Y � (n) n5/2

(
n
km

)
e
−2i

(
i

km(n−km)
− β

n

)

e−β 2km θkm

≤ � (n) n5/2
(

n
km

)
e−β 2km θkm e−2 log(�(n)n5/6)

≤ n5/6

�(n)

(
n
km

)
e−β 2km θkm ,

(4.25)

where we use that, for i > Y and n sufficiently large,

i

km (n− km)
− β

n
≥

√
log(� (n)2 n5/6)

km (n− km)
− β

n
≥

√
log(� (n) n5/6)

km (n− km)
. (4.26)



Glauber Dynamics on the Erdős-Rényi Random Graph 551

The above inequality also clarifies our choice of Y . Substituting it into (4.23), we
see that

∑

ξ∈Akm

e−βHn(ξ) ≤ [1+ on (1)] e−βHn(�)e
2βY
n e−β 2km ϑkm

(
n

km

)
(4.27)

= O
(
�(n)n5/6

)
e−βHn(�)e−β 2kmϑkm

(
n

km

)
.

A similar bound holds for
∑

ξ∈Akm−1 e
−βHn(ξ). A union bound over 1 ≤ km ≤ n

increases the exponent 5
6 to

11
6 . Together with (4.21), this proves the upper bound

in (4.17).
2. We next derive a combinatorial bound that will be used later for the proof of the

lower bound in (4.17). Note that if f ∈ Q(Ak,Ak′) and γ ∈ LAk,Ak′ (recall
(4.16)), then there must be some 1 ≤ i ≤ k′ − k such that

|f (γi)− f (γi+1)| ≥
(
k′ − k

)−1
. (4.28)

A simple counting argument shows that

∣∣LAk,Ak′
∣∣ =

(
n

k

)
(n− k)!
(n− k′)! , (4.29)

since for each σ ∈ Ak there are (n− k)× (n− k − 1)×· · ·× (
n− k′ + 1

)
paths

inLAk,Ak′ from σ to Ak′ . Let

bi =
∣∣∣
{
(σ, ξ) ∈ Ak+i−1 × Ak+i : |f (σ)− f (ξ)| ≥ (

k′ − k
)−1

, σ ∼ ξ
}∣∣∣ ,

1 ≤ i ≤ k′ − k.

(4.30)
We claim that

∃ 1 ≤ i� ≤ k′ − k : bi� ≥
k

k′ − k

(
n

k + i�

)
. (4.31)

Indeed, the number of paths inLAk,Ak′ that pass through σ ∈ Ak+i�−1 followed
by a move to ξ ∈ Ak+i� equals

zi� =
(
k + i� − 1

)!
k! ×

(
n− k − i�

)!
(n− k′)! , (4.32)

where the first term in the product counts the number of paths from σ ∈ Ak+i�+1
to Ak , while the second term counts the number of paths from ξ ∈ Ak+i� to Ak′ .
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Thus, if (4.31) fails, then

k′−k∑

i=1
bizi <

k

k′ − k

k−k′∑

i=1

1

k + i

n!
k! (n− k′)! ≤

n!
k! (n− k′)! =

∣∣LAk,Ak′
∣∣ ,

(4.33)

which in turn implies that (4.28) does not hold for some γ ∈ LAk,Ak′ (use
that bizi counts the paths that satisfy condition (4.28)), which is a contradiction.
Hence the claim in (4.31) holds.

3. In this part we prove the lower bound in (4.17). By Lemma 3.3 we have that, with
PERn(p)-probability at least 1− 1

�(n)
, for any Y ≥ 0,

∑

j≥√Y(k+i�)(n−k−i�)

φ
k+i�
j ≤ � (n)

(
n

k + i�

)
e−2Y . (4.34)

Picking Y = log(� (n) k−12n3/2), we get that

∑

j≥√Y(k+i�)(n−k−i�)

φ
k+i�
j ≤ 1

4

k2�(n)

�(n)2n3

(
n

k + i�

)
≤ 1

2

k

n (k′ − k)

(
n

k + i�

)
,

(4.35)

and so at least half of the configurations contributing to bi� have an edge-
boundary of size at most

p
(
k + i�

) (
n− k − i�

)+
√

Y
(
k + i�

) (
n− k − i�

)
. (4.36)

If ξ ∈ Ak+i� is such a configuration, then by Lemma 3.2 the same is true for any
σ ∼ ξ (i.e., configurations differing at only one vertex), since

|∂Eσ | ≤ |∂Eξ | + max
v∈σ�ξ

deg (v) ≤ |∂Eξ | + pn+ o
(
ρ(n)

√
n log n

)
. (4.37)

This implies

E (f, f ) = 1

2

∑

σ,ξ∈Sn

μ (σ ) r (σ, ξ) [f (σ)− f (ξ)]2

≥ 1

Zn2/3

∑

ξ∈Ak+i�

∑

σ∈Ak+i�−1
e−β max{Hn(σ),Hn(ξ)}



Glauber Dynamics on the Erdős-Rényi Random Graph 553

≥ e−βHn(�) k

2Zn2

(
n

k + i�

)

× exp

⎛

⎝−β

⎛

⎝2(k + i�)θk+i� + 2

√
Y
(
k + i�

) (
n− k − i�

)

n

⎞

⎠

⎞

⎠ . (4.38)

Therefore

E (f, f ) ≥ e−βHn(�)e−β
√

Y min
1≤i≤k′−k

k

2Zn2

(
n

k + i

)
e−β(2(k+i)ϑk+i ) (4.39)

= e−βHn(�)e−β
√

Y k

2Zn2

(
n

km

)
e−β(2(k+i)ϑk−m).

Since (4.39) is true for any f ∈ Q(Ak,Ak′), the lower bound in (4.17) follows,
with km defined in (4.18). �

4.3 Hitting Probabilities on ERn(p)

Let μAM be the equilibrium distribution μ conditioned to the set AM. Write P
l

and P
u to denote the laws of the processes {ξ l

t }t≥0 and {ξu
t }t≥0, respectively. The

following lemma is the crucial sandwich for comparing the crossover times of the
dynamics on ERn(p) and the perturbed dynamics on Kn.

Lemma 4.3 (Rank Ordering of Hitting Probabilities) With PERn(p)-probability
tending to 1 as n→∞,

maxξ∈AMl
P

l
ξ

[
τSl < τMl

] ≤ PμAM
[τS < τM]

≤ minσ∈AMu P
u
σ [τSu < τMu ] .

(4.40)

Proof The proof comes in three Steps.

1. Recall from (1.10) that the magnetization of σ ∈ Ak is m (σ) = 2 k
n
− 1. We first

observe that the maximum and the minimum in (4.40) are redundant, because by
symmetry

maxξ∈Ak
P

l
ξ

[
τAk′ < τAk

] = minξ∈Ak
P

l
ξ

[
τAk′ < τAk

]
,

minξ∈Ak
P

u
ξ

[
τAk′ < τAk

] = maxξ∈Ak
P

u
ξ

[
τAk′ < τAk

]
.

(4.41)

Recall that {ξ l
t }t≥0 is the Markov process on Sn governed by the Hamiltonian Hl

n

in (2.3), and that the associated magnetization process {θ l
t }t≥0 = {m(ξ l

t )}t≥0 is a
Markov process on the set Γn in (1.15) with transition rates given by ql in (2.8).
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Denoting by P̂l the law of {θ l
t }t≥0, we get from (4.5) that for any 0 ≤ k ≤ k′ < n,

and with a = 2k
n
− 1 and b = 2k′

n
− 1,

capl (a, b) =
∑

u∈Γn

νl (a) ql (a, u) P̂l
a [τb < τa] (4.42)

= νl (a)

[
ql

(
a, a + 2

n

)
+ ql

(
a, a − 2

n

)]
P̂

l
a [τb < τa] ,

and therefore

maxξ∈Ak
P

l
ξ

[
τAk′ < τAk

]
= P̂

l
a [τb < τa]

=
[
νl (a)

(
ql

(
a, a + 2

n

)
+ ql

(
a, a − 2

n

))]−1
capl (a, b) .

(4.43)

By (2.13), using the abbreviations

Ψ1 = max

{
Ψ l (a) , Ψ l

(
a + 2

n

)}
, Ψ2 = max

{
Ψ l (a) , Ψ l

(
a − 2

n

)}
,

(4.44)

we have, with the help of (4.12),

νl (a)

(
ql

(
a, a + 2

n

)
+ ql

(
a, a − 2

n

))

= 1

zl

n

2

(
n

n
2 (1+ a)

)(
(1− a) e−βnΨ1 + (1+ a) e−βnΨ2

)
(4.45)

≥ 1

zl
ne−2β

(
p|a|+hl+ p

n

)
e−βnΨ l(a)

(
n

n
2 (1+ a)

)
.

From Lemma 4.1 we have that

capl (a, b) ≤ n (1− a)

2zl
e−βnΨ l(b)

(
n

n
2 (1+ b)

)
. (4.46)

Putting (4.43), (4.45) and (4.46) together, we get

maxξ∈Ak
P

l
ξ

[
τAk′ < τAk

] ≤ (1−a)
2 e2β

(
p|a|+hl+ p

n

)
e−βn

[
Ψ l(b)−Ψ l(a)

]

×(
n

n
2 (1+b)

)(
n

n
2 (1+a)

)−1
.

(4.47)
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Similarly, denoting by P̂
u the law of {θu

t }t≥0, we have

min
ξ∈Ak

P
u
ξ

[
τAk′ < τAk

]
= P̂

u
a [τb < τa] (4.48)

=
[
νu (a)

(
qu

(
a, a + 2

n

)
+ qu

(
a, a − 2

n

))]−1
capu (a, b) ,

where

[
νu (a)

(
qu

(
a, a + 2

n

)
+ qu

(
a, a − 2

n

))]−1

≥
[

n
zu e2β

(
p|a|+hl+ p

n

)
e−βnΨ u(a)

(
n

n
2 (1+a)

)]−1
,

(4.49)

and, by Lemma 4.1,

capu (a, b) ≥ 1

2nzu
e−βnΨ u(b)

(
n

n
2 (1+ b)

)
. (4.50)

Putting (4.48)–(4.50) together, we get

min
ξ∈Ak

P
u
ξ

[
τAk′ < τAk

] ≥ 1

n
e−βn

[
Ψ l(b)−Ψ l(a)

]( n
n
2 (1+ b)

)(
n

n
2 (1+ a)

)−1
.

(4.51)

2. Recall from (4.5) that

cap (Ak,Ak′) =
∑

σ∈Ak

∑

ξ∈Sn

μ(σ )r(σ, ξ)Pσ

[
τAk′ < τAk

]
. (4.52)

Split

∑

σ∈Ak

∑

ξ∈Sn

μ(σ )r(σ, ξ)

=
∑

σ∈Ak

∑

ξ∈Ak+1
μ(σ)r(σ, ξ)+

∑

σ∈Ak

∑

ξ∈Ak−1
μ(σ)r(σ, ξ) (4.53)

= 1

Z

∑

σ∈Ak

∑

ξ∈Ak+1
e−β max{Hn(σ),Hn(ξ)} + 1

Z

∑

ξ∈Ak

∑

ξ ′Ak−1

e−β max{Hn(σ),Hn(ξ)}.
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By Lemma 3.3 and a reasoning similar to that leading to (4.38),

∑

ξ∈Ak

e−βHn(ξ) = e−βHn(�)
(1−p)k(n−k)∑

i=−pk(n−k)

φk
i e
−β

(
2kϑk+2 i

n

)

(4.54)

≥ 1

2

(
n

k

)
e−βHn(�)e

−β
(
2kϑk+2

√
Yk(n−k)

n

)

≥ 1

2

(
n

k

)
e−βHn(�)e−β

√
log(
√

2�(n))e−β 2kϑk

with Y = log(
√
2�(n)). Indeed, by (3.6) fewer than 1

2

(
n
k

)
configurations in Ak

have an edge-boundary of size ≥ pk (n− k) +√k (n− k) Y . Moreover, if ξ ∼
ξ ′, then, by Lemma 3.2,

eβ[Hn(ξ ′)−Hn(ξ)] ≤ [1+ o(1)] eβ(p+h), (4.55)

and since we may absorb this constant inside the error term � (n), we get that

∑

σ∈Ak

∑

ξ∈Ak+1
e−β max{Hn(σ),Hn(ξ)}

≥ e−βHn(�) 1

2
(n− k)

(
n

k

)
e−

β
2

√
log
√

2�(n)e−β 2k ϑk , (4.56)

∑

σ∈Ak

∑

ξ∈Ak−1
e−β max{Hn(σ),Hn(ξ)}

≥ e−βHn(�) 1

2
k

(
n

k

)
e−

β
2

√
log
√

2�(n)e−β 2k ϑk , (4.57)

and hence

∑
σ∈Ak

∑
ξ∈Sn

μ(σ )r(σ, ξ)

≥ e−βHn(�) 1
2Z

(
n
k

)
e−

β
2

√
log
√

2�(n)e−β 2k ϑk .
(4.58)

3. Similar bounds can be derived for PμAk

[
τAk′ < τAk

]
. Indeed, by Lemma 3.5,

r (σ, ξ) = 1 for all σ ∈ Ak and all but O(n2/3) many configurations ξ ∈ Sn.
Therefore

cap(Ak,Ak′) = n [1+ o(1)]
∑

σ∈Ak

μ(σ)Pσ

[
τAk′ < τAk

]
(4.59)

= n [1+ o(1)]μ(Ak)PμAk

[
τAk′ < τAk

]
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and hence

PμAk

[
τAk′ < τAk

] = [1+ o(1)] cap(Ak,Ak′)

nμ(Ak)
. (4.60)

Note that

μ(Ak) = 1

Z

∑

σ∈Ak

e−βHn(σ), (4.61)

and we have already produced bounds for a sum like (4.61) in Lemma 4.2.
Referring to (4.28), we see that

PμAk

[
τAk′ < τAk

] ≤ [1+ o(1)] cap(Ak,Ak′)

1
Z
e
−(β+ 1√

3
)
√
log n(n

k

)
e−β2kϑk

, (4.62)

PμAk

[
τAk′ < τAk

] ≥ [1+ o(1)] cap(Ak,Ak′)

1
Z

n17/6e
−(β+ 1√

3
)
√
log n(n

k

)
e−β2kϑk

. (4.63)

Finally, we note that if we let Δh = h− hu, then

e−βn[Ψ u(su)−Ψ u(mu)]

e−βn[Ψ (s)−Ψ (m)] = eβnCβ,h,pΔh, (4.64)

where Cβ,h,p is a constant that depends on the parameters β, p and h. A similar
expression follows for the ratio

(
n

n
2 (1+ su)

)(
n

n
2 (1+mu)

)−1 [(
n

n
2 (1+ s)

)(
n

n
2 (1+m

)−1]−1
. (4.65)

From this the statement of the lemma follows. �

5 Invariance Under Initial States and Refined Capacity
Estimates

In this section we use Lemma 4.3 to control the time it takes {m(ξt )}t≥0 to cross the
interval [tu, su] ∩ [tl , sl], which will be a good indicator of the time it takes {ξt }t≥0
to reach the basin of the stable state s. In particular, our aim is to control this time
by comparing it with the time it takes {θu

t }t≥0 and {θ l
t }t≥0 defined in (2.6) to do the

same for su and sl . In Sect. 5.1 we derive bounds on the probability of certain rare
events for the dynamics on ERn(p) (Lemmas 5.1–5.4 below). In Sect. 5.2 we use
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these bounds to prove that hitting times are close to being uniform in the starting
configuration.

5.1 Estimates for Rare Events

In this section we prove four lemmas that serve as a preparation for the coupling in
Sect. 6. Lemma 5.1 shows that the dynamics starting anywhere in AM is unlikely
to stray away from AM by much during a time window that is comparatively small.
Lemma 5.2 bounds the total variation distance between two exponential random
variable whose means are close. Lemma 5.3 bounds the tail of the distribution of the
first time when all the vertices have been updated. Lemma 5.4 bounds the number
of returns to AM before AS is hit.

We begin by deriving upper and lower bounds on the number of jumps Nξ (t)

taken by the process {ξt }t≥0 up to time t . By Lemma 3.4, the jump rate from any
σ ∈ Sn is bounded by

n e−2β(p+h) ≤
∑

σ ′∈Sn

r
(
σ, σ ′

) ≤ n. (5.1)

Hence Nξ (t) can be stochastically bounded from above by a Poisson random
variable with parameter tn, and from below by a Poisson random variable with
parameter tne−2β(p+h). It therefore follows that, for any M ≥ 0,

P
[
Nξ (t) ≥ M

] ≤ χM(nt),

P
[
Nξ (t) < M

] ≤ 1− χM

(
nt e−2β(p+h)

)
,

(5.2)

where we abbreviate χM(u) = e−u
∑

k≥M uk/k!, u ∈ R, M ∈ N.

5.1.1 Localisation

The purpose of the next lemma is to show that the probability of {ξt }t≥0 straying too
far from AM during its first n2 log n jumps is very small. The seemingly arbitrary
choice of n2 log n is in fact related to the Coupon Collector’s problem.

Lemma 5.1 (Localisation) Let ξ0 ∈ AM, T = inf
{
t ≥ 0 : Nξ (t) ≥ n2 log n

}
, and

let C1 ∈ R be a sufficiently large constant, possibly dependent on p and h (but not
on n). Then

Pξ0

[
ξt ∈ AM+C1n

5/6 for some 0 ≤ t ≤ T
] ≤ e−n2/3 . (5.3)
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Proof The idea of the proof is to show that {ξt }t≥0 returns many times to AM before
reaching AM+C1n

5/6 . The proof comes in three Steps.

1. We begin by showing that T ≤ n2 log n with probability ≥ 1 − e−n3 (in other
words, it takes less than n2 log n time to make n2 log n steps). Indeed, by the
second line of (5.2),

P

[
T > n2 log n

]
(5.4)

= P

[
Nξ

(
n2 log n

)
< n2 log n

]

≤ 1− χn2 log n

(
(n3 log n) e−2β(p+h)

)

≤
n2 log n∑

k=0
exp

(
−(n3 log n) e−2β(p+h) + k log

(
e n3 log n

k

))

≤ (n2 log n) exp
(
−(n3 log n) e−2β(p+h) + n5/2

)

≤ e−n3 ,

where for the second inequality we use that k! ≥ ( k
e
)k , k ∈ N, and for the third

inequality that, for n sufficiently large,

k log

(
en3 log n

k

)
≤ (n2 log n) log

(
e n3 log n

)
≤ n5/2. (5.5)

Next, observe that

Pξ0

[
ξt ∈ AM+C1n

5/6 for some 0 ≤ t ≤ T
]

(5.6)

= Pξ0

[
ξt ∈ AM+C1n

5/6 for some 0 ≤ t ≤ T , T ≤ n2 log n
]

+Pξ0

[
ξt ∈ AM+C1n

5/6 for some 0 ≤ t ≤ T , T > n2 log n
]

≤ (n2 log n) max
σ∈AM

Pσ

[
τAM+C1n5/6

< τAM

]
+ e−n3 .

Here, the inequality follows from (5.4) and the observation that the event ξt ∈
AM+C1n

5/6 for some 0 ≤ t ≤ T with T ≤ n2 log n is contained in the event that
AM+C1n

5/6 is visited before the (n2 log n)-th return to AM. From Lemma 4.3 and
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(4.47) it follows that

maxσ∈AM Pσ

[
τAm+C1n5/6

< τAM

]

≤ (1−a)
2 e2β

(
p|a|+hl+ p

n

)
e−βn[Ψ (b)−Ψ (a)]( n

n
2 (1+b)

)(
n

n
2 (1+a)

)−1 (5.7)

with a = m/n and b = (
m+ C1n

5/6
)
/n.

2. Our assumption on the parameters β, p and h is that 2β(p(a + 2
n
) + h) +

log( 1−a

1+a+ 2
n

) is negative in two disjoint regions. Recall that the first region lies

between a1 = 2M
n
− 1 and a2 = 2T

n
− 1. This, in particular, implies that the

derivative of 2β(p(a + 2
n
)+ h)+ log( 1−a

1+a+ 2
n

) at a = a1 is

2βp − 1

1− a1
− 1

1+ a1
= −δ1 < 0 (5.8)

for some δ1 > 0. Recall that Ψ (a) = −p
2 a2 − ha, so that Ψ (b) − Ψ (a) =

(a − b)(
p
2 (a + b)+ h), which gives

e−βn[Ψ (b)−Ψ (a)]
(

n
n
2 (1+ b)

)(
n

n
2 (1+ a)

)−1
(5.9)

= exp

(
βn (b − a) (pa + h)+ βn (b − a)2

p

2

+n

2
log

(
(1+ a)(1+a) (1− a)(1−a)

(1+ b)(1+b) (1− b)(1−b)

)
+O(log n)

)
, (5.10)

where we use Stirling’s approximation in the last line. Since b = a + C1n
−1/6,

we have

r.h.s. (5.9) = exp
(
βC1n

5/6 (pa + h)+ p

2
βC2

1n
2/3 + n

2
logF

)
(5.11)

with

F = (1− Un(a))1+a (1+ Vn(a))1−a (Wn(a))C1n
−1/6

, (5.12)

where

Un(a) = C1n
−1/6

1+ a + C1n−1/6
, Vn(a) = C1n

−1/6

1− a − C1n−1/6
. (5.13)
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From the Taylor series expansion of log (1+ x) for 0 ≤ |x| < 1, we obtain

n
2 (1+ a) log (1− Un(a)) ≤ n

2 (1+ a)
(
−Un(a)− 1

2 (Un(a))2
)

,

n
2 (1− a) log (1+ Vn(a)) ≤ n

2 (1− a)
(
Vn(a)− 1

2 (Vn(a))2 +O(n−1/2)
)

,

(5.14)

and

1

2
C1n

5/6 log

(
Un(a)

Vn(a)

)

= 1

2
C1n

5/6 log

(
1− a

1+ a

1− a − C1n
−1/6

1− a

1+ a

1+ a + C1n−1/6

)
(5.15)

≤ 1

2
C1n

5/6
(
log

(
1− a

1+ a

)
− C1n

−1/6

1− a
− Un(a)−O(n−2/3)

)
.

By the definition of m, we have

C1n
5/6

(
β (pa + h)+ log

(
1− a

1+ a

))
≤ 0. (5.16)

Hence we get

βC1n
5/6 (pa + h)+ p

2 βn2/3C2
1 + n

2 logF

≤ p
2 βn2/3C2

1 −
1
2C1(1+a)n5/6

1+a+C1n
−1/6 +

1
2C1(1−a)n5/6

1−a−C1n
−1/6 − 1

2C
2
1n

2/3 G
(5.17)

with

G = 1
1−a

+ 1
1+a+C1n

−1/6

+
(
1−a
2

) (
1

1−a−C1n
−1/6

)2 +
(
1+a
2

) (
1

1+a+C1n
−1/6

)2
.

(5.18)

Hence

r.h.s. (5.17) ≤ p
2 βn2/3C2

1

+ 1
2C

2
1n

2/3
(

1
1−a−cn−1/6 + 1

1+a+C1n
−1/6

)
− 1

2C
2
1n

1/6 G

≤ n2/3 12C
2
1

(
pβ − 1

2
1

1−a−C1n
−1/6 − 1

2
1

1+a+C1n
−1/6 +O(n−1/6)

)

= n2/3 12C
2
1

(
pβ − 1

2
1

1−a
− 1

2
1

1+a
+O(n−1/3)

)
≤ − 1

4C
2
1δ1n

2/3.

(5.19)
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3. Combine (5.7), (5.9) and (5.17), and pick C1 large enough, to get the claim in
(5.3). �

5.1.2 Update Times

The following two lemmas give useful bounds for the coupling scheme. The symbol
� stands for equality in distribution.

Lemma 5.2 (Total Variation Between Exponential Distributions) Let X �
Exp (λ) and Y � Exp (λ+ δ). Then the total variation distance between the
distributions of X and Y is bounded by

dT V (X, Y ) ≤ 2δ

λ+ δ
. (5.20)

Proof Elementary. �
Lemma 5.3 (Update Times) Let T

ξ
update be the first time {ξt }t≥0 has experienced

an update at every vertex:

T
ξ
update = inf {t ≥ 0 : ∀ v ∈ V ∃ 0 ≤ s ≤ t : ξs (v) = −ξ0 (v)} . (5.21)

Then, for any y > 0,

P

[
T

ξ
update ≥ y

]
≤ exp (−λy + log n)

1− exp (−λy)
, λ = e−β(2p+h). (5.22)

Proof Recall that for σ ∈ Sn and v ∈ V , σv denotes the configuration satisfying
σv (w) = σ (w) for w �= v, and σv (v) = −σ (v). From (1.3) and (1.6) it follows
that

r
(
σ, σ v

) ≥ λ, (5.23)

and so T
ξ
update is dominated by the maximum of n i.i.d. Exp (λ) random variables.

Therefore

P

[
T

ξ
update ≤ y

]
≥ (

1− e−λy
)n = exp

(
n log(1− e−λy)

)
(5.24)

≥ exp

(
− ne−λy

1− e−λy

)
≥ 1− ne−λy

1− e−λy
,

which proves the claim. �
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5.1.3 Returns

The next lemma establishes a lower bound on the number of returns to AM before
AS is reached. Let gξ0 (AM, AS) denote the number of jumps that {ξt }t≥0 makes into
the set AM before reaching AS. More precisely, let {si}i∈N0

denote the jump times
of the process {ξt }t≥0, i.e., s0 = 0 and

si = inf
{
s > si−1 : ξs �= ξsi−1

}
, (5.25)

and define for the process (ξt )t≥0 starting at ξ0,

gξ0 (AM, AS) =
∣∣{i ∈ N0 : ξsi ∈ AM, ξs /∈ AS ∀ s ≤ si

}∣∣ . (5.26)

Lemma 5.4 (Bound on Number of Returns) For any ξ0 ∈ AM and any δ > 0,

Pξ0

[
gξ0 (AM, AS) < e[Rp(t)−Rp(m)]n] ≤ e−δn+Cn2/3 (5.27)

for some constant C that does not depend on n.

Proof Let Y be a geometric random variable with probability of success given by
e−[Rp(t)−Rp(m)]n+Cn2/3 . Then, by Lemma 4.3, every time the process {ξt }t≥0 starts
all over from AM , it has a probability less than P

u
ξ [τSu < τMu ] of making it to AS .

Using the bounds from that lemma, it follows that Y is stochastically dominated by
gξ0 (AM, AT). Hence

P
[
Y ≤ e([Rp(t)−Rp(m)]−δ)n

] ≤ e([Rp(t)−Rp(m)]−δ)n e−[Rp(t)−Rp(m)]n+Cn2/3

≤ e−δn+Cn2/3 .

(5.28)
�

5.2 Uniform Hitting Time

In this section we show that if Theorem 1.4 holds for some initial configuration
in AM, then it holds for all initial configurations in AM. The proof of this claim,
which will be needed in Sect. 7, relies on a coupling construction in which the
two processes starting anywhere in AM meet with a sufficiently high probability
long before either one reaches AS. Details of the coupling construction are given in
Sect. 6.

The idea of the proof is that for {ξt }t≥0 starting in AM the starting configuration
is irrelevant for the metastable crossover time because the latter is very large.
We will verify this by showing that “local mixing” takes place long before the
crossover to AS occurs. More precisely, we will show that if ξ0, ξ̃0 are any two
initial configurations in AM, then there is a coupling such that the trajectory t 
→ ξt
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intersects the trajectory t 
→ ξ̃t well before either strays too far from AM. The
coupling is such that there is a small but sufficiently large probability that ξt and
ξ̃t are identical once every spin at every vertex has had a chance to update, which
occurs after a time t that is not too large. It follows that after a large number of trials
with high probability the two trajectories intersect.

Proof Consider two copies of the process, {ξt }t≥0 and {ξ̃t }t≥0. Let δ > 0 and T0 =
e([Rp,β,h(t)−Rp,β,h(m)]−δ)n. In order to simplify the notation and differentiate between
the two processes, we abbreviate the crossover time τAS by

τ ξ = inf {t ≥ s : ξt ∈ AS} , (5.29)

with a similar definition for τ ξ̃ . We will show that Eξ0 [τ ξ ] ≤ [1 + on(1)]Eξ̃0
[τ ξ̃ ],

with the proof for the inequality in the other direction being identical. The proof
comes in two Steps.

1. We start with the following observation. From Corollary 3.9, we immediately get
that

Eξ0

[
τ ξ

]
/Eξ0

[
τ ξ̃

] = eO(n2/3). (5.30)

Furthermore, the relation in (5.30) together with the initial steps in the proof of
Theorem 1.4 implies that, for any initial configuration ξ0,

Eξ0

[
τ ξ

] = en[Rp,β,h(t)−Rp,β,h(m)]+O(n2/3). (5.31)

Note: Step 2 in Sect. 7 shows that if ξ0 is distributed according to the law μAM ,
then

Eξ0 [τ ξ ] = en[Rp,β,h(t)−Rp,β,h(m)]+O(log n). (5.32)

(Recall from Sect. 4.3 that μAM is the equilibrium distribution μ conditioned on
the set AM.) Let {ξt , ξ̃t }t≥0 be the coupling of the two processes described in
Sect. 6, and note that

Eξ0

[
τAS

] = Ê(
ξ0,ξ̃0

)[τ ξ ] = Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=ξ̃T0

}
]
+ Ê(

ξ0,ξ̃0

)
[
τ ξ1{

ξT0 �=ξ̃T0

}
]

,

(5.33)

where Ê denotes expectation with respect to the law of the joint process.
The above inequality splits the expectation based on whether the coupling has
succeeded (in merging the two processes) by time T0 or not. Note that

τ ξ1{
ξT0=ξ̃T0

} ≤ τ ξ̃1{
ξT0=ξ̃T0 , τ ξ̃≥T0

} + τ ξ1{
ξT0=ξ̃T0 , τ ξ̃ <T0

}, (5.34)
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and

τ ξ1{
ξT0=ξ̃T0 , τ ξ̃ <T0

}

= τ ξ1{
ξT0=ξ̃T0 , τ ξ̃ <T0,

∣∣∣ξ̃T0

∣∣∣<S
} + τ ξ1{

ξT0=ξ̃T0 , τ ξ̃ <T0,

∣∣∣ξ̃T0

∣∣∣≥S
}

≤ τ ξ1{
ξT0=ξ̃T0 , τ ξ̃ <T0,

∣∣∣ξ̃T0

∣∣∣<S
} + T0.

(5.35)

Also note from the definition of the coupling that, for any σ ∈ Sn and any A ⊆
Sn, Ê(σ,σ )[τ ξ

A] = Eσ [τA] because the two trajectories merge when they start from
the same vertex. Hence

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=ξ̃T0 , τ ξ̃ <T0,

∣∣∣ξ̃T0

∣∣∣<S
}
]

(5.36)

=
∑

σ∈⋃i<χ1
Ai

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=ξ̃T0=σ, τ ξ̃ <T0

}
]

≤
∑

σ∈⋃i<χ1
Ai

(
Ê(σ,σ )

[
τ ξ

]+ T0

)
P̂(

ξ0,ξ̃0

)
[
ξT0 = ξ̃T0 = σ, τ ξ̃ < T0

]

≤
(
T0 + max

σ∈⋃i<χ1
Ai

Eσ

[
τσ

] )
Pξ̃0

[τ < T0] ,

where we use the Markov property. Similarly, observe that

τ ξ1{
ξT0 �=ξ̃T0

} = τ ξ1{
ξT0 �=ξ̃T0 , τ ξ≤T0

} + τ ξ1{
ξT0 �=ξ̃T0 , τ ξ >T0

} (5.37)

≤ T0 + τ ξT01{
ξT0 �=ξ̃T0 τ ξ >T0

},

and

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0 �=ξ̃T0 , τ ξ >T0

}
]

(5.38)

=
∑

σ : |σ |<S

∑

σ ′ �=σ

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=σ, ξ̃T0=σ ′, τ ξ >T0

}
]

=
∑

σ : |σ |<S

∑

σ ′ �=σ

Ê(σ,σ ′)
[
T0 + τ ξ

]
Ê(

ξ0,ξ̃0

)
[
1{

ξT0=σ, ξ̃T0=σ ′, τ ξ >T0

}
]

≤ max
σ∈⋃i<S Ai

(
T0 + Eσ

[
τ ξ

])
P̂(

ξ0,ξ̃0

)[ξT0 �= ξ̃T0

]
.
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Thus, (5.33) becomes

Eξ0

[
τ ξ

] ≤ 2T0 + Eξ̃0

[
τAS

]+
(
Pξ̃0

[
τAS < T0

]+ P̂(
ξ0,ξ̃0

)[ξT0 �= ξ̃T0

])

×
(
T0 +maxσ∈⋃i<S Ai

Eσ

[
τAS

] )
.

(5.39)

We will show that the leading term in the right-hand side is Eξ̃0
[τAS ], and all

other terms are of smaller order. From (5.31) we know that T0 is of smaller order,
and that

max
σ∈⋃i<S Ai

Eσ

[
τAS

] = eO(n2/3)
Eξ̃0

[
τAS

]
. (5.40)

Hence it suffices to show that the sum Pξ̃0
[τAS < T0] + P̂(ξ0,ξ̃0)

[ξT0 �= ξ̃T0 ] is
exponentially small. We will show that it is bounded from above by e−δn.

2. By Corollary 6.3, the probability P̂(ξ0,ξ̃0)
[ξT0 �= ξ̃T0 ] is bounded from above by

e−δn+O(n2/3). To bound Pξ̃0
[τAS < T0], we first need to limit the number of steps

that {ξ̃t }t≥0 can take until time T0. From (5.2) and Stirling’s approximation we
have that

P

[
N

ξ̃
(T0) ≥ 3nT0

]
≤
∞∑

k=0
enT0+k

(
nT0

3nT0 + k

)3nT0+k

(5.41)

≤enT0

(
1

3

)3nT0 ∞∑

k=0
ek

(
1

3

)k

≤ 11 (0.91)3ne
1
2 [Rp,β,h(t)−Rp,β,h(m)]

.

It therefore follows that with high probability {ξ̃t }t≥0 does not make more than
3nT0 steps until time T0. Hence

Pξ̃0

[
τAS < T0

] ≤ Pξ̃0

[
τAS < T0, Nξ̃ (T0) < 3nT0

]
+11 (0.91)3ne

1
2 [Rp,β,h(t)−Rp,β,h(m)]

.

(5.42)

Finally, note that the event {τ ξ̃
AS

< T0, Nξ̃ (T0) < 3nT0} implies that

{ξ̃t }t≥0 makes fewer than 3nT0 returns to the set AM before reaching AS.
By Lemma 5.4, the probability of this event is bounded from above by

3nT0e([Rp,β,h(t)−Rp,β,h(m)]−δ)n+Cn2/3 = 3ne− 1
2 δn+Cn2/3 , and hence

Pξ̃0

[
τ

ξ̃
AS

< T0
] ≤ 4n e−

1
2 δn+Cn2/3 . (5.43)
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Finally, from (5.43) we obtain

Eξ0

[
τ

ξ
AS

] = E
[
τ

ξ̃
AS

]
[1+ o (1)] , (5.44)

which settles the claim. �

6 A Coupling Scheme

In this section we define a coupling of (ξt )t≥0 and {ξ̃t }t≥0 with arbitrary starting
configurations in AM. The coupling is divided into a short-term scheme, defined
in Sect. 6.1 and analysed in Lemma 6.1 below, followed by a long-term scheme,
defined in Sect. 6.2 and analysed Corollary 6.3 below. The goal of the coupling is
to keep the process {m(ξt )}t≥0 bounded by {θu

t }t≥0 from above and bounded by
{θ l

t }t≥0 from below (the precise meaning will become clear in the sequel).

6.1 Short-Term Scheme

Lemma 6.1 (Short-Term Coupling) With PERn(p)-probability tending to 1 as
n→∞, there is a coupling {ξt , ξ̃t }t≥0 of {ξt }t≥0 and {ξ̃t }t≥0 such that

P
[
ξ2n �= ξ̃2n] ≤ O

(
e−n−2/3

)
(6.1)

for any initial states ξ0 ∈ AM and ξ̃0 ∈ AM.

Proof The main idea behind the proof is as follows. Define

Wt
1 = {v ∈ V : ξt (v) = −ξ̃t (v)} = ξtΔξ̃t , (6.2)

i.e., the symmetric difference between the two configurations ξt and ξ̃t , and

Wt
2 = {v ∈ V : ξt (v) = ξ̃t (v)} = V \Wt

1. (6.3)

The coupling we are about to define will result in the set Wt
1 shrinking at a higher

rate than the set Wt
2, which will imply that Wt

1 contracts to the empty set. The proof
comes in eight Steps.

1. We begin with bounds on the relevant transition rates that will be required in
the proof. Recall from Lemma 3.4 (in particular, (3.19) and (3.21)) that with
PERn(p)-probability at least 1− e−2n there are at most 2n2/3 vertices v ∈ ξt (i.e.,
ξt (v) = −1) such that |E(v, ξt )| = |{w ∈ ξt : (v,w) ∈ E}| ≥ p |ξt | + n2/3,
and similarly at most 2n2/3 vertices v ∈ ξt such that |E(v, ξt )| ≤ p |ξt | − n2/3.
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Analogous bounds are true for ξ̃t , t ≥ 0. Denote the set of bad vertices for ξt by

Bt =
{
v ∈ ξt :

∣∣|E(v, ξt )| − p|ξt |
∣∣ ≥ n2/3}, (6.4)

and the set of bad vertices for ξ̃t by B̃t . Let B̂t = Bt ∪ B̃t . Recall that ξv
t denotes

the configuration obtained from ξt by flipping the sign at vertex v ∈ V . If v /∈ B̂t ,
then from (1.3) and Lemma 3.2 it follows that, for v /∈ ξt ,

Hn

(
ξv
t

)−Hn (ξt ) = 2

n

(∣∣∂Eξv
t

∣∣− |∂Eξt |
)− 2h (6.5)

= 2

n
(deg (v)− 2 |E(v, ξt )|)− 2h

≤ 2

n

(
pn+ n1/2 log n− 2p |ξt | + 2n2/3

)
− 2h,

and similarly, for v ∈ ξt ,

Hn

(
ξv
t

)−Hn (ξt ) ≤ 2

n

(
pn+ n1/2 log n− 2p (n− |ξt |)+ 2n2/3

)
+ 2h.

(6.6)

Again, by (1.3) and Lemma 3.2, we have similar lower bounds, namely, if v /∈ B̂t ,
then, for v /∈ ξt ,

Hn(ξ
v
t )−Hn(ξt ) ≥ 2

n

(
pn− n1/2 log n− 2p |ξt | − 2n2/3

)
− 2h, (6.7)

and, for v ∈ ξt ,

Hn(ξ
v
t )−Hn(ξt ) ≥ 2

n

(
pn− n1/2 log n− 2p (n− |ξt |)− 2n2/3

)
+2h. (6.8)

Identical bounds hold for Hn(ξ̃
v
t ) − Hn(ξ̃t ). Therefore, if v /∈ B̂t , and if either

v ∈ ξt ∩ ξ̃t or v /∈ ξt ∪ ξ̃t , then

∣∣∣r(ξt , ξ
v
t )− r(ξ̃t , ξ̃

v
t )

∣∣∣
=

∣∣∣e−β[Hn(ξv
t )−Hn(ξt )]+ − e−β[Hn(ξ̃v

t )−Hn(ξ̃t )]+
∣∣∣

= e−β[Hn(ξv
t )−Hn(ξt )]+

∣∣∣∣1− eβ
(
[Hn(ξv

t )−Hn(ξt )]+−[Hn(ξ̃v
t )−Hn(ξ̃t )]+

)∣∣∣∣

≤ [1+ on(1)] e−β[Hn(ξv
t )−Hn(ξt )]+

(
e8βn−1/3+ 4p

n

(
|ξt |−|ξ̃t |

)
− 1

)

≤ [1+ on(1)]

(
e8βn−1/3+ 4p

n

(
|ξt |−|ξ̃t |

)
− 1

)

≤ [1+ on(1)]
(
8βn−1/3 + 4p

n

(|ξt | − |ξ̃t |
))

.

(6.9)
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2. Having established the above bounds on the transition rates, we give an explicit
construction of the coupling {ξt , ξ̃t }t≥0. �

Definition 6.2

(I) We first define the coupling for time t = 0. For t > 0 this coupling will
be renewed after each renewal of {ξt , ξ̃t }t≥0, i.e., whenever either of the two
processes jumps to a new state. To that end, for every v ∈ W 0

2 (i.e., ξ0(v) =
ξ̃0(v)), couple the exponential random variables ev

0 � Exp(r(ξ0, ξv
0 )) and ẽv

0 �
Exp(r(ξ̃0, ξ̃ v

0 )) associated with the transitions ξ0 → ξv
0 and ξ̃0 → ξ̃ v

0 according
to the following scheme:

1. Choose a point

(x, y) ∈ {(x′, y′) : 0 ≤ x′ <∞, 0 ≤ y′ ≤ r
(
ξ0, ξ

v
0

)
e−r(ξ0,ξv

0 )x
′ }

uniformly and set ev
0 = x. Note that, indeed, this gives ev

0 � Exp(r(ξ0, ξv
0 )).

2. If the value y from step 1 satisfies y ≤ r(ξ̃0, ξ̃
v
0 ) exp(−r(ξ̃0, ξ̃

v
0 )x), then set

ẽv
0 = ev

0 = x. Else, choose

(x∗, y∗) ∈{(
x′, y′

) : 0 ≤ x′ <∞, r
(
ξ0, ξ

v
0

)
e−r

(
ξ0,ξ

v
0

)
x′ < y′ ≤ r(ξ̃0, ξ̃

v
0 )e−r(ξ̃0,ξ̃

v
0 )x′

}

uniformly and independently from the sampling in step 1, and set ẽv
0 = x∗.

Note that this too gives ev
0 � Exp(r(ξ̃0, ξ̃ v

0 )).

(II) For every v ∈ W 0
1 , sample the random variables ev

0 � Exp(r(ξ0, ξv
0 )) and

ẽv
0 � Exp(r(ξ̃0, ξ̃ v

0 )) associated with the transitions ξ0 → ξv
0 and ξ̃0 → ξ̃ v

0
independently. At time t = 0, we use the above rules to define the jump times
associated with any vertex v ∈ V . Recall thatW 0

2 is the set of vertices where the
two configurations agree in sign. The aim of the coupling defined above is to
preserve that agreement. Following every renewal, we re-sample all transition
times anew (i.e., we choose new copies of the exponential variables as was
done above). We proceed in this way until the first of the following two events
happens: either ξt = ξ̃t , or n log n transitions have been made by either one of
the two processes.

3. Note that the purpose of limiting the number of jumps to n log n is to permit
us to employ Lemma 5.1, which in turn we use to maintain control on the two
processes being similar in volume. Further down we will also show that, with
high probability, in time 2n no more than n log n transitions occur. By (6.9) and
Lemma 5.2, if v /∈ B̂t , then

P
[
ev
t �= ev

t

] ≤ 2(8βn−1/3 + 4p
n

(|ξt | − |ξ̃t |))
e−2β(p+h)

. (6.10)
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On the other hand, if v ∈ B̂t and we let z = 2β(p+h)

1−e−2β(p+h) , then

P
[
ev
t �= ev

t

] = dT V

(
ev
t , e

v
t

) ≤ e−2β(p+h)

∫ z

0
dx exp

(
−xe−2β(p+h)

)

= 1− exp

(
−2β (p + h) e−2β(p+h)

1− e−2β(p+h)

)
. (6.11)

Observe that, for v ∈ Wt
1, with PERn(p)-high probability

∑

v∈Wt
1

[
r(ξt , ξ

v
t )+ r(ξ̃t , ξ̃

v
t )
]
≥ [1+ on(1)]

∣∣Wt
1

∣∣ . (6.12)

Indeed, by the concentration inequalities of Lemma 3.2 and the bound in
Lemma 5.1, it follows that |ξt | and |ξ̃t | are of similar magnitude:

P
[||ξt | − |ξ̃t || ≥ n5/6

] ≤ e−n2/3 . (6.13)

Therefore, with PERn(p)-high probability, for all but O(n2/3) such v,

H(ξt )−H(ξv
t ) = [1+ on(1)]

[
H
(
ξ̃ v
t

)−H
(
ξ̃t )

]
, (6.14)

from which (6.12) follows. The rate at which the set Wt
2 shrinks is equal to the

rate at which it loses v ∈ Wt
2 such that v /∈ B̂t , plus the rate at which it loses

v ∈ Wt
2 such that v ∈ B̂t . From (6.9) it follows that the former is bounded from

above by |Wt
2|(8βn−1/3 + 4p

n
(|ξt | − |ξ̃t |)), while by (3.19) the latter is bounded

by 4n2/3. Therefore, defining the stopping time

υi = inf
{
t : |Wt

1| = i
}
, (6.15)

we have that

P(ξt ,ξ̃t )

[
υ|Wt

1 |−1 < υ|Wt
1 |+1

] ≥ |Wt
1|

|Wt
2|[8βn−1/3 + 4p

n
(|ξt | − |ξ̃t |)] + 4n2/3 + |Wt

1|
.

(6.16)

From Lemma 5.1 we know that (with probability ≥ 1 − e−n2/3 ) neither |ξt | nor
|ξ̃t | will stray beyond M+ Cn5/6 and M− Cn5/6 within n2 log n steps. Thus,

∣∣∣|ξt | − |ξ̃t |
∣∣∣ ≤ Cn5/6. (6.17)

Hence, for
∣∣Wt

1

∣∣ ≥ n6/7 we have that (6.16) is equal to 1− on(1).
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4. Next suppose that
∣∣Wt

1

∣∣ < n6/7. To bound the rate at which the setWt
2 shrinks, we

argue as follows. The rate at which a matching vertex v becomes non-matching
equals

|r(ξt , ξ
v
t )− r(ξ̃t , ξ̃

v
t )|. (6.18)

Let

B1 = −2h+ 2
n

(
deg(v)− 2|E(v, ξt )|

)
,

B2 = −2h+ 2
n

(
deg(v)− 2|E(v, ξ̃t )|

)
,

B3 = −h+ 1
n

(
deg(v)− 2|E(v, ξt ∩ ξ̃t )|

)
.

(6.19)

For v /∈ ξt ∪ ξ̃t , we can estimate

|r(ξt , ξ
v
t )− r(ξ̃t , ξ̃

v
t )| = ∣∣e−β[B1]+ − e−β[B2]+

∣∣

≤ e−2β[B3]+
∣∣∣e−

4β
n
|E(v,ξt\ξ̃t )| − e−

4β
n
|E(v,ξ̃t\ξt )|

∣∣∣

≤ e−2β[B3]+ 4β
n

∣∣∣|E(v, ξt\ξ̃t )| − |E(v, ξ̃t\ξt )|
∣∣∣

≤ [1+ on(1)] e−2β[−pm−h]+ 4β
n

∣∣E
(
v,Wt

1

)∣∣ ,
(6.20)

where we note that Wt
1 = ξt\ξ̃t ∪ ξ̃t\ξt and use that, by Lemma 3.2 and the bound

|ξt\ξ̃t | ≤ |Wt
1| ≤ n6/7,

1
n

(
deg(v)− 2|E(v, ξt ∩ ξ̃t )|

)
= [1+ on(1)]p

(
1− 2|ξt∩ξ̃t |

n

)

= [1+ on(1)]p
(
1− 2|ξt |

n

)
= [1+ on(1)]p

(
1− 2M

n

)
= −[1+ on(1)]pm.

(6.21)

Note that since ξt and ξ̃t disagree at most at n6/7 vertices, and since |ξt | = [1 +
on(1)]M = [1+on(1)]n2 (1+m), we have that |v ∈ ξt∪ξ̃t | = [1+on(1)]n2 (1−m).
Furthermore, since |E(v,Wt

1)| ≤ [1+on(1)]p|Wt
1| and |V | = n, we have that

∑

v /∈ξt∪ξ̃t

|r(ξt , ξ
v
t )− r(ξ̃t , ξ̃

v
t )| ≤ [1+ on(1)] e

−2β[−pm−h]+ 2βp(1−m) |Wt
1|.

(6.22)

For v ∈ ξt ∩ ξ̃t , on the other hand, Lemma 3.5 gives that

r(ξt , ξ
v
t ) = r(ξ̃t , ξ̃

v
t ) = 1 (6.23)
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for all but O(n2/3) many such v. If v is such that r(ξt , ξ
v
t ) �= r(ξ̃t , ξ̃

v
t ), then a

computation identical to the one leading to (6.22) gives that

∑

v∈ξt∩ξ̃t

|r (ξt , ξ
v
t

)− r(ξ̃t , ξ̃
v
t )| = O(n−1/6)

∣∣Wt
1

∣∣. (6.24)

Combining (6.22) and (6.24), we obtain

∑

v∈W 2
t

|r (ξt , ξ
v
t

)− r(ξ̃t , ξ̃
v
t )| ≤ [1+ on(1)] e

−2β[−pm−h]+ 2βp(1−m)
∣∣Wt

1

∣∣,

(6.25)

which bounds the rate at which Wt
2 shrinks.

5. To bound the rate at which Wt
1 shrinks, we argue as follows. The rate at which a

non-matching vertex v becomes matching equals

r(ξt , ξ
v
t )+ r(ξ̃t , ξ̃

v
t ). (6.26)

Note that, for every v ∈ Wt
1,

H
(
ξv
t

)−H (ξt ) = − [1+ on(1)]
[
H(ξ̃v

t )−H(ξ̃t )
]
, (6.27)

since, up to an arithmetic correction of magnitude |Wt
1| = O(n6/7), v has the

same number of neighbours in ξt as in ξ̃t . Hence it follows that

∑

v∈Wt
1

[
r(ξt , ξ

v
t )+ r(ξ̃t , ξ̃

v
t )
]
= [1+ on(1)]

(
e−2β[−pm−h]+ + e−2β[pm+h]+)|Wt

1|,

(6.28)

which bounds the rate at which Wt
1 shrinks.

6. Combining (6.25) and (6.28), and noting that pm + h < 0, we see that
∣∣Wt

1

∣∣ is
contracting when

[1+ on(1)]
(
e2β(pm+h) + 1

) ∣∣Wt
1

∣∣ > [1+ on(1)]
(
e2β(pm+h) 4βp

) ∣∣Wt
1

∣∣ .
(6.29)

For this in turn it suffices that

e2β(pm+h) + 1 > e2β(pm+h)2βp(1−m). (6.30)
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7. Note from the definition ofm in (1.16) that, up to a correction factor of 1+on(1),
m solves the equation J (m) = 0 with

Jp,β,h(a) = 2λ

(
a + h

p

)
+ log

(
1− a

1+ a

)
, λ = βp, (6.31)

i.e.,

1+m
1−m

= e
2λ

(
m+ h

p

)

. (6.32)

Hence from (6.30) it follows that |Wt
1| is contracting whenever we are in the

metastable regime and the inequality

λ <
1

1−m2 (6.33)

is satisfied. From (2.17) it follows that the equality

λ = 1

1− a2
(6.34)

holds for a = aλ = −√1− 1/λ, which in turn is bounded between the values
m < aλ < t < 0, and therefore

1

1−m2 >
1

1− a2λ
= λ. (6.35)

This shows that |Wt
1| is contracting whenever we are in the metastable regime.

8. To conclude, we summarise the implication of the contraction of the process

|Wt
1|. The probability in (6.16) is equal to 1−On(n

5
6− 6

7 ) for |Wt
1| > n6/7, and is

strictly larger than 1
2 for |Wt

1| ≤ n6/7. Furthermore, from (6.12) we know that the
rate at which Wt

1 shrinks is ≥ 1. This allows us to ensure that sufficiently many
steps are made by time 2n to allow Wt

1 to contract to the empty set. In particular,
the number steps taken by Wt

1 up to time 2n is bounded from below by a Poisson
point process N(t) with unit rate, for which we have

P

[
N (2n) ≤ 3n

2

]
≤ 2n

(2n)

(
3n
2

)

e−2n(
3n
2

)
!

≤ 2n

(
4n

3

)(
3n
2

)

e−
n
2 ≤ 1.07(−

n
2 ).

(6.36)

In other words, with probability exponentially close to 1, we have that at least
3n/2 jumps are made in time 2n. To bound the probability that Wt

1 has not
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converged to the empty set, note that this probability decreases in the number
of transitions made by Wt

1. Therefore, without loss of generality, we may assume
that 3n

2 transitions were made, and that we start with |W 0
1 | = n. We claim that,

with high probability, in time 2n, Wt
1 takes at most 100n

log n
increasing steps (i.e.,

i → i + 1) in the interval [n5/6, n]. Indeed, note that the probability of the latter
occurring is less than

2MO
(
n−1/42

) 100n
log n = O

(
e−n

)
. (6.37)

It follows that at least n
2 [1 + on(1)] steps are taken in the interval [0, n5/6]. But

then, using (6.16), we have that the probability of an increasing step is at most
1
2 − ε for some ε > 0, and therefore the probability of that event is at most

2
n
2 [1+on(1)]

(
1
2 + ε

) n
4 [1+on(1)] (

1
2 − ε

) n
4 [1+on(1)]

= 4
n
4 [1+on(1)]

(
1
4 − ε2

) n
4 [1+on(1)] = (

1− 4ε2
) n
4 [1+on(1)]

.

(6.38)

Finally, observing that in the entire proof so far the largest probability for any
of the bounds not to hold is O(e−n−2/3) (see (6.13) and the paragraph following
(6.16)), we get

P

[
|W 2n

1 | > 0
]
≤ O

(
e−n2/3

)
(6.39)

and so the claim of the lemma follows. �

6.2 Long-Term Scheme

Corollary 6.3 (Long-Term Coupling) Let δ > 0. With PERn(p)-probability tend-
ing to 1 as n →∞, there is a coupling of {ξt }t≥0 and {ξ̃t̃ }t≥0, and there are times t

and t̃ with max(t, t̃) < enΓ �−δn, such that

P
[
ξt �= ξ̃t̃

] ≤ e−nδ+O(n2/3). (6.40)

Proof Let si be the ith return-time of {ξt }t≥0 to AM. Define {s̃i}i≥0 in an analogous
manner for {ξ̃t }t≥0. Then we can define a coupling of {ξt }t≥0 and {ξ̃t }t≥0 as follows.
For i ≥ 0 and 0 ≤ s ≤ 2n, couple ξsi+s and ξ̃s̃i+s as described in Lemma 6.1.
For times t ∈ (si + 2n, si+1) and t̃ ∈ (s̃i + 2n, s̃i+1), let {ξt }t≥0 and {ξ̃t̃ }t≥0 run
independently of each other. Terminate this coupling at the first time t such that
t = si + s for some s ≤ 2n and ξt = ξ̃t̃ with t̃ = s̃i + s, from which point onward
we simply let ξt = ξ̃t̃ . It is easy to see that the coupling above is an attempt at
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repeating the coupling scheme of Lemma 6.1 until the paths of the two processes
have crossed. To avoid having to wait until both processes are in AM at the same
time, the coupling defines a joint distribution of ξt and ξ̃t̃ .

Note that, by Lemma 5.4, with probability of at least 1 − e−δn+O(n2/3), {ξt }t≥0
will visit AM at least e(Γ �−δ)n times before reaching AS, for any δ > 0. The same
statement is true for {ξ̃t̃ }t̃≥0. Assuming that the aforementioned event holds for both
ξt and ξ̃t̃ , we see that the probability that the coupling does not succeed (i.e., the two
trajectories do not intersect as described earlier) is at most

[
O
(
e−n−2/3)]e

(Γ �−δ)n

. (6.41)

Therefore, the probability that the coupling does not succeed before either of {ξt }t≥0
or {ξ̃t̃ }t̃≥0 reaches AS is at most e−δn+O(n2/3). �

7 Proof of the Main Metastability Theorem

In this section we prove Theorem 1.4.

Proof The key is to show that with PERn(p)-probability tending to 1 as n→∞, for
any ξu

0 ∈ AMu , ξ0 ∈ AM and ξ l
0 ∈ AMl ,

Eξu
0
[τSu ] ≤ Eξ0 [τS] ≤ Eξ l

0

[
τSl

]
. (7.1)

Note that Eξ0 [τS] is the same for all ξ0 ∈ AM up to a multiplicative factor of
1 + on(1), as was shown in Sects. 5.2 and 6. Therefore it is suffices to find some
convenient ξ ∈ AM for which we can prove the aforementioned theorem.

1. Our proof follows four steps:

(1) Recall that for A ⊂ Sn, μA is the probability distribution μ conditioned
to the set A. Starting from the initial distribution μAM on the set AM, the
trajectory segment taken by ξt from ξ0 to ξτ , with τ = min {τM, τS}, can be
coupled to the analogous trajectory segments taken by ξ l

t and ξu
t , starting in

AMl and AMu , respectively, and this coupling can be done in such a way that
the following two conditions hold:

(a) If ξt reaches AS before returning to AM (i.e., τS < τM), then ξu
t reaches

ASu before returning to AMu .
(b) If ξt returns to AM before reaching AS (i.e., τM < τS), then ξ l

t returns to
AMl before reaching ASl .

(2) We show that if ξt has initial distribution μAM and τM < τS, then upon
returning to AM the distribution of ξt is once again given by μAM . This
implies that the argument in Step (1) can be applied repeatedly, and that
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the number of returns ξt makes to AM before reaching AS is bounded from
below by the number of returns ξu

t makes to AMu before reaching ASu , and
is bounded from above by the number of returns ξ l

t makes to AMl before
reaching ASl .

(3) Using Lemma 3.7, we bound the time between unsuccessful excursions, i.e.,
the expected time it takes for ξt , when starting from μAM , to return to AM,
given that τM < τS. This bound is used together with the outcome of Step
(2) to obtain the bound

E
u
μAMu

[
τu
S

] ≤ EμAM
[τS] ≤ E

l
μA

Ml

[
τ l
S

]
. (7.2)

Here, the fact that the conditional average return time is bounded by some
large constant rather than 1 does not affect the sandwich in (7.2), because the
errors coming from the perturbation of the magnetic field in the Curie-Weiss
model are polynomial in n (see below).

(4) We complete the proof by showing that, for any distribution μ0 restricted to
AM,

Eμ0 [τS] = [1+ on(1)] EμAM
[τS] . (7.3)

2. Before we turn to the proof of these steps, we explain how the bound on the
exponent in the prefactor of Theorem 1.4 comes about. Return to (2.4). The
magnetic field h is perturbed to h± (1+ ε) log(n11/6)/n. We need to show how
this affects the formulas for the average crossover time in the Curie-Weiss model.
For this we use the computations carried out in [4, Chapter 13]. According to [4,
Eq. (13.2.4)] we have, for any ξ ∈ AMn

and any ε > 0,

Eξ

[
τASn

] = [1+ on(1)] 2

1− t
eβn[Rn(t)−Rn(m)] 1

n
Sn (7.4)

with

Sn =
∑

a,a′∈Γn
|a−t|<ε, |a′−m|<ε

eβn[Rn(a)−Rn(t)]−βn[Rn(a′)−Rn(m)], (7.5)

where Rn is the free energy defined by R′n = −Jn/2β (recall (1.20)). (Here
we suppress the dependence on β, h and note that (7.4) carries an extra factor 1

n

because [4, Chapter 13] considers a discrete-time dynamics where at every unit of
time a single spin is drawn uniformly at random and is flipped with a probability
that is given by the right-hand side of (1.6).) According to [4, Eq. (13.2.5)–
(13.2.6)] we have

In(a)− I (a) = [1+on(1)] 1
2n

log

(
1

2
πn(1− a2)

)
, a ∈ [−1, 1], (7.6)
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so that

eβn[Rn(a)−R(a)] = [1+ on(1)]
√
1

2
πn(1− a2), a ∈ [−1, 1], (7.7)

where R is the limiting free energy defined by R′ = −J/2β (recall (1.27)).
Inserting (7.7) into (7.4), we get

Eξ

[
τASn

] = [1+ on(1)] 2

1+ t

√
1− t2

1−m2 e
βn[R(t)−R(m)] 1

n
S∗n (7.8)

with

S∗n =
∑

a,a′∈Γn
|a−t|<ε, |a′−m|<ε

eβn[R(a)−R(t)]−βn[R(a′)−R(m)]. (7.9)

Finally, according to [4, Eq. (13.2.9)–(13.2.11)] we have, with the help of a
Gaussian approximation,

lim
n→∞

1

n
S∗n =

π

2β
√[R′′(m)[−R′′(t)] . (7.10)

Putting together (7.8) and (7.10), we see how Theorem 1.3 arises as the correct
formula for the Curie-Weiss model.

3. The above computations are for β, h fixed and p = 1. We need to investigate
what changes when p ∈ (0, 1), β is fixed, but h depends on n:

hn = h± (1+ ε)
log(n11/6)

n
. (7.11)

We write Rn
n to denote Rn when h is replaced by hn. In the argument in [4,

Chapter 13] leading up to (7.4), the approximation only enters through the
prefactor. But since hn → h as n → ∞, the perturbation affects the prefactor
only by a factor 1+ on(1). Since h plays no role in (7.6) and Rn

n(a)− Rn(a) =
1
β
[In(a)−I (a)] (recall (1.19) and (1.26)), we get (7.8) with exponent βn[Rn(t)−

Rn(m)] and (7.9) with exponent βn[Rn(a)−Rn(t)]−βn[Rn(a′)−Rn(m)]. The
latter affects the Gaussian approximation behind (7.10) only by a factor 1+on(1).
However, the former leads to an error term in the exponent, compared to the Curie
Weiss model, that equals

βn[Rn(t)− Rn(m)] − βn[R(t)− R(m)] = βn
∫ t
m da [(Rn)′(a)− R′(a)]

= βn
∫ t
m da [−(hn − h)] = β(t−m) n(h− hn)

= ∓β(t−m) (1+ ε) log(n11/6).
(7.12)
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The exponential of this equals n∓β(t−m) (1+ε)(11/6), which proves Theorem 1.4
with the bound in (1.33) because ε is arbitrary.

Proof of Step (1)
This step is a direct application of Lemma 4.3.

Proof of Step (2)
Write =d to denote equality in distribution. Let ξ0 =d μAM , and recall that τM is
the first return time of ξt to AM once the initial state ξ0 has been left. We want to
show that ξτM =d μAM or, in other words, that PμAM

[ξτM = σ ] = μAM(σ ) for
any σ ∈ AM. To facilitate the argument, we begin by defining the set of all finite
permissible trajectories T , i.e.,

T =
⋃

N∈N

{
γ = {γi}Ni=0 ∈ SN

n : ||γi | − |γi+1|| = 1 ∀ 0 ≤ i ≤ N − 1
}

. (7.13)

Let γ ∈ T be any finite trajectory beginning at γ0 ∈ AM, ending at γ|γ |−1 = σ ∈
AM, and satisfying γi /∈ AM for 0 < i < |γ | − 1. Then the probability that ξt

follows the trajectory γ is given by

P [ξt follows γ ] = μAM (γ0) P (γ0, γ1)× · · · × P
(
γ|γ |−2, σ

)

= 1
μ(AM)

μ (γ0) P (γ0, γ1)× · · · × P
(
γ|γ |−2, σ

)

= 1
μ(AM)

μ (σ ) P
(
σ, γ|γ |−2

)× · · · × P (γ1, γ0)

= μAM (σ ) P
(
σ, γ|γ |−2

)× · · · × P (γ1, γ0) ,

(7.14)

where the third line follows from reversibility. Thus, if we let T (σ ) be the set of all
trajectories in T that begin in AM, end at σ , and do not visit AM in between, then
we get

PμAM

[
ξτM = σ

] =∑
γ∈T (σ ) μAM (σ ) P

(
σ, γ|γ |−2

)× · · · × P (γ1, γ0)

= μAM (σ )Pσ [τM <∞]

= μAM (σ ) ,

(7.15)

where we use recurrence and the law of total probability, since the trajectories in
T (σ ), when reversed, give all possible trajectories that start at σ ∈ AM and return
to AM in a finite number of steps. This shows that if ξt has initial distribution μAM ,
then it also has this distribution upon every return to AM.

We can now define a segment-wise coupling of the trajectory taken by ξt with the
trajectories taken by ξu

t and ξ l
t . First, we define the subsets of trajectories that start

and end in particular regions of the state space: (1) Tσ,L,K is the set of trajectories
that start at a particular configuration σ and end in AK without ever visiting AK or
AL in between, for some K < L; (2) Tσ,L,L is the set of trajectories that start at
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some σ and end in AL without ever visiting AK or AL in between; (3) Tσ,L is the
union of the two aforementioned sets. In explicit form,

Tσ,L,K =
{
γ ∈ T : γ0 = σ, γ|γ |−1 ∈ AK,K <

∣∣γj

∣∣ < L ∀ 0 < j < |γ | − 1
}
,

Tσ,L,L =
{
γ ∈ T : γ0 = σ, γ|γ |−1 ∈ AL,K <

∣∣γj

∣∣ < L ∀ 0 < j < |γ | − 1
}
,

Tσ,L = Tσ,L,K ∪Tσ,L,L.

(7.16)

By Step (1), for any ξ l
0 ∈ AMl and ξu

0 ∈ AMu ,

P
l

ξ l
0

[
Tξ l

0,S
l ,Sl

] ≤ Pξ0

[
Tξ0,S,S

] ≤ P
u
ξu
0

[
Tξu

0 ,Su,Su

]
. (7.17)

It is clear that the two probabilities at either end of (7.17) are independent of the
starting points ξ l

0 and ξu
0 . By the argument given above, if for the probability in the

middle ξ0 =d μAM , then each subsequent return to AM also has this distribution.
For this reason, we may define a coupling of the trajectories as follows.

Sample a trajectory segment γ l from Tξ l
0,S

l for the process ξ l
t . If γ l happens to

be in Tξ l
0,S

l ,Sl , then by (7.17) we may sample a trajectory segment γ from Tξ0,S,S

for the process ξt , and a trajectory segment γ u from Tξu
0 ,Su,Su for the process ξu.

Otherwise, γ l ∈ Tξ l
0,S

l ,Ml , and we independently take γ ∈ Tξ0,S,S with probability

Pξ0 [Tξ0,S,S] − P
l

ξ l
0
[Tξ l

0,S
l ,Sl ], and γ ∈ Tξ0,S,M otherwise. If γ ∈ Tξ0,S,S, then

sample γ u from Tξu
0 ,Su,Su . Otherwise γ ∈ Tξ0,S,M, and so take independently

γ u ∈ Tξu
0 ,Su,Su with probability P

u
ξu
0
[Tξu

0 ,Su,Su ] − Pξ0 [Tξ0,S,S], and γ u ∈ Tξu
0 ,Su,Mu

with the remaining probability. We glue together the sampling of segments leaving
and returning to AMl /AM/AMu with the next sampling of such segments. This
results in trajectories for ξu, ξ , and ξ l that reach ASu/AS/ASl , in that particular
order.

Proof of Step (3) and Step (4)
These two steps are immediate from Lemma 3.7.

�

8 Conditional Average Return Time for Inhomogeneous
RandomWalk

In this section we prove Lemma 3.7. In Sects. 8.1–8.2 we compute the harmonic
function and the conditional average return time for an arbitrary nearest-neighbour
random walk on a finite interval. In Sect. 8.3 we use these computations to prove
the lemma.
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8.1 Harmonic Function

Consider a nearest-neighbour random walk on the set {0, . . . , N} with strictly
positive transition probabilities p(x, x + 1) and p(x, x − 1), 0 < x < N , and
with 0 and N acting as absorbing boundaries. Let τ0 and τN denote the first hitting
times of 0 and N . The harmonic function is defined as

hN(x) = Px(τN < τ0), 0 ≤ x ≤ N, (8.1)

where Px is the law of the random walk starting from x. This is the unique solution
of the recursion relation

hN(x) = p(x, x + 1)hN(x + 1)+ p(x, x − 1)hN(x − 1), 0 < x < N, (8.2)

with boundary conditions

hN(0) = 0, hN(N) = 1. (8.3)

Since p(x, x + 1)+ p(x, x − 1) = 1, the recursion can be written as

p(x, x + 1)[hN(x + 1)− hN(x)] = p(x, x − 1)[hN(x)− hN(x − 1)]. (8.4)

Define ΔhN(x) = hN(x + 1)− hN(x), 0 ≤ x < N . Iteration gives

ΔhN(x) = π [1, x]ΔhN(0), 0 ≤ x < N, (8.5)

where we define

π(I) =
∏

z∈I

p(z, z− 1)

p(z, z+ 1)
, I ⊆ {1, . . . , N − 1}, (8.6)

with the convention that the empty product equals 1. Since hN(0) = 0, we have

hN(x) =
x−1∑

z=0
ΔhN(z) =

(
x−1∑

z=0
π [1, z]

)
ΔhN(0), 0 < x ≤ N. (8.7)

Put C = ΔhN(0), and abbreviate

R(x) =
x−1∑

z=0
π [1, z], 0 ≤ x ≤ N. (8.8)
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Since hN(N) = 1, we have C = 1/R(N). Therefore we arrive at

hN(x) = R(x)

R(N)
, 0 ≤ x ≤ N. (8.9)

Remark 8.1 For simple random walk we have p(x, x ± 1) = 1
2 , hence π [1, x] = 1

and R(x) = x, and so

hN(x) = x

N
, 0 ≤ x ≤ N, (8.10)

which is the standard gambler’s ruin formula.

8.2 Conditional Average Hitting Time

We are interested in the quantity

eN(x) = Ex(τN | τN < τ0), 0 < x ≤ N. (8.11)

The conditioning amounts to taking the Doob transformed random walk, which has
transition probabilities

q(x, x ± 1) = p(x, x ± 1)
hN(x ± 1)

hN(x)
. (8.12)

We have the recursion relation

eN(x) = 1+q(x, x+1)eN (x+1)+q(x, x−1)eN (x−1), 0 < x < N, (8.13)

in this section we prove with boundary conditions

eN(N) = 0, eN(1) = 1+ eN(2). (8.14)

Putting fN(x) = hN(x)eN(x), we get the recursion

fN(x) = hN(x)+ p(x, x + 1)fN(x + 1)+ p(x, x − 1)fN(x − 1), 0 < x < N,

(8.15)

which can be rewritten as

p(x, x + 1)[fN(x + 1)− fN(x)] = p(x, x − 1)[fN(x)− fN(x − 1)] − hN(x).

(8.16)
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Define ΔfN(x) = fN(x + 1)− fN(x), 0 < x < N . Iteration gives

ΔfN(x) = π(1, x]ΔfN(1)− χ(1, x], 0 < x < N, (8.17)

with

χ(1, x] =
x∑

y=2
π(y, x] hN(y)

p(y, y + 1)
, 0 < x < N. (8.18)

Since fN(N) = 0, we have

fN(x) = −
N−1∑

z=x

ΔfN(z) =
N−1∑

z=x

χ(1, z] −
(

N−1∑

z=x

π(1, z]
)

ΔfN(1), 0 < x < N,

(8.19)

or

eN(x) = 1

hN(x)

N−1∑

z=x

χ(1, z] − 1

hN(x)

(
N−1∑

z=x

π(1, z]
)

ΔfN(1), 0 < x < N.

(8.20)

Put C = ΔfN(1), and abbreviate

A(x) =
N−1∑

z=x

π(1, z], B(x) =
N−1∑

z=x

χ(1, z], 0 < x ≤ N. (8.21)

Then

eN(x) = 1

hN(x)

[
B(x)− CA(x)

]
. (8.22)

Since eN(1) = 1+ eN(2), we have

C = [hN(2)B(1)− hN(1)B(2)] − hN(1)hN(2)

hN(2)A(1)− hN(1)A(2)
. (8.23)

Abbreviate

R̄(x) =
x−1∑

z=0
π(1, z], S̄(x) =

x−1∑

z=0
χ(1, z], 0 < x ≤ N. (8.24)
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Then

A(x) = R̄(N)− R̄(x), B(x) = S̄(N)− S̄(x), 0 < x < N. (8.25)

Note that hN(x) = R(x)/R(N) = R̄(x)/R̄(N), because π [1, z] = π(1)π(1, z]
and a common factor π(1) drops out. Note further that R̄(1) = 1, R̄(2) = 2, while
S̄(1) = S̄(2) = 0. Therefore

C = S̄(N)

R̄(N)
− 2

R̄(N)2
. (8.26)

Therefore we arrive at

eN(x) = S̄(N)− R̄(N)

R̄(x)
S̄(x)+ 2

R̄(x)
− 2

R̄(N)
, 0 < x ≤ N. (8.27)

Abbreviating

T̄ (x) = S̄(x)R̄(N) =
x−1∑

z=0

z∑

y=2

π(y, z]
p(y, y + 1)

R̄(y), Ū(x) = T̄ (x)− 2

R̄(x)
, (8.28)

we can write

eN(x) = Ū (N)− Ū (x), 0 < x ≤ N. (8.29)

Remark 8.2 For simple random walk we have p(x, x ± 1) = 1
2 , π(y, z] = 1,

R̄(x) = x, S̄(x) = 1
3N (x3 − 7x + 6) and Ū (x) = 1

3 (x
2 − 7), and so

eN(x) = 1

3
(N2 − x2), 0 < x ≤ N. (8.30)

This is to be compared with the unconditional average hitting time Ex(τ ) = x(N −
x), 0 ≤ x ≤ N , where τ = τ0 ∧ τN is the first hitting time of {0, N}.

8.3 Application to Spin-Flip Dynamics

We will use the formulas in (8.6), (8.24) and (8.28)–(8.29) to obtain an upper bound
on the conditional return time to the metastable state. This bound will be sharp
enough to prove Lemma 3.7. We first do the computation for the complete graph
(Curie-Weiss model). Afterwards we turn to the Erdős-Rényi Random Graph (our
spin-flip dynamics).
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8.3.1 Complete Graph

Wemonitor the magnetization of the continuous-timeCurie-Weiss model by looking
at the magnetization at the times of the spin-flips. This gives a discrete-time random
walk on the set Γn defined in (1.15). This set consists of n+1 sites. We first consider
the excursions to the left ofmn (recall (1.16)). After that we consider the excursions
to the right.

1. For the Curie-Weiss model we have (use the formulas in Lemma 3.4 without the
error terms)

σ ∈ Ak :
∑

ξ∈Ak+1
r(σ, ξ) = (n− k) e−2β[ϑk]+ ,

∑

ξ∈Ak−1
r(σ, ξ) = k e−2β[−ϑk]+ ,

(8.31)

where ϑk = p(1− 2k
n

)− h. Hence, the quotient of the rate to move downwards,
respectively, upwards in magnetization equals

Q(k) =
∑

ξ∈Ak−1 r(σ, ξ)
∑

ξ∈Ak+1 r(σ, ξ)
= k

n− k
e2β([ϑk]+−[−ϑk]+). (8.32)

It is convenient to change variables by writing k = n
2 (ak + 1), so that ϑk =

−pak − h. The metastable state corresponds to k = Mn = n
2 (mn + 1), i.e.,

ak = mn. We know from (1.16)–(1.15) that mn is the smallest solution of the
equation Jn(mn) = 0 (rounded off by 1/n to fall in Γn). Hence mn = m +
O(1/n) with m the smallest solution of the equation Jp,β,h(m) = 0, satisfying
1−m
1+m = e−2β(pm+h) (recall (1.23)). Hence we can write (for ease of notation we
henceforth ignore the error O(1/n))

Q(k) = F(mn)

F (ak)
, F (a) = 1− a

1+ a
e2βpa. (8.33)

Here, we use that [ϑk]+ − [−ϑk]+ = ϑk , which holds because 0 = R′p,β,h(m) =
−pm − h + β−1I ′(m) with I ′(m) < 0 because m < 0 (recall (1.27)), so that
−pmn − h > 0 for n large enough, which implies that also −pa − h > 0 for all
a < mn for n large enough. We next note that (recall (1.27) and (2.17))

d
da

log
[

F(mn)
F (a)

]
= −2

(
βp − 1

1−a2

)
= −J ′p,β,h(a) = 2βR′′p,β,h(a) ≥ δ

for some δ > 0,
(8.34)

where the inequality comes from the fact that a 
→ Rp,β,h(a) has a positive
curvature that is bounded away from zero on [−1,m] (recall Fig. 4).



Glauber Dynamics on the Erdős-Rényi Random Graph 585

2. We view the excursions to the left of mn as starting from site N in the set
{0, . . . , N} with N =Mn = n

2 (mn + 1). From (8.28)–(8.29), we get

eN(x) =∑N−1
z=0

∑z
y=2

π(y,z]
p(y,y+1)

R̄(y)

R̄(N)
−∑x−1

z=0
∑z

y=2
π(y,z]

p(y,y+1)
R̄(y)

R̄(x)

+ 2
R̄(N)R̄(x)

[R̄(N)− R̄(x)]
≤∑N−1

z=x

∑z
y=2

π(y,z]
p(y,y+1)

R̄(y)

R̄(N)
+ 2

R̄(x)

≤ 2
∑N−1

z=1
∑z

y=2 π(y, z] + 2.

(8.35)

Here, we use that p(y, y + 1) ≥ 1
2 and 1 = R̄(0) ≤ R̄(y) ≤ R̄(N) for all

0 < y < N (recall (8.24) and note that x 
→ R̄(x) is non-decreasing). The
bound is independent of x. Using the estimate

Q(x) = p(x, x − 1)

p(x, x + 1)
≤ e−ε(N−x)/N , 0 < x < N, for some ε = ε(δ) > 0,

(8.36)
which comes from (8.34), we can estimate

π(y, z]≤
z∏

x=y+1
e−ε(N−x)/N = exp

⎡

⎣−ε

z∑

x=y+1
(N − x)/N

⎤

⎦ , 0 ≤ y ≤ z < N,

(8.37)
from which it follows that

N−1∑

z=1

z∑

y=2
π(y, z] = O(N/ε), N →∞. (8.38)

Thus we arrive at

eN(x) = O(N), N →∞, uniformly in 0 < x < N. (8.39)

To turn (8.39) into a tail estimate, we use the Chebyshev inequality: (8.39)
implies that every N time units there is a probability at least c to hit N , for
some c > 0 and uniformly in 0 < x < N . Hence

Px(τN ≥ kN | τN < τ0) ≤ (1− c)k ∀ k ∈ N0. (8.40)

3. For excursions to the right ofmn the argument is similar. Now N = Tn −Mn =
n
2 (tn − mn) (recall (1.17)), and the role of 0 and N is interchanged. Both near
0 and near N the drift towards Mn vanishes linearly (because of the non-zero
curvature). If we condition the random walk not to hit N , then the average hitting
time of 0 starting from x is again O(N), uniformly in x.
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4. Returning from the discrete-time random walk to the continuous-time Curie-
Weiss model, we note that order n spin-flips occur per unit of time. Since N  n

as n→∞, (8.40) and its analogue for excursions to the right give that, uniformly
in ξ ∈ AMn

,

Pξ

[
τAMn

≥ k | τAMn
< τATn

] ≤ e−Ck ∀ k ∈ N0. (8.41)

for some C > 0, which is the bound in (3.35).

8.3.2 Erdős-Rényi Random Graph

We next argue that the above argument can be extended to our spin-flip dy-
namics after taking into account that the rates to move downwards and upwards
in magnetization are perturbed by small errors. In what follows we will write
pCW(x, x ± 1) for the transition probabilities in the Curie-Weiss model and
pER(x, x ± 1) for the transition probabilities that serve as uniform upper and
lower bounds for the transition probabilities in our spin-flip model. Recall that
the latter actually depend on the configuration and not just on the magnetization,
but Lemma 3.4 provides us with uniform bounds that allow us to sandwich the
magnetization between the magnetizations of two perturbed Curie-Weiss mod-
els.

1. Suppose that

pER(x, x − 1)

pER(x, x + 1)
= pCW(x, x − 1)

pCW(x, x + 1)

[
1+O(N−1/2)]. (8.42)

Then there exists a C > 0 large enough such that

πER(y, z] ≤ CπCW(y, z], 0 ≤ y ≤ z < N. (8.43)

Indeed, as long as z − y ≤ C1N
1/2 we have the bound in (8.43) (with C

depending on C1). On the other hand, if z − y > C1N
1/2 with C1 large

enough, then the drift of the Curie-Weiss model sets in and overrules the error:
recall from (8.36) that the drift at distance N1/2 from N is of order N1/2/N =
N−1/2. It follows from (8.43) that (8.38)–(8.40) carry over, with suitably adapted
constants, and hence so does (8.41).

2. To prove (8.42), we must show that (8.32) holds up to a multiplicative error
1+O(n−1/2). In the argument that follows we assume that k is such that θk ≥ δ

for some fixed δ > 0. We comment later on how to extend the argument to other
k values. Recall that θk = −pak − h and that θk ≥ δ > 0 for all ak ∈ [−1,m]
for n large enough.
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3. Let σ ∈ Ak and σv ∈ Ak−1, where σv is obtained from σ by flipping the sign at
vertex v ∈ σ from +1 to −1. Write the transition rate from σ to σv as

r(σ, σ v) = exp

(
−β

[
2p( 2k

n
− 1)+ 2h+ 2

n

(
ε(σ, v)− ε(σ , v)

)]

+

)

= exp

(
−2β

[
−ϑk + 1

n

(
ε(σ, v)− ε(σ , v)

)]

+

)
.

(8.44)

Here, 2p( 2k
n
− 1) = 2

n
p[k − (n− k)] equals 2

n
times the average under PERn(p)

of E(σ, v)− E(σ , v), with E(σ, v) the number of edges between the support of
σ and v and E(σ , v) the number of edges between the support of σ and v (recall
the notation in Definition 3.1), and ε(σ, v) − ε(σ , v) is an error term that arises
from deviations of this average. Since −ϑk ≤ −δ, the error terms are not seen
except when they represent a large deviation of size at least δn. A union bound
over all the vertices and all the configurations, in combination with Hoeffding’s
inequality, guarantees that, with PERn(p)-probability tending to 1 as n →∞, for
any σ there are at most (log 2)/2δ2 = O(1) many vertices that can lead to a large
deviation of size at least δn. Since r(σ, σ v) ≤ 1, we obtain

∑

v∈σ

r(σ, σ v) = O(1)+ [n− k −O(1)] e−2β[−ϑk]+ . (8.45)

This is a refinement of (3.10).
4. Similarly, let σ ∈ Ak and σv ∈ Ak+1, where σv is obtained from σ by flipping

the sign at vertex v /∈ σ from −1 to +1. Write the transition rate from σ to σv as

r(σ, σ v) = exp

(
−β

[
2p(1− 2k

n
)− 2h+ 2

n

(
ε(σ , v)− ε(σ, v)

)]

+

)

= exp

(
−2β

[
ϑk + 1

n

(
ε(σ , v)− ε(σ, v)

)]

+

)
.

(8.46)

We cannot remove [·]+ when the error terms represent a large deviation of order
δn. By the same argument as above, this happens for all but (log 2)/2δ2 = O(1)
many vertices v. For all other vertices, we can remove [·]+ and write

r(σ, σ v) = e−2βϑk exp

(
1

n

(
ε(σ , v)− ε(σ, v)

))
. (8.47)
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Next, we sum over v and use the inequality, valid for δ small enough,

e−(1+δ) 1
M
|∑M

i=1 ai | ≤ 1

M

M∑

i=1
eai ≤ e(1+δ) 1

M
|∑M

i=1 ai | ∀ 0 ≤ |ai | ≤ δ, 1 ≤ i ≤ M.

(8.48)

This gives

∑
v /∈σ r(σ, σ v) = O(1)+ [k −O(1)] e−2βϑk eO(|Sn|),

Sn = 1
[k−O(1)]

1
n

∑
v /∈σ

(
ε(σ , v)− ε(σ, v)

)
.

(8.49)

We know from Lemma 3.2 that, with PERn(p)-probability tending to 1 as n→∞,

|Sn| ≤ cn3/2

[k −O(1)]n ∀ c >

√
1

8
log 2. (8.50)

Since we may take k ≥ n
3 (p − h) (recall (3.14)), we obtain

∑

v /∈σ

r(σ, σ v) = O(1)+ [k −O(1)] e−2βϑk eO(n−1/2). (8.51)

This is a refinement of (3.11).
5. The same argument works when we assume that k is such that ϑk ≤ −δ for some

fixed δ > 0: simply reverse the arguments in Steps 3 and 4. It therefore remains
to explain what happens when ϑk ≈ 0, i.e., ak ≈ − h

p
. We then see from (1.27)

that R′p,β,h(ak) ≈ β−1I ′(ak) < 0, so that ak lies in the interval [t, 0], which is
beyond the top state (recall Fig. 4).
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