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Vlado Sidoravičiaus (1963–2019) atminimui.
Jis i.kvėpė mus savo draugiškumu,
kūrybiškumu ir meile matematikai ir
gyvenimui.

In memory of Vladas Sidoravicius
(1963–2019).
He inspired us with his friendliness,
creativity, and love for mathematics and for
life.

Vladas Sidoravicius (courtesy of NYU-Shanghai; credit: Junbo Chen)



Preface

Vladas was born in Vilnius, Lithuania, on August 23, 1963, and did his undergrad-
uate studies in Mathematics from 1982 to 1985 at Vilnius University. There, in
1986, he received a Master’s degree with Honors under the supervision of Vygantas
Paulauskas. While in Vilnius, his early career and interest for doing research in
Mathematics benefited greatly from the mentorship of Donatas Surgailis. Pursuing
research from the very beginning, Vladas moved to Moscow for the next 4 years and
was awarded a Ph.D. from Moscow State University, under the supervision of Vadim
Malyshev, with a dissertation on the convergence of the stochastic quantization
method. At the VIth Vilnius Conference on Probability and Statistics, in 1990,
Vladas gave what was probably his first presentation in an important international
conference. In the meantime, he also had several other collaborators in Vilnius,
already showing the vitality and initiative that were some of his characteristics.
Vladas loved music and all expressions of fine art and always made clear that those
years in Moscow offered him an extremely enriching experience in this aspect as
well as for his mathematical development.

In 1991, Vladas had a postdoc experience at the University of Heidelberg, which
he then continued for more than 1 year at the Université Paris Dauphine, working
with the team of Claude Kipnis. This brought to his attention the existence of a
probability research group in Brazil, which led to his arrival at IMPA, Rio de Janeiro,
in February of 1993, where he held a position until 2015. While at IMPA, Vladas
served as advisor to several PhD students, supervised a number of postdocs, and
organized many meetings as well as remarkable conferences and schools. He always
focused on offering challenging and stimulating opportunities to young researchers.
As pointed out to us by Marco Isopi, this emphasis on supporting young scientists
was something that Vladas and other postdocs of Claude Kipnis vowed to emulate
following Kipnis’ early death at age 43. Vladas made an immense contribution to
the development of Probability in South America, particularly in Brazil.

A very important development in his scientific career began in 1995, when he
made the first of many visits to Cornell University. It was the beginning of an
extremely fruitful interaction with Harry Kesten, a towering figure in Probability
Theory for six decades, who passed away shortly before Vladas. Not only did they

vii



viii Preface

write many joint papers, including a seminal work where a shape theorem without
subadditivity was proven, but they also became very close friends. One anecdotal
story has to do with the efforts made by Vladas to find a copy of Kesten’s book
Percolation Theory for Mathematicians, which was out of print. He searched by all
possible methods until the day arrived when he somehow managed, with his usual
soft and charmingly convincing attitude, to have one colleague make him a gift of
his personal copy. That was a priceless gift, providing huge joy to Vladas.

Vladas’ friendship with Harry Kesten extended into an approach to the Dutch
stochastic community that resulted in a double appointment as researcher at
the Centrum Wiskunde & Informatica (CWI) and visiting professor at Leiden
University. During his tenure (2007–2011), Vladas developed an intensive research
activity with the leaders of the main Dutch groups in probability, gave courses
and seminars, and acted both as consultant and conference organizer at Eurandom.
Vladas was a vocal supporter of this last institute, which he considered a model
deserving emulation.

In 2015, Vladas became NYU Global Network Professor and was appointed
Deputy Director of the Mathematical Institute at NYU-Shanghai. He quickly
understood the immense potential of this new institution and invested in it all his
energy and his capital of scientific networking. His enthusiasm and dedication
helped to construct a remarkable Institute characterized by a continuous flow of
distinguished visitors and an intense scientific activity. A particular achievement
was the semester he organized on mathematical physics supported by the Chinese
Science Foundation, which attracted most of the leading scientists in the field. He
was there, in Shanghai, planning the next scientific visits, dreaming on building “the
Eurandom of Asia" when his life came to an end.

Besides his great talent and creativity, Vladas had an unlimited enthusiasm for
his work. He truly enjoyed it and would not be stopped by ordinary difficulties:
he would make huge efforts to attend a conference or meeting that he considered
important, working full day in between two long flights; he would put in full
energy while organizing events and making sure that everyone felt as comfortable
as possible. At IMPA, students and collaborators always knew the clock drawn on
his blackboard as his daily agenda. This was always full but also always open to
find some extra time. Everyone could see his immense energy and his passionate
enthusiasm for the profession.

This volume contains a collection of papers by many of his collaborators and
on a variety of topics in probability and statistical physics that reflects Vladas’
main research interests. Among them are two projects in collaboration with him,
in preparation at the time of his death.

The idea of preparing this volume grew during the XXIII Brazilian School
of Probability that took place at the end of July 2019, in USP-São Carlos, also
dedicated to him. We thank the scientific and organizing committees as well as all
the speakers of the School for their full support.

After we wrote to Vladas’ many collaborators, we received great support and
excellent cooperation from them and many others who helped with this project,
including series editors, authors, and anonymous referees. Most of the review
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process took place during a period when everyone was affected by the pandemic
of Covid-19, with extra time needed for online teaching activities, but our referees
were extremely generous with their help. Our sincere thanks also goes to a group of
Vladas’ close friends from Lithuania, for their valuable and inspiring feedback.

We acknowledge the important role played by NYU-Shanghai in the latter
portion of Vladas’ career and its cooperation in the preparation of this volume. The
1-day memorial event held in Shanghai, on October 22, 2019, when several of us
came together to remember him, was also a source of inspiration.

As a consequence of his enormous enthusiasm and dedication to the probability
community, besides organizing wonderful meetings, Vladas edited many special
volumes, mostly associated to schools or conferences in probability and mathemat-
ical physics. The list includes proceedings of two editions of the Brazilian School
of Probability, of which he was one of the initiators, and that he titled In and Out of
Equilibrium. As a way to honor him and at the same time reflecting well the content
of the scientific papers, we keep the title for this memorial volume.

Anyone who had the opportunity of being close to Vladas, in the profession
or outside, knows his huge energy and joy for life. He also took great care of his
mother, Galina, who survives him. No matter where in the world he was located, he
would call her almost daily to make sure she was well and well-provided for. We all
remember him in constant Celebration of Life. We miss his joyful laugh but have
powerful reasons to celebrate his life and his achievements.

Rio de Janeiro, Brazil Maria Eulália Vares
Shanghai, China Roberto Fernández
São Paulo, Brazil Luiz Renato Fontes
New York, NY, USA Charles M. Newman
August 2020
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With Harry Kesten (Ithaca, 2003)
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Vladas, 2nd from right in top row at Vilnius University, in 1984 (courtesy of Arvydas Strumskis)

Vladas at leisure in the early 90s (courtesy of Renata Sidoraviciene)
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Publications of Vladas Sidoravicius

The editors believe that this list of publications was complete at the time when this
volume was prepared, but since there are a number of ongoing projects that Vladas
was involved in, it is likely that there will be some future publications that include
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Existence and Coexistence in
First-Passage Percolation

Daniel Ahlberg

Abstract We consider first-passage percolation with i.i.d. non-negative weights
coming from some continuous distribution under a moment condition. We review
recent results in the study of geodesics in first-passage percolation and study their
implications for the multi-type Richardson model. In two dimensions this estab-
lishes a dual relation between the existence of infinite geodesics and coexistence
among competing types. The argument amounts to making precise the heuristic
that infinite geodesics can be thought of as ‘highways to infinity’. We explain the
limitations of the current techniques by presenting a partial result in dimensions
d > 2.

Keywords First-passage percolation · Competing growth · Geodesics ·
Busemann functions

1 Introduction

In first-passage percolation the edges of the Z
d nearest neighbour lattice, for some

d ≥ 2, are equipped with non-negative i.i.d. random weights ωe, inducing a random
metric T on Z

2 as follows: For x, y ∈ Z
d , let

T (x, y) := inf
{ ∑

e∈π ωe : π is a self-avoiding path from x to y
}
. (1)

Since its introduction in the 1960s, by Hammersley and Welsh [18], a vast body
of literature has been generated seeking to understand the large scale behaviour
of distances, balls and geodesics in this random metric space. The state of the art
has been summarized in various volumes over the years, including [4, 21, 23, 32].
We will here address questions related to geodesics, and shall for this reason make
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2 D. Ahlberg

the common assumption that the edge weights are sampled from a continuous
distribution. Since many of the results we shall rely on require a moment condition
for their conclusions to hold, we shall assume in what follows that E[Y d ] < ∞,
where Y denotes the minimum weight among the 2d edges connected to the origin.

In the 1960s, the study of first-passage percolation led to the development of
an ergodic theory for subadditive ergodic sequences, culminating with the ergodic
theorem due to Kingman [24]. As a consequence thereof, one obtains the existence
of a norm μ : Rd → [0,∞), simply referred to as the time constant, such that for
every z ∈ Z

d , almost surely,

lim
n→∞

1

n
T (0, nz) = μ(z).

Richardson [30], and later work of Cox and Durrett [9], extended the above radial
convergence to simultaneous convergence in all directions. Their results show that
the ball {z ∈ Z

d : T (0, z) ≤ t} in the metric T once rescaled by 1/t approaches
the unit ball in the norm μ. The unit ball in μ, henceforth denoted by Ball := {x ∈
R
d : μ(x) ≤ 1}, is therefore commonly referred to as the asymptotic shape, and

known to be compact and convex with non-empty interior. In addition, the shape
retains the symmetries of Zd . However, little else is known regarding the properties
of the shape in general. This, we shall see, is a major obstacle for our understanding
of several other features of the model.

Although questions regarding geodesics were considered in the early work of
Hammersley and Welsh, it took until the mid 1990s before Newman [28] together
with co-authors [25, 26, 29] initiated a systematic study of the geometry of geodesics
in first-passage percolation. Under the assumption of continuous weights there is
almost surely a unique path attaining the minimum in (1); we shall denote this path
geo(x, y) and refer to it as the geodesic between x and y. The graph consisting of
all edges on geo(0, y) for some y ∈ Z

d is a tree spanning the lattice. Understanding
the properties of this object, such as the number of topological ends, leads one to
the study of infinite geodesics, i.e. infinite paths of which every finite segment is a
geodesic. We shall write T0 for the collection of infinite geodesics starting at the
origin. A simple compactness argument shows that the cardinality |T0| of T0 is
always at least one.1 In two dimensions, Newman [28] predicted that |T0| = ∞
almost surely, and proved this under an additional assumption of uniform curvature
of the asymptotic shape, which remains unverified to this day.

As a means to make rigorous progress on Newman’s prediction, Häggström and
Pemantle [17] introduced a model for competing growth on Z

d , for d ≥ 2, known
as the two-type Richardson model. In this model, two sites x and y are initially
coloured red and blue respectively. As time evolves an uncoloured site turns red

1Consider the sequence of finite geodesics between the origin and ne1, where e1 denotes the first
coordinate vector. Since the number of edges that connect to the origin is finite, one of them must
be traversed for infinitely many n. Repeating the argument results in an infinite path which by
construction is a geodesic.



Existence and Coexistence in First-Passage Percolation 3

at rate 1 times the number of red neighbours, and blue at rate λ times the number
or blue neighbours. A central question of interest is for which values of λ there
is positive probability for both colours to coexist, in the sense that they both are
responsible for the colouring of infinitely many sites.

There is an intimate relation between the existence of infinite geodesics and
coexistence in the Richardson model that we shall pay special interest in. In the case
of equal strength competitors (λ = 1), one way to construct the two-type Richardson
model is to equip the edges of the Zd lattice with independent exponential weights,
thus exhibiting a direct connection to first-passage percolation. The set of sites
eventually coloured red in the two-type Richardson model is then equivalent to the
set of sites closer to x than y in the first-passage metric. That is, an analogous way
to phrase the question of coexistence is whether there are infinitely many points
closer to x than y as well as infinitely many points closer to y than x in the first-
passage metric. As before, a compactness argument will show that on the event of
coexistence there are disjoint infinite geodesics g and g′ that respectively originate
from x and y. Häggström and Pemantle [17] showed that, for d = 2, coexistence of
the two types occurs with positive probability, and deduced as a corollary that

P(|T0| ≥ 2) > 0.

Their results were later extended to higher dimensions and more general edge
weight distributions in parallel by Garet and Marchand [13] and Hoffman [19]. In
a later paper, Hoffman [20] showed that in two dimensions coexistence of four
different types has positive probability, and that P(|T0| ≥ 4) > 0. The best
currently known general lower bound on the number of geodesics is a strengthening
of Hoffman’s result due to Damron and Hanson [10], showing that

P(|T0| ≥ 4) = 1.

In this paper we shall take a closer look at the relation between existence
of infinite geodesics and coexistence in competing first-passage percolation. We
saw above that on the event of coexistence of various types, a compactness
argument gives the existence of equally many infinite geodesics. It is furthermore
conceivable that it is possible to locally modify the edge weight in such a way that
these geodesics are re-routed through the origin. Conversely, interpreting infinite
geodesics as ‘highways to infinity’, along which the different types should be able to
escape their competitors, it seems that the existence of a given number of geodesics
should accommodate an equal number of surviving types. These heuristic arguments
suggest a duality between existence and coexistence, and it is this dual relation we
shall make precise.

Given sites x1, x2, . . . , xk in Z
d , we let Coex(x1, x2, . . . , xk) denote the event

that for every i = 1, 2, . . . , k there are infinitely many sites z ∈ Z
d for which

the distance T (xj , z) is minimized by j = i. (The continuous weight distribution
assures that there are almost surely no ties.) In two dimensions the duality between
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existence and coexistence that we prove takes the form:

∃ x1, x2, . . . , xk such that P
(
Coex(x1, x2, . . . , xk)

)
> 0 ⇔ P(|T0| ≥ k) > 0.

(2)

Turning the above heuristic into a proof is more demanding that it may seem.
In order to derive the relation in (2) we shall rely on the recently developed
ergodic theory for infinite geodesics. This theory has its origins in the work of
Hoffman [19, 20], and was developed further by Damron and Hanson [10, 11],
before it reached its current status in work of Ahlberg and Hoffman [1]. The full
force of this theory is currently restricted to two dimensions, which prevents us from
obtaining an analogue to (2) in higher dimensions. In higher dimensions we deduce
a partial result based on results of Damron and Hanson [10] and Nakajima [27].

1.1 The Dual Relation

Before we state our results formally, we remind the reader that Y denotes the
minimum weight among the 2d edges connected to the origin. We recall (from [9])
that E[Y d ] < ∞ is both necessary and sufficient in order for the shape theorem to
hold in dimension d ≥ 2.

Theorem 1 Consider first-passage percolation on Z
2 with continuous edge weights

satisfying E[Y 2] <∞. For any k ≥ 1, including k = ∞, and ε > 0 we have:

(i) If P
(
Coex(x1, . . . , xk)

)
> 0 for some x1, . . . , xk in Z

2, then P(|T0| ≥ k) = 1.
(ii) If P(|T0| ≥ k) > 0, then P

(
Coex(x1, . . . , xk)

)
> 1 − ε for some x1, . . . , xk in

Z
2.

In dimensions higher than two we shall establish parts of the above dual relation,
and recall next some basic geometric concepts in order to state this result precisely.
A hyperplane in the d-dimensional Euclidean space divides Rd into two open half-
spaces. A supporting hyperplane to a convex set S ⊂ R

d is a hyperplane that
contains some boundary point of S and contains all interior points of S in one of
the two half-spaces associated to the hyperplane. It is well-known that for every
boundary point of a convex set S there exists a supporting hyperplane that contains
that point. A supporting hyperplane to S is called a tangent hyperplane if it is the
unique supporting hyperplane containing some boundary point of S. Finally, we
define the number of sides of a compact convex set S as the number of (distinct)
tangent hyperplanes to S. Hence, the number of sides is finite if and only if S is a
(finite) convex polygon (d = 2) or convex polytope (d ≥ 3). A deeper account on
convex analysis can be found in [31].
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Theorem 2 Consider first-passage percolation on Z
d , for d ≥ 2, with continuous

edge weights. For any k ≥ 1, including k = ∞, and ε > 0 we have

(i) If E[exp(αωe)] < ∞ and P
(
Coex(x1, . . . , xk)

)
> 0 for some α > 0 and

x1, . . . , xk in Z
d , then P(|T0| ≥ k) = 1.

(ii) If E[Y d ] <∞ and Ball has at least k sides, then P
(
Coex(x1, . . . , xk)

)
> 1− ε

for some x1, . . . , xk in Z
d .

In Sect. 2 we shall review the recent development in the study of infinite
geodesics that will be essential for the deduction, in Sect. 3, of the announced dual
result. Finally, in Sect. 4, we prove the partial result in higher dimensions.

1.2 A Mention of Our Methods

One aspect of the connection between existence and coexistence is an easy observa-
tion, and was hinted at already above. Namely, if Geos(x1, x2, . . . , xk) denotes the
event that there exist k pairwise disjoint infinite geodesics, each originating from
one of the points x1, x2, . . . , xk , then

Coex(x1, x2, . . . , xk) ⊆ Geos(x1, x2, . . . , xk). (3)

To see this, let Vi denote the set of sites closer to xi than to any other xj , for
j = i, in the first-passage metric. (Note that T (x, y) = T (z, y) for all x, y, z ∈ Z

2

almost surely, due to the assumptions of continuous weights.2 ) On the event
Coex(x1, x2, . . . , xk) each set Vi is infinite, and for each i a compactness argument
gives the existence of an infinite path contained in Vi , which by construction
is a geodesic. Since V1, V2, . . . , Vk are pairwise disjoint, due to uniqueness of
geodesics, so are the resulting infinite geodesics.

Let N denote the maximal number of pairwise disjoint infinite geodesics. Since
N is invariant with respect to translations (and measurable) it follows from the
ergodic theorem that N is almost surely constant. Hence, positive probability for
coexistence of k types implies the almost sure existence of k pairwise disjoint
geodesics. That |T0| ≤ N is trivial, given the tree structure of T0. The inequality
is in fact an equality, which was established by different means in [1, 27]. Together
with (3), this resolves the first part of Theorems 1 and 2.

Above it was suggested that infinite geodesics should, at least heuristically, be
thought of as ‘highways to infinity’ along which the different types may escape
the competition. The concept of Busemann functions, and their properties, will be
central in order to make this heuristic precise. These functions have their origin in
the work of Herbert Busemann [7] on metric spaces. In first-passage percolation,
Busemann-related limits first appeared in the work of Newman [28] as a means to

2This will be referred to as having unique passage times.
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describe the microscopic structure of the boundary (or surface) of a growing ball
{z ∈ Z

2 : T (0, z) ≤ t} in the first-passage metric. Later work of Hoffman [19, 20]
developed a method to describe asymptotic properties of geodesics via the study
of Busemann functions. Hoffman’s approach has since become indispensable in
the study of various models for spatial growth, including first-passage percola-
tion [1, 10, 11], the corner growth model [15, 16] and random polymers [2, 14].
In a tangential direction, Bakhtin et al. [5] used Busemann functions to construct
stationary space-time solutions to the one-dimensional Burgers equation, inspired
by earlier work of Cator and Pimentel [8].

Finally, we remark that (for d = 2) it is widely believed that the asymptotic shape
is not a polygon, in which case it follows from [20] that both P(|T0| = ∞) = 1
and for every k ≥ 1 there are x1, x2, . . . , xk such that P(Coex(x1, x2, . . . , xk)) >

0. The latter was extended to infinite coexistence by Damron and Hochman [12].
Thus, proving that the asymptotic shape is non-polygonal would make our main
theorem obsolete. However, understanding the asymptotic shape is a notoriously
hard problem, which is the reason an approach sidestepping Newman’s curvature
assumption has been developed in the first place.

2 Geodesics and Busemann Functions

In this section we review the recent developments in the study of infinite geodesics in
first-passage percolation. We shall focus on the two-dimensional setting, and remark
on higher dimensions only at the end. We make no claim in providing a complete
account of previous work, and instead prefer to focus on the results that will be of
significance for the purposes of this paper. A more complete description of these
results, save those reported in the more recent studies [1, 27], can be found in [4].

2.1 Geodesics in Newman’s Contribution to the 1994 ICM
Proceedings

The study of geodesics in first-passage percolation was pioneered by Newman and
co-authors [25, 26, 28, 29] in the mid 1990s. Their work gave rise to a precise
set of predictions for the structure of infinite geodesics. In order to describe these
predictions we shall need some notation. First, we say that an infinite geodesic g =
(v1, v2, . . .) has asymptotic direction θ , in the unit circle S1 := {x ∈ R

2 : |x| = 1},
if the limit limk→∞ vk/|vk| exists and equals θ . Second, two infinite geodesics g and
g′ are said to coalesce if their symmetrical difference gΔg′ is finite. The predictions
originating from the work of Newman and his collaborators can be summarized as,
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under mild conditions on the weight distribution, the following should hold:

(a) with probability one, every infinite geodesic has an asymptotic direction;
(b) for every direction θ , there is an almost surely unique geodesic in T0 with

direction θ ;
(c) for every direction θ , any two geodesics with direction θ coalesce almost surely.

In particular, these statements would imply that |T0| = ∞ almost surely.
Licea and Newman [25, 28] proved conditional versions of these statements

under an additional curvature assumption of the asymptotic shape. While this
assumption seems plausible for a large family of edge weight distributions, there
is no known example for which it has been verified. Rigorous proofs of the
corresponding statements for a rotation invariant first-passage-like model, where the
asymptotic shape is known to be a Euclidean disc, has been obtained by Howard and
Newman [22]. Since proving properties like strict convexity and differentiability of
the boundary of the asymptotic shape in standard first-passage percolation appears
to be a major challenge, later work has focused on obtaining results without
assumptions on the shape.

2.2 Busemann Functions

Limits reminiscent of Busemann functions first appeared in the first-passage
literature in the work of Newman [28], as a means of describing the microscopic
structure of the boundary of a growing ball in the first passage metric. The method
for describing properties of geodesics via Busemann functions developed in later
work of Hoffman [19, 20].

Given an infinite geodesic g = (v1, v2, . . .) in T0 we define the Busemann
function Bg : Z2 × Z

2 → R of g as the limit

Bg(x, y) := lim
k→∞

[
T (x, vk)− T (y, vk)

]
. (4)

As observed by Hoffman [19], with probability one the limit in (4) exists for every
g ∈ T0 and all x, y ∈ Z

2, and satisfies the following properties:

• Bg(x, y) = Bg(x, z)+ Bg(z, y) for all x, y, z ∈ Z
2;

• |Bg(x, y)| ≤ T (x, y);
• Bg(x, y) = T (x, y) for all x, y ∈ g such that x ∈ geo(0, y).

In [19] Hoffman used Busemann functions to establish that there are at least
two disjoint infinite geodesics almost surely. In [20] he used Busemann functions
to associate certain infinite geodesics with sides (tangent lines) of the asymptotic
shape. The approach involving Busemann functions in order to study infinite
geodesics was later developed further in work by Damron and Hanson [10, 11] and
Ahlberg and Hoffman [1]. Studying Busemann functions of geodesics, as opposed
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to the geodesics themselves, has allowed these authors to establish rigorous versions
of Newman’s predictions regarding the structure of geodesics. Describing parts of
these results in detail will be essential in order to understand the duality between
existence of geodesics and coexistence in competing first-passage percolation.

2.3 Linearity of Busemann Functions

We shall call a linear functional ρ : R2 → R supporting if the line {x ∈ R
2 :

ρ(x) = 1} is a supporting line to ∂Ball through some point, and tangent if {x ∈ R
2 :

ρ(x) = 1} is the unique supporting line (i.e. the tangent line) through some point
of ∂Ball. Given a supporting functional ρ and a geodesic g ∈ T0 we say that the
Busemann function of g is asymptotically linear to ρ if

lim sup
|y|→∞

1

|y|
∣
∣Bg(0, y)− ρ(y)

∣
∣ = 0. (5)

Asymptotic linearity of Busemann functions is closely related to asymptotic
directions of geodesics in the sense that (5), together with the third of the properties
of Busemann functions exhibited by Hoffman, provides information on the direction
of g = (v1, v2, . . .): The set of limit points of the sequence (vk/|vk|)k≥1 is contained
in the arc {x ∈ S1 : μ(x) = ρ(x)}, corresponding to a point or a flat edge of ∂Ball.

Building on the work of Hoffman [20], Damron and Hanson [10] showed that for
every tangent line of the asymptotic shape there exists a geodesic whose Busemann
function is described by the corresponding linear functional. In a simplified form
their result reads as follows:

Theorem 3 For every tangent functional ρ : R2 → R
2 there exists, almost surely,

a geodesic in T0 whose Busemann function is asymptotically linear to ρ.

While the work of Damron and Hanson proves existence of geodesics with
linear Busemann functions, later work of Ahlberg and Hoffman [1] has established
that every geodesic has a linear Busemann function, and that the associated linear
functionals are unique. We summarize these results in the next couple of theorems.

Theorem 4 With probability one, for every geodesic g ∈ T0 there exists a
supporting functional ρ : R

2 → R such that the Busemann function of g is
asymptotically linear to ρ.

To address uniqueness, note that the set of supporting functionals is naturally
parametrized by the direction of their gradients. Due to convexity of the shape, these
functionals stand in 1-1 correspondence with the unit circle S1. We shall from now
on identify the set of supporting functionals with S1.

Theorem 5 There exists a closed (deterministic) set C ⊆ S1 such that, with
probability one, the (random) set of supporting functionals ρ for which there exists
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a geodesic in T0 with Busemann function asymptotically linear to ρ equals C .
Moreover, for every ρ ∈ C we have

P
(∃ two geodesics in T0 with Busemann function linear to ρ

) = 0.

From Theorem 3 it follows that C contains all tangent functionals. As a
consequence, if Ball has at least k sides (i.e. tangent lines), then we have |T0| ≥ k
almost surely. On the other hand, it follows from Theorem 4 that every geodesic
has a linear Busemann function, and by Theorem 5 that the set of linear functionals
describing these Busemann functions is deterministic. Consequently, if with positive
probability T0 has size at least k, then by the uniqueness part of Theorem 5 the set
C has cardinality at least k, so that there exist k geodesics described by distinct
linear functionals almost surely. All these observations will be essential in proving
part (ii) of Theorem 1.

Due to the connection between asymptotic directions and linearity of Busemann
functions mentioned above, Theorems 3–5 may be seen as rigorous, although
somewhat weaker, versions of Newman’s predictions (a)–(b). The rigorous results
are weaker in the sense that we do not know whether C equals S1 or not. Note,
however, that Theorem 5 provides an ‘ergodic theorem’ in this direction. As we
shall describe next, the cited papers provide a rigorous version also of (c).

2.4 Coalescence

An aspect of the above development that we have ignored so far is that of
coalescence. For instance, Theorem 3 is a simplified version of a stronger statement
proved in [10], namely that for every tangent functional ρ : R2 → R there exists,
almost surely, a family of geodesics Γ = {γz : z ∈ Z

2}, where γz ∈ Tz, such that
any one geodesic in Γ has Busemann function linear to ρ and any two geodesics
in Γ coalesce. (The latter of course implies that the Busemann functions of all
geodesics in Γ coincide.) In a similar spirit, we have the following from [1]:

Theorem 6 For every supporting functional ρ ∈ C , with probability one, any two
geodesics g ∈ Ty and g′ ∈ Tz with Busemann function asymptotically linear to ρ
coalesce.

We remark that coalescence was irrelevant for the proof of Theorem 3 in [10], but
instrumental for the deduction of Theorems 4 and 5 in [1]. In short, the importance
of coalescence lies in the possibility to apply the ergodic theorem to asymptotic
properties of shift invariant families of coalescing geodesics, resulting in the ergodic
properties of Theorem 5.

The results described above together address the cardinality of the set T0. Recall
that N denotes the maximal number of pairwise disjoint infinite geodesics and is
almost surely constant. The following was first established in [1], and can be derived
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as a corollary to Theorems 4–6. A more direct argument, assuming a stronger
moment condition, was later given by Nakajima [27].

Corollary 1 With probability one |T0| is constant and equal to N .

To see how the corollary follows, first note that clearly |T0| ≤ N . In addition,
|C | ≤ |T0| almost surely due to the ergodic part of Theorem 5, and in the case that
C is finite, equality follows from Theorem 4 and the uniqueness part of Theorem 5.
Consequently, also |T0| is almost surely constant. Finally, it follows from the
coalescence property in Theorem 6 that either |T0| (and therefore also N ) is almost
surely infinite, or |T0| = N = k holds almost surely for some finite k, leading to
the claimed result.

2.5 Geodesics in Higher Dimensions

Whether the description of geodesics detailed above remains correct also in
higher dimensions is at this point unknown. Although it has been suggested that
coalescence should fail for large d , it seems plausible that results analogous to
Theorems 3–5 should hold for all d ≥ 2, and that an analogue to Theorem 6 could
hold for small d . See recent work of Alexander [3] for a further discussion of these
claims. Indeed, establishing the existence of coalescing families of geodesics in the
spirit of [10] also in three dimensions should be considered a major open problem.

What is known is that the argument behind Theorem 3 can be extended to
all dimensions d ≥ 2 under minor adjustments; see [6]. However, the proofs
of Theorems 4–6 exploit planarity in a much more fundamental way, and are
not known to extend to higher dimensions. On the other hand, an argument of
Nakajima [27] shows that Corollary 1 remains valid in all dimensions under the
additional condition that E[exp(αωe)] < ∞ for some α > 0. These properties will
be sufficient in order to prove Theorem 2.

3 The Dual Relation in Two Dimensions

With the background outlined in the previous section we are now ready to prove
Theorem 1. We recall that, with probability one, by Theorem 4 every geodesic has an
asymptotically linear Busemann function, and by Theorem 5 there is a deterministic
set C of linear functionals that correspond to these Busemann functions. Moreover,
for each ρ ∈ C , by Theorem 5 there is for every z ∈ Z

2 an almost surely
unique geodesic in Tz with Busemann function asymptotically linear to ρ, and by
Theorem 6 these geodesics coalesce almost surely. In particular |T0| = |C | almost
surely, and we shall in the sequel write Bρ for the Busemann function of the almost
surely unique geodesic (in T0) corresponding to ρ.
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3.1 Part (i): Coexistence Implies Existence

The short proof of part (i) is an easy consequence of Corollary 1. Suppose that for
some choice of x1, x2, . . . , xk in Z

2 we have P(Coex(x1, x2, . . . , xk)) > 0. By (3)
we have P(N ≥ k) > 0, and since N is almost surely constant it follows from
Corollary 1 that

P(|T0| ≥ k) = 1.

While the above argument is short, it hides much of the intuition for why the
implication holds. We shall therefore give a second argument based on coalescence
that may be more instructive, even if no more elementary. This argument will
make explicit the heuristic that geodesics are ‘highways to infinity’ along which
the different types will have to move in order to escape the competition.

Before attending to the proof, we claim that for any ρ ∈ C we have

P
(
Bρ(x, y) = 0 for all x = y) = 1. (6)

To see this, let Aρ denote the event that for each z in Z
2 there is a unique geodesic

gz in Tz corresponding to ρ, and that all these geodesics coalesce, so that Aρ has
measure one. We note that on the event Aρ coalescence of the geodesics {gz : z ∈
Z

2} implies that for any x, y ∈ Z
2 the limit Bρ(x, y) (which is defined through (4)

for g = g0) is attained after a finite number of steps. More precisely, on the event
Aρ , for any x, y ∈ Z

2 and v contained in gx ∩ gy we have

Bρ(x, y) = T (x, v)− T (y, v).

Hence, (6) follows due to unique passage times.
We now proceed with the second proof. Again by Corollary 1, either T0 is almost

surely infinite, in which case there is nothing to prove, or P(|T0| = k) = 1 for
some integer k ≥ 1. We shall suppose the latter, and argue that for any choice of
x1, x2, . . . , xk+1 in Z

2 we have P(Coex(x1, x2, . . . , xk+1)) = 0.
On the event that T0 is almost surely finite, C is in one-to-one correspondence

with the elements of T0. It follows from (6) that for any g ∈ T0 the Busemann
function Bg(0, x) has a unique minimizer over finite subsets of Z2 almost surely.
The last statement can be rephrased in terms of competition between a finite number
of types as follows: For each geodesic g in T0 there will be precisely one type that
reaches infinitely many sites along g almost surely; it is the one whose starting
position minimizes Bg(0, xi). Hence, if |T0| = k almost surely, but there are k + 1
competing types, then at least one of them will not reach infinitely many sites along
any geodesic in T0. Suppose that the type left out starts at a site x. Since for each
geodesic in Tx there is a geodesic in T0 with which it coalesces (as of Theorem 6),
it follows that for each geodesic g ∈ Tx the type starting at x will be closer than
the other types to at most finitely many sites along g. Choose n so that these sites
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are all within distance n from x. Finally, note that for at most finitely many sites z
in Z

2 the (finite) geodesic from x to z will diverge from all geodesics in Tx within
distance n from x. Consequently, all but finitely many sites in Z

2 will lie closer to
the starting point of some other type, implying that the k + 1 types do not coexist.

3.2 Part (ii): Existence Implies Coexistence

Central in the proof of part (ii) is the linearity of Busemann functions. The argument
that follows is a modern take on an argument originally due to Hoffman [20].

Let k be an integer and suppose that |T0| ≥ k with positive probability. Then,
indeed, |T0| = |C | ≥ k almost surely. Fix ε > 0 and let ρ1, ρ2, . . . , ρk be distinct
elements of C . In order to show that P(Coex(x1, x2, . . . , xk)) > 1 − ε for some
choice of x1, x2, . . . , xk , we shall choose these points so that with probability 1− ε
we have Bρi (xi, xj ) < 0 for all i = 1, 2, . . . , k and j = i. On this event, for each i,
the site xi is closer to all points along the geodesic in Txi corresponding to ρi than
any of the xj for j = i, implying that Coex(x1, x2, . . . , xk) occurs.

Given ρ ∈ C , z ∈ Z
2, δ > 0 andM ≥ 1 we let Aρ(z, δ,M) denote the event that

∣∣Bρ(z, y)− ρ(y − z)
∣∣ < δ|y − z| for all |y − z| ≥ M.

Due to linearity of Busemann functions (Theorems 4 and 5) there exists for every
ρ ∈ C and δ, γ > 0 anM <∞ such that

P
(
Aρ(z, δ,M)

)
> 1− γ for every z ∈ Z

2. (7)

We further introduce the following notation for plane regions related to ρ:

Hρ(z, δ) :=
{
y ∈ R

2 : ρ(y − z) ≤ −δ|y − z|};
Cρ(z, δ) :=

{
y ∈ R

2 : |ρ(y − z)| ≤ δ|y − z|}.

Note that on the eventAρ(z, δ,M) we have for all y ∈ Hρ(z, δ) such that |y − z| ≥
M that Bρ(z, y) < 0. Hence, Hρ(z, δ) corresponds to sites that are likely to be
at a further distance to far out vertices along the geodesic corresponding to ρ as
compared to z.

Given ρ1, ρ2, . . . , ρk we now choose δ > 0 so that the cones Cρi (0, δ), for i =
1, 2, . . . , k, intersect only at the origin. Next, we chooseM large so that for all i

P
(
Aρi (z, δ,M)

)
> 1− ε/k.

Finally, due to the choice of δ we may choose x1, x2, . . . , xk so that |xi − xj | ≥ M
for all i = j and such that for each i the set Hρi (xi, δ) contains xj for all j = i.
(For instance, position the sites on a circle of large radius, in positions roughly
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corresponding to the directions of ρ1, ρ2, . . . , ρk .) Due to these choices we will on
the event

⋂
i=1,2,...,k Aρi (xi, δ,M), which occurs with probability at least 1 − ε,

have for all i = 1, 2, . . . , k that Bρi (xi, xj ) < 0 for all j = i, as required.
It remains to show that if |T0| = ∞ with positive probability, then it is possible

to find a sequence (xi)i≥1 for which Coex(x1, x2, . . .) occurs with probability close
to one. If |T0| = ∞ with positive probability, then it does with probability one, and
|C | = ∞ almost surely. Let (ρi)i≥1 be an increasing sequence in C (considered as a
sequence in [0, 2π)). By symmetry of Z2 we may assume that each ρi corresponds
to an angle in (0, π/2). Fix ε > 0 and set εi = ε/2i . We choose δ1 so that Cρ1(0, δ1)
intersect each of the lines Cρj (0, 0), for j ≥ 2, only at the origin, and M1 so that
P(Aρ1(z, δ1,M1)) > 1 − ε1. Inductively we choose δi so that Cρi (0, δi) intersects
each cone Cρj (0, δj ) for j < i and each line Cρj (0, 0) for j > i only at the origin,
andMi so that P(Aρi (z, δi,Mi)) > 1− εi . For any sequence (xi)i≥1 we have

P

( ⋂

i≥1

Aρi (xi, δi,Mi)
)
> 1− ε.

It remains only to verify that we may choose the sequence (xi)i≥1 so that for
each i ≥ 1 we have |xi − xj | ≥ Mi and xj ∈ Hρi (xi, δi) for all j = i. For i ≥ 1
we take vi+1 ∈ Z

2 such that |vi+1| > max{M1,M2, . . . ,Mi+1}, ρi+1(vi+1) >

δi+1|vi+1| and ρj (vi+1) < −δj |vi+1| for all j ≤ i. We note that this is possible
since the sequence (ρi)i≥1 is increasing and the cone-shaped regions Cρi (0, δi) and
Cρj (0, δj ) for i = j intersect only at the origin. Finally, take x1 = (0, 0), and for
i ≥ 1 set xi+1 = xi + vi+1.

4 Partial Duality in Higher Dimensions

The proof of Theorem 2 is similar to that of Theorem 1. So, instead of repeating all
details we shall only outline the proof and indicate at what instances our current
understanding of the higher dimensional case inhibits us from deriving the full
duality. In the sequel we assume d ≥ 2.

The proof of the first part of the theorem is completely analogous. Suppose that

P
(
Coex(x1, x2, . . . , xk)

)
> 0

for some choice of x1, x2, . . . , xk in Z
d , possibly infinitely many. Then N ≥ k

almost surely, and by (Nakajima’s version, which requires an exponential moment
assumption, of) Corollary 1 we have |T0| ≥ k almost surely.

For the second part of the argument we will need to modify slightly the approach
from the two dimensional case. In the general case we do not know that every
geodesic has an asymptotically linear Busemann function. However, from (the
higher dimensional version of) Theorem 3 we know that if the shape has at least
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k sides (that is, tangent hyperplanes), then, almost surely, there are k geodesics in
T0 which all have asymptotically linear Busemann functions described by different
linear functionals. Based on this we may repeat the proof of part (ii) of Theorem 1
to obtain coexistence of k types with probability arbitrarily close to one.

In the case the shape has infinitely many sides, then with probability one there
are infinitely many geodesics in T0 with asymptotically linear Busemann functions,
all described by different linear functionals. Let (ρi)i≥1 be a sequence of such linear
functionals. Denote by Li the intersection of the hyperplane {x ∈ R

d : ρi(x) = 0}
and the x1x2-plane, i.e., the plane spanned by the first two coordinate vectors. Each
Li has dimension zero, one or two, and by exploiting the symmetries of Z

d we
may assume that sequence (ρi)i≥1 is chosen so that they all have dimension one.
Each Li is then a line through the origin in the x1x2-plane, and by restricting to a
subsequence we may assume that the sequence (νi)i≥1 of normal vectors of these
lines is monotone (considered as elements in [0, 2π)). We may now proceed and
select a sequence of points (xi)i≥1 in the x1x2-plane in an analogous manner as
in the two-dimensional case, leading to coexistence of infinitely many types with
probability arbitrarily close to one.
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Ground State Stability in Two Spin Glass
Models

L.-P. Arguin, C. M. Newman, and D. L. Stein

Abstract An important but little-studied property of spin glasses is the stability
of their ground states to changes in one or a finite number of couplings. It was
shown in earlier work that, if multiple ground states are assumed to exist, then
fluctuations in their energy differences—and therefore the possibility of multiple
ground states—are closely related to the stability of their ground states. Here we
examine the stability of ground states in two models, one of which is presumed to
have a ground state structure that is qualitatively similar to other realistic short-range
spin glasses in finite dimensions.

Keywords Spin glass · Highly disordered model · Strongly disordered model ·
Critical droplets
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1 Introduction and Definitions

Vladas was a remarkable mathematician, collaborator, colleague and friend: often
exciting, always interesting, sometimes frustrating but never boring. We will miss
him greatly, but are confident that his memory will survive for a very long time.

Although he never worked directly on spin glasses himself, Vladas maintained
a longstanding interest in the problem, and we enjoyed numerous discussions
with him about possible ways of proving nonuniqueness of Gibbs states, energy
fluctuation bounds, overlap properties, and many other open problems. In this paper
we discuss another aspect of spin glasses, namely ground state stability and its
consequences, a topic we think Vladas would have enjoyed.

The stability of a spin glass ground state can be defined in different ways; here
we will adopt the notion introduced in [14, 15] and further developed and exploited
in [3, 5]. For specificity consider the Edwards-Anderson (EA) Ising model [8] in a
finite volumeΛL = [−L,L]d ∩ Z

d centered at the origin, with Hamiltonian

HΛ,J (σ ) = −
∑

〈xy〉∈E(Λ)
Jxyσxσy, σ ∈ {−1, 1}Λ , (1)

where E(Λ) denotes the set of nearest-neighbor edges 〈xy〉 with both endpoints
in Λ. The couplings Jxy are i.i.d. random variables sampled from a continuous
distribution ν(dJxy), which for specificity we take to be N (0, 1). If periodic or
free boundary conditions are imposed, ground states appear as spin-reversed pairs.

For any fixed ΛL and accompanying boundary condition, the ground state
configuration (or the ground state pair if the boundary condition has spin-flip
symmetry) is denoted by α. One may now ask the question, how does the lowest-
energy spin configuration α change when one selects an arbitrary edge b0 and
varies its associated coupling J0 from −∞ to +∞? If J0 is satisfied, increasing
its magnitude will only increase the stability of α and so the lowest-energy spin
configuration pair is unchanged. However, if its magnitude is decreased, α becomes
less stable, and there exists a specific value Jc for which a cluster of connected spins
(which we shall refer to as the “critical droplet”) will flip, leading to a new ground
state pair α′. The same result follows if J0 is unsatisfied and its magnitude is then
increased.

More precisely, note that a ground state pair (hereafter GSP) is a spin configura-
tion such that the energy E∂D of any closed surface ∂D in the dual lattice satisfies
the condition

E∂D =
∑

〈xy〉∈∂D
Jxyσxσy > 0 . (2)

The critical value Jc corresponds to the coupling value at which
∑

〈xy〉∈∂D Jxyσxσy= 0 in α for a single closed surface whose boundary passes through b0, while all
other such closed surfaces satisfy (2). The cluster of spins enclosed by the zero-
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energy surface ∂Dc(b0, α) is denoted the “critical droplet” of b0 in the GSP α.
Because the couplings are i.i.d., Jc depends on α and all coupling values except
that associated with b0; that is, the critical value Jc is independent of J0. For
a fixed coupling realization in which J (b0) = J0, we can therefore define the
flexibility Fb0,α of b0 in α as

Fb0,α = |E∂Dc(b0,α)(Jc)− E∂Dc(b0,α)(J0)| . (3)

Because the couplings are i.i.d. and drawn from a continuous distribution, all
flexibilities are strictly positive with probability one.

The presentation just given is informal; a complete discussion requires use of the
excitation metastate [2–4, 16] which we omit here for the sake of brevity. A precise
definition of the above concepts and quantities can be found in [5].

The concepts of critical droplets and flexibilities for a particular GSP in a fixed
coupling realization provide a foundation for quantifying (at least one version of)
the stability of a given ground state. From an energetic standpoint, one can consider,
e.g., the distribution of flexibilities over all bonds. One can also approach the
problem from a geometric perspective, by considering the sizes and geometries
of the critical droplets associated with each of the bonds. This latter approach has
recently proved to be useful, in that the distribution of critical droplet sizes has
been shown [5] to be closely related to the energy fluctuations associated with
collections of incongruent GSP’s, i.e., GSP’s whose mutual interfaces comprise a
positive fraction of all edges in the infinite-volume limit [9, 10].

The problem with this approach, for now at least, is that there currently exist
no tools or insights into determining ground state stability properties in ordinary
EA models. In this paper we discuss two models, one of which should belong in the
same universality class as the ordinary EA model, in which some information on
these properties can be determined.

2 The Highly Disordered Model

2.1 Definition and Properties

The highly disordered model was introduced in [12, 13] (see also [6]). It is an EA-
type model defined on the lattice Zd whose Hamiltonian in anyΛ ⊂ Z

d is still given
by (1); the difference is that now the coupling distribution is volume-dependent even
though the coupling values remain i.i.d. for each Λ. The idea is to “stretch out”
the coupling distribution so that, with probability one, in sufficiently large volumes
each coupling magnitude occurs on its own scale. More precisely, each coupling
magnitude is at least twice as large as the next smaller one and no more than half as
large as the next larger one.
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While there are many possibilities for the volume-dependent distribution of
couplings, we have found it convenient to work with the following choice. First, we
associate two new i.i.d. random variables with each edge 〈xy〉: εxy = ±1 with equal
probability and Kxy which is uniformly distributed in the closed interval [0, 1]. We

then define the set of couplings J (L)xy within ΛL as follows:

J (L)xy = cLεxye−λ(L)Kxy , (4)

where cL is a scaling factor chosen to ensure a sensible thermodynamic limit (but
which plays no role in ground state selection), and λ(L) is a scaling parameter that
grows quickly enough with L to ensure that the condition described at the end of the
previous paragraph holds. It was shown in [13] that λ(L) ≥ L2d+1+δ for any δ > 0
is a sufficient condition.

We should emphasize that although the couplings J (L)xy depend on L, the Kxy’s
and εxy’s do not; hence there is a well-defined infinite-volume notion of ground
states for the highly disordered model on all of Zd . This is the subject of the theorem
in the next subsection.

When the highly disordered condition is satisfied, the problem of finding ground
states becomes tractable; in fact, a simple greedy algorithm provides a fast and
efficient way to find the exact ground state in a fixed volume with given boundary
conditions [12, 13]. Moreover, the ground state problem can be mapped onto
invasion percolation [12, 13] which facilitates analytic study. It was further shown
in [12, 13] that in the limit of infinite volume the highly disordered model has a
single pair of ground states in low dimension, and uncountably many pairs in high
dimension. The crossover dimension was found to be six in [11]. It should be noted
that this result, related to the minimal spanning tree, is rigorous only in dimension
two (or in quasi-planar lattices [18]).

The details of ground state structure in the highly disordered model have been
described at length in [12, 13] (see also [11, 17]) and are not recounted here. In
this contribution we present a new result, concerning the ground state stability
of the highly disordered model, where it turns out that this model is tractable as
well. The result we prove below is twofold: first, that with probability one all
couplings have finite critical droplets in any ground state, and moreover this result is
dimension-independent, and therefore independent of ground state pair multiplicity.
We caution, however, that (as with all other results pertaining to this model) these
results may be confined to the highly disordered model alone and have not been
shown to carry over to the Edwards-Anderson or other realistic spin glass models.
We will address this question more in the following section.

Before proceeding, we need to introduce some relevant properties and nomencla-
ture pertaining to the highly disordered model. One of its distinguishing features—
and the central one for our purposes—is the separation of all bonds into two distinct
classes [12, 13]. The first class, which we denote as S1 bonds are those that are
satisfied in any ground state regardless of the sign of the coupling, i.e., that of εxy .
These are bonds that are always satisfied, in every ground state. The remaining
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bonds, which we call S2, are those in which a change of sign of their εxy value
changes their status in any ground state from satisfied to unsatisfied or vice-versa.
(Obviously, any unsatisfied bond in any ground state is automatically S2, but a
satisfied bond could a priori be of either type.)

To make this distinction formal, we introduce the concept of rank: In a givenΛL,
the coupling with largest magnitude (regardless of sign) has rank one (this is the
coupling with highest rank and the smallest value of Kxy); the coupling with the
next largest magnitude has rank two; and so on. We then define an S1 bond as
follows:

A bond 〈xy〉 is S1 in ΛL if it has greater rank than at least one coupling in any
path (excluding the bond itself) that connects its two endpoints x and y.

In the above definition, we need to specify what is meant by a path if each
endpoint connects to a point on the boundary. For fixed boundary conditions of
the spins on ∂ΛL, all points on the boundary are considered connected (often called
wired boundary conditions), so disjoint paths from x to ∂ΛL and y to ∂ΛL are
considered as connecting x and y. It follows from the definition that for wired
boundary conditions an S1 bond in ΛL remains S1 in all larger volumes. These
bonds completely determine the ground state configurations, while the S2 bonds
play no role.1 For free boundary conditions, a path connects x and y only if it stays
entirely within ΛL, never touching the boundary; i.e., points on the boundary are
no longer considered connected. For periodic or antiperiodic boundary conditions,
boundary points are considered connected to their image points but to no others.
The reasons for these distinctions are provided in [13], but are not relevant to the
present discussion and are presented only for completeness.

It was proved in [12] and [13] that the set of all S1 bonds forms a union of
trees, that every site belongs to some S1 tree, and that every S1 tree touches the
boundary of ΛL. The S1 bonds in a given ΛL in some fixed dimension form either
a single tree or else a union of disjoint trees. Although not immediately obvious, it
was proved in [12, 13] that the tree structure has a natural infinite volume limit, and
moreover every tree is infinite. Moreover, a result from Alexander [1], adapted to
the current context, states that if the corresponding independent percolation model
has no infinite cluster at pc, then from every site there is a single path to infinity
along S1 edges; i.e., there are no doubly-infinite paths. It is widely believed that in
independent percolation there is no infinite cluster at pc in any dimension, but this
has not yet been proven rigorously for 3 ≤ d ≤ 10.

Finally, combined with results of Jackson and Read [11], we have that below six
dimensions there is a single S1 tree spanning the sites of Zd (corresponding to a

1One can define S1 and S2 bonds for the EA model as well, in the sense that the EA model also
possesses bonds that are satisfied in every ground state (though the precise definition used above no
longer applies). There are of course far fewer of these in the EA model than in the highly disordered
model, and there is no evidence that these “always satisfied” bonds play any special role in ground
state selection in that model. (One possibly relevant result, that unsatisfied edges don’t percolate in
the ground state, was proved in [7].)
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single pair of ground states), while above six dimensions that are infinitely many
trees (corresponding to an uncountable infinity of ground states).

2.2 Ground State Stability in the Highly Disordered Model

Unlike in realistic spin glass models, the ground state structure in the highly
disordered model can be analyzed and understood in great detail. This allows us to
solve other, related properties of the model, in particular some of the critical droplet
properties that have so far been inaccessible in most other spin glass models. In
particular we can prove the following result:

Theorem 1 In the highly disordered model on the infinite lattice Z
d in any d , if

there is no percolation at pc in the corresponding independent bond percolation
model, then for a.e. realization of the couplings, any ground state α, and any
bond b0, the critical droplet boundary ∂Dc(b0, α) is finite. Correspondingly, in finite
volumesΛL with sufficiently large L, the size of the droplet is independent of L.

Remark As noted above, it has been proved that there is no percolation at pc in
the corresponding independent bond percolation model in all dimensions except
3 ≤ d ≤ 10, but it is widely believed to be true in all finite dimensions.
Theorem 2 does not specify the distribution of critical droplet boundary sizes, which
is potentially relevant especially for larger critical droplets, although integrability of
the distribution requires a weak upper bound falloff such as O(L−(1+ε)), ε > 0, for
large L.

Proof Choose an arbitrary S1 bond and a volume sufficiently large so that the tree
it belongs to has the following property: The branch emanating from one of its
endpoints (call it x1) touches the boundary (on which we apply fixed boundary
conditions) and the branch emanating from the other endpoint (x2) does not. This
remains the case as the boundary moves out to infinity: for any S1 bond and a
sufficiently large volume, this is guaranteed to be the case by the result of Alexander
mentioned above [1].

We use the fact, noted in Sect. 1, that as the coupling value of any bond varies
from −∞ to +∞ while all other couplings are held fixed, there is a single, well-
defined critical point at which a unique cluster of spins, i.e., the critical droplet, flips,
changing the ground state. (This is true regardless of whether one is considering a
finite volume with specified boundary condition or the infinite system.) Now keep
the magnitude of the S1 bond fixed but change its sign. Because the S1 bond must
still be satisfied, this must cause a droplet flip, which as noted above must be the
critical droplet.

Now consider the state of the spins at either endpoint of the bond. Suppose that
originally the bond was ferromagnetic, and the spins at x1 and x2 were both +1.
After changing the sign of the coupling, the spin at x1, remains +1 (because it is
connected to the boundary, as explained in the first paragraph of this proof) while
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the spin at x2 is now −1. This must simultaneously flip all the spins on the branch
of the tree connected to x2. This is a finite droplet and as the chosen S1 bond was
arbitrary, the critical droplet of any S1 bond likewise must be finite.

Consider now an S2 bond. Without changing its sign, make its coupling
magnitude sufficiently large (or equivalently, its Kxy value sufficiently small) so
that it becomes S1. (This will cause a rearrangement of one or more trees, but it can
be seen that any corresponding droplet flip must also be finite.) Now change the sign
of the coupling. The same argument as before shows that the corresponding droplet
flip is again finite. But given that the critical droplet corresponding to a given bond
is unique, this was also the critical droplet of the original S2 bond. ��

3 The Strongly Disordered Model

Although the highly disordered model is useful because of its tractability, it is clearly
an unrealistic model for laboratory spin glasses. This leads us to propose a related
model that, while retaining some of the simplifying features of the highly disordered
model, can shed light on the ground state properties of realistic spin glass models.
We will refer to this new model as the strongly disordered model of spin glasses.

The main difference between the two models is that in the strongly disordered
model the couplings have the same distribution for all volumes. This is implemented
by removing the volume dependence of the parameter λ:

The strongly disordered model is identical to the highly disordered model but
with Eq. (4) replaced by

Jxy = εxye−λKxy (5)

with the constant λ� 1 independent of L.
In the strongly disordered model, the condition that every coupling value is no

more than half the next larger one and no less than twice the next smaller one breaks
down in sufficiently large volumes. This can be quantified: let g(λ) = Prob(1/2 ≤
e−λKxy/e−λKx′y′ ≤ 2). That is, g(λ) is the probability that any two arbitrarily chosen
bonds have coupling values that do not satisfy the highly disordered condition. A
straightforward calculation gives g(λ) = 2 ln 2/λ.

The strongly disordered model carries two advantages. On the one hand, its
critical droplet properties are analytically somewhat tractable given its similarity
to the highly disordered model. On the other hand, since its coupling distribution is
i.i.d. with mean zero and finite variance, and not varying with L, we expect global
properties such as ground state multiplicity to be the same as in other versions of
the EA spin glass with more conventional coupling distributions.

Theorem 2 If there is no percolation at pc in the corresponding independent bond
percolation model, then in the strongly disordered model, the critical droplet of an
arbitrary but fixed bond is finite with probability approaching one as λ→∞.
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Proof Consider a fixed, infinite-volume ground state on Z
d ; this induces a

(coupling-dependent and ground-state-specific) spin configuration on the boundary
∂ΛL of any finite volumeΛL ⊂ Z

d .
Consider an arbitrary edge {x0, y0}. Let R denote the (random) smallest value

in the invasion/minimal spanning forest model on Z
d , defined by the i.i.d. Kxy

(but with Kx0y0 set to zero, for convenience of the argument) such that one
of the branches from x0 or y0 is contained within a cube of side length 2R
centered at {x0, y0}. By the result of Alexander [1] mentioned earlier, R is a finite
random variable (depending on the Kxy ’s) if there is no percolation at pc in the
corresponding independent bond percolation model.

Now choose a deterministic ΛL and consider the two events: (a) AL = {R <
L/2} and (b) BL = {the highly disordered condition is valid in the cube of side L
centered at {x0, y0}}. Because R is a finite random variable, Prob(AL) can be made
arbitrarily close to one for L large. Moreover, from the definition of the highly
disordered model Prob(BL) can also be made close to one by choosing λ large (for
the given L). Specifically, let P0 denote the probability that the critical droplet of
{x0, y0} is finite. Then P0 ≥ 1 − ε if Prob(R > L/2) + CL2d/λ ≤ ε for some
fixed C > 0. But for any ε > 0 one can choose a sufficiently large L so that
Prob(R > L/2) ≤ ε/2, and then choose λ such that CL2d/λ ≤ ε/2. The result then
follows. ��

Theorem 2 sets a strong upper bound O(λ−1) on the fraction of bonds that
might not have a finite critical droplet. We do not yet know whether this gap can
be closed in the sense that the strongly disordered model might share the property
that all bonds have finite critical droplets. It could be that this is not the case, but that
if the number of bonds with infinite critical droplets is sufficiently small, theorems
analogous to those in [5] can be applied. Work on these questions is currently in
progress.
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Approximate and Exact Solutions of
Intertwining Equations Through
Random Spanning Forests

Luca Avena, Fabienne Castell, Alexandre Gaudillière, and Clothilde Mélot

Abstract For different reversible Markov kernels on finite state spaces, we look
for families of probability measures for which the time evolution almost remains in
their convex hull. Motivated by signal processing problems and metastability studies
we are interested in the case when the size of such families is smaller than the size
of the state space, and we want such distributions to be with “small overlap” among
them. To this aim we introduce a squeezing function to measure the common overlap
of such families, and we use random forests to build random approximate solutions
of the associated intertwining equations for which we can bound from above the
expected values of both squeezing and total variation errors. We also explain how
to modify some of these approximate solutions into exact solutions by using those
eigenvalues of the associated Laplacian with the largest size.

Keywords Intertwining · Markov process · Finite networks · Multiresolution
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1 Main Results, Motivations and Heuristic

The aim of this work is to build exact and approximate solutions of certain inter-
twining equations between Markov kernels on finite state spaces. The intertwining
equations we look at are related to the two following problems. First, we want
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to build wavelet-like multiresolution schemes for signal processing on arbitrary
weighted graphs. Second, we want to make sense of the notion of metastability
without asymptotics, in a finite setup where no large-volume or low-temperature
limits are in place. We will partially address these problems by giving “good
approximate solutions” of the intertwining equations, making use of random
spanning forests.

1.1 Intertwining Equations

The basic object in this paper is an irreducible stochastic matrix P on a finite state
space X . P is associated (see Sect. 1.3.1 for precise definitions) with the generator
L of a continuous time process X on X defined by

L f (x) =
∑

y∈X
w(x, y)

[
f (y)− f (x)], f :X → R, x ∈X ,

or, equivalently, with a connected edge weighted graph G = (X ,E , w), or G =
(X , w), with X as vertex set, and

E =
{
(x, y) ∈X ×X : w(x, y) > 0

}

as edges set. We will assume throughout the paper that P (or L ) is reversible with
respect to some probability measure μ on X :

∀x, y ∈X , μ(x)w(x, y) = μ(y)w(y, x) . (1)

We look at solutions (Λ, P̄ ) of the intertwining equations

ΛP = P̄Λ, (2)

and, for q ′ > 0,

ΛKq ′ = P̄Λ, (3)

where

• P̄ is a stochastic matrix defined on some finite state space X̄ ;
• Λ : X̄ ×X → [0, 1] is a rectangular stochastic matrix;

andKq ′ is the transition kernel on X given by

Kq ′(x, y) := Px(X(Tq ′) = y) = q ′(q ′ Id−L )−1(x, y) , (4)
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with Tq ′ an exponential random variable with parameter q ′ that is independent ofX.
Solving Eq. (2) amounts to find a family of probability measures νx̄ = Λ(x̄, ·)

on X such that, for some stochastic matrix P̄ ,

νx̄P = ΛP(x̄, ·) = P̄Λ(x̄, ·) =
∑

ȳ∈X̄
P̄ (x̄, ȳ)νȳ, x̄ ∈ X̄ . (5)

In other words the one step evolution of the νx̄’s have to remain in their convex
hull. Solving Eq. (3) is the same, except that the “one step evolution” has now to be
considered in continuous time and on time scale 1/q ′. In both cases a trivial solution
is always given by taking all the νx̄ equal to the equilibrium measure μ.

Related Literature
Intertwining relations, restricted to measures νx̄ with disjoint support, appeared
in the context of diffusion processes in the paper by Rogers and Pitman [20],
as a tool to state identities in laws. This method was later successfully applied
to many other examples (see for instance [5, 11, 15]). In the context of Markov
chains, intertwining was used by Diaconis and Fill [6] without the disjoint support
restriction to build strong stationary times and to control convergence rates to
equilibrium. This approach initiated in [6] is intimately related with metastability, as
will be made clearer in Sects. 1.2.2 and 1.2.3, and it has been recently developed in
different directions, see e.g. [16] and [14]. However, contrary to our setup, in these
references intertwining relations have mainly been considered with an absorbing
point for P̄ in X̄ and with size m of X̄ being (much) larger than or equal to the
size n of X . At present, applications of intertwining include random matrices [7],
particle systems [24], spectral clustering [1] . . .

Our Contribution
Motivated by signal processing and metastability problems (see Sect. 1.2), in this
paper we are instead interested in the case where

(R1) the size m of X̄ is smaller than the size n of X ,
(R2) P̄ is irreducible,
(R3) the probability measures

(
νx̄ : x̄ ∈ X̄

)
are linearly independent and have

small “joint overlap”.

We will define the squeezing of a collection of probability measures to control
this overlap (see Sect. 1.3.2) and a small “joint overlap” will correspond to little
squeezed probability measures. We will see in Sect. 2.2 that, for any reversible
stochastic kernel P with non-negative eigenvalues and for any positivem < n, non-
degenerate solutions of Eq. (2) with |X̄ | = m always exist. By “non-degenerate
solutions” we mean linearly independent probability measures such that Eq. (5)
holds for some irreducible P̄ . But we will argue that exact solutions tend to be
squeezed solutions. Then, rather than looking at the less squeezed solutions in
the large space of all solutions for a given m, we will first consider approximate
solutions with small squeezing. To this aim we will make use of random spanning
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forests to build random approximate solutions for which we will be able to bound
both the expected value of an error term in intertwining Eq. (2) and the expected
value of the squeezing (Theorem 1). Then we will use the same random forests to
build random approximate solutions of Eq. (3) with no overlap, i.e., with disjoint
support (Theorem 2). Assuming knowledge of the n − m largest eigenvalues of
−L , we will finally see how to modify such an approximate solution of (3) with m
probability measures νx̄ into exact solutions for q ′ small enough (Theorem 3).

Structure of the Paper
In the rest of this section, we detail our motivations, linking signal processing and
metastability studies, and we give some heuristics in Sect. 1.2. After having fixed
some notation in Sect. 1.3.1, we define the squeezing of a probability measure family
in Sect. 1.3.2, we introduce random forests in Sect. 1.3.3, and state our main results
in Sects. 1.3.4–1.3.6. In Sect. 2 we prove some preliminary results, and we give the
proofs of our three main theorems in the three last sections. We conclude with
an appendix that contains the proof of the main statement that links metastability
studies with Eq. (5).

1.2 Motivations and Heuristics

Before stating precise results, we would like to explain why we are interested in
solutions to (2) and (3) satisfying requirements (R1–3). These come from two
motivating problems we describe now, the first one being the construction of a
multiresolution analysis for signals on graphs, the second one being a proposal of
metastability results without asymptotics.

1.2.1 Pyramidal Algorithms in Signal Processing

First we are interested in extending classical pyramidal algorithms of signal
processing on the discrete torus

X =X0 = Zn = Z/nZ

to the case of signals on generic edge-weighted graphs. Such algorithms are used
for example to analyze or compress a given signal

f=f0 :X0 → R

through filtering and subsampling operations. A filter is a linear operator which
is diagonal in the same base as the discrete Laplacian L . A low-pass filter K
has eigenvalues of order 1 for low frequency modes, i.e., eigenvectors that are
associated with small eigenvalues of −L , and it has small eigenvalues for high
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frequency modes, i.e., eigenvectors that are associated with large eigenvalues of
−L . Assuming that n is an even number, a pyramidal algorithm first computes
m = n/2 approximation coefficients by

• computing a low-pass filtered versionKf of the original signal f ,
• subsamplingKf by keeping one in each two of its n values, those in some X1 =

X̄ ⊂X , for example the n/2 values in the even sites of Zn.

In doing so it defines a function

f̄ : x̄ ∈ X̄ �→ Kf (x̄) ∈ R

that can naturally be seen as a signal f1 : Zn/2 → R on a twice smaller torus. It
then computes an approximation f̃ of f on X as a function of the approximation
coefficients, and a detail function g̃ = f − f̃ , which in turn can be encoded into
n−m detail coefficients. Wavelet decomposition algorithms are of this kind. It then
applies a similar treatment to f1, to define f2, then f3, . . . up to reaching a simple
signal defined on a small torus made of a few points only. The reason why this
can be useful for compression is that, for well chosen filters, many of the detail
coefficients obtained at the different levels are very small or negligible for a large
class of smooth signals f . And one just has to store the few non-negligible detail
coefficients together with the coarsest approximation’s coefficients to reconstruct a
good approximation of the original signal f . The point is then to find “good” filters,
i.e. “good” ϕx̄ in �2(μ) (in this case μ is the uniform measure on X , the reversible
measure of the simple random walk associated with the discrete Laplacian) so that,
for all f ∈ �2(μ),

f̄ (x̄) = 〈ϕx̄, f 〉 = Kf (x̄).

And a basic requirement for good filters is that, for each x̄, ϕx̄ is localized around
x̄. Even though the measures dνx̄ = ϕx̄dμ (so that f̄ (x̄) = 〈νx̄ |f 〉) are usually
signed measures and not measures, this is the reason why we want to think of the
computation of the approximation coefficients f̄ (x̄) as computation of local means.
K being a low-pass filter, ϕx̄ needs also to be “localized” in Fourier space (written
in the diagonalizing basis of L , it must have small coefficients on high-frequency
modes). Thus the difficulty comes from Heisenberg principle, which roughly says
that no function ϕx̄ can be well localized both in Fourier space and around x̄. Part
of the art of wavelet design lies in the ability to make a good compromise with
Heisenberg principle (see for example Chapter 7 in [23] for more details on this
point).

When moving to the case of signal processing for generic edge-weighted graph,
there are three main issues one has immediately to address to build pyramidal
algorithms:

(Q1) What kind of subsampling should one use? What could “one every second
node” mean?



32 L. Avena et al.

(Q2) Which kind of filter should one use? How to compute local means?
(Q3) On which (weighted) graph should the approximation coefficients f̄ (x̄) be

defined to iterate the procedure?

On a general weighted finite graph G = (X ,E , w), none of these questions has a
canonical answer. Several attempts to tackle these issues and to generalize wavelet
constructions have been proposed: see [19, 22] for recent reviews on this subject and
[9] for one of the most popular method. A good starting point to partially answer
questions (Q2) and (Q3), is to look for a solution (Λ, P̄ ) to intertwining Eq. (2),
since any row νx̄ ofΛ automatically belongs to an eigenspace of P , and is therefore
frequency localized. Moreover, P̄ is a candidate to define the graph structure on X̄ .
Requirements (R1) (R3) on (Λ, P̄ ) reflect then the need of a subsampling procedure
(with m = |X̄ | and n of the same order), and of space localization of the νx̄ . (R2)
is more technical, and essentially ensures that we can deal with P̄ at the next level
in the pyramidal algorithm in the same way we deal with P . We could however
continue the pyramidal algorithm with a signal defined on unconnected graphs.
Question (Q1) is left apart for the time being. This is where the random forest comes
into the play, and we will come back to this question in Sect. 1.2.4.

Based on Theorem 1, we developed in [3] a novel wavelet transform. To our
knowledge, our approach is the first one based on the solution of intertwining
equations.

1.2.2 Metastability and Intertwining

Our second motivation stems from metastability studies, where it is common to
build a coarse-grained version X̄ of a Markov process X, possibly by seeing X̄ as
a measure-valued process on a small state space, these measures being probability
measures on the large state space X , on which X is defined. For example, when
we want to describe the crystallisation of a slightly supersaturated vapor, we can
do it in the following way. Vapor and crystal are defined by probability measures
concentrated on very different parts of a very large state space. On this space a
Markov process describing the temporal evolution of a microscopic configuration
evolves, and this Markovian evolution has to be “macroscopically captured” by
a new two-state Markov process evolving from gas (a probability measure on the
large state space) to crystal (another probability measure on the same space almost
non-overlapping with the previous one). And this evolution is such that the gas
should appear as a local equilibrium left only to reach a more stable crystalline
equilibrium. This is usually done in some asymptotic regime (e.g. large volume or
low temperature asymptotic) and we refer to [17] and [4] for mathematical accounts
on the subject.

But we are here outside any asymptotic regime: we are given a finite graph
(X , w) or a Markov processX and we want to define a finite coarse-grained version
of this graph and Markov process, (X̄ , w̄) and X̄. Solving the intertwining equation
ΛP = P̄Λ, with the size of P̄ smaller than the size of P , provides a clean way to
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do so. In this equation P is given and stands for the transition kernel of a discrete
time skeleton X̂ of X (see Sect. 1.3.1 for a precise definition) and we look for an
m×m stochastic matrix P̄ together with a collection of m probability measures νx̄
on X that defines the rectangular matrix Λ by

Λ(x̄, x) = νx̄(x), x̄ ∈ X̄ , x ∈ X .

This equation reads

νx̄P =
∑

ȳ∈X̄
P̄ (x̄, ȳ)νȳ (6)

for all x̄ in X̄ and it suggests that the evolution of X can be roughly described
through that of X̄, associated with the transition kernel P̄ : from state or local
equilibrium νx̄ the process X evolves towards a new state or local equilibrium νȳ
which is chosen according to the Markovian kernel P̄ . This can be turned into a
rigorous and powerful mathematical statement by the following proposition, which
is a partial rewriting of Section 2.4 of [6] in the spirit of [13], and whose proof is
given in appendix.

Proposition 1 If Eq. (6) is in force for some x̄ in X̄ , then there are a filtration F
for which X̂ is F -adapted, a F -stopping time Tx̄ and a FTx̄ -measurable random
variable Ȳx̄ with value in X̄ \ {x̄} such that, for X̂ started in νx̄ :

1. Tx̄ is geometric with parameter 1− P̄ (x̄, x̄);
2. νx̄ is stationary up to Tx̄ , i.e., for all t ≥ 0,

Pνx̄

(
X̂(t) = · ∣

∣ t < Tx̄
)
= νx̄ ; (7)

3. Pνx̄
(
Ȳx̄ = ȳ

) = P̄ (x̄,ȳ)

1−P̄ (x̄,x̄) for all ȳ in X̄ \ {x̄};
4. Pνx̄

(
X̂(Tx̄) = · ∣∣ Ȳx̄ = ȳ

)
= νȳ(·);

5.
(
Ȳx̄ , X̂(Tx̄)

)
and Tx̄ are independent.

Notice the slight abuse of notation. In fact, in the above statement, Pνx̄ captures also
the extra-randomness of the random variables Tx̄ and Ȳx̄ .

As far as metastability is concerned, a possibly more natural approach is, instead
of ΛP = P̄Λ, to look for a solution of ΛKq ′ = P̄Λ for a small q ′ and with Kq ′
the transition kernel associated with our process X looked along a Poisson process
of intensity q ′ (see Eq. (4) of Sect. 1.1). It is indeed on a “long” time scale 1/q ′ that
one is usually looking at a coarse-grained Markovian version ofX. But whatever the
equation we are looking at, ΛP = P̄Λ orΛKq ′ = P̄Λ, again we want solutions νx̄
that are localized in well distinct part of the state space, that is solutions satisfying
(R3). Concerning (R1), in metastability studies, we are often interested in cases
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where m is very small with respect to n. However if one implements a complete
pyramidal algorithm, one will solve at the same time intertwining equations with
very differentm and n by transitivity of the coarse-graining procedure.

1.2.3 Heisenberg Principle, Approximate Solutions and Related Work

There is actually at least a fourth question without canonical answer that arises
when going from classical pyramidal or wavelet algorithms to signal processing for
generic weighted graphs: what is a “Heisenberg principle” limiting the localization
of our νx̄? We do not have an answer to this question, but, although we explained
why we are interested in localized, non-overlapping, little squeezed solutions of
the intertwining equations, we will see in Sect. 2 that exact solutions of intertwining
equations are strongly localized in Fourier domain, then, a priori, poorly localized in
space. This is the main difficulty faced by the present approach and this is one of the
two reasons why we turned to approximate solutions of intertwining equations. We
will also see in the next section that one needs a detailed knowledge of the spectrum
and the eigenvectors of the Laplacian L to build exact solutions of intertwining
equations. From an algorithmic point of view this can be very costly, and this is the
other reason why we turned to approximate solutions.

In [3] we analyse the full pyramidal algorithm, including a wavelet basis
construction, rather than simply focusing on intertwining equations of a one-step
reduction. But we are still looking for a generalized Heisenberg principle that could
serve as a guideline for similar constructions. And our results suggest that such a
Heisenberg principle should degenerate in presence of a gap in the spectrum (see
Sect. 1.3.4).

Before concluding this introductory part on intertwining equations, let us note
that Proposition 1 can still be used to make sense of approximate intertwining. We
will show in Sect. 2, denoting by dTV the total variation distance:

Proposition 2 If X̂ and X̄ are discrete time Markov chains on finite spaces X and
X̄ with transitions kernels P and P̄ , if, for each x̄ in X̄ , νx̄ is a probability measure
on X , then, setting

ε = max
x̄∈X̄

dTV

(
νx̄P,

∑

ȳ∈X̄
P̄ (x̄, ȳ)νȳ

)

and for any convex combination

ν =
∑

x̄∈X̄
ν̄(x̄)νx̄ ,

there is a coupling between X̂ν and X̄ν̄ , i.e., X̂ and X̄ started from ν and ν̄, a Markov
chain (Z, Z̄) on some product space X × X̃ , with X̄ ⊂ X̃ , and two geometric
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random times T and T̄ with mean value 1/ε such that for all k ≥ 0,

P
(
Zk = x

∣
∣ Z̄k = x̄

) = νx̄(x), x ∈X , x̄ ∈ X̄ ,

X̂νk = Zk conditionally to {T > k} and X̄ν̄k = Z̄k conditionally to {T̄ > k}. In
particular it holds, for all k ≥ 0,

dTV

⎛

⎝P
(
X̂νk = ·),

∑

x̄∈X̄
P

(
X̄ν̄k = x̄

)
νx̄

⎞

⎠ ≤ P (
T ≤ k)+ P (

T̄ ≤ k)

= 2
(
1− (1− ε)k) ≤ 2kε. (8)

Comment: It is then possible to use approximate intertwining and the coarse-
grained version X̄ of X̂ to control, for example, the mixing time of X̂ from that
of X̄: if 1/ε is large with respect to the latter, one can upper bound the mixing time
of X̂ by adding that of X̄ to the time k needed for all the δxP k—distribution of X̂k
when X̂ is started in x—to be close to the convex hull of the νx̄ . Note that the latter
will be related with the squeezing of the νx̄ in the sense of Sect. 1.3.2.

1.2.4 Some Heuristics on the Subsampling Question: Well Distributed
Points, Renormalization and Determinantal Processes

We now go back to the subsampling question (Q1), i.e. the issue of findingm points,
a fraction of n, that are in some sense well distributed in X . This question turns out
to be much simpler than (Q2) and (Q3), and a random solution is proposed in [2].
This solution is based on a random spanning forest Φ (i.e. a random collection of
oriented rooted trees on the graphG = (X , w) exhaustingX ), whose law depends
on a real parameter q > 0. We denote by ρ(Φ) the set of tree roots ofΦ. This forest
will be precisely described in Sect. 1.3.3, but we review at once some of its features
related to question (Q1). Let us denote, for any subset A of X , by HA and H+

A the
hitting time of and the return time to A for the process X:

HA := inf {t ≥ 0,X(t) ∈ A} ,

H+
A := inf {t ≥ σ1,X(t) ∈ A} ,

with σ1 the first time of the Poisson process that links X̂ with X (see Sect. 1.3.1).
For each x in X the mean hitting time Ex[Hρ(Φ)] is a random variable, since so are
Φ and ρ(Φ) (Ex being the expectation w.r.t the law of X starting from x). And it
turns out that its expected value, with or without conditioning on the size of ρ(Φ),
does not depend on x. In this sense the roots of the random forest are “well spread”
on X . More precisely, denoting by Ex,q the expectation w.r.t to the joint law of the
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Markov process X and of the random forest Φ, and by Eq expectation w.r.t to the
law Pq of Φ, we have (see [2]):

Proposition 3 For any x ∈X and m ∈ {1, · · · , n} it holds

Ex,q

[
Hρ(Φ)

] = Pq [|ρ(Φ)| > 1]

q
; (9)

Ex,q

[
Hρ(Φ)

∣
∣ |ρ(Φ)| = m] = Pq [|ρ(Φ)| = m+ 1]

qPq [|ρ(Φ)| = m]
; (10)

Eq

⎡

⎣ 1

m

∑

x̄∈ρ(Φ)
Ex̄

[
H+
ρ(Φ)

∣
∣ |ρ(Φ)| = m

]
⎤

⎦ = n

αm
. (11)

This suggests to take X̄ = ρ(Φ).
This is in line, in the context of very low temperature metastability systems, with

Scoppola’s renormalization introduced in [21] and with Freidlin and Wentzell’sW -
graphs [8]. Renormalization consists in individuating a sequence of smaller and
smaller subsets of X with strong recurrence properties on longer and longer time
scales. The coarse-grained Markov processes of this approach are the traces of the
original process on these subsets. These subsets are naturally built as the roots of
forests, or W -graphs in [8], made of bigger and bigger trees. These forests arise
in this context of very low temperature systems as almost deterministic limits of
our random forests Φ, and local equilibria reduce to (unsqueezed) Dirac masses.
In moving away from this asymptotic regime through intertwining equations we
consider dealing with more squeezed local equilibria.

As a consequence of Burton and Pemantle’s transfer current Theorem, ρ(Φ) is a
determinantal process on X , and its kernel is Kq = q(qId−L )−1 (see [2]):

Proposition 4 For any subset A of X ,

Pq(A ⊂ ρ(Φ)) = detA(Kq) ,

where detA applied to some matrix is the minor defined by the rows and columns
corresponding to A.

By using reversibility, one can see that the determinant of (Kq(x, y))x,y∈A is,
up to a multiplicative factor

∏
x∈A μ(x), the Gram matrix of the distributions

Px
(
X(T̃q)= ·

)
, x ∈ A, with T̃q the square of an independent centered Gaussian

variable with variance 1/(2q) (in such a way that the sum of two independent copies
of T̃q has the same law as Tq ). This means that a family of nodes x̄ is unlikely to
be part of ρ(Φ) if the volume of the parallelepiped formed by these distributions
is small. It suggests that the distributions

(
Px̄

(
X(T̃q) = ·), x̄ ∈ ρ(Φ)

)
are

typically little squeezed (i.e. well space-localized) and so should be the distributions(
Kq(x̄, ·), x̄ ∈ ρ(Φ)

)
, which are easier to deal with. To have a trade-off between
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squeezing and approximation error in intertwining equations, it will be convenient
to introduce a second parameter q ′ > 0 and set νx̄ = Kq ′(x̄, ·) for x̄ in ρ(Φ). At
this point the choice made for P̄ in Sect. 1.3.4 may be the most natural one.

Finally, when dealing with metastability issues, building local equilibria νx̄
from single “microscopic configurations” x̄ in ρ(Φ) seems rather unnatural. In
our previous example, no special microscopic configuration should play a role in
defining what a metastable vapor should be. One should better look for larger
structures associated with Φ, like the partition A (Φ) of X defined by the trees
of Φ, rather than ρ(Φ). Then, in view of the following proposition from [2], the
unsqueezed measures μA(x̄) appear to be natural candidates for giving approximate
solutions of (3):

Proposition 5 Conditional law of the roots, given the partition.
Let m be fixed, and A1, . . . , Am be a partition of X . For any x1 ∈ A1, · · · , xm ∈
Am,

Pq

[
ρ(Φ) = {x1, · · · , xm}

∣
∣ A (φ) = (A1, · · · , Am)

] =
m∏

i=1

μAi (xi) , (12)

where μA is the invariant measure μ conditioned to A (μA(B) = μ(A∩B)/μ(A)).
Hence, given the partition, the roots are independent, and distributed according to
the invariant measure.

Again, in the context of very low temperature metastable systems, this is in line with
the so-called cycle decomposition ([8, 17]).

1.2.5 About the Reversibility Assumption

Concerning signal processing issues, the reversibility assumption (1) is rather
standard. Actually, the classical multiresolution analysis of signals defined on the
regular grid assumes the “reversibility of the grid”, even in the case of audio signal
where X is a time interval. When considering oriented and non-reversible graphs,
the question of building a suitable Fourier analysis is already a delicate one, beyond
the scope of the present paper.

In metastability studies, both reversible and non-reversible settings have been
considered. Common approaches are usually initiated in the former context, where
a richer palette of techniques is available. In our case, looking at metastable issues
through intertwining equations and random forests does not rely on reversibility
hypotheses, but our squeezing analysis is based on the description of determinantal
processes associated with self-adjoint kernels: these are mixture of determinantal
processes with a deterministic size and associated with a projector. Without such a
reversibility hypotheses the full description of determinantal process kernels is still
an open question. It is worth noting that the root process we use for subsampling
is an example of such a non-reversible determinantal process, and that our total
variation estimates in Theorem 1 still hold in this context.
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1.3 Notations and Main Results

We describe now our main results, and for this purpose, introduce notations used
throughout the paper.

1.3.1 Functions, Measures, Markov Kernel and Generator

Let X be a finite space with cardinality |X | = n. We consider an irreducible
continuous time Markov process (X(t), t ≥ 0) on X , with generator L :

L f (x) :=
∑

y∈X
w(x, y)(f (y)− f (x)), (13)

where f :X → R is an arbitrary function, and w :X ×X → [0,+∞[ gives the
transition rates. For x ∈X , let

w(x) :=
∑

y∈X \{x}
w(x, y) .

Note that L acts on functions as the matrix, still denoted by L , the entries of which
are:

L (x, y) = w(x, y) for x = y ; L (x, x) = −w(x) .

Let α > 0 be defined by

α = max
x∈X

w(x) . (14)

Hence, P := L /α + Id is an irreducible stochastic matrix, and we denote by
(X̂k, k ∈ N) a discrete time Markov chain with transition matrix P . The process
(X(t), t ≥ 0) can be constructed from (X̂k, k ∈ N) and an independent Poisson
point process (σi , i > 0) on R

+ with rate α. At each point, or time, in the Poisson
process, X moves according to the trajectory of X̂, i.e., with σ0 = 0:

X(t) =
+∞∑

i=0

X̂i1σi≤t<σi+1 .

We assume that X is reversible with respect to the probability measure μ on X ,
(i.e. (1)). The process X being irreducible, μ is strictly positive. The operator −L
is self-adjoint and positive; we denote by (λi; i = 0, · · · , n−1) the real eigenvalues
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of −L in increasing order. It follows from the fact that P is irreducible that

0 = λ0 < λ1 ≤ λ2 · · · ≤ λn−1 ≤ 2α . (15)

A function f on X will be seen as a column vector, whereas a signed measure
on X will be seen as a row vector. For p ≥ 1, �p(μ) is the space of functions
endowed with the norm

‖f ‖p =
⎛

⎝
∑

x∈X
|f (x)|p μ(x)

⎞

⎠

1/p

.

The scalar product of two functions f and g in �2(μ) is

〈f, g〉 =
∑

x∈X
f (x)g(x)μ(x)

The corresponding norm is denoted by ‖·‖ = ‖·‖2. When f is a function and ν is a
signed measure, the duality bracket between ν and f is

〈ν|f 〉 =
∑

x∈X
ν(x)f (x) .

�∗p(μ) denotes the dual space of �p(μ) with respect to 〈·|·〉. It is the space of signed
measures endowed with the norm:

‖ν‖∗p =
⎛

⎝
∑

x∈X

∣
∣
∣
∣
ν(x)

μ(x)

∣
∣
∣
∣

p∗

μ(x)

⎞

⎠

1/p∗

where p∗ is the conjugate exponent of p: 1/p + 1/p∗ = 1. �∗p(μ) is identified
with �p∗(μ) through the isometry: ν ∈ �∗p(μ) �→ ν∗ ∈ �p∗(μ), where ν∗(x) =
ν(x)/μ(x) is the density of ν with respect to μ. The inverse of this isometry is still
denoted by ∗. It associates to a function f ∈ �p(μ), the signed measure f ∗ ∈ �∗p∗(μ)
whose density with respect to μ is f : f ∗(A) = ∑

x∈A μ(x)f (x) for all subset A of
X . �∗2(μ) is an Euclidean space whose scalar product is denoted by:

〈ν, ρ〉∗ := 〈
ν∗, ρ∗

〉 =
∑

x∈X
ν(x)ρ(x)

1

μ(x)
.

The corresponding norm is denoted by ‖·‖∗. For ν ∈ �∗2(μ) and f ∈ �2(μ), one gets

〈ν|f 〉 = 〈
ν, f ∗

〉∗ = 〈
ν∗, f

〉
.
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1.3.2 Squeezing of a Collection of Probability Measures

For some finite space X̄ of size m ≤ n, let (νx̄ : x̄ ∈ X̄ ) be a collection of m
probability measures on X which is identified with the matrixΛ, the row vectors of
which are the νx̄ ’s: Λ(x̄, ·) = νx̄ for each x̄ in X̄ . Since these measures form acute
angles between them (〈νx̄ , νȳ〉∗ ≥ 0 for all x̄ and ȳ in X̄ ) and have disjoint supports
if and only if they are orthogonal, one could use the volume of the parallelepiped
they form to measure their “joint overlap”. The square of this volume is given by
the determinant of the Gram matrix:

Vol(Λ) = √
det(Γ ),

with Γ the square matrix on X̄ with entries Γ (x̄, ȳ) = 〈
νx̄ , νȳ

〉∗, that is

Γ := ΛD(1/μ)Λt , (16)

where D(1/μ) is the diagonal matrix with entries given by (1/μ(x), x ∈ X ), and
Λt is the transpose ofΛ. Loosely speaking, the less overlap, the largest the volume.

We will instead use the squeezing ofΛ, that we define by

S (Λ) :=
{ +∞ if det(Γ ) = 0,√

Trace
(
Γ −1

) ∈ ]0,+∞[ otherwise,
(17)

to measure this “joint overlap”. We call it “squeezing” because the νx̄ and the
parallelepiped they form are squeezed when S (Λ) is large. This is also the half
diameter of the rectangular parallelepiped that circumscribes the ellipsoid defined
by the Gram matrix Γ : this ellipsoid is squeezed too when S (Λ) is large. We note
finally that our squeezing controls the volume ofΛ. Indeed, by comparison between
harmonic and geometric mean applied to the eigenvalues of the Gram matrix, small
squeezing implies large volume: Vol(Λ)1/nS (Λ) ≥ √

n. We will also show in
Sect. 2:

Proposition 6 Let (νx̄ , x̄ ∈ X̄ ) be a collection ofm probability measures on X .

1. We have

S (Λ) ≥
√√√
√

∑

x̄∈X̄

1

‖νx̄‖∗2 . (18)

Equality holds if and only if the (νx̄ , x̄ ∈ X̄ ) are orthogonal.
2. Assume that μ is a convex combination of the (νx̄, x̄ ∈ X̄ ). Then,

S (Λ) ≥ 1 .

Equality holds if and only if the (νx̄ , x̄ ∈ X̄ ) are orthogonal.
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Comment: S (Λ) is thus maximal when the νx̄ , x̄ ∈ X̄ , are linearly dependent, and
minimal when they are orthogonal. Moreover, we know the minimal value of S (Λ),
when μ is a convex combination of the (νx̄ , x̄ ∈ X̄ ). Note that this is necessarily
the case if the convex hull of the νx̄ is stable under P , i.e. when ΛP = P̄Λ for
some stochastic P̄ . Indeed it is then stable under etL for any t > 0 and the rows
of ΛetL converge to μ when t goes to infinity. Note also that we are using “�2(μ)

computations” (through the Gram matrix) to define the squeezing of measures that
are normalized in �1(μ) ∼ �∗∞(μ) (these are probability measures). This proposition
shows that such a mixture of norms is not meaningless.

1.3.3 Random Forests

Note that the weight function w induces a structure of oriented graph on X , e =
(x, y) being an oriented edge if and only ifw(e) := w(x, y) > 0. Let E be the set of
oriented edges, andG = (X ,E ) the oriented graph just defined. An oriented forest
φ on X is a collection of rooted trees that are subgraphs of G, oriented from their
leaves towards their root. A spanning oriented forest (s.o.f.) on X is an oriented
forest which exhausts the points in X . The set of roots of a spanning oriented forest
φ is denoted by ρ(φ).

We introduce now a real parameter q > 0, and associate to each oriented forest
a weight

wq(φ) := q |ρ(φ)|
∏

e∈φ
w(e) . (19)

These weights can be renormalized to define a probability measure on the set of
spanning oriented forest,

πq(φ) := wq(φ)
Z(q)

, (20)

where the partition function Z(q) is given by

Z(q) :=
∑

φ s.o.f.

wq(φ) . (21)

We can sample from πq by using Wilson’s algorithm [18, 25] which can be
described as follows. Let Φc be the current state, an oriented forest, of the spanning
oriented forest being constructed. At the beginning,Φc has no nodes or edges. While
Φc is not spanning, i.e., while there is a vertex in X which is not in the vertex set
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V (Φc) of Φc, perform the following steps:

• Choose a point x in X \ V (Φc), in any deterministic or random way.
• Let evolve the Markov process (X(t), t ≥ 0) from x, and stop it at Tq ∧HV (Φc)

with Tq an independent exponential time of parameter q and HV (Φc) the hitting
time of V (Φc).

• Erase the loops, in order of appearance, of the trajectory drawn by X to obtain a
self-avoiding path C starting from x and oriented towards its end-point.

• Add C to Φc.

Each iteration of the “while loop” stopped by the exponential time, gives birth
to another tree. Wilson’s algorithm is not only a way to sample πq , it is also a
powerful tool to study it. The main strength of this algorithm is the freedom one has
in choosing the starting points x’s of X.

In the sequel, Φ will denote a random variable defined on some probability
space (Ωf ,Af ,Pq), having distribution πq . The corresponding expectation will be
denoted byEq . We will often work with two independent sources of randomness: the
Markov process X, and the random forest Φ. Integration with respect to X starting
from x will be denoted by Px and Ex . When X is started with an initial measure
π , we will use the notations Pπ and Eπ . When we integrate over both randomness,
we will use the notations Ex,q ,Eπ,q and Px,q,Pπ,q . The random forest Φ defines a
partition of X , two points being in the same set of the partition if they belong to
the same tree. This partition will be denoted by A (Φ). A point x ∈X being fixed,
τx is the tree of Φ containing x, ρx its root, and A(x) the unique element of A (Φ)
containing x.

A theorem of Kirchhoff [10] gives in this context that

Z(q) = det(q Id−L ) =
∏

j<n

(q + λj ), (22)

and this implies (see for example [2] for more details, a proof of (22) and the
following proposition):

Proposition 7 For all k ∈ {0, · · · , n},

Pq [|ρ(Φ)| = k] =
∑

J⊂{0,··· ,n−1}
|J |=k

∏

j∈J

q

q + λj
∏

j /∈J

λj

q + λj .

Otherwise stated, the number of roots has the same law as
∑n−1
j=0 Bj where B0, . . . ,

Bn−1 are independent, Bj having Bernoulli distribution with parameter q
q+λj .
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1.3.4 Approximate Solution of ΛP = P̄Λ

Assume that we sampled Φ from πq for some parameter q > 0. For q ′ > 0 we then
set

• X̄ := ρ(Φ);
• For any x̄ ∈ X̄ , νx̄(·) := Kq ′(x̄, ·) (cf. Eq. (4)), i.e. Λ = Kq ′ |X̄ ×X ;

• P̄ (x̄, ȳ) := Px̄
[
X

(
H+
X̄

)
= ȳ

]
with, for any A ⊂X ,

H+
A := inf {t ≥ σ1,X(t) ∈ A} . (23)

H+
A is in other words the return time in A, and P̄ is the (irreducible and

reversible) Markovian kernel associated with the trace chain of X on X̄ .

Here X̄ is a random subset of X , and so is its cardinality. If we want to keep
approximatelym points from X , we have to ensure that

Eq

[∣∣X̄
∣
∣] =

n−1∑

i=0

q

q + λi ≈ m . (24)

This can be obtained, starting from any q to sample Φ, by updating q according to
q ← qm/|ρ(Φ)| before re-sampling Φ and going so up to getting a satisfactory
number of roots (see [2] for more details).

Let us remind the definition (14) of α, and let us define

pj := q

q + λj , p′j :=
q ′

q ′ + λj , j < n,

and denote by dT V the total variation distance: if ν and ν′ are two probability
measures on X ,

dTV (ν, ν
′) = 1

2

∑

x∈X

∣
∣ν(x)− ν′(x)∣∣ .

Theorem 1 For all m ∈ {1, · · · , n},

Eq

⎡

⎣
∑

x̄∈X̄
dT V (ΛP(x̄, ·), P̄Λ(x̄, ·))

∣
∣
∣∣

∣
∣X̄

∣
∣ = m

⎤

⎦ ≤ q
′(n−m)
α

, (25)

and

Eq

⎡

⎣
∑

x̄∈X̄
dT V (ΛP(x̄, ·), P̄Λ(x̄, ·))

⎤

⎦ ≤ q
′

α

n−1∑

i=1

λi

q + λi . (26)
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In addition, with

Sn :=
n−1∑

j=1

p′2j (1− pj )2 ; Tn :=
n−1∑

j=1

p2
j

p′2j
; Vn =

n−1∑

j=1

pj (1− pj ) ,

it holds

Eq

[
S (Λ)

∣
∣
∣
∣

∣
∣X̄

∣
∣ = m

]

≤
min

{√

1+
√
Tn
Sn

exp
(√
SnTn − Vn

) ;√1+ Tn exp
(
(1+SnTn))

2 − Vn
)}

Pq

[|X̄ | = m]

(27)

for any m ∈ {1, · · · , n}.
Proof See Sect. 3.

Comment: Our upper bounds depend on L through its spectrum only. They show
that if there is a gap in this spectrum—that is if for some 1 < m < n it holds
λm−1 � λm—then we can have asymptotically exact solutions with small squeezing
by choosing λm−1 � q � q ′ � λm. We then have indeed q ′ � α since λm ≤ 2α
and pj ∼ p′j ∼ 1 for j < m, while pj � p′j � 1 for j ≥ m. We can then have
a vanishing error in the approximation, see (26). In addition we can have Vn � 1,
Sn � 1, Tn ∼ m − 1, Pq [|X̄ | = m] ∼ 1 (recall Proposition 7) and an upper
bound on the mean value of S (Λ) that goes like

√
m. This upper bound has to be

compared with the lower bounds of Proposition 6, i.e. with 1 if we have asymptotic
solutions of intertwining equations. For some simple low temperature metastable
systems as quickly mentioned in Sect. 1.2.4, there is such a gap in the spectrum
and this construction will give indeed asymptotic solutions with S (Λ) going to 1.
There is room for improvement in the sense that our approximate solutions can be
even less squeezed that what is ensured by the theorem.

1.3.5 Approximate Solutions of ΛKq′ = P̄Λ

Assume once again that we sampled Φ from πq for some parameter q > 0. But
let us modify our choices for X̄ , Λ and P̄ , by using this time the partition A (Φ).
Set:

• X̄ := ρ(Φ) (one could rather think that X̄ is the set of the different pieces
forming the partition A (Φ) but the notation will be simpler by using the set of
roots, which obviously is in one to one correspondence through the map A : x̄ ∈
ρ(Φ) �→ A(x̄));
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• for any x̄ ∈ X̄ , νx̄(·) := μA(x̄)(·), with, for any A ⊂ X , μA being defined by
the probability μ conditioned to A: μA := μ(·|A);

• for any x̄, ȳ ∈ X̄ , P̄ (x̄, ȳ) := PμA(x̄)
[
X(Tq ′) ∈ A(ȳ)

]
, with Tq ′ being as

previously an exponential random variable of parameter q ′ that is independent
from X. Irreducibility and reversibility of P̄ are then inherited from those of P .

It follows from Proposition 6 that the squeezing of
{
νx̄ , x̄ ∈ X̄

}
is minimal and

equal to one.
To bound the distance between ΛKq ′ and P̄Λ, we introduce another random

forest Φ ′ distributed as πq ′ and independent of Φ and X. For any x ∈ X , t ′x is the
tree containing x in Φ ′, ρ′x its root, A′(x) the unique element of A (Φ ′) containing
x, and Γ ′x is the path going from x to ρ′x in Φ ′. By Wilson algorithm started at x,
Γ ′x is the trajectory of a loop-erased random walk started from x and stopped at an
exponential time Tq ′ . We denote by |Γ ′x | its length, that is the number of edges to be
crossed in Φ ′ to go from x to ρ′x .

Theorem 2 Let p ≥ 1, and p∗ its conjugate exponent, so that 1
p
+ 1
p∗ = 1. Then,

Eq

⎡

⎣
∑

x̄∈X̄
dT V (ΛKq ′(x̄, ·), P̄Λ(x̄, ·))

⎤

⎦ ≤ (
Eq [|ρ(Φ)|])1/p

(
q ′

q

∑

x∈X
Eq ′

[|Γ ′x |
]
)1/p∗

.

Proof See Sect. 4.

Comment: Note that

q ′Eq ′
[|Γ ′x |

] = αEq ′
[|Γ ′x |

]

α/q ′

is, up to the factor α, the ratio between the mean number of steps of the loop-erased
random walk and the mean number of steps of the simple random walk up to time
Tq ′ , that is the time fraction spent outside loops up to time Tq ′ . As a consequence
“the more recurrent is X on time scale 1/q ′ ”, the smaller is this ratio.

1.3.6 Exact Solutions of ΛKq′ = P̄Λ

We finally modify the previous random measures μA(x̄) to build exact solution of
Eq. (3) for q ′ small enough. We will use to this end a result due to Micchelli and
Willoughby [12]: for any m > 0

MWm :=
∏

j≥m

1

λj

(
L + λj Id

)

is a Markovian kernel (one can see [2] for a probabilistic insight into the proof of
this result). Assume then that we sampledΦ from πq for some parameter q > 0, let
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us keep X̄ = ρ(Φ), but let us now set

νx̄ = μA(x̄)MWm, x̄ ∈ X̄ ,

with m = |X̄ |.
Theorem 3 If the νx̄ have finite squeezing, then for q ′ small enough, the νx̄Kq ′ are
in the convex hull of the νx̄ .

Proof See Sect. 5.

Comment: Since we do not give quantitative bounds on how small q ′ has to be for
the thesis to hold, and we do not bound the squeezing of these νx̄ , Theorem 3 is
at first not a very insightful result. However the proof we will give suggests that
the νx̄ are natural candidates for not too squeezed solution associated with some
non-very small q ′. It will also give further motivation to use squeezing to measure
joint overlap. We actually got to our squeezing definition by looking for quantitative
bounds for this theorem.

2 Preliminary Results

2.1 Proof of Proposition 6

If Γ is not invertible, points (1) and (2) are obviously true. We assume therefore that
Γ is invertible. Let Λ̃ := Γ −1Λ, and let (ν̃x̄ , x̄ ∈ X̄ ) be the row vectors of Λ̃. Note
that

Λ̃D(1/μ)Λt = Γ −1ΛD(1/μ)Λt = Γ −1Γ = Id .

Λ̃D(1/μ)Λ̃t = Γ −1ΛD(1/μ)ΛtΓ −1 = Γ −1 .

Hence, for all x̄, ȳ ∈X ,
〈
ν̃x̄ , νȳ

〉∗ = δx̄ȳ and ‖ν̃x̄‖∗2 = (Γ −1)(x̄, x̄).

1. We have S (Λ)2 =
∑

x̄∈X̄
‖ν̃x̄‖∗2 ≥

∑

x̄∈X̄

〈ν̃x̄ , νx̄〉∗2

‖νx̄‖∗2 =
∑

x̄∈X̄

1

‖νx̄‖∗2 .

Assume now that the νx̄ ’s, x̄ ∈ X̄ are orthogonal. Γ = diag(‖νx̄‖∗2), so that

Trace(Γ −1) =
∑

x̄∈X̄

1

‖νx̄‖∗2 .

In the opposite direction, assume instead that Trace(Γ −1) =
∑

x̄∈X̄

1

‖νx̄‖∗2
.

Then for any x̄ ∈ X̄ ,
∣
∣〈ν̃x̄ , νx̄〉∗

∣
∣ = ‖ν̃x̄‖∗ ‖νx̄‖∗. This implies that for all x̄ ∈

X̄ , there exists a real number α(x̄) = 0 such that ν̃x̄ = α(x̄)νx̄ . Taking the scalar
product with νȳ leads to δx̄ȳ =

〈
ν̃x̄ , νȳ

〉∗ = α(x̄) 〈
νx̄, νȳ

〉∗. Hence (νx̄ , x̄ ∈ X̄ )

are orthogonal.
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2. Let us write μ as a convex combination of the (νx̄, x̄ ∈ X̄ ):

μ =
∑

x̄∈X̄
α(x̄)νx̄ , α(x̄) ≥ 0,

∑

x̄∈X̄
α(x̄) = 1.

Note that for any probability measure ν, 〈μ, ν〉∗ = ∑
x∈X μ(x)ν(x)/μ(x) = 1.

As a special case, for any ȳ ∈ X̄ ,

1 = 〈
μ, νȳ

〉∗ =
∑

x̄∈X̄
α(x̄)

〈
νx̄, νȳ

〉∗ ≥ α(ȳ) ∥
∥νȳ

∥
∥∗2

. (28)

By point (1), we deduce that

S (Λ)2 ≥
∑

x̄∈X̄

1

‖νx̄‖∗2 ≥
∑

x̄∈X̄
α(x̄) = 1 .

Equality holds if and only if (28) and (18) are equalities. By point (1), this implies
that the (νx̄ , x̄ ∈ X̄ ) are orthogonal. In the opposite direction, when the νx̄ , for
x̄ ∈ X̄ , are orthogonal, (28) and (18) are equalities, and S (Λ) = 1.

2.2 Elementary Observations on Intertwining Equations

Consider Eq. (2) for any reversible and irreducible stochastic kernel P , and assume
anm×n rectangular stochastic matrixΛ = (Λ(x̄, x))

x̄∈X̄ ,x∈X to be a solution for

some P̄ with m ≤ n. Let us write (θj )j<n = (1 − λj/α)j<n for the n eigenvalues
of P in decreasing order:

1 = θ0 > θ1 ≥ · · · ≥ θn−1 ≥ −1.

We also set [n] = {0, 1, 2, . . . , n− 1}, call μ the reversible measure of P , and write
νx̄ = Λ(x̄, ·) for the rows of Λ.

Lemma 1 Assume Eq. (2) is in force. IfΛ is non-degenerate, i.e., if Λ is of rankm,
then there is an orthonormal basis of left eigenvectors (μj : 0 ≤ j < n) of P such
that

μjP = θjμj , j < n,

there is a subset J of [n] such that 0 ∈ J and |J | = m and there is an invertible
matrix C = (C(x̄, j))

x̄∈X̄ ,j∈J with C(x̄, 0) = 1 for all x̄ in X̄ , such that

νx̄ =
∑

j∈J
C(x̄, j)μj , x̄ ∈ X̄ , (29)
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and

P̄ C(·, j) = θjC(·, j), j ∈ J. (30)

In particular, the spectrum of P̄ is contained in that of P , with eigenvalue
multiplicities that do not exceed the corresponding ones for P .

Proof Let V be the subspace of �∗2(μ) spanned by the νx̄ . Since Λ is non-
degenerate, V is of dimension m. Since ΛP = P̄Λ, the νx̄P are convex
combinations of the νx̄ and V is stable by the self-adjoint operator P . It follows
that there is an orthonormal basis of left eigenvectors μj , with μ0 = μ, a subset
J ⊂ [n] of size m, and an invertible matrix C such that (29) holds. Since for j > 0
one has 〈μ,μj 〉∗ = 0, by computing the scalar product with μ of both sides of
Eqs. (29), it follows that 0 belongs to J and C(x̄, 0) = 1 for each x̄.

Now, applying P on both sides of (29) we obtain

∑

j∈J

∑

ȳ∈X̄
P̄ (x̄, ȳ)C(ȳ, j)μj =

∑

j∈J
θjC(x̄, j)μj , x̄ ∈ X̄ .

By identifying the decomposition coefficients in the basis of theμj ’s, this gives (30).
Since the m column vectors C(·, j) are linearly independent, they form a basis of
the functions on X̄ . This is why Eqs. (30) completely describe the spectrum of
P̄ and we can conclude that the spectrum of P̄ is contained in that of P with the
multiplicity constraint. ��
The previous lemma shows on the one hand a localisation property in Fourier space
of exact solutions of intertwining equations: the νx̄ have to be with no component
on n − m eigenvectors of the Laplacian L (see Eqs. (29)). On the other hand, it
shows that finding exact solutions of intertwining equation implies to have a detailed
knowledge of the eigenvectors of the Laplacian.

Conversely, it is now possible to describe all the non-degenerate solutions of the
intertwining equations in terms of, on the one hand, the eigenvectors and eigenvalues
of P and, on the other hand, the set of diagonalizable stochastic matrices P̄ with a
given spectrum contained in that of P , and satisfying the multiplicity constraint.
Any right eigenvector basis (C(·, j) : j ∈ J )—satisfying (30) and with C(·, 0) ≡
1—of such a P̄ will provide, through Eqs. (29) and possibly after rescaling, a non-
degenerate solution of the intertwining equations. The only delicate point to check
is indeed the non-negativity of the νx̄ . But if this fails, and since μ = μ0 charges
all points in X , one just has to replace the C(·, j) for positive j in J , by some
δjC(·, j) for some small enough δj .

At this point we just have to give sufficient conditions for the set of diagonalisable
stochastic matrices with a given spectrum to ensure that our intertwining equations
do have solutions. The next lemma shows that, if P has non-negative eigenvalues,
then we will find solutions with X̄ of any size m < n. We further note that this
hypothesis will always be fulfilled if instead of considering P we consider its lazy
version (P + Id)/2.
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Lemma 2 For any

1 = θ0 > θ1 ≥ θ2 ≥ · · · ≥ θm−1 ≥ 0

there always exists a reversible and irreducible stochastic matrix P̄ with such a
spectrum. In particular, if P is a reversible and irreducible stochastic matrix that
admits (θj : j < m) as a subsequence of its ordered spectrum with multiplicities,
then the Markov chains associated with P and P̄ are intertwined.

Proof Let us set

A =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 0 · · · · · · 0

1 1 −2
. . .

...

1 1 1 −3
. . .

...
...
...
...
. . .
. . . 0

...
...
...

. . . −(m− 1)
1 1 1 · · · · · · 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

a matrix with orthogonal rows, and introduce the diagonal matrices

Dθ =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

θ0

θ1
. . .

. . .

θm−1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

, Dμ̄ =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎝

1
1×2

1
2×3

. . .
1

(m−1)m
1
m

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎠

,

the second one being such thatQ = D1/2
μ̄ A is orthogonal. We compute

P̄ = D−1/2
μ̄ QDθQ

tD
1/2
μ̄ = ADθAtDμ̄

to find

P̄ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎝

Σ1+θ1
1×2

Σ1−θ1
2×3

Σ1−θ1
3×4 . . . Σ1−θ1

(m−1)m
Σ1−θ1
m

Σ1−θ1
1×2

Σ2+22θ2
2×3

Σ2−2θ2
3×4 . . . Σ2−2θ2

(m−1)m
Σ2−2θ2
m

Σ1−θ1
1×2

Σ2−2θ2
2×3

Σ3+32θ3
3×4 . . . Σ3−3θ3

(m−1)m
Σ3−3θ3
m

...
...

...
. . .

...
...

Σ1−θ1
1×2

Σ2−2θ2
2×3

Σ3−3θ3
3×4 . . .

Σm−1+(m−1)2θm−1
(m−1)m

Σm−1−(m−1)θm−1
m

Σ1−θ1
1×2

Σ2−2θ2
2×3

Σ3−3θ3
3×4 . . .

Σm−1−(m−1)θm−1
(m−1)m

Σm
m

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎠

(31)
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with, for all 1 ≤ k ≤ m, Σk = ∑
j<k θj . P̄ is stochastic, irreducible and reversible

with respect to μ̄ defined by

μ̄(k) =
{

1
k(k+1) if k < m,

1
m

if k = m.

It also has the desired spectrum. ��
Comment: The proof actually shows that the positivity hypothesis on the θj ’s can be
slightly relaxed: we only have to require the numerators of the diagonal coefficients
in (31) to be non-negative.

We conclude this section by observing that the universal solution we just
provided is not fully satisfactory. First, it requires a detailed knowledge of the
spectrum that can be practically unavailable. Second, we can expect such a universal
solution to produce very squeezed solutions. Indeed, the coefficients C(x̄, j) in (30)
will be given by the matrix C = D−1/2

μ̄ Q = A or by C = ADδ with Dδ a rescaling
diagonal matrix

Dδ =

⎛

⎜⎜
⎜
⎝

1
δ1
. . .

δm−1

⎞

⎟⎟
⎟
⎠

ensuring the non-negativity of the νx̄ . The fact that the δi’s may have to be chosen
very small can be the source of very strong squeezing.

2.3 Proof of Proposition 2

Let ξ+x̄ and ξ−x̄ be, for each x̄ in X̄ , the positive and negative part of the signed
measure ξx̄ = ξ+x̄ − ξ−x̄ such that

νx̄P = ξx̄ +
∑

ȳ∈X̄
P̄ (x̄, ȳ)νȳ . (32)

Since νx̄P and the convex combination of the νȳ are both probability measures, ξ+x̄
and ξ−x̄ have the same mass

εx̄ = dTV

(
νx̄P,

∑

ȳ∈X̄
P̄ (x̄, ȳ)νȳ

)
.
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Adding ξ−x̄ on both sides of Eq. (32) and dividing by 1+ εx̄ , we get

1

1+ εx̄ νx̄P +
εx̄

1+ εx̄ π
−
x̄ = εx̄

1+ εx̄ π
+
x̄ +

1

1+ εx̄
∑

ȳ∈X̄
P̄ (x̄, ȳ)νȳ , (33)

where π+x̄ and π−x̄ are the probability measures obtained by normalization from ξ+x̄
and ξ−x̄ .

Let us build a new set X̃ by associating some x̄ ′ with each x̄ in X̄ , calling X̄ ′
the set of these associated x̄ ′ and setting X̃ = X̄ ∪ X̄ ′ to get a twice as large
set. We can then read Eq. (33) as an exact intertwining equation at site x̄, between a
Markov chain Zx̄ with values in X and transition probabilities

Px̄(x, y) = 1

1+ εx̄ P (x, y)+
εx̄

1+ εx̄ π
−
x̄ (y), x, y ∈ X ,

on the one hand, and on the other hand a Markov chain Z̄ with values in the
augmented set X̃ and transition probabilities

P̃ (x̄, ȳ) = 1

1+ εx̄ P̄ (x̄, ȳ), x̄ ∈ X̄ , ȳ ∈ X̄ ,

P̃ (x̄, ȳ ′) = εx̄

1+ εx̄ 1{ȳ ′=x̄ ′}, x̄ ∈ X̄ , ȳ ′ ∈ X̄ ′,

P̃ (x̄ ′, ỹ) = 1{ỹ=x̄ ′}, x̄ ′ ∈ X̄ ′, ỹ ∈ X̃ .

The linking probabilities at our x̄ in Eq. (33) are the νȳ and νx̄ ′ = π+x̄ . The process
Zx̄ can be constructed with a sequence of independent uniform random variables
(Uk, k ≥ 1). Assuming that at time k, Zx̄(k) = z and that Uk+1 >

εx̄
1+εx̄ , Zx̄(k + 1)

is sampled with P(z, ·), while if Uk+1 ≤ εx̄
1+εx̄ , Zx̄(k + 1) is sampled with π−x̄ .

By Proposition 1, we get a stopping time Tx̄ and a random variable Ỹx̄ , with
values in {x̄ ′} ∪ X̄ \ {x̄}, such that, conditionally to Ỹx̄ , the law of Zx̄(Tx̄) is νỸx̄ .

For ν = νx̄ we define then the Markov chain (Z, Z̄) on X × X̄ in the following
way:

• the law of (Z, Z̄)(0) is νx̄ ⊗ δx̄ ;
• for k < Tx̄ , (Z, Z̄)(k) = (Zx̄(k), x̄);
• (Z, Z̄)(Tx̄) = (Zx̄(Tx̄), Ỹx̄ ).
• If Ỹx̄ = x̄ ′ then we set (Z, Z̄)(k) = (Z, Z̄)(Tx̄) for all k ≥ Tx̄ . Otherwise Ỹx̄

plays now the previous role of x̄.

This construction is naturally adapted to Z̄ started in ν̄ and Z in νZ̄. We get the
desired equality on the law of Zk conditioned on Z̄k as a consequence of properties
(2) and (4) of Proposition 1.
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By properties (1), (3) and (5) of Proposition 1, Z̄ and X̄ν̄ have the same law
before the absorbing time

K̄ = min
{
k > 0 : Z̄k ∈ X̄

}
.

We can then set X̄ν̄k = Z̄k for k < K̄ , and build X̄ν̄ independently from (Z, Z̄) for
k ≥ K̄ . Setting

K = min

{

k < K̄ : Uk ≤
εZ̄k

1+ εZ̄k

}

,

with the usual convention that the minimum of the empty set is +∞, we can
also set X̂νk = Zk for k < K , and build X̂ν independently of (Z, Z̄) for k ≥
K . We simply conclude this coupling construction by observing that K and K̄
stochastically dominate two (correlated) geometric random variables T and T̄ with
success probability

ε ≥ max
x̄∈X̄

εx̄

1+ εx̄ .

Let us finally explain why this implies our claimed upper bound on the total
variation distance between the law of X̂νk and

ξk =
∑

x̄∈X̄
P

(
X̄ν̄k = x̄

)
νx̄

for any k ≥ 0. For any A ⊂X it holds

ξk(A) =
∑

x̄∈X̄
P

(
X̄ν̄k = x̄, T̄ ≤ k

)
νx̄(A)+

∑

x̄∈X̄
P

(
X̄ν̄k = x̄, T̄ > k

)
νx̄(A)

≤
∑

x̄∈X̄
P

(
X̄ν̄k = x̄, T̄ ≤ k

)+
∑

x̄∈X̄
P

(
Z̄k = x̄

)
νx̄(A)

= P (
T̄ ≤ k)+

∑

x̄∈X̄
P

(
Z̄k = x̄, Zk ∈ A

)

≤ P (
T̄ ≤ k)+ P (

Zk ∈ A
)

≤ P (
T̄ ≤ k)+ P (

T ≤ k)+ P (
X̂νk ∈ A

)
.

The same inequality holds with the complementary of A and this concludes the
proof.
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3 Proof of Theorem 1

3.1 Total Variation Estimates

Inequality (26) is a direct consequence of Inequality (25) and Proposition 7. Indeed,

Eq

⎡

⎣
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

⎤

⎦

=
n∑

i=1

Eq

⎡

⎣
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

∣∣
∣
∣

∣
∣X̄

∣
∣ = i

⎤

⎦Pq

[∣∣X̄
∣
∣ = i]

≤
n∑

i=1

q ′(n− i)
α

Pq

[∣∣X̄
∣∣ = i]

= q
′

α
Eq

[
n− ∣

∣X̄
∣
∣] .

It remains thus to prove (25). Applying Markov property at time σ1, we get

P̄ (x̄, ·) =
∑

y∈X
P(x̄, y)Py

[
X(HX̄ ) = ·] .

Moreover, set δx̄ the Dirac measure at x̄, seen both as a probability measure on X
and as a row vector of dimension n. Then, we can rewrite

ΛP(x̄, ·) = δx̄Kq ′P(·) = δx̄PKq ′ (·) =
∑

y∈X
P(x̄, y)Py

[
X(Tq ′ ) = ·]

=
∑

y∈X
P(x̄, y)Py

[
HX̄ < Tq ′ ;X(Tq ′ ) = ·

]

+
∑

y∈X
P(x̄, y)Py

[
HX̄ ≥ Tq ′ ;X(Tq ′ ) = ·

]

=
∑

y∈X ,z̄∈X̄
P(x̄, y)Py

[
HX̄ < Tq ′ ;X(HX̄ ) = z̄

]
Pz̄

[
X(Tq ′ ) = ·]

+
∑

y∈X
P(x̄, y)Py

[
HX̄ ≥ Tq ′ ;X(Tq ′ ) = ·

]
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= P̄Λ(x̄, ·)−
∑

y∈X ,z̄∈X̄
P(x̄, y)Py

[
HX̄ ≥ Tq ′ ;X(HX̄ ) = z̄

]
Pz̄

[
X(Tq ′ ) = ·]

+
∑

y∈X
P(x̄, y)Py

[
HX̄ ≥ Tq ′ ;X(Tq ′ ) = ·

]
.

Therefore,

dT V (ΛP(x̄, ·), P̄Λ(x̄, ·))

= 1

2

∑

x∈X

∣
∣ΛP(x̄, x)− P̄Λ(x̄, x)∣∣

≤ 1

2

∑

x∈X ,y∈X ,z̄∈X̄
P(x̄, y)Py

[
HX̄ ≥ Tq ′ ;X(HX̄ ) = z̄

]
Pz̄

[
X(Tq ′) = x

]

+ 1

2

∑

x∈X ,y∈X
P(x̄, y)Py

[
HX̄ ≥ Tq ′ ;X(Tq ′) = x

]

=
∑

y∈X
P(x̄, y)Py

[
HX̄ ≥ Tq ′

]

=
∑

y∈X
P(x̄, y)Ey

[
1− e−q ′HX̄

]

≤
∑

y∈X
P(x̄, y)Ey

[
q ′HX̄

] = q ′Ex̄
[
H+
X̄
− σ1

]
.

We now take the expectation with respect to Eq .

Eq

⎡

⎣
∑

x̄∈X̄
dTV (ΛP(x̄, ·), P̄Λ(x̄, ·))

∣
∣
∣∣

∣
∣X̄

∣
∣ = m

⎤

⎦

≤ q ′Eq
⎡

⎣
∑

x̄∈X̄
Ex̄

[
H+
X̄
− σ1

] ∣
∣∣

∣∣X̄
∣∣ = m

⎤

⎦ .

Formula (11) gives then the desired result.
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3.2 Squeezing Estimates

We now prove the quantitative upper bounds on the squeezing of Λ stated in (27).
We begin with the following lemma:

Lemma 3 For anym ∈ {1, · · · , n},

Eq

[
S (Λ)

∣
∣
∣

∣
∣X̄

∣
∣ = m

]

≤
√∑

|J |=m−1
∏
j∈J p′2j

√∑
|J |=m

∏
j∈J p

′−2
j

∏
j∈J p2

j

∏
j /∈J (1− pj )2

∑
|J |=m

∏
j∈J pj

∏
j /∈J (1− pj )

.

(34)

Proof Note first that

S (Λ)2 =
∑

x̄∈X̄
Γ −1(x̄, x̄) =

∑

x̄∈X̄

detX̄ \{x̄}(Γ )
det(Γ )

=
∑

x̄∈X̄

Vol2(νȳ; ȳ ∈ X̄ , ȳ = x̄)
Vol2(νȳ; ȳ ∈ X̄ )

.

Hence,

Eq

[
S (Λ)

∣∣
∣

∣
∣X̄

∣
∣ = m

]

=
∑

|R|=m
Pq

[
X̄ = R

∣
∣
∣

∣
∣X̄

∣
∣ = m

]
√∑

x̄∈R Vol2(νȳ; ȳ ∈ R, ȳ = x̄)
√

Vol2(νȳ; ȳ ∈ R)
.

(35)

From Proposition 4, X̄ = ρ(Φ) is a determinantal process associated to the kernel
Kq . Remind that for all j ∈ {0, · · · , n− 1}, μj(−L ) = λjμj . The μj are
orthogonal by symmetry of −L , and we assume that for all j ∈ {0, · · · , n− 1},∥
∥μj

∥
∥∗ = 1, so that μ0 = μ. Hence, we get μjKq = q

q+λj μj . One way to construct
ρ(Φ), the number of roots being fixed equal to m, is to choose m eigenvectors of
Kq , according to Bernoulli random variables with parameterspj , and then to choose
X̄ according to the determinantal process associated to the projector operator onto
the m chosen eigenvectors. More formally,

Pq

[
X̄ = R

∣∣
∣

∣∣X̄
∣∣ = m

]

= 1

Zm,q

∑

|J |=m

∏

j∈J

q

q + λj
∏

j /∈J

λj

q + λj det2
(〈

δx̄

‖δx̄‖∗ ;μj
〉∗

x̄∈R,j∈J

)

,

(36)
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where Zm,q is a normalizing constant (Zm,q = Pq

[∣∣X̄
∣∣ = m]

). We go back to (35)
and turn to the term Vol2(νȳ; ȳ ∈ R). It follows from Cauchy-Binet formula that

Vol2(νȳ; ȳ ∈ R) =
∑

|J |=m
det2

(〈
νȳ, μj

〉∗
, ȳ ∈ R, j ∈ J )

.

Note that

νȳ = δȳKq ′ =
n−1∑

j=0

〈
δȳ;μj

〉∗
μjKq ′ =

n−1∑

j=0

p′j
〈
δȳ;μj

〉∗
μj .

Thus
〈
νȳ , μj

〉∗ = p′j
〈
δȳ;μj

〉∗
. We obtain then

Vol2(νȳ; ȳ ∈ R) =
∑

|J |=m

∏

j∈J
p′2j det2

(〈
δȳ;μj

〉∗
, ȳ ∈ R, j ∈ J )

. (37)

Putting (36) and (37) into (35), we are led to

Eq

[
S (Λ)

∣
∣
∣

∣
∣X̄

∣
∣ = m

]
= 1

Zm,q

∑

|R|=m

√∑

x̄∈R
Vol2(νȳ; ȳ ∈ R, ȳ = x̄)

∏

x̄∈R
‖δx̄‖∗2

×

∑

|J |=m

∏

j∈J
pj

∏

j /∈J
(1− pj ) det2

(〈
δx̄;μj

〉∗
, x̄ ∈ R, j ∈ J )

√ ∑

|J |=m

∏

j∈J
p′2j det2

(〈
δȳ;μj

〉∗
, ȳ ∈ R, j ∈ J )

.

Cauchy-Schwartz inequality then yields

∑

|J |=m

∏

j∈J
pj

∏

j /∈J
(1− pj ) det2

(〈
δx̄;μj

〉∗
, x̄ ∈ R, j ∈ J )

√ ∑

|J |=m

∏

j∈J
p′2j det2

(〈
δȳ;μj

〉∗
, ȳ ∈ R, j ∈ J )

≤
√√
√√

∑

|J |=m

∏

j∈J

p2
j

p′2j

∏

j /∈J
(1− pj )2 det2

(〈
δx̄;μj

〉∗
, x̄ ∈ R, j ∈ J )
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and

Eq

[
S (Λ)

∣
∣
∣

∣
∣X̄

∣
∣ = m

]

≤ 1

Zm,q

√√
√
√
√
√√
√
√

∑

|R|=m

∑

x̄∈R
Vol2(νȳ; ȳ ∈ R, ȳ = x̄)

∏

x̄∈R
‖δx̄‖∗2

×
√√
√
√
√√
√

∑

|R|=m
|J |=m

∏

j∈J

p2
j

p′2j

∏

j /∈J
(1− pj )2 det2

(〈
δx̄

‖δx̄‖∗ ;μj
〉∗
; x̄ ∈ R, j ∈ J

)
.

Using again Cauchy-Binet formula, we get

∑

|R|=m
det2

(〈
δx̄

‖δx̄‖∗ ;μj
〉∗
, x̄ ∈ R, j ∈ J

)
= Vol2(μj , j ∈ J ) = 1 ,

so that the term in the second square root is equal to

∑

|J |=m

∏

j∈J

p2
j

p′2j

∏

j /∈J
(1− pj )2 .

We turn now to the term in the first square root, which can be rewritten, by using
twice the Cauchy-Binet formula, as

∑

x̄∈X

1

‖δx̄‖∗2

∑

|R|=m,x̄∈R

Vol2(νȳ; ȳ ∈ R, ȳ = x̄)
∏

x̄∈R\{x̄}
‖δx̄‖∗2

=
∑

x̄∈X
μ(x̄)

∑

R⊂X \{x̄},|R|=m−1

Vol2(νȳ; ȳ ∈ R)
∏

ȳ∈R

∥
∥δȳ

∥
∥∗2

=
∑

x̄∈X
μ(x̄)

∑

R⊂X \{x̄},|R|=m−1

∑

|J |=m−1

∏

j∈J
p′2j det2

(〈
δȳ∥

∥δȳ
∥
∥∗ ;μj

〉∗
; ȳ ∈ R, j ∈ J

)

≤
∑

x̄∈X
μ(x̄)

∑

|J |=m−1

∏

j∈J
p′2j

∑

|R|=m−1

det2
(〈

δȳ∥
∥δȳ

∥
∥∗ ;μj

〉∗
, ȳ ∈ R, j ∈ J

)
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=
∑

|J |=m−1

∏

j∈J
p′2j Vol2(μj , j ∈ J )

=
∑

|J |=m−1

∏

j∈J
p′2j .

To end the proof of the lemma, it is sufficient to note that

Zm,q = Pq

(∣
∣X̄

∣
∣ = m) =

∑

|J |=m

∏

j∈J
pj

∏

j /∈J
(1− pj ). ��

We can now conclude the proof of (27) and of Theorem 1. For any t > 0 it holds

∑

|J |=m−1

∏

j∈J
p′2j ≤

1

tm−1

n−1∏

j=0

(1+ tp′2j ) =
1+ t
tm−1

n−1∏

j=1

(1+ tp′2j ) .

since the left-hand is the coefficient of tm−1 in the product
∏n−1
j=0(1 + tp′2j ). In the

same way, for any x > 0,

∑

|J |=m−1,J⊂{1,··· ,n−1}

∏

j∈J

p2
j

p′2j

∏

j∈{1,··· ,n−1}\J
(1− pj )2

=
n−1∏

j=1

(1− pj )2
∑

|J |=m−1,J⊂{1,··· ,n−1}

∏

j∈J

p2
j

p′2j (1− pj )2

≤
∏n−1
j=1(1− pj )2
xm−1

n−1∏

j=1

(

1+ x p2
j

p′2j (1− pj )2
)

= 1

xm−1

n−1∏

j=1

(

(1− pj )2 + x
p2
j

p′2j

)

.

Hence, for any x, t > 0, for any m ∈ {1, · · · , n},

Eq

[
S (Λ)

∣
∣∣

∣∣X̄
∣∣ = m

]

≤ 1

Pq

[∣
∣X̄

∣
∣ = m]

√
1+ t

(tx)
m−1

2

√√
√
√√
n−1∏

j=1

(1+ tp′2j )
(

(1− pj )2 + x
p2
j

p′2j

)

.
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One can check that

(1+ tp′2j )
(

(1− pj )2 + x
p2
j

p′2j

)

=
(

1+ (√xt − 1)pj
)2+

(√
tp′j (1− pj)−

√
x
pj

p′j

)2

.

Take now xt = 1. We obtain that for any t > 0, for any m ∈ {1, · · · , n},

Eq

[
S (Λ)1∣

∣
∣X̄

∣
∣
∣=m

]
≤ √

1+ t

√√
√√
√
n−1∏

j=1

⎛

⎝1+
(√
tp′j (1− pj )−

1√
t

pj

p′j

)2
⎞

⎠

≤ √
1+ t exp

⎛

⎝1

2

n−1∑

j=1

(√
tp′j (1− pj )−

1√
t

pj

p′j

)2
⎞

⎠

= √
1+ t exp

⎛

⎝ t
2

n−1∑

j=1

p′2j (1− pj )2 +
1

2t

n−1∑

j=1

p2
j

p′2j
−
n−1∑

j=1

pj (1− pj )
⎞

⎠ .

Optimizing the exponential term in t and choosing t = Tn lead to (27).

4 Proof of Theorem 2

Let us first rewrite Kq ′ in terms of μ.

Lemma 4 For x ∈X ,

Kq ′(x, ·) = Eq ′
[
μA′(x)∩A(ρ′x)(·)

]
,Pq a.s..

Proof Starting Wilson’s algorithm from x to constructΦ ′, we get

Kq ′(x, y) = Px
[
X(Tq ′) = y

]

= Pq ′
[
ρ′x = y

]

= Eq ′
[
Pq ′

[
ρ′x = y

∣∣ A (Φ ′)
]]

= Eq ′
[
μA′(x)(y)

]
,

where the last equality comes from Proposition 5. Hence, Pq a.s.,

Kq ′(x, y) =
∑

x̄∈X̄
Eq ′

[
μA′(x)∩A(x̄)(y) μA′(x)(A(x̄))

]

=
∑

x̄∈X̄
Eq ′

[
μA′(x)∩A(x̄)(y)Pq ′

[
ρ′x ∈ A(x̄)

∣
∣ A (Φ ′)

]]
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=
∑

x̄∈X̄
Eq ′

[
μA′(x)∩A(x̄)(y)1A(x̄)(ρ′x)

]

= Eq ′
[
μA′(x)∩A(ρ′x)(y)

]
. ��

Lemma 5 For any x ∈X , set K̃q ′(x, ·) = Eq ′
[
μA(ρ′x)(·)

]
. Then, Pq a.s.,

ΛK̃q ′ = P̄Λ .

Proof Pq a.s., for any x, y ∈X ,

K̃q ′(x, y) = Eq ′
[
μA(ρ′x)(y)

] =
∑

ȳ∈X̄
μA(ȳ)(y)Pq ′

[
ρ′x ∈ A(ȳ)

]

=
∑

ȳ∈X̄
νȳ(y)Px

[
X(Tq ′) ∈ A(ȳ)

]
.

Hence, Pq a.s., for any x̄ ∈ X̄ , and y ∈X ,

νx̄K̃q ′(y) =
∑

x∈X

∑

ȳ∈X̄
νx̄(x)νȳ(y)Px

[
X(Tq ′) ∈ A(ȳ)

]

=
∑

ȳ∈X̄
νȳ(y)Pνx̄

[
X(Tq ′) ∈ A(ȳ)

]

= P̄Λ(x̄, y) . ��

Therefore, Pq a.s., for any x̄ ∈ X̄ ,

dTV (ΛKq ′(x̄, ·), P̄Λ(x̄, ·)) = dTV (ΛKq ′(x̄, ·),ΛK̃q ′ (x̄, ·))
≤

∑

x∈X
νx̄(x) dTV (Kq ′(x, ·), K̃q ′(x, ·))

≤
∑

x∈X
νx̄(x)Eq ′

[
dT V (μA′(x)∩A(ρ′x), μA(ρ′x))

]
.

When B is a subset of C, one has dTV (μB,μC) = μC(Bc). This yields

dT V (ΛKq ′(x̄, ·), P̄Λ(x̄, ·)) ≤
∑

x∈X
νx̄(x)Eq ′

[
μA(ρ′x)(A

′(x)c)
]

=
∑

x∈X
νx̄(x)Eq ′

[
Pq

[
ρρ′x /∈ A′(x)|A (Φ)

]]
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Note that

∑

x̄∈X̄
νx̄(x) =

∑

x̄∈X̄

μ(x)

μ(A(x̄))
1A(x̄)(x) =

∑

x̄∈X̄

μ(x)

μ(A(x))
1A(x̄)(x)

= μ(x)

μ(A(x))

∑

x̄∈X̄
1A(x̄)(x) = μ(x)

μ(A(x))
.

Summing on x̄ and integrating w.r.t. Eq , leads to

Eq

⎡

⎣
∑

x̄∈X̄
dT V (ΛKq ′(x̄, ·), P̄Λ(x̄, ·))

⎤

⎦ ≤
∑

x∈X
Eq,q ′

[
μA(x)(x)1A′(x)c(ρρ′x )

]
.

Let p ≥ 1 and p∗ its conjugate exponent. Using Hölder’s inequality, we get

Eq

⎡

⎣
∑

x̄∈X̄
dTV (ΛKq ′(x̄, ·), P̄Λ(x̄, ·))

⎤

⎦

≤
⎛

⎝
∑

x∈X
Eq,q ′

[
μA(x)(x)

p
]
⎞

⎠

1/p ⎛

⎝
∑

x∈X
Pq,q ′

[
ρρ′x /∈ A′(x)

]
⎞

⎠

1/p∗

≤
⎛

⎝
∑

x∈X
Eq

[
μA(x)(x)

]
⎞

⎠

1/p ⎛

⎝
∑

x∈X
Pq,q ′

[
ρρ′x /∈ A′(x)

]
⎞

⎠

1/p∗

.

Note that

∑

x∈X
Eq

[
μA(x)(x)

] =
∑

x∈X
Pq [ρx = x] =

∑

x∈X
Pq [x ∈ ρ(Φ)] = Eq [|ρ(Φ)|] .

Therefore,

Eq

⎡

⎣
∑

x̄∈X̄
dTV (ΛKq ′(x̄, ·), P̄Λ(x̄, ·))

⎤

⎦

≤ (
Eq [|ρ(Φ)|])1/p

⎛

⎝
∑

x∈X
Pq,q ′

[
ρρ′x /∈ A′(x)

]
⎞

⎠

1/p∗

. (38)

To conclude the proof of our theorem we evaluate Pq,q ′
[
ρρ′x /∈ A′(x)

]
for x any

given point in X .
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Lemma 6 For any x ∈X , let Γ ′x be the path going from x to ρ′x in Φ ′. Then,

Pq,q ′
[
ρρ′x /∈ A′(x)

] ≤ q
′

q
Eq ′

[∣∣Γ ′x
∣
∣] .

Proof To decide whether ρρ′x is inA′(x) or not, we do the following construction:

1. We begin the construction of Φ ′ using Wilson’s algorithm starting from x. Thus,
we let evolve the Markov process starting from x until an exponential time of
parameter q ′, and erase the loop. The result is an oriented path γ ′ (= Γ ′x) without
loops from x to a point y (= ρ′x).

2. We go on with the construction of Φ with Wilson’s algorithm starting from y.
We let evolve the Markov process starting from y until an exponential time Tq of
parameter q . The Markov process stops at a point v (= ρρ′x ).

3. Finally, we continue the construction of Φ ′ using Wilson’s algorithm starting
from v. We let evolve the Markov process starting from v, and we stop it after an
exponential time Tq ′ of parameter q ′, or when it reaches the already constructed
path γ ′. At this point, we are able to decide whether ρρ′x is in A′(x) or not, since
ρρ′x ∈ A′(x) if and only if Tq ′ is bigger than the hitting time of γ ′.

Using this construction, we get that for any self-avoiding path γ ′ from x to y,

Pq,q ′
[
ρρ′x /∈ A′(x)|Γ ′x = γ ′; ρ′x = y

] = Py
[
Tq ′ < Hγ ′ ◦ θTq

]
,

where θt denotes the time shift. Recall that σ1 is the first time of the clock process
on which X is build from X̂, and let Si be the successive return times to γ ′:

S0 = 0 , S1 = inf
{
t ≥ σ1;X(t) ∈ γ ′

} = H+
γ ′ , Si+1 = Si + S1 ◦ θSi .

Then,

Py
[
Tq ′ < Hγ ′ ◦ θTq

] =
∞∑

i=0

Py
[
Si ≤ Tq < Si+1; Tq ′ < Hγ ′ ◦ θTq

]
.

Now, if Si ≤ Tq < Si + σ1 ◦ θSi , X(Tq) ∈ γ ′ and Hγ ′ ◦ θTq = 0 < Tq ′ . If
Tq ≥ Si + σ1 ◦ θSi and Tq < Si+1, X(Tq) /∈ γ ′ and Hγ ′ ◦ θTq = Si+1 − Tq .
Therefore,

Py
[
Tq ′ < Hγ ′ ◦ θTq

] =
∞∑

i=0

Py
[
Si + σ1 ◦ θSi ≤ Tq < Tq ′ + Tq < Si+1

]

=
∞∑

i=0

∑

z∈γ ′
Py

[
Si ≤ Tq ;X(Si) = z

]
Pz

[
σ1 ≤ Tq < Tq ′ + Tq < H+

γ ′
]
,
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using Markov property at time Si . Set G̃q(y, z, γ ′) = Ey
[∑+∞

i=0 1Si≤Tq ;X(Si)=z
]
.

Since z ∈ γ ′, G̃q(y, z, γ ′) is the mean number of visits to the point z up to time Tq .
We have obtained that

Py
[
Tq ′ < Hγ ′ ◦ θTq

] =
∑

z∈γ ′
G̃q(y, z, γ

′)Pz
[
σ1 ≤ Tq < Tq + Tq ′ < H+

γ ′
]
.

We now use Markov property at time σ1 to write

Pz

[
σ1 ≤ Tq < Tq + Tq ′ < H+

γ ′
]

=
∑

u/∈γ ′
Pz

[
σ1 ≤ Tq,X(σ1) = u

]
Pu(Tq < Tq ′ + Tq < Hγ ′)

≤
∑

u/∈γ ′
α

q + αP(z, u)Pu(Tq ′ < Hγ ′)

=
∑

u/∈γ ′
1

q + αw(z, u)Pq ′
[
ρ′u = y

∣
∣ Γ ′x = γ ′

]
,

using that αP(z, u) = L (z, u) = w(z, u) for z = u. Integrating over γ ′ and y, we
are led to

Pq,q ′
[
ρρ′x /∈ A′(x)

] ≤
∑

y∈X

∑

γ :x�y

∑

z∈γ

∑

u/∈γ

G̃q(y, z, γ )

q + α w(z, u)Pq ′
[
ρ′u = y;Γ ′x = γ ;ρ′x = y

]

where the sum over γ ′ is the sum on all self-avoiding paths going from x to y. Now,
introducing for any such path γ

F1(y, γ, u) := {φ s.o.f. ; y ∈ ρ(φ), γ ⊂ φ, ρu = y} ,

this can be rewritten, with w(φ) = ∏
e∈φ w(e), as

Pq,q ′
[
ρρ′x /∈ A′(x)

] =
∑

y∈X

∑

γ :x�y

∑

z∈γ

∑

u/∈γ

∑

φ∈F1(y,γ,u)

G̃q(y, z, γ )

q + α w(z, u)
(q ′)|ρ(φ)|w(φ)

Z(q ′)
.

Lemma 7 Let Gq(y, z) = Ey

[∫ Tq
0 1X(s)=z ds

]
. Then Gq(y, z) = G̃q(y, z, γ )/

(q + α) for any self-avoiding path γ that contains z and goes from x to y.

Proof Let Vi be the successive return times to z:

V0 = 0 , V1 = inf {t ≥ σ1;X(t) = z} , Vi+1 = Vi + V1 ◦ θVi .
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Then G̃q(y, z, γ ) = δy(z)+∑+∞
i=1 Ey[1Vi≤Tq ]. Moreover, using Markov’s property

at time Vi ,

Gq(y, z) =
∞∑

i=0

Ey

[∫ Vi+1

Vi

1Tq≥s1X(s)=z ds
]

=
∞∑

i=0

Ey

[
1Vi≤TqEX(Vi )

[∫ V1

0
1Tq≥s1X(s)=z ds

]]

= Ey
[∫ V1

0
1Tq≥s1X(s)=z ds

]
+

∞∑

i=1

Ey
[
1Vi≤Tq

]
Ez

[∫ V1

0
1Tq≥s1X(s)=z ds

]

=
(

δy(z)+
∞∑

i=1

Ey
[
1Vi≤Tq

]
)

Ez

[∫ V1

0
1Tq≥s1X(s)=z ds

]

= G̃q(y, z, γ )Ez
[∫ V1

0
1Tq≥s1X(s)=z ds

]
.

Now, Ez
[∫ V1

0 1Tq≥s1X(s)=z ds
]
= Ez

[∫ σ1
0 1Tq≥s ds

] = E [
σ1 ∧ Tq

] = 1
q+α . ��

Hence,

Pq,q ′
[
ρρ ′x /∈ A′(x)

] ≤
∑

y∈X

∑

γ :x�y

∑

z∈γ

∑

u/∈γ

∑

φ∈F1(y,γ,u)

Gq(y, z)w(z, u)
(q ′)|ρ(φ)|w(φ)

Z(q ′)
.

We fix y, γ and z and want to perform the summations over u and φ. With any pair
(u, φ), with u /∈ γ and φ ∈ F1(y, γ, u), we associate a new forest φ̃ = φ̃(u, φ) in
the following way:

1. we reverse the edges from z to y along γ ;
2. we add the edge (z, u).

The forest φ̃ is such that:

•
∣
∣∣ρ(φ̃)

∣
∣∣ = |ρ(φ)| − 1;

• z /∈ ρ(φ̃).
• the piece γx�z of the path γ going from x to z belongs to φ̃;
• the path ←−γ y�z consisting of the reversed path γ from z to y, belongs to φ̃.

Using reversibility, one has μ(z)
∏
e∈γz�y w(e) = μ(y)

∏
e∈←−γ y�z w(e), and

w(z, u)w(φ) = w(φ̃)μ(y)/μ(z) .
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Set F2(y, z, γ ) =
{
φ s.o.f. ; z /∈ ρ(φ), γx�z ⊂ φ,←−γ y�z ⊂ φ

}
. Note that the

function

(u, φ) ∈ {(u, φ), u /∈ γ, φ ∈ F1(y, γ, u)} �→ φ̃ ∈ F2(y, z, γ )

is one to one. Indeed, given φ̃ in F2(y, z, γ ), u is the “ancestor” of z in φ̃, and
once we know u, φ is obtained by cutting the edge (z, u), and by reversing the path←−γ y�z. Therefore, we obtain

∑

u/∈γ

∑

φ∈F1(y,γ,u)

Gq(y, z)w(z, u)
(q ′)|ρ(φ)|w(φ)

Z(q ′)

=
∑

φ∈F2(y,z,γ )

Gq(y, z)
μ(y)

μ(z)

(q ′)|ρ(φ)|+1w(φ)

Z(q ′) =
∑

φ∈F2(y,z,γ )

Gq(z, y)
(q ′)|ρ(φ)|+1w(φ)

Z(q ′)

by reversibility. At this point, we are led to

Pq,q ′
[
ρρ′x /∈ A′(x)

] ≤
∑

y∈X

∑

γ :x�y

∑

z∈γ

∑

φ∈F2(y,z,γ )

Gq(z, y)
(q ′)|ρ(φ)|+1w(φ)

Z(q ′)
.

We now perform the summations over z and γ and φ, y being fixed. Note that if
φ ∈ F2(y, z, γ ) for some z and γ , x and y are in the same tree (τx = τy using the
notations of Sect. 1.3.3), and z is their first common ancestor a(x, y) in that tree.
Let us then denote

F3(y, x) =
{
φ s.o.f. ; τx = τy, a(x, y) /∈ ρ(φ)

}
.

Then,

∪γ :x�y ∪z∈γ F2(y, z, γ ) ⊂ F3(y, x) .

In addition, given a forest φ ∈ F3(y, x), there is a unique γ : x � y, and z ∈
γ such that φ ∈ F2(y, z, γ ): z is the first common ancestor a(x, y) of x and y,
whereas γ is the concatenation of the path going from x to a(x, y) and the reversed
path from y to a(x, y). Therefore,

∑

γ :x�y

∑

z∈γ

∑

φ∈F2(y,z,γ )

Gq(z, y)
(q ′)|ρ(φ)|+1w(φ)

Z(q ′)

=
∑

φ∈F3(y,x)

Gq(a(x, y), y)
(q ′)|ρ(φ)|+1w(φ)

Z(q ′)
.
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It remains to sum over y. When moving y in τx , a(x, y) moves along the path γx
going from x to the root of τx . Hence,

∑

y∈X

∑

φ∈F3(y,x)

Gq(a(x, y), y)
(q ′)|ρ(φ)|+1w(φ)

Z(q ′)

=
∑

φ s.o.f.

∑

z∈γx,z =ρx

∑

y∈τx ;a(x,y)=z
Gq(z, y)

(q ′)|ρ(φ)|+1w(φ)

Z(q ′)

≤ q
′

q

∑

φ s.o.f.

∑

z∈γx,z =ρx
πq ′(φ) ≤ q

′

q
Eq ′

[∣
∣Γ ′x

∣
∣] . ��

5 Proof of Theorem 3

Let us first rewrite our approximate solutions of Eq. (3) with error terms. There are
signed measures εx̄,q ′ such that, for all x̄ in X̄ ,

μA(x̄)Kq ′ =
∑

ȳ∈X̄
PμA(x̄)

(
X(Tq ′) ∈ A(ȳ)

)
μA(ȳ) + εx̄,q ′ .

Let us now apply the “low-pass filter” MWm on both sides of the equations. On
the one hand,Kq ′ andMWm commute. On the other hand, our linear independence
(i.e. finite squeezing) hypothesis implies that the εx̄,q ′MWm are linear combinations
of the μA(x̄)MWm. Indeed, since the image im(MWm) of MWm is a vector space
of dimension m that contains the m linearly independent νx̄ , the latter should span
im(MWm). We then get, by using the notation of the proof of Proposition 6,

νx̄Kq ′ =
∑

ȳ∈X̄

(
PμA(x̄)

(
X(Tq ′) ∈ A(ȳ)

)+ 〈ν̃ȳ , εx̄,q ′MWm〉∗
)
νȳ .

Now, when q ′ goes to 0, PμA(x̄)
(
X(Tq ′) ∈ A(ȳ)

)
converges to μ(A(ȳ)) > 0, and, by

Theorem 2, εx̄,q ′ goes to zero. Since our νx̄ do not depend on q ′, this concludes the
proof of the theorem.

Let us list what would be needed to give quantitative bounds on q ′ to ensure that
we can build in this way exact solutions of (3). We would need:

1. upper bounds on the εx̄,q ′ ;
2. upper bounds on the ‖ν̃x̄‖;
3. lower bounds on the PμA(x̄)

(
X(Tq ′) ∈ A(ȳ)

)
.

The latter are out of reach in such a general framework, the first ones are provided
by Theorem 2, the second ones would be a consequence of upper bounds on the
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squeezing. This is the reason why we introduce the squeezing to measure joint
overlap. We note that given Proposition 5 and Eq. (27) in Theorem 1, we are not so
far of getting such bounds. But no convexity inequality leads here to the conclusion.

Appendix: Proof of Proposition 1

If such random variables exist then, for all x̄, ȳ = x̄ and y,

Pνx̄

(
Tx̄ = 1, Ȳx̄ = ȳ

∣
∣
∣ X̂(1) = y

)
=
Pνx̄

(
Tx̄ = 1, Ȳx̄ = ȳ, X̂(1) = y

)

(νx̄P )(y)

=
(1− P̄ (x̄, x̄)) P̄ (x̄,ȳ)

1−P̄ (x̄,x̄) νȳ(y)
(νx̄P )(y)

= P̄ (x̄, ȳ)νȳ (y)
(νx̄P )(y)

.

By summing on ȳ we get

Pνx̄

(
Tx̄ = 1

∣
∣∣ X̂(1) = y

)
= (νx̄P )(y)− P̄ (x̄, x̄)νx̄ (y)

(νx̄P )(y)
= 1− P̄ (x̄, x̄)νx̄ (y)

(νx̄P )(y)
.

We also have

Pνx̄

(
Ȳx̄ = ȳ

∣
∣∣ X̂(1) = y, Tx̄ = 1

)
=
Pνx̄

(
Ȳx̄ = ȳ, Tx̄ = 1

∣
∣∣ X̂(1) = y

)

Pνx̄

(
Tx̄ = 1

∣
∣
∣ X̂(1) = y

)

= P̄ (x̄, ȳ)νȳ (y)

(νx̄P )(y)− P̄ (x̄, x̄)νx̄(y)
.

We are then led to build Tx̄ ≥ 1 and Ȳx̄ in the following way.

1. At t = 1 we set Tx̄ = 1 with probability 1 − P̄ (x̄, x̄)νx̄ (X̂(1))/(νx̄P )(X̂(1)) by
using a uniform random variable U1 which is independent of X̂—it holds

P̄ (x̄, ȳ)νx̄ (y)/(νx̄P )(y) ≤ 1

for all y in X , as a consequence of Eq. (6).
2. If we just set Tx̄ = 1 we then set Ȳx̄ = ȳ = x̄ with a probability given by the ratio
P̄ (x̄, ȳ)νȳ(X̂(1))/[(νx̄P )(X̂(1))− P̄ (x̄, x̄)νx̄ (X̂(1))] by using a uniform random
variable U ′1 that is independent of U1 and X̂. (Once again (6) ensures that these
are positive quantities summing to one.)
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3. If for all s < t we did not decide to set Tx̄ = s then we set in the same way Tx̄ = t
with probability 1 − P̄ (x̄, x̄)νx̄ (X̂(t))/(νx̄P )(X̂(t)), in which case we set Ȳx̄ =
ȳ = x̄ with probability P̄ (x̄, ȳ)νȳ (X̂(t))/[(νx̄P )(X̂(t))−P̄ (x̄, x̄)νx̄ (X̂(t))]. This
is naturally done by using uniform random variable that are independent of X̂ and
U1, U ′1, U2, U ′2, . . . , Ut−1, U ′t−1.

At this point, the key property to check is the stationarity of νx̄ up to Tx̄ . To this end
it suffices to check Eq. (7) with t = 1. And one has

Pνx̄

(
X̂(1) = y

∣
∣
∣ Tx̄ > 1

)
=
Pνx̄

(
X̂(1) = y, Tx̄ > 1

)

Pνx̄ (Tx̄ > 1)

=
Pνx̄

(
X̂(1) = y

)
− Pνx̄

(
X̂(1) = y, Tx̄ = 1

)

1− Pνx̄ (Tx̄ = 1)

=
νx̄P (y)− νx̄P (y)

(
1− P̄ (x̄,x̄)νx̄(y)

νx̄P (y)

)

1−∑
z νx̄P (z)

(
1− P̄ (x̄,x̄)νx̄(z)

νx̄P (z)

)

= P̄ (x̄, x̄)νx̄ (y)

1−∑
z νx̄P (z)+

∑
z P̄ (x̄, x̄)νx̄ (z)

= νx̄(y).

Points (1)–(5) immediately follow.
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Bernoulli Hyperplane Percolation

Marco Aymone, Marcelo R. Hilário, Bernardo N. B. de Lima,
and Vladas Sidoravicius

Abstract We study a dependent site percolation model on the n-dimensional
Euclidean lattice where, instead of single sites, entire hyperplanes are removed
independently at random. We extend the results about Bernoulli line percolation
showing that the model undergoes a non-trivial phase transition and proving the
existence of a transition from exponential to power-law decay within some regions
of the subcritical phase.

Keywords Dependent percolation · Phase transition · Connectivity decay

1 Introduction

In Bernoulli site percolation on the Z
n-lattice, vertices are removed independently

with probability 1 − p. For n ≥ 2, the model undergoes a phase transition at pc =
pc(Z

n) ∈ (0, 1): For p < pc all the connected components are finite almost surely
whereas, for p > pc, there exists an infinite connected component almost surely
[2]. In a different percolation model on Z

n, n ≥ 3, called Bernoulli line percolation,
instead of single sites, bi-infinite lines (or columns) of sites that are parallel to
the coordinate axes are removed independently. This model, that was introduced
in the physics literature by Kantor [8] and later studied both from the numerical
[5, 12] and mathematical [7] points of view, also exhibits a phase transition as the
probability of removal of single lines is varied. However the geometric properties of
the resulting connected components differ substantially in these two models. In fact,
while for Bernoulli site percolation the connectivity decay is exponential [1, 3, 10]
except exactly at the critical point, for Bernoulli line percolation, transitions from
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exponential to power-law decay occur within the subcritical phase [7, Theorem 1.2].
In the present paper we study a higher dimensional version of the Bernoulli line
percolation model that we call Bernoulli hyperplane percolation. In this model, for
fixed n ≥ 3 and k with 1 ≤ k ≤ n we remove from Z

n entire (n − k)-dimensional
‘affine hyperplanes’. We introduce the model precisely in the following section.

1.1 Definition of the Model and Main Results

In this section we define the Bernoulli hyperplane percolation model.
It can be formulated in terms of orthogonal projections onto “the coordinate

hyperplanes” as follows: For n ≥ 2 and 1 ≤ k ≤ n we write

I = I (k; n) := {I ⊂ [n] : #I = k}, (1)

where [n] := {1, . . . , n}. For a fixed I ∈ I (k, n) we denote Z
k
I the set of all the

linear combinations of the canonical vectors (ei)i∈I with integer coefficients, that
is,

Z
k
I :=

{ ∑

i∈I
xiei ∈ Z

n : xi ∈ Z for all i ∈ I
}
. (2)

Since each one of the
(
n
k

)
sets ZkI is isomorphic to the Z

k-lattice they will be called
the k-dimensional coordinate hyperplanes of Zn. Let us define, independently on
each Z

k
I , a Bernoulli site percolation ωI ∈ {0, 1}ZkI with parameter pI ∈ [0, 1] that

is, a process in which (ωI (u))u∈ZkI are independent Bernoulli random variables with

mean pI ∈ [0, 1]. We may interpret these processes by considering that each u ∈ Z
k
I

is removed (that is ωI (u) = 0) independently with probability 1− pI .
Let πI : Zn → Z

k
I stand for the orthogonal projection from Z

n onto Z
k
I

πI

( n∑

i=1

xiei

)
:=

∑

i∈I
xiei . (3)

The Bernoulli (n, k)-hyperplane percolation on Z
n is the process ω = (ω(v))v∈Zn ∈

{0, 1}Zn , where

ω(v) =
∏

I∈I
ωI (πI (v)). (4)

We denote p = (pI )I∈I . Each entry pI ∈ [0, 1] is called a parameter of p. We
write Pp for the law in {0, 1}Zn of the random element ω defined in (4).

Since ω(v) = 1 if and only if ωI (πI (v)) = 1 for all I ∈ I (k, n), we may inter-
pret the process ω in terms of removal of sites in Z

n as follows: v is removed (that is
ω(v) = 0) if and only if, for at least one of the I ∈ I (k; n) its orthogonal projection
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into Z
k
I has been removed in ωI . One can easily check that this is equivalent to

perform independent removal (or drilling) of (n− k)-dimensional hyperplanes that
are parallel to the coordinate hyperplanes.

Let [o ↔ ∞] denote the event that the origin belongs to an infinite connected
component of sites v such that ω(v) = 1 and let [o � ∞] be the complementary
event. Also denote by [o ↔ ∂B(K)] the event that the origin is connected to some
vertex lying at l∞-distance K from it via a path of sites v such that ω(v) = 1.

Our first result generalizes Theorem 1.1 in [7].

Theorem 1 Let n ≥ 3 and 2 ≤ k ≤ n − 1. The Bernoulli (n, k)-hyperplane
percolation model undergoes a non-trivial phase transition, that is: If all the
parameters of p are sufficiently close to 1 then Pp(o ↔ ∞) > 0. On the other
hand, when all the parameters of p are sufficiently close to 0 then Pp(o↔∞) = 0.

The proof of Theorem 1 will be divided into two parts. The second assertion
which concerns the regime in which all the parameters are small is proved in Sect. 2
(see Remark 1 therein). In Sect. 3 we prove the first assertion which concerns the
regime in which all the parameters are large (see Remark 3 therein).

Our next result states that for some range of the parameter vector p the
connectivity cannot decay faster than a power law.

Theorem 2 Let n ≥ 3 and 2 ≤ k ≤ n − 1. If, for all I ∈ I (k; n), the parameters
pI < 1 are sufficiently close to 1, then there exists c = c(p) > 0 and α = α(p) > 0
such that

Pp(o↔ ∂B(K), o�∞) ≥ cK−α (5)

for every integer K > 0.

In the special case k = 2 we can determine more precisely some regions of the
parameter space for which power-law decay holds:

Theorem 3 Let n ≥ 3 and k = 2 and assume that pI > 0 for every I ∈ I (k; n).
Denote Ij := {1, j } and assume that pIj > pc(Z

2) for every 2 ≤ j ≤ n. Assume
further that pI < 1 for some I ∈ I \ {I2, . . . , In}. Then there exist c = c(p) > 0
and α = α(p) > 0 such that (5) holds for every integer K > 0.

Having stated our main results, we now provide some remarks about the
contribution of this paper.

The case k = 1 does not admit a (non-trivial) phase transition. In fact, as soon
as pI > 0 for every I , drilling (n − 1)-dimensional hyperplanes has the effect of
splitting the lattice into finite rectangles. The case k = n corresponds to Bernoulli
site percolation (here we interpret 0-dimensional hyperplanes as being just single
sites). For these reasons in the above statements we have 2 ≤ k ≤ n− 1. Moreover,
the case k = n − 1 corresponds to the Bernoulli line percolation model studied in
[7] so the results are not novel in this specific case.
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Theorem 3, that only concerns the case k = 2, states that when the Bernoulli site
percolation processesωI defined on the n−1 coordinate planes that contain e1 are all
supercritical, then power-law decay holds regardless of the values of the parameters
fixed for the Bernoulli percolation processes in the remaining

(
n−1

2

)
hyperplanes

(provided that at least one of these is smaller than 1). It generalizes the first statement
in [7, Theorem 1.2]. Of course, the arbitrary choice of fixing the ‘direction’ 1 is made
purely for convenience; any other choice would result in an analogous result.

Still for k = 2, the same argument used to prove Equation (1.3) in [7] can
be employed to show that if pI < pc(Z

2) for at least
(
n−1

2

) + 1 parameters,
then Pp(o ↔ ∂B(K)) is exponentially small in K , see Remark 2 for a sketch of
the argument. Hence, like in Bernoulli line percolation, there is a transition from
exponential to power-law decay within the subcritical phase. This contrasts with the
classical Bernoulli site percolation in which exponential decay holds everywhere
outside the critical point [1, 3, 10] and raises the question whether the phase
transition for Bernoulli hyperplane percolation is sharp in the sense that the expected
size of the cluster containing a vertex is finite in the whole subcritical regime. For
Bernoulli site percolation sharpness is an immediate consequence of exponential
decay.

Let us now briefly comment on some related results obtained for percolation
models presenting infinite-range correlations along columns. One of these models
is the so called Winkler’s percolation [13] for which a power-law decay as in (5) has
been proved by Gács [4] whenever the model is supercritical. For another model
called corner percolation, although all the connected components are finite almost
surely, Pete [11] has obtained a power-law lower bound for Pp(o ↔ ∂B(K)) . A
variation of Bernoulli line percolation was studied in [6]. In this paper, only columns
that extend along a single direction are removed and Bernoulli line percolation is
performed on the remaining graph. Here (5) holds in some parts of the subcritical
phase and throughout the whole supercritical phase.

We finish this section presenting a brief overview of the remainder of the paper. In
Sect. 1.2 we introduce some of the notation that we will need. Section 2 is devoted
to the study of the subcritical phase, that is, the regime in which infinite clusters
occur with null probability. Lemma 2 identifies values of the parameters which fall
inside the subcritical phase and thus implies the second assertion in Theorem 1.
We also present other results that add more information about the subcritical phase
including bounds on the parameters that guarantee exponential decay of correlations
(Remark 2). In Sect. 3 we prove the existence of the supercritical phase, that is, the
regime in which there exists at least one infinite open cluster with probability one.
This corresponds to the first assertion in Theorem 1. In Sect. 4 we present the proof
of Theorem 3 and show how to modify it in order to obtain a proof for Theorem 2.
These are perhaps the most interesting results in our work since they highlight the
presence of power-law decay of connectivity in some regimes and show that the
transition from the subcritical to the supercritical phase is more delicate than that
exhibited by ordinary percolation models with finite range dependencies.
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1.2 Notation

In this section we make precise the notation and definitions used in the previous
section and introduce some further notation that will be used in the remainder of the
paper.

The n-dimensional Euclidean lattice (here called simply the Z
n-lattice) is the

pair Zn = (V (Zn), E(Zn)) whose vertex set V (Zn) is composed of vectors x =
(x1, . . . , xn) ∈ R

n having integer coordinates xi and E(Zn) is the set of pairs of
vertices in V (Zn) lying at Euclidean distance one from each other, called edges (or
bonds). Vertices x ∈ V (Zn) will also be called sites. We abuse notation using Z

n to
refer both to the Zn-lattice and to its set of vertices. We denote ‖x‖ = ∑n

i=1 |xi | the
l1-norm of x = (x1, . . . , xn) ∈ Z

n .
The vertex o = (0, . . . , 0) ∈ Z

n will be called the origin. Note that it also belongs
to each one of the ZkI . We write B(K) := [−K,K]n∩Zn for the l∞-ball of radiusK
centered at o. For a given I ∈ I (k; n), we will also use B(K) instead of πI (B(K))
for the corresponding box contained in the hyperplanes ZkI (recall the definitions of
the index set I (k; n) in (1) and of the k-dimensional coordinate hyperplanes ZkI in
(2)).

ConsiderΩ = {0, 1}Zn endowed with the canonical sigma-field F generated by
the cylinder sets. A probability measure μ on (Ω,F ) is called a site percolation
on Z

n. Any random element (ω(v))v∈Zn which is distributed as μ is also called a
percolation process in Z

n. For p ∈ [0, 1], we denote Pp the probability measure
in (Ω,F ) under which the projections (ω(v))v∈Zn are i.i.d. Bernoulli random
variables of mean p. This is the so-called Bernoulli site percolation on Z

n with
parameter p.

Fix integers n ≥ 3 and 2 ≤ k ≤ n− 1 and let pI ∈ [0, 1] for each I ∈ I (k; n).
ConsiderΩI = {0, 1}ZkI endowed with the canonical sigma-field FI . The definition
of Bernoulli site percolation with parameter pI extends to Z

k
I naturally yielding the

measures PpI on (ΩI ,FI ). The probability measure Pp which was defined below
(4), is the unique measure in (Ω,F ) satisfying

Pp =
(⊗I∈Ik,n PpI

) ◦ ω−1 (6)

where ω is defined in (4). We will denote Ep(·) the expectation with respect to PP.
Let G be either Zn or ZkI for some I ∈ I . Given η = (η(x))G ∈ {0, 1}G, we

say that a site x ∈ G is η-open when η(x) = 1. Otherwise x is said η-closed. A site
x ∈ Z

n is said ωI -open if πI (x) ∈ Z
k
I is ωI -open, i.e., if ωI (πI (x)) = 1. Otherwise,

x is said ωI -closed. Since x is ω-open if and only if it is ωI -open for all I ∈ I (k, n)
and since the percolation processes ωI are independent we have

Ep(ω(o)) = Pp(ω(x) = 1) =
∏

I∈I
pI . (7)
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Therefore one can show that

Pp
(
all sites in B(R) are open

) = [
Ep(ω(o))

](2R+1)k (8)

which is similar to the Bernoulli site percolation case where the exponent (2R+1)k

has to be replaced by (2R + 1)n.
Let G be either Zn or ZkI for some I ∈ I . A path in G is either a finite set

Γ = {x0, x1, . . . , xm} or an infinite set Γ = {x0, x1, x2 . . .} such that xi ∈ G for
all i, xi = xj whenever i = j and ||xi − xi−1|| = 1 for all i = 1, . . . ,m. For
η = (η(x))x∈G ∈ {0, 1}G we denote Vη = Vη(G) = {x ∈ G : η(x) = 1}. For
such η we say that x, y ∈ Vη are connected and write x ↔ y if there exists a path
composed exclusively of η-open sites that starts at x and finishes at y. Otherwise,
we write x � y. For A ⊂ Z

n, we write x ↔ A if x ↔ y for some y ∈ A.
We say that G ⊂ Vη is a connected component (or a cluster) of Vη when every
pair of sites x, y ∈ G is such that x ↔ y. In addition, for x ∈ G we denote by
Vη(x) = Vη(x;G) the maximal connected component in Vη containing x, that is,
Vη(x;G) = {y ∈ G : x ↔ y in η}. We say that a site x belongs to an infinite
connected component in Vη and denote it x ↔∞ if #Vη(x) =∞.

We say that the Bernoulli (n, k)-hyperplane percolation exhibits a non-trivial
phase transition if there exists p = (pI )I∈I with pI > 0 for all I ∈ I and
q = (qI )I∈I with qI < 1 for all I ∈ I , such that Pp(o ↔ ∞) = 0 and Pq(o ↔
∞) > 0. The set of all p for which Pq(o↔∞) > 0 is called the supercritical phase
whereas the set of all p for which Pp(o↔∞) = 0 is the subcritical phase.

For x ∈ Z
k
I we denote by

PI (x) := π−1
I (x) = {z ∈ Z

n : πI (z) = x} (9)

the pre-image of x under πI , so that {PI (x) : x ∈ Z
k
I } foliates Z

n into disjoint
‘parallel (n− k)-dimensional afine hyperplanes’. Observe that

inf
{‖v −w‖ : v ∈PI (x),w ∈PI (y)

} = 1if and only if ‖x − y‖ = 1.

Let I ∈ I (k; n). The graph H = H (I) with vertices V (H ) := {PI (x) : x ∈
Z
k
I }, and with edges linking pairs of vertices PI (x) and PI (y) satisfying

inf{||v −w|| : v ∈PI (x),w ∈PI (y)} = 1

is called a Z
k-decomposition of Zn. Notice that H is isomorphic to Z

k .
For a fixed x ∈ Z

k
I , the projection π[n]\I : Z

n → Z
n−k
[n]\I maps PI (x)

isomorphically to Z
n−k
[n]\I which is, in turn, isomorphic to Z

n−k . Thus for each

v ∈ Z
n−k
[n]\I , there exists a unique u ∈ PI (x) such that π[n]\I (u) = v. We say

that v is PI (x)-closed if there exists J ∈ I (n; k) \ {I } for which u is ωJ -closed.
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Otherwise we say that v is PI (x)-open. Observe that if x and y are different vertices
in Z

k
I and v ∈ Z

n−k
[n]\I we might have that v is PI (x)-open and PI (y)-closed.

We say that T ⊂ Z
n surrounds the origin if there exists a partition of Zn \ T =

A ∪ B such that:

A is connected, o ∈ A and #A <∞; (10)

inf{‖a − b‖ : a ∈ A, b ∈ B} ≥ 2. (11)

Similar definitions can be made replacing Z
n by any of the ZkI . A useful fact that we

will use below it that Vω(o) is finite if and only if there exists T ⊂ Z
n that surrounds

the origin and whose sites are all ω-closed (and similarly for VωI ).

2 The Existence of a Subcritical Phase

This section is dedicated to the existence of a subcritical phase. Indeed we show that
Bernoulli hyperplane percolation does not present infinite connected components
a.s. when some of the parameters of p are sufficiently small. This corresponds to the
second assertion in Theorem 1 which is a consequence of Lemma 2 below. Roughly
speaking, Lemma 2 asserts that the probability that a given site belongs to an infinite
open cluster vanishes as soon as a single parameter pI is taken subcritical and at
least other (well-chosen) n − k parameters do not equal 1. In order to get the same
conclusion, Lemma 3 requires that n/k parameters are subcritical regardless of the
fact that the other parameters can even be equal to 1. Remark 2 contains the sketch
of an argument showing that if we get sufficiently many subcritical parameters then
actually exponential decay holds (hence infinite connected components cannot exist
a.s.). We begin with the following deterministic result which will also be useful in
Sect. 4 when we present a proof of Theorem 3.

Lemma 1 Let ω be as in (4) and fix I ∈ I (k; n). Assume that the two following
conditions hold:

(i) The cluster VωI (o;ZkI ) is finite;
(ii) There exists T ⊂ Z

n−k
[n]\I that surrounds the origin in Z

n−k
[n]\I and such that every

v ∈ T is PI (x)-closed for every x ∈ VωI (o;ZkI ).
Then Vω(o;Zn) is finite.

Proof Assume that there exists an infinite path {o = z1, z2, . . .} ⊂ Z
n starting

at the origin and composed of ω−open sites only. Let T be as in Condition (ii) and
A ⊂ Z

n−k
[n]\I be the corresponding set given as (10) and (11). We claim that zi satisfies

πI (zi) ∈ VωI (o,Z
k
I ) and π[n]\I (zi) ∈ A for all i = 1, 2, . . . (12)
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Since VωI (o;ZkI ) and A are finite this would contradict the fact that all the zi ’s are
distinct.

Since z1 = o, (12) holds for i = 1. Now assume that (12) holds for some
i ≥ 1. Since ‖zi − zi+1‖ = 1, either we have ‖π[n]\I (zi+1) − π[n]\I (zi)‖ = 1
and ‖πI (zi+1) − πI (zi)‖ = 0 or else ‖π[n]\I (zi+1) − π[n]\I (zi)‖ = 0 and
‖πI (zi+1) − πI (zi)‖ = 1. In the first case, let x = πI (zi) = πI (zi+1). We have
πI (zi+1) ∈ VωI (o,Z

k
I ). Moreover, since ‖π[n]\I (zi+1) − π[n]\I (zi )‖ = 1, we have

π[n]\I (zi+1) ∈ A ∪ T . But π[n]\I (zi+1) is not PI (x)-closed, so π[n]\I (zi+1) /∈ T ,
therefore we must have π[n]\I (zi+1) ∈ A. In the second case, zi ∈ PI (x) and
zi+1 ∈ PI (y), where ‖x − y‖ = 1 and x ∈ VωI (o;ZkI ) thus, since ωI (y) = 1
we must have that y ∈ VωI (o;ZkI ). Also π[n]\I (zi ) = π[n]\I (zi+1) and hence
π[n]\I (zi+1) ∈ A. Therefore, (12) follows by induction. ��

We use Lemma 1 in order to prove the following result that settles the existence
of a subcritical phase and hence proves the second assertion in Theorem 1.

Lemma 2 Assume that pI < pc(Zk) for some I ∈ I (k; n) and that pJi < 1 for
the n − k distinct Ji ∈ I (k; n) such that #(I ∩ J1 ∩ . . . ∩ Jn−k) = k − 1. Then
Vω(o;Zn) is finite Pp-a.s.

Proof The proof is divided into 2 cases:

First Case: k = n− 2, k ≥ 2
Let us assume for simplicity that I = {1, . . . , k}, J1 = {1, . . . , k − 1, k + 1} and
J2 = {1, . . . , k − 1, k + 2} (thus pI < pc(Zk) and pJ1, pJ2 < 1). Let H =H (I)

be the Z
k-decomposition of Zn associated to I . Then H is isomorphic to Z

k and
each site of H is isomorphic to Z

2. Since pI < pc(Zk), there exists a.s. a (random)
non-negative integerN such that VωI (o;ZkI ) ⊂ B(N). In particular, Condition (i) in
Lemma 1 holds a.s. and all we need to show is that Condition (ii) holds a.s. on the
event [VωI (o;ZkI ) ⊂ B(N)] for each fixed N .

To this end, first recall that for each x ∈ Z
k
I , PI (x) = {z ∈ Z

n : πI (z) =
x}. Since pJ1 < 1, the Borel-Cantelli Lemma guarantees that, almost surely, there
exists x∗k+1 ∈ N such that ωJ1(x1, . . . , xk−1, x

∗
k+1) = ωJ1(x1, . . . , xk−1,−x∗k+1) =

0, for all (x1, . . . , xk−1) ∈ [−N,N]k−1 ∩ Z
k−1. This implies that for each x =

(x1, . . . , xk) ∈ [−N,N]k ∩ Z
k

ω(x1, . . . , xk, x
∗
k+1, xk+2) = ω(x1, . . . , xk,−x∗k+1, xk+2) = 0, ∀ xk+2 ∈ Z.

In other words, for each x ∈ B(N) ⊂ Z
k
I the set of PI (x)-closed sites of

π[n]\I (PI (x)) ⊂ Z
2[n]\I contains the lines {(0, . . . , 0, x∗k+1, s) : s ∈ Z} and

{(0, . . . , 0,−x∗k+1, s) : s ∈ Z}. Similarly, we find x∗k+2 such that for each x =
(x1, . . . , xk) ∈ [−N,N]k ∩ Z

k

ω(x1, . . . , xk, xk+1, x
∗
k+2) = ω(x1, . . . , xk, xk+1,−x∗k+2) = 0, ∀ xk+1 ∈ Z.
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Hence for each x ∈ B(N) ⊂ Z
k
I , the set of PI (x)-closed sites of π[n]\I (PI (x)) ⊂

Z
2 contains the lines {(0, . . . , 0, t, x∗k+2) : t ∈ Z} and {(0, . . . , 0,−t∗k+2) : t ∈

Z}. Therefore, for each fixed N , Condition (ii) in Lemma 1 holds a.s. in the event
VωI (o;ZkI ) ⊂ [−N,N]k with T ⊂ Z

2[n]\I being the rectangle delimited by the lines
{(0, . . . , 0, x∗k+1, s) : s ∈ Z}, {(0, . . . , 0,−x∗k+1, s) : s ∈ Z}, {(0, . . . , 0, t, x∗k+2) :
t ∈ Z} and {(0, . . . , 0, t,−x∗k+2) : x ∈ Z}. This completes the proof in the case
n = k + 2.

The General Case: n = k + l, k, l ≥ 2
Let us assume for simplicity that I = {1, . . . , k} and Ji = {1, . . . , k − 1, k + i}
for 1 ≤ i ≤ l. Let H = H (I) be the Z

k-decomposition of Zn associated to I .
Then H is isomorphic to Z

k and each site in H is isomorphic to Z
l . Similar to

above, condition pI < pc(Z
k) implies that Condition (i) in Lemma 1 holds a.s.

Hence we only need to show that pJi < 1 for 1 ≤ i ≤ l implies that Condition
(ii) in the same Lemma holds a.s. Similarly as above, for each 1 ≤ i ≤ l, the
family of random variables {ωJi (x1, . . . , xk−1, xk+i ) : −N ≤ x1, . . . , xk−1 ≤
N, xk+i ∈ Z} are independent, and hence by the Borel-Cantelli Lemma there exists
a.s. a set of nonnegative integers {x∗k+i}li=1 such that ωJi (x1, . . . , xk−1, x

∗
k+i ) =

ωJi (x1, . . . , xk−1,−x∗k+i ) = 0, for all −N ≤ x1, . . . , xk−1 ≤ N and all i =
1, . . . , l. This implies that, for every i = 1, . . . , l, the set of PI (x)-closed sites
of π[n]\I (PI (x)) contains the hyperplane

Ti :=
{
z = (0, . . . , 0, zk+1, . . . , zk+l ) ∈ Z

l[n]\I : zk+i = ±x∗k+1

}
.

This shows that Condition (ii) holds a.s. with

T := {0} × · · · × {0} × ∂([−x∗k+1, x
∗
k+1] × . . .× [−x∗k+l, x∗k+l]

) ∩ Z
l
[n]\I . ��

Remark 1 (Proof of the Second Assertion in Theorem 1) It follows directly from
the statement of Lemma 2 that when the parameters pI are sufficiently small (e.g. if
they all belong to the interval (0, pc(Zk))) then percolation does not occur. Notice,
however, that Lemma 2 provides much more detail on the location of the subcritical
phase in the space of parameters.

The next result also implies the existence of the subcritical phase. Strictly
speaking, it only holds in the particular setting when k divides n and, although it
will not be used in the remainder of the paper, we decided to include it here because
it adds some further information to the phase diagram in this specific setting. Its
proof also uses Lemma 1.

Lemma 3 Assume that k divides n, and let ω be a Bernoulli (n, k)-hyperplane
percolation process. Let I1, . . . , In/k ∈ I (k; n) be a partition of [n]. If for each
1 ≤ j ≤ n/k we have pIj < pc(Z

k), then Vω(o;Zn) is finite Pp-a.s.

Proof Write n = lk. Without loss of generality, assume that for each 1 ≤ j ≤ l,
Ij = {(j − 1)k + 1, . . . , jk}. We will argue by induction on l ≥ 2.
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We begin fixing l = 2. Let H = H (I1) be the Z
k-decomposition of Z

2k

corresponding to I1. Then each site PI1(x) of H is isomorphic to Z
k . We want

to verify that Conditions (i) and (ii) in Lemma 1 hold a.s. with I = I1. Since
pI1 < pc(Z

k), the cluster VωI1 (o,Z
kI1 ) is finite a.s., hence Condition (i) holds a.s.

Let us condition on VωI1 (o,Z
kI1 ) and show that Condition (ii) also holds a.s.

Since l = 2 we have Z
n−k
[n]\I = Z

k
I2

. Now, since pI2 < pc(Z
k), the cluster

VωI2 (o,Z
k
I2
) is finite a.s. Hence, almost surely, there exists T ⊂ Z

k
I2

that surrounds
the origin and whose sites are ωI2 -closed. In particular, they are PI1(x)-closed for
every x ∈ Vω1(o,Z

k
I1
). This shows that Condition (ii) in Lemma 1 holds a.s. with

I = I1. This concludes the proof for the case l = 2.
Now, assume that the result holds for some l ∈ N and let n = (l + 1)k. Since

pI1 < pc(Z
k), Condition (i) in the same lemma holds a.s. with I = I1. Let us

condition on the cluster Vω̃1(o;ZlI1) and show that Condition (ii) holds.

Since Z
lk
[n]\I1 is isomorphic to Z

lk we can define naturally Bernoulli (lk, k)-
hyperplane percolation processes on it. In fact, one can show that (ω̃(v))v∈Zlk[n]\I1
defined as

ω̃(v) =
∏

J∈I (k;n)
J∩I1=∅

ωI (πJ (v))

is indeed an instance of such a percolation process. Since for each 2 ≤ j ≤
l + 1 we have pIj < pc(Z

k), one can use the induction hypothesis to obtain
that Vω̃(o;Zlk[n]\I1) is finite almost surely. Thus, almost surely, there exists a set

T ⊂ Z
lk
[n]\I1 that surrounds the origin in Z

lk
[n]\I1 and whose sites are all ω̃-closed.

Therefore, for each v ∈ T , there exists J ∈ I (k; n) \ I1 such that ωJ (v) = 0
which means that v is PωI1

(x)-closed for every x ∈ Z
k
I1

, in particular, for every

x ∈ VωI1 (o;ZkI1). This establishes Condition (ii). The result follows by induction.
��

We close this section presenting a sketch to a proof for the existence of regimes
in which the connectivity decay is exponential.

Remark 2 (Exponential Decay) Assume that at least
(
n−1
k

) + 1 of the parameters
I ∈ I (k; n) satisfy pI < pc(Z

k). If the event
[
o ↔ ∂B(K)

]
holds for some

integer K > 1 then there must be at least one site x = (x1, . . . , xn) ∈ ∂B(K)
for which [o ↔ x]. Such a site x has at least one coordinate, say xio , with
xio = K . By continuity of the projections into the coordinate planes, the events[
o ↔ πJ

(
∂B(K)

)]
must occur for all the indices J ∈ I (k; n) containing io.

This amounts for exactly
(
n−1
k−1

)
indices, hence by our assumption, there must

be at least one of these indices J for which pJ < pc(Z
k). This implies that

PpJ

(
o ↔ πJ

(
∂B(K)

))
decays exponentially fast [1, 10] (see also [3] for a more

elementary proof). Therefore, Pp
(
o↔ ∂B(K)

)
must also decay exponentially fast.
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3 The Existence of a Supercritical Phase

Our aim in this section is to prove that Bernoulli hyperplane percolation contain
infinite connected components almost surely as soon as the parameters of p are large
enough. According to (7) this is equivalent to Ep

(
ω(o)

)
being sufficiently close to

1. This is the content of the next result which readily implies the first assertion in
Theorem 1.

Theorem 4 Let 2 ≤ k ≤ n− 2 and ω be as in (4). If Ep(ω(o)) is sufficiently close
to 1, then Pp(o←→∞) > 0.

Remark 3 (Proof of the First Assertion in Theorem 1) By (7), Ep(ω(o)) can be
arbitrarily close to 1 provided that all the pI are sufficiently large (all of them still
smaller than 1). Therefore, the first assertion in Theorem 1 follows readily from
Theorem 4.

In percolation, such a result is usually obtained with the help of Peierls-type
arguments, that is, by restricting the process to the plane Z

2 and showing that, as
long as the control parameter are made large enough, large closed sets surrounding
the origin in Z

2 are very unlikely. In our case, restricting the model to Z
2 is not

useful since the plane will be disconnected into finite rectangles. We therefore
replace Z

2 with an subgraph resembling a plane that is inclined with respect to
the coordinate axis in order to gain some independence.

For that we will use the following auxiliary result whose proof relies on
elementary arguments and is presented in the Appendix.

Lemma 4 Let 2 ≤ k ≤ n−1. There exist orthogonal vectors w1 andw2 in Z
n with

‖w1‖ = ‖w2‖ such that the linear application A : R2 → Rn given by A(x, y) =
xw1 + yw2 satisfies the following properties:

i. For every I ∈ I (k; n) the mapping πI ◦ A : Z2 → Z
#I is injective;

ii. There exists a constant c = c(w1, w2) > 0 such that for every I ∈ I (k; n), and
every u and v in R2, ‖πI (Au− Av)‖ ≥ c‖u− v‖.
For the rest of this section we fix the dimension n, the vectors and w1 and w2,

and the corresponding linear application A as in Lemma 4. We define G0 = A(Z2).
By Condition i. in Lemma (4) for every 2 ≤ k ≤ n − 1, the Bernoulli (n, k)-
hyperplane percolation process ω restricted to G0 has i.i.d. states i.e., the process
η0 := {ω(Av)}v∈Z2 is a standard Bernoulli site percolation process in Z

2 with
parameterp = Ep(ω(o)). Thus, for p close to 1, η0 has an infinite cluster a.s.whose
image under A is also an infinite set composed of ω-open sites in Z

n. However, G0
is not necessarily a connected subgraph of Zn and thus we did not prove that A(η0)

has an infinite open cluster. To fix this issue we will add sites to G0 in such a way
to guarantee that we get a connected subgraph G ⊂ Z

n. Now the family of random
variables {ω(x)}x∈G may no longer be independent. However it will still dominate
an independent family as long as the parameterspI are large enough. This will allow
us to find an infinite cluster in G a.s.
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3.1 Construction of the Graph G

Let w1 and w2 be as above and denote w1 = (α1, . . . , αn) and w2 = (β1, . . . , βn).
Let p0 = q0 = o and define inductively for 1 ≤ j ≤ n:

pj = pj−1 + αjej ,
qj = qj−1 + βjej .

Given u, v ∈ Z
n such that u − v = zej for some z ∈ Z, denote [u, v] = {w ∈

Z
n : w = u+ l(z/|z|)ej , l = 0, . . . , |z|} (if z = 0, then u = v so set [u, v] = {u}).

Let Γ (0, 0) := ⋃n
j=1[pj−1, pj ] ∪ [qj−1, qj ] and Γ (x, y) = {A(x, y) + v : v ∈

Γ (0, 0)} which contains a path that starts at A(x, y) and ends at A(x + 1, y) and
another that starts at A(x, y) and ends at A(x, y + 1). Therefore, if we denote

G :=
⋃

(x,y)∈Z2

Γ (x, y),

then, when regarded as a subgraph of the Zn lattice, G is connected.
As mentioned above, we will study the percolation process restricted to G which

we hope will dominate a supercritical percolation process. In implementing these
ideas, an standard result due to Liggett, Schonmann and Stacey [9] is very useful.
Before we state it precisely, let us give the relevant definitions.

A random element
(
f (x)

)
x∈Zn ∈ {0, 1}Zn is said of class C(n, χ, p) if for

every x ∈ Z
n and S ⊂ Z

n such that inf{‖a − x‖ : a ∈ S} ≥ χ , we have
P

(
f (x) = 1|(f (a))a∈S

) ≥ p. Such elements appear naturally when performing
one-step renormalization arguments. We are ready to state a result that will help
to control the process restricted to G and will also be used in Sect. 4. It consists
of a rephrasing of the part of the statement of Theorem 0.0 in [9] that serves our
purposes.

Theorem 5 (Theorem 0.0 in [9]) For every ρ > 0 and χ there exists p0 such
that every random element (f (x))x∈Zn of class C(n, χ, p) with p > p0 dominates
stochastically an i.i.d. family of Bernoulli random variables (g(x))x∈Zn such that
P(g(x) = 1) = ρ. Moreover, ρ can be taken arbitrarily close to 1 provided that p0
is also made sufficiently close to 1.

Let {η(x, y)}(x,y)∈Z2 be such that

η(x, y) =
{

1, if all sites in Γ (x, y) are open,

0, otherwise.
(13)

Lemma 5 There exists χ ∈ N and s = s(Ep(ω(o))) such that, under Pp,
the process η given by (13) is of class C(2, χ, s). Furthermore, s can be made
arbitrarily close to 1 provided that all the parameters pI are made close enough
to 1.
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Proof For x ∈ Z
n and R > 0, let B(x;R) be the set of sites y ∈ Z

n such that
‖x − y‖ ≤ R. Let R = ‖w1‖ = ‖w2‖. Observe that for each v ∈ Z

2 we have
that Γ (v) ⊂ B(Av;R). In particular, for all I ∈ I (k; n), πI (Γ (v)) ⊂ πI (B(πI ◦
Av;R)). By Lemma 4-ii. there exists c > 0 such that

‖πI (Av − Au)‖ ≥ c‖u− v‖.

Thus, the choice χ = 3R/c gives that πI (B(πI ◦ Au;R)) and πI (B(πI ◦ Av;R))
are disjoint provided that ‖v − u‖ ≥ χ . In particular η(v) is independent of {η(u) :
u ∈ Z

2, ‖v − u‖ ≥ χ}.
Since Γ (v) ⊂ B(Av;R) we can use (8) to obtain

Pp(η(v) = 1) ≥ Pp
(
all sites in B(Av,R) are open

) ≥ [
Ep(ω(o))

](2R+1)k
.

Hence η is of class C
(
2, 3R/c, [Ep(ω(o))](2R+1)k

)
. ��

We are now ready to present the proof of 4.

Proof of Theorem 4 In light of Theorem 5, we can choose all pI < 1 sufficiently
close to 1 so that Eω(o) = ∏

I∈I pI is large enough to guarantee that the process
η defined in (13) dominates stochastically a standard supercritical Bernoulli site
percolation process in Z

2. In particular, with positive probability we have that Vη(o)
is infinite. We conclude by observing that each path {o, v1, v2 . . . , } ∈ Z

2 of η-open
sites such that limj→∞ ‖vj‖ = ∞ can be mapped into a path {o, x1, x2, . . .} ⊂ G
with limj→∞ ‖xj‖ = ∞ and whose sites are ω-open. ��

4 Polynomial Decay of Connectivity

In this section we prove Theorem 3 and indicate the few modifications that lead
to the proof of Theorem 2. Our method follows essentially the ideas presented in
[7] for Bernoulli line percolation. However, there is a complication and we need to
adapt Lemma 4.7 therein to the higher dimension setting. The main problem is that
the proof presented in [7] only works in 3-dimensions. We replace that result by our
Proposition 1 whose proof relies on Lemma 6.

4.1 Crossing Events

Given integers a < b, c < d and a configuration {η(x)}x∈Z2 ∈ {0, 1}Z2
we say that

there is a bottom to top crossing in the rectangle R := [a, b] × [c, d] ∩ Z
2 if there

is a path {(x0, y0), . . . , (xT , yT )} ⊂ R of η-open sites such that y0 = c and yT = d .
We denote BT (R) the event that such a crossing occurs that is, the set of all the
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configurations η for which there is a bottom to top crossing in R. Similarly, we say
that there is a left to right crossing in the rectangle R if there exists a path of open
sites {(w0, z0), . . . , (wH , zH )} ⊂ R with w0 = a and wH = b, and similarly we
denote this event by LR(R).

Let N and {mj }nj=2 be non-negative integers and denote

B = B(N,m2, . . . ,mn) := [0, N] × [0,m2] × . . .× [0,mn] ∩ Z
n.

Throughout this section we will regard the first coordinate as measuring the height
of the rectangle B. Thus, for a random element {η(x)}x∈Zn ∈ {0, 1}Zn , we can
refer to bottom to top crossings in B: We denote by BT (B) the set of all the
configurations for which there exists a path of η-open sites {x0, . . . , xT } ⊂ B such
that π{1}(x0) = 0 and π{1}(xT ) = N .

Let k = 2 and Ij = {1, j }, 2 ≤ j ≤ n. Notice that the set πIj (B) ⊂ Z
2
Ij

is

isomorphic to a rectangle in Z
2 with side lengths mj and N corresponding to the

j th and first coordinate respectively. Define

ξ(x) = ωI2(πI2(x)) · · ·ωIn(πIn(x))

Notice that ξ ≤ ω (see (4)). If there is a bottom to top crossing in B of sites x ∈ Z
n

that are ωIj -open for all 2 ≤ j ≤ n (which is to say, ξ ∈ BT (B)) then a simple
projection onto the coordinate planes Z

2
Ij

shows that ωIj ∈ BT (πIj (B)) for all
2 ≤ j ≤ n. Our next result states that the converse is also true. For that, given paths
that cross the projections πIj (B) from top to bottom we will need to construct a path
inside B which is projected under πIj to the given crossing in πIj (B). Although it
may sound somewhat intuitive that it is possible to do so, we did not find any existing
proof for this fact. Therefore, we have produced a combinatorial proof that may be
interesting on its own.

Proposition 1 Let k = 2. For each i = 2, . . . , n, let γIj : {0} ∪ [Hj ] → πIj (B) be
a path composed of ωj -open sites such that: π{1} ◦ γIj (0) = 0, π{1} ◦ γIj (Hj) = N
and for all 0 ≤ t < Hj we have π{1} ◦ γIj (t) < N . Then there exists a path
λ : {0} ∪ [T ] → B whose sites are ωIj -open and satisfying that for every j =
2, . . . , n, πIj (λ(0)) = γIj (0) and that πIj (λ(T )) = γIj (Hj ). In particular, if ωIj ∈
BT (πIj (B)) for all 2 ≤ j ≤ n, then there exists a bottom to top crossing in B
whose sites are ωIj -open for each 2 ≤ j ≤ n.

Proposition 1 implies that [ξ ∈ BT (B)] = ⋂n
j=2 BT (πIj (B)) hence, by

independence:

P(ξ ∈ BT (B)) =
n∏

j=2

PpIj
(BT (πIj (B)), (14)
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where P stands for⊗I∈I (k;n)PpI . For n = 3 and k = 2, this result has already been
proved in [7, Lemma 4.7]. Here we extend this result for any n ≥ 3 and k = 2.

For the proof of Proposition 1 we use the following lemma that is inspired by the
Two Cautious Hikers Algorithm discussed by G. Pete in [11, page 1722].

Lemma 6 Let N and {Ti}ni=1 be non-negative integers. Let, for each i ∈ [n], Si :
{0} ∪ [Ti] → {0} ∪ [N] be functions satisfying:

i. |Si(t)− Si(t − 1)| = 1, ∀t ∈ [Ti] ;
ii. 0 ≤ Si(t) < N , for all 0 ≤ t < Ti;

iii. Si(0) = 0 and Si(Ti) = N .

Then there exists T ∈ N and fi : {0} ∪ [T ] → {0} ∪ [Ti], 1 ≤ i ≤ n, that satisfy:

(a) |fi(t)− fi(t − 1)| = 1, for all t ∈ [T ];
(b) S1 ◦ f1(t) = Sj ◦ fj (t), for all t ∈ {0} ∪ [T ], for each 1 ≤ j ≤ n;
(c) S1(f1(0)) = 0 and S1(f1(T )) = N .

Before we give a proof for this lemma let us clarify its statement. The functions
Si can be thought of as n different random walks parametrized by t ∈ {0, . . . Ti}
and that can, at each step, jump one unit up, jump one unit down or remain put.
They are required to start at height 0, to remain above 0 and finish at height N . The
conclusion is that it is possible to introduce delays to the individual random walks or
even require them to backtrack (by means of composing them the fi ’s) so that they
will all be parametrized by the same interval {0, . . . , T } and always share the same
height for any time inside this interval. The arguments in [11] can be modified in
order to obtain a proof for n = 2. Below we present a proof that works for general n.

Proof of Lemma 6 Let G = (V (G),E(G)) be a graph with vertex set V (G) ={
v = (t1, . . . , tn) ∈ Nn : ti ∈ {0, . . . , Ti} and S1(t1) = Sj (tj ) for every 1 ≤ j ≤ n}

and whose edge set E(G) consists of the pairs of vertices v = (t1, . . . , tn) and
w = (s1, . . . , sn) such that |ti − si | = 1, for all 1 ≤ i ≤ n. Similarly to [11], we
have:

Claim The degrees of every vertex v ∈ V (G) are even, except for (0, . . . , 0) and
(T1, . . . , Tn) that are the only vertices that have degree 1.

Proof of the Claim It is simple to verify that (0, . . . , 0) and (T1, . . . , Tn) have
degree one.

For i ∈ [n] and t ∈ {0} ∪ [Ti], we say that t is of type:

(i, /) if Si(t + 1) = Si(t − 1)+ 2;
(i, \) if Si(t + 1) = Si(t − 1)− 2;
(i,∨) if Si(t + 1) = Si(t − 1) and Si(t + 1) = Si(t)+ 1;
(i,∧) if Si(t + 1) = Si(t − 1) and Si(t + 1) = Si(t)− 1.
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Notice that if v = (t1, . . . , tn) ∈ V (G) has at least one ti of type (i,∨) and at
least one tj of type (j,∧) its degree in G has to be equal to zero. This is because
Si(ti ± 1) = Si(ti ) + 1 = Sj (tj ) + 1, and Sj (tj ± 1) = Sj (tj ) − 1, and hence
Si(ti ± 1) − Sj (tj ± 1) = 2 which implies that every possibility for the entries
(ti±1) and (ti±1) of a neighbor of v would lead to an element that does not belong
to V (G). Thus, a necessary condition for the degree of v to be different from 0 is
that there is a partition [n] = A ∪ B such that for all j ∈ B, tj is of type (j, /) or
(j, \) and, for all i ∈ A either every ti is of type (i,∨) or every ti is of type (i,∧).

In the case that v = (t1, . . . , tn) ∈ G is such that all ti are of type (i, /) or (i, \)
we have that v has exactly two neighborhoodsw and w′ ∈ V (G):

w = (
ti + 1{ti is of type (i, /)} − 1{ti is of type (i, \)}

)n
i=1,

w′ = (
ti − 1{ti is of type (i, /)} + 1{ti is of type (i, \)}

)n
i=1.

In the case that v = (t1, .., tn) ∈ V (G) is such that exactly k entries, say {tij }kj=1
are of type (i,∨) and the other n − k entries are of type (i, /) or (i, \), we obtain
that v has exactly 2k neighborhoods. This follows by induction on k, by observing
that each of the two possibilities tij ± 1 imply Sij (tij ± 1) = Sij (tij )+ 1. Similarly,
this is also true in the case that exactly k distinct {tij }kj=1 are of type (i,∧) and the
other n− k are of type (i, /) or (i, \). This completes the proof of the claim. ��

Let v∗ = (T1, . . . , Tn) and o = (0, . . . , 0) be the unique vertices in G that
have degree 1. Let H be the largest connected subgraph of G that contains o. The
sum

∑
v∈H degree(v) is twice the number edges of H , in particular it is an even

number. Thus,
∑
v∈H \{o} degree(v) is an odd integer, and this holds if and only if

v∗ ∈H . Hence, o and v∗ are in the same connected component ofG, which implies
the existence of a number T ∈ N and path γ : {0} ∪ [T ] → G with γ (0) = o and
γ (T ) = v∗. The choice fi(t) = π{i}(γ (t)) completes the proof. ��
Proof of Proposition 1 Assume that for each 2 ≤ j ≤ n, there exist non-negative
integers Hj and paths of ωIj -open sites γIj : {0} ∪ [Hj ] → πIj (B) such that:
π{1} ◦γIj (0) = 0, π{1} ◦γIj (Hj ) = N and for all 0 ≤ t < Hj we have π{1} ◦γIj (t) <
N .

For each 2 ≤ j ≤ n we define recursively a sequence of times
(τj (0), τj (1), . . . , τj (Tj )) as follows:

τj (0) = 0;
τj (t + 1) = inf{s ∈ [τj (t)+ 1,Hj ] ∩N : |π{1}(γIj (s)− γIj (s − 1))| = 1},

and we define Tj as the first time at which τj (Tj ) = Hj .
Let Sj := π{1} ◦ γIj ◦ τj , for each 2 ≤ j ≤ n. Then {Sj }nj=2 satisfies Conditions

i.–iii. in Lemma 6. Hence, there exist a non negative integer T > 0 and {fj }nj=2
that satisfy Conditions a–c in the same lemma. We claim that the function λ : {0} ∪
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[T ] → B denoted by λ(t) = (λ1(t), . . . , λn(t)) where

λ1(t) = S2 ◦ f2(t) = · · · = Sn ◦ fn(t),
λj (t) = π{j} ◦ γIj ◦ τj ◦ fj (t), 2 ≤ j ≤ n,

has the following properties:

i. λ(t) is ωIj -open for all 2 ≤ j ≤ n;
ii. For each 1 ≤ t ≤ T , λ(t) and λ(t − 1) are connected by a path γt of sites that

are ωIj -open for all 2 ≤ j ≤ n;
iii. λ1(0) = 0 and λ1(T ) = N .

The proof will be complete once we show that these three conditions are valid.
One can check readily that Condition iii. holds. So we now prove the validity of the
other two.

Validity of Condition i Notice that, for all t ∈ [T ],

πIj (λ(t)) =
(
λ1(t), λj (t)

) = (
Sj ◦ fj (t), π{j} ◦ γIj ◦ τj ◦ fj (t)

)

= (
π{1} ◦ γIj ◦ τj , π{j} ◦ γIj ◦ τj ◦ fj (t)

) = γIj ◦ τj ◦ fj (t).

Since every site in γIj is ωIj -open, we have ωIj (πIj (λ(t))) = ωIj (γIj ◦ τj ◦
fj (t)) = 1.

Validity of Condition ii For each t ∈ [T ] we have either λ1(t) = λ1(t − 1) + 1 or
λ1(t) = λ1(t − 1)− 1. Let us assume that the former holds (the case when the latter
holds can be treated similarly).

There are integers {xj }nj=2 such that

λ(t)− λ(t − 1) = (1, x2, x3, . . . , xn),

and in particular:

γIj ◦ τj ◦ fj (t)− γIj ◦ τj ◦ fj (t − 1) = e1 + xj ej .

We claim that λ(t) − e1 is ωIj -open for all 2 ≤ j ≤ n. To see this, notice that
πIj (λ(t)− e1) = γIj ◦ τj ◦ fj (t)− e1, and that only two possibilities may happen:
either fj (t) − fj (t − 1) = −1 or fj (t) − fj (t − 1) = +1. In any case, denoting
aj = fj (t)− fj (t − 1), we have

γIj ◦ τj ◦ fj (t)− e1 = γIj (τj ◦ fj (t)− aj ),

and hence λ(t) − e1 is also ωIj -open for all 2 ≤ j ≤ n. Let p0 = λ(t), p1 =
λ(t) − e1, and pk = pk−1 − xkek , for 2 ≤ k ≤ n. In particular, pn = λ(t − 1). Let
[pj , pj+1] be the path that goes along the line segment of points x ∈ Z

n that has
pj and pj+1 as its extremes. We claim that γt = ⋃n

j=1[pj−1, pj ] is a path of sites
fulfilling Condition ii.
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Start with y in the line segment [p1, p2]. Thus, π1(y) = π1(p1) and it is ωIj -
open for all 2 ≤ k ≤ n: The case k = 2, follows from the definition of γI2 and τ2;
for k > 2 we have ωIk (πIk (y)) = ωIk (πIk (p1)) = 1. Inductively, each y in the line
segment [pj , pj+1] satisfies the following properties:

π1(y) = π1(p1)

ωIk (πIk (y)) = ωIk (πIk (pn)) = 1, for each 2 ≤ k ≤ j,
ωIj+1 (πIj+1(y)) = 1, by the definition of γIj+1 and τj+1,

ωIk (πIk (y)) = ωIk (πIk (p1)) = 1, for each j + 1 < k ≤ n.

This completes the proof. ��

4.2 Percolation on a Renormalized Lattice

In this section we will define a percolation process in a renormalized lattice whose
sites can be matched to hypercubes from the original lattice, called boxes. We
restrict ourselves to the case k = 2 so that the projections of theses boxes into
the coordinate planes are given by squares. The rough idea is as follows: The boxes
are called good depending on whether some crossings occur inside and around some
of these projected squares as illustrated in Fig. 1. Taking the side of the boxes to be
large enough, we can guarantee that boxes are good with large probability, so that the
percolation processes induced by good boxes in the renormalized lattice dominates

e2 e3

e1

Fig. 1 The projection into the subspace spanned by e1, e2 and e3 of a set of four adjacent boxes
that are ωI2 -good and ωI3 -good
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a supercritical site percolation process. This implies the existence of arbitrarily
long paths of good boxes. The directed nature of the dependencies introduces some
complications in showing stochastic domination, and in order to gain some kind of
independence we will need to look at oriented portions of the renormalized lattice
as the one illustrated in Fig. 3.

Before we proceed and formalize these ideas, we recall a classical fact about
crossing events.

Remark 4 Let p > pc(Z2). If c > 0 is large enough (depending on p) then

lim
N→∞ Pp(BT ([0, %c logN&] × [0, N] ∩ Z

2)) = 1, (15)

where and %x& denotes the integer part of a real number x.

From now on, given y ∈ Z
n, we use the notation

B(y;N) =: [y1, y1 +N − 1] × . . .× [yn, yn +N − 1] ∩ Z
n.

Furthermore, we define:

Bj(y;N) := πIj
(
B(y;N) ∪ B(y +Ne1;N) ∪ B(y +Nej ;N)

)
.

In the next definition, we still stick to the convention that the first coordinate x1
measures the height of each Bj(y;N):

Definition 1 Given ωIj ∈ {0, 1}
Z
k
Ij , we say Bj (y;N) is ωIj -good when

ωIj ∈ BT (πIj (B(y;N)∪B(y+Ne1;N)))∩LR(πIj (B(y;N)∪B(y+Nej ;N))).

Furthermore, given (ωIj )
n
j=2, we say that B(y;N) is good if for all j = 2, . . . , n,

Bj(y;N) is ωIj -good (see Fig. 1).

For fixed N ∈ N we say that γ : N→ Z
n is a path of good boxes if

for each t ∈ N, B(γ (t);N) is a good box and

γ (t + 1) = γ (t)+Nejt for some jt ∈ [n].
(16)

In what follows we will make use of the following lemma whose proof can be done
following exactly the same lines as in [7, Lemmas 4.10 and 4.11]. The idea is to
iterate the use of Proposition 1 to pass from one good box to the next one following
a path contained inside these boxes and whose sites areωIj -open for each 2 ≤ j ≤ n
(as done in [7, Lemma 4.10]). This is possible because the definition of good boxes
entails the existence of a system of crossings inside the projections of these boxes
into the respectiveZ2

I for which Proposition 1 apply as shown in Fig. 1. Being able to
pass from one good box to the next adjacent one, all we need to do is to concatenate
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the paths in order to obtain a path starting in the first good box in the sequence and
ending at the last one (as done in [7, Lemma 4.11]).

Lemma 7 Let N ∈ N and γ : N → Z
n be a path of good boxes. Then for each

t ∈ N, there exists a path of sites {x0, . . . , xT } ⊂ ∪ts=0B(γ (s);N) that are ωIj -
open for each 2 ≤ j ≤ n, and with x0 ∈ B(γ (0);N) and xT ∈ B(γ (t);N).

Let p0 = o and r0 = 2. For N ∈ N and t ∈ Z, define recursively

pt = pt−1 +Nert , (17)

where rt ∈ {2, 3 . . . , n} is such that t ≡ rt − 2 mod (n − 1). Roughly speaking,
as t increases the values of rt run through the set {2, 3, . . . , n} cyclically. As an
example, when n = 4 we have r0 = 2, r1 = 3, r2 = 4, r3 = 2, r4 = 3, r5 = 4,
and so on. As for the points pt , they form a directed sequence whose increments are
segments of length N , each oriented along one of the directions in {e2, e3, . . . , en}.
The orientation of these segments follow the same cyclic pattern as rt .

Let ν = (ν(t, x))(t,x)∈Z2 be the random element in {0, 1}Z2
defined as

ν(t, x) := 1[B(pt +Nxe1;N) is good]. (18)

The process ν can be thought as a percolation process in a renormalized (that
is, rescaled) lattice where sites are now boxes of the type B(pt + Nxe1;N) (for
(t, x) ∈ Z

2). The cyclic nature of rt and the choice of the sequence pt as in (17)
allows us to derive some properties of this renormalized lattice. On the one hand,
the projection into the subspace spanned by e2, . . . , en is given by a spiral sequence
of neighboring boxes which is isomorphic to a line of boxes sharing a face, see
Fig. 2. On the other hand, the projection into the subspace spanned by e1, ei, ej for
i, j ∈ {2, . . . , n} and i = j resembles a jagged wall of boxes as illustrated in Fig. 3

e2 e3

e4

Fig. 2 Let n = 4 and k = 2. The darker boxes are the projections into the subspace spanned by
e2, e3, e4 of boxes B(pt + Nxe1;N) for t = 0, . . . , 15 and arbitrary x (light gray boxes where
added to help visualization). There are only 11 such boxes that are visible from this perspective
which correspond to indices t with rt = 2 or rt = 4. The other 5 boxes corresponding to rt = 3
are not visible because they lie behind other boxes colored in light gray



Bernoulli Hyperplane Percolation 91

Fig. 3 Let n = 4 and k = 2.
This picture shows the
projection into the subspace
spanned by e1, e2 and e3 of
the boxes B(pt + Nxe1;N)
for t = 0, . . . , 15 and
x = 0, . . . , 9

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

e3

e2

e1

which is isomorphic to a plane of adjacent boxes. This specific shape guarantees
that, for the process ν, the statuses of distant boxes in this renormalized lattice are
independent as they will have disjoint projections into the Z2

Ij
subspaces. This is the

content of the next lemma:

Lemma 8 For the random element ν given as in (18), the variable ν(t, x) is
independent of {ν(s, y) : |t − s| ≥ 2(n − 1) or |y − x| ≥ 2}. In particular, the
process ν is of class C(2, χ, p) for some p > 0.

Proof Let (t, x) ∈ Z
2 be fixed. Since the event that the box B(y;N) is good

is measurable with respect to the σ -algebra generated by the family of random
variables

n⋃

j=2

{ωIj (v) : v ∈ Bj (y;N)},

all we need to show is that, for each 2 ≤ j ≤ n, the sets Bj (pt + Nxe1;N) and
Bj(ps +Nye1;N) are disjoint in both cases |t − s| ≥ 2(n− 1) or |y − x| ≥ 2.

If |y − x| ≥ 2 we have that for each 2 ≤ j ≤ n the distance between Bj (pt +
Nxe1;N) and Bj (ps + Nye1;N) is at least 1, and this is also true in the case that
|t − s| ≥ 2(n − 1), since in this case we have that, except for the first coordinate,
each coordinate of ps − pt has absolute value at least 2N . ��

Once the range of dependency is controlled for the process ν, we use Theorem 5
in order to have it dominated from below by a supercritical Bernoulli process:

Lemma 9 Assume that for each 2 ≤ j ≤ n we have pIj > pc(Z
2). Then for every

ε > 0 there exists N = N(ε) ∈ N such that the process ν = (ν(t, x))(t,x)∈Z2 (cf.
(18)) dominates stochastically a standard Bernoulli site percolation process in Z

2

with parameter p > 1− ε.
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Proof We write P = ⊗I∈I (k;n)PpI . Since for all (t, x) ∈ Z
2 we have that

P(ν(t, x) = 1) = P(ν(0, 0) = 1), in view of Theorem 5 and the previous Lemma,
we only need to show that P(ν(0, 0) = 1) can be made arbitrarily close to 1 for
suitable large N . Recall that the box B(o;N) is good if for each 2 ≤ j ≤ n,
Bj(o;N) is ωIj -good. Observe that for j = l, the events [Bj(o;N) is ωIj -good]
and [Bl(o;N) is ωIl -good] are independent. Hence, all we need to show is that the
assumption pIj > pc(Z

2) implies that the probability that each Bj(o;N) is ωIj -
good can be made arbitrarily close to 1 for each j , for a suitable choice of a large
integer N , which may depend on pj . By the FKG inequality, we have:

P(Bj (o;N) is ωIj -good ) ≥PpIj

(
BT (πIj (B(y;N) ∪ B(y +Ne1;N))

)×
PpIj

(
LR(πIj (B(y;N) ∪ B(y +Nej ;N))

)
.

The fact that each probability in the right-hand side above can be made arbitrarily
close to 1 by choosing N sufficiently large follows from the fact that pIj > pc(Z

2)

together with classical crossing probability estimates for supercritical Bernoulli site
percolation (for instance Eq. (15) in Remark 4 is sufficient). ��

4.3 Proof of Theorems 3 and 2.

We start this section presenting the proof for Theorem 3. Roughly speaking, it
consists of three steps. First find a path spanning a rectangle in the renormalized
lattice that is very elongated in the vertical direction. This path can be mapped to
a path of good boxes in the original lattice. Lemma 7 allows to obtain a long path
of sites in the original lattice that are ωIj open for every j = 2, . . . , n. Comparison
with a supercritical percolation process in the renormalized lattice, shows that this
step can be accomplished paying only a constant probability cost. The second step
consists of guaranteeing that the sites in this long path are also ωI open for every
index I that does not contain the coordinate 1. The geometry of our construction
allows to accomplish this step by paying only a polynomial price in the length of the
path. An extra polynomial probability cost needs to be payed in order to require that
the long path starts at the origin. The third and last step consists in guaranteeing that
the origin does not belong to an infinite connected component. This is accomplished
by constructing a closed set surrounding the origin much in the spirit of Lemma 1 .
Again only polynomial probability cost is necessary to accomplish this step.

At the end of this section we indicate the modifications that need to be performed
in the proof in order to obtain a proof of Theorem 2.

Proof of Theorem 3 Let ε > 0 be such that 1 − ε > pc(Z2) and {η(x)}x∈Z2 be a
Bernoulli site percolation process on Z

2 with parameter 1 − ε, hence supercritical.
Fix N ∈ N (depending on ε) large enough so that the claim in Lemma 9 holds, i.e.,
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the process {ν(x)}x∈Z2 defined in (18) dominates {η(x)}x∈Z2 stochastically. Let

O1 =
{
ν ∈ BT ([0, %co logK&] × [0,K] ∩ Z

2)
}
.

In view of Remark 4, we can choose a large constant co > 0 (depending on ε) such
that

lim inf
K→∞ P

(
O1) ≥ lim inf

K→∞ P
(
η ∈ BT ([0, %co logK&] × [0,K] ∩ Z

2) > 0. (19)

The value of co will be kept fixed from now on.
Recall the definition of a path of good boxes as being a directed sequence of sites,

each lying at distance N from the preceding one, and such that the corresponding
boxes of size N are good (see (16)). In light of Lemma 7, the occurrence of O1
entails the existence of a path of good boxes {z0, . . . , zT } ⊂ Z

n with π{1}(z0) = 0
and π{1}(zT ) = NK , and such that each good box B(zi ;N) is contained in the set
Z 2(K;N) ⊂ Z

n defined as

Z 2(K;N) :=
⋃

(t,x)∈Z2 :
0≤t≤%co logK&,0≤x≤K

B(pt +Nxe1;N). (20)

Roughly speaking, the set Z 2(K;N) is the subset of Z
n that comprises all the

sites inside boxes of size N in a portion of the renormalized lattice resembling a
thickening of width N of a jagged rectangular region of side co log(K) and height
K . The reader might find it useful to consult Fig. 4 in order to clarify the definition of
the set Z 2(K;N) and the definition of the event O1. Note however that the picture
may be a little bit misleading because for K large, the jagged wall region depicted
therein should look very elongated in the e1 direction.

Let O2 be the event that every site z ∈ Z 2(K;N) is ωI -open for all the indices
I ∈ I (2; n) such that I ∩ {1} = ∅. Notice that, for every index I ∈ I (2; n) that
does not include the coordinate 1 each one of the boxes appearing in the l.r.s. of (20)
projects into a square in Z

2
I containingN2 sites. Moreover, using the cyclic nature of

the rt , we can conclude that as t runs over the interval 0, . . . , %co logK&, the amount
of different projections into each Z

2
I that one needs to check in order to determine

the occurrence of O2 does not exceed c′ logK for some positive universal constant
c′ = c′(n, co) (for instance c′ = 3(n−1)−1co). See Fig. 5 for an illustration of these
projections.

Therefore, we have

P(O2) ≥
∏

I∈I (2;n);
{1}∩I=∅

pI
c′ log(K)N2 = exp

(
c′N2 logK

∑

I∈I (2;n);
{1}∩I=∅

logpI
)
.
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Fig. 4 Let n = 4 and k = 2. On the left: The projection of the set Z 2(K;N) into the subspace
spanned by e1, e2 and e3 in a situation where K = 9 and %co logK& = 15 (only 10 zig-zag steps
appear, instead of 15 because indices t for which rt = 4 lead to steps towards a fourth dimension).
On the right: the union of the boxes corresponding to a piece of a path of boxes inside Z (K;N).
In order for the event O1 to happen, one needs the existence of such a path crossing the region from
bottom to top

e2 e3

e4

e2 e3

Fig. 5 On the left: the darker region is the projections of the Z 2(K;N) into the subspace spanned
by e2, e3 and e4. The spiral contains co%logK& boxes of size N . On the right: the projection of the
boxes into Z

2{2,4} and Z
2{3,4}. These projections contain no more than c′ logK squares withN2 sites

(for some constant c′ = c′(co, n) > 0)

Let us define

α2 := c′N2
∑

I∈I (2;n);
{1}∩I=∅

log( 1
pI
)

so that we have

P(O2) ≥ exp(−α2 logK) = K−α2
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which is to say that the probability of O2 is bounded below by a term that is
proportional to a negative power of K with exponent α2.

By Lemma 7, on the event O1 there exists a path γ : {0} ∪ [T ] → Z 2(K;N)
of sites that are ωIj−open for all 2 ≤ j ≤ n such that π{1}(γ (0)) = 0
and π{1}(γ (T )) = NK . On the event O1 ∩ O2, the sites in γ are actually ω-
open. Unfortunately, this path may not start at o. In order to fix this issue, let us
introduce the event O3 that all the sites z ∈ Z

n with π{1}(z) = −1 and such that
z + e1 ∈ Z 2(K;N) are ωIj -open for each 2 ≤ j ≤ n. Since there are no more
than cNn−1 logK such sites, P(O3) is also proportional to a negative power of K .
Moreover, on the event O2 ∩O3 these sites are ω-open.

Now, on the event O1 ∩ O2 ∩ O3, o and γ (0) are connected by a path of ω-open
sites λ : {0} ∪ [J ] → Z

n, with λ(0) = o, λ(J ) = γ (0) and π{1}(λ(j)) = −1 for
every j = 1, . . . , J − 1. In other words, we have:

O1 ∩ O2 ∩ O3 ⊂ [o↔ ∂B(NK)]. (21)

Having constructed the events O1, O2 and O3 whose occurrence implies the
existence of a long ω-open path starting at the origin, we now construct events on
which the cluster containing the origin is finite. This is done by first requiring that
the origin in Z

2{2,3} is enclosed by a circuit composed of ω{2,3}-closed sites only and

then requiring that there exists a set S surrounding the origin in Z
n−2
[n]\{2,3} whose

edges are P{2,3}(x)-closed for every for every x inside the circuit.
Indeed, let O4 be the event in which all sites in the square circuit in Z

2{2,3} given
by

∂

(
([−2, 4Nco%logK& + 1] × [−2, 4Nco%logK& + 1]) ∩ Z

2{2,3}
)

are ω{2,3}-closed. Since the perimeter of this circuit is less than cN logK , for some
c > 0, the probability that O4 occurs is bounded below by a negative power of K .
Moreover, on the event O4, the origin of Z

2{2,3} is surrounded by a ω{2,3}-closed

circuit, therefore, Vω{2,3}(o;Z2{2,3}) is finite, which is to say that Condition i. in

Lemma 1 is satisfied. Note also that the circuit encloses the projection of Z 2(K;N)
into Z

2{2,3}.
Now, similarly to Condition ii. in Lemma 1, let O5 be the event in which

there exists S ⊂ Z
n−2
[n]\{2,3} that surrounds the origin satisfying that inf{‖s‖ :

s ∈ S } ≥ 3NK and that each site s ∈ S is P{2,3}(x)−closed for all
x ∈ ([−1, 4Nco%logK&] × [−1, 4Nco%logK&]) ∩ Z

2{2,3}. Following exactly the
same type of Borel–Cantelli argument as in the proof of Lemma 2, we obtain that
P(O5) = 1.

On the event O4∩O5, Conditions i.-ii. in the statement of Lemma 1 are satisfied.
Therefore

O4 ∩ O5 ⊂ [o�∞]. (22)



96 M. Aymone et al.

Combining (21) and (22) we get

Pp(o↔ ∂B(NK), o�∞) ≥ P(O1 ∩ O2 ∩ O3 ∩ O4 ∩ O5),

Since O1,O2,O3, O4 and O5 are independent events, the fact that the probabilities
of O1 and O5 are uniformly bounded below by a positive constant, and that the
remaining events have probability proportional to a negative power of K finishes
the proof. ��

We now indicate a few modifications to the proof of Theorem 3 that lead to
Theorem 2.

Sketch of the Proof for Theorem 2 One major ingredient for the proof of power
law decay of the truncated connectivity function in the case k = 2 to hold in a
wider range of parameters p is Lemma 1 that has a two-dimensional appealing. It
is not clear to us how to obtain an analogous counterpart for k ≥ 3. Moreover,
our renormalization arguments that relies on this result provides a suitable N for
which the process of good boxes dominates stochastically a supercritical Bernoulli
percolation requiring only that the parameterspIj stay abovepc(Z2) (see Lemma 9).

In this line of reasoning, our first modification consists in fixing N = 1 and
redefining the notion of good boxes for boxes of type B(y;N). For N = 1, B(y; 1)
consists of a single point, i.e., B(y; 1) = {y}. We say that B(y; 1) is good if y is
ωI -open for all I ∈ I (k; n) for which I ∩ {1} = ∅.

With this notion of good boxes, a path of good boxes (as appearing in the
statement of Lemma 7) is simply a path of sites that are ωI -open for all I ∈ I
that contains 1 as an element, i.e., Lemma 1 holds trivially. Furthermore, Lemma 8
holds with N = 1. In particular, if for all I ∈ I (k; n) for which I ∩ {1} = {1} we
choose all parameters pI < 1 to be close enough to 1, then stochastic domination
as in Lemma 9 holds with 1− ε > pc(Z2).

The rest of the proof follows by fixing N = 1 and repeating the proof of
Theorem 3 with some minor adaptations. ��

Appendix

In this appendix we present a proof of Lemma 4 that relies on elementary linear
algebra arguments.

Proof of Lemma 4

yj = xj + xn−1 + jxn, for each 1 ≤ j ≤ n− 2.

Let v1, v2 ∈ Rn be the vectors:

v1 =(−1, . . . ,−1, 1, 0),

v2 =(−1,−2,−3, . . . ,−(n− 2), 0, 1).
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Let U : R2 → Rn be the linear application U(x, y) = xv1 + yv2, and denote

KerL := {v ∈ Rn : Lv = 0},
RanU = {Uu : u ∈ R2}.

We claim that KerL = RanU , and that πI ◦ U is injective for all I ⊂ [n] with
#I ≥ 2.

In fact, from the definition of L we obtain that v = (x1, . . . , xn) ∈ KerL if and
only if Lv = (y1, . . . , yn−2) satisfies yj = 0 for all 1 ≤ j ≤ n−2, and this equality
holds if and only if xj = −(xn−1 + jxn). In particular, v ∈ KerL if and only if

v = xn−1v1 + xnv2.

This shows that KerL = RanU .
To prove the second statement of our claim, we begin by observing the fact that:

For each I ⊂ [n] with #I = 2 the linear application πI ◦U : R2 → R2 is injective.
To see that this is true, let I = {i, j }, with 1 ≤ i < j ≤ n. Then the possibilities

for the matrix πI ◦ U are:

(a)

(−1 −i
−1 −j

)
, (b)

(−1 −i
1 0

)
, (c)

(−1 −i
0 1

)
, and (d)

(
1 0
0 1

)
,

where (a) corresponds to j ≤ n− 2; (b) corresponds to j = n− 1; (c) corresponds
to i ≤ n − 2 and j = n; (d) corresponds to i = n − 1. In any case we have
| detπI ◦ U | ≥ 1 which implies injectivity.

It follows now that for all I ⊂ [n] with #I ≥ 2 the linear application πI ◦ U :
R2 → R#I is injective. In fact, if for u, v ∈ R2 we have πI ◦Uu = πI ◦Uv, then in
particular, for each J ⊂ I with #J = 2 we have πJ ◦Uu = πJ ◦Uv which implies
u = v.

Since v1 and v2 are linearly independent (over R), by the Gram–Schmidt process
there exists w̃1, w̃2 ∈ Rn orthogonal and such that their linear span is equal to the
linear span of v1 and v2:

w̃1 = v1,

w̃2 = v2 − 〈v1, v2〉
〈v1, v1〉v1

= v2 + (2− n)
2

v1.

In particular, w1 = 2‖w̃2‖w̃1 and w2 = 2‖w̃1‖w̃2 are orthogonal, ‖w1‖ = ‖w2‖
and both belong to Z

n. Hence the linear application A : Z2 → Rn given by

A(x, y) =xw1 + yw2

=U(2x‖w̃2‖ + y(2− n)‖w̃1‖, 2y‖w̃1‖)
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is such that RanA ⊂ KerL ∩ Z
n. Let H : Z2 → Z

2 be the linear application

H =
(

2‖w̃2‖ (2− n)‖w̃1‖
0 2‖w̃1‖

)
.

ThenH is injective and A = U ◦H . Hence for each I ⊂ [n] with #I ≥ 2, the linear
application πI ◦ A = πI ◦ U ◦ H is injective, since H and πI ◦ U are injective.
Defining

c = min
I⊂[n] inf

x∈R2

‖x‖=1

‖πI ◦ Ax‖ > 0

completes the proof. ��
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Abstract For directed last passage percolation on Z
2 with exponential passage

times on the vertices, let Tn denote the last passage time from (0, 0) to (n, n).
We consider asymptotic two point correlation functions of the sequence Tn. In
particular we consider Corr(Tn, Tr ) for r ≤ n where r, n → ∞ with r � n or
n − r � n. Establishing a conjecture from Ferrari and Spohn (SIGMA 12:074,
2016), we show that in the former case Corr(Tn, Tr ) = Θ(( rn )1/3) whereas in the
latter case 1 − Corr(Tn, Tr ) = Θ((n−r

n
)2/3). The argument revolves around finer

understanding of polymer geometry and is expected to go through for a larger class
of integrable models of last passage percolation. As a by-product of the proof, we
also get quantitative estimates for locally Brownian nature of pre-limits of Airy2
process coming from exponential LPP, a result of independent interest.
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1 Introduction and Statement of Results

We consider directed last passage percolation on Z
2 with i.i.d. exponential weights

on the vertices. We have a random field

ω = {ωv : v ∈ Z
2}

where ωv are i.i.d. standard Exponential variables. For any two points u and v with
u ' v in the usual partial order, we shall denote by Tu,v the last passage time from
u to v; i.e., the maximum weight among all weights of all directed paths from u to
v (the weight of a path is the sum of the field along the path). By Γu,v , we shall
denote the almost surely unique path that attains the maximum- this will be called a
polymer or a geodesic. This is one of the canonical examples of an integrable model
in the so-called KPZ universality class [7, 18], and has been extensively studied
also due to its connection to Totally Asymmetric Simple Exclusion process on Z.
For notational convenience let us denote (r, r) for any r ∈ Z by r and T0,n by Tn and
similarly Γ0,n by Γn. It is well known [18] that n−1/3(Tn − 4n) has a distributional
limit (a scalar multiple of the GUE Tracy–Widom distribution), and further it has
uniform (in n) exponential tail estimates [1, 24]. Although the scaled and centered
field obtained from {T0,(x,y)}x+y=2n using the KPZ scaling factors of n2/3 in space
and n1/3 in polymer weight has been intensively studied and the scaling limit as n→
∞ identified to be the Airy2 process (minus a parabola), much less is known about
the evolution of the random field in time i.e., across various values of n. However
very recently there has been some attempts to understand the latter, see [2, 20–
23, 25, 26] for some recent progress.

In this paper, we study two point functions describing the ‘aging’ properties of
the above evolution. More precisely we investigate the correlation structure of the
tight sequence of random variables n−1/3(Tn − 4n) across n. In particular, let us
define for r ≤ n ∈ N

ρ(n, r) =: Corr(Tn, Tr ).

We are interested in the dependence of ρ(n, r) on n and r as they become large.
Observe that the FKG inequality implies that ρ(n, r) ≥ 0. Heuristically, one would
expect that ρ(n, r) is close to 1 and 0 for |n− r| � n and r � n respectively.

Our main result in this paper establishes the exponents governing the rate of
correlation decay and thus identifies up to constants the asymptotics of ρ in these
regimes establishing a prediction from [16]. Namely we show

ρ(n, r) = Θ(( r
n
)1/3) if 1 � r � n and ρ(n, r) = 1−Θ((n− r

n
)2/3) if 1 � n− r � n.

It turns out that the upper bound in the former case is similar to the lower bound
in the latter case, and the lower bound in the former case is similar to to the upper
bound in the latter case. We club these statements in the following two theorems.
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Theorem 1 There exists r0 ∈ N and positive absolute constants δ1, C1, C2 such
that the following hold.

(i) For r0 < r < δ1n and for all n sufficiently large we have

ρ(n, r) ≤ C1

( r
n

)1/3
.

(ii) For r0 < n− r < δ1n and for all n sufficiently large we have

1− ρ(n, r) ≤ C2

(
n− r
n

)2/3

.

Theorem 2 There exists r0 ∈ N and positive absolute constants δ1, C3, C4 such
that the following hold.

(i) For r0 < r < δ1n and for all n sufficiently large we have

ρ(n, r) ≥ C3

( r
n

)1/3
.

(ii) For r0 < n− r < δ1n and for all n sufficiently large we have

1− ρ(n, r) ≥ C4

(
n− r
n

)2/3

.

1.1 Note on the History of This Problem and This Paper

These exponents were conjectured in [16] using partly rigorous analysis, and as far
as we are aware was first rigorously obtained in an unpublished work of Corwin
and Hammond [10] in the context of Airy line ensemble using the Brownian Gibbs
property of the same established in [11]. A related work studying time correlation
for KPZ equation has since appeared [12]. Days before posting the first version of
this paper on arXiv in July 2018, we came across [15] which considers the same
problem. Working with rescaled last passage percolation [15] analyzes the limiting
quantity r(τ ) := limn→∞ Corr(Tn, Tτn). They establish the existence of the limit
and consider the τ → 0 and τ → 1 asymptotics establishing the same exponents
as in Theorems 1 and 2. The approach in [15] uses comparison with stationary LPP
using exit points [9] together with using weak convergence to Airy process leading
to natural variational formulas. In the limiting regime they get a sharper estimate
obtaining an explicit expression of the first order term, providing rigorous proofs
of some of the conjectures in [16]. In contrast, our approach hinges on using the
moderate deviation estimates for point-to-point last passage time to understand local
fluctuations in polymer geometry following the approach taken in [3, 6] leading to
results for finite n, also allowing us to analyze situations r � n or n−r � n, which
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can’t be read off from weak convergence. Our work is completely independent of
[15].

The ideas in this paper has since been further developed in a joint work with
Lingfu Zhang [5] to treat the case of flat initial data (i.e., line-to-point last passage
percolation) in the τ → 0 limit, and the remaining conjectured exponent from [16]
has been established there. As it turns out, the upper bound in the case of flat initial
data requires rather different arguments, but the lower bound in [5] further develops
the same line of arguments as in the original version of this paper, and improves
upon some of the estimates proved there. As such, in this version, we have decided to
omit some of the details of the proof of Theorem 2, and we refer to the relevant steps
in [5] instead. We expect this class of ideas and estimates to be crucial in further
enhancing our understanding of temporal correlations in the KPZ universality class
with more general initial conditions.

1.2 Local Fluctuations of the Weight Profile

In the process of proving Theorems 1 and 2 we prove a certain auxiliary result
of independent interest. Namely, we establish a local regularity property of the pre-
limiting profile of Airy2 process obtained from the exponential LPP model. We need
to introduce some notations before making the formal statement. For n ∈ N, s ∈ Z

with |s| < n we define

Ln,s := T0,(n+s,n−s).

It is known [7] that

Ln(x) := 2−4/3n−1/3(Ln,x(2n)2/3 − 4n)

converges in the sense of finite dimensional distributions to the A2(x) − x2 where
A2(·) denotes the stationary Airy2 process (tightness, and hence weak convergence
is also known, see e.g. [14]). It is known that the latter locally looks like Brownian
motion [17, 27] and hence one would expect that Ln(x) − Ln(0) will have a
fluctuation of order x1/2 for small x. We prove a quantitative version of the same at
all shorter scales.

Theorem 3 There exist constants s0 > 0, z0 > 0 and C, c > 0 such that the
following holds for all s > s0, z > z0 and for all n > Cs3/2:

P

(

sup
s ′:|s ′|<s

Ln,s ′ − Ln,0 ≥ zs1/2

)

≤ e−cz4/9
.

Such an estimate was first obtained in [17] for Brownian last passage percolation
using the Brownian Gibbs resampling property of the pre-limiting line ensemble in
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that model (a more refined version appears in a very recent work [8]). Observe that
one would expect the Gaussian exponent z2 in the upper bound of the probability in
the statement of the theorem and that is what is obtained in [17]. We, on the other
hand, use a cruder argument to obtain only a stretched exponential decay. However,
we have not tried to optimize the exponent 4/9 which is not even sharp for our
arguments.

1.3 Key Ideas and Organization of the Paper

Before jumping in to proofs, we present the key reasons driving the exponents
and the main ingredients of the proofs of Theorems 1 and 2. Since the reasons
governing the behaviour of ρ(n, r) when r � n and ρ(n, r) when n − r � n

are almost symmetric, in this section we will mostly discuss the former case for the
sake of brevity. The key realization driving the argument is that Γn should overlap
significantly with Γr up to the region {x + y ≤ 2r}. Then at a very high level one
can speculate that Cov(Tr , Tn) should be of the order of the variance of the amount
of overlap, which because of the previous sentence should be of the same order as
Var(Tr ) = O(r2/3) (using the well known sharp estimates of the variance). All of
this points to a correlation of the order of ( r

n
)1/3.

We now mention a few key ingredients used to make the above heuristic rigorous.
The upper bound is relatively straightforward. For convenience, as we shall do
throughout the paper, let us denote Tr by X and let Tn = Z + W where Z is the
weight of the first part of the polymer Γn i.e. the part from 0 to the line x + y = 2r
andW is the weight of the path from x+y = 2r to n. See Fig. 1. Let v = (r+s, r−s)

(r, r)

(n, n)

x + y = 2n

x + y = 2r

(0, 0)

v

X

Y

Z

W

(r, r)

(n, n)

x + y = 2n

x + y = 2r

(0, 0)

Fig. 1 The figure illustrates the polymers of interest, Γr with weight X, Γr,n, with weight Y, Γn
comprised of Γ0,v and Γv,n with weights Z andW respectively where v is the point of intersection
of Γn with the line x + y = 2r. The second figure illustrates our strategy to create barriers (deep
blue) around a narrow strip (light blue) to ensure that Γr and Γ0,v stay localized inside the latter
and hence overlaps significantly creating a situation where the covariance between X and Z +W
is approximated by the variance of the former
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be the vertex at which Γn intersects the line x + y = 2r . It is well known since the
work of Johansson [19] that if r is say n/2 then |s| = O(r2/3). However the polymer
is in some sense self similar and hence one expects that the above result should also
hold even when at scales r � n. Indeed a quantitative version of such a result was
established in [6]. This tells us that |X − Z| = O(r1/3) by standard results about
polymer fluctuations at scale r2/3 around the point r. Moreover relying on this we
also prove the local Brownian-like square root fluctuations of the distance profile
Tw,n asw varies over vertices of the form (r+s, r−s) when |s| = O(r2/3) showing
that |W − Y | = O((r2/3)1/2) = O(r1/3) where Y is Tr,n (hence is independent
of X). Given the above information, the upper bound, i.e., Theorem 1 is a simple
consequence of Cauchy–Schwarz inequality.

However, the lower bound is significantly more delicate since one has to rule out
cancellations to show that indeed the heuristic mentioned at the beginning of the
section is correct. At a very high level the strategy is to condition on a large part
of the noise space in a way which allows us to control cancellations and prove the
desired lower bound on ρ(n, r). To do this the first thing to come to our aid is the
FKG inequality. If with positive probability β (independent of r, n) the conditioned
environment is such that ρ(n, r) ≥ Θ( r

n
)1/3, then since ρ(n, r) ≥ 0 pointwise on

the conditioned environment (using the FKG inequality), averaging over the latter
yields the lower bound ρ(n, r) ≥ βΘ( r

n
)1/3. Our strategy of choosing the part of the

environment to condition on consists of ensuring that, with positive probability, the
polymer Γr is localized i.e., it is confined to a thin cylinder Rθ of size r × θr2/3 for
some small θ and ensuring Γn essentially agrees with Γr up to the line x + y = 2r.
This is obtained by creating a bad region (barrier) around the thin cylinder making it
suboptimal for the polymer to venture out of Rθ . This then implies that under such a
conditioning, up to certain correction terms Cov(Tr, Tn) is equal to Var(Tr ). At this
point we prove a sharp estimate on variance of polymer weights constrained to lie
in Rθ showing that it scales like θ−1/2r2/3 as θ goes to 0. Thus for θ small enough,
the variance term is large enough and dominates all the correction terms yielding
the sought lower bound of Θ(r2/3) on the covariance and hence Theorem 2.

We now briefly describe how to use the exact same strategy to bound ρ(r, n) in
the regime n − r � n. We will discuss the more delicate Theorem 2. Note that in
this case we are aiming to prove a lower bound on 1 − ρ(n, r) and hence an upper
bound on ρ(n, r). Thus the natural strategy to adopt would be to show that even
after conditioning on Tr , Tn is not completely determined and there is still some
fluctuation left. In fact, as expected, our arguments will show that the latter is of the
same order as the fluctuation of Tr,n i.e., Var(Tn|Tr) = Θ((n− r)2/3) on a positive
measure part of the space. Thus we get

Θ((n− r)2/3) ≤ inf
λ

Var(Tn − λTr) = (1− Corr2(Tr , Tn))Var(Tn).

This, along with the fact that Var(Tn) = Θ(n2/3), completes the proof.
It is worth emphasizing that while we do crucially make use of the integrability

of the exponential LPP model, it is done only in a rather limited nature via the
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input of weak convergence to Tracy–Widom distribution [18] and the moderate
deviation estimates coming from [1, 24]. Therefore we expect our methods to be
applicable to a large class of integrable LPP models where such estimates are
known. In particular, we do not use any information about the limiting Airy process.
As already mentioned, our approach hinges on the fine understanding of the local
polymer geometry, following the sequence of recent works [3, 4, 6]. By virtue of
being geometric, our proof is also robust, and as already mentioned, similar ideas
have already been used in [5] to treat the case of flat initial condition, which does
not yet seem accessible by any other method. We extensively draw from some of the
estimates derived in those previous works, while introducing some new elements
to advance the understanding of polymer geometry. Crucial ingredients include
moderate deviations estimates to establish concentration for passage times across
parallelograms. This idea originated in [3] and the particular estimates required for
the time correlation problems are gathered in [5, Section 4]; we shall be extensively
quoting from that source.

1.4 Organization of the Paper

The rest of the paper is organized as follows. We first prove Theorem 3 in Sect. 2.
Then we use Theorem 3 to prove Theorem 1 in Sect. 3. Proof of Theorem 2 is done
in Sect. 4.

2 Local Fluctuations of Weight Profile: Proof of Theorem 3

As alluded to before, in the case s = Θ(n2/3), one can read off a qualitative version
of this result from the limiting Airy process which ceases to provide any relevant
information when s � n2/3. Although it is known that Brownian motion arises as a
week limit at some shorter scale [27], we need some finer estimates for finite n. Such
a result was indeed achieved in [17] in the special case of Brownian LPP crucially
relying on the Brownian Gibbs property of the pre-limiting line ensemble. We shall
take a more robust, geometric approach which hinges on establishing that the profile
{Ln,s ′ − Ln,0 : |s′| < s} is with high probability determined by the vertex weights
in the region

{(x, y) : 2n− C∗s3/2 ≤ (x + y) ≤ 2n}

for some large constant C∗. To this end we have the following proposition.

Proposition 1 In the set-up of Theorem 3, consider Γ = Γ0,(n+s ′,n−s ′). Let t ≥ 1
and let v = (v1(s

′, t, s), v2(s
′, t, s)) denote the point at with Γ intersects the anti-

diagonal x + y = 2n− 2t∗s3/2. There exists s0 > 0, y0 > 0 and c, C > 0 such that
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Fig. 2 The figure illustrates
the setting of Proposition 1
where the geodesic from 0 to
any point in an interval L of
length 2s centered at n on the
line x + y = 2n is unlikely to
intersect the line
x + y = 2(n− ts3/2) outside
the line segment Lt,s,y of
length 2yt2/3s centered at
(n− ts3/2, n− ts3/2). Thus it
is unlikely that the black path
would be a geodesic

(n, n)

x + y = 2n

(0, 0)

2s

t,s,y
2yt2/3s ts3/2

the following holds for all s > s0, t ≥ 1, y > y0 and for all n > Cr3/2:

P

(

sup
|s ′|<s

|v1(s
′, t, s)− (n− t∗s3/2)| ≥ yt2/3s

)

≤ e−cy2

where t∗ = min{t, n
s3/2 }.

See Fig. 2 for an illustration of the setting in Proposition 1 and the associated event.

Proof Clearly, the case t∗ = t is trivial by the directed-ness of the geodesic. For
the other case, observe first that by polymer ordering, it suffices to prove the result
for s′ = ±r . This case can be read off from the proof of Theorem 3 in [6] (see also
Remark 1.3 there about the non-optimality of the exponent).

As in Fig. 2, let L denote the line segment joining (n+s, n−s) and (n−s, n+s)
and Lt,s,y denote the line segment joining (n− t∗s3/2−yt2/3s, n− t∗s3/2+yt2/3s)
and (n− t∗s3/2+yt2/3s, n− t∗s3/2−yt2/3s) . Clearly on the large probability event
(for large y) implied by Proposition 1, the profile:

{Ln,s ′ − Ln,0 : |s′| < s}
can be upper bounded by using the passage times Tu,v where u ∈ Lt,s,y and v ∈ L.
The next proposition states a concentration result for these passage times around
their expectations.

Proposition 2 Let δ ∈ (0, 1
3 ) be fixed. Set L′ := Lt,s,t δ . Then there exists s0, y0 > 0

and c > 0 such that for all s > s0, y > y0 and t ≥ 1 we have

P

(

sup
u∈L′,v∈L

|Tu,v − ETu,v| ≥ yt1/3+δ/2s1/2

)

≤ e−cy.
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The same bound holds for u = 0 if t = t∗.

Proof This follows from [5, Theorem 4.2] by observing that the slope between any
two pair of points in L and L

′ remain between 1/2 and 2 (here we use the fact that
δ < 1

3 , and s is sufficiently large).

We can now complete the proof of Theorem 3. The basic strategy is the following.
To bound Ln,s ′ − Ln,0 we back up a little bit and look at where the geodesic
Γ0,(n+s ′,n−s ′) intersects the line L

′ from Proposition 2 for an appropriate choice
of the parameters. Calling that u∗ the proof proceeds by bounding |Tu∗,v − Tu∗,n|
and using the simple observation that Ln,0 ≥ T0,u∗ + Tu∗,n.

Proof of Theorem 3 Let z > 0 sufficiently large be fixed. Let t = z4/3 and let A
denote the event that

{

sup
s ′:|s ′|<s

|v1(s
′, t, s)− (n− t∗s3/2)| ≥ z10/9s

}

Use Proposition 1 with the above value of t and y = z2/9 to conclude that P(A ) ≤
e−cz4/9

(as z is sufficiently large). We shall now consider two cases separately: (i)
t = t∗ and (ii) t = t∗.

In case (i), let L′ be defined as in Proposition 2 with δ = 1/6 (any arbitrary
choice for δ ∈ (0, 1/3) would work, but would give a different tail exponent) and
the choice of t as before. Let B denote the event that

{

sup
u∈L′,v,v′∈L

|Tu,v − Tu,v′ | ≥ zs1/2

}

.

Observe now that, for u = (u1, u2) and v = (v1, v2) as above, we have, by Basu et
al. [5, Theorem 4.1], that

|ETu,v − (√v1 − u1 +√v2 − u2)
2| ≤ Ct1/3s1/2

for some C > 0. By a Taylor expansion, it follows that, for u, v, v′ as above we
have for some C′

sup
u∈L′,v,v′∈L

|ETu,v − ETu,v′ | ≤ C′t1/3s1/2 ≤ z
2
s1/2

where the final inequality follows from our choice of t and z sufficiently large. Using
Proposition 2 with the choices above, y = z4/9, we get from the above that for z
sufficiently large, we have P(B) ≤ e−cz4/9

. It remains to prove that on A c ∩Bc we
have

{

sup
s ′:|s ′|<s

Ln,s ′ − Ln,0 ≤ zs1/2

}

.
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To see this, let s∗ with |s∗| ≤ s be such that

Ln,s∗ = sup
s ′:|s ′|<s

Ln,s ′ .

Let v := (n + s∗, n − s∗). On A c, the geodesic Γ0,(n+s∗,n−s∗) intersects the line
segment L′, let u∗ be the intersection point. On Bc we have |Tu∗,v−Tu∗,n| ≤ zs1/2.
The claim is established by observing that Ln,0 ≥ T0,u∗ + Tu∗,n.1

In case (ii), we proceed as before but now notice that u∗ = 0. The same argument
now can be repeated with B′ defined as

{

sup
v,v′∈L

|T0,v − T0,v′ | ≥ zs1/2

}

.

Observe now that since t = t∗, we must have n ≤ ts3/2. Using [5, Theorem 4.1] as
before it follows that for some C > 0

sup
v,v′∈L

|ET0,v − ET0,v′ | ≤ Cn1/3 ≤ Ct1/3s1/2 ≤ z
2
s1/2

where the last inequality follows as before by taking z sufficiently large and our
choice of t . Using the above and Proposition 2 as before we show that P(B′) ≤
e−cz4/9

. The rest of the proof is identical with the previous case.

3 Proof of Upper Bounds

In this section we shall prove Theorem 1 using Theorem 3 and Proposition 1. As we
shall see, the proofs of parts (i) and (ii) rely on much of the same ingredients. Before
proceeding further let us introduce some notation that will be used throughout this
section.

Before diving in to the proofs we adopt the convention of ignoring the values of
the vertices {ω(x,y) : x + y = 2r}. This would enable us to write cleaner equations
of the form Tn = T0,v + Tv,n where v is the unique vertex Γn ∩ {x + y = 2r}.
However since by definition, the random v can be one of 2r possible vertices, whose
maximum value is no more than log r with an exponential tail, it does not create
any change in the computations throughout the paper since all the objects that we
deal with, have fluctuations of the order of r1/3. We shall adopt this convention
throughout the remainder of this paper, and not comment further on this topic. It
will be easy to verify the minor details in each case, and we leave that to the reader.

For any path γ , we shall denote by �(γ ), the weight of the path. Let Γ := Γn
denote the polymer from 0 to n. Let v = (v1, v2) denote the point at which Γ

1We shall ignore the contribution of the vertex u∗, one can check that this does not change any of
the asymptotics.
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intersects the line {x + y = 2r}. Recall from Sect. 1 that Tr := T0,r. Let us define
(see Fig. 1)

X := Tr , Y := Tr,n, (1)

Z := �(Γ0,v) andW := �(Γv,n).

Thus by definition Tn = Z +W .2 Finally we shall denote by X∗ the weight of the
polymer, denoted by Γ ∗, from 0 to the line {x + y = 2r}.

We shall need some preparatory results. First we want to show that (Z −X)+ is
tight at scale r1/3. Observing that X∗ ≥ Z, this is a consequence of [5, Theorem
4.1] that r−1/3(X∗ − X) has stretched exponential tails: for all y large enough and
for all r large enough

P(X∗ −X ≥ yr1/3) ≤ e−cy1/3
. (2)

The next lemma shall show that W − Y is also typically of order r1/3. Notice
that if r � n, now we can no-longer replace W by the weight of the line-to-point
polymer from the line {x+ y = 2r} to n. This is where we shall need the full power
of Proposition 1 and Theorem 3.

Lemma 1 There exists positive constants r0, y0 and C, c > 0 such that for all
r > r0 and y > y0 and n > Cr we have

P(W − Y > yr1/3) ≤ e−cy1/3
.

Proof For z > 0, let Az denote the event |v1 − r| ≥ zr2/3 and Bz denote the event
that

sup
|s|≤zr2/3

T(r+s,r−s),n − Tr,n ≥ yr1/3.

Clearly for every z > 0,

P(W − Y > yr1/3) ≤ P(Az)+ P(Bz).

The lemma follows by taking z = y1/6 and using Proposition 1 and Theorem 3 to
bound P(Az) and P(Bz) respectively. Note that in the last application, Theorem 3
is applied for the inverted ensemble i.e., replace n by 0, 0 by n and r by n− r .

We can now prove the following proposition which immediately implies Theo-
rem 1, (i) as Var Tn = Θ(n2/3), and Var Tr = Θ(r2/3).

2This is first of the many situations we ignore the weights on the line x + y = 2r , as mentioned
above we shall not comment on this issue henceforth.
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Proposition 3 There exists absolute constants r0, δ1 and C such that we have for
all r0 < r < δ1n and n sufficiently large

Cov(Tn, Tr ) ≤ Cr2/3.

Proof We need to upper bound

Cov(X,Z +W) = Cov(X,Z)+ Cov(X,W).

we bound the two terms separately. Clearly, by Cauchy–Schwarz inequality and
the observation Var X = Θ(r2/3), to prove Cov(X,Z) ≤ Cr2/3, it suffices to
show that Var Z = O(r2/3). Now notice that, Var(Z) ≤ 2(VarX + E(X − Z)2).
Observing Y −W ≤ Z −X ≤ X∗ − X, and using (2) and Lemma 1 it follows that
E(X−Z)2 = O(r2/3) which in turn implies Cov(X,Z) ≤ Cr2/3 for some absolute
constant C.

For the second term in the above decomposition observe that

Cov(X,W) = Cov(X,W − Y )

because X and Y are independent. Using Cauchy–Schwarz inequality again, it
suffices to show that E(Y − W)2 = O(r2/3). Observing as before that W − Y ≥
X −Z ≥ X −X∗, this follows from (2) and Lemma 1. This completes the proof of
the proposition.

To prove Theorem 1, (ii) we shall need the following easy observation.

Observation 1 For any two random variables U and V we have

Var(U − V ) ≥ (1− Corr2(U, V ))Var(U).

The observation follows from noticing that

(1− Corr2(U, V ))Var(U) = inf
λ∈RVar(U − λV ) ≤ Var(U − V ).

Using Observation 1, the following Proposition immediately implies Theorem 1,
(ii).

Proposition 4 There exists r0 ∈ N and positive absolute constants δ1, C, for all r
such that δ1n > (n− r) > r0, and all n sufficiently large we have

Var (Tn − Tr) ≤ C(n− r)2/3.

Proof Recalling X,Y,Z,W as defined at the beginning of this section, we need to
upper bound Var(Z +W −X). Expanding we get that,

Var(Z +W −X) = Var(Z − X)+ Var(W)+ 2Cov(Z −X,W).
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We shall show each of the terms above is O((n − r)2/3) separately. In fact, by
Cauchy–Schwarz inequality it suffices to only show that bound for the first two
terms. Notice that the picture is same as before except the roles of r and (n− r) has
been reversed. Using the proof of Lemma 1 we can now show that

P(Z − X ≥ y(n− r)1/3) ≤ e−cy1/4

and using (2) again it follows that

P(W − Y ≥ y(n− r)1/3) ≤ e−cy1/4

for all y sufficiently large. As in the proof of Proposition 3, this is then used to
argue that Var(Z − X) = O((n− r)2/3), and E[W − Y ]2 = O((n− r)2/3), which
together with the observation that Var Y = O((n − r)2/3) completes the proof of
the proposition.

4 Proof of Lower Bounds

We now move towards proving Theorem 2. As in the proof of Theorem 1, parts (i)
and (ii) of Theorem 2 have rather similar proofs as well (after exchanging the roles
of r and n− r). In this section we describe in detail the line of argument leading to
the proof of Theorem 2, (i). We shall first complete the proof modulo the key result
Proposition 6. We shall give a sketch of how the same strategy is used to prove
Theorem 2, (ii). The final subsection will be dedicated to the proof of Proposition 6.

For the readers’ benefit, we recall briefly the strategy outlined in Sect. 1.3. By
the FKG inequality, it should suffice to obtain a lower bound on the conditional
correlation on an event with probability bounded uniformly below. By the trivial
observation Cov(X,X + Y ) = Θ(r2/3), a very natural way to construct such an
event is to ask that v is very close to r which will imply X ≈ Z and Y ≈ W (using
Theorem 3). However one needs to be careful so that there will be enough fluctuation
left in the conditional environment. To this end, it turns out one can construct such
an event measurable with respect to the configuration outside a thin strip of width
Θ(r2/3) around the straightline joining 0 to r.

For θ > 0, let Rθ ⊆ Z
2 be defined as follows:

Rθ := {(x, y) ∈ Z
2 : 0 ≤ x + y ≤ 2r and |x − y| ≤ θr2/3}.

Let ωθ = {ωv : v ∈ �0, n�2 \Rθ } denote a weight configuration outside Rθ . Let Fθ
denote the σ -algebra generated by the set of all such configurations Ωθ . Observe
that events measurable with respect to Fθ can be written as subsets of Ωθ , and we
shall often adopt this interpretation without explicitly mentioning it. The major step
in the proof is the following proposition.
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Proposition 5 There exist absolute positive constants β, δ1, θ, C > 0 sufficiently
small such that for δ1n > r > r0 and n sufficiently large there exists an event E
measurable with respect to Fθ with P(E ) ≥ β and the following property: for all
weight configuration ω ∈ E we have

Cov(Tn, Tr | ω) > Cr2/3.

The proof of Theorem 2, (i) using Proposition 5 is straightforward.

Proof of Theorem 2, (i) Observe that for each fixed weight configuration ω ⊂ Ωθ
on the vertices outsideRθ , both Tn and Tr are increasing in the weight configuration
on Rθ . Observe also that E[Tn | Fθ ] and E[Tr | Fθ ] are both again increasing in
the configuration ω. Applying the FKG inequality twice (in the third and fifth lines
of the following computation) together with Proposition 5 (in the third line of the
following computation while dealing with the integral over E ) then implies

ETnTr = E (E[TnTr | Fθ ])
=

∫

E
E[TnTr | Fθ ]dω +

∫

E c
E[TnTr | Fθ ]dω

≥
∫

E
E[Tn | Fθ ]E[Tr | Fθ ]dω + Cβr2/3 +

∫

E c
E[Tn | Fθ ]E[Tr | Fθ ]dω

= E (E[Tn | Fθ ]E[Tr | Fθ ])+ Cβr2/3

≥ E[Tn]E[Tr ] + Cβr2/3;

which is what we set out to prove.

4.1 Constructing a Suitable Environment

The key step in the proof of Proposition 5, is the construction of E , towards which
we now move. For easy reference we recall the notations already introduced in
Sect. 3, that we will use again.

X := Tr , Y := Tr,n, Z := �(Γ0,v) andW := �(Γv,n).
X∗ := max{�(Γ0,w) : w ∈ Lr },

where Lr denote the line {x + y = 2r}. We shall also denote by X∗ (resp. Xθ )
the weight of the best path from 0 to r that does not exit R2θ (resp. Rθ ). Finally
for φ > θ , Lr,φ shall denote the line segment joining (r − φr2/3, r + φr2/3) and
(r + φr2/3, r −φr2/3). We shall denote by Xφ the weight of the best path from 0 to
Lr,φ , and by Yφ the weight of the best path from Lr,φ to n.
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The event E will depend on a number of parameters φ0, φ, L, c0 (and naturally
θ ), the choices of which shall be specified later.

The event will consist of two major parts.

1. Regular fluctuation of the profile {Tw,n : w ∈ Lr,φ}: Let E1 denote the event
that

{

sup
w∈Lr,φ0

Tw,n − Tr,n ≤ φ1/2
0 log9(θ−1)r1/3

}

∩
{

sup
w∈Lr,φ\Lr,φ0

Tw,n −
√|w1 −w2| log9(θ−1) ≤ Tr,n

}

,

where w = (w1, w2). Our choice of parameters (see below) would ensure φ0 �
φ. Observe that E1 only depends on the weight configuration above the line Lr .

2. Barrier around Rθ : Let U1 (resp. U2) denote a r × (φ− θ)r2/3 rectangle whose
one set of parallel sides are aligned with the lines x + y = 0 and x + y = 2r
respectively and whose left (resp. left right) side coincides with the right (resp.
left) side of Rθ .3 For any point u = (u1, u2) ∈ Z

2, let d(u) := u1 + u2. Also,
for any region U , and points u, v ∈ U , let us denote, by T Uu,v to be the weight of
the best path from u to v that does not exit U . Let E2 denote the following event
measurable with respect to the configuration in U1:

T
U1
u,u′ − ETu,u′ ≤ −Lr1/3 ∀u, u′ ∈ U1 with |d(u)− d(u′)| ≥ r

L
.

Let E3 denote the same event with U1 replaced by U2. We set E4 := E2 ∩ E3.

4.1.1 Choice of Parameters

We need to fix our choice of parameters appearing in the definitions of the above
events before proceeding to proving probability bounds for the same. Throughout
the sequel c0 is a small enough universal constant, we shall choose θ to be an
arbitrarily small constant; andL� φ � φ0. We need to chooseφ0 poly-logarithmic
in θ−1, φ a large inverse power of θ , and L a much larger inverse power of θ
depending on φ. For concreteness we shall fix φ0 = log10( 1

θ
), φ = ( 1

θ
)30 and

L = φ30. Given all of these we shall take r sufficiently large, and r/n sufficiently
small. Throughout the remainder of this paper we shall work with this fixed choice
of parameters.

3In keeping with the often used practice, left and right are defined after rotating the picture counter-
clockwise by 45 degrees, so that the line x = y becomes vertical.
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4.2 Construction of E

We are now ready to define the event E . First we define certain nice events
conditioned on E4 towards the proof of Proposition 5.

1. Let E5 denote the set of all ω = ωθ ∈ E1 ∩ E4 such that

E[(X∗ −X∗)2 | ω] ≤ 10r2/3,

2. Let E6 denote the set of all ω = ωθ ∈ E4 ∩ E1 such that

E[(Z +W − Y −X∗)2 | ω] ≤ 40φ2
0r

2/3.

3. Let E7 denote the set of all ω ∈ E4 ∩ E1 such that

Var (X∗ | ω) ≥ c0θ
−1/2r2/3

where c0 is a sufficiently small constant to be chosen appropriately later
(independent of θ ) and θ will be chosen sufficiently small.

We shall set

E := E5 ∩ E6 ∩ E7. (3)

4.3 Proof of Proposition 5

It remains to prove Proposition 5 using the E defined above. First we need to state
the desired lower bound for P(E ).

Proposition 6 There exists β > 0 depending on all parameters such that P(E ) >
β.

Deferring the proof of this proposition to Sect. 4.4, we first finish the proof of
Proposition 5.

Proof of Proposition 5 Let E be as defined above. By Proposition 6 we know
that P(E ) is bounded below as required. Fix ω = ωθ ∈ E . Observe that Y is
a deterministic function of ω. Using linearity of covariance and Cauchy–Schwarz
inequality, we have for each ω ∈ E ,

Cov(X,Z +W | ω) = Cov(X,Z +W − Y | ω)
= Cov(X∗, Z +W − Y | ω)
+Cov(X −X∗, Z +W − Y | ω)

= Var(X∗ | ω)
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+Cov(X∗, Z +W − Y −X∗ | ω)
+ Cov(X −X∗,X∗ | ω)
+Cov(X −X∗, Z +W − Y −X∗ | ω)

≥ Var(X∗ | ω)−
√

Var(X∗)

×
(√

Var(X −X∗ | ω)+
√

Var(Z +W − Y − X∗ | ω)
)

−√
Var(X −X∗ | ω)

√
Var(Z +W − Y −X∗ | ω).

By definition of E5, and the observation that X∗ ≥ X ≥ X∗ we get that for each
ω ∈ E , Var(X − X∗ | ω) ≤ 10r2/3. By definition of E6, Var(Z +W − Y − X∗ |
ω) = O(φ2

0r
2/3). The proof is completed by the definition of E7, observing that by

our choices of parameters θ−1/4 � φ0 (whch ensures that the first term dominates
in the above expression).

We now illustrate how the proof of Theorem 2, (ii) can be completed along the
same lines. We shall only provide a sketch.

Proof of Theorem 2, (ii) First observe that in the notation of the above proof, using
Cauchy–Schwarz inequality, and the fact that Y is a deterministic function of ω, we
have, as above, that for all ω ∈ E ,

Var(Z +W | ω) ≥ Var(X∗ | ω)− 2
√

Var(Z +W − Y −X∗ | ω)
√

Var(X∗ | ω).

By definition of E6 and E7, we get that for θ sufficiently small and for all ω ∈ E ,
we have Var(Z + W | ω) ≥ c(θ)r2/3 for some c(θ) > 0. Now we make the
same definitions as before, but interchange the roles of r and (n− r). Let the event
corresponding to E be now denoted Ẽ . The analogue of Proposition 6 and the above
observation now implies that for 1 � n− r � n there exists a positive probability
set Ẽ such that for each ω ∈ Ẽ , Var(Tn | ω) ≥ c(n− r)2/3 (and Tr is a deterministic
function of ω ∈ Ẽ ). This implies for some constant c′ > 0 we have

c′(n− r)2/3 ≤ inf
λ

Var(Tn − λTr) = (1− Corr2(Tr, Tn))Var(Tn);

which completes the proof.

The remainder of the paper is devoted to the proof of Proposition 6.

4.4 Proof of Proposition 6

The proof has two parts. First we consider the event E1 ∩ E4 and show that it has
probability bounded below. Then we show that conditional on E1 ∩ E4 each of the
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events E5, E6 and E7 has probability close to one. Since E1 and E4 are independent
it suffices to lower bound their probabilities separately.

Lemma 2 There exists positive constants r0, δ1 such that for all δ1n > r > r0, we
have

P(E1) ≥ 1− e−c log4(θ−1).

Proof Recall the two events whose intersection E1 consists of. That the first of those
has probability at least 1− e−c log4(θ−1) is an immediate consequence of Theorem 3.
The probability lower bound for the second event also follows by writing the
line segment Lr,φ as an increasing union over Lr,i for i = 1, 2 . . . , φ, applying
Theorem 3 for each and taking a union bound.

The next lemma, quoted from [5] without proof, shows that E4 occurs with positive
probability.

Lemma 3 ([5, Lemma 6.5]) There exists ε = ε(φ,L) > 0 such that P(E4) > ε.

Let us now move towards bounding the conditional probabilities of E5,E6 and
E7 given E1 ∩ E4. Notice that E5 is independent of E1 and hence for those it suffices
to consider conditional probability given E4 only. We need the following result from
[5].

Lemma 4 ([5, Lemma 6.6]) There exists positive constants r0, δ1 such that for all
δ1n > r > r0, and θ sufficiently small, we have

E[(X∗ −X∗)2 | E4] ≤ r2/3.

Lemma 5 There exists positive constants r0, δ1 such that for all δ1n > r > r0, we
have

E[(Z +W − Y − X∗)2 | E1 ∩ E4] ≤ 4φ2
0r

2/3.

We shall come back to the proof of Lemma 5 at the end of this subsection.

Lemma 6 There exists positive constants r0, δ1 and c0 such that for all δ1n > r >
r0, we have

P[Var[X∗ | ωθ ] ≥ c0θ
−1/2r2/3 | E1 ∩ E4] ≥ 0.9.

Essentially the same statement is proved in [5, (43)] and we shall omit the proof.
See the proofs of [5, Lemma 6.9, Lemma 6.10].

We can now complete the proof of Proposition 6.

Proof of Proposition 6 Observe that by Markov inequality (and the fact that E1 is
independent of E4 and E5) we have P(E5 | E1∩E4) ≥ 0.9 and P(E6 | E1∩E4) ≥ 0.9
and P(E7 | E1 ∩ E4) ≥ 0.9 using Lemmas 4, 5, and 6 respectively. Combined,
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these give P(E | E1 ∩ E4) ≥ 0.7. Observe further that by Lemmas 2 and 3 and
the fact that E1 and E4 are independent implies that for θ sufficiently small we have
P(E1 ∩ E4) ≥ ε/2. The proof of the proposition is completed by choosing β = ε/4.

It remains to prove Lemma 5. It is in spirit similar (in fact somewhat easier) to
the proof of [5, Lemma 6.7] but several ingredients are different.

Proof of Lemma 5 Let A denote the event that the point v where the geodesic Γn
from 0 to n intersects Lr lies in Lr,φ0 . We write

E[(Z +W − Y −X∗)2 | E1 ∩ E4]
= E[(Z +W − Y −X∗)21A | E1 ∩ E4] + E[(Z +W − Y −X∗)21Ac | E1 ∩ E4]
≤ E[(Z +W − Y −X∗)21A | E1 ∩ E4] + E[(Z +W − Y −Xθ)21Ac | E1 ∩ E4]

where the inequality is a consequence of 0 ≤ Z+W −Y −X∗ ≤ Z+W −Y −Xθ .
To bound the first term, we notice that, on A, |Z − Y | ≤ supw∈Lr,φ0

|Tw,n − Y |,
and consequently

E[(Z +W − Y − X∗)21A | E1 ∩ E4]

≤ O
(

E

[

sup
w∈Lr,φ0

|Tw,n − Y |2 | E1

]

+ E[(X∗ −X∗)2 | E4]
)

= O(φ0r
2/3)

where in the first inequality we use the fact that supw∈Lr,φ0
|Tw,n−Y |2 is independent

of E4 and the last inequality is a consequence of Theorem 3, Lemmas 2 and 4.
Now for the second term, using Cauchy–Schwarz inequality we get

E[(Z+W−Y−Xθ)21Ac | E1∩E4] ≤ P[Ac | E1∩E4]1/2E[(Z+W−Y−Xθ)4 | E1∩E4]1/2.

Now we claim that P(A | E1 ∩ E4) ≥ 1 − e− log2(θ). This is proved in Lemma 7
below. Also notice that since E1 and E4 are independent, Lemma 2 implies that for θ
sufficiently small we haveE[(Z+W−Y−Xθ)4 | E1∩E4] ≤ 2E[(Z+W−Y−Xθ)4 |
E4]. Further observe that the event E4 is decreasing in the configuration Rθ , and the
FKG inequality implies that conditioning on E4 makes the configuration outside Rθ
stochastically smaller. Since (Z + W − Y − Xθ) is positive and increasing in the
configuration outside Rθ , we thus have

E[(Z +W − Y −Xθ)4 | E4] ≤ E[(Z +W − Y −Xθ)4].
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Finally, as Z ≤ X∗ and Z +W − Y −Xθ ≥ 0

E[(Z +W − Y −Xθ)4] ≤ E[(X∗ +W − Y −Xθ)4]
≤ O(E[(X∗ −Xθ)4] + E[(W − Y )4])
= O(θ−4r4/3).

For the last equality we use [5, Proposition 4.5] to show E[(Xθ − 4r)4] =
O(θ−4r4/3), use [5, Theorem 4.1] to get E[(X∗ − 4r)4] = O(r4/3) and deduce
E[(W − Y )4] = O(r4/3) from Lemma 1 as in the proof of Proposition 3. By taking
θ sufficiently small, this concludes the proof of the proposition modulo Lemma 7
below.

Lemma 7 In the set up of the proof of Proposition 6, we have P(A | E1 ∩ E4) ≥
1− e− log2(θ) for all θ sufficiently small.

For this proof we make numerous uses of the estimate in [5, Theorem 4.2] which
states that for an r × r2/3 rectangle (or parallelogram) R and for pairs of u,w ∈
R such that the slope joining u,w is bounded away from 0 and infinity we have
infu,w r−1/3(Tu,w − ETu,w) and supu,w r

−1/3(Tu,w − ETu,w) both have stretched
exponential tails.

Proof We shall construct a number of large probability events which together will
imply A. Let Aloc,φ denote the event that for some w ∈ Lr \ Lr,φ1/2 we have

T0,w + Tw,n ≥ Xθ + Tr,n.

Let Aθ,1 denote the event that for all v′ = (v′1, v′2) ∈ Rθ with 2r−2θ3/2r ≤ d(v′) ≤
2r − θ3/2r , we have

T
Rθ
v′,r ≥ 2(2r − d(v′))− θ1/2r1/3 log5(

1

θ
).

Let Aθ,2 denote the event that for all v′ as above and for all w ∈ Lr,φ1/2 \ Lr,φ0 we
have

Tv′,w − ETv′,w ≤ θ1/2r1/3 log10(
1

θ
).

Finally, let Ẽ denote the event that for any w′ ∈ Lr,φ1/2 \ Lr,φ0 and the geodesic Γ ′
from 0 to w′ there exists v′ ∈ Rθ ∩ Γ ′ with 2r − 2θ3/2r ≤ d(v′) ≤ 2r − θ3/2r such
that from 0 to v′, Γ ′ is entirely contained in R2θ .
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We first claim that E1 ∩ Ẽ ∩ Aθ,1 ∩ Aθ,2 ∩ (Aloc,φ)
c ⊆ A. Indeed, observe

first that (Aloc,φ)
c implies that v := Γ ∩ Lr ∈ Lr,φ1/2 . Then notice that for any

w′ = (w′1, w′2) ∈ Lr,φ1/2 \ Lr,φ0 , Ẽ implies that

T0,w′ −X∗ ≤ sup
v′
[Tv′,w′ − T Rθv′,r]

where the supremum is taken over all v′ ∈ Rθ such that 2r − 2θ3/2r ≤ d(v′) ≤
2r − θ3/2r .

Recall, for w′ as above, the lower bound on Y − Tw′,n given by the definition

of E1. Using this together with the fact that ETv′,w′ ≤ 2(2r − d(v′)) − |w′1−w′2|2
50θ3/2r

(this is a consequence of the moderate deviation estimate [5, Theorem 4.1]) and the
definitions of Aθ,1 and Aθ,2, it follows that on E1 ∩Aθ,1 ∩Aθ,2 we have

sup
v′
[Tv,w′ − T Rθv′,r] ≤ Y − Tw′,n

where the supremum over v′ is as before. It therefore follows that on E1 ∩ E ′ ∩
Aθ,1 ∩Aθ,2 we have

T0,w′ − X∗ ≤ Y − Tw′,n
for each w′ ∈ Lr,φ1/2 \ Lr,φ0 . This completes the proof of the claim.

Now the barrier event E4 is designed in such a way that a path from 0 to w′
as above is penalised more heavily than a path constrained to stay within Rθ (as
L� φ � 1

θ
). Formalising this, [5, Lemma 6.12] implies (the event Ẽ defined there

is slightly different, where the starting point of the geodesic is also allowed to vary
around 0 but the same proof works) P((Ẽ )c | E4) ≤ e− log3(1/θ). It follows from
[5, Theorem 4.2] that P(Aθ,1)c ≤ e− log5/2(1/θ) for all θ small. Next, notice that by
dividing Lr,φ1/2 \Lr,φ0 into intervals of length θr2/3, applying [5, Theorem 4.2] and
taking a union bound and using the FKG inequality it follows that P((Aθ,2)c | E4) ≤
e− log3(1/θ). It remains to upper bound P(Aloc,φ | E4).

To this end, set Sj := Lr,j+1 \ Lr,j . Our objective is to show that with high
probability, Y + Xθ ≥ supw∈Sj T0,w + supw∈Sj Tw,n. Let Cj denote the event that

supw∈Sj T0,w −Xθ ≥ infw∈Sj Y − Tw,n. Clearly, for j > φ1/2, we can upper bound
P(Cj ) by

P( sup
w∈Sj

T0,w − 4r ≥ −0.001j2r1/3)

+ P(Xθ ≤ 4r − 0.001j2r1/3)+ P( inf
w∈Sj

Y − Tw,n ≤ −0.002j2r1/3).
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Using [5, Theorem 4.2] for j < 0.9r1/3 and [5, (13)] together with a union
bound for j ≥ 0.9r1/3, we can show that the first probability is upper bounded by
e−cj3/2

(and the same is true conditionally on E4 by the FKG inequality). By Basu
et al. [5, Theorem 4.2] and a simple concentration inequality for sums of θ−3/2

many independent subexponential variables at scale θ1/2r1/3 (see the proof of [5,
Proposition 4.5]) we get that the second probability is upper bounded by e−cj2θ ,
whereas the third probability, by Theorem 3, is upper bounded by e−cj2/3

. Notice
also that the second and third events above are independent of E4. Summing over
all j > φ1/2 and using that φ is a large power of θ−1 gives the result gives that
P(A

φ
loc | E4) ≤ e− log3(1/θ).

Combining all these together and using E1 is independent of E4 together with
Lemma 3 gives us P(A | E1 ∩ E4) ≥ 1 − e− log2(θ) for all θ sufficiently small, as
desired.

4.5 A Note on the Variance of Constrained Last Passage Time

Before concluding we also comment that the proof of Lemma 6 (see the proof of [5,
Lemma 6.9]) can be used to obtain the sharp order of variance of the weight of the
best path constrained to stay within a thin cylinder. In particular one can show that
for θ ≤ 1 and r sufficiently large, Var Xθ = Θ(θ−1/2r2/3) answering a question
raised in [13]. The lower bound in the above statement can be proved using a simpler
version of the argument used in the proof of [5, Lemma 6.9]. Upper bound follows
from a Poincaré inequality argument after revealing θ3/2r×θr2/3 rectangles one by
one and using [5, Theorem 4.2].
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1 Introduction

In this paper we focus on critical site percolation on the square lattice (Z2,E2). The
vertices of this lattice are the points in R

2 with integer coordinates, and the edges
in E

2 connect all pairs of vertices v, v′ ∈ Z
2 with ‖v − v′‖2 = 1 (‖.‖2 denoting

the usual Euclidean norm). However, note that the results would also hold on any
two-dimensional lattice with enough symmetries, such as the honeycomb lattice,
and also for bond percolation.

We are interested in upper bounds for the probability that two disjoint clusters
connect neighbors of the origin to distance n, i.e. in lower bounds on the correspond-
ing exponent. This exponent is called two-arm exponent in [3] (a paper concerning
dimensions ≥ 2), but in two dimensions it is the same as what is usually called
four-arm exponent: two open arms, one for each of the two open clusters, separated
by two closed arms (ensuring that these two clusters are indeed not connected by
an open path). We denote the corresponding exponent by α4. In the particular case
of site percolation on the triangular lattice, this exponent is known to be equal to 5

4
[17], and this is widely believed to hold for all “nice” two-dimensional lattices (for
site percolation, as well as for bond percolation).

For the square lattice it has been known for quite some time that α4 > 1. This
strict inequality is related to the so-called noise sensitivity of certain percolation
phenomena (see Sects. 4.1 and 4.2). This inequality (and stronger versions) has an
interesting history, due to the diversity of the problems where four-arm probabilities
(and their analogs in higher dimensions) played, play, or might play, a role (for
instance, the uniqueness of the infinite cluster and the famous conjecture that
θ(pc) = 0 for every dimension).

The first paper from which a proof of α4 > 1 can be (implicitly) obtained is
(as several authors have mentioned, but without giving details) Kesten’s celebrated
scaling relations paper [10]. We discuss in some detail in Sect. 3 how to do this.
This method is quite technical and assumes much percolation background. Readers
without such background are advised to skip that section.

In Sect. 4 we discuss parts of four other papers in the literature which, sometimes
implicitly, provide a proof (some of them of the stronger result α4 ≥ 1+ α2

2 ). Those
proofs avoid the heavy near-critical machinery from [10]. However, in most of these
papers the four-arm inequality came up as a by-product or a necessary ingredient,
and the authors have not always strived for optimizing simplicity or length of the
proof. Several of the proofs use a concentration result (which for this inequality
is not needed) and/or a so-called arm-separation result: a result by Kesten which,
although intuitively appealing, has a rather long and cumbersome proof.

A natural question is whether there is a short and self-contained proof that can
be given in the first part of an introductory course on percolation theory, right after
presenting the classical Russo-Seymour-Welsh result on crossing probabilities. We
observed that one gets such a proof by following a special case of a proof by Garban
in Appendix B of [15] (which is inspired by a general inequality of [14], see also
[6]), with modifications and ingredients from Cerf’s arguments in [3]. This proof is
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presented in Sect. 5. It gives the stronger version of the inequality mentioned above,
as stated more precisely in Theorem 1 below, but it is probably also, essentially, the
shortest self-contained proof of the weaker version α4 > 1.

Theorem 1 For site percolation on the square lattice (Z2,E2) at criticality (p =
psite
c (Z

2)), the following inequality between the two- and four-arm exponents,
denoted by (resp.) α2 and α4, holds:

α4 ≥ 1+ α2

2
. (1)

We want to stress again that Theorem 1 is not new, but that the proof presented in
Sect. 5 (a modification and combination of other proofs) is arguably the most self-
contained. It does not use Kesten’s arm-separation results [10]: in fact, it only uses
pre-1980 percolation, namely the Russo-Seymour-Welsh result that at criticality,
“box-crossing probabilities are bounded away from 0 and 1”.

1.1 Organization of the Paper

In Sect. 2, we set notation, and we recall the properties of critical percolation in 2D
that we are going to use. We then comment on earlier (explicit or implicit) proofs
of the inequality α4 > 1 (or even of (1)) in Sects. 3 and 4, before turning to the
self-contained proof of Theorem 1 in Sect. 5.

2 Two-Dimensional Percolation at Criticality

2.1 Setting and Notations

Recall that we work with the square latticeG = (V ,E), with set of verticesV = Z
2,

and set of edges E = E
2 connecting any two vertices which are at a Euclidean

distance 1 apart (i.e. differing along exactly one coordinate, by ±1). Two vertices
v, v′ ∈ Z

2 are adjacent (or neighbors) if they are connected by an edge, i.e. {v, v′} ∈
E, and we write it v ∼ v′. For a subset of vertices A ⊆ V , its inner and outer vertex
boundaries are defined as, respectively,

∂ inA := {
v ∈ A : v ∼ v′ for some v′ ∈ V \ A}

and ∂outA := ∂ in(V \A). The matching lattice G∗ = (V ∗, E∗), or simply *-lattice,
is obtained from G by adding the two diagonal edges to each face, as shown on
Fig. 1 (Left), and we use the notation ∼∗ for adjacency on G∗. A path (resp *-
path) of length k ≥ 1 on G (resp. G∗) is a finite sequence of vertices v0, v1, . . . , vk
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Fig. 1 Left: This figure shows the square lattice G, as well as the *-lattice obtained by adding
the two diagonal edges (in dashed line) to every face of G. Right: This figure depicts, in red, the
medial lattice of G

such that vi ∼ vi+1 (resp. vi ∼∗ vi+1) for all i = 0, . . . , k − 1. We denote by
Bn := [−n, n]2 the ball of radius n ≥ 0 around 0 for the L∞ norm ‖.‖ = ‖.‖∞, and
by An1,n2 := Bn2 \ Bn1−1 the annulus with radii 0 ≤ n1 < n2 centered at 0.

We also introduce the medial lattice G( = (V (, E() of G, for which a vertex
e( ∈ V ( is located at the middle of every edge e ∈ E, and two such vertices e(,
e′( in V ( are connected by an edge if and only if the corresponding edges e, e′ are
incident to a common vertex in V : see Fig. 1 (Right).

Bernoulli site percolation on G with parameter p ∈ [0, 1] is obtained by
declaring each vertex v ∈ V either open or closed, with respective probabilities
p and 1 − p, independently of the other vertices. We denote by Ω := {0, 1}V the
set of configurations (ωv)v∈V , where ωv = 1 if v is open, and ωv = 0 if v is closed.
We write Pp for the product measure with parameter p onΩ .

Two vertices v, v′ ∈ V are connected (resp. *-connected) if there exists a path
(resp. *-path) of length k, for some k ≥ 1, along which all vertices are open (resp.
closed), and we use the notation v ↔ v′ (resp. v ↔∗ v′). More generally for
A,A′ ⊆ V , A ↔ A′ (resp. A ↔∗ A′) means that there exist v ∈ A and v′ ∈ A′
such that v ↔ v′ (resp. v ↔∗ v′). Open vertices can be grouped into maximal
connected components, that we call open clusters, and we denote by C (v) the open
cluster containing a given v ∈ V (with C (v) = ∅ if v is closed). Closed *-clusters
are defined in a similar way.

Exploration processes turn out to be an important ingredient in the proofs below.
Such processes determine the outer boundary of an open cluster by revealing it in
a step-by-step manner: all the open vertices along it, together with all the adjacent
closed vertices (and discovering no other vertices). As shown on Fig. 2, they can be
seen as edge-self-avoiding paths on the medial latticeG(.

Site percolation of G displays a phase transition at a percolation threshold pc =
psite
c (G): for all p < pc there exists almost surely (a.s.) no infinite open cluster and

a unique infinite closed *-cluster, while for all p > pc there is a.s. a unique infinite
open cluster but no infinite closed *-cluster. In the present paper, we are concerned
with the critical regime p = pc, where neither infinite open clusters nor infinite
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Fig. 2 An exploration process onG following an “interface” between open and closed sites. It can
be seen as an edge-self-avoiding path on the medial graph G( of G (each edge of G( is followed
at most once, although some vertices may be visited several times). The black and white vertices
are revealed during the exploration, and respectively open and closed, while the grey vertices are
left unexplored

closed *-clusters do exist. We refer the reader to the classical references [7, 8] for
more background on percolation theory.

Finally, the cardinality of a set S is denoted by |S|, and for an event E, its
indicator function1E is defined by: 1E(ω) = 1 if ω ∈ E, and 1E(ω) = 0 otherwise.

2.2 Critical Regime

We now recall classical definitions and properties concerning Bernoulli percolation
at the critical point pc.

If R = [x1, x2] × [y1, y2] (for some integers x1 < x2, y1 < y2) is a rectangle
on the lattice, we denote by CH (R) (resp. C ∗

H (R)) the existence of an open path
(resp. closed *-path) in R connecting the left side {x1} × [y1, y2] and the right side
{x2} × [y1, y2]. The classical Russo-Seymour-Welsh (RSW) theory states that

Ppc

(
CH ([0, 4n] × [0, n])) ≥ δ4 and Ppc

(
C ∗
H ([0, 4n] × [0, n])) ≥ δ4 (2)

for some universal δ4 > 0. Using standard arguments, (2) implies that for δ′ =
(δ4)

4 > 0,

Ppc(Bn ↔ ∂ inB2n) ≤ 1− δ′. (3)

For 1 ≤ n1 < n2, let Cn1,n2 denote the collection of open clusters in Bn2 connecting
Bn1 and ∂ inBn2 . For future reference, observe that for some universal c1 <∞:

for all n ≥ 1, � ≥ n, Epc

[|Cn,n+�|2
] ≤ c1. (4)
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Indeed, we know from (3) that Ppc(|Cn,n+�| ≥ 1) is bounded away from 0 and 1,
uniformly in n and � ≥ n. Hence, by the BK inequality, |Cn,n+�| is (uniformly in n
and � ≥ n) stochastically dominated by a geometrically distributed random variable,
which gives (4).

Let k ≥ 1, we consider the alternating sequence σk = (oco . . .) ∈ {o, c}k, where
o and c stand for “open” and “closed” respectively. In an annulus A = An1,n2 (0 ≤
n1 < n2), let Ak(A) be the event that there exist k disjoint paths (γi)1≤i≤k in A, in
counter-clockwise order, each connecting two vertices v and v′ with ‖v‖ = n1 and
‖v′‖ = n2, and with respective types prescribed by σk (i.e. γi is an open path if i is
odd, and a closed *-path if i is even). We write

πk(n1, n2) := Ppc

(
Ak(An1,n2)

)
, (5)

and in particular πk(n) := πk(k̃, n), where k̃ is the smallest integer for which
|∂ inBk̃ | ≥ k. Note that in this paper we consider only the cases k = 1, 2, 4, for
which k̃ = 0, 1, 1 respectively. Finally, we introduce the k-arm (polychromatic,
unless k = 1) exponent

αk := − lim sup
n→∞

logπk(n)

logn
. (6)

It follows from standard constructions again (based on (2)) that

for all k ≥ 1, αk ∈ (0,∞).

Remark 1

1. These arm exponents are known rigorously in the particular case of site percola-

tion on the triangular lattice: α1 = 5
48 [11], and for all k ≥ 2, αk = k2−1

12 [17].
It is widely believed that these exponents should have the same values on other
two-dimensional lattices such as the square lattice, considered in this paper.

2. Adding certain “macroscopic” restrictions concerning the endpoints of the arms
(for instance, in the case of four arms, that one endpoint is on the “north” side
of Bn, and one on the west, one on the south, and one on the east side) does
not increase the corresponding exponent. This “arm-separation result” was an
important technical intermediate result by Kesten in his paper on scaling relations
[10]. Its proof is quite long and far from easy.

3 Proof from Kesten’s Scaling Relations (1987)

In this section, we point out how the inequality α4 > 1 can be extracted from the
results of [10]. To the best of our knowledge, this paper is where the inequality
α4 > 1 was first (implicitly) proved. Note that in this part, we assume much more
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percolation knowledge than in the rest of our paper, and the explanation below is
mainly meant for specialists.

Other authors have already observed that the inequality α4 > 1 (or even better
bounds on α4) can be obtained from [10]. For instance, the paper [2] (that we discuss
in more detail below, see Sect. 4.1) says in Remark 4.2:

Although this is better than the general bound . . . , a somewhat better bound can be extracted
from Kesten’s. . .

But as far as we know, the authors did not write details about how to obtain it from
[10].

At first sight, doing so requires the assumption that some exponents exist. More
explicitly, we assume first the existence of α1 (i.e. that the limit superior in (6) can
be replaced by an actual limit), which implies that there is δ > 0 such that

Ppc(|C (0)| ≥ n) = n−
1
δ+o(1) as n→∞.

In addition, we need to assume the existence of α4, or equivalently of ν > 0 such
thatL(p) = |p−pc|−ν+o(1) as p→ pc, where the characteristic lengthL is defined
by L(p) := min

{
n ≥ 1 : Pp

(
CH ([0, n] × [0, n])) ≤ 0.001

}
(resp. ≥ 0.999) for

p < pc (resp. p > pc).
Corollary 2 in [10] then states the inequality ν ≥ δ+1

δ
. This inequality follows

from previous results in [10], combined with either of the following two inequalities,
as p ↗ pc:

Ep

[|C (0)|2]

Ep

[|C (0)|] ≥ (pc − p)−2+o(1) (7)

(see (3) in [4], Section 5), or

Ep

[|C (0)|] ≥ (pc − p)−2(δ−1)/δ+o(1) (8)

(see [12], Theorem 1.3). Note that in [10], these inequalities (7) and (8) are stated in
terms of the critical exponents corresponding to the quantities in their l.h.s., usually
denoted by Δ2 and γ (respectively).

Hence, we have in particular ν > 1. From the scaling relation (2 − α4)ν = 1
(which follows from (4.28) and (4.33) in [10]), we can thus obtain 2 − α4 < 1,
so the desired inequality α4 > 1. Moreover, we can actually get α4 ≥ 1 + α1

2 , by
following more closely the previous sequence of inequalities and using the relation

2
δ+1 = α1, proved in [9] (see the two sentences below (1.20) in [10], and note that

in the notations of this paper, 1
δr

refers to the exponent α1).
Even if we do not assume the existence of some exponents, a large part of the

results in [10] can still be stated and established. In particular, one has the scaling
relation

|p − pc|L(p)2π4(L(p)) , 1 (9)
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as p→ pc (see (4.28) and (4.33) in [10], or Proposition 34 in [13]). However, after
closer inspection it is not immediately clear how to obtain the inequality α4 ≥ 1+ α1

2
(or even α4 > 1).

We now explain how to obtain this inequality from the proof of (7) in [4]. Note
that if we try to follow the proof of (8) in [12] instead, a difficulty arises. Indeed, the
hypothesis (1.17) of Theorem 1.3 in [12] amounts to a lower bound on Pp(|C (0)| ≥
n), while our definition of α1 involves an upper bound. As a consequence, we could
not see how to use the reasonings in this paper (although it may be possible, we have
not tried very hard).

Even though the paper [4] (see Section 5) assumes the existence of exponents,
we were able to fix this issue, and we now sketch briefly how to do it. For that, we
use the (now-classical) scaling relations

χ(p) = Ep

[|C (0)|] , L(p)2π1(L(p))
2 and Ep

[|C (0)|2] , L(p)4π1(L(p))
3

(10)

as p ↗ pc (this is (1.25) in [10], for t = 1 and t = 2 respectively). In addition, one
also has

dχ(p)

dp
, L(p)2π4(L(p)) · χ(p). (11)

Indeed, this can be proved by estimating d
dp
Pp(0 ↔ v) for each v ∈ Z

2, and then
using similar reasonings as in [10]. For p < pc, these relations can be combined
with the following inequality from [4] (see p. 266):

Ep

[|C (0)|2] ≥ K

χ(p)

(
dχ(p)

dp

)2

, (12)

for some universal constant K ∈ (0,∞). Hence, we get

π4(L(p)) ≤ K−1/2L(p)−1π1(L(p))
1/2. (13)

Since L(p)→∞ as p ↗ pc, this gives the desired inequality between α1 and α4.
As a conclusion, we want to stress that one drawback of this approach is that it

requires the arm-separation result mentioned in Remark 1(2). Also, we used quite
heavy results on the behavior of percolation near criticality to deduce an inequality
which is purely about the behavior at criticality. Proofs “staying at criticality” are
arguably more satisfying.

4 Other Proofs in the Literature

We now discuss four papers in the literature which show lower bounds on α4 without
using the quite heavy near-critical results in Kesten’s paper [10].
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The first three papers do this for bond percolation on the square lattice, and
they are related to questions of noise sensitivity for a configuration at criticality.
Presumably, after small modifications they also work for site percolation. We keep
using the same notation π4(n) etcetera as we did for site percolation. These papers
are: a paper by Benjamini et al. [2] (Sect. 4.1), a paper by Schramm and Steif
[16] (Sect. 4.2), and an appendix by Garban in a paper by Schramm and Smirnov
[15] (Sect. 4.3). For some of the results in these papers, we also refer the reader to
Sections 6.2.2 and 8.5 in the book [6] by Garban and Steif.

Finally, we discuss a paper by Cerf [3] (Sect. 4.4), which is written for site
percolation on the square lattice (and, more generally, on the hypercubic lattice
Z
d in any d ≥ 2). Contrary to the above-mentioned papers, this paper is mostly

concerned with dimensions d ≥ 3, but, as we explain, it still yields interesting
properties in dimension d = 2.

Each of these papers uses some kind of exploration procedure in its proof of
α4 > 1. And each of the first three papers uses Kesten’s arm-separation result (see
Remark 1(2)). The proofs from [2] and [3] use a concentration inequality, but the
proofs in [16] and [15] do not. The main contribution by Garban in [15] is a multi-
scale version of Theorem 1 (see Lemma 5 below).

The proofs in [16] and [15] seem to be, partly or indirectly, influenced by [2],
but none of these three papers appears to be influenced by Aizenman et al. [1] or
Gandolfi et al. [5]. On the other hand, [3] is influenced by these last two papers, but
it seems to be completely independent of [2, 15, 16].

Throughout this section the percolation parameter is equal to the bond or site
(depending on the context) percolation threshold on the square lattice, and we omit
it from our notation.

4.1 The Benjamini-Kalai-Schramm Paper (1999)

The paper [2] is the first to give (for bond percolation on the square lattice) a proof
of α4 > 1 without using the near-critical percolation results of [10].

Consider the event A = Am = CH ([0,m+ 1] × [0,m]), and recall that an edge
e is said to be pivotal forA if changing the state of e changes the occurrence, or not,
of A. The following is shown in [2], where the only percolation knowledge used in
the proof is the classical consequence from RSW that there exist ρ,C > 0 such
that:

for all n ≥ 1, Ppc(0 ↔ ∂Bn) ≤ Cn−1/ρ (14)

(which follows immediately from (3)).

Proposition 1 ([2], equation (4.2) and Remark 4.2) There is a constant C > 0
such that: for all m ≥ 1,

I (A) ≤ Cm1−1/3ρ(logm)3/2, (15)
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where I (A) is the expected number of pivotal edges for the event A.

It follows from Kesten’s arm-separation result that each edge in, say, the m2 × m
2

square centered in the middle of the large box has a probability of order π4(m) to
be pivotal. Since the expected number of pivotal edges in that square is smaller than
or equal to the l.h.s. of (15), we get m2π4(m) ≤ C′m1−1/3ρ(logm)3/2 (for some
constant C′) and hence,

π4(m) ≤ C′m−1−1/3ρ(logm)3/2. (16)

Recalling the meaning of ρ, this gives, in our earlier notation,

α4 ≥ 1+ α1

3
. (17)

Proposition 1 is used in [2] to show that these box-crossing events are noise
sensitive. An event E ⊆ Ω := {0, 1}n is said to be noise-sensitive if, roughly
speaking, the following holds. For a large fraction of the configurations ω ∈ Ω ,
knowing ω does not significantly help to predict whether a perturbed configuration
ω′ (obtained from ω by randomly and independently flipping with small probability
the “bits” ωi , i = 1, . . . , n) belongs to the event E.

The proof of Proposition 1 is somewhat spread over different locations in the
paper. As indicated above, the main concern of the paper is noise sensitivity.
The paper contains some theorems of an “algebraic” flavour (involving discrete
Fourier analysis), which give, for a quite general setting (i.e. not specifically for
percolation) sufficient conditions for noise sensitivity. This type of results, combined
with Proposition 1, is essential to conclude noise sensitivity of the box-crossing
events, but it is not needed for the proof of Proposition 1 itself. This makes it a
bit hard to locate precisely those ingredients in the paper needed for the proof of
Proposition 1 itself.

Another type of results in the paper is of a more probabilistic nature and gives,
again in a quite general setting, upper bounds for the total influence, which can then
be used to check if the earlier mentioned conditions for noise sensitivity hold. One
of the latter results, used for the proof of Proposition 1, is the following Lemma 1.
Let us first explain the notation in that lemma.

As before,Ω = {0, 1}n, and the probability distribution considered is the product
distribution with parameter 1

2 (i.e. the uniform distribution on Ω). For a function
f : Ω → [0, 1], and a subset K of {1, . . . , n}, the notation IK(f ) is used for∑
k∈K Ik(f ), where

Ik(f ) = 1

2n
∑

ω∈Ω

∣
∣f (ω)− f (ω(k))∣∣,

with ω(k) the configuration obtained from ω by flipping ωk (note that if f is the
indicator function of an event, then Ik(f ) is the probability that k is pivotal for that
event).
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Finally,MK is the majority function for K , which takes the value 1 if the family
(ωi)i∈K has more 1’s than 0’s, the value−1 if it has more 0’s than 1’s, and the value
0 otherwise.

Lemma 1 ([2], Corollary 3.2 and Theorem 3.1) Let K ⊆ {1, . . . , n}, and f :
Ω → [0, 1] be monotone. Then, for some universal constant C,

IK(f ) ≤ C
√|K|E[

fMK
](

1+
√
− logE

[
fMK

])
. (18)

The proof of Lemma 1 is self-contained and not very long (about one page), but
certainly not obvious: it is a clever and surprising combination of nice elementary
observations and standard concentration-like inequalities.

The other important ingredient in [2] for the proof of Proposition 1 is the
following. This ingredient is very specific to the percolation setting mentioned
before. Consider the (m + 1) × m box in Proposition 1 and the crossing event A
there.

Lemma 2 ([2], Two Lines Before equation (4.2)) For each subset K of the set of
edges in the right half of the (m+ 1)×m box,

E
[
1AMK

] ≤ C m−1/3ρ logm, (19)

where C is some universal constant.

Before we say a few words about the proof of Lemma 2, let us first see how
Proposition 1 follows. Combining Lemmas 2 and 1 gives immediately

IK(A) ≤ C
√|K|m−1/3ρ(logm)3/2

for each subset K of the set of edges in the right half of the (m + 1) × m box. By
symmetry, it then also holds for everyK in the left half of the box, and hence (with
C replaced by C

√
2) for everyK . Taking forK the set of all edges of the box gives

Proposition 1.
As to the proof of Lemma 2, it is practically self-contained; the only percolation

knowledge that it uses is (14). The main ingredients of the proof of Lemma 2 are
an exploration argument (for the existence of a horizontal crossing in the box), and
some necessary quantitative work, again (as in the proof of Lemma 1) including
some concentration-like inequalities. The main idea in the proof is that, to detect
whether or not there is a horizontal crossing, typically a very small portion of K is
inspected. Indeed, in a simple exploration procedure, starting on the left side of the
box, only edges of which at least one endpoint is connected to the left side of the
box are inspected. Since each edge e of K is at a distance ≥ m/2 from the left side
of the box, the probability that it is inspected is at most of order m−1/ρ . Using this
it is shown that, typically, the “surplus” of 0’s or 1’s on the part of K inspected by
the algorithm is much smaller than that on the rest ofK , and therefore is unlikely to
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be decisive for the value ofMK . The mentioned concentration-like inequalities are
used to make this precise.

4.2 Four-Arm Results in the Schramm-Steif Paper (2010)

The paper [16] studies the set of times at which an infinite cluster appears in a
critical dynamical 2D percolation model. Noise sensitivity plays an important role
in that study.

Some intermediate key results in this paper are stated in terms of discrete Fourier
analysis (w.r.t. the Fourier-Walsh expansion). One such result is Theorem 1.8 in the
paper. Let Ω = {0, 1}n and let f : Ω → R be a function. Theorem 1.8 gives,
for each k ≤ n, an upper bound for the sum of the squares f̂ (S)2 of the Fourier
coefficients, over S ⊆ {1, . . . , n} with |S| = k. In the case where k = 1 and f is
the indicator function of an increasing event A, one can use (as mentioned in the
remark below Theorem 4.1 in [16]) that f̂ ({i}) is equal to the probability that i is
pivotal for A. For that special case, Theorem 1.8 in [16] is as follows.

Lemma 3 (Special Case of [16], Theorem 1.8) Let Ω = {0, 1}n and let E ⊆ Ω
be an increasing event. Further, letA be a randomized algorithm which determines,
by a step-by-step procedure, whether a configuration ω belongs to E or not, and
where at each step of the procedure, the value of exactly one ωi is “revealed” (the
choice of i may depend on the values of the ωj ’s that have already been inspected
at that stage). The algorithm stops as soon as it is known whether E occurs or not.
Let δA be the maximum over all i ∈ {1, . . . , n} of the probability that i is inspected.
Then

n∑

i=1

P
(
i is pivotal for E

)2 ≤ δA P(E). (20)

The proof of Theorem 1.8 in [16] is not long, and it is reasonably self-contained
but quite subtle.

Another result in [16] which is relevant for obtaining bounds on four-arm
probabilities is Theorem 4.1 in that paper. It gives a suitable “decision algorithm”
A for the event that there is a horizontal open crossing of an R × R square. This
algorithm needed special care because δA is the maximum revealment probability
over all edges in the square (not only the edges in the concentric R

3 × R
3 square).

More precisely, Theorem 4.1 says (in our notation) the following.

Lemma 4 ([16], Theorem 4.1) For the above mentioned crossing event for site

percolation on the triangular lattice, there is an algorithm A with δA ≤ R− 1
4+o(1).

For the similar event for bond percolation on the square lattice, there exists a
constant a > 0 and an algorithm A with δA ≤ R−a+o(1).
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The paper [16] gives a proof for the statement on the triangular lattice, and
says that the proof of the statement for the square lattice is similar. Note that the
value 1

4 in Lemma 4 is the two-arm exponent α2 on the triangular lattice. From
the proof of the lemma, it is not clear whether, in the case of the square lattice,
we may take a = α2 in the above theorem. However, this is clear for the weaker
lemma where δA is replaced by the maximum revealment probability over the edges
in the earlier mentioned R

3 × R
3 square. Combining that weaker lemma with a

suitable modification of Lemma 3 (where for E we take the event that there is
an open crossing of an R × R square, we replace the sum in the l.h.s. of (20) by
the smaller sum restricted to the vertices in the concentric R

3 × R
3 box, and δA is

replaced as mentioned above), and then using Kesten’s arm-separation result, gives
R2 π4(R)

2 ≤ R−α2+o(1), and hence Theorem 1. See Corollary A.4 of [18] for such
modifications.

4.3 The Result of Garban (2011)

In Appendix B of the paper [15] by Schramm and Smirnov, Garban gives a
“multi-scale bound” on the four-arm probability for bond percolation on Z

2. More
precisely, let ε be such that there is a constant c′ > 0 for which: for all 1 ≤ m ≤ n,
π2(m, n) ≤ c′

(
m
n

)2ε
. The following is proved in [15].

Lemma 5 ([15], Appendix B) There is a constant c > 0 such that:

for all 1 ≤ m ≤ n, π4(m, n) ≤ c
(
m

n

)1+ε
. (21)

For the special case m = 1, this gives α4 ≥ 1 + α2
2 . A nice aspect of

Garban’s proof is that it is completely focused on the problem in question, while
the mentioned four-arm results in [2] and [16] were in some sense (versions of)
intermediate results needed in the proof of some other results.

Interestingly, Garban says that:

[The case m = 1] can be extracted from [10] as well as [2] or [16].

In fact, following his proof, but (roughly speaking) taking everywhere m = 1, is
considerably simpler than extracting a full proof for that case from the mentioned
papers. Apart from the fact that it uses Kesten’s arm-separation results, it is probably
the shortest and most elegant proof that α4 ≥ 1+ α2

2 . It avoids concentration results
(which were used in Cerf’s computation, see the next section). As Garban indicates,
a key part in his proof, in that special case m = 1, is essentially an application of
(or almost “equivalent” to the proof of) a quite general inequality of [14] (see also
the remark following the proof of Proposition 6.6 in Section 8.5 of [6]).
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4.4 A Result by Cerf (2015)

Lemma 5.2 in [3], that we now state in any dimension d ≥ 2, gives the following
result (recall that Cn,n+� is the collection of open clusters in Bn+� connecting Bn
and ∂ inBn+�).

Lemma 6 ([3], Lemma 5.2) Let d ≥ 2, and consider site percolation on the
hypercubic lattice Z

d . For all p ∈ (0, 1), n ≥ 1 and � ≥ 0,

Pp

(
A4(A1,2n+�)

)

≤ 2d(logn)√|Bn| Ep

[√|Cn,n+�|
]
+ 4d

p(1− p) |Bn|
2e−2(logn)2p2(1−p)2 .

(22)

Note that this result holds for any p ∈ (0, 1). For our purpose, we will restrict, but
only later, to d = 2 and p = psite

c (Z
2).

The proof of this lemma in [3] is completely self-contained, it assumes no
percolation knowledge at all. It is a nice mixture of arguments with a combinatorial
flavor, and application of a concentration inequality (see our comments later in this
section). As Cerf remarks, a version of this result, with only the parameter n, not �
(or, more precisely, with � = 0), is somewhat hidden in the arguments of Gandolfi et
al. [5] and Aizenman et al. [1], to prove the uniqueness of the infinite open cluster.

Following [3], taking � = 0 in (22) and using the trivial upper bound |∂ inBn| ,
nd−1 for |Cn,n+�| gives

Pp

(
A4(A1,2n)

) ≤ c logn√
n
, (23)

where c depends on the dimension d only.
The main contribution in [3] is to “bootstrap” (22) in a clever way: the inequality

(23) is used to improve the above-mentioned trivial upper bound forEp
[√|Cn,n+�|

]
,

which is then plugged into (22) to get an improvement of (23), then leading to an
even better bound for Ep

[√|Cn,n+�|
]
, and so on. The introduction by Cerf of the

extra parameter � seems to provide the flexibility needed to do this bootstrapping.
As pointed out in [3], for d = 2 the final result obtained in this way is α4 ≥ 11

21 ,
which looks disappointing. However, the main focus in the paper is on dimensions
d ≥ 3, where the “bootstrapping” that we just explained does give interesting new
results.

Nevertheless, it may be worth mentioning that, as we observed, (22) (and a
modified version obtained from small changes in its proof) is also useful for the
case d = 2 (even without using the bootstrapping), as we point out now.

First, note that for d = 2 and p = psite
c (Z

2), Ep
[√|Cn,2n|

]
is uniformly bounded

in n (so bootstrapping makes no sense for d = 2). So, for d = 2, (22), now with
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� = n, actually gives

π4(3n) ≤ c̃ logn

n

for some constant c̃, and hence α4 ≥ 1.
As we point out next, one can, with a very small modification in the proof of

(22), obtain α4 ≥ 1+ α1
2 . Lines 8–9 in Section 5 of [3] give an upper bound for the

quantity

∑

C∈C

√
|C̄ ∩ Bn|, (24)

where C = Cn,2n and we denote C̄ := C ∪ ∂outC. Namely (by Jensen’s inequality),
this quantity is at most

√|C |
√ ∑

C∈C
|C̄ ∩ Bn|, (25)

which, since every vertex v belongs to at most 2d subsets C̄ with C ∈ C , is at most√|C |√2d
√|Bn|. So for the expectation of the sum in (24):

Epc

[ ∑

C∈C

√
|C̄ ∩ Bn|

]
≤ Epc

[√|C |
]√

2d
√|Bn|, (26)

which is used later in [3] to obtain (22).
The “very small modification” that we meant is the following: by the Cauchy-

Schwarz inequality, the expectation of (25) is at most

Epc

[√|C |
√ ∑

C∈C

∣
∣C̄ ∩ Bn

∣
∣
]
≤

√
Epc

[|C |]
√√
√
√Epc

[ ∑

C∈C

∣
∣C̄ ∩ Bn

∣
∣
]
. (27)

Since every v ∈ ⋃
C∈C (C̄ ∩ Bn) has an open path to ∂ inB2n, the expectation in the

second factor in (27) above is at most 2d|Bn|π1(n). So we get that the expectation
of (24) is at most

Epc

[ ∑

C∈C

√
|C̄ ∩ Bn|

]
≤

√
Epc

[|C |]√2d
√|Bn|

√
π1(n). (28)

Comparing this with the r.h.s. of (26) (and recalling that, for d = 2, Epc [|C |] is
uniformly bounded), we see that we made appear an extra factor

√
π1(n). This then
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also causes the same additional factor in the first term in the r.h.s. of (22), and yields

α4 ≥ 1+ α1

2
.

Finally, one gets (still for d = 2) a further improvement by considering, in the
proof in [3], instead of C̄, the set of vertices C̃ := C∗ ∪ C′, where

C∗ := {
v∗ ∈ ∂outC ∩ B2n : v∗ ↔∗ ∂ inB2n

}
,

and

C′ := {
v ∈ C : v ∼ v∗ for some v∗ ∈ C∗}

,

and then using that from every v ∈ ⋃
C∈C (C̃ ∩Bn), one can find an open path and a

closed *-path (starting from neighbors of v) to ∂ inB2n. This now produces, instead
of the above-mentioned

√
π1(n), an extra factor

√
π2(n) in the first term in the r.h.s.

of (22), so that we get

α4 ≥ 1+ α2

2
.

Comparing the case m = 1 of Garban’s proof (mentioned in Sect. 4.3) of this
inequality with the proof in [3] of (22), we observe that the latter avoids Kesten’s
arm-separation result, and is thus more self-contained. It uses a large-deviation
argument which makes it longer, and which is, presumably, only useful for the case
d ≥ 3.

In the next section, we give a short and self-contained proof of α4 ≥ 1 + α2
2 ,

which can be considered as a combination of the proof of (21) (in the special case
m = 1) in [15] and the proof of (22) in [3].

5 A Self-contained Proof of Theorem 1, Based on Garban’s
and Cerf’s Arguments

5.1 Introductory Remarks

We follow Garban’s proof for the result in Sect. 4.3, but restrict to the case m = 1,
and replace the event that there is a horizontal crossing of a box, by the number
of connected components crossing an annulus. The proof of Theorem 1 obtained
in this way is, in some sense, a mixture of Garban’s argument and that by Cerf:
it still exploits, as in Garban’s proof (which, as said, was inspired by O’Donnell
and Servedio [14]), the full power of symmetry provided by involving the notion of
pivotality, while it also uses the advantage of considering the number of crossings



On the Four-Arm Exponent for 2D Percolation at Criticality 141

of an annulus (as Cerf did) instead of the event (considered by Garban) that there
is a horizontal crossing of a box. This enables one to avoid Kesten’s arm-separation
result (we do not see how to avoid that result in the proof of Lemma 5 for a general
m ≥ 1). To underline the flexibility of the method, we deal with site percolation on
the square lattice (which has less symmetry than bond percolation on that lattice),
with parameter pc = psite

c (Z
2).

5.2 Proof

Let n be a positive integer, and let Ω = {0, 1}B2n be the set of all configurations of
open and closed vertices in the box B2n. Let Z = |Cn,2n| be the number of open
clusters in B2n that have at least one vertex in each of Bn and ∂ inB2n. From (4), we
know that for some universal c̄ > 0 (independent of n),

Epc

[
Z2] ≤ c̄2. (29)

Note that if we close an open vertex in Bn−1, the value of Z does not decrease.
Let v1, v2, . . . be a list of the vertices in Bn−1. For each 1 ≤ j ≤ |Bn−1|, define the
random variable Cj as follows:

Cj =
⎧
⎨

⎩
−(1− pc) if vj is open,

pc if vj is closed.

In the remainder of this proof, {vj is pivotal} denotes the event that if the state of
vj is changed, then the value of Z changes as well. More precisely,

{
vj is pivotal

} := {
ω ∈ Ω : Z(ω(j)) = Z(ω)},

where ω(j) denotes the configuration obtained from ω by “flipping” ωvj .
We now consider an exploration procedureΓ which counts the numberZ of open

clusters in Cn,2n. Roughly speaking, Γ is constructed so as to follow successively
the boundaries (as depicted on Fig. 2) of all open clusters in B2n that intersect
∂ inB2n, starting from ∂ inB2n. It has the property that each time it reaches a “fresh”
vertex, the state of this vertex is revealed, open with probability pc and closed with
probability 1−pc, independently of all information obtained so far in the procedure.
We refer to Fig. 3, which shows an intermediate stage of this procedure, and where
the vertices pivotal for Z are marked.

We let

Yj := 1vj is visited by Γ .
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∂inB2n

Bn

Fig. 3 This figures shows part of the exploration procedure Γ , which explores iteratively the
“interfaces” between open clusters and closed *-clusters connected to ∂ inB2n. The black vertices
are open, and the white ones are closed. The vertices indicated with a square are pivotal for Z:
changing the state of such a vertex v would increase or decrease the value of Z, depending on
whether v is open or closed, respectively

Note that for each vertex v visited by Γ (and away from ∂ inB2n), it is possible to find
an open path and a closed *-path from neighbors (or *-neighbors) of v to ∂ inB2n.
Since each vertex in Bn is at a distance at least n from ∂ inB2n, we obtain

Epc

[
Yj

] ≤ c π2(n) (30)

for some constant c > 0.
By the nature of the exploration path (the next step of the path depends only on

the states of the vertices hit by the path so far),

Yj (ω
(j)) = Yj (ω). (31)

In particular, Cj and Yj are independent, and Epc [CjYj ] = 0. For essentially
the same reason, if vi and vj are two distinct vertices, then, at the first step in
the procedure that one of these two vertices is hit, the Y - and C-values of the
other vertex are conditionally independent, given all information obtained during
the exploration so far. Because of this (and a similar argument for the case where
neither vi nor vj is hit), we get:

for all i = j, Epc

[
(CiYi)(CjYj )

] = 0. (32)
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We now study Epc [ZCjYj ] (this is analogous to Garban’s proof, but with Z
instead of the indicator function of a crossing event). Clearly,

Epc

[
ZCjYj

] = Epc

[
ZCjYj 1vj is pivotal

]+ Epc

[
ZCjYj 1vj is not pivotal

]
. (33)

Let ω ∈ Ω . As is easy to check (using (31)), we have

Ppc(ω)Cj (ω)Yj (ω) = −Ppc(ω(j))Cj (ω(j))Yj (ω(j)).

On the one hand, if ω ∈ {vj is not pivotal}, then ω(j) ∈ {vj is not pivotal}
as well, and Z(ω) = Z(ω(j)). Hence, the contribution of the pair (ω, ω(j)) to the
second term in the r.h.s. of (33) is 0, from which it follows that this term is equal to
0. On the other hand, if ω ∈ {vj is pivotal}, the state of vj must be explored by Γ .
Hence, the first term of (33) is equal to Epc

[
ZCj 1vj is pivotal

]
.

Now let ω ∈ {vj is pivotal}, and suppose that ωvj = 1, so that Cj(ω) =
−(1 − pc). Then also ω(j) ∈ {vj is pivotal}, but Cj(ω(j)) = pc. It follows that the
contribution of the pair (ω, ω(j)) to the first term in (33) is pc(1− pc)q (Z(ω(j))−
Z(ω)), where q = q(ω) denotes the probability of the configuration (ωv)v∈B2n\{vj }
(note that q(ω) = q(ω(j))). Using that Z(ω(j))− Z(ω) ≥ 1, and summing over all
configurations in the event {vj is pivotal}, we obtain that the first term in the r.h.s.
of (33) is larger than or equal to

pc(1− pc)Ppc(vj is pivotal).

By the above, and also observing that Ppc(vj is pivotal) ≥ π4(3n) (indeed, if a
vertex v ∈ Bn has four arms to distance 3n, then it has four arms to ∂ inB2n, and so
it is pivotal for Z), we conclude that

Epc

[
ZCjYj

] = Epc

[
ZCj 1vj is pivotal

] ≥ pc(1− pc)π4(3n). (34)

The sum over j of the l.h.s. of (34) satisfies (for some constant ĉ > 0):

∑

j

Epc

[
ZCjYj

] ≤
√√
√
√Epc

[
Z2

]
Epc

[( ∑

j

CjYj

)2]

≤ c̄
√√
√
√Epc

[( ∑

j

CjYj

)2]
= c̄

√√
√
√Epc

[ ∑

j

C2
j Y

2
j

]

≤ c̄
√√
√
√Epc

[ ∑

j

Y 2
j

]
= c̄

√∑

j

Epc

[
Yj

]

≤ ĉ
√
n2π2(n) = ĉ n

√
π2(n),
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where the four inequalities follow, respectively, from the Cauchy-Schwarz inequal-
ity, (29), the fact that |Cj | ≤ 1, and (30), and where the first equality follows from
(32), and the second one from the fact that Y 2

j = Yj .
Since the sum over j of the r.h.s. of (34) is of order n2π4(3n), we get that, for

some universal constant c̃,

π4(3n) ≤ c̃

n

√
π2(n).

This (using also that π4 is decreasing) completes the proof of Theorem 1.
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Universality of Noise Reinforced
Brownian Motions

Jean Bertoin

Abstract A noise reinforced Brownian motion is a centered Gaussian process B̂ =
(B̂(t))t≥0 with covariance

E(B̂(t)B̂(s)) = (1− 2p)−1tps1−p for 0 ≤ s ≤ t,

where p ∈ (0, 1/2) is a reinforcement parameter. Our main purpose is to establish
a version of Donsker’s invariance principle for a large family of step-reinforced
random walks in the diffusive regime, and more specifically, to show that B̂ arises
as the universal scaling limit of the former. This extends known results on the
asymptotic behavior of the so-called elephant random walk.
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1 Introduction

This work concerns a rather simple real-valued and centered Gaussian process B̂ =
(B̂(t))t≥0 with covariance function

E(B̂(t)B̂(s)) = t
ps1−p

1− 2p
for 0 ≤ s ≤ t, (1)

where p ∈ (0, 1/2) is a fixed parameter. Recently, this process has notably
appeared as the scaling limit for diffusive regimes of the so-called elephant random
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walk, a simple random walk with memory that has been introduced by Schütz
and Trimper [21]. Just as the standard Brownian motion B corresponds to the
integral of a white noise, B̂ can be thought of as the integral of a reinforced
version of the white noise, hence the name noise reinforced Brownian motion.
Here, reinforcement means that the noise tends to repeat itself infinitesimally as
time passes; we refer to [19] for a survey of various models of stochastic processes
with reinforcement and their applications, and to [16] and works cited therein for
more recent contributions in this area. The parameter p should be interpreted as
the strength of the reinforcement; specifically, it represents the probability that an
infinitesimal portion of the noise is a repetition. In the limiting case p = 0 without
reinforcement, one just recovers the standard Brownian motion.

Our purpose here is twofold. We will first present several basic properties of
B̂ that mirror well-known facts for the standard Brownian motion, even though
the laws of B and B̂ are mutually singular. We will then establish a version of
Donsker’s invariance principle. That is, we will show that any so-called step-
reinforced random walk with reinforcement parameter p, whose typical step has
a finite second moment, converges after the usual centering and rescaling to a noise
reinforced Brownian motion.

This invariance principle for step-reinforced random walks has been established
previously for elephant random walks, that is in the special case when the
typical step has the Rademacher law; see [2, 9]. Technically, [9] uses Skorokhod’s
embedding and relies crucially on the assumption that the increments take values
in {−1,+1}, whereas [2] uses limit theorems for generalized Pólia urns due to
Janson [14]. The latter approach is not available for arbitrary step distributions
either, notably as one would need to work with urn models having types in an infinite
space (the real line R to be more specific), and how to deal with this kind of urns is
still an open problem; see Remark 4.1 in [14].

We shall therefore follow here a different method and rather embed a step-
reinforced random walk in a branching process with types in R, using a time-
substitution via an independent Yule process. This yields a remarkable martingale,
whose quadratic variation can then be estimated from well-known properties of Yule
processes. In turn, this enables the application of the martingale functional central
limit theorem (later on referred to as martingale FCLT).

2 Some Basic Properties

We start by observing from (1) that the noise reinforced Brownian motion admits a
simple representation as a Wiener integral, namely

B̂(t) = tp
∫ t

0
s−pdB(s), t ≥ 0, (2)
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where B = (B(s))s≥0 is a standard Brownian motion. Note that equivalently,

B̂ has the same law as

(
tp√

1− 2p
B(t1−2p)

)

t≥0
. (3)

It follows immediately from (3) and the classical law of the iterated logarithm
for B (see, e.g. Theorem II.1.19 in [20]) that

lim sup
t→∞

B̂(t)√
2t ln ln t

= lim sup
t→0+

B̂(t)√
2t ln ln(1/t)

= 1√
1− 2p

a.s. (4)

In particular, we see that for different reinforcement parameters p, the distributions
of noise reinforced Brownian motions, say on the time interval [0, 1], yield laws
on C ([0, 1]) which are mutually singular, and are also singular with respect to the
Wiener measure.

We deduce from (2) by stochastic calculus that B̂ is a semi-martingale which
solves the stochastic differential equation

dB̂(t) = dB(t)+ p
t
B̂(t)dt, B̂(0) = 0. (5)

This shows that B̂ is actually a time-inhomogeneous diffusion process with
quadratic variation 〈B̂〉(t) = t . In this direction, we also infer from (1) that the
process

b̂(t) = B̂(t)− t1−pB̂(1) for 0 ≤ t ≤ 1,

is independent of B̂(1). Hence, for any x ∈ R,

b̂(t)+ t1−px = B̂(t)+ t1−p(x − B̂(1)) for 0 ≤ t ≤ 1,

is a version of the bridge of B̂ from 0 to x with unit duration. These properties should
be viewed as the reinforced versions of the classical construction of Brownian
bridges; see for instance [20] on page 37.

We further see from (1) that the scaling property,

for every c > 0,
(
c−1B̂(c2t)

)

t≥0
has the same law as B̂, (6)

as well as the time-inversion property,

(
tB̂(1/t)

)

t>0
has the same law as

(
B̂(t)

)

t>0
,

both hold. Needless to say, these two properties are also fulfilled by the standard
Brownian motion; see, e.g. Proposition I.1.10 in [20]. In this vein, we also point at
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a remarkable connection with Ornstein-Uhlenbeck processes: the process

Û(t) = e−t/2B̂(et ) , t ∈ R

is a stationary Ornstein-Uhlenbeck process with infinitesimal generator

G f (x) = 1

2
f ′′(x)+ (p − 1/2)xf ′(x),

where f ∈ C 2(R). This can be checked by stochastic calculus from (5), or
directly by observing from (1) and (6) that Û is a stationary Gaussian process with
covariance

E(Û(t)Û (0)) = e(p−1/2)t

1− 2p
for t ≥ 0.

On the other hand, several classical results for the standard Brownian motion
plainly fail for its reinforced version. For instance, the increments of B̂ are clearly
not independent, and the time-reversal property (e.g. Exercise 1.11 in Chapter I of
[20]) also fails.

3 An Invariance Principle with Reinforcement

The main purpose of this section is to point out that noise reinforced Brownian
motions arise as universal scaling limits of a large class of random walks with step
reinforcement. We first recall some features on the so-called elephant random walk,
where the story begins.

The elephant random walk has been introduced by Schütz and Trimper [21] as
a discrete-time nearest neighbor process with memory on Z; it can be depicted as
follows. Fix some q ∈ (0, 1) and call q the memory parameter. Imagine that a walker
(an elephant) makes a first step in {−1,+1} at time 1; then at each time n ≥ 2,
it selects randomly a step from its past. With probability q , the elephant repeats
this step, and with complementary probability 1 − q , it makes the opposite step.
Note that for q = 1/2, the elephant merely follows the path of a simple symmetric
random walk. The elephant random walk has generated much interest in the recent
years, we refer notably to [2, 3, 7–9, 17, 18], see also [1, 4–6, 12] for variations, and
references therein for further related works. A remarkable feature is that the large
time asymptotic behavior of an elephant random walk is diffusive when the memory
parameter q is less than 3/4 and super-diffusive when q > 3/4.

Remark 1 The laws of the iterated logarithm (4) for a noise reinforced Brownian
motion bear the same relation to that for the elephant random walk in the diffusive
regime (Corollary 1 in [9] and Theorem 3.2 in [3]; beware that the memory
parameter denoted by p there corresponds to q = (1+ p)/2 in the present notation
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as it will be stressed below), as the law of the iterated logarithm for the standard
Brownian motion due to P. Lévy does to that for the simple random walk due to
A.Y. Khintchine.

We are interested in a generalization where the distribution of a typical step of
the walk is arbitrary, that we call step reinforced random walk. Fix a parameter
p ∈ (0, 1), called the reinforcement parameter;1 at each discrete time, with
probability p, a step reinforced random walk repeats one of its preceding steps
chosen uniformly at random, and otherwise, i.e. with probability 1 − p, it has
an independent increment with a fixed distribution. More precisely, consider a
sequence X1,X2, . . . of i.i.d. copies of a random variable X in R and define
recursively X̂1, X̂2, . . . as follows. Let (εi : i ≥ 2) be an independent sequence
of Bernoulli variables with parameter p. We set first X̂1 = X1, and next for i ≥ 2,
we let X̂i = Xi if εi = 0, whereas we define X̂i as a uniform random sample from
X̂1, . . . , X̂i−1 if εi = 1. Finally, the sequence of the partial sums

Ŝ(n) = X̂1 + · · · + X̂n, n ∈ N,

is referred to as a step reinforced random walk. We stress that in general, the Markov
property fails for Ŝ (even though it may hold for certain specific step distributions).

When the typical step X has the Rademacher law, i.e. P(X = 1) = P(X =
−1) = 1/2, Kürsten [18] (see also [10]) pointed out that Ŝ is a version of the
elephant random walk with memory parameter q = (p + 1)/2 in the present
notation. When X has a symmetric stable distribution, Ŝ is the so-called shark
random swim which has been studied in depth by Businger [6]. More general
versions when the distribution of X is infinitely divisible have been considered in
[5].

The main result of Businger [6] is that the large time asymptotic behavior of
a shark random swim exhibits a phase transition similar to that for the elephant
random walk, but for a different critical parameter. We shall now extend this to a
large class of step reinforced random walks. In the sequel we implicitly rule out the
degenerate case when the typical step variable X is a constant. We start with the
super-diffusive regime for which all the ingredients are already in Section 3.1 in [6].

Theorem 1 Let p ∈ (1/2, 1), and suppose that X ∈ L2(P). Then

lim
n→∞

Ŝ(n)− nE(X)
np

= L in L2(P),

where L is some non-degenerate random variable.

1Beware that we assumed p < 1/2 in the preceding sections. The first part of the present section
(super-diffusive regime) does not involve any noise reinforced Brownian motion, and the case
p ≥ 1/2 is allowed. In the second part of this section (diffusive regime), we shall again focus on
the case p < 1/2 and noise reinforced Brownian motions will then re-appear.
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Proof By centering and normalizing, we may assume without loss of generality
that E(X) = 0 and Var(X) = 1. One first introduces for every i, n ∈ N, the
number ri,n of repetitions of the variable Xi in the reinforced sequence X̂1, . . . , X̂n
(in particular, ri,n = 0 when either εi = 1 or i > n). We stress that repetition
numbers only depend on the Bernoulli variables εj and on the uniform random
samples among the previous steps, and are hence independent of the variables Xj .
We know from Lemmas 3 and 5 in [6] that for each i ∈ N

lim
n→∞ n

−pri,n = Ri, a.s.

where Ri is some non-degenerated random variable with
∑
i E

(
R2
i

)
<∞.

In particular,
∑
i R

2
i < ∞ a.s., and since the variables Xi are i.i.d. centered and

with unit variance, the sum
∑
i RiXi = L is well-defined a.s. (as a martingale limit,

conditionally on the Ri). More precisely, E(L) = 0 and E(L2) = ∑
i E

(
R2
i

)
.

To conclude, we recall from Equation (6) in [6] that

lim
n→∞

∑

i

E

(∣
∣n−pri,n − Ri

∣
∣2

)
= 0. (7)

By the construction of the step reinforced random walk, we have

Ŝ(n) =
∑

i

ri,nXi .

Since the variables ri,n and Ri are independent of theXi , and further E(X) = 0 and
E(X2) = 1, there is the identity

E

(
|n−pŜ(n)− L|2

)
= E

(
∑

i

∣
∣n−pri,n − Ri

∣
∣2

)

.

An appeal to (7) completes the proof.

We then turn our attention to the diffusive regime, and obtain a version of
Donsker’s invariance principle for step reinforced random walks. In this direction,
we refer to Chapter VI in [13] for background on the Skorokhod topology and weak
convergence of stochastic processes.

Theorem 2 Let p ∈ (0, 1/2), and suppose that X ∈ L2(P). Then as n → ∞, the
sequence of processes

Ŝ(%tn&)− tnE(X)√
nVar(X)

, t ≥ 0

converges in distribution in the sense of Skorohod towards a noise reinforced
Brownian motion B̂ with reinforcement parameter p.
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Theorem 2 will be established in the next section, first under the additional
assumption that the typical step is bounded, and then in the general situation. Our
approach relies essentially on the martingale FCLT, which also plays a key role for
urn models (see [11, 14]), as well in the works of Coletti et al. [8, 9] and of Bercu
[3] on the elephant random walk. For the sake of simplicity, we consider here the
one-dimensional setting only, however the argument could be readily adapted to R

d

using the Cramér-Wold device; see also [4].
We first embed the step reinforced random walk in a branching process as

follows. Let Y = (Yt )t≥0 be a standard Yule process, that is Y is a pure birth
process started from Y0 = 1, with birth rate n from any state n ∈ N. We further
assume that Y and Ŝ are independent, and will mainly work with the time-changed
process Ŝ(Y·). It may be worth dwelling a bit on our motivation for introducing
this time-substitution; even though this discussion will not be used in the proof, it
nonetheless provides a useful guiding line for our approach. Roughly speaking, Y
describes a population model started from a single ancestor, where individuals are
eternal, and each begets a child at unit rate, independently of the other individuals.
Those individuals are naturally enumerated in the increasing order of their birth
time, in particular the ancestor is the first individual. We decide to assign the type
X̂n to the n-th individual, and write

Zt (dx) =
Yt∑

n=1

δ
X̂(n)
(dx), x ∈ R,

for the point process of the types of individuals alive at time t . We see from basic
properties of independent exponential clocks that Z = (Zt )t≥0 is a (multitype)
branching process, in which each individual begets a child at unit rate, indepen-
dently of the other individuals. A child is either a clone of its parent, an event which
occurs with probabilityp, or a mutant, an event which occurs with probability 1−p.
If a child is a clone, then its type is the same as that of its parent, whereas if it is a
mutant, its type is given by an independent copy of X. In this setting, there are the
identities

Yt = Zt (1) and Ŝ(Yt ) = Zt (Id), (8)

with the notation 1(x) = 1, Id(x) = x and Zt (f ) =
∫
R
f (x)Zt (dx). The function

z �→ z(1) on the space of point measures z is always an eigenfunction for the
infinitesimal generator of the branching process Z for the eigenvalue 1. The key
point is that when the typical step is centered, E(X) = 0, the function z �→ z(Id) is
also an eigenfunction, now for the eigenvalue p.
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4 Proof of the Invariance Principle

This section is devoted to the Proof of Theorem 2. Without loss of generality, we
henceforth assume that p ∈ (0, 1/2) and X ∈ L2(P) with E(X) = 0, and set
σ 2 = E(X2). We shall first give some preliminary estimates related to a remarkable
martingale, then we shall establish Theorem 2 under the additional assumption that
the variable X is bounded, and finally we shall show how this constraint can be
removed.

4.1 On a Remarquable Martingale

Recall that we implicitly assume that X is centered.

Lemma 1 The process

M(t) = e−pt Ŝ(Yt ), for t ≥ 0,

is a square integrable martingale with finite variation.

Proof Obviously, the set of jump times of M is discrete. Since M decays continu-
ously between two consecutive jump times, a fortiori its paths have finite variation.
Plainly, E(Ŝ(n)2) ≤ n2

E(X2) = n2σ 2, and since Ŝ and Y are independent with
E(Y 2

t ) <∞,M(t) is indeed square integrable.
We next point out that for any n ∈ N,

E(X̂n+1 | X̂1, . . . , X̂n) = (1− p)E(X) + pX̂1 + · · · + X̂n
n

= p Ŝ(n)
n

(this observation is also the starting point of the analysis of the elephant random
walk in [3, 8, 9]). Since the Yule process has precisely jump rate n from the state n,
this entails that

Ŝ(Yt )− p
∫ t

0
Ŝ(Ys)ds, for t ≥ 0

is a martingale, and our statement then follows from elementary stochastic calculus.

We next derive numerical bounds for the second moment of the supremum
process of the martingaleM .
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Lemma 2 For every t ≥ 0, one has

E

(

sup
0≤s≤t

M2(s)

)

≤ 4σ 2

1− 2p
e(1−2p)t .

Proof Since M has finite variation, its square-bracket process can be expressed in
the form

[M](t) =
∫

(0,t ]
e−2ps|X̂Ys |2dYs; (9)

see for instance Theorem 26.6(viii) in [15]. Recall that the instantaneous jump
rate of the Yule process at time s equals Ys and that the sequence X̂1, X̂2, . . . is
independent of the Yule process with E(X̂2

j ) = σ 2 for every j ≥ 1. It follows that

E([M](t)) = σ 2
∫ t

0
e−2ps

E(Ys)ds = σ 2

1− 2p

(
e(1−2p)t − 1

)
,

where for the second equality, we used E(Ys ) = es . This yields our claim by an
appeal to the Burkholder-Davis-Gundy inequality; see, e.g. Theorem 26.12 in [15].

We then obtain bounds for the second moments of the supremum process of the
step reinforced random walk itself, which will be useful later one.

Corollary 1 For every n ≥ 2, we have

E

(
max
k≤n |Ŝ(k)|

2
)
≤ 4eaσ 2

1− 2p
n,

with a = − inf0<x≤1/2 x
−1 ln(1− x).

Proof Since Ŝ and Y are independent and Y is a counting process, we have for every
n ≥ 1 and t ≥ 0 that

E(max
k≤n |Ŝ(k)|

2)P(Yt > n) ≤ E(sup
s≤t

|Ŝ(Ys)|2) ≤ e2pt
E

(

sup
0≤s≤t

M2(s)

)

.

Take t = lnn and recall that Yt hat the geometric distribution with parameter e−t =
1/n. So

P(Yt > n) = (1− 1/n)n ≥ e−a for all n ≥ 2,

and we conclude the proof using Lemma 2.
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4.2 Proof of Theorem 2 When X Is Bounded

In this section, we shall prove Theorem 2 under the additional assumption that the
typical step X is a bounded variable. We first estimate the angle-bracket 〈M〉 ofM ,
and in this direction, we introduce

V̂ (n) = X̂(1)2 + · · · + X̂(n)2 , n ∈ N.

Lemma 3 Assume that ‖X‖∞ <∞. We have

E

(∣
∣
∣
∣e
−pt V̂ (Yt )− (1− p)σ 2

∫ t

0
e−psYsds

∣
∣
∣
∣

2
)

= o(e2(1−p)t) as t →∞.

Proof Just as in the proof of Lemma 1, we note the identity

E(X̂(n+ 1)2 | X̂(1), . . . , X̂(n)) = p V̂ (n)
n

+ (1− p)σ 2,

and get by stochastic calculus that the process

M ′(t) = e−pt V̂ (Yt )− (1− p)σ 2
∫ t

0
e−psYsds, t ≥ 0

is a square integrable martingale with finite variation and square bracket

[M ′](t) =
∫

(0,t ]
e−2ps |X̂(Ys)|4dYs, t ≥ 0.

We compute its expected value and get

E(X4)E

(∫

(0,t ]
e−2psdYs

)
= E(X4)

∫ t

0
e(1−2p)sds

= o(e2(1−p)t),

where for the first equality, we used that the instantaneous jump rate of the Yule
process at time s equals Ys and E(Ys) = es .

We next recall that the asymptotic behavior of the Yule process is described by

lim
t→∞ e−tYt = τ a.s. (10)

where τ is a standard exponential variable. Needless to say, τ is independent of Ŝ.
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Corollary 2 Assume that ‖X‖∞ < ∞. The angle-bracket 〈M〉 of the martingale
M in Lemma 1 fulfills

lim
t→∞ e−(1−2p)t〈M〉(t) = σ 2τ

1− 2p
in probability.

Proof Recall that the square-bracket process ofM is given by (9); if follows readily
that its predictable compensator is

〈M〉(t) =
∫

(0,t ]
e−2ps

(
pV̂ (Ys)+ (1− p)σ 2Ys

)
ds, t ≥ 0. (11)

Since 2p < 1, our statement now derives from (10), (11) and Lemma 3.

The angle-bracket 〈M〉 is a continuous strictly increasing bijection from R+ to
R+ a.s., see (11), and we write T for the inverse bijection. We introduce for each
n ∈ N the process

Nn(t) = n−1/2MT (nt) = n−1/2e−pT (nt)Ŝ(YT (nt)), t ≥ 0.

We are in position of applying the martingale FCLT.

Proposition 1 Assume that ‖X‖∞ <∞. As n→∞, the sequence of processesNn
converges in distribution in the sense of Skorohod to a standard Brownian motion.

Proof Plainly, each Nn is a square-integrable martingale with angle-bracket
〈Nn〉(t) = t , and obviously its maximum jump is asymptotically negligible in
L2(P) since X is bounded. This enables us to apply the martingale FCLT; see e.g.
Theorem 2.1 in [22], and also Section VIII.3 in [13] for more general versions.

We shall actually need a slightly stronger version of Proposition 1 in which the
convergence holds conditionally on the variable τ in (10).

Corollary 3 Assume that ‖X‖∞ < ∞. As n → ∞, the sequence of pairs (τ,Nn)
converges in distribution in the sense of Skorohod to (τ, B) where B is a standard
Brownian motion independent of τ .

Proof First fix t > 0 and consider a random variable A(t) which is measurable
with respect to the sigma-algebra σ(MT (s) : 0 ≤ s ≤ t). The statement with A(t)
replacing τ follows from the martingale FCTL applied to the sequence of processes
(Nn(s+t/n))s≥0, just as in Proposition 1. Corollary 3 can then be deduced, provided
that we can choose A(t) such that

lim
t→∞A(t) = τ a.s. (12)

Specifically, consider any continuous functional F on the Skorohod space with
|F | ≤ 1, and any continuous and bounded function f on R. Taking (12) for granted,
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for any η > 0 arbitrarily small, we can first choose t > 0 sufficiently large so that

E(|f (A(t))− f (τ)|) ≤ η,

and then n(t) ∈ N such that

|E (f (A(t))F (Nn))− E(f (A(t)))E(F (B)))| ≤ η for all n ≥ n(t).

We can conclude from the triangle inequality that

|E (f (τ )F (Nn))− E(f (τ ))E(F (B)))| ≤ 3η for all n ≥ n(t).

We now have to construct variables A(t) so that (12) holds, and in this direction,
we first assume that P(X = 0) = 0. All the steps of Ŝ are non-zero a.s., and YT (t) is
then the total number of jumps of the processMT (·) on the time interval [0, t] (recall
that this takes the initial jump at time 0 into account), and hence is measurable with
respect to σ(MT (s) : 0 ≤ s ≤ t). On the other hand, we deduce from Corollary 2
that

T (t) = 1

1− 2p
ln

(
(1− 2p)t

σ 2τ

)
+ o(1) as t →∞, (13)

and then from (10) that

YT (t) ∼ ((1− 2p)tσ−2)1/(1−2p)τ−2p/(1−2p) as t →∞. (14)

The construction of the sought variables A(t) is plain from (14).
The case when P(X = 0) = a ∈ (0, 1) only requires a minor modification. We

can no longer identify YT (t) with the total number of jumps of the processMT (·) on
the time interval [0, t]. Nonetheless the latter is now close to (1−a)YT (t) for t � 1,
and we can conclude just as above.

We now have all the ingredients needed for the proof of the invariance principle.

Proof (Proof of Theorem 2 When X Is Bounded) For the sake of simplicity, we
further assume in this proof that σ 2 = 1, which induces no loss of generality. Set

s = s(t) = (τ−2pt)1/(1−2p) and k = k(n) = ((1− 2p)n)1/(1−2p),

so (14) and (13) yield respectively

YT (nt) ∼ ks and e−pT (nt) ∼ (ks/τ)−p.

Since n = k1−2p/(1 − 2p) and t = τ 2ps1−2p, we deduce from Corollary 3 and
the very definition of the Skorohod topology involving changes of time (see, e.g.
Section VI.1 in [13]) that as k →∞, the sequence of processes k−1/2(Ŝ(%ks&))s≥0
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converges in distribution in the sense of Skorohod towards

(
τ−p√
1− 2p

spB(τ 2ps1−2p)

)

s≥0
,

where B is a standard Brownian motion independent of τ . By the scaling property
of Brownian motion, the process displayed above has the same distribution as

(
sp√

1− 2p
B(s1−2p)

)

s≥0
,

and we complete the proof with (3).

4.3 Reduction to the Case When X Is Bounded

In this section, we only assume that X ∈ L2(P) with E(X) = 0. We shall complete
the proof of Theorem 2 by a truncation argument, for which some notation is needed.

For every b > 0, we set

X(b) = 1|X|≤bX − E(X1|X|≤b),

so X(b) is a centered and bounded variable; we write σ (b) for its standard deviation.
Similarly, we set

X̂(b)n = 1|X̂n|≤bX̂n − E(X1|X|≤b) and Ŝ(b)(n) = X̂(b)1 + · · · + X̂(b)n .

Clearly, Ŝ(b) is a version of the step-reinforced random walk with typical step
distributed asX(b). The latter being bounded, an application of Theorem 2 as proven
in the preceding section shows that there is the convergence in distribution in the
sense of Skorohod

n−1/2Ŝ(b)(%·n&) -⇒ σ (b)B̂(·) as n→∞, (15)

where B̂ denotes a noise reinforced Brownian motion with reinforcement parameter
p.

Recall that the topology of weak convergence on the set of probability measures
on the Skorokhod space of càdlàg paths is metrizable. Since plainly limb→∞ σ (b) =
σ , it follows readily from (15) that we have also

n−1/2Ŝ(b(n))(%·n&) -⇒ σB̂(·) as n→∞ (16)

for some sequence (b(n)) of positive real number that tends to ∞ slowly enough.
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Then consider

Š(b(n))(n) = Ŝ(n)− Ŝ(b(n))(n),

and observe that

Š(b(n))(n) = X̌(b(n))1 + · · · + X̌(b(n))n

with

X̌(b(n))n = 1|X̂n|>b(n)X̂n − E(X1|X|>b(n)).

In turn, Š(b(n)) is also a step-reinforced random walk, now with typical step
distributed as X − X(b(n)). The latter is a centered variable in L2(P), and if we
write ς(b(n)) for its standard deviation, then clearly limn→∞ ς(b(n)) = 0 since b(n)
tends to ∞. We deduce from Corollary 1 that for any t > 0,

lim
n→∞ n

−1
E

(
max
k≤nt |Š

(b(n))(k)|2
)
= 0. (17)

We now see from (17) and the Markov inequality that the requirement 3.30
on page 316 in [13] holds for Zn· = n−1/2Š(b(n))(%·n&). This enables us to apply
Lemma 3.31 there with Yn· = n−1/2Ŝ(b(n))(%·n&), and we conclude that

n−1/2Ŝ(%·n&) = Yn· + Zn· -⇒ σB̂(·) as n→∞.

The Proof of Theorem 2 is now complete.
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Geodesic Rays and Exponents in Ergodic
Planar First Passage Percolation

Gerandy Brito and Christopher Hoffman

Abstract We study first passage percolation on the plane for a family of invariant,
ergodic measures on Z

2. We prove that for all of these models the asymptotic shape
is the �1 ball and that there are exactly four infinite geodesics starting at the origin
a.s. In addition we determine the exponents for the variance and wandering of
finite geodesics. We show that the variance and wandering exponents do not satisfy
the relationship of χ = 2ξ − 1 which is expected for independent first passage
percolation.

Keywords First passage percolation · Fluctuation exponent · Variance exponent

1 Introduction

First passage percolation is a widely studied model in statistical physics. One
of the main reasons for interest in first passage percolation is that it is believed
that, for independence passage times (and under mild assumptions on the common
distribution) the model belongs to the KPZ universality class. The study of first
passage percolation has centered on the three main sets of questions below. (Precise
definitions are given in the next two sections.)

1. Asymptotic shape. Cox and Durrett proved that every model of first passage
percolation has an asymptotic shape B ⊂ R

2 which is convex and has the
symmetries of Z2 [5]. We would like to determine B or at least describe some
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of its properties. In particular is the asymptotic shape is strictly convex and is its
boundary differentiable?

2. Infinite geodesics from the origin. Are there infinitely many one-sided infinite
geodesics that start at (0, 0)? Do these geodesics all have asymptotic directions?

3. Variance and wandering exponents. For any λ ≥ 0 does there exist a variance
exponent χ = χ(λ) such that

Var(T (0, (n, λn)) = n2χ+o(1)?

Does there exist a wandering exponent ξ = ξ(λ) such that with high probability
every edge in γ (0, (n, λn)) is within distance nξ+o(1) of the line segment
connecting 0 and (n, λn)? Do χ and ξ satisfy the universal scaling relation

χ = 2ξ − 1?

It is widely believed that (under mild assumptions) in independent first passage
percolation the answer to all of these questions is yes. However in our models we
show that the answer all of these questions is at least somewhat different than the
answers that are expected for the independent case. Thus our model shows that
universality cannot be expected to hold for all models of ergodic first passage
percolation. Our results are as follows.

1. For all of our models the asymptotic shape B is the unit ball in the �1-norm.
2. Our models have exactly four one-sided infinite geodesics starting from the

origin a.s., each of which meander through a quadrant.
3. For each value of λ we calculate exact variance and wandering exponents of the

geodesic from 0 to (n, λn). For all λ > 0 the variance exponent χ is zero while
the wandering exponent is 1. For λ = 0 we get variance and wandering exponents
that satisfy 0 < χ = ξ < 1. In neither of these cases do the exponents satisfy the
universal scaling relation χ = 2ξ − 1.

It is already known that there exist models of ergodic first passage percolation
whose behavior is different from what is expected for independent first passage
percolation. Häggström and Meester showed that for any set B ⊂ R

2 which is
bounded, convex and has non-empty interior and all the symmetries of Z2 there is
a model of ergodic first passage percolation that has B as its limiting shape [7].
The examples we construct show that there are models of ergodic first passage
percolation that have anomalous geodesic structures. More interestingly our models
have anomalous variance and wandering exponents and these exponents depend
on the direction. We are not aware of any other non-trivial models of ergodic
first passage percolation where the variance and wandering exponents have been
explicitly calculated.
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2 Background on First Passage Percolation

In first passage percolation, a nonnegative variable is associated to each edge of
a given graph. These variables give rise to a random metric space. Among the
fundamental objects of study of this metric space are the scaling properties of balls
and the structure of geodesics. By planar first passage percolation, we refer to the
model on the lattice, denoted by Z

2, which has vertex set V = {(x, y) x, y ∈ Z} and
edge set E = {(v,w) : |v − w| = 1} ⊂ V × V where | · | denotes the �1 distance.
A configuration of Z2 is simply a function from the edge set to the nonnegative real
numbers:

t : E → [0,∞). (1)

We will use the more common notation te for t(e). If ν is a probability measure
on [0,∞)E , we denote the probability space with state space [0,∞)E and measure
ν by FPP(ν). The number te can be seen as the passage time or length of the edge
e. Given a configuration t on Z

2 and a path π = {ei}ki=1 the length of π is

Γ (π) =
k∑

i=1

tei .

The distance between two vertices u and v is denoted by T (u, v) and it is defined as

T (u, v) = infΓ (π) (2)

where the inf is taken over the set of all paths connecting u and v. It is not hard to
check that (Z2, T (·, ·)) is a pseudometric space for any configuration. Furthermore,
if the values te are all bigger than zero then T (·, ·) is a metric. As we will see in
Sect. 4, our measures will be bounded away from zero, so for the rest of the paper
(Z2, T (·, ·)) is a metric space. The ball of radius R centered at u is

B(u,R) = {v ∈ V : T (u, v) < R}. (3)

Cox and Durrett [5] studied the behavior of large balls after scaling. They proved
that, if te ∼ ν satisfying

E(min{t2
1, t

2
2, t

2
3, t

2
4}) <∞ (4)

for independent copies of te, and the mass at zero is less than the threshold for bond
percolation then there is a non-empty set B, compact, convex and symmetric with
respect to the origin such that, for any ε > 0

P

(
(1− ε)B ⊂ B(0, R)

R
⊂ (1+ ε)B for all large R

)
= 1. (5)
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Boivin extended this to a wide class of ergodic models of first passage percolation
[4].

The question of which compact sets can be obtained as limit in FPP is almost
entirely open for the i.i.d. case. Interestingly, when we consider the bigger set
of stationary and ergodic measures on (R+)E it was proved by Haggstrom and
Meester [7] that any compact, convex, symmetric (with respect to the origin) set
is the limiting shape for a stationary and ergodic measure, not necessarily i.i.d. It
is worth mentioning that the limiting shape B is the unit ball of a norm ‖ · ‖ν .
This norm can be computed as follows. First, we extend T (·, ·) to R

2 by setting
T (u, v) = T (%u&, %v&) for all u, v ∈ R

2. Here we slightly abused notation using the
floor function on points. The reader should understand this by applying it to each
coordinate. It can be shown, under mild assumptions on the distribution of te, that
the norm ‖x‖ν satisfies

‖x‖ν = lim
n

T (0, nx)
n

where the limit exists a.s. and in L1 for every fixed x ∈ R
2. The set B

B = {x ∈ R
2 : ‖x‖ν ≤ 1 }. (6)

A geodesic between u and v is a path that realizes the infimum in (2). We
denote geodesics by γ (u, v). Geodesics aren’t always unique. A simple condition
to guarantee such property for independent edge weights is to consider continuous
distribution for te. A geodesic ray is an infinite path {v0, v1, v2, . . . } such that every
finite sub-path is a geodesic between its endpoints. We consider two geodesic rays
to be distinct if they intersect in only finitely many edges. We denote by T0 the set
of all geodesic rays starting at the origin. Ahlberg and Hoffman [1] recently showed
that for a wide class of measures the cardinality of T0 is constant almost surely,
possibly ∞.

3 Statement of Results

The limiting shape B is closely related to the number and geometry of geodesic rays
for ergodic FPP. Let sides(B) denote the number of sizes of B if it is a polygon, and
infinity otherwise, Hoffman [8, 9] proved that, for any k ≤ sides(B) there exist k
geodesic rays almost surely, for good measures, see Sect. 4 for details. In particular,
his results imply that there exist at least four geodesics a.s. When B is a polygon,
little is known about existence of geodesics rays in the direction of the corners of
B. Recently, Alexander and Berger [2] exhibit a model for which the limiting shape
is an octagon and all (possibly infinitely many) geodesic rays are directed along the
coordinate axis. Our first result shows that our model has exactly four geodesic rays
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a.s.. To the best of our knowledge, this is the first known FPP model for which |T0|
is finite.

Theorem 1 There exists a family of measures {να}0<α<0.2 such that |T0| = 4 να-
almost surely.

Our next result is about the direction of geodesic rays. We start with a definition.
The direction, Dir(Π), of a sequence of (not necessarily distinct) points Π =
{vk, k ≥ 0} is the set of limits of {vk/|vk|, vk ∈ Π}. If |vk| → ∞ thenDir(Π) is a
connected subset of S1. Damron and Hanson [6] were the first to prove directional
results for geodesic rays for good measures that also have the upward finite energy
property. Their results are also dependent on the geometry of B in the following
way. We say that a linear functional ρ : R

2 → R is tangent to B if the line
{x ∈ R

2 : ρ(x) = 1} is tangent to B at a point of differentiability of the boundary
of B. In view of Eq. (6), we can write the intersection of this tangent line and the
boundary of B as a set in S1:

Dρ = {x ∈ S1 : ρ(x) = ‖x‖ν}. (7)

Damron and Hanson [6, Theorem 1.1] states that for any functional ρ, tangent
to B, there is an element γ ∈ T0 satisfying Dir(γ ) ⊂ Dρ . Because of the
differentiability condition, their result gives no information about the behavior
around corners of B. For our family of measures {να} we are able to completely
characterize the directions of geodesic rays.

Theorem 2 Fix α such that 0 < α < 0.2 and consider FPP(να). Let ρ be a linear
functional tangent to the �1-ball. There is exactly one geodesic with generalized
direction equal to Dρ .

Lastly, we turn our attention to the geometry of finite geodesics. We follow
the classical approach and study it both from the random and the geometric point
of view. For the first one, the most basic analysis comes from understanding the
variance of T (0, x). As stated informally in the introduction, it is believed that there
exist a universal exponent that governs this quantity. For our model, we show the
existence of a constant χ = χ(λ) and a universal constantK such that

1

K
≤ V ar(T (0, (n, λn)))

n2χ ≤ K,

see Lemmas 8 and 10 for the formal statements. We point out that our results are
strong enough that they satisfy any reasonable definition of the variance exponent,
in particular those suggested in [3].

From the geometric perspective, we look at how far is γ (0, (n, λn)) from the
straight line connecting the origin and the point (n, λn). As in the case of the
variance exponent, it is widely believed that there is a universal constant, denoted
by ξ , such that the maximal distance between γ (0, (n, λn)) and the line through the
origin and (n, λn) is of order nξ . So, if one sets Cyl(xλn,N) to be the set of points
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within (Euclidean) distance N from the line connecting 0 and xλn = (n, λn), it is
expected that N = nξ is the right scale of cylinder to contain γ (0, xλn). To formally
capture this property we adopt the definition in [10] which we reproduce below.

Definition 1 For 0 ≤ λ ≤ 1 and xλn = (n, λn) we set

ξλ = inf{α > 0 : lim inf
n

P(γ (0, xλn) ⊂ Cyl(xλn, n
α)) > 0}.

We compute this exponent in any direction, and confirm non-universality of FPP
for invariant, but not necessarily identically distributed, edge weight.

Theorem 3 Fix α such that 0 < α < 0.2 and considerFPP(να). In every direction
not parallel to the coordinate axes we have the variance exponent χ = 0 and the
wandering exponent ξ = 1. Parallel to the coordinate axes the two exponents are
equal with χ = ξ = log 5

log 5−logα . In no direction do the exponents satisfy the universal
scaling relation.

Remark 1 This is the content of Lemmas 10 and 11 for the coordinate directions
and Lemma 8 and Propositions 2 and 3 for the non-coordinate directions. The reader
will notice that these results lead to stronger statements. In particular, we can deduce
that, for 0 < λ ≤ 1

lim
n

P(γ (0, xλn) ⊂ Cyl(xλn, n
1+ε)) = 1

and

lim
n

P(γ (0, xλn) ⊂ Cyl(xλn, n
1−ε)) = 0

and similarly for the coordinate directions and ξ = 0. In particular, we believe that
for our model the results of Theorem 3 apply to any reasonable definition of the
variance and wandering exponents.

3.1 Organization of the Paper

The rest of the paper is organized as follows. In Sect. 4 we define the measures να
and show its main properties. The proof of Theorem 1 is given in Sect. 5 where the
limiting shape is also determined. Section 6 is devoted to the study of the directional
properties of geodesic rays and the proof of Theorem 2. In Sects. 7 and 8 we
prove our final theorem which determines the exponents in all directions. This is
the content of Lemmas 10 and 11 for the coordinate directions and Lemma 8 and
Propositions 2 and 3 for the non-coordinate directions.
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4 Construction of the Measures {να}

In this section we construct a family of measures {να} ⊂ M ((R+)E ), indexed by
a parameter 0 < α < 0.2. We state their main properties and study the behavior of
geodesics for FPP(να).

Let Ω = {0, 1, 2, 3, 4}N. Let σ : Ω → Ω be the 5-adic adding machine: σ
adds one (mod 5) to the first coordinate. If the result is not zero then we leave all
the other coordinates unchanged. If the result is zero then we add one to the second
coordinate. We repeat until we get the first non-zero coordinate. All subsequent
coordinates are left unchanged. Thus

σ(0, 1, 2, . . . ) = (1, 1, 2, . . . ) and σ(4, 4, 2, 1, . . . ) = (0, 0, 3, 1, . . . ).

We also adopt the convention σ(444 . . . ) = 000 . . .
It follows that σ : Ω → Ω is uniquely ergodic with respect to the uniform

measure on Ω . We use this map to form a Z
2 action of Ω × Ω as follows. Let

L : Ω → N given by

L(ω) = min{i : ω(i) > 0}. (8)

For (ω1, ω2) ∈ Ω ×Ω fixed and v = (x(v), y(v)) ∈ Z
2 we define:

k(v, v + e1) = L(σy(v)(ω1)) (9)

and

k(v, v + e2) = L(σx(v)(ω2))

where e1,e2 are the vectors in the canonical base of R2. The following set will be
referred to often in the paper, so we highlight its definition now.

Definition 2 We denote the set of edges e ∈ E such that k(e) ≥ j as the j -grid.

It is helpful to visualize the j -grid. Note that, by definition, these subgraphs are
nested:

1-grid ⊇ 2-grid ⊇ . . .

Also, since edges e and e′ in the same horizontal or vertical line satisfy k(e) = k(e′),
it is not hard to see that for each j , the subgraph induced by the j -grid is isomorphic
to 5j Z2.

We are ready to define the measure να . Let {Xj,e}j∈N,e∈E be a set of indepen-
dent random variables where Xj,∗ has the uniform distribution over the interval
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[0, αj (1−α)1000 ]. We take

te = 1+ αk(e) +Xk(e),e
where ω1 and ω2 are chosen uniformly i.i.d. and independent of the {Xj,e}. For
technical reasons, we let 0 < α < 0.2. Note that for every edge e

1 ≤ te ≤ 1.3. (10)

We set να to be the resulting measure on (R+)E .

Remark 2 The measures να fall into the class of good measures introduced in [8]
and [9].

We recall the definition of good measures. A measure P is good if:

(a) P is ergodic with respect to the translations of Z2.
(b) P has all the symmetries of Z2.
(c) P has unique passage times.
(d) The distribution of P on an edge has finite 2+ ε moment.
(e) The limiting shape is bounded.

The construction of να is done so properties (a)–(e) are easy to check.

Informally, we think of a realization of FFP(να) as building a series of
horizontal and vertical highways on the nearest neighbor graph of Z

2. The value
of ωi, i = 1, 2, determines where the origin lies with respect to these highways.
By construction, edges in the j -grid are faster (i.e.: have smaller passage time) than
edges in any j ′-grid for j > j ′. Hence, a geodesics ray is expected to follow one
grid until it encounters a faster one. Then the geodesic continues along edges of
the faster grid. Globally, we expect to see rays with longer segments parallel to the
axes as they move away from the origin. We also suspect that the length of these
horizontal or vertical segments is roughly determined by the value of the j -grid
they are part of. We formalize this intuition in the next sections.

5 Structure of Finite Geodesics

In this section we present several properties of geodesics in FPP(να). The first
lemmas describe the geometric properties of finite geodesics along vertices in the
k-grid, recall Definition 2.

Lemma 1 Let C = C(x, y, k) be a square of side 5k with lower left vertex (x, y)
such that all the edges in its boundary are in the k-grid. Consider two vertices v and
w in the boundary of C. Then

(i) γ (v,w) is completely contained in C.
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(ii) If v and w lie in the same or adjacent sides of C, γ (v,w) lies in the boundary
of C.

Proof We argue by contradiction. Assume there are vertices v and w in the
boundary ofC such that γ (v,w) intersects the complement ofC. Because a subpath
of a geodesic is also a geodesic, we can assume that the edges of γ (v,w) lie entirely
in the complement of C, by considering a segment of γ (v,w) completely in the
complement of C and taking v and w to be its end points. Let d denote the length
(the �1-distance) of the shortest path along the boundary of C connecting v and w.

If the maximal distance from a vertex in γ (v,w) to C is less than 5k then, by
construction, all edges in γ (v,w) will lie on the (k − 1)-grid at most, hence, have
passage time at least 1+ αk−1. Then the passage time of γ (v,w) is at least

d(1+ αk−1) > d(1+ αk)+ dαk

The right hand side is an upper bound for the passage time of the path from v to w
along the boundary of C. We conclude that going along the boundary of C will be a
shortest path from v to w. Hence, there should be a vertex in γ (v,w) at distance at
least 5k of C. Then the passage time of γ (v,w) is at least

2(5k)+ d

where the factor of two appears since we move away from C at least 5k edges and
come back to C, crossing another 5k edges. Observe that d ≤ 2(5k). Hence,

d(1+ αk)+ dαk = d + 2dαk < d + 2(5k),

using that 2αk < 1 as long as α < 1/5. The left hand side above is an upper bound
on the passage time of a path connecting v and w along the boundary of C. This
concludes the proof of part (i).

To prove (ii), assume that v lies in the left side of C and consider two cases for
w.

• Case 1: w lies also on the left hand side or the horizontal sides of C, but it is
not a corner on the right hand side. By (i) we know γ (v,w) is contained in C.
If γ (v,w) uses edges in the interior of C, we can assume, changing v and w if
necessary, that the entire geodesic lies in the interior. This implies that all edges

in γ (v,w) have passage times at least (1 + αk−1) > 1 + αk + αk(1−α)
1000 ≥ te for

all e in the boundary of C. Hence, a path along the boundary will have smaller
passage times, which shows that γ (v,w) lies on the boundary.

• Case 2: w is a corner on the right hand side of C. We compare the path along
the boundary of C to any path π which traverses edges in the interior of C. By
case 1 we can assume that π exits the boundary of C on the left hand side and
rejoins the boundary of C on the right hand side. Observe that π will have to
traverse at least 5k many edges horizontally, because v and w are on opposite
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sizes of C, and at least |y(w) − y(v)| many edges vertically. This leads to the
lower bound

Γ (π) ≥ 5k(1+ αk−1)+ |y(w)− y(v)|.

A path on the boundary of C connecting v and w has length at most:

5k(1+ αk)+ |y(w)− y(v)|(1+ αk)+ 2(5)k
αk(1− α)

1000
.

The last summand is an upper bound on the sum of the random portion of the
path’s distance. To conclude it suffices to show that

5k(1+αk−1)+|y(w)−y(v)| ≥ 5k(1+αk)+|y(w)−y(v)|(1+αk)+2(5)k
αk(1− α)

1000
.

This inequality is equivalent to

2(5)k
(

1− α − α(1 − α)
1000

)
≥ |y(w)− y(v)|α

which follows directly since 5k ≥ |y(w) − y(v)| and 1 − α − αk(1−α)
1000 ≥ α for

0 < α < 1
5 .

Corollary 1 In the setting of Lemma 1, let v andw be any vertices in the boundary.
Assume that γ (v,w) visits a corner of C. Then γ (v,w) is completely contained in
the boundary of C.

Proof Let v′ be a vertex in γ (v,w) which is in the corner of C. Then v′ is in two
sides and both the other two sides are adjacent to one of these two sides. Then both
the pairs v and v′ and v′ and w lie in (the same or) adjacent sides of C. Thus the
corollary follows from Lemma 1 applied to γ (v, v′) and γ (v′, w).

We extend the result above to a large rectangle in the next lemma.

Lemma 2 Let M = M(α, k) be an integer such that αkM > 1, and let R =
R(x, y, k) be a rectangle with vertices (x, y); (x, y + 5k); (x + 5kM, y); (x +
5kM, y + 5k) such that all the edges in its sides are in the k-grid. Let v and w
be vertices in the boundary of R such that at least one is on one of the shorter sides
of R. If γ (v,w) is contained in R, then it is contained in the k-grid.

Remark 3 The lemma above is still true if the largest side of the rectangle is parallel
to the y-axis.

Remark 4 The lemma above confirms that, once a geodesics enters a fast grid, it
will not visit slower edges anymore: the only edges parallel to the x-axis in γ (v,w)
are in the boundary of R. It may traverse edges in the interior of R but only parallel
to the y-axis and on the k-grid.
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Proof To fix ideas, assume v lies on the left side of R. Notice that R can be divided
into M squares of side 5k , each satisfying the condition of Lemma 1, namely, each
has boundary edges in the k-grid. We denote these squares by C1, C2 . . . , CM from
left to right. Also, for 1 ≤ j ≤ M denote vj and wj the first and last vertex that
γ (v,w) visits in Cj , respectively, when this intersection is not empty. We will again
split the proof into cases.

• Case 1: w lies on the common boundary of C1 and R. This is the content of
Lemma 1.

• Case 2: w lies in one of the larger (horizontal) sides of R. This case follows
by induction on M , with case 1, or Lemma 1, being the initial step. Note that in
this case we may traverse edges in the interior of R, but only in the boundary of
Cj for some values of j , thus we are still on the k-grid.

• Case 3: w is in the right side of R. Assume γ (v,w) visits a vertex on the
horizontal sides of R, say v′. Then by case 2 applied to γ (v, v′) and γ (w, v′)
we conclude that γ (v,w) is on the union of the boundaries of the Cj , which is a
subset of the k-grid. If such vertex v′ does not exist, we deduce that all horizontal
edges (i.e.: parallel to the y-axis) on γ (v,w) are in the interior of R. Then its
length will be at least:

5kM(1+ αk−1),

since all edges in the interior are in the (k− 1)-grid at most. The shortest path on
the boundary of R connecting v and w has length bounded above by

5k(M + 1)(1+ αk + α
k(1− α)
1000

).

It can be checked that, for our choice ofM it holds 5kM(1 + αk−1) ≥ 5k(M +
1)(1+αk)+5k(M+1)(αk 1−α

1000), which yields the desired contradiction. We have
proved that γ (v,w) lies on the union of the boundaries of Cj , which proves the
lemma.

Proposition 1 Let v,w vertices that are end points of edges in the k-grid, satisfying
|v − w| ≥ 52kM , for an integerM such that αkM > 1. Then the geodesic γ (v,w)
is contained in the k-grid.

Proof Suppose that γ (v,w) = {e1, e2, . . . , et } contains at least one edge outside
the k-grid. Let

m = min{s ≥ 1 : es is not on the k-grid}.

By definition, one endpoint of em lies in the k-grid and one endpoint lies outside of
it. Let Rem be the unique rectangle defined by the following constraints:

(a) The boundary of Rem is a subset of the k-grid. Furthermore, the length of the
sizes of Rem are 5k and 5kM for a natural numberM such that αkM > 1.
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Fig. 1 The rectangle Rem in case 2 of the proof of proposition 1: the geodesic will connect vertices
v and v′ traversing edges in the k-grid only, which forces it to visit a corner of Rem , denoted by c.
Then the geodesics follows from c to w traversing em, which is not the fastest path, by Lemma 2

(b) The boundary of Rem intersects em.
(c) Rem contains em.
(d) The larger sides of Rem are parallel to em.

Note that the conditions in (a) are as those in Lemma 2. Since em is the first edge
on γ (v,w) not on the k-grid, exactly one endpoint of it is in this grid, which is the
only possible intersection in condition (b). We will denote this vertex by v′. Finally,
all of the conditions ensure that we have a unique choice of Rem (Fig. 1).

We consider two cases:

• Case 1: w is in the complement of Rem . Then in order to reach w, γ (v,w) has
to exitRem for the last time at some vertexw′ in its boundary. Since one endpoint
of em is inside Rem we have that w′ = v′. By Lemma 2 or Remark 3 the geodesic
from v′ to w′ is contained in the k-grid and hence it cannot traverse em. This
contradicts our assumption.

• Case 2: w is in Rem . We start making two simple observations. First, because em
is parallel to the longer sides of Rem , we deduce that v′ is on one of its shorter
sides. Second, from the assumption that v and w are far away from each other,
we conclude that v is in the complement of Rem . By definition of m, all edges
es, s < m are in the k-grid. Traverse γ (v,w) from v until we get to v′. We
claim that we must visit one of the corners of the side of Rem that contains v′. To
see this, simply observe that removing the two corners of such side disconnects
v′ from v in the graph induced by the k-grid (because v is in the complement of
Rem ). Call the visited corner c and letC be the square of size length 5k completely
insideRem with one corner equal to c. Let γ ′ be the intersection ofC and γ (c,w).
Note that em ∈ γ ′. Now γ ′ is connected, and its endvertices are c, a corner of
C, and one vertex on its boundary. In the square C, because c is a corner, it lies
on the same or an adjacent side of such vertex, and thus by Lemma 1 (ii) we get
that γ ′ is completely on the boundary of C, which contradicts the definition of
em and finishes the proof.



Geodesic Rays and Exponents in Ergodic Planar First Passage Percolation 175

To prepare the ground for our next lemma, we draw a few conclusions from
Proposition 1. First, notice that any geodesic ray γ will have infinitely many vertices
in the k-grid, for all k. If vk is the first such vertex, it follows that all edges in γ after
vk are in the corresponding grid. Applying the same reasoning we conclude that the
intersection of γ and the k-grid is an infinite connected set. The vertices vk break γ
into slower edges, those with passage time of order 1 + αk , and faster edges, with
passage time of order 1+αk+1. We turn our attention to a set of special vertices and
introduce the following definition.

Definition 3 Let v be a vertex of Z2. We denote by Vk(v) the square in the plane
containing v with the following properties:

(a) The boundary of Vk(v) is in the k-grid.
(b) The area of Vk(v) is 52k.
(c) If v lies in the intersection of two or more such squares, Vk(v) is the only one

to the right and/or above v.

Denote by vki (v), 1 ≤ i ≤ 4 the corners of Vk(v), starting at the upper right and
going counterclockwise.

Conditions (a) and (b) imply that from all bounded regions in the plane with v in
its interior and boundary a subset of the k-grid, Vk(v) is the one with smaller area.
Condition (c) handles the case when v is in the boundary of such region. When there
is no confusion, we will drop the dependence on v in Vk and vki . The importance of
these vertices is explained in the next lemma.

Lemma 3 Let γ be a geodesic ray starting at v. For each k, there is at least one
value 1 ≤ i ≤ 4 such that vki ∈ γ .

Proof Consider w ∈ γ be a vertex in the k-grid such that d(v,w) ≥ 53kM , for M
which was defined in the proof of Lemma 2. The existence ofw can be deduced from
the fact that the k-grid is isomorphic to 5kZ2 and then we can find infinite closed
paths on it disconnecting v from infinity. Since γ is an infinite path it will intersect
the k-grid infinitely many times. Let v̂ ∈ Vk(v) denotes the first vertex in the k-grid
that we encounter while going along γ , starting at v. We have d(v, v̂) ≤ 5k and
thus, by Proposition 1, the subpath from v̂ to w is contained in the k-grid. Thus, the
last vertex that γ visits in Vk is one of its corners.

We are ready to prove Theorem 1.

5.1 Proof of Theorem 1

Assume there exits five different γi ∈ T0, i ∈ {1, 2, 3, 4, 5}. Then there is a
(random) ball B centered at v sufficiently large such that any two of these five
geodesic rays only intersect in the interior of B. Take k large such that Vk = Vk(0)
has its four corners in the complement of B. By Lemma 1 each γi will visit at
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least one corner of Vk . This contradicts the intersection property since Vk has four
corners. This proves

|T0| ≤ 4

Since να is good, it follows from [9, Theorem 1.2] that |T0| ≥ 4 and the result
follows.

This result allows us to determine the shape. A direct proof of the shape is also
very short.

Corollary 2 The limiting shape of FPP(να) is the �1-ball.

Proof From Theorem 1 and [9, Theorem 1.2] we have that the limiting shape of
FPP(να) is either proportional to the �1-ball or the �∞-ball. As every edge has
passage time at least one the limiting shape must be contained in the �1-ball. But the
speed in the coordinate directions is one so the limiting shape must be the �1-ball.

6 Direction of the Geodesic Rays and Proof of Theorem 2

Our goal in this section is to completely characterize Dir(γ ) for each geodesic ray
γ in FPP(να). We start by combining Theorem 1 and recent results of Ahlberg and
Hoffman [1] to get further information about the geodesic rays.

Throughout this section, we will write Vk to refer to Vk(0). Similarly, the corners
of Vk will be denoted by {vki }ki=1, see Definition 3. For 1 ≤ i ≤ 4, denote by
Ci = {vki , k ∈ N} the set of corners lying in the ith quadrant of the coordinate
plane.

For any geodesic γ recall that Dir(γ ) ⊂ S1. In the remainder of the section we
will slightly abuse notation by considering Dir(γ ) ⊂ [0, 2π).
Lemma 4 With να probability one the following holds: for each 1 ≤ i ≤ 4 there is a
unique geodesic ray γi , starting at the origin, such that the angle (i− 1

2 )
π
2 ∈ Dir(γi)

andDir(γi) is in the ith quadrant.

Proof For each quadrant there is a linear function ρi whose level set Dρi (z) = 1
(see Eq. (7) for the definition ofDρ ) is the intersection of the boundary of the �1-ball
with the ith quadrant. By Theorems 1.11 and 4.6 of [6] for each i there is a geodesic
whose Busemann function is asymptotically linear with growth rate Dρi and whose
Dir(γi) is contained in the ith quadrant. As there are only four geodesics a.s., these
geodesics are unique. We denote by γi the only geodesic ray directed on the ith
quadrant.

For any v,w ∈ Z
d we have for all k sufficiently large that Vk(v) = Vk(w). Thus

by Lemma 3 we have that the geodesics are coalescing. Thus Dir(γi) is an almost
sure invariant subset of Si . Either

P(Dir(γ1) ∩ [0, π/4] = ∅) ≥ 0
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or

P(Dir(γ1) ∩ [π/4, π/2] = ∅) ≥ 0.

By symmetry they must both be greater than zero. By shift invariance they both must
have probability one. As Dir(γ1) is connected subset of [0, π/2] then π/4 ∈ Dir(γ1).
The same argument works for the other three quadrants.

Lemma 5 With να probability one it holds that vki ∈ γi for 1 ≤ i ≤ 4 and for all
but finitely many k.

Proof For each k there exists an i such that both coordinates of vki are at least 5k/2
in absolute value. For such values of k and i, we have Dir(vki ) ∈ (i − 1)π/2 +
(.1, π/2 − 0.1). Let K be large enough such that for each k > K we have that vki
for each i is in a distinct geodesic (the existence of suchK follows from Theorem 1
and Lemma 3). Also, for any i and any vertex v ∈ γi such that |v| ≥ minj |vkj | we
have Dir(v) ∈ (i − 1)π/2 + (−0.01, π/2 + 0.01). Then for this particular i we
have that vki ∈ γi . From this we can conclude that for all other j = i we have that
vkj ∈ γj as well.

Lemma 6 Let ω1, ω2 ∈ Ω be sampled uniformly i.i.d.. The position of the origin
in the interior of Vk is completely determined by the first k entries of ωi , i = 1, 2.

Remark 5 Lemma 6 can be interpreted as follows: a realization of ω1, ω2 deter-
mines which edges are in the k-grid via Eqs. (8) and (9), and thus determines
Vk = Vk(0). This region is a square of size 5k and by definition the origin is one of
the 52k vertices in it that do not lie on the top or right sides (see Definition 3). The
lemma above tells us that it is enough to know the first k coordinates of ωi, i = 1, 2
to determine which of those 52k vertices is the origin. Note that, to know the region
Vk itself we need to know all coordinates of ωi i = 1, 2.

Proof We will prove the lemma by induction on k. Let {ej } be the canonical base
ofΩ . The entries of ej satisfies: (ej )k = δ{k=j}.

For k = 1, there are 25 possible positions of the origin within V1. Assign to each
of those vertices a pair (a, b) given by the distance from it to the bottom side and
left side of V1, respectively. This is a surjective map from the set of vertices in V1
and {0, 1, 2, 3, 4}2. We can check now that the origin the vertex with label (a, b) if
and only if: (ω1)1 = a and (ω2)1 = b. This proves the initial case. To prove the
general case, consider Vk divided into 25 squares of side 5k−1. We will prove next
that the pair ((ω1)k, (ω2)k) is enough to determine in which of these squares the
origin is. To see this, we argue similarly to the case k = 1. Notice that each of the
25 squares can be encode by a pair (a, b) given by the distance to the bottom and
left side of Vk , respectively. We can check that the origin lies in the square labeled
(a, b) if and only if (ω1)k = a and (ω2)k = b. Using the induction hypothesis the
proof will follow.
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Lemma 7 Denote by θk1 the argument of vk1 . Fix θ ∈ (0, π/2). For any ε > 0 there
are infinitely many values of k such that

|θ − θk1 | < ε.

Proof We will do the case θ = 0. We want to show that infinitely many vk1 are
inside the cone bounded by the lines θ = 0 and θ = ε. Let t be a natural number
such that 5−t

1−5−t < tan(ε). For large values of k, denote by Ek the event:

(ω1)k−t+1 = (ω1)k−t+2 = · · · = (ω1)k = 4

(ω2)k−t+1 = (ω2)k−t+2 = · · · = (ω2)k = 0.

In words, this corresponds to t coordinates been simultaneously equal to 0 and 4
in ω1 and ω2, respectively. If follows by Borel-Cantelli that {Ek} happens infinitely
often. By Lemma 6, this event corresponds to the origin being in the top left 5k−t
square in Vk. Then

0 < θk1 ≤ arctan

(
5k−t

5k − 5k−t

)
< ε.

which completes the proof.

6.1 Proof of Theorem 2

Let ρ be a functional tangent to the �1-ball. Associate to ρ a set Ci of corners, in the
natural way. By Lemma 4 there is a unique geodesic ray, γi , with the property that
Dir(γi) ⊂ (i − 1)(π/2)+ (0, π/2). By Lemma 7 we can find points u ∈ Dir(γi)
as close as we want to the endpoints of (i − 1)(π/2)+ (0, π/2). Since Dir(γi) is
connected we conclude that (i−1)(π/2)+ (0, π/2) ⊂ Dir(γi). It follows now that
(i − 1)π/2+ [0, π/2] = Dir(γi).

7 Exponents in Non-coordinate Directions

The next two sections are devoted to the proof of Theorem 3. We start by showing
that T (x, y) is well concentrated. Denote the origin by 0.

Lemma 8 Let 0 < λ ≤ 1 be a fixed constant and xλn = (n, λn). There exists a
constant C = C(λ) such that

|xλn |1 ≤ T (0, xλn) ≤ |xλn |1 + C.
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Proof The lower bound follows from the fact that te ≥ 1. For the upper bound,
we construct a path from 0 to xλn satisfying the desired inequality. Consider the
squares {Vk(0)} and {Vk(xλn)} for 1 ≤ k ≤ N − 1 where N is the minimum t such
that the projections of Vt (0) and Vt (xλn) onto either the x or y axes have nonempty
intersection. Note that this definition implies that n ≤ (2/λ)5N .

Next, we choose a corner in {Vk(0)} for each k that is closest to xλn , and similarly
we choose a corner in {Vk(xλn)} closest to 0. We have a sequence of vertices:

0, v1, v2, . . . , vN−1, wN−1, . . . , w2, w1, x
λ
n

where vi, wi are the corners chosen above in Vi (0) and Vi (xλn), respectively. Our
path is the concatenation of paths joining consecutive vertices on this sequence such
that the path connecting vi and vi+1 (and wi+1 and wi) is on the i-grid, and the path
joining vN−1 and wN−1 is on the (N − 1)-grid. All of these subpaths are taken to
have the minimal possible number of edges.

Note that for each i, all edges in the subpaths from vi to vi+1 have passage times
bounded by 1 + 2αi . Also, we cross at most 2 · 5i+1 many edges between vi and
vi+1. An analogous analysis extends to the vertices wj . Between vN−1 and wN−1
we have at most 2n edges with weights at most 1 + 2αN−1. The total length of our
path is at most |xλn |1. We put this together to conclude that

T (0, xλn) ≤ |xλn |1+ 20
∞∑

j=1

5jαj + n2αN ≤ |xλn |1 +C′ + (2/λ)5N2αN = |xλn |1+C

as α < 1/5.

7.1 The Wandering Exponent

Proposition 2 Let 0 < λ ≤ 1. Let Cyl(xλn, cn) be the set of all points within
distance cn of the line segment connecting 0 and xλn = (n, λn). There exists
c = c(λ) > 0 such that for all n sufficiently large γ (0, (n, λn)) is not contained
in Cyl(xλn , cn).

Proof Let P be a path from 0 to (n, λn) with all of its vertices in Cyl(xλn, cn).
Let j = %log5(λn)& − 2. Let j ′ be the smallest integer such that no horizontal (or
vertical) line segment of length 5j

′−3 lies entirely in Cyl(xλn, cn). Note that if c is
small and n is sufficiently large then j > j ′ + 5. Let z1 be the first (closest to 0)
vertex of P in the j -grid and let z2 be the last (closest to (n, λn)) vertex of P in the
j -grid. Note that by the choice of j we have that both the x and y coordinates of z2
are at least 5j greater than the respective x and y coordinates of z1. Thus there exists
a northeast directed path P ′′ from z1 to z2 that is contained entirely in the j -grid. We
will show that there exists a path P ′ which is not contained in Cyl(xλn, cn) which
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is a faster path from 0 to (n, λn). P ′ will agree with P from 0 to z1 and from z2 to
(n, λn). Between z1 and z2 the path P ′ is P ′′. The choice of j insures that this is
possible and |z1 − z2| > 1+λ

2 n.
As every edge of P ′ between z1 and z2 is in the j -grid, the sum of the passage

times of all of these edges is at most

|z1 − z2|(1+ 2 · αj ).

We now show that this is faster than P so this path is not a geodesic.
Define a sequence {zi1}ki=0 with z0

1 = z1 and zk1 = z2 with each zi1 (with 0 <
i < k) the first time that P hits a new vertical line on the j ′-grid. Note that k is at
least 55 > 1000. If 0 < i < k − 1 and the path P between zi1 and zi+1

1 hits another
vertical line (besides the start and end lines) in the j ′-grid then it has at least 3 ·5j−1

horizontal edges. Similarly we can see that between zi1 and zi+1
1 the path P hits at

two horizontal lines in the (j − 1)-grid. By the choice of j ′ and λ ≤ 1 we have
|zi1 − zi+1

1 | ≤ 3 · 5j
′

and the difference in the x coordinate is 5j
′
. As all edges have

passage times between 1 and 2 then P is not a geodesic.
Otherwise as λ ≤ 1 this segment from z1 to z2 of P contains edges on the j ′-grid

on at most one vertical and two horizontal lines. By the choice of j ′ each of these
lines contains at most 5j

′−3 edges in Cyl(xλn, cn). Thus this segment of P contains
at most 3 · 5j ′−3 edges in the j ′-grid and at least 5j edges in total. Thus at least 85%
of the edges in this segment of P are not in the j ′-grid and have passage times at
least 1+αj ′ . As this applies to all but the first and last segments, at least 80% of the
edges on P from z1 to z2 are not in the j ′-grid. As above the first and last segments
have at most 3 · 5j−3 edges and thus make up less than three percent of the length
of P from z1 to z2 (see Fig. 2).

Thus the total passage time for P between z1 and z2 is at least

|z1 − v2|(1+ 0.8 · αj ′) > |v1 − v2|(1+ 2αj ).

Thus the passage time along P is more than the passage time along P ′ and P is not
a geodesic. This proves that the geodesic does not lie in Cyl(xλn, cn).

Proposition 3 Let 0 < λ ≤ 1. Remember that Cyl(xλn, 10n) is the set of all
points within distance 10n of the line segment connecting 0 and (n, λn). For all
n sufficiently large γ (0, (n, λn)) is contained in Cyl(xλn, 10n).

Proof If a path P from 0 to (n, λn) is not in Cyl(xλn , 10n) then the length of P is at
least 10n. But as λ ≤ 1 there is a path P ′ which is in Cyl(xλn, cn) from 0 to (n, λn)
of length at most 2n. As every edge has weight at most 2 the length of P ′ is at most
4n and P is not the geodesic from 0 to (n, λn).
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grid

Fig. 2 Proof of Proposition 2: the path P ′ hits one vertical and two horizontal lines in the j ′-
grid. Now, by definition of j ′, at most 3 · 5j

′−3 edges in the geodesic from z1 to z2 are on the
j ′-grid. Furthermore, by the choice of j, z1 and z2 most of the edges of the path P are in the
segment connecting these two vertices. We then put all these ingredients together to lower bound
the passage time of the entire path

8 Exponents in the Coordinate Direction

In this section we consider γ (0, (n, 0)). Define

β = log 5

log 5− logα
< 1. (11)

Note that, for any j we can write

αβj = (5j )β−1. (12)

Lemma 9 There exists universal constants C and N such that for all c > C and
n > N we have

1. T (0, (n, 0)) ≥ n
2. P(T (0, (n, 0)) ≤ n+ 0.01nβ) > 10−9

3. P(T (0, (n, 0)) ≥ n+ 0.02nβ) > 10−9 and
4. P(T (0, (n, 0)) ≥ n+ 10nβ) = 0.
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Proof The first inequality is true because all passage times are at least 1.
For the second inequality we define Γl to be the following path from (0, 0) to

(n, 0). The start of Γl goes northeast from (0, 0) to the line y = yl , where yl is the
lowest non-negative number such that the line y = yl is in the l-grid. Suppose we
have defined the path to the point (x ′, y ′) where both the lines x = x ′ and y = y ′
are in the l′-grid. Then we extend the path so that it goes east to the (l′ +1)-grid and
then north to the (l′ + 1)-grid. We continue until we have hit the line y = yl . The
final portion of Γl is defined in a symmetric manner. It goes northwest from (n, 0)
to the line y = y�. Then Γl connects these two pieces by moving horizontally along
the line y = y�.

Given n, choose j such that

5j ≤ n < 5j+1. (13)

LetQ be the event that there exists y∗ ∈ [0, 0.001 · 5βj ] with the line y = y∗ in the
(%βj& + 5)-grid. IfQ occurs then Γ%βj&+5 contains:

1. at most n+ 0.002 · 5βj edges,
2. at most 20 · 5k edges in the k-grid but not the (k + 1)-grid for all k < %βj& + 5,

and,
3. at most n edges in the (%βj& + 5)-grid.

IfQ occurs, from 1− 3 above and the definition of the Xk(e),e, we have

∑

e∈Γ%βj&+5

αk(e) +Xk(e),e ≤
∑

e∈Γ%βj&+5

1.001αk(e)

≤ 1.001
∑

k

(
20 · 5kαk

)
+ 1.001nα%βj&+5

≤ C + 0.001 · 5βj−1

≤ C + 0.001nβ.

Then, ifQ occurs

T ((0, 0), (n, 0)) ≤ T (Γ%βj&+5)

≤ |Γ%βj&+5| +
∑

e∈Γ%βj&+5

αk(e) +Xk(e),e

≤ n+ 0.002 · 5βj + C + 0.001nβ

≤ C + n+ 0.004nβ

≤ n+ 0.01nβ.
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Then

P(T (0, (n, 0)) ≤ n+ 0.01nβ) ≥ P(Q) ≥ 0.001 · 5−5 ≥ 2 · 10−9

and the result follows.
The fourth inequality follows in much the same way as the second except we do

not assume that the eventQ occurs. In this case we have that Γ%βj& contains

1. at most n+ 2 · 5βj edges
2. at most 20 · 5k edges in the k-grid but not the (k + 1)-grid for all k < %βj& and
3. at most n edges in the (%βj&)-grid.

Then a similar calculation as above proves the claim.
For the third inequality we note that if there does not exist y0 such that |y0| ≤

0.1 · 5βj such that the line y = y0 is in the %βj&-grid and if Γ ′ be any path from
(0, 0) to (n, 0) in the cylinder {(x, y) : |y| ≤ 0.1 · 5βj }, then

T (Γ ′) ≥ n(1+ αβj−1)

≥ n+ 1

α
nαβj

≥ n+ 1

α
n(5j )β−1

≥ n+ 1

α
n(5j )β(5j )−1

≥ n+ 1

α
(5j )β

≥ n+ 1

α
(5j+1)β5−β

≥ n+ 1

α5β
nβ

≥ n+ nβ.

Now let Γ ′′ be any path from (0, 0) to (n, 0) not contained in the cylinder {(x, y) :
|y| ≤ 0.1 · 5βj }. Then by (11) and (13)

T (Γ ′′) ≥ n+ 0.2 · 5βj

≥ n+ 0.2 · (5j+1)β5−β

≥ n+ 0.04nβ.

As any path from (0, 0) to (n, 0) falls into one of these two categories we have that

T ((0, 0), (n, 0)) ≥ min(n+ nβ, n+ 0.04nβ) = n+ 0.04nβ.
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This happens with probability at least

1− 0.3 · 5βj

5%βj& ≥ 10−9.

We use Lemma 9 to show that the variance exponent is β along the axes.

Lemma 10 There exists K > 0 such that for all n sufficiently large

1

K
n2β < V ar(T (0, (n, 0))) < Kn2β.

Proof The lower bound follows directly from parts 2 and 3 from Lemma 9. The
upper bound follows from parts 1 and 4.

For anyK define Cyl((n, 0),K) be the subgraph with vertices {(x, y) : |y| ≤ K}
and all edges between two vertices in the set. Now we show that the fluctuation
exponent is also β.

Lemma 11 For any ε > 0

P(γ (0, (n, 0)) is contained in Cyl((n, 0), nβ−ε) = o(1).

Also

P(γ (0, (n, 0)) is not contained in Cyl((n, 0), 10nβ) = 0.

Proof Define

j = j (n) = max{k(e) : e is an horizontal edge in γ (0, (n, 0))}.

We first notice that all horizontal edges in γ (0, (n, 0)) with k(e) = j are
contained in the horizontal line that is furthest away from the x-axis. Consider a
path P that goes up to the j + 1 grid and connects 0 and (n, 0). We have

T (0, (n, 0)) ≤ T (P ).

by definition.
For any ε > 0 and for all n sufficiently large we will show that

P(∃ a path P from 0 to (n, 0) contained in Cyl((n, 0), nβ−ε)

with T (P ) ≤ n+ 10nβ) = o(1).

There are at least n horizontal edges in any path from 0 to (n, 0). If all the
horizontal edges in Cyl((n, 0), nβ−ε) have passage time at least 1+10nβ−1 then the
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passage time across any path from 0 to (n, 0) entirely contained in Cyl((n, 0), nβ−ε)
has passage time at least n+ 10nβ .

By part 4 of Lemma 9 the event that

γ (0, (n, 0)) is contained in Cyl((n, 0), nβ−ε)

is contained in the event that

there exists a path P from 0 to (n, 0) contained in Cyl((n, 0), nβ−ε)

with T (P ) ≤ n+ 10nβ.

This last event is in turn contained in the event that

there exists a horizontal edge in Cyl((n, 0), nβ−ε)

with passage time at most 1+ 10nβ−1.

This requires that there is a line of the form y = l which is in the (%βj& − 3)-grid
with l ∈ [−nβ−ε, nβ−ε ]. By the choice of β and j the probability of this is at most

2nβ−ε + 1

5βj−3
≤ Cn−ε .

The upper bound follows from part 4 of Lemma 9 and the fact that all passage
times are at least 1.

8.1 Proof of Theorem 3

For the non-coordinate directions, χ = 0 follows directly from Lemma 8 and ξ = 1
follows combining Propositions 2 and 3. For the coordinate directions, χ = ξ = β
is a consequence of Lemmas 10 and 11.
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Avalanches in Critical Activated Random
Walks

Manuel Cabezas and Leonardo T. Rolla

Abstract We consider Activated Random Walks on Z with totally asymmetric
jumps and critical particle density, with different time scales for the progressive
release of particles and the dissipation dynamics. We show that the cumulative flow
of particles through the origin rescales to a pure-jump self-similar process which we
describe explicitly.

Keywords Self-organized criticality · Absorbing-state phase transitions ·
Avalanches · Scaling limits · Duality · Brownian web · Critical flow

MSC 82C27, 60K35, 82C23, 60K40

1 Introduction

The totally asymmetric Activated Random Walk (ARW) dynamics on Z is a
continuous-time conservative system made of active and passive particles, where
each active particle jumps from x to x + 1 at rate 1, and spontaneously decays to
a passive state at rate 0 < λ < ∞. Active particles reactivate passive particles
instantly when they occupy the same site, in particular active particles at the
same site prevent each other from decaying. This model has received increasing
attention [1, 3–5, 7, 9, 12–18], see [11] for a self-contained introduction.

This model displays a phase transition in terms of the density of particles: Let
η(x) denote the initial number of particles at x ∈ Z and assume that the initial
configuration is i.i.d. with mean ζ = E[η(0)]. If ζ > λ

1+λ then the system can
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Fig. 1 Simulation of the avalanche process with n = 105, ζ = 0.808 and ρ = 0.1

sustain a non-vanishing density of active particles, whereas, if ζ � λ
1+λ , the density

of active particles decays to 0, see [11].
In this paper we study the flow process defined as follows. Let η0 = η(0)δ0,

that is, the configuration where site 0 has η(0) particles and other sites are vacant.
We then run the above dynamics starting from η0 until we get a configuration η′0
without active particles, which we call stable. Finally, we let C0 denote the number
of particles which jump from 0 to +1 during this evolution. In the next step, we
take η1 = η′0 + η(−1)δ−1, that is, we add η(−1) particles to the site −1. Again we
run the above dynamics starting from η1 until we get a stable configuration η′1, and
let C1 denote the total number of particles which jump from 0 to +1. In the same
fashion, we define ηn = η′n−1 + η(−n)δ−n, stabilize ηn obtaining η′n, and define Cn
as the number of particles of η′n found to the right of site 0. Finally, the flow process
is defined as (Cn)n=0,1,2,....

Note that the sequence (η′n)n is a non-homogeneous Markov process with respect
to its natural filtration. The transition probabilities are determined by the common
distribution of η(x) and by the dynamics run between each pair of steps, which is
parametrized by λ. Also, Cn can be read from η′n, but (Cn)n is not Markovian.

If the system is subcritical (i.e., ζ < λ
1+λ ) then Cn is eventually constant. If

it is supercritical, Cn
n

tends to a positive number. In the critical case, none of the

above happens: Cn diverges but Cn
n

vanishes, and one expects the system to have a
non-trivial scaling limit (Fig. 1).

Let σ 2
s = ζ − ζ 2 denote the variance of a Bernoulli variable with parameter ζ ,

and let σ 2
p = E[η(0)2] − ζ 2 � σ 2

s . Consider the critical case ζ = λ
1+λ , assume that

σ 2
p <∞ and define ρ := σs

σp
∈ (0, 1].

Theorem 1 There exists a stochastic process (C ρx )x�0 such that

1

σp

(
ε C%ε−2x&

)
x�0

d→ (
C ρx

)
x�0

in the Skorohod J1 metric as ε→ 0.
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Fig. 2 comparison of an avalanche process with ρ = 0 and ρ = 0.1

Remark 1 The study of critical flows for the ARW started in [7], where the extreme
case λ = ∞ was studied. In this case, ρ = 0 and the limiting process

(
C 0
x

)
x�0 is

the running maximum of a Brownian motion.1 See Fig. 2 for a comparison.

Below we will give a description of the stochastic process
(
C ρx

)
x�0 in terms of

a family of coalescing reflected correlated Brownian motions. We point out that the
superscript ρ in the limiting process cannot be reduced to a multiplicative factor,
and these processes are indeed very different as ρ varies, see Fig. 3.

Before that, we state a qualitative property of the scaling limit which explains
why we call it an avalanche process. Being a scaling limit, it is scale invariant.

Theorem 2 The process
(
C
ρ
x

)
x�0 consists of pure jumps. Its jump times accumu-

late at 0 (as C ρ is scale-invariant) but are otherwise discrete.

The limiting process C ρ can be informally described as follows. Suppose 0 <
x0 < · · · < xk , we want to sample C ρx for x = x0, . . . , xk. Let (Px)x�0 be
a backward Brownian motion, with diffusivity constant equal to 1, started at the
origin. Then, for each i = 0, . . . , k, we run a Brownian motion (Ri

t )t�−xi started
at Ri−xi = P−xi , with diffusivity ρ, reflected from below by the graph of P .
We let the k + 1 reflected Brownian motions diffuse independently (except for the
reflection) until they coalesce. Finally, Cxi is given by Ri

0 for i = 0, . . . , k.
Finally, we would like to say a word on the metric of Theorem 1. The conver-

gence being in the Skorohod J1-metric implies that each jump in the limiting process
must be matched by a corresponding jump in the discrete process. Hence, the
discontinuities in C ρ (guaranteed by Theorem 2) correspond to abrupt increments,
avalanches in the discrete process (Ci)i∈N.

1In this case, the same convergence as stated in Theorem 1 follows from the more complicated,
continuous-time analysis done in [7], or alternatively from the arguments presented here.
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Fig. 3 Simulations of (Cn)n with ρ = 1.000, 0.500, 0.300, 0.100, 0.051, 0.000. The steps are
100,000 for the first four graphs, then 50,000 and 25,000. For large ρ, the process seems more
jumpy, and as ρ gets smaller the size of jumps become smaller and jumps tend do cluster together,
until finally at the extreme case ρ = 0 studied in [7] the process becomes continuous

The entire literature on ARW would probably not exist were it not for our dear
friend Vladas Sidoravicius. He was always in contact with prominent physicists,
including Ronald Dickman, bringing interesting cutting-edge problems to the
Probability community and enthusiastically promoting them. In particular, he has
been advertising the Activated Random Walk model since the early 2000s. In 2007,
he proposed this problem to the second author as part of his PhD studies, which
finally resulted in [12]. During our joyful meetings in the early 2010s, we worked
on predecessors of the current paper [7, 8].

This paper is organized as follows. In Sect. 2 we give the formal definition of the
limiting process C ρ . In Sect. 3 we define the ARW and state the Abelian property
of its site-wise construction. In Sect. 4 we introduce the sequential stabilization
that will be used throughout the article. In Sect. 5 we prove convergence of finite
dimensional distributions to later get full convergence (in the J1 Skorohod metric)
in Sect. 6. Finally, in Sect. 7 we show that C ρ is a pure-jump process when ρ = 0.

2 Formal Definition of the Limiting Process

Next, we will describe formally the finite-dimensional distributions of the limiting
process. For convenience, and building the connection with the upcoming proofs,
we describe the differences Ri −P , instead, given by the B+,i below.
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Let k ∈ N0 and −xk � −xk−1 � · · · < −x0 � 0. Let (S i
x )x�−xi , i =

0, . . . , k. be independent Brownian motions started at 0, (S i−xi = 0) with diffusion
coefficient σs . Let also (Px)x�0 be a backwards Brownian motion started at 0
(P0 = 0) with diffusion coefficient σp and independent of S i , i = 0, . . . , k. For
i = 0, . . . , k and x � −xi define

B̃ix :=Px −P−xi −S i
x ,

so that (B̃ix)x�−xi are Brownian motions started at 0, that is (B̃i−xi = 0), with

diffusion coefficient r =
√
σ 2
s + σ 2

p . For i = 0, . . . , k and x � −xi we define

B̃+,ix := B̃ix − inf{B̃is : s ∈ [−xi, x]} (1)

so that (B̃+,ix )x�−xi , i = 0, . . . , k are reflected Brownian motions started at 0 with
diffusion coefficient r . Let B+,k := B̃+,k and, for i = k − 1, k − 2, . . . , 0, let

τi := inf{x � −xi : B̃+,ix = B+,i+1
x } and B+,ix :=

{
B̃
+,i
x : x ∈ [−xi, τi),
B
+,i+1
x : x � τi.

(2)

Then, for each k ∈ N and each sequence 0 � x1 � · · · � xk we have that

(C ρx0
, . . . ,C ρxk )

d= ( 1
σp
B
+,0
0 , . . . , 1

σp
B
+,k
0 ),

where
d= denotes equality in distribution.

The above description is self-consistent, in the sense that removing points from
the {x0, . . . , xk} does not affect the distribution of the remaining points. Since the
resulting process is non-decreasing, we can already deduce the existence of a càdlàg
process

(
C
ρ
x

)
x�0 with these finite-dimensional distributions.

In Fig. 4, we see the graph of C ρ on the right-hand side (x � 0) and the elements
of this construction on the left side. There is a black curve starting at (0, 0) moving
backwards (from right to left). This curve is the Brownian motionP with diffusivity
σp. From each point on the black we can start a red path moving forward (from left
to right). This red path is a Brownian with diffusivity σs , reflected against the black
curve. Different red paths diffuse independently until they meet, and coalesce after
that. To find the value of C ρ at a certain x0 > 0, we follow the red path which starts
at (−x0,P−x0) until it hits the vertical axis {x = 0}. The value C

ρ
x0 is the height

coordinate of the red path at this terminal point.
An alternative description is the following. By considering the dual of the red

paths one obtains a family of blue paths. These paths start from each point on
the positive vertical axis and move from right to left. Blue paths coalesce when
they meet, and they terminate upon hitting the black curve. Each terminal point
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Fig. 4 Black path, blue paths and dual red paths on the left, C ρ on the right

determines an interval given by the initial height of the blue paths which terminate
there. This interval corresponds to the jumps of C ρ , see Fig. 4. On the left side we
see the intervals determined by the blue paths. The extremes of the interval (down
and up) correspond to the different (left and right) limits at a discontinuity of C ρ .
The x coordinate of the jumps is (the reflection of) the x coordinate of the terminal
point of the blue paths. This description is technically simpler, and will be used to
prove convergence with respect to the J1 metric in Sect. 6.

3 Explicit Construction and Abelian Property

In this section we give a more formal definition of the ARW dynamics, and briefly
recall the site-wise construction. For details, see [11].

3.1 Notation and ARW Dynamics

Let N = {0, 1, 2, . . . } and Ns = N0 ∪ {s}, where s represents a sleeping particle.
For convenience we define |s| = 1, and |n| = n for n ∈ N, and write 0 < s < 1 <
2 < · · · . Also define s+ 1 = 2 and n · s = n for n � 2 and s if n = 1.

The ARW dynamics (ηt )t is defined as follows. A site x is unstable if it has
active particles, i.e., if ηt (x) � 1. At each unstable site x, a clock rings at rate
(1+λ) |ηt (x)|. When this clock rings, site x is toppled, which means that the system
goes through the transition η → txsη with probability λ

1+λ , otherwise η → txmη
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with probability 1
1+λ . These transitions are given by

txmη(z) =

⎧
⎪⎪⎨

⎪⎪⎩

η(x)− 1, z = x,
η(y)+ 1, z = x + 1,

η(z), otherwise,

txsη(z) =
{
η(x) · s, z = x,
η(z), otherwise,

and only occur when η(x) � 1. The operator txs represents a particle at x trying
to fall asleep, which effectively happen if there are no other particles present at x.
Otherwise, by definition of n · s, the system state does not change. The operator txm
represents a particle jumping from x to x+1, where possible activation of a sleeping
particle previously found at x + 1 is represented by the convention that s+ 1 = 2.

3.2 Site-Wise Representation and Abelian Property

We now define a field of instructions to be read by the active particles. The
instructions I = (tx,j )x∈Z,j∈N are i.i.d. with P[tx,j = txm] = 1

1+λ and P[tx,j =
txs] = λ

1+λ . Using a field of instructions, the operation of toppling a site x consists
in applying the first instruction available at x, and discarding it so that the next
unused instruction at x becomes available. Toppling a site is legal if it is unstable.

The ARW dynamics can be recovered from the initial configuration and instruc-
tions as follows. Suppose that every active particle carries a clock which rings
according to a Poisson process. Different particles carry independent clocks. When a
clock rings for some particle, we topple the site where it is located. For a system with
finite initial configuration, the process obtained this way has the same distribution
as the one described above.

The Abelian property reads as follows. For each finite set V ⊆ Z and initial
configuration, if two legal sequences of topplings are contained in V and make each
site in V stable, then the resulting configuration is the same. Using the Abelian
property, we can answer many questions of the ARW model by choosing the order
in which the sites topple instead of using the Poisson clocks.

4 Sequential Stabilization

Let L ∈ N and, for x = −L, . . . , 0, let NL(x) denote the number of particles which
jump from x (to x + 1) when [−L, 0] is stabilized. Moreover, due to the Abelian
property, one has that

CL = NL(0),
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in the sense that (Cn)n∈N will have the same distribution as the process defined in
Sect. 1. Indeed, we can first stabilize V0, then V1, and so on until VL. Then writing
k for the number of times that 0 is toppled, NL(0) will be given by the number of
t0m found among t0,1, . . . , t0,k .

In what follows, we will decompose NL(x) as the sum of two processes, one
accounting for the randomness of the initial configuration and another for the
randomness of the sleeping instructions. Recall that B̃+,i is a reflected Brownian

motion with diffusion coefficient r =
√
σ 2
s + σ 2

p .

Proposition 1 For all i = 0, . . . , k we have that

(
ε N%ε−2xi&(%ε−2x&)

)

x�−xi
d→ (B̃+,ix )x�−xi (3)

as ε→ 0 in the metric of uniform convergence on compact intervals of time.

For the proof of the proposition above, we will need to describe the sequential
stabilization as a reflected random walk. We will show that for each L ∈ N the
process (NL(z))z�−L is distributed as a random walk started at zero and reflected
at zero.

We stabilize η on [−L, 0] as follows. Topple site z = −L until it is stable, and
denote by YL(−L) the indicator of the event that the last particle remains passive on
z = −L. In case η(−L) = 0, sample YL(−L) independently of anything else. By
the Abelian property, we have that

NL(−L) := [η(−L)− YL(−L)]+.

Note that, after stabilizing z = −L, there are NL(−L)+ η(−L+ 1) particles at
z = −L+1. Now topple site z = −L+1 until it is stable, and denote by YL(−L+1)
the indicator of the event that the last particle remains passive on z = −L + 1. If
there are no particles in z, sample YL(z) independent of everything else. Continue
this procedure for z = −L+ 2, . . . , 0. Let

TL(x) =
x∑

y=−L
(η(y)− YL(y))

and observe that

NL(x) = TL(x)− inf
y=−L,...,x TL(y).

Write L = L(ε) = %ε−2xi&. Note that YL(−L), . . . , YL(0), η(−L), . . . , η(0)
are independent. Hence, the increments (η(x) − YL(x))x�−L of TL are i.i.d. Since
we are assuming that ζ = λ

1+λ and σp < ∞, each term in the sum has mean zero
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and finite variance, so it follows by Donsker’s invariance principle that

(
ε TL(ε

−2x)
)

x∈[−xi ,0]
d→ (B̃ix)x∈[−xi ,0] (4)

as ε → 0 in the uniform metric. Since the reflection map B̃i �→ B̃+,i in (1) is
continuous, the above convergence implies (3).

5 Convergence of Finite-Dimensional Projections

Let k ∈ N0 and −xk � −xk−1 � · · · < −x0 � 0. Recall the definition of
(B

+,0
0 , B

+,1
0 , . . . , B

+,k
0 ) in Sect. 2. In this section we prove the following.

Theorem 3 (Finite-Dimensional Convergence) We have

(
ε C%ε−2x0&, ε C%ε−2x1&, . . . , ε C%ε−2xk&

) d→ (B
+,0
0 , B

+,1
0 , . . . , B

+,k
0 ),

as ε→ 0.

Recalling the construction in the previous section, since C%ε−2xi& = N%ε−2xi&(0),
it is certainly enough to show joint convergence of the counting processes

((
εN%ε−2xi&(%ε−2x&)

)

x∈[−xi,0]

)

i=0,...,k

d→
((
B+,ix

)

x∈[−xi ,0]

)

i=0,...,k
.

To keep exposition simpler, we consider the case k = 1. There are no differences
when considering larger k except for more cluttered notation. For x � 0, we define

P(x) :=
0∑

y=x
(ζ − η(y))

Given L ∈ N and x � −L, let

SL(x) :=
x∑

y=−L
(YL(y)− ζ ) ,

where YL(y) is as in Sect. 4. Actually, we can construct the processes P, SL and YL
jointly for different L’s. That is, for −L1 < −L0 < 0, define

TLi (x) =
x∑

y=−Li

(
η(y)− YLi (y)

) = P(x)− P(−Li)− SLi (x) i = 0, 1 (5)
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and

NLi (x) = TLi (x)− min
y∈[−Li,x]

TLi (y) i = 0, 1.

The key observation is that the η terms in (5) are common for i = 0, 1, whereas the
Y terms are independent until θ := inf{y : NL0(y) = NL1(y)}. After θ , the Y terms
are also common for i = 0, 1.

We will need a modified version of the process TL0 , whose S-component remains
independent of TL1 even after θ . Let

ỸL0(y) :=
{
YL0(y) if y � θ,
s̃(y) if y > θ,

where s̃ are i.i.d. Bernoulli random variables with parameter ζ , independent of
everything else. Let

S̃L0(x) :=
x∑

i=−L0

(
ỸL0(x)− ζ

)

and

T̃L0(x) :=
x∑

i=−L0

(
η(x)− ỸL0(x)

)
= P(x)− P(−L0)− S̃L0(x).

By Donsker’s invariance principle (taking Li = %ε−2xi&), the triple

(
(εP (%ε−2x&))x�0, (εS%ε−2x1&(%ε−2x&))x�−x1, (εS̃%ε−2x0&(%ε−2x&))x�−x0

)

converges in distribution to three independent Brownian motions

(
(Px)x�0, (S

1
t )x�−x1, (S̃

0
t )x�−x0

)

with diffusion coefficients σp, σs, σs respectively and started at 0 (i.e., P0 =
S 1−x1

= S̃ 0−x0
= 0).

Let

T 1
x :=Px −P−x1 −S 1

x , 0 � x � −x1

and

T̃ 0
x :=Px −P−x0 − S̃ 0

x , x � −x0.
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Let also

N 1
x = T 1

x − inf
s∈[−x1,x]

T 1
s

and

˜N 0
x = T̃ 0

x − inf
s∈[−x0,x]

T̃ 0
s .

Define

Nε,0x := ε N%ε−2x0&(ε
−2x),

also define Ñε,0x , Nε,1x , T̃ ε,0x and T ε,1x analogously. As in the proof of Proposition 1,
by invariance principle and continuity of the map (f (t))t�0 �→ (infs�t f (s))t�0
under the uniform metric, we have that

((T̃ ε,0x )x�−x0, (T
ε,1
x )x�−x1, (Ñ

ε,0
x )x�−x0, (N

ε,1
x )x�−x1)

converges in distribution, as ε→ 0 to

((T̃ 0
x )x�−x0, (T

1
x )x�−x1, (

˜N 0
x )x�−x0, (N

1
x )x�−x1)

(6)

uniformly over compacts. By the Skorohod representation theorem we can (and
will) assume that the convergence above holds almost surely.

We still have to show that Nε,0 converges to N 0 defined now. Let

τ := inf{x � −x0 : ˜N 0
x = N 1

x } and N 0
x :=

{ ˜N 0
x , x ∈ [−x0, τ ),

N 1
x , x � τ.

To prove Nε,1 → N 1 we consider the coalescing time of discrete processes.
Writing

τ ε := inf{x � −x0 : Ñε,0x = Nε,1x },
we have

Nε,0 =
{
Ñ
ε,0
x , x ∈ [−x0, τ ),

N
ε,1
x , x � τ ε,

so to conclude the proof it suffices to show that τ ε → τ a.s.
Since the first time that two paths meet is a lower semi-continuous function of

the paths, we have lim inf
ε→0

τ ε � τ a.s. It remains to show that

lim sup
ε→0

τ ε � τ a.s. (7)
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Since N%ε−2x1&(x)− Ñ%ε−2x0&(x) � 0 at x = −x0 and this difference only jumps
by 0 or ±1, it suffices to show the following claim:

Given any δ > 0, a.s., for all ε small enough, there is x � τ + δ with Nε,1x � Ñε,0x .
(8)

Since τ is a stopping time for the pair (T 1,T 0), by the strong Markov property
the processes (Δx)x�0 := (T 1

τ+x − T 1
τ )x�0 and (Δ̃x)x�0 := (T̃ 0

τ+x − T 1
τ+x)x�0

are distributed as Brownian motions started at value 0. Hence, a.s. there is a point
z∗ ∈ [0, δ] such that Δ̃z∗ > 0. Moreover, since dN � dT due to reflection, we
either have N 1

τ+z∗ = N 1
τ + Δz∗ or N 1

τ+z∗ > N 1
τ + Δz∗ . We will distinguish

between those two cases. In the first case

N 1
τ+z∗ = N 1

τ +Δz∗ = ˜N 0
τ +Δz∗ < ˜N 0

τ +Δz∗ + Δ̃z∗ � ˜N 0
τ+z∗ . (9)

In particular, we have obtained the strict inequality

N 1
τ+z∗ < ˜N 0

τ+z∗ .

By this inequality and (6), it follows that, for n large enough,

N
ε,1
τ+z∗ < Ñ

ε,0
τ+z∗ .

In this first case, (8) follows directly from this inequality.
The case

N 1
τ+z∗ > N 1

τ +Δz∗

is subtler. We work it by observing that the above inequality is equivalent to

T 1
τ+z∗ − min

x∈[−x1,τ+z∗]
T 1
x > T 1

τ − min
x∈[−x1,τ ]

T 1
x +T 1

τ+z∗ −T 1
τ ,

which, in turn, is equivalent to

min
x∈[−x1,τ+z∗]

T 1
x < min

x∈[−x1,τ
∗]T

1
x .

From (6), this implies that, for ε small enough,

min
x∈[−x1,τ+z∗]

T ε,1x < min
x∈[−x1,τ ]

T ε,1x ,

in which case there is x∗ ∈ [τ, τ + z∗] such that

T
ε,1
x∗ = min

s∈[−x1,x∗]
T ε,1s ,
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whence

N
ε,1
x∗ = 0 � Ñε,0x∗ .

Hence (8) holds, and this completes the proof of Theorem 3.

6 Convergence in the J1 Metric

In this section we prove the following.

Theorem 4 The family of processes (εC%ε−2x&)x�0 indexed by ε ∈ (0, 1] is tight in
the Skorohod J1 metric.

Since the processes (ε C%ε−2x&)x�0 are non-decreasing for each ε, by Theorem 3
they converge in the M1-metric to a process (Cx)x�0. Moreover, in order to get
tightness in the J1 metric, it suffices (see [6, Theorem 13.2]) to show that, for each
K <∞ and γ > 0 fixed,

lim
R→∞ lim sup

ε→0
P

[

sup
x∈[0,K]

|Cεx | � R
]

= 0 (10)

and

lim
δ→0

lim sup
ε→0

P
[
sup |Cεx1

− Cεx0
| ∧ |Cεx1

− Cεx2
| � γ ] = 0. (11)

where the last supremum is taken over triples x0 � x1 � x2 which satisfy x2 � K
and x2 − x0 � δ. Note that (10) follows directly from Theorem 3. We only have to
establish (11). The event whose probability we want to control is that of having two
macroscopic jumps in a short interval.

For this proof we will use a graphical construction for the flow process, which
we now proceed to describe. First, consider the black path B : (−∞, 0] → Z, given
by B(x) = ∑0

y=x η(y), where we recall that η(y) is the initial number of particles
at y. As in Fig. 5, for every lattice point (x, y) ∈ (−∞, 0]×N above the graph of B,
place a red arrow which either points to (x+1, y−1) or to (x+1, y), independently
with probability λ

1+λ = ζ and 1
1+λ = 1 − ζ , respectively. Let x ∈ (−∞, 0]. We

denote by Rx : [x, 0] → Z the path which starts at (x, B(x)), follows the red
arrows and is reflected on the black path B. The resulting path will be referred as
the red path. In Fig. 5, the red path is depicted in bold red. Note that, by associating
the red arrows which point down with sleeping instructions and the horizontal red
arrows with no-sleep instructions, we see that Rx(0) is distributed as N−x(0) =
Cx . Moreover, one can use the same black path and red arrows to get any joint
distribution (Cx0, . . . , Cxk ), −xk � −xk−1 � · · · � −x0 � 0: simply consider
the collection of red paths R−xk , . . . , R−x0 constructed using the same black path
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Fig. 5 Black path, red paths and dual blue paths

and the same red arrows. The random vector (R−x0(0), . . . , R−xk (0)) will have the
distribution of (Cx0, . . . , Cxk ). Observe that the red paths are independent until they
meet, after which they coalesce.

Now, consider a collection of blue arrows which is dual to the red arrows. That
is, for every (x, y) ∈ Z

2 above the graph of the black path, there is a (backwards)
blue arrow emanating from (x, y − 1

2 ). That blue arrow points to (x − 1, y + 1
2 ) if

the red arrow staring at (x − 1, y) points to (x, y − 1). Otherwise, the blue arrows
points to (x− 1, y − 1

2 ) (See Fig. 5). By following the blue arrows we can construct
a collection of blue paths which are dual to the red ones. The blue paths should be
read from right to left. The blue paths jump at each time with probability ζ . Also,
the blue paths are killed when they meet the black path. For any y ∈ Z, letAy be the
blue path starting at (0, y + 1

2 ). Observe that, by construction, the blue paths cannot
intersect the red paths.

In the following reasoning, we will consider jointly two different blue paths
Ay1, Ay2 . For convenience, we will consider a modified version of the processes
Ãy1, Ãy2 such that they evolve independently after collision (do not coalesce). Also,
they don’t get killed at intersecting the black path, they evolve independently. We
do this because now Ãy1, Ãy2 and B are three independent random walks and we
can apply Donsker’s invariance principle.

We consider the (modified) blue path Ãy as a stochastic process (Ãy(x))x�0,
where, for any x � 0, Ãy(x) is the position at x of the (modified) blue path started
at (0, y + 1

2 ).
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Let

(Ãεy1
(x))x�0 := (εÃ%ε−1y1&(%ε−2x&)− ζx)x�0

(Ãεy2
(x))x�0 := (εÃ%ε−1y2&(%ε−2x&)− ζx)x�0

(Bε(x))x�0 := (εB(%ε−2x&)− ζx)x�0.

By Donsker’s invariance principle, we get that

((Ãεy1
(x))x�0, (Ã

ε
y2
(x))x�0, (B̃

ε(x))x�0)→ (( ˜Ay1 (x))x�0, ( ˜Ay2 (x))x�0, (B(x))x�0),

(12)

where ˜Ay1,
˜Ay2,B are three (time-reversed) independent Brownian motions started

at y1, y2 and 0 respectively. By the Skorohod Representation theorem, we can (and
will) assume that the convergence holds almost surely.

It follows that, under the event in (11), both Ãεy1
and Ãεy2

(when read from 0
to −∞) intersect Bε for the first time in a time window of length smaller than δ
(see Fig. 6). By (12), the probability of the event above converges to the probability
that two independent Brownian motions ˜Ay1,

˜Ay2 intersect a third B.m., B, also
independent, in a time window of length smaller than δ. Using the continuity of the
Brownian motion, we get that, as δ→ 0, this converges to the probability that three
independent Brownian motions eventually meet at the same point at the same time.
The latter probability is 0 and this will finish the proof. To complete the proof, we
have to explain how to choose the initial points of the blue paths y1, y2.

︸︷︷︸

≤ ε−1δ

}
}

≥ ε−1/2γ

≥ ε−1/2γ

Fig. 6 Event B(ε, δ, γ,M,K) in terms of black, red and blue paths
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We will chooseM large but fixed. It suffices to deal with the caseCεK � M , since
Theorem 3 readily implies that

lim
M→∞ lim sup

ε→0
P

[
CεK > M

] = 0.

Therefore, it is enough to show that, for everyM > 0 and γ > 0,

lim
δ→0

lim sup
ε→0

P

⎡

⎢
⎣ sup
x0�x1�x2∈[0,K]
x2−x0�δ

(Cεx1
− Cεx0

) ∧ (Cεx2
− Cεx1

) � γ ;Cεx2
� M

⎤

⎥
⎦ = 0.

(13)

Let B(ε, δ, γ,M,K) be the event inside the above probability (see Fig. 6). If
B(ε, δ, γ,M,K) holds, then, there exists x∗0 < x∗1 < x∗2 with x∗2 − x∗0 � δ such
that both Cε

x∗1
− Cε

x∗0
and Cε

x∗2
− Cε

x∗1
are greater than γ . Moreover, Cε

x∗2
� M .

Now, we partition [0,M] into intervals of size γ2 . We consider the intervals Ii =
[ γ i2 , γ (i+1)

2 ], i = 0, . . . , 1 2M
γ
2. By the discussion on the paragraph above, there

must be indices i1 < i2 ∈ {0, . . . , 1 2M
γ
2} such that, Ii1 is contained in [Cε

x∗0
, Cε
x∗1
]

and Ii2 is contained in [Cε
x∗1
, Cε
x∗2
]. Let Bε,δi1,i2 be the event described just above.

Then,

P[B(ε, δ, γ,M,K)] �
∑

i1<i2∈{0,...,1 2M
γ 2}

P

[
Bε,δi1,i2

]

�
(⌈

2M

γ

⌉
+ 1

)2

sup
i1<i2∈

{
0,...,

⌈
2M
γ

⌉}P
[
Bε,δi1,i2

]
.

(14)

We now bound the probability of Bε,δi1,i2 for i1 < i2. Since blue paths do

not intersect red paths under Bε,δi,j , any blue path started between Cεx0
and Cεx1

will remain between Cεx0
and Cεx1

and therefore will intersect Bε at some point

z∗1 ∈ [−x1,−x0]. Hence, since Ii1 is contained in [Cεx0
, Cεx1

], we have that Ãεγ
2 i1

intersectsBε in [−x1,−x0]. Analogously, Ãεγ
2 i2

intersectsBε in [−x2,−x1]. Hence,

since x2 − x1 � δ, both Ãεγ
2 i1

and Ãεγ
2 i2

intersect Bε in a time interval of size δ.

That is, let τ εi := inf{t � 0 : Ãεγ
2 i
(t) = Bε(t)}. Then

Bε,δi1,i2 ⊆ {|τ εi1 − τ εi2 | � δ}.
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Therefore, by (12),

lim sup
ε→0

P

[
Bε,δi1,i2

]
� P

[|τi1 − τi2 | � δ
]

where τi := inft�0{A γ
2 i
(t) = B(t)}.

Hence,

lim
δ→0

lim sup
ε→0

P[Bε,δi1,i2] � lim
δ→0

P[|τi1 − τi2 | � δ] = P[τi1 = τi2].

The proof is finished by noticing that τi1 = τi2 implies that the three-dimensional
Brownian motion (A γ

2 i1
,A γ

2 i2
,B) intersects the line {(x, y, z) ∈ R

3 : x = y = z},
and that event has zero probability.

7 The Scaling Limit Is a Pure-Jump Process

In this section we prove Theorem 2. By Theorem 1, the non-decreasing càdlag
process

(
C ρx

)
x�0 is well-defined. Following the description of the previous section,

it can be constructed directly from a black Brownian motion B = (Bx)x�0
started at B0 = 0 and blue coalescing Brownian motions (Ay(x))x�0 starting from
Ay(0) = y and independent ofB, having diffusion coefficients 1 and ρ respectively.

The construction is as follows. First observe that the red paths can be recovered
from the black and blue paths, so they are not needed in the construction. Moreover,
blue paths are independent of each other until they coalesce, and independent of the
black path until they are killed by it. Furthermore, since blue paths coalesce, killing
them upon meeting the black path is irrelevant and we can disconsider it. In the
scaling limit, this collection of blue paths converges to the a family of paths [2, 10]
consisting of independent coalescing paths (Ay(x))x�0 indexed by y > 0, each one
started from Ay(0) = y.

This family satisfies the following. Let Ty = inf{x � 0 : Ay(−x) = B−x}.
Then a.s. 0 < Ty < ∞ for every y > 0, y �→ Ty , is non-decreasing, the set of
values {Ty : y ∈ [δ,K]} is finite for every 0 < δ < K < ∞, lim

y→0+
Ty = 0, and

lim
y→∞ Ty = ∞.

To be self-contained, let us justify the statements in the previous paragraph more
carefully. Write Q

∗+ = {yn}n∈N. Take Ay1 = (Ay1(x))x�0 starting from Ay1(0) =
y1. For each n, take Ayn = (Ayn(x))x�0 starting from Ayn(0) = yn, independent
of Ay1, . . . ,Ayn−1 until the first point (that is, highest x) where it meets one of
them, and equal to that one after such time (that is, for lower values of x). Now
for y > 0 rational, let Ty = inf{x � 0 : Ay(−x) = B−x}. Then a.s. 0 < Ty <
∞ for every y. By coalescence, Ay � Ay ′ for y < y ′, hence y �→ Ty , is non-
decreasing. Furthermore, using Borel-Cantelli one can show that limy→0+ Ty = 0
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and limy→∞ Ty = ∞. Finally, by well-known properties of coalescing Brownian
motions [2, 10], for each 0 < a < b <∞ and ε > 0, the set {Ay(−ε) : a < y < b}
is a.s. finite. As a consequence of the two last properties, the set {Ty : y ∈ [δ,K]} is
finite for every 0 < δ < K <∞.

To conclude, following the description of the previous section, we can define

C ρx := inf
{
y > 0 : Ty > x

}
, x � 0.

By the remarks of the previous paragraph, a.s. for every 0 < a < b <∞ the process(
C ρx

)
x∈[a,b] takes only finitely many values, and therefore it is a pure-jump process.
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An Overview of the Balanced Excited
Random Walk

Daniel Camarena, Gonzalo Panizo, and Alejandro F. Ramírez

Abstract The balanced excited random walk, introduced by Benjamini, Kozma and
Schapira in 2011, is defined as a discrete time stochastic process in Z

d , depending
on two integer parameters 1 ≤ d1, d2 ≤ d , which whenever it is at a site x ∈ Z

d

at time n, it jumps to x ± ei with uniform probability, where e1, . . . , ed are the
canonical vectors, for 1 ≤ i ≤ d1, if the site x was visited for the first time at time
n, while it jumps to x ± ei with uniform probability, for 1 + d − d2 ≤ i ≤ d , if
the site x was already visited before time n. Here we give an overview of this model
when d1+d2 = d and introduce and study the cases when d1+d2 > d . In particular,
we prove that for all the cases d ≥ 5 and most cases d = 4, the balanced excited
random walk is transient.

Keywords Excited random walk · Transience

AMS 2010 subject classification Primary 60G50, 82C41; secondary 60G42

1 Introduction

We consider an extended version of the balanced excited random walk introduced by
Benjamini, Kozma and Schapira in [1]. The balanced excited random walk is defined
in any dimension d ≥ 2, and depends on two integers d1, d2 ∈ {1, . . . , d}. For
each 1 ≤ i ≤ d , let ei = (0, . . . , 0, 1, 0, . . . , 0) be the canonical vector whose i-th
coordinate is 1, while all other coordinates are 0. We define the process (Sn : n ≥ 0),
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called the balanced excited random walk on Z
d as a mixture of two simple random

walks, with the initial condition S0 = 0: if at time n, Sn visits a site for the first time,
with probability 1/(2d1), at time n+ 1 it performs a simple random walk step using
one of the first d1 coordinates, so that for all 1 ≤ i ≤ d1,

P[Sn+1 − Sn = ±ei |Fn, Sn = Sj for all 0 ≤ j < n] = 1

2d1
,

where Fn is the σ -algebra generated by S0, . . . , Sn; on the other hand, if at time n,
Sn visits a site it has previously visited, at time n + 1 it performs a simple random
walk using one the last d2 coordinates, so that for all d − d2 + 1 ≤ i ≤ d ,

P[Sn+1 − Sn = ±ei |Fn, Sn = Sj for some 0 ≤ j < n] = 1

2d2
.

We call this process S theMd(d1, d2)-random walk. In [1], this random walk was
considered in the case when d1 + d2 = d , which we call the non-overlapping case.
Here we will focus on the overlapping case corresponding to d1 + d2 > d .

We say that the Md(d1, d2)-random walk is transient if any site is visited only
finitely many times, while we say that it is recurrent if it visits every site infinitely
often. Since a random walk Md(d1, d2) is not Markovian, in principle could be
neither transient nor recurrent.

For the non-overlapping case, in 2011 in [1] it was shown that the M4(2, 2)-
random walk is transient, while in 2016, Peres, Schapira and Sousi in [7], showed
that the M3(1, 2)-random walk is transient, but the transience of M3(2, 1)-random
walk is still an open question.

The main result of this article is the following theorem concerned with the
overlapping case.

Theorem 1 For every (d, d1, d2) with d ≥ 4, 1 ≤ d1, d2 ≤ d , d1 + d2 > d and
(d, d1, d2) = (4, 3, 2), theMd(d1, d2)-random walk is transient.

Theorem 1 has a simple proof for d ≥ 7, for all admissible values of d1 and
d2. Let r := d1 + d2 − d . Note that if r ≥ 3 then the walk is transient, since
its restriction to the r overlapping coordinates is at least a 3-dimensional simple
symmetric random walk with geometrically bounded holding times. We will argue
in the next two paragraphs that the walk is also transient if d1−r ≥ 3 or if d2−r ≥ 3.
Assuming for the moment that each of the three inequalities r ≥ 3, d1 − r ≥ 3
or d2 − r ≥ 3 implies transience, note that if none of them holds we have that
d = d1 + d2 − r ≤ 6. We conclude that for d ≥ 7 the walk is transient for all
admissible values of d1 and d2.

Case d2 − r ≥ 3 We claim that with probability 1 the fraction of times when the
random walk uses the last d2− r coordinates is asymptotically bounded from below
by a positive constant and therefore, the random walk is transient. To see this note
that whenever the walk makes 3 consecutive steps, the probability that in at least
one of these steps it visits a previously visited (old) site is bounded away from 0.
Indeed, if in two consecutive steps the walk visits two previously unvisited (new)
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sites then with probability 1/(2d1) it backtracks in the next step and, thus, visits an
old site.

Case d1 − r ≥ 3 We claim that the number of times the random walk uses the first
d1 − r coordinates goes to infinity as n→∞, which is enough to prove transience.
Denote by rn the number of points in the range of the walk at time n. We will show
that rn →∞ as n→∞ a.s. For k ≥ 1, let nk = inf{n ≥ 0 : rn = k}. We will argue
that if nk <∞ then with probability one nk+1 <∞. Note that rnk = k, Snk is a new
site, and there are k−1 other sites in the range. Let nk <∞ andA1 be the event that
in the next k steps the walk jumps only in positive coordinate directions. On A1, at
times nk+1, nk+2, . . . , nk+k the walk visits k distinct sites of Zd−{Snk }. Among
these sites there are at most k − 1 old sites. Therefore, on the event A1 ∩ {nk <∞}
the walk will necessarily visit a new site and nk+1 ≤ nk + k < ∞. Note that the
probability of A1 (given nk <∞) is 2−k. If A1 does not occur, then we consider the
next k steps and define A2 to be the event that in these next k steps the walk jumps
only in the positive coordinate directions, and so on. Since, conditional on nk <∞,
the events A1, A2, . . . are independent and each has probability 2−k , we conclude
that nk+1 <∞ with probability one.

Therefore, to complete the proof of Theorem 1 we have only to consider the cases
d = 4, 5, 6. It will be shown below that the cases d = 5, 6 and several cases in
d = 4, can be derived in an elementary way sometimes using the trace condition of
[6]. In a less straightforward way the cases M4(2, 4) and M4(4, 2) can be treated
through the methods of [1]. The case M4(2, 3) which is more involved, can be
treated through a modification of methods developed by Peres, Schapira and Sousi
[7] for the M3(1, 2)-random walk through good controls on martingale increments
by sequences of geometric i.i.d. random variables. It is not clear how the above
mentioned methods could be applied to the M4(3, 2)-random walk to settle down
the transience-recurrence question for it, so this case remains open.

In Sect. 2 we will give a quick review of the main results that have been
previously obtained for the non-overlapping case of the balanced excited random
walk. In Sect. 3, we will prove Theorem 1. In Sect. 3.1, we will introduce the trace
condition of [6], which will be used to prove the cases d = 5, 6 and several cases
in dimension d = 4. In Sect. 3.2, we will prove the transience of the random
walks M4(2, 4) and M4(4, 2). While in Sect. 3.3, we will consider the proof of the
transience of theM4(2, 3)-random walk.

2 Overview of the Balanced Excited Random Walk

The balanced excited random walk was introduced in its non-overlapping version
by Benjamini, Kozma and Schapira in [1]. A precursor of the balanced excited
random walk, is the excited random walk, introduced by Benjamini and Wilson
in 2003 [2], which is defined in terms of a parameter 0 < p < 1 as follows: the
random walk (Xn : n ≥ 0) has the state space Z

d starting at X0 = 0; whenever
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the random walk visits a site for the first time, it jumps with probability (1+ p)/2d
in direction e1, probability (1 − p)/2d in direction −e1 and with probability 1/2d
in the other directions; whenever the random walk visits a site which it already
visited previously it jumps with uniform probability in directions ±ei, 1 ≤ i ≤ d .
Benjamini and Wilson proved in [2] that the model is transient for d > 1. A central
limit theorem and a law of large numbers for d > 1 was proven in [3] and [4]. A
general review of the model can be found in [5]. Often the methods used to prove
transience, the law of large numbers and the central limit theorem for the excited
random walk, are based on the ballisticity of the model (the fact that the velocity
is non-zero), through the use of regeneration times. This means that most of these
methods are not well suited to study the balanced excited random walk, which is
not ballistic. For the moment, a few results have been obtained for the balanced
excited random walk, where basically for each case a different technique has been
developed. The first result, obtained by Benjamini, Kozma and Schapira in [1] for
theM4(2, 2) case, is the following theorem.

Theorem 2 (Benjamini et al. [1]) TheM4(2, 2)-random walk is transient.

The proof of Theorem 2 is based on obtaining good enough estimates for the
probability that a 2-dimensional random walk returns to its starting point in a time
interval [n/c(logn)2, cn], for some constant c > 0, and on the range of the random
walk. This then allows to decouple using independence the first 2 coordinates from
the last 2 ones. In this article, we will apply this method to derive the transience in
theM4(4, 2) andM4(2, 4) cases of Theorem 1.

In 2016, Peres, Sousi and Schapira in [7], considered the case M3(1, 2) proving
the following result.

Theorem 3 (Peres et al. [7]) TheM3(1, 2)-random walk is transient.

The approach developed in [7] to prove Theorem 3, starts with conditioning on
all the jumps of the last two coordinates, and then looking at the first coordinate at
the times when the last two move, which gives a martingale. It is then enough to
obtain good estimates on the probability that this martingale is at 0 at time n. The
proof of the M4(2, 3)-random walk case of Theorem 1, is based on a modification
of the method used to prove Theorem 3, where a key point is to obtain appropriate
bounds for martingale increments (which will correspond to the first coordinate
of the movement of the M4(2, 3)-random walk) in terms of i.i.d. sequences of
geometric random variables.

3 Proof of Theorem 1

We will divide the proof of Theorem 1 in three steps. With the exception of the cases
M4(1, 4), M4(4, 1), M4(2, 4), M4(4, 2) and M4(2, 3), we will use an important
result of Peres et al. [6]. The cases M4(1, 4) and M4(4, 1) will be derived as those
in dimension d ≥ 7. For the cases M4(2, 4) and M4(4, 2) we will show how the
argument of [1] can be adapted. And the caseM4(2, 3) is handled as in [7].
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3.1 The Trace Condition

Here we will recall the so called trace condition of [6] which is a general condition
under which a generalized version of the balanced random walk is transient, and
see how it can be used to prove Theorem 1 for the remaining d ≥ 5 cases and case
M4(3, 4),M4(4, 3),M4(3, 3) andM4(4, 4).

Given d ≥ 1 and m ≥ 1, consider probability measures μ1, . . . , μm on R
d and

for each 1 ≤ i ≤ m, let (ξ in : n ≥ 1) be an i.i.d. sequence of random variables
distributed according to μi . We say that a stochastic process (�k : k ≥ 0) is an
adapted rule with respect to a filtration (Fn : n ≥ 0) of the process, if for each k ≥
0, �k is Fk-measurable. We now define the random walk (Xn : n ≥ 0) generated by
the probability measures μ1, . . . , μm and the adapted rule � by

Xn+1 = Xn + ξ�nn+1, for n ≥ 0.

Let μ be a measure on R
d . μ is called of mean 0 if

∫
xdμ = 0. The measure μ

is said to have β moments if for any random variable Z distributed according to μ,
||Z|| has moment of order β. The covariance matrix of μ, V ar(μ), is defined as the
covariance of Z.

Given a matrix A, we call λmax(A) its maximal eigenvalue and At its transpose.
In [6], the following result was proven.

Theorem 4 (Peres et al. [6]) Let μ1, . . . , μm be measures in R
d , d ≥ 3, with zero

mean and 2 + β moments, for some β > 0. Assume that there is a matrix A such
that the trace condition is satisfied:

tr(A V ar(μi) A
t ) > 2λmax(A V ar(μi) At )

for all 1 ≤ i ≤ m. Then any random walk X generated by these measures and any
adapted rule is transient.

It follows from Theorem 4, that whenever d1 ≥ 3 and d2 ≥ 3, the trace condition
is satisfied, with A = I , for the two corresponding covariance matrices associated
to the motions in first d1 and last d2 dimensions, and hence theMd(d1, d2)-random
walk is transient. Hence, by the discussion right after the statement of Theorem 1 in
Sect. 1, we see that the only cases which are not covered by Theorem 4, correspond
to

d1 − r ≤ 2, r ≤ 2 and d2 − r ≤ 2, (1)

and

min{d1, d2} ≤ 2.

But (1) implies that max{d1, d2} ≤ 2+ r . Thus,

d1 + d2 = max{d1, d2} +min{d1, d2} ≤ 4+ r,
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so that d = d1+d2−r ≤ 4. This proves the transience for all the cases when d ≥ 5.
Now note that in dimesion d = 4 the random walks M4(3, 3),M4(3, 4),M4(4, 3)
andM4(4, 4) satisfy d1 ≥ 3 and d2 ≥ 3, so that the trace condition of [6] is satisfied.

Finally, the random walksM4(1, 4) andM4(4, 1) satisfy d1−r ≥ 3 or d2−r ≥ 3,
so that they are also transient.

3.2 The Random Walks M4(2, 4) and M4(4, 2)

Consider the M4(4, 2)-random walk and call rn the cardinality of its range at time
n. Let us use the notation S = (X, Y ) for the M4(4, 2)-random walk, where X are
the first two components and Y the last two ones. We will also call r(1)n the number
of times up to time n that the random walk jumped using the X coordinates while it
was at a site that it visited for the first time and r(2)n := rn − r(1)n . In analogy with
Lemma 1 of [1], we have the following result.

Lemma 1 For any M > 0 and each i = 1, 2, there exists a constant C > 0 such
that

P[n/(C logn)2 ≤ r(i)n ≤ 99n/100] = 1− o
(
n−M

)
. (2)

Proof First note that in analogy to the proof Lemma 1 of [1], we have that

P[n/(C logn)2 ≤ rn ≤ 99n/100] = 1− o
(
n−M

)
.

Since each time the random walk is at a newly visited site with probability 1/2 it
jumps using the X random walk and with probability 1/2 the Y random walk, by
standard large deviation estimates, we deduce (2).

Now note that

{(Xk, Yk) : k ≥ 1} = {(U1(r
(1)
k−1), U2(r

(2)
k−1)+ V (k − rk−1)) : k ≥ 1}, (3)

where U1, U2 and V are three independent simple random walks in Z
2. It follows

from the identity (3) and Lemma 1 used to bound the components r(1)n and r(2)n of
the range of the walk, that

P[0 ∈ {Sn, . . . , S2n}] ≤ P[0 ∈ {U(n/(C logn)2), . . . , U(2n)}]
×P[0 ∈ {W(n/(C logn)2), . . . ,W(2n)}] + o(n−M), (4)

where U andW are simple symmetric random walks on Z
2. At this point, we recall

Lemma 2 of [1].
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Lemma 2 (Benjamini et al. [1]) Let U be a simple random walk on Z
2 and let

t ∈ [n/(logn)3, 2n]. Then

P[0 ∈ {U(t), . . . , U(2n)}] = O
(

log logn

logn

)
.

Combining inequality (4) with Lemma 2, we conclude that there is a constant
C > 0 such that for any n > 1 (see Proposition 1 of [1])

P[0 ∈ {Sn, . . . , S2n}] ≤ C
(

log logn

logn

)2

.

Hence,

∞∑

k=0

P[0 ∈ {S2k , . . . , S2k+1}] <∞,

and the transience of the M4(4, 2)-random walk follows form Borel–Cantelli. A
similar argument can be used to prove the transience of theM4(2, 4)-random walk.

3.3 The M4(2, 3)-Random Walk

Here we will follow the method developed by Peres, Schapira and Sousi in [7]. We
first state Proposition 2.1 of [7].

Proposition 1 (Peres et al. [7]) Let ρ > 0 and C1, C2 > 0. LetM be a martingale
with quadratic variation V and assume that (Gk : k ≥ 0) is a sequence of i.i.d.
geometric random variables with mean C1 such that for all k ≥ 0,

|Mk+1 −Mk| ≤ C2Gk. (5)

For all n ≥ 1 and 1 ≤ k ≤ log2(n) let tk := n− n
2k

and

Ak :=
{
Vtk+1 − Vtk ≥ ρ

tk+1 − tk
(logn)2a

}
.

Suppose that for some N ≥ 1 and 1 ≤ k1 < · · · < kN < log2(n)/2 one has that

P

(
∩Ni=1Aki

)
= 1. (6)
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Then, there exists constant c > 0 and a positive integer n0 such that for all a ∈ (0, 1)
and n ≥ n0 one has that

P(Mn = 0) ≤ exp
(−cN/(logn)a

)
.

Remark 1 Proposition 1 is slightly modified with respect to Proposition 2.1 of [7]
since we have allowed the meanC1 of the geometric random variables to be arbitrary
and the bound (5) to have an arbitrary constant C2.

Let us now note that the M4(2, 3)-random walk (Sn : n ≥ 0) can be defined as
follows. Suppose (ζn : n ≥ 1) is a sequence of i.i.d. random variables taking each of
the values (0,±1, 0, 0), (0, 0,±1, 0) and (0, 0, 0,±1) with probability 1/6, while
(ξn : n ≥ 1) is a sequence of i.i.d. random variables (independent from the previous
sequence) taking each of the values (0,±1, 0, 0) and (±1, 0, 0, 0) with probability
1/4. Define now recursively, S0 = 0, and

Sn+1 = Sn +Δn+1

where the step is

Δn+1 =
{
ξrn , if rn = rn−1 + 1

ζn+1−rn , if rn = rn−1

and rn = #{S0, . . . , Sn} as before is the cardinality of the range of the random walk
at time n (note that formally r−1 = 0).

Let us now write the position at time n of theM4(2, 3) random walk as

Sn = (Xn, Yn, Zn,Wn).

Define recursively the sequence of stopping times (τk : k ≥ 0) by τ0 = 0 and for
k ≥ 1,

τk := inf{n > τk−1 : (Zn,Wn) = (Zn−1,Wn−1)}.

Note τk <∞ a.s. for all k ≥ 0. Furthermore, the process (Uk : k ≥ 0) defined by

Uk = (Zτk ,Wτk ),

is a simple random walk in dimension d = 2, and is equal to the simple random walk
with steps defined by the last two coordinates of ζ . Let us now call PU the law of S
conditionally on the whole U process. Note that the first coordinate {Xn : n ≥ 0} is
an Fn := σ {Δk : k ≤ n}-martingale with respect to PU , since

EU(Xn+1 −Xn | Fn) = 1{rn=rn−1+1} E( ξrn · e1 |Fn, U),
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U is σ(ζk : k ≥ 1)-measurable as it is defined only in terms of the sequence(
ζk1{π34(ζk) =0}

)
k≥1, (π34 being the projection in the 3rd and 4th coordinates), and

E[ ξrn · e1 |Fn, (ζk : k ≥ 1)] = 0,

by independence. Hence, {Mm : m ≥ 0} withMm := Xτm , is a Gm-martingale with
respect to PU , where Gm := Fτm . To prove the theorem, it is enough to show that
{(Mn,Un) : n ≥ 0} is transient (under P ). Let us call rU (n) the cardinality of the
range of the random walk U at time n. For each n ≥ 0 and k ≥ 0, let

tk := n− n/2k (7)

and

K :=
{
k ∈ {1, . . . , (logn)3/4} : rU (tk+1)− rU (tk) ≥ ρ(tk+1 − tk)/ logn

}
.

(8)

We will show that

P(Mn = Un = 0) = E[PU(Mn = 0)1{|K | ≥ ρ(logn)3/4, Un = 0}]
+E[PU(Mn = 0)1{|K | < ρ(logn)3/4, Un = 0}], (9)

is summable in n, for ρ = ρ0 chosen appropriately. At this point, let us recall
Proposition 3.4 of [7], which is a statement about simple symmetric random walks.

Proposition 2 (Peres et al. [7]) For k ≥ 1, consider tk as defined in (7). Then, for
K as defined in (8), we have that there exist positive constants α,C3, C4 and ρ∗,
such that for all ρ < ρ∗ and all n ≥ 1

P(|K | ≤ ρ(logn)3/4|Un = 0) ≤ C3e
−C4(logn)α .

Choosing ρ = ρ0 ≤ 1 small enough, by Proposition 2, we have the following
bound for the second term on the right-hand side of (9),

E[PU(Mn = 0)1{|K | < ρ0(logn)3/4, Un = 0}] ≤ C3C5
1

n
exp

(−C4(logn)α
)
,

(10)

where we have used the fact that P(Un = 0) ≤ C5
n

for some constant C5 > 0.
To bound the first term on the right-hand side of (9), we will use Proposition 1

with a = 1/2 and ρ = ρ0/4. Let us first show that (6) is satisfied. Indeed, note that
for each n ≥ 0 when Un is at a new site, EU [(Mn+1 −Mn)2|Gn] ≥ 1/2. Therefore,
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for all k ∈ K , with ρ = ρ0, one has that for n large enough

Vtk+1 − Vtk =
∑tk+1
n=tk+1EU [(Mn −Mn−1)

2|Gn−1]
≥ (
rU (tk+1 − 1)− rU (tk − 1)

)
/2 ≥ (

rU (tk+1)− rU (tk)− 1
)
/2

≥ (ρ0/4)(tk+1 − tk)/(logn)2a.

Hence, on the event |K | ≥ ρ0(logn)3/4, we have that there exist k1, . . . , kN ∈ K
with N = [ρ0(logn)3/4] such that

PU

(
∩Ni=1Aki

)
= 1.

Let us now show that there is a sequence of i.i.d. random variables (Gk : k ≥ 0)
such that (5) is satisfied with C1 = 24 and C2 = 3. Indeed, note that

|Mn+1 −Mn| = |Xτn+1 −Xτn | ≤
∞∑

k=τn
|X(k+1)∧τn+1 −Xk∧τn+1 |. (11)

Note that the right-hand side of (11) is the number of steps of X between times τn
and τn+1. Now, at each time k (with k starting at τn) that a step in X is made there is
a probability of at least 1

42 × 2
3 = 1

24 that the random walk S makes three succesive
steps at times k + 1, k + 2 and k + 3, in such a way that in one of them a step in
U is made and at most two of these steps are of the X random walk: if the random
walk is at a site previously visited at time k, with probability 2/3 at time k + 1
the U random walk will move; if the random walk is at a site which it had never
visited before at time k, with probability 1

42 × 2
3 = 1

24 , there will be 3 succesive
steps of S at times k + 1, k + 2 and k + 3, with the first 2 steps being of the X
random walk and the third step of U (we just need to move in the e1 direction using
X at time k + 1, immediately follow it at time k + 2 by a reverse step in the −e1
direction using X again, and then immediately at time k + 3 do a step in U ). Since
this happens independently each 3 steps in the time scale of X (time increases by
one unit whenever X moves), we see that we can bound the martingale increments
choosing i.i.d. geometric random variables (Gk : k ≥ 0) of parameter 1/24 in (5)
multiplied by 3.

Remark 2 The sequence of i.i.d. geometric random variables constructed above is
not the optimal one, in the sense that it is possible to construct other sequences of
i.i.d. geometric random variables of parameter larger than 1/24.

Since now we know that (6) and (5) are satisfied, by Proposition 1, there exist
n0 ≥ 1 and C7 > 0 such that on the event |K | ≥ ρ0(logn)3/4 we have that for
n ≥ n0,

PU(Mn = 0) ≤ e−C7ρ0
(logn)3/4

(logn)1/2 .
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Hence, for n ≥ n0 we have

E[PU(Mn = 0)1{|K | ≥ ρ0(logn)3/4, Un = 0}] ≤ C5
1

n
e
−C7ρ0

(logn)3/4

(logn)1/2 . (12)

Using the bounds (10) and (12) back in (9) gives us that there exist constantsC8 > 0,
C9 > 0 and some β > 0, such that

P(Mn = Un = 0) ≤ 1

n
C8e

−C9(logn)β

By the Borel–Cantelli lemma, we conclude that the process (M,U) is transient,
which gives the transience of S.
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This article is dedicated to the memory of Vladas Sidoravicius,
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Abstract This article deals with limit theorems for certain loop variables for loop
soups whose intensity approaches infinity. We first consider random walk loop soups
on finite graphs and obtain a central limit theorem when the loop variable is the sum
over all loops of the integral of each loop against a given one-form on the graph.
An extension of this result to the noncommutative case of loop holonomies is also
discussed. As an application of the first result, we derive a central limit theorem
for windings of loops around the faces of a planar graph. More precisely, we show
that the winding field generated by a random walk loop soup, when appropriately
normalized, has a Gaussian limit as the loop soup intensity tends to ∞, and we
give an explicit formula for the covariance kernel of the limiting field. We also
derive a Spitzer-type law for windings of the Brownian loop soup, i.e., we show
that the total winding around a point of all loops of diameter larger than δ, when
multiplied by 1/ log δ, converges in distribution to a Cauchy random variable as
δ → 0. The random variables analyzed in this work have various interpretations,
which we highlight throughout the paper.
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Keywords Loop soups · Limit theorems · Winding number · Winding field ·
Spitzer’s law · Loop holonomies

1 Introduction

Windings of Brownian paths have been of interest since Spitzer’s classic result
[16] on their asymptotic behavior which states that, if θ(t) is the winding angle
of a planar Brownian path about a point, then 2(log t)−1θ(t) converges weakly to a
Cauchy random variable as t →∞. The probability mass function for windings of
any planar Brownian loop was computed in [19] (see also [12]). Similar results for
random walks were obtained by Belisle [1] and Schapira [15]. Windings of simple
random walks on the square lattice were more recently studied in [3, 4].

Symanzik, in his seminal work on Euclidean quantum field theories [17],
introduced a representation of a Euclidean field as a “gas” of (interacting) random
paths. The noninteracting case gives rise to a Poissonian ensemble of Brownian
loops, independently introduced by Lawler and Werner [10] who called it the
Brownian loop soup. Its discrete version, the random walk loop soup was introduced
in [9]. These models have attracted a great deal of attention recently because of their
connections to the Gaussian free field, the Schramm-Loewner evolution and various
models of statistical mechanics (see, e.g., Chapter 9 of [8] and [5, 7, 11, 18]).

Besides the intrinsic interest in the asymptotic behavior of windings of planar
Brownian motion and random walks, random variables based on such windings
appear naturally in different contexts and are related to various models of current in-
terest in statistical mechanics and conformal field theory, as briefly discussed below.

Integrals over one-forms for loop ensembles, which are generalizations of
windings, were considered in [11, Chapter 6]. Various topological aspects of loop
soups, such as homotopy and homology, were studied in [13, 14]. In [6], the n-point
functions of fields constructed taking the exponential of the winding numbers of
loops from a Brownian loop soup are considered. The fields themselves are, a priori,
only well-defined when a cutoff that removes small loops is applied, but the n-point
functions are shown to converge to conformally covariant functions when the cutoff
is sent to zero. A discrete version of these winding fields, based on the random
walk loop soup, was considered in [2]. In that paper, the n-point functions of these
discrete winding fields are shown to converge, in the scaling limit, to the continuum
n-point functions studied in [6]. The same paper contains a result showing that, for
a certain range of parameters, the cutoff fields considered in [6] converge to random
generalized functions with finite second moments when the cutoff is sent to zero.
A similar result was established later in [12] using a different normalization and a
different proof.

In this article, with the exception of Sect. 5, we focus on the high intensity limit
of loop ensembles on graphs (see [11] for an introduction and various results on this
topic). In Sect. 2, we establish a central limit theorem for random variables that are
essentially sums of integrals of a one-form over loops of a random walk loop soup,
as the intensity of the loop soup tends to infinity. In Sect. 3 we apply the results of
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Sect. 2 to the winding field generated by a random walk loop soup on a finite graph
and on the infinite square lattice. In Sect. 4, we discuss an extension of the results
of Sect. 2 to the noncommutative case of loop holonomies. In the final Sect. 5, we
obtain a non-central limit theorem for the windings of the Brownian loop soup.

2 A Central Limit Theorem for Loop Variables

Let G = (X,E) be a finite connected graph and, for any vertices x, y ∈ X, let
d(x, y) denote the graph distance between x and y and dx the degree of x. The
transition matrix P for the random walk on the graph G with killing function κ :
X→ [0,∞) is given by

Pxy =
{

1
κx+dx if d(x, y) = 1,

0 otherwise.

Let G = (I − P)−1 denote the Green’s function corresponding to P . G is well
defined as long as κ is not identically zero.

We call a sequence {x0, x1, . . . , xn, xn+1} of vertices of G with d(xi, xi+1) = 1
for every i = 0, . . . , n and with xn+1 = x0 a rooted loop with root x0 and denote it
by γr . To each γr we associate a weight wr(γr ) = 1

n+1Px0x1 . . . Pxnx0 . For a rooted
loop γr = {xi}, we interpret the index i as time and define an unrooted loop as an
equivalence class of rooted loops in which two rooted loops belong to the same class
if they are the same up to a time translation. To an unrooted loop γ we associate a
weightμ(γ ) = ∑

γr∈γ wr(γr). The random walk loop soup Lλ with intensity λ > 0
is a Poissonian collection of unrooted loops with intensity measure λμ.

A one-form on G is a skew-symmetric matrix A with entries Axy = −Ayx if
d(x, y) = 1 and Axy = 0 otherwise. A special case of A is illustrated in Fig. 1. For
any (rooted/unrooted) loop γ = {x0, x1, . . . , xn, x0}, denote

∫

γ

A = Ax0,x1 + Ax1,x2 + · · · + Axn,x0 .

Given a one-form A and a parameter β ∈ R, we define a ‘perturbed transition
matrix’ Pβ with entries

Pβxy =
{
eiβAxy

κx+dx if d(x, y) = 1,

0 otherwise.

Note that Pβ = P when β = 0.
Our aim is to derive a central limit theorem for the loop soup random variable

∫

Lλ

A =
∑

γ∈Lλ

∫

γ

A
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as the intensity λ of the loop soup increases to infinity. The key to prove such a result
is the following representation of the characteristic function of

∫

Lλ

A. The result is

not new (see, e.g., Section 6.2 of [11]) but we provide a proof for completeness.
Below we give a second interpretation of the same result, which provides an
alternative proof.

Lemma 1 With the above notation, assuming that κ is not identically zero, we have
that

ELλ

⎡

⎢
⎣e

(

iβ
∫

Lλ

A

)⎤

⎥
⎦ =

(
det(I − Pβ)
det(I − P)

)−λ
.

Proof Note that det(I−Pβ)λ is well defined and can be written as eλ logdet(I−Pβ) =
eλTr log(I−Pβ). Since κ is not identically 0, the spectral radius of Pβ is strictly less
than 1, which implies that

− log(I − Pβ) =
∞∑

k=1

(P β)k

k
,

where the series in the above expression is convergent.
The weight of all loops of length k ≥ 2 is given by 1

k
Tr(P k). Therefore the

measure of all loops of arbitrary length is

∞∑

k=2

1

k
Tr(P k) = −Tr log(I − P) = − log det(I − P).

Similarly, we have

∫
e
iβ

∫

γ

A

dμ(γ ) =
∞∑

k=2

1

k
Tr((P β)k) = − log det(I − Pβ).

Therefore, invoking Campbell’s theorem for point processes, we have that

ELλ

⎡

⎢
⎣e

(

iβ
∑

γ∈Lλ

∫

γ

A

)⎤

⎥
⎦ = e

(

λ
∫ [exp (iβ

∫

γ

A)−1]dμ(γ )
)

= det(I − Pβ)−λ
det(I − P)−λ ,

which concludes the proof.
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A way to interpret the lemma, which also provides an alternative proof, is to
notice that det(I − P)−λ is the partition function Zλ of the random walk loop soup
on G with transition matrix P and intensity λ, while det(I − Pβ)−λ is the partition
function Zβλ of a modified random walk loop soup on G whose transition matrix
is given by Pβ . The expectation in Lemma 1 is given by 1/Zλ = det(I − P)λ

times the sum over all loop soup configurations Lλ of exp

(

iβ
∑

γ∈Lλ

∫

γ

A

)

times

the weight of Lλ. The factor exp

(

iβ
∑

γ∈Lλ

∫

γ

A

)

can be absorbed into the weight

of Lλ to produce a modified weight corresponding to a loop soup with transition
matrix Pβ . Therefore the sum mentioned above gives the partition function Zβλ =
det(I − Pβ)−λ. Other interpretations of the quantity in Lemma 1 will be discussed
in the next section, after the proof of Lemma 2.

To state our next result, we introduce the Hadamard and wedge matrix product
operations denoted by3 and ∧, respectively. For any two matrices U and V of same
size, the Hadamard product between them (denoted U 3 V ) is given by the matrix
(of the same size as U and V ) whose entries are the products of the corresponding
entries in U and V . The following is the only property of matrix wedge products
that will be used in this article: If λ1, . . . , λn are the eigenvalues of an n× n matrix
U , then Tr(U∧k) = ∑

i1<···<ik
λi1 . . . λik for all k ≤ n. Recall also thatG = (I −P)−1

denotes the Green’s function corresponding to P , which is well defined as long as
the killing function κ is not identically zero.

Theorem 1 With the above notation, assuming that κ is not identically zero, the
distribution of the random variable 1√

λ

∫

Lλ

A = 1√
λ

∑

γ∈Lλ

∫

γ

A tends to a Gaussian

distribution as λ→∞. More precisely,

lim
λ→∞ELλ

⎡

⎢
⎣e

(
is√
λ

∫

Lλ

A

)⎤

⎥
⎦ = exp

[−s2

2

(
Tr

(
(P 3 A32)G

)− Tr
(
(P 3 A)G(P 3 A)G))]

.

Proof Let Eβ = P − Pβ , then

Eβxy =
{

1−eiβAxy
κx+dx if d(x, y) = 1,

0 otherwise.
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Invoking Lemma 1, we have that

ELλ

⎡

⎢
⎣e

(

iβ
∑

γ∈Lλ

∫

γ

A

)⎤

⎥
⎦ =

(
det(I − Pβ)
det(I − P)

)−λ

=
(

det(I − P + Eβ)
det(I − P)

)−λ
,

=
(

det(I − P)−1(I − P + Eβ)
)−λ

,

=
(

det(I + (I − P)−1Eβ)
)−λ

,

= (
det(I +GEβ))−λ .

LetM be a square matrix of dimension n and ‖M‖ denote the operator norm of
M . Then,

det(I +M) = 1+ Tr(M)+ Tr(M ∧M)+ · · · + Tr(M∧n)

and

|Tr(M∧k)| ≤
(
n

k

)
‖M‖k.

Using this, we can write

(
det(I +GEβ))−λ = (1+ Tr(GEβ)+ Tr(GEβ ∧GEβ)+O(β3‖A‖3))−λ,

which leads to

lim
λ→∞ELλ

[
exp

(
i
s√
λ

∑

γ∈Lλ

∫

γ

A
)]

= lim
λ→∞

(
1+ Tr(GE

s√
λ )+ Tr(GE

s√
λ ∧GE s√

λ )+O
(
λ−

3
2

))−λ

= lim
λ→∞ exp

(
−λ log

(
1+ Tr(GE

s√
λ )+ Tr(GE

s√
λ ∧GE s√

λ )+O
(
λ−

3
2

)))
.

To proceed, note that Tr(GEβ ∧ GEβ) = 1
2 (Tr2(GEβ) − Tr(GEβGEβ)).

Moreover, using the identities GxyPyx = GyxPxy and Axy = −Ayx several times,
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one gets

Tr(GEβ) =
∑

x∼y

GxyE
β
yx

= 1

2

∑

x∼y

(GxyE
β
yx +GyxEβxy),

= 1

2

∑

x∼y

GxyPyx(1− eiβAyx )+GyxPxy(1− eiβAxy ),

=
∑

x∼y

GxyPyx(1− cos(βAyx)).

Therefore,

Tr(GE
s√
λ
A
) = s2

2λ

∑

x∼y

GxyPyxA
2
yx +O

(
1

λ
3
2

‖A‖3
)

= s2

2λ
Tr(G(P 3 A32))+O

(
1

λ
3
2

‖A‖3
)
.

Similarly,

Tr(GEβGEβ) =
∑

x0,x1,x2,x3
x0∼x1;x2∼x3

Eβx0,x1
Gx1x2E

β
x2,x3

Gx3x0,

=
∑

x0,x1,x2,x3
x0∼x1;x2∼x3

(1− eiβAx0x1 )(1− eiβAx2x3 )Px0x1Px2x3Gx3x0Gx1x2,

=
∑

x0,x1,x2,x3
x0∼x1;x2∼x3

(
iβAx0x1 +O(β2‖A‖2)

)(
iβAx2x3 +O(β2‖A‖2)

)

Px0x1Px2x3Gx3x0Gx1x2,

=
∑

x0,x1,x2,x3
x0∼x1;x2∼x3

−β2Ax0x1Px0x1Gx1x2Ax2x3Px2x3Gx3x0+O(β3‖A‖3),

= −β2 Tr[(P 3 A)G(P 3 A)G] +O(β3‖A‖3).

Note that the expressions Tr(GE
1√
λ ) and Tr(GE

1√
λ ∧ GE 1√

λ ) are of the order
1
λ

. Using this fact, and expanding the logarithm in power series, the above
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computations give

lim
λ→∞−λ log

(
1 + Tr(GE

s√
λ )+ Tr(GE

s√
λ ∧GE 1√

λ )+O
(
λ
−3
2

) )

= lim
λ→∞

(
− s22 Tr(G(P 3 A32))− s2

2 Tr[(P 3 A)G(P 3 A)G] +O(λ−1
2 )

)

= − s22 Tr(G(P 3 A32))− s2

2 Tr[(P 3 A)G(P 3 A)G],

which concludes the proof.

Remark 1 It may be useful to note the following identity, which holds when A is
skew-symmetric and P is symmetric:

1

2

∑

x0∼x1
x2∼x3

Px0x1Px2x3Ax0x1Ax2x3[Gx0x3Gx1x2−Gx0x2Gx1x3]=Tr[(P3A)G(P3A)G].

We will use this identity in the Proof of Theorem 2 in the next section.

3 Central Limit Theorem for the Loop Soup Winding Field
at High Intensity

The winding field generated by a loop soup on a planar graph G = (X,E) is defined
on the faces f of G , which we identify with the vertices of the dual graph G ∗ =
(X∗, E∗) (i.e., f ∈ X∗). Fix any face f ∈ X∗ and let f0 = f, f1, . . . , fn be a
sequence of distinct faces of G that are nearest-neighbors in G ∗, with fn the infinite
face. The sequence f0, f1, . . . , fn determines a directed pathp from f to the infinite
face. Let epi denote the edge between fi and fi+1 oriented in such a way that it
crosses p from right to left. We let cut(f ) denote the collection of oriented edges
{efi }n−1

i=0 . (See Fig. 1 for an example.) Note that cut(f ) depends on the choice of p,
but since all p’s connecting f to the infinite face are equivalent for our purposes,
we don’t include p in the notation.

Now take an oriented loop � in G and assume that � crosses p. In this case, we
say that � crosses cut(f ) and we call the crossing positive if � crosses p from right
to left and negative otherwise. For an oriented loop � in G and a face f ∈ X∗, we
define the winding number of � about f to be

W�(f ) = number of positive crossings of cut(f ) by �

− number of negative crossings of cut(f ) by �
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Fig. 1 The figure displays a
choice of cuts for faces f1
and f2 in a rectangular grid
graph

for any choice of cut(f ). We note thatW�(f ) is well defined because the difference
above is independent of the choice of cut(f ). (This is easy to verify and is left as an
exercise for the interested reader.)

For a loop soup Lλ, we define

Wλ = {Wλ(f )}f∈G ∗ =
{ ∑

�∈Lλ
W�(f )

}

f∈G ∗

to be the winding field generated by Lλ.
Theorem 1 can be used to prove a CLT for the winding field Wλ, when properly

normalized, as λ → ∞. In order to use Theorem 1, we need a definition and a
lemma. For any collection of faces f1, . . . , fn of G and any vector t̄ = (t1, . . . , tn),
define a skew-symmetric matrix At̄ as follows. For each i = 1, . . . , n, choose a cut
from fi to the infinite face as described above and denote it cut(fi). If e = (x, y) is
an edge of cut(fi) with positive orientation set At̄xy = ti ; if e = (x, y) is an edge of

cut(fi) with negative orientation set At̄xy = −ti ; otherwise set At̄xy = 0. Note that

one can write At̄ as At1f1
+ . . .+ Atnfn where Ati is a matrix such that (Atifi )xy = ti if

(x, y) is in cut(fi) and has positive orientation, (Atifi )xy = −ti if (x, y) is in cut(fi)

and has negative orientation, and (Atifi )xy = 0 if (x, y) /∈ cut(fi).

Lemma 2 For any collection of faces f1, . . . , fn of G , there exists a skew-
Hermitian matrix At such that the characteristic function of the n-dimensional
random vector (Wλ(f1), . . . ,Wλ(fn)) is given by

ELλ [eiβ(t1Wλ(f1)+···+tnWλ(fn))] = ELλ

⎡

⎢
⎣e

(

iβ
∑

γ∈Lλ

∫

γ

At

)⎤

⎥
⎦ .
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Proof Using the matrices At̄ describe above, the result follows immediately from
the definition of winding number.

The quantity in the lemma has several interpretations. Besides being the char-
acteristic function of the random vector (Wλ(f1), . . . ,Wλ(fn)), it can be seen as
the n-point function of a winding field of the type studied in [2] (see also [6] for a
continuum version). Moreover, by an application of Lemma 1,

ELλ [ei(t1Wλ(f1)+···+tnWλ(fn))] =
(

det(I − P t̄ )
det(I − P)

)−λ
,

where

P t̄xy =
⎧
⎨

⎩

e
iAt̄xy

κx+dx if d(x, y) = 1

0 otherwise

and At̄ is one of the matrices described above. A standard calculation using
Gaussian integrals shows that

Zt̄GFF = Πx∈X
( 2π

κx + dx
)1/2

det(I − P t̄ )−1/2,

where Zt̄GFF is the partition function of the Gaussian Free Field (GFF) on G with
Hamiltonian

Ht̄ (ϕ) = −1

2

∑

(x,y)∈E
eiA

t̄
xy ϕxϕy + 1

2

∑

x∈X
(κx + dx)ϕ2

x . (1)

Hence, ELλ [ei(t1Wλ(f1)+···+tnWλ(fn))] can be written as a ratio of partition functions,
namely,

ELλ [ei(t1Wλ(f1)+···+tnWλ(fn))] =
(Zt̄GFF
ZGFF

)2λ
,

where ZGFF is the partition function of the ‘standard’ GFF obtained from (1) by
setting t1 = . . . = tn = 0.

To state the next theorem we need some additional notation. For any directed
edge e ∈ cut(f ), let e− and e+ denote the starting and ending vertices of e,
respectively.

Theorem 2 Consider a random walk loop soup on a finite graph G with symmetric
transition matrix P and the corresponding winding field Wλ. As λ → ∞, 1√

λ
Wλ
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converges to a Gaussian field whose covariance kernel is given by

K(f, g) =
∑

e∈cut(f )

Pe+e−Ge+e−1f=g

+ 2
∑

e1∈cut(f )
e2∈cut(g)

Pe+1 e
−
1
Pe+2 e

−
2

(
Ge+1 e

−
2
Ge−1 e

+
2
−Ge+1 e+2 Ge−1 e−2

)
1f =g.

Proof Combining Lemma 2 and Theorem 1 shows that the winding field has a
Gaussian limit as λ→∞:

{ 1√
λ
Wλ(f ) : f is a face of G

}
λ↑∞----⇒
weakly

{
W(f ) : f is a face of G

}

whereW(·) is a Gaussian process on the faces of G.
Next, we compute the covariance kernel of the limiting Gaussian process. Choose

two faces f and g and let At = A
t1
f + At2g , where At1f has nonzero entries only

along cut(f ) and At2g has nonzero entries along cut(g), as described above. Using
Theorem 1 we obtain

lim
λ→∞ logELλ [ei

1√
λ
(t1Wλ(f1)+t2Wλ(f2))]

= − 1

2

[
Tr((P 3 (At )32)G)+ Tr((P 3At)G(P 3At)G)

]

= − 1

2

[
Tr((P 3 (At1 + At2)32)G)+ Tr((P 3 (At1 + At2))G(P 3 (At1 + At2)G)

]

= − 1

2

[
t21K(f, f )+ t22K(g, g) − 2t1t2K(f, g)

]
.

The variance ofW(f ) is obtained by setting t1 = t and t2 = 0. In this case,

K(f, f ) = 1

t2

[
Tr((P 3 (At )32)G)+ Tr((P 3 At)G(P 3 At)G)

]

=
∑

e∈cut(f )

Pe−e+Ge+e− + 1

t2
(Tr((P 3 At)G(P 3 At)G)).

Since P is assumed to be symmetric, the term Tr((P 3At)G(P 3At)G) vanishes.
Therefore,

K(f, f ) =
∑

e∈cut(f )

Pe−e+Ge−e+ .
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A similar calculation, with At = At1f + At2g , where At1f , gives the covariance:

K(f, g) = −1

2t1t2

[
Tr((P 3 (At1 + At2)32)G)+ Tr(P 3 (At1 + At2)G(P 3 (At1 + At2 )G))

−t21K(f, f )− t22K(g, g)
]

= −1

2t1t2

[
Tr((P 3 (At1 + At2)32)G)+ Tr(P 3 (At1 + At2)G(P 3 (At1 + At2 )G))

−Tr((P 3 (At1)32)G)− Tr((P 3 At1)G(P 3At1)G)
−Tr((P 3 (At2)32)G)− Tr((P 3 At2)G(P 3At2)G)

]

= −1

t1t2

[
Tr((P 3 (At1 3At2))G)+ Tr((P 3 At1)G(P 3At2)G)

]
.

Since P is symmetric, Tr((P 3(At1 3At2))G) = 0 and, using Remark 1, we obtain

K(f, g) = 2
∑

e1∈cut(f )
e2∈cut(g)

Pe+1 e
−
1
Pe+2 e

−
2

(
Ge+1 e

−
2
Ge−1 e

+
2
−Ge+1 e+2 Ge−1 e−2

)
,

which concludes the proof.

Remark 2 We provide here an alternative, more direct but more specific, Proof of
Theorem 2. For any directed edge e, let e− and e+ to denote the starting and ending
vertices respectively. Moreover, let N+

e be the number of positive crossings of e
(i.e., from e− to e+) by a loop from the loops soup and let N−

e be the number of
negative crossings of e (i.e., from e+ to e−) by a loop from the loops soup. The
winding number about a face f can be defined as,

Wλ(f ) =
∑

e∈cut(f )

(N+
e −N−

e ).

Therefore the two point function for the winding numbers is given by

EL1(W1(f )W1(g)) = EL1

( ∑

e1∈cut(f )
e2∈cut(g)

(N+
e1
−N−

e1
)(N+

e2
−N−

e2
)
)

= EL1

( ∑

e1∈cut(f )
e2∈cut(g)

(N+
e1
N+
e2
+N−

e1
N−
e2
−Ne1N−

e2
−N−

e1
N+
e2
)
)

= 2
∑

e1∈cut(f )
e2∈cut(g)

(
EL1(N

+
e1
N+
e2
)− EL1(N

+
e1
N−
e2
)
)
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Using this expression and a result from [11] (see [11, Exercise 10, Chapter 2], but
note that in [11] the Green’s function is defined to be [(I − P)−1]x,y/(κy + dy) =
PyxGxy = PxyGxy , when P is symmetric), we obtain

EL1(W1(f )W1(g))

=
∑

e1∈cut(f )
e2∈cut(g)

(
Pe+2 e

−
2
Pe+1 e

−
1
Ge+1 e

−
2
Ge+2 e

−
1
+ Pe−2 e+2 Pe−1 e+1 Ge−1 e+2 Ge−2 e+1

− Pe−2 e+2 Pe+1 e−1 Ge+1 e+2 Ge−2 e−1 − Pe+2 e−2 Pe−1 e+1 Ge−1 e−2 Ge+2 e+1
)

= 2
∑

e1∈cut(f )
e2∈cut(g)

Pe+1 e
−
1
Pe+2 e

−
2

(
Ge+1 e

−
2
Ge+2 e

−
1
−Ge+1 e+2 Ge−2 e−1

)
.

Now take λ = n ∈ N and note that, for any face f , Wn(f ) is distributed
like

∑n
i=1W

i
1(f ), where {Wi1(f )}i=1,...,n are n i.i.d. copies of W1(f ). Therefore,

for any collection of faces f1, . . . , fm, the central limit theorem implies that,
as λ = n → ∞, the random vector 1√

n
(Wn(f1), . . . ,Wn(fm)) converges to

a multivariate Gaussian with covariance kernel given by the two-point function
EL1(W1(f )W1(g)) calculated above.

Remark 3 Theorem 2 can be extended to infinite graphs, as we now explain. For
concreteness and simplicity, we focus on the square lattice and consider a random
walk loop soup with constant killing function: κx = κ > 0 for all x ∈ Z

2. Note
that in this case the transition matrix P and the Green’s function G are symmetric.
Moreover, contrary to the case κ = 0, the winding field of the random walk loop
soup on Z

2 is well defined when κ > 0. To see this, note that, since the loop
soup is a Poisson process, we can bound the expected number of loops intersecting
(−a, 0), (b, 0) ∈ Z

2 as follows:

ELλ

(
# loops joining (−a, 0) and (b, 0)

) = λμ(
γ : γ (−a, 0), (b, 0) ∈ γ )

≤ λ
∑

m≥2(a+b)

( 4

κ + 4

)m

= λκ

4

(
1+ κ

4

)−2(a+b)
.

Hence, the expected number of loops winding around the origin is bounded above
by λκ

4

∑∞
a=1

∑∞
b=1(1 + κ/4)−2(a+b) < ∞ for any κ > 0. This means that, with

probability one, the number of loops winding around any vertex is finite. Because
of this, one can obtain the winding field on Z

2 as the weak limit of winding fields
in large finite graphs Gn = [−n, n]2 ∩ Z

2 as n → ∞. It is now clear that one can
apply the arguments in Remark 2 to the case of the winding field on Z

2.
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4 Holonomies of Loop Ensembles

Theorem 1 can be generalized to loop holonomies, a task we accomplish in this
section. Assume that the transition matrix P introduced at the beginning of Sect. 2
is symmetric and hence the Green’s function is also symmetric. We consider a
connection on the graph G , given by assigning to each oriented edge (x, y) a d × d
unitary matrix Uxy of the form Uxy = eiAxy for some Hermitian matrix Axy . For
any closed loop γ = {x0, x1, . . . , xn, x0}, we denote

∏

γ

U = Ux0x1Ux1x2 . . .Uxnx0 .

We also write Trγ [U] for Tr[Ux0x1Ux1x2 . . .Uxnx0], which is well defined as the
expression inside Tr[·] is shift invariant. We will re-do the computations leading to
Theorem 1, in this case by invoking block matrices. Note that since Uxy = U−1

yx ,
we assume Axy = −Ayx . Denote the corresponding block matrix whose blocks are

Axy with A. Similarly denote Trγ
[
eiβA] := Tr

[
eiβAx0x1 . . . eiβAxnx0

]
. We denote

the tensor product between two matrices A and B to be A ⊗ B and the Hadamard
product to be A3 B.

In this context, the quantity exp

(

i
∑

γ∈Lλ
1√
λ

∫

γ

A

)

= ∏
γ∈Lλ e

i√
λ

∫

γ

A

that appears

in Theorem 1 will be replaced by
∏

γ∈Lλ
1
d

Trγ

(
e
i 1√
λ

A
)

. Two observations are in

order: (1) The expectation of this quantity cannot be interpreted as a characteristic
function, but other interpretations such as those discussed after Lemmas 1 and 2 are
still available. (2) The presence of Trγ means that the Proof of Theorem 1 doesn’t
apply directly to this case; indeed, a careful decomposition of traces is needed to
obtain the non-Abelian extension presented in Theorem 3 below.

The first step towards the main result of this section is the following lemma.

Lemma 3 With the above notation we have

ELλ

⎡

⎣
∏

γ∈Lλ

1

d
Trγ

(
eiβA

)
⎤

⎦ =
(

det(Ind − (P ⊗ Jd)3 Uβ)
det(Ind − P ⊗ Id)

)−λ
,

where (P ⊗ Jd) 3 U and P ⊗ Id are block matrices whose blocks are PijUij and
Pij Id respectively, Jd is d× d matrix whose entries are all 1 and for any k, Ik is the
k × k identity matrix.
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Proof The statement follows from a computation similar to that in the proof of
Lemma 1, namely

ELλ

⎡

⎣
∏

γ∈Lλ

1

d
Trγ

(
eiβA

)
⎤

⎦ =
exp(−λ

∞∑
k=1

1
k

Tr((P ⊗ Jd)3 Uβ)k)

exp(−λ
∞∑
k=1

1
k

Tr(P ⊗ Id)k)

= e
λTr log(I−(P⊗Jd)3Uβ )

eλTr log(I−P⊗Id )

= (det(I − (P ⊗ Jd)3Uβ))−λ

(det(I − P ⊗ Id))−λ .

We note that a similar computation can be found in [11, Proposition 23].

We are now ready to state and prove the main result of this section.

Theorem 3 With the notation above we have

lim
λ→∞ELλ

⎡

⎣
∏

γ∈Lλ

1

d
Trγ

(
e
i 1√
λ

A
)

⎤

⎦ =

exp
(
− 1

2

[ ∑

x∼y

GxyPxy Tr(A2
xy)

+
∑

x0∼x1
x2∼x3

Px0x1Px2x3 Tr[Ax0x1Ax2x3](Gx0x3Gx1x2 −Gx0x2Gx1x3)
])
.

Proof We follow the computation in the Proof of Theorem 1. From Lemma 3,
defining EβA = P ⊗ Id − (P ⊗ Jd)3 Uβ , we have

ELλ

⎡

⎣
∏

γ∈Lλ

1

d
Trγ

(
eiβA

)
⎤

⎦ =
(

det(Ind − (P ⊗ Jd)3 Uβ)
det(Ind − P ⊗ Id)

)−λ

= (det(Ind + (Ind − P ⊗ Id)−1EβA))−λ.

Therefore,

lim
λ→∞

⎛

⎝
det(Ind − (P ⊗ Jd)3 U 1√

λ

)

det(Ind − P ⊗ Id)

⎞

⎠

λ

= lim
λ→∞

(
1+ Tr((Ind − P ⊗ Id)−1E

1√
λ

A
)
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+ Tr((Ind − P ⊗ Id)−1E
1√
λ

A ∧ (Ind − P ⊗ Id)−1E
1√
λ

A
)

+O
(

1

λ
3
2

‖A‖3
))λ

= lim
λ→∞ exp

[
λ

(
Tr

(
(Ind − P ⊗ Id)−1E

1√
λ

A)

+ Tr
(
(Ind − P ⊗ Id)−1E

1√
λ

A ∧ (Ind − P ⊗ Id)−1E
1√
λ

A))]
.

Note that (Ind−P ⊗Id)−1 = ((In−P)⊗Id)−1 = G⊗Id . Moreover, expanding
the traces of block matrices in terms of traces of blocks, we have

Tr((G⊗ Id)EβA) =
∑

x∼y

GxyPyx Tr(Id − eiβAyx )

= −β
2

2

∑

x∼y

GxyPxy Tr(A2
xy)+O(β3‖A‖3∞).

Similarly,

Tr(EβA(G⊗ Id)EβA(G⊗ Id))
=

∑

x0∼x1
x2∼x3

Tr(EβAx0,x1Gx1x2E
βAx2,x3Gx3x0)

=
∑

x0∼x1
x2∼x3

Tr[EβAx0x1Gx1x2E
βAx2x3Gx3x0]

=
∑

x0∼x1
x2∼x3

Tr[(Id − eiβAx0x1 )(Id − eiβAx2x3 )Px0x1Px2x3Gx0x3Gx1x2]

=
∑

x0∼x1
x2∼x3

Px0x1Px2x3 Tr[−β2Ax0x1Ax2x3Gx0x3Gx2x1] +O(β3‖A‖3∞)

= −β
2

2

∑

x0∼x1
x2∼x3

Px0x1Px2x3 Tr[Ax0x1Ax2x3](Gx0x3Gx1x2 −Gx0x2Gx1x3)

+O(β3‖A‖3∞).
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Invoking the identity Tr
(
M ∧M) = 1

2 (Tr(M)2 − Tr(M2)
)

and the computation
above, we have that

lim
λ→∞ logELλ

⎡

⎣
∏

γ∈Lλ

1

d
Trγ

(
e
i 1√
λ

A
)

⎤

⎦

=− 1

2

∑

x∼y

GxyPxy Tr(A2
xy)

− 1

2

∑

x0∼x1
x2∼x3

Px0x1Px2x3 Tr[Ax0x1Ax2x3](Gx0x3Gx1x2 −Gx0x2Gx1x3),

which concludes the proof.

5 A Spitzer-Type Law for Windings of the Brownian Loop
Soup

In this last section we present a result of a different nature but related to those
discussed in the previous sections. Here we keep the intensity λ fixed but we take
a continuum scaling limit, letting the lattice mesh size go to zero, which leads
to the Brownian loop soup [9]. The scale invariance of the Brownian loop soup
immediately implies that the winding around any deterministic point is infinite
even for fixed intensity λ < ∞. Hence, in order to study the law of windings,
a renormalization procedure is needed. In this case we will obtain a non-central
limit theorem (Theorem 4 below). The situation is similar to the case of a single
Brownian path. Spitzer showed [16] that the winding of Brownian motion about a
given point up to time t , when scaled by 1/(2 log t), converges in distribution to a
Cauchy random variable as t → ∞. Belisle [1] proved an analog of Spitzer’s law
for windings of planar random walks. (Subsequent results on the asymptotic law of
windings of Brownian motion are surveyed in the book by Yor [20]). In this section
we prove a similar result for the Brownian loop soup in a bounded domain. Our
renormalization procedure involves a cutoff δ > 0 on the diameter of loops.

Recall that the Brownian loop soup in a planar domain D ⊂ C is defined as a
Poisson process of loops with intensity measure μloop given by

μloop(·) =
∫

D

∞∫

0

1

2πt2
μ
z,t
BB(·)dtdA(z),

where μz,tBB is the Brownian Bridge measure of time length t starting at z and dA is
the area measure on the complex plane (see [10] for a precise definition).
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For any z ∈ D, we letWδλ(z) denote the sum of the winding numbers about z of
all Brownian loops contained in D with diameter at least δ for some δ > 0.

Theorem 4 Consider a bounded domain D ⊂ C. For any z ∈ D, as δ ↓ 0,
Wδλ (z)

log δ
converges weakly to a Cauchy random variable with location parameter 0 and scale
parameter λ

2π .

Proof Let dz denote the distance between z and the boundary ofD and, for δ < dz,
let Wδ,dzλ (z) denote the sum of the winding numbers about z of all Brownian loops
with diameter between δ and dz. Note that, because of the Poissonian nature of the
Brownian loop soup, the random variablesWδ,dzλ (z) andWdzλ (z) are independent.

The key ingredient in the proof is Lemma 3.2 of [6], which states, in our notation,
that

E
(
eiβW

δ,dz
λ (z)

) =
(dz
δ

)−λ β(2π−β)
4π2 = d−λ

β(2π−β)
4π2

z e
λ
β(2π−β)

4π2 log δ

when β ∈ [0, 2π), and that the same expression holds with β replaced by (β
mod 2π) when β /∈ [0, 2π). With this result, choosing β = s/ log δ, the limit as

δ→ 0 of the characteristic function of
Wδλ (z)

log δ can be computed as follows:

lim
δ→0

E
(
e
i s

log δ W
δ
λ (z)

) = lim
δ→0

E
(
e
i s

log δ W
δ,dz
λ (z))

E
(
e
i s

log δ W
dz
λ (z)

) = e− λ
2π |s|,

where the right hand side is the characteristic function of a Cauchy random variable
with location parameter 0 and scale parameter λ

2π .

Remark 4 One can also consider the joint distribution of n random variables,

namely
Wδλ (z1)

log δ , . . . ,
Wδλ (zn)

log δ for n distinct points z1, . . . , zn ∈ D. If one takes

d < mini<j
( |zi−zj |

2

)
, the random variablesWδ,dλ (z1), . . . ,W

δ,d
λ (zn) defined in the

Proof of Theorem 4 are independent. This observation shows that the convergence
in distribution of Theorem 4 holds also for multiple points, namely, as δ ↓
0, the random variables

Wδλ (z1)

log δ , . . . ,
Wδλ (zn)

log δ converge jointly in distribution to n
independent Cauchy random variables.
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The Stable Derrida–Retaux System at
Criticality

Xinxing Chen and Zhan Shi

Dedicated to the memory of Vladas Sidoravicius

Abstract The Derrida–Retaux recursive system was investigated by Derrida and
Retaux (J Stat Phys 156:268–290, 2014) as a hierarchical renormalization model
in statistical physics. A prediction of Derrida and Retaux (J Stat Phys 156:268–
290, 2014) on the free energy has recently been rigorously proved (Chen et al., The
Derrida–Retaux conjecture on recursive models. https://arxiv.org/abs/1907.01601),
confirming the Berezinskii–Kosterlitz–Thouless-type phase transition in the system.
Interestingly, it has been established in the paper by Chen et al. that the prediction
is valid only under a certain integrability assumption on the initial distribution, and
a new type of universality result has been shown when this integrability assumption
is not satisfied. We present a unified approach for systems satisfying a certain
domination condition, and give an upper bound for derivatives of all orders of the
moment generating function. When the integrability assumption is not satisfied, our
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1 Introduction

Fix an integer m ≥ 2. Let X0 be a random variable taking values in Z+ :=
{0, 1, 2, . . .}. To avoid trivial discussion, it is assumed, throughout the paper, that
P(X0 ≥ 2) > 0. Let us consider the Derrida–Retaux recursive system (Xn, n ≥ 0)
defined as follows: for all n ≥ 0,

Xn+1 = (Xn,1 + · · · + Xn,m − 1)+, (1)

where Xn,i , i ≥ 1, are independent copies of Xn. This was investigated by Derrida
and Retaux [6] as a toy model to study depinning in presence of impurities [8–
12, 14, 15]. We refer to [7] for an overview on rigorous results and predictions about
the Derrida–Retaux system.

Assuming E(X0) < ∞, it is immediate from (1) that E(Xn+1) ≤ mE(Xn), so
the free energy

F∞ := lim
n→∞ ↓ E(Xn)

mn
∈ [0, ∞),

is well-defined. A remarkable result by Collet et al. [5] tells us that assuming
E(X0m

X0) < ∞ (which we take for granted throughout the paper) and writing
η := (m− 1)E(X0m

X0)− E(mX0), then F∞ > 0 if η > 0, and F∞ = 0 if η ≤ 0.
As such, it is natural to say that the system (Xn, n ≥ 0) is supercritical if η > 0,

is critical if η = 0, and is subcritical if η < 0.
It has been conjectured by Derrida and Retaux [6] that if η > 0, then we would

have

F∞ = exp
(
− C + o(1)

η1/2

)
, η→ 0+ , (2)

for some constant C ∈ (0, ∞) possibly depending on the law of X0. A (somehow
weak) result has been proved in [1]: assuming E(X3

0m
X0) <∞,

F∞ = exp
(
− 1

η1/2+o(1)
)
, η→ 0+ .

This confirms that the Derrida–Retaux system has a Berezinskii–Kosterlitz–
Thouless-type phase transition of infinite order. The integrability assumption
E(X3

0m
X0) < ∞ might look exotic, but it is optimal. [We believe that there

should be a change-of-measures argument, and that the assumption is equivalent
to saying that X0 has a finite second moment under a new probability measure;
however, we have not succeeded in making this idea into a rigorous argument.] In
fact, it has also been proved in [1] that if P(X0 = k) ∼ cm−kk−α , k → ∞, for
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some 2 < α < 4 and c > 0,1 then

F∞ = exp
(
− 1

ην+o(1)
)
, η→ 0+ , (3)

where ν = ν(α) := 1
α−2 . In other words, (2) predicts only a small part of

universalities, under the assumption E(X3
0m

X0) < ∞, while other universality
phenomena are described by (3). We expect many other universality results in
the latter setting (for example, corresponding to those in [2] for an analogous
continuous-time model); unfortunately, they are currently only on a heuristic level.

It is well-known that sum of i.i.d. random variables, after an appropriate normal-
ization, converges to a Gaussian limiting law under the condition of finiteness of
second moment, and to a stable limiting law under a weaker integrability condition.
We say that the Derrida–Retaux system has a “finite variance” if E(X3

0m
X0) < ∞,

and that it is a stable system if integrability condition holds for lower orders. In
this paper, we are interested in the stable system when it is critical, i.e., when
(m− 1)E(X0m

X0) = E(mX0). [We are going to see in Sect. 2, quite easily, that this
implies (m− 1)E(Xn mXn) = E(mXn) for all n ≥ 0.] We write (Yn, n ≥ 0) instead
of (Xn, n ≥ 0) in order to insist on criticality. From now on, we assume (Yn, n ≥ 0)
to be a Derrida–Retaux system satisfying (m− 1)E(Y0m

Y0) = E(mY0) <∞, such
that

P(Y0 = k) ∼ c0m
−kk−α, k→∞, (4)

for some 2 < α < 4 and c0 > 0. We intend to prove the following result.

Theorem 1 Let (Yn, n ≥ 0) be such that (m − 1)E(Y0m
Y0) = E(mY0) < ∞.

Under assumption (4), there exist constants c2 ≥ c1 > 0 such that for all n ≥ 1,

c1 n
α−2 ≤

n−1∏

i=0

[E(mYi )]m−1 ≤ c2 n
α−2.

When the system is of “finite-variance” (i.e., E(Y 3
0m

Y0) < ∞), the analogue of
Theorem 1 was known [3, 5], and has played an important role in the study of the
asymptotics of P(Yn > 0) and E(Yn) in [4]. It would be tempting to believe that
Theorem 1 could play an equally important role in the study of the same problems
for the stable system.

Just like the usual random walk has a nice continuous-time analogue which is
Brownian motion, the Derrida–Retaux system has analogues in continuous time
(Derrida and Retaux [6], Hu et al. [13]), defined via appropriate integro-differential
equations. For the continuous-time analogue of the stable Derrida–Retaux system,

1Notation: ak ∼ bk , k→∞, means limk→∞ ak
bk
= 1.
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see [2]. These continuous-time models have been studied in depth in [6, 13] and [2],
while most of the corresponding problems remain open for the original Derrida–
Retaux system.

With the exception of the case α = 3, Theorem 1 was already stated in Collet et
al. [5]: its proof in case 2 < α < 3 was indicated, whereas the proof in case 3 <
α < 4 was only summarized in a “very succinct account”. By means of the notion of
dominability (see the forthcoming Definition 1), we give a unified approach to the
system in both situations, i.e., either it is stable (no need for discussions separately
on the cases 2 < α < 3 and 3 < α < 4) or is of “finite variance”. Concretely,
in both situations, we use a truncating argument by considering a bounded random
variable defined by

Z0 = Z0(M) := Y0 1{Y0≤a(M)},

where a(M) ∈ [1, ∞] can be possibly infinite (in which case there is no need for
truncation), whose value depends on an integer parameter M ≥ 1. Consider the
Derrida–Retaux system (Zn, n ≥ 0) whose initial distribution is given by Z0.2 We
prove, in Theorem 4, that in both situations, it is possible to choose a convenient
value of a(M) such that the new system (Zn, n ≥ 0) is dominable (in the sense
of Definition 1), while it is possible to connect the moment generating functions
of Yn and Zn. In Theorem 3, we give an upper bound for the moment generating
function of any dominable system (Zn, n ≥ 0). As such, a combined application of
Theorems 4 and 3 will yield information for the moment generating function of the
original Derrida–Retaux system, in both situations. In the stable case, it will yield
Theorem 1, whereas in the case of “finite variance”, under a stronger integrability
assumption on the law of Y0, it will give the following result:

Theorem 2 Let (Yn, n ≥ 0) be such that (m−1)E(Y0m
Y0) = E(mY0). If E(sY0) <

∞ for some s > m, then there exists a constant c3 > 0 such that for all integers
n ≥ 1 and k ≥ 1,

dk

duk
E(uYn)

∣
∣
∣
u=m ≤ k! e

c3k nk−1 . (5)

In the “finite-variance” case E(Y 3
0m

Y0) < ∞, (5) for k ∈ {1, 2, 3} was known:
the case k = 1 is simple because by criticality, E(YnmYn−1) = 1

m(m−1) E(mYn)
which is bounded in n [3, 5], the case k = 3 was proved in [3], and the case k = 2,
stated in [1], follows immediately from the cases k = 1 and k = 3 by means of the
Cauchy–Schwarz inequality. More generally, if E(Y �0m

Y0) < ∞ for some integer
� ≥ 1, then for all k ∈ [1, �] ∩ Z, it is quite easy to prove [4] by induction in k,

2Strictly speaking, it is a sequence of Derrida–Retaux systems, indexed byM .
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using the recursion (1), that there exists a constant c > 0 such that for all integer
n ≥ 1,

dk

duk
E(uYn)

∣
∣
∣
u=m ≤ c n

k−1 .

Theorem 2 gives information about the dependence in k of the constant c, under the
integrability assumption E(sY0) <∞ for some s > m.

The rest of the paper is organized as follows. In Sect. 2, we introduce the notion
of dominable systems. Theorem 3, which gives an upper bound for the moment
generating function of dominable systems, is the main technical result of the paper.
The brief Sect. 3 is devoted to the proof of Theorem 2, obtained as a simple
consequence of Theorem 3. In Sect. 4, for both “finite-variance” and stable systems,
we construct a dominable system (Zn, n ≥ 0) such that Z0 is obtained from an
appropriate truncation of Y0. Finally, Theorem 1 is proved in Sect. 5, also as a
consequence of Theorem 3.

2 Dominable Systems

We introduce the notion of dominable systems and prove a general upper bound for
the moment generating function of such systems (Theorem 3). As before, we talk
about the Derrida–Retaux system (Zn, n ≥ 0), while it is, in fact, a sequence of
Derrida–Retaux systems (Zn(M), n ≥ 0) indexed by the integer-valued parameter
M .

Definition 1 Let γ > 0. The system (Zn, n ≥ 0) is said to be γ -dominable if for
all sufficiently large integer M , say M ≥ M0, Z0 = Z0(M) is bounded, and there
exists a constant ϑ(M) ≥ 1 such that M �→ ϑ(M) is non-decreasing in M ≥ M0,
and that 3

E(Zk0m
Z0) ≤ Mk−3(ϑ(M)+ k!), k ≥ 3, (6)

ϑ(n ∨M)
n−1∏

i=0

[E(mZi )]m−1 ≤ γ (n ∨M)2, n ≥ 1. (7)

Remark 1 Let (Zn, n ≥ 0) be γ -dominable. By (7) and the trivial inequality
E(mZi ) ≥ 1 (∀i ≥ 0), we have E(Zn) ≤ E(mZn) ≤ [γ (n ∨ M)2]1/(m−1), so
the free energy F∞ := limn→∞ E(Zn)

mn
vanishes; by the criterion of Collet et al. [5]

recalled in the introduction, the system (Zn, n ≥ 0) is subcritical or critical for all
M ≥M0: we have (m− 1)E(Z0m

Z0) ≤ E(mZ0).

3In (6) and (7), k ≥ 3 and n ≥ 1 are integers. Notation: a ∨ b := max{a, b}.
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Theorem 3 Let γ > 0. Let (Zn, n ≥ 0) be a γ -dominable system, and let
Hn(u) := E(uZn). There exists a constant c4 ≥ 1, depending only on (m, γ ), such
that for all integers k ≥ 3, n ≥ 1 andM ≥ M0,

H(k)n (m) ≤ k! ck4 (n ∨M)k−1 ,

where H(k)n (·) stands for the k-th derivative of Hn(·).
Corollary 1 Let γ > 0. Let (Zn, n ≥ 0) be a γ -dominable system. There exists
a constant c5 > 0, depending only on (m, γ ), such that for M ≥ M0, n ≥ 1 and
v := m+ 1

2c4(n∨M) ,

E(Z2
nv
Zn) ≤ c5[ϑ(n ∨M)]1/2

n−1∏

i=0

[E(mZi )](m−1)/2; (8)

in particular, we have, with c6 := γ 1/2c5,

E(Z2
nv
Zn) ≤ c6(n ∨M). (9)

The rest of the section is devoted to the proof of Theorem 3 and Corollary 1.
We start by mentioning a general technique going back to Collet et al. [5]. Let
(Xn, n ≥ 0) denote a Derrida–Retaux system satisfying E(X0m

X0) <∞. Let

Gn(u) := E(uXn), n ≥ 0.

The iteration formula (1) is equivalent to:

Gn+1(u) = 1

u
[Gn(u)]m + (1− 1

u
) [Gn(0)]m, n ≥ 0. (10)

A useful trick of Collet et al. [5] consists in observing that this yields

(u− 1)uG′n+1(u)−Gn+1(u) = [m(u− 1)G′n(u)−Gn(u)] [Gn(u)]m−1 .

In particular, taking u = m yields that

Gn+1(m)− (m− 1)mG′n+1(m) = [Gn(m)− (m− 1)mG′n(m)] [Gn(m)]m−1 .

Iterating this formula gives that for n ≥ 1,

Gn(m)−(m−1)mG′n(m) = [G0(m)−(m−1)mG′0(m)]
n−1∏

i=0

[Gi(m)]m−1 . (11)
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In particular, (11) tells us that the sign of E(mXn) − (m − 1)E(Xn mXn) remains
identical for all n ≥ 0: it either is always positive (meaning that the system is
supercritical), or is always negative (subcritical), or vanishes identically (critical).

A couple of known results which we are going to use for the subcritical or
critical system: if (Xn, n ≥ 0) is a Derrida–Retaux satisfying E(mX0) ≤ (m −
1)E(X0m

X0) <∞, then for all n ≥ 0,

(m− 1)E(Xn mXn) ≤ E(mXn) ≤ m1/(m−1), n ≥ 0, (12)

n−1∏

i=0

[E(mXi )]m−1 ≤ c7 n
2, n ≥ 1, (13)

where c7 > 0 is a constant depending onm and on the law ofX0. See [1, (3.11)] for
the second inequality in (12) (proved in [1] for critical systems, and the same proof
valid for subcritical systems as well), and [3, Proposition 1] for (13).

The proof of Theorem 3 relies on the following preliminary result. Recall that
Hn(u) := E(uZn).

Lemma 1 Let (Zn, n ≥ 0) be a γ -dominable system for some γ > 0, in the sense
of Definition 1. There exist constants c8 > 0 and c9 > 0, depending only onm, such
that forM ≥ M0 and all integer n ≥ 1,

H ′′
n (m) ≤ c8 [ϑ(M)]1/2

n−1∏

i=0

Hi(m)
(m−1)/2, (14)

H ′′′
n (m) ≤ c9 ϑ(M)

n−1∏

i=0

Hi(m)
m−1. (15)

Proof Let

Dn(u) := (m− 1)u3H ′′′
n (u)+ (4m− 5)u2H ′′

n (u)+ 2(m− 2)uH ′
n(u), n ≥ 0.

Recall from Remark 1 that m(m− 1)H ′
0(m) ≤ H0(m). By Chen et al. [3, Equation

(19)], this yieldsDn+1(m) ≤ Dn(m)Hn(m)m−1 for all n ≥ 0. [In [3], it was proved
that ifm(m−1)H ′

0(m) = H0(m), thenDn+1(m) = Dn(m)Hn(m)m−1, but the proof
is valid for inequalities in place of equalities.] Accordingly, for all n ≥ 1,

Dn(m) ≤ D0(m)

n−1∏

i=0

Hi(m)
m−1.

By definition,Dn(m) ≥ m3(m− 1)H ′′′
n (m), so

H ′′′
n (m) ≤

D0(m)

m3(m− 1)

n−1∏

i=0

Hi(m)
m−1 . (16)



246 X. Chen and Z. Shi

For j ≥ 0, writing Z3
jm

Zj ≤ 9m3

2 Zj(Zj −1)(Zj −2)mZj−3 1{Zj≥3} +8m2, and

Z�j ≤ Z3
j for � ∈ {1, 2, 3}, we obtain

max
�∈{1, 2, 3}

E(Z�jm
Zj ) ≤ 9m3

2
H ′′′
j (m)+ 8m2 . (17)

Considering j = 0 and � ∈ {1, 2}, this gives max{H ′
0(m), H

′′
0 (m)} ≤

9m3

2 H ′′′
0 (m)+ 8m2. Consequently, with c10 := m3(m− 1), c11 := m2(4m− 5) and

c12 := 2m(m− 2),

D0(m) = c10H
′′′
0 (m)+ c11H

′′
0 (m)+ c12H

′
0(m) ≤ c13H

′′′
0 (m)+ c14 ,

where c13 := c10 + 9m3

2 (c11 + c12) and c14 := 8m2(c11 + c12). Since H ′′′
0 (m) ≤

ϑ(M)+6 ≤ 7ϑ(M) by assumption (6) (applied to k = 3; recalling that ϑ(M) ≥ 1),
we getD0(m) ≤ 7c13 ϑ(M)+ c14 ≤ c15 ϑ(M) with c15 := 7c13 + c14. Going back
to (16), we have

H ′′′
n (m) ≤

c15

m3(m− 1)
ϑ(M)

n−1∏

i=0

Hi(m)
m−1,

proving (15) with c9 := c15
m3(m−1)

.
It remains to prove (14). By (17) (applied to j = n),

E(Z3
nm

Zn) ≤ 9m3

2
H ′′′
n (m)+ 8m2 ,

whereas by (12), E(ZnmZn) ≤ m1/(m−1)

m−1 =: c16, it follows from the Cauchy–Schwarz
inequality that

E(Z2
nm

Zn) ≤ c1/2
16

(9m3

2
H ′′′
n (m)+ 8m2

)1/2
.

Recall from (15), which we have just proved, that H ′′′
n (m) ≤ c9ϑ(M)

∏n−1
i=0

Hi(m)
m−1. Writing 8m2 ≤ 8m2ϑ(M)

∏n−1
i=0 Hi(m)

m−1 (because ϑ(M) ≥ 1 and
Hi(m) ≥ 1), this yields

E(Z2
nm

Zn) ≤ c17 [ϑ(M)]1/2
n−1∏

i=0

Hi(m)
(m−1)/2,

with c17 := c1/2
16 (

9m3

2 c9+8m2)1/2. SinceH ′′
n (m) ≤ E(Z2

nm
Zn), we obtain (14) with

c8 := c17. ��
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Remark 2 We often use the following inequalities for dominable systems:

H ′′
n (m) ≤ c8 [ϑ(n ∨M)]1/2

n−1∏

i=0

Hi(m)
(m−1)/2, (18)

H ′′′
n (m) ≤ c9 ϑ(n ∨M)

n−1∏

i=0

Hi(m)
m−1, (19)

They are immediate consequences of Lemma 1 and the monotonicity of M �→
ϑ(M).

We also need an elementary inequality.

Lemma 2 Let � ≥ 4 be an integer, and let

B� := {u := (u1, . . . , um) ∈ ([0, �− 1] ∩ Z)m : u1 + · · · + um = �} . (20)

There exists a constant c18 > 0, depending only onm, such that for all y ≥ 3m,4

∑

u:=(u1,...,um)∈B�
y(�−η(u)−2)+ ∏

i: ui≥3

1

ui(ui − 1)
≤ c18

y�−4

�2 , (21)

where a+ := max{a, 0} as before, and

η(u) :=
m∑

i=1

1{ui≥1} ≥ 2 . (22)

Proof The sum over u := (u1, . . . , um) ∈ B� satisfying umax := max1≤i≤m ui ≤ 2
is very simple: in this case, � ≤ 2m; since η(u) ≥ 2, we have (�−η(u)−2)+ ≤ �−4.
The number of such u being smaller than 3m, we get

∑

u∈B�: umax≤2

y(�−η(u)−2)+ ∏

i: ui≥3

1

ui(ui − 1)
≤ 3my�−4 ≤ c19

y�−4

�2
,

with c19 := 3m(2m)2. [Notation:
∑

∅
:= 0.]

Let LHS (21) denote the expression on the left-hand side of (21). Then

LHS (21) ≤ c19
y�−4

�2 +
�∧m∑

j=2

(
m

j

)
j ! y(�−j−2)+ ∑

(u1,...,uj )

∏

i: 1≤i≤j, ui≥3

1

ui(ui − 1)
,

4Strictly speaking, we should write
∏
i: 1≤i≤m, ui≥3

1
ui (ui−1) for

∏
i: ui≥3

1
ui (ui−1) . Notation:

∏
∅
:=

1.
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where, on the right-hand side,
∑
(u1,...,uj )

sums over all (u1, . . . , uj ) ∈ Z
j
+ with

1 ≤ u1 ≤ u2 ≤ · · · ≤ uj such that u1 + · · · + uj = � and that uj ≥ 3. Note that
uj ≥ 3 implies j ≤ � − 2, thus (� − j − 2)+ = � − j − 2. Moreover, we have

uj ≥ �
j
≥ �
m

, thus uj (uj − 1) ≥ 1
2u

2
j ≥ �2

2m2 . Consequently,
∏
i≤j : ui≥3

1
ui(ui−1) is

bounded by 2m2

�2

∏
i≤j−1: ui≥3

1
ui(ui−1) . This leads to (using

(
m
j

)
j ! ≤ mj ):

LHS (21) ≤ c19
y�−4

�2 + 2m2

�2

(�−2)∧m∑

j=2

mjy�−j−2
∑

(u1,...,uj )

∏

i≤j−1: ui≥3

1

ui(ui − 1)

≤ c19
y�−4

�2
+ 2m2

�2

(�−2)∧m∑

j=2

mjy�−j−2
j−1∏

i=1

(
1+

∞∑

u=3

1

u(u− 1)

)
.

Of course,
∑∞
u=3

1
u(u−1) = 1

2 ; also, we bound
∑(�−2)∧m
j=2 by

∑∞
j=2. This yields that

LHS (21) ≤ c19
y�−4

�2 + 2m2

�2

∞∑

j=2

mjy�−j−2(
3

2
)j−1 .

On the right-hand side, write
∑∞
j=2m

jy�−j−2( 3
2 )
j−1 = m2y�−4 ∑∞

j=2(
m
y
)j−2

( 3
2 )
j−1; in view of our choice y ≥ 3m, this is bounded by m2y�−4 ∑∞

j=2(
1
3 )
j−2

( 3
2 )
j−1 = 3m2y�−4. As a consequence,

LHS (21) ≤ c19
y�−4

�2 + 6m4y�−4

�2 ,

yielding (21) with c18 := c19 + 6m4. ��
We have all the ingredients for the proof of Theorem 3.

Proof of Theorem 3 Let γ > 0 and let (Zn, n ≥ 0) be a γ -dominable system.
Write Hn(u) := E(uZn) as before. Recall ϑ(M) ≥ 1 (for all M ≥ M0) from (6)
and (7). Write, for brevity,

Qn :=
n−1∏

j=0

Hj(m)
m−1 =

n−1∏

j=0

[E(mZj )]m−1,

Mn := n ∨M,
ϑn := ϑ(Mn) = ϑ(n ∨M), n ≥ 1, M ≥ M0.

By assumption (7),

Qn ≤ ϑnQn ≤ γ M2
n, n ≥ 1 . (23)
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We claim that for all integer k ≥ 3,

H(k)n (m) ≤ ck−1
4 (k − 2)!Mk−3

n ϑnQn, n ≥ 1, (24)

where c4 := max{4 + c18c20
m
, c

1/2
9 , γ }, with c20 := mm/(m−1)(cm8 ∨ 1)(γ 3m/2 ∨ 1).

Since ϑnQn ≤ γ M2
n (see (23)), (24) will imply Theorem 3.

It remains to prove (24), which we do by induction in k ≥ 3.
By (19),H ′′′

n (m) ≤ c9 ϑnQn for n ≥ 1. So (24) holds for k = 3 since c9 ≤ c2
4.

Let � ≥ 4 be an integer. Suppose (24) holds for all k ∈ {3, 4, . . . , � − 1}. We
need to prove (24) for k = �.

We first prove that the induction assumption yields that for n ≥ 1 and u :=
(u1, . . . , um) ∈ B� (defined in (20)), we have, with c20 := mm/(m−1)(cm8 ∨
1)(γ 3m/2 ∨ 1) as before,

m∏

i=1

H(ui)n (m) ≤ c20c
�−2
4 M(�−η(u)−2)+

n ϑnQn
∏

i: ui≥3

(ui − 2)! , (25)

where η(u) := ∑m
i=1 1{ui≥1} is as in (22).

To check (25), let n ≥ 1 and u ∈ B�. SinceHn(m) ≤ m1/(m−1) =: c21 (see (12))
and H ′

n(m) ≤ 1
m−1 E(mZn) ≤ c21

m−1 ≤ c21, we have

m∏

i=1

H(ui)n (m) ≤ cm21H
′′
n (m)

λ2(u)
∏

i: ui≥3

H(ui)n (m) ,

where λ2(u) := ∑m
i=1 1{ui=2}. By (18), we have H ′′

n (m) ≤ c8 ϑ
1/2
n Q

1/2
n ; thus with

c22 := cm21 max{cm8 , 1},
m∏

i=1

H(ui)n (m) ≤ c22 (ϑnQn)
λ2(u)/2

∏

i: ui≥3

H(ui)n (m) .

By the induction assumption in (24), H(ui)n (m) ≤ c
ui−1
4 (ui − 2)!Mui−3

n ϑnQn if
ui ≥ 3. As such, we have

m∏

i=1

H(ui )n (m) ≤ c22 (ϑnQn)
λ2(u)/2

∏

i: ui≥3

(
c
ui−1
4 (ui − 2)!Mui−3

n ϑnQn

)

= c22 (ϑnQn)
λ2(u)/2 (c4Mn)

∑
i: ui≥3(ui−1)

(M−2
n ϑnQn)

η3(u)
∏

i: ui≥3

(ui − 2)! ,

where η3(u) := ∑m
i=1 1{ui≥3}. Note that

∑
i: ui≥3(ui − 1) = ∑m

i=1(ui − 1)+ −
λ2(u) = �− η(u)− λ2(u) ≤ �− 2. So c

∑
i: ui≥3(ui−1)

4 ≤ c�−2
4 (using c4 > 1). This
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leads to:

m∏

i=1

H(ui)n (m) ≤ c22 c
�−2
4 (ϑnQn)

λ2(u)
2 +η3(u) M�−η(u)−λ2(u)−2η3(u)

n

∏

i: ui≥3

(ui − 2)!

= c22 c
�−2
4 (ϑnQn)

λ2(u)
2 +η3(u)−1M�−η(u)−λ2(u)−2η3(u)

n ϑnQn
∏

i: ui≥3

(ui − 2)! .

Assume for the moment λ2(u)
2 + η3(u) ≥ 1. By (23), ϑnQn ≤ γ M2

n , so we have

(ϑnQn)
λ2(u)

2 +η3(u)−1 ≤ c23M
λ2(u)+2η3(u)−2
n , with c23 := max{γ 3m/2, 1}. Since

c20 = c22c23, we get

m∏

i=1

H(ui)n (m) ≤ c20 c
�−2
4 M�−η(u)−2

n ϑnQn
∏

i: ui≥3

(ui − 2)!,

yielding (25). If, on the other hand, λ2(u)
2 + η3(u) < 1, then λ2(u) ≤ 1 and η3(u) =

0, i.e., max1≤i≤m ui ≤ 2. This time, �−η(u) = ∑m
i=1(ui−1)+ ≤ 1. The situation is

very simple if we look at
∏m
i=1H

(ui)
n (m) directly: at most one term amongH(ui)n (m)

is H ′′
n (m) (which is bounded by c8 ϑ

1/2
n Q

1/2
n as we have seen in (18)), while all the

rest is either Hn(m) (which is bounded by m1/(m−1) =: c21) or H ′
n(m) (which is

bounded by 1 because by (12),H ′
n(m) = E(Zn mZn−1) ≤ m1/(m−1)

m(m−1) ≤ 1). Hence

m∏

i=1

H(ui)n (m) ≤ cm21c8 ϑ
1/2
n Q

1/2
n ≤ c24 ϑnQn ,

with c24 := cm21c8. [We have used ϑnQn ≥ 1.] This again gives (25) because c24 ≤
c20 and c4 > 1.

Now that (25) is proved, it is painless to complete the proof of Theorem 3. Indeed,
by (10),

sHn+1(s) = [Hn(s)]m + (s − 1)[Hn(0)]m .

On both sides, we differentiate � times with respect to s (recalling that � ≥ 4, so
the last term on the right-hand side, being affine in s, makes no contribution to the
derivatives), and apply the general Leibniz rule to the first term on the right-hand
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side; this leads to:

sH
(�)
n+1(s)+ �H (�−1)

n+1 (s) =
∑

(u1,...,um)∈Zm+: u1+···+um=�

�!
u1! · · · um!

m∏

i=1

H(ui)n (s)

= mH(�)n (s)Hn(s)m−1 +
∑

u∈B�

�!
u1! · · · um!

m∏

i=1

H(ui)n (s) .

Note that the expression on the left-hand side is at least sH (�)n+1(s). We take s = m
to see that

H
(�)
n+1(m)−H(�)n (m)Hn(m)m−1 ≤ 1

m

∑

u∈B�

�!
u1! · · · um!

m∏

i=1

H(ui)n (m).

By (25), we have
∏m
i=1H

(ui)
n (m) ≤ c20c

�−2
4 M

(�−η(u)−2)+
n ϑnQn

∏
i: ui≥3(ui − 2)!,

where η(u) := ∑m
i=1 1{ui≥1} is as in (22). Hence

H
(�)
n+1(m)−H(�)n (m)Hn(m)m−1 ≤ c20

m
c�−2

4 �!ϑnQn
∑

u∈B�
M(�−η(u)−2)+
n

∏

i:ui≥3

1

ui(ui − 1)
,

which, in view of Lemma 2 (applied to y := Mn), yields that, for n ≥ 1,

H
(�)
n+1(m) ≤ H(�)n (m)Hn(m)m−1 + c18

c20

m
c�−2

4 (�− 2)!M�−4
n ϑnQn.

Recall that Qn := ∏n−1
j=0Hj(m)

m−1. Iterating this inequality, and by means of the

monotonicity of n �→ M�−4
n ϑnQn, we get

H(�)n (m) ≤ H(�)0 (m)Qn +
n−1∑

j=0

c18c20

m
c�−2

4 (�− 2)!M�−4
n ϑnQn

=
(H(�)0 (m)

ϑn
+ nc18c20

m
c�−2

4 (�− 2)!M�−4
n

)
ϑnQn .

We use n ≤ Mn so that nM�−4
n ≤ M�−3

n . On the other hand, H(�)0 (m) ≤
M�−3(ϑ(M) + �!) (by assumption (6)), which is bounded by M�−3

n ϑn (1 + �!).
Thus

H(�)n (m) ≤
(

1+ �! + c18c20

m
c�−2

4 (�− 2)!
)
M�−3
n ϑnQn

≤ (1+ �(�− 1)+ c18c20

m
c�−2

4 ) (�− 2)!M�−3
n ϑnQn .
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Since � ≥ 4, we have 1 + �(� − 1) ≤ �2 ≤ 2� ≤ 4 c�−2
4 (because c4 ≥ 2), so

1 + �(� − 1) + c18c20
m
c�−2

4 ≤ 4 c�−2
4 + c18c20

m
c�−2

4 ≤ c�−1
4 by means of the fact that

c4 := max{4+ c18c20
m
, c

1/2
9 , γ }. Consequently,

H(�)n (m) ≤ c�−1
4 (�− 2)!M�−3

n ϑnQn ,

implying (24) for k = �, and completing the proof of Theorem 3. ��
Proof of Corollary 1. Only (8) needs proving because (9) will follow immediately
from (8) and assumption (7).

Let n ≥ 1 and s ∈ [m, m+ 1
2c4Mn

], where we keep using the notation

Mn := n ∨M .

Write Hn(u) := E(uZn) as before. Then

E(Z2
ns
Zn) = sH ′

n(s)+ s2H ′′
n (s) .

Since u �→ H ′′
n (u) is non-decreasing, we have H ′

n(s) ≤ H ′
n(m) + (s − m)H ′′

n (s);
hence

E(Z2
ns
Zn) ≤ sH ′

n(m)+ s(s −m)H ′′
n (s)+ s2H ′′

n (s) = sH ′
n(m)+ s(2s −m)H ′′

n (s) .

On the right-hand side, we use H ′
n(m) ≤ 1 (which has already been observed as a

consequence of (12)), andm ≤ s ≤ m+ 1 (so s(2s−m) ≤ (m+ 1)(m+ 2)), to see
that

E(Z2
ns
Zn) ≤ m+ 1+ (m+ 1)(m+ 2)H ′′

n (m+
1

2c4Mn
) .

To bound H ′′
n (m + 1

2c4Mn
), we recall that Zn is bounded for each n (which is a

consequence of the boundedness of Z0), so by Taylor expansion,

H ′′
n (m+

1

2c4Mn
)−H ′′

n (m) =
∞∑

k=3

(2c4Mn)
−(k−2)

(k − 2)! H(k)n (m) .

By (24), we haveH(k)n (m) ≤ ck−1
4 (k − 2)!Mk−3

n ϑnQn (for k ≥ 3). Hence

H ′′
n (m+

1

2c4Mn
)−H ′′

n (m) ≤
∞∑

k=3

(2c4Mn)
−(k−2)

(k − 2)! ck−1
4 (k−2)!Mk−3

n ϑnQn = c4
ϑnQn

Mn
.
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As such, we arrive at:

E(Z2
ns
Zn) ≤ m+ 1+ (m+ 1)(m+ 2)

(
H ′′
n (m)+ c4

ϑnQn

Mn

)
.

By (18), we have H ′′
n (m) ≤ c8 ϑ

1/2
n Q

1/2
n , whereas according to assumption (7),

we have Mn ≥ 1
γ 1/2 ϑ

1/2
n Q

1/2
n , this readily yields (8) (recalling that ϑnQn ≥ 1).

Corollary 1 is proved. ��

3 Proof of Theorem 2

Let (Yn, n ≥ 0) be a critical system such that E(sY0) < ∞ for some s > m. We
claim that with c25 := (supx>0 x (

s
m
)−x/e) ∨ 1 ∈ [1, ∞), we have, for all integer

k ≥ 1,

E(Y k0m
Y0) ≤ ck25 E(sY0) k! . (26)

Indeed, by definition,

x ≤ c25 (
s

m
)x/e ,

for all x > 0. Taking to the power k on both sides and with x := e �
k

, we see that for
all integers k ≥ 1 and � ≥ 1,

(
e �

k
)k ≤ ck25 (

s

m
)� .

Since k! ≥ ( ke )k by Stirling’s formula, this yields �km� ≤ ck25 s
� k!, from which (26)

follows.
Let L ≥ 1 be an integer, and let Z0 = Z0(M, L) := Y0 1{Y0≤L}. Then Z0 is

bounded, and does not depend on M , though we still treat it as indexed by M . Let
us check that assumptions (6) and (7) in Definition 1 are satisfied.

Since Z0 ≤ Y0, it follows from (26) that E(Zk0m
Z0) ≤ c26c

k
25 k! for k ≥ 1, where

c26 = c26(s) := E(sY0) ≥ 1. Let M ≥ c26c
4
25. Then Mk−3 ≥ (c26c

3
25)
k−3ck−3

25 ≥
c26c

3
25c

k−3
25 = c26c

k
25 for all integer k ≥ 4, so c26c

k
25 k! ≤ Mk−3k! for k ≥ 4. For

k = 3, we have c26c
3
25 3! ≤ c27 + 3! with c27 := 6(c26c

3
25 − 1) ∨ 1 ∈ [1, ∞). As

such, we see that for all integers k ≥ 3 andM ≥ c26c
4
25,

E(Zk0m
Z0) ≤ Mk−3(c27 + k!);

in words, assumption (6) is satisfied with ϑ(M) := c27 for allM ≥M0 := 1c26c
4
252.
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Assumption (7) is easily seen to be satisfied: by (13),
∏n−1
i=0 [E(mYi )]m−1 ≤ c7n

2

for all n ≥ 1, so (7) holds with γ := c7c27.
So we are entitled to apply Theorem 3 to see that for k ≥ 3, n ≥ 1 and M ≥

M0 := 1c26c
4
252,

E[Zn(Zn − 1) · · · (Zn − k + 1)mZn−k] ≤ k! ck4 (n ∨M)k−1 .

We take M := M0. Recall that Z0 = Z0(M0, L) := Y0 1{Y0≤L}. Letting L → ∞,
and applying the monotone convergence theorem, we get, for k ≥ 3 and n ≥ 1,

E[Yn(Yn − 1) · · · (Yn − k + 1)mYn−k] ≤ k! ck4 (n ∨M0)
k−1 .

This implies the desired inequality for k ≥ 3. The case k = 1 has already been

implicitly treated in the proof of Corollary 1 in Sect. 2: E(Yn mYn−1) = E(mYn)
m(m−1) ≤

m1/(m−1)

m(m−1) (see (12)). The case k = 2 follows from the cases k = 1 and k = 3 by the
Cauchy–Schwarz inequality. ��

4 Truncating the Critical System

Let (Yn, n ≥ 0) be a Derrida–Retaux system satisfying E(mY0) = (m −
1)E(Y0m

Y0) < ∞ (so the system is critical). Recall that the system (Yn, n ≥ 0) is
of “finite variance” if E(Y 3

0 m
Y0) < ∞, and is stable if P(Y0 = j) ∼ c0m

−j j−α ,
j →∞, for some c0 > 0 and 2 < α < 4 as in (4). The following theorem tells that
in either case, we can define

Z0 := Y0 1{Y0≤a(M)},

for some appropriate a(M) ∈ [1, ∞] such that (Zn, n ≥ 0) is dominable in the
sense of Definition 1; the values of a(M) and ϑ(M) (as defined in Definition 1) are
also given as they are often useful in the applications.

Theorem 4 Let (Yn, n ≥ 0) be a Derrida–Retaux system satisfying E(mY0) =
(m− 1)E(Y0m

Y0) <∞. If it is either of “finite variance” or stable, then there is a
dominable system (Zn, n ≥ 0) such that Z0 ≤ Y0 a.s. More precisely,

(i) if the system is of “finite variance”, we can chooseZ0 := Y0 1{Y0≤Mζ(M)} where
ζ(M) := − log E(Y 3

0m
Y0 1{Y0>M}) ≤ ∞,5 with ϑ(M) := max{E(Y 3

0m
Y0), 1};

(ii) if the system is stable, we can choose Z0 := Y0 1{Y0≤M}, with ϑ(M) :=
c30M

4−α, where c30 is the constant in (31) below.

5So limM→∞ ζ(M) =∞ by the “finite variance” assumption.



The Stable Derrida–Retaux System at Criticality 255

For the sake of clarity, the two situations (“finite variance”, stable) are discussed
in distinct parts.

4.1 Proof of Theorem 4: The “Finite Variance” Case

Assume E(mY0) = (m− 1)E(Y0m
Y0) <∞ and E(Y 3

0 m
Y0) <∞. Let

ζ(M) := − log E(Y 3
0m

Y0 1{Y0>M}) ≤ ∞ .

Since limM→∞ ζ(M)→∞, we can chooseM sufficiently large so thatM ζ(M) ≥
2. Let Z0 := Y0 1{Y0≤Mζ(M)}.

We claim that assumption (6) is satisfied with ϑ(M) := max{E(Y 3
0m

Y0), 1} and
that Z0 is bounded. For any integer k ≥ 3, we write

E(Zk0m
Z0) = E(Y k0m

Y0 1{Y0≤M})+ E(Y k0m
Y0 1{M<Y0≤Mζ(M)})

≤ Mk−3E(Y 3
0m

Y0 1{Y0≤M})+ E(Y k0m
Y0 1{M<Y0≤Mζ(M)}) .

The first term on the right-hand side is easy to handle: we have E(Y k0m
Y0 1{Y0≤M}) ≤

Mk−3E(Y 3
0m

Y0 1{Y0≤M}) ≤ E(Y 3
0m

Y0)Mk−3. In case ζ(M) = ∞, we have Y0 ≤ M
a.s., so Z0 is bounded and the second term on the right-hand side vanishes, which
yields (6) with ϑ(M) := max{E(Y 3

0m
Y0), 1}.

To treat the case ζ(M) <∞ (in which case Z0 is obviously bounded), let us look
at the second term on the right-hand side: since E(Y 3

0m
Y0 1{Y0>M}) = e−ζ(M), we

have

E(Y k0m
Y0 1{M<Y0≤Mζ(M)}) ≤ Mk−3ζ(M)k−3E(Y 3

0m
Y0 1{Y0>M})

= Mk−3ζ(M)k−3 e−ζ(M) .

Applying the inequality ex ≥ xk−3

(k−3)! (for x ≥ 0 and k ≥ 3) to x := ζ(M) yields (6)

again with ϑ(M) := max{E(Y 3
0m

Y0), 1}.
Consequently, regardless of whether ζ(M) is finite or infinite, Z0 is bounded,

and assumption (6) is satisfied with ϑ(M) := max{E(Y 3
0m

Y0), 1}. Note that ϑ(M)
does not depend onM .

Assumption (7) is also satisfied: by (13),
∏n−1
i=0 [E(mYi )]m−1 ≤ c7n

2 for all
n ≥ 1; since E(mZi ) ≤ E(mYi ) for all i ≥ 0, (7) is satisfied with γ :=
c7 max{E(Y 3

0m
Y0), 1}. ��
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4.2 Proof of Theorem 4: The Stable Case

We start with a simple inequality.

Lemma 3 Let (Xn, n ≥ 0) be a Derrida–Retaux system. If (m − 1)E(X0m
X0) <

E(mX0) <∞, then

∞∏

i=0

[E(mXi )]m−1 ≤ 1

E(mX0)− (m− 1)E(X0mX0)
.

Proof For the moment, let (Xn, n ≥ 0) be an arbitrary Derrida–Retaux system
satisfying E(X0m

X0) <∞, and such that E(mX0) = (m− 1)E(X0m
X0). By (11),

n−1∏

i=0

[E(mXi )]m−1 = E(mXn)− (m− 1)E(Xn mXn)
E(mX0)− (m− 1)E(X0mX0)

. (27)

For the nominator in (27), we observe that E(mXn)− (m− 1)E(Xn mXn) = E[(1−
(m− 1)Xn)mXn] ≤ P(Xn = 0) ≤ 1. If we assume (m− 1)E(X0m

X0) < E(mX0),
then the denominator in (27) is positive; the lemma follows immediately from the
monotone convergence theorem by letting n→∞. ��

We now proceed to the proof of Theorem 4 for stable systems. Assume E(mY0) =
(m − 1)E(Y0m

Y0) < ∞ and P(Y0 = j) ∼ c0m
−j j−α, j → ∞, for some c0 > 0

and 2 < α < 4 as in (4). This yields the existence of constants c28 ≥ c29 > 0 and
an integer j0 ≥ 1, all depending onm and on the law of Y0, such that

P(Y0 = j) ≤ c28m
−j j−α, j ≥ 1, (28)

P(Y0 = j) ≥ c29m
−j j−α. j ≥ j0, (29)

LetM ≥ j0 be an integer and let

Z0 := Y0 1{Y0≤M}, (30)

which is a bounded random variable. For integer k ≥ 3, we write

E(Zk0m
Z0) = E(Y k0m

Y0 1{Y0≤M}) ≤ Mk−3 E(Y 3
0m

Y0 1{Y0≤M}),

so by (28), we have

E(Zk0m
Z0) ≤ c28M

k−3
M∑

j=1

j3−α ≤ c28M
k−3

∫ M+1

0
x3−α dx

= c28M
k−3 (M + 1)4−α

4− α ≤ c28M
k−3 24−α M4−α

4− α .
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As such, assumption (6) is satisfied with

ϑ(M) := c30M
4−α, (31)

where c30 := max{c28
24−α
4−α , 1}. In particular,M �→ ϑ(M) is non-decreasing.

It remains to check assumption (7), which in this case states that for some
constant c31 > 0,

n−1∏

i=0

[E(mZi )]m−1 ≤ c31 (n ∨M)α−2, M ≥ j0, n ≥ 1. (32)

Since E(mZi ) ≤ E(mYi ), there is nothing to prove if n ≤ j0: it suffices to
take c31 such that c31 ≥ ∏j0−1

i=0 [E(mYi )]m−1. Let us assume n > j0. We have
∏n−1
i=0 [E(mZi )]m−1 ≤ ∏∞

i=0[E(mZi )]m−1, so by Lemma 3,

n−1∏

i=0

[E(mZi )]m−1 ≤ 1

E(mZ0)− (m− 1)E(Z0mZ0)
.

By definition, Z0 = Y0 1{Y0≤M}, and by assumption, E(mY0) = (m− 1)E(Y0m
Y0).

So

E(mZ0)− (m− 1)E(Z0m
Z0)

= E[((m− 1)Y0 − 1)mY0 1{Y0>M})+ P(Y0 > M) (33)

≥ E[((m− 1)Y0 − 1)mY0 1{Y0>M}) ,

which, by (29), is ≥ c29
∑∞
j=M+1((m − 1)j − 1)j−α ≥ c32

Mα−2 for some constant
c32 > 0 and allM ≥ j0. Consequently,

n−1∏

i=0

[E(mZi )]m−1 ≤ M
α−2

c32
, (34)

which is bounded by (n∨M)α−2

c32
as α > 2. This yields (32). ��

Remark 3 For further use, let us note that in the stable case, ϑ(M) := c30M
4−α

for all M ≥ M0 (by (31)), whereas
∏n−1
i=0 [E(mZi )]m−1 ≤ Mα−2

c32
(by (34)), so

inequality (8) in Corollary 1 implies that forM ≥ M0, n ≥ 1 and v := m+ 1
2c4(n∨M)

(c4 ≥ 1 being as before the constant in Theorem 3),

E(Z2
nv
Zn) ≤ c33(n ∨M)(4−α)/2M(α−2)/2 , (35)

where c33 := c5 c
1/2
30

c
1/2
32

.
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5 Proof of Theorem 1

Let (Yn, n ≥ 0) be a Derrida–Retaux system such that E(mY0) = (m −
1)E(Y0m

Y0) < ∞. We assume that P(Y0 = j) ∼ c0m
−j j−α , j → ∞, for some

c0 > 0 and 2 < α < 4 as in (4).

5.1 Upper Bound

We start with a lemma.

Lemma 4 Let (Xn, n ≥ 0) be a Derrida–Retaux system satisfying E(X0m
X0) <

∞. There exists a constant c34 > 0, depending only on m, such that ( n
2

0 := ∞)
n−1∏

i=0

[E(mXi )]m−1 ≤ c34
n2

E(X3
0m
X01{2≤X0≤3n})

, n ≥ 1 .

Proof The lemma was known in various forms. Recall from [3] that for s ∈ (m2 , m),
n−1∏

i=0

[E(mXi )]m−1 ≤
( m

2s −m
)n 1

Δ0(s)
, (36)

where

Δ0(s) :=
∞∑

k=1

mk((m− 1)k − 1)(1− (k + 1)xk + kxk+1)P(X0 = k),

with x := s
m
∈ ( 1

2 , 1). We now reproduce some elementary computations from [1].
For k ≥ 1, we have xk ≤ e−(1−x)k, so 1 − (1 + k)xk + kx1+k ≥ 1 − (1 + u) e−u,
where u := (1 − x)k > 0. Since 1 − (1 + v) e−v ≥ 1 − 2

e for v ≥ 1 (because

v �→ 1 − (1 + v) e−v is increasing on (0, ∞)) and 1 − (1 + v) e−v ≥ v2

2e for

v ∈ (0, 1] (because v �→ 1 − (1+ v) e−v − v2

2e is increasing on (0, 1]), we get, for
k ≥ 1,

1− (k + 1)xk + kxk+1 ≥ c35 min{(1− x)2k2, 1} ,
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where c35 := min{1 − 2
e ,

1
2e } > 0. Let n ≥ 1. We take s = sn := (1 − 1

3n)m (so
x = 1− 1

3n ), to see that

Δ0(sn) ≥ c35

∞∑

k=1

mk((m− 1)k − 1)min{ k
2

(3n)2
, 1}P(X0 = k)

≥ c35

(3n)2

3n∑

k=1

k2mk((m− 1)k − 1)P(X0 = k) .

We use (m− 1)k − 1 ≥ m−1
2 k for k ≥ 2, so that with c36 := c35

m−1
18 > 0

Δ0(sn) ≥ c36

n2

3n∑

k=2

k3mkP(X0 = k) = c36

n2 E(X3
0m
X0 1{2≤X0≤3n}).

This, in view of (36) (applied to s = sn), yields the lemma. ��
Proof of the Upper Bound in Theorem 1 By Lemma 4, for all n ≥ 1,

n−1∏

i=0

[E(mYi )]m−1 ≤ c34
n2

E(Y 3
0m

X01{2≤Y0≤3n})
.

Since P(Y0 = j) ∼ c0m
−j j−α , j → ∞, and 2 < α < 4, we have

E(Y 3
0m

Y01{2≤Y0≤3n}) ≥ c37 n
4−α for some constant c37 > 0 and all sufficiently

large n; this implies the upper bound in Theorem 1. ��

5.2 Lower Bound in Theorem 1

The proof of the lower bound in Theorem 1 needs some preparation.

Lemma 5 There exists a constant c38 > 0 such that for all sufficiently large integer
n, say n ≥ n0, we have

either
∏

i∈( n2 , n]∩Z
[E(mYi )]m−1 ≥ 8, or

n∏

i=0

[E(mYi )]m−1 ≥ c38 n
α−2 .

Proof Let M0 ≥ 1 and c33 ≥ 1 be the constants in (35) in Remark 3. Let c39 :=
[120(m − 1)c33]2/(α−2) ≥ 120. Let n ≥ 13c39M02 =: n0 be an integer, and let
M = M(n) := % n

c39
&. So n

2c39
≤ M ≤ n

120 . Let un := m− c40
n

, where c40 := 30m.
We can enlarge the value ofM0 if necessary to ensure that un > m

2 .



260 X. Chen and Z. Shi

We discuss on two possible situations, each leading to one of the inequalities
stated in the lemma.

First situation: E[(1− (m− 1)Yi)u
Yi
n ] < 1

2 for all i ∈ ( n2 , n] ∩Z. In this situation,

we have, for all i ∈ ( n2 , n] ∩ Z, (m− 1)E(Yi u
Yi
n ) ≥ E(uYin )− 1

2 ≥ 1
2 , thus

E(Yi uYin ) ≥
1

2(m− 1)
.

Consider the function s �→ fi(s) := E(sYi ), s ∈ [0, m]. We have

E(mYi ) = fi(m) ≥ fi(un)+ (m− un)f ′i (un) ≥ 1+ (m− un)f ′i (un).

Since m − un = 30m
n

and f ′i (un) = 1
un

E(Yi u
Yi
n ) ≥ 1

m
1

2(m−1) = 1
2m(m−1) , we

get, for all i ∈ ( n2 , n] ∩ Z,

E(mYi ) ≥ 1+ 15

(m− 1)n
.

Consequently,

∏

i∈( n2 , n]∩Z
[E(mYi )]m−1 ≥

(
1+ 15

(m− 1)n

)(m−1)n/2 ≥ 8 .

Second (and last) situation: E[(1 − (m − 1)Y�)u
Y�
n ] ≥ 1

2 for some � = �(n) ∈
( n2 , n] ∩ Z. We will be working with this particular � in the rest of the proof.
Let Z0 := Y0 1{Y0≤M} as in (30). Let (Zn, n ≥ 0) be a Derrida–Retaux system
whose initial distribution is given by Z0.

Since un ∈ [1, m], the function x �→ (1− (m− 1)x)uxn is decreasing on [0, ∞),
so

E[(1− (m− 1)Z�)uZ�n ] ≥ E[(1− (m− 1)Y�)uY�n ] ≥
1

2
. (37)

Consider the function

ϕ(s) := E[(1− (m− 1)Z�)s
Z� ], s ≥ 0,

which is well-defined because Z� is bounded. We have just proved that ϕ(un) ≥ 1
2 .

Let vn := m+ 1
2c4n

, where c4 ≥ 1 is the constant in Theorem 3. Since vn > m, we
have, by concavity of ϕ(·),

ϕ(vn) ≥ ϕ(m)+ (vn −m)ϕ′(vn) .



The Stable Derrida–Retaux System at Criticality 261

By assumption, the system (Yn, n ≥ 0) is critical, so (Zn, n ≥ 0) is subcritical (or
critical in case Y0 ≤ M a.s.), which implies that (m−1)E(Z� mZ�) ≤ E(mZ�). This
means that ϕ(m) ≥ 0. On the other hand, vn −m = 1

2c4n
, whereas

ϕ′(vn) = E[(1− (m− 1)Z�)Z�v
Z�−1
n ] ≥ −(m− 1)E(Z2

�v
Z�−1
n ),

which is = −m−1
vn

E(Z2
�v
Z�
n ) ≥ −m−1

m
E(Z2

�v
Z�
n ). Assembling these pieces together

yields that

ϕ(vn) ≥ − 1

2c4n

m− 1

m
E(Z2

�v
Z�
n ) .

Since vn = m + 1
2c4n

≤ m + 1
2c4�

= m + 1
2c4(�∨M) (to obtain the last equality,

we have used the fact that � ≥ n
2 ≥ M), we are entitled to apply inequality (35) in

Remark 3 to see that

E(Z2
�v
Z�
n ) ≤ c33(� ∨M)(4−α)/2M(α−2)/2 .

Since (� ∨M) = � ≤ n andM ≤ n
c39

, this yields

E(Z2
�v
Z�
n ) ≤ c33n

(4−α)/2( n
c39
)(α−2)/2 = c33

c
(α−2)/2
39

n .

Accordingly,

ϕ(vn) ≥ − 1

2c4n

m− 1

m

c33

c
(α−2)/2
39

n = − c41

c
(α−2)/2
39

,

where c41 := c33
2c4

m−1
m

. On the other hand, we have ϕ(un) ≥ 1
2 (see (37)). Since

m = βun + (1 − β)vn with β := 1
1+2c4c40

∈ (0, 1), it follows from concavity of
ϕ(·) that

ϕ(m) ≥ β ϕ(un)+ (1− β) ϕ(vn) ≥ β
2
− (1− β) c41

c
(α−2)/2
39

=
1− 4c4c40c41

c
(α−2)/2
39

2(1+ 2c4c40)
.

Our choice of the constant c39 ensures 4c4c40c41

c
(α−2)/2
39

= 1
2 ; hence ϕ(m) ≥ 1

4(1+2c4c40)
=:

c42, i.e.,

E(mZ�)− (m− 1)E(Z� mZ�) ≥ c42 .
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Recall from (27) that

�−1∏

i=0

[E(mZi )]m−1 = E(mZ�)− (m− 1)E(Z� mZ�)
E(mZ0)− (m− 1)E(Z0mZ0)

.

On the right-hand side, the numerator is at least c42, whereas the denominator has
already appeared in (33):

E(mZ0)− (m− 1)E(Z0m
Z0) = E[((m− 1)Y0 − 1)mY0 1{Y0>M})+ P(Y0 > M)

≤ (m− 1)E(Y0m
Y0 1{Y0>M}) .

Our assumption P(Y0 = j) ∼ c0m
−j j−α (for j → ∞) yields that

E(Y0m
Y0 1{Y0>M}) ≤ c43

Mα−2 for some constant c43 > 0 depending on the law
of Y0. As a consequence,

�−1∏

i=0

[E(mZi )]m−1 ≥ c42

c43M−(α−2)
= c44M

α−2 ,

where c44 := c42
c43

. This implies that

n−1∏

i=0

[E(mYi )]m−1 ≥
�−1∏

i=0

[E(mYi )]m−1 ≥
�−1∏

i=0

[E(mZi )]m−1 ≥ c44M
α−2 .

SinceM ≥ n
2c39

, this completes the proof of the lemma. ��
We have all the ingredients for the proof of the lower bound in Theorem 1.

Proof of the Lower Bound in Theorem 1. It follows quite easily from Lemma 5.
Indeed, let n0 be the integer in Lemma 5, and let n ≥ 2n0. According to Lemma 5,
there are two possibilities:

• either we have
∏
i∈(n/2j+1, n/2j ]∩Z[E(mYi )]m−1 ≥ 8 for all 0 ≤ j ≤ % log(n/n0)

log 2 &,
in which case we have

n∏

i=0

[E(mYi )]m−1 ≥ 8%
log(n/n0)

log 2 & ≥ 8
log(n/n0)

log 2 −1 = n3

8n3
0

,

which yields the lower bound in Theorem 1 because 3 > α − 2.
• or there exists an integer 0 ≤ j∗ = j∗(n) ≤ % log(n/n0)

log 2 & such that
∏n/2j

∗
i=0 [E(mYi )]m−1 ≥ c38 (

n

2j∗ )
α−2 and that

∏
i∈(n/2j+1, n/2j ]∩Z[E(mYi )]m−1 ≥

8 for all non-negative integer j < j∗ (if there is any); in this case, we have
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(recalling notation:
∏

∅
:= 1)

n∏

i=0

[E(mYi )]m−1 ≥
n/2j

∗
∏

i=0

[E(mYi )]m−1 ×
j∗−1∏

j=0

∏

i∈(n/2j+1, n/2j ]∩Z
[E(mYi )]m−1

≥ c38 (
n

2j∗
)α−2 × 8j

∗
,

which implies that

n∏

i=0

[E(mYi )]m−1 ≥ c38 n
α−2 2(5−α)j∗ ≥ c38 n

α−2 .

In both situations, the lower bound in Theorem 1 is valid. ��
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A Class of Random Walks
on the Hypercube

Andrea Collevecchio and Robert C. Griffiths

Dedicated to the memory of Prof. Vladas Sidoravicius

Abstract We introduce a general class of time inhomogeneous random walks on
the N-hypercube. These random walks are reversible with an N-product Bernoulli
stationary distribution and have a property of local change of coordinates in a
transition. Several types of representations for the transition probabilities are found.
The paper studies cut-off for the mixing time. We observe that for a sub-class
of these processes with long range (i.e. non-local) there exists a critical value of
the range that allows an almost-perfect mixing in at most two steps. That is, the
total variation distance between the two steps transition and stationary distributions
decreases to zero as the dimension of the hypercubeN increases. Notice that a well-
known result (Theorem 1 in [6]) shows that there does not exist a random walk on
Abelian groups (such as the hypercube) which mixes perfectly in exactly two steps.

Keywords Hypercube · Random walk · Markov chain · Mixing
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1 Introduction

This paper studies a general class G of reversible Markov chains on the vertices of a
hypercube {0, 1}N . For each process in this class, there exists a p ∈ (0, 1) such that
the stationary distribution of the chain is a product-measure ⊗Ni=1θi , where θi are
Bernoulli(p) measures. The chains are allowed to have long-range steps. The class
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of Markov chains has the following equivalent characterizations.

(a) A local changes property (formally introduced as (3)) holds so that the
probability that a subset of coordinates change in a transition only depends on
the same subset of coordinates at the prior time.

(b) The chain is driven by an acceptance-rejection scheme on a deterministic hy-
percube random walk which can be described as follows. At each stage a subset
of coordinates is chosen according to a certain random rule, independently of
the past of the chain. In the acceptance rejection step if a coordinate is chosen
then it changes according to a transition matrix (with row and columns labelled
by 0, 1)

P ◦ =
(

0 1
q
p

1− q
p

)

(1)

where q = 1− p and p ≥ q . Details are in Sect. 5.1.
(c) The spectral decomposition of the transition probability has a diagonal expan-

sion in the tensor product basis, orthogonal on the stationary distribution which
is product Bernoulli(p). A characterization of the eigenvalues of the transition
distribution solves the Lancaster problem for the tensor product basis.

(d) A random walk representation (see Theorem 7).

We emphasize that the processes that we are studying are not necessarily homoge-
neous in time. Examples from this class of Markov chains are discussed in Sect. 2,
and include (1) the classical random walk on the hypercube, (2) long range random
walks, (3) walks with a mixture of i.i.d. updates. The type of processes we are
studying are intimately connected to the generalized Ehrenfest Urn model studied
in [4], by considering the Hamming distance from a vector of all zeroes on the
hypercube. The coordinate Markov chain is of course a finer look at how individual
balls change colour in an Ehrenfest urn. In the class we study the N coordinates
are not necessarily exchangeable, but we often take them to be as this is a natural
assumption.

Our contribution can be summarized as follows.

• Spectral expansions for random walks on a hypercube are well studied, however
a Lancaster characterization of all possible Markov chains with tensor product
eigenfunctions and the equivalence of (a), (b), (c), (d) does not seem to be known
in the same way as presented here. We provide an explicit, computable formula
for the eigenvalues.

• We use the spectral decomposition to study the behaviour of the mixing time
of Markov chains in G as the state space increases, both in terms of total
variation and χ2 distances. Among other things, our results highlight a certain
discontinuity of the mixing time in terms of the size of a single step of the
random walk. We characterize the cases when the chain mixes almost-perfectly
in at most two steps. This means that the total variation distance between the
distribution of the process at time 2 and the stationary distribution decreases to
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zero as the dimension of the hypercube increases (see Definition 5). For example,
to illustrate this phenomena, consider the following chain, which is described in
detail in Example 2 below. Fix p > 1/2 and a parameter α ∈ (0, 1]. At each
step exactly %αN& coordinates are picked uniformly at random and their value
is changed with the following procedure by making transitions according to P ◦
(defined in (1)), which is repeated independently for each coordinate selected.
That is, if a coordinate is 0 it changes to 1, while if it is 1 then an independent
randomization is used. The 1 becomes 0 with probability q/p, and does not
change otherwise. If α = p, we prove that the chain we just described mixes
almost perfectly in exactly1 2 steps.

The value α = p is what we call the critical value. Moreover almost-perfect mixing
in at most 2 steps is observed in the window α ∈ [p− v/√N,p+ v/√N ] where v
is any real number, and can even be random. On the other hand, if α = p the chain
mixes in the order of logN steps, and a cut-off is proved in the χ2 distance.

Notice that p is allowed to depend on N , and we find interesting the case where
pN converges to 1/2. This can be interpreted as a small perturbation of the case
p = 1/2. Comparing this result with the existing literature on long-range random
walks on the hypercube with p = 1/2, we observe a big gap, as the latter process
mixes slowly, at least in the χ2 distance when there is a laziness assumption (see
[11]).

The almost-perfect mixing in exactly two steps described above is possibly
unexpected also because of a well-known result by Diaconis and Shahshahani [6]
which implies that no random walk on an Abelian group reaches perfect stationarity
in exactly two steps.

The mixing time in a random walk on the hypercube can be greater than the
mixing time for the Hamming distance of the random walk. Example 6 shows how
this difference is highly dependent on the inital condition. In Sect. 3 we provide a
short literature review.

2 Model and Main Results

We define a class G of Markov chains as follows. Let X = (Xt)t∈Z+ be a reversible
Markov chain with state space VN = {0, 1}N , for some N ∈ N. The process X is in
the class G if and only if satisfies the following two conditions.

Condition 1 There exists a parameterp ≥ 1/2 such that the following is the unique
stationary measure for X,

πN(y, p) := p‖y‖(1− p)N−‖y‖ := p‖y‖qN−‖y‖, (2)

1It is immediate to see that in 1 step the chain is far away from stationarity. In fact, if the
starting point is (0, 0, . . . , 0) then, after 1 step, there are exactly %pN& ones. π gives a very small
probability for this to happen.
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where y ∈ VN , and ‖y‖ is the sum of ones appearing in y, i.e. the Hamming
distance between y and 0 = (0, 0, . . . , 0) ∈ VN . In many occasions, we drop
N from the notation, and simply use π(y, p).

Condition 2 For any y ∈ VN , denote by y = (y[1], y[2], . . . y[N]) its coordinates.
For all B ⊆ [N] = {1, 2, . . .N} let y(B) be the projection from VN on B
defined as the vector y(B) = (y[j ], j ∈ B). We assume that

P(Xt(B) ∈ C | Xt−1) = P(Xt(B) ∈ C | Xt−1(B)). (3)

For any pair of probability measures μ and ν defined on a countable space Ω ,
define the total variation distance

‖μ− ν‖T V = max
A⊆Ω |μ(A)− ν(A)|.

Definition 1 Let X ∈ G . Define a sequence (Zt )t∈N of independent random vectors
in VN , with the following distribution

P(Zt ∈ S) = P(Xt ∈ S | Xt−1 = 0).

From now on, we denote the coordinates of Zt by (Zt [1], Zt [2], . . . Zt [N]).
Remark 1 In what follows, Pt (· | x) is the probability mass function of Xt given
X0 = x. Moreover, when considering a generic X ∈ G we denote by N the
dimension of the corresponding hypercube.

The following representation holds.

Theorem 1 (Spectral Representation) The process X ∈ G if and only if

Pt (y | x) = π(y, p)
{

1+
∑

A⊆[N ],A=∅

(
t∏

m=1

ρA,m

) (
p

q

)|A| ∏

j∈A

(
1− x[j ]

p

)(
1− y[j ]

p

)}
,

(4)

with an explicit representation for the eigenvalues of

ρA,m = E

⎡

⎣
∏

j∈A

(
1− Zm[j ]

p

)
⎤

⎦ . (5)

If ρA,m only depends on |A| then we denote ρ|A| = ρA,m.

Remark 2 The spectral representation in (4) simplifies when X is time-homogenous
and instead of a product, we simply have ρtA. Notice that the previous representation
holds also in cases when the chain is reducible and/or periodic.
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Example 1 (Lazy Simple Random Walk on the Hypercube (RWH)) Let X0 be a
vertex of the N-dimensional hypercube, and define the process (Xt)t∈N recursively
as follows. Suppose that at stage t + 1, a fair coin is flipped. If it shows Head,
Xt+1 = Xt . If the coin shows Tail, then a coordinate of Xt is chosen uniformly at
random, and it is changed. This process has been studied extensively. In particular
it was shown in [7] that it exhibits a cut-off at (1/4)N logN .

Example 2 (Non-Local Random Walk on the Hypercube (NLRWH)) Consider the
following random walk. Fix parameters pN ≥ 1/2, qN = 1 − pN , and zN ∈ [N].
Pick a set of coordinates with cardinality zN uniformly at random, i.e. each possible
choice is picked with probability

(
N

zN

)−1

.

For each coordinate i selected, perform the following Acceptance-Rejection proce-
dure with parameter pN :

(a) If Xt [i] = 0 then Xt+1[i] = 1
(b) If Xt [i] = 1 then randomize further, and set

Xt+1[i] =
{

0 with probability qN
pN

1 otherwise
.

The stationary distribution is unique, and is a product Bernoulli (pN) measure. The
case pN ≡ 1/2, with an additional assumption of lazyness, was studied in [11].

Example 3 (Mixture of i.i.d. Updates for Each Coordinate) Fix pN ≥ 1/2. Define
a process (Xt)t∈N recursively. Let X0 = 0 := (0, 0, . . . , 0) ∈ VN . Suppose that
we have defined Xt , then we obtain Xt+1 as follows. Let I (N)t be a random variable
with distribution νN,t . We assume that for any fixed N ∈ N, the random variables
(I
(N)

t )t∈N are independent. Given I (N)t = αN,t , for each coordinate j ∈ [N] =
{1, 2, . . .N} flip an independent coin that has probability αN,t of showing Head. If
the coin shows Tail then we set Xt+1[j ] = Xt [j ]. The coordinate is selected if and
only if the corresponding coin shows Head. For each selected coordinate we repeat
the Acceptance Rejection procedure described in the Example 2 with parameter pN .
The stationary distribution is a product Bernoulli (pN ) measure.

Example 4 (Blocks Update) Partition the space [N] into L disjoint subsets
C[1], . . . , C[L]. Exactly one group is chosen, each with equal probability. For
each coordinate j of this group repeat the Acceptance-Rejection method described
in Example 2 with parameter pN . The Markov chain X is reversible with respect
the measure product measure of i.i.d. Bernoulli’s with parameter p. Denote γ as the
probability distribution with γ [j ] = ‖A[j ]‖/N , j ∈ [L]. In the representation (5)
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Zm[j ] = 1, j ∈ C[k] and Zm[j ] = 0, j /∈ C[k] with probability γ [k], k ∈ [L]. The
eigenvalues in a time homogeneous chain are for A ⊆ [N],

ρA =
L∑

k=1

γ [k]
(
− q
p

)‖A∩C[k]‖
.

Condition 2 implies that marginally {Xt(C[k])}t∈Z+, for k ∈ [L] are random walks
in G on V‖C[k]‖. In {Xt }t∈Z+ the blocks are linked by making a choice of one
to choose in a transition. The stationary distribution is a product Bernoulli (pN )
measure.

Example 5 Nestoridi and Nguyen [12] describe a random walk on the edges of a
bipartite graph motivated by the Diaconis–Gangolli random walk over Z/qZ on
contingency tables [3]. Let U,V be vertex sets in a bipartite graph with |U | = n,
|V | = n. A particular version of their random graphs, when q = 2, that preserves the
parity of each vertex in U and V is the following. At each step select, independently
from the past, distinct ui, uj ∈ U , , vk, vl ∈ V with uniform probability. Delete
existing edges and add edges to those pairs of vertices which are not joined. It is
easy to check that the parity of the vertex degrees in U,V is invariant under such a
transition. The mixing time of such a chain is studied in [12].

We show next how to express this Markov chain in terms of the model studied
this paper. Let N = n2. The process X = {Xt }t∈Z+ has coordinates indexed in
[n] × [n] and is defined by

Xt [i, k] =
{

1 if (ui, vk) is an edge

0 if (ui, vk) is not an edge.

Set p = 1/2. In this context, for each t the random vector Zt contains exactly
four 1’s. The distribution of Zt is such that four pairs with distinct coordinates
(i, k), (i, l), (j, k), (j, l) are chosen uniformly from [n]×[n]with probability

(
n
2

)−2.
The entries ofZt at these coordinates are taken to be 1 and the other entries are taken
to be 0. In a transition entries at the four coordinates are toggled from 0 to 1 or 1
to 0. A stationary distribution of the chain is product Bernoulli (1/2) in the sense
that if X0 has this distribution then so does Xt for all t ≥ 0. However for a fixed
X0 the limiting distribution is not the product measure, but has uniform measure on
bipartite graphs with the same degree parity as X0 determines.

Remark 3 (De Finetti Sequences) In Example 3, when X is time homogenous, and
νN,t is a Dirac mass at r

ρn,t = ρn =
n∑

k=0

(
n

k

)
rk(1− r)n−k

(
− q
p

)k =
(

1− r

p

)n
. (6)
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If r = p then ρn = 0 for n = 1, . . . N . X is then a sequence of i.i.d. random
variables, which mixes in one step. If r = p then |ρ1| is the maximum value of |ρn|.
More generally, when νN,t ≡ νN ,

ρn,t = ρn =
∫

[0,1]

(
1− r

p

)n
νN(dr).

The stationary distribution is a product Bernoulli (pN ) measure.
This Remark is continued in Theorem 5 where mixing times are found when ν

has a density h(x) ∼ cxγ , γ > −1 as x → 0. Beta densities have this property.

Definition 2 We define the collection C of sequences (X(N))N∈N ∈ G N with the
following property. For each N ∈ N,

• the state space of X(N) is VN , and
• there exists a sequence (pN)N ∈ [1/2, 1]N such that πN(·, pN ) is a stationary

distribution for X(N), and limN→∞ pN = p for some p ∈ [1/2, 1].
From now on, once an element of C is fixed, denote by P (N)t the transition kernel of
X(N).

Define

tmix(ε, x) = inf{t : ‖P (N)t (· | x)− πN(·)‖T V ≤ ε}.

Let tmix(ε) = supx∈VN tmix(ε, x).
Theorem 2 is quite general and simple to prove. This result provides almost the

correct order for the mixing time, missing a logarithmic factor. It provides bounds
that are sharp up to a logarithmic factor in the case of exchangeability (defined in (7)
below).

Theorem 2 (General Lower Bound for tmix) Suppose that (X(N))N ∈ C and
each process in the sequence is time homogeneous, i.e. (Z(N)i )i∈N are identically
distributed for each N . Define

θN = min
j∈[N]P(Z

(N)[j ] = 1).

There exists a > 0 such that tmix(ε) ≥ aθ−1
N , where we set a/0 = ∞. Notice that

θN > 0 guarantees irreducibility of the Markov chain X(N) .

Definition 3 A random variable Z which takes values on VN is said to be
exchangeable if

P(Z = x) = P(Z = y) whenever ‖x‖ = ‖y‖. (7)
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Definition 4 Let P be a measure and Q a positive measure both defined on the
subsets of VN . Define

χ2(P |Q) =
∑

y∈VN

(
P(y)−Q(y)

)2

Q(y)
.

We set χ2(x, t) = χ2(Pt (· | x) |πN). Moreover, let

t
(2)
mix(ε, x) = inf{t : χ2(x, t) ≤ ε},

and t (2)mix(ε) = supx∈VN tmix(ε, x).

Definition 5 Consider a sequence (X(N))N ∈ C . We say that this sequence mixes
almost perfectly in t0 steps, where t0 ∈ N is fixed, if

lim
N→∞ sup

x∈VN
‖Pt0(· | x)− πN(·, pN )‖T V = 0.

Theorem 3 (Almost-Perfect Mixing in Two Steps) Consider a sequence
(X(N))N ∈ C . We make the following assumptions.

• pN > 1/2 for all N ∈ N and pN → p ≥ 1/2.
• For N ∈ N each of the random variables Z(N)1 , Z

(N)

2 is exchangeable within
coordinates in the sense of definition 3.

• For m = 1, 2 let ζNm = ‖Z(N)m ‖ and assume that there exists random variables
Vm such that

limN→∞ ζNm−Np√
Npq

= Vm (in distribution)

supN E

[
(ζNm−Np)a
(Npq)a/2

]
<∞ for some a > 1, (8)

E[eV 2
j /2] <∞, j = 1, 2.

Then (X(N))N∈N mixes almost-perfectly in two steps.

Remark 4 The proof of Theorem 3 provides explicit estimates for the error in the
total variation for any fixed t ∈ N. In particular, under the assumption of Theorem 3,
we have that

sup
x∈VN

‖Pt (· | x)− πN(·, pN)‖T V ≤ C
(

2qN
NpN

)t−1

.

where C depends on V1 and V2 only.

The next result describes a cut-off phenomena for NLRWH (recall Example 2).
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Theorem 4 (Cut-off for NLRWH) Let (X(N)) ∈ C and assume that each X(N) are
defined as in Example 2, with stationary distribution πN(·, pN).
1. If limN→∞ zN/N = 0, then both tmix(ε) and t (2)mix(ε) exhibit a sharp cutoff at

NpN
2zN

logN . That is, setting

tC = NpN
2zN

(logN + C),

for all C < 0 small enough, tmix(ε), t
(2)
mix(ε) > tC , and for all C large enough

tmix(ε), t
(2)
mix(ε) < tC .

2. If zN/N = w ∈ (0, 1] \ {p}, then t (2)mix(ε) exhibits a sharp cutoff at

tC = pN
2w
(logN + C).

Let P t(· |x) be the p.m.f. of ‖Xt‖ conditional on X0 = x. Let QN be a Binomial
with parameters N and p. Define χ2 for the Hamming distance as χ2

H(x, t) =
χ2(P t (· |x) | QN).

t
(2)
mix(ε) = inf{t : max

x
χ2
H(x, t) ≤ ε}.

In what follows we use the following notation. For two sequences (aN)N and (bN)N
of real numbers aN ∼ bN if an only if

lim
N→∞

aN

bN
= 1.

Theorem 5 (De Finetti Sequences—Mixing Time) Suppose that in the de Finetti
case described in Remark 3 p > q , and ν(u) has a density h(u) with respect to the
Lebesque measure satisfying h(u) ∼ cuγ as u→ 0 for c > 0 and γ > −1. Then

t
(2)
mix = J

N

logN
, where J = − log q

2(γ + 1)
.

This mixing time should be compared with the case were νN is a dirac mass at
a point α ∈ (0, 1) \ {p}, i.e. i.i.d. updates (also studied in [15]). In this context,
using (6), we have

χ2
H(0, t) =

N∑

n=1

(
N

n

) (
p

q

)n (
1− α

p

)2tn

=
(

1+ p
q

(
1− α

p

)2t
)N

− 1.

(9)
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The latter equation shows a completely different behaviour. In fact, it is shown in
Sect. 8.2 that χ2

H (0, t) = supx∈VN χ
2
H(x, t). Equation (9) shows that when νN,t is a

dirac mass at α = p then it has a cut-off at b lnN when we consider the χ2 distance,
with b depending on α only. Hence it mixes much faster than the exchangeable case
in Theorem 5.

Theorem 6 (Constant Order Mixing at Critical Initial Conditions) Fix ε > 0.
Let (X(N)) ∈ C and assume that each X(N) is defined as in Example 2, with stationary
distribution πN(·, pN ). If ‖x‖/N = p and zN = wN , with w > 0, then there exists
tε not depending on N such that t (2)mix(ε) ≤ tε .
The following representation characterizes the process in G in terms ofN (possibly)
dependent random walks.

Theorem 7 (Random Walk Representation) Suppose that X ∈ G . We have

Pt (y | x) = π(y, p)E
[ N∏

j=1

(
1−

(
− q
p

)S(t)[x,y,j ])]
, (10)

where S(t)[x, y, j ] = x[j ]+y[j ]−1+∑t
k=1 Zk[j ], and the parameters p ≥ q are

the same as in (2). The vectors (Zj )j∈N are independent and their distribution is
defined in Definition 1. Vice versa, if the random vectors (Zj )j∈N are independent,
then the process with transition functions defined as in (10) belongs to G .

In the following example we discuss some implications of the random walk
representation in the case of infinite de Finetti sequences.

Remark 5 (Infinite de Finetti Sequences) A Markov chain (Xt)t∈Z+ with state space
V∞ is well defined if (Zt )t∈Z+ are homogeneous independent sequences in V∞ such
that their coordinates are distributed exchangeably. By de Finetti’s theorem there
exists a sequence of measures (νt )t∈Z+ such that for any N coordinates of Zt , with
η ∈ VN .

P
(
Zt [j1] = η[1], . . . , Zt [jN ] = η[N]) =

∫

[0,1]
r‖η‖(1− r)N−‖η‖νt (dr).

Eigenvalues in the spectral decomposition of the transition distribution from t to
t + 1 for N coordinates are

ρn,t =
∫

[0,1]

(
1− r

p

)n
νt (dr), n ≤ N,

and eigenvalues in the spectral decomposition of the transition distribution from 0
to t + 1 are

∏t
m=1 ρn,m. The finite dimensional distributions of (Xt )t∈Z+ are well

defined and consistent because of the way the process is constructed from (Zt )t∈Z+ .
If in addition, the coordinates ofX0 are exchangeable then the coordinates ofXt are
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exchangable as well, and there exists a sequence of measures μt on [0, 1] such that
for the projection of Xt to its first N coordinatesX(N)t satisfies, for y ∈ VN ,

P
(
X
(N)
t = y

) =
∫

[0,1]
s‖y‖(1− s)N−‖y‖μt(ds).

The structure of the measure μt is seen from the random walk representation (10).
Consider the first N coordinates of Xt . Let the coordinates of X0 be Bernoulli (γ ),
where γ is a random variable on [0, 1] with measure ν0. Also let the coordinates
of Zt [k] be Bernoulli (θ [k]) conditionally on the random variable θt [k] that has
distribution νt . The distribution of θt = (θt [1], . . . θt [N]) is the product measure
⊗ti=1νi . Conditionally on θ , we have that the random variable

∑t
k=1 Zk[j ] is a sum

of independent Bernoulli (θ [k]) random variables. By exchangeability,

Pt (y | ν0) = E

[(
p

(
1− (− q

p

)∑t
k=1 Zk[1]+X0[1])

)‖y‖

×
(
q

(
1− (− q

p

)∑t
k=1 Zk[1]+X0[1]−1

))N−‖y‖]

:= E

[
ω
‖y‖
t (1− ωt )N−‖y‖

]
.

That is, the de Finetti measure μt is that of the random variable

ωt = p
(

1− (− q
p

)∑t
k=1 Zk[1]+X0[1]).

It is straightforward to check that ωt ∈ [0, 1].

3 Literature Review

In general it is difficult to study time inhomogeneous chains, and let alone
diagonalize them (see, e.g., the work of Saloff-Coste and Zúñiga [14]).

Bassetti and Diaconis [1] consider (among other Markov chains) a random walk
on the hypercube where one coordinate changes in a transition with an importance
sampling scheme that takes a Markov chain with stationary distribution product
Bernoulli (p′) to one with p. This fits into the class G , studied in this paper,
when p′ = 1/2 with these parameter values, but is not as general, since only one
coordinate changes in a transition.

Nestoridi [11] considers a lazy random walk on the hypercube with p = 1/2,
where either z coordinates change in an exchangeable way in a transition or the
chain is lazy and does not change. In this context, the random walks were considered
to be ‘fair’, i.e. p = 1/2, and ‘lazy’, i.e. at each stage the process would not change
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with probability 1/2. The latter assumption is convenient to avoid periodicity, and
ensures ergodicity of the process. The critical case zN = N/2 was discussed in
Section 6 of [11], where an upper bound for the mixing time of order N was
provided. Moreover, a lower bound for the χ2 distance was also provided, and still
of the orderN (see Remark 2 on page 1297 of [11]), suggesting that the chain would
not mix rapidly. Our contribution, for this particular example, is to show that laziness
is the cause of a slowing down in the case of χ2 distance. If we apply the acceptance
rejection method described in the examples above, with pN ↓ 1/2, and pN = 1/2,
we can observe an almost-perfect mixing in 2 steps (see Theorem 3 above). Notice
that when pN = 1/2 the chain is aperiodic, as there is a positive probability for the
coordinates not to change. Of course, this is a different model, but we can choose
pN in such a way that the similarity between the two models is quite evident. To see
this, we can identify the limiting distribution of πN(·, 1/2) with a Uniform over the
interval [0, 1]. In fact, we can identify the vertices of the hypercube with a truncated
binary expansion and the stationary measure is a product measure of Bernoulli(1/2).
In contrast, if we consider a sequence of i.i.d. (ξn)n∈N of Bernoulli(p) with p = 1/2,
the limit of the

∑∞
n=1 ξn2−n has a distribution singular with respect to the Lebesgue

measure. The latter, is a consequence of a beautiful Theorem of [8]. Hence it makes
sense to consider sequences pN → 1/2. Fix ε > 0 and choose pN = 1/2+ δε/Na
where a > 1 and δε > 0 only depends on a and ε. From Kakutani’s Theorem we
have that the limiting distribution of the product Bernoulli (pN ), using the binary
expansion trick, is uniformly continuous with respect to the Lebesgue measure.
Denote by ηε(·) this distribution. It is not difficult to prove that we can choose δε
such that the total variation distance between ηε(·) and the uniform measure is less
than ε.

There are many interesting examples of random walks on a hypercube in [2,
Section 3], extended to a group theory context where cutoff times are calculated.

4 Spectral Representation via Tensor Products

Proposition 1 If X ∈ G then there exists constants (γA,t )A⊆[N],t∈N such that

Pt (y | x) = π(y, p)
{

1+
∑

A⊆[N ],A =∅

(
t∏

m=1

γA,m

) (
p

q

)|A| ∏

j∈A

(
1− x[j ]

p

) (
1− y[j ]

p

) }
.

(11)

Proof The general form of a 1-step transition density expansion for X is

P(Xt+1 = y | Xt = x) = π(y, p)
{

1+
∑

L,M⊆[N ],L,M =∅
γ
(t)

LM

∏

i∈L

p − x[i]√
pq

∏

j∈M

p − y[j]√
pq

}
,
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with γ (t)LM = γ
(t)

ML, assuming reversibility with respect to π . This is a well-known
expansion, named after [9], for Pt (y | x)/π(x) (also known as Fourier-Walsh basis
expansion in part of the literature) using the tensor product sets

{ N⊗

i=1

{
1,
p − x[i]√
pq

}} ⊗ { N⊗

j=1

{
1,
p − y[j ]√

pq

}}
. (12)

The following steps are well-known from basis theory, but we include these steps
for the sake of completeness. We emphasize that we can compute the eigenvalues
explicitly.

Roughly speaking, the Lancaster expansion applies to the ratio Pt/π in terms
of the two tensor product sets which are complete orthogonal function sets on the
Bernoulli product distributions on the sequences. The symmetry γ (t)LM = γ

(t)

ML is
a consequence of reversibility of X. Moreover, for L � M , where the p.m.f. of
(Xt+1,Xt ) is Pt+1(xt+1 | xt )π(xt , p) , we have

γ
(t)

LM = E

[ ∏

i∈L

p −Xt [i]√
pq

∏

j∈M

p −Xt+1[j ]√
pq

]

= E

[ ∏

i∈L

p −Xt [i]√
pq

E

[ ∏

j∈M

p −Xt+1[j ]√
pq

| Xt
]]

= E

[ ∏

i∈L\M

p −Xt [i]√
pq

E

[ ∏

j∈M

p −Xt+1[j ]√
pq

∏

k∈L∩ M

p −Xt [k]√
pq

| Xt(M)
]]
= 0

if L � M , in virtue of Condition 2. Using (11) we get the general representation for
Pt (y | x) in (4), using the orthogonality of the functions (12). ��
Also the reverse is true.

Proposition 2 If X is a reversible Markov process which satisfies Condition 1 and
whose transition kernel satisfies (11), then X ∈ G .

Proof It is enough to prove that X satisfies Condition 2. The marginal distribution
of Xt+1(B) conditional to the eventXt = x, is

P(Xt+1(B) = y(B) | Xt = x) =

π(y(B), p)

{
1+

∑

A⊆B,A=∅
ρA,t

(p
q

)|A| ∏

j∈A

(
1− x[j ]

p

) (
1− y[j ]

p

) }
,

(13)
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where π(y(B), p) is the probability that a vector of |B| independent Bernoulli’s(p)
equals y(B). The right-hand side of (13) depends on x(B) only, so

P(Xt+1(B) = y(B) | Xt(B) = x) = P(Xt+1(B) = y(B) | Xt(B) = x(B)),

and this proves our result. ��

5 Proof of Theorem 1

5.1 General Construction of the Process X

In this Section we provide a construction for any reversible X on VN which satisfies
Conditions 1 and 2. We explicitly construct a collection of reversible Markov
processes G ′, using an acceptance/rejection method. Soon after, we prove that
G = G ′ (Theorem 8 below).

A process X ∈ G ′ if and only if it can be constructed as follows. Let q, p as
in (2), and recall q ≤ p, and q + p = 1. Consider a sequence of independent
random variables (Zt )t∈N which take values in VN , not necessarily homogeneous
in time. Let (ξi,t )t∈N,i∈[N] be a sequence of i.i.d. Bernoulli(q/p), i.e. P(ξi,t = 1) =
q/p = 1 − P(ξi,t = 0). Consider the following homogeneous Markov process,
X = (Xt)t∈N, which we define recursively. Suppose (Xi : i ≤ t) is defined, then
define Xt+1 as follows. For all i ∈ [N],
• If Zt [i] = 0 then Xt+1[i] = Xt [i].
• If Xt [i] = 0 and Zt [i] = 1 then Xt+1[i] = 1.
• If Xt [i] = 1 and Zt [i] = 1, then Xt+1[i] = Xt [i] + ξi,t mod 2.

Theorem 8 G = G ′.

Proof We first prove that G ′ ⊆ G . It is enough to prove the case t = 0. Assume
X ∈ G ′. A coordinate i is chosen if and only if Z1[i] = 1. Recall that conditionally
on Z1, the coordinates that are chosen behave independently. Hence,

E
[
X1[i] − p | X0 = x, Z1

] = (1− Z1[i])(x[i] − p)
+Z1[i]

(
(1− x[i])(1− p)+ x[i](−p(q/p)+ (1− p)(1 − (q/p)))

=
(

1− Z1[i]
p

)
(x[i] − p).

The right side of (14) only depends on x(A) so Condition 2 is satisfied. Therefore
for A ⊆ [N]

E

[ ∏

j∈A
(X1[j ] − p) | X0 = x

]
= E

[ ∏

i∈A

(
1− Z1[i]

p

) ] ∏

j∈A
(x[j ] − p).
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If X0 has an N-product Bernoulli (p) measure then

E

[
E

[ ∏

j∈A
(X1[j ] − p) | X0

]
= E

[ ∏

i∈A

(
1− Z1[i]

p

) ]
E

[ ∏

j∈A
(X0[j ] − p)

]
= 0,

showing that π(y, p) is the stationary distribution of the process defined in G ′. That
is, Condition 1 holds.

Next we prove that G ⊆ G ′. Take Z1 to have the distribution of X1 | X0 = 0.
From (14) the transition distribution of X1 | X0 is uniquely determined by the
distribution of Z1, and Z1 is the distribution of X1 | X0 = 0. Therefore G ⊆ G ′.

��
Proof of Theorem 1. The proof follows from a combination of Propositions 1, 2
and Theorem 8. The spectral expansion is uniquely determined by (4) and (5). ��
Remark 6 (Convex Set of 2 × 2 Transition Matrices) Instead of the acceptance-
rejection scheme P ◦ defined in (1), suppose coordinates change according to 2× 2
transition matrices P1, . . . , PN each with stationary distribution (q, p). Let P2×2
be the set of all 2× 2 transition matrices with stationary distribution (q, p). The set
P2×2 is convex with extreme points P ◦, and I . That is, if P ∈ P2×2 then there
exists λ ∈ [0, 1] with P = λP ◦ + (1 − λ)I . This scheme with transition matrices
P1, . . . , PN is not more general than the one with identical transition matrices P ◦.
The extreme point representation Pk = λkP ◦ + (1−λk)I for k = 1, . . . , N implies
that Zt can be chosen to make the models the same.

Zt [k]Pk + (1− Z[k])I = Zt [k]λkP ◦ + (1− Zt [k]λk)I
= Z′t [k]P ◦ + (1− Z′t [k])I,

where Z′t [k] = Zt [k] with probability λk and otherwise is zero.

Remark 7 (Lancaster Characterization) The Lancaster problem in the context of
this paper is to characterize eigenvalues {ρA}A⊆N for which (14) below is non-
negative, and therefore a transition kernel. This characterization has been answered
by Theorem 1. Non-negativity holds if and only if there exists Z ∈ VN such that for
A ⊆ N

ρA = E

[ ∏

j∈A

(
1− Z[j ]

p

)]
,

and this is equivalent to the transition kernel belonging to a process in G .

Proof (Theorem 7) The transition probability for X1 given X0 = x is

π(y, p)

{
1+

∑

A⊆[N],A=∅
ρA

(p
q

)|A| ∏

j∈A

(
1− y[i]

p

)(
1− x[i]

p

)}
. (14)
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Note the identity that for u ∈ {0, 1}N , A ⊆ [N],
∏

j∈A

(
1− u[j ]

p

)
=

(
− q
p

)‖u(A)‖
.

The expression in (14) can therefore be written as

π(y, p)

{
1+

∑

A⊆[N],A=∅
(−1)|A|E

[(
− q
p

)‖Z1(A)‖+‖y(A)‖+‖x(A)‖−|A|]}

= π(y, p)E
[ N∏

j=1

(
1−

(
− q
p

)Z1[j ]+x[j ]+y[j ]−1
)]
.

Eq. (10) follows by replacing ρA in (14) with

ρtA = E

[(
− q
p

)∑t
k=1 ‖Zk(A)‖] = E

[(
− q
p

)S(t)(A)]
,

where we used the i.i.d. assumption on the sequence of vectors (Zt )t∈N. ��
Next consider a family of well-known orthogonal polynomials on the Binomial
distribution.

Definition 6 (Krawtchouk Polynomials) Define a class of polynomials{
Qn(x;N,p) : n,N ∈ Z+, x ∈ {0, 1, . . . , N}

}
, using the generating function

N∑

n=0

(
N

n

)
Qn(x;N,p)sn = (1− (q/p)s)x(1+ s)N−x . (15)

Proposition 3 The family of polynomials
{
Qn(x;N,p) : n,N ∈ N, x ∈ [N]}

satisfy the following properties.

1. They are orthogonal in the following sense: E
[
Qn(X;N,p)Qm(X;N,p)

] =
δm,nh

−1
n , where X is Binomial (N, p), hn = (

N
n

)
(p/q)n and the Kronecker

δm,n ∈ {0, 1} equals 1 if and only if m = n.
2. If x ∈ VN then the family of polynomials satisfy a symmetric function

representation

Qn(‖x‖;N,p) =
(
N

n

)−1 ∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

)
. (16)
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Proof of the orthogonality in 1 is straghtforward using generating functions (see,
e.g., [4]). The representation (16) is seen by noting that the generating function
agrees with (15), since

1+
N∑

n=1

sn
∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

)
=

N∏

j=0

(
1+ s

(
1− x[j ]

p

))

=
(

1− (q/p)s
)‖x‖

(1+ s)N−‖x‖.

These polynomials are scaled so that for all n ∈ [N], Qn(0;N,p) = 1. The
relationship with the ‘usual’ Krawtchouk polynomialsKn is that for any x ∈ N,

Qn(x;N,p) = Kn(x;N,p)
N !

(N−n)! (−p)n
.

Proposition 4 If (Zt )t∈N are exchangeable, in the sense of Definition 3, then

ρA ≡ ρ|A| = E
[
Q|A|(‖Z1‖;N,p)

]

and the transition probabilities are

π(y, p)

{
1+

N∑

n=1

ρn

(p
q

)n ∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

)(
1− y[j ]

p

)}
. (17)

Proof This follows from (16) since under exchangeability for any A ⊆ [N] with
|A| = n,

ρA = E

[ ∏

j∈A

(
1− Z1[j ]

p

)]

=
(
N

n

)−1 ∑

A⊆[N],|A|=n

∏

j∈A
E

[(
1− Z1[j ]

p

)]

= E
[
Q|A|(‖Z1‖;N,p)

]
.

��
Proposition 5 Suppose Z1 is exchangeable. Fix y, x ∈ VN . We have

P(‖X1‖ = ‖y‖ | X0 = ‖x‖)

=
(
N

‖y‖
)
p‖y‖qN−‖y‖

{
1+

N∑

n=1

ρnhnQn(‖x‖;N,p)Qn(‖y‖;N,p)
}
.

(18)



282 A. Collevecchio and R. C. Griffiths

Proof We want to find the distribution of ‖y‖ using (17). It is easiest to consider
‖y‖ in a permutation distribution of y. Let SN be the symmetric group of order N .
We have

1

N !
∑

σ∈SN

∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

)(
1− y[σ(j)]

p

)

= 1

N !
(N − n)!
n!

⎛

⎝
∑

A⊆[N],|A|=n

∏

j∈A

(
1− y[j ]

p

)
⎞

⎠×
⎛

⎝
∑

A⊆[N],|A|=n

∏

j∈A

(
1 − x[j ]

p

)
⎞

⎠

=
(
N

n

)
Qn(‖x‖;N,p)Qn(‖y‖;N,p).

There are
(
N
‖y‖

)
different ỹ ∈ VN with ‖ỹ‖ = ‖y‖. Sum over these ỹ to find the

distribution of ‖y‖, then (17) gives (18). ��
Proposition 5 is known from a generalized Ehrenfest urn in [4] and in [11] as a

lazy random walk with p = 1/2. In such a lazy random walk ‖Z1‖ takes values 0
or a fixed z ∈ [N], each with probability 1/2. Then

ρ|A| = 1

2

(
1+Q|A|(z;N, 1/2)

)

sinceQ|A|(0;N, 1/2) = 1.
Proposition 5 is more general than first appears in that Z1 can be taken to be

exchangeable without loss of generality. Since |X1| is invariant under a permutation
distribution of labelling we can replaceZ1 withZ′1 having a permutation distribution
of labels. Then

ρn =
(
N

n

)−1 ∑

A⊆[N],|A|=n
ρA.

Remark 8 (De Finetti Continued—Hamming Distance) The Hamming distance
‖X‖t∈Z+ behaves as the number of balls labelled 1 in an urn with N balls labelled
either 0 or 1. This model falls into the generalized Ehrenfest urn models studied
in [4]. In this example each ball in the urn is chosen to change state according to
a de Finetti choice, then if 0 changes to 1, or if 1 changes to 0 with probability
q/p. Propositions (4) and (5) (or [4]) show that the eigenvectors are Krawtchouk
polynomials and the eigenvalues are

ρn = E
[
Qn(‖Z1‖;N,p)

] =
∫

[0,1]

(
1− r

p

)n
νN(dr). (19)
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There is no need to explicitly do the calculation using the Krawtchouk polynomials
in (19). It follows easily because

ρn = E

[ n∏

j=1

(
1− Z1[j ]

p

)]
=

∫

[0,1]

(
1− r

p

)n
νN(dr).

6 Proof of Theorem 2.

Fix N and fix a coordinate � such that P(Z(N)[�] = 1) = θN . Let A = {y ∈
VN : y[�] = 1}. Choose t ≤ a/θN, where a is chosen as follows. The quantity
(1−θN)1/θN is bounded away from 0 as long as θN is bounded away from 1. Choose
a such that

(1− θN)a/θN > 1− pN/2.

We have that

Pt(A | 0) = 1 ≤ 1− (1− θN)a/θN ≤ pN2 .

We have that π(A) = pN . Hence,

‖Pt (· | 0)− π(·, pN)N)‖T V ≥ π(A,pN)− Pt (A | 0) >
pN

2
≥ 1

4
.

7 Proof of Theorem 3

Definition 7 Let (Hn(v) : n ∈ N, v ∈ R) be the Hermite polynomials, which are
defined through the generating function

∞∑

n=0

Hn(v)
ψn

n! = e
ψv− 1

2ψ
2
.

Notice that the Hn(v) are orthogonal polynomials with respect to the standard
normal distribution, i.e. for n = m, we have

∫ ∞

−∞
Hn(v)Hm(v)

1√
2π

e−v2/2dv = n!δmn,

where δmn is the Kronecker delta.
Recall that qN = 1− pN and that limN→∞ pN = p = 1− q .
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Proposition 6 Under the assumptions of Theorem 3 we have

lim
N→∞E

[
Qn(ζN ;N,pN)

] = (−1)n

h
1/2
n

√
n!
E[Hn(Vi)] for i ∈ {1, 2}.

Proof It is enough to prove convergence in distribution, as we can use the moment
condition (8) to appeal to the dominated convergence theorem. In turn, in order to
prove the convergence in distribution, it is enough to prove that for any sequence zN
such that

lim
N→∞

zN −NpN√
NpN(1− pN) = v

for some number v, we have that

lim
N→∞ h

1/2
n Qn(zN ;N,pN) = (−1)n

(n!)1/2Hn(v). (20)

We prove the convergence in (20) using a generating function approach.
Note that for fixed n, as N →∞ with pN → p we have

(n!)1/2h1/2
n =

(
n!

(
N

n

)
(pN/qN)

n
)1/2 ∼

(
N(p/q)

)n/2
.

Hence, we get the following estimate, which holds for all z,N ∈ N and p ∈
[1/2, 1),

N∑

n=0

(n!)1/2h1/2
n Qn(z;N,pN)s

n

n! ∼
N∑

n=0

(
N

n

)
Qn(z;N,p)

(√
p

Nq
s
)n

=
(

1− (q/p)
√
p

Nq
s
)z(

1+
√
p

Nq
s
)N−z

.

(21)

Taking the logarithm of both sides of (21) and setting a = (q/p)
√
(p/q)s =√

(q/p)s, b = √
(p/q)s, we have

ln
n∑

n=0

(n!)1/2h1/2
n Qn(z;N,p)s

n

n!

∼ z log
(

1− a√
N

)
+ (N − z) log

(
1+ b√

N

)

= −z
(a + b√

N
+ 1

2

a2 − b2

N

)
+N

( b√
N
− 1

2

b2

N

)
+O(N−1/2)
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= −√Np(a + b)+√Nb − v√pq(a + b)− 1

2
(a2 − b2)p − 1

2
b2

−1

2
(a2 − b2)

√
pqvN−1/2 +O(N−1/2). (22)

We have the following simplifications in (22)

−p(a + b)+ b = −pa + qb = −√pqs +√pqs = 0

−√pq(a + b) = −qs − ps = −s
−(a2 − b2)p − b2 = −

( q
p
− p
q

)
ps2 − p

q
s2 = −s2

so (22) is equal to

−vs − 1

2
s2 + vO(N−1/2).

That is, the generating function (21) is equal to

exp
{− vs − 1

2
s2 + vO(N−1/2)

}
,

which converges to the generating function of (−1)nHn(v). ��
Using a Césaro sum argument, we immediately get from Proposition 6 the following
result.

Corollary 1 Suppose pN → p ∈ [1/2, 1] and fix t > 0, we have

lim
N→∞

∑N
n=1

(
N
n

)(
pN
qN

)n ∏t
m=1 ρ

2
nm

∑N
n=1

1
Nn(t−1)

(
qN/pN

)n(t−1)
1
n! (

∏t
m=1 E[Hn(Vm)])2

= 1. (23)

Proof (Proof of Theorem 3) It is well-known (e.g. see Lemma 12.16 in [10]) that
for a reversible time-homogeneous Markov chain

χ2(x, t) =
∑

n≥1

λ2t
n fn(x)

2, (24)

where λ0 = 1 and {λn}n≥0 are eigenvalues and fn(x) orthonormal eigenvectors
with respect to the stationary distribution. A similar formula to (24) also holds for
a chain which is non-homogeneous in time, with the transition kernels having the
same eigenfunctions, and eigenvalues λnm, m = 1, . . . , t . Then

χ2(x, t) =
∑

n≥1

( t∏

m=1

λ2
nm

)
fn(x)

2,
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In our context with a non-homogeneous chain

χ2(x, t) =
∑

A⊆[N] : A=∅

( t∏

m=1

ρ2
Am

) ∏

i∈A

(pN − x[i]√
pNqN

)2

=
∑

A⊆[N] : A=∅

( t∏

m=1

ρ2
Am

)(pN
qN

)|A| ∏

i∈A

(
1− x[i]

pN

)2

≤
N∑

n=1

(
N

n

)(pN
qN

)n t∏

m=1

ρ2
nm.

Next we focus on the case t = 2. Notice that the bound in (25) is sharp, as it is
achieved for initial condition x = 0. Hence,

max
x
χ2(x, 2) = χ2(0, 2) =

N∑

n=1

(
N

n

)(pN
qN

)n 2∏

m=1

ρ2
nm.

In order to have an estimate of the χ2 distance, i.e. the numerator in the right-hand
side of (23), we simply need an estimate, of

N∑

n=1

1

Nn

( qN
pN

)n 1

n!
2∏

m=1

E[Hn(Vm)])2. (25)

To this end, use the following well-known formula (see, e.g., [13, 18.10.10 p. 448])
which holds for any v ∈ R,

Hn(v) = 2n+1

√
π
ev

2/2
∫ ∞

0
e−τ 2

τn cos
(√

2vτ − 1

2
nπ

)
dτ.

Therefore

|Hn(v)| ≤ 2n+1

√
π
ev

2/2
∫ ∞

0
e−τ 2

τndτ = 2n+1

√
π
ev

2/2 1

2
Γ

(n
2
+ 1

2

)

=

⎧
⎪⎪⎨

⎪⎪⎩

ev
2/2 (2m)!

2mm! n = 2m

22m+1√
π
ev

2/2m! n = 2m+ 1

.
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If n is even |Hn(v)| ≤ ev2/2|Hn(0)|. We use these estimates to provide bounds for
the sum of even terms in (25) as follows

%N/2&∑

m=1

1

N2m

( qN
pN

)2m 1

(2m)!
2∏

j=1

E[H2m(Vj )])2

≤
(

max
i∈{1,2}

E[eV 2
i /2]

)4
[N/2]∑

m=1

1

N2m

( qN
pN

)2m 1

(2m)!
( (2m)!

2mm!
)4
.

(26)

Denote the terms in the sum in the right-hand side of (26) as bm. We have

bm+1

bm
= 1

N
· 1

2(m+ 1)

( qN
pN

)2( 2m+ 1

N

)3
< 1

for m + 1 ≤ %N/2&. Hence, maxm≤%N/2& bm = b1, i.e. the first term in the sum.
Therefore

%N/2&∑

m=1

1

N2m

( qN
pN

)2m 1

(2m)!
2∏

j=1

E[H2m(Vj )]2

≤
(

max
i∈{1,2}

E[eV 2
i /2]

)4N

2

1√
π

1

N2

( qN
pN

)2 1

24

which tends to zero as N →∞.
Next consider the odd terms,

%N/2&∑

m=0

1

N(2m+1)

( qN
pN

)(2m+1) 1

(2m+ 1)!
2∏

j=1

E[H2m+1(Vj )]

≤ 1√
π

(
max
i∈{1,2}E[e

V 2
i /2]

)4
%N/2&∑

m=0

1

N(2m+1)

(2qN
pN

)(2m+1) 1

(2m+ 1)!m!
4.

(27)

Writing the terms in the latest sum as cm, we have

cm+1

cm
=

(2qN
pN

)2 1

2m+ 3

(m+ 1

N

)3 ≤ 4

2m+ 3
.

For m ≥ 1, we have 4/(2m+ 3) < 1 Hence c1 = maxj≥1 cj . This implies that the
right-hand side of (27) is bounded by

c0 + N
2
c1 ≤ C1

N
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where C1 is a constant depending only on V1, V2. Thus

sup
x
χ2(x, 2) ≤ C

N
,

where C is a constant depending only on V1, V2. ��

8 Proof of Theorem 4

8.1 Lower Bound for tmix

The following Theorem is due to David Wilson (see, e.g., Theorem 13.5, p172 in
[10]).

Theorem 9 (Wilson Bound) Let X be an irreducible aperiodic Markov chain with
state spaceΩ . LetΦ be an eigenfunction with eigenvalue λ satisfying 1/2 < λ < 1.
Fix 0 < ε < 1 and let R > 0 satisfy

Ex

[∣
∣Φ(X1)−Φ(x)

∣
∣2

]
≤ R

for all x ∈ Ω . Then for any x ∈ Ω

tmix(ε) ≥ 1

2 log(1/λ)

[
log

(
(1− λ)Φ(x)2

2R

)
+ log

(
1− ε
ε

)]
. (28)

Next, consider a sequence (X(N))N∈N ∈ C . We apply Wilson’s Lemma to each
element of the sequence, with the choice of first eigenvalue and eigenvector pair.
Then

ΦN(x) = ‖x‖ −Np, λN = 1− zN

Np
.

From (47) in the Appendix,

Ex

[
X1(X1 − 1)+X1

] = N(N − 1)p2
(
ρ2Q2(x;N,pN)− 2ρ1Q1(x;N,pN)+ 1

)

+ Np
(
− ρ1Q1(x;N,pN)+ 1)

In particular

E0
[
X2

1] ∼ N(N − 1)p2
((

1− zN

NpN

)2 − 2
(
1− zN

NpN

)+ 1
)
+ NpN

(
− (

1− zN

NpN

)+ 1
)
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Notice that 1/2 < λN < 1 is satisfied if zN/N < pN/2. We apply (28) with the
choice x = 0. We also cover the case limN→∞ zN/N = 0. There exists a constant
c > 0 such that

logλN ≥ −c zN
NpN

. (29)

Using (29) in Wilson’s bound (28), we get

tmix(ε) ≥ cNpN
2zN

[
log

(
zN

NpN

(NpN)
2

2R

)
+ log

(
1− ε
ε

)]

≥ cNpN
2zN

[
log

(
NpNzN

2R

)
+ log

(
1− ε
ε

)]

≥ cNpN
2zN

[
logN + log

pN

2R
+ log

1− ε
ε

]
. (30)

The dominant term in (30) together gives that

tmix(ε) ≥ cNpN
2zN

logN +O(N).

Notice that the bound in Eq. (29) is required just for all large N . Hence, in the case
limN→∞ zN/N = 0, we can choose any c ∈ (0, 1). Hence, for any ε > 0, we have

tmix(ε) ≥ (1− ε)NpN
2zN

logN + O(N).

Comparison between tmix and t
(2)

mix.

The following proposition is well-known in the literature. A proof is added for the
sake of clarity and completeness.

Proposition 7 We have the following useful relation between total variation and
χ2 distances

4‖Pt(x, ·)− πN(·)‖2
T V ≤ χ2(x, t), for all x ∈ Ω.
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Proof

||Pt(· | x)− πN(·)||TV = 1

2

∑

y

|Pt (y | x)− πN(y)|

= 1

2

∑

y

√
πN(y)|Pt (y | x)− πN(y)|/

√
πN(y)

≤ 1

2

√
χ2(x),

where in the last step, the Cauchy–Schwartz inequality is used ��
A by-product is the following corollary.

Corollary 2 tmix(ε) ≤ t (2)mix(
√
ε/4).

8.2 Digression on which χ2-Distance to Use

Recall that that in the time homogeneous case, when Z1 is exchangeable, we have

ρn = E

[
Qn(‖Z1‖;N,p)

]
(31)

then

χ2(x, t)=
∑

n≥1

hn

(
N

n

)−1 ∑

A⊆[N],|A|=n

(
E

[ ∏

j∈A

(
1− Z1[j ]

p

)])2t ∏

j∈A

(
1− x[j ]

p

)2
.

(32)

The χ2 distance (32) simplifies to

χ2(x, t) =
∑

n≥1

hnρ
2t
n

(
N

n

)−1 ∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

)2
. (33)

On the other hand, recall that P t (· |x) the p.m.f. of ‖Xt‖ conditional on X0 = x.
Let QN be a Binomial with parameters N and p. Recall the difinition of the χ2 for
the Hamming distance as χ2

H(x, t) = χ2(P t (· |x) | QN). Then

χ2
H(x, t) =

∑

n≥1

hnρ
2t
n Qn(‖x‖;N,p)2. (34)

In general

χ2(x, t) ≥ χ2
H (x, t)
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which accords with intuition. This is because

(
N

n

)−1 ∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

)2 ≥
((
N

n

)−1 ∑

A⊆[N],|A|=n

∏

j∈A

(
1− x[j ]

p

))2

= Qn(‖x‖, N, p)2.

On the other hand, we already proved that the supremum over x of the two distinct
χ2 distances (33) and (34) coincide, and occurs when x = 0. In other words,
supx χ

2
H(x, t)) = χ2

H(0, t) and

sup
x∈VN

χ2(x, t) = χ2(0, t) = χ2
H (0, t) =

∑

n≥1

hnρ
2t
n .

The reasoning above implies that if we look at the worse-case scenario, in terms
of initial configurations, χ2 and χ2

H behave in the same way. On the other hand,
it is possible to choose initial conditions that make χ2

H much smaller than χ2,
resulting in a faster mixing for the Hamming distance. This gives the intuition
behind Theorem 6.

Upper Bound for t
(2)

mix.

We assume that ‖x‖ = NpN. In virtue of our reasoning in the previous section, we
can use the χ2 distance for the Hamming distance, as when the supremum over x is
taken, it coincides with χ2

t . Recall that

χ2
H(x, t) =

N∑

n=1

ρ2t
n hnQn(‖x‖;N,pN)2.

Proposition 8 Under the assumptions of Theorem 4, for any x ∈ {0, 1, . . . , N} \
{Np},

Qn(x,N, pN) ∼
(

1− x

NpN

)n
. (35)

If x = NpN ,

Q2n(NpN ;N,pN) ∼ (−q/p)n (2n)!
n!

1

(2N)n
.

andQ2n+1(NpN ;N,pN) is of smaller order in N thanQ2n(NpN ;N,pN).
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Proof Replace s by s/N in the generating function (15) and take the logarithm of
both sides to get

log

(
N∑

n=0

(
N

n

)
Qn(x;N,pN) s

n

Nn

)

= x log

(
1− s

N

qN

pN

)
+(N − x) log

(
1+ s

N

)
.

(36)

Let ζN = x/N and α = qN/pN . The right-hand side of (36) becomes

NζN log(1− sαN/N) +N(1− ζN) log(1+ s/N)
= ζN

(
− αNs − 1

2N
α2
Ns

2
)
+ (1− ζN)

(
s − 1

2N
s2

)
+O(N−2)

= s − 1

2N
s2 − ζN

(
s/pN − s2(pN − qN) 1

2NpN

)
+O(N−2). (37)

If ζN = pN then (37) is equal to

s(1− ζN/pN)+O(N−1)

however if ζN = pN then (37) is equal to

−(qN/pN)s2 1

2N
+O(N−2).

Therefore for fixed limN ζN = p, recalling that p = limN→∞ pN , asymptotic
values are

Qn(NζN ;N,pN) ∼
(

1− ζN/p
)n
.

If limN ζN = p then

Q2n(Np;N,p) ∼ (−q/p)n (2n)!
n!

1

(2N)n
.

andQ2n+1(NpN ;N,pN) is of smaller order inN thanQ2n(NpN ;N,pN). If p = q
then from the original generating function of (1− s)N/2(1+ s)N/2

Q2n(N/2;N, 1/2) = (−1)n
(
N/2
n

)

(
N
2n

) ,

which agrees with the case above with pN → 1/2 as N →∞. ��
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Combining (31) with (35), we have that

ρn ∼
(

1− zN

Np

)n
.

Hence, using (34), we have

χ2
H(x, t) ∼

N∑

n=1

(
1− zN

Np

)2nt
(
N

n

)(p
q

)n (
1− ‖x‖

Np

)2n

=
N∑

n=1

Nn

n!
(

1− zN

Np

)2nt(p
q

)n(
1− ‖x‖

Np

)2n

≤ exp

{
N

(
1− zN

Np

)2t(
1− ‖x‖

Np

)2(p
q

)}
− 1

≤ exp

{
Ne

−2t
zN
Np

(
1− ‖x‖

Np

)2(p
q

)}
− 1

≤ exp

{
Ne

−2t zN
Np

(p
q

)}
− 1. (38)

Choose

tN = Np

2zN
(logN + C) (39)

then the upper bound in (38) is equal to

exp

{
exp{−C}

(p
q

)}
− 1.

For a lower bound take the first term in the χ2(0, t) expression.

sup
x
χ2(x, tN ) ≥ χ2(0, tN ) = χ2

H(0, tN ) ≥
(

1− zN

Np

)2tN
N

(p
q

)

→ e−C
(p
q

)
.

This shows that (39) is a cutoff time because if C is large and positive both the upper
and lower bounds are small, and if C is large and negative both bounds are large.
Calculations here are related to chi-squared cutoff calculations for a multinomial
model in [5, Section 4.1].
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Example 6 This example illustrates the difference between the chi-squared cutoff
for the Hamming distance and the chi-squared cutoff for the sequences depending
on the initial x. Consider a model where ‖Z‖ = N and ‖x‖ = %Nw&. The factor in
χ2(x, t) of

(
N

n

)−1 ∑

A⊂[N],|A|=n

(
1− x[i]

p

)2
.

is the coefficient of
(
N
n

)
sn in the generating function

(
1+

( q
p

)2
s
)‖x‖(

1+ s
)N−‖x‖

.

Replacing s by s/N

(
1+

( q
p

)2 s

N

)‖x‖(
1+ s

N

)N−‖x‖ → exp
{
sw
q2

p2 + s(1−w)
}
.

Then it follows that

χ2(x, t) ∼
N∑

n=1

ρ2t
n hn

(
w
q2

p2 + 1−w
)n
.

If ‖Z‖ = N then ρn = (−q/p)n and

χ2(x, t) ∼
N∑

n=1

( q
p

)2nt
(
N

n

)(
w
q

p
+ (1−w)p

q

)n

=
(

1+
(
w
q

p
+ (1−w)p

q

)( q
p

)2t
)N

− 1.

A calculation shows then, with

tN =
logN + C + log

(
w
q
p
+ (1−w)p

q

)

−2 log(q/p)
(40)

then

e−C < χ2(x, t) < exp{e−C} − 1

so the cutoff time calculated from χ2(x, t) is given by (40) compared to the
Hamming distance which has a finite mixing time when ‖Z‖ = N . In fact, the
Hamming distance mixes in exactly 2 steps if ‖x‖ = N , and one step if ‖x‖ = N .
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9 Proof of Theorem 5

A lower bound for the mixing time is now obtained. Let t = aN/(logN) where
0 < a < J . Using the computation given in Remark 3

χ2
H(0, t) =

N∑

n=1

hnρ
2t
n

=
N∑

n=1

(
N

n

)(p
q

)n( ∫

[0,1]

(
1− r

p

)n
h(r)dr

)2t

≥ q−N
(
N

%pN&
)
p%pN&qN−%pN&N−2t

( ∫ N

0

(
1− u

Np

)%pN&
h(u/N)du

)2t

∼ q−NN−2(γ+1)t 1√
2πpqN

( ∫ ∞

0
e−ucuγ du

)2t

≥ 1√
2πpqN

exp
{
−N log q − 2(γ + 1)aN + Ba(logN)/N

}

for a constant B. Since a < (− log q)/(2(γ + 1)), χ2
H (0, t)→∞, so

t
(2)
mix ≥ J

N

logN
.

An upper bound is now obtained. Fix ε > 0 such that 1 − ε > q/p and for all
t ∈ (1− ε, 1) then

h(p(1 − t)) < cε(1− t)γ (41)

for some constant cε > 0. Moreover notice that,

p

∫ 1

−q/p
znh(p(1− z))dz = p

∫ 1−ε

−q/p
znh(p(1 − z))dz+ p

∫ 1

1−ε
znh(p(1− z))dz

≤ p(1− ε)n +
∫ 1

1−ε
znh(p(1 − z))dz.

(42)
Hence

χ2
H (0, t) =

N∑

n=1

(
N

n

)(p
q

)n( ∫

[0,1]

(
1− r

p

)n
h(r)dr

)2t

z=(1−r/p)=
N∑

n=1

(
N

n

)(p
q

)n(
p

∫ 1

−q/p
znh(p(1− z))dz

)2t
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(42)≤
N∑

n=1

(
N

n

)(p
q

)n(
p(1− ε)n +

∫ 1

1−ε
znh(p(1− z))dz

)2t

(41)≤
N∑

n=1

(
N

n

)(p
q

)n(
p(1− ε)n + cεpγ

∫ 1

0
zn(1− z)γ dz

)2t

Beta function≤
N∑

n=1

(
N

n

)(p
q

)n(
p(1− ε)n + cεpγ Γ (n+ 1)Γ (γ + 1)

Γ (n+ γ + 2)

)2t

(43)

Notice that, by a simple Stirling approximation, there exists a constantK such that

p(1 − ε)n + cεpγ Γ (n+ 1)Γ (γ + 1)

Γ (n+ γ + 2)
≤ Kn−γ−1.

Next, choose t = AN/ logN where A is a large enough parameter. Now
approximate the sum appearing in (43) with a Riemann integral, where α = n/N ,
as follows

(43) ≤ C
∫ 1

0
exp

{
− Nα logα −N(1 − α) log(1− α)+ αN log(p/q) (44)

−2A(1+ γ )N − 2A(1+ γ ) N
logN

(logα)
}
K

2A N
logN

1√
N

dα

As the unique maximizer of the function α �→ −α logα − (1 − α) log(1 − α) +
α log(p/q) in the interval [0, 1] is α∗ = p, we have that for all large N

RHS of (44) = C1√
N

exp{−N(log q + 2A(1+ γ )+ o(1))},

which decreases to 0 for

A > − log q

2(γ + 1)
.

That is, we have shown

t
(2)
mix ≤ J

N

logN
,

completing the calculation of t (2)mix .
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10 Proof of Theorem 6

LetQ2n+1(Np;N,p) = 0 andQ2n(Np;N,p) = (−q/p)n (2n)!n! 1
(2N)n . Then

χ2
H(Np, t) =

[N/2]∑

n=1

Q2n(z;N,p)2t
(
N

n

)(p
q

)n( (2n)!
n!

1

(2N)n

)2

.

If z/N = w and w = p, using (35) we have

χ2
H(Np, t) ∼

[N/2]∑

n=1

(
1− w

p

)2nt (
N

n

)(p
q

)n( (2n)!
n!

1

(2N)n

)2

. (45)

Let bn denote the nth term in the sum (45). The ratio of terms is

bn+1

bn
= (

1− w
p

)2t N − n
n+ 1

p

q

(2n+ 1)2

N2 <
(
1− w

p

)2t p

q

2(N + 1)

N
< 1,

for t > t◦, where t◦ is a finite time not depending onN . The first term b1 is therefore
maximal for t > t◦ and

χ2
H (Np) <

N

2
b1 = 1

2

(
1− w

p

)2t p

q
. (46)

Choose tε > t◦ such that the right-hand side of (46) is less than ε.

Proposition 9 For any x ∈ [N] ∪ {0} we have that

x(x − 1) = 2q2h2Q2(x;N,p) − 2pq(N − 1)h1Q1(x;N,p) +N(N − 1)p2

= N(N − 1)p2Q2(x;N,p) − 2N(N − 1)p2Q1(x;N,p) +N(N − 1)p2.

(47)

Proof Consider, with expectation in the Binomial (N, p) distribution

E
[
X(X − 1)

(
1− q

p
s
)X(

1+ s)N−x]

= N(N − 1)p2(
1− q

p
s
)2

(
p

(
1− q

p
s
)+ q(1+ s)

)N−2

= N(N − 1)p2(
1− q

p
s
)2
.
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Looking at coefficients of s and s2,

E
[
X(X − 1)Q1(X;N,p)

] =
(
N

1

)−1

N(N − 1)p2 ×−2
q

p
= −2pq(N − 1)

E
[
X(X − 1)Q2(X;N,p)

] =
(
N

2

)−1

N(N − 1)p2 ×
( q
p

)2 = 2q2

E
[
X(X − 1)

] = N(N − 1)p2,

which proves our result. ��
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Non-Optimality of Invaded Geodesics
in 2d Critical First-Passage Percolation

Michael Damron and David Harper

Abstract We study the critical case of first-passage percolation in two dimensions.
Letting (te) be i.i.d. nonnegative weights assigned to the edges of Z2 with P(te =
0) = 1/2, consider the induced pseudometric (passage time) T (x, y) for vertices
x, y. It was shown in [4] that the growth of the sequence ET (0, ∂B(n)) (where
B(n) = [−n, n]2) has the same order (up to a constant factor) as the sequence
ET inv(0, ∂B(n)). This second passage time is the minimal total weight of any path
from 0 to ∂B(n) that resides in a certain embedded invasion percolation cluster. In
this paper, we show that this constant factor cannot be taken to be 1. That is, there
exists c > 0 such that for all n,

ET inv(0, ∂B(n)) ≥ (1+ c)ET (0, ∂B(n)).

This result implies that the time constant for the model is different than that for
the related invasion model, and that geodesics in the two models have different
structure.

Keywords First-passage percolation · Invasion percolation · Near-critical
percolation

1 Introduction

We begin with the definition of first-passage percolation (FPP). Consider the integer
lattice Z

2 with E 2 denoting the set of nearest-neighbor edges, and let (te)e∈E 2

be an i.i.d. family of nonnegative random variables (edge-weights) with common
distribution function F . For x, y ∈ Z

2, a (vertex self-avoiding) path from x to
y is a sequence (v0, e1, v1, . . . , en, vn), where the vi ’s, i = 1, . . . , n − 1, are
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distinct vertices in Z
2 which are different from x or y, and v0 = x, vn = y,

ei = {vi−1, vi} ∈ E 2. If x = y, the path is called a (vertex self-avoiding) circuit.
We define the passage time of a path γ to be T (γ ) = ∑n

i=1 tei . For any A,B ⊂ Z
2

we denote

T (A,B) = inf{T (γ ) : γ is a path from a vertex in A to a vertex in B}.
For A = {x} we write T (x, B) to mean T ({x}, B) and similarly for T (A, x). A
geodesic from A to B is a path γ from A to B such that T (γ ) = T (A,B). Note that
T = T (x, y) as a function of vertices x, y is a psuedometric, and is a.s. a metric
if and only if F(0) = 0. Thus (Z2, T ) can be regarded as a random pseudometric
space.

1.1 Background and Main Result

FPP is studied as a model for fluid flow in a porous medium, or of the spread
of a stochastic growth, such as a bacterial infection. It was introduced in 1965
by Hammersley and Welsh [5] and since then, researchers have developed some
of the basics of the theory including asymptotics for T (0, x) as x → ∞, shape
theorems, fluctuations of T , and geometry of geodesics (see [1] for a recent survey).
Analysis of the model is quite different depending on the relationship between F(0)
and the critical value pc = 1/2 for two-dimensional Bernoulli percolation. In the
supercritical case, where F(0) > 1/2, there exists an infinite cluster (component)
of edges with zero weight, and one can then show that T (0, x) is stochastically
bounded in x. (To reach x from 0, just enter the infinite cluster and travel near to x
in zero time.) In the subcritical (and most studied) case, where F(0) < 1/2, T (0, x)
grows linearly in x, and there are many results and conjectures about the precise rate
of growth.

In the critical case which we study here, where F(0) = pc = 1/2, the (leading
order) rate of growth of T (0, x) is considerably more subtle and is closely related to
near-critical and critical bond percolation. There is no infinite cluster of zero-weight
edges, but there are large zero-weight clusters on all scales. Here, the usual “time
constant,” defined as

μ = lim
n→∞

T (0, ne1)

n

is known to be zero (from Kesten’s result [7, Theorem 6.1] that μ = 0 if and only
if F(0) ≥ 1/2), so it is natural to ask for the correct (sublinear) growth rate of T .
Instead of T (0, ne1), it is more convenient to consider T (0, ∂B(n)), where B(n) =
[−n, n]2, and after important work of Chayes-Chayes-Durrett [2] and Zhang [14],
it was shown by Damron-Lam-Wang in [4, Theorem 1.2] that

ET (0, ∂B(n)) ,
%log n&∑

k=1

F−1
(

1

2
+ 1

2k

)
, (1)
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where an , bn means that bn/an is bounded away from 0 and ∞, and F−1 is the
following generalized inverse of F :

F−1(t) = inf{x : F(x) ≥ t} for t > 0.

To prove this result, the authors introduced an embedded invasion percolation cluster
(an infinite connected subgraph I of Z2 containing the origin which we will define
in the next section), and showed that

ET (0, ∂B(n)) , ET inv(0, ∂B(n)), (2)

where T inv is defined analogously to T , but only using paths which remain in I
(see (5)). They then argued that ET inv(0, ∂B(n)) , the right side of (1).

The main result of our work implies that the symbol , in the comparison (2)
cannot be replaced by the stronger ∼. In other words, the ratio of the left and right
sides does not converge to 1: the invasion passage time is only a good approximation
for the true passage time up to a constant factor. Therefore, local properties of
geodesics or the passage time cannot be studied by a comparison to invasion.

Theorem 1 Suppose that F(0) = pc = 1/2. There exists c1.1 > 0 such that for all
large n,

E[T inv(0, ∂B(n))− T (0, ∂B(n))] ≥ c1.1
%logn&∑

k=1

F−1
(

1

2
+ 1

2k

)
.

In Sect. 1.2 below, we define the embedded invasion percolation model, and give
some important properties of critical and near-critical percolation used in the paper.
In Sect. 1.3, we give an outline of the proof of Theorem 1, and in Sect. 2 we give the
full proof. Throughout the paper, constants will be denoted by c or C depending on
whether they are large or small, and their subscripts refer to the sections in which
they are defined.

Remark 1 A referee for this paper asked whether an analogue of Theorem 1 holds
in an almost sure sense. Such a result would imply our theorem. We outline here
how to prove that a.s.,

lim inf
n→∞

T inv(0, ∂B(n))− T (0, ∂B(n))
∑%logn&
k=1 F−1

(
1
2 + 1

2k

) > 0 (3)

in the case that the denominator diverges with n. First, setting

Gi(n) = {k ≤ %log3 n& − 3 : 3k + i ∈ G},
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for i = 1, 2, 3 (and G defined as in (13)), one can show that, even though the Ek’s
are not independent,

lim inf
n→∞

1

#Gi(n)

∑

k∈Gi(n)
1E3k+i ≥ c a.s., (4)

where c = c2.2.1 is such that P(Ek) ≥ c for all k (from Proposition 1). To prove this,
we can use standard results for weakly dependent random variables. Namely, if we
define sigma-algebras

Σk = σ
(
1Ek , 1Ek+1 , . . .

)

Σk = σ (
1E0, . . . , 1Ek

)

for k ≥ 0 and the “strong-mixing coefficient”

α� = sup
k≥0

sup
A∈Σk,B∈Σk+�

|P(A ∩ B)− P(A)P(B)| ,

then we can prove for some C, c′ > 0

α� ≤ Ce−c′3� for all � ≥ 1.

This is done by approximating the event A ∈ Σk by one in which we replace the
variables 1E0, . . . , 1Ek by 1E′0, . . . , 1E′k , where the E′j are defined the same way

as Ej except the p3j -open path connecting B(3j+2) to infinity is only required
to connect to from B(3j+2) to ∂B(3k+�). (In this way, the E′j are independent of
B.) Once the strong-mixing bound is established, we can invoke [9, Theorem 2.10]
to show a strong law of large numbers for the variables

(
1E3k+i

)
k∈∪nGi(n) and

deduce (4).
Using (4), a summation by parts argument shows that for the same c and i =

1, 2, 3,

lim inf
n→∞

∑
k∈Gi(n) F

−1(q3k+i+1)1E3k+i∑
k∈Gi(n) F−1(q3k+i+1)

≥ c a.s.

Here, qk is defined as in (7). Combining the cases i = 1, 2, 3,

lim inf
n→∞

∑
k∈G

k≤%log3 n&−3
F−1(qk+1)1Ek

∑
k∈G

k≤%log3 n&−3
F−1(qk+1)

≥ c a.s.
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By Lemma 2, the denominator is at least −F−1(q0)+ 1
3

∑
k≤%log3 n&−3 F

−1(qk), so

lim inf
n→∞

∑
k∈G

k≤%log3 n&−3
F−1(qk+1)1Ek

∑
k≤%log3 n&−3 F

−1(qk)
≥ c

3
a.s.

Combining this with (20) and (8) gives (3).

1.2 Coupled Percolation Models

We will couple the FPP model on (Z2,E 2) with invasion percolation and Bernoulli
percolation. To describe the coupling, we consider the probability space (Ω,F ,P),
where Ω = [0, 1]E 2

, F is the product Borel sigma-field, and P = ∏
e∈E 2 μe,

where each μe is the uniform measure on [0, 1]. Write ω = (ωe)e∈E 2 ∈ Ω so that
the coordinates (ωe) are i.i.d. uniform [0, 1] random variables, and define the edge
weights as te = F−1(ωe) for e ∈ E 2, so that the collection (te) is i.i.d. with common
distribution function F .

The uniform variables (ωe) will be used for two models: invasion percolation and
Bernoulli percolation.

• Invasion percolation is a another model for a stochastic growth which, unlike
FPP, follows a greedy algorithm. Because of its relation to critical Bernoulli
percolation, it is known as a model of self-organized criticality.
To define the growth, we first define, the edge boundary ΔG of an arbitrary
subgraphG = (V ,E) of (Z2,E 2) by

ΔG = {e ∈ E 2 : e /∈ E, e has an endpoint in V }.

Next, the invasion proceeds in discrete time, as a sequence (Gn)∞n=0 of subgraphs
of (Z2,E 2) as follows. Let G0 = ({0},∅). Given Gi = (Vi, Ei), we define
Ei+1 = Ei ∪ {ei+1}, where ei+1 is the a.s. unique edge with ωei+1 = min{ωe :
e ∈ ΔGi}, and let Gi+1 be the subgraph of Z

2 induced by Ei+1. The graph
I = ∪∞i=0Gi is called the invasion percolation cluster (at time infinity).

If A,B are subsets of Z2, we set

T inv(A,B) = inf
γ :A↔IB

T (γ ), (5)

where the infimum is over all paths from A to B which remain in the invasion
I . (Here, inf∅ is defined as +∞.) This T inv is the passage time to which we
compare T in Theorem 1.

• Bernoulli percolation is a simple model for a random network. The usual setup
for Bernoulli percolation requires us to choose a parameter p ∈ [0, 1] and
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then independently declare each edge in our graph (Z2,E 2) to be open with
probability p and closed with probability 1 − p. Using our uniform variables,
we can couple all of these models (for different values of p) to the other models
described above. For each e ∈ E 2 and p ∈ [0, 1], we say that an edge e is p-open
in ω if ωe ≤ p and otherwise say that e is p-closed. Then for any fixed p, the
collection of p-open edges has the same distribution as the set of open edges in
Bernoulli percolation with parameter p.

Next we give a couple of definitions that will help us work with these models.
For p ∈ [0, 1], a path (or circuit) is said to be p-open (respectively p-closed) if
all its edges are p-open (respectively p-closed). Recall that all paths and circuits
are assumed to be vertex self-avoiding. The interior of a circuit is the bounded
component of its complement, when the circuit is viewed as a Jordan curve in
the plane, and the interior is a subset of R

2. The dual graph of Z
2 is written as

((Z2)∗, (E 2)∗), where

(Z2)∗ = Z
2 +

(
1

2
,

1

2

)
and (E 2)∗ = E 2 +

(
1

2
,

1

2

)
.

For x ∈ Z
2, the vertex dual to x, written x∗, is defined as x + (1/2, 1/2), and for

e ∈ E 2, the edge dual to e, written e∗, is the unique element of (E 2)∗ which bisects
e. The percolation model on the original lattice induces one on the dual lattice in the
natural way: a dual edge e∗ is said to be p-open (for p ∈ [0, 1]) if e is, and is said
to be p-closed otherwise.

One relation between invasion percolation and Bernoulli percolation is the
following: if the invasion intersects a pc-open cluster (maximal connected set of
pc-open edges), it must contain the whole cluster. Indeed, if it were to intersect such
a cluster but not contain the entire cluster, then for all large n, there would be a
pc-open edge on the edge boundary of Gn. Due to the invasion’s greedy algorithm,
it therefore would only invade edges that are pc-open for all large times, and this
implies that there is an infinite pc-open cluster, a contradiction. As a consequence
of this fact, we obtain

a.s., I contains all pc-open circuits around the origin. (6)

A central tool used to study invasion percolation is correlation length and we take
its definition from [8, Eq. 1.21]. For n ∈ N and p ∈ (pc, 1], let

σ(n,m, p) = P(there is a p-open left-right crossing of [0, n] × [0,m]),

where the term “p-open left-right crossing of [0, n]×[0,m]” means a path in [0, n]×
[0,m] with all edges p-open which joins some vertex in {0}× [0,m] to some vertex
in {n} × [0,m]. For ε > 0 and p > pc, we define

L(p, ε) = min{n : σ(n, n, p) ≥ 1− ε}.
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L(p, ε) is called the (finite-size scaling) correlation length. It is known that L(p) <
∞ for p > pc, limp↓pc L(p, ε) = ∞ for ε > 0, and that there exists ε1 > 0 such
that for all 0 < ε, ε′ ≤ ε1, one has L(p, ε) , L(p, ε′) as p ↓ pc. We will therefore
define L(p) = L(p, ε1) with this fixed ε1 for simplicity. For n ≥ 1, let

pn = min{p > pc : L(p) ≤ n},

and define

qk = p3k for k ≥ 0. (7)

We note here that

n∑

k=1

F−1(qk) ,
n∑

k=1

F−1
(

1

2
+ 1

2k

)
as n→∞. (8)

This follows from the fact that n−δ0 < pn − pc < n−ε0 for some δ0, ε0 > 0 and
n ≥ 2 (explained in [4, Eq. (2.5)]) and from monotonicity of F−1 (for instance, see
[4, Lemma 4.1]).

We list the following properties of correlation length, with references to their
proofs.

1. There exist c1.2.1, C1.2.1 > 0 such that

c1.2.1

∣∣
∣ log

m

n

∣∣
∣ ≤

∣∣
∣ log

pm − pc
pn − pc

∣∣
∣ ≤ C1.2.1

∣∣
∣ log

m

n

∣∣
∣ for all m,n ≥ 1. (9)

This is a consequence of [11, Prop. 34].
2. There exists c1.2.2 > 0 such that for all n ≥ 1,

c1.2.2n ≤ L(pn) ≤ n. (10)

This follows from [6, Eq. (2.10)].
3. There exist c1.2.3, C1.2.3 > 0 such that for all p > pc,

c1.2.3 ≤ L(p)2π4(L(p))(p − pc) ≤ C1.2.3, (11)

where π4(n) is the probability that there are two vertex-disjoint (except their
initial points) pc-open paths connecting the origin to ∂B(n), and two vertex-
disjoint (except for their initial points) pc-closed dual paths connecting the point
(1/2, 1/2) to ∂B(n). This relation appears as [8, Prop. 34].

4. From [10, Section 4], there exists c1.2.4 > 0 such that for all n ≥ 1,

P(B(n) is connected to ∞ by a pn-open path) ≥ c1.2.4. (12)



306 M. Damron and D. Harper

Here, “. . . connected to∞ . . .” means that there is an infinite vertex self-avoiding
pn-open path starting in B(n).

1.3 Outline of Proof

The proof of Theorem 1 is split into two cases. At the end of Sect. 2.3, we assume
that

∑
k F

−1(qk) <∞, and we explicitly construct an event A (whose definition is
below (21)) with positive probability such that on A, for all n ≥ R,

T inv(0, ∂B(n))− T (0, ∂B(n)) ≥ b.

Here b,R are positive constants. This is sufficient to show that for n ≥ R,

E(T inv(0, ∂B(n))− T (0, ∂B(n))) ≥ bP(A) > 0,

and this is at least a constant times
∑
k F

−1(qk). The comparison (8) then finishes
the proof in this case.

For the rest of the outline, we therefore assume that
∑
k F

−1(qk) = ∞. Put
Ann(m, n) = B(n) \ B(m) for 0 ≤ m ≤ n. For large n, we consider subannuli
of B(n) of the form Ann(3k, 3k+3) for k = 0, . . . , %log3 n& − 3 and in Sect. 2.1
define events (Ek), which are illustrated in Fig. 1, depending on the state of edges
in these annuli. Two of the paths involved in the definition of Ek are a pc-open
circuit around the origin in Ann(3k, 3k+1) and another pc-open circuit around the
origin in Ann(3k+2, 3k+3) (see γ 1

1 and γ 1
2 in Definition 1). Letting Ck and Dk be

the outermost and innermost such circuits respectively, the fact that they have zero
total weight and are contained in the invasion (see (6)) implies that the difference
Δ = T inv − T satisfies

Δ(0, ∂B(n)) ≥ Δ(Ck,Dk)1Ek
and furthermore (see (19))

Δ(0, ∂B(n)) ≥ Δ(C1,D1)1E1 +Δ(C4,D4)1E4 + · · · +Δ(Cr,Dr)1E3r+1,

where r is the largest integer with 33r+4 ≤ n. (Here we consider only Ek’s with
values of k differing by at least 3 to ensure that their associated annuli are disjoint.)

To bound the terms in the sum, we define a set of “good” indices G = {k :
F−1(qk) ≤ 2F−1(qk+1)} and we show in (15) and (16) that for such values of k,
if Ek occurs, then the passage time T inv(Ck,Dk) is at least 3F−1(qk+1), while the
ordinary passage time T (Ck,Dk) is at most 2F−1(qk+1). This is possible because
onEk , any path in the invasion that crosses Ann(3k+1, 3k+2)must contain the edges
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Fig. 1 Illustration of the
event Ek . The innermost box
is B(3k) and the outermost is
B(3k+2). The solid lines
represent pc-open paths, the
dotted lines represent
qk-closed dual paths, while
the curve with the arrow
indicates the a qk+1-open
path to infinity. When Ek
occurs, any path connecting
B(3k+1) to ∂B(3k+2)

remaining in the invasion I
must contain the edges
e1, e2, e3 (not e4), whereas a
path in the original FPP
model may take the edge e4

e1, e2, e3 (which have weights≥ qk+1) shown in Fig. 1, whereas an unrestricted path
may simply take edge e4 (which has weight ≤ qk). This implies that

eΔ(Ck,Dk)1Ek ≥ F−1(qk+1)P(Ek),

and combining this with the above inequality,

eΔ(0, ∂B(n)) ≥
(

inf
�
P(E�)

)
×

∑

k:3k+1∈G
3k+3≤%log3 n&

F−1(q3k+4).

Similarly, we can obtain

eΔ(0, ∂B(n)) ≥ 1

3

(
inf
�
P(E�)

)
×

∑

k∈G
k+3≤%log3 n&

F−1(qk+1).

(Compare to (18).) In Sect. 2.2, we show that the infimum is positive, and so because
the definition of G entails that

∑

k:k∈G
k+3≤%log3 n&

F−1(qk+1) ,
∑

k:k+3≤%log3 n&
F−1(qk)

(from Lemma 2), we can finish the proof with another application of (8).
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2 Proof of Theorem 1

In this section, we give the proof of Theorem 1. It will be split over three subsections.

2.1 Step 1: Definition of Ek

In this section, we define events (Ek)k≥0 whose occurrence allows us to give a
lower bound for T inv − T . To state this bound precisely, we define Ck to be the
outermost pc-open circuit around the origin in Ann(3k, 3k+1) (if it exists) and let
Dk be the innermost pc-open circuit around the origin in Ann(3k+2, 3k+3). (On Ek ,
these circuits will always exist—see the first two bullet points of Definition 1.) The
event Ek will be constructed so that for n ≥ 0 and k = 0, . . . , %log3 n& − 3, if k is
in a certain “good” set of indices

G = {k ≥ 0 : F−1(qk) ≤ 2F−1(qk+1)}, (13)

then

(T inv(Ck,Dk)− T (Ck,Dk))1Ek ≥ F−1(qk+1)1Ek a.s. (14)

(Recall that Ck andDk are contained in the invasion by (6).)
In the following definition, we use the notation R(N) = [0, N] × [0, N] for

N ≥ 0. Because there are many conditions comprising the event Ek, we encourage
the reader to consult Fig. 1 for an illustration.

Definition 1 For k ≥ 0 and real numbers α, β with α > 1 and β ∈ [0, 1), we define
the event Ek = Ek(α, β) that the following conditions hold.

• There is a pc-open circuit, γ 1
1 , in Ann(3k, 3k+1), which contains B(3k) in its

interior.
• There is a pc-open circuit, γ 1

2 , in Ann(3k+2, 3k+3), which contains B(3k+2) in
its interior.

There are edges

• e1 ∈ B1 :=
(− 3k, 3k+1

)+ R(2 · 3k) with ωe1 ∈ (qk+1, pc + α(qk+1 − pc)),
• e2 ∈ B2 :=

(− 3k, 5 · 3k
)+ R(2 · 3k) with ωe2 ∈ (qk+1, pc + α(qk+1 − pc)),

• e3 ∈ B3 :=
(− 3k, 7 · 3k)+R(2 · 3k) with ωe3 ∈ (qk+1, pc+α(qk+1−pc)), and

• e4 ∈ B4 :=
(
3k+1,−3k+1

)+ R(2 · 3k+1) with ωe4 ∈ (pc + β(qk − pc), qk),
such that

• there is a pc-open path which connects γ 1
1 to one endpoint of e1,

• there is a pc-open path which connects the other endpoint of e1 to one endpoint
of e2,
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• there is a pc-open path which connects the other endpoint of e2 to one endpoint
of e3,

• there is a pc-open path which connects the other endpoint of e3 to the pc-open
circuit γ 1

2 ,
• there is a pc-open path which connects γ 1

1 to e4,
• there is a pc-open path which connects the other endpoint of e4 to γ 1

2 ,
• there is a qk-closed dual path, γ 2

1 , which connects one endpoint of e∗1 to one
endpoint of e∗3,

• there is a qk-closed dual path, γ 2
2 , which connects the other endpoint of e∗3 to the

other endpoint of e∗1,
• there is a qk-closed dual path, γ 3

1 , which connects one endpoint of e∗4 to one
endpoint of e∗2,

• there is a qk-closed dual path, γ 3
2 , which connects the other endpoint of e∗2 to the

other endpoint of e∗4, and
• there is a qk+1-open path which connects γ 1

2 to ∞.

Moreover,

• {e∗4} ∪ γ 3
1 ∪ {e∗2} ∪ γ 3

2 forms a dual circuit around zero, and
• {e∗1} ∪ γ 2

2 ∪ {e∗3} ∪ γ 2
1 forms a dual circuit around e∗2.

From this point forward, we pick α and β satisfying the inequality the next
lemma.

Lemma 1 There exist α, β with α > 1 > β > 0 such that for all k ≥ 0,

pc + α(qk+1 − pc) < pc + β(qk − pc).

Proof Using (9), we see that

3c1.2.1 <
qk − pc
qk+1 − pc .

So we choose α and β sufficiently close to 1 that α < 3c1.2.1β, and this implies

pc + α(qk+1 − pc) < pc + β · 3c1.2.1(qk+1 − pc) < pc + β(qk − pc).

We will bound the probability P(Ek) from below in the next step. To finish the
current step, we estimate the difference T inv − T when Ek occurs; that is, we now
prove inequality (14). So suppose that n ≥ 0 and 0 ≤ k ≤ %log3 n& − 3. We will
show that

T inv(Ck,Dk)1Ek ≥ 3F−1(qk+1)1Ek a.s. (15)



310 M. Damron and D. Harper

and

T (Ck,Dk)1Ek ≤ F−1(qk)1Ek a.s. (16)

If we prove these two inequalities, then, under the additional assumption that k ∈ G,
we would obtain

(T inv(Ck,Dk)−T (Ck,Dk))1Ek ≥ (3F−1(qk+1)−F−1(qk))1Ek ≥ F−1(qk+1)1Ek ,

and this would show (14).
We begin by proving (15), and to do this, we show that on the event Ek , any

optimal path γ inv
k for T inv(Ck,Dk) must contain the edges e1, e2, and e3. (In

fact, e1, e2, e3 are cut-edges for the invasion, and they separate the circuits Ck
and Dk .) Since these edges have weight tei ≥ F−1(qk+1), we would then obtain
T inv(Ck,Dk) ≥ te1 + te2 + te3 ≥ 3F−1(qk+1). The argument is similar for all three
edges, so we show that γ inv

k contains e2. Since γ inv
k crosses Ann(3k+1, 3k+2), by

duality it must contain a edge e whose dual is in {e∗4} ∪ γ 3
1 ∪ {e∗2} ∪ γ 3

2 . However,
after the invasion touches the circuit γ 1

1 for the first time, it has access to infinitely
many pc + α(qk+1 − pc)-open edges (through the edges e1, e2, e3). Because Ck
does not intersect the interior of γ 1

1 (it lies “on or outside” γ 1
1 ) all the edges of

γ inv
k must then be pc + α(qk+1 − pc)-open. Since γ 3

1 and γ 3
2 are qk-closed, e4 is

pc + β(qk − pc)-closed, e2 is pc + α(qk+1 − pc)-open, and Lemma 1 implies that

pc + α(qk+1 − pc) < pc + β(qk − pc) < qk,

it follows that e2 ∈ γ inv
k . This shows (15).

To complete this step, note that because Ck is “on or outside” γ 1
1 and Dk is “on

or inside” γ 1
2 , there is a path π (through e4) from Ck to Dk with passage time equal

to F−1(qk). This implies T (Ck,Dk) ≤ T (π) ≤ F−1(qk), which is (16).

2.2 Step 2: Lower Bound on P(Ek)

Proposition 1 There exists c2.2.1 > 0 so that for all k ≥ 0, P(Ek) ≥ c2.2.1.

Proof To give a lower bound for the probability of Ek , we use several gluing
constructions, themselves composed of the RSW theorem, the (generalized) FKG
inequality, and Kesten’s arms separation method. Because these arguments are now
standard, we will confine ourselves to a rough outline of the approach. The interested
reader should pay close attention to Fig. 1 throughout the sketch.

For i = 1, . . . , 4, let Fi be the event that in the box Bi in the definition of Ek ,
there exists an appropriate four-arm edge in the central box of half the size of Bi .
Specifically, defining B ′i to be the box with half the sidelength of Bi but with the
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same center, we let Fi be the event that there is an edge ei ∈ B ′i such that ωei ∈ Ii ,
ei is connected to the top and bottom sides of Bi by two vertex-disjoint pc-open
paths, and e∗i is connected to the left and right sides of Bi by two vertex-disjoint
qk-closed paths, where Ii = (qk+1, pc + α(qk+1 − pc)) for i = 1, 2, 3. Define
F4 similarly, but with I4 = (pc + β(qk − pc), qk), the pc-open paths touching the
left and right sides of B4, and the qk-closed dual paths touching the top and bottom
sides.

We claim that for some c2.2.2 > 0, one has

P(Fi) ≥ c2.2.2 for i = 1, . . . , 4, and for all k ≥ 0. (17)

So fix such i and k and first note that for e ⊂ B ′i , if Fe is the event that the
edge e satisfies the conditions described in the definition of Fi , then for distinct
e, f ⊂ B ′i , the events Fe and Ff are disjoint. Therefore P(Fi) = ∑

e⊂B ′i P(Fe).
Because L(qk) ≤ 3k (from (10)), one can use [3, Lemma 6.3] to prove that
P(Fe) ≥ c2.2.3P(F

′
e) for some c2.2.3 > 0, where F ′e is defined similarly to Fe, but

the qk-closed paths are instead pc-closed. Last, Kesten’s arm separation method (see
[11, Theorem 11]) implies that P(F ′e) ≥ c2.2.4|Ii |π4(2k) for some c2.2.4 > 0, where
|Ii | is the length of the interval Ii and π4 is defined below (11). Putting together
these pieces, we obtain

P(Fi) =
∑

e⊂B ′i
P(Fe) ≥ c2.2.3

∑

e⊂B ′i
P(F ′e) ≥ c2.2.5|Ii |π4(2

k)22k

≥ c2.2.6(qk+1 − pc)π4(2
k+1)22k.

for some c2.2.5, c2.2.6 > 0. Using the scaling relation stated above in (11), the right
side is bounded below by c2.2.7 > 0. This demonstrates the claim in (17).

Now that we have constructed the four-arm edges in the boxes Bi , we need to
create the other macroscopic connections. By the RSW theorem [12, 13], the FKG
inequality, and independence, one has

P(J ) ≥ c2.2.8 for all k ≥ 0,

for some c2.2.8 > 0, where J is the event that the following occur:

1. There is a pc-open circuit around the origin in Ann(3k, 3k+1) which is connected
by a pc-open path in this annulus to the bottom side ofB1 and by anotherpc-open
path in this annulus to the left side of B4,

2. there is a pc-open circuit around the origin in Ann(3k+2, 3k+3) which is
connected by a pc-open path in this annulus to the top side of B3 and by another
pc-open path in this annulus to the right side of B4, and

3. there are qk-closed dual paths in the following regions: (a) one connecting the
left side of B2 to the bottom side of B4, and one connecting the left side of B1 to
the left side of B3, all in the component of Ann(3k+1, 3k+2) \ ∪iBi that contains
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the point (−2 ·3k+1, 0), and (b) one connecting the right side of B2 to the top side
of B4, and one connecting the right side of B1 to the right side of B3, all in the
component of Ann(3k+1, 3k+2) \∪iBi that contains the point (2 · 3k+1, 2 · 3k+1).

The paths described in J must be “connected” to the four-arm edges described in the
events Fi , and this is done with the generalized FKG inequality (see [11, Lem. 13])
and Kesten’s arm extension method. Specifically, if Ĵ is the event that ∩iFi ∩ J
occurs, but with the additional stipulations that:

1. the first open connection in Ann(3k, 3k+1) described in item 1 of the definition of
J is connected in this annulus to the “lower” pc-open arm in B1 and the second
is connected to the “left” pc-open arm in B4,

2. the first open connection in Ann(3k+2, 3k+3) described in item 2 of the definition
of J is pc-connected in this annulus to the “upper” pc-open arm in B3 and the
second is pc-connected to the “right” pc-open arm in B4,

3. the “upper” pc-open arm in B1 is pc-connected to the “lower” pc-open arm in
B2, and the “upper” pc-open arm in B2 is pc-connected to the “lower” pc-open
arm in B3,

4. the first qk-closed dual path described in item 3(a) of the definition of J is qk-
connected to the “left” qk-closed arm in B2 and the “bottom” qk-closed arm in
B4, and the second is qk-connected to the “left” qk-closed arm in B1 and the
“left” qk-closed arm in B3, and

5. the first qk-closed path described in item 3(b) of the definition of J is qk-
connected to the “right” qk-closed arm in B2 and the “top” qk-closed arm in
B4, and the second is qk-connected to the “right” qk-closed arm in B1 and the
“right” qk-closed arm in B3,

then

P(Ĵ ) ≥ c2.2.9 for all k ≥ 0.

Finally, we must combine the event Ĵ with the connection to infinity. Letting
H be the event that there is a qk+1-open path connecting B(3k+2) to infinity, then
by (12), one has P(H) ≥ c2.2.10 for all k ≥ 0. To combine this with Ĵ , we again use
the generalized FKG inequality. It implies that

P(Ĵ ∩H) ≥ c2.2.11 for all k ≥ 0.

Because Ĵ ∩H implies the event Ek , this completes the sketch of the proposition.

2.3 Step 3: Good Indices and the End of the Proof

In this last step of the proof, we first prove a lemma which will imply that in the case
that (xk) = (F−1(qk)) is not summable, the sum of F−1(qk) over all k ∈ G for k ≤
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n is comparable to the sum over all k ≤ n. Recall thatG is the “good” set of indices
defined in (13) for which the lower bound for T inv(Ck,Dk)− T (Ck,Dk) from (14)
holds. We will use this lemma along with (14) to prove Theorem 1 afterward.

Lemma 2 Let (xk)k≥0 be a nonnegative monotone nonincreasing sequence. Then
for all n ≥ 0,

∑

k≤n
xk ≤ 3x0 + 3

∑

k∈G
k≤n

xk+1,

where G = {k : xk/xk+1 ≤ 2}.
Proof If k, k + 1, . . . , k +m ∈ Gc and 1 ≤ � ≤ m+ 1, one has

xk+� ≤ xk+�−1

2
≤ · · · ≤ xk

2�
,

and so

m∑

�=0

xk+� ≤ xk + xk
m+1∑

�=1

2−� ≤ 2xk.

By partitioningGc into a collection of maximal disjoint intervals and applying this
inequality to each such interval, we obtain

∑

k∈Gc
k≤n

xk+1 ≤
∑

k∈Gc
k≤n

xk ≤ 2x0 + 2
∑

k∈G
k≤n

xk+1.

Here, we have used that if k is the first element of an interval inGc, then xk−1 ∈ G,
unless k = 0. Adding x0 +∑

k∈G,k≤n xk+1 to both sides completes the proof of the
lemma.

Proof (Proof of Theorem 1) Now we prove the main theorem. The main step is to
show that for i = 0, 1, 2,

T inv(0, ∂B(n))− T (0, ∂B(n)) ≥
∑

k:3k+i∈G
3k+i≤%log3 n&−3

F−1(q3k+i+1)1E3k+i . (18)

To justify this inequality, recall that for a given k such that Ek occurs, Ck and Dk
have zero weight and are therefore in the invasion by (6), so one has

T (A,B) = T (A,Ck)+ T (Ck,Dk)+ T (Dk,B)
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and

T inv(A,B) = T inv(A,Ck)+ T inv(Ck,Dk)+ T inv(Dk, B)

for any A ⊂ B(3k) and B ⊂ B(3k+3)c. In this way, we decouple the passage times
between circuits. For a given i = 0, 1, 2, therefore, if k1, . . . , kr satisfy k1 < · · · <
kr and 3kr + i ≤ %log3 n& − 3, and E3ks+i occurs for all s, then

T inv(0, ∂B(n))− T (0, ∂B(n)) = T inv(0, C3k1+i )− T (0, C3k1+i )

+ T inv(D3kr+i , ∂B(n))− T (D3kr+i , ∂B(n))

+
r∑

s=1

(
T inv(C3ks+i ,D3ks+i )− T (C3ks+i , D3ks+i )

)

+
r−1∑

s=1

(
T inv(D3ks+i , C3ks+1+i )− T (D3ks+i , C3ks+1+i )

)
.

(Here we have chosen indices of the form 3k+ i to ensure that the annuli associated
to the events E3k+i are disjoint.) Using the fact that T inv ≥ T ,

T inv(0, ∂B(n))−T (0, ∂B(n)) ≥
r∑

s=1

(
T inv(C3ks+i , D3ks+i )− T (C3ks+i , D3ks+i )

)
.

Applying this idea to all the circuits C3k+i , D3k+i for 3k+ i ≤ %log3 n&−3 with
3k + i ∈ G, we obtain

T inv(0, ∂B(n))− T (0, ∂B(n))
≥

∑

k:3k+i∈G
3k+i≤%log3 n&−3

(T inv(C3k+i , D3k+i )− T (C3k+i , D3k+i ))1E3k+i . (19)

Combining this with (14), we obtain (18).
Averaging (18) over i = 0, 1, 2 produces

T inv(0, ∂B(n))− T (0, ∂B(n)) ≥ 1

3

∑

k∈G
k≤%log3 n&−3

F−1(qk+1)1Ek . (20)

By Proposition 1, this becomes

E(T inv(0, ∂B(n))− T (0, ∂B(n))) ≥ c2.2.1

3

∑

k∈G
k≤%log3 n&−3

F−1(qk+1).
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Lemma 2 then implies

E(T inv(0, ∂B(n))−T (0, ∂B(n))) ≥ c2.2.1

3

⎡

⎣−F−1(q0)+ 1

3

∑

k≤%log3 n&−3

F−1(qk)

⎤

⎦ .

Using (8), this implies the inequality of Theorem 1 if
∑
k F

−1(qk) = ∞.
If

∑
k F

−1(qk) <∞, then we explicitly construct an eventA on which geodesics
in I have higher weight than true geodesics. First pick a, b with 0 < a < b such that
P(te ∈ [a/2, a]) > 0 and P(te ≥ b) > 0. (If this is impossible, then

∑
k F

−1(qk) =
∞.) Fix an integer R which is a multiple of 10 and satisfies

R ≥ 10b/a, (21)

and let Γ be the set of edges of the form {(−n− 1, 0), (−n, 0)} for 0 ≤ n ≤ R− 1.
Last, define A to be the event that

1. B(R) is connected to infinity by a path of edges e with te ≤ a,
2. all edges e with both endpoints in ∂B(R) have te = 0,
3. all edges e ∈ Γ have te ∈ [a/2, a],
4. all edges e /∈ Γ with one endpoint in B(R/2) and one endpoint in B(R/2)c have
te ≥ b

5. all edges e /∈ Γ with both endpoints within �∞ distance R/5 of (−R/2, 0) have
te ≥ b, and

6. all other edges e with both endpoints in B(R) have te = 0.

(See Fig. 2 for an illustration of the event A.) We claim that

E[T inv(0, ∂B(n))− T (0, ∂B(n))] ≥ bP(A) > 0 for n ≥ R. (22)

Assuming this claim, the statement of Theorem 1 follows from (8) if
∑
k F

−1(qk) <

∞.
To show (22), we show that the difference of passage times is at least b on the

event A. Because A has positive probability (conditions (2)–(6) are clear, and for
condition (1), we use that P(te ≤ a) > 1/2, and so with positive probability, any
given vertex on ∂B(R) is connected to infinity by a path outside B(R) all whose
edges have weight ≤ a), this will complete the proof. First note that due to item (2),
on A we have

T inv(0, ∂B(n))− T (0, ∂B(n)) ≥ T inv(0, ∂B(R))− T (0, ∂B(R)) for n ≥ R.

Next, since there is an infinite edge-self avoiding path starting at 0 whose edges
have weight ≤ a (just follow Γ to ∂B(R) and then to infinity using item (1)), all
edges e in I satisfy te ≤ a. Therefore each path in I connecting 0 to ∂B(R) must
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Fig. 2 Illustration of the event A. The arrowed curve emanating from B(R) has edges with weight
≤ a and all edges on ∂B(R) have weight zero. The edges in the segment Γ (which starts at
the origin) have weight in the interval [a/2, a], and edges touching ∂B(R/2) (and in the box
(−R/2, 0) + B(R/5)) but not in Γ have weight ≥ b. All other edges in B(R) have weight zero.
On this event, any path from the origin to ∂B(R) in the invasion must contain the segment of Γ
passing through ∂B(R/2) on the left, and must therefore pick up at least weight aR/5

contain all edges in Γ with both endpoints within �∞ distance R/5 of (−R/2, 0).
This implies by item (3) that on A, one has

T inv(0, ∂B(R)) ≥ 2R

5
· a

2
= aR

5
.

On the other hand, there exists a path from 0 to ∂B(R) with passage time equal to
b: simply follow the positive e1-axis. Therefore on A, one has

T (0, ∂B(R)) ≤ b.

By the definition of R in (21), aR/5 − b ≥ b, and this shows (22), completing the
proof of Theorem 1.
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Empirical Spectral Distributions
of Sparse Random Graphs

Amir Dembo, Eyal Lubetzky, and Yumeng Zhang

Abstract We study the spectrum of a random multigraph with a degree sequence
Dn = (Di)

n
i=1 and average degree 1 � ωn � n, generated by the configuration

model, and also the spectrum of the analogous random simple graph. We show that,
when the empirical spectral distribution (ESD) of ω−1

n Dn converges weakly to a
limit ν, under mild moment assumptions (e.g., Di/ωn are i.i.d. with a finite second
moment), the ESD of the normalized adjacency matrix converges in probability to
ν � σSC, the free multiplicative convolution of ν with the semicircle law. Relating
this limit with a variant of the Marchenko–Pastur law yields the continuity of its
density (away from zero), and an effective procedure for determining its support.
Our proof of convergence is based on a coupling between the random simple graph
and multigraph with the same degrees, which might be of independent interest. We
further construct and rely on a coupling of the multigraph to an inhomogeneous
Erdős-Rényi graph with the target ESD, using three intermediate random graphs,
with a negligible fraction of edges modified in each step.
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1 Introduction

We study the spectrum of a random multigraph Gn = ([n],En) of n vertices of
degrees {D(n)i }ni=1, constructed by the configuration model, where the even

n∑

i=1

D
(n)
i = 2|En| = nωn(1+ o(1)) , (1)

is assumed to be such that

ωn →∞ , ωn = o(n) . (2)

Specifically, setting [n] = {1, 2, . . . , n}, equip each vertex i ∈ [n] with D(n)i half-
edges, whereby the edge set En results from a uniformly chosen perfect matching
of the 2|En| half-edges. The uniformly chosen simple graph Gn = ([n],En) with
the degrees D(n)i —assuming of course that this degree sequence is graphical (i.e.,
there exist simple graphs with these degrees)—is similarly described via a uniform
perfect matching of half-edges, subject to the constraint of having neither self-loops
nor multiple edges.

Our study of the spectrum of the adjacency matrix AGn of the multigraph Gn,
proceeds through a sequence of couplings, relating it to certain “band” matrices,
with independent albeit non-identically-distributed entries (adjacency matrices of
Erdős-Rényi inhomogeneous random graphs). Various spectral features of the latter
will then be derived using the powerful tools that have been developed in the last
few decades in random matrix theory and free probability.

In Proposition 1 we further provide a novel coupling of Gn and Gn, which may be
of independent interest. Utilizing this coupling we deduce that the uniformly chosen
random simple graph Gn, satisfying the same degree assumptions as Gn, will also
have the same limiting spectrum.

For random regular graphs—the case of D(n)i = dn for all i—it was shown
by Tran et al. [19] (extending a previous result of [8]) that, whenever dn � 1,
the empirical spectral distribution (ESD, defined for a symmetric matrix A with
eigenvalues λ1 ≥ . . . ≥ λn as LA = 1

n

∑n
i=1 δλi ) of the normalized matrix

ÂGn = 1√
dn

AGn converges weakly, in probability, to σSC, the standard semicircle

law (with support [−2, 2]).
The non-regular case with |En| = O(n) has been studied by Bordenave and

Lelarge [6] when the graphs Gn converge in the Benjamini–Schramm sense,
translating in the above setup to having {D(n)i } that are i.i.d. in i and uniformly
integrable in n. The existence and uniqueness of the limiting ESD was obtained in [6]
by relating this ESD to a recursive distributional equation—arising from the Galton–
Watson trees that correspond to the local neighborhoods in Gn—and showing that
this equation has a unique fixed point. See also, e.g., [5, 7, 14] and the references
therein, for the analysis of the limiting spectrum at λ = 0 for Erdős–Rényi graphs
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of constant average degree. Note that (a) this approach relies on the locally-tree-like
structure of the graphs, and is thus tailored for low (at most logarithmic) degrees;
and (b) very little is known on this limit, even in seemingly simple settings such as
when all degrees are either 3 or 4.

At the other extreme, when |En| diverges polynomially with n (whence the tree
approximations are invalid), the trace method—the standard tool for establishing the
convergence of the ESD of an Erdős–Rényi random graph to σSC—faces the obstacle
of non-negligible dependencies between edges in the configuration model (the trace
method can handle dependencies, but here n−1 tr( (EÂGn)

2k) , ωkn, thus the precise
cancellations of many diverging terms are needed for it to work; such cancellations
are very difficult to attain in the presence of dependencies).

1.1 Limiting ESD as a Free Multiplicative Convolution

Our assumptions on the triangular sequence {D(n)i } of degrees are that (2) holds, and

in addition, for ωn satisfying (1), the normalized degrees D̂(n)i = D(n)i /ωn satisfy
that

{D̂(n)Un } is uniformly integrable with E[(D̂(n)Un )2] = o(
√
n/ωn) , (3)

where Un is uniformly chosen in {1, . . . , n}. Let

ÂGn := ω−1/2
n AGn and Λ̂n := diag(D̂(n)1 , . . . , D̂

(n)
n ) .

Call a degree sequence {D(n)i } graphical if for every n there exists a simple graph
Gn with such degrees (equivalently, the criterion of the Erdős–Gallai theorem [9]
is met). Our main result derives the limiting ESD under conditions (1)–(3) on the
degree sequence (see, e.g., Fig. 1).

-3 -2 -1 0 1 2 3
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Fig. 1 Spectra of two random multigraphs on n = 1000 vertices with different degree sequences
{Di}. In red, Di = [τi√n] for all i, and in blue, Di = [τi log n] for i < n −√n and Di = [τi√n]
for i ≥ n −√

n, with τi ∼ 1 + Exp(1) i.i.d. (right plot). The limiting law for the ESD, shown by
Theorem 1 to be ν

D̂
� σSC, is plotted in black (left plot)
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Theorem 1 Let {D(n)i }ni=1 be a degree sequence satisfying (1)–(3), and further

suppose that the ESD LΛ̂n converges weakly to a limit ν
D̂

.

(a) The ESD LÂGn corresponding to the multigraph Gn = ([n],En) with degrees
{D(n)i }ni=1 (generated via the configuration model), converges weakly, in proba-
bility, to ν

D̂
� σSC.

(b) If {D(n)i } is graphical then the same convergence holds for the ESD LÂGn

corresponding to a uniformly chosen simple graph Gn = ([n],En) with this
degree sequence.

In the above theorem, the free multiplicative convolution of a symmetric prob-
ability measure ψ and a probability measure ϕ on R+ with ϕ,ψ = δ0, denoted
ϕ � ψ , is the unique probability measure such that Sϕ�ψ(z) = Sϕ(z)Sψ(z) for z in
the common domain of the corresponding S-transforms (see [2, Thm. 7], extending
the definition of ϕ � ψ from [4] and [20] in case both ϕ, ψ , are of bounded
support and non-zero mean). To define the S-transform, recall that the Cauchy–
Stieltjes transform of a probability measure μ on R, uniquely determining it, is
Gμ(z) :=

∫ [t − z]−1dμ(t). For ϕ as above, the related

mϕ(z) := z−1Gϕ(z
−1)− 1 =

∫
zt

1− zt dϕ(t) , (4)

is invertible as a formal power series in z ∈ C+, and the S-transform is defined as

Sϕ(w) := (1+ w−1)m−1
ϕ (w) for w ∈ mϕ(C+) (5)

(cf., e.g., [2, Prop. 1]). Following the extension in [13] of the S-transform to
measures of zero mean and finite moments of all order, the S-transform is similarly
defined for ψ as above in [2, Thm. 6]. In particular, with σSC being symmetric and
ν
D̂
= δ0 supported on R+, the measure ν

D̂
� σSC is well-defined.

Corollary 1 Let {D̂(n)i : 1 ≤ i ≤ n} be i.i.d. for each n, such that ED̂(n)1 =
1, supn E[(D̂(n)1 )

2] < ∞, and the law of D̂(n)1 converges weakly to some ν
D̂

. For
ωn → ∞ such that ωn = o(n), let Gn denote the uniform multigraph of degrees
D
(n)
i = [ωnD̂(n)i ] (modifying D(n)n by one if needed for an even sum). Further, for

any integers d̄n = o(n) with ωn = o(d̄n), the truncated degrees [ωnD̂(n)i ] ∧ d̄n are
graphical WHP (after increasing the minimal degree by one, if needed, for an even
sum).

Denoting by Gn the uniform simple graph, both ESDs LÂGn and LÂGn converge
weakly, in probability, to ν

D̂
� σSC.

Remark 1 The reason for the appearance of ν
D̂

� σSC in our context is due to

the fact that it is the limiting ESD of Bn := Λ̂
1/2
n XnΛ̂

1/2
n when maxi D̂

(n)
i =

O(1) and Xn is a standard GOE random matrix. Indeed, as its name suggest,
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the free multiplicative convolution ϕ � ψ is the law of the product ab of
free, bounded, random non-commutative operators a of law ϕ and b of law ψ

(cf. [1, Defn. 5.2.1, 5.2.3, 5.3.1, 5.3.28] for the precise meaning of all this).
This extends to the limiting ESD for the product of asymptotically free matrices:
two sequences Xn,Yn of random self-adjoint, matrices are asymptotically free if
E[trn(f1(Xn)g1(Yn) · · · fk(Xn)gk(Yn))] = o(1) for the normalized trace trn(·) =
1
n

tr(·) and any collections (fi)ki=1 and (gi)ki=1 of polynomials (with k fixed) that
satisfy E[trn(fi(Xn))] = o(1) and E[trn(gi(Yn))] = o(1) for all 1 ≤ i ≤ k (see [1,
Defn. 5.4.1] or [17, §2.5]). It is known that the GOE Xn is asymptotically free of
any uniformly bounded diagonal Λ̂n (see, e.g., [1, Theorem 5.4.5]), which in turn
implies that ν

D̂
� σSC is the weak limit of the ESD for the random matrices Bn

(the spectral radius of the GOE Xn is O(1) with high probability, so by a standard
truncation argument we arrive at the bounded case of [1, Corollary 5.4.11(iii)]).

Theorem 1 and Corollary 1 are proved in Sect. 2. This is achieved by first
analyzing the ESD of the random multigraph Gn; the move from multigraphs to
simple graphs is achieved via the following proposition, which we prove in Sect. 3.

Proposition 1 Fixing graphical degrees D1 ≥ D2 ≥ · · · ≥ Dn, let Gn and Gn
be the corresponding random multigraph and uniform simple graph, respectively.
There exists a coupling μ between the matchings which yield Gn and Gn so the
number $n ≤ 2|En| of half-edges whose matching links are different between the
two graphs, satisfies

Eμ[$n($n − 1)] ≤ 4
n−1∑

i=1

i+Di∑

j=i+1

(2DiDj −Di −Dj) . (6)

Remark 2 A crude, yet already useful, upper bound on the RHS of (6) is

8
√

2|En|
n∑

i=1

D2
i . (7)

(Indeed,
( ∑i+Di

j=i+1Dj
)2 ≤ Di

∑n
j=1D

2
j by Cauchy–Schwarz for any i ∈ [n];

thus, again by Cauchy–Schwarz, the RHS of (6) is at most 8(
∑
i D

2
i )(

∑
i Di)

1
2 , and∑

i Di = 2|En|.) In general, the RHS of (6) can be replaced by any bound on the
expected number of pairs of half-edges e = f on a which a “switch” would yield a
non-simple graph.

Remark 3 The Proof of Theorem 1(a) extends to the dense regime, where ωn/n is
bounded below (and above). However, the minimal expected edit distance between
Gn and Gn exceeds the expected number O(ω2

n) of parallel edges in Gn, which in
the dense regime is alreadyO(|En|), thereby blocking in the dense regime our route
to Theorem 1(b) as a consequence of part (a). Further, our assumption (3) allows
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having a maximal degree that far exceeds n (indeed, prior to truncation this happens
in the i.i.d. setting of Corollary 1). Even for specified graphical degrees, the number
of simple graphs Gn oscillates widely as the degrees change, so (3) might not suffice
for the statement of Theorem 1(b) to be true in the dense regime. Going back to
the sparse regime, assumptions à la (3) have little to do with controlling extreme
eigenvalues, or with bringing the corresponding local law to the celebrated GOE-
universality class of homogeneous Erdős-Rényi graphs. Indeed, one must further
restrict Λ̂n, in order to have any hope of transferring the many fine results on extreme
eigenvalues and local laws that are available for the GOE, via Bn of Remark 1 to ÂGn .

1.2 Properties of the Limiting ESD

The next two propositions, proved in Sect. 4, relate the limiting measure ν
D̂
� σSC

with a Marchenko–Pastur law, and thereby, via [16], yield its support and density
regularity.

Proposition 2 For the law ν
D̂

of a nonnegative random variable D̂ with ED̂ = 1,
let μMP be the Marchenko–Pastur limit (on R+) of the ESD of n−1ΛnX̃nX̃%nΛn,
in which the non-symmetric X̃n has standard i.i.d. complex Gaussian entries and
LΛn ⇒ ν for non-negative diagonal matrices Λn and the size-biased ν with
dν
dν
D̂
(x) = x on R+. The free multiplicative convolution μ = ν

D̂
� σSC has the

Cauchy–Stieltjes transform

Gμ(z) = −z−1
[
1+Gμ̃(z)2

]
, ∀z ∈ C+ , (8)

where μ̃ is the law of the symmetric X such thatX2 is distributed according to μMP.

Recall [16, Lemma 3.1, Lemma 3.2] that h(z) := GμMP (z) is uniformly bounded
on C+ away from the imaginary axis, and [16, Theorem 1.1] that h(z) → h(x)

whenever z ∈ C+ converges to x ∈ R \ {0}. Further, the C+-valued function h(x)
is continuous on R \ {0} and the continuous density

ρMP(x) :=
dμMP

dx
= 1

π
7(h(x)) , (9)

is real analytic at any x = 0 where it is positive. The density ρ̃(x) = |x|ρMP(x
2)

of μ̃ inherits these regularity properties. Bounding ρ̃ uniformly and analyzing the
effect of (8) we next make similar conclusions about the density ρ(x) of μ, now
also at x = 0, and its support (see Fig. 2).

Proposition 3 In the setting of Proposition 2, for x = 0 there is density

ρ(x) := dμ
dx

= −28(h(x2))̃ρ(x) , (10)
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Fig. 2 Recovering the support of the limiting ESD. Left: ESD of the random multigraph on n =
1000 vertices with degrees
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Remark 4

which is continuous, symmetric, and moreover real analytic where positive. The
support of μ is supp(μ) := {x ∈ R : ρ(x) > 0} = supp(μ̃), which up to the
mapping x �→ x2 further matches supp(μMP). In addition π ρ̃(x) ≤ 1 ∧ (2/|x|),
πρ(x) ≤ (ED̂−2)1/2 ∧ (4/|x|3) and if ν

D̂
({0}) = 0 then μ is absolutely continuous

(i.e., μ({0}) = 0).

Remark 4 Recall the unique inverse of h on h(C+) given by

ξ(h) := −1

h
+ E

[
D̂2

1+ hD̂
]
, (11)

namely ξ(h(z)) = z on C+ (see [16, Eqn. (1.4)]); this inverse extends analytically to
a neighborhood of C+ ∪ Γ for Γ := {h ∈ R : h = 0,−h−1 ∈ supp(ν̂D)c} and [16,
Theorems 4.1 and 4.2] show that x ∈ supp(μMP)

c iff ξ ′(v) > 0 for v ∈ Γ , where
v = h(x) and x = ξ(v) (thus validating the characterization of supp(μMP) which
has been proposed in [12]). We show in Lemma 2 that 8(h(x2)) < 0 everywhere,
hence the behavior of ρ(x) at the soft-edges of supp(μ) can be read from the soft-
edges of supp(μMP) (as in [11, Prop. 2.3]), depicted in Fig. 3.

Corollary 2 Suppose ν
D̂

of mean one is supported on two atoms α > η > 0. The
support supp(μ) of μ = ν

D̂
� σSC is then disconnected iff

α > η
[ 3

1− (1− η)1/3 − 1
]
. (12)

Moreover, when (12) holds, supp(μ)∩R+ consists of exactly two disjoint intervals.
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Fig. 3 Phase diagram for the existence of holes in the limiting ESD when ν
D̂

is supported on
two atoms α > η > 0 (see Corollary 2). Left: the region (12) (where supp(μ) is not connected)
highlighted in blue. Right: zooming in on the emergence of a hole as α varies at η = 1

2

2 Convergence of the ESD’s

The Proof of Theorem 1 will use the following standard lemma.

Lemma 1 Let {Mn,r }n,r∈N be a family of matrices of order n, define μn,r := LMn,r

and η(r) := lim supn→∞ 1
n

tr
(
(Mn,r − Mn,∞)2

)
. Let {μr : r ∈ N} denote a family

of measures such that

μn,r ⇒ μr as n→∞ for every r ∈ N , (13)

μn,∞ is tight , (14)

η(r)→ 0 as r →∞ . (15)

Then the weak limit of μn,∞ as n→∞ exists and equals limr→∞ μr .

Proof Let μ∞ be a limit point of μn,∞, the existence of which is guaranteed by
the tightness assumption (14). A standard consequence of the Hoffman–Wielandt
bound (cf. [1, Lemma 2.1.19]) and Cauchy–Schwarz is that for matrices A and B of
order n,

dBL

(
LA,LB

)2 ≤ 1

n
tr

(
(A − B)2

)
,
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where dBL is the bounded-Lipchitz metric on the space M1(R+) of probability
measures on R+ (see the proof of [1, Theorem 2.1.21]). Thus, by (13) and the
triangle-inequality for dBL, it follows that

η(r) ≥ dBL(μ∞, μr)2 .

Consequently, μr → μ∞ as r → ∞, from which the uniqueness of μ∞ also
follows.

Proof of Theorem 1 In Step I we reduce the proof to treating the single-adjacency
matrix An of Gn, where multiple copies of an edge/loop are replaced by a single one
(that is, An = AGn ∧1 entry-wise), and further {ω−1

n D
(n)
i } ⊆ S for some fixed finite

set S. Scaling Ân := ω−1/2
n An we rely in Step II, on Proposition 4 to replace the

limit points of LÂn by those of Lω
−1/2
n Ãn for symmetric matrices Ãn of independent

Bernoulli entries. Using the moment method, Step III relates the latter limit points
to the limit of LBn for the matrices Bn of Remark 1.

Step I We claim that if LÂn ⇒ μ in probability, then the same applies for LÂGn .
This will follow from Lemma 1 with Mn,r = Ân and Mn,∞ = ÂGn upon verifying
that

ξn := E

[
1
n

tr
((

ÂGn − Ân
)2

)]
→ 0 . (16)

Indeed, Condition (13) has been assumed; Condition (14) follows from the fact that

1

2n
tr

(
Â2
Gn

)
≤ 1

n
tr

((
ÂGn − Ân

)2
)
+ 1

n
tr(Â2

n)

≤ 1

n
tr

((
ÂGn − Ân

)2
)
+ 2|En|
nωn

,

so in particularE[ 1
n

tr(Â2
Gn
)] ≤ ξn+1+o(1), yielding tightness; and Condition (15)

holds in probability by (16) and Markov’s inequality. Recall that the stochastic
orderingX ' X′ denotes that P(X > x) ≤ P(X′ > x) for all x ∈ R, or equivalently,
that there exists a coupling of (X,X′) such that P(X ≤ X′) = 1. To establish (16),
observe that, for every i and j we have (AGn )i,j ' Bin(m, q) for m = D

(n)
i and

q = (D(n)j − 1i=j )/(2|En| − 1), whereas Bin(m, q) ' Yλ ∼ Po(λ) for everym and

λ such that 1− q ≥ e−λ/m. Thus,

E

[
(AGn − An)2i,j

]
≤ E

[
(Yλ − 1)2+

]
≤ λ2 .
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Since q ≤ 1+o(1)
ωn

uniformly over i, j , we take WLOG λ = mD(n)j /|En|, yielding for
n large

ξn ≤ 2

nωn

n∑

i,j=1

[D(n)i D
(n)
j

|En|
]2 ≤ 4ωn

n

[ 1

n

n∑

i=1

(D̂
(n)
i )

2] → 0 ,

by our assumption that E[(D̂(n)Un )2] = o(
√
n/ωn). Considering hereafter only single-

adjacency matrices, we proceed to reduce the problem to the case where the
variables D̂(n)i are all supported on a finite set. To this end, let � = 2r2 for r ∈ N

and

D̂
(n,r)
i = Ψr(D̂(n)i ) for Ψr(x) :=

�∑

j=1

d
(r)
j 1[

d
(r)
j ,d

(r)
j+1

)(x) ,

where 0 = d
(r)
1 < . . . < d

(r)
�+1 are continuity points of ν

D̂
of interdistances in

[ 1
2r ,

1
r
], which are furthermore in εrZ for some irrational εr > 0. Let

D
(n,r)
i = ωn,r D̂(n,r)i ∈ Z+ for ωn,r := [εrωn]

εr
,

possibly deleting one half-edge fromD(n,r)n if needed to make
∑n
i=1D

(n,r)
i even.

Observation 1 Let {di}ni=1, {d ′i}ni=1 be degree sequences with d ′i ≤ di , and let G
be a random multigraph with degrees {di} generated by the configuration model.
Generate H by (a) marking a subset of d ′i half-edges of vertex i BLUE, chosen
independently of the matching that generated G; (b) retaining every edge that has
two BLUE endpoints; and (c) adding an independent uniform matching on all other
BLUE half-edges. Then H has the law of the random multigraph with degrees {d ′i}
generated by the configuration model.

Proof Since the configuration model matches the half-edges in G via a uniformly
chosen perfect matching, and the coloring step (a) is performed independently of
this matching, it follows that the induced matching on the subset of BLUE half-
edges that are matched to BLUE counterparts—namely, the edges retained in step
(b)—is uniform.

Using this, and noting D(n,r)i ≤ D
(n)
i for all i, let G(r)n = ([n],E(r)n ) be

the following random multigraph with degrees {D(n,r)i }, coupled to the already-
constructed Gn:

(a) For each i, mark a uniformly chosen subset of D(n,r)i half-edges incident to
vertex i as BLUE in Gn.

(b) Retain in G(r)n every edge of En where both parts are BLUE.
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(c) Complete the construction of G(r)n via a uniformly chosen matching of all
unmatched half-edges.

Let Â(r)n = ω
−1/2
n A(r)n for A(r)n , the single-adjacency matrix of G(r)n . We next

control the difference between LÂn and LÂ(r)n . Indeed, by the definition of the
coupling of Gn and G(r)n , the cardinality of the symmetric En9E(r)n is at most twice
the number of unmarked half-edges in Gn. Thus,

1

4n
tr

(
(Ân − Â(r)n )

2) ≤ 1

2nωn

∣
∣
∣En9E(r)n

∣
∣
∣ ≤ 1

nωn

n∑

i=1

(D
(n)
i −D(n,r)i )

≤ 1+ o(1)
εrωn

+ 1

r
+ 1

n

n∑

i=1

D̂
(n)
i 1{D̂(n)i ≥r} =: η(n, r) , (17)

where the first term in η(n, r) accounts for the discrepancy between ωn and ωn,r ,
the term 1/r accounts for the degree quantization, while the last term accounts for
degree truncation (since d(r)�+1 ≥ r). Thanks to the uniform integrability of {D̂(n)Un }
from (3), we have that η(r) := lim supn→∞ η(n, r) satisfies η(r)→ 0 as r → ∞.
Furthermore,

∫
x2dLÂn = 1

n
tr(Â2

n) ≤ 1+ o(1)

by the choice of ωn in (1), yielding the tightness of μn,∞ := LÂn . Altogether, we

conclude from Lemma 1 that, if LÂ(r)n ⇒ μr , then LÂn ⇒ limr→∞ μr .
Next, letω(r)n = 2|E(r)n |/n (as in (1) but for the multigraphG(r)n ). Since (see (17)),

lim sup
n→∞

∣
∣
∣∣1−

ω
(r)
n

ωn

∣
∣
∣∣ ≤ η(r)→ 0 as r →∞ ,

WLOG we replace ωn by ω(r)n in the definition of Â(r)n , i.e., starting with

D̂
(n,r)
i ∈ {d(r)1 , . . . , d

(r)
� } =: Sr .

Note that the hypothesis LΛ̂n ⇒ ν
D̂

as n → ∞, together with our choice of Sr ,
implies that LΛ̂

(r)

n (corresponding to Λ̂
(r)

n = diag(D̂(n,r)1 , . . . , D̂
(n,r)
n )) converges

weakly for each r to some ν
D̂r
= δ0, supported on R+, and further, ν

D̂r
⇒ ν

D̂
= δ0,

as r →∞.
Let μ(2) denote hereafter the pushforward of the measure μ by the mapping

x �→ x2 (that is, the measure given by B �→ μ(f−1(B)) for f (x) = x2.) It is
known that, for probability measures on R+, the free multiplicative convolution is
continuous w.r.t. weak convergence; that is, νk�ν′k ⇒ ν�ν′ provided νk ⇒ ν = δ0,
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ν′k ⇒ ν′ = δ0 all of which are supported on R+ (see, e.g., [2, Prop. 3]). Applying
this twice, we find that

ν
D̂r

� σ (2)SC � ν
D̂r
⇒ ν

D̂
� σ (2)SC � ν

D̂
. (18)

From this we next deduce that ν
D̂r

� σSC ⇒ ν
D̂
� σSC. Indeed, recall [2, Lemma

8] that the LHS of (18) equals (ν
D̂r

� σSC)
(2), while likewise its RHS equals (ν

D̂
�

σSC)
(2). For any f ∈ Cb(R), the function g(x) = 1

2 [f (
√
x) + f (−√x)] is in

Cb(R+). Thus, the weak convergence (ν
D̂r

� σSC)
(2) ⇒ (ν

D̂
� σSC)

(2), implies that
ν
D̂r

� σSC ⇒ ν
D̂
� σSC for the corresponding symmetric source measures of the

map x �→ x2. In conclusion, it suffices hereafter to prove the theorem for the case
where D̂(n)i ∈ S, a fixed finite set, for all n.

Step II For 1 ≤ a ≤ �, let m(n)a = |Van| where Van = {v ∈ [n] : deg(v) =
daωn} is the set of vertices of degree daωn in Gn. By assumption,m(n)a /n→ νa for
νa := νD̂({da}). (Observe that our choice of ωn dictates that

∑
a daνa = 1.) For all

1 ≤ a, b ≤ �, set

qa,b := dadbνb .

Let Hn = ∪a≤bH(n)a,b for the edge-disjoint multigraphs H(n)a,b that are generated by the
configuration model in the following way.

• For 1 ≤ a ≤ �, let H(n)(a,a) be the random D(n)a,a-regular multigraph on Van, where

D
(n)
a,am

(n)
a is even and D̂(n)a,a := D(n)a,a/ωn converges to qa,a as n→∞.

• For 1 ≤ a < b ≤ �, let H(n)a,b be the random bipartite multigraph with sides

(Van,V
b
n) and degreesD(n)a,b in Van and D(n)b,a in Vbn, such that the detailed balance

D
(n)
a,bm

(n)
a = D(n)b,am(n)b

holds, and D̂(n)a,b := D(n)a,b/ωn tends to qa,b as n→∞ (hence, D̂(n)b,a → qb,a).

Finally, setting

λ
(n)
a,b :=

ωn

n
dadb , (19)

let Ãn denote the single-adjacency matrix of the multigraph H̃n = ∪a≤bH̃(n)a,b, where

the edge-disjoint multigraphs H̃(n)a,b are defined as follows.

• For 1 ≤ a ≤ b ≤ �, mutually independently set the multiplicity of the edge
between distinct i ∈ Vna and j ∈ Vnb in H̃(n)a,b to be a Po(λ(n)a,b) random variable.



Empirical Spectral Distributions of Sparse Random Graphs 331

• For 1 ≤ a ≤ �, mutually independently set the number of loops incident to
i ∈ Van to be a Po( 1

2λ
(n)
a,a) random variable.

Our next proposition shows that LÂn ⇒ ν
D̂
� σSC, in probability, whenever

Lω
−1/2
n Ãn ⇒ ν

D̂
� σSC , in probability . (20)

Proposition 4 The empirical spectral measures of An,A′
n and Ãn, the respective

single-adjacency matrices of Gn,Hn and H̃n, satisfy

dBL

(
Lω

−1/2
n An,Lω

−1/2
n A′

n

)
= o(1) and dBL

(
Lω

−1/2
n A′

n,Lω
−1/2
n Ãn

)
= o(1) ,

in probability, as n→∞.

Proof Setting

G(0)n = Gn , G(2)n = Hn , G(4)n = H̃n ,

associate with each multigraph its sub-degrees (accounting for edge multiplicities),

D
(n,k)
i,b :=

∑

j∈Vbn
(AG(k)n

)i,j , i ∈ [n] , 1 ≤ b ≤ � ,

so in particular D(n,2)i,b = D
(n)
a(i),b where a(i) is such that i ∈ Van. Of course, for

k = 0, 2, 4,

m
(n,k)
a,b :=

∑

i∈Van
D
(n,k)
i,b = m(n,k)b,a , m(n,k)a,a is even, 1 ≤ a, b ≤ � . (21)

Claim Conditional on a given sequence of sub-degrees {D(n,k)i,b }, the adjacency
matrices AG(k)n

for k ∈ {0, 2, 4} all have the same conditional law.

Proof Observe that Gn = G(0)n gives the same weight to each perfect matching
of its half-edges, thus conditioning on {D(n,k)i,b } amounts to specifying a subset of
permissible matchings, on which the conditional distribution would be uniform. The
same applies to the graphsH(n)(a,b) for all 1 ≤ a ≤ b ≤ �, each being an independently

drawn uniform multigraph, and hence to their union Hn = G(2)n , thus establishing
the claim for k = 0, 2. To treat k = 4, notice that the probability that the multigraph
H(n)(a,b), a = b, given the sub-degrees {D(n,k)i,b }, features the adjacency matrix a :=
(ai,j ) (i ∈ Van, j ∈ Vbn), is

1

m
(n,k)
a,b !

( ∏

i∈Van

D
(n,k)
i,b !

∏
j∈Vbn ai,j !

)( ∏

j∈Vbn
D
(n,k)
j,a !

)
∝

∏

i∈Van

∏

j∈Vbn

1

ai,j !



332 A. Dembo et al.

by the definition of the configuration model. As the distribution of a vector of t i.i.d.
Poisson variables with mean λ, conditional on their sum being m, is multinomial
with parameters (m, 1

t
, . . . , 1

t
), the analogous conditional probability under H̃(n)(a,b)

is

∏

i∈Van

D
(n,k)
i,b !

∏
j∈Vbn ai,j !

|Vbn|−D
(n,k)
i,b ∝

∏

i∈V na

∏

j∈Vbn

1

ai,j ! .

Lastly, the probability that H(n)(a,a), conditional on {D(n,k)i,b }, assigns to a = (ai,j ) is

∏

i∈Van

Di !
2ai,i

∏

j∈Van
j>i

1

ai,j ! ∝ 2−
∑
i ai,i

∏

i,j∈Van
j>i

1

ai,j ! ,

whereas the analogous conditional probability under H̃(n)(a,b) (now involving a vector

that is multinomial with parameters (D(n,k)i,b , 1
2t+1 ,

2
2t+1 , . . . ,

2
2t+1) for t = |{j ∈

Van : j ≥ i}|, recalling the factor of 2 in the definition of the rate of loops under

H̃
(n)
(a,a)

), is

∏

i∈Van

D
(n,k)
i,b !

∏
j∈Van
j>i

ai,j !2
−ai,i

(
2

|{j ∈ Van : j ≥ i}|
)−D(n,k)i,b ∝ 2−

∑
i ai,i

∏

i,j∈Van
j>i

1

ai,j ! .

This completes the proof of the claim.

We will introduce two auxiliary multigraphs G(1)n and G(3)n having the latter
property, and further, the corresponding single-adjacency matrices (or single-edge
sets E(k)n ), can be coupled in such a way that

4∑

k=1

E

[∣
∣E(k)n 9E(k−1)

n

∣
∣
]
= o(nωn) . (22)

It follows that, under the resulting coupling, both E[tr (
(An−A′

n)
2
)] = o(nωn) and

E[tr (
(A′
n − Ãn)2

)] = o(nωn), yielding Proposition 4 via the Hoffman–Wielandt
bound.

Proceeding to construct the multigraph G(1)n , write, for all i ∈ [n] and 1 ≤ b ≤ �,

D
(n,1)
i,b = D(n,0)i,b ∧D(n,2)i,b , (23)

then further uniformly reduce the number of potential half-edges in G(1)n until
achieving (21) for k = 1. That is, if (23) yields m(n,1)a,b > m

(n,1)
b,a for some a = b, we
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uniformly choose and eliminatem(n,1)a,b −m(n,1)b,a potential half-edges leading from Van
to Vbn and accordingly adjust {D(n,1)i,b , i ∈ Van}, an operation which only affects the
constraint (21) for that particular a = b. With Observation 1 in mind, construct two
bridge copies of the random multigraphG(1)n with the adjusted sub-degrees {D(n,1)i,b },
as follows:

• For each i and b, mark as BLUE(b) a uniformly chosen subset ofD(n,1)i,b half-edges

incident to vertex i, the other part of which is, according to G(0)n , in Vbn.

• Retain for G(1)n every edge of G(0)n where both parts are marked with BLUE.
• After removing all non-BLUE half-edges of G(0)n , complete the construction of

G(1)n by uniformly matching, for each a ≥ b, all unmatched BLUE(b) half-edges
of Van to all unmatched BLUE(a) half-edges of Vbn.

• A second copy of G(1)n is obtained by repeating the preceding construction, now
with G(2)n taking the role of G(0)n .

Replacing in the above procedure the multigraph G(0)n by the multigraph G(4)n , the
same construction produces a multigraph G(3)n having sub-degrees

D
(n,3)
i,b ≤ D(n,2)i,b ∧D(n,4)i,b , (24)

and two bridge copies of G(3)n which are coupled (using such BLUE marking), to
G(2)n and G(4)n , respectively.

Next, as for (22), recall that |E(k)n 9E(k−1)
n | ≤ |EG(k)n

9EG(k−1)
n

|, which under our

coupling is at most the number of edges of G(2[k/2])n that had at least one non-BLUE

part. This in turn is at most

Δ(n) :=
�∑

a,b=1

|m(n,k)a,b −m(n,k−1)
a,b | .

Our construction is such thatm(n,0)a,b ∧m(n,2)a,b ≥ m(n,1)a,b and m(n,4)a,b ∧m(n,2)a,b ≥ m(n,3)a,b .
Further, if the sub-degrees of bridge multigraphs were set by (23), then

m
(n,0)
a,b +m(n,2)a,b − 2m(n,1)a,b =

∑

i∈Van
|D(n,0)i,b −D(n)a,b| := Δ(n,1)a,b ,

for any 1 ≤ a, b ≤ �, with analogous identities relatingm(n,3)a,b andΔ(n,3)a,b . Since (21)

holds for k = 0, 2, 4, while m(n,1)a,b ∧m(n,1)b,a , b < a are not changed by the G(1)n sub-

degree adjustments (and similarly for the G(3)n sub-degree adjustments), we deduce
that

Δ(n) ≤ 2
�∑

a,b=1

Δ
(n,1)
a,b + 2

�∑

a,b=1

Δ
(n,3)
a,b .
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Thus, we have (22) as soon as we show that for any 1 ≤ a, b ≤ �,

EΔ
(n,1)
a,b + EΔ

(n,3)
a,b = o(nωn) ,

which by our choice of {D(n)a,b} follows from having for any fixed i ∈ Van,

E|ω−1
n D

(n,0)
i,b − qa,b| + E|ω−1

n D
(n,4)
i,b − qa,b| = o(1) . (25)

For i ∈ Van the variable D(n,4)i,b is Poisson with mean (1 + o(1))λ(n)a,bm(n)b =
ωnqa,b(1 + o(1)) (see (19)), hence E|ω−1

n D
(n,4)
i,b − qa,b| → 0. Similarly, D(n,0)i,b

counts how many of the daωn half-edges emanating from such i, are paired by the
uniform matching of the half-edges of Gn, with half-edges from the subset Ebn of

those incident to Vbn. With |Ebn| = dbωnm(n)b , the probability of a specific half-edge
paired with an element of Ebn is μn = (|Ebn| − 1{a=b})/(2|EGn | − 1) → dbνb,

hence ω−1
n ED

(n,0)
i,b = daμn → qa,b. It is not hard to verify that two specific half-

edges incident to i ∈ Van are both paired with elements of Ebn with probability
vn = μ2

n(1+ o(1)). Consequently,

Var(ω−1
n D

(n,0)
i,b ) ≤ da μn

ωn
+ d2

a (vn − μ2
n)→ 0 ,

yielding the L2-convergence of ω−1
n D

(n,0)
i,b to qa,b and thereby establishing (25).

Step III We proceed to verify (20) for the single-adjacency matrices Ãn of H̃n.
To this end, as argued before, such weak convergence as in (20) is not affected by
changing o(nωn) of the entries of Ãn, so WLOG we modify the law of number of
loops in H̃n incident to each i ∈ Van to be a Po(λ(n)a,a) variable, yielding the symmetric

matrix Ãn of independent upper triangular Bernoulli(p(n)a,b) entries, where p(n)a,b =
1 − exp(−λ(n)a,b) when i ∈ Van and j ∈ Vbn. In particular, the rank of EÃn is at

most �, so by Lidskii’s theorem we get (20) upon proving that LB̂n ⇒ ν
D̂
� σSC in

probability, for B̂n := ω−1/2
n (Ãn − EÃn), a symmetric matrix of uniformly (in n)

bounded, independent upper-triangular entries {Ẑij }, having zero mean and variance

v
(n)
a,b := ω−1

n p
(n)
a,b(1 − p(n)a,b) = 1

n
dadb(1 + o(1)) when i ∈ Van, j ∈ Vbn. As a

special case of Remark 1 (corresponding to piecewise-constant diagonal matrices
with values {da}�a=1), such convergence holds for the symmetric matrices Bn, whose

independent centered Gaussian entries Zij have variance v(n)a,b when i ∈ Van and

j ∈ Vbn, subject to on-diagonal rescaling EZ2
ii = 2v(n)a(i),a(i). As in the classical

proof of Wigner’s theorem by the moment’s method (cf. [1, Sec. 2.1.3]), it is easy
to check that for any fixed k = 1, 2, . . .,

E

[ 1

n
tr(B̂kn)

]
= E

[ 1

n
tr(Bkn)

]
(1+ o(1)) ,
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since both expressions are dominated by those cycles of length k that pass via
each entry of the relevant matrix exactly twice (or not at all). Further, adapting the
concentration argument of [1, Sec. 2.1.4] we deduce that as in the Wigner’s case,

〈xk,LB̂n−ELB̂n〉 → 0 in probability, for each fixed k, thereby completing the Proof
of Theorem 1(a).

To prove Theorem 1(b), recall that |En9En| ≤ $n for any coupling of the pair
of matching which generate the graphs Gn and Gn. Appealing to Proposition 1
and the bound (7) following it, we get that under the coupling μ provided by that
proposition,

Eμ[|En9En|] ≤ Eμ[$n] ≤
√

2Eμ[$n($n − 1)] ≤ 4bn ,

where (recalling from (1) that ωn = (2+ o(1))|En|/n)

b2
n :=

√
2|En|

n∑

j=1

D2
j = (1+ o(1))n3/2√ωnEUn(D(n)Un )2

= (1+ o(1))n3/2ω
5/2
n EUn(D̂

(n)
Un
)2 = o(n2ω2

n)

via our assumption on the RHS of (3); thus, Eμ[|En9En|] = o(nωn). We claim that

Lemma 1 then concludes the proof. To see this, set B̂′n ≡ ω−1/2
n AGn and further let

Ân ≡ ω−1/2
n An for the single-adjacency matrix An associated with AGn . Since the

entries of An and AGn may differ at most by one from each other, (2) implies that

Eμ

[ 1

n
tr

(
(Ân − B̂′n)2

)]
≤ 2

nωn
Eμ[|En9En|] → 0 ,

as required for Lemma 1.

Proof of Corollary 1 The assumed growth of ωn yields (2) out of (1). In case of
Gn, the latter amounts to

1

n

n∑

i=1

D̂
(n)
i → 1 , in probability, (26)

which we get by applying the L2-WLLN for triangular arrays with uniformly
bounded second moments. The same reasoning yields the required uniform inte-
grability in (3), namely, that when n→∞ followed by r →∞

1

n

n∑

i=1

D̂
(n)
i 1{D̂(n)i ≥r} → 0 , in probability. (27)
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Further, applying the weak law for non-negative triangular arrays {(D̂(n)i )2} of
uniformly bounded mean, at truncation level bn � n, it is not hard to deduce that

1

bn

n∑

i=1

(D̂
(n)
i )

2 → 0 , in probability, (28)

whereupon, considering bn = n/
√
ωn/n results with the RHS of (3). Next, recall

that the empirical measures LΛ̂n of i.i.d. D̂(n)i converge in probability to the weak

limit ν
D̂

of the laws of D̂(n)1 . Thus, Theorem 1(a) applies forGn of degrees [ωnD̂(n)i ],
yielding Corollary 1 in this case.

Turning to the case of uniform simple graphs, thanks to (27), truncating the
degrees [ωnD̂(n)i ] at some d̄n � ωn removes at most o(nωn) edges from En. Thus,
such truncation neither affects (1), nor the preceding verification of (3). Further, such

truncation alters only o(n) degrees, yielding the same limit ν
D̂

for LΛ̂n . In view of

Theorem 1(b), the stated convergence of LÂGn holds, provided that {[ωnD̂(n)i ] ∧ d̄n}
are graphical WHP as n → ∞. To this end, inspired by the proof of [3, Theorem
1(d)], recall from the Erdős-Gallai theorem, that integers d1 ≥ d2 ≥ · · · ≥ dn ≥ 0
are graphical if

2
j∑

i=1

di ≤ j (j − 1)+
n∑

i=1

min(j, di) , ∀ 1 ≤ j ≤ n . (29)

Thanks to (2) we can fix jn = o(n) such that jn/
√
nωn →∞. The LHS of (29) is in

our setting at most 2ωn
∑
i D̂

(n)
i , which in view of (26) is for j > jn negligible in

comparison with the term j (j − 1) on the RHS of (29). Denoting by op(1) the LHS

of (28) at bn = n2/jn � n, we further have here that the LHS of (29) is at most

2 min
(
j d̄n, nωn op(1)

)
, ∀ 1 ≤ j ≤ jn . (30)

The Paley–Zygmund inequality yields infn P(D̂
(n)
i ≥ 2/3) ≥ 2δ, for some δ > 0.

Hence,

lim inf
n→∞

1

n

n∑

i=1

1{D(n)i ≥ωn/3} > δ , in probability.

This yields that the right-most term in (29) is for all large n and j ∈ [n], at least

δmin(jn, nωn/3) ,

which in turn exceeds (30) (as d̄n = o(n)), thus completing the proof.
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3 Coupling Simple Graphs and Multigraphs: Proof of
Proposition 1

Fixing graphical degrees D1 ≥ D2 ≥ · · · ≥ Dn, let mn := ∑
i Di = 2|En|.

Enumerate the mn half-edges as follows: each half-edge e is identified with a vertex
v(e) ∈ [n]; the first D1 half-edges have v(e) = 1, the next D2 have v(e) = 2 and
so on. A matching of half-edges m : [mn] �→ [mn] is an involution without fixed
points (i.e., m(e) = m−1(e) and m(e) = e for all e ∈ [mn]). A coupled pair of
multigraphs (Gn,Gn) is hereby represented by a pair of matching (X,Y), restricting
Y(·) to the non-empty collection of matching that correspond to a simple graph;
namely, v(e) = v(Y(e)) (no loops) and {v(e), v(Y(e))} = {v(f ), v(Y(f ))} (no
multiple edges) for any f = {e,Y(e)}.

Starting from any such pair of matching (X0,Y0), consider the switching Markov
chain (Xk,Yk) that proceeds as following (see also Fig. 4):

• Uniformly choose e = f ∈ [mn] and disconnect their matching in Xk and Yk ;
• Reconnect e with f , and Xk(e) with Xk(f ), to get the match Xk+1;
• If reconnecting e with f and Yk(e) with Yk(f ) yields a simple graph, set this to

be Yk+1. Otherwise, leave Yk+1 = Yk unchanged.

We say that coupling succeeds in the k-th step if the proposed move to Yk+1 results
in a simple graph, otherwise saying that the coupling failed (in the k-th step).

e f

e f

e f

e f

X0(e) X0(f) Y0(e) Y0(f)

X0(e) X0(f) Y0(e) Y0(f)

(X0,Y0)

(X1,Y1)

Fig. 4 Coupling of the chains (Xt ,Yt ) corresponding to (Gn,Gn)
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The marginal (Xk) evolves as a Markov chain in the space of all matching, with
the marginal (Yk) likewise evolving as a Markov chain in the non-empty subset
of all matching that correspond to simple graphs with the specified degrees. These
switching chains are further reversible with respect to the corresponding uniform
measures. Both marginal chains have been extensively studied as means of sampling
uniform graphs subject to given degrees. In particular, it is well-known ([18]; cf.
also the recent work [10]) that each of these marginals is an irreducible Markov
chain. Having a non-empty finite state space, the Markov chain (Xk,Yk) admits an
invariant probability measure μ, and by the preceding, any such μ is a coupling
between the random multigraph Gn and the corresponding uniformly simple graph
Gn of the specified degrees.

Denoting by

Ck ≡ {e ∈ [mn] : Xk(e) = Yk(e)} ,

the common part of the two matching Xk,Yk , note that under an invariance measure
Eμ[|Ck|] must be independent of k. We further have the following lower bound on
the change between |Ck+1| and |Ck|:

|Ck+1| − |Ck| ≥ 21{e,f /∈Ck} − 41{coupling fails in step k} . (31)

Indeed, (31) is verified by enumerating over the seven possible cases for e, f ∈
[mn]:

I. X0(e) = Y0(e) = f ;
II. X0(e) = Y0(e) = f , X0(f ) = Y0(f );

III. X0(e) = Y0(e) = f , X0(f ) = Y0(f ) or X0(f ) = Y0(f ) = e, X0(e) = Y0(e);
IV. X0(e) = f = Y0(e) or Y0(e) = f = X0(e);
V. X0(e) = Y0(f ), X0(f ) = Y0(e);

VI. X0(e) = Y0(f ), X0(f ) = Y0(e) or X0(f ) = Y0(e), X0(e) = Y0(f );
VII. e, f,X0(e),X0(f ),Y0(e),Y0(f ) are six distinct half-edges.

The corresponding value of |C1|−|C0| in each of these cases are given in Table 1,
from which it follows that under an invariant measure μ,

0 = E[|C1| − |C0|] ≥ 2P(e, f /∈ C0)− 4P(coupling fails) . (32)

For the first term on the RHS of (32),

P(e, f /∈ C0 | C0) =
(
mn − |C0|

mn

) (
mn − |C0| − 1

mn − 1

)
. (33)

We consequently get that the LHS of (6) is at most 2mn(mn − 1)P(coupling fails).
For the latter, note that the coupling fails only under one of the following

scenarios, where we introduce
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Table 1 Analysis of the change in the size of the common part of the two matchings after one
step of the coupling. In cases marked by (%), the difference could be larger if X0(Y0(e)) = Y0(f )

or Y0(X0(e)) = X0(f )

|C1| − |C0|
Case Criterion Success Failure

I X0(e) = f = Y0(e)
e f

0 —

II
X0(e) = Y0(e) = f
X0(f ) = Y0(f )

e f

0 −4

III X0(e) = Y0(e) = f
X0(f ) = Y0(f )

e f

0 −2

X0(f ) = Y0(f ) = e
X0(e) = Y0(e)

e f

IV X0(e) = f = Y0(e)

e f (%)

≥ 2
0

Y0(e) = f = X0(e)

e f

V
X0(e) = Y0(f )

X0(f ) = Y0(e)

e f

4 0

VI X0(e) = Y0(f )

X0(f ) = Y0(e)

e f

2 0

X0(f ) = Y0(e)

X0(e) = Y0(f )

e f

VII
e,X0(e),Y0(e),

f,X0(f ),Y0(f )

are all distinct

e f

(%)

≥ 2

(%)

≥ 0

(a) a loop: v(e) = v(f ) or v(Y0(e)) = v(Y0(f ));
(b) multiple edges: v(e) is connected to v(f ) in Y0 \ {(e,Y0(e)), (f,Y0(f ))}, or

v(Y0(e)) is connected to v(Y0(f )) in Y0 \ {(e,Y0(e)), (f,Y0(f ))}.
As (Y0(e),Y0(f )) has the same (uniform) distribution as (e, f ), we thus deduce
that

1

2
P(coupling fails) ≤ P(v(e) = v(f ))+ P(v(e) connected to v(f )) .
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With qij denoting the probability that i = j are adjacent in Y0, clearly

P(v(e) connected to v(f )) =
∑

i =j

(Di − 1)(Dj − 1)

mn(mn − 1)
qij .

Similarly, recalling that
∑
j qij = Di for any i ∈ [n], we have that

P(v(e) = v(f )) =
n∑

i=1

Di(Di − 1)

mn(mn − 1)
=

∑

i =j

(Di +Dj )/2− 1

mn(mn − 1)
qij .

Adding these expressions and reducing the sum by symmetry to j > i, we arrive at

1

2
P(coupling fails) ≤ 1

mn(mn − 1)

n−1∑

i=1

n∑

j=i+1

(2DiDj −Di −Dj )qij . (34)

With j �→ Dj non-decreasing and
∑
j>i qij ≤ Di , by replacing qij with 1{j≤i+Di }

we upper bound the RHS of (34). Combining this with (32)–(33) establishes (6),
thereby concluding the Proof of Proposition 1. ��

4 Analysis of the Limiting Density

Remark 5 With ν(2) denoting the pushforward of ν by the map x �→ x2 (that is,
the weak limit of LΛ2

n), we have similarly to Remark 1 that μMP = ν(2) � σ (2)SC ,
where the pushforward σ (2)SC (of density (2π)−1√4/x − 1 on [0, 4]), is the limiting
empirical distribution of singular values of n−1/2X̃n.

Proof of Proposition 2 The matrix Mn := n−1X̃nΛ2
nX̃%n has the same ESD as

n−1ΛnX̃nX̃%nΛn. Thus, μMP is also the limiting ESD for Mn (see [12, 15]). Taking
LΛn ⇒ ν with dν/dν

D̂
(x) = x yields the Cauchy–Stieltjes transform GμMP (z) =

h(z) which is the unique decaying to zero as |z| → ∞, C+-valued analytic on C+,
solution of

h =
(
E

[
D̂2

1+hD̂
]
− z

)−1 = −z−1
E

[
D̂

1+hD̂
]
. (35)

Indeed, the LHS of (35) merely re-writes the fact that ξ(·) of (11) is such that
ξ(h(z)) = z on C+, while having

∫
xdν

D̂
= 1, one thereby gets the RHS of (35) by

elementary algebra. Recall [2, Prop. 5(a)] that the Cauchy–Stieltjes transform of the
symmetric measure μ̃ having the pushforward μ̃(2) = μMP under the map x �→ x2,
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is given for 8(z) > 0 by g(z) = zh(z2) : C+ �→ C+, which by the RHS of (35)
satisfies for 8(z) > 0,

g = −E
[ D̂

z + gD̂
]
. (36)

By the symmetry of the measure μ̃ on R we know that g(−z̄) = −ḡ(z) thereby
extending the validity of (36) to all z ∈ C+. Applying the implicit function theorem
in a suitable neighborhood of (−z−1, g) = (0, 0) we further deduce that g(z) =
Gμ̃(z) is the unique C+-valued, analytic on C+ solution of (36) tending to zero as
7(z)→∞. Recall the S-transform defined via (4)–(5) for ϕ = δ0 supported on R+
and similarly for symmetric measure ψ . In particular (see [2, Eqn. (20]),

SσSC (w) = w−1/2 .

Further, from (4) we see that (36) results with mν
D̂
(−z−1g) = g2, yielding

Sν
D̂
(g2) = −(1+ g−2)z−1g .

Since Sμ(w) = Sν
D̂
(w)SσSC (w), we get Sμ(g2) = −(1+g−2)z−1 and consequently

mμ(−z−1) = g2. The latter amounts to

f (z) := −z−1(1+ g2) =
∫

1

−t − zdμ(t) , (37)

which since μ is symmetric, matches the stated relation f (z) = Gμ(z) of (8).

Proof of Proposition 3 Recall from (37) that f (z) = −zh(z2)2 − z−1 for z ∈ C+
and 8(z) > 0. When z → x ∈ (0,∞) we further have that h(z2) → h(x2) and
hence

1

π
7(f (z))→ − 1

π
7(xh(x2)2) = −28(h(x2))̃ρ(x) , (38)

where the last identity is due to (9). Thus, for a.e. x > 0 the density ρ(x) exists
and given by Plemelj formula, namely the RHS of (38). The continuity of x �→ h(x)

implies the same for the symmetric density ρ(x), thereby we deduce the validity
of (10) at every x = 0. While proving [16, Thm. 1.1] it was shown that h(z)
extends analytically around each x ∈ R \ {0} where 7(h(x)) > 0 (see also
Remark 4). In particular, (10) implies that ρ(x) is real analytic at any x = 0 where
it is positive. Further, in view of (10), the support identity supp(μ) = supp(μ̃) is
an immediate consequence of having 8(h(x)) < 0 for all x > 0 (as shown in
Lemma 2). Similarly, the stated relation with supp(μMP) follows from the explicit
relation ρ̃(x) = |x|ρMP(x

2). Finally, Lemma 2 provides the stated bounds on ρ̃ and
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ρ (see (39) and (40), respectively), while showing that if ν
D̂
({0}) = 0 then μ is

absolutely continuous.

Our next lemma provides the estimates we deferred when proving Proposition 3.

Lemma 2 The function g(z) = Gμ̃(z) satisfies

|g(z)| ≤ 1 ∧ 2

|8(z)| , ∀z ∈ C+ ∪ R (39)

and (36) holds for z ∈ C+ ∪ R \ {0}, resulting with 8(h(x)) < 0 for x > 0. In
addition

ρ(x) ≤ 1

π

(
(ED̂−2)1/2 ∧ 4|x|−3) ∀x ∈ R , (40)

and if ν
D̂
({0}) = 0, then μ({0}) = 0.

Proof As explained when proving Proposition 2, by the symmetry of μ̃, we only
need to consider 8(z) ≥ 0. Starting with z ∈ C+, let

z = x + iη for x ≥ 0 and η > 0 ,

g(z) = −y + iγ for y ∈ R and γ > 0 .

Then, separating the real and imaginary parts of (36) gives

y = E

[
D̂(x − yD̂)Ŵ−2

]
, γ = E

[
D̂(η + γ D̂)Ŵ−2

]
, (41)

where Ŵ := |z + g(z)D̂| must be a.s. strictly positive (or else γ = ∞). Next,
defining

A = A(z) := E[D̂Ŵ−2] , B = B(z) := E[D̂2Ŵ−2] , (42)

both of which are positive and finite (or else γ = ∞), translates (41) into

y = Ax − By , γ = Aη+ Bγ .

Therefore,

y = Ax

1+ B , γ = Aη

1− B . (43)

Since γ > 0, necessarily 0 < B < 1 and y ≥ 0 is strictly positive iff x > 0. Next,
by (36), Jensen’s inequality and (42),

|g| ≤ E

[
D̂Ŵ−1

]
:= V (z) ≤ √

B ≤ 1 . (44)
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Further, lettingD ∼ ν be the size-biasing of D̂ andW := |z+g(z)D|, we have that

g(z) = −E[(z+ g(z)D)−1] , V = E[W−1] , A = E[W−2] . (45)

With B < 1 we thus have by (43), (45) and Jensen’s inequality, that

|x|A
2

≤ |x|A
1+ B = |y| ≤ |g| ≤ V ≤ √

A .

Consequently, |g(z)| ≤ √
A ≤ 2/|x| as claimed. Next, recall [16, Theorem 1.1]

that h(z) → h(x) whenever z → x = 0, hence same applies to g(·) with (39)
and the bound B(z) ≤ 1, also applicable throughout R \ {0}. Further, having
zn → x = 0 implies that |8(zn)| is bounded away from zero, hence {A(zn)}
are uniformly bounded. In view of (45), this yields the uniform integrability
of (zn + g(zn)D)−1 and thereby its L1-convergence to the absolutely-integrable
(x + g(x)D)−1. Appealing to the representation (45) of g(z) we conclude that (36)
extends to R \ {0}. Utilizing (36) at z = x > 0 we see that 0 < |g(x)|2 ≤ A(x) due
to (45). Hence, from (41) we have as claimed,

8(h(x2)) = x−18(g(x)) = −A(x)
1+ B(x) < 0 .

From (43) we have that g(z) = iγ when z = iη, where by (36), for any δ > 0,

γ = E

[ D̂

η + γ D̂
]
≥ δ

η + γ δ νD̂([δ,∞)) .

Taking η ↓ 0 followed by δ ↓ 0 we see that γ (iη)→ γ (0) = 1, provided ν
D̂
({0}) =

0. By definition of the Cauchy–Stieltjes transform and bounded convergence, we
have then

μ({0}) = − lim
η↓0

8(iηf (iη)) = 1− [lim
η↓0
γ (iη)]2 = 0 ,

due to (37) (and having 8(g(iη)) = 0). Finally, from (36) and the LHS of (37) we
have that f (z) = −E[(z+ g(z)D̂)−1] throughout C+, hence by Cauchy–Schwarz

|f (z)| ≤ E[Ŵ−1] ≤
√
B(z)E[D̂−2] ≤ E[D̂−2]1/2

is uniformly bounded when ED̂−2 is finite. Up to factor π−1 this yields the stated
uniform bound on ρ(x), namely the RHS of (38). At any x > 0 the latter is bounded
above also by 1

πx
|g(x)|2, with (40) thus a consequence of (39).
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Proof of Corollary 2 Fixing α > η > 0 we have that

ν
D̂
({α}) = qo , ν

D̂
({η}) = 1− qo

and since 1 = ED̂ = αqo + η(1 − qo), further α > 1 > η. By Remark 4 we
identify supp(μ) upon examining the regions in which ξ ′(−v) > 0 for R-valued
v /∈ {0, α−1, η−1}. Since 8(h(x)) < 0 for x > 0 (see Lemma 2), for supp(μ) ∩R+
it suffices to consider the sign of

ξ ′(−v) = 1

v2 −
qα2

(1− vα)2 −
(1− q)η2

(1− vη)2 ,

when v ∈ (0,∞) \ {α−1, η−1} and q := αqo. Observe that ξ ′(−v) > 0 for such v
iff

P (v) := av3 + bv2 + cv + d
= −2αη(qη + (1− q)α)v3 +

(
qη2 + 4αη + (1− q)α2

)
v2 − 2(α + η)v + 1 > 0 .

Noting that limv→∞ P(v) = −∞ and limv↓0 P(v) = 1, we infer from Remark 4
that supp(μ) has holes iff P(v) has three distinct positive roots. As Descartes’ rule
of signs is satisfied (a, c < 0 and b, d > 0), the latter occurs iff the discriminant
D(P ) is positive. Evaluating D(P ) shows that

D(P ) = b2c2− 4ac3− 4b3d + 18abcd− 27a2d2 = 4q(1− q)(α− η)2(
αφ− qθ)

,

where

θ := (α − η)(α + η)3 , φ := (α − 2η)3 .

Having q = αqo and θ > 0 we conclude that D(P ) > 0 iff φ/θ > qo. That is

φ

θ
= (α − 2η)3

(α − η)(α + η)3 >
1− η
α − η = qo .

For ϕ := 3η/(α + η) and η ∈ (0, 1) this translates into 1 − ϕ > (1 − η)1/3, or
equivalently

α

η
+ 1 = 3

ϕ
>

3

1− (1− η)1/3 ,

as stated in (12).



Empirical Spectral Distributions of Sparse Random Graphs 345

Acknowledgments The authors wish to thank Nick Cook, Alice Guionnet, Allan Sly and Ofer
Zeitouni for many helpful discussions. A.D. was supported in part by NSF grant DMS-1613091.
E.L. was supported in part by NSF grants DMS-1513403 and DMS-1812095.

References

1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge
Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

2. Arizmendi E.O., Pérez-Abreu, V.: The S-transform of symmetric probability measures with
unbounded supports. Proc. Amer. Math. Soc. 137(9), 3057–3066 (2009)

3. Arratia, R., Liggett, T.M.: How likely is an i.i.d. degree sequence to be graphical? Ann. Appl.
Probab. 15(1B), 652–670 (2005)

4. Bercovici, H., Voiculescu, D.: Free convolution of measures with unbounded support. Indiana
Univ. Math. J. 42(3), 733–773 (1993)

5. Bordenave, C.: Spectrum of random graphs. In: Advanced Topics in Random Matrices.
Panoramas et Synthèses, vol. 53, pp. 91–150. Société Mathématique de France, Paris (2017)

6. Bordenave, C., Lelarge, M.: Resolvent of large random graphs. Random Struct. Algorithms
37(3), 332–352 (2010)

7. Coste, S., Salez, J.: Emergence of extended states at zero in the spectrum of sparse random
graphs (2018). Preprint arXiv:1809.07587

8. Dumitriu, I., Pal, S.: Sparse regular random graphs: spectral density and eigenvectors. Ann.
Probab. 40(5), 2197–2235 (2012)
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In memory of our dear friend Vladas Sidoravicius 1963–2019

Abstract We study the size of the near-critical window for Bernoulli percolation
on Z

d . More precisely, we use a quantitative Grimmett–Marstrand theorem to prove
that the correlation length, both below and above criticality, is bounded from above
by exp(C/|p − pc|2). Improving on this bound would be a further step towards the
conjecture that there is no infinite cluster at criticality on Z

d for every d ≥ 2.

Keywords Percolation · Correlation length

1 Introduction

1.1 Critical Percolation

The main open question in percolation theory is to understand the behaviour at
criticality, i.e. when p is equal to pc, and in particular to prove that there does not
exist an infinite cluster at pc (precise definitions will be given below, in Sect. 2).

Conjecture 1 For every d ≥ 2, Ppc [0 ↔∞] = 0.
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This conjecture has been solved for d = 2 [25, 30] and for d ≥ 11 [21] based
on ideas pioneered in [12, 26]. An important result related to the techniques of our
paper is the fact that there is no percolation on a half space [8]. Further, the result is
also known for graphs of the form Z

2 ×G with G finite; see [17, 19]. On transitive
graphs with rapid growth, additional tools are available, and the following cases are
known: non-amenable graphs [9], graphs with exponential growth [28], and recently
some graphs with stretched-exponential growth [27].

A natural scheme to attack the conjecture on Z
d is to find a δ > 0 and a sequence

of events En depending on edges in the box Λn := {−n, . . . , n}d only, such that for
any p,

∃n > 0 s.t. Pp[En] > 1− δ ⇐⇒ Pp[0 ↔∞] > 0. (%)

If such a sequence exists, the set of p such that Pp[0 ↔∞] > 0 is an open set since
it is the union of the open sets (indexed by n) {p : Pp[En] > 1− δ} (this set is open
since p �→ Pp[En] is continuous).

Of course, this strategy is tempting, but the main difficulty is that the -⇒ and
the ⇐- implications involved in (%) are difficult to prove simultaneously. One may
for instance easily check the -⇒ implication by asking a lot on En, but then the
⇐- one becomes difficult, and vice-versa. To illustrate this trade-off phenomenon,
let us give a few examples of possible sequences (En), going from the strongest
criterion (meaning the one for which the -⇒ implication is the easiest to prove) to
the weakest one (meaning the one for which -⇒ is the hardest).

Example 1 Let En be the event that Λn/10 is connected to ∂Λn := Λn \Λn−1 and
that the second largest cluster in Λn has radius smaller than n/10. In this case, a
coarse-graining argument similar to [7] implies the -⇒ implication easily. Proving
⇐- is still open in particular because of the difficulty to exclude the existence of
many large clusters avoiding each other.

Example 2 Let En be the intersection of the events that (±n, 0) + Λn/2 are
connected in Λ2n and that there exists at most one cluster in Λ2n going from
(±n, 0) + Λn/2 to (±n, 0) + ∂Λn. A coarse-graining argument may be used to
prove-⇒ but ⇐- remains open due to the same reason as the previous condition.

In general, uniqueness of clusters going from one area to another one is a key
difficulty in these problems. This might be related to the fact that in high dimensions
Λn indeed hosts many disjoint clusters at pc, see [2]. In order to circumvent this
difficulty, one can make different choices for En.

Example 3 Let En be the same event as in the second example, but with (±n, 0)+
Λn/2 replaced by (±n, 0) + Λun , with un much smaller than n/2. In this case, the
implication-⇒ is as before, and does not depend on un. As for the implication⇐-,
as un becomes smaller the connectivity part becomes harder and the uniqueness part
becomes easier.

Recently, a paper of Cerf [16], based on [6], provided a beautiful insight on how
big un must be taken to have that with large probability, Λn := {−n, . . . , n}d , the
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box of size n, contains at most one cluster going from Λun to ∂Λn. We will come
back to this later in the introduction, but let us mention the result right now.

Given 1 ≤ m ≤ n, consider the set of clusters in the configuration restricted to
the boxΛn, and defineA2(m, n) to be the event that there exists at least two disjoint
such clusters intersecting both Λm and ∂Λn.

Proposition 1 (Cerf) Let d ≥ 2. There exists α = α(d) ∈ (0, 1) such that for any
p ∈ [0, 1] and n large enough,

Pp

[
A2(n

α, n)
] ≤ 1

nα
.

We fill some details on this proposition in Sect. 7. Let us finish by a last example,
which is very simple but interesting for the discussion that follows.

Example 4 Let En be the event that the box ΛN is connected to {n} ×
{−n, . . . , n}d−1, with N = N(δ) > 0 independent of n. Here, ⇐- follows easily
from the ergodicity of Pp and FKG but again the -⇒ implication seems difficult to
obtain.

The search for a good sequence of events En has been at the heart of attempts
to prove the conjecture. An important development was made in [22]. In this paper,
the authors considered the sequence of events En defined in the fourth example.
As mentioned above, the -⇒ seems extremely difficult to derive. Nevertheless,
Grimmett and Marstrand introduced a clever renormalisation scheme allowing to
prove the following weaker version of the implication: for any ε > 0, there exists
δ > 0 such that for every n,

Pp[En] > 1− δ -⇒ Pp+ε[0 Slabdn←−→∞] > 0

where Slabdn := Z
2×{−n, . . . , n}d−2. In words, the implication can be proved if one

allows some sprinkling. As suggested in [22], if one could get rid of the sprinkling
by ε in the previous statement, then the conjecture would follow.

The goal of this paper is to prove a quantitative version of the Grimmett–
Marstrand argument by bounding the critical point of Slabdn in terms of n. In the
language of the Grimmett–Marstrand theorem, we will be interested in how small
ε can be taken as a function of n. We believe that improving how small ε can be
taken is a good intermediate problem for the conjecture. Getting bounds is non-
trivial and requires some understanding of the critical phase. As a consequence,
each improvement on the existing bounds should shed a new light on the critical
behaviour.

There is a quantity which is intimately related to pc(Slabdn), called the correlation
length, which appears repeatedly in physics. In order to have a statement which is
independent of the Grimmett–Marstrand theorem, we choose to first state our main
result in terms of the correlation length.
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1.2 An Upper Bound on the Correlation Length

For p < pc, the probability Pp[0 ↔ ∂Λn] decays exponentially fast in n (see
[3, 18, 35]). The rate at which this happens is known as the correlation length ξp,
namely

ξp := lim
n→∞−

n

logPp[0 ↔ ∂Λn] .

For p > pc, the correlation length is also defined, but the formula is slightly
modified:

ξp := lim
n→∞−

n

logPp[0 ↔ ∂Λn, 0 ↔ ∞] .

Again, the probability decays exponentially fast so ξp is finite. This is due to the
following. Grimmett and Marstrand [22] showed that for any p > pc, there exists
n ≥ 1 such that

Pp

[
0

Slabdn←−→∞]
> 0.

And the exponential decay follows from that by the results of [14]. Let us mention
that in fact, both limits exist. We could not find a reference for this fact, but it
follows using standard methods, see e.g. [23, Section 6.2] for the subcritical case and
[15] for the supercritical case (both prove the existence of the limit with a different
definition of the correlation length, but the proofs work also with our definition and
the values are equal).

Our main result is the following.

Theorem 1 Let d ≥ 3. There exists C = C(d) > 0 such that for any p = pc,

ξp ≤ exp(C|p − pc|−2).

The results below and above pc are different in nature (even though the same proof
gives both), a point which will become clearer when we discuss the proof in the
next section. In particular, the use of [22] to connect slabs and the correlation length
mentioned above is used only for p > pc.

Our bound on ξp is far from the truth. Conjecturally, one has ξp = |p −
pc|−ν+o(1), where o(1) tends to 0 as p→ pc (p = pc) and ν is given by

ν =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

4
3 if d = 2,

0.87 . . . if d = 3,

0.69 . . . if d = 4,

0.56 . . . if d = 5,
1
2 if d ≥ 6.
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Some physics references are [1, 33, 43]. The predictions for d = 3, 4, 5 are
numerical, while the prediction for d = 2 is based on conformal field theory,
quantum gravity or Coulomb gas formalism, and the prediction for d ≥ 6 on the
fact that the model should have a mean-field behaviour. For site percolation on the
triangular lattice, ξp = |p − pc|−4/3+o(1) was proved in [41] using the conformal
invariance of the model proved in [40], the theory of Schramm–Löwner evolution
and scaling relations obtained by Kesten in [32] (such scaling relations were proved
under the hyper-scaling hypothesis [10] which is expected to be valid for d ≤ 5).
In fact, Russo–Seymour–Welsh theory [37, 39] combined with [32] imply that there
exists C > 0 such that ξp ≤ |p − pc|−C for Bernoulli bond percolation on Z

2. For
d ≥ 19, ξp = |p − pc|−1/2+o(1) was proved in [24, 26] for p < pc. Let us remark
that lower polynomial bounds may be achieved. We could not found a proof in the
literature for this fact, so we include a proof sketch in Sect. 8.

1.3 A Quantitative Grimmett–Marstrand Theorem

The theory of static renormalisation, developed throughout the eighties [5, 8, 14, 15,
22], allows to relate the correlation length, percolation in slabs, and various events
of the type discussed in Sect. 1.1. It is a deep theory and we will not attempt to
survey it here. But, as already explained, it motivates us to state a version of our
main theorem in terms of slabs.

Definition 1 Throughout the paper we denote by pn the smallest p < pc such that
ξp = n.

Theorem 2 Fix d ≥ 3. There exists a constant C = C(d) > 0 such that for every
n ≥ 3,

P
pn+ C√

logn
[0 Slabdn←−→∞] ≥ 1

2
√

logn
,

In particular, we have that

pc(Slabdn ) < pc +
C√
logn

.

Let us explain the main elements in the proof of Theorems 1 and 2 (they share
95 percent of the proof). The proof is composed of the following 3 steps, each of
which requires to increase the probability somewhat.

Step 1. The result of Chayes and Chayes [13] stating that Ppc+ε[0 ↔∞] ≥ ε ([3]
was the first unconditioned proof). We take the opportunity to give a new proof
of this inequality, based on the ideas of [18].

Step 2. The result of Kahn, Kalai and Linial ([29], see also [11, 38, 42]) that any
boolean function with small individual influences has at least logarithmic total
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influence. We apply this to the function 1{Λn ↔∞} for some n. To show that
all individual influences are small (as n → ∞) we use a geometric argument
connecting the probability that a certain edge is pivotal to the same probability
for nearby edges. Thus from the information that Ppc+ε[0 ↔ ∞] ≥ ε we can
get Ppc+2ε[Λn ↔ ∞] ≥ 1 − δ (with appropriate connections between the
parameters ε, n and δ).

Step 3. A “seedless” renormalisation scheme, based on ideas of [34]. In Grimmett–
Marstrand the renormalisation follows by finding seeds, i.e. small boxes (say
of size n) all whose edges are open, which are on the boundary of a much
larger box, say of size N [22]. A first version of our argument which used the
same scheme gave pc(Slabn) < pc + C/ log log log logn. Here the path that
already exists inside the N-box is used in place of the seeds, each piece of
it, if sufficiently separated, can be used independently. Proposition 1 plays a
crucial role in the argument. Sprinkling is used as in [22], so eventually we get
a renormalisation scheme at pc + 3ε.

The value ε = 1/
√

logn comes from the interaction of Steps 2 and 3. In Step 3
we do an ε-sprinkling and the proof requires connections happening with probability
at least 1 − exp(1/ε). This forces the δ of Step 2 to be smaller than exp(−1/ε).
But this forces n to be exp(1/ε2) since our estimate of the total influence is only
logarithmic in n. Thus, the use of [29] is the main constraining factor.

Finally, let us remark on the subcritical case in Theorem 1, i.e. on the bound
of ξp for p < pc. It is a corollary from the supercritical result. There are various
ways to perform this conclusion, but here the simplest was simply not to start all the
process (i.e. Steps 1–3) from pc but rather from an appropriate p < pc where ξp is
sufficiently large. Thus we prove both results in one fell swoop. Let us stress again,
though, that it is the supercritical result which is central and the subcritical result is
merely a corollary.

In Sects. 3–5 we detail these steps, one step per section. In the last sections we
prove Theorems 1 and 2, as well as Proposition 1.

2 Preliminaries

Fix an integer d ≥ 2. Two vertices x and y of Zd are said to be neighbours (denoted
x ∼ y) if ‖x − y‖2 = 1. In such a case, {x, y} is called an edge of Zd . The set
of edges is denoted by E(Zd). For n ≥ 1, introduce the box Λn := {−n, . . . , n}d
and its (vertex) boundary ∂Λn := Λn \ Λn−1. Also, we define Slabdn := Z

2 ×
{−n, . . . , n}d−2.

A percolation configuration ω = (ω(e) : e ∈ E(Zd)) is an element of
{0, 1}E(Zd). If ω(e) = 1, the edge e is said to be open, otherwise it is said to be
closed. Let S ⊂ Z

d . Two vertices x and y are said to be connected in S (in ω) if
there exists a path x = v0 ∼ v1 ∼ v2 ∼ · · · ∼ vk = y of vertices in S such that
ω({vi, vi+1}) = 1 for every 0 ≤ i < k. Let A and B be two subsets of S, we write
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A
S←→ B if some vertex of A is connected in S to some vertex of B, and A

S←→ ∞
if A

S←→ ∂Λn holds for any n ≥ 1. If S = Z
d , we drop it from the notation and

simply write A←→ B and A←→∞. A cluster is a maximal set of vertices that are
connected together in ω.

For p ∈ [0, 1], consider the Bernoulli bond percolation measure Pp on

{0, 1}E(Zd) under which the variables ω(e) with e ∈ E(Zd ) are i.i.d. Bernoulli
random variables with parameter p. Define pc = pc(d) ∈ (0, 1) such that
Pp[0 ↔∞] is 0 when p < pc and strictly positive when p > pc. See [23, Theorem
1.10] for the fact that indeed 0 < pc < 1.

An event A is increasing if it is stable to opening edges. The FKG inequality
states that increasing events are positively correlated, see [23, Theorem 2.2]. The
edge e is pivotal for the event A if the configurations ωe and ωe defined by

ωe(f ) =
{
ω(f ) if f = e
1 if f = e, and ωe(f ) =

{
ω(f ) if f = e
0 if f = e

satisfy ωe ∈ A and ωe /∈ A.
We will denote by c and C arbitrary constants which depend only on the

dimension d (and occasionally other parameters, which will be noted). Their
value may change from formula to formula, and even inside the same formula.
Occasionally we will number them for clarity. We will use c for constants which
are sufficiently small and C for constants which are sufficiently large.

3 The Result of Chayes and Chayes

In this section, we prove the following (recall that pn is the smallest p < pc such
that ξp = n).

Proposition 2 For every n large enough,

P
pn+ 1√

logn
[0 ←→ ∂Λn] ≥ 1√

logn
. (1)

(For the purpose of the supercritical result it would have been enough to know this
at pc+ 1/

√
logn, which is exactly the original result of Chayes and Chayes, but for

the subcritical result we want to know it with pc replaced by pn.)

Proof Given a finite set S containing 0, and a parameter p ∈ [0, 1], define

ϕp(S) :=
∑

x∼y
x∈S, y/∈S

p Pp[0 S←→ x].
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Fix n ≥ 1. Let us recall two relations between this quantity and the one-arm
probability, established in [18]. First, for every S ⊂ Λn containing 0, the last
displayed equation of Section 2.1 of [18] gives the upper bound

Pp[0 ↔ ∂Λnk] ≤ ϕp(S)k−1. (2)

for every k ≥ 1. Also, the quantity ϕp(S) can be used to bound the derivative of the
one-arm probability. Lemma 2.1 of [18] states that for every p ∈ [0, 1],
d

dp
Pp[0 ↔ ∂Λn] ≥ 1

p(1− p) ·
[

inf
0∈S⊂Λn

ϕp(S)
]
· (1− Pp[0 ↔ ∂Λn]). (3)

The proof of Proposition 2 can be easily derived from the two equations above. If
for some p ∈ [0, 1], there exists a subset S ofΛn with ϕp(S) < 1

e
, then one deduces

immediately from (2) that

Pp[0 ↔ ∂Λk] ≤ e−A%k/n&−1, A > 1,

which implies that ξp < n. As a consequence, ϕpn(S) ≥ 1
e

for any set S included
in Λn containing 0. Since ϕp(S) is increasing in p, we have ϕp(S) ≥ 1

e
for any

p ≥ pn, and the differential inequality (3) gives that for every p ≥ pn,

d

dp
Pp[0 ↔ ∂Λn] ≥ 4

e
(1− Pp[0 ↔ ∂Λn]). (4)

Now, set p′n := pn + 1/
√

logn. Either Pp′n[0 ↔ ∂Λn] > 1 − e
4 , or integrating (4)

between pn and p′n gives (1). This concludes the proof.

4 Sharp Threshold

In this section we prove the following result.

Proposition 3 For every 0 < β < 1, there exists C = C(β, d) > 0 such that for
every n

Ppn+C/√logn[Λnβ ↔ ∂Λn] ≥ 1− e−
√

log n.

We may assume without loss of generality that β < α, where α is chosen
such that the statement of Proposition 1 holds. Further, we may assume n to be
sufficiently large, as for small n and large C we would have pn + C/√logn > 1,
making the claim trivial. Set m := %nβ& for brevity. The proposition will follow,
using standard arguments, once we prove the following lemma.
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ei

e j

Fig. 1 Two edges ei , ej for i < j , and the corresponding translated boxes

Lemma 1 With n, α, β and m as above, and for any p,

Pp[e is a closed pivotal for Λm ↔ ∂Λn] ≤ 1

mα/4
. (5)

Proof Fix an edge e ∈ E and distinguish between two cases, depending on whether
the edge e is close to ∂Λm ∪ ∂Λn or not. Write ρ for the L∞-distance between the
edge e and ∂Λm ∪ ∂Λn.

If ρ ≥ m1/4, then observe that a translated version of the event A2(m
α/4,m1/4)

must occur around the edge e when the edge is a closed pivotal. Therefore,
Proposition 1 implies that (5) holds.

The more difficult case is when ρ ≤ m1/4. Let us first assume that e is at a
distance smaller than m1/4 of Λm. Then there exists a translation τ by a vector in
Λm1/4 such that e belongs to the translate τΛm of Λm by τ , and further, such that
e ∈ τ iΛm (where τ i denotes the i-th iterate of τ ) for every i ∈ {1, . . . , I }, where
I := % 1

2 m
3/4&. For 0 ≤ i < I define the edges ei = τ ie. It follows that for every

i < j , both endpoints of the edge ei belong to τ jΛm, see Fig. 1. Define also the
event

Bi := {ei is a closed pivotal for τ iΛm ↔ τ i∂Λn}.

Writing M for the number of indices i for which Bi occurs, translation invariance
and the Cauchy–Schwarz inequality imply

(I · Pp[B0])2 = Ep[M]2 ≤ Ep[M2] = Ep[M] + 2
∑

i<j

Pp[Bi ∩ Bj ]. (6)
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Let us bound probabilities on the right-hand side. Fix i < j and assume that
Bi ∩ Bj occurs. Then, we claim that there must exist two disjoint clusters in Λn/2
crossing the annulus betweenΛ2m andΛn/2. Indeed, one extremity xi of ei must be
connected to the boundary of τ iΛn, and one extremity xj of ej must be connected
to the boundary of τ jΛn. The fact that ej is a closed pivotal implies in particular
that τ jΛm � τ j ∂Λn and hence, since xi belongs to τ jΛm, it is not connected to the
boundary of τ jΛn so that the clusters of xi and xj in the boxΛn/2 must be disjoint
(see again Fig. 1). For n large enough, we have 2m ≤ (n/2)α and Proposition 1
implies that

Pp[Bi ∩ Bj ] ≤ 1

2m
.

Plugging this estimate in (6) and using the trivial boundM ≤ I , we obtain

Pp[B0]2 ≤ 1

I
+ 1

m
≤ 1√

m
,

provided n is large enough. This completes the proof in this case.
The exact same reasoning also works if one assumes that the edge e is within

distance m1/4 of the boundary of Λn. Consider a translation τ by a vector in Λm1/4

such that e does not belong to τΛn. One can define the edges ei and the events Bi
as above. In this case, for i < j , the edge ei does not belong to τ jΛn and the same
reasoning as above concludes the proof.

Proof of Proposition 3 We use the following standard sharp threshold result for
Boolean functions (see e.g. [42, Corollary 1.2]): for any δ > 0, there exists a
constant c′ = c′(δ) > 0 such that for any increasing event A depending on a finite
set E of edges, and any p ∈ [δ, 1− δ],
d

dp
Pp [A] ≥ c′ log

( 1

max{Pp
[
e pivotal for A

] : e ∈ E}
)
· Pp [A] (1− Pp [A]).

(7)

We apply (7) to the event A = {Λm ↔ ∂Λn}, bounding the pivotality probability
inside the log using Lemma 1. Note that we use here the fact that pivotality is
independent of the status of the edge, hence the probability of being closed pivotal
(which is what we get from Lemma 1) is 1−p times the probability of being pivotal,
as needed in (7). We get that for any δ > 0, there exists c = c(δ, β, d) > 0 such that
for every p ∈ [δ, 1− δ] and every n large enough,

f ′(p)
f (p)(1− f (p)) ≥ c logn, where f (p) = Pp

[
Λnβ

∂←→ Λn

]
. (8)
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Set p′n := pn + 1√
logn

. By Proposition 2,

Pp′n
[
Λnβ ←→ ∂Λn

] ≥ Pp′n [0 ←→ ∂Λn] ≥ 1√
logn

.

We now integrate the differential inequality (8). Define p′′n by f (p′′n) = 1
2 and

then throughout the interval [p′n, p′′n] we can remove the factor 1 − f (p) from the
denominator, and pay only by halving the constant on the right hand side of (8). This
gives log(f )′ ≥ c logn which we integrate and get that p′′n must be no more than
p′n + C log logn/ logn. Similarly, in the interval [p′′n, p′′n + C/

√
logn] we remove

the factor f (p) from the denominator, get − log(1 − f )′ ≥ c logn and arrive at
the conclusion that f (p′′n + C/

√
logn) ≥ 1 − exp(−√logn), if C = C(β, δ) is

sufficiently large. This is exactly the conclusion of the proposition (with a larger C
to compensate for replacing p′′n with pn).

Remark 1 Proposition 3 can be directly obtained using Section 3 of [20] with the
definition of the event Ak being, for 0 ≤ k ≤ 1

2n
β ,

Ak = Ak(n) := {Λnβ/2+k ←→ ∂Λn}.

Roughly speaking, since all the events Ak have a probability larger than 1/
√

logn
at pn, the argument in [20] implies that at every p ≥ pn, one of the events
Ak has a logarithmic derivative larger than c logn for some small constant c. A
careful manipulation enables to prove that one of the events Ak (and therefore
Anβ/2) must have probability larger than 1 − e−

√
log n at pn + C/√logn. We

believe that the present solution is simpler in the case of Bernoulli percolation
and may have further applications, even though the other alternative does not
use the Aizenman–Kesten–Newman estimate on the probability of the two-arm
event.

5 The Seedless Renormalisation Scheme

The normalisation scheme we will work with uses four different scales, which we
will denote by k < K < n < N . The most important is the scale between K and
n, where we will insert 1/ε2 boxes of size K and use the independence between
these boxes to get to an event with high probability. The scales between k and K;
and between n and N will be used for gluing paths using Proposition 1 (the second
one, between n and N , is used only for resolving a technical issue of connecting to
a specific facet and is less important). Here is the exact formulation which we will
use.



358 H. Duminil-Copin et al.

Theorem 3 Fix d ≥ 3. There exists a constant C = C(d) > 0 such that the
following holds. Assume that for some p ∈ [0, 1] and some ε > 0, there exist
1 ≤ k ≤ K ≤ n ≤ N <∞ such that K ≤ ε2n and

(a) Pp [0 ←→ ∂ΛN ] ≥ ε,
(b) Pp [Λk ←→ ∂ΛN ] ≥ 1− exp(− 1

ε
),

(c) Pp [A2(k,K)] ≤ exp(− 1
ε
) and Pp [A2(n,N)] ≤ exp(− 1

ε
).

Then

Pp+Cε[0
Slabd2N←−−→∞] ≥ ε

2 .

Again, the reader who is interested only in the supercritical case may mentally
replace “some p ∈ [0, 1]” with “pc + 2ε” as in the proof sketch in the introduction.
But for the subcritical result we will apply it at p + 2ε for a slightly subcritical p,
and we do not know, eventually, if p + 2ε is sub- or supercritical.

The proof is divided into two parts. In the first one, we prove the following
intermediate statement.

Lemma 2 Assume that conditions (a), (b) and (c) hold. Then, there exists some
c > 0 (depending on d only) such that for every connected set S ? 0 with a diameter
larger than n,

Pp

[
S
ΛN←→ F(N)

]
≥ 1− 2 exp[−c/ε],

where F(N) := {(x1, . . . , xd) ∈ ∂ΛN : x1 = N, x2 ≥ 0, . . . , xd ≥ 0}.
Here and below we call sets such as F(N) “quarter-faces” even though this name is
correct only in d = 3.

Remark 2 The introduction of quarter-faces is a purely technical step and should
not worry the reader. Indeed, the probability of connecting to a quarter-face is easily
compared to the probability of connecting to the boundary of the box. To this end,
divide ∂ΛN into d2d quarter-faces F1, . . . , Fd2d . Using the Harris-FKG inequality
(sometimes called “the square root trick” when used in this way, see [23, equation
(11.14)]) together with (b), we find that

Pp[Λk ΛN←→ F(N)] ≥ 1− exp[−1/(εd2d)]. (9)

The conclusion of Lemma 2 can be understood as a strengthening of the condition
(b) where the box Λk is replaced by arbitrary sufficiently large sets, and the
boundary of ΛN is replaced by one of its quarter-faces. Using it, we will be able
to construct an infinite cluster in Slabd2N by propagating it using local connections.
Heuristically, if the cluster of the origin is connected to a large box Λ away from
0, then it must contain a large set, which is sufficient to propagate this cluster to
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other boxes neighbouringΛ. The condition on connectedness of arbitrary large sets
was introduced in the work of Martineau and Tassion [34], where it was established
using abstract measurability arguments. The main contribution here is to make it
quantitative.

The proof of Theorem 3 is now organised as follows. In Sect. 5.1, we prove
Lemma 2. The proof of the main theorem is then concluded in Sect. 5.2.

5.1 Connections to Arbitrary Sets

In this section we prove Lemma 2. Without loss of generality we may assume ε is
sufficiently small (as otherwise by choosing c sufficiently small the claim is trivially
true). Below, the constants ci depend on d only.

Let p ∈ [0, 1], ε > 0 and k ≤ K ≤ n ≤ N be such that K ≤ ε2n and the three
conditions (a), (b) and (c) hold. Fix a connected set S containing 0 with a diameter
at least n. Without loss of generality, we may assume S ⊂ Λn.

Consider a family of points x1, . . . , x� ∈ S such that the boxesQ′′
i := xi + ΛK

are all disjoint and included in Λn. Also, introduce the smaller boxQ′
i := xi +Λk .

Note that we may choose � ≥ c1/ε
2 such points, so let us fix � = 1c1/ε

22.
For every i ∈ {1, . . . , �}, define the two events

Ei := {xi ←→ ∂Q′′
i } ∩ {∃ unique cluster inQ′′

i fromQ′
i to ∂Q′′

i },
Bi := {Q′

i � ∂ΛN }.

By translation invariance and conditions (a) and (c),

Pp [Ei] ≥ Pp

[
xi ←→ ∂Q′′

i

]− Pp [A2(k,K)]

≥ ε − exp(−1/ε) ≥ ε/2.

Since the boxesQ′′
i are disjoint, the events Ei are independent, and hence

Pp [∪Ei ] ≥ 1− 2e−c2ε� ≥ 1− 2e−c3/ε.

where the second inequality is from our requirement that � ≥ c1/ε
2.

Now, (b) implies that for every i,

Pp [Bi ] ≤ exp[−1/(d2dε)].

Indeed, find a quarter-face F of xi +ΛN outside ΛN−1 and then apply (9) (with 0
shifted to xi) to get

Pp [Bi] ≤ Pp

[
Q′
i � F

] (9)≤ exp[−1/(d2dε)].
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By a union bound we have

Pp [∪Bi ] ≤ � exp[−1/(d2dε)] ≤ exp(−c/ε)

where the last inequality is by our assumption that � ≤ c1/ε
2 + 1 and that ε is

sufficiently small.
Assume Ei \ Bi occurred for some i. Then we know that xi ↔ ∂Q′′

i (from the
first part of Ei), thatQ′

i ↔ ∂ΛN (from the negation of Bi ) and that the two clusters
performing these two connections are the same (from the second part ofEi). We get
that there is a path from xi to ∂ΛN , and in particular from S to ∂ΛN . This gives

Pp [S ←→ ∂ΛN ] ≥ Pp [∃i s.t. Ei \ Bi ]
≥ Pp [∪Ei ]− Pp [∪Bi ]
≥ 1− 2e−c4/ε.

It remains to replace the boundary of ∂ΛN in the equation above by the quarter-face
F(N). Yet, because we assumed S ⊂ Λn,

Pp[S ΛN←→ F(N)] ≥ Pp[{Λn←→ F(N)}∩{S ←→ ∂ΛN }∩A(n,N)c] ≥ 1−Ce−c5/ε

thanks to (b) (again in the form (9)) and (c). This concludes the proof. ��

5.2 Renormalisation

To prove Theorem 3 we couple a growing exploration process on the slab with a
growing exploration process on a rescaled version of the square lattice. One will
need a simple condition for a growing exploration process on Z

2 to contain an
infinite cluster. Therefore, before moving to the proof, we describe a particular type
of exploration process on Z

2 and give a sufficient condition for the existence of an
infinite connected component.

Fix an arbitrary ordering of the edges of Z2. Let {0} = A0 ⊂ A1 ⊂ A2 . . . and
∅ = B0 ⊂ B1 ⊂ B2 . . . be two growing sequences of subsets of Z2. We say that the
sequence Xt = (At , Bt ) is an exploration sequence if for every t ≥ 0,

Xt+1 = Xt if there is no edge connecting At to (At ∪ Bt )c,
Xt+1 = (At ∪ {xt }, Bt ) or Xt+1 = (At , Bt ∪ {xt }) otherwise,

where xt is the endpoint in (At ∪ Bt )c of the minimal edge connecting At to (At ∪
Bt )

c (here and below, when we write minimal we mean with respect to the chosen
ordering of the edges of Z2). A typical example of a random exploration sequence
results from the exploration of the cluster of the origin in a site percolation process
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on Z
2. In this case, the set At corresponds to the open sites discovered after t steps

of exploration and Bt is the discovered part of the (closed) boundary of the cluster.
We say that an exploration sequence percolates if the set ∪t≥0At is infinite. The

following lemma, proved in [22, Lemma 1], gives a sufficient condition for a random
exploration sequence to percolate.

Lemma 3 Let psite
c be the critical parameter of Bernoulli site percolation on Z

2.
Let Xt = (At , Bt ) be a random exploration sequence and assume that there exists
some q > psite

c such that for every t ≥ 0,

P
(
Bt+1 = Bt |X0, . . . , Xt

) ≥ q a.s.,

then the process X percolates with probability larger than a constant c = c(q) > 0
that can be taken arbitrarily close to 1 provided that q is close enough to 1.

We now return to the proof of the theorem. For every x ∈ Z
2, set Λx = Nx +

ΛN ⊂ Z
d and Λ̃x = Nx +Λ2N ⊂ Z

d , where for both we identify x = (x1, x2) ∈
Z

2 with (x1, x2, 0, . . . , 0) ∈ Z
d . We will identify 0 with (0, 0) so Λ0 is the box of

size N centered at 0 in Z
d .

Let ω be a Bernoulli percolation of parameter p in Slabd2N and for every x ∈ Z
2,

let ωx be a λε-percolation on Λ̃x , where λ is some constant to be fixed later. We
assume that ω and the ωx’s are independent of each other. We will prove that the
origin is connected to infinity in

ωtotal := ω ∨
( ∨x∈Z2 ωx

)

with a probability which is larger than ε/2 (the notation ∨ stands for the maximum,
or the union of the open edges if one prefers). This will conclude the proof since
ωtotal is stochastically dominated by a (p + 25 · λε)-percolation—each edge of the
slab appears in at most 25 boxes Λ̃x (note that the number 25 does not depend on d
because x is taken only in Z

2).
To prove this claim, define an increasing sequence of percolation configurations

(ωt )t≥0 in the slab, coupled with a random exploration sequence Xt = (At , Bt ) in
Z

2. Given a percolation configuration ω in the slab, let C (ω) be the set of vertices
that are connected inside Z2 × {−2N, . . . , 2N}d−2 to 0 by a path of ω.

Definition 2 Set X0 = (A0, B0) := ({0},∅) and ω0 = ω. For every t ≥ 0, let ωt+1
and Xt+1 be constructed from ωt and Xt as follows. If there is no edge connecting
At to (At ∪ Bt)c, define Xt+1 = Xt . Otherwise, let x = xt be the extremity in
(At ∪ Bt )c of the minimal edge connecting At to (At ∪ Bt )c and define

ωt+1 := ωt ∨ ωx,

Xt+1 :=
{
(At ∪ {x}, Bt ) if 0 ←→ Λx in ωt+1,

(At , Bt ∪ {x}) otherwise.
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Remark 3 There is something unorthodox in the exploration process just defined,
as we are not constraining the length of the paths that are created in each step. For
example, it is possible that the path in Z

d that is responsible to connect 0 to Λ(0,1)
goes much further than N .

Returning to the construction, we have the following two properties:

(i) ω∞ := ∨t≥0 ωt ≤ ωtotal,
(ii) if (Xt ) percolates, then 0 is connected to infinity in ω∞.

We now wish to prove a third property which, when combined with the previous
two and (a), concludes the proof.

(iii) P[X percolates | 0 ↔ ∂Λ0 in C (ω0)] ≥ 1/2.

The proof relies on an application of Lemma 3. In order to apply this lemma, let
us fix q > psite

c (Z
2) in such a way that c(q) ≥ 1/2 and try to prove

P
(
Bt+1 = Bt |X0, . . . , Xt

) ≥ q a.s.

Since Bt+1 = Bt as soon as there is no edge connecting At to (At ∪ Bt )c, we can
focus on the case where the minimal edge e connecting At to (At ∪ Bt )c is well
defined, and therefore its endpoint x in (At ∪ Bt )c also is. In this case, we have
Bt+1 = Bt if 0 is connected to Λx in ωt+1. Since X0, . . . , Xt and the event that x is
well defined are measurable with respect to C (ω0), . . . ,C (ωt ), it suffices to show
that for any admissible C0, C1, . . . , Ct , we have

P
(
Λ0 ←→ Λx in ωt+1 | C (ω0) = C0, . . . ,C (ωt ) = Ct

) ≥ q a.s.,

which would follow if we showed that for every admissible Ct ,

P
(
Ct ←→ Λx in ωt ∨ ωx | ωt |∂ECt ≡ 0

) ≥ q. (10)

Now, observe that any admissible Ct must intersectΛx ′ , where x ′ is the endpoint of
e in At . Furthermore, the diameter of Ct must be at least N (here is where we use
the conditioning over the event 0 ←→ ∂Λ0). Let y be a vertex of Ct ∩ Λx ′ . Since
at least one of the quarter-faces of y + ΛN is included in Λx (see an example in
Fig. 2, where it is denoted by F ; the reader is kindly requested to imagine the third
dimension), Lemma 2 (applied after shifting 0 to y) implies

Pp[Ct y+ΛN←−−→ Λx in ω ∨ ωx ] ≥ 1− 2e−c/ε.

Since the event Ct ←→ Λx is increasing, we may replace ω ∨ ωx with ωt ∨ ωx .
Since ωx is independent of ωt , Lemma 4 below shows that (10) holds, provided the
constant λ is large enough. This concludes the proof of Item (iii) and therefore of
Theorem 3. ��
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Fig. 2 An example of a
quarter-face of y +ΛN that is
included in Λx

For the next (and last) lemma, it will be convenient to have a notation for the
edge boundary restricted to a fixed set. Fix therefore a set R ⊂ Z

d , and define

ΔA = {{x, y} ⊂ R : |x − y| = 1, x ∈ A, y ∈ R \ A}
.

Lemma 4 For any δ, η > 0, there exists λ > 0 such that for any p ∈ [δ, 1− δ] and

ε > 0, as well as any A,B ⊂ R, Pp[A R←→ B] ≥ 1− 2 exp(−η/ε) implies that

P
[
A

R←→ B in ω ∨ ω̃ ∣
∣ω(e) = 0,∀e ∈ ΔA] ≥ 1− δ,

where ω is a Bernoulli percolation configuration satisfying P[ω(e) = 1] ≥ p for
every e, and ω̃ a Bernoulli percolation of parameter λε which is independent of ω.

Proof If A ∩ B = ∅, the result is obvious. We therefore assume A ∩ B = ∅. Also,
introduce the event E that ω(e) = 0 for all e ∈ ΔA and the setW defined by

W = {{x, y} ∈ ΔA and y
R\A←−→ B in ω

}
.

Any path from A to B in R, open in ω, must use at least one edge of W .
Consequently, for any t ∈ N, we have

Pp[A R
� B] ≥ (1− p)t−1

Pp[|W | < t].

Then, using that |W | ≥ t is independent of the event E, we deduce that, still for an
arbitrary t ,

P[A R←→ B in ω ∨ ω̃ | E] ≥ P[∃e ∈ W : ω̃(e) = 1,W ≥ t | E]
≥ (1− (1− λε)t )P[W ≥ t]



364 H. Duminil-Copin et al.

≥ (1− (1− λε)t )
(

1− Pp[A R
� B]

(1− p)t−1

)

≥ (1− (1− λε)t )
(

1− exp(−η/ε)
(1− p)t−1

)
.

Choosing λ = λ(δ, η) large enough, the result follows by optimizing on t .

6 Proofs of Theorems 1 and 2

Theorem 2 follows immediately from what was already proved. Indeed, we use
Theorem 3 with

p = pn + λ/
√

logn,

ε = 1/
√

logn,

(k,K, n,N) = (nα3
, nα

2
, nα, n),

where α is given by Proposition 1, and where λ is some sufficiently large constant.
By the definition of α, condition (c) of Theorem 3 is satisfied when n is large
enough. Condition (a) follows from Proposition 2, while Condition (b) follows from
Proposition 3, if only λ is sufficiently large (we use Proposition 3 with β = α3).

The p < pc case of Theorem 1 is identical. Given p < pc we define n = %ξp&
and then pn ≤ p. Using Theorem 3 in the same way and with the same parameters
as above gives that at pn + C/√logn we already have percolation in a slab, and in
particular it is above pc. Hence

pc ≤ pn + C√
logn

≤ p + C
√

log ξp

which is identical to ξp ≤ exp(C(pc − p)−2), as claimed.
For the case p > pc of Theorem 1 we need to estimate the probability to

percolate in a slab starting from the boundary of the slab. It will be slightly more
convenient to work in the “other slab”, OSlabn = {−n, . . . , n} × Z

d−1. Define

θ(p, n) := Pp[(−n, 0, . . . , 0) OSlabn←−−→∞].

To estimate θ(p, n) we use the fact that at pc

∑

x∈∂Λn
Ppc [0 Λn←→ x] ≥ c.
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(this is well-known, and in fact we already gave a proof of that while proving
Proposition 2). By symmetry the same holds for the bottom face, i.e.

∑

x∈{−n}×{−n,...,n}d−1

Ppc [0 Λn←→ x] ≥ c.

Hence for some x on this face we have Ppc [0 Λn←→ x] ≥ cn1−d . By translation
invariance we get for some y ∈ {0} × {−n, . . . , n}d−1 that

Ppc [(−n, 0, . . . , 0) OSlabn←−−→ y] ≥ cn1−d .

Let nowp > pc and define n such thatPp[0 Slabn←−→∞] ≥ 1/2
√

logn. By Theorem 2
we may take n ≤ exp(C(p− pc)−2). We may certainly replace Slabn with OSlabn,
as it is larger. We get

θ(p, n) ≥ Pp[(−n, 0, . . . , 0) OSlabn←−−→ y, y
OSlabn←−−→∞]

≥ Pp[(−n, 0, . . . , 0) OSlabn←−−→ y]Pp[y OSlabn←−−→∞] ≥ cn1−d · 1

2
√

logn

where we used FKG, translation invariance and the fact that the event (−n, 0, . . . , 0)
←→ y is monotone. By Chayes et al. [14, Theorem 5], ξp ≤ n/θ(p, n) and
Theorem 1 is established. ��

7 On Proposition 1

Proposition 1 was not stated in this generality in the paper of Cerf [16] (in that
paper, the polynomial upper bound is stated for p = pc). Here we explain
how the arguments of [16] can be adapted to get a bound which is uniform in
0≤p≤ 1.

Proof of Proposition 1 It suffices to prove the estimate above for p ∈ (δ, 1−δ), for
some fixed δ > 0 small enough. Indeed if p is close to 0 or 1, one can easily prove
the bounds of the proposition using standard perturbative arguments. Now, using
for example the inequality above Proposition 5.3 of [16], we see that there exists a
constant κ > 0 such that for every δ ≤ p ≤ 1− δ, and every n ≥ 1

Pp[A2(0, n)] ≤ κ logn√
n
.
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We will prove that there exists C ≥ 1 large enough such that, uniformly in δ ≤ p ≤
1− δ, we have for every n ≥ 2

Pp[A2(n, n
C)] ≤ 1

n
,

which concludes the proof. In the proof of [16], the fact that p = pc was used in
order to obtain a lower bound on the two-point function (see Lemma 6.1 in [16]).
One can replace the input coming from the hypothesis that p = pc by the following
simple argument. Fix n ≥ 2. Since Pp[A2(n, n

C)] ≤ Pp[Λn ←→ ∂Λ2n], we can
assume that the probability that there exists an open path fromΛn to ∂Λ2n is larger
than 1/n. Therefore, by the union bound, there must exist a point x at the boundary
of Λn that is connected to x + ∂Λn with probability larger than 1

n|∂Λn| . Hence, by

translation invariance, 0 is connected to ∂Λn with probability larger than 1
n|∂Λn| , and

the union bound again implies that for everym ≤ n,

∑

y∈∂Λm
Pp[0 Λm←→ y] ≥ 1

n|∂Λn| .

Using this estimate, one can repeat the argument of Lemma 6.1 in [16] to show that
there exists a constant C > 0 (independent of n and p) such that

∀x, y ∈ Λn Pp[x Λ2n←→ y] ≥ 1

nC
.

Then one can conclude the proof using the estimate above together with Corol-
lary 7.3 in [16].

8 A Lower Bound

In this section, we make a few remarks on lower bounds for the correlation length.
We first note that [4] shows that at p < pc the expected size of the cluster (“the
susceptibility”) is at least 1/(pc − p), and this shows that ξp ≥ (pc − p)−1/d .
Newman [36] shows a lower bound also on the truncated susceptibility for p >
pc but he makes assumptions on the behaviour of critical percolation which are
still unknown: we could not complete Newman’s argument without assuming
Conjecture 1.

Here we will sketch a proof that ξp ≥ (pc−p)−2/d+o(1) in the case that p < pc,
leaving the more complicated case of p > pc for the future. Let N > 0, and let E
be the event that there exists an easy-way crossing of the box 3N × · · · × 3N ×N .
By Kesten [31, §5.1] there is a constant c1(d) such that if Pq [E] < c1 then q < pc.

Let now p < pc. Standard arguments using supermultiplicativity (see [14]) show
that for every x with |x| > N we have Pp(0 ↔ x) ≤ exp(−N/ξp). Hence there
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exists N ≤ Cξp log ξp such that Pp[E] < 1
2c1(d). Now, it is well-known that for

any boolean function f the total influence I (f ) satisfies I (f ) ≤ √
nvarf/p(1 − p).

DefiningF(p) = Ep[f ] this gives, for p bounded away from 0 and 1,
√
F
′ ≤ C√n.

We apply this for f being the indicator of the event E and get

d

dp

√
Pp[E] ≤ C′Nd/2 ≤ C′′(ξp log ξp)d/2.

Hence at q := p + c2(ξp log ξp)−d/2 for some c2 sufficiently small, we would have
Pq [E] < c1(d) and hence q < pc. The claim follows.
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The Roles of Random Boundary
Conditions in Spin Systems

Eric O. Endo, Aernout C. D. van Enter, and Arnaud Le Ny

Abstract Random boundary conditions are one of the simplest realizations of
quenched disorder. They have been used as an illustration of various conceptual
issues in the theory of disordered spin systems. Here we review some of these
results.

Keywords Random boundary conditions · Quenched disordered systems ·
Chaotic size dependence · Weak versus strong uniqueness · Metastates

1 Introduction

In the theory of disordered systems, and in particular in the theory of spin glasses,
for which the existence of phase transitions on the lattice is so far unproven and the
nature of the conjectured transition even among theoretical physicists is a topic of
controversy, the traditional approach of selecting different Gibbs states by imposing
boundary conditions geared towards a preferred state is ineffective, as we don’t
know which (Gibbs or ground) preferred states there could be to select from.

Physically, it then makes more sense considering boundary conditions which are
independent of the interactions. In the case of spin glasses those could be fixed,
periodic or free, for example. Indeed, choosing boundary conditions which depend
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on a realization of a set of random interactions is not a physically feasible procedure.
For an early discussion of this point we refer to [49].

The mathematical theory of disordered spin systems has been described for
example in [8, 39, 44]. See also [43] for a reader-friendly introduction to the issues
which show up in the spin-glass problem.

Having boundary conditions independent of the interactions has played a role in
the proper definition of spin-glass Edwards-Anderson order parameters [12, 50] and
also in the issue of weak versus strong uniqueness of Gibbs measures [12, 17, 27].

A possibility which can naturally occur in disordered models is non-convergence
of finite-volume Gibbs measures in the thermodynamic limit (“Chaotic Size Depen-
dence”) [40, 48]. If the finite-volume states don’t converge, it still might be the case
that distributional limits exist. Such limiting objects then are called “metastates”.
Tractable examples of them mean-field models, see e.g. [9, 29, 35], but for short-
range lattice models one usually needs to consider somewhat simplified models, as
e.g. in [52, 53].

Considering deterministic models with random boundary conditions can provide
suitable illustrations of various conceptual issues. For some descriptions of the
analogy between spin glasses with fixed boundary conditions and deterministic
models with random boundary conditions, see [3, 17, 40, 48]. Short-range Ising
models have been studied in [52, 53], and more recently one-dimensional long-
range models have been considered [21]. Here we review some of the results which
were found in those examples.

2 Background and Notation on Disordered Spin Models

2.1 Spin Models and Disorder

We will consider spin models in which we denote spin configurations (respectively
spins at site i) by σ (respectively σi), on a connected, infinite and locally-finite graph
G. The state space is Ω0, the spin configuration space is ΩG0 .

For a subset of vertices G′ ⊂ G, we denote by σG′ = (σi)i∈G′ the configuration
restricted on G′. DefineΩG

′
0 to be the set of configurations on G′.

LetΦ = (ΦX)X⊂G, X finite be a family ofFX-measurable functionsΦX : ΩG0 →
R, where FX is the local σ -algebra generated by the cylinders σX ; we will call such
a family an interaction.

Given a finite-volumeΛ ⊂ G, finite-volume Hamiltonians are expressed in terms
of interactions

HΛ(σΛbΛc) =
∑

X∩Λ=∅
ΦX(σΛbΛc).
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Here b is an arbitrary boundary condition, an element of ΩG0 , identified with its
projectionsΩΛ

c

0 , and

σΛbΛc =
{
σi, if i ∈ Λ,
bi, if i ∈ Λc.

From such Hamiltonians one constructs finite-volume Gibbs measures on volume
Λ, with boundary condition b on Λc and inverse temperature β > 0,

μbΛ,β(σΛ) =
1

ZbΛ,β

e−βHΛ(σΛbΛc).

The normalization

ZbΛ,β =
∑

σ∈ΩΛ0
e−βHΛ(σΛbΛc )

is called partition function. Under appropriate summability conditions on the
interaction, in the thermodynamic limit (infinite-volume) Gibbs measures exist, also
known as DLR measures. For the theory of infinite-volume Gibbs measures we refer
to [23, 28, 45, 51].

Although the theory applies in wider generality, we will tend to restrict ourselves
to Ising spins σi ∈ Ω0 = {−1, 1}.

Disordered systems depend on another random parameter, the disorder parameter
η. This disorder parameter can describe either bond randomness or site randomness
in the interactions, which then become random FX-measurable functions ΦηX(·)
for each X finite. Usually the variables η are independent random variables with a
distribution which is translation invariant and which depends on the shapes of the
subsets of the lattice X.

There exists an extensive literature, both in (rigorous and nonrigorous) theoretical
physics and mathematical physics, on disordered systems. Here we refer to [8, 39,
43, 44] for some further mathematical and conceptual background and theory on
them.

We warn the reader, moreover, that the well-known random-bond equivalent-
neighbour Sherrington-Kirkpatrick model of a spin-glass, although it has been
rigorously solved by Guerra and Talagrand, following the ideas of Parisi, in many
aspects is exceptional and many statements which apply to it have no equivalent
statement in the context we discuss. For some of the arguments on these issues, see
[8, 39–43, 46, 47].
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2.2 Examples: From Spin Glass to Mattis Disorder to Random
Boundary Conditions

Popular examples of disordered Ising systems include:

1. Edwards-Anderson spin-glasses: on G = Z
d with Hamiltonian

HΛ(σΛbΛc) = −
∑

i,j∈Λ
i =j

ηi,j J (i − j)σiσj −
∑

i∈Λ
j∈Λc

ηi,j J (i − j)σibj ,

where the distribution of the (bond-random) ηi,j is symmetric and depends only
on |i − j |. They are usually taken as centered Gaussian or symmetric±1.

2. Random-field Ising models: on G = Z
d with Hamiltonian

HΛ(σΛbΛc) = −
∑

i,j∈Λ
i =j

J (i − j)σiσj −
∑

i∈Λ
j∈Λc

J (i − j)σibj − λ
∑

i∈Λ
ηiσi ,

where the ηi are (site-random) i.i.d. and symmetrically distributed random vari-
ables. Just as with Edwards-Anderson models, the most considered distributions
are centered Gaussian and Bernoulli distributions.

3. Mattis spin glasses: on G = Z
d with Hamiltonian

HΛ(σΛbΛc) = −
∑

i,j∈Λ
i =j

J (i − j)ηiηj σiσj −
∑

i∈Λ
j∈Λc

J (i − j)ηiηjσibj ,

where again the (site-random) ηi are i.i.d. and symmetrically distributed, typi-
cally ±1.

So far the theory of Edwards-Anderson spin glasses lacks examples in which it
is clear that phase transitions occur.1

The random-field Ising models have phase transitions in case of nearest-neighbor
models in dimension at least 3, and also in dimension 1 if we consider the long-
range interaction with sufficiently slow decay. These results all agree with heuristic
predictions, based on some form of an Imry-Ma argument [32]. In such an argument
one compares the (free-)energy cost of an excitation due to the spin interactions with
the energy gain due to the magnetic field term.

This argument has been rigorized in a number of cases, sometimes requiring a
serious mathematical analysis [1, 7, 11, 14, 36].

1C.M. Newman and D.L. Stein, among others, have raised the question of proving phase transitions
for Edwards-Anderson models at various occasions. See for example http://web.math.princeton.
edu/~aizenman/OpenProblems_MathPhys/9803.SpinGlass.html. No progress seems to have been
made since then.

http://web.math.princeton.edu/~aizenman/OpenProblems_MathPhys/9803.SpinGlass.html
http://web.math.princeton.edu/~aizenman/OpenProblems_MathPhys/9803.SpinGlass.html
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The Mattis spin-glasses on the other hand, by the random gauge transformation
σ ′i = ηiσi , are equivalent to ferromagnetic models. Thus the existence or not of a
phase transition typically only requires understanding the ferromagnet. We note that
for a finite-volume Gibbs measure a fixed boundary condition by this random gauge
transformation is mapped to a random boundary condition [40, 41].

We also notice that Mattis disorder is the same as single-pattern Hopfield
disorder, which has been considered in particular in the mean-field version; for more
on Hopfield models see e.g. [8, 9, 35].

3 Earlier Results and New Heuristics on Random Boundary
Conditions

In the results which we review below, we always impose boundary conditions
which are drawn from a symmetric i.i.d. product (Bernoulli) measure. This does
not preselect the phase, and such boundary conditions are sometimes called
“incoherent” (as introduced in [42], see also [53]).

3.1 Weak Versus Strong Uniqueness

We say that a model displays weak uniqueness of the Gibbs measure if for
each choice of boundary condition almost surely (for almost all choices of the
random interaction) the same infinite-volume Gibbs measure is approached. Strong
uniqueness holds if there exists a unique Gibbs measure for the model for almost all
choices of the interaction.

It is known that one-dimensional high-temperature long-range spin-glass models
display weak uniqueness without strong uniqueness [25, 27]. Other examples where
this occurs are the nearest-neighbour Ising spin-glass models on a tree, between the
critical temperature and the spin-glass temperature [17].

Similarly to what happens in Mattis models, one can transform the disorder
to the boundary, and in the temperature interval between the ferromagnetic tran-
sition Tc (below which plus and minus boundaries produce different states in
the thermodynamic limit) and the free-boundary-purity (or spin-glass) transition
temperature TSG, below which the limiting Gibbs measure obtained with free
boundary conditions becomes non-extremal, there is weak uniqueness of the Gibbs
measure without strong uniqueness.

Similar behaviour (weak but not strong uniqueness) has also been derived for a
Potts-Mattis model on Z

d for high q , at the transition temperature, with d ≥ 2 [12].
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3.2 Nearest-Neighbour Ising Models at Low Temperatures,
Metastates

We first summarize here the results derived and described in [52, 53] for the nearest-
neighbour Ising model on Z

d . If we consider an Ising model on a box of size
Nd with random boundary conditions, the ground state energy and also the low-
temperature free energy satisfy a weak version of the local central limit theorem.
One obtains estimates for the probability of the boundary term of a boundary of size
N to lie, not in finite intervals (as in the proper local limit theorem) or in intervals
of size

√
N (as in the ordinary central limit theorem), but in intervals of size Nδ ,

with some δ between 0 and 1
2 . This still suffices to show that the probability that the

boundary free energy is close to zero goes to zero at a fast enough rate.
This can be used to show that the boundary (free) energy in a reasonably precise

way scales like N
d−1

2 . From this it follows in particular that the (free) energy
difference between plus and minus phase diverges, with large enough probability,
and thus randomly one of the two tends to be preferred.

The distributional limit behaviour can be described in terms of “metastates”, ob-
jects which were introduced by Aizenman-Wehr [1] and Newman-Stein [39, 41, 42]
via different constructions, which then were shown to be equivalent, see also [19].

A metastate is a measure on Gibbs measures. In its support either extremal or
non-extremal Gibbs measures, or both, can occur. If the support of a metastate
contains more than one measure, it is called “dispersed”.

In case the distribution is η-dependent, the translation covariant metastate in fact
becomes a measure on measures (distributions) on Gibbs measures. Translation
covariance here means that shifting the η induces a shift of the corresponding
random Gibbs measures in the metastate.

The weight of a Gibbs measure in a metastate indicates the probability of
finding that particular Gibbs measure for a randomly chosen volume for a particular
realization of the interaction, or else, the probability of finding that Gibbs measure
for a random realization of the interaction in a given large volume. If the Gibbs
measures are random, this metastate necessarily is also a random object.

Although the notion of metastate has been developed for spin glasses, these have
turned out to be so intractable that most examples which could be handled are either
mean-field models with site-random variables (see for example [9, 29]), or other
heavily simplified models.

In [52, 53] it was proven, for example, that the metastates obtained with
random boundary conditions live on the (extremal) plus and minus measures of
the nearest-neighbour Ising model. Whereas the simple case of ground states with
weak (finite-energy) boundary conditions—that is, the bonds inside the volume are
infinite, but boundary bonds are finite—is mathematically fairly straightforward, the
low-temperature case required a careful analysis, making use of the technique of
cluster expansions, including estimates on boundary contours, leading to a weak
version of the local central limit theorem. But the analysis ended up providing
essentially the same result as holds at T = 0. As the weights in the metastate
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are obtained by exponentiating and then normalizing the boundary (free) energies,
divergence of those boundary terms leads to weights which are either zero or one.

When the sequence of volumes is sufficiently sparse, the plus and minus
measures are in fact the only two limit points. To prove this, one has to exclude
null-recurrent behaviour when taking sequences of increasing volumes. By taking
sparse sequences, this allows one to apply a Borel-Cantelli argument.

3.3 Long-Range Ising Models, Metastates

In [21] we have started to extend the analysis of the metastate description to one-
dimensional long-range Ising systems. There has been a substantial progress in the
study of such low-dimensional long-range Ising models, which are known to display
phase transitions [2, 10, 20, 24, 26, 30, 31, 33, 34]. For a number of more recent
works on these models see [4–7, 13–16, 18, 22, 37, 38, 54, 55].

As our canonical example, on G = Z and α ∈ (1, 2], we consider the Dyson
models with Hamiltonian

HΛ(σΛbΛc) = −
∑

i,j∈Λ
i =j

|i − j |−ασiσj −
∑

i∈Λ
j∈Λc

|i − j |−ασiηj ,

where the site-random boundary ηj are i.i.d., symmetrically distributed random
variables on {−1, 1}.

If we impose weak (finite-energy) random boundary conditions, on an interval
of size N (so boundary bonds are finite, but bonds inside the volume are infinite)
the ground states, which are the plus and minus configurations, have a difference in

energy which scales asN
3
2−α when α < 3

2 , and is almost surely bounded otherwise.
This implies that for α > 3

2 the metastate lives on mixed ground state measures,
whereas for α < 3

2 , similarly to what occurs in higher-dimensional short-range
models, the metastate has only the plus and minus states in its support. For positive
temperatures analogous results for metastates on Gibbs measures are expected and
partially proven ([21] in progress).

To prove that null-recurrence of the set of mixed states does not occur, in case
the decay is slow enough, we again need to consider sufficiently sparse sequences of
increasing volumes. Next to being needed for a Borel-Cantelli argument, this also
allows us to treat the boundary energies of different volumes as (approximately)
independent.

To obtain an almost sure statement, a local-limit-type argument, along the lines
of the one discussed in Appendix B of [52] could then be invoked.

Denote by σ+j = +1 for all j ∈ Z. The main object we study is the formal
expression

W+ =
∑

i<0

∑

j≥0

|i − j |−ασ+j ηi =
∑

i<0

Wi.
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This expression describes the interaction of a random boundary condition on the
negative half-line with the plus ground state configuration on the right half-line.

As the Wi are independent, the expectation of each Wi is zero, and the variance
is Var(Wi) = O(|i|2−2α).

Alternatively, we can write W = ∑
j≥0W

′
j , with the random variables W ′

j

having zero expectation, being strongly correlated and satisfying E((W ′
j )

2) =
O(|j |1−2α), so (Var(W ′

j ))
1/2 = O(|j | 1

2−α). Now instead of the sum of the
variances, we need to consider a sum of the –non-independent–Wj themselves.

Therefore it follows that, whether one considers either a plus interval of size N
with a random boundary, or, alternatively, a random interval of size N with a plus

boundary, both scale like N
3
2−α.

We remark that the sum of left and right boundary energy terms on both sides of
a large enough interval, again can be written as a sum of similar form and for that
reason satisfies the same scaling. This provides the scaling of the boundary energies
mentioned above.

The boundary terms of a finite interval consist of a left boundary term and a
right boundary term, when the interval is large those can be treated as more or less
independent.

Let μ+β andμ−β be the thermodynamic limit of the plus b.c. Gibbs measuresμ+Λ,β
and minus b.c. μ−Λ,β , respectively.

We notice that if two boundary energies are only differing by a finite amount,
the limiting Gibbs measures (or ground state measures in the zero-temperature
framework) are absolutely continuous with respect to each other. This happens
almost surely when α > 3

2 . In that case, W is a well-defined, almost surely
finite random variable with some non-trivial distribution. The weight distribution
λ = λ(μ) ∈ [0, 1] on mixed Gibbs measures μ given by

μ = λμ+β + (1− λ)μ−β ,

obtained by exponentiating the boundary energies and normalizing them, also has a
non-trivial distribution.

This means in particular that the measures in the support of this distribution are
different mixtures of the plus and minus states. Therefore the metastate lives on
different mixtures, rather than on pure states.

So far we have derived the results described above for low enough temperatures
when α > 3

2 , and for T = 0 with finite boundary terms when α < 3
2 . Just as in the

nearest-neighbour case, the extension to positive temperatures in the second case
requires a sophisticated low-temperature (contour expansion) analysis, which is in
progress.

We remark moreover that it follows from [19] that a metastate supported on
pure states also exists; however, its construction will have to be different than just
imposing independent random boundary conditions (possibly by making use of a
maximizing procedure, or by considering highly correlated boundary conditions).
For the ferromagnet this is immediate, for the Mattis version of our models less so.
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We also notice here that an earlier mean-field example of metastates living on
mixed states appeared already in [35]. In that case, bulk disorder was present. Mean-
field models lacking boundary terms, the origin of mixed states occurring in the
metastate therefore seems rather different from our random-boundary Dyson model
example.

4 Conclusion, Final Remarks

Random boundary conditions for ferromagnets play a similar role as fixed boundary
for spin glasses. In the case of spin glasses with Mattis disorder, there is in fact
direct map between those two cases.

Random boundary conditions can be used to illustrate the concepts of weak and
strong uniqueness, as well as describing various metastate scenarios. In particular,
in one-dimensional Dyson models with a decay power between 3

2 and 2, they lead
in a natural way to examples where the phenomenon of dispersed metastates living
on mixed Gibbs measures appear, a phenomenon which apparently is new for lattice
systems.
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Central Limit Theorems for a Driven
Particle in a Random Medium with Mass
Aggregation
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Abstract We establish central limit theorems for the position and velocity of the
charged particle in the mechanical particle model introduced by Fontes, Jordão
Neves and Sidoravicius (2000).
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1 Introduction

We revisit the 1d mechanical particle model introduced in [4], where we have a
charged particle initially standing at the origin, subjected to an electric field, in an
environment of initially standing neutral particles of unit mass. Each neutral particle
has randomly either an elastic nature or an inelastic nature. With the first kind of
neutral particle, the charged particle collides in a totally elastic fashion. And the
collisions of the charged particle with the second kind of neutral particle is totally
inelastic. The neutral particles do not interact amongst themselves. Both kinds of
neutral particles are initially randomly placed in space.

One dimensional mechanical models have been treated quite often in the
literature. We refer to [1, 7–9] for models with purely elastic interactions; the latter
two papers, in the first of which the neutral particles have independent lifetimes,
establish the existence of a limit velocity for the charged particle, as well as an
invariance principle for its position. For models with purely inelastic interactions,
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we cite [6]. Other references may be found in [4]. See also [2, 5] for somewhat more
recent studies of related models of each kind.

In [4], a law of large numbers was proved for the instantaneous velocity of the
charged particle. In this article, we derive central limit theorems for both the position
and the instantaneous velocity of that particle, in a sense completing the result of [4];
see Final Remarks of [4].

Our approach is similar to that of [4], namely, we first prove CLT’s for the
corresponding objects of a modified process, where there are no recollisions. The
results for the original process are established by showing that the differences
between the actual and modified quantities are negligible in the relevant scales.

2 The Model and Results

We consider a system of infinitely many point like particles in the non-negative real
semi-axis [0,∞). At time 0 the system is static, every particle has velocity 0. There
is a distinguished particle of mass 2 initially at the origin; we will call it the tracer
particle (t.p.) (referred to before as the charged particle). The remaining particles
(referred to before as neutral particles) have mass 1.1 Let {ξi}i∈N denote a family
of i.i.d. positive random variables, with an absolutely continuous distribution, and
finite mean Eξ1 = μ < ∞, representing the initial interparticle distances. In this
way, Si = ξ1 + · · · + ξi denotes the position of the i-th particle initially in front
of the t.p. at time 0. Moreover, given a parameter p ∈ (0, 1], and a family {ηi}i∈N
of i.i.d. Bernoulli random variables with success probability p, we say that the i-th
particle is sticky if ηi = 1 and is elastic if ηi = 0. We assume {ξi}i∈N and {ηi}i∈N to
be independent of one another.

A constant positive force F is turned on at time 0, and kept on. It acts solely
on the tracer particle, producing in it an accelerated motion to the right. Collisions
will thus take place in the system; we assume they occur only when involving the
t.p., and suppose that all other particles do not interact among themselves. If at an
instant t > 0, the t.p. collides with a sticky particle, then this is a perfectly inelastic
collision, meaning that, upon collision, momentum is conserved and the energy of
the two particle system is minimum, which in turn means that the t.p. incorporates
the sticky particle, along with its mass, and the new velocity of the t.p. becomes
(immediately after time t)

V (t+) = Mt

Mt + 1
Vt , (1)

1The distinction of the initial mass of the t.p. with respect to the other particles, absent in [4], is
for convenience only; any positive initial mass for the t.p. would not change our results, but values
1 or below would require unimportant complications in our arguments.
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where Vt and Mt are respectively the velocity and mass of t.p. at time t . However,
if the t.p. collides with an elastic particle which is moving at velocity v at the time
of the collision, say t , then we have a perfectly elastic collision, where energy and
momentum are preserved, and in this case, immediately after time t , the t.p. and the
elastic particle velocities become, respectively,

V (t+) = Mt − 1

Mt + 1
Vt + 2

Mt + 1
v and

v′ = 2Mt
Mt + 1

Vt − Mt − 1

Mt + 1
v, (2)

where Vt andMt are as above.
For t ≥ 0, let Vt and Qt denote the velocity and position of the t.p. at time t ,

respectively. As argued in [4], the stochastic process (Vt ,Qt )t≥0 is well defined—
see the discussion at the end of Section 2 of [4]; in particular there a.s. are no
multiple collisions or infinitely many recollisions in finite time intervals—, and is
determined by {ξi, ηi ; i ∈ N}. Therefore we consider the product sample space
Ω = {(0,∞)× {0, 1}}N, and the usual product Borel σ -algebra, and the product
probability measure P := ∏

i≥1[Pξi ⊗ Pηi ], where for i ≥ 1, Pξi and Pηi denote the
probability measures of ξi and ηi . We will make repeatedly make use of the notation

ξ̄i = ξi − μ, η̄i = ηi − p.

From [4], we know that P-almost surely, the velocity of the t.p. converges to a(n
explicit) limit. More precisely, we have the following result.

Theorem 1 The stochastic process (Vt ,Qt )t≥0 is such that

lim
t→∞Vt =

√
Fμ

2− p P− a.s.

From now on we denote the limit velocity
√
Fμ/(2− p) by VL. The purpose

of this paper is to show that the velocity Vt and position Qt of the tracer particle
satisfy central limit theorems. Our main results are as follows (where “-⇒” denotes
convergence in distribution).

Theorem 2 Let Var(ξ1) = σ 2 <∞. Then, as t →∞,

Qt − tVL√
t

-⇒N (0, σ 2
q ),

where σq > 0.



386 L. R. Fontes et al.

Theorem 3 Let Var(ξ1) = σ 2 <∞. Then, as t →∞,

√
t(Vt − VL) -⇒N (0, σ 2

v ),

where σv > 0.

3 Central Limit Theorems in a Modified Process

As mentioned in the Introduction, we first prove central limit theorem analogues
of Theorems 2 and 3 for a modified process in which, when an elastic particle
collides with the t.p., the elastic particle is annihilated and disappears from the
system, and the velocity of the t.p. changes according to the formula (2), while
collisions between the t.p. and sticky particles remain as in the original model. We
denote the modified stochastic process by (V̄ (t), Q̄(t))t≥0, where V̄ (t) and Q̄(t)
are respectively the velocity and position of the t.p. in the modified system at time t .

In the modified model, for i ≥ 1, the t.p. collides with the i-th particle only
in the initial position of the latter particle, given by Si ; let us denote the instant
when that collision occurs by t̄i , i.e., Q̄(t̄i) = Si . In this way, we can compute the
i−th collision incoming and outgoing velocities V̄ (t̄i) and V̄ (t̄+i ), respectively, as
follows. First note that, according the formulas (1) and (2), we have the following
relations

(a) V̄ 2(t̄i ) = V̄ 2(t̄+i−1)+
2Fξi
M(t̄i)

;

(b) V̄ 2(t̄+i ) = V̄ 2(t̄i)

[
M(t̄i)+ (ηi − 1)

M(t̄i)+ 1

]2

,

whereM(t̄i ) = 2+∑i−1
l=1 ηl .

Iterating this relations, we get for i = 1, 2, . . ., that

V̄ 2(t̄+i ) =
i∑

j=1

⎡

⎣ 2Fξj
M(t̄j )

i∏

k=j

(
M(t̄k)+ (ηk − 1)

M(t̄k)+ 1

)2
⎤

⎦ . (3)

In [4], it is proved that, almost surely,

lim
t→∞ V̄ (t) = VL.

Let us at this point set some notation. Given two random sequences {Xn}n∈N and
{Yn}n∈N, we write Xn = O(Yn) if there almost surely exists C > 0, which may be
a (proper) random variable, but does not depend on n, such that |Xn| ≤ CYn for
every n ∈ N. And we say Xn = o(Yn) if Xn/Yn almost surely converges to 0 as
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n→∞. For simplicity, along the rest of the paper we denoteM(t̄i) byMi . Notice
thatM1 = 2 andMi = 2+∑i−1

k=1 ηk , i ≥ 2.
To obtain the central limit theorems for the modified process, we start with an

estimate for the random term

Xi,j := 1

Mj

i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2

, 1 ≤ j ≤ i and i ∈ N. (4)

Given ε > 0, for eachm ∈ N we define the event

Am,ε =
{
Xi,j ∈

(
(1− ε)j

ζ−1

piζ
, (1+ ε)j

ζ−1

piζ

)
, ∀(i, j) such that m ≤ j ≤ i

}
,

(5)
where ζ := 2(2− p)/p.

Lemma 1 Let Xi,j be as in (4), and Am,ε as in (5), where ε > 0 is otherwise
arbitrary. Then we have that

lim
m→∞P

(
Am,ε

) = 1.

Proof We first Taylor-expand the logarithm to write

i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2

= exp

⎧
⎨

⎩
2
i∑

k=j
log

(
1− 2− ηk

Mk + 1

)
⎫
⎬

⎭

= exp

⎧
⎨

⎩
−2

i∑

k=j

[
2− p
Mk + 1

− η̄k

Mk + 1

]
+O

⎛

⎝
i∑

k=j

(
2− ηk
Mk + 1

)2
⎞

⎠

⎫
⎬

⎭
. (6)

Given δ > 0, m ∈ N, let Bδm = {
Mj ∈ ((1− δ)pj, (1+ δ)pj) , ∀j ≥ m

}
. It

follows from the Law of Large Numbers that P(Bδm) → 1 a.s. as m → ∞. In
Bδm, we have

∞∑

k=1

(
2− ηk
Mk + 1

)2

≤
m−1∑

k=1

(
2− ηk
Mk + 1

)2

+ 4

p2(1− δ)2
∞∑

k=m

1

k2
<∞. (7)

Note also that

i∑

k=j

1

Mk + 1
=

i∑

k=j

(
1

Mk + 1
− 1

pk

)
+ 1

p

⎡

⎣
i∑

k=j

1

k
−

∫ i

j

1

x
dx

⎤

⎦+ 1

p

∫ i

j

1

x
dx.

(8)
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Clearly the second term at the right-hand side of (8) goes to 0 as j and i goes to
infinity. Let now Cm =

{|Mj + 1− jp| ≤ j2/3, ∀j ≥ m}
. It follows from Law of

the Iterated Logarithm that limm→∞ P(Cm) = 1. In Bδm ∩ Cm we have

∣∣
∣∣∣

∞∑

k=1

(
1

Mk + 1
− 1

pk

)∣∣
∣∣∣
≤

∣∣
∣∣∣

m−1∑

k=1

(
1

Mk + 1
− 1

pk

)∣∣
∣∣∣
+ 1

p(1− δ)
∞∑

k=m

|Mk + 1− kp|
k2

≤
∣
∣∣∣
∣

m−1∑

k=1

(
1

Mk + 1
− 1

pk

)∣
∣∣∣
∣
+

∞∑

k=m

1

k4/3
<∞. (9)

We also write

∞∑

k=1

η̄k

Mk + 1
=

∞∑

k=1

[
η̄k

(
1

Mk + 1
− 1

pk

)]
+

∞∑

k=1

η̄k

pk
. (10)

We may apply Kolmogorov’s Two-series Theorem to obtain that
∑∞
k=1 η̄k/k

converges a.s., and proceeding as in the estimation leading to (9), we may conclude
that the first term in the right-hand side of (10) is also convergent in the event
Bδm ∩ Cm.

To conclude, due to (6)–(10), taking δ > 0 sufficient small andm sufficient large,
we have that, in the event Bδm ∩ Cm,

i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2

∈ (1± ε) exp

{
−ζ

∫ i

j

1

x
dx

}
. (11)

Recalling now the definition of Xi,j and Am,ε in (4) and (5), respectively, we
have that (11) implies that Bδm ∩ Cm ⊂ Am,ε, and the result follows. ��

We now turn our attention to Sn − t̄nVL, for which we will prove a central limit
theorem, as a step to establish Theorem 2, as follows.

Proposition 1 Let Var(ξ1) = σ 2 <∞. Then, as n→∞,

Sn − t̄nVL√
n

-⇒N (0, σ̂ 2
q ), (12)

where σ̂q > 0.

The proof of this result consists of a number of steps which take most of this section.
From elementary physics relations, the time taken for the t.p. to go from Si−1 to

Si is given by

t̄i − t̄i−1 =
V̄ (t̄i)− V̄ (t̄+i−1)

F/Mi
= 2ξi

(
V̄ (t̄i)− V̄ (t̄+i−1)

)

2ξiF/Mi
= 2ξi
V̄ (t̄i)+ V̄ (t̄+i−1)

.
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Thus, we may write

Sn − t̄nVL =
n∑

i=1

[

ξi

(

1− 2VL
V̄ (t̄i)+ V̄ (t̄+i−1)

)]

=
n∑

i=1

[

ξi

(
V̄ (t̄i )+ V̄ (t̄+i−1)− 2VL

V̄ (t̄i )+ V̄ (t̄+i−1)

)]

=
n∑

i=1

[
2ξi

(
V̄ (t̄+i−1)− VL

)

V̄ (t̄i)+ V̄ (t̄+i−1)

]

+
n∑

i=1

[

ξi

(
V̄ (t̄i )− V̄ (t̄+i−1)

V̄ (t̄i )+ V̄ (t̄+i−1)

)]

.(13)

Note that

V̄ (t̄i)− V̄ (t̄+i−1)

V̄ (t̄i)+ V̄ (t̄+i−1)
= 2Fξi

Mi
(
V̄ (t̄i)+ V̄ (t̄+i−1)

)2 . (14)

Since V̄ (t̄i) + V̄ (t̄+i−1) converges to the constant 2VL, the Law of Large Numbers
and (14) imply that

n∑

i=1

[

ξi

(
V̄ (t̄i )− V̄ (t̄+i−1)

V̄ (t̄i )+ V̄ (t̄+i−1)

)]

= O
(
n∑

i=1

ξ2
i

i

)

. (15)

Let S̃0 = 0 and S̃k = ∑k
i=1 ξ

2
i , k ≥ 1. Assuming Eξ2

1 <∞, we have that

1√
n

n∑

i=1

ξ2
i

i
= 1√

n

n∑

i=1

S̃i − S̃i−1

i
= 1√

n

n−1∑

i=1

S̃i

i(i + 1)
+ S̃n

n3/2 = o(1). (16)

Noticing that V̄ (t̄i ) = V̄ (t̄+i−1)+ 2Fξi
(
V̄ (t̄i )+ V̄ (t̄+i−1)

)
/Mi , we find that

V̄ (t̄+i−1)− VL
V̄ (t̄i )+ V̄ (t̄+i−1)

= V̄ (t̄
+
i−1)− VL
2VL

+
[
V̄ (t̄+i−1)− VL
V̄ (t̄i)+ V̄ (t̄+i−1)

− V̄ (t̄
+
i−1)− VL
2VL

]

= V̄ (t̄
+
i−1)− VL
2VL

+
(
V̄ (t̄+i−1)− VL

) (
2VL − 2V̄ (t̄+i−1)

)

2VL
(
V̄ (t̄i )+ V̄ (t̄+i−1)

) − 2Fξi
2VLMi

. (17)
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In particular,

n∑

i=1

[
2ξi

(
V̄ (t̄+i−1)− VL

)

V̄ (t̄i)+ V̄ (t̄+i−1)

]

=

n∑

i=1

[
ξi

(
V̄ (t̄+i−1)− VL

)

VL

]

+O
(
n∑

i=1

[
ξi

(
V̄ (t̄+i−1)− VL

)2
]
)

+O
(
n∑

i=1

ξ2
i

i

)

.

(18)

Proceeding in an analogous way, we obtain that

n∑

i=1

[
ξi

(
V̄ (t̄+i−1)− VL

)

VL

]

=

n∑

i=1

[
ξi

(
V̄ (t̄+i−1)

2 − V 2
L

)

2V 2
L

]

+O
(
n∑

i=1

[
ξi

(
V̄ (t̄+i−1)− VL

)2
]
)

. (19)

To simplify notation, for each i ∈ N, we henceforth denote V̄ (t̄+i ) simply by V̄i .
The following lemma will be useful now; we postpone its proof till the end of this
section.

Lemma 2 Let Var(ξ1) = σ 2 < ∞ and let ε > 0. The velocities {V̄i}i∈N are such
that V̄i − VL = o(1/i1/2−ε). In particular,

1√
n

n∑

i=1

[
ξi

(
V̄i−1 − VL

)2
]
= o(1).

By (13)–(19) and Lemma 2, in order to establish Proposition 1 it is enough to
show that as n→∞

1√
n

n∑

i=1

ξi(V̄
2
i−1 − V 2

L) -⇒N (0, σ̃ 2
q ), (20)

for some σ̃q > 0; we then of course have σ̂q = σ̃q/(2V 2
L). For that, the strategy we

will follow is to expand the expression on the left of (20) into several terms, one of
which depends only on the interparticle distances {ξi}i∈N, another one depending
only on the stickiness indicator random variables {ηk}k∈N; for each of those terms
we can apply Lindeberg-Feller’s Central Limit Theorem; upon showing that the
remaining terms are negligible, the result follows.
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Recalling that ζ = 2(2− p)/p, (3) and (4), we start with

1√
n

n∑

i=1

[
ξi+1(V̄

2
i − V 2

L)
]
=

2F√
n

n∑

i=1

⎡

⎣ξi+1

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)
⎤

⎦+

2Fμ

p
√
n

n∑

i=1

⎡

⎣ξi+1

⎛

⎝1

i

i∑

j=1

(
j

i

)ζ−1

−
∫ 1

0
xζ−1dx

⎞

⎠

⎤

⎦ . (21)

The term on the left of expression within parentheses in the second term on the right
hand side of (21) is a Riemann sum for the term to its right; we conclude that the
full expression within parenthesis on the right hand side of (21) is an O(1/i), and
we may thus conclude that the second term on the right-hand side of (21) is an o(1),
and proceed by dropping that term and focusing on the first term, which we write as
follows.

2F√
n

n∑

i=1

⎡

⎣ξi+1

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)
⎤

⎦ =

2F√
n

n∑

i=1

⎡

⎣ξ̄i+1

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)
⎤

⎦+ 2Fμ√
n

n∑

i=1

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)

:= Vn +Wn. (22)

Now writing

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)
=

i∑

j=1

ξ̄jXi,j + μ
i∑

j=1

(
Xi,j − j

ζ−1

piζ

)
,

Vn given in (22) becomes

Vn = 2F√
n

n∑

i=1

⎡

⎣ξ̄i+1

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)
⎤

⎦ =

2F√
n

n∑

i=1

i∑

j=1

ξ̄i+1 ξ̄jXi,j + 2Fμ√
n

n∑

i=1

⎡

⎣ξ̄i+1

i∑

j=1

(
Xi,j (ω)− j

ζ−1

piζ

)
⎤

⎦

=: V1,n + V2,n. (23)
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We will show in Lemmas 6 and 7 below that V1,n and V2,n are negligible.
Analogously,Wn given in (22) becomes

Wn = 2Fμ√
n

n∑

i=1

i∑

j=1

(
ξjXi,j − μj

ζ−1

piζ

)
=

2Fμ√
n

n∑

i=1

i∑

j=1

ξ̄jXi,j + 2Fμ2

√
n

n∑

i=1

i∑

j=1

(
Xi,j − j

ζ−1

piζ

)

=: W1,n +W2,n, (24)

andW1,n is further broken down into

W1,n = 2Fμ√
n

n∑

i=1

i∑

j=1

ξ̄jXi,j

= 2Fμ

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
ξ̄j + 2Fμ√

n

n∑

i=1

i∑

j=1

ξ̄j

(
Xi,j − j

ζ−1

piζ

)

=: W3,n +W4,n. (25)

One may readily verify the conditions of Lindeberg-Feller’s CLT to obtain

Lemma 3 Let Var(ξ1) = σ 2 <∞. For 1 ≤ j ≤ n, set aj,n = jζ−1 ∑n
i=j 1

iζ
. Then,

as n→∞,

W3,n = 2Fμ

p
√
n

n∑

j=1

aj,nξ̄j -⇒N (0, σ 2
w),

where σw = 2Fμ
p
√
ζ
σ .

In Lemma 8 below we show thatW4,n is negligible.
Let us now focus onW2,n. To alleviate notation, for each 1 ≤ j ≤ i, set

Yi,j = log

⎡

⎣
i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
⎤

⎦ = 2
i∑

k=j
log

(
1− 2− ηk

Mk + 1

)
, (26)
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thus Xi,j = eYi,j /Mj , and therefore,

W2,n = 2Fμ2

√
n

n∑

i=1

i∑

j=1

(
Xi,j − j

ζ−1

piζ

)
=

2Fμ2

√
n

n∑

i=1

i∑

j=1

[(
1

Mj
− 1

pj

)
j ζ

iζ

]
+ 2Fμ2

√
n

n∑

i=1

i∑

j=1

[(
1

Mj
− 1

pj

) (
eYi,j − j

ζ

iζ

)]
+

2Fμ2

√
n

n∑

i=1

i∑

j=1

[
1

pj

(
eYi,j − j

ζ

iζ

)]
=: Z1,n + Z2,n + Z3,n. (27)

Lemma 4 Z2,n, as defined in (27), is an o(1).

Proof Note that, as defined in (26) and (27),

|Z2,n| =
∣
∣
∣
∣∣
∣

2Fμ2

√
n

n∑

i=1

i∑

j=1

[(
1

Mj
− 1

pj

) (
eYi,j − j

ζ

iζ

)]
∣
∣
∣
∣∣
∣

=
∣
∣
∣
∣∣
∣

2Fμ2

√
n

n∑

i=1

i∑

j=1

[
jζ

iζ

(
1

Mj
− 1

pj

) (
exp

{
Yi,j + ζ

∫ i

j

1

x
dx

}
− 1

)]
∣
∣
∣
∣∣
∣

≤ 2Fμ2

√
n

n∑

i=1

i∑

j=1

[
jζ

iζ

∣
∣
∣∣

1

Mj
− 1

pj

∣
∣
∣∣

∣
∣
∣∣Yi,j + ζ

∫ i

j

1

x
dx

∣
∣
∣∣

]
. (28)

For each i ≥ j ≥ 1, we define

Ri,j = Yi,j + ζ
∫ i

j

x−1dx. (29)

It follows from (28) that

|Z2,n| = O
⎛

⎝ 1√
n

n∑

i=1

i∑

j=1

[
jζ

iζ

∣
∣
∣
∣

1

Mj
− 1

pj

∣
∣
∣
∣
∣
∣Ri,j

∣
∣
]

⎞

⎠ . (30)
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As we see in (6) and (26), Ri,j can be written as

Ri,j = ζ
∫ i

j

x−1dx−2
i∑

k=j

2− p
Mk + 1

+2
i∑

k=j

η̄k

Mk + 1
+O

⎛

⎝
i∑

k=j

(
2− ηk
Mk + 1

)2
⎞

⎠ =

ζ

⎡

⎣
∫ i

j

1

x
dx −

i∑

k=j

1

k

⎤

⎦+
i∑

k=j

(
ζ

k
− 2(2 − p)
Mk + 1

)
+2

i∑

k=j

[
η̄k

Mk + 1
− η̄k

p(k − 1)+ 3

]
+

2
i∑

k=j

η̄k

p(k − 1)+ 3
+O

⎛

⎝
i∑

k=j

(
2− ηk
Mk + 1

)2
⎞

⎠ := R(1)i,j + · · · + R(5)i,j . (31)

One readily checks by elementary deterministic estimation that for all i ≥ j ≥ 1,
|R(1)i,j | can be bounded above by 1/j .

Let now 0 < δ < 1/4 be fixed. The Law of Large Numbers and the Law of the
Iterated Logarithm, there a.s. exists j0 ∈ N such that |R(2)i,j |, |R(3)i,j | and |R(5)i,j | are

bounded above by 1/j1/2−δ, for every i ≥ j ≥ j0.
To study |R(4)i,j |, we apply Hoeffding’s Inequality to obtain, for every i ≥ j ≥ 1,

P

⎛

⎝

∣∣
∣
∣
∣
∣

i∑

k=j

η̄k

p(k − 1)+ 3

∣∣
∣
∣
∣
∣
≥ 1

j1/2−δ

⎞

⎠

≤ exp

⎧
⎨

⎩
−2

/
⎛

⎝j1−2δ
i∑

k=j

1

(p(k − 1)+ 3)2

⎞

⎠

⎫
⎬

⎭
. (32)

We next apply a variation of Lévy’s Maximal Inequality, namely Proposition 1.1.2
in [3], combined with (32), to get that

P

⎛

⎝max
i≥j

∣
∣∣
∣
∣
∣

i∑

k=j

η̄k

p(k − 1)+ 3

∣
∣∣
∣
∣
∣
≥ 3

j1/2−δ

⎞

⎠

= lim
n→∞P

⎛

⎝ max
j≤i≤n

∣
∣∣
∣
∣
∣

i∑

k=j

η̄k

p(k − 1)+ 3

∣
∣∣
∣
∣
∣
≥ 3

j1/2−δ

⎞

⎠

≤ 3 lim
n→∞ max

j≤i≤nP

⎛

⎝

∣
∣∣
∣
∣
∣

i∑

k=j

η̄k

p(k − 1)+ 3

∣
∣∣
∣
∣
∣
≥ 1

j1/2−δ

⎞

⎠

≤ 3 exp

⎧
⎨

⎩
−2

/ ⎛

⎝j1−2δ
∞∑

k=j

1

(p(k − 1)+ 3)2

⎞

⎠

⎫
⎬

⎭
. (33)
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Since the latter term is summable, we conclude that almost surely exists j0 ∈ N

such that |R(4)i,j | ≤ 3/j1/2−δ, for every i ≥ j ≥ j0. Collecting all the bounds, we
find that a.s.

|Ri,j | ≤ |R(1)i,j | + · · · + |R(5)i,j | < 3/j1/2−δ (34)

for every i ≥ j sufficiently large. Recalling that Mj = 2 + ∑j−1
l=1 ηl , we have, as

consequence of the Law of the Iterated Logarithm and the Law of Large Numbers,
that |1/Mj − 1/(pj)| = o(1/j3/2−δ), and the result follows from (30). ��

It follows from (33) that Ri,j is uniformly bounded in i, j by a proper random
variable. We may thus write

Z3,n = 2Fμ2

√
n

n∑

i=1

i∑

j=1

[
1

pj

(
eYi,j − j

ζ

iζ

)]
= 2Fμ2

p
√
n

n∑

i=1

i∑

j=1

[
jζ−1

iζ

(
eRi,j − 1

)]

= 2Fμ2

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
Ri,j +O

⎛

⎝ 2Fμ2

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
R2
i,j

⎞

⎠ =: Z′3,n + Z̃3,n. (35)

Since, almost surely, for every i ≥ j sufficiently large, we have the bound
|R(1)i,j | + |R(5)i,j | ≤ 1/j2/3, it follows that

2Fμ2

p
√
n

n∑

i=1

i∑

j=1

[
jζ−1

iζ

(
R
(1)
i,j + R(5)i,j

)]
= o(1).

Considering only the term R(2)i,j of Ri,j in (31), its contribution to Z′3,n in (35) is

2(2− p)2Fμ
2

p
√
n

n∑

i=1

i∑

j=1

⎡

⎣j
ζ−1

iζ

i∑

k=j

(
1

pk
− 1

Mk + 1

)
⎤

⎦ =

ζ
2Fμ2

√
n

n∑

i=1

i∑

k=1

⎡

⎣
(

1

pk
− 1

Mk + 1

) k∑

j=1

jζ−1

iζ

⎤

⎦ =

2Fμ2

√
n

n∑

i=1

i∑

k=1

[(
1

pk
− 1

Mk

)
kζ

iζ

]
+ o(1) = −Z1,n + o(1), (36)

where Z1,n is defined in (27). We may remark at this point that combining (36)
and (27) drops Z1,n out of the overall computation.
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Let us now estimate the contribution of R(3)i,j to Z′3,n in (35), recalling thatMk =
2+∑k−1

l=1 ηl and setting M̄k = −∑k
l=1 η̄l :

4Fμ2

p
√
n

n∑

i=1

i∑

j=1

⎡

⎣j
ζ−1

iζ

i∑

k=j

(
η̄k

Mk + 1
− η̄k

p(k − 1)+ 3

)
⎤

⎦ =

4Fμ2

p
√
n

n∑

i=1

i∑

j=1

⎡

⎣j
ζ−1

iζ

i∑

k=j

η̄kM̄k−1

(Mk + 1)(p(k − 1)+ 3)

⎤

⎦ =

4Fμ2

p
√
n

n∑

i=1

i∑

j=1

⎡

⎣j
ζ−1

iζ

i∑

k=j

η̄kM̄k−1

(p(k − 1)+ 3)2

⎤

⎦+

4Fμ2

p
√
n

n∑

i=1

i∑

j=1

⎡

⎣j
ζ−1

iζ

i∑

k=j

(
η̄kM̄k−1

p(k − 1)+ 3

(
1

Mk + 1
− 1

p(k − 1)+ 3

))
⎤

⎦

=: Z5,n + Z6,n. (37)

Let us fix 0 < α < 1/2; the Law of the Iterated Logarithm and the Law of Large
Numbers give us that

∣
∣
∣
∣
η̄kM̄k−1

p(k − 1)+ 3

(
1

Mk + 1
− 1

p(k − 1)+ 3

)∣
∣
∣
∣ = o

(
1

k2−α

)
.

Since 0 < α < 1/2, it follows that Z6,n = o(1).
We will study the asymptotic behavior of Z5,n in Lemma 9.
We now estimate the contribution of R(3)i,j to Z′3,n in (35):

4Fμ2

p
√
n

n∑

i=1

i−1∑

j=1

⎡

⎣j
ζ−1

iζ

i−1∑

k=j

η̄k

k

⎤

⎦ = 4Fμ2

p
√
n

n∑

i=1

i−1∑

k=1

⎡

⎣ η̄k
k

k∑

j=1

jζ−1

iζ

⎤

⎦

= 4Fμ2

ζp
√
n

n∑

i=1

i−1∑

k=1

kζ−1

iζ
η̄k + o(1) =: Z4,n + o(1). (38)

By a routine verification of the conditions of the Lindeberg-Feller CLT we get the
following result.
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Lemma 5 As n→∞

Z4,n = 4Fμ2

ζp
√
n

n∑

i=1

i−1∑

k=1

kζ−1

iζ
η̄k -⇒ N (0, σ 2

z ),

where σz = 4Fμ2
√

1−p
pζ 3 .

Let us now estimate Z̃3,n in (35). From (34) it readily follows that

2Fμ2

p
√
n

n∑

i=1

i∑

j=1

jζ−1

iζ
R2
i,j = o(1),

and thus Z̃3,n = o(1).
So far we have argued that

1√
n

n∑

i=1

[
ξi+1(V̄

2
i − V 2

L)
]
= (
W3,n + Z4,n

)+ (
V1,n + V2,n +W4,n + Z5,n

)+ o(1)

=: Gn +Hn + o(1), (39)

where W3,n,W4,n, Z4,n, V1,n, V2,n and Z5,n are defined, respectively, in (25), (38),
(23) and (37). By the independence ofW3,n and Z4,n, we have by Lemmas 3 and 5
that Gn -⇒ N (0, σ̃ 2

q ), where σ̃ 2
q = σ 2

w + σ 2
z . To establish (20), it is then enough

to show that Hn = o(1), which we do in the following lemmas, one for each of the
constituents of Hn.

Lemma 6 Assume Var(ξ1) = σ 2 <∞. Then V1,n = o(1).
Proof First fix δ > 0. Given ε > 0, Lemma 1 states that exists m ∈ N such that
P(Acm,ε) < ε/2. Recall the definition of Xi,j in (4), and that {Xi,j , i ≥ j ≥ 1} and
{ξn}n∈N are independent.

P

⎛

⎝

∣∣
∣
∣
∣
∣

1√
n

n∑

i=1

i∑

j=1

ξ̄i+1ξ̄jXi,j

∣∣
∣
∣
∣
∣
> δ

⎞

⎠

≤ P

⎛

⎝

∣∣
∣
∣
∣
∣

1√
n

n∑

i=1

i∑

j=1

ξ̄i+1ξ̄jXi,j1Am,ε

∣∣
∣
∣
∣
∣
> δ

⎞

⎠+ ε
2
. (40)

It follows from definition of Am,ε in (5) that Xi,j1Am,ε ≤ (1 + ε)[jζ−1/(piζ )] for
all i ≥ j ≥ m. Using this and by Markov’s Inequality, we get that the first term on
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the right of (40) is bounded above by

1

δ2n

n∑

i=1

i∑

j=1

E(ξ̄i+1)
2
E(ξ̄j )

2
E(X2

i,j1Am,ε )

= (1+ ε)
2σ 4

p2δ2n

n∑

i=1

i∑

j=m

j2ζ−2

i2ζ
+ o(1) = o(1).

Since δ > 0 and ε > 0 are arbitrary, the combination of this inequality and (40)
yields the result. ��
Lemma 7 Assume Var(ξ1) = σ 2 <∞. Then V2,n = o(1).
Proof Arguing similarly as in the Proof of Lemma 6, given δ > 0 and ε > 0, we
have that m large enough

P

⎛

⎝

∣
∣
∣
∣
∣∣

1√
n

n∑

i=1

⎡

⎣ξ̄i+1

i∑

j=1

(
Xi,j − j

ζ−1

piζ

)
⎤

⎦

∣
∣
∣
∣
∣∣
> δ

⎞

⎠ ≤

P

⎛

⎝

∣
∣
∣
∣
∣∣

1√
n

n∑

i=1

⎡

⎣ξ̄i+1

i∑

j=1

(
Xi,j − j

ζ−1

piζ

)
1Am,ε

⎤

⎦

∣
∣
∣
∣
∣∣
> δ

⎞

⎠+ ε
2

(41)

and since |Xi,j (ω)− jζ−1/(piζ )|1Am,ε ≤ (εjζ−1)/(piζ ) for all i ≥ j ≥ m, we get
that the first term on the right of (41) is bounded above by

1

δ2n

n∑

i=1

⎡

⎢
⎣E(ξ̄i+1)

2
E

⎛

⎝
i∑

j=1

(
Xi,j (ω)− j

ζ−1

piζ

)
1Am,ε

⎞

⎠

2
⎤

⎥
⎦

≤ σ 2

δ2n

n∑

i=1

E

⎡

⎣
i∑

j=1

∣
∣
∣
∣Xi,j (ω)−

jζ−1

piζ

∣
∣
∣
∣ 1Am,ε

⎤

⎦

2

≤ ε2 σ
2

δ2n

n∑

i=1

⎛

⎝
i∑

j=m

jζ−1

iζ

⎞

⎠

2

+ o(1) ≤ ε
2
,

as soon as n is large enough, and the result follows upon substitution in (41), since
δ and ε are arbitrary. ��
Lemma 8 Assume Var(ξ1) = σ 2 <∞. ThenW4,n = o(1).
Proof Similar to the Proof of Lemma 7. ��
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Lemma 9 Assume Var(ξ1) = σ 2 <∞. Then Z5,n = o(1).
Proof Changing the order of summation, we find that Z5,n equals constant times

1√
n

n∑

k=1

Lk,nη̄kM̄k−1,

where Lk,n = 1
k2

(∑k
j=1 j

ζ−1
) (∑n

i=k 1
iζ

)
, which is bounded above by constant

times 1/k uniformly in j and n. Now by Markov:

P
(∣
∣Z5,n

∣
∣ ≥ δ) ≤ const

δ2n

n∑

k=1

1

k2E(M̄
2
k−1) ≤

const

δ2

1

n

n∑

k=1

1

k
= o(1),

and we are done. ��
We still owe a proof for Lemma 2.

Proof of Lemma 2 Since V̄ 2
i − V 2

L = (V̄i − VL)(V̄i + VL) and almost surely V̄i
converges to VL, to prove the first claim is enough to show that (V̄ 2

i − V 2
L) =

o(1/i1/2−ε). We write

V̄ 2
i − V 2

L = 2F
i∑

j=1

[
ξjXi,j

]− 2Fμ

p

∫ 1

0
xζ−1dx.

= 2F
i∑

j=1

[
ξjXi,j − μj

ζ−1

piζ

]
+ 2Fμ

p

⎡

⎣1

i

i∑

j=1

(
j

i

)ζ−1

−
∫ 1

0
xζ−1dx

⎤

⎦ .

The second term on the right-hand side of this equation is an O(1/i). We break
down the first term as follows

2F
i∑

j=1

ξ̄j
j ζ−1

piζ
+ 2F

i∑

j=1

ξ̄j

(
Xi,j − j

ζ−1

piζ

)
+ 2Fμ

i∑

j=1

(
Xi,j − jζ

piζ

)
. (42)

Setting S̄0 = 0 and S̄k := ∑k
l=1 ξ̄k , k ∈ N, we write the first term on the right of (42)

as

i∑

j=1

[
(S̄j − S̄j−1)

j ζ−1

piζ

]
=
i−1∑

j=1

[
S̄j

(
jζ−1

piζ
− (j + 1)ζ−1

piζ

)]
+ S̄i
pi

= o(1/i1/2−ε),

where the last equality follows by the Law of the Iterated Logarithm.
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Analogously, we write the second term on the right of (42) as

i−1∑

j=1

[
S̄j

(
Xi,j −Xi,j+1

)]+
i−1∑

j=1

[
S̄j

(
(j + 1)ζ−1

piζ
− j

ζ−1

piζ

)]
+ S̄i

(
Xi,i − 1

ip

)
.

(43)

Recalling (4), one readily checks that that |Xi,j−Xi,j+1| = O
(|Xi,j+1|/(Mj + 1)

)
.

Given ε > 0, by Lemma 1 we a.s. find an m ∈ N such that |Xi,j+1| ≤ (1+ c)(j +
1)ζ−1/(piζ ) for every i ≥ j ≥ m. Therefore, again by the Law of Large Numbers
and the Law of the Iterated Logarithm, the three terms on (43) are o(1/i1/2−ε).

To deal with the third and last term on the right of (42), we may proceed similarly
as in the analysis ofW2,n above—recall (24), (27), (29) and (35). We write

i∑

j=1

[
Xi,j − jζ

piζ

]
=

i∑

j=1

[
jζ

iζ

(
1

Mj
− 1

pj

)]

+
i∑

j=1

[
jζ

iζ

(
1

Mj
− 1

pj

) (
Ri,j +O(R2

i,j )
)]
+

i∑

j=1

[
jζ−1

piζ

(
Ri,j +O(R2

i,j )
)]
.

(44)

In the Proof of Lemma 4, we have shown that almost surely, for i ≥ j sufficiently
large, |Ri,j | ≤ 1/j1/2−ε, and we also argued that

(
1/Mj − 1/(pj)

) = o(1/j3/2−ε).
Using this estimates, we readly get that each of the terms on the right hand side
of (44) is an o(1/i1/2−ε), for 0 < ε < 1/4, and thus, so is the left hand side of (44),
and we are done with the first claim of the lemma.

To argue the last claim of the lemma, note that

1√
n

n∑

i=1

[
ξi

(
V̄i−1 − VL

)2
]
= o

(
1√
n

n∑

i=1

ξi

i1−2ε

)

= o
(

1√
n

n∑

i=1

μ

i1−2ε

)

+ o
(

1√
n

n∑

i=1

ξ̄i

i1−2ε

)

= o(1/n1/2−2ε),

where the last equality holds by the hypothesis that ξ1 has finite second moment and
the Two Series Theorem, and we are done. ��

Proceeding analogously as in the Proof of Proposition 1, similarly breaking down
the relevant quantities, we may also obtain a central limit theorem for the velocity
of the t.p. on the modified process (at collision times), namely
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Proposition 2 Let Var(ξ1) = σ 2 <∞. Then, as n→∞,

√
n

(
V̄n − VL

) -⇒ N (0, σ̂ 2
v ),

where σ̂v > 0.

4 Central Limit Theorem for the Original Process

In this section, we prove our main results.

4.1 Proof of Theorem 2

For each, i ∈ N, let ti be the instant when the t.p. collides for the first time with
the initial i−th particle in the line; more precisely, ti is such that Q(ti) = Si .

It is enough to show a CLT along (ti), and for that it suffices to establish a
version of Proposition 1 with barred quantities replaced by respective unbarred
quantities, which amounts to replacing t̄n by tn in (12), namely showing that
(Sn − tnVL)/√n -⇒ N (0, σ̂ 2

q ). Theorem 2 readily follows with σ 2
q = VL

μ
σ̂ 2
q .

We use Proposition 1 and a comparison between t̄i and ti to conclude our proof.
Due to Proposition 1, it is enough to argue that

tn − t̄n√
n

= o(1). (45)

Let s1, s2, . . . be the instants when the t.p. recollides with a moving elastic
particle, whose velocities will be, respectively, denoted by v1, v2, . . .. As follows
from the remarks in the Introduction on the fact that the dynamics is a.s. well
defined—see paragraph right below (2)—these sequences are well defined, and
s1, s2, . . . has no limit points. We also recall that, for each l ∈ N, V (sl) and
V (s+l ) denote the velocities of the t.p. immediately before and at the l-th recollision,
respectively.

For each j ∈ N we define

Δ(j) :=
∑

sl∈[tj−1,tj ]

[
V 2(sl)− V 2(s+l )

]
and δ(j) :=

∑

sl∈[tj−1,tj ]
[V (sl)− vl] .

(46)

As follows from what has been pointed out in the above paragraph, these sums are
a.s. well defined and consist of finitely many terms.
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Let v : [0,∞) −→ R denote the function that associates the position x to the
velocity of the t.p. at x, that is, v(x) = V (Q−1(x)). We analogously define v̄ :
[0,∞) −→ R for the modified process. We have that

tn =
∫ Sn

0

1

v(x)
dx and t̄n =

∫ Sn

0

1

v̄(x)
dx.

In this way, (45) becomes

∫ Sn

0

(
1

v(x)
− 1

v̄(x)

)
dx = o(n1/2),

and due to convergence of v(x) and v̄(x), it is enough to argue that

∫ Sn

0

(
v̄2(x)− v2(x)

)
dx = o(n1/2).

Torricelli’s equation, (1), (2) and (46), give us that, for each i ∈ N, at position
x ∈ [Si−1, Si),

v̄2(x)−v2(x) =
i−1∑

j=1

⎡

⎣Δ(j)
i−1∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
⎤

⎦+
∑

sl∈[Si−1,x)

(
V 2(sl)− V 2(s+l )

)
.

Therefore, we have the following upper bound

∫ Sn

0

(
v̄2(x)−v2(x)

)
dx ≤

n∑

i=1

⎡

⎣ξi
i−1∑

j=1

⎛

⎝Δ(j)
i−1∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
⎞

⎠

⎤

⎦+
n∑

i=1

ξiΔ(i).

Turning back to (2), we have that,

V (sj )− V (s+j )=V (sj )−
(
M(sj )− 1

M(sj )+ 1
V (sj )+ 2

M(sj )+ 1
vj

)
=2(V (sj )− vj )

M(sj )+ 1
.

And therefore, again by the fact that V (·) is convergent, recalling (46), we have that

Δ(j) = O
(
δ(j)

Mj + 1

)
;
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moreover, recalling (4), we have that

n∑

i=1

⎡

⎣ξi+1

i∑

j=1

⎛

⎝Δ(j)
i∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
⎞

⎠

⎤

⎦+
n∑

i=1

ξi+1Δ(i + 1) =

O

⎛

⎝
n∑

i=1

⎡

⎣ξi+1

i∑

j=1

δ(j)Xi,j

⎤

⎦+
n∑

i=1

ξi+1δ(i + 1)

i + 1

⎞

⎠ .

By Lemma 1,

n∑

i=1

⎡

⎣ξi+1

i∑

j=1

δ(j)Xi,j

⎤

⎦ =
n∑

j=1

⎡

⎣δ(j)
n∑

i=j
ξi+1Xi,j

⎤

⎦ = O
⎛

⎝
n∑

j=1

⎡

⎣δ(j)jζ−1
n∑

i=j

ξi+1

iζ

⎤

⎦

⎞

⎠ .

Since Eξ2 < ∞, Borel-Cantelli lemma readily implies that for every ε > 0,
P(ξn+1 > ε

√
n i.o.) = 0. Thus,

n∑

j=1

⎡

⎣δ(j)j ζ−1
n∑

i=j

ξi+1

iζ

⎤

⎦ = O
⎛

⎝
n∑

j=1

⎡

⎣δ(j)j ζ−1
n∑

i=j

ε
√
i

iζ

⎤

⎦

⎞

⎠ =

ε
√
nO

⎛

⎝
n∑

j=1

⎡

⎣δ(j)j ζ−1
n∑

i=j

1

iζ

⎤

⎦

⎞

⎠ = ε√nO
⎛

⎝
n∑

j=1

δ(j)

⎞

⎠ ,

and also

n∑

i=1

ξi+1δ(i + 1)

i + 1
= O

(
n∑

i=1

δ(i + 1)

)

.

By Lemma 10, we are done, since ε > 0 is arbitrary.

Lemma 10 Let δ(j) as defined in (46). Almost surely,

∞∑

j=1

δ(j) <∞. (47)

Proof This result is already contained more or less explicitly in [4], in the
argument to prove Theorem 1—see discussion on page 803 of [4]. For completeness
and simplicity, circularity notwithstanding, we present an argument relying on
Theorem 1 directly.
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There a.s. exists a time T0 such that there are no recollisions with standing
particles met by the t.p. after T0. This is because at large times, the velocity of the
t.p. is close enough to VL and its mass close enough to infinity, so that new collisions
with standing elastic particles will give them velocity roughly 2VL, and thus they
will be thence unreachable by the t.p. This means that we have only finitely many
particles that recollide with the t.p.

We may also conclude by an elementary reasoning using Theorem 1 that
if a particle collides infinitely often with the t.p., then its velocity may never
exceed VL. Let u1, u2, . . . denote the recollision times with such a particle, and
v(u1), v(u2), . . ., its velocity at such times, respectively. As we can deduce from (2),
v(ui+1) > V (ui); thus,

∞∑

i=1

[V (ui)− v(ui)] <
∞∑

i=1

[v(ui+1)− v(ui)] ≤ VL,

and (47) follows. ��

4.2 Proof of Theorem 3

By Proposition 2, and the convergences of both Vn and V̄n, and after similar
considerations as at the beginning of Sect. 4.1, we find that it is enough to prove
that

√
n

(
V̄ 2
n − V 2

n

)
= o(1) (48)

(so that in the end we get that Theorem 3 holds with σ 2
v = μ

VL
σ̂ 2
v ).

Recalling (4.1), we have that

V̄ 2
n − V 2

n = v̄2(Sn)− v2(Sn) =
n−1∑

j=1

⎡

⎣Δ(j)
i−1∏

k=j

(
Mk + (ηk − 1)

Mk + 1

)2
⎤

⎦+Δ(n).

Proceeding similarly as in the Proof of Theorem 2, we find that

√
n

(
V̄ 2
n − V 2

n

)
= O

⎛

⎝√n
n∑

j=1

[
δ(j)

j ζ−1

nζ

]
+ δ(n+ 1)√

n

⎞

⎠ .

By Lemma 10, given ε > 0, there almost surely exists j0 ∈ N such that∑
j≥j0 δ(j) ≤ ε/2. Thus,

√
n

n∑

j=1

[
δ(j)

j ζ−1

nζ

]
≤ 1

nζ−1/2

j0∑

j=1

δ(j)j ζ−1 +
∑

j>j0

δ(j) ≤ ε,
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for n sufficiently large. Lemma 10 implies that δ(n) = o(1). Since ε > 0 is
arbitrary, (48) follows.
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1 Introduction

Consider a d-dimensional random walk

St = (St [1], . . . , St [d]) = S0 +
t∑

j=1

ξj , t = 0, 1, 2, . . . , (1)

on the integer lattice Z
d , where ξj = (ξj [1], . . . , ξj [d]), j = 1, 2, . . . are i.i.d.

random vectors that do not depend on the initial value S0. The random variable

Lt (x) =
t∑

j=0

1{Sj = x}, x ∈ Z
d , (2)

counts the number of visits to (or local time at) state x by time t = 0, 1, 2, . . .. We
assume that, for each x ∈ Z

d , the number of possible/allowed visits to state x is
limited above by a counting numberH(x) ≥ 0. Let

T∗ = inf{t ≥ 0 : Lt (St ) > H(St )} ≤ ∞ (3)

be the first time when the number of visits to any state exceeds its upper limit. If
T∗ is finite, we assume that the random walk is “killed” at the time instant T∗ (or it
“dies”, or “freezes” at time T∗).

Thus, we consider a multidimensional integer-valued random walk in a changing
random environment, where initially each point x is characterized by a random
number H(x) of allowed visits to it. At any time t , the random walk jumps from
x = St to St+1 and changes the environment at point x by decreasing the number of
remaining allowed visits by 1. As a natural example, consider a model of a random
walk on atoms of a “harmonic crystal” (see, e.g., [8] and [3]). An electron jumps
from one atom to another, taking from a visited atom for the next jump a fixed
unit of energy, which cannot be recovered. Thus, if St is a position of the electron
at time t , then a unit of energy is sufficient for it to have a next jump to position
St+1 = St + ξt+1, which may be in any direction from St . We interpret the first
coordinate St [1] of St as its height and assume further that the height cannot increase
by more than one unit:

ξt [1] ≤ 1 a.s., t = 1, 2, . . . . (4)

When the electron arrives at an atom with insufficient energy level, it “freezes”
there. We may formulate two natural tasks. Firstly, to find the asymptotics, as n→
∞, of the probability of the event Bn that the electron reaches the level n before it
“freezes”, i.e.

Bn := {α(n) < T∗} (5)
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with α(n) being the hitting time of the level n:

α(n) := inf{t ≥ 0 : St [1] ≥ n} = inf{t ≥ 0 : St [1] = n}, (6)

where the latter equality follows from the skip-free property (4).
Secondly, given that the electron is still active by the time of hitting level n, a

question of interest is the asymptotic, as n increases, of the conditional distribution
of the electron’s sample path.

To clarify the presentation, we will use the low-case “star” in the probability
P∗(·) in order to underline the influence of the random environment. We omit the
“star” in P(·) if the environment is not involved.

In [3], a simple symmetric one-dimensional random walk on the integers (“one-
dimensional atoms”) has been considered under the assumptions that

P(ξ1 = 1) = 1/2 = P(ξ1 = −1), S0 = 0 and H(x) = L0 = const ≥ 2

for all x ∈ Z. The latter means that initially each atom has a fixed (the same for all)
amount of energy L0. The authors showed that

P∗(Bn) ∼ const · qn as n→∞, where 0 < q < 1.

Based on that, they proved (see Theorem 5 in [3]) convergence of the conditional
distributions:

P∗((S0, . . . , Sk) ∈ A | Bn)→ P((S0, . . . , Sk) ∈ A), (7)

for any k = 0, 1, 2, . . . and all A ⊂ Z
(k+1)×d , where Z

K×d denotes the space
of vectors x = (x1, . . . , xK) having d-dimensional vectors as their components.
Further, it was shown in [3] that the limiting sequence {Sk= Sk[1]} in (7) has a
regenerative structure (see Definition 3 below for details) and increases to infinity
with a linear speed, i.e.

Sn[1]/n→ a1 a.s. as n→∞, (8)

where 0 < a1 < 1/L0.
In our paper, we consider a multivariate random walk on the integer lattice with

random local constraints. We generalise the model of [3] in three directions: we
consider more general distributions of jumps, many dimensions, and random local
constraints. We develop the approach introduced in [3], with a number of essential
differences. The main difference is that we first focus on the analysis of the structure
of the initial random walk {St }. In particular, we introduce a notion of n-separating
levels which often exist in our model. The analysis of properties of such random
levels allows us to introduce a sequence of random vectors {St } with specially
chosen joint distribution. We call {St } the core random sequence, or the core random
process.
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There are several advantages of studying the core process. We show that its
structure (a) does not involve any counting constraints, (b) does not involve an
environment, (c) operates with proper distributions only, and (d) the core process has
a (strongly) regenerative structure with an infinite sequence of random regenerative
levels {νi} (see Definition 3 for details).

We obtain a number of interesting representations for the conditional distribution
of the random walk {St } in random environment {H(x)}, linked to the distribution of
the core sequence {St }. These representations allow us to obtain a number of novel
results. For example, we show that

P∗(Bn) = ψ0q
nP(Bn), where Bn := ∪nm=0{νm = n}, (9)

for well-defined positive constants ψ0 and 0 < q ≤ 1, and that

P∗((S0, . . . , Sk) ∈ A | Bn) = P((S0, . . . , Sk) ∈ A | Bn), (10)

for any n ≥ k = 0, 1, 2, . . . and all A ∈ Z
(k+1)×d . Here event Bn occurs iff n

coincides with one of the regenerative levels of the core random walk.
Finally, we obtain the desired limiting result (7) as a simple corollary of (10),

which is a generalisation of Theorem 5 in [3].
Our analysis is based on renewal theory and other direct probabilistic methods

that are proven to be productive for studies of various types of random walks and,
in particular, for random walks in random environment, see e.g. E. Bolthauzen and
A.-S. Sznitman [7] and many references therein, including the pioneering papers
[11] and [13].

We have to mention that a number of known results for conditioned random
walks that do not have local-time constraints (see, e.g. [6] and [1]) may be
represented, in some particular cases, as corollaries of our results, see Remark 2
in Sect. 7 for details.

There is a number of publications on random walks with constraints on local
times. We have already mentioned papers [3] and [8]. The paper [3] was, in fact, the
initial point of our studies, and we have made a number of preliminary observations
in [16] where we considered a reasonable one-dimensional generalisation of the
discrete-time model in [3] with non-random boundary constraints. Papers [4] and
[12] deal with a different problem: they consider a random walk on the line (see
also [2] for a generalisation onto a class of Markov processes), assuming that the
initial energy level H(x) of a point x > 0 is a deterministic function of x that
increases to infinity with x. These papers analyse recurrence/transience properties
of the random walk that depend on the shape of the functionH(x). A generalisation
of the model onto random trees may be found in [5]. Papers [10, 15] and [14] are
more distant, they discuss unconditioned regenerative phenomena that depend on an
infinite future, in a number of situations.

To conclude, in the present paper we provide a unified treatment of the
conditional regenerative phenomenon in a class of multivariate random walks on
the integers with changing random constraints on the numbers of visits.
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The paper is organized as follows. In Sect. 2, we introduce the main assumptions
on the model and the notions of separating and regenerative levels. In Sect. 3, we
first introduce and discuss the structure of the model connected with the existence
of random n-separating levels. After that we describe the core random sequence and
its structure, and, finally, formulate the Representation Theorem and limiting results
as its Corollaries. Then Sects. 4–6 are devoted to the proofs. We have to note that,
in the proof of the main auxiliary result, the Key Theorem, we follow the approach
developed in [3]. We conclude with Sect. 7 containing a few remarks.

2 Main Assumptions and Definitions

In this section, we present our main assumptions (A1)–(A4) and further technical
assumptions, and introduce the so-called separating and regenerative levels that play
the key role in our studies.

2.1 Basic Assumptions

For n ∈ Z, introduce a half-space of Zd

Z
d
n+ := {x = (x[1], x[2], . . . , x[d]) ∈ Z

d : x[1] ≥ n}. (11)

The following assumptions (A1)–(A3), are supposed to hold throughout the
paper.

(A1) The increments {ξt : t ≥ 1} of the random walk {St } from (1) are i.i.d.
random vectors taking values in Z

d , and their first components have a skip-
free distribution:

1∑

k=−∞
P(ξ1[1] = k) = 1 and P(ξ1[1] = 1) > 0.

(A2) The random constraints {H(x), x ∈ Z
d } are non-negative integer-valued

random variables which may take the infinite value: for any x ∈ Z
d ,

∞∑

l=0

P(H(x) = l)+ P(H(x) = ∞) = 1. (12)

Moreover, the next three families of random variables

{S0; H(x), x /∈ Z
d
0+}, {ξi, i ≥ 1} and {H(x), x ∈ Z

d
0+}
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are mutually independent, S0[1] ≤ 0 a.s. and P∗(B0) > 0.
(A3) The family {H(x) : x ∈ Z

d
0+} consists of i.i.d. random variables with

P(1 ≤ H(0) ≤ ∞) = 1.

We may interpret Assumption (A3) as follows: at time t = 0 the environment
in Z

d
0+ is stochastically homogeneous, so is “virgin” (see, also, Remark 1 in Sect. 7).

Then condition P∗(B0) > 0 in Assumption (A2) may be read as “the random
walk St arrives at the virgin domain of the random environment with a positive
probability.”

Assumptions (A1)–(A3) yield that, for any n ≥ 0,

P∗(Bn) ≥ P∗(α(0) < T∗, ξα(0)+j [1] = 1, H(Sα(0)+j ) > 0, j = 1, . . . , n)

= P∗(B0)Pn(ξ1[1] = 1) > 0, (13)

where the events Bn were introduced in (5). Thus, for all n ≥ 0 the event Bn occurs
with positive probability and hence, as we can see later, all conditional probabilities
in all our main assertions are well defined.

2.2 Technical Assumption and Comments

We have certain flexibility in the initial value S0 and in the random environment
{H(x)} outside the set Zd0+. Recall that we use notation P∗(·) for probabilities of
events where the environment is involved. We will also use special notation, P0 and
P+, for two particular environments when S0 = 0. For any event B, let

P0(B) := P∗(B | S0 = 0, H(y) = 0 ∀y /∈ Z
d
0+}, (14)

P+(B) := P∗(B | S0 = 0, H(y) = ∞ ∀y /∈ Z
d
0+}. (15)

In (14), it is prohibited for the random walk to visit any states y /∈ Z
d
0+, and (15)

corresponds to the case where there is no restrictions on the number of visits to any
of the states y /∈ Z

d
0+. Clearly,

P+(B0) = P0(B0) = 1 and P+(Bn) ≥ P0(Bn) ≥ Pn(ξ1[1] = 1) > 0 ∀n ≥ 0.

(16)

For the classical random walk (no environment), introduce two stopping times:

β0 := inf{t > 0 : ξ1[1]+· · ·+ξt [1] = 0} ≤ β0,0 := inf{t > 0 : ξ1+· · ·+ξt = 0} ≤ ∞.
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We will need the following assumption:

(A4) If P(β0 <∞) = 1 then P(β0,0 <∞) > 0. And

if P(β0 = β0,0 <∞) = 1, then EH(0) <∞.

It is clear that assumption (A4) is fulfilled in the following cases:

(a) Eξ1[1] = 0 (including the cases Eξ1[1] > 0 and −∞ ≤ Eξ1[1] < 0);
(b) Eξ1[1] = 0 and 0 < P(β0,0 <∞) < 1;
(c) Eξ1[1] = 0, P(β0,0 <∞) = 1 and EH(0) <∞.

Thus, our results do not work only in the next two cases:

(d) Eξ1[1] = 0 and P(β0,0 <∞) = 0;
(e) Eξ1[1] = 0, P(β0,0 <∞) = 1, and EH(0) = ∞.

Note that the case (d) is degenerate in the spirit of our paper, since it corresponds
to the situation where the random walk visits each state at most once.

Note also that the cases (c) and (e) relate to essentially one- or two-dimensional
random walks only.

2.3 Separating and Regenerative Levels

For a finite or infinite sequence y = (y0, y1, y2, . . .) of Zd -valued vectors and for
any n ≥ 0, we let

α(n|y) := inf{t ≥ 0 : yt [1] ≥ n} ≤ ∞, (17)

where yt [1] is the first coordinate of yt , for t = 0, 1, . . . . Here and throughout the
paper, we follow the standard conventions that

inf∅ = ∞, sup∅ = −∞ and
∑

k∈∅
ak = 0. (18)

Definition 1 A number k ≥ 0 is a “separating level” of the sequence y if

α(k|y) <∞ and max
0≤t<α(k|y)

yt [1] < k = yα(k|y)[1] ≤ inf
t>α(k|y) yt [1].

Definition 2 A number k ∈ {0, 1, . . . , n} is an “n-separating level” of the sequence
y if

sup
0≤t<α(k|y)

yt [1] < k = yα(k|y)[1] ≤ inf
α(k|y)<t<α(n|y) yt [1] and α(n|y) <∞.
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For n ≥ 0, let η(n|y)+1 counts the number of n-separating levels; and let '(n|y)
be the supremum of all k < n such that k is an n-separating level.

These levels play an important role in our analysis. One can see that if k is an
n-separating level, then it may not be an N-separating level for N > n and, hence,
it may be not a separating level. For example, k = n is always the last n-separating
level if α(n|y) is finite, but it is not an (n+ 1)-separating level if yα(n)+1[1] < 0.

In what follows, a “block” is any collection of random variables that may contain
a random number of these variables.

Definition 3 A random sequence S = (S0, S1, . . . ) is strongly regenerative with
regenerative levels ν0 < ν1 < . . . < νn < . . ., if {νi} is an infinite sequence of
proper integer-valued random variables such that, firstly, the following “blocks” of
random variables

{νi−νi−1, α(νi)−α(νi−1), (Sα(νi−1)+t−Sα(νi−1), t = 1, 2, . . . , α(νi)−α(νi−1))},

for i ≥ 1, are i.i.d. and do not depend on the initial “block” {ν0, α(ν0), (St : t ≤
α(ν0))}, and, secondly,

inf
t≥α(νi )

St [1] = Sα(νi )[1] = νi > sup
0≤t<α(νi)

St [1], i = 0, 1, 2, . . . .

We then say that α(νi) is the regenerative time that corresponds to regenerative
level νi . One can view n-separating levels as “potential candidates” for regenerative
levels and talk about “potential regeneration”.

3 Main Results

In Sect. 3.1 we introduce a renewal equation for the random walk with local
constraints and introduce its splitting into random blocks. In Sect. 3.2 we present
the Key Theorem and introduce a sequence of independent blocks related to the
core sequence. Based on that, we provide a formal definition of the core process in
Sect. 3.3 . After that we present our main results in Sects. 3.4 and 3.5.

3.1 On the Structure of the Random Walk

Note that earlier notation (6) matches (17) as follows: α(n) = α(n|S), for S =
(S0, S1, . . . ). For each n ≥ 0, we let

η∗(n) :=
{
η(n|S) if α(n) < T∗(n),
−1, otherwise,

and '∗(n) :=
{
'(n|S), if η∗(n) ≥ 1,

−∞, if η∗(n) < 1.
(19)
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So, η∗(n) + 1 counts the number of n-separating levels in the case where the
event Bn = {η∗(n) ≥ 0} occurs. Note that if the event Bn occurs, then k = n is the
largest n-separating level, and k = '∗(n) is the second largest n-separating level, if
it exists, i.e. when η∗(n) ≥ 1. Clearly,

{'∗(n) > −∞} = {0 ≤ '∗(n) ≤ n− 1} = {η∗(n) ≥ 1} ⊂ {η∗(n) ≥ 0} = Bn.
(20)

Further, P0(η∗(n) = 0) = 1 because, under the “0-environment”, level 0 is n-
separating for any n such that α(n) < T∗.

The random walk under consideration has the following renewal-type Property.

Property 1 Under the assumptions (A1)–(A3), for any n > k ≥ 0,

P∗(Bn, '∗(n) = k) = P∗(Bk) · P0('∗(n− k) = 0),

and then the following renewal equation holds:

P∗(Bn) = P∗(η∗(n) = 0)+
n−1∑

k=0

P∗(Bk) · P0('∗(n− k) = 0), n = 1, 2, . . . .

(21)
In particular,

P0(Bn) =
n−1∑

k=0

P0(Bk) · P0('∗(n− k) = 0), n = 1, 2, . . . . (22)

For n > 0 with η∗(n) ≥ 0, let

0 ≤ ν0(n) < . . . < νη∗(n)(n) = n

be the sequence of all n-separating levels (where ν0(n) = νη∗(n)(n) = n if η∗(n) =
0). In the case η∗(n) ≥ 1, we may find all n-separating levels by the backward
recursion:

'∗(νi(n)) = νi−1(n), i = η∗(n), η∗(n)− 1, . . . , 1.

For n > 0 with η∗(n) ≥ i ≥ 1, we let

λi(n) := νi(n)− νi−1(n), Ti(n) := α(νi(n)), τi(n) := Ti(n)− Ti−1(n).

We need more notation. Introduce the random vectors

SK = (S0, . . . , SK), SK,N = (SK,K+1, . . . , SK,N ), N > K ≥ 0, (23)
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where

SK,K+t := SK+t − SK =
t∑

j=1

ξK+j , t = 0, 1, . . . .

On the event Bn = {η∗(n) ≥ 0}, introduce a random block

(ν0(n), T0(n), ST0(n)). (24)

This is the initial block of our random walk. Further, if η∗(n) ≥ 1, then we may
introduce consecutive blocks of random variables:

(λi(n), τi(n), STi−1(n),Ti(n)), i = 1, 2, . . . , η∗(n), (25)

where λi(n) is the height of the i-th block and τi(n) its duration. Property 1 shows
that there is a certain conditional independence of each block in (25) from the
previous blocks. We present these properties in full in Theorem 2 below. After that
a representation for the joint distributions of random blocks from (24) and (25) will
be given in Corollary 2.

3.2 Key Theorem (the Main Auxiliary Result)

The following technical result plays a central role in our studies. It will be proved in
Sect. 5.

Theorem 1 Under the assumptions (A1)–(A4), there exists a number q ∈ (0, 1]
such that,

∞∑

k=1

P0('∗(k) = 0)/qk = 1, (26)

1 ≤ μ :=
∞∑

k=1

kP0('∗(k) = 0)/qk <∞, (27)

0 < ψ0 :=
∞∑

m=0

P∗(η∗(m) = 0)/qm <∞. (28)

Properties (26)–(28) allow us to introduce an infinite sequence

(ν0, T 0, S̃T 0
) and (λi , τ i, Ỹi,τ i ), i = 1, 2, . . . , (29)
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of mutually independent random blocks with special distributions, where

S̃T 0
= (S0, . . . , ST 0

) and Ỹi,τ i = (Y i,1, . . . , Y i,τ i ) (30)

are random vectors of random lengths. We determine their distributions step by step.
First, we let

P(ν0 = k) = P∗(η∗(k) = 0)/(ψ0q
k), k = 0, 1, . . . , (31)

P(λi = l) = P0('∗(l) = 0)/ql, l = 1, 2, . . . . (32)

Thus, we have determined the distributions of random vectors ν0 and λi as Cramér-
type transforms of the characteristics of the initial random walk {St }. By Theorem 1,
the random vectors ν0 and λi have proper distributions and

1 ≤ μ = Eλ1 <∞, P(λ1 = 1) = P0('∗(1) = 0)/q ≥ P(ξ1[1] = 1)/q > 0.
(33)

We determine next the distributions of other components of the vectors in (29).
We let

P(T 0 = K, S̃K = yK |ν0 = k) := P∗(α(k) = K < T∗,SK = yK |η∗(k) = 0),
(34)

for any K ≥ k + 1 ≥ 1 and yK ∈ Z
(K+1)×d ; and then

P(τ i = L, Ỹi,L = xL|λi = l) := P0(α(l) = L < T∗,S0,L = xL|'∗(l) = 0),
(35)

for any L ≥ l ≥ 1 and xL ∈ Z
L×d .

Thus, we have introduced all joint distributions of random elements from (29).
All these distributions are proper, since they are determined by proper distributions
from (31), (32), (34) and (35). By the construction, with probability 1

ν0 ≥ 0, T 0 ≥ 0, and τ i ≥ λi = Ỹi,τ i [1] ≥ 1, for all i ≥ 1. (36)

Moreover, the random vectors {(λi, τ i , Ỹi,τ i ), i = 1, 2, . . .} are i.i.d.

3.3 Sample-Path Construction of the Core Random Sequence

Using mutually independent random blocks introduced in (29), we may define
random variables

νm = ν0 +
m∑

i=1

λi > νm−1, T m = T 0 +
m∑

i=1

τ i > T m−1, m = 1, 2, . . . .

(37)
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Now we introduce random vectors Sj for all j ≥ 0 using an induction argument.
For j ≤ T 0 they are given in (30). Suppose we have defined Sj for all j ≤ T i−1.
Then we let

ST i−1+j := ST i−1
+ Y i,j , j = 1, . . . , τ i = T i − T i−1. (38)

Thus, we have defined Sj for all j ≤ T i . Repeating this procedure for all i =
1, 2, . . . we define random vectors Sj for all j ≥ 0.

Similar to (23), we introduce vectors with multivariate components:

S̃N = (S0, . . . , SN), S̃K,N = (SK+1 − SK, . . . , SN − SK), N > K ≥ 0.
(39)

Consider now the random blocks

(ν0, T 0, S̃T 0
) and (λi , τ i, S̃T i−1,T i

), i = 1, 2, . . . , (40)

and note that, by (38) the i-th block in (40) coincides with the i-th block in (29).
Thus, all blocks in (40) are mutually independent and all of them, but the initial, are
i.i.d.

3.4 Representation Theorem

We are now ready to present our main results. The following statement summarises
the main structural properties of the core random sequence and provides an inverse
formulae for the distributions of the random walk in terms of the core process.

Let Zd∗ := ∪∞n=1Z
n×d . We consider Zd∗ as the state space for random sequences

of random lengths.

Theorem 2 Under the assumptions (A1)–(A4), for any set A ⊂ Z
d∗ and for each

n ≥ m ≥ 0,

P∗(α(n) < T∗, η∗(n) = m, (S0, . . . , Sα(n)) ∈ A ) (41)

= ψ0q
nP(ν(m) = n, (S0, . . . , Sα(n)) ∈ A ).

Thus, the distribution of the trajectory of the core random sequence has the same
support with the distribution of the trajectory of the initial random walk (any finite
sample path has positive probabilities to occur simultaneously for the core sequence
and for the random walk, however these probabilities may differ). In particular, for
all j = 1, 2, . . . the following inequalities hold with probability 1:

ξ j [1] ≤ 1 and Sj [1] ≤ j, where ξj = Sj − Sj−1. (42)
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Since Bn = {α(n) < T∗} = {0 ≤ η∗(n) ≤ n}, we have from (41) that, for any set
A ⊂ Z

(k+1)×d ,

P∗((S0, . . . , Sk) ∈ A, Bn) =
n∑

m=0

P∗((S0, . . . , Sk) ∈ A, η∗(n) = m) (43)

=
n∑

m=0

ψ0q
nP((S0, . . . , Sk) ∈ A, ν(m) = n) = ψ0q

nP((S0, . . . , Sk) ∈ A, Bn).

Now (9) follows from (43) with A = Z
(k+1)×d . Equating the ratio of the left-hand

sides of (43) and (9) to the ratio of the right-hand sides leads to (10). Repeating
these arguments with α(n) in place of k, we obtain that, for any set A ⊂ Z

d∗ and for
each n ≥ 0,

P∗((S0, . . . , Sα(n)) ∈ A |Bn) (44)

= P((S0, . . . , Sα(n)) ∈ A |Bn) ≤ P((S0, . . . , Sα(n)) ∈ A )

P(Bn)
.

Thus, we have proved

Corollary 1 Under the assumptions (A1)–(A4), relations (9), (10), (43) and (44)
hold.

Note that c := infn≥0 P(Bn) > 0 as it follows from the first convergence in (47)
below.

3.5 Limiting Results

Representation (43) allows us to obtain a number of limiting theorems using the
standard renewal arguments. First of all, we can see from (43) that

P(B(n) | ν0 = 0) = P(νm = n for some m ≥ 0 | ν0 = 0)

=
n∑

m=0

P(νi = n | ν0 = 0) = Vn := I{n = 0} +
n∑

m=1

P
(∑m

i=1
λi = n

)

is the renewal function of the undelayed renewal process with i.i.d. increments
{λi, i = 1, 2, . . . } satisfying (33).

Now consider the probabilities

Un := P(Ak ∩ Bn), where Ak := {(S0, . . . , Sk) ∈ A}, A ∈ Z
(k+1)×d .
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Note that Sj [1] ≤ k ≤ νk < νi for all 0 ≤ j ≤ k < i by (42) . Hence, the eventAk
does not depend on the random variables {λi = νi − νi−1 : i > k}. Then

Un,l := P
(
Bn |Ak, νk = l ≤ n

)

= P
(
n = νm =

∑m

i=1
λi for some m ≥ 0

∣
∣
∣Ak, l = νk =

∑k

i=1
λi

)

= P
(
n− l =

∑m

i=k+1
λi for some m ≥ k

)
= Vn−l .

Hence, by the total probability formula,

Un − P(Ak ∩ Bn, νk > n) =
n∑

l=k
P(Ak, νk = l) · Un,l =

n∑

l=k
P(Ak, νk = l)Vn−l .

Thus, the differences Un − P(Ak, Bn, νk > n) satisfy the renewal equation, where
P(νk > n)→ 0 as n→∞. So, by (33) and the local renewal theorem, as n→∞,

Vn→ 1/μ and Un →
∞∑

l=k
P(Ak, νk = l)/μ = P(Ak)/μ. (45)

Substituting (45) into (43) and (9) leads to the following statement

P∗((S0, . . . , Sk) ∈ A, Bn)/qn→ ψ0P((S0, . . . , Sk) ∈ A)/μ, (46)

P(Bn)→ 1/μ and P∗(Bn)/qn→ ψ0/μ. (47)

In particular, (7) takes place. Next, using (36) and (37) we obtain from the Strong
Law of Large Numbers that

ST n[1]
n

= νn
n
= ν0 + λ1 + . . . λn

n
→ Eλ1 = μ ∈ (0,∞) a.s.,

T n

n
= T 0 + τ 1 + . . . τ n

n
→ θ := Eτ 1 ∈ [μ,∞] a.s. (48)

(In what follows we use the standard convention that c/θ = 0 when θ = ∞.) Thus,
we have proved the following result.

Theorem 3 Under the assumptions (A1)–(A4), for all k ≥ 0 and any A ⊂
Z
(k+1)×d convergences (46), (47) and (7) hold. In addition, by the Strong Law of

Large Numbers, convergence (8) takes place with a1 := μ/θ ∈ [0, 1].
We would like to say that Theorem 3 was the initial aim of our studies. A simple
proof of Theorem 3 (given above) shows the power of Theorem 2. In [3], direct
analytical arguments have been used to establish for a simple symmetric random
walk a limiting result similar to Theorem 3.
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Further, Theorem 2 allows us to obtain an estimate (51) for the rate of
convergence of the conditioned original process in the multidimensional general-
ization (49) of convergence (8):

Theorem 4 Suppose that EY 1,τ1[j ] is finite for some j ≥ 1. Then, under the
assumptions (A1)–(A4), for the j ’th component of limiting process we have:

Sn[j ]
n

→ aj := EY 1,τ 1[j ]
θ

= E
[
ST 1

[j ] − ST 0
[j ]]

θ
a.s., (49)

which is equivalent to the convergence:

∀ ε > 0 P(sup
t≥m

|St [j ]/t − aj | > ε)→ 0 as m→∞. (50)

In addition, for any ε > 0 and each n ≥ m > 0

P( sup
t∈[m,α(n)]

|St [j ]/t − aj | > ε | Bn) ≤ CP(sup
t≥m

|St [j ]/t − aj | > ε), (51)

where C := 1/c = 1/ infn≥0 P(Bn) <∞.
In particular, (49), (50) and (51) hold for j = 1 with a1 := μ/θ ∈ [0, 1].
Indeed, (49) follows from (48) and the following simple corollary from the

Strong Law of Large Numbers:

ST n[j ]
n

= ST 0
[j ] + Y 1,τ 1[j ] + . . . Y n,τn[j ]

n
→ EY 1,τ1 [j ] ∈ (−∞,∞) a.s.

Finally, the inequality in (51) follows from (44).

4 Proofs of Property 1 and Auxiliary Lemmas

In this section, we introduce a number of auxiliary notation, define shifts of “virgin”
environment, formulate and prove a number of lemmas, and, finally, complete with
the proof of Property 1.

4.1 Additional Notation

In the proofs we will frequently use notation

Ht(x) := H(x)− Lt (x) = Ht−1(x)− 1{St = x}, t = 0, 1, 2, . . . ,
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with H−1(x) := H(x). Thus, Ht(x) is the number of allowed visits to state x after
time t + 0.

We need a number of further notation. Let

h(n) := min
0≤t≤nHt(St ) = min{h(n− 1), Hn(Sn)− 1}, n = 0, 1, 2, . . . .

It follows from (3) that, for all n,N ≥ 0,

{T∗ > N} = {h(N) ≥ 0}, (52)

Bn = {α(n) < T∗} = {h(α(n)) ≥ 0} = {h(α(n) − 1) ≥ 0}.

The latter equality follows from condition H(x) ≥ 1 for x[1] ≥ 0.
In what follows, we consider a random walk that starts at time t ≥ 0 from a

state x, rather that at time t = 0 from the state S0. The following notation will be
helpful:

αt (l) = inf{j ≥ 0 : St,t+j [1] = l}, ht (l, x) := inf
0≤j<αt (l)

Ht+j (x + St,t+j ), (53)

s(t, L) := inf
0≤j<L St,t+j [1], st (l) := s(t, t + αt (l)), (54)

for t, l, L ≥ 0, where notation St,j := Sj − St for t ≥ j was introduced earlier.
Note that α0(l) = α(l) for all l ≥ 0.

Later on we will use the following properties of notation from (53) and (54):

α(l +m) = α(l) + αα(l)(m), {s(0, T + αT (l)) ≥ 0} = {s(0, T ) ≥ 0, ST + sT (l) ≥ 0},
{0 < T ≤ T + αT (l) < T∗} = {T > 0, h(T − 1) ≥ 0, hT (l, ST ) ≥ 0}, (55)

for any random or non-random T ≥ 0 and each l ≥ 0 and m > 0.
Note that, given α(n) <∞,

Sα(n) ∈ Z
d
n := {x = (x[1], x[2], . . . , x[d]) ∈ Z

d : x[1] = n}.

4.2 Shifts of Virgin Environment

For any j ≥ t ≥ 0, introduce random variable

Lt,t+j (x) =
j∑

k=0

1{St,t+k = x}, x ∈ Z
d ,
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which, similarly to (2), counts the number of visits to state x within time interval
(t, t + j ]. For each k ≥ 0, introduce the following (possibly, improper) random
variables:

H(k)(y) =
{
H(y), y ∈ Z

d
k+,

∞, y /∈ Z
d
x[1]+,

so that H(x[1])(x + y) =
{
H(x + y), y ∈ Z

d
0+,

∞, y /∈ Z
d
0+,

(56)

for all x ∈ Z
d
0+. For t, k ≥ 0 and x ∈ Z

d
0+, let

h
(k)
t (l, x) := inf

0≤j<αt (l)
[H(k)(x + St,t+j )− Lt,t+j (x + St,t+j )]. (57)

The function H(k)(y) describes the environment which is virgin for all y ∈ Z
d
k+

and which has no restrictions on the number of visits to all states y /∈ Z
d
k+. The

function h(k)t (l, x) describes the behaviour in this environment of a random walk
that starts at time t ≥ 0 from the state x. Inequality (73) below shows that this
environment has characteristics that dominate the corresponding characteristics of
any of our initial environments.

Note that

{h(k)t (l, x) = ht (l, x), st (l) ≥ 0} ⊂ { sup
0≤j<t

Sj [1] < k}. (58)

We use symbol∞ in place of 0 in (56) because we like to use in Sect. 5 the following
result (with P(·) = P+(·)):.
Lemma 1 Under the assumptions (A1)–(A3) and for each fixed l ≥ 0, given the
event {St = x} occurs, the joint conditional distribution of the random variables
from the following family

αt (l), st (l), St,t+αt(l), h
(x[1])
t (l, x), ; ξt+j , j ≥ 1

does not depend on t ≥ 0 and on x ∈ Z
d
0+. In particular, for all C ⊂ Z

d∗

P(St,t+αt (l) ∈ C , h(x[1])t (l, x) ≥ 0, st (l) ≥ 0|St = x) (59)

= P(S0,α0(l) ∈ C , h0(l, 0) ≥ 0, s0(l) ≥ 0)

= P0(α(l) < T∗, S0,α(l) ∈ C ).

Proof The first assertion follows directly from assumptions (A1)–(A3) and, in
particular, from the time/space homogeneity of the random walk and from the
homogeneity of the random environment in the positive half-space Zd0+. To get (59)
we use (58) too. ��
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4.3 Auxiliary Lemmas

Suppose that a random variable T ≥ 0 is such that

{T ≥ 0} = ∪∞t=0{T = t, ST ∈ X(t)} for some X(t) ⊂ Z
d . (60)

For a fixed l > 0 and arbitrary sets A ,C ⊂ Z
d∗ , consider the event

D̃ := {T + αT (l) < T∗, ST ∈ A , ST ,T+αT (l) ∈ C }. (61)

Using (52) and (55), we may represent (61) in the form

D̃ = {T <∞, h(T − 1) ≥ 0, hT (l, ST ) ≥ 0, ST ∈ A , ST ,T+αT (l) ∈ C }.

For fixed t ≥ 0 and x ∈ Z
d , introduce events

Ãt,x : ={T=t, h(t−1) ≥ 0, St ∈ A , St=x}, C̃t,x : ={ht (l, x) ≥ 0, St,α(n) ∈ C }.

Clearly,

P∗(D̃) =
∞∑

t=0

∑

x∈X(t)
P∗(Ãt,x · C̃t,x). (62)

Thus, we have the following elementary

Lemma 2 Suppose that a random variable T ≥ 0 satisfies condition (60). Then for
all A ,C ⊂ Z

d∗ and each l > 0 equality (62) takes place. In addition, if for all t ≥ 0
and x ∈ X(t) events Ãt,x and C̃t,x are pairwise independent and P∗(C̃t,x) does not
dependent on t ≥ 0 and x ∈ X(t), then we have

P∗(D̃) = P∗(T < T∗, ST ∈ A ) · P∗(α(l) < T∗, S0,α(l) ∈ C ). (63)

One can observe that the sequence {St , Ht(x) : x ∈ Z
d }, t = 0, 1, 2, . . . , of

infinite-dimensional random variables forms an infinite-dimensional Markov chain.
In the proofs below we apply Lemma 2 four times for stopping times T ≥ 0 of this
Markov chain.

Lemma 3 Under the assumptions (A1)–(A3),

P∗(α(n) < T∗, Sα(k) ∈ A , s(α(k), α(n)) ≥ 0, Sα(k),α(n) ∈ C ) (64)

= P∗(α(k) < T∗, Sα(k) ∈ A ) · P0(α(l) < T∗, S0,α(l) ∈ C )

for all A ,C ⊂ Z
d∗ and each n > k ≥ 0 (where l := n− k > 0).
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Proof We will apply Lemma 2 with T = α(l) and X(t) = Z
d
k . We have from

Lemma 1 that probability P∗(Ct,x) does not depends on t ≥ 0 and x ∈ Z
d
k . Hence,

by (58)

P∗(C̃t,x) = P∗(C̃0,0) = P0(α(l) < T∗, S0,α(l) ∈ C ). (65)

For any fixed t ≥ 0 and x ∈ Z
d
k , random variables α(k), St and h(t − 1) that

define the event Ãt,x are functions only of the variables from the following two
families:

{ξj : j ≤ t} and {H(y) : y /∈ Z
d
k+}. (66)

On the other hand, all random variables that determine the event C̃t,x , are functions
only of random variables from the following two families:

{ξj : j > t} and {H(y) : y ∈ Z
d
k+}. (67)

Since the families in (67) and (66) do not overlap, they are independent. Hence,
events Ãt,x and C̃t,x are independent too. This fact, together with (65), allows us to
apply Lemma 2 to get (64). ��
Lemma 4 Under the assumptions (A1)–(A3),

P∗(α(n) < T∗, Sα(k) ∈ A , '∗(n) = k, Sα(k),α(n) ∈ C ) (68)

= P∗(α(k) < T∗, Sα(k) ∈ A ) · P0('∗(n− k) = 0, S0,α0(n−k) ∈ C )

for any n > k ≥ 0 and all A ,C ⊂ Z
d∗ .

Proof For each n ≥ 1 introduce the following subset of Zd∗ :

C+
n := {(y1, y2, . . . ) ∈ B+n : '(n|y) = 0 for y = (0, y1, y2, . . . )}. (69)

We assume in (69) that y0 = 0 to avoid problems with the definition of the value
α(n|y). It follows from (69) that

{α(n) < T∗, '∗(n) = k} = {α(n) < T∗, s(α(k), α(n)) ≥ 0, Sα(k),α(n) ∈ C+
n−k},

(70)

where in (70) we used also that {'∗(n) = k} ⊂ {s(α(k), α(n)) ≥ 0}.
If we compare now (68) and (70) with (64), we can observe that (68) is a

particular case of (64), given that we replace in (64) C by C ∩ C+
n−k . ��
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4.4 Proof of Property 1

The first assertion of Property 1 immediately follows from Lemma 4 with A =
C = Z

d∗ since, in this case, we have from (68) that

P∗(Bn, '∗(n) = k) = P∗(α(n) < T∗, '∗(n) = k) (71)

= P∗(α(k) < T∗) · P0('∗(n− k) = 0) = P∗(Bk) · P0('∗(n− k) = 0).

Since Bn = {η∗(n) ≥ 0} and {η∗(n) ≥ 1} = {'∗(n) ≥ 0} by (20), we have, for
n = 1, 2, . . .,

P∗(Bn) = P∗(η∗(n) = 0)+ P∗(η∗(n) ≥ 1)

= P∗(η∗(n) = 0)+
n−1∑

k=0

P∗(α(n) < T∗, '∗(n) = k). (72)

Thus, Property 1 follows from (71) and (72).

5 Proof of Theorem 1

We will use functions H(k)(y) and h(k)t (l, x) introduced in (56) and (57), that
have been already applied in Lemma 1. These functions have the following useful
properties:

H(k)(y) ≥ Ht(y) and h
(k)
t (l, x) ≥ ht (l, x) ∀y ∈ Z

d , ∀x ∈ Z
d
0+,∀ t, l ≥ 0.

(73)

5.1 Main Lemma

We are going to prove

Property 2 Under the assumptions (A1)–(A4), there exists a constant C <∞ such
that

∀ n ≥ 0 P+(Bn) ≤ CP0(Bn). (74)

The proof is based on several lemmas. Introduce the following stopping time:

ρ := inf{t > 0 : St [1] = 0 but St = 0} ≤ ∞.
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So ρ is the time of the first return to level 0 by the first component of our random
walk, given that at least one of other coordinates differs from 0.

Lemma 5 For any n > 0

Pρ := P+(ρ < α(n) < T∗) ≤ P(ρ <∞) · P+(Bn). (75)

Proof It follows from (55) that

{ρ < α(n) < T∗} = {ρ <∞, αρ(n) <∞, h(ρ − 1) ≥ 0, hρ(n, Sρ) ≥ 0}.

Since hρ(n, Sρ) ≤ h(0)ρ (n, Sρ) by (73), we have

{ρ < α(n) < T∗} ⊂ D := {ρ <∞, αρ(n) <∞, h(0)ρ (n, Sρ) ≥ 0}. (76)

Introduce the events

At,x := {ρ = t, St = x}, Ct,x := {αt (n) <∞, h(0)t (n, x) ≥ 0}.

By Lemma 1, probability P(Ct,x) does not depends on t ≥ 0 and x ∈ Z
d
0 . Hence,

by (58)

P∗(Ct,x) = P∗(α0(n) <∞, h(0)0 (α0(n), 0) ≥ 0) = P+(α0(n) < T∗) = P+(Bn),
(77)

since α0(n) = α(n).
Now we apply Lemma 2 with T = ρ and X(t) = X0 := Z

d
0 \ {0}, and with

h
(k)
k (l, x) in place of hk(l, Sk). For fixed values t > 0 and x ∈ Z

d
0 , random variables

αt (n) and ht (n, x) are functions only of random variables from (67) with k = 0,
since H(y) = ∞ for all y /∈ Z

d
k+.

On the other hand, event At,x does not depend on the environment and is
determined by the variables {ξj : j ≤ t}. Hence, events Ãt,x and C̃t,x do not depend
on each other, and we may apply Lemma 2. Using also (77) and (76), we obtain

P∗(ρ < α(n) < T∗) ≤ P∗(D)=
∞∑

t=1

∑

x∈Zd0\{0}
P(At,x)=

∞∑

t=1

P(ρ = t, St = 0) = P(ρ <∞).

Thus (75) is proved. ��
According to (18) introduce the following stopping times:

ρ0 = 0 and ρi := inf{t > ρi−1 : St = 0} ≤ ∞,= i = 1, 2, . . . .
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So ρi is the time of the i-th return to 0 of our random walk. It is easy to see that, for
any n > 0,

P+(Bn) ≤ P+(ρ < α(n) < T∗)+
∞∑

i=0

P(Di), (78)

where

Di = Di(n) := {ρi < α(n) < min(ρi+1, ρ) ≤ ∞, α(n) < T∗}.

Lemma 6 For any n > 0

P+(Di) ≤ P(ρi <∞) · P(H(0) > i) · P0(Bn). (79)

Proof Underline that, on the event {ρi < α(n) < min(ρi+1, ρ)}, we have that
s(ρi , α(n)) > 0, due to the skip-free property of the random walk. Thus

Di ⊂ D̂i := {ρi < α(n) < T∗, s(ρi , α(n)) > 0}. (80)

Since Sρi = 0, we have from (55) that

D̂i = {ρi <∞, ρi < ρ, αρi (n) <∞, h(ρi − 1) ≥ 0, hρi (n, 0) ≥ 0}. (81)

Since Ht+j (y) ≤ Hj(y) for all y ∈ Z
d and t, j ≥ 0, we have from (53) that

ht (n, 0) = inf
0≤j<αt(n)

Ht+j (St,t+j ) ≤ h̃t (n, 0) := inf
0≤j<αt(n)

Hj(St,t+j ) (82)

for all possible t ≥ 0. Note also that h(ρi) ≤ Hρi (0). This fact and (80)–(82) with
t = ρi yield

D̂i ⊂ D̃i := {ρi <∞, ρi < ρ, αρi (n) <∞, Hρi (0) ≥ 0, h̃ρi (n, 0) ≥ 0, s(ρi , α(n)) > 0}.

Introduce the events

Ai,t := {ρ > ρi = t, Ht (0) ≥ 0},
Ct := {αt(n) <∞, h̃t (n, 0) ≥ 0, s(t, α(n)) > 0}. (83)

Comparing definition (82) with that in (53) and (54), we can see that h̃t (n, 0) =
ht (n, 0) and that probability P∗(Ct ) does not depend on t ≥ 0. Hence,

P∗(Ct ) = P∗(C0) = P∗(α0(n) <∞, h̃0(n, 0) ≥ 0, s(0, α(n)) > 0) (84)

≤ P∗(α0(n) <∞, h0(n, 0) ≥ 0, s(0, α(n)) ≥ 0) = P0(α0(n) < T∗) = P0(Bn),



Conditioned Random Walks with Random Local Constraints 429

because α0(n) = α(n). We have also from (83) that

P∗(Ai,t ) = P(ρ > ρi = t)P(Ht(0) ≥ 0) = P(ρ > ρi = t)P(H(0) > i), (85)

becauseHρi (0) = H0(0)− i = H(0)− i − 1.
Now we apply Lemma 2 with T = ρi and X(t) = {0}, and with h̃t (n, 0) in place

of ht (n, 0). Now note that, for each value t > 0, under the condition s(t, α(n)) >
0, the random variables αt (n), s(t, α(n)) and ht (n, x) (which determine event Ct )
are functions only of random variables from (67), with k = 1. On the other hand,
event Ai,t is defined by the variable Ht(0) and by the family {ξj : j ≤ t}. Hence,
the events Ai,t and Ct are independent and we may apply Lemma 2 again. Using
also (84) and (85), we get:

P+(Di) ≤ P+(D̂i) ≤ P+(Di)=
∞∑

t=1

P(Ai,t )P(Ct) ≤
∞∑

t=1

P(ρ > ρi= t)P(H(0) > i)P0(Bn).

So, inequality (79) follows. ��
Introduce the notation

p∗ := P(ρ <∞), p1 := P(ρ1 <∞, ρ1 < ρ),

C∗ :=
∞∑

i=0

pi1P(H(0) > i) ≤ 1+ EH(0).

Substituting the results of Lemmas 5 and 6 into (78), we obtain

1− P+(Bn) ≤ C∗P0(Bn)+ p∗P+(Bn).

Thus, under the assumptions (A1)–(A3) ,

(1− p∗)P+(Bn) ≤ C∗P0(Bn). (86)

One can easily conclude that, under any of assumptions (a)–(c) in (A4), the
following inequalities hold:

p∗ < 1 and C∗ <∞. (87)

Here is the only place in the paper where the assumption (A4) is used.
From (86) and (87) we obtain the assertion of Property 2 with C = C∗/(1−p∗).
Note that for n = 0 inequality (74) follows from (16) since C ≥ 1. ��
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5.2 Using Submultiplicativity

In this subsection we prove first that

∀k, l ≥ 0 P∗(Bk)P0(Bl) ≤ P(Bk+l ) ≤ P(Bk)P+(Bl). (88)

Using this form of sub/supermultiplicativity we show that

1 ≥ q+ := inf
n≥1

n
√

P+(Bn) = q := sup
n≥1

n
√

P−(Bn) ≥ P(ξ1[1] = 1) > 0. (89)

After that, we prove the following

Property 3 Under the assumptions (A1)–(A4), relations (88) and (89) take place.
Moreover

0 < P∗(B0)/C ≤ P∗(Bn)/qn ≤ CP∗(B0) ≤ C <∞ ∀ n ≥ 0. (90)

Note that for l = 0 inequality (88) immediately follows from (16). We prove now
the following lemma.

Lemma 7 Under the assumptions (A1)–(A3), inequality (88) takes place for all
k ≥ 0 and l > 0.

Proof Applying Lemma 3 with n = k + l, we get

P∗(Bk+l ) = P∗(α(k + l) < T∗) ≥ P∗(α(l + k) < T∗, s(α(k), α(k + l)) ≥ 0)

= P∗(α(k) < T∗) · P0(α(l) < T∗) = P∗(Bk)P0(Bl).

This is the first inequality in (88).
Next, it follows from (55) that

Bk+l = {α(k + l) < T∗} = {α(k) <∞, αk(l) <∞, h(k − 1) ≥ 0, hk(l, Sk) ≥ 0}.

Since hk(l, Sk) ≤ h(k)k (l, Sk) by (73), we have

Bk+l ⊂ D̃ := {α(k) <∞, αk(l) <∞, h(k − 1) ≥ 0, h(k)k (l, Sk) ≥ 0}.

Now we apply Lemma 2 with the same T = α(l) and X(t) = Z
d
k as in the proof

of Lemma 3, but with h(k)k (l, x) in place of hk(l, Sk). Introduce the events

Ãt,x := {α(k) = t, , h(t−1) ≥ 0, St = x}, C̃t,x := {αk(l) <∞, h(k)k (l, x) ≥ 0}.
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By Lemma 1, probability P(C̃t,x) does not depends on t ≥ 0 and x ∈ Z
d
k ,

P∗(C̃t,x) = P∗(C̃0,0) = P∗(α0(l) <∞, h(0)0 (α0(l)) ≥ 0) (91)

= P+(α0(l) < T∗) = P+(Bl),

since α0(l) = α(l) for l > 0.
Now, for fixed values t > 0 and x ∈ Z

d
k , random variables αt (n) and ht (n, x),

which define event C̃t,x , are functions only of random variables from (67), since
H(y) = ∞ for all y /∈ Z

d
k+. On the other hand, event Ãt,x is defined by random

variables α(k), h(t−1) and St which are functions of the variables from (67). Hence,
events Ãt,x and C̃t,x are independent and we can apply Lemma 2. Using also (91),
we obtain P∗(Bk+l ) ≤ P∗(D̃) = P∗(Bk)P+(Bl) as a result.

Thus, second inequality in (88) is proved. ��
Proof (of Property 3) Using probabilities P0(·) and P+(·) instead of P∗(·), we have
from (88) and (16) that, for all k, l ≥ 1,

P0(Bk)P0(Bkl−k) ≤ P0(Bkl) ≤ P+(Bkl) ≤ P+(Bkl−l )P+(Bl).

Then the induction argument leads to

(P0)
l(Bk) ≤ P0(Bkl) ≤ P+(Bkl) ≤ (P+)k(Bl). (92)

Taking the kth root of the both sides of inequality (92), we arrive to

∀ k, l ≥ 1 k
√

P0(Bk) ≤ l
√

P+(Bl). (93)

Taking in (93) supremum in k ≥ 1 and infimum in l ≥ 1, we obtain q ≤ q+.
On another hand, from (74) and the definition of q+ in (89), we have

qn+ ≤ P+(Bn) ≤ CP0(Bn) ≤ Cqn. (94)

Hence, q+ ≤ n
√
Cq → q . So, we proved that q+ ≤ q and hence (89) follows

from (13) with P0(Bn) ≥ Pn(ξ1[1] = 1).
Next, it follows from (88) and (74) with k = 0 and l = n that

P∗(Bn) ≤ P∗(B0)P+(Bn) ≤ CP∗(B0)P0(Bn) ≤ CP∗(B0)q
n ≤ Cqn. (95)

Here we also used (94). On the other hand, using again (88), (74) and (94), we get

P∗(Bn) ≥ P∗(B0)P0(Bn) ≥ P∗(B0)P+(Bn)/C ≥ P∗(B0)q
n+/C. (96)

Now, all inequalities in (90) follow from (95) and (96). ��
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5.3 Proof of Theorem 1

With q from (89), introduce the following notation:

an := P0('∗(n) = 0)

qn
, bn := P∗(η∗(n) = 0)

qn
, un := P∗(Bn)

qn
, vn := P0(Bn)

qn
.

(97)
Multiplying equalities (21) and (22) by q−n, we obtain for all n ≥ 1 that

un = bn +
n−1∑

k=0

ukan−k = bn +
n∑

l=1

alun−l , (98)

vn =
n∑

l=1

alvn−l , where v0 = 1 and a1 > 0. (99)

The last property in (99) follows from (33).
We have from (97), (89) and (90) that

u0 = b0 = P∗(B0) > 0, 0 < u0/C ≤ un ≤ C <∞, 0 < 1/C ≤ vn ≤ 1 ∀n ≥ 1.
(100)

In addition, we have from (19), (33) and (100) that

v1 = a1 > 0, 0 ≤ an ≤ vn and 0 < vn1 ≤ vn ≤ 1 ∀n ≥ 1. (101)

There are two possible scenarios, either an < 1 for all n or aM = 1 for some
M ≥ 1. We start with the latter case which is, in fact, degenerative.

Lemma 8 If aM = 1 for someM ≥ 1, thenM = 1 and the assertions of Theorem 1
do hold with q = P0('∗(1) = 0).

Proof Since 1 = aM ≤ vM ≤ 1 by (101), we have vM = 1. Then, by (99),

vM − aM = 0 =
M−1∑

l=1

alvn−l ≥ a1vM−1 > 0 if M > 1.

So we must haveM = 1. Then v1 = a1 = 1 = vn1 ≤ vn ≤ 1 for all n ≥ 1 by (101).
Hence, vn = 1 for all n ≥ 1 and, by (99),

vn − a1vn−1 = 1− 1 = 0 =
n∑

l=2

alvn−l =
n∑

l=2

al when n ≥ 2.

Thus, al = 0 for all l ≥ 2 and Eq. (26) reduces to P0('∗(1) = 0)/q = 1. Hence all
assertions of Theorem 1 hold with q = P0('∗(1) = 0). ��
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Consider now the main case where 0 ≤ ak < 1 for all k ≥ 1. It is known (see,
for example, Section 13.4 in the 1st Volume of the Feller’s book [9]) that there are
only four possibilities for the solutions to equation (99):

(a) 0 < α := ∑
k≥1 ak < 1 and vn → 0;

(b) α = 1, μ = ∑
k≥1 kak = ∞ and vn → 0;

(c) α = 1, 1 ≤ μ <∞ and vn → 1/μ > 0 since a1 > 0;
(d) α ∈ (1,∞] and vn →∞.

It is easy to see that (c) is the only possibility which does not contradict to
inequalities (100). Hence, α = 1, μ <∞, and (26) with (27) follow.

Now, we again use [9] to evaluate ψ0 = ∑
k≥1 bk. From (100) and (98) with

vn → 1/μ > 0 we obtain

C ≥ un =
n∑

k=0

bkun−k →
∑

k≥0

bk/μ = ψ0/μ ≥ b0/μ = P∗(B0)/μ > 0

by assumption (A2). So, we obtain inequality (28) with Cμ ≥ ψ0 ≥ P∗(B0) > 0.
Thus, Theorem 1 is proved.

6 Proof of Theorem 2

We suppose that assumptions (A1)–(A4) continue to hold.
We start with a few preliminary comments. If follows directly from (31) and (34)

that, for any integersK ≥ k ≥ 0 and all vectors yK = (y0, . . . , yK) ∈ Z
(K+1)×d ,

P∗(α(k) = K < T∗, η∗(k) = 0,SK = yK) (102)

= ψ0q
kP(ν0 = k, T 0 = K, S̃K = yK)).

Similarly, it follows from (32) and (35) that, for any integers L ≥ l ≥ 1 and all
xL = (x1, . . . , xL) ∈ Z

L×d

P0(α(l) = L < T∗, '∗(l) = 0,S0,L = xL) = qlP(λ0 = l, τ 0 = L, S̃0,L = xL)

= qlP(λm ≡ νm − νm−1 = l, τm ≡ T m − T m−1 = L, S̃T m−1,T m
= xL). (103)

In the proof of the following lemma we repeat in more detail the description of
the core random sequence, introduced in Sect. 3.3.

Lemma 9 Suppose that numbers N ≥ n ≥ m ≥ 0 and vector yN =
(y0, . . . , yN) ∈ Z

(N+1)×d are such that

α(n|yN) = N ≥ 0 and η(n|yN) = m ≥ 0. (104)
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Then

P∗(α(n) = N < T∗, η(n) = m,SN = yN) (105)

= ψ0q
nP(ν(m) = n, α(n) = N, S̃N = yN).

Moreover, all random variables in (105) are deterministic functions only of random
variables from the initial block and from the first m blocks in (40).

We will prove the lemma by induction in m. For m = 0, (105) follows from (102)
(with k in place of n andK in place of N) that has been verified already.

Let m be a strictly positive number and suppose that (105) holds for all possible
N and yN in the case η∗(n) = m − 1 ≥ 0. Now take the numbers and a vector
satisfying (104). Then, for some integers k and K ,

'(n|yN) = k ∈ [0, n− 1] and α(k|yN) = K ∈ [0, N − 1]. (106)

Let

yK = (y0, . . . , yK), yK,N = (yK+1 − yK, . . . , yN − yK), N > K ≥ 0.
(107)

We have from (106) that

{α(n) < T∗, η(n) = m,'(n) = k, } = {α(n) < T∗, η(k) = m− 1, '(n) = k}.
(108)

Hence, by (107) and (108),

P∗(α(n) = N < T∗, η(n) = m,SN = yN) (109)

= P∗(α(n) = N < T∗, η(n) = m,'(n) = k, α(k) = K,SK = yK,SK,N = yK,N).

Now we apply Lemma 4 with special sets A = {yK } and C = {yK,N } containing
only one trajectory each. Then

P∗(α(n) = N < T∗, η(n) = m,SN = yN) (110)

= P∗(α(k) = K < T∗, η(k) = m− 1,SK = yK)

× P0(α(l) = L < T∗, '(l) = 0,S0,L = yK,N).

Clearly, η∗(k) = m− 1 by (108). Hence, by the induction base, we have that

P∗(α(k) = K < T∗, η∗(k) = m− 1,SK = yK) (111)

= ψ0q
kP(S̃K = yK, α(k) = K, νm−1 = k).
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Now use (103) with

νm = n, νm−1 = '∗(νm) = k, (112)

T m = α(νm) = N, T m−1 = α(νm−1) = K.

Let l = n − k, L = NK and xL = yK,N . Substituting (111) and (103) into (110),
we obtain from (110) and (112) that

P∗(α(n) = N < T∗, η∗(n) = m,SN = yN)

= ψ0q
kP(S̃K = yK, α(k) = K, νm−1 = k) (113)

× qlP(νm − νm−1 = l, T m − T m−1 = L, S̃T m−1,T m
= xL).

Notice that them-th block in (40) is independent of the previous ones. Hence, (113)
may be represented as

P∗(α(n) = N < T∗, η∗(n) = m,SN = yN)

= ψ0q
k+lP(νm = n, T m = α(νm) = N, S̃T m−1

= yK, S̃T m−1,T m
= xL = yK,N)

= ψ0q
nP(ν(m) = n, α(n) = N, S̃N = yN).

So, we have completed the induction step. This ends the proof of Lemma 9. ��
To prove Theorem 2, note that any set A ∈ Z

d∗ may be represented as

A = ∪∞N=0AN, where AN ⊂ Z
(N+1)×d , N = 0, 1, 2, . . . .

So, all vectors yN = (y0, . . . , yN) from AN satisfy (104).
Then summing up the LHS’s and RHS’s of (105) over N and yN ∈ AN leads

to (41).
Thus, we have finished with the proofs of all our results.

7 Remarks

Remark 1 In our Assumptions (A1)–(A3), we assume that the environment is
“virgin” only in a half-space and that the random walk starts either from the other
half-space or from a boundary point. Here is a scenario that may lead to such
situation.

Assume that at some time instant −∞ ≤ −N < 0 in the past the whole
environment in Zd was “virgin”, i.e. all the random variables {H−N(x), x ∈ Z

d }
were i.i.d. Assume that our random walk had started at time t > −N . This
assumption implies that

H(x) = H−1(x) ≤ H−N(x), ∀ x ∈ Z
d . (114)
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We then assume that the trajectory of our random walk on the time interval −N <
t < 0 is unobservable (it is the “dark history”), and that we start to observe the
trajectory only at time t = 0 when we realize that the environment is still virgin in
the half-space Zd0+ (see (11) for definition), so that

H(x) = H−1(x) = H−N(x), ∀ x ∈ Z
d
0+.

Thus we arrive to our model with S−1 /∈ Z
d
0+ (and, hence, with S0[1] ≤ 0).

Note that our condition (12) is more general than (114).

Remark 2 Here is a link to random walks conditioned not to leave a certain
subspace. We may consider the trajectory S0, S1, . . . , Sα(n) conditioned on the event
that the first coordinate stays positive by time α(n), i.e. Bn = {min0≤t<α(n) St [1] ≥
0}. Then, in our notation, the event Bn may be represented as Bn = {α(n) < T∗} if
we consider that “extreme” environment of the form: for x = (x[1], . . . , x[d]),

H(x) = 0 when x[1] < 0, and H(x) = ∞ when x[1] ≥ 0.

Thus, there is no restrictions on the upper half-space with x[1] ≥ 0, and it is
prohibited to visit the lower half-space with x[1] < 0.

Note that the case Eξ1[1] > 0 is simple, since here the initial sequence itself
has a regenerative structure and (10), (9) and (7) take place with q = 1. In the case
Eξ1[1] < 0, there is only one q ∈ (0, 1) that solves the equation

∞∑

k=−1

qkP(ξ1[1] = −k) = 1. (115)

Applying the corresponding exponential change of measure (the Cramér transform)
to the distribution of ξ1, we obtain (10), (7) and (9) with q < 1 from (115).

Remark 3 We may present a more detailed version of Theorem 2, containing a
formula that relates joint distributions of blocks from (24) and (25) with independent
blocks of the core process. Consider arbitrary numbers such that

0 ≤ L0 < · · · < Lm = n, 0 ≤ Ki < · · · < Km, y ∈ Z
(K0+1)×d,

1 ≤ li := Li − Li−1 ≤ ki := Ki −Ki−1, xi ∈ Z
(Ki−Ki−1)×d, ∀i = 1, . . . , m. (116)

Below we use the notation for vectors introduced in (23) and (39).

Corollary 2 For any n = Lm ≥ m ≥ 1 and any numbers from (116)

P∗({η∗(n) = m, ν0(n) = L0, α(ν0(n)) = K0,SK0 = y}
∩ ∩mi=1 {λi(n) = li , τi(n) = ki,SKi−1,Ki

= xi})

= ψ0q
nP(ν0 = L0, α(ν0) = K0, S̃K0 = y) ·

m∏

i=1

P(λi = li , τ i = ki, S̃Ki−1Ki = xi}).
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Comment that random vectors {ξj , j = 1, 2 . . . } that were introduced in (42)
may be dependent, notwithstanding that {ξj , j = 1, 2 . . . } were i.i.d. However, the
random blocks

(
λi, τ i, (ξKi−1+1, . . . , ξKi )

)
, i = 1, 2 . . . ,

are i.i.d. and do not depend on the initial block
(
S0, ν0, T 0, (ξ1, . . . , ξT 0

)
)

. This

type of the phenomenon is typical for conditioning that involves infinite future:
an i.i.d. sequence is transformed into a regenerative sequence. It appears even
in the simplest scenario, for a one-dimensional random walk with positive drift,
conditioned to stay positive (see, e.g., [10, 14, 15] for similar observations in
“unconditioned” models).
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1 Introduction

This short paper started in discussions between the authors during a visit to NYU
Shanghai. The model we study here, which we call the random memory walk, was
suggested by Vladas as a way to interpolate between the more well understood case
of a random walk with bounded memory (similar to the so-called senile random
walk [9, 10]) and the challenging model of once-reinforced random walk, which
Vladas was fascinated about. In this paper we will discuss the behavior of the
random memory walk. It turned out that the analysis of this model is quite simple
once one looks at it from the right point of view.

We start this paper by explaining the once-reinforced random walk, some related
models, and the main questions in this area, which motivated us (and, in particular,
Vladas) to look at this model. Then we explain the link between the once reinforced
random walk and the random memory walk, and proceed to the analysis of the latter
model.

1.1 Once-Reinforced Random Walk (ORRW)

This is one of such models whose definition is very simple but whose analysis is far
from trivial. In fact, despite being introduced about three decades ago, the behavior
of the ORRW on Z

d is still not well understood, even at an intuitive level, and there
are essentially no rigorous result about it.

We start defining the ORRW. Consider an infinite, locally finite graph G =
(V ,E) with vertex set V and (non-oriented) edge set E, and with a distinguished
vertex, called the origin, that we denote 0. Given a reinforcement parameter δ > 0,
the ORRW (Xn)n≥0 is defined by the following dynamics. Start at time 0 by placing
the random walk at the origin (i.e., X0 = 0) and by assigning weight 1 to every
edge of E. Then, at time n ≥ 1, the random walk jumps to one of its neighbors with
a probability proportional to the weight of each edge between them. Note that the
first jump of the random walk is to a neighbor of 0 chosen uniformly at random.
Whenever the walk jumps across an edge e for the first time, the weight of e is
updated from 1 to 1 + δ, and then the weight of e is never updated again from that
time onwards.

More formally, let En be the collection of edges crossed by the random walk up
to time n, that is

En := {e ∈ E : ∃k ∈ {1, . . . , n} s.t. {Xk−1,Xk} = e} . (1)

At time n ∈ N and on the event {Xn = x} with x ∈ V , the walk jumps to a neighbor
y ∼ x with conditional probability

P (Xn+1 = y|Fn) = 1+ δ1{{x, y} ∈ En}∑
z:z∼x 1+ δ1{{x, y} ∈ En} ,
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where (Fn) is the filtration generated by the history of (Xn), i.e. Fn = σ(Xk, 0 ≤
k ≤ n) for any integer n ≥ 0.

This random walk thus favors edges that it has already crossed in the past (which,
as usual, we call the range of the walk), and δ regulates the strength with which the
random walk favors its range. Intuitively, one could say that, as the random walk
grows its range, it interacts with it by experiencing a drift inwards whenever it tries
to move out of its range. In other words, the random walk is attracted to traverse
edges that it has already traversed in the past, creating some sort of a small trap for
the walk.

1.2 Expected Behavior of ORRW on Z
d

It is particularly interesting to study the ORRW on Z
d , d ≥ 2, where interesting

conjectures have been made. The ORRW was introduced by Davis [6] in 1990 as
a simplification of the linearly edge-reinforced random walk, which was defined
by Coppersmith and Diaconis in the late eighties. Coppersmith and Diaconis
conjectured that the linearly edge-reinforced random walk undergoes a phase
transition between recurrence and transience, but this was only established about
25 years later in a sequence of papers [1, 7, 15, 16].

When defining the ORRW, Davis expected that its analysis should be easier than
for the linearly edge-reinforced random walk, but curiously the question regarding
recurrence and transience remains completely open for the ORRW. Davis noticed in
his paper that ORRW has a trivial behavior in dimension one, and conjectured that
it is recurrent in dimension two.

It turns out that the ORRW is quite challenging to analyze due to the nature of
its interaction and to the lack of monotonicity. Indeed, the drift inwards that we
mentioned above means that, when the random walk is on the boundary of its range,
it is slightly more likely that it goes back inside its range, a fact that could trigger
us to think about recurrence. However, the range of the random walk at that place
could be of a form such that the drift inwards translates to a drift away from 0.

Extremely interesting conjectures have been made about the behavior of the
ORRW on Z

d , d ≥ 3, which are usually attributed to Vladas Sidoravicius and
Vincent Beffara, and independently to Mike Keane. They conjectured that on Z

d ,
d ≥ 3, there exists a phase transition on the strength of the reinforcement parameter
δ. That is, there should exist a critical parameter δc, a priori depending on the
dimension, such that if δ < δc then ORRW with parameter δ is transient, and if
δ > δc then ORRW is recurrent.

One can then ask finer questions about the model, for instance, regarding the
scaling limit of the random walk in the transient regime, or the size and the shape
of the range of the random walk in the recurrent regime. All these questions are, of
course, still very much open.

It seems particularly interesting to try to study the asymptotic shape of the range
in the recurrent case. Simulation suggests that there is a certain shape theorem: the
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rangeEn of the walk at time n, when properly scaled by some polynomial in n, seem
to converge to a deterministic shape. Nothing has been proved in this direction, and
we refer the reader to the nice survey by Gady Kozma [14] where some pictures
from simulations are presented.

1.3 Other Models Related to ORRW

A very nice explanation for why the aforementioned shape theorem result is true was
usually given by Vladas by referring to what he called the Glassy sphere model.
In this model, consider spheres of radius n ≥ 1 simply put inside each other,
like Matryoshka dolls. Then, start a random walk on Z

d from the origin which is
reflected upon touching the smallest sphere. Once the random walk has touched the
smallest sphere a number of times that is proportional to its size (i.e. nd−1 for the
n-th sphere), the sphere is destroyed so that the random walk now gets reflected on
the next sphere. It is straightforward to prove that the random walk in the glassy
sphere model is recurrent in any dimensions.

One could believe that the ORRW for large δ follows the same behaviour as the
glassy sphere model. In fact, if one believes that the range of ORRW for large δ
grows like a ball, then once the ORRW has visited all vertices in a ball of radius
n, it will roughly visit all the edges on the boundary of this ball before going too
far away; hence it will “bump” on the boundary of this ball a number of times that
is comparable to the size of the boundary. It is not at all clear to us whether this
picture really corresponds to the actual behavior of ORRW. Though simulations
suggest that this is indeed the case, one cannot disregard that simulations may not
be very conclusive for model with such strong self interactions.

Other caricature models have been considered in order to try to understand the
ORRW. Here is another model which Vladas recurrently mentioned and which
seems very interesting but very challenging to analyze (we are not sure who this
model should be attributed to). Consider a semi-infinite cylinder (Z/NZ)×{n : n ≤
N}. On every vertex at non-negative height, i.e. on (Z/NZ) × {n : 0 ≤ n ≤ N},
put a so-called cookie. Then, start a random walk coming from −∞. This random
walk evolves like a simple random walk with the exception that, when it jumps on
a vertex (z, h) where there is a cookie, then it instantaneously jumps to the vertex
(z, h−1) just below it and the cookie disappears. It is clear that this random walk is
recurrent as it is essentially one dimensional, but interesting questions can be asked
about the shape created by the remaining cookies. Indeed, one can consider the
interface between the area without cookies and the area with cookies. This interface
is intended to provide a simplistic picture of the microscopic behavior of the ORRW
close to the boundary of its range for very large δ.

Note that the interface looks like a function; if we clear the cookie at a given
vertex, then all the cookies from vertices below it will be cleared as well by the
definition of the dynamics. Several questions arise from this model. For instance,
stop the random walk when it reaches for the first time the height N . Then, how
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many cookies are left? How does the interface look like at that time? What is the
height of the lowest remaining cookie? It is believed that, when the random walk first
reaches height N , almost all the cookies have been eaten, with only o(N) cookies
remaining. It is also believed that the fluctuations of the interface should be of order
N2/3. A more daring guess would be that the interface, when the random walk first
reaches height N , is related to KPZ.

Such questions also inspired Vladas to look at random walk on growing domains.
In this case, there is a growing sequence of subsets ofZd called domains and denoted
byD0 ⊂ D1 ⊂ D2 ⊂ · · · , and a deterministic sequence of times t1 < t2 < · · · such
that at a time t ∈ [ti , ti+1) the random walk jumps according to a simple random
walk that is confined to be inside Di (that is, the random walk is reflected at the
boundary of Di ). So the sequence t1, t2, . . . gives the times at which the domain of
the random walk grows. This model was studied by Vladas and others in [2, 3], and
we refer the reader to [11] for more recent results.

1.4 ORRW in Other Graphs

We conclude this section by mentioning interesting results that have been proved
about ORRW in graphs that are not Zd . Indeed, it is interesting to ask whether the
phase transition between recurrence and transience can be observed on some graph.

The ORRW on ladders has been studied, i.e. on Z × {1, . . . , k} with k ≥ 2.
In this case, the ORRW should clearly be recurrent for all values of the parameter
δ. First, Sellke [17] proved that ORRW is recurrent for k = 2, and showed that
ORRW is recurrent for any k ≥ 2 as long as δ is small enough. Then, Vervoort [21]
wrote a draft paper giving an incomplete proof of recurrence for large reinforcement
parameter, which despite having some gaps and mistakes, contained a very good
core idea. This argument was later on cleaned and completed in [13].

The ORRW has also been analyzed on trees. The first result in that direction is
the proof of transience on the binary tree in [8] for any value of the parameter δ,
which shows that there is no phase transition on binary trees unlike the conjectured
behavior on Z

d . The lack of a phase transition has also been established on Galton-
Watson trees by Collevecchio [4], who found a very elegant proof through a
comparison to a branching process. In the hope of observing a phase transition,
Kious and Sidoravicius [12] considered the ORRW on a particular family of trees,
which grows only polynomially fast, and were able to prove the existence of a phase
transition on such trees. Later, it was proved in [5] that the critical parameter δc of
the ORRW of any tree is equal to the a quantity that was called the branching-ruin
number of the tree. This quantity characterizes the size of the tree at the polynomial
scale.
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2 Random Memory Walk

Our motivation to study the random memory walk is to compare it to ORRW in
high dimensions and with small reinforcement parameter. The rough idea is to say
that, if the ORRW is transient and if the dimension is large enough, then the loops
produced by the range of the ORRW should not be too large, and thus the random
walk should not get to revisit its range a large number of times. Consequently, the
ORRW would behave as if it had a finite random memory (given by the size of the
local loops it produces).

We have no intention to argue that the random memory walk has the same
behavior as the ORRW in high dimension; in particular, as we will see in the
definition below, the random memory walk has a memory that is independent of
the range of the walk, which is certainly not the case for the ORRW. Nonetheless,
one may ask the question of whether the ORRW in high dimensions and for
small reinforcement parameter shows a similar regenerative structure as the random
memory walk studied in the present paper.

Now we define the random memory walk. As before, we denote the random walk
by (Xn)n≥0 starting fromX0 = 0. Let us denote by Rn,m the lastm edges visited by
the random walk at time n; that is,

Rn,m = {{x, y} : ∃i ∈ {n−m+ 1, . . . , n} s.t. {Xi−1,Xi} = {x, y}} ,

with the convention that Rn,0 = ∅. In order to decide its position at time n + 1,
the random memory walk will have access to a memory of random length regarding
its past. The length of this memory is given by the random variable Kn, where
K0,K1, . . . will form an i.i.d. sequence of nonnegative random variables. Then the
distribution of the location of the random memory walk at time n + 1 will depend
only on the current location of the walk (Xn) and on the information (the memory)
regarding its Kn last positions which is given by Rn,Kn .

More precisely, define the filtration Fn = σ((Xi,Ki), i ≤ n), for any n ≥ 0.
Assuming Xn = x ∈ Z

d and y is a neighbor of x, i.e. |x − y| = 1, the next step is
distributed according to the following conditional probability:

P [Xn+1 = y|Fn] = 1+ δ1{{x, y} ∈ Rn,Kn}∑
z:z∼x(1+ δ1{{x, z} ∈ Rn,Kn})

, (2)

where δ > 0 is the reinforcement parameter. In other words, the random memory
walk defined above jumps like the ORRW but reinforcing only the last edges in the
range, where the number of edges chosen to be reinforced is a random variable that
changes at each step and is given by the sequence (Kn)n.

For the moment we will assume that

P[K0 = 0] = p0 > 0.
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The above assumption is not at all essential for the proof and is made here just to
simplify the exposition. Later in Sect. 6, we explain how our proof can be adapted to
remove the above assumption. In that section we also discuss a more general version
of this model, where the probability of jump of the random walk is not given by (2)
but is a more general function of Rn,Kn .

3 Our Results

We are now ready to state our two main theorems. Our first theorem established
transience in dimensions at least 3.

Theorem 1 Assume that E(K0) < ∞. Then, the random memory walk (Xn)n on
Z
d , d ≥ 3, is transient almost surely.

In our second result, we establish the scaling limit of the random memory walk
under stronger assumptions.

Theorem 2 If E(K3
0 ) <∞, then (Xn)n satisfies a functional central limit theorem,

that is, for any T > 0,

(
X%nt&√
n

)

t∈[0,T ]
⇒ (Bt )t∈[0,T ] ,

where the convergence holds in law, and where (Bt )t is a non-degenerate d-
dimensional Brownian motion.

It may seem surprising that we require a finite third moment for the memory in
the above result, instead of only a finite second moment. However, as we explain
later in the paper, it seems that this is the best we can do with the techniques we use.

Remark 1 Following the arguments of this paper, one can easily prove that, if K0
has a third moment, then the random memory walk is recurrent in dimension 2. It is
indeed straightforward to prove that the sub-walk defined in Sect. 4 is recurrent for
d = 2, using Proposition 1 below and Chung-Fuchs theorem.

4 Regeneration Structure Induced by the Memory and
Transience of a Sub-walk

The main idea is to focus on the sequence (Kn)n. We will define regeneration times,
that is, times at which the random walk forgets its past and starts afresh. Once we are
able to prove that such times happen infinitely often, we will be able to use classical
arguments in order to prove Theorems 1 and 2.
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0 time8 10 15 22

K8 = 7
K15 = 0

K22 = 4τ1 = 10

2

Fig. 1 Illustration of the regeneration time structure. The length of the horizontal line segment
ending at coordinate i represents the variable Ki (which shows how far in the past the random
walk needs to look at to decide where to be at time i + 1). Line segments are drawn at different
heights for illustration purpose

Define τ0 := 0 and

τ1 = inf{n > 0 : Kn+i ≤ i, ∀i ≥ 0}.
Intuitively, if we consider time as the non-negative reals R+ and, for each integer
i ≥ 0, we draw a line segment between i and i − Ki , then τ1 is the first position
such that there is no line segment covering the edge {τ1−1, τ1}; see Fig. 1. Note that
when the random walk decides to jump from its location at τ1 to τ1+1, it does so as
a step of simple random walk (that is, it just chooses a neighbor of Xτ1 uniformly at
random and jumps there), and from that time onwards it will not take into account
anymore the edges it traversed before time τ1. Note also that τ1 necessarily happens
at a time for whichKτ1 = 0; that is the reason why we consider the assumption that
P[K0 = 0] > 0.

Now we show that τ1 is finite almost surely.

Proposition 1 We have that P [τ1 <∞] = 1 if and only if E [K0] <∞. Moreover,
for any integer m ≥ 1, we have that E(τm1 ) <∞ if and only if E(Km+1

0 ) <∞.

Proof First, we note that if P [τ1 = 1] = 0, then P [τ1 <∞] = 0 as, for any n > 1,
we have

P [τ1 = n] = P
[∀1 ≤ k ≤ n− 1, ∃j ≥ 0 s.t. Kk+j > j,Kn+i ≤ i,∀i ≥ 0

]

≤ P [Kn+i ≤ i,∀i ≥ 0]

= P [K1+i ≤ i,∀i ≥ 0]

= P [τ1 = 1] = 0.

Now, assume P [τ1 = 1] > 0 and let us study the event {τ1 <∞}. This event can
be seen as successive trials of realizing the events {Kn+i ≤ i,∀i ≥ 0}, and these
trials are independent and have probability P [τ1 = 1]. To prove that properly, let us
define recursively

T1 = 1, Sk = inf{i ≥ 0 : KTk+i > i}, and

Tk+1 = Tk + Sk + 1, for all k ≥ 1.
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In words, Tk +Sk is the first position after Tk − 1 for which the memory of the walk
at that time (equivalently, the line segment that ends there) goes back all the way to
Tk − 1. For example, in Fig. 1, we have that T1 + S1 = 2, and subsequently we get
T2 = 3 and T2 + S2 = 3.

The idea behind this definition is that if τ1 > 1, then we look for the value of S1.
This translates to checking the random variables KT1 ,KT1+1, . . . until finding the
value of S1. If we obtain that S1 <∞, then position T1 + S1 + 1 = T2 is a possible
candidate for τ1. If it turns out that τ1 > T2, then we look for S2 and T3. At each
step of this procedure, say step k ≥ 1, we will show that, regardless of the values
of T1, T2, . . . , Tk and regardless of the values of S1, S2, . . . , Sk−1, with positive
probability we have that Sk = ∞, which in turn gives that τ1 = Tk+1 = Tk+Sk+1.

More formally, define N = inf{k ≥ 1 : Sk = ∞}. Using these random variables,
we have that {τ1 <∞} = {N <∞}. Also, note that, P[S1 = ∞] = P[τ1 = 1] and,
for any k > 0, conditional on Tk, Sk is distributed like S1. Hence, one can write

P[τ1 <∞] =
∞∑

k=1

P[N = k]

=
∞∑

k=1

P

[
k−1⋂

i=1

{Si <∞}, Sk =∞
]

=
∞∑

k=1

P [τ1 = 1] (1− P [τ1 = 1])k−1 = 1.

Hence, we have proved that if P [τ1 = 1] > 0, then P [τ1 <∞] = 1. Finally, we
can conclude the first statement of the proposition by noting that

P [τ1 = 1] =
∞∏

i=0

P[K0 ≤ i] =
∞∏

i=0

(1− P[K0 > i]) ∼ ce−E(K0),

and therefore P [τ1 = 1] > 0 if and only if E(K0) <∞.
Now we turn to the second part of the proposition. For this purpose, note that,

from the definition of (Tk)k , (Sk)k and N ,

τ1 = TN = N +
N−1∑

k=1

Sk,

where we recall thatN is distributed as a geometric random variable with parameter
P [τ1 = 1], and where the random variables Sk appearing in the sum above are
conditioned to be finite. Hence, τ1 is essentially equal to a sum of a geometric
number of independent random variables distributed like S1 conditioned on {S1 <

∞}. Therefore, for anym ≥ 1, τ1 has an m-th moment if and only if S1 conditioned
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on {S1 <∞} has an m-th moment. Now, for any k ≥ 0, one can write

P [S1 = k| S1 <∞] = P [K1+i ≤ i, for 0 ≤ i ≤ k − 1, andK1+k > k]
P[S1 <∞]

=
∏k−1
i=0 (1− P [K0 > i])× P [K0 > k]

P[S1 <∞] .

Now, assume that E(K0) <∞. In that case, as shown above,
∏k−1
i=0 (1− P [K0 > i])

converges to a positive constant. Besides, we have P[S1 < ∞] = P[τ1 = 1] > 0.
Thus, there exist constants c0 and c1 such that

c0P [K0 > k] ≤ P [S1 = k|S1 <∞] ≤ c1P [K0 > k] .

Thus, we have that, for any m ≥ 1,

c0

∞∑

k=1

kmP [K0 > k] ≤ E
(
Sm1

∣
∣ S1 <∞) ≤ c1

∞∑

k=1

kmP [K0 > k] .

From there, it is clear that E
(
Sm1

∣
∣ S1 <∞)

is finite if and only ifK0 has an (m+1)-
th moment, which concludes the proof. ��

The time τ1 > 0 is referred to as the first regeneration time. Let us denote

Dn := {Kn+i ≤ i, ∀i ≥ 0} (3)

the event on which n ≥ 0 is a regeneration time.
By Proposition 1, we have that if E(K0) < ∞ then P[D1] > 0, which easily

implies that P[D0] > 0. Therefore, we can safely define the conditional probability
P[·] := P[·|D0] and we have that if E(K0) <∞ then

P[τ1 <∞] = P[τ1 <∞,D0]
P[D0] = 1.

Also, we have that

P[Dn] = P[Ki ≤ i, ∀0 ≤ i ≤ n− 1] × P[Kn+i ≤ i, ∀i ≥ 0]
P[Ki ≤ i, ∀i ≥ 0]

= P[Ki ≤ i, ∀0 ≤ i ≤ n− 1]
≥ P[D0] > 0. (4)

We inductively define the sequence of regeneration times τn = τn−1 + τ1 ◦ θτn−1 ,
where θ is the canonical shift. The following proposition is a classical result on
regeneration times.
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Proposition 2 Assume that E(K0) <∞. The random variables (Xτn −Xτn−1 , τn−
τn−1)n≥1 are independent and, except for n = 1, are distributed like (Xτ1 , τ1) under
P. In particular, all the regeneration times τn, n ≥ 1, are finite P-almost surely.

Proof This easily follows from general and classical arguments. For instance, one
can replicate the proof of Corollary 1.5 in [20], which comes from Proposition 1.3
and Theorem 1.4 therein. ��

Note that, from the above, we have that if X is almost surely transient under P
then it is almost surely transient under P as lim inf ||Xn|| ≥ −||Xτ1 ||+lim inf ||Xn−
Xτ1 ||. Nevertheless, it is not obvious that X satisfies a 0-1 law for transience, even
under P.

In this section, we want first to prove transience and CLT for the walk (Xn)
considered at regeneration times. For this purpose, define the walk (Yk)k≥0 on Z

d

such that Yk = Xτk for any k ≥ 0.

Proposition 3 If E(K0) <∞, then the random walk (Yk) is transient under P, and
under P.

Proof Assume E(K0) < ∞. From Proposition 2, we have that, under P, (Yk+1 −
Yk)k≥0 is a sequence of i.i.d. random variables. As the definition of the walk (Xn) is
symmetric with respect to every direction of Zd , we have that, under P, the process
(Yk)k is a symmetric, genuinely d-dimensional random walk. We can then directly
conclude the first statement by using Theorem T1, p.83 of Spitzer’s book [18], that
is Chung-Fuchs theorem. ��

5 Transience and CLT for the Random Memory Walk

The proof of the CLT (Theorem 2) will come easily from classical arguments. On
the other hand, the proof for transience (Theorem 1) requires some work as we want
to derive it under minimal assumptions. The idea is that, once we know that the walk
(Yk) = (Xτk )k is transient, we need to prove that the random walk (Xn) cannot come
back to zero between two regeneration times infinitely often.

Proof (Theorem 1) We will show the transience of (Xn). Note that X is transient,
i.e. ||Xn|| → ∞, if and only if it visits 0 finitely often. We already know that the
random walk (Yk)k visits 0 only finitely often, which is equivalent to saying that
there is only a finite number of indices i such that Xτi = 0. We need to prove that
X cannot come back to 0 between two regeneration times infinitely often.

Let us define the sequence of successive return times to 0 by R0 = 0 and Ri =
inf{n > Ri−1 : Xn = 0}, for i ≥ 1. In the following computation, we use the fact
that, every time X is back at 0 and this time is a regeneration time, it implies that Y
is back at 0, thus this cannot happen infinitely often. Recall that Dn is the event that
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n is a regeneration time; cf. (3). We have that

P[∩i≥1{Ri <∞}]
= P[∩i≥1 ∪k≥i {Rk <∞,DRk }] + P[∪i≥1 ∩k≥i {Rk <∞,DcRk }]
≤ P[Y visits 0 i.o.] + P[∪i≥1 ∩k≥i {Rk <∞,DcRk }]
= P[∪i≥1 ∩k≥i {Rk <∞,DcRk }].

Hence, we obtain the bound

P[∩i≥1{Ri <∞}] ≤
∑

i≥1

P[∩k≥i{Rk <∞,DcRk }].

Let us fix an index i ≥ 1 and prove that P[∩k≥i{Rk <∞,DcRk }] = 0.
We need to define inductively a sequence of stopping times that are all finite on

∩k≥i{Rk <∞,DcRk }. First, define

R̃1 = Ri ≥ i ≥ 1,

S̃1 = R̃1 + inf{j ≥ 0 : KR̃1+j > j }.

Note that S̃1 is the first position after R1 whose memory reaches back to before R̃1;
in other words, S̃1 is the first position that shows that R̃1 is not a regeneration time.
Then, define inductively, for any k ≥ 1,

R̃k+1 = inf{j > S̃k : Xj = 0} ≥ k + 1,

S̃k+1 = R̃k+1 + inf{j ≥ 0 : KR̃k+1+j > j }.

The times (R̃n)n are stopping times with respect to the filtration Fn :=
σ (Xk,Kk−1, 0 ≤ k ≤ n) and the times (S̃n)n are stopping times with respect to
σ (Xk,Kk, 0 ≤ k ≤ n). Moreover, we have that

P[∩k≥i{Rk <∞,DcRk }] ≤ P[∩k≥1{R̃k <∞, S̃k <∞}]
= lim
N→∞P[∩Nk=1{R̃k <∞, S̃k <∞}]. (5)

Now, note that, on the event {R̃k <∞},

P

[
S̃k <∞

∣
∣∣FR̃k

]
= 1− P

[
DR̃k

∣
∣∣FR̃k

]

= 1−
∑

n≥k
1{R̃k = n}P [Dn|Fn]
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= 1−
∑

n≥k
1{R̃k = n}P [Dn]

≤ 1− P[D0],

where we used that Dn is independent of Fn and (4). Together with (5), we obtain
that

P[∩k≥i{Rk <∞,DcRk }] ≤ lim
N→∞ (1− P[D0])N = 0.

This finally implies that

P[X is recurrent] = P[∩i≥1{Ri <∞}] = 0.

��
Proof (Theorem 2) We now establish the functional central limit theorem, assum-
ing E(K3

0 ) < ∞. We will simply explain why it holds, as this can be proved by
following classical results, for instance the proof of Theorem 4.1 in [19] (the only
difference is that Brownian motion being non-degenerate comes much more easily
in our case, as the process is fully symmetric). The idea of the proof is simply
that a functional CLT holds for the random walk (Yk)k as, for each k ≥ 1, Yk is
a sum of i.i.d. random variables which are centered and square integrable (using
our assumptions). This comes from Donsker’s invariance principle. From there, one
only needs an inversion argument for k �→ τk , which comes from the fact that τk is
also a sum of i.i.d. random variables (satisfying a law of large numbers), and for the
first n regeneration times, the distances between successive regeneration times are
small compared to

√
n (in probability). This latter step is guaranteed by the fact that

τ1 has a finite second moment under P. ��

6 Extensions

There are two main ways in which our results can be extended. The first one is
that the assumption P(K0 = 0) > 0 is not necessary. The second one is that the
jump distribution of the random memory walk does not need to have the form of a
once-reinforced random walk, as stated in (2).

We start explaining how we can get over the assumption P(K0 = 0) > 0. This
assumption might seem arbitrary at first, but this is actually equivalent to saying that,
regardless of the past history of the random walk, the walker jumps to any given
neighbor with a probability bounded below by a universal constant. Note that this is
indeed the case when the jump distribution is as given by (2) since the probability
that the walker jumps to any given neighbor is at least 1

1+(2d−1)(1+δ) , regardless of
everything else. So even if we had P(K0 = 0) = 0, we could redefine the jump
distribution and the distribution of K0 to have P(K0 = 0) > 0.
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This then leads us to look at different jump distributions for the walker. Consider
the following more general version of the random memory walk. Define the filtration
Fn = σ((Xk,Kk), k ≤ n), for any n ≥ 0. Assuming Xn = x ∈ Z

d and y is a
neighbor of x, i.e. |x−y| = 1, the next step is distributed according to the following
conditional probability:

P [Xn+1 = y|Fn] = f (
x, y,Rn,Kn

)
, (6)

where f : Zd × Z
d × E → (0, 1) is some predetermined function, and E denotes

the set of all finite subsets of edges of Zd .
Then our proofs work provided f satisfies some symmetry assumption. Namely,

it is enough to require that f is invariant under graph isomorphism. We also want
to impose that either P(K0 = 0) > 0 or there exists a positive constant c so that for
any neighboring vertices x and y, and any R ∈ E we have

f (x, y,R) ≥ c.
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Exponential Decay in the Loop O(n)
Model on the Hexagonal Lattice for n > 1
and x < 1√

3
+ ε(n)

Alexander Glazman and Ioan Manolescu

Abstract We show that the loop O(n) model on the hexagonal lattice exhibits
exponential decay of loop sizes whenever n > 1 and x < 1√

3
+ ε(n), for some

suitable choice of ε(n) > 0.
It is expected that, for n ≤ 2, the model exhibits a phase transition in terms of x,

that separates regimes of polynomial and exponential decay of loop sizes. In this
paradigm, our result implies that the phase transition for n ∈ (1, 2] occurs at some
critical parameter xc(n) strictly greater than that xc(1) = 1/

√
3. The value of the

latter is known since the loop O(1) model on the hexagonal lattice represents the
contours of the spin-clusters of the Ising model on the triangular lattice.

The proof is based on developing n as 1 + (n − 1) and exploiting the fact that,
when x < 1√

3
, the Ising model exhibits exponential decay on any (possibly non

simply-connected) domain. The latter follows from the positive association of the
FK-Ising representation.

Keywords Loop models · O(n) model · Phase diagram · Lattice models ·
Statistical mechanics · Ising model · Enhancement percolation

1 Introduction

The loopO(n)model was introduced in [10] as a graphical model expected to be in
the same universality class as the spin O(n) model. The latter is a generalisation of
the seminal Ising model [19] that incorporates spins contained on the n-dimensional
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sphere. See [22] for a survey of both O(n) models. For integers n > 1, the
connection between the loop and the spin O(n) models remains purely heuristic.
Nevertheless, the loop O(n) model became an object of study in its own right; it
is predicted to have a rich phase diagram [4] in the two real parameters n, x > 0.
For n = 0, 1, 2 the loop O(n) model is closely related to self-avoiding walk, the
Ising model, and a certain random height model, respectively.

Let H denote the hexagonal lattice. A domain is a subgraph D = (VD , ED )

of H formed of the edges contained inside or along some simple cycle ∂D ⊂ E(H)
(hereafter called a loop), and all endpoints of such edges. Write FD for the set of
faces of H delimited by edges of D only.

Configurations ω ∈ {0, 1}E(D) will be identified to the subset of edges e ∈ ED
with ω(e) = 1 (also called open edges) as well as to the spanning subgraph of D
containing exactly these edges. A loop configuration is any element ω ∈ {0, 1}ED
that is even, which is to say that the degree of any vertex is 0 or 2 when ω is seen as
a subgraph of D . As such ω is the disjoint union of a set of loops of D . Loops are
allowed to run along the boundary edges, but may not terminate at boundary points.

For real parameters n, x > 0, let LoopD,n,x be the measure on loop configura-
tions given by

LoopD,n,x(ω) =
1

Zloop(D, n, x)
· x |ω|n�(ω),

where |ω| is the number of edges in ω, �(ω) is the number of loops in ω and
Zloop(D, n, x) is a constant called the partition function, chosen so that LoopD,n,x
is a probability measure.

We will consider that the origin 0 is a vertex of the hexagonal lattice and will
always consider domains D containing 0. We say that the loop O(n) model with
edge-weight x exhibits exponential decay of loop lengths if there exists c > 0 such
that for any k ≥ 1 and any domain D ,

LoopD,n,x [R ≥ k] ≤ exp(−ck), (1)

where R stands for the length of the biggest loop surrounding 0.
According to physics predictions [4, 20], the loop O(n) model exhibits macro-

scopic loops when n ∈ [0, 2] and x ≥ xc(n) = 1√
2+√2−n ; that is, the largest loop

surrounding 0 has a diameter comparable to that of the largest ball centred at 0 and
contained in D . For all other values of n and x, the model is expected to exhibit
exponential decay. Moreover, it was conjectured (see e.g. [18, Section 5.6]) that in
the macroscopic-loops phase, the model has a conformally invariant scaling limit
given by the Conformal Loop Ensemble (CLE) of parameter κ , where

κ =
{

4π
2π−arccos(−n/2) ∈ [ 8

3 , 4] if x = xc(n),
4π

arccos(−n/2) ∈ [4, 8] if x > xc(n).

Our main result below is in agreement with the predicted phase diagram.



Exponential Decay for Loop O(n) with n > 1 and x < 1/
√

3+ ε(n) 457

Theorem 1 For any n > 1, there exists ε(n) > 0 such that the loop O(n) model
exhibits exponential decay (1) for all x < 1√

3
+ ε(n).

Furthermore, ε may be chosen so that ε(n) ∼ C(n − 1)2 as n ↘ 1, where

C = (1+√3)5

9·213 .

Prior to our work, the best known bound on the regime of exponential decay

for n > 1 was x < 1√
2+√2

+ ε(n) [25], where
√

2+√2 is the connective constant

of the hexagonal lattice computed in [11]. Also, in [13] it was shown that when n
is large enough the model exhibits exponential decay for any value of x > 0. Apart
from the improved result, our paper provides a method of relating (some forms of)
monotonicity in x and n; see Sect. 5 for more details.

Existence of macroscopic loops was shown for n ∈ [1, 2] and x = xc(n) =
1√

2+√2−n in [12], for n = 2 and x = 1 in [15], and for n ∈ [1, 1 + ε] and x ∈
[1 − ε, 1√

n
] in [9]. Additionally, for n = 1 and x ∈ [1,√3] (which corresponds

to the antiferromagnetic Ising model) as well as for n ∈ [1, 2] and x = 1, a partial
result in the same direction was shown in [9]. Indeed, it was proved that in this range
of parameters, at least one loop of length comparable to the size of the domain exists
with positive probability (thus excluding the exponential decay). All results appear
on the phase diagram of Fig. 1.

n

x

xc = 1√
2+

√
2−n

11√
2

1√
2+

√
2

1

2

Exponential decay

Ising

[13]

[Present
paper]

[12]

[11]

[15]

[9]

1√
3

[25]

SAW

Lipschitz

0
√
3

Macroscopic loops

x = 1√
n

n >> 2

F
K
G
region

Fig. 1 The phase diagram of the loop O(n) model. It is expected that above and to the left of the
curve xc(n) = 1√

2+√2−n (in black) the model exhibits exponential decay of loop lengths; below

and on the curve, it is expected to have macroscopic loops and converge to CLE(κ) in the scaling
limit. The convergence was established only at n = 1, x = 1√

3
(critical Ising model [3, 8, 24])

and n = x = 1 (site percolation on T at pc = 1
2 [5, 23]). Regions where the behaviour was

confirmed by recent results are marked in orange (for exponential decay) and red (for macroscopic
loops). The relevant references are also marked
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Let us mention that loop models were also considered on Z
d . In particular, for n

large enough, Chayes, Pryadko, and Shtengel [7] showed that the loop lengths
exhibit exponential decay, for all values of x.

We finish the introduction by providing a sketch of our proof. There are three
main steps in it. Fix n > 1. First, inspired by Chayes–Machta [6], we develop the
partition function in n = (n − 1) + 1, so that it takes the form of the loop O(1)
model sampled on the vacant space of a weighted loop O(n − 1) model. Second,
we use that the loop O(1) model is the representation of the Ising model on the
faces of H; the latter exhibiting exponential decay of correlations for all x < 1/

√
3.

Via the FK-Ising representation, this statement may be extended when the Ising
model is sampled in the random domain given by a loopO(n− 1) configuration. At
this stage we will have shown that the loop O(n) model exhibits exponential decay
when x < 1/

√
3. Finally, using enhancement techniques, we show that the presence

of the loop O(n − 1) configuration strictly increases the critical parameter of the
Ising model, thus allowing to extend our result to all x < 1/

√
3+ ε(n).

2 The Ising Connection

In this section we formalise a well-known connection between the Ising model (and
its FK-representation) and the loopO(1)model (see for instance [14, Sec. 3.10.1]).
It will be useful to work with inhomogeneous measures in both models.

Fix a domain D = (V ,E); we will omit it from notation when not necessary.
Let x = (xe)e∈E ∈ [0, 1]E be a family of parameters. The loop O(1) measure with
parameters x is given by

LoopD,1,x(ω) = Loopx(ω) =
1

Zloop(D, 1, x)

( ∏

e∈ω
xe

)
· 1{ω loop config.} ∀ω ∈ {0, 1}E.

The percolation measure Percox of parameters x consists of choosing the state of
every edge independently, open with probability xe for each edge e ∈ E,

Percox(ω) =
( ∏

e∈ω
xe

) ( ∏

e∈E\ω
(1− xe)

)
, for all ω ∈ {0, 1}E.

Finally, associate to the parameters x the parameters p = (pe)E ∈ [0, 1]E defined
by

pe = p(xe) = 2xe
1+ xe , for all e ∈ E.
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Define the FK-Ising measure on D by

Φx(ω) = 1

ZFK(x)

( ∏

e∈ω
pe

) ( ∏

e∈E\ω
(1− pe)

)
2k(ω), for all ω ∈ {0, 1}E.

where k(ω) is the number of connected components of ω and ZFK(x) is a constant
chosen so that Φx is a probability measure.

When x is constant equal to some x ∈ [0, 1], write x instead of x. For D ⊂ E,
write ΦD,x and LoopD,1,x for the FK-Ising and loop O(1) measures, respectively,
on D with inhomogeneous weights (x1{e∈D})e∈E (where 1 stands for the indicator
function). These are simply the measures ΦD,x and LoopD,1,x conditioned on ω ∩
Dc = ∅.

Define a partial order on {0, 1}E by saying that ω ≤ ω′ if ωe ≤ ω′e for all e ∈ E.
An eventA ⊂ {0, 1}E is called increasing if its indicator function is increasing with
respect to this partial order.

Proposition 1 Fix x = (xe)e∈E ∈ [0, 1]E and let ω,π ∈ {0, 1}E be two
independent configurations chosen according to Loopx and Percox, respectively.
Then the configurationω∨π defined by (ω∨π)(e) = max{ω(e), π(e)} has lawΦx.
In particular

Loopx ≤st Φx, (2)

where ≤st means stochastic domination, i.e., Loopx(A) ≤ Φx(A), for any increas-
ing event A.

We give a short proof below. The reader familiar with the Ising model may
consult the diagram of Fig. 2 for a more intricate but more natural proof.

i.i.d. ±1 spins on
connected comp.

of H \ ω
ω loop config

Loopx Edwards-Sokal
coupling: add

percolation to edges
between faces of

different spin

Ising on faces with
Juv = − 1

2 log xuv

FK-Ising on triangular
lattice puv = 1 − xuv

dualityFK-Ising on H
pe = 2xe

1+xe

add percolation
to loops

Fig. 2 The coupling of Proposition 1 via the spin-Ising representation
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Proof Write Loopx ⊗ Percox for the measure sampling ω and π independently.
Fix η ∈ {0, 1}E and let us calculate

Loopx ⊗ Percox(ω ∨ π = η) =
∑

ω⊂η
ω loop config

LoopD,x(ω) · PercoD\ω,x(η \ ω)

=
∑

ω⊂η
ω loop config

1

Zloop(D, 1, x)

( ∏

e∈ω
xe

) ( ∏

e∈η\ω
xe

) ( ∏

e∈E\η
(1 − xe)

)

= 1

Zloop(D, 1, x)

( ∏

e∈η
xe

) ( ∏

e∈E\η
(1− xe)

) ∑

ω⊂η
ω loop config

1. (3)

Next we compute the number of loop configurationsω contained in η. Consider η
as a graph embedded in the plane and let F(η) be the set of connected components
of R

2 \ η; these are the faces of η. The set of loop configurations ω contained
in η is in bijection with the set of assignments of spins ±1 to the faces of η,
with the only constraint that the infinite face has spin +1. Indeed, given a loop
configuration ω ⊂ η, assign spin −1 to the faces of η surrounded by an odd number
of loops of ω, and +1 to all others. The inverse map is obtained by considering the
edges separating faces of distinct spin.

The Euler formula applied to the graph η reads |V | − |η| + |F(η)| = 1 + k(η).
Hence, the number of loop configurations contained in η is

∑

ω⊂η
ω loop config

1 = 2|F(η)|−1 = 2k(η)+|η|−|V |.

Inserting this in (3), we find

Loopx ⊗ Percox
(
ω ∨ π = η) = 2−|V |

Zloop(D, 1, x)

( ∏

e∈η
2xe

) ( ∏

e∈E\η
(1− xe)

)
2k(η)

= 2−|V |
∏
e∈E(1+ xe)

Zloop(D, 1, x)

( ∏

e∈η
2xe

1+xe
)( ∏

e∈E\η
(1− 2xe

1+xe )
)

2k(η).

Since Loopx ⊗ Percox is a probability measure, we deduce that it is equal to Φx
and that the normalising constants are equal, namely

Zloop(D, 1, x)
2−|V |

∏
e∈E(1+ xe)

= ZFK(D, x). (4)
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The procedure of sampling (ω, ω ∨ π) provides an increasing coupling between
Loopx and Φx; the stochastic domination follows from the existence of said
coupling. ��

While the loop model has no apparent monotonicity, the FK-Ising model does.
This will be of particular importance.

Proposition 2 (Thm. 3.21 [16]) Let x = (xe)e∈E ∈ [0, 1]E and x̃ = (x̃e)e∈E ∈
[0, 1]E be two sets of parameters with xe ≤ x̃e for all e ∈ E. Then Φx ≤st Φx̃.

The version above is slightly different from [16, Thm 3.21], as it deals with
inhomogeneous measures; adapting the proof is straightforward.

Finally, it is well known that the FK-Ising model on the hexagonal lattice exhibits
a sharp phase transition at pc = 2√

3+1
: the critical point for the Ising model was

computed by Onsager [21] (see [2] for the explicit formula on the triangular lattice),
the sharpness of the phase transition was shown in [1]. For p = p(x) strictly
below pc, which is to say x < 1√

3
, the model exhibits exponential decay of cluster

volumes. Indeed, this may be easily deduced using [16, Thm. 5.86].

Theorem 2 For x < 1√
3

there exist c = c(x) > 0 and C > 0 such that, for any

domain D and any k ∈ N,

ΦD,x(|C0| ≥ k) ≤ C e−c k,

where C0 denotes the cluster containing 0 and |C0| its number of vertices.

3 n = (n − 1) + 1

Fix a domain D = (V ,E) and a value n > 1. Choose ω according to LoopD,n,x .
Colour each loop of ω in blue with probability 1 − 1

n
and red with probability 1

n
.

Let ωb and ωr be the configurations formed only of the blue and red loops,
respectively; extend LoopD,n,x to incorporate this additional randomness.

Proposition 3 For any two non-intersecting loop configurations ωb and ωr ,

LoopD,n,x (ωr |ωb) = LoopD\ωb,1,x(ωr) and

LoopD,n,x(ωb) =
Zloop(D \ ωb, 1, x)
Zloop(D, n, x)

(n− 1)�(ωb)x |ωb|.
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Proof For two non-intersecting loop configurations ωb and ωr , if we write ω =
ωb ∨ ωr , we have

LoopD,n,x(ωb, ωr ) =
(
n−1
n

)�(ωb)( 1
n

)�(ωr )LoopD,n,x (ω)

= 1

Zloop(D, n, x)
(n− 1)�(ωb)x |ωb|+|ωr |

= Zloop(D \ ωb, 1, x)
Zloop(D, n, x)

(n− 1)�(ωb)x |ωb| · x |ωr |

Zloop(D \ ωb, 1, x) .

Notice that ωr only appears in the last fraction. Moreover, if we sum this fraction
over all loop configurations ωr not intersecting ωb, we obtain 1. This proves both
assertions of the proposition. ��

Recall that for a percolation configuration, C0 denotes the connected component
containing 0. If ω is a loop configuration, then C0(ω) is simply the loop in ω that
passes through 0 (with C0(ω) := {0} if no such loop exists).

Corollary 1 Let n ≥ 1 and x < 1/
√

3. Then LoopD,n,x exhibits exponential decay.

Proof For any domain D and k ≥ 1 we have

1
n
LoopD,n,x(|C0(ω)| ≥ k) = LoopD,n,x(|C0(ωr)| ≥ k)

≤ LoopD,n,x
[
ΦD\ωb,x(|C0| ≥ k)

]
by Prop. 1 and 3

≤ ΦD,x (|C0| ≥ k) by Prop. 2

≤ Ce−c k by Thm. 2,

where c = c(x) > 0 and C > 0 are given by Theorem 2. Thus, the length of the
loop of 0 has exponential tail, uniformly in the domain D . In particular, if D is fixed,
the above bound also applies to any translates of D , hence to the loop of any given
point in D .

Let v0, v1, v2 . . . be the vertices of D on the horizontal line to the right of 0,
ordered from left to right, starting with v0 = 0. If R ≥ k, then the largest loop
surrounding 0 either passes through one of the points v0, . . . , vk−1 and has length
at least k, or it passes through some vj with j ≥ k, and has length at least j , so as
to manage to surround 0. Thus, using the bound derived above, we find

LoopD,n,x(R ≥ k) ≤ n
[
C ke−c k +

∑

j≥k
C e−c j

]
≤ C′e−c′ k,

for some altered constants c′ > 0 and C′ that depend on c, C and n but not on k. ��
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4 A Little Extra Juice: Enhancement

Fix some domain D = (V ,E) for the whole of this section. Let ωb be a blue loop
configuration. Associate to it the spin configuration σb ∈ {−1,+1}F(D) obtained
by awarding spins −1 to all faces of D that are surrounded by an odd number of
loops, and spins +1 to all other faces (the same blue spin configuration was also
defined in [15]). Write D+ = D+(σb) (and D− = D−(σb), respectively) for the set
of edges of D that have σb-spin +1 (and −1, respectively) on both sides. All faces
outside of D are considered to have spin +1 in this definition. Equivalently, D− is
the set of edges of D \ ωb surrounded by an odd number of loops of ωb and D+ =
D \ (ωb ∪D−). Both D+ and D− will also be regarded as spanning subgraphs of D
with edge-sets D+ and D−, respectively.

Since no edge of D+ is adjacent to any edge of D−, a sample of the loop O(1)
measure LoopD\ωb,1,x may be obtained by the superposition of two independent
samples from LoopD+,1,x and LoopD−,1,x , respectively. In particular, using (2),

LoopD\ωb,1,x(|C0(ωr)| ≥ k) = LoopD+,1,x(|C0(ωr)| ≥ k)+ LoopD−,1,x(|C0(ωr)| ≥ k)
≤ ΦD+,x (|C0| ≥ k)+ΦD−,x (|C0| ≥ k). (5)

Actually, depending on ωb , at most one of the terms on the RHS above is non-zero.
We nevertheless keep both terms as we will later average on ωb. The two following
lemmas will be helpful in proving Theorem 1.

Lemma 1 Let n > 1, x < 1, and set

α =
[ max{(n− 1)2, (n− 1)−2}

(
x

2(x+1)

)6 +max{(n− 1)2, (n− 1)−2}
]1/6

< 1. (6)

If ωb has the law of the blue loop configuration of LoopD,n,x , then both laws of D+
and D− are stochastically dominated by Percoα.

Lemma 2 Fix x ∈ (0, 1) and α < 1. Let x̃ < x be such that

x̃

1− x̃ =
x

1− x ·
(

1+ 1+ x
2(1− x) ·

1− α
α

)−1
. (7)

Write Percoα(ΦD,x(.)) for the law of η chosen using the following two step
procedure: choose D according to Percoα, then choose η according to ΦD,x . Then

Percoα(ΦD,x(.)) ≤st ΦD,x̃ .

Before proving the two lemmas above, let us show that they imply the main
result.
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Proof (of Theorem 1) Fix n > 1. An elementary computation proves the existence
of some ε = ε(n) > 0 such that, if x < 1√

3
+ ε(n) and α and x̃ are defined in terms

of n and x via (6) and (7), respectively, then x̃ < 1√
3
. Straightforward computations

based on the asymptotics of α established in a footnote in the proof of Lemma 1
lead to the asymptotics of ε(n) as n↘ 1 given in Theorem 1.

Fix x < 1√
3
+ ε(n) along with the resulting values α and x̃ < 1√

3
. Then, for any

domain D and k ≥ 1 we have

1
n
LoopD,n,x(|C0(ω)| ≥ k)

= LoopD,n,x(|C0(ωr)| ≥ k)
≤ LoopD,n,x

[
ΦD+,x(|C0| ≥ k)+ΦD−,x(|C0| ≥ k)

]
by (5)

≤ 2Percoα
[
ΦD,x(|C0| ≥ k)

]
by Lemma 1

≤ 2ΦD,x̃ (|C0| ≥ k) by Lemma 2

≤ 2C e−c k by Thm. 2.

In the third line, we have used Lemma 1 and the stochastic monotonicity of Φ in
terms of the domain. Indeed, Lemma 1 implies that LoopD,n,x and Percoα may be
coupled so that the sample D+ obtained from the former is included in the sample D
obtained from the latter. Thus ΦD+,x ≤ ΦD,x . The same applies separately for D−.

To conclude (1), continue in the same way as in the proof of Corollary 1. ��
The following computation will be useful for the proofs of both lemmas. LetD ⊂

E and e ∈ E \ D. We will also regard D as a spanning subgraph of D with edge-
setD. Recall thatZFK(D, x) is the partition function of the FK-Ising measureΦD,x
on D. Then

ZFK(D, x) =
∑

η⊂D
p|η|(1− p)|D|−|η|2k(η)

=
∑

η⊂D
p|η|(1− p)|D∪{e}|−|η| 2k(η) + p|η∪{e}|(1− p)|D|−|η| 2k(η)

≥
∑

η⊂D∪{e}
p|η|(1− p)|D∪{e}|−|η|2k(η) = ZFK(D ∪ {e}, x), (8)

since k(η) ≥ k(η ∪ {e}). Conversely, k(η) ≤ k(η ∪ {e})+ 1, which implies

ZFK(D, x) ≤ 2ZFK(D ∪ {e}, x). (9)
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Proof (of Lemma 1) For β ∈ (0, 1) let Pβ be the Bernoulli percolation on the faces
of D of parameter β:

Pβ(σ) = β#{u : σ(u)=+1}(1− β)#{u : σ(u)=−1} for all σ ∈ {−1,+1}FD .

To start, we will prove that the law induced on σb by LoopD,n,x is dominated
by Pβ for some β sufficiently close to 1. Both measures are positive, and Holley’s
inequality [17] states that the stochastic ordering is implied by

LoopD,n,x (σb = ς1)

LoopD,n,x (σb = ς1 ∧ ς2)
≤ Pβ(ς1 ∨ ς2)

Pβ(ς2)
=

( β

1− β
)#{u : ς1(u)=+1, ς2(u)=−1}

for all ς1, ς2 ∈ {±1}FD . The RHS above only depends on the number of faces
of spin + in ς1 and spin − in ς2. It is then elementary to check that the general
inequality above is implied by the restricted case where ς1 differs at exactly one
face u from ς2, and ς1(u) = +1 but ς2(u) = −1.

Fix two such configurations ς1, ς2; write ω1 and ω2 for their associated loop
configurations. Then, by Lemma 3,

LoopD,n,x(σb = ς1)

LoopD,n,x(σb = ς2)
= Zloop(D \ ω1, 1, x)

Zloop(D \ ω2, 1, x)
(n− 1)�(ω1)−�(ω2)x |ω1|−|ω2|.

Since ς1 and ς2 only differ by one face, ω1 and ω2 differ only in the states of the
edges surrounding that face. In particular ||ω1|−|ω2|| ≤ 6 and |�(ω1)−�(ω2)| ≤ 2.
Finally, using (4), (8), and (9), we find

Zloop(D \ ω1, 1, x)

Zloop(D \ ω2, 1, x)
= ZFK(D \ ω1, 1, x)(1+ x)|ω2|

ZFK(D \ ω2, 1, x)(1+ x)|ω1|

≤ [2(x + 1)]|ω2|−|ω1∧ω2| ≤ [2(x + 1)]6.

In conclusion

LoopD,n,x(σb = ς1)

LoopD,n,x(σb = ς2)
≤

(2(x + 1)

x

)6 ·max{(n− 1)2, (n− 1)−2}.

Then, if we set

β =
( 2(x+1)

x

)6 ·max{(n− 1)2, (n− 1)−2}
1+ ( 2(x+1)

x

)6 ·max{(n− 1)2, (n− 1)−2}
,
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we indeed obtain the desired domination of σb by Pβ .1 The same proof shows
that −σb is also dominated by Pβ .

Next, let us prove the domination of D+ by a percolation measure. Set2 α =
β1/6. Let ηL and ηR be two percolation configurations chosen independently
according to Percoα . Also choose an orientation for every edge of E; for boundary
edges, orient them such that the face of D adjacent to them is on their left.

Define σ̃ ∈ {±1}FD as follows. Consider some face u. For an edge e adjacent
to u, u is either on the left of e or on its right, according to the orientation chosen
for e. If it is on the left, retain the number ηL(e), otherwise retain ηR(e). Consider
that u has spin +1 under σ̃ if and only if all the six numbers retained above are 1.
Formally, for each u ∈ FD , set σ̃ (u) = +1 if and only if

∏

e adjacent to u

(
ηL(e)1{u is left of e} + ηR(e)1{u is right of e}

) = 1.

As a consequence, for an edge e in the interior of D to be in D+(σ̃ ), the faces
on either side of e need to have σ̃ -spin +1, hence ηL(e) = ηR(e) = 1 is required.
For boundary edges e to be in D+(σ̃ ), only the restriction ηL(e) = 1 remains. In
conclusion ηL ≥ D+(σ̃ ).

Let us analyse the law of σ̃ . Each value ηL(e) and ηR(e) appears in the
definition of one σ̃ (u). As a consequence, the variables

(
σ̃ (u)

)
u∈F are independent.

Moreover, σ̃ (u) = 1 if and only if all the six edges around e are open in one
particular configuration ηL or ηR , which occurs with probability α6 = β. As a
consequence σ̃ has law Pβ .

By the previously proved domination, LoopD,n,x may be coupled with Pβ so
that σ̃ ≥ σb. If this is the case, we have

ηL ≥ D+(σ̃ ) ≥ D+(σb).

Thus, ηL indeed dominates D+(σb), as required.
The same proof shows that ηL dominates D−(σb). For clarity, we mention that

this does not imply that ηL dominates D+(σb) and D−(σb) simultaneously, which
would translate to ηL dominating D \ ωb. ��
Proof (of Lemma 2) Fix x, α and x̃ as in the Lemma. The statement of Holley’s
inequality applied to our case may easily be reduced to

Percoα[ΦD,x(η ∪ {e})]
Percoα[ΦD,x(η)] ≤ ΦD,x̃ (η̃ ∪ {e})

ΦD,x̃ (η̃)
for all η ≤ η̃ and e /∈ η̃. (10)

1This domination is of special interest as n ↘ 1 and for x ≥ 1/
√

3. Then we may simplify the

value of β as β = (2+2
√

3)6

(n−1)2+(2+2
√

3)6
∼ 1− 1

(2+2
√

3)6
(n− 1)2 .

2As n↘ 1 and x ≥ 1/
√

3, we may assume that α ∼ 1− 1
6 (2+2

√
3)6
(n− 1)2.
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Fix η, η̃ and e = (uv) as above. For D ⊂ E with e ∈ D, a standard computation
yields

ϕx(e|η) := ΦD,x(η ∪ {e})
ΦD,x(η)

=
{

2x
1−x if u

η←→ v and
x

1−x otherwise.

The same quantity may be defined for x̃ instead of x and η̃ instead of η; it is
increasing in both η and x. Moreover ϕx(e|η) does not depend on D, as long
as e ∈ D and η ⊂ D. If the first condition fails, then the numerator is 0; if the
second fails then the denominator is null and the ratio is not defined.

Let us perform a helpful computation before proving (10). Fix D with e ∈ D.
By (9),

ΦD\{e},x (η)
ΦD,x(η)

= ZFK(D, x)

ZFK(D \ {e}, x) ·
1+ x
1− x ≥

1+ x
2(1− x) .

The factor
( 1−x

1+x
)−1 comes from the fact that the weights of η under ΦD\{e},x

and ΦD,x differ by the contribution of the closed edge e. If follows that

(
1+ 1+ x

2(1− x) ·
1− α
α

)
ΦD,x(η) ≤ ΦD,x(η)+ 1− α

α
ΦD\{e},x(η).

The choice of x̃ is such that

ϕx(e|η)
ϕx̃(e|η) =

x

1− x ·
1− x̃
x̃

= 1+ 1+ x
2(1− x) ·

1− α
α
.

Using the last two displayed equations, we find

Percoα[ΦD,x(η ∪ {e})] =
∑

D⊂E
α|D|(1− α)|E|−|D|ΦD,x(η ∪ {e})

=
∑

D⊂E
with e∈D

α|D|(1− α)|E|−|D| ϕx(e|η)ΦD,x(η)

≤ (
1+ 1+x

2(1−x)
1−α
α

)−1
ϕx(e|η)

∑

D⊂E
with e∈D

α|D|(1− α)|E|−|D|
[
ΦD,x(η)+ 1−α

α
ΦD\{e},x(η)

]

= ϕx̃(e|η̃)
∑

D⊂E
α|D|(1− α)|E|−|D|ΦD,x(η)

= ϕx̃(e|η̃)Percoα[ΦD,x(η)].

Divide by Percoα[ΦD,x(η)] and recall the definition of ϕx̃(e|η̃) to obtain (10). ��
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5 Open Questions/Perspectives

Our main theorem shows that if x is such that the model with parameters x and
n = 1 exhibits exponential decay, then so do all models with the same parameter x
and n ≥ 1. A natural generalisation of this is the following.

Question 1 Show that if x and n are such that the loop O(n) model exhibits
exponential decay, then so do all models with parameters x and ñ for any ñ ≥ n.

A positive answer to the above would show that the critical point xc(n) (assuming
it exists) is increasing in n. The same technique as in Sect. 4 may even prove that it is
strictly increasing. Moreover, it was recently shown in [12] that, in the regime n ≥
1 and x ≤ 1√

n
, the loop O(n) model satisfies the following dichotomy: either it

exhibits macroscopic loops or exponential decay. In addition, for n ∈ [1, 2] and x =
1√

2+√2−n the loop O(n) model was shown to exhibit macroscopic loops. Thus,

assuming Question 1 is solved, we deduce that the loopO(n)model with n ≤ 2 and
x ∈ [ 1√

2+√2−n ,
1√
2
] does not exhibit exponential decay. Indeed, Question 1 may be

used to compare the model with such parameters n, x to that with parameters ñ, x,
where ñ satisfies x = 1√

2+√2−ñ
; the latter is known to not have exponential decay.

In addition, the dichotomy result would then imply the existence of macroscopic
loops for n ∈ [1, 2] and x ∈ [ 1√

2+√2−n ,
1√
2
].

Let us now describe a possible approach to Question 1. The strategy of our
proof of Theorem 1 was based on the following observation. The loopO(1)model,
or rather its associated FK-Ising model, has a certain monotonicity in x. This
translates to a monotonicity in the domain: the larger the domain, the higher the
probability that a given point is contained in a large loop. This fact is used to
compare the loop O(1) model in a simply connected domain D with that in the
domain obtained from D after removing certain interior parts. The latter is generally
not simply connected, and it is essential that our monotonicity property can handle
such domains.

Question 2 Associate to the loop O(n) model with edge weight x in some domain
D a positively associated percolation model ΨD,n,x with the property that, if one
exhibits exponential decay of connection probabilities, then so does the other.

The percolation model ΨD,n,x actually only needs to have some monotonicity
property in the domain, sufficient for our proof to apply. Unfortunately, we only
have such an associated model when n = 1.

Suppose that one may find such a model Ψ for some value of n. Then our proof
may be adapted. Indeed, fix x such that the loop O(n) model exhibits exponential
decay. Then ΨD,n,x also exhibits exponential decay for any domain D . Consider
now the loop O(ñ) model with edge-weight x for ñ > n and colour each loop
independently in red with probability n/ñ and in blue with probability (ñ − n)/ñ.
Then, conditionally on the blue loop configuration ωb , the red loop configuration
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has the law of the loop O(n) model with edge-weight x in the domain D \ ωb . By
positive association, since ΨD,n,x exhibits exponential decay, so does ΨD\ωb,n,x .
Then the loop O(ñ) model exhibits exponential decay of lengths of red loops and
hence in general of lengths of all loops.
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Non-Coupling from the Past

Geoffrey R. Grimmett and Mark Holmes

Abstract The method of ‘coupling from the past’ permits exact sampling from
the invariant distribution of a Markov chain on a finite state space. The coupling
is successful whenever the stochastic dynamics are such that there is coalescence
of all trajectories. The issue of the coalescence or non-coalescence of trajectories
of a finite state space Markov chain is investigated in this note. The notion of
the ‘coalescence number’ k(μ) of a Markovian coupling μ is introduced, and
results are presented concerning the set K(P) of coalescence numbers of couplings
corresponding to a given transition matrix P .

Keywords Markov chain · Coupling from the past · CFTP · Perfect simulation ·
Coalescence · Coalescence number

1 Introduction

The method of ‘coupling from the past’ (CFTP) was introduced by Propp and
Wilson [7, 8, 11] in order to sample from the invariant distribution of an irreducible
Markov chain on a finite state space. It has attracted great interest amongst
theoreticians and practitioners, and there is an extensive associated literature (see,
for example [5, 10]).

The general approach of CFTP is as follows. Let X be an irreducible Markov
chain on a finite state space S with transition matrix P = (pi,j : i, j ∈ S), and let
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π be the unique invariant distribution (see [4, Chap. 6] for a general account of the
theory of Markov chains).

Let FS be the set of functions from S to S, and let PS be the set of all irreducible
stochastic matrices on the finite set S. We write N for the set {1, 2, . . . } of natural
numbers, and P for a generic probability measure.

Definition 1 A probability measure μ on FS is consistent with P ∈PS , in which
case we say that the pair (P,μ) is consistent, if

pi,j = μ
({f ∈ FS : f (i) = j }

)
, i, j ∈ S. (1)

Let L (P ) denote the set of probability measures μ on FS that are consistent with
P ∈PS .

Let P ∈ PS and μ ∈ L (P ). The measure μ is called a grand coupling of P .

Let F = (Fs : s ∈ N) be a vector of independent samples from μ, let
�

F t denote the
composition F1 ◦ F2 ◦ · · · ◦ Ft , and define the backward coalescence time

C = inf
{
t : �

F t (·) is a constant function
}
. (2)

We say that backward coalescence occurs if C < ∞. On the event {C < ∞}, �

FC
may be regarded as a random state.

The definition of coupling may seem confusing on first encounter. The function
F1 describes transitions during one step of the chain from time −1 to time 0, as
illustrated in Fig. 1. If F1 is not a constant function, we move back one step in time
to −2, and consider the composition F1 ◦ F2. This process is iterated, moving one
step back in time at each stage, until the earliest (random) C such that the iterated

function
�

FC is constant. This C (if finite) is the time to backward coalescence.
Propp and Wilson proved the following fundamental theorem.

Theorem 1 ([7]) Let P ∈ PS and μ ∈ L (P ). Either P(C < ∞) = 0 or
P(C < ∞) = 1. If it is the case that P(C < ∞) = 1, then the random state
�

FC has law π .

Here are two areas of application of CFTP. In the first, one begins with a recipe
for a certain probability measure π on S, for example as the posterior distribution

1

2

3

4

5

Fig. 1 An illustration of coalescence of trajectories in CFTP with |S| = 5



Non-Coupling from the Past 473

of a Bayesian analysis. In seeking a sample from π , one may find an aperiodic
transition matrix P having π as unique invariant distribution, and then run CFTP
on the associated Markov chain. In a second situation that may arise in a physical
model, one begins with a Markovian dynamics with associated transition matrix
P ∈ PS , and uses CFTP to sample from the invariant distribution. In the current
work, we shall assume that the transition matrix P is specified, and that P is finite
and irreducible.

Here is a summary of the work presented here. In Sect. 2, we discuss the phenom-
ena of backward and forward coalescence, and we define the coalescence number
of a Markov coupling. Informally, the coalescence number is the (deterministic)
limiting number of un-coalesced trajectories of the coupling. Theorem 3 explains the
relationship between the coalescence number and the ranks of products of extremal
elements in a convex representation of the stochastic matrix P . The question is
posed of determining the set K(P) of coalescence numbers of couplings consistent
with a given P . A sub-family of couplings, termed ‘block measures’, is studied in
Sect. 4. These are couplings for which there is a fixed set of blocks (partitioning
the state space), such that blocks of states are mapped to blocks of states, and such
that coalescence occurs within but not between blocks. It is shown in Theorem 4,
via Birkhoff’s convex representation theorem for doubly stochastic matrices, that
|S| ∈ K(P) if and only if P is doubly stochastic. Some further results about K(P)
are presented in Sect. 5.

2 Coalescence of Trajectories

CFTP relies upon almost-sure backward coalescence, which is to say that
P(C <∞) = 1, where C is given in (2). For given P ∈ PS , the occurrence
(or not) of coalescence depends on the choice of μ ∈ L (P ); see for example,
Example 1.

We next introduce the notion of ‘forward coalescence’, which is to be considered
as ‘coalescence’ but with the difference that time runs forwards rather than
backwards. As before, let P ∈ PS , μ ∈ L (P ), and let F = (Fs : s ∈ N) be an
independent sample from μ. For i ∈ S, define the Markov chain Xi = (Xit : t ≥ 0)

by Xit =
�

F t(i) where
�

F t = Ft ◦ Ft−1 ◦ · · · ◦ F1. Then (Xi : i ∈ S) is a family of
coupled Markov chains, running forwards in time, each having transition matrix P ,
and such that Xi starts in state i.

The superscript � (respectively, �) is used to indicate that time is running
forwards (respectively, backwards). For i, j ∈ S, we say that i and j coalesce if
there exists t such that Xit = Xjt . We say that forward coalescence occurs if, for all
pairs i, j ∈ S, i and j coalesce. The forward coalescence time is given by

T = inf{t ≥ 0 : Xit = Xjt for all i, j ∈ S}. (3)

Clearly, if P is periodic then T = ∞ a.s. for anyμ ∈ L (P ). A simple but important
observation is that C and T have the same distribution.
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Theorem 2 Let P ∈ PS and μ ∈ L (P ). The backward coalescence time C and
the forward coalescence time T have the same distribution.

Proof Let (Fi : i ∈ N) be an independent sample from μ. For t ≥ 0, we have

P(C ≤ t) = P
(�

F t(·) is a constant function
)
.

By reversing the order of the functions F1, F2, . . . , Ft , we see that this equals

P(T ≤ t) = P(
�

F t(·) is a constant function).

Example 1 Let S = {1, 2, . . . , n} where n ≥ 2, and let Pn = (pi,j ) be the constant
matrix with entries pi,j = 1/n for i, j ∈ S. Let F = (Fi : i ∈ N) be an independent
sample from μ ∈ L (Pn).

(a) If each Fi is a uniform random permutation of S, then T ≡ ∞ and
�

F t(i) =
�

F t(j) for all i = j and t ≥ 1.
(b) If (F1(i) : i ∈ S) are independent and uniformly distributed on S, then

P(T <∞) = 1.

In this example, there exist measures μ ∈ L (Pn) such that either (a) a.s. no pairs
of states coalesce, or (b) a.s. forward coalescence occurs.

For g ∈ FS , we let
g∼ be the equivalence relation on S given by i

g∼ j if and only
if g(i) = g(j). For f = (ft : t ∈ N) ⊆ FS and t ≥ 1, we write

�

f t = f1 ◦ f2 ◦ · · · ◦ ft ,
�

f t = ft ◦ ft−1 ◦ · · · ◦ f1.

Let kt (
�

f ) (respectively, kt (
�

f )) denote the number of equivalence classes of the

relation
�

f t∼ (respectively,
�

f t∼). Similarly, we define the equivalence relation
�

f∼ on S

by i
�

f∼ j if and only if i
�

f t∼ j for some t ∈ N, and we let k(
�

f ) be the number

of equivalence classes of
�

f∼ (and similarly for
�

f ). We call k(
�

f ) the backward

coalescence number of
�

f , and likewise k(
�

f ) the forward coalescence number of
�

f . The following lemma is elementary.

Lemma 1

(a) We have that kt (
�

f ) and kt (
�

f ) are monotone non-increasing in t . Furthermore,

kt (
�

f ) = k(�f ) and kt (
�

f ) = k(�f ) for all large t .
(b) Let F = (Fs : s ∈ N) be independent and identically distributed elements in

FS . Then kt (
�

F) and kt (
�

F) are equidistributed, and similarly k(
�

F) and k(
�

F)

are equidistributed.
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Proof

(a) The first statement holds by consideration of the definition, and the second since

k(
�

F) and k(
�

F) are integer-valued.
(b) This holds as in the proof of Theorem 2.

3 Coalescence Numbers

In light of Theorem 2 and Lemma 1, we henceforth consider only Markov chains
running in increasing positive time. Henceforth, expressions involving the word
‘coalescence’ shall refer to forward coalescence. Let μ be a probability measure
on FS , and let supp(μ) denote the support of μ. Let F = (Fs : s ∈ N) be a vector
of independent and identically distributed random functions, each with law μ. The
law of F is the product measure μ = ∏

i∈N μ. The coalescence time T is given by

(3), and the term coalescence number refers to the quantities kt (
�

F) and k(
�

F), which
we denote henceforth by kt (F ) and k(F ), respectively.

Lemma 2 Let μ, μ1, μ2 be probability measures on FS .

(a) Let F = (Fs : s ∈ N) be a sequence of independent and identically distributed
functions each with law μ. We have that k(F ) is μ-a.s. constant, and we write
k(μ) for the almost surely constant value of k(F ).

(b) If supp(μ1) ⊆ supp(μ2), then k(μ1) ≥ k(μ2).
(c) If supp(μ1) = supp(μ2), then k(μ1) = k(μ2).

We call k(μ) the coalescence number of μ.

Proof

(a) For j ∈ {1, 2, . . . , n}, let qj = μ(k(F ) = j), and k∗ = min{j : qj > 0}. Then

μ(k(F ) ≥ k∗) = 1. (4)

Moreover, we choose t ∈ N such that

κ := μ(kt (F ) = k∗) satisfies κ > 0.

For m ∈ N, write Fm = (Fmt+s : s ≥ 1). The event Et,m = {kt (Fm) = k∗}
depends only on Fmt+1, Fmt+2 . . . , F(m+1)t . It follows that the events {Et,m :
m ∈ N} are independent, and each occurs with probability κ . Therefore, almost
surely at least one of these events occurs, and hence μ(k(F ) ≤ k∗) = 1. By (4),
this proves the first claim.

(b) Assume supp(μ1) ⊆ supp(μ2), and let k∗i be the bottom of the μi-support
of k(F ). Since, for large t , μ1(kt (F ) = k∗1) > 0, we have also that
μ2(kt(F ) = k∗1) > 0, whence k∗1 ≥ k∗2 . Part (c) is immediate.
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Fig. 2 Diagrammatic representations of the four functions fi of Example 2. The corresponding
equivalence classes are not μ-a.s. constant

Whereas k(F ) is a.s. constant (as in Lemma 2(a)), the equivalence classes of
�

F∼
need not themselves be a.s. constant. Here is an example of this, preceded by some
notation.

Definition 2 Let f ∈ FS where S = {i1, i2, . . . , in} is a finite ordered set. We
write f = (j1j2 . . . jn) if f (ir ) = jr for r = 1, 2, . . . , n.

Example 2 Take S = {1, 2, 3, 4} and any consistent pair (P,μ) with supp(μ) =
{f1, f2, f3, f4}, where

f1 = (3434), f2 = (4334), f3 = (3412), f4 = (3421).

Then k(μ) = 2 but the equivalence classes of
�

F∼ may be either {1, 3}, {2, 4} or
{1, 4}, {2, 3}, each having a strictly positive probability. The four functions fi are
illustrated diagrammatically in Fig. 2.

A probability measure μ on FS may be written in the form

μ =
∑

f∈supp(μ)

αf δf , (5)

where α is a probability mass function on FS with support supp(μ), and δf is the
Dirac delta-mass on the point f ∈ FS . Thus, αf > 0 if and only if f ∈ supp(μ). If
μ ∈ L (P ), by (1) and (5),

P =
∑

f∈supp(μ)

αfMf , (6)

whereMf denotes the matrix

Mf = (1{f (i)=j} : i, j ∈ S), (7)

and 1A is the indicator function of A.
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LetΠS be the set of permutations of S. We denote also byΠS the set of matrices
Mf as f ranges over the permutations of S.

Theorem 3 Let μ have the representation (5), and |S| = n.

(a) We have that

k(μ) = inf
{
rank(MftMft−1 · · ·Mf1 : f1, f2, . . . , ft ∈ supp(μ), t ≥ 1

}
.

(8)

(b) There exists T = T (n) such that the infimum in (8) is achieved for some t
satisfying t ≤ T .

Proof

(a) Let F = (Fs : s ∈ N) be drawn independently from μ. Then

Rt :=MFtMFt−1 · · ·MF1

is the matrix with (i, j)th entry 1{�F t (i)=j}. Therefore, kt (F ) equals the number

of non-zero columns of Rt . Since each row of Rt contains a unique 1, we have
that kt (F ) = rank(Rt ). Therefore, k(μ) is the decreasing limit

k(μ) = lim
t→∞ rank(Rt ) a.s. (9)

Equation (8) follows since k(μ) is integer-valued and deterministic.
(b) Since the rank of a matrix is integer-valued, the infimum in (8) is attained. The

claim follows since, for given |S| = n, there are boundedly many possible
matricesMf .

Let

K(P) = {
k : there exists μ ∈ L (P ) with k(μ) = k}.

It is a basic question to ask: what can be said about K as a function of P ? We first
state a well-known result, based on ideas already in work of Doeblin [2].

Lemma 3 We have that 1 ∈ K(P) if and only if P ∈PS is aperiodic.

Proof For f ∈ FS , let μ({f }) = ∏
i∈S pi,f (i). This gives rise to |S| chains with

transition matrix P , starting from 1, 2, . . . , n, respectively, that evolve indepen-
dently until they meet. If P is aperiodic (and irreducible) then all n chains meet
a.s. in finite time.

Conversely, if P is periodic and pi,j > 0 then i = j , and i and j can never
coalesce, implying 1 /∈ K(P).
Remark 1 In a variety of cases of interest including, for example, the Ising and
random-cluster models (see [3, Exer. 7.3, Sect. 8.2]), the set S has a partial order,
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denoted ≤. For P ∈PS satisfying the so-called FKG lattice condition, it is natural
to seek μ ∈ L (P ) whose transitions preserve this partial order, and such μ may be
constructed via the relevant Gibbs sampler (see, for example, [4, Sect. 6.14]). By the
irreducibility of P , the trajectory starting at the least state of S passes a.s. through
the greatest state of S. This implies that coalescence occurs, so that k(μ) = 1.

4 Block Measures

We introduce next the concept of a block measure, which is a strong form of the
lumpability of [6] and [4, Exer. 6.1.13].

Definition 3 Let P ∈ PS and μ ∈ L (P ). For a partition S = {Sr : r =
1, 2, . . . , l} of S with l = l(S ) ≥ 1, we call μ an S -block measure (or just a
block measure with l blocks) if

(a) for f ∈ supp(μ), there exists a unique permutation π = πf of I :=
{1, 2, . . . , l} such that, for r ∈ I , f Sr ⊆ Sπ(r), and

(b) k(μ) = l.
The action of an S -block measure μ is as follows. Since blocks are mapped

a.s. to blocks, the measure μ of (5) induces a random permutationΠ of the blocks
which may be written as

Π =
∑

f∈supp(μ)

αf δπf . (10)

The condition k(μ) = l implies that

for r ∈ I and i, j ∈ Sr , the pair i, j coalesce a.s., (11)

so that the equivalence classes of
�

F∼ are a.s. the blocks S1, S2, . . . , Sl . If, as the chain
evolves, we observe only the evolution of the blocks, we see a Markov chain on I
with transition probabilities λr,s = P(Π(r) = s) which, since P is irreducible, is
itself irreducible.

Example 2 illustrates the existence of measures μ that are not block measures,
when |S| = 4. On the other hand, we have the following lemma when |S| = 3. For
P ∈PS and μ ∈ L (P ), let C = C (μ) be the set of possible coalescing pairs,

C = {{i, j } ⊆ S : i = j, μ(i, j coalesce) > 0
}
. (12)

Lemma 4 Let |S| = 3 and P ∈ PS . If (P,μ) is consistent then μ is a block
measure.
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Proof Let S, (P,μ) be as given. If C is empty then k(μ) = 3 and μ is a block
measure with 3 blocks.

If |C | ≥ 2, we have by the forthcoming Proposition 1(a, b) that k(μ) ≤ 1, so that
μ is a block measure with 1 block.

Finally, if C contains exactly one element then we may assume, without loss of
generality, that element is {1, 2}. By Proposition 1(b), we have k(μ) = 2, whence
a.s. some pair coalesces. By assumption only {1, 2} can coalesce, so in fact a.s. we
have that 1 and 2 coalesce, and they do not coalesce with 3. Therefore, μ is a block
measure with the two blocks {1, 2} and {3}.

We show next that, for 1 ≤ k ≤ |S|, there exists a consistent pair (P,μ) such
that μ is a block measure with k(μ) = k.
Lemma 5 For |S| = n ≥ 2 and 1 ≤ k ≤ n, there exists an aperiodic P ∈PS such
that k ∈ K(P).
Proof Let S = {Sr : r = 1, 2, . . . , l} be a partition of S, and let G ⊆ FS be the
set of all functions g satisfying: there exists a permutation π of {1, 2, . . . , l} such
that, for r = 1, 2, . . . , l, we have gSr ⊆ Sπ(r). Any probability measure μ on FS
with support G is an S -block measure.

Let μ be such a measure and let P be the associated stochastic matrix on S,
given in (1). For i, j ∈ S, there exists g ∈ G such that g(i) = j . Therefore, P is
irreducible and aperiodic.

We identify next the consistent pairs (P,μ) for which either k(μ) = |S| or
|S| ∈ K(P).
Theorem 4 Let |S| = n ≥ 2 and P ∈PS . We have that

(a) k(μ) = n if and only if supp(μ) contains only permutations of S,
(b) n ∈ K(P) if and only if P is doubly stochastic.

Before proving this, we remind the reader of Birkhoff’s theorem [1] (sometimes
attributed also to von Neumann [9]).

Theorem 5 ([1, 9]) A stochastic matrix P on the finite state space S is doubly
stochastic if and only if it lies in the convex hull of the set ΠS of permutation
matrices.

Remark 2 We note that the simulation problem confronted by CFTP is trivial when
P is irreducible and doubly stochastic, since such P are characterized as those
transition matrices with the uniform invariant distribution π = (πi = n−1 : i ∈ S).
Proof of Theorem 4

(a) If supp(μ) contains only permutations, then a.s. kt (F ) = n for every t ∈ N.
Hence n ∈ K(P). If supp(μ) contains a non-permutation, then with positive
probability k1(F ) < n and hence k(μ) < n.
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(b) By Theorem 5, P is doubly stochastic if and only if it may be expressed as a
convex combination

P =
∑

f∈ΠS
αfMf , (13)

of permutation matricesMf (recall (6) and (7)).

If P is doubly stochastic, let the αf satisfy (13), and let

μ =
∑

f∈ΠS
αf δf , (14)

as in (5). Then μ ∈ L (P ), and k(μ) = n by part (a).
If P is not doubly stochastic and μ ∈ L (P ), then μ has no representation of the

form (14), so that k(μ) < n by part (a).

Finally in this section, we present a necessary and sufficient condition for μ to
be an S -block measure, Theorem 6 below.

Let P ∈ PS , and let S = {Sr : r = 1, 2, . . . , l} be a partition of S with l ≥ 1.
For r, s ∈ I := {1, 2, . . . , l} and i ∈ Sr , let

λ(i)r,s =
∑

j∈Ss
pi,j .

Since a block measure comprises a transition operator on blocks, combined with
a shuffling of states within blocks, it is necessary in order that μ be an S -block
measure that

λ(i)r,s is constant for i ∈ Sr . (15)

When (15) holds, we write

λr,s = λ(i)r,s , i ∈ Sr . (16)

Under (15), the matrix Λ = (λr,s : r, s ∈ I) is the irreducible transition matrix of
the Markov chain derived from P by observing the evolution of blocks, which is to
say that

λr,s = μ(Π(r) = s), r, s ∈ I, (17)

whereΠ is given by (10). Since l ∈ K(Λ), we have by Theorem 4 that Λ is doubly
stochastic, which is to say that

∑

r∈I
λr,s =

∑

r∈I

∑

j∈Ss
pir ,j = 1, s ∈ I, (18)
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where each ir is an arbitrarily chosen representative of the block Sr . By (15),
Eq. (18) may be written in the form

∑

i∈S

∑

j∈Ss

1

|Sr(i)|pi,j = 1, r, s ∈ I, (19)

where r(i) is the index r such that i ∈ Sr . The following theorem is the final result
of this section.

Theorem 6 Let S be a non-empty, finite set, and let S = {Sr : r = 1, 2, . . . , l} be
a partition of S. For P ∈PS , a measure μ ∈ L (P ) is an S -block measure if and
only if (15), (19) hold, and also k(μ) = l.
Proof The necessity of the conditions holds by the definition of block measure and
the above discussion.

Suppose conversely that the stated conditions hold. Let Λ = (λr,s) be given by
(15)–(16). By (16) and (19), Λ is doubly stochastic. By Theorem 4, we may find
a measure ρ ∈ L (Λ) supported on a subset of the set ΠI of permutations of I ,
and we let Π have law ρ. Conditional on Π , let Z = (Zi : i ∈ S) be independent
random variables such that

P(Zi = j | Π) =
{
pi,j /λr,s if Sr ? i, Ss ? j, Π(r) = s,
0 otherwise.

The law μ of Z is an S -block measure that is consistent with P .

5 The Set K(P )

We begin with a triplet of conditions.

Proposition 1 Let S = {1, 2, . . . , n} where n ≥ 3, and let P ∈ PS and μ ∈
L (P ). Let C = C (μ) be the set of possible coalescing pairs, as in (12).

(a) k(μ) = n if and only if |C | = 0.
(b) k(μ) = n− 1 if and only if |C | = 1.
(c) If |C | comprises the single pair {1, 2}, then P satisfies

n∑

j=3

p1,j =
n∑

j=3

p2,j =
n∑

i=3

(pi,1 + pi,2). (20)

Proof

(a) See Theorem 4(a).
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(b) By part (a), k(μ) ≤ n−1 when |C | = 1. It is trivial by definition of k andC that,
if k(μ) ≤ n− 2, then |C | ≥ 2. It suffices, therefore, to show that k(μ) ≤ n− 2
when |C | ≥ 2. Suppose that |C | ≥ 2. Without loss of generality we may assume
that {1, 2} ∈ C and either that {1, 3} ∈ C or (in the case n ≥ 4) that {3, 4} ∈ C .
Let F = (Fs : s ∈ N) be an independent sample from μ. LetM be the Markov

time M = inf{t > 0 : �

F t(1) =
�

F t(2) = 1}, and write J = {M < ∞}. By
irreducibility, μ(J ) > 0, implying that k(μ) ≤ n− 1. Assume that

k(μ) = n− 1. (21)

We shall obtain a contradiction, and the conclusion of the lemma will follow.
Suppose first that {1, 2}, {1, 3} ∈ C . LetB be the event that there exists i ≥ 3

such that
�

FM(i) ∈ {1, 2, 3}. On B ∩ J , we have k(F ) ≤ n− 2 a.s., since

μ(at least 3 states belong to coalescing pairs) > 0.

Thusμ(B∩J ) = 0 by (21). OnB∩J , the
�

FM(i), i ≥ 3, are by (21) a.s. distinct,
and in addition take values in S \ {1, 2, 3}. Thus there exist n− 2 distinct values

of
�

FM(i), i ≥ 3, but at most n−3 values that they can take, which is impossible,
whence μ(B ∩ J ) = 0. It follows that

0 < μ(J ) = μ(B ∩ J )+ μ(B ∩ J ) = 0, (22)

a contradiction.
Suppose secondly that {1, 2}, {3, 4} ∈ C . Let C be the event that either (i)

there exists i ≥ 3 such that
�

FM(i) ∈ {1, 2}, or (ii) {�

FM(i) : i ≥ 3} ⊇ {3, 4}.
On C ∩ J , we have k(F ) ≤ n− 2 a.s. On C ∩ J , by (21) the

�

FM(i), i ≥ 3, are
a.s. distinct, and in addition take values in S \ {1, 2} and no pair of them equals
{3, 4}. This provides a contradiction as in (22).

(c) Let F1 have law μ. Write Ai = {F1(i) ∈ {1, 2}}, and

M = |{i ≤ 2 : Ai occurs}|, N = |{i ≥ 3 : Ai occurs}|.
If μ(Ai ∩ Aj) > 0 for some i ≥ 3 and j = i, then {i, j } ∈ C ,
in contradiction of the assumption that C comprises the singleton {1, 2}.
Therefore, μ(Ai ∩ Aj) = 0 for all i ≥ 3 and j = i, and hence

μ(N ≥ 2) = 0, (23)

μ(M ≥ 1, N = 1) = 0. (24)

By similar arguments,

μ(M < 2, N = 0) = 0, (25)

μ(M = 1) = 0. (26)
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It follows that

μ(N = 1) = μ(N = 1,M = 0) by (24)

= μ(M = 0) by (25) and (23)

= μ(A1 ∩ A2)

= μ(Ar), r = 1, 2, by (26).

Therefore,

μ(N = 1) = μ(Ar) = μ(F1(r) ≥ 3) =
n∑

j=3

pr,j , r = 1, 2.

By (23),

μ(N = 1) = μ(N) =
n∑

i=3

μ(Ai) =
n∑

i=3

(pi,1 + pi,2),

where μ(N) is the mean value of N . This yields (20).

The set K(P) can be fairly sporadic, as illustrated in the next two examples.

Example 3 Consider the matrix

P =

⎛

⎜
⎜
⎝

1
2

1
2 0

0 1
2

1
2

1
2 0 1

2

⎞

⎟
⎟
⎠ . (27)

Since P is doubly stochastic, by Theorem 4(a), there exists μ ∈ L (P ) such that
k(μ) = 3 (one may take μ(123) = μ(231) = 1

2 ). By Lemma 3, we have that
1 ∈ K(P), and thus {1, 3} ⊆ K(P). We claim that 2 /∈ K(P), and we show this as
follows.

Let μ ∈ L (P ), with k(μ) < 3, so that |C | ≥ 1. There exists no permutation
of S for which the matrix P satisfies (20), whence |C | ≥ 2 by Proposition 1(c). By
parts (a, b) of that proposition, k(μ) ≤ 1. In conclusion,K(P) = {1, 3}.
Example 4 Consider the matrix

P =

⎛

⎜
⎜
⎜⎜
⎝

1
2

1
2 0 0

0 1
2

1
2 0

0 0 1
2

1
2

1
2 0 0 1

2

⎞

⎟
⎟
⎟⎟
⎠
. (28)
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We have, as in Example 3, that {1, 4} ⊆ K(P). Taking

μ(1234) = μ(2244) = μ(1331) = μ(2341) = 1
4

reveals that 2 ∈ K(P), and indeed μ is a block measure with blocks {1, 2}, {3, 4}.
As in Example 3, we have that 3 /∈ K(P), so that K(P) = {1, 2, 4}.

We investigate in greater depth the transition matrix on S with equal entries. Let
|S| = n ≥ 2 and let Pn = (pi,j ) satisfy pi,j = n−1 for i, j ∈ S = {1, 2, . . . , n}.
Theorem 7 For n ≥ 2 there exists a block measure μ ∈ L (Pn) with k(μ) =
l if and only if l | n. In particular, K(Pn) ⊇ {l : l | n}. For n ≥ 3, we have
n− 1 /∈ K(Pn).

We do not know whether K(Pn) = {l : l | n}, and neither do we know if there
exists μ ∈ L (Pn) that is not a block measure.

Proof Let n ≥ 2. By Lemma 3 and Theorem 4, we have that 1, n ∈ K(Pn). It is
easily seen as follows that l ∈ K(Pn) whenever l | n. Suppose l | n and l = 1, n.
Let

Sr = (r − 1)n/l + {1, 2, . . . , n/l}
= {(r − 1)n/l + 1, (r − 1)n/l + 2, . . . , rn/l}, r = 1, 2, . . . , l. (29)

We describe next a measure μ ∈ L (Pn). LetΠ be a uniformly chosen permutation
of {1, 2, . . . , l}. For i ∈ S, let Zi be chosen uniformly at random from SΠ(i), where
theZi are conditionally independent givenΠ . Letμ be the block measure governing
the vector Z = (Zi : i ∈ S). By symmetry,

qi,j := μ
({f ∈ FS : f (i) = j }

)
, i, j ∈ S,

is constant for all pairs i, j ∈ S. Since μ is a probability measure, Q = (qi,j ) has
row sums 1, whence qi,j = n−1 = pi,j , and therefore μ ∈ L (Pn). By examination
of μ, μ is an S -block measure.

Conversely, suppose there exists an S -block measure μ ∈ L (Pn) with
corresponding partition S = {S1, S2, . . . , Sl} with index set I = {1, 2, . . . , l}.
By Theorem 6, Eqs. (15) and (19) hold. By (15), the matrix Λ = (λr,s : r, s ∈ I)
satisfies

λr,s = |Ss |
n
, r, s ∈ I. (30)
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By (19),

|Ss |
|Sr | = 1, s, r ∈ I,

whence |Ss | = n/l for all s ∈ I , and in particular l | n.
Let n ≥ 3. We prove next that k(μ) = n− 1 for μ ∈ L (Pn). Let C = C (μ) be

given as in (12). By Proposition 1(b), it suffices to prove that |C | = 1. Assume on
the contrary that |C | = 1, and suppose without loss of generality that C contains
the singleton pair {1, 2}. With P = Pn, the necessary condition (20) becomes

(n− 2)
1

n
= (n− 2)

2

n
,

which is false when n ≥ 3. Therefore, |C | = 1, and the proof is complete.
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Combinatorial Universality in
Three-Speed Ballistic Annihilation

John Haslegrave and Laurent Tournier

Abstract We consider a one-dimensional system of particles, moving at con-
stant velocities chosen independently according to a symmetric distribution on
{−1, 0,+1}, and annihilating upon collision—with, in case of triple collision, a
uniformly random choice of survivor among the two moving particles. When the
system contains infinitely many particles, whose starting locations are given by a
renewal process, a phase transition was proved to happen (see Haslegrave et al.,
Three-speed ballistic annihilation: phase transition and universality, 2018) as the
density of static particles crosses the value 1/4. Remarkably, this critical value,
along with certain other statistics, was observed not to depend on the distribution
of interdistances. In the present paper, we investigate further this universality by
proving a stronger statement about a finite system of particles with fixed, but
randomly shuffled, interdistances. We give two proofs, one by an induction allowing
explicit computations, and one by a more direct comparison. This result entails a
new nontrivial independence property that in particular gives access to the density
of surviving static particles at time t in the infinite model. Finally, in the asymmetric
case, further similar independence properties are proved to keep holding, including a
striking property of gamma distributed interdistances that contrasts with the general
behavior.
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1 Introduction

Annihilating particle systems have been studied extensively in statistical physics
since the 1980s. The original motivation for this topic, stemming from the kinetics
of chemical reactions, gave rise to models in which particles move diffusively
and are removed from the system upon meeting another particle (e.g. [1]), or
in some settings another particle of a specified type (e.g. [4]). The study of
annihilating systems involving particles which move at constant velocity (that is,
ballistic motion) was initiated by Elskens and Frisch [8] and Ben-Naim et al. [3].
In this ballistic annihilation process particles start at random positions on the real
line and move at randomly-assigned constant velocities, annihilating on collision.
This process displays quite different behavior to diffusive systems and its analysis
presents particular challenges.

In order to specify a precise model, we must choose how particles are initially
positioned on the real line and how velocities are initially assigned to particles. The
most natural choice for the initial positions is arguably the points of a homogeneous
Poisson point process, which is the only choice considered in the physics literature.
It is also natural to sample i.i.d. velocities from some distribution. In the case
of a discrete distribution supported on two values, it is easy to see that almost
surely every particle is eventually destroyed when the two velocities have equal
probability, but that almost surely infinitely many particles of the more probable
velocity survive otherwise. However, this model still displays interesting global
behavior; see e.g. [2].

The first case for which the question of survival of individual particles is
not trivial is therefore a three-valued discrete distribution. Krapivsky et al. [13]
considered the general symmetric distribution on {−1, 0,+1}, i.e. 1−p

2 δ−1 +pδ0 +
1−p

2 δ+1 for some p ∈ (0, 1). They predicted the existence of a critical value pc such
that for p ≤ pc almost surely every particle is eventually destroyed and for p > pc
almost surely infinitely many particles survive, and further that pc = 1/4. Even the
existence of such a critical value is far from obvious, given that there is no coupling
to imply monotonicity of the annihilation of particles with p.

These predictions were strongly supported by intricate calculations of Droz et
al. [6]. More recently, this model attracted significant interest in the mathematics
community. Rigorous bounds were established by Sidoravicius and Tournier [14],
and independently by Dygert et al. [7], giving survival regimes for p ≥ 0.33, but
a subcritical regime was more elusive. In previous work with the late Vladas Sido-
ravicius [10], we established the precise phase transition predicted by Krapivsky,
Redner and Leyvraz.

A closely-related problem known as the bullet problem was popularised by
Kleber and Wilson [12]. In this problem, a series of bullets with random speeds
are fired at intervals from a gun, annihilating on collision. Kleber and Wilson [12]
asked for the probability that when n bullets are fired, all are destroyed. Broutin and
Marckert [5] solved this problem in generality, by showing that the answer does not
depend on the choice of speeds or intervals, provided that these are symmetrical.
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For any fixed sequence of n speeds and n−1 time intervals, consider firing n bullets
with a random permutation of the speeds, separated by a random permutation of the
intervals. Provided that the speeds and intervals are such that triple collisions cannot
occur, they show that the probability that all particles are destroyed, and even the
law of the number of particles which are destroyed, does not depend on the precise
choice of speeds and intervals. However, they note that this universality property
does not extend further, in that the indices of surviving particles does depend on the
choice of speeds and intervals.

In proving the phase transition for symmetric three-speed ballistic annihilation,
we observed a form of universality applies. Consider a one-sided version where
particles are placed on the positive real line. For each n, the probability that the nth
particle is the first to reach 0 is universal provided that distances between initial
positions of particles are i.i.d. This universality extends to discrete distributions,
provided that triple collisions are resolved randomly. These probabilities satisfy
a recurrence relation which may be leveraged to prove asymptotics for the decay
of particles; see [10] for further details. Note that this universality property
encompasses more information than that of Broutin and Marckert, since it relates to
the indices of surviving particles, which are not universal in their case; indeed, some
further information on the fate of the remaining particles (the “skyline process”
of [10]) is universal, although this universality does not extend to the full law
of pairings. However, it relies on successive intervals between particles being
independent, which is not necessary in [5].

In this article we extend this stronger form of universality for the symmetric
three-speed case to the combinatorial setting of Broutin and Marckert. These results
are specific to the symmetric three-speed case (that is, where the three speeds are
in arithmetic progression and the two extreme speeds have equal probability), and
this symmetry is necessary for the quantities we consider to be universal. However,
we do prove (see Sect. 5) some unexpected properties of particular interdistance
distributions which extend to the asymmetric three-speed case. This case was
considered by Junge and Lyu [11], who extended the methods of [10] to give upper
and lower bounds on the phase transition.

The so-called “bullet problem”, before it was put in relation with the topic of
“ballistic annihilation” in the physics literature, gained considerable visibility in the
community of probabilists thanks to Vladas’ warm descriptions and enthusiasm.
It soon became one of Vladas’ favorite open problems that he enjoyed sharing
around him, and that he relentlessly kept investigating. The second author had
innumerable lively discussions with him on this problem over the years, first already
in Rio, shortly before his departure, and then in Shanghai. It is mainly thanks to
Vladas’ never-failing optimism when facing difficult problems that, after years of
vain attempts and slow progress, efforts could be joined to lead to a solution in the
discrete setting with three speeds and to Paper [10].
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2 Definitions and Statements

We define ballistic annihilation with either fixed (shuffled) or random (i.i.d.) lengths.

2.1 Fixed Lengths

Let us first define the model in the combinatorial setting that is specific to this paper.
For integers a ≤ b we write �a, b� for the set of integers in [a, b].

Let n be a positive integer, μ be a symmetric distribution on {−1, 0,+1}, i.e. for
some p ∈ [0, 1] we have μ = 1−p

2 δ−1 + pδ0 + 1−p
2 δ+1, and � = (�1, . . . , �n) be

an ordered n-uple of positive real numbers:

� ∈ Ln =
{
(�1, . . . , �n) ∈ (0,+∞)n : �1 ≤ · · · ≤ �n

}
.

On a probability space (Ω,F ,P), consider independent random variables (v, s, σ )
such that

• v = (v1, . . . , vn) where v1, . . . , vn are independent, with distribution μ;
• s = (s1, . . . , sn) where s1, . . . , sn are independent, with uniform distribution on
{−1,+1};

• σ is uniformly distributed on the symmetric group Sn.

Finally, define the positive random variables x1, . . . , xn by

x1 = �σ(1), x2 = �σ(1) + �σ(2), . . . , xn = �σ(1) + · · · + �σ(n).

We interpret n as a number of particles, x1, x2, . . . , xn as their initial locations,
v1, v2, . . . , vn as their initial velocities, and s1, s2, . . . , sn as their “spins”. For any
i ∈ �1, n�, the spin si will only play part in the process if vi = 0, in which case it
will be used to resolve a potential triple collision at xi .

In notations, the particles will conveniently be referred to as •1, •2, . . . , •n, and
particles with velocity 0 will sometimes be called static particles, as opposed to
moving particles.

The evolution of the process of particles describes as follows (see also Fig. 1): at
time 0, particles •1, . . . , •n respectively start at x1, . . . , xn, then move at constant
velocity v1, . . . , vn until, if ever, they collide with another particle. Collisions
resolve as follows: where exactly two particles collide, both are annihilated; where
three particles, necessarily of different velocities, collide, two are annihilated, and
either the right-moving or left-moving particle survives (i.e. continues its motion
unperturbed), according to the spin of the static particle involved. Note that each
spin affects the resolution of at most one triple collision. Annihilated particles are
considered removed from the system and do not take part in any later collision. Thus,
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L3 L4 L6 L7L2 R2 R3 R4 R6
=R7

L1 R1 L5
=R5 · · ·

Rs

=1 =n
LsLs−1Rs−1

Fig. 1 Graphical space-time interpretation of the skyline of the process (see Definition 1), here
highlighted in red

after a finite time, every particle is either annihilated or shall pursue its ballistic
trajectory forever.

For a more formal definition, we refer the interested reader to [10].

2.2 Random Lengths

We may alternatively, in accordance to the classical setting of ballistic annihila-
tion, consider the distances �1, �2, . . . to be random, independent and identically
distributed (i.i.d.), which naturally enables to extend the definition into an infinite
number of particles.

Let μ = 1−p
2 δ−1 + pδ0 + 1−p

2 δ+1 be a symmetric distribution on {−1, 0,+1}
and let m be a probability measure on (0,∞). On (Ω,F ,P) we consider random
variables (�, v, s) where

• � = (�k)k≥1 where �1, �2, . . . are independent, with distributionm;
• v = (vk)k≥1 where v1, v2, . . . are independent, with distribution μ;
• s = (sk)k≥1 where s1, s2, . . . are independent, uniformly distributed on
{−1,+1}.

In contrast to the previous setting, we define, for all n ≥ 1,

xn = �1 + · · · + �n.

In other words, (xn)n≥1 is a renewal process on (0,∞) whose interdistances are
m-distributed.

The process is then defined in the same way as in the finite case, now with
infinitely many particles respectively starting from x1, x2, . . . Note that triple
collisions may only happen when the distributionm has atoms, hence in the opposite
case the sequence s of spins is irrelevant. Let us nonetheless already mention
that some arguments (cf. Sect. 4, most notably) involve the atomic case toward an
understanding of the continuous case.
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The model in this infinite setting goes through a phase transition as p varies from
0 to 1, specifically at p = 1/4, from annihilation of all static particles to survival
of a positive density of them. This was the main result of [10]; it is not used in the
present paper, although some remarks refer to it.

While most of the paper is concerned with the fixed lengths setting, some
consequences about random lengths will be mentioned (Corollary 2), along with
a specific property of gamma distributions, Theorem 2. Unless otherwise specified,
the model under consideration therefore has fixed lengths, hence finite size.

2.3 Notation

We introduce convenient abbreviations, borrowed from [10], to describe events
related to the model.

We use •i (where 1 ≤ i ≤ n) for the ith particle, • (with no subscript) for an
arbitrary particle, and superscripts →•, •̇ and ←• to indicate that those particles have
velocity +1, 0 and −1 respectively.

We write •i ∼� •j to indicate mutual annihilation between •i and •j , which
depends on the fixed lengths � = (�1, . . . , �n). Let us indeed emphasize that � plays
no role in P, but in the definition of collisions. Still, instead of writing � in subscripts,
we will often, for readibility, write P� to emphasize the choice of �, and drop the
notation � from the events.

Every realization of (v, s, σ ) induces an involutionπ on �1, n� by π(i) = j when
•i ∼ •j , and π(i) = i if •i survives. We shall refer to π as the pairing induced by
the annihilations.

We will usually replace notation •i ∼ •j by a more precise series of notations: if
•i ∼ •j with i < j , we write •i→←•j , or redundantly→•i→←←•j , when vi = +1
and vj = −1, •i → •j when vi = +1 and vj = 0, and •i ← •j symmetrically.
Note that in all cases this notation refers to annihilation, not merely collision, i.e.
it excludes the case where •i and •j take part in a triple collision but one of them
survives.

Additionally, we write x←•i (for i ∈ N and x ∈ R) to indicate that •i crosses
location x from the right (i.e. vi = −1, x < xi , and •i is not annihilated when
or before it reaches x), and x 1← •i if •i is first to cross location x from the right.
Symmetrically, we write •i→ x and •i 1→ x.

For any interval I ⊂ (0,∞), and any conditionC on particles, we denote by (C)I
the same condition for the process restricted to the set I , i.e. where all particles
outside I are removed at time 0 (however, the indices of remaining particles are
unaffected by the restriction). For short, we write {C}I instead of {(C)I }, denoting
the event that the condition (C)I is realized.
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2.4 Skyline

Finally, we introduce a decomposition of the configuration that plays a key role.

Definition 1 The skyline of the configuration (v, s, σ ) on �1, n� is the family

skyline�(v, s, σ ) =
(
(L1, R1,Σ1), . . . , (LS,RS,ΣS)

)

characterized by the following properties: �L1, R1�, �L2, R2�,. . . , �LS,RS� is a
partition of �1, n�, for k = 1, . . . , S, the “shape” Σk is one of the 6 elements of
the set {↑,↖,↗,↗↑,↑↖,↗↖}, and satisfies:

• Σk =↖ if vRk = −1 and all particles indexed in �Lk,Rk − 1� are annihilated
but •Rk survives;

• Σk =↑ if vLk = 0, Rk = Lk , and •Rk survives;
• Σk =↗↑ if →•Lk → •̇Rk , and no particle hits xLk from the left, or xRk from the

right (hence •Lk is the last to visit [xLk, xRk ));
• Σk =↗↖ if→•Lk→←←•Rk , and no particle hits xLk from the left, or xRk from the

right;

and symmetrically for ↑↖ and ↗.

Since this definition amounts to splitting �1, n� at indices of left- and right-going
survivors and at endpoints of intervals never crossed by a particle (see Fig. 1), the
skyline is well-defined.

This definition agrees with the notion of skyline introduced in [10] to study the
process on the full line (i.e. with particles indexed by Z), in the supercritical regime.
The extra shapes ↖ and ↗ are however specific to the finite setting.

2.5 Main Results and Organization of the Paper

Our main theorem is the following “universality” result.

Theorem 1 For each n, the distribution of the skyline on �1, n� does not depend
on �.

A similar statement was given in [10] in the infinite setting, with independent
random lengths, where it only made sense in the supercritical regime. The above
result highlights the combinatorial nature of this remarkable universality.

In order to underline the analogy with [5], where universality of the number
of surviving (i.e. non-annihilating) particles is proved in the context of generic
velocities, let us phrase out an immediate yet sensibly weaker corollary.

Corollary 1 For each n, the joint law of the number of surviving particles of
respective velocity −1, 0 and +1, does not depend on �.
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We give two proofs of the main result, of different nature and interest.

• First, in Sect. 3, we show by induction on the number of particles, that the
probabilities P�(0

1←←•n) and P�(
→•1 →←←•n) do not depend on �, and that this

implies the theorem. As a side result, this provides recursive formulae for these
probabilities. These formulae were obtained in [10] for random lengths, where
they played a key role.

• Then, in Sect. 4, a direct proof is proposed, close in spirit to the proof of [5], in
that we study local invariance properties of the law of the skyline on the space
Ln of lengths. Compared to [5], the proof greatly simplifies thanks to the natural
definition of the model at singular �, i.e. in a way of dealing with triple collisions
that ensures continuity in law.

This result has consequences for the classical case of random lengths. Let us
already notice that it readily implies that the distribution of the skyline on �1, n� does
not depend on the distribution m of interdistances. The same argument actually not
only holds for i.i.d. but also for exchangeable sequences (�1, . . . , �n). In the infinite
setting, the extension of results such as the phase transition at pc = 1/4 (main
theorem of [10]) to exchangeable sequences could alternatively already be seen as a
consequence of the universality in the i.i.d. case, and of de Finetti’s theorem.

The universality of the skyline also implies a previously unnoticed property of
independence in the classical case of random lengths, which gives access to the
Laplace transform of an interesting quantity:

Corollary 2 Consider ballistic annihilation with random lengths (on R+), and
define the random variable

A = min{n ≥ 1 : 0←←•n}.
(a) The random variables (A, xA) and (A, x̃A) have same distribution given

{A <∞}, where x̃ is a copy of x that is independent of A;
(b) Denote by L� the Laplace transform of x1 = �1, i.e. L�(λ) = E[e−λx1] for all

λ > 0. Then the Laplace transform LD of D := xA satisfies, on R+,

pL�L
4
D − (1+ 2p)L�L 2

D + 2LD − (1− p)L� = 0. (1)

This corollary is proved after Theorem 1 in the upcoming Sect. 3. Note in
particular that L� = φ ◦ LD where φ(w) = −2w

pw4−(1+2p)w2−(1−p) , hence the
distribution of D characterizes the distribution m of �1, in complete contrast with
the absence of dependence of A with respect to m (cf. Proposition 4 of [10], which
now follows from the above Theorem 1, cf. also Proposition 1 below).

While we present (a) as a corollary of Theorem 1, from which (b) follows at
once, we should also mention that a more direct proof of (b) is possible (see the
end of Sect. 3), from which (a) could alternatively be deduced. This approach based
on identification of Laplace transforms however gives no insight about the a priori
surprising Property (a).
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The proof of Property (a) will give the stronger statement of independence
between the whole skyline on �1, n� and xn; this fact turns out to also hold in the
asymmetric case and is therefore stated in Sect. 5 as Theorem 2, (a).

The interest in the random variableD comes from the fact (mostly a consequence
of ergodicity) that, for the process on the full line, the set of indices of static particles
remaining at time t has a density (in Z) equal to

c0(t) = pP(D > t)2.

The value, and in particular the asymptotics for this quantity, which are important
to understand the long-term behavior, can in principle be inferred from the Laplace
transform ofD. Such an analysis was conducted in [10] without access to LD , under
assumption of finite exponential moments for �1, in order to enable approximating
the tail of D using that of A, which in turn could be addressed by combinatorial
analytic methods on its generating series. Although the above computation is more
explicit than that of [10], we refrain from stating more general asymptotics of c0(t)

as t → ∞, as these are not universal and would depend on a technical choice of
further assumptions on the tail of �1. Let us merely remark that, in the particular
case when �1 is exponentially distributed, i.e. L�(λ) = (1 + λ)−1, this confirms
Equation (31) from [6]:

pLD(λ)
4 − (2p + 1)LD(λ)2 + 2(λ+ 1)LD(λ)+ p − 1 = 0,

from which Laplace inversion in the asymptotic regime λ→ 0 could be conducted,
leading to asymptotics of c0(t), t →∞.

We dedicate Sect. 5 to a discussion of the contrasting lack of universality as soon
as the distribution of velocities is not symmetric any more, thus raising a priori
difficulties for explicit computations. Still, we give positive results (Theorem 2),
and in particular a remarkable property of gamma distributed interdistances that is
insensitive to the asymmetry.

Finally, in Sect. 6, returning to the symmetric case and the universal distribution
of the skyline, and in particular of A (cf. Corollary 2 above), which is in a sense
explicit, we investigate its monotonicity properties with respect to the parameter p.
While intuitively expected, and indeed observed numerically, these turn out to be
complicated to establish in spite of the formulae at hand. We state a few conjectures
and prove partial results.

3 Combinatorial Universality: Proof of the Main Results

The main result will follow from the particular case in the proposition below, which
is a stronger version of Theorem 2 from [10].
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Proposition 1 For all n, and all � ∈ Ln, define probabilities

pn(�) = P�(0
1←←•n) and δn(�) = P�(

→•1 →←←•n).

For all n, pn and δn do not depend on �, and are given by the following recursive
equations, for n ≥ 2,

pn =
(
p + 1

2

) ∑

k1+k2=n−1

pk1pk2 −
p

2

∑

k1+k2+k3+k4=n−1

pk1pk2pk3pk4 (2)

δn = 1− p
2
pn−1 − p

2

∑

k1+k2+k3=n−1

pk1pk2pk3 , (3)

with base cases p1 = (1− p)/2 and δ1 = 0.

Note that pn = 0 for even n, and δn = 0 for odd n.
Let us stress again that, as is the case in [5], this “universality” with respect

to � does not follow from a direct coupling: indeed, the distribution of the full
pairing induced by the annihilations is not universal. A coupling between given
vectors � and �′ close enough is however possible, see Sect. 4, but wouldn’t extend
to a coupling in the infinite random length setting, as any fluctuation in the lengths
eventually breaks the coupling. Finally, as discussed in Sect. 5, the universality does
not extend to the asymmetric case.

Proof The proof follows the main lines of Theorem 2 from [10], although using a
stronger invariance. We proceed by induction on n, and show more generally that,
for all n, none of the following probabilities depends on � :

pn(�) = P�(0
1←←•n), αn(�) = P�({0 1←←•n} ∩ {•̇1}),

βn(�) = P�({0 1←←•n} ∩ {→•1 → •̇}), γn(�) = P�({0 1←←•n} ∩ {→•1 →←←•}),
and δn(�) = P�(

→•1 →←←•n).

Since pn = αn + βn + γn, the proposition will follow.
We have p1 = (1 − p)/2, and α1 = β1 = γ1 = δ1 = 0. Let n ∈ N be such that

n ≥ 2, and assume that the previous property holds up to the value n− 1.
First, let us consider αn and prove more precisely that, for each integer k in

{2, . . . , n− 1}, P�(0 1←←•n, •̇1 ←←•k) is universal (i.e., does not depend on �). Let k
be such an integer. Note that we have equivalently

{0 1←←•n, •̇1 ←←•k} = {•̇1} ∩ {x1
1←←•k}(x1,xk] ∩ {xk 1←←•n}(xk,xn]. (4)
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0 xn
annihilated

0 xnx1
annihilated

0 xnx1
annihilated

0 xnx1
annihilated

Fig. 2 The event corresponding to pn (top left) and decomposition into the events corresponding
to αn (top right), βn (bottom left) and γn (bottom right)

Let {r1, . . . , rk−1} and {s1, . . . , sn−k} be any disjoint subsets of {1, . . . , n} such that
r1 < · · · < rk−1 and s1 < · · · < sn−k . Then, by standard properties of uniform
permutations, conditional on the event

Er,s =
{
σ({2, . . . , k}) = {r1, . . . , rk−1} and σ({k + 1, . . . , n}) = {s1, . . . , sn−k}

}
,

the random variables (�σ(2), . . . , �σ(k)) and (�σ(k+1), . . . , �σ(n)) are independent,

and respectively distributed as
(
�
(r)
τ (1), . . . , �

(r)
τ (k−1)

)
and

(
�
(s)
π(1), . . . , �

(s)
π(n−k)

)
, where

�
(r)
i = �ri and �(s)i = �si , and τ, π are independent uniform permutations of
{1, . . . , k − 1} and {1, . . . , n− k} respectively. In particular, from (4),

P�(0
1←←•n, •̇1 ←←•k | Er,s) = p P�(r)(0 1←←•k−1)P�(s)(0

1←←•n−k)
= p pk−1

(
�(r)

)
pn−k

(
�(s)

)
,

which by induction does not depend on �. SinceEr,s does not depend on �, summing
over values of r, s, and of k proves universality for αn.
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Secondly, we consider βn. Contrary to the previous case, we only show that, for
each integer k in {2, . . . , n−1}, the sum P�(0

1←←•n, →•1→•̇k)+P�(0
1←←•n, →•1→•̇k′)

is universal, where k′ = n+ 1− k. Summing over k then gives universality of 2βn,
hence of βn. Let k ∈ {2, . . . , n− 1}, and note that

{0 1←←•n, →•1 → •̇k} = {→•1
1→ xk}[x1,xk) ∩ {•̇k} ∩ {xk 1←←•n}(xk ,xn]

∩
(
{xk − x1 < xn − xk} ∪

({xk − x1 = xn − xk} ∩ {sk = −1})
)
.

Conditional on the same type of event Er,s as above, the distances xk − x1 =
∑

1≤i≤k−1 �
(r)
i and xn − xk = ∑

1≤i≤n−k �
(s)
i become deterministic, and as in the

previous case the four events in the above conjunction are independent so that

P�(0
1←←•n, →•1 → •̇k | Er,s) = pk−1

(
�(r)

)
ppn−k

(
�(s)

)

×
(

1(∑
�(r)<

∑
�(s)

) + 1
2 1(∑

�(r)=∑
�(s)

)
)
.

Symmetrically, recalling that k′ = n + 1 − k and denoting by E′s,r the event that
σ({2, . . . , k′}) = {s1, . . . , sk′−1} and σ({k′ + 1, . . . , n}) = {r1, . . . , rn−k′ }, we have

P�(0
1←←•n, →•1 → •̇k′ | E′s,r) = pk′−1

(
�(s)

)
ppn−k′

(
�(r)

)

×
(

1(∑
�(s)<

∑
�(r)

) + 1
2 1( ∑

�(s)=∑
�(r)

)
)
.

Thus, by summation, for any r, s we have

P�(0
1←←•n, →•1→•̇k | Er,s)+P�(0

1←←•n, →•1→•̇k′ | E′s,r) = pk−1
(
�(r)

)
p pn−k

(
�(s)

)
.

By induction, this does not depend on �. Summing on values of (r, s) yields the
expected conclusion.

Let us now consider γn. Here we have again that, for 1 < k < n, the probability
P�(0

1←←•n, →•1 →←←•k) is universal. Note indeed that

{0 1←←•n, →•1 →←←•k} = {→•1 →←←•k}[x1,xk] ∩ {xk 1←←•n}(xk,xn], (5)

and that, for all (r, s) as before,

P�(0
1←←•n, →•1 →←←•k | Er,s) = P�(r) (

→•1 →←←•k)P�(s)(0 1←←•n − k)
= δk−1

(
�(r)

)
pn−k

(
�(s)

)
,

which by induction does not depend on �.
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Finally, we are left with δn. Note that {→•1 →← ←•n} implies {→•1} ∩ {x1
1←

←•n}(x1,xn]. Furthermore, the difference between these two events is precisely given

by configurations where in absence of •1 we would have 0 1←←•n, but →•1 actually
collides with some static particle •̇i , thereby freeing a particle←•j (compared to the
configuration without •1) that becomes the first to hit 0, followed by←•n. This can be
expressed as follows:

{→•1}∩{x1
1←←•n}(x1,xn] = {→•1→←←•n}∪

⋃

1<i<j<n

(
{0 1←←•j }∩{→•1→•̇i}∩{xj 1←←•n}(xj ,xn]

)
.

Since these events are disjoint, we get (furthermore summing over i)

1− p
2

P�

(
(x1

1←←•n)(x1,xn]
) = δn +

∑

1<j<n

P�

(
0 1←←•j , →•1 → •̇, (xj 1←←•n)(xj ,xn]

)
.

Conditioning on σ(1) and applying the induction assumption on (�σ(i))i=2,...,n
shows that the probability on the left-hand side equals pn−1 and is universal.
As for the right-hand side probability, conditional on σ({1, . . . , j }), the events
{0 1←←•j , →•1 → •̇} and {xj 1←←•n}(xj ,xn] are independent and we get

P�

(
0 1←←•j , →•1 → •̇, (xj 1←←•n)(xj ,xn]

∣
∣ σ({1, . . . , j })) = βj−1pn−j+1,

which by induction is universal. As a consequence, δn is universal too. Gathering
identities proved along the way, we have

αn = p
∑

1<k<n

pk−1pn−k;

βn = 1

2
αn;

γn =
∑

1<k<n

δkpn−k;

δn = 1− p
2
pn−1 −

∑

1<k<n

βkpn−k.

It follows that pn = αn + βn + γn satisfies

pn = 3

2
p

∑

1<k<n

pk−1pn−k +
∑

1<k<n

pn−k
(

1− p
2
pk−1 −

∑

1<j<k

βjpk−j
)

=
(
p + 1

2

) ∑

1<k<n

pk−1pn−k − p
2

∑

1<k<n

∑

1<j<k

∑

1<i<j

pn−kpk−jpj−ipi−1,
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and the formula for δn comes analogously.

From there, the distribution of the skyline follows:

Proof of Theorem 1 Let s ∈ N
∗, and (l1, r1, ς1), . . . , (ls , rs , ςs) be any possible

skyline on {1, . . . , n}, in other words this sequence satisfies

• 1 = l1 ≤ r1 = l2 − 1 < r2 = l3 − 1 < · · · < rs−1 = ls−2 + 1 < rs = n;

• ri − li

⎧
⎪⎪⎨

⎪⎪⎩

= 0 if ςi =↑,
is odd if ςi ∈ {↗↑,↑↖},
is even and ≥ 2 if ςi ∈ {↖,↗};

• ςi =↖ may only happen at the beginning, i.e. for all i = 1, . . . , i0 (for some
i0 ≥ 0);

• ςi =↗ may only happen at the end, i.e. for all i = n− j0 + 1, . . . , n (for some
j0 ≥ 0).

Then we simply observe that the realization of the skyline reduces to events on the
disjoint intervals �li , ri�, which are independent:

P
(

skyline�(v, s, σ ) = (li , ri , ςi)1≤i≤s
) =

s∏

i=1

q(�)ςi (ri − li ),

where, for all m ∈ N,

q
(�)
↑ (m) = p1(m=0),

q
(�)
↗↑(m) = q(�)↑↖(m) = pP(0 1←←•m−1) = p pm−1,

q
(�)
↗ (m) = q(�)↖ (m) = P(0 1←←•m) = pm,

q
(�)
↗↖(m) = P(

→•1 →←←•m) = δm,

referring to notations pm and δm from the proof of Proposition 1, where they are
proved not to depend on �, thereby implying the theorem.

Corollary 2 is finally a direct corollary of Proposition 1:

Proof Property (a) is equivalent to saying that, for all n, the random variables 1(A=n)
and xn are independent. Indeed, for all n ∈ N and t > 0, P(xA ≤ t, A = n) =
P(xn ≤ t, A = n) while P(̃xA ≤ t, A = n) = P(xn ≤ t)P(A = n). Let n ∈ N.
Conditional on �(·) = (

�(1), . . . , �(n)
)
, which are the order statistics of (�1, . . . , �n),

we have xn = �(1) + · · · + �(n) and we reduce to the finite setting of Theorem 1:

P(xn ≤ t, A = n) = E
[
P�(·)(0

1←←•n)1(
�(1)+···+�(n)≤t

)]
.
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Since, by Theorem 1, the probability on the right-hand side does not depend on �(·),
and thus equals P(A = n), this concludes (a).

Property (b) follows: for all λ > 0, since xn = �1 + · · · + �n,

LD(λ) = E[e−λxA] = E[e−λx̃A] =
∞∑

n=0

E[e−λxn]P(A = n)

=
∞∑

n=0

E[e−λ�1]nP(A = n) = f (L�(λ)),

where f is the generating function of A. The following relationship satisfied by f
was deduced in the restricted setting of i.i.d. interdistances in [10], but we repeat it
here for completeness. Introducing the generating series

A : x �→
∞∑

n=0

αnx
n, B : x �→

∞∑

n=0

βnx
n, C : x �→

∞∑

n=0

γnx
n, and D : x �→

∞∑

n=0

δnx
n,

for which the recurrence relations proved above yield the relationships

A(x) = pxf (x)2, B(x) = 1

2
A(x),

C(x) = D(x)f (x), and D(x) = 1− p
2
xf (x)− B(x)f (x),

and using the fact that f (x) = 1−p
2 x + A(x)+ B(x)+ C(x), we obtain

f (x) = 1− p
2
x + 3

2
pxf (x)2 + 1− p

2
xf (x)2 − 1

2
pxf (x)4,

from which (b) follows.

Deducing (a) from (b) would actually require computing the joint transform
L(A,xA)(s, λ) = E[sAe−λxA]: one gets similarly L(A,xA)(s, λ) = f (sL�(λ)), which
coincides with L(A,̃xA)(s, λ).

As advertised after the statement of Corollary 2, a more direct computation of
the Laplace transform is possible, that we sketch below.

Alternative Proof of Corollary 2 (b) Let us directly obtain the functional equa-
tion (1) for the Laplace transform LD(λ), using a continuous counterpart to the
induction obtained for A. For a change, we shall also partly refer to the mass
transport principle, whose use in the context of ballistic annihilation was introduced
by Junge and Lyu [11]. Let us warn the reader that, since the arguments rely on
similar arguments given elsewhere in the paper, and this is an alternative proof, we
give somewhat fewer details. Let λ ≥ 0.
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We split the expectation according to the type of collision •1 is involved in. First,
if v1 = −1 then D = x1 = �1:

E[e−λD1
(
←•1)
] = E[e−λ�11

(
←•1)
] = L�(λ)

1 − p
2
.

Consider now the case when v1 = 0. Define, in general, D′,D′′ by x1 + D′ =
min{xk : (x1

1←←•k)(x1,xk]} and x1+D′+D′′ = min{xk : (x1+D′ 1←←•k)(x1+D′,xk]},
so that D′ and D′′ are independent copies of D, and are independent of v1.
Conditional on v1 = 0, we have D = x1 +D′ +D′′: either D = ∞, in which case
either D′ = ∞ or D′′ = ∞, or D < ∞, which implies that •̇1 is first annihilated,
and then 0 is hit by a particle that hit x1 +D′ before. Thus,

E[e−λD1(•̇1)] = E[e−λ(x1+D+D′)1(•̇1)] = E[e−λ�1]E[e−λD]2p = L�(λ)LD(λ)
2p.

We focus now on E[e−λD1
(
→•1→•̇)] = E[e−λD1

(
→•1→•̇)∧(D<∞)]. Let us apply the

mass transport principle (cf. [11]) to f (u, v) = e−λD(u,v)1
(
→•u→•̇v), where D(u, v)

is the sum of the distances from xv to the first particle to cross xv from the left
(which is xv − xu on the event {→•u→ •̇v}), and to the first particle to cross xv from
the right. Thus, we temporarily extend to process to the full-line R in order to use
the mass transport principle. This gives:

∑

v∈Z
E[e−λD(0,v)1

(
→•0→•̇v)] =

∑

u∈Z
E[e−λD(u,0)1

(
→•u→•̇0)

],

which rewrites as follows (using translation invariance):

E[e−λ(D−�1)1
(
→•1→•̇)∧(D<∞)] = pE[e−λ(D−+D)1(D−<D)]

where D− is the symmetric counterpart to D on R−; it is an independent copy of
D, hence, since also �1 is independent of D − �1 (actually �1 plays no role in the
collisions),

E[e−λD1
(
→•1→•̇)] = E[e−λ�1]1

2
E[e−λD]2 = p

2
L�(λ)LD(λ)

2.

Let us finally considerE[e−λD1
(
→•1→←←•)]. Conditionally on the event {→•1→←←•},

D = �1 +Δ+D′ whereΔ = xK − x1 if K is the index such that→•1 →←←•K , and
D′ = D − xK . Note that �1, Δ and D′ are independent on that event, and that D′
has same distribution as D so that

E[e−λD1
(
→•1→←←•)] = E[e−λ�1]E[e−λD]E[e−λΔ1

(
→•1→←←•)]

= L�(λ)LD(λ)E[e−λΔ1
(
→•1→←←•)].



Combinatorial Universality in Three-Speed Ballistic Annihilation 503

We are thus left with the Laplace transform ofΔ. As in the study of the law of A,
we notice that {→•1→←←•} happens on {→•1} ∩ {x1

1←←•}(x1,+∞) unless→•1 hits a static

particle first, i.e. there exists j < k such that {→•1 → •̇j } ∩ {0 1←←•k}(0,+∞) ∩ {xk 1←
←•}(xk,+∞) is realized. The last condition of that event is independent of the previous
ones, and depends on a piece of environment of length distributed as D. Thus we
find

E[e−λΔ1
(
→•1→←←•)] =

1− p
2

LD(λ)− E[e−λ(D−�1)1
(
→•1→•̇)∧(0 1←←•)]LD(λ)

= 1− p
2

LD(λ)− p2 LD(λ)
3

where for the last computation we reuse the previous case E[e−λD1
(
→•1→•̇)].

All together, this gives

LD(λ) = 1− p
2

L�(λ)+ pL�(λ)LD(λ)2 + p
2
L�(λ)LD(λ)

2

+L�(λ)LD(λ)
(1− p

2
LD(λ)− p

2
LD(λ)

3
)
,

which after simplification is the claimed identity.

Let us merely mention that the proof could also give the joint transform ofA and
D = xA, from which part (a) of Corollary 2 follows as well.

4 Direct Approach to Universality

We aim here at giving a direct proof of the fact that the law of the skyline does
not depend on the sequence of interdistances. This approach unites the model for
different values of � and gives a clearer understanding of the universality property
but does not however yield explicit distributions. Let n be fixed in this part.

Among the set Ln of lengths, we distinguish “generic” length sequences, for
which no triple collision may happen, in other words no two subsets of lengths have
the same sum:

Lgeneric = {� = (�1, . . . , �n) ∈ Ln : ∀I, J ⊂ {1, . . . , n}, �I = �J unless I = J },

where for any subset I ⊂ {1, . . . , n}, we let �I = ∑
i∈I �i . Finally, we will need to

refer to lengths allowing a single triple collision:

Lsingle = {� ∈ Ln : ∃ a unique pair I, J ⊂ {1, . . . , n} such that I∩J = ∅ and �I = �J },

and Lmultiple = Ln \ (Lgeneric ∪ Lsingle).
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Locally Constant on Lgeneric Notice first that the joint law of the velocities and
pairing among annihilating particles is locally constant on Lgeneric. Indeed all
relative orders among values of �I , for I ⊂ {1, . . . , n}, are locally constant on
Lgeneric, hence for any velocities v1, . . . , vn ∈ {−1, 0,+1} and any involution
π : {1, . . . , n} → {1, . . . , n}, the set of permutations σ producing the pairing π
(i.e. such that •i ∼ •j if and only if π(i) = j , and π(i) = i if and only if •i
survives) is itself locally constant in Lgeneric. As an immediate consequence, the law
of the skyline is constant on each connected component of Lgeneric.

Continuous on Lsingle Let us argue that these probabilities are continuous on
Lsingle. Let � ∈ Lsingle. There is thus a unique pair I, J such that I ∩ J = ∅ and
�I = �J .

If ε denotes the smallest difference among |�K − �L| for all K,L, K ∩ L = ∅,
{K,L} = {I, J }, then each vector �′ at uniform distance smaller than ε from � either
belongs to one of two connected components L+(�) or L−(�) of Lgeneric according
to whether �′I < �′J or �′I > �′J , or to L0(�) ⊂ Lsingle if �′I = �′J .

If �′ ∈ L0(�), the joint law of velocities, spins and pairing is preserved as above,
hence the probability is the same as for �.

If �′ ∈ L+(�), let us establish that the probability is preserved. Let us describe
a one-to-one map Φ on the set of velocities, spins and permutations (v, s, σ )
that preserves the number of static (hence of moving) particles and such that
skyline�(v, s, σ ) = skyline�′(Φ(v, s, σ )) (however, contrary to the previous cases,
Φ does not a priori preserve the pairing); since the probability of each realization
of (v, s, σ ) only depends on the number of static particles (thanks to symmetry),
this will conclude the argument. The skyline for � does not depend on the pairing of
a given subset of {1, . . . , n} given that it totally annihilates and lies below a given
annihilating pair or a surviving ±1 particle. It is therefore sufficient that Φ only
alters such subsets.

If (v, s, σ ) has no triple collision for �, then Φ(v, s, σ ) = (v, s, σ ), and the
pairings for � and �′ are the same, as for Lgeneric, meaning that skyline�(v, s, σ ) =
skyline�′(Φ(v, s, σ )).

If there is a triple collision →•j → •̇i ←←•k for (v, s, σ ) and �, then we let

(v′, s′, σ ′) = rev�,�
′

j,k (v, s, σ ). Here, in wider generality, for 1 ≤ j < k ≤ n,

rev�,�
′

j,k : (v, s, σ ) �→ (v′, s′, σ ′) is a “reversing operator around a triple collision

between→•j and←•k”, from {−1, 0,+1}n×{−1,+1}n×Sn to itself, defined by: (see
also Fig. 3)

• if (v, s, σ ) does not induce→•j → •̇←←•k for �, then (v′, s′, σ ′) = (v, s, σ ).
• otherwise, i.e. if→•j → •̇i←←•k for some j < i < k, for distances �, then denote
I = σ({j, . . . , i − 1}) and J = σ({i, . . . , k − 1}) (so that �I = �J ), and

– if �′I < �′J and si = −1, or �′I > �′J and si = +1, then (v′, s′, σ ′) = (v, s, σ );
– else, define (v′, s′, σ ′) from (v, s, σ ) by mirroring the interval (xj , xk), i.e.

reversing the order of interdistances, velocities and spins, and furthermore
changing velocities and spins to their opposite, in this interval : for j < m ≤ k,
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�

j k

I J
{ {

(v, s, σ)

· · · · · ·

Φ = id

If �′
I < �′

J

j k

I J

{ {· · · · · ·

Lengths �

Lengths �′

⊕

j k

J I

{ {

(v′, s′, σ′)

· · · · · ·Φ = rev�,�′
j,k

If �′
I > �′

J

j k

J I

{ {

If �′
I < �′

J If �′
I > �′

J

Fig. 3 Illustration of the map Φ in the case of a single triple collision

σ ′(m) = σ(j + 1 + k − m) and for j < m < k, v′m = −vj+k−m, s′m =
−sj+k−m; and (v′, s′, σ ′) and (v, s, σ ) coincide elsewhere.

Note that, in the last case, (v′, s′, σ ′) still has a triple collision →•j → •̇i′ ←←•k for
�, at i ′ = j + k − i = i + |J | − |I |; the mirroring has the effect of exchanging the
roles of I and J , but also of letting si′ = −si , so that (v′, s′, σ ′) would also fall into

this last case hence rev�,�
′

j,k (v
′, s′, σ ′) = (v, s, σ ). Thus this operator is involutive on

the subset of all (v, s, σ ) that have a triple collision→•j → •̇←←•k . For � ∈ Lsingle,
the configuration space is partitioned into those subsets for 1 ≤ j < k ≤ n; as
a consequence, Φ is involutive, hence bijective, on the whole configuration space
{−1, 0,+1}n × {−1,+1}n ×Sn.

And by construction, each operator rev�,�
′

j,k , and thus Φ, only affects the pairing
of indices of particles that annihilate and are lying “under” a moving particle (i.e.
whose range is later visited by another particle), which has no consequence on the
skyline. In particular, skyline�(v, s, σ ) = skyline�′(v

′, s′, σ ′).
Finally, rev�,�

′
j,k , hence Φ, clearly preserves the number of static particles.

Connectedness of Lgeneric ∪ Lsingle We have that Lgeneric ∪ Lsingle is a connected
subset of L. Indeed, its complement Lmultiple in the positive full-dimensional cone
L is a finite union of subspaces of codimension at least 2, namely induced by at
least two different constraints �I1 = �J1 , �I2 = �J2 (which are not equivalent, hence
non-colinear, due to Ii ∩ Ji = ∅, i = 1, 2).
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From the previous points, we conclude that the probabilities are constant on
Lgeneric ∪ Lsingle.

Extension to Lmultiple Let us finally extend the argument for Lsingle to the general
case. We may pick �′ ∈ Lgeneric close enough to � so that all relative orders
among the sums �I are preserved except for the equality cases. We then describe
a permutation Φ of triples (v, s, σ ) as above, which only depends on the order
within all pairs �′I and �′J where �I = �J . Let (v, s, σ ) be a configuration. For that
configuration, and distance �, we may order the triple collision pairs (j, k) (i.e. such
that→•j → •̇←←•k) as (j1, k1), . . . , (jM, kM) in a way that complies with inclusion:
if 1 ≤ K ≤ L ≤ M , then either [jK, kK ] ∩ [jL, kL] = ∅ or [jK, kK ] ⊂ [jL, kL].
It suffices to first list, in arbitrary order, all intervals that are minimal for inclusion,
and then iterate on the remaining ones. Then we define

Φ(v, s, σ ) = rev�,�
′

jM,kM
◦ rev�,�

′
jM−1,kM−1

◦ · · · ◦ rev�,�
′

j1,k1
(v, s, σ ).

ForK = 1, . . . ,M−1, due to the ordering, the application of rev�,�
′

jK,kK
inΦ does not

alter the indices of the forthcoming triple collisions (jK+1, kK+1), . . . , (jM, kM),
ensuring that each operator really acts on a triple collision. Also, the ordering among
triple collisions with disjoint supports has no effect on Φ since the corresponding
rev operators commute. If there is no triple collision for (v, s, σ ) and �, we mean to
define Φ(v, s, σ ) = (v, s, σ ).

Although the operatorΦ does not preserve the set of pairs (j1, k1), . . . , (jM, kM)

of triple collisions, it does preserve the maximal ones (for inclusion), which ensures
it preserves the skyline when going from (v, s, σ ), � toΦ(v, s, σ ), �′. Also, it is still
an involution: this is obtained by induction on the maximum number of nested triple

collisions, together with the simple fact that Φ (and even each rev�,�
′

j,k ) commutes
with a mirroringΣ of the whole interval where Φ is acting. Also, Φ still preserves
the number of static particles. Altogether, we deduce that the law of skyline� and
skyline�′ are equal.

5 Asymmetric Case: Failure of Universality and a
Remarkable Property of Gamma Distributions

Let us consider the asymmetric case, where the distribution of velocities is given by
(1−r)(1−p)δ−1+pδ0+r(1−p)δ+1, for some r ∈ (0, 1)\{ 1

2}, and still p ∈ (0, 1).
Many questions remain open in this case, but Junge and Lyu [11] could still prove
that some of the identities of the symmetric case can be extended, implying that the
model still has a subcritical and a supercritical phase, although the phase transition
was not proved unique.

A notable difference, that helps understand why the asymmetric case might be
sensibly harder, is the apparent lack of universality. It is indeed simple although
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tedious to check on the first cases that the distribution ofA is distribution-dependent.
In particular, one can check that P(A = 5) depends on the distribution. Writing
z := P(x4 − x1 > x5 − x4)+ 1

2P(x4 − x1 = x5 − x4), we have

P((A = 5) ∧ (v = (1, 1, 0, 0,−1))) = zr2(1− r)p2(1− p)3/8
P((A = 5) ∧ (v = (1, 0, 0,−1,−1))) = (1− z)r(1− r)2p2(1− p)3/8
P((A = 5) ∧ (v = (1, 0,−1, 0,−1))) = zr(1− r)2p2(1− p)3r2(1− r)/16

P((A = 5) ∧ (v = (1, 0, 1, 0,−1))) = (1− z)r2(1− r)p2(1− p)3/16,

but the total contribution from other possible velocities is universal. Since r = 1
2 ,

the total of these four probabilities depends on z and hence on the distribution of
distances.

Let us still state two surprising properties that hold in the asymmetric case. The
first one would, in the symmetric case, follow at once from Theorem 1 by a seamless
generalization of the proof of Corollary 2 (a). The second one however is new in any
case.

Theorem 2 We consider the random lengths setting.

(a) In the symmetric or asymmetric cases, for all n, xn and skyline(�1,...,�n)
are

independent.
(b) In the symmetric or asymmetric cases and if m is a gamma distribution, for

all n, xn and the whole combinatorial configuration, i.e. (v, π) (velocities and
pairing), are independent.

Note that, due to the assumed independence between � and v, the property (b) is
actually an independence between xn and π given any velocities v1, . . . , vn.

Let us give a simple counterexample illustrating why (b) doesn’t hold in general.
Consider m = 1

2δ1 + 1
2δ4 and the configuration on five particles given by velocities

v = (1, 1, 0, 0,−1) and pairing π = (
4 3 2 1 5

)
(i.e., •1 ∼ •4, etc.). Then, given

this realization of (v, π), interdistances necessarily are �2 = �3 = �4 = 1 and
�5 = 4 (remember �1 plays no role), see Fig. 4, hence the distribution of x5 takes two
values depending on �1, and thus clearly differs from the unconditioned distribution.

Let us remind the reader that the model of ballistic annihilation was studied in the
physics literature under the assumption of exponential interdistances (see e.g. [6]),
which simplified computations. We don’t have knowledge however of a previous
result that would rely on that distribution except for technical reasons.

Fig. 4 Simple
counterexample to the
independence of xn from the
pairing of �1, n� for arbitrary
interdistance distribution (see
above) �1 �2 �3 �4 �5
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Let it finally be mentioned that we can’t rule out a different form of universality,
which might still await discovery. Still, numerical simulations suggest that the
critical probability itself, should it exist, could depend on the distribution of
interdistances.

Proof

(a) Note that conditioning on the skyline amounts to a conjunction of independent
conditions on disjoint subintervals, that are either of the type {xj 1← ←•k}
(including •̇j ← ←•k) or {→•j →← ←•k}, and xn is the total length of these
subintervals, together with unconditioned intervals in-between. It is therefore
sufficient to show independence between xn and both of {0 1←←•n} and {→•1→←
←•n}. This property will be obtained via a similar recursion scheme as in the
proof of Proposition 1—or rather as in the proof of Theorem 2 from [10],
since we are considering random lengths. We actually prove the stronger
statement of independence between xn and each of the events {0 1←←•n} ∩ {•̇1},
{0 1←←•n} ∩ {→•1 → •̇}, {0 1←←•n} ∩ {→•1 →←←•} and {→•1 →←←•n}.

The case n = 1 is clear. Assume now n ≥ 2 and that the independences hold
for any number m < n of particles (note that, for each m, depending on parity,
only one of the conditions {0 1←←•m} and {→•1 →←←•n} has nonzero probability,
so independence is trivial for the other). Symmetrically, we already remark that
this assumption implies an independence between xm (unchanged by left-right
symmetry) and the event {→•1

1→ xm+1}[x1,xm+1) for all m < n.
In the following, in order to emphasize that we restrict to [0, xn], we denote

P
(n) the probability of the model restricted to particles •1, . . . , •n (remember

the random length model was defined for infinitely many particles).
Consider any measurable function f : R→ R+. We have

E
(n)[f (xn)1

(0 1←←•n)1(•̇1)] =
∑

1<k<n

E
(n)[f (xn)1(•̇1←←•k)1(xk 1←←•n)]

and, under the condition appearing on the right hand side, by induction, each
of xk − x1 and xn − xk (and trivially x1) have unconditioned distributions; they
are also mutually independent, as in their joint unconditioned distribution, so
that the distribution of xn = (xn − xk) + (xk − x1) + x1 is unaffected by this
condition, hence

E
(n)[f (xn)1

(0 1←←•n)1(•̇1)] = E
(n)[f (xn)]P((0 1←←•n) ∧ (•̇1)),

as expected. Next, we have (as in the study of βn in the proof of Proposition 1),
denoting k′ = n+ 1− k for any 1 < k < n,

E
(n)[f (xn)1

(0 1←←•n)1(→•1→•̇)] =
p

2

∑

1<k<n

(
E
(n)[f (xn)1

(
→•1

1→xk)1(xk 1←←•n)1(xk−x1<xn−xk)]

+ E
(n)[f (xn)1

(
→•1

1→xk′ )
1
(xk′

1←←•n)1(xk′−x1<xn−xk′ )]
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+ 1

2
E
(n)[f (xn)1

(
→•1

1→xk)1(xk 1←←•n)1(xk−x1=xn−xk)]

+ 1

2
E
(n)[f (xn)1

(
→•1

1→xk′ )
1
(xk′

1←←•n)1(xk′−x1=xn−xk′ )]
)
.

By the induction assumption, for all k, conditional on the event {→•1
1→xk′ }, xk′ −

x1 is unconditioned, and in particular (by the induction again, symmetrically)
has same distribution as xn − xn−k′+1 = xn − xk conditional on {xk 1←←•n};
similarly, conditional on {xk′ 1←←•n}, xn−xk′ has same distribution as xn−k′+1−
x1 = xk−x1 conditional on {→•1

1→xk}; furthermore both are independent given
the independent events {→•1

1→ xk′ } ∩ {xk 1←←•n}. Hence, using invariance of xn
by permutation of distances,

E
(n)

[
f (xn)1

(
→•1

1→xk′ )
1
(xk′

1←←•n)1 (xk′−x1<
xn−xk′ )

]
= E

(n)

[
f (xn)1

(
→•1

1→xk)1(xk 1←←•n)1 (xn−xk<xk−x1)

]
.

Getting back to the previous summation, the comparison between distances
simplifies, leaving independent conditions which by induction are independent
of the widths:

E
(n)[f (xn)1

(0 1←←•n)1(→•1→•̇)] =
p

2

∑

1<k<n

E
(n)[f (xn)1

(
→•1

1→xk)1(xk 1←←•n)]

= p
2

∑

1<k<n

E
(n)[f (xn)]P(→•1

1→ xk)P(xk
1←←•n)

= E
(n)[f (xn)]P

(
(0 1←←•n) ∧ (→•1 → •̇)).

Finally,

E
(n)[f (xn)1(→•1→←←•)] =

∑

1<k<n

E
(n)[f (xn)1(→•1→←←•k)1(xk 1←←•n)];

the last two conditions are independent, and by induction they don’t affect the
distribution of distances xk − x1 and xn − xk , so this case is handled as the first
one. This altogether gives independence between xn and {0 1←←•n}.

It remains to consider xn and {→•1→←←•n}. Using the same decomposition as
in the proof of Proposition 1 (case of δn) or in the alternative proof of Corollary 2
(page 501), we reduce to the independence between xj and {→•1→•̇}∩{0 1←←•j },
and conclude as in the previous cases.

(b) Up to scaling, it is enough to prove the result for gamma distributions of scale
parameter 1.

We prove, by induction on the number n of particles, that the result holds
for a generalized model where some sites may be “devoid of a particle”, which
we formally handle by considering that the n particles are separated by sums
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of i.i.d. gamma interdistances, i.e. interdistances are again gamma distributed,
with possibly different shape parameters (but same scale parameter 1). In the
following, when referring to a gamma distribution, it shall always be of scale
parameter 1.

The first nontrivial case is n = 3, and only in the case of velocities
(+1, 0,−1). Then the pairing depends on the comparison between �2 and �3,
and we need to show that �2+�3 is independent of {�2 > �3} (remember �2 and
�3 may have different distributions). This comes from the following classical
property (see [9, Section 4.11]):

Fact 1 if X and Y are independent random variables with respective distribu-

tions Γ (α, 1) and Γ (β, 1), then X + Y is independent of
(
X
X+Y ,

Y
X+Y

)
, hence

in particular of {X < Y }, and has distribution Γ (α + β, 1).
Let us now assume n ≥ 4 and that the result holds for strictly fewer particles.
Let α1, . . . , αn > 0 be given. We consider n particles, and assume the interdis-
tances �1, . . . , �n to have respective distributions Γ (α1, 1), . . . , Γ (αn, 1). Let a
configuration (v, π) be given.

Case 1 First consider the case when, in the configuration, there are indices
k < l, different from (1, n), such that →•k →← ←•l . Then, thanks to the
induction applied to the strict subinterval �k, l�, conditional on the configuration
(v, π), the distance xl − xk has same distribution as unconditionally (i.e.
a gamma distribution, as a sum of independent gamma variables), and in
particular same distribution as with particles •k, . . . , •l removed. Since such
a pyramid shaped subconfiguration is independent of the configuration outside
this subinterval (indeed no collision with particles outside �k, l� is possible),
we further conclude that the total width xn, conditioned on (v, π), has same
distribution as with particles •k, . . . , •l removed (including, from configuration
π). This reduces to a strictly smaller number of particles, enabling to use again
the induction to conclude.

It remains to consider the cases when either →•1 →←←•n or all collisions are
of the type→•→ •̇ or symmetrically.

Case 2 Assume that→•1 →←←•n. We further consider two subcases.

Case 2a If the configuration contains indices k, l with l > k + 2 and •̇k←←•l
or→•k→ •̇l , we have by the induction applied to the interval �k, l� that xl − xk
is gamma distributed given the configuration. Since the configuration outside
�k+1, l−1� is independent of the configuration in �k+1, l−1�, given •̇k←←•l
(or symmetrically), we conclude that the total width xn is distributed as with
•k+1, . . . , •l−1 removed. This enables to use the induction and conclude in this
subcase.

Case 2b Otherwise, the pairing in �2, n− 1� must be between neighbors:

π = (
n 3 2 5 4 · · · n− 1 n− 2 1

)
, (6)
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1 n

k1 n

k1 nk′

Fig. 5 Pairing π from (6) (left), and general form of the other pairings on the same velocities, up
to left-right symmetry (right)

and each pair (2k, 2k + 1) has either velocities (+1, 0) or (0,−1), for 2 ≤
2k ≤ n − 2. It suffices to show that the law of xn given any other pairing,
and given these same velocities, is unconditioned. Summing over all pairings
(multiplied by their probabilities) indeed reduces to the law of xn given the
velocities, which is nothing but the law of xn since the two are independent of
each other. The only possible pairings compatible with these velocities, besides
the previous one (6), are of the following type (if any): either for some even
index 2 ≤ k ≤ n−2, such that vk = 0,→•1→•̇k , while←•k+1 does not collide, or
symmetrically •̇k′←←•n while→•k′−1 does not collide, for some k′ such that vk′ =
0, or both happen, while other neighboring pairs are preserved (see also Fig. 5).
We notice that the realization of this configuration on �1, k + 1� and on �k +
2, n� (or symmetrically with k′) are independent, so that we can apply induction
on each of these strict subintervals to show that their width are unaffected by
conditioning on the subconfiguration. This concludes this subcase.

Case 3 Finally, let us treat the case of configurations without any collision
of the type →• →←←•. Similarly to Case 2a, we may apply induction to any
configuration that has “nested collisions”, i.e. •i ∼ •j for some j ≥ i + 2.
We may therefore assume that collisions are between neighbors. Some particles
may also not collide at all. However, if some particle •i with 1 < i < n

does not collide, then the conditions on the configuration on the left and on
the right of this particle (including the particle with the side where it is heading
to if vi = ±1, and with neither if vi = 0) are independent, enabling to use
induction as in the end of Case 2b. Also, if •1 or •n is surviving with velocity
0, or with velocity −1 or +1 respectively, then the condition only leans on the
other particles, enabling induction again. All in all, either all particles collide, in
which case the pairing is necessarily between neighbors hence doesn’t correlate
with xn, or only →•1 or ←•n survives. This last subcase is dealt with exactly as
in Case 2b, namely by treating the case of any other pairing on the same
velocities, which describes as in Case 2b and brings up conditions that split
into independent conditions on subconfigurations, enabling to use induction and
finally conclude.
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6 Variation of A with Respect to p

In this section we consider, in the setting of independent random lengths, how
the (universal) distribution ofA (i.e. the index of the leftmost particle that crosses 0)
varies with the density p of static particles. Note that A is not monotonic under
individual changes to the velocities of particles, and that merely reversing the
direction of a single right-moving particle can even alter A from finite to infinite.
However, we conjecture that the law of A is affected monotonically by changing p.
As in Proposition 1, let us denote, for n ∈ N and implicitly p ∈ [0, 1],

pn = P(A = n) = P(0 1←←•n).

We give three conjectures supported by computer-assisted computations for
small values of n. The first one states that in the supercritical region, each individual
probability corresponding to a finite value of A is decreasing in p:

Conjecture 1 For each n, the function p �→ pn is monotonically decreasing on the
interval [1/4, 1].
This conjecture cannot be extended beyond this region: since p1 = (1 − p)/2 is
strictly decreasing on [0, 1], P(A = ∞) must be strictly increasing wherever the
conjectured result holds; however it is constant, equal to 0, on [0, 1/4].

We also conjecture that we have stochastic dominance between the laws of A for
any two values of p, even in the subcritical region:

Conjecture 2 For each n, the function p �→ P(A ≤ n) is monotonically decreasing
on the interval [0, 1].

Finally, consider P(A = n | ←•n) = 2
1−ppn, which may equivalently be thought

of as the probability that the first n− 1 particles all annihilate one another in such a
way that none of them would be in the path of a left-moving particle starting at xn.
We conjecture that this probability peaks at the same value 1/4 for any n (note that
this critical value only appeared in the context of an infinite system so far):

Conjecture 3 For each n, the function p �→ 2
1−ppn is maximized at p = 1/4.

We now give partial results to support these conjectures. First, Conjecture 1 holds
for simple reasons on a restricted range of values of p.

Proposition 2 For each n, the function p �→ pn is monotonically decreasing on
the interval [ 1

2 − 1
2n , 1].

Proof Fix a particular law of interdistances m; recall that this does not affect pn.
The event {A = n}may only occur when at most n−1

2 particles among the first n are
static, hence

pn =
∑

0≤k≤ n−1
2

∑

w∈Vk
P(A = n | (v1, . . . , vn) = w)pk(1− p)n−k2k−n,
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where Vk denotes the set of velocities of the first n particles among which exactly
k are 0. For fixed k, pk(1 − p)n−k is monotonically decreasing on [k/n, 1], and so
every term in the above sum is monotonically decreasing on the required interval.

We also observe that the function pn is decreasing around the critical value 1/4.

Proposition 3 For each n, at p = 1/4 we have p′n = − 4
3pn, where p′n = dpn

dp

Proof Recall from (2) that p1 = (1− p)/2 and, for all n ≥ 2,

pn =
(
p + 1

2

) ∑

k1+k2=n−1

pk1pk2 −
p

2

∑

k1+k2+k3+k4=n−1

pk1pk2pk3pk4 .

We prove the claimed statement by induction on n; it is easy to verify for n = 1.
Suppose it is true for all values less than n. Note that

p′n =
∑

k1+k2=n−1

(
pk1pk2 +

(
p + 1

2

)
(p′k1

pk2 + pk1p
′
k2
)

)

−
∑

k1+k2+k3+k4=n−1

(1

2
pk1pk2pk3pk4 +

p

2
(p′k1

pk2pk3pk4 + · · · + pk1pk2pk3p
′
k4
)
)
.

Evaluating at p = 1/4, assuming the induction hypothesis, gives

p′n =
∑

k1+k2=n−1

(
1− 2× 3

4
× 4

3

)
pk1pk2 −

∑

k1+k2+k3+k4=n−1

(1

2
− 4× 1

8
× 4

3

)
pk1pk2pk3pk4

= −4

3

(
3

4

∑

k1+k2=n−1

pk1pk2 −
1

8

∑

k1+k2+k3+k4=n−1

pk1pk2pk3pk4

)
= −4

3
pn,

as required.

This explicit logarithmic derivative in fact also gives support to Conjecture 3, since
it equivalently states that the derivative in p of 2

1−ppn is 0 at p = 1/4.
Finally, we can give some additional support to Conjecture 2 by exactly

evaluating the (right-hand) derivative of pn at 0. We may assume n = 2m + 1 is
odd and at least 3, since for n even pn ≡ 0 and p1 = (1 − p)/2. We prove the
following.

Theorem 3 The right-hand derivative of p2m+1 atp=0 is 8m−5
(m+1)(2m+4)

(2m
m

)
2−2m−1.

Since P(A ≤ n) = P(A = ∞) − ∑
k>n pk , and P(A = ∞) is constant on the

subcritical region, we immediately obtain the following consequence.
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Corollary 3 The right-hand derivative of P(A ≤ n) at 0 is negative for every
n ≥ 1.

Proof of Theorem 3 Let n = 2m + 1. Let S denote the number of static particles
among the first n, and observe that the law of (v1, . . . , vn) given S does not depend
on p. We have, as p→ 0,

pn = P(A = n) =
n∑

k=0

P(A = n | S = k)
(
n

k

)
pk(1− p)n−k

= P(A = n | S = 0)(1− np)+ P(A = n | S = 1)np +O(p2),

and the probabilities on the right-hand side do not depend on p by the previous
remark, hence the derivative of pn at 0 is given by n(P(A = n | S = 1) − P(A =
n | S = 0)).

First, we condition on S = 0. In this case, the event {A = n} means that vn =
−1, which has conditional probability 1/2, and that the first 2m particles mutually
annihilate. An arrangement of 2m particles which mutually annihilate corresponds
precisely to an expression of 2m correctly-matched parentheses, and so the number
of such arrangements is equal to Cm, the mth Catalan number, which is given by
Cm = 1

m+1

(2m
m

)
. Thus,

P(A = n | S = 0) = 1

2
· Cm

22m .

Next, we turn to the case S = 1. For simplicity we consider the case of constant
interdistances (with triple collisions resolved at random); by universality, this is
sufficient. In this case, A = n means for the last particle to be left-moving (which
occurs with conditional probability m

2m+1 ) and for the remaining 2m particles, of
which one is static, to mutually annihilate in such a way that they do not interfere
with the last particle; this includes cases where the last particle survives a triple
collision. Thus,

P(A = n | S = 1) = m

2m+ 1
m,

where we write m for the number of such arrangements of 2m velocities: we
may indeed think of it as a requirement for 2m particles (one of which is static) to
annihilate and have space-time trajectories contained inside the triangle described
by the trajectories of a static particle at 0 and a left-moving particle at 2m + 1—
here we count a collision happening exactly on the right-hand side of this triangle
as “inside” only if the spin of the static particle is −1. Note that m could be a half
integer as some arrangements require a particular spin hence count 1/2.

By symmetry, m = m, where the latter is the number of arrangements which
mutually annihilate inside the reflection of the previous triangle. We consider two
other similar quantities: write �m for the number of arrangements of 2m velocities,
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of which one is static, which mutually annihilate, and m for the number of such
arrangements which mutually annihilate inside the space-time triangle described by
the trajectories of a right-moving particle at 0 and a left-moving particle at 2m+ 1.
If a configuration is counted in �m but not in m, then it counts inside exactly one
of m or m, otherwise it is in both, thus m + m = (�m − m) + 2 m, i.e.
�m + m = 2 m.

We claim that m = mCm. This is equivalent to the claim that if we take a
random set of 2m + 2 moving particles, conditioned on the first and last colliding
(this leaves Cm uniform choices), and make a random internal particle static (2m
choices), then with probability 1/2 the first and last still collide together.

We prove this by induction on m. The case m = 1 is straightforward; consider
m ≥ 2 and assume the property true in the previous cases. Suppose the particle
chosen to become static is not in the “skyline” of the 2m internal particles, i.e. it
is between two colliding particles other than the first and last. Then the probability
that these two particles still collide is 1/2 by induction. If they do, the outer particles
are unaffected, but if not then one of them is released to collide with an outer
particle. Thus it suffices to prove the claim for a particle chosen in the skyline and,
by symmetry, we may assume this particle is right-moving.

Consider the Dyck paths corresponding to configurations of internal particles,
with a step x from 0 to 1 (i.e. corresponding to a right-moving particle in the skyline)
marked. Let y be the next step from 1 to 0, a be the subpath before the marked
step, and b be the subpath of steps strictly between x and y. Making the particle
corresponding to x static will cause a collision with one of the external particles
if and only if |a| + 1 < |b| + 1 (or with probability 1/2 if they are equal), since
these are the distances to the two particles which could collide with x. Swapping
the subpaths a and b gives another Dyck path, so this bijective transformation keeps
the particle corresponding to x in the skyline and right-moving; and it maps any
configuration where x would be colliding with an external particle if made static, to
one where its corresponding particle would not, and vice-versa, so this proves the
claim.

We apply a similar argument to calculate �m: starting from a totally annihilating
configuration of 2m moving particles, a random one is made static. By the previous
claim, if this particle is not in the skyline, the change has chance 1/2 of preserving
total annihilation. However, making a particle in the skyline static always preserves
total annihilation. Thus if a random configuration of 2m moving particles which
mutually annihilate is modified by making a random particle x static, the probability
that all particles still annihilate is 1

2P(x not in skyline) + P(x in skyline) = 1
2 +

1
2E[W ], whereW is the number of particles among �1, 2m� that are in the skyline.

Note that W = 2V − 2, where V is the number of visits to 0 by the Dyck path
(including the start and end of the path). The number of arrangements which visit 0
after 2k steps is CkCm−k for each k ∈ �0,m�, and so

E[V ] =
m∑

k=0

CkCm−k
Cn

= Cm+1

Cm
= 4m+ 2

m+ 2
;
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it follows that E[W ] = 6m
m+2 , giving finally

�m = 2mCm
(1

2
+ 1

2
· 3

m(m+ 2)

)
= m(m+ 5)

m+ 2
Cm.

Consequently

m = �m + m

2
= m(2m+ 7)

2m+ 4
,

hence

P(A = 2m+ 1 | S = 1) = 2m(2m+ 7)

(2m+ 1)(2m+ 4)
Cm2−2m.

The result follows by gathering the previous computations.
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Glauber Dynamics on the Erdős-Rényi
Random Graph

F. den Hollander and O. Jovanovski

Abstract We investigate the effect of disorder on the Curie-Weiss model with
Glauber dynamics. In particular, we study metastability for spin-flip dynamics on
the Erdős-Rényi random graph ERn(p) with n vertices and with edge retention
probability p ∈ (0, 1). Each vertex carries an Ising spin that can take the values −1
or +1. Single spins interact with an external magnetic field h ∈ (0,∞), while pairs
of spins at vertices connected by an edge interact with each other with ferromagnetic
interaction strength 1/n. Spins flip according to a Metropolis dynamics at inverse
temperature β. The standard Curie-Weiss model corresponds to the case p = 1,
because ERn(1) = Kn is the complete graph on n vertices. For β > βc and
h ∈ (0, pχ(βp)) the system exhibits metastable behaviour in the limit as n→∞,
where βc = 1/p is the critical inverse temperature and χ is a certain threshold
function satisfying limλ→∞ χ(λ) = 1 and limλ↓1 χ(λ) = 0. We compute the
average crossover time from the metastable set (with magnetization corresponding
to the ‘minus-phase’) to the stable set (with magnetization corresponding to the
‘plus-phase’). We show that the average crossover time grows exponentially fast
with n, with an exponent that is the same as for the Curie-Weiss model with external
magnetic field h and with ferromagnetic interaction strength p/n. We show that the
correction term to the exponential asymptotics is a multiplicative error term that is
at most polynomial in n. For the complete graph Kn the correction term is known
to be a multiplicative constant. Thus, apparently, ERn(p) is so homogeneous for
large n that the effect of the fluctuations in the disorder is small, in the sense that
the metastable behaviour is controlled by the average of the disorder. Our model is
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the first example of a metastable dynamics on a random graph where the correction
term is estimated to high precision.

Keywords Erdős-Rényi random graph · Glauber spin-flip dynamics ·
Metastability · Crossover time

1 Introduction and Main Results

In Sect. 1.1 we provide some background on metastability. In Sect. 1.2 we define our
model: spin-flip dynamics on the Erdős-Rényi random graph ERn(p). In Sect. 1.3
we identify the metastable pair for the dynamics, corresponding to the ‘minus-
phase’ and the ‘plus-phase’, respectively. In Sect. 1.4 we recall the definition of
spin-flip dynamics on the complete graphKn, which serves as a comparison object,
and recall what is known about the average metastable crossover time for spin-flip
dynamics onKn (Theorem 1.3 below). In Sect. 1.5 we transfer the sharp asymptotics
for Kn to a somewhat rougher asymptotics for ERn(p) (Theorem 1.4 below). In
Sect. 1.6 we close by placing our results in the proper context and giving an outline
of the rest of the paper.

1.1 Background

Interacting particle systems, evolving according to a Metropolis dynamics associ-
ated with an energy functional called the Hamiltonian, may end up being trapped
for a long time near a state that is a local minimum but not a global minimum.
The deepest local minima are called metastable states, the global minimum is
called the stable state. The transition from a metastable state to the stable state
marks the relaxation of the system to equilibrium. To describe this relaxation,
it is of interest to compute the crossover time and to identify the set of critical
configurations the system has to visit in order to achieve the transition. The critical
configurations represent the saddle points in the free energy landscape: the set of
mini-max configurations that must be hit by any path that achieves the crossover.

Metastability for interacting particle systems on lattices has been studied inten-
sively in the past three decades. Various different approaches have been proposed,
which are summarised in the monographs by Olivieri and Vares [12], Bovier and
den Hollander [4]. Recently, there has been interest in metastability for interacting
particle systems on random graphs, which is much more challenging because the
crossover time typically depends in a delicate manner on the realisation of the graph.

In the present paper we are interested in metastability for spin-flip dynamics
on the Erdős-Rényi random graph. Our main result is an estimate of the average
crossover time from the ‘minus-phase’ to the ‘plus-phase’ when the spins feel
an external magnetic field at the vertices in the graph as well as a ferromagnetic
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interaction along the edges in the graph. Our paper is part of a larger enterprise in
which the goal is to understand metastability on graphs. Jovanovski [11] analysed
the case of the hypercube, Dommers [7] the case of the random regular graph,
Dommers, den Hollander, Jovanovski and Nardi [10] the case of the configuration
model, and den Hollander and Jovanovski [6] the case of the hierarchical lattice.
Each case requires carrying out a detailed combinatorial analysis that is model-
specific, even though the metastable behaviour is ultimately universal. For lattices
like the hypercube and the hierarchical lattice a full identification of the relevant
quantities is possible, while for random graphs like the random regular graph and
the configuration model so far only the communication height is well understood,
while the set of critical configurations and the prefactor remain somewhat elusive.

The equilibrium behaviour of the Ising model on random graphs is well
understood. See e.g. Dommers et al. [8, 9].

1.2 Spin-Flip Dynamics on ERn(p)

Let ERn(p) = (V ,E) be a realisation of the Erdős-Rényi random graph on |V | =
n ∈ N vertices with edge retention probability p ∈ (0, 1), i.e., each edge in the
complete graphKn is present with probability p and absent with probability 1− p,
independently of other edges (see Fig. 1). We write PERn(p) to denote the law of
ERn(p). For typical properties of ERn(p), see van der Hofstad [13, Chapters 4–5].

Each vertex carries an Ising spin that can take the values −1 or +1. Let Sn =
{−1,+1}V denote the set of spin configurations on V , and letHn be the Hamiltonian
on Sn defined by

Hn (σ) = −1

n

∑

(v,w)∈E
σ(v)σ (w)− h

∑

v∈V
σ(v), σ ∈ Sn. (1.1)

In other words, single spins interact with an external magnetic field h ∈ (0,∞),
while pairs of neighbouring spins interact with each other with a ferromagnetic
coupling strength 1/n.

Fig. 1 A realization of the
Erdős-Rényi random graph
with n = 12 and p = 1

3
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Let � = {−1}V and � = {+1}V denote the configuration where all spins are
−1, respectively,+1. Since

Hn (�) = −|E|
n
+ hn, (1.2)

we have the geometric representation

Hn (σ) = Hn (�)+ 2

n
|∂Eσ | − 2h |σ | , σ ∈ Sn, (1.3)

where

∂Eσ = {(v,w) ∈ E : σ(v) = −σ(w) = +1} (1.4)

is the edge-boundary of σ and

|σ | = {v ∈ ERn(p) : σ(v) = +1} (1.5)

is the vertex-volume of σ .
In the present paper we consider a spin-flip dynamics on Sn commonly referred to

as Glauber dynamics, defined as the continuous-time Markov process with transition
rates

r
(
σ, σ ′

) =
{

e−β[Hn(σ ′)−Hn(σ)]+, if
∥
∥σ − σ ′∥∥ = 2,

0, if
∥∥σ − σ ′∥∥ > 2,

σ, σ ′ ∈ Sn, (1.6)

where ‖ · ‖ is the �1-norm on Sn. This dynamics has as reversible stationary
distribution the Gibbs measure

μn (σ) = 1

Zn
e−βHn(σ ), σ ∈ Sn, (1.7)

where β ∈ (0,∞) is the inverse temperature and Zn is the normalizing partition
sum. We write

{ξt }t≥0 (1.8)

to denote the path of the random dynamics and Pξ to denote its law given ξ0 = ξ .
For χ ⊂ Sn, we write

τχ = inf{t ≥ 0 : ξt ∈ χ, ξt− /∈ χ}. (1.9)

to denote the first hitting/return time of χ .
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We define the magnetization of σ by

m(σ) = 1

n

∑

v∈V
σ(v), (1.10)

and observe the relation

m(σ) = 2 |σ |
n

− 1, σ ∈ Sn. (1.11)

We will frequently switch between working with volume and working with mag-
netization. Equation (1.11) ensures that these are in one-to-one correspondence.
Accordingly, we will frequently look at the dynamics from the perspective of the
induced volume process and magnetization process,

{|ξt |}t≥0 , {m(ξt )}t≥0 , (1.12)

which are not Markov.

1.3 Metastable Pair

For fixed n, the Hamiltonian in (1.1) achieves a global minimum at � and a local
minimum at �. In fact, � is the deepest local minimum not equal to � (at least for
h small enough). However, in the limit as n → ∞, these do not form a metastable
pair of configurations because entropy comes into play.

Definition 1.1 (Metastable Regime) The parameters β, h are said to be in the
metastable regime when

β ∈ (1/p,∞), h ∈ (
0, pχ(βp)

)
, (1.13)

with (see Fig. 2)

χ(λ) =
√

1− 1

λ
− 1

2λ
log

⎡

⎣λ

(

1+
√

1− 1

λ

)2
⎤

⎦ , λ ≥ 1. (1.14)

We have limλ→∞ χ(λ) = 1 and limλ↓1 χ(λ) = 0 (with slope 1
2 ). Hence, for

β →∞ any h ∈ (0, p) is metastable, while for β ↓ 1/p or p ↓ 0 no h ∈ (0,∞) is
metastable. The latter explains why we do not consider the non-dense Erdős-Rényi
random graph with p = pn ↓ 0 as n→∞. 	
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Fig. 2 Plot of λ �→ χ(λ)

1

1

The threshold βc = 1/p is the critical temperature: the static model has a phase
transition at h = 0 when β > βc and no phase transition when β ≤ βc (see e.g.
Dommers et al. [9]).

To define the proper metastable pair of configurations, we need the following
definitions. Let

Γn = {−1,−1+ 2
n
, . . . , 1− 2

n
, 1},

In(a) = − 1
n

log
( n

1+a
2 n

)
, Jn(a) = 2β(pa + h)− 2I ′n(a).

(1.15)

Define

mn = min {a ∈ Γn : Jn(a) ≤ 0} ,
tn = min {a ∈ Γn : a > mn, Jn(a) ≥ 0} ,
sn = min {a ∈ Γn : a > tn, Jn(a) ≤ 0} .

(1.16)

The numbers in the left-hand side of (1.16) play the role of magnetizations. Further
define

Mn = n
2
(mn + 1), Tn = n

2
(tn + 1), Sn = n

2
(sn + 1), (1.17)

which are the volumes corresponding to (1.16), and

Ak = {σ ∈ Sn : |σ | = k} , k ∈ {0, 1, . . . , n− 1, n}, (1.18)

the set of configurations with volume k. Define

Rn(a) = −1

2
pa2 − ha + 1

β
In(a) (1.19)

and note that

R′n(a) = −pa − h+ 1

β
I ′n(a) = − 1

2β
Jn(a). (1.20)
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The motivation behind the definitions in (1.15), (1.16) and (1.19) will become clear
in Sect. 2. Via Stirling’s formula it follows that

Jn(a) = 2β(pa + h)+ log

(
1− a + 1

n

1+ a + 1
n

)

+O(n−2), a ∈ Γn. (1.21)

We will see that, in the limit as n → ∞ when (β, h) is in the metastable regime
defined by (1.13), the numbers in (1.16) are well-defined: AMn is the metastable
set, ASn is the stable set, ATn is the top set, i.e., the set of saddle points that lie in
between AMn and ASn . Our key object of interest will be the crossover time from
AMn to ASn via ATn .

Note that

Γn→ [−1, 1], In(a)→ I (a), Jn(a)→ Jp,β,h(a), n→∞, (1.22)

with

Jp,β,h(a) = 2β(pa + h)+ log

(
1− a
1+ a

)
(1.23)

and

I (a) = 1− a
2

log

(
1− a

2

)
+ 1+ a

2
log

(
1+ a

2

)
. (1.24)

Accordingly,

mn → m, tn→ t, sn → s, n→∞, (1.25)

with m, t, s the three successive zeroes of J (see Fig. 4 and recall (1.16)). Define

Rp,β,h(a) = −1

2
pa2 − ha + 1

β
I (a). (1.26)

Note that Rp,β,h(a) plays the role of free energy:− 1
2pa

2− ha and 1
β
I (a) represent

the energy, respectively, entropy at magnetisation a. Note that I (a) equals the
relative entropy of the probability measure 1

2 (1+ a)δ+1+ 1
2 (1− a)δ−1 with respect

to the counting measure δ+1 + δ−1. Also note that

R′p,β,h(a) = −pa − h+ 1

β
I ′(a) = − 1

2β
Jp,β,h(a). (1.27)

Remark 1.2 As shown in Corollary 3.6 below, if h ∈ (p,∞), then (1.6) leads
to non-metastable behaviour where the dynamics ‘drifts’ through a sequence of
configurations with volume growing from M to S within time O(1). 	
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1.4 Metastability on Kn

Let Kn be the complete graph on n vertices (see Fig. 3). Spin-flip dynamics on Kn,
commonly referred to as Glauber dynamics for the Curie-Weiss model, is defined as
in Sect. 1.2 but with the Curie-Weiss Hamiltonian

Hn(σ) = − 1

2n

∑

1≤i,j≤n
σ (i)σ (j)− h

∑

1≤i≤n
σ (i), σ ∈ Sn. (1.28)

This is the same as (1.1) with p = 1, except for the diagonal term
− 1

2n

∑
1≤i≤n σ (i)σ (i) = − 1

2 , which shifts Hn by a constant and has no effect
on the dynamics. The advantage of (1.28) is that we may write

Hn(σ) = n
[
−1

2
m(σ)2 − hm(σ)

]
, (1.29)

which shows that the energy is a function of the magnetization only, i.e., the Curie-
Weiss model is a mean-field model. Clearly, this property fails on ERn(p).

For the Curie-Weiss model it is known that there is a critical inverse temperature
βc = 1 such that, for β > βc, h small enough and in the limit as n → ∞, the
stationary distribution μn given by (1.7) and (1.28) has two phases: the ‘minus-
phase’, where the majority of the spins are −1, and the ‘plus-phase’, where the
majority of the spins are+1. These two phases are the metastable state, respectively,
the stable state for the dynamics. In the limit as n → ∞, the dynamics of the
magnetization introduced in (1.12) (which is Markov) converges to a Brownian
motion on [−1,+1] in the double-well potential a �→ R1,β,h(a) (see Fig. 4).

The following theorem can be found in Bovier and den Hollander [4, Chapter
13]. For p = 1, the metastable regime in (1.13) becomes

β ∈ (1,∞), h ∈ (
0, χ(β)

)
. (1.30)

Fig. 3 The complete graph
with n = 9
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1−1

Fig. 4 Plot of Rp,β,h(a) as a function of the magnetization a. The metastable set AM has
magnetization m < 0, the stable set AS has magnetization s > 0, the top set has magnetization
t < 0. Note that Rp,β,h(−1) = − 1

2p + h, Rp,β,h(0) = −β−1 log 2, Rp,β,h(+1) = − 1
2p − h and

R′p,β,h(−1) = −∞, R′p,β,h(0) = −h, R′p,β,h(+1) = ∞

Theorem 1.3 (Average Crossover Time on Kn) Subject to (1.30), as n → ∞,
uniformly in ξ ∈ AMn ,

Eξ

[
τASn

]

= [1+ on(1)] π
1+t

√
1−t2

1−m2
1

β
√
R′′1,β,h(m)[−R′′1,β,h(t)]

eβn[R1,β,h(t)−R1,β,h(m)]. (1.31)

Figure 4 illustrates the setting: the average crossover time fromAMn to ASn depends
on the free energy barrier R1,β,h(t) − R1,β,h(m) and on the curvature of R1,β,h at
m and t. Note that m, s, t in Fig. 4 are the limits as n→∞ of mn, sn, tn defined in
(1.16) for p = 1.

1.5 Metastability on ERn(p)

Unlike for the spin-flip dynamics onKn, the induced processes defined in (1.12) are
not Markovian. This is due to the random geometry of ERn(p). However, we will
see that they are almost Markovian, a fact that we will exploit by comparing the
dynamics on ERn(p) with that on Kn, but with a ferromagnetic coupling strength
p/n rather than 1/n and with an external magnetic field that is a small perturbation
of h.

As shown in Lemma 2.2 below, in the metastable regime the function a �→ Rp(a)

has a double-well structure just like in Fig. 4, so that the metastable state AM and
the stable state AS are separated by a free energy barrier represented by AT.

We are finally in a position to state our main theorem.
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Theorem 1.4 (Average Crossover Time on ERn(p)) Subject to (1.13), with
PERn(p)-probability tending to 1 as n→∞, and uniformly in ξ ∈ AMn ,

Eξ

[
τASn

] = nEn eβn[Rp,β,h(t)−Rp,β,h(m)] (1.32)

where the random exponent En satisfies

lim
n→∞PERn(p)

(
|En| ≤ β(t−m)

11

6

)
= 1. (1.33)

Thus, apart from a polynomial error term, the average crossover time is the same as
on the complete graph with ferromagnetic interaction strength p/n instead of 1/n.

1.6 Discussion and Outline

We discuss the significance of our main theorem.

1. Theorem 1.4 provides an estimate on the average crossover time from AMn

to ASn on ERn(p) (recall Fig. 4). The estimate is uniform in the starting
configuration. The exponential term in the estimate is the same as on Kn, but
with a ferromagnetic interaction strength p/n rather than 1/n. The multiplicative
error term is at most polynomial in n. Such an error term is not present on Kn,
for which the prefactor is known to be a constant up to a multiplicative factor
1+ o(1) (as shown in Theorem 1.3). The randomness of ERn(p) manifests itself
through a more complicated prefactor, which we do not know how to identify.
What is interesting is that, apparently, ERn(p) is so homogeneous for large n
that the prefactor is at most polynomial. We expect the prefactor to be random
under the law PERn(p).

2. It is known that onKn the crossover time divided by it average has an exponential
distribution in the limit as n → ∞, as is typical for metastable behaviour. The
same is true on ERn(p). A proof of this fact can be obtained in a straightforward
manner from the comparison properties underlying the proof of Theorem 1.4.
These comparison properties, which are based on coupling of trajectories, also
allow us to identify the typical set of trajectories followed by the spin-flip
dynamics prior to the crossover. We will not spell out the details.

3. The proof of Theorem 1.4 is based on estimates of transition probabilities
and transition times between pairs of configurations with different volume, in
combination with a coupling argument. Thus we are following the path-wise
approach to metastability (see [4] for background). Careful estimates are needed
because on ERn(p) the processes introduced in (1.12) are not Markovian, unlike
on Kn. The proof is based on a double coupling strategy: (1) a sandwich
of the Erdős-Rényi dynamics between two small perturbations of the Curie-
Weiss dynamics, with the goal to identify the leading order term of the average
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crossover time with the help of Theorem 1.3; (2) a two-level coupling (defined
in Sect. 6), with the goal to prove asymptotic independence from the starting
configuration (see also the beginning of Sects. 5.2 and 7).

4. Bovier et al. [5] use capacity estimates and concentration of measure estimates
to show that the prefactors form a tight family of random variables under the
law PERn(p) as n → ∞, which constitutes a considerable sharpening of (1.32).
The result is valid for β > βc and h small enough. The starting configuration is
not arbitrary, but is drawn according to the last-exit-biased distribution for the
transition from AMn to ASn , as is common in the potential-theoretic approach to
metastability. The exponential limit law is therefore not immediate.

5. Another interesting model is where the randomness sits in the vertices rather
than in the edges, namely, Glauber spin-flip dynamics with Hamiltonian

Hn(σ) = −1

n

∑

1≤i,j≤n
σ (i)σ (j)−

∑

1≤i≤n
hiσ (i), (1.34)

where hi , 1 ≤ i ≤ n, are i.i.d. random variables drawn from a common
probability distribution ν on R. The metastable behaviour of this model was
analysed in Bovier et al. [3] (discrete ν) and Bianchi et al. [1] (continuous ν).
In particular, the prefactor was computed up to a multiplicative factor 1 + o(1),
and turns out to be rather involved (see [4, Chapters 14–15]). Our model is even
harder because the interaction between the spins runs along the edges of ERn(p),
which have an intricate spatial structure. Consequently, the so-called lumping
technique (employed in [3] and [1] to monitor the magnetization on the level sets
of the magnetic field) can no longer be used. For the dynamics under (1.34) the
exponential law was proved in Bianchi et al. [2].

Outline The remainder of the paper is organized as follows. In Sect. 2 we define
the perturbed spin-flip dynamics on Kn (Definition 2.1 below) and explain why
Definition 1.1 identifies the metastable regime (Lemma 2.2 below). In Sect. 3 we
collect a few basic facts about the geometry of ERn(p) and the spin-flip dynamics
on ERn(p). In Sect. 4 we derive rough capacity estimates for the spin-flip dynamics
on ERn(p). In Sect. 5 we derive refined capacity estimates. In Sect. 6 we show
that two copies of the spin-flip dynamics starting near the metastable state can be
coupled in a short time. In Sect. 7 we prove Theorem 1.4. In Sect. 8, finally, we do
a technical computation of hitting times that is needed in the proof.

2 Preparations

In Sect. 2.1 we define the perturbed spin-flip dynamics on Kn that will be used as
comparison object. In Sect. 2.2 we do a rough metastability analysis of the perturbed
model. In Sect. 2.3 we show that Rp,β,h has a double-well structure if and only if
(β, h) is in the metastable regime, in the sense of Definition 1.1 (Lemma 2.2 below).

Define
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J ∗n (a) = 2β

(
p

(
a + 2

n

)
+ h

)
+ log

(
1− a

1+ a + 2
n

)

, a ∈ Γn. (2.1)

We see from (1.21) that Jn(a) = J ∗n (a) + O(n−2) when βp = 1
1−a2 . This will be

useful for the analysis of the ‘free energy landscape’.

2.1 Perturbed Curie-Weiss

We will compare the dynamics on ERn(p) with that onKn, but with a ferromagnetic
coupling strength p/n rather than 1/n, and with an external magnetic field that is a
small perturbation of h.

Definition 2.1 (Perturbed Curie-Weiss)

(1) Let

Hun (σ) = − p
2n

∑

1≤i,j≤n
σ (i)σ (j)− hun

∑

1≤i≤n
σ (i), σ ∈ Sn, (2.2)

Hln (σ ) = − p
2n

∑

1≤i,j≤n
σ (i)σ (j)− hln

∑

1≤i≤n
σ (i), σ ∈ Sn, (2.3)

be the Hamiltonians on Sn corresponding to the Curie-Weiss model on n
vertices with ferromagnetic coupling strength p/n, and with external magnetic
fields hun and hln given by

hun = h+
(1+ ε) log(n11/6)

n
, hln = h−

(1+ ε) log(n11/6)

n
, (2.4)

where ε > 0 is arbitrary. The indices u and l stand for upper and lower, and the
choice of exponent 11

6 will become clear in Sect. 4.
(2) The equilibrium measures on Sn corresponding to (2.2) and (2.3) are denoted

by μun and μln, respectively (recall (1.7)).
(3) The Glauber dynamics based on (2.2) and (2.3) are denoted by

{ξut }t≥0, {ξ lt }t≥0, (2.5)

respectively.
(4) The analogues of (1.16) and (1.17) are written mun, t

u
n, s

u
n, Mu

n,T
u
n,S

u
n and

mln, t
l
n, s

l
n, Ml

n,T
l
n,S

l
n, respectively. 	

In what follows we will suppress the n-dependence from most of the notation.
Almost all of the analysis in Sects. 2–7 pertains to the dynamics on ERn(p).
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2.2 Metastability for Perturbed Curie-Weiss

Recall that {ξut }t≥0 and {ξ lt }t≥0 denote the Glauber dynamics for the Curie-Weiss
model driven by (2.2) and (2.3), respectively. An important feature is that their
magnetization processes

{
θut

}
t≥0 = {m(ξl

τ ls
)}t≥0,

{
θ lt

}
t≥0 = {m(ξuτus )}t≥0,

(2.6)

are continuous-time Markov processes themselves (see e.g. Bovier and den Hollan-
der [4, Chaper 13]) with state space Γn = {−1,−1+ 2

n
, . . . , 1 − 2

n
} and transition

rates

qu
(
a, a′

) =

⎧
⎪⎨

⎪⎩

n
2 (1− a) e−β[p(−2a− 2

n
)−2hu]+, if a′ = a + 2

n
,

n
2 (1+ a) e−β[p(2a+ 2

n
)+2hu]+, if a′ = a − 2

n
,

0, otherwise,

(2.7)

ql
(
a, a′

) =

⎧
⎪⎨

⎪⎩

n
2 (1− a) e−β[p(−2a− 2

n )−2hl]+, if a′ = a + 2
n
,

n
2 (1+ a) e−β[p(2a+ 2

n
)+2hl]+, if a′ = a − 2

n
,

0, otherwise,

(2.8)

respectively. The processes in (2.6) are reversible with respect to the Gibbs measures

νu (a) = 1

zu
eβn(

1
2pa

2+hua)
(
n

1+a
2 n

)
, a ∈ Γn, (2.9)

νl (a) = 1

zl
eβn(

1
2pa

2+hla)
(
n

1+a
2 n

)
, a ∈ Γn, (2.10)

respectively.
Define

Ψ u (a) = −1

2
pa2 − hua, a ∈ Γn, (2.11)

Ψ l(a) = −1

2
pa2 − hla, a ∈ Γn. (2.12)

Note that (2.7) and (2.9) can be written as

qu
(
a, a + 2

n

)
= n

2
(1− a) e−βn[Ψ u(a+

2
n
)−Ψ u(a)]+,

νu (a) = 1

zu
e−βnΨ u(a)

(
n

n
2 (1+ a)

)
, (2.13)
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and similar formulas hold for (2.8) and (2.10). The properties of the function
νu : Γn→ [0, 1] can be analysed by looking at the ratio of adjacent values:

νu
(
a + 2

n

)

νu (a)
= exp

(

2β

(
p

(
a + 2

n

)
+ hu

)
+ log

( 1− a
1+ a + 2

n

)
)

, (2.14)

which suggests that ‘local free energy wells’ in νu can be found by looking at where
the sign of

2β

(
p

(
a + 2

n

)
+ hu

)
+ log

(
1− a

1+ a + 2
n

)

(2.15)

changes from negative to positive. To that end note that, in the limit n → ∞, the
second term is positive for a < 0, tends to ∞ as a → −1, is negative for a ≥ 0,
tends to−∞ as a→ 1, and tends to 0 as a→ 0. The first term is linear in a, and for
appropriate choices of p, β and hu (see Definition 1.1) is negative near a = −1 and
becomes positive at some value a < 0. This implies that, for appropriate choices
of p, β and hu, the sum of the two terms in (2.15) can change sign + → − → +
on the interval [−1, 0], and can change sign + → − on [0, 1]. Assuming that our
choice of p, β and hu corresponds to this change-of-signs sequence, we define mu,
tu and su as in (1.16) with h replaced by hu. This observation makes it clear that the
sets in the right-hand side of (1.16) indeed are non-empty.

The interval [mu, tu] poses a barrier for the process {θut }t≥0 due to a negative
drift, which delays the initiation of the convergence to equilibrium while the process
passes through the interval [tu, su]. The same is true for the process {ξut }t≥0. Similar
observations hold for {θ lt }t≥0 and {ξ lt }t≥0. Recall Fig. 4.

2.3 Double-Well Structure

Lemma 2.2 (Metastable Regime) The potential Rp,β,h defined in (1.26) has a
double-well structure if and only if βp > 1 and 0 < h < pχ(βp), with χ defined in
(1.14).

Proof In order for Rp,β,h to have a double-well structure, the measure ν must
have two distinct maxima on the interval (−1, 1). From (1.22), (1.27) and (2.14)
it follows that

Jp,β,h(a) = 2λ

(
a + h

p

)
+ log

(
1− a
1+ a

)
, λ = βp, (2.16)
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must have one local minimum and two zeroes in (−1, 1). Since

J ′p,β,h(a) = 2

(
λ− 1

1− a2

)
, a ∈ [−1, 1], (2.17)

it must therefore be that λ > 1. The local minimum is attained when

λ = 1

1− a2 , (2.18)

i.e., when a = aλ = −
√

1− 1
λ

(aλ must be negative because it lies in (m, t); recall
Fig. 4). Since

0 > Jp,β,h(aλ) = 2λ

(
aλ + h

p

)
+ log

(
1− aλ
1+ aλ

)
, (2.19)

it must therefore be that

h

p
< χ(λ) (2.20)

with χ(λ) given by (1.14). ��

3 Basic Facts

In this section we collect a few facts that will be needed in Sect. 4 to derive capacity
estimates for the dynamics on ERn(p). In Sect. 3.1 we derive a large deviation
bound for the degree of typical vertices ERn(p) (Lemma 3.2 below). In Sect. 3.2 we
do the same for the edge-boundary of typical configurations (Lemma 3.3 below). In
Sect. 3.3 we derive upper and lower bounds for the jump rates of the volume process
(Lemmas 3.4–3.5 and Corollary 3.6 below), and show that the return times to the
metastable set conditional on not hitting the top set are small (Lemma 3.7 below).
In Sect. 3.4 we use the various bounds to show that the probability for the volume
process to grow by n1/3 is almost uniform in the starting configuration (Lemma 3.8
and Corollary 3.9 below).

Definition 3.1 (Notation) For a vertex v ∈ V , we will write v ∈ σ to mean σ(v) =
+1 and v /∈ σ to mean σ(v) = −1. Similarly, we will denote by σ the configuration
obtained from σ by flipping the spin at every vertex, i.e., σ(v) = +1 if and only
if σ(v) = −1. For two configurations σ, σ ′ we will say that σ ⊆ σ ′ if and only if
v ∈ σ ⇒ v ∈ σ ′. By σ ∪σ ′ we denote the configuration satisfying v ∈ σ ∪σ ′ if and
only if v ∈ σ or v ∈ σ ′. A similar definition applies to σ ∩ σ ′. We will also write
σ ∼ σ ′ when there is a v ∈ V such that σ = σ ′ ∪ {v} or σ ′ = σ ∪ {v}. We will say
that σ and σ ′ are neighbours. We write deg(v) for the degree of v ∈ V . 	
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3.1 Concentration Bounds for ERn(p)

Recall that PERn(p) denotes the law ERn(p).

Lemma 3.2 (Concentration of Degrees and Energies) With PERn(p)-probability

tending to 1 as n→∞ the following is true. For any ε > 0 and any c >
√

1
8 log 2,

pn− (1+ ε)√n logn < deg(v) < pn + (1+ ε)√n logn ∀ v ∈ V, (3.1)

1

n

(
2p|ξ |(n− |ξ |)− cn3/2

)
− 2h|ξ | ≤ Hn(ξ)−Hn(�) (3.2)

≤ 1

n

(
2p|ξ |(n− |ξ |)+ cn3/2

)
− 2h|ξ | ∀ ξ ∈ Sn.

Proof These bounds are immediate from Hoeffding’s inequality and a union bound.
��

3.2 Edge Boundaries of ERn(p)

We partition the configuration space as

Sn =
n⋃

k=0

Ak, (3.3)

where Ak is defined in (1.18). For 0 ≤ k ≤ n and −pk (n− k) ≤ i ≤
(1− p) k (n− k), define

φki = |{σ ∈ Ak : |∂Eσ | = pk (n− k)+ i}| , (3.4)

i.e., φki counts the configurations σ with volume k whose edge-boundary size |∂Eσ |
deviates by i from its mean, which is equal to pk (n− k). For 0 ≤ k ≤ n, let Pk
denote the uniform distribution on Ak .

Lemma 3.3 (Upper Bound on Edge-Boundary Sizes) With PERn(p)-probability
tending to 1 as n→∞ the following are true. For−pk(n−k) ≤ j ≤ (1−p)k(n−k)
and * : N→ R+,

Pk

[
φkj ≥ * (n)

(
n

k

)
ppk(n−k)+j (1− p)(1−p)k(n−k)−j

(
k(n− k)

pk(n− k)+ j
)]

≤ 1

*(n)

(3.5)
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and

Pk

[
∑
j≥i φkj ≥ * (n)

(
n
k

)
e−

2i2
k(n−k)

]
≤ 1
*(n)
,

Pk

[
∑
j≤−i φkj ≥ * (n)

(
n
k

)
e−

2i2
k(n−k)

]
≤ 1
*(n)
.

(3.6)

Proof WriteC to denote equality in distribution. Note that if σ C Pk , then |∂Eσ | C
Bin (k (n− k) , p), and hence

Pk [|∂Eσ | = i] = pi (1− p)k(n−k)−i
(
k (n− k)

i

)
. (3.7)

In particular,

Ek

[
φkj

]
= Ek

[∑
σ∈Ak 1{|∂Eσ |=pk(n−k)+j}

]

= (
n
k

)
ppk(n−k)+j (1− p)(1−p)k(n−k)−j( k(n−k)

pk(n−k)+j
)
.

(3.8)

Hence, by Markov’s inequality, the claim in (3.5) follows. Moreover,

Ek

[ ∑

j≥i
φkj

]
= Ek

⎡

⎣
∑

σ∈Ak
1{|∂Eσ |≥pk(n−k)+i}

⎤

⎦ ≤
(
n

k

)
e−2 i2

k(n−k) , (3.9)

where we again use Hoeffding’s inequality. Hence, by Markov’s inequality, we get
the first line in (3.6). The proof of the second line is similar. ��

3.3 Jump Rates for the Volume Process

The following lemma establishes bounds on the rate at which configurations in Ak
jump forward to Ak+1 and backward to Ak−1. In Sect. 8 we will sharpen the error
in the prefactors in (3.10)–(3.11) from 2n2/3 to O(1) and the error in the exponents
in (3.10)–(3.11) from 3n−1/3 to O(n−1/2). The formulas in (3.13) and (3.14) show
that for small and large magnetization the rate forward, respectively, backward are
maximal.

Lemma 3.4 (Bounds on Forward Jump Rates) With PERn(p)-probability tending
to 1 as n→∞ the following are true.
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(a) For 2n1/3 ≤ k ≤ n− 2n1/3,

(
n− k − 2n2/3

)
e−2β[ϑk+3n−1/3]+

≤ ∑
ξ∈Ak+1

r (σ, ξ) ≤ (
n− k − 2n2/3

)
e−2β[ϑk−3n−1/3]+ + 2n2/3, σ ∈ Ak,

(3.10)

and

(
k − 2n2/3)

e−2β[−ϑk+3n−1/3]+
≤ ∑

ξ∈Ak−1
r (σ, ξ) ≤ (

k − 2n2/3)
e−2β[−ϑk−3n−1/3]+ + 2n2/3, σ ∈ Ak,

(3.11)

where

ϑk = p
(

1− 2k

n

)
− h. (3.12)

(b) For n− n
3 (p + h) ≤ k < n,

∑

ξ∈Ak+1

r (σ, ξ) = n− k, σ ∈ Ak. (3.13)

(c) For 0 < k ≤ n
3 (p − h),

∑

ξ∈Ak−1

r (σ, ξ) = k, σ ∈ Ak. (3.14)

Proof The proof is via probabilistic counting.

(a) Write P for the law under which σ ∈ Sn is a uniformly random configuration
and v ∈ σ is a uniformly random vertex. By Hoeffding’s inequality, the
probability that v has more than p |σ | + n2/3 neighbours in σ (i.e., w ∈ V
such that (v,w) ∈ E and σ (w) = +1) is bounded by

P

[
|E(v, σ )| ≥ p |σ | + n2/3

]
≤ e−2n1/3

, (3.15)

where

E(v, σ ) = {w ∈ σ : (v,w) ∈ E} . (3.16)

Define the event

R+ (σ ) =
{
∃ ζ ⊆ σ, ζ ∈ A2n2/3 : |E(v, σ )| ≥ p |σ | + n2/3 ∀ v ∈ ζ

}
,

(3.17)
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i.e., the configuration σ has at least 2n2/3 vertices like v, each with at least
p |σ | + n2/3 neighbours in σ . Then, for 0 ≤ k ≤ n− 2n2/3,

P
[
R+ (σ )

] ≤
( |σ |

2n2/3

) (
e−2n1/3

)2n2/3

≤ 2ne−4n. (3.18)

Hence the probability that some configuration σ ∈ Sn satisfies conditionR+(σ )
is bounded by

P

⎡

⎣
⋃

σ∈Sn
R+ (σ )

⎤

⎦ ≤ 4ne−4n ≤ e−2n. (3.19)

Thus, with PERn(p)-probability tending to 1 as n → ∞ there are no configura-
tions σ ∈ Sn satisfying condition R+(σ ). The same holds for the event

R− (σ ) =
{
∃ ζ ⊆ σ, ζ ∈ A2n2/3 : |E(v, σ )| ≤ p |σ | − n2/3 ∀ v ∈ ζ

}
,

(3.20)

for which

P

⎡

⎣
⋃

σ∈Sn
R− (σ )

⎤

⎦ ≤ e−2n. (3.21)

Now let σ ∈ Ak , and observe that σ has n − k neighbours in Ak+1 and k
neighbours in Ak−1. But if ξ = σ ∪ {v} ∈ Ak+1, then by (1.3),

Hn (ξ)−Hn (σ) = 2

n

(
|E(v, σ )| − |E(v, σ )|

)
− 2h (3.22)

= 2

n

(
deg (v)− 2 |E(v, σ )| )− 2h

≤ 2

n

(
pn + n1/2 logn− 2 |E(v, σ )| )− 2h,

where the last inequality uses (3.1) with *(n) = logn. Similarly,

Hn (ξ)−Hn (σ) ≥ 2

n

(
pn− n1/2 logn− 2 |E(v, σ )|

)
− 2h. (3.23)

The events R+(σ ) in (3.17) and R−(σ ) in (3.20) guarantee that for any
configuration σ at most 2n2/3 vertices in the configuration σ can have more
than n2/3 neighbours in σ . In other words, the configuration σ has at most
2n2/3 neighbouring configurations in Ak+1 that differ in energy by more than
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6n−1/3 − 2h. Since on the complement of R+(σ ) with σ ∈ Ak we have
|{w ∈ σ : (v,w) ∈ E}| ≤ 2pk + 2n1/3 (because n1/2 logn ≤ n2/3 for n
large enough), from (3.19) and (3.21) we get that, with PERn(p)-probability at
least 1− e−2n,
∣∣∣
{
ξ ∈ Ak+1 : ξ ∼ σ, Hn (ξ)−Hn (σ) ≥ 2

n

(
pn− 2pk + 3n2/3

)− 2h
}∣∣∣ ≤ 2n2/3,

∣∣∣
{
ξ ∈ Ak+1 : ξ ∼ σ, Hn (ξ)−Hn (σ) ≤ 2

n

(
pn− 2pk − 3n2/3

)− 2h
}∣∣∣ ≤ 2n2/3,

(3.24)

and hence, by (1.6), the rate at which the Markov chain starting at σ ∈ Ak jumps
to Ak+1 satisfies

∑

ξ∈Ak+1

r (σ, ξ) ≥ (
n− k − 2n2/3)

e−2β[ϑk+3n−1/3]+, (3.25)

∑

ξ∈Ak+1

r (σ, ξ) ≤ (
n− k − 2n2/3)

e−2β[ϑk−3n−1/3]+ + 2n2/3. (3.26)

Here the term n − k − 2n2/3 comes from exclusion of the at most 2n2/3

neighbours in configurations that differ from σ in energy by more than 6n−1/3−
2h. Similarly, with PERn(p)-probability at least 1− e−2n,

∣∣∣
{
ξ ∈ Ak−1 : ξ ∼ σ, Hn (ξ)−Hn (σ) ≥ 2

n

(−pn+ 2pk + 3n2/3
)+ 2h

}∣∣∣ ≤ 2n2/3,

≤ 2
n

(−pn+ 2pk − 3n2/3
)+ 2h

}∣
∣∣ ≤ 2n2/3,

(3.27)

and hence, by (1.6), the rate at which the Markov chain starting at σ ∈ Ak jumps
to Ak−1 satisfies

∑

ξ∈Ak−1

r (σ, ξ) ≤ (
k − 2n2/3)

e−2β[−ϑk−3n−1/3]+ + 2n2/3, (3.28)

∑

ξ∈Ak−1

r (σ, ξ) ≥ (
k − 2n2/3)

e−2β[−ϑk+3n−1/3]+ . (3.29)

This proves (3.10) and (3.11).
(b) To get (3.13), note that for ξ = σ ∪ {v} with v /∈ σ ,

Hn (ξ)−Hn (σ) = 2

n

(
|E(v, σ )| − |E(v, σ )|

)
− 2h (3.30)

= 2

n

(
2 |E(v, σ )| − deg (v)

)
− 2h

≤ 2
(

2(n− k)− p + n−1/2 logn− h
)
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for n large enough, which is ≤ 0 when n − k ≤ n
3 (p + h), so that r (σ, ξ) = 1

by (1.6).
(c) To get (3.14), note that for ξ = σ \ {v} with v /∈ σ ,

Hn (ξ)−Hn (σ) = 2

n

(
|E(v, σ )| − |E(v, σ )|

)
+ 2h (3.31)

= 2

n

(
2 |E(v, σ )| − deg (v)

)
+ 2h

≤ 2
(

2k − p + n−1/2 logn+ h
)

for n large enough, which is ≤ 0 when k ≤ n
3 (p − h), so that r (σ, ξ) = 1 by

(1.6). ��
The following lemma is technical and merely serves to show that near AM

transitions involving a flip from −1 to +1 typically occur at rate 1. Write ξv to
denote the configuration obtained from ξ by flipping the sign at vertex v ∈ V .

Lemma 3.5 (Attraction Towards the Metastable State) Suppose that |ξ | = [1+
on(1)]M. Then r (ξ, ξv) = 1 for all but O(n2/3) many v ∈ ξ .

Proof We want to show that

Hn
(
ξv

)
< Hn (ξ) (3.32)

for all but O(n2/3) many v ∈ ξ . Note that by (3.20) and (3.21) there are at most
2n2/3 many v ∈ ξ such that |E(v, ξ)| ≤ p(n− |ξ |)− n2/3, and at most 2n2/3 many
v ∈ ξ such that |E(v, ξ)| ≥ p|ξ | + n2/3. Hence, by (1.3), for all but at most 4n2/3

many v ∈ ξ we have that

Hn
(
ξv

) = Hn (ξ)+ 2

n

(|E (v, ξ)| − ∣
∣E

(
v, ξ

)∣
∣)+ 2h (3.33)

= Hn (ξ)+ 2p

n
(2 |ξ | − n)+ 2h+ on(1)

= Hn (ξ)+ 2p

n
(2M− n)+ 2h+ on(1)

= Hn (ξ)+ 2pm+ 2h+ on(1),

where we use (1.17). From the definition of m in (1.16) it follows that 2pm+ 2h+
on(1) < 0, where we recall from the discussion near the end of Sect. 2.2 that m < 0
and hence log( 1−m

1+m ) > 0. Hence (3.32) follows. ��
We can now prove the claim made in Remark 1.2, namely, there is no metastable

behaviour outside the regime in (1.13). Recall the definition of Sn in (1.17), which
requires the function J in (1.23) to have two zeroes. If it has only one zero, then
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denote that zero by a′ and define Sn = n
2 (a

′ + 1). Let ASn+O(n2/3) be the union of
all Ak with |k − Sn| = O(n2/3).

Corollary 3.6 (Non-metastable Regime) Suppose that β ∈ (1/p,∞) and h ∈
(p,∞). Then {ξt }t≥0 has a drift towards ASn+O(n2/3). Consequently, Eξ0 [τs] =
O(1) for any initial configuration ξ0 ∈ Sn.

Proof If β ∈ (1/p,∞) and h ∈ (p,∞), then the function a �→ Jp,β,h(a) =
2β(pa+h)+log( 1−a

1+a ) has a unique root in the interval (0, 1). Indeed, Jp,β,h(a) > 0

for a ∈ [−1, 0], J ′p,β,h(0) = 2(βp − 1) > 0, while a �→ log( 1−a
1+a ) is concave and

tends to −∞ as a ↑ 1. We claim that the process {ξt }t≥0 drifts towards that root,
i.e., if we denote the root by a′, then the process drifts towards the set An

2 (a
′+1),

which by convention we identify with ASn . Note that if h ∈ (p,∞), then ϑk =
p(1− 2k

n
)− h < 0 for all 0 ≤ k ≤ n (recall (3.12)) and so, by Lemma 3.4,

∑

ξ∈Ak+1

r (σ, ξ) ≥ n− k − 2n2/3, (3.34)

∑

ξ∈Ak−1

r (σ, ξ) ≤ (
k − 2n2/3)

e−2β[−ϑk−3n−1/3] + 2n2/3.

Thus, for k ≤ n
2 − 4n2/3,

∑
ξ∈Ak+1

r(σ, ξ) >
∑
ξ∈Ak−1

r(σ, ξ). Similarly, for

k ≥ n
2 + 4n2/3, the opposite inequality holds. Therefore there is a drift towards

ASn+O(n2/3). ��
We close this section with a lemma stating that the average return time to AMn

conditional on not hitting ATn is of order 1 and has an exponential tail. This will
be needed to control the time between successive attempts to go from AMn to ATn ,
until the dynamics crosses ATn and moves to ASn (recall Fig. 4).

Lemma 3.7 (Conditional Return Time to the Metastable Set) There exists a
C > 0 such that, with PERn(p)-probability tending to 1 as n → ∞, uniformly in
ξ ∈ AMn ,

Pξ

[
τAMn

≥ k | τAMn
< τATn

] ≤ e−Ck ∀ k. (3.35)

Proof The proof is given in Sect. 8. ��

3.4 Uniformity in the Starting Configuration

The following lemma shows that the probability of the event {τA
k+o(n1/3)

< τAk } is
almost uniform as a function of the starting configuration in Ak .
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Lemma 3.8 (Uniformity of Hitting Probability of Volume Level Sets) With
PERn(p)-probability tending to 1 as n → ∞, the following is true. For every
0 ≤ k < m ≤ n,

maxσ∈Ak Pσ
[
τAm < τAk

]

minσ∈Ak Pσ
[
τAm < τAk

] ≤ [1+ on(1)] eK(m−k)n−1/3
(3.36)

with K = K(β, h, p) ∈ (0,∞).
Proof The proof proceeds by estimating the probability of trajectories from Ak to
Am. Observe that

e−2β[ϑk+3n−1/3]+ ≥ e−2β[ϑk]+
(

1− 6βn−1/3
)

∀ n, (3.37)

e−2β[ϑk−3n−1/3]+ ≤ e−2β[ϑk]+
(

1+ 7βn−1/3
)

n large enough,

and that similar estimates hold for e−2β[−ϑk+3n−1/3]+ and e−2β[−ϑk−3n−1/3]+ . We will
bound the ratio in the left-hand side of (3.36) by looking at two random processes
on {0, . . . , n}, one of which bounds maxσ∈Ak Pσ

[
τAm < τAk

]
from above and the

other of which bounds minσ∈Ak Pσ
[
τAm < τAk

]
from below. The proof comes in

three Steps.

1. We begin with the following observation. Suppose that {X+t }t≥0 and {X−t }t≥0
are two continuous-time Markov chains taking unit steps in {0, . . . , n} at rates
r−(k, k ± 1) and r+(k, k ± 1), respectively. Furthermore, suppose that for every
0 ≤ k ≤ n− 1,

r− (k, k + 1) ≤ min
σ∈Ak

∑

ξ∈Ak+1

r (σ, ξ) ≤ max
σ∈Ak

∑

ξ∈Ak+1

r (σ, ξ) ≤ r+ (k, k + 1) ,

(3.38)
and for every 1 ≤ k ≤ n,

r− (k, k − 1) ≥ max
σ∈Ak

∑

ξ∈Ak−1

r (σ, ξ) ≥ min
σ∈Ak

∑

ξ∈Ak−1

r (σ, ξ) ≥ r+ (k, k − 1) .

(3.39)
Then

maxσ∈Ak Pσ
[
τAm < τAk

]

minσ∈Ak Pσ
[
τAm < τAk

] ≤ P
X+
k [τm < τk]

P
X−
k [τm < τk]

. (3.40)

Indeed, from (3.38) and (3.39) it follows that we can couple the three Markov
chains {X+t }t≥0, {X−t }t≥0 and {ξt }t≥0 in such a way that, for any 0 ≤ k ≤ n and
any σ0 ∈ Ak , if X−0 = X+0 = |σ0| = k, then

X−t ≤ |σt | ≤ X+t , t ≥ 0. (3.41)



542 F. den Hollander and O. Jovanovski

This immediately guarantees that, for any 0 ≤ k ≤ m ≤ n,

P
X−
k [τm < τk] ≤ min

σ∈Ak
Pσ

[
τAm < τAk

] ≤ max
σ∈Ak

Pσ

[
τAm < τAk

] ≤ P
X+
k [τm < τk] ,

(3.42)

which proves the claim in (3.40). To get (3.38) and (3.39), we pick r− (i, j) and
r+ (i, j) such that

r−(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
n− i − (2+ 6β) n2/3

)
e−2β[ϑi ]+

+ (2+ 6β) n2/31{
i≥n

(
1− 1

3 (p+h)
)}, j = i + 1,

min
{
i,

(
i + (−2+ 7β) n2/3

)
e−2β[−ϑi ]+ + 2n2/3

}
, j = i − 1,

0, otherwise,
(3.43)

and

r+(i, j ) =

⎧
⎪⎨

⎪⎩

min
{
n− i, (

n− i + (−2+ 7β) n2/3
)

e−2β[ϑi ]+ + 2n2/3
}
, j = i + 1,(

i − (2+ 6β) n2/3
)

e−2β[−ϑi ]+ , j = i − 1,
0, otherwise,

(3.44)

and note that, by Lemma 3.4, (3.37)–(3.39) are indeed satisfied.
2. We continue from (3.40). Our task is to estimate the right-hand side of (3.40).

Let G be the set of all unit-step paths from k to m that only hit m after their final
step:

G = ⋃
M∈N

{
{γi}M−1

i=0 : γ0 = k, γM = m, γi ∈ {0, . . . ,m− 1}
and |γi+1 − γi | = 1 for 0 ≤ i < M

}
.

(3.45)

We will show that

P
X+
k

[
X+t follows trajectory γ

]

P
X−
k

[
X−t follows trajectory γ

]

≤ exp
([

24β + 4e2β(p+h+1)
]
(m− k) n−1/3

) ∀ γ ∈ G ,

(3.46)

which will settle the claim. (Note that the paths realising {τm < τk} form a subset
of G .) To that end, let γ % ∈ G be the path γ % = {k, k + 1, . . . ,m}. We claim that

sup
γ∈G

P
X+
k

[
X+t follows trajectory γ

]

P
X−
k

[
X−t follows trajectory γ

] ≤ P
X+
k

[
X+t follows trajectory γ %

]

P
X−
k

[
X−t follows trajectory γ %

] .

(3.47)
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Indeed, if γ = (γ1, . . . , γM) ∈ G , then by the Markov property we have that

P
X+
k

[
X+t follows trajectory γ

] =
M−1∏

i=0

P
X+
γi

[
τγi+1 < τγi

]
, (3.48)

with a similar expression for P
X−
k [X−t follows trajectory γ ]. Therefore, noting

that γi − 1 = 2γi − γi+1 when γi+1 = γi + 1 and γi + 1 = 2γi − γi+1 when
γi+1 = γi − 1, we have

P
X+
k

[
X+t follows trajectory γ

]

P
X−
k

[
X−t follows trajectory γ

] =
M−1∏

i=0

P
X+
γi

[
τγi+1 < τγi

]

PX
−
γi

[
τγi+1 < τγi

] (3.49)

=
M∏

i=1

(
r+ (γi , γi+1)

r+ (γi , γi+1)+ r+ (γi , 2γi − γi+1)

) (
r− (γi, γi+1)

r− (γi, γi+1)+ r− (γi, 2γi − γi+1)

)−1

.

Since, whenever γi+1 = γi − 1,

r−(γi ,γi+1)
r−(γi ,γi+1)+r−(γi ,2γi−γi+1)

= r−(γi ,γi−1)
r−(γi ,γi−1)+r−(γi ,γi+1)

≥ r+(γi ,γi−1)
r+(γi ,γi−1)+r+(γi ,γi+1)

= r+(γi ,γi+1)
r+(γi ,γi+1)+r+(γi ,2γi−γi+1)

,

(3.50)

we get

∏M−1
i=0

(
r+(γi ,γi+1)

r+(γi ,γi+1)+r+(γi ,2γi−γi+1)

) (
r−(γi ,γi+1)

r−(γi ,γi+1)+r−(γi ,2γi−γi+1)

)−1

≤ ∏m−1
i=k

(
r+(i,i+1)

r+(i,i+1)+r+(i,i−1)

) (
r−(i,i+1)

r−(i,i+1)+r−(i,i−1)

)−1

= P
X+
k

[
X+t follows trajectory γ %

]

P
X−
k

[
X−t follows trajectory γ %

] .

(3.51)

This proves the claim in (3.47).
3. Next, consider the ratio

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
= A

B
(3.52)
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with

A = (
n− i − (2+ 6β) n2/3

)
e−2β[ϑi ]+ + (2+ 6β) n2/31{

i≥n
(

1− 1
3 (p+h)

)}

+ (
i + (−2+ 7β) n2/3

)
e−2β[−ϑi ]+ + 2n2/3,

B = (
n− i + (−2+ 7β) n2/3

)
e−2β[ϑi ]+ + 2n2/3

+ (
i − (2+ 6β) n2/3

)
e−2β[−ϑi ]+,

(3.53)
and the ratio

r+ (i, i + 1)

r− (i, i + 1)
= C

D
(3.54)

with

C = (
n− i + (−2+ 7β) n2/3

)
e−2β[ϑi ]+ + 2n2/3,

D = (
n− i − (2+ 6β) n2/3

)
e−2β[ϑi ]+ + (2+ 6β) n2/31{

i≥n
(

1− 1
3 (p+h)

)}.

(3.55)

Note from (3.52) that for ϑi ≥ 0 (i.e., i ≤ n
2 (1 − p−1h), in which case also

i < n(1− 1
3 (p + h))),

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
≤ 1+ 13βe2β(p−h)

n1/3 , (3.56)

and from (3.54) it follows that in this case

r+ (i, i + 1)

r− (i, i + 1)
≤ 1+ 3 (3+ 13β) e2β(p−h)

n1/3 (p + h) . (3.57)

Similarly, for ϑi < 0 we have that

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
≤ 1+ 2e2β(p+h)

n1/3 (3.58)

and

r+ (i, i + 1)

r− (i, i + 1)
≤ 1+ 6 (2+ 6β)

n1/3 (p + h) . (3.59)
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Combining (3.56)–(3.59), we get that, for all 1 ≤ i ≤ n− 1,

r− (i, i + 1)+ r− (i, i − 1)

r+ (i, i + 1)+ r+ (i, i − 1)
× r

+ (i, i + 1)

r− (i, i + 1)
≤ 1+Kn−1/3, (3.60)

where

K = max

{
e2β(p−h)

(
9+ 39β

p + h + 13β

)
, 2e2β(p+h) + 12+ 36β

p + h
}
. (3.61)

Therefore

P
X+
k

[
X+t follows trajectory γ %

]

P
X−
k

[
X−t follows trajectory γ %

] ≤
m−1∏

i=k

(
1+ K

n1/3

)
≤ eKn

−1/3(m−k).

(3.62)

��
An application of the path-comparison methods used in Step 2 of the proof of

Lemma 3.8 yields the following.

Corollary 3.9 With PERn(p)-probability tending to 1 as n → ∞ the following is
true. For every 0 ≤ k < m ≤ n,

maxσ∈Ak Eσ
[
τAm < τAk

]

minσ∈Ak Eσ
[
τAm < τAk

] ≤ [1+ on(1)] eK(m−k)n−1/3
(3.63)

with K = K(β, h, p) ∈ (0,∞).

4 Capacity Bounds

The goal of this section is to derive various capacity bounds that will be needed to
prove Theorem 1.4 in Sects. 6–7. In Sect. 4.1 we derive capacity bounds for the
processes {ξ lt }t≥0 and {ξut }t≥0 on Kn introduced in (2.6) (Lemma 4.1 below). In
Sect. 4.2 we do the same for the process {ξt }t≥0 on ERn(p) (Lemma 4.2 below).
In Sect. 4.3 we use the bounds to rank-order the mean return times to AMl , AM
and AMu , respectively (Lemma 4.3 below). This ordering will be needed in the
construction of a coupling in Sect. 6.

Define the Dirichlet form for {ξt }t≥0 by

E (f, f ) = 1

2

∑

σ,σ ′∈Sn
μ (σ) r

(
σ, σ ′

) [
f (σ)− f (

σ ′
)]2
, f : Sn → [0, 1] ,

(4.1)
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and for {θut }t≥0 and {θ lt }t≥0 by

E u (f, f ) = 1

2

∑

a,a′∈Γn
νu (a) qu

(
a, a′

) [
f (a)− f (

a′
)]2
, (4.2)

E l (f, f ) = 1

2

∑

a,a′∈Γn
νl (a) ql

(
a, a′

) [
f (a)− f (

a′
)]2
, f : Γn → [0, 1] .

For A,B ⊆ Sn, define the capacity between A and B for {ξt }t≥0 by

cap (A,B) = min
f∈Q(A,B) E (f, f ) , (4.3)

where

Q(A,B) = {
f : Sn → [0, 1] , f|A ≡ 1, f|B ≡ 0

}
, (4.4)

and similarly for capu (A,B) and capl (A,B).

4.1 Capacity Bounds on Kn

First we derive capacity bounds for {ξ lt }t≥0 and {ξut }t≥0 on Kn. A useful reformula-
tion of (4.3) is given by

cap (A,B) =
∑

σ∈A

∑

σ ′∈Sn
μ (σ) r

(
σ, σ ′

)
Pσ (τB < τA) . (4.5)

Lemma 4.1 (Capacity Bounds for {ξut }t≥0 and {ξ lt }t≥0) For a, b ∈ [mu, su] with
a < b,

(
1− b + 2

n

)

2n (b − a)2 ≤ capu (a, b)

C% (b)
≤ n (1− b)

2
(4.6)

with

C% (b) = 1

zu
e−βnΨ u(b)

(
n

n
2 (1+min (b, tu))

)
. (4.7)

For a, b ∈ [
ml , sl

]
with a < b, analogous bounds hold for capl (a, b).
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Proof We will prove the upper and lower bounds only for capu (a, b), the proof for
capl (a, b) being identical. Note from the definition in (4.3) that

capu (a, b) (4.8)

= min
f∈Q(a,b)

n
2 (b−a)−1∑

i=0

νu
(
a + 2i

n

)
qu

(
a + 2i

n
, a + 2 (i + 1)

n

)

×
[
f

(
a + 2i

n

)
− f

(
a + 2 (i + 1)

n

)]2

,

where it is easy to see that the set Q(a, b) in (4.4) may be reduced to

Q(a, b) =
{
f : Γn→ [0, 1] , f (x) = 1 for x ≤ a, f (x) = 0 for x ≥ b

}
.

(4.9)

Note that for every f ∈ Q(a, b) there is some 0 ≤ i ≤ n
2 (b − a)− 1 such that

∣∣
∣
∣f

(
a + 2i

n

)
− f

(
a + 2 (i + 1)

n

)∣∣
∣
∣ ≥

(n
2
(b − a)

)−1
. (4.10)

Also note that, by (2.13),

νu
(
a + 2i

n

)
qu

(
a + 2i

n
, a + 2 (i + 1)

n

)
(4.11)

= 1

zu

n

2

(
1− a − 2i

n

)
e−βnmax

{
Ψ u

(
a+ 2i

n

)
,Ψ u

(
a+ 2(i+1)

n

)}(
n

n
2 (1+ a)+ i

)
,

and that, for any δ ∈ R,

Ψ u (a + δ)− Ψ u (a) = −δ
(
pa + hu + p

2
δ
)
, (4.12)

so that

max

{
Ψ u

(
a + 2i

n

)
, Ψ u

(
a + 2 (i + 1)

n

)}
≤ 2

n

(
pa + h+ p

n

)
+ Ψu

(
a + 2i

n

)
.

(4.13)
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Combining, (4.9)–(4.13) with δ = 2
n

, we get

capu (a, b) (4.14)

≥ min
0≤i≤ n2 (b−a)−1

2
(

1− b + 2
n

)
e−2β(p+hu)

nzu (b − a)2 e−βnΨ
u
(
a+ 2i

n

)(
n

n
2 (1+ a)+ i

)

=
2

(
1− b + 2

n

)
e−2β(p+hu+ pn )

nzu (b − a)2 e−βnΨ u(min(b,tu))
(

n
n
2 (1+min(b, tu))

)
,

where we use (4.12) plus the fact that, by the definition of mu, tu, su, for a, b ∈
[mu, su] with a < b, the function i �→ e

−βnΨ u
(
a+ 2i

n

)
(

n
n
2 (1+a)+i

)
is decreasing on

[mu, tu] and increasing on [tu, su]. This settles the lower bound in (4.6).
Arguments similar to the ones above give

capu (a, b) ≤ νu
(

min(b, tu)− 2

n

)
qu

(
min(b, tu)− 2

n
,min(b, tu)

)

≤ n (1− b) e2β(p+hu)

2zu
e−βnΨ u(min(b,tu))

(
n

n
2 (1+min(b, tu))

)
,

(4.15)

where for the first equality we use the test function f ≡ 1 on
[
−1,min(b, tu)− 2

n

]

and f ≡ 0 on [min(b, tu), 1] in (4.9). ��

4.2 Capacity Bounds on ERn(p)

Next we derive capacity bounds for {ξt }t≥0 on ERn(p). The proof is analogous to
what was done in Lemma 4.1 for {θut }t≥0 and {θ lt }t≥0 onKn.

Define the set of direct paths between A ⊆ Sn and B ⊆ Sn by

LA,B =
{
γ = (γ0, . . . , γ|γ |) : A→ B : |γi+1| = |γi | + 1 for all γi ∈ γ

}
,

(4.16)

which may be empty. Recall from (3.12) that ϑk = p(1 − k
n
)− h.

Lemma 4.2 (Capacity Bounds for {ξt }t≥0) With PERn(p)-probability tending to 1
as n→∞ the following is true. For every 0 ≤ k < k′ ≤ n and every * : N → R+
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satisfying limn→∞ * (n) = ∞,

cap (Ak,Ak′) ≤ 1

Z
e−βHn(�) O

(
*(n)n11/6)

(
n

km

)
e−β 2kmϑkm , (4.17)

cap (Ak,Ak′) ≥ 1

Z
e−βHn(�) Ω

(
n−1e

−
(
β+ 1√

3

)√
log n

) (
n

km

)
e−β 2kmϑkm ,

where

km = argmink≤j≤k′
(
n

j

)
e−β 2jθj . (4.18)

Proof Recall from (4.1) and (4.3) that

cap (Ak,Ak′) = min
f∈QE (f, f ) = min

f∈Q
1

2

∑

σ,ξ∈Sn
μ (σ) r (σ, ξ) [f (σ)− f (ξ)]2 ,

(4.19)
where

Q(Ak,Ak′) =
{
f : Sn → [0, 1] : f |Ak ≡ 1, f |Ak′ ≡ 0

}
. (4.20)

The proof comes in three Steps.

1. We first prove the upper bound in (4.17). Let B = ⋃km−1
j=k Aj , and note that, by

(1.7),

cap
(
Ak,Ak′

) ≤ 1

2

∑

σ,ξ∈Sn
μ (σ ) r (σ, ξ) [1B (σ )− 1B (ξ)]

2

=
∑

σ∈Akm−1

∑

ξ∈Akm
μ (σ ) r (σ, ξ)

= 1

Z

∑

σ∈Akm−1

∑

ξ∈Akm,ξ∼σ
e−β max{Hn(ξ),Hn(σ )}

= 1

Z

⎛

⎜
⎜
⎝

∑

σ∈Akm−1

∑

ξ∈Akm ,ξ∼σ
Hn(σ)≥Hn(ξ)

e−βHn(σ ) +
∑

σ∈Akm−1

∑

ξ∈Akm ,ξ∼σ
Hn(σ)<Hn(ξ)

e−βHn(ξ)

⎞

⎟
⎟
⎠

≤ 1

Z
max {km, n− km}

⎛

⎝
∑

σ∈Akm−1

e−βHn(σ ) +
∑

ξ∈Akm
e−βHn(ξ)

⎞

⎠ .

(4.21)
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Recall from (3.4) that φki denotes the cardinality of the set of all σ ∈ Ak with
|∂Eσ | = pk (n− k)+ i. Note from (1.3) that for any ξ ∈ Akm such that |∂Eξ | =
pkm (n− km)+ i,

e−βHn(ξ) = e−βHn(�)e−β (2kmϑkm+
2i
n
). (4.22)

There are
(
n
km

)
terms in the sum, and therefore we get

∑
ξ∈Akm e−βHn(ξ) = e−βHn(�)

∑(1−p)km(n−km)
i=−pkm(n−km) φ

km
i e

−β
(

2kmϑkm+ 2i
n

)

= e−βHn(�)
(

∑
i<−Y φ

km
i e

−β
(

2kmϑkm+ 2i
n

)

+ ∑
i≥−Y e

−β
(

2kmϑkm+ 2i
n

))

≤ e−βHn(�)
(

(
n
km

)
e−β(2kmϑkm−

2Y
n ) +∑

i<−Y φ
km
i e

−β
(

2kmϑkm+ 2i
n

))

(4.23)

with Y = √
log(*(n)2n5/6)km(n− km). The choice of Y will become clear

shortly. The summand in the right-hand side can be bounded as follows. By the
sandwich in (3.2) in Lemma 3.2, the sum over i < −Y can be restricted to
−cn3/2 ≤ i < −Y , since with high probability no configuration has a boundary
size that deviates by more than cn3/2 from the mean. But, using Lemma 3.3, we
can also bound from above the number of configurations that deviate by at most
Y from the mean, i.e., we can bound φkmi for −cn3/2 ≤ i < −Y . Taking a union
bound over 0 ≤ k ≤ n and −cn3/2 ≤ i < −Y , we get

P

⎡

⎣
n⋃

k=0

−Y⋃

i=−cn3/2

{
φ
km
i ≥ * (n) n5/2

(
n

km

)
e−

2i2
km(n−km)

}
⎤

⎦ ≤ 1

* (n)
. (4.24)

Thus, with PERn(p)-probability at least ≥ 1− 1
*(n)

,

∑
i<−Y φ

km
i e

−β
(

2km θkm+ 2i
n

)

≤ ∑
i>Y * (n) n

5/2
(
n
km

)
e
−2i

(
i

km(n−km)−
β
n

)

e−β 2km θkm

≤ * (n) n5/2
(
n
km

)
e−β 2km θkm e−2 log(*(n)n5/6)

≤ n5/6

*(n)

(
n
km

)
e−β 2km θkm ,

(4.25)

where we use that, for i > Y and n sufficiently large,

i

km (n− km) −
β

n
≥

√
log(* (n)2 n5/6)

km (n− km) − β
n
≥

√
log(* (n) n5/6)

km (n− km) . (4.26)
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The above inequality also clarifies our choice of Y . Substituting it into (4.23), we
see that

∑

ξ∈Akm
e−βHn(ξ) ≤ [1+ on (1)] e−βHn(�)e

2βY
n e−β 2km ϑkm

(
n

km

)
(4.27)

= O(
*(n)n5/6)

e−βHn(�)e−β 2kmϑkm

(
n

km

)
.

A similar bound holds for
∑
ξ∈Akm−1

e−βHn(ξ). A union bound over 1 ≤ km ≤ n
increases the exponent 5

6 to 11
6 . Together with (4.21), this proves the upper bound

in (4.17).
2. We next derive a combinatorial bound that will be used later for the proof of the

lower bound in (4.17). Note that if f ∈ Q(Ak,Ak′) and γ ∈ LAk,Ak′ (recall
(4.16)), then there must be some 1 ≤ i ≤ k′ − k such that

|f (γi)− f (γi+1)| ≥
(
k′ − k)−1

. (4.28)

A simple counting argument shows that

∣
∣LAk,Ak′

∣
∣ =

(
n

k

)
(n− k)!
(n− k′)! , (4.29)

since for each σ ∈ Ak there are (n− k)× (n− k − 1)×· · ·× (
n− k′ + 1

)
paths

in LAk,Ak′ from σ to Ak′ . Let

bi =
∣∣
∣
{
(σ, ξ) ∈ Ak+i−1 ×Ak+i : |f (σ)− f (ξ)| ≥

(
k′ − k)−1

, σ ∼ ξ
}∣∣

∣ ,

1 ≤ i ≤ k′ − k.
(4.30)

We claim that

∃ 1 ≤ i� ≤ k′ − k : bi� ≥
k

k′ − k
(

n

k + i�
)
. (4.31)

Indeed, the number of paths in LAk,Ak′ that pass through σ ∈ Ak+i�−1 followed
by a move to ξ ∈ Ak+i� equals

zi� =
(
k + i� − 1

)!
k! ×

(
n− k − i�

)!
(n− k′)! , (4.32)

where the first term in the product counts the number of paths from σ ∈ Ak+i�+1
to Ak , while the second term counts the number of paths from ξ ∈ Ak+i� to Ak′ .
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Thus, if (4.31) fails, then

k′−k∑

i=1

bizi <
k

k′ − k
k−k′∑

i=1

1

k + i
n!

k! (n− k′)! ≤
n!

k! (n− k′)! =
∣∣LAk,Ak′

∣∣ ,

(4.33)

which in turn implies that (4.28) does not hold for some γ ∈ LAk,Ak′ (use
that bizi counts the paths that satisfy condition (4.28)), which is a contradiction.
Hence the claim in (4.31) holds.

3. In this part we prove the lower bound in (4.17). By Lemma 3.3 we have that, with
PERn(p)-probability at least 1− 1

*(n)
, for any Y ≥ 0,

∑

j≥√Y(k+i�)(n−k−i�)
φ
k+i�
j ≤ * (n)

(
n

k + i�
)

e−2Y . (4.34)

Picking Y = log(* (n) k−12n3/2), we get that

∑

j≥√Y(k+i�)(n−k−i�)
φ
k+i�
j ≤ 1

4

k2*(n)

*(n)2n3

(
n

k + i�
)
≤ 1

2

k

n (k′ − k)
(

n

k + i�
)
,

(4.35)

and so at least half of the configurations contributing to bi� have an edge-
boundary of size at most

p
(
k + i�

) (
n− k − i�

)+
√
Y

(
k + i�

) (
n− k − i�

)
. (4.36)

If ξ ∈ Ak+i� is such a configuration, then by Lemma 3.2 the same is true for any
σ ∼ ξ (i.e., configurations differing at only one vertex), since

|∂Eσ | ≤ |∂Eξ | + max
v∈σ9ξ deg (v) ≤ |∂Eξ | + pn+ o

(
ρ(n)

√
n logn

)
. (4.37)

This implies

E (f, f ) = 1

2

∑

σ,ξ∈Sn
μ (σ) r (σ, ξ) [f (σ)− f (ξ)]2

≥ 1

Zn2/3

∑

ξ∈Ak+i�

∑

σ∈Ak+i�−1

e−β max{Hn(σ),Hn(ξ)}
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≥ e−βHn(�) k

2Zn2

(
n

k + i�
)

× exp

⎛

⎝−β
⎛

⎝2(k + i�)θk+i� + 2

√
Y

(
k + i�

) (
n− k − i�

)

n

⎞

⎠

⎞

⎠ . (4.38)

Therefore

E (f, f ) ≥ e−βHn(�)e−β
√
Y min

1≤i≤k′−k
k

2Zn2

(
n

k + i
)

e−β(2(k+i)ϑk+i ) (4.39)

= e−βHn(�)e−β
√
Y k

2Zn2

(
n

km

)
e−β(2(k+i)ϑk−m).

Since (4.39) is true for any f ∈ Q(Ak,Ak′), the lower bound in (4.17) follows,
with km defined in (4.18). ��

4.3 Hitting Probabilities on ERn(p)

Let μAM be the equilibrium distribution μ conditioned to the set AM. Write P
l

and P
u to denote the laws of the processes {ξ lt }t≥0 and {ξut }t≥0, respectively. The

following lemma is the crucial sandwich for comparing the crossover times of the
dynamics on ERn(p) and the perturbed dynamics on Kn.

Lemma 4.3 (Rank Ordering of Hitting Probabilities) With PERn(p)-probability
tending to 1 as n→∞,

maxξ∈AMl
P
l
ξ

[
τSl < τMl

] ≤ PμAM
[τS < τM]

≤ minσ∈AMu P
u
σ [τSu < τMu ] .

(4.40)

Proof The proof comes in three Steps.

1. Recall from (1.10) that the magnetization of σ ∈ Ak is m(σ) = 2 k
n
− 1. We first

observe that the maximum and the minimum in (4.40) are redundant, because by
symmetry

maxξ∈Ak Plξ
[
τAk′ < τAk

] = minξ∈Ak Plξ
[
τAk′ < τAk

]
,

minξ∈Ak Puξ
[
τAk′ < τAk

] = maxξ∈Ak Puξ
[
τAk′ < τAk

]
.

(4.41)

Recall that {ξ lt }t≥0 is the Markov process on Sn governed by the HamiltonianHln
in (2.3), and that the associated magnetization process {θ lt }t≥0 = {m(ξlt )}t≥0 is a
Markov process on the set Γn in (1.15) with transition rates given by ql in (2.8).
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Denoting by P̂
l the law of {θ lt }t≥0, we get from (4.5) that for any 0 ≤ k ≤ k′ < n,

and with a = 2k
n
− 1 and b = 2k′

n
− 1,

capl (a, b) =
∑

u∈Γn
νl (a) ql (a, u) P̂la [τb < τa] (4.42)

= νl (a)
[
ql

(
a, a + 2

n

)
+ ql

(
a, a − 2

n

)]
P̂
l
a [τb < τa] ,

and therefore

maxξ∈Ak Plξ
[
τAk′ < τAk

]
= P̂

l
a [τb < τa]

=
[
νl (a)

(
ql

(
a, a + 2

n

)
+ ql

(
a, a − 2

n

))]−1
capl (a, b) .

(4.43)

By (2.13), using the abbreviations

Ψ1 = max

{
Ψ l (a) , Ψ l

(
a + 2

n

)}
, Ψ2 = max

{
Ψ l (a) , Ψ l

(
a − 2

n

)}
,

(4.44)

we have, with the help of (4.12),

νl (a)

(
ql

(
a, a + 2

n

)
+ ql

(
a, a − 2

n

))

= 1

zl

n

2

(
n

n
2 (1+ a)

)(
(1− a) e−βnΨ1 + (1+ a) e−βnΨ2

)
(4.45)

≥ 1

zl
ne−2β

(
p|a|+hl+ pn

)
e−βnΨ l(a)

(
n

n
2 (1+ a)

)
.

From Lemma 4.1 we have that

capl (a, b) ≤ n (1− a)
2zl

e−βnΨ l(b)
(

n
n
2 (1+ b)

)
. (4.46)

Putting (4.43), (4.45) and (4.46) together, we get

maxξ∈Ak Plξ
[
τAk′ < τAk

] ≤ (1−a)
2 e2β

(
p|a|+hl+ p

n

)
e−βn

[
Ψ l(b)−Ψ l(a)]

×(
n

n
2 (1+b)

)(
n

n
2 (1+a)

)−1
.

(4.47)
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Similarly, denoting by P̂
u the law of {θut }t≥0, we have

min
ξ∈Ak

P
u
ξ

[
τAk′ < τAk

]
= P̂

u
a [τb < τa] (4.48)

=
[
νu (a)

(
qu

(
a, a + 2

n

)
+ qu

(
a, a − 2

n

))]−1
capu (a, b) ,

where

[
νu (a)

(
qu

(
a, a + 2

n

)
+ qu

(
a, a − 2

n

))]−1

≥
[
n
zu

e2β
(
p|a|+hl+ p

n

)
e−βnΨ u(a)

(
n

n
2 (1+a)

)]−1
,

(4.49)

and, by Lemma 4.1,

capu (a, b) ≥ 1

2nzu
e−βnΨ u(b)

(
n

n
2 (1+ b)

)
. (4.50)

Putting (4.48)–(4.50) together, we get

min
ξ∈Ak

P
u
ξ

[
τAk′ < τAk

] ≥ 1

n
e−βn

[
Ψ l(b)−Ψ l(a)]

(
n

n
2 (1+ b)

)(
n

n
2 (1+ a)

)−1

.

(4.51)

2. Recall from (4.5) that

cap (Ak,Ak′) =
∑

σ∈Ak

∑

ξ∈Sn
μ(σ)r(σ, ξ)Pσ

[
τAk′ < τAk

]
. (4.52)

Split

∑

σ∈Ak

∑

ξ∈Sn
μ(σ)r(σ, ξ)

=
∑

σ∈Ak

∑

ξ∈Ak+1

μ(σ)r(σ, ξ)+
∑

σ∈Ak

∑

ξ∈Ak−1

μ(σ)r(σ, ξ) (4.53)

= 1

Z

∑

σ∈Ak

∑

ξ∈Ak+1

e−βmax{Hn(σ),Hn(ξ)} + 1

Z

∑

ξ∈Ak

∑

ξ ′Ak−1

e−βmax{Hn(σ),Hn(ξ)}.
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By Lemma 3.3 and a reasoning similar to that leading to (4.38),

∑

ξ∈Ak
e−βHn(ξ) = e−βHn(�)

(1−p)k(n−k)∑

i=−pk(n−k)
φki e

−β
(

2kϑk+2 i
n

)

(4.54)

≥ 1

2

(
n

k

)
e−βHn(�)e−β

(
2kϑk+2

√
Yk(n−k)
n

)

≥ 1

2

(
n

k

)
e−βHn(�)e−β

√
log(
√

2*(n))e−β 2kϑk

with Y = log(
√

2*(n)). Indeed, by (3.6) fewer than 1
2

(
n
k

)
configurations in Ak

have an edge-boundary of size ≥ pk (n− k) +√
k (n− k) Y . Moreover, if ξ ∼

ξ ′, then, by Lemma 3.2,

eβ[Hn(ξ ′)−Hn(ξ)] ≤ [1+ o(1)] eβ(p+h), (4.55)

and since we may absorb this constant inside the error term * (n), we get that

∑

σ∈Ak

∑

ξ∈Ak+1

e−βmax{Hn(σ),Hn(ξ)}

≥ e−βHn(�) 1
2
(n− k)

(
n

k

)
e−

β
2

√
log
√

2*(n)e−β 2k ϑk , (4.56)

∑

σ∈Ak

∑

ξ∈Ak−1

e−βmax{Hn(σ),Hn(ξ)}

≥ e−βHn(�) 1
2
k

(
n

k

)
e−

β
2

√
log
√

2*(n)e−β 2k ϑk , (4.57)

and hence

∑
σ∈Ak

∑
ξ∈Sn μ(σ)r(σ, ξ)

≥ e−βHn(�) 1
2Z

(
n
k

)
e−

β
2

√
log
√

2*(n)e−β 2k ϑk .
(4.58)

3. Similar bounds can be derived for PμAk

[
τAk′ < τAk

]
. Indeed, by Lemma 3.5,

r (σ, ξ) = 1 for all σ ∈ Ak and all but O(n2/3) many configurations ξ ∈ Sn.
Therefore

cap(Ak,Ak′) = n [1+ o(1)]
∑

σ∈Ak
μ(σ)Pσ

[
τAk′ < τAk

]
(4.59)

= n [1+ o(1)]μ(Ak)PμAk
[
τAk′ < τAk

]
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and hence

PμAk

[
τAk′ < τAk

] = [1+ o(1)] cap(Ak,Ak′)

nμ(Ak)
. (4.60)

Note that

μ(Ak) = 1

Z

∑

σ∈Ak
e−βHn(σ ), (4.61)

and we have already produced bounds for a sum like (4.61) in Lemma 4.2.
Referring to (4.28), we see that

PμAk

[
τAk′ < τAk

] ≤ [1+ o(1)] cap(Ak,Ak′)

1
Z

e
−(β+ 1√

3
)
√

logn(n
k

)
e−β2kϑk

, (4.62)

PμAk

[
τAk′ < τAk

] ≥ [1+ o(1)] cap(Ak,Ak′)

1
Z
n17/6e

−(β+ 1√
3
)
√

logn(n
k

)
e−β2kϑk

. (4.63)

Finally, we note that if we let Δh = h− hu, then

e−βn[Ψ u(su)−Ψ u(mu)]

e−βn[Ψ (s)−Ψ(m)]
= eβnCβ,h,pΔh, (4.64)

where Cβ,h,p is a constant that depends on the parameters β, p and h. A similar
expression follows for the ratio

(
n

n
2 (1+ su)

)(
n

n
2 (1+mu)

)−1
[(

n
n
2 (1+ s)

)(
n

n
2 (1+ m

)−1
]−1

. (4.65)

From this the statement of the lemma follows. ��

5 Invariance Under Initial States and Refined Capacity
Estimates

In this section we use Lemma 4.3 to control the time it takes {m(ξt )}t≥0 to cross the
interval [tu, su] ∩ [tl, sl], which will be a good indicator of the time it takes {ξt }t≥0
to reach the basin of the stable state s. In particular, our aim is to control this time
by comparing it with the time it takes {θut }t≥0 and {θ lt }t≥0 defined in (2.6) to do the
same for su and sl . In Sect. 5.1 we derive bounds on the probability of certain rare
events for the dynamics on ERn(p) (Lemmas 5.1–5.4 below). In Sect. 5.2 we use
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these bounds to prove that hitting times are close to being uniform in the starting
configuration.

5.1 Estimates for Rare Events

In this section we prove four lemmas that serve as a preparation for the coupling in
Sect. 6. Lemma 5.1 shows that the dynamics starting anywhere in AM is unlikely
to stray away from AM by much during a time window that is comparatively small.
Lemma 5.2 bounds the total variation distance between two exponential random
variable whose means are close. Lemma 5.3 bounds the tail of the distribution of the
first time when all the vertices have been updated. Lemma 5.4 bounds the number
of returns to AM before AS is hit.

We begin by deriving upper and lower bounds on the number of jumps Nξ (t)
taken by the process {ξt }t≥0 up to time t . By Lemma 3.4, the jump rate from any
σ ∈ Sn is bounded by

n e−2β(p+h) ≤
∑

σ ′∈Sn
r

(
σ, σ ′

) ≤ n. (5.1)

Hence Nξ (t) can be stochastically bounded from above by a Poisson random
variable with parameter tn, and from below by a Poisson random variable with
parameter tne−2β(p+h). It therefore follows that, for anyM ≥ 0,

P
[
Nξ (t) ≥M

] ≤ χM(nt),
P

[
Nξ (t) < M

] ≤ 1− χM
(
nt e−2β(p+h)),

(5.2)

where we abbreviate χM(u) = e−u
∑
k≥M uk/k!, u ∈ R,M ∈ N.

5.1.1 Localisation

The purpose of the next lemma is to show that the probability of {ξt }t≥0 straying too
far from AM during its first n2 logn jumps is very small. The seemingly arbitrary
choice of n2 logn is in fact related to the Coupon Collector’s problem.

Lemma 5.1 (Localisation) Let ξ0 ∈ AM, T = inf
{
t ≥ 0 : Nξ (t) ≥ n2 logn

}
, and

let C1 ∈ R be a sufficiently large constant, possibly dependent on p and h (but not
on n). Then

Pξ0

[
ξt ∈ AM+C1n5/6 for some 0 ≤ t ≤ T ] ≤ e−n2/3

. (5.3)
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Proof The idea of the proof is to show that {ξt }t≥0 returns many times toAM before
reaching AM+C1n5/6 . The proof comes in three Steps.

1. We begin by showing that T ≤ n2 logn with probability ≥ 1 − e−n3
(in other

words, it takes less than n2 logn time to make n2 logn steps). Indeed, by the
second line of (5.2),

P

[
T > n2 logn

]
(5.4)

= P

[
Nξ

(
n2 logn

)
< n2 logn

]

≤ 1− χn2 logn

(
(n3 logn) e−2β(p+h))

≤
n2 logn∑

k=0

exp

(
−(n3 logn) e−2β(p+h) + k log

(
e n3 logn

k

))

≤ (n2 logn) exp
(
−(n3 logn) e−2β(p+h) + n5/2

)

≤ e−n3
,

where for the second inequality we use that k! ≥ ( k
e
)k , k ∈ N, and for the third

inequality that, for n sufficiently large,

k log

(
en3 logn

k

)
≤ (n2 logn) log

(
e n3 logn

)
≤ n5/2. (5.5)

Next, observe that

Pξ0

[
ξt ∈ AM+C1n5/6 for some 0 ≤ t ≤ T ]

(5.6)

= Pξ0

[
ξt ∈ AM+C1n

5/6 for some 0 ≤ t ≤ T , T ≤ n2 logn
]

+Pξ0

[
ξt ∈ AM+C1n5/6 for some 0 ≤ t ≤ T , T > n2 logn

]

≤ (n2 logn) max
σ∈AM

Pσ

[
τAM+C1n

5/6 < τAM

]
+ e−n3

.

Here, the inequality follows from (5.4) and the observation that the event ξt ∈
AM+C1n5/6 for some 0 ≤ t ≤ T with T ≤ n2 logn is contained in the event that
AM+C1n

5/6 is visited before the (n2 logn)-th return to AM. From Lemma 4.3 and
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(4.47) it follows that

maxσ∈AM Pσ

[
τAm+C1n

5/6 < τAM

]

≤ (1−a)
2 e2β

(
p|a|+hl+ pn

)
e−βn[Ψ (b)−Ψ (a)]

(
n

n
2 (1+b)

)(
n

n
2 (1+a)

)−1
(5.7)

with a = m/n and b = (
m+ C1n

5/6
)
/n.

2. Our assumption on the parameters β, p and h is that 2β(p(a + 2
n
) + h) +

log( 1−a
1+a+ 2

n

) is negative in two disjoint regions. Recall that the first region lies

between a1 = 2M
n
− 1 and a2 = 2T

n
− 1. This, in particular, implies that the

derivative of 2β(p(a + 2
n
)+ h)+ log( 1−a

1+a+ 2
n

) at a = a1 is

2βp − 1

1− a1
− 1

1+ a1
= −δ1 < 0 (5.8)

for some δ1 > 0. Recall that Ψ (a) = −p2 a2 − ha, so that Ψ (b) − Ψ (a) =
(a − b)(p2 (a + b)+ h), which gives

e−βn[Ψ (b)−Ψ (a)]
(

n
n
2 (1+ b)

)(
n

n
2 (1+ a)

)−1

(5.9)

= exp

(
βn (b − a) (pa + h)+ βn (b − a)2 p

2

+n
2

log

(
(1+ a)(1+a) (1− a)(1−a)
(1+ b)(1+b) (1− b)(1−b)

)

+O(logn)

)
, (5.10)

where we use Stirling’s approximation in the last line. Since b = a + C1n
−1/6,

we have

r.h.s. (5.9) = exp
(
βC1n

5/6 (pa + h)+ p
2
βC2

1n
2/3 + n

2
logF

)
(5.11)

with

F = (1− Un(a))1+a (1+ Vn(a))1−a (Wn(a))C1n
−1/6
, (5.12)

where

Un(a) = C1n
−1/6

1+ a + C1n−1/6 , Vn(a) = C1n
−1/6

1− a − C1n−1/6 . (5.13)
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From the Taylor series expansion of log (1+ x) for 0 ≤ |x| < 1, we obtain

n
2 (1+ a) log (1− Un(a)) ≤ n

2 (1+ a)
(
−Un(a)− 1

2 (Un(a))
2
)
,

n
2 (1− a) log (1+ Vn(a)) ≤ n

2 (1− a)
(
Vn(a)− 1

2 (Vn(a))
2 +O(n−1/2)

)
,

(5.14)

and

1

2
C1n

5/6 log

(
Un(a)

Vn(a)

)

= 1

2
C1n

5/6 log

(
1− a
1+ a

1− a − C1n
−1/6

1− a
1+ a

1+ a + C1n−1/6

)
(5.15)

≤ 1

2
C1n

5/6
(

log

(
1− a
1+ a

)
− C1n

−1/6

1− a − Un(a)−O(n−2/3)

)
.

By the definition of m, we have

C1n
5/6

(
β (pa + h)+ log

(
1− a
1+ a

))
≤ 0. (5.16)

Hence we get

βC1n
5/6 (pa + h)+ p

2βn
2/3C2

1 + n
2 logF

≤ p
2 βn

2/3C2
1 −

1
2C1(1+a)n5/6

1+a+C1n−1/6 +
1
2C1(1−a)n5/6

1−a−C1n−1/6 − 1
2C

2
1n

2/3G
(5.17)

with

G = 1
1−a + 1

1+a+C1n
−1/6

+
(

1−a
2

) (
1

1−a−C1n−1/6

)2 +
(

1+a
2

) (
1

1+a+C1n−1/6

)2
.

(5.18)

Hence

r.h.s. (5.17) ≤ p
2βn

2/3C2
1

+ 1
2C

2
1n

2/3
(

1
1−a−cn−1/6 + 1

1+a+C1n−1/6

)
− 1

2C
2
1n

1/6G

≤ n2/3 1
2C

2
1

(
pβ − 1

2
1

1−a−C1n
−1/6 − 1

2
1

1+a+C1n
−1/6 +O(n−1/6)

)

= n2/3 1
2C

2
1

(
pβ − 1

2
1

1−a − 1
2

1
1+a +O(n−1/3)

)
≤ − 1

4C
2
1δ1n

2/3.

(5.19)
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3. Combine (5.7), (5.9) and (5.17), and pick C1 large enough, to get the claim in
(5.3). ��

5.1.2 Update Times

The following two lemmas give useful bounds for the coupling scheme. The symbol
C stands for equality in distribution.

Lemma 5.2 (Total Variation Between Exponential Distributions) Let X C
Exp (λ) and Y C Exp (λ+ δ). Then the total variation distance between the
distributions of X and Y is bounded by

dT V (X, Y ) ≤ 2δ

λ+ δ . (5.20)

Proof Elementary. ��
Lemma 5.3 (Update Times) Let T ξupdate be the first time {ξt }t≥0 has experienced
an update at every vertex:

T
ξ
update = inf {t ≥ 0 : ∀ v ∈ V ∃ 0 ≤ s ≤ t : ξs (v) = −ξ0 (v)} . (5.21)

Then, for any y > 0,

P

[
T
ξ
update ≥ y

]
≤ exp (−λy + logn)

1− exp (−λy) , λ = e−β(2p+h). (5.22)

Proof Recall that for σ ∈ Sn and v ∈ V , σv denotes the configuration satisfying
σv (w) = σ (w) for w = v, and σv (v) = −σ (v). From (1.3) and (1.6) it follows
that

r
(
σ, σ v

) ≥ λ, (5.23)

and so T ξupdate is dominated by the maximum of n i.i.d. Exp (λ) random variables.
Therefore

P

[
T
ξ
update ≤ y

]
≥ (

1− e−λy
)n = exp

(
n log(1− e−λy)

)
(5.24)

≥ exp

(
− ne−λy

1− e−λy

)
≥ 1− ne−λy

1− e−λy
,

which proves the claim. ��



Glauber Dynamics on the Erdős-Rényi Random Graph 563

5.1.3 Returns

The next lemma establishes a lower bound on the number of returns to AM before
AS is reached. Let gξ0 (AM, AS) denote the number of jumps that {ξt }t≥0 makes into
the set AM before reaching AS. More precisely, let {si}i∈N0

denote the jump times
of the process {ξt }t≥0, i.e., s0 = 0 and

si = inf
{
s > si−1 : ξs = ξsi−1

}
, (5.25)

and define for the process (ξt )t≥0 starting at ξ0,

gξ0 (AM, AS) =
∣
∣{i ∈ N0 : ξsi ∈ AM, ξs /∈ AS ∀ s ≤ si

}∣
∣ . (5.26)

Lemma 5.4 (Bound on Number of Returns) For any ξ0 ∈ AM and any δ > 0,

Pξ0

[
gξ0 (AM, AS) < e[Rp(t)−Rp(m)]n

] ≤ e−δn+Cn2/3
(5.27)

for some constant C that does not depend on n.

Proof Let Y be a geometric random variable with probability of success given by
e−[Rp(t)−Rp(m)]n+Cn2/3

. Then, by Lemma 4.3, every time the process {ξt }t≥0 starts
all over from AM , it has a probability less than P

u
ξ [τSu < τMu ] of making it to AS .

Using the bounds from that lemma, it follows that Y is stochastically dominated by
gξ0 (AM, AT). Hence

P
[
Y ≤ e([Rp(t)−Rp(m)]−δ)n

] ≤ e([Rp(t)−Rp(m)]−δ)n e−[Rp(t)−Rp(m)]n+Cn2/3

≤ e−δn+Cn2/3
.

(5.28)
��

5.2 Uniform Hitting Time

In this section we show that if Theorem 1.4 holds for some initial configuration
in AM, then it holds for all initial configurations in AM. The proof of this claim,
which will be needed in Sect. 7, relies on a coupling construction in which the
two processes starting anywhere in AM meet with a sufficiently high probability
long before either one reaches AS. Details of the coupling construction are given in
Sect. 6.

The idea of the proof is that for {ξt }t≥0 starting in AM the starting configuration
is irrelevant for the metastable crossover time because the latter is very large.
We will verify this by showing that “local mixing” takes place long before the
crossover to AS occurs. More precisely, we will show that if ξ0, ξ̃0 are any two
initial configurations in AM, then there is a coupling such that the trajectory t �→ ξt
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intersects the trajectory t �→ ξ̃t well before either strays too far from AM. The
coupling is such that there is a small but sufficiently large probability that ξt and
ξ̃t are identical once every spin at every vertex has had a chance to update, which
occurs after a time t that is not too large. It follows that after a large number of trials
with high probability the two trajectories intersect.

Proof Consider two copies of the process, {ξt }t≥0 and {ξ̃t }t≥0. Let δ > 0 and T0 =
e([Rp,β,h(t)−Rp,β,h(m)]−δ)n. In order to simplify the notation and differentiate between
the two processes, we abbreviate the crossover time τAS by

τ ξ = inf {t ≥ s : ξt ∈ AS} , (5.29)

with a similar definition for τ ξ̃ . We will show that Eξ0[τ ξ ] ≤ [1 + on(1)]Eξ̃0[τ ξ̃ ],
with the proof for the inequality in the other direction being identical. The proof
comes in two Steps.

1. We start with the following observation. From Corollary 3.9, we immediately get
that

Eξ0

[
τ ξ

]
/Eξ0

[
τ ξ̃

] = eO(n
2/3). (5.30)

Furthermore, the relation in (5.30) together with the initial steps in the proof of
Theorem 1.4 implies that, for any initial configuration ξ0,

Eξ0

[
τ ξ

] = en[Rp,β,h(t)−Rp,β,h(m)]+O(n2/3). (5.31)

Note: Step 2 in Sect. 7 shows that if ξ0 is distributed according to the law μAM ,
then

Eξ0[τ ξ ] = en[Rp,β,h(t)−Rp,β,h(m)]+O(logn). (5.32)

(Recall from Sect. 4.3 that μAM is the equilibrium distribution μ conditioned on
the set AM.) Let {ξt , ξ̃t }t≥0 be the coupling of the two processes described in
Sect. 6, and note that

Eξ0

[
τAS

] = Ê(
ξ0,ξ̃0

)[τ ξ ] = Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=ξ̃T0

}
]
+ Ê(

ξ0,ξ̃0

)
[
τ ξ1{

ξT0 =ξ̃T0

}
]
,

(5.33)

where Ê denotes expectation with respect to the law of the joint process.
The above inequality splits the expectation based on whether the coupling has
succeeded (in merging the two processes) by time T0 or not. Note that

τ ξ1{
ξT0=ξ̃T0

} ≤ τ ξ̃1{
ξT0=ξ̃T0 , τ

ξ̃≥T0

} + τ ξ1{
ξT0=ξ̃T0 , τ

ξ̃<T0

}, (5.34)
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and

τ ξ1{
ξT0=ξ̃T0 , τ

ξ̃<T0

}

= τ ξ1{
ξT0=ξ̃T0 , τ

ξ̃<T0,

∣
∣
∣ξ̃T0

∣
∣
∣<S

} + τ ξ1{
ξT0=ξ̃T0 , τ

ξ̃<T0,

∣
∣
∣ξ̃T0

∣
∣
∣≥S

}

≤ τ ξ1{
ξT0=ξ̃T0 , τ

ξ̃<T0,

∣
∣
∣ξ̃T0

∣
∣
∣<S

} + T0.

(5.35)

Also note from the definition of the coupling that, for any σ ∈ Sn and any A ⊆
Sn, Ê(σ,σ )[τ ξA] = Eσ [τA] because the two trajectories merge when they start from
the same vertex. Hence

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=ξ̃T0 , τ
ξ̃<T0,

∣
∣∣ξ̃T0

∣
∣∣<S

}
]

(5.36)

=
∑

σ∈⋃
i<χ1

Ai

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=ξ̃T0=σ, τ ξ̃<T0

}
]

≤
∑

σ∈⋃
i<χ1

Ai

(
Ê(σ,σ )

[
τ ξ

]+ T0

)
P̂(
ξ0,ξ̃0

)
[
ξT0 = ξ̃T0 = σ, τ ξ̃ < T0

]

≤
(
T0 + max

σ∈⋃
i<χ1

Ai

Eσ

[
τσ

] )
Pξ̃0

[τ < T0] ,

where we use the Markov property. Similarly, observe that

τ ξ1{
ξT0 =ξ̃T0

} = τ ξ1{
ξT0 =ξ̃T0 , τ

ξ≤T0

} + τ ξ1{
ξT0 =ξ̃T0 , τ

ξ>T0

} (5.37)

≤ T0 + τ ξT01{
ξT0 =ξ̃T0 τ

ξ>T0

},

and

Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0 =ξ̃T0 , τ
ξ>T0

}
]

(5.38)

=
∑

σ : |σ |<S

∑

σ ′ =σ
Ê(
ξ0,ξ̃0

)
[
τ ξ1{

ξT0=σ, ξ̃T0=σ ′, τ ξ>T0

}
]

=
∑

σ : |σ |<S

∑

σ ′ =σ
Ê(σ,σ ′)

[
T0 + τ ξ

]
Ê(
ξ0,ξ̃0

)
[
1{
ξT0=σ, ξ̃T0=σ ′, τ ξ>T0

}
]

≤ max
σ∈⋃

i<S Ai

(
T0 + Eσ

[
τ ξ

])
P̂(
ξ0,ξ̃0

)
[
ξT0 = ξ̃T0

]
.
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Thus, (5.33) becomes

Eξ0

[
τ ξ

] ≤ 2T0 + Eξ̃0

[
τAS

]+
(
Pξ̃0

[
τAS < T0

]+ P̂(
ξ0,ξ̃0

)
[
ξT0 = ξ̃T0

])

×
(
T0 + maxσ∈⋃

i<S Ai
Eσ

[
τAS

] )
.

(5.39)

We will show that the leading term in the right-hand side is Eξ̃0
[τAS ], and all

other terms are of smaller order. From (5.31) we know that T0 is of smaller order,
and that

max
σ∈⋃

i<S Ai

Eσ

[
τAS

] = eO(n
2/3)

Eξ̃0

[
τAS

]
. (5.40)

Hence it suffices to show that the sum Pξ̃0
[τAS < T0] + P̂(ξ0,ξ̃0)

[ξT0 = ξ̃T0 ] is

exponentially small. We will show that it is bounded from above by e−δn.
2. By Corollary 6.3, the probability P̂(ξ0,ξ̃0)

[ξT0 = ξ̃T0 ] is bounded from above by

e−δn+O(n2/3). To bound Pξ̃0
[τAS < T0], we first need to limit the number of steps

that {ξ̃t }t≥0 can take until time T0. From (5.2) and Stirling’s approximation we
have that

P

[
N
ξ̃
(T0) ≥ 3nT0

]
≤

∞∑

k=0

enT0+k
(

nT0

3nT0 + k
)3nT0+k

(5.41)

≤enT0

(
1

3

)3nT0 ∞∑

k=0

ek
(

1

3

)k
≤ 11 (0.91)3ne

1
2 [Rp,β,h(t)−Rp,β,h(m)]

.

It therefore follows that with high probability {ξ̃t }t≥0 does not make more than
3nT0 steps until time T0. Hence

Pξ̃0

[
τAS < T0

] ≤ Pξ̃0

[
τAS < T0, Nξ̃ (T0) < 3nT0

]
+11 (0.91)3ne

1
2 [Rp,β,h(t)−Rp,β,h(m)]

.

(5.42)

Finally, note that the event {τ ξ̃AS
< T0, Nξ̃ (T0) < 3nT0} implies that

{ξ̃t }t≥0 makes fewer than 3nT0 returns to the set AM before reaching AS.
By Lemma 5.4, the probability of this event is bounded from above by

3nT0e([Rp,β,h(t)−Rp,β,h(m)]−δ)n+Cn2/3 = 3ne− 1
2 δn+Cn2/3

, and hence

Pξ̃0

[
τ
ξ̃
AS
< T0

] ≤ 4n e−
1
2 δn+Cn2/3

. (5.43)
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Finally, from (5.43) we obtain

Eξ0

[
τ
ξ
AS

] = E
[
τ
ξ̃
AS

]
[1+ o (1)] , (5.44)

which settles the claim. ��

6 A Coupling Scheme

In this section we define a coupling of (ξt )t≥0 and {ξ̃t }t≥0 with arbitrary starting
configurations in AM. The coupling is divided into a short-term scheme, defined
in Sect. 6.1 and analysed in Lemma 6.1 below, followed by a long-term scheme,
defined in Sect. 6.2 and analysed Corollary 6.3 below. The goal of the coupling is
to keep the process {m(ξt )}t≥0 bounded by {θut }t≥0 from above and bounded by
{θ lt }t≥0 from below (the precise meaning will become clear in the sequel).

6.1 Short-Term Scheme

Lemma 6.1 (Short-Term Coupling) With PERn(p)-probability tending to 1 as
n→∞, there is a coupling {ξt , ξ̃t }t≥0 of {ξt }t≥0 and {ξ̃t }t≥0 such that

P
[
ξ2n = ξ̃2n] ≤ O

(
e−n−2/3

)
(6.1)

for any initial states ξ0 ∈ AM and ξ̃0 ∈ AM.

Proof The main idea behind the proof is as follows. Define

Wt1 = {v ∈ V : ξt (v) = −ξ̃t (v)} = ξtΔξ̃t , (6.2)

i.e., the symmetric difference between the two configurations ξt and ξ̃t , and

Wt2 = {v ∈ V : ξt (v) = ξ̃t (v)} = V \Wt1. (6.3)

The coupling we are about to define will result in the set Wt1 shrinking at a higher
rate than the setWt2, which will imply thatWt1 contracts to the empty set. The proof
comes in eight Steps.

1. We begin with bounds on the relevant transition rates that will be required in
the proof. Recall from Lemma 3.4 (in particular, (3.19) and (3.21)) that with
PERn(p)-probability at least 1− e−2n there are at most 2n2/3 vertices v ∈ ξt (i.e.,
ξt (v) = −1) such that |E(v, ξt )| = |{w ∈ ξt : (v,w) ∈ E}| ≥ p |ξt | + n2/3,
and similarly at most 2n2/3 vertices v ∈ ξt such that |E(v, ξt )| ≤ p |ξt | − n2/3.
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Analogous bounds are true for ξ̃t , t ≥ 0. Denote the set of bad vertices for ξt by

Bt =
{
v ∈ ξt :

∣∣|E(v, ξt )| − p|ξt |
∣∣ ≥ n2/3}, (6.4)

and the set of bad vertices for ξ̃t by B̃t . Let B̂t = Bt ∪ B̃t . Recall that ξvt denotes
the configuration obtained from ξt by flipping the sign at vertex v ∈ V . If v /∈ B̂t ,
then from (1.3) and Lemma 3.2 it follows that, for v /∈ ξt ,

Hn
(
ξvt

)−Hn (ξt ) = 2

n

(∣∣∂Eξvt
∣∣− |∂Eξt |

)− 2h (6.5)

= 2

n
(deg (v)− 2 |E(v, ξt )|)− 2h

≤ 2

n

(
pn + n1/2 logn− 2p |ξt | + 2n2/3

)
− 2h,

and similarly, for v ∈ ξt ,

Hn
(
ξvt

)−Hn (ξt ) ≤ 2

n

(
pn + n1/2 logn− 2p (n− |ξt |)+ 2n2/3

)
+ 2h.

(6.6)

Again, by (1.3) and Lemma 3.2, we have similar lower bounds, namely, if v /∈ B̂t ,
then, for v /∈ ξt ,

Hn(ξ
v
t )−Hn(ξt ) ≥

2

n

(
pn− n1/2 logn− 2p |ξt | − 2n2/3

)
− 2h, (6.7)

and, for v ∈ ξt ,

Hn(ξ
v
t )−Hn(ξt ) ≥

2

n

(
pn− n1/2 logn− 2p (n− |ξt |)− 2n2/3

)
+2h. (6.8)

Identical bounds hold for Hn(ξ̃vt ) − Hn(ξ̃t ). Therefore, if v /∈ B̂t , and if either
v ∈ ξt ∩ ξ̃t or v /∈ ξt ∪ ξ̃t , then

∣
∣
∣r(ξt , ξvt )− r(ξ̃t , ξ̃ vt )

∣
∣
∣

=
∣
∣
∣e−β[Hn(ξvt )−Hn(ξt )]+ − e−β[Hn(ξ̃ vt )−Hn(ξ̃t )]+

∣
∣
∣

= e−β[Hn(ξvt )−Hn(ξt )]+
∣
∣
∣∣1− eβ

(
[Hn(ξvt )−Hn(ξt )]+−[Hn(ξ̃ vt )−Hn(ξ̃t )]+

)∣
∣
∣∣

≤ [1+ on(1)] e−β[Hn(ξvt )−Hn(ξt )]+
(

e8βn−1/3+ 4p
n

(
|ξt |−|ξ̃t |

)
− 1

)

≤ [1+ on(1)]
(

e8βn−1/3+ 4p
n

(
|ξt |−|ξ̃t |

)
− 1

)

≤ [1+ on(1)]
(

8βn−1/3 + 4p
n

(|ξt | − |ξ̃t |
))
.

(6.9)
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2. Having established the above bounds on the transition rates, we give an explicit
construction of the coupling {ξt , ξ̃t }t≥0. ��

Definition 6.2

(I) We first define the coupling for time t = 0. For t > 0 this coupling will
be renewed after each renewal of {ξt , ξ̃t }t≥0, i.e., whenever either of the two
processes jumps to a new state. To that end, for every v ∈ W 0

2 (i.e., ξ0(v) =
ξ̃0(v)), couple the exponential random variables ev0 C Exp(r(ξ0, ξv0 )) and ẽv0 C
Exp(r(ξ̃0, ξ̃ v0 )) associated with the transitions ξ0 → ξv0 and ξ̃0 → ξ̃ v0 according
to the following scheme:

1. Choose a point

(x, y) ∈ {(x ′, y ′) : 0 ≤ x ′ <∞, 0 ≤ y ′ ≤ r (
ξ0, ξ

v
0

)
e−r(ξ0,ξv0 )x ′ }

uniformly and set ev0 = x. Note that, indeed, this gives ev0 C Exp(r(ξ0, ξv0 )).
2. If the value y from step 1 satisfies y ≤ r(ξ̃0, ξ̃ v0 ) exp(−r(ξ̃0, ξ̃ v0 )x), then set
ẽv0 = ev0 = x. Else, choose

(x∗, y∗) ∈{(
x′, y′

) : 0 ≤ x′ <∞, r (
ξ0, ξ

v
0

)
e−r

(
ξ0,ξ

v
0

)
x ′ < y′ ≤ r(ξ̃0, ξ̃ v0 )e−r(ξ̃0,ξ̃

v
0 )x

′}

uniformly and independently from the sampling in step 1, and set ẽv0 = x∗.
Note that this too gives ev0 C Exp(r(ξ̃0, ξ̃ v0 )).

(II) For every v ∈ W 0
1 , sample the random variables ev0 C Exp(r(ξ0, ξv0 )) and

ẽv0 C Exp(r(ξ̃0, ξ̃ v0 )) associated with the transitions ξ0 → ξv0 and ξ̃0 → ξ̃ v0
independently. At time t = 0, we use the above rules to define the jump times
associated with any vertex v ∈ V . Recall thatW 0

2 is the set of vertices where the
two configurations agree in sign. The aim of the coupling defined above is to
preserve that agreement. Following every renewal, we re-sample all transition
times anew (i.e., we choose new copies of the exponential variables as was
done above). We proceed in this way until the first of the following two events
happens: either ξt = ξ̃t , or n logn transitions have been made by either one of
the two processes.

3. Note that the purpose of limiting the number of jumps to n logn is to permit
us to employ Lemma 5.1, which in turn we use to maintain control on the two
processes being similar in volume. Further down we will also show that, with
high probability, in time 2n no more than n logn transitions occur. By (6.9) and
Lemma 5.2, if v /∈ B̂t , then

P
[
evt = evt

] ≤ 2(8βn−1/3 + 4p
n
(|ξt | − |ξ̃t |))

e−2β(p+h) . (6.10)
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On the other hand, if v ∈ B̂t and we let z = 2β(p+h)
1−e−2β(p+h) , then

P
[
evt = evt

] = dT V
(
evt , e

v
t

) ≤ e−2β(p+h)
∫ z

0
dx exp

(
−xe−2β(p+h))

= 1− exp

(
−2β (p + h) e−2β(p+h)

1− e−2β(p+h)

)
. (6.11)

Observe that, for v ∈ Wt1, with PERn(p)-high probability

∑

v∈Wt1

[
r(ξt , ξ

v
t )+ r(ξ̃t , ξ̃ vt )

]
≥ [1+ on(1)]

∣
∣Wt1

∣
∣ . (6.12)

Indeed, by the concentration inequalities of Lemma 3.2 and the bound in
Lemma 5.1, it follows that |ξt | and |ξ̃t | are of similar magnitude:

P
[||ξt | − |ξ̃t || ≥ n5/6] ≤ e−n2/3

. (6.13)

Therefore, with PERn(p)-high probability, for all but O(n2/3) such v,

H(ξt )−H(ξvt ) = [1+ on(1)]
[
H

(
ξ̃ vt

)−H (
ξ̃t )

]
, (6.14)

from which (6.12) follows. The rate at which the set Wt2 shrinks is equal to the
rate at which it loses v ∈ Wt2 such that v /∈ B̂t , plus the rate at which it loses

v ∈ Wt2 such that v ∈ B̂t . From (6.9) it follows that the former is bounded from

above by |Wt2|(8βn−1/3 + 4p
n
(|ξt | − |ξ̃t |)), while by (3.19) the latter is bounded

by 4n2/3. Therefore, defining the stopping time

υi = inf
{
t : |Wt1| = i

}
, (6.15)

we have that

P(ξt ,ξ̃t )

[
υ|Wt1|−1 < υ|Wt1 |+1

] ≥ |Wt1|
|Wt2|[8βn−1/3 + 4p

n
(|ξt | − |ξ̃t |)] + 4n2/3 + |Wt1|

.

(6.16)

From Lemma 5.1 we know that (with probability ≥ 1 − e−n2/3
) neither |ξt | nor

|ξ̃t | will stray beyond M+ Cn5/6 and M− Cn5/6 within n2 logn steps. Thus,

∣
∣
∣|ξt | − |ξ̃t |

∣
∣
∣ ≤ Cn5/6. (6.17)

Hence, for
∣
∣Wt1

∣
∣ ≥ n6/7 we have that (6.16) is equal to 1− on(1).
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4. Next suppose that
∣
∣Wt1

∣
∣ < n6/7. To bound the rate at which the setWt2 shrinks, we

argue as follows. The rate at which a matching vertex v becomes non-matching
equals

|r(ξt , ξvt )− r(ξ̃t , ξ̃ vt )|. (6.18)

Let

B1 = −2h+ 2
n

(
deg(v)− 2|E(v, ξt )|

)
,

B2 = −2h+ 2
n

(
deg(v)− 2|E(v, ξ̃t )|

)
,

B3 = −h+ 1
n

(
deg(v)− 2|E(v, ξt ∩ ξ̃t )|

)
.

(6.19)

For v /∈ ξt ∪ ξ̃t , we can estimate

|r(ξt , ξvt )− r(ξ̃t , ξ̃ vt )| =
∣
∣e−β[B1]+ − e−β[B2]+

∣
∣

≤ e−2β[B3]+
∣
∣∣e−

4β
n |E(v,ξt\ξ̃t )| − e−

4β
n |E(v,ξ̃t\ξt )|

∣
∣∣

≤ e−2β[B3]+ 4β
n

∣∣
∣|E(v, ξt\ξ̃t )| − |E(v, ξ̃t\ξt )|

∣∣
∣

≤ [1+ on(1)] e−2β[−pm−h]+ 4β
n

∣
∣E

(
v,Wt1

)∣
∣ ,

(6.20)

where we note thatWt1 = ξt\ξ̃t ∪ ξ̃t\ξt and use that, by Lemma 3.2 and the bound
|ξt\ξ̃t | ≤ |Wt1| ≤ n6/7,

1
n

(
deg(v)− 2|E(v, ξt ∩ ξ̃t )|

)
= [1+ on(1)]p

(
1− 2|ξt∩ξ̃t |

n

)

= [1+ on(1)]p
(

1− 2|ξt |
n

)
= [1+ on(1)]p

(
1− 2M

n

)
= −[1+ on(1)]pm.

(6.21)

Note that since ξt and ξ̃t disagree at most at n6/7 vertices, and since |ξt | = [1 +
on(1)]M = [1+on(1)] n2 (1+m), we have that |v ∈ ξt∪ξ̃t | = [1+on(1)] n2 (1−m).
Furthermore, since |E(v,Wt1)| ≤ [1+on(1)]p|Wt1| and |V | = n, we have that

∑

v /∈ξt∪ξ̃t
|r(ξt , ξvt )− r(ξ̃t , ξ̃ vt )| ≤ [1+ on(1)] e−2β[−pm−h]+ 2βp(1−m) |Wt1|.

(6.22)

For v ∈ ξt ∩ ξ̃t , on the other hand, Lemma 3.5 gives that

r(ξt , ξ
v
t ) = r(ξ̃t , ξ̃ vt ) = 1 (6.23)
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for all but O(n2/3) many such v. If v is such that r(ξt , ξvt ) = r(ξ̃t , ξ̃ vt ), then a
computation identical to the one leading to (6.22) gives that

∑

v∈ξt∩ξ̃t
|r (
ξt , ξ

v
t

)− r(ξ̃t , ξ̃ vt )| = O(n−1/6)
∣
∣Wt1

∣
∣. (6.24)

Combining (6.22) and (6.24), we obtain

∑

v∈W 2
t

|r (
ξt , ξ

v
t

)− r(ξ̃t , ξ̃ vt )| ≤ [1+ on(1)] e−2β[−pm−h]+ 2βp(1−m)
∣
∣Wt1

∣
∣,

(6.25)

which bounds the rate at whichWt2 shrinks.
5. To bound the rate at which Wt1 shrinks, we argue as follows. The rate at which a

non-matching vertex v becomes matching equals

r(ξt , ξ
v
t )+ r(ξ̃t , ξ̃ vt ). (6.26)

Note that, for every v ∈ Wt1,

H
(
ξvt

)−H (ξt ) = − [1+ on(1)]
[
H(ξ̃vt )−H(ξ̃t )

]
, (6.27)

since, up to an arithmetic correction of magnitude |Wt1| = O(n6/7), v has the
same number of neighbours in ξt as in ξ̃t . Hence it follows that

∑

v∈Wt1

[
r(ξt , ξ

v
t )+ r(ξ̃t , ξ̃ vt )

]
= [1+ on(1)]

(
e−2β[−pm−h]+ + e−2β[pm+h]+)|Wt1|,

(6.28)

which bounds the rate at whichWt1 shrinks.
6. Combining (6.25) and (6.28), and noting that pm + h < 0, we see that

∣∣Wt1
∣∣ is

contracting when

[1+ on(1)]
(

e2β(pm+h) + 1
) ∣

∣Wt1
∣
∣ > [1+ on(1)]

(
e2β(pm+h) 4βp

) ∣
∣Wt1

∣
∣ .

(6.29)

For this in turn it suffices that

e2β(pm+h) + 1 > e2β(pm+h)2βp(1− m). (6.30)
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7. Note from the definition of m in (1.16) that, up to a correction factor of 1+on(1),
m solves the equation J (m) = 0 with

Jp,β,h(a) = 2λ

(
a + h

p

)
+ log

(
1− a
1+ a

)
, λ = βp, (6.31)

i.e.,

1+m
1−m

= e
2λ

(
m+ hp

)

. (6.32)

Hence from (6.30) it follows that |Wt1| is contracting whenever we are in the
metastable regime and the inequality

λ <
1

1−m2 (6.33)

is satisfied. From (2.17) it follows that the equality

λ = 1

1− a2 (6.34)

holds for a = aλ = −√1− 1/λ, which in turn is bounded between the values
m < aλ < t < 0, and therefore

1

1−m2 >
1

1− a2
λ

= λ. (6.35)

This shows that |Wt1| is contracting whenever we are in the metastable regime.
8. To conclude, we summarise the implication of the contraction of the process

|Wt1|. The probability in (6.16) is equal to 1−On(n 5
6− 6

7 ) for |Wt1| > n6/7, and is
strictly larger than 1

2 for |Wt1| ≤ n6/7. Furthermore, from (6.12) we know that the
rate at which Wt1 shrinks is ≥ 1. This allows us to ensure that sufficiently many
steps are made by time 2n to allowWt1 to contract to the empty set. In particular,
the number steps taken byWt1 up to time 2n is bounded from below by a Poisson
point process N(t) with unit rate, for which we have

P

[
N (2n) ≤ 3n

2

]
≤ 2n

(2n)

(
3n
2

)

e−2n
(

3n
2

)
!

≤ 2n

(
4n

3

)(
3n
2

)

e−
n
2 ≤ 1.07(−

n
2 ).

(6.36)

In other words, with probability exponentially close to 1, we have that at least
3n/2 jumps are made in time 2n. To bound the probability that Wt1 has not
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converged to the empty set, note that this probability decreases in the number
of transitions made byWt1. Therefore, without loss of generality, we may assume
that 3n

2 transitions were made, and that we start with |W 0
1 | = n. We claim that,

with high probability, in time 2n, Wt1 takes at most 100n
logn increasing steps (i.e.,

i → i + 1) in the interval [n5/6, n]. Indeed, note that the probability of the latter
occurring is less than

2MO
(
n−1/42) 100n

logn = O(
e−n

)
. (6.37)

It follows that at least n2 [1 + on(1)] steps are taken in the interval [0, n5/6]. But
then, using (6.16), we have that the probability of an increasing step is at most
1
2 − ε for some ε > 0, and therefore the probability of that event is at most

2
n
2 [1+on(1)]

(
1
2 + ε

) n
4 [1+on(1)] (

1
2 − ε

) n
4 [1+on(1)]

= 4
n
4 [1+on(1)]

(
1
4 − ε2

) n
4 [1+on(1)] = (

1− 4ε2
) n

4 [1+on(1)] .
(6.38)

Finally, observing that in the entire proof so far the largest probability for any
of the bounds not to hold is O(e−n−2/3

) (see (6.13) and the paragraph following
(6.16)), we get

P

[
|W 2n

1 | > 0
]
≤ O(

e−n2/3 )
(6.39)

and so the claim of the lemma follows. ��

6.2 Long-Term Scheme

Corollary 6.3 (Long-Term Coupling) Let δ > 0. With PERn(p)-probability tend-
ing to 1 as n→∞, there is a coupling of {ξt }t≥0 and {ξ̃t̃ }t≥0, and there are times t
and t̃ with max(t, t̃ ) < enΓ

%−δn, such that

P
[
ξt = ξ̃t̃

] ≤ e−nδ+O(n2/3). (6.40)

Proof Let si be the ith return-time of {ξt }t≥0 to AM. Define {s̃i}i≥0 in an analogous
manner for {ξ̃t }t≥0. Then we can define a coupling of {ξt }t≥0 and {ξ̃t }t≥0 as follows.
For i ≥ 0 and 0 ≤ s ≤ 2n, couple ξsi+s and ξ̃s̃i+s as described in Lemma 6.1.
For times t ∈ (si + 2n, si+1) and t̃ ∈ (s̃i + 2n, s̃i+1), let {ξt }t≥0 and {ξ̃t̃ }t≥0 run
independently of each other. Terminate this coupling at the first time t such that
t = si + s for some s ≤ 2n and ξt = ξ̃t̃ with t̃ = s̃i + s, from which point onward
we simply let ξt = ξ̃t̃ . It is easy to see that the coupling above is an attempt at



Glauber Dynamics on the Erdős-Rényi Random Graph 575

repeating the coupling scheme of Lemma 6.1 until the paths of the two processes
have crossed. To avoid having to wait until both processes are in AM at the same
time, the coupling defines a joint distribution of ξt and ξ̃t̃ .

Note that, by Lemma 5.4, with probability of at least 1 − e−δn+O(n2/3), {ξt }t≥0
will visit AM at least e(Γ

%−δ)n times before reaching AS, for any δ > 0. The same
statement is true for {ξ̃t̃ }t̃≥0. Assuming that the aforementioned event holds for both
ξt and ξ̃t̃ , we see that the probability that the coupling does not succeed (i.e., the two
trajectories do not intersect as described earlier) is at most

[
O

(
e−n−2/3 )]e(Γ

%−δ)n
. (6.41)

Therefore, the probability that the coupling does not succeed before either of {ξt }t≥0

or {ξ̃t̃ }t̃≥0 reaches AS is at most e−δn+O(n2/3). ��

7 Proof of the Main Metastability Theorem

In this section we prove Theorem 1.4.

Proof The key is to show that with PERn(p)-probability tending to 1 as n→∞, for
any ξu0 ∈ AMu , ξ0 ∈ AM and ξ l0 ∈ AMl ,

Eξu0
[τSu] ≤ Eξ0 [τS] ≤ Eξ l0

[
τSl

]
. (7.1)

Note that Eξ0 [τS] is the same for all ξ0 ∈ AM up to a multiplicative factor of
1 + on(1), as was shown in Sects. 5.2 and 6. Therefore it is suffices to find some
convenient ξ ∈ AM for which we can prove the aforementioned theorem.

1. Our proof follows four steps:

(1) Recall that for A ⊂ Sn, μA is the probability distribution μ conditioned
to the set A. Starting from the initial distribution μAM on the set AM, the
trajectory segment taken by ξt from ξ0 to ξτ , with τ = min {τM, τS}, can be
coupled to the analogous trajectory segments taken by ξ lt and ξut , starting in
AMl and AMu , respectively, and this coupling can be done in such a way that
the following two conditions hold:

(a) If ξt reaches AS before returning to AM (i.e., τS < τM), then ξut reaches
ASu before returning to AMu .

(b) If ξt returns to AM before reaching AS (i.e., τM < τS), then ξ lt returns to
AMl before reaching ASl .

(2) We show that if ξt has initial distribution μAM and τM < τS, then upon
returning to AM the distribution of ξt is once again given by μAM . This
implies that the argument in Step (1) can be applied repeatedly, and that
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the number of returns ξt makes to AM before reaching AS is bounded from
below by the number of returns ξut makes to AMu before reaching ASu , and
is bounded from above by the number of returns ξ lt makes to AMl before
reaching ASl .

(3) Using Lemma 3.7, we bound the time between unsuccessful excursions, i.e.,
the expected time it takes for ξt , when starting from μAM , to return to AM,
given that τM < τS. This bound is used together with the outcome of Step
(2) to obtain the bound

E
u
μAMu

[
τuS

] ≤ EμAM
[τS] ≤ E

l
μA

Ml

[
τ lS

]
. (7.2)

Here, the fact that the conditional average return time is bounded by some
large constant rather than 1 does not affect the sandwich in (7.2), because the
errors coming from the perturbation of the magnetic field in the Curie-Weiss
model are polynomial in n (see below).

(4) We complete the proof by showing that, for any distribution μ0 restricted to
AM,

Eμ0 [τS] = [1+ on(1)] EμAM
[τS] . (7.3)

2. Before we turn to the proof of these steps, we explain how the bound on the
exponent in the prefactor of Theorem 1.4 comes about. Return to (2.4). The
magnetic field h is perturbed to h± (1+ ε) log(n11/6)/n. We need to show how
this affects the formulas for the average crossover time in the Curie-Weiss model.
For this we use the computations carried out in [4, Chapter 13]. According to [4,
Eq. (13.2.4)] we have, for any ξ ∈ AMn and any ε > 0,

Eξ

[
τASn

] = [1+ on(1)] 2

1− t
eβn[Rn(t)−Rn(m)] 1

n
Sn (7.4)

with

Sn =
∑

a,a′∈Γn
|a−t|<ε, |a′−m|<ε

eβn[Rn(a)−Rn(t)]−βn[Rn(a′)−Rn(m)], (7.5)

where Rn is the free energy defined by R′n = −Jn/2β (recall (1.20)). (Here
we suppress the dependence on β, h and note that (7.4) carries an extra factor 1

n
because [4, Chapter 13] considers a discrete-time dynamics where at every unit of
time a single spin is drawn uniformly at random and is flipped with a probability
that is given by the right-hand side of (1.6).) According to [4, Eq. (13.2.5)–
(13.2.6)] we have

In(a)− I (a) = [1+on(1)] 1

2n
log

(
1

2
πn(1− a2)

)
, a ∈ [−1, 1], (7.6)
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so that

eβn[Rn(a)−R(a)] = [1+ on(1)]
√

1

2
πn(1− a2), a ∈ [−1, 1], (7.7)

where R is the limiting free energy defined by R′ = −J/2β (recall (1.27)).
Inserting (7.7) into (7.4), we get

Eξ

[
τASn

] = [1+ on(1)] 2

1+ t

√
1− t2

1−m2 eβn[R(t)−R(m)] 1

n
S∗n (7.8)

with

S∗n =
∑

a,a′∈Γn
|a−t|<ε, |a′−m|<ε

eβn[R(a)−R(t)]−βn[R(a′)−R(m)]. (7.9)

Finally, according to [4, Eq. (13.2.9)–(13.2.11)] we have, with the help of a
Gaussian approximation,

lim
n→∞

1

n
S∗n =

π

2β
√[R′′(m)[−R′′(t)] . (7.10)

Putting together (7.8) and (7.10), we see how Theorem 1.3 arises as the correct
formula for the Curie-Weiss model.

3. The above computations are for β, h fixed and p = 1. We need to investigate
what changes when p ∈ (0, 1), β is fixed, but h depends on n:

hn = h± (1+ ε) log(n11/6)

n
. (7.11)

We write Rnn to denote Rn when h is replaced by hn. In the argument in [4,
Chapter 13] leading up to (7.4), the approximation only enters through the
prefactor. But since hn → h as n → ∞, the perturbation affects the prefactor
only by a factor 1 + on(1). Since h plays no role in (7.6) and Rnn(a)− Rn(a) =
1
β
[In(a)−I (a)] (recall (1.19) and (1.26)), we get (7.8) with exponentβn[Rn(t)−
Rn(m)] and (7.9) with exponent βn[Rn(a)−Rn(t)]−βn[Rn(a′)−Rn(m)]. The
latter affects the Gaussian approximation behind (7.10) only by a factor 1+on(1).
However, the former leads to an error term in the exponent, compared to the Curie
Weiss model, that equals

βn[Rn(t)− Rn(m)] − βn[R(t)− R(m)] = βn ∫ t
m da [(Rn)′(a)− R′(a)]

= βn ∫ t
m da [−(hn − h)] = β(t−m) n(h− hn)

= ∓β(t−m) (1+ ε) log(n11/6).

(7.12)
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The exponential of this equals n∓β(t−m) (1+ε)(11/6), which proves Theorem 1.4
with the bound in (1.33) because ε is arbitrary.

Proof of Step (1)
This step is a direct application of Lemma 4.3.

Proof of Step (2)
Write =d to denote equality in distribution. Let ξ0 =d μAM , and recall that τM is
the first return time of ξt to AM once the initial state ξ0 has been left. We want to
show that ξτM =d μAM or, in other words, that PμAM

[ξτM = σ ] = μAM(σ ) for
any σ ∈ AM. To facilitate the argument, we begin by defining the set of all finite
permissible trajectories T , i.e.,

T =
⋃

N∈N

{
γ = {γi}Ni=0 ∈ SNn : ||γi | − |γi+1|| = 1 ∀ 0 ≤ i ≤ N − 1

}
. (7.13)

Let γ ∈ T be any finite trajectory beginning at γ0 ∈ AM, ending at γ|γ |−1 = σ ∈
AM, and satisfying γi /∈ AM for 0 < i < |γ | − 1. Then the probability that ξt
follows the trajectory γ is given by

P [ξt follows γ ] = μAM (γ0) P (γ0, γ1)× · · · × P (
γ|γ |−2, σ

)

= 1
μ(AM)

μ (γ0) P (γ0, γ1)× · · · × P (
γ|γ |−2, σ

)

= 1
μ(AM)

μ (σ ) P
(
σ, γ|γ |−2

)× · · · × P (γ1, γ0)

= μAM (σ ) P
(
σ, γ|γ |−2

)× · · · × P (γ1, γ0) ,

(7.14)

where the third line follows from reversibility. Thus, if we let T (σ ) be the set of all
trajectories in T that begin in AM, end at σ , and do not visit AM in between, then
we get

PμAM

[
ξτM = σ ] = ∑

γ∈T (σ ) μAM (σ ) P
(
σ, γ|γ |−2

)× · · · × P (γ1, γ0)

= μAM (σ )Pσ [τM <∞]

= μAM (σ ) ,

(7.15)

where we use recurrence and the law of total probability, since the trajectories in
T (σ ), when reversed, give all possible trajectories that start at σ ∈ AM and return
to AM in a finite number of steps. This shows that if ξt has initial distribution μAM ,
then it also has this distribution upon every return to AM.

We can now define a segment-wise coupling of the trajectory taken by ξt with the
trajectories taken by ξut and ξ lt . First, we define the subsets of trajectories that start
and end in particular regions of the state space: (1) Tσ,L,K is the set of trajectories
that start at a particular configuration σ and end in AK without ever visiting AK or
AL in between, for some K < L; (2) Tσ,L,L is the set of trajectories that start at
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some σ and end in AL without ever visiting AK or AL in between; (3) Tσ,L is the
union of the two aforementioned sets. In explicit form,

Tσ,L,K =
{
γ ∈ T : γ0 = σ, γ|γ |−1 ∈ AK,K <

∣∣γj
∣∣ < L ∀ 0 < j < |γ | − 1

}
,

Tσ,L,L =
{
γ ∈ T : γ0 = σ, γ|γ |−1 ∈ AL,K <

∣
∣γj

∣
∣ < L ∀ 0 < j < |γ | − 1

}
,

Tσ,L = Tσ,L,K ∪Tσ,L,L.

(7.16)

By Step (1), for any ξ l0 ∈ AMl and ξu0 ∈ AMu ,

P
l

ξ l0

[
Tξ l0,Sl ,Sl

] ≤ Pξ0

[
Tξ0,S,S

] ≤ P
u
ξu0

[
Tξu0 ,Su,Su

]
. (7.17)

It is clear that the two probabilities at either end of (7.17) are independent of the
starting points ξ l0 and ξu0 . By the argument given above, if for the probability in the
middle ξ0 =d μAM , then each subsequent return to AM also has this distribution.
For this reason, we may define a coupling of the trajectories as follows.

Sample a trajectory segment γ l from Tξ l0,Sl
for the process ξ lt . If γ l happens to

be in Tξ l0,Sl ,Sl
, then by (7.17) we may sample a trajectory segment γ from Tξ0,S,S

for the process ξt , and a trajectory segment γ u from Tξu0 ,Su,Su for the process ξu.

Otherwise, γ l ∈ Tξ l0,Sl ,Ml , and we independently take γ ∈ Tξ0,S,S with probability

Pξ0[Tξ0,S,S] − P
l

ξ l0
[Tξ l0,Sl ,Sl ], and γ ∈ Tξ0,S,M otherwise. If γ ∈ Tξ0,S,S, then

sample γ u from Tξu0 ,Su,Su . Otherwise γ ∈ Tξ0,S,M, and so take independently
γ u ∈ Tξu0 ,Su,Su with probability P

u
ξu0
[Tξu0 ,Su,Su] − Pξ0[Tξ0,S,S], and γ u ∈ Tξu0 ,Su,Mu

with the remaining probability. We glue together the sampling of segments leaving
and returning to AMl /AM/AMu with the next sampling of such segments. This
results in trajectories for ξu, ξ , and ξ l that reach ASu/AS/ASl , in that particular
order.

Proof of Step (3) and Step (4)
These two steps are immediate from Lemma 3.7.

��

8 Conditional Average Return Time for Inhomogeneous
Random Walk

In this section we prove Lemma 3.7. In Sects. 8.1–8.2 we compute the harmonic
function and the conditional average return time for an arbitrary nearest-neighbour
random walk on a finite interval. In Sect. 8.3 we use these computations to prove
the lemma.



580 F. den Hollander and O. Jovanovski

8.1 Harmonic Function

Consider a nearest-neighbour random walk on the set {0, . . . , N} with strictly
positive transition probabilities p(x, x + 1) and p(x, x − 1), 0 < x < N , and
with 0 and N acting as absorbing boundaries. Let τ0 and τN denote the first hitting
times of 0 and N . The harmonic function is defined as

hN(x) = Px(τN < τ0), 0 ≤ x ≤ N, (8.1)

where Px is the law of the random walk starting from x. This is the unique solution
of the recursion relation

hN(x) = p(x, x + 1)hN(x + 1)+ p(x, x − 1)hN(x − 1), 0 < x < N, (8.2)

with boundary conditions

hN(0) = 0, hN(N) = 1. (8.3)

Since p(x, x + 1)+ p(x, x − 1) = 1, the recursion can be written as

p(x, x + 1)[hN(x + 1)− hN(x)] = p(x, x − 1)[hN(x)− hN(x − 1)]. (8.4)

Define ΔhN(x) = hN(x + 1)− hN(x), 0 ≤ x < N . Iteration gives

ΔhN(x) = π[1, x]ΔhN(0), 0 ≤ x < N, (8.5)

where we define

π(I) =
∏

z∈I

p(z, z − 1)

p(z, z + 1)
, I ⊆ {1, . . . , N − 1}, (8.6)

with the convention that the empty product equals 1. Since hN(0) = 0, we have

hN(x) =
x−1∑

z=0

ΔhN(z) =
(
x−1∑

z=0

π[1, z]
)

ΔhN(0), 0 < x ≤ N. (8.7)

Put C = ΔhN(0), and abbreviate

R(x) =
x−1∑

z=0

π[1, z], 0 ≤ x ≤ N. (8.8)
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Since hN(N) = 1, we have C = 1/R(N). Therefore we arrive at

hN(x) = R(x)

R(N)
, 0 ≤ x ≤ N. (8.9)

Remark 8.1 For simple random walk we have p(x, x ± 1) = 1
2 , hence π[1, x] = 1

and R(x) = x, and so

hN(x) = x

N
, 0 ≤ x ≤ N, (8.10)

which is the standard gambler’s ruin formula.

8.2 Conditional Average Hitting Time

We are interested in the quantity

eN(x) = Ex(τN | τN < τ0), 0 < x ≤ N. (8.11)

The conditioning amounts to taking the Doob transformed random walk, which has
transition probabilities

q(x, x ± 1) = p(x, x ± 1)
hN(x ± 1)

hN(x)
. (8.12)

We have the recursion relation

eN(x) = 1+q(x, x+1)eN(x+1)+q(x, x−1)eN(x−1), 0 < x < N, (8.13)

in this section we prove with boundary conditions

eN(N) = 0, eN (1) = 1+ eN(2). (8.14)

Putting fN(x) = hN(x)eN(x), we get the recursion

fN(x) = hN(x)+ p(x, x + 1)fN(x + 1)+ p(x, x − 1)fN(x − 1), 0 < x < N,
(8.15)

which can be rewritten as

p(x, x + 1)[fN(x + 1)− fN (x)] = p(x, x − 1)[fN(x)− fN(x − 1)] − hN(x).
(8.16)
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Define ΔfN(x) = fN (x + 1)− fN(x), 0 < x < N . Iteration gives

ΔfN(x) = π(1, x]ΔfN(1)− χ(1, x], 0 < x < N, (8.17)

with

χ(1, x] =
x∑

y=2

π(y, x] hN(y)

p(y, y + 1)
, 0 < x < N. (8.18)

Since fN(N) = 0, we have

fN (x) = −
N−1∑

z=x
ΔfN(z) =

N−1∑

z=x
χ(1, z] −

(
N−1∑

z=x
π(1, z]

)

ΔfN(1), 0 < x < N,

(8.19)

or

eN(x) = 1

hN(x)

N−1∑

z=x
χ(1, z] − 1

hN(x)

(
N−1∑

z=x
π(1, z]

)

ΔfN(1), 0 < x < N.

(8.20)

Put C = ΔfN(1), and abbreviate

A(x) =
N−1∑

z=x
π(1, z], B(x) =

N−1∑

z=x
χ(1, z], 0 < x ≤ N. (8.21)

Then

eN(x) = 1

hN(x)

[
B(x)− CA(x)]. (8.22)

Since eN(1) = 1+ eN(2), we have

C = [hN(2)B(1)− hN(1)B(2)] − hN(1)hN(2)
hN(2)A(1)− hN(1)A(2) . (8.23)

Abbreviate

R̄(x) =
x−1∑

z=0

π(1, z], S̄(x) =
x−1∑

z=0

χ(1, z], 0 < x ≤ N. (8.24)
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Then

A(x) = R̄(N)− R̄(x), B(x) = S̄(N)− S̄(x), 0 < x < N. (8.25)

Note that hN(x) = R(x)/R(N) = R̄(x)/R̄(N), because π[1, z] = π(1)π(1, z]
and a common factor π(1) drops out. Note further that R̄(1) = 1, R̄(2) = 2, while
S̄(1) = S̄(2) = 0. Therefore

C = S̄(N)

R̄(N)
− 2

R̄(N)2
. (8.26)

Therefore we arrive at

eN(x) = S̄(N)− R̄(N)
R̄(x)

S̄(x)+ 2

R̄(x)
− 2

R̄(N)
, 0 < x ≤ N. (8.27)

Abbreviating

T̄ (x) = S̄(x)R̄(N) =
x−1∑

z=0

z∑

y=2

π(y, z]
p(y, y + 1)

R̄(y), Ū(x) = T̄ (x)− 2

R̄(x)
, (8.28)

we can write

eN(x) = Ū(N)− Ū (x), 0 < x ≤ N. (8.29)

Remark 8.2 For simple random walk we have p(x, x ± 1) = 1
2 , π(y, z] = 1,

R̄(x) = x, S̄(x) = 1
3N (x

3 − 7x + 6) and Ū(x) = 1
3 (x

2 − 7), and so

eN(x) = 1

3
(N2 − x2), 0 < x ≤ N. (8.30)

This is to be compared with the unconditional average hitting time Ex(τ ) = x(N −
x), 0 ≤ x ≤ N , where τ = τ0 ∧ τN is the first hitting time of {0, N}.

8.3 Application to Spin-Flip Dynamics

We will use the formulas in (8.6), (8.24) and (8.28)–(8.29) to obtain an upper bound
on the conditional return time to the metastable state. This bound will be sharp
enough to prove Lemma 3.7. We first do the computation for the complete graph
(Curie-Weiss model). Afterwards we turn to the Erdős-Rényi Random Graph (our
spin-flip dynamics).
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8.3.1 Complete Graph

We monitor the magnetization of the continuous-time Curie-Weiss model by looking
at the magnetization at the times of the spin-flips. This gives a discrete-time random
walk on the set Γn defined in (1.15). This set consists of n+1 sites. We first consider
the excursions to the left of mn (recall (1.16)). After that we consider the excursions
to the right.

1. For the Curie-Weiss model we have (use the formulas in Lemma 3.4 without the
error terms)

σ ∈ Ak :
∑

ξ∈Ak+1

r(σ, ξ) = (n− k) e−2β[ϑk]+,
∑

ξ∈Ak−1

r(σ, ξ) = k e−2β[−ϑk]+,

(8.31)

where ϑk = p(1− 2k
n
)− h. Hence, the quotient of the rate to move downwards,

respectively, upwards in magnetization equals

Q(k) =
∑
ξ∈Ak−1

r(σ, ξ)
∑
ξ∈Ak+1

r(σ, ξ)
= k

n− k e2β([ϑk]+−[−ϑk ]+). (8.32)

It is convenient to change variables by writing k = n
2 (ak + 1), so that ϑk =

−pak − h. The metastable state corresponds to k = Mn = n
2 (mn + 1), i.e.,

ak = mn. We know from (1.16)–(1.15) that mn is the smallest solution of the
equation Jn(mn) = 0 (rounded off by 1/n to fall in Γn). Hence mn = m +
O(1/n) with m the smallest solution of the equation Jp,β,h(m) = 0, satisfying
1−m
1+m = e−2β(pm+h) (recall (1.23)). Hence we can write (for ease of notation we
henceforth ignore the errorO(1/n))

Q(k) = F(mn)
F (ak)

, F (a) = 1− a
1+ a e2βpa. (8.33)

Here, we use that [ϑk]+ − [−ϑk]+ = ϑk , which holds because 0 = R′p,β,h(m) =
−pm − h + β−1I ′(m) with I ′(m) < 0 because m < 0 (recall (1.27)), so that
−pmn − h > 0 for n large enough, which implies that also −pa − h > 0 for all
a < mn for n large enough. We next note that (recall (1.27) and (2.17))

d
da

log
[
F(mn)
F (a)

]
= −2

(
βp − 1

1−a2

)
= −J ′p,β,h(a) = 2βR′′p,β,h(a) ≥ δ

for some δ > 0,
(8.34)

where the inequality comes from the fact that a �→ Rp,β,h(a) has a positive
curvature that is bounded away from zero on [−1,m] (recall Fig. 4).
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2. We view the excursions to the left of mn as starting from site N in the set
{0, . . . , N} with N = Mn = n

2 (mn + 1). From (8.28)–(8.29), we get

eN(x) = ∑N−1
z=0

∑z
y=2

π(y,z]
p(y,y+1)

R̄(y)

R̄(N)
−∑x−1

z=0
∑z
y=2

π(y,z]
p(y,y+1)

R̄(y)

R̄(x)

+ 2
R̄(N)R̄(x)

[R̄(N)− R̄(x)]
≤ ∑N−1

z=x
∑z
y=2

π(y,z]
p(y,y+1)

R̄(y)

R̄(N)
+ 2
R̄(x)

≤ 2
∑N−1
z=1

∑z
y=2 π(y, z] + 2.

(8.35)

Here, we use that p(y, y + 1) ≥ 1
2 and 1 = R̄(0) ≤ R̄(y) ≤ R̄(N) for all

0 < y < N (recall (8.24) and note that x �→ R̄(x) is non-decreasing). The
bound is independent of x. Using the estimate

Q(x) = p(x, x − 1)

p(x, x + 1)
≤ e−ε(N−x)/N, 0 < x < N, for some ε = ε(δ) > 0,

(8.36)
which comes from (8.34), we can estimate

π(y, z]≤
z∏

x=y+1

e−ε(N−x)/N = exp

⎡

⎣−ε
z∑

x=y+1

(N − x)/N
⎤

⎦ , 0 ≤ y ≤ z < N,

(8.37)
from which it follows that

N−1∑

z=1

z∑

y=2

π(y, z] = O(N/ε), N →∞. (8.38)

Thus we arrive at

eN(x) = O(N), N →∞, uniformly in 0 < x < N. (8.39)

To turn (8.39) into a tail estimate, we use the Chebyshev inequality: (8.39)
implies that every N time units there is a probability at least c to hit N , for
some c > 0 and uniformly in 0 < x < N . Hence

Px(τN ≥ kN | τN < τ0) ≤ (1− c)k ∀ k ∈ N0. (8.40)

3. For excursions to the right of mn the argument is similar. Now N = Tn −Mn =
n
2 (tn − mn) (recall (1.17)), and the role of 0 and N is interchanged. Both near
0 and near N the drift towards Mn vanishes linearly (because of the non-zero
curvature). If we condition the random walk not to hitN , then the average hitting
time of 0 starting from x is again O(N), uniformly in x.
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4. Returning from the discrete-time random walk to the continuous-time Curie-
Weiss model, we note that order n spin-flips occur per unit of time. Since N , n
as n→∞, (8.40) and its analogue for excursions to the right give that, uniformly
in ξ ∈ AMn ,

Pξ

[
τAMn

≥ k | τAMn
< τATn

] ≤ e−Ck ∀ k ∈ N0. (8.41)

for some C > 0, which is the bound in (3.35).

8.3.2 Erdős-Rényi Random Graph

We next argue that the above argument can be extended to our spin-flip dy-
namics after taking into account that the rates to move downwards and upwards
in magnetization are perturbed by small errors. In what follows we will write
pCW(x, x ± 1) for the transition probabilities in the Curie-Weiss model and
pER(x, x ± 1) for the transition probabilities that serve as uniform upper and
lower bounds for the transition probabilities in our spin-flip model. Recall that
the latter actually depend on the configuration and not just on the magnetization,
but Lemma 3.4 provides us with uniform bounds that allow us to sandwich the
magnetization between the magnetizations of two perturbed Curie-Weiss mod-
els.

1. Suppose that

pER(x, x − 1)

pER(x, x + 1)
= p

CW(x, x − 1)

pCW(x, x + 1)

[
1+O(N−1/2)]. (8.42)

Then there exists a C > 0 large enough such that

πER(y, z] ≤ CπCW(y, z], 0 ≤ y ≤ z < N. (8.43)

Indeed, as long as z − y ≤ C1N
1/2 we have the bound in (8.43) (with C

depending on C1). On the other hand, if z − y > C1N
1/2 with C1 large

enough, then the drift of the Curie-Weiss model sets in and overrules the error:
recall from (8.36) that the drift at distance N1/2 from N is of order N1/2/N =
N−1/2. It follows from (8.43) that (8.38)–(8.40) carry over, with suitably adapted
constants, and hence so does (8.41).

2. To prove (8.42), we must show that (8.32) holds up to a multiplicative error
1+O(n−1/2). In the argument that follows we assume that k is such that θk ≥ δ
for some fixed δ > 0. We comment later on how to extend the argument to other
k values. Recall that θk = −pak − h and that θk ≥ δ > 0 for all ak ∈ [−1,m]
for n large enough.
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3. Let σ ∈ Ak and σv ∈ Ak−1, where σv is obtained from σ by flipping the sign at
vertex v ∈ σ from +1 to −1. Write the transition rate from σ to σv as

r(σ, σ v) = exp

(
−β

[
2p( 2k

n
− 1)+ 2h+ 2

n

(
ε(σ, v)− ε(σ , v))

]

+

)

= exp

(
−2β

[
−ϑk + 1

n

(
ε(σ, v)− ε(σ , v))

]

+

)
.

(8.44)

Here, 2p( 2k
n
− 1) = 2

n
p[k − (n − k)] equals 2

n
times the average under PERn(p)

of E(σ, v) − E(σ, v), with E(σ, v) the number of edges between the support of
σ and v and E(σ, v) the number of edges between the support of σ and v (recall
the notation in Definition 3.1), and ε(σ, v) − ε(σ , v) is an error term that arises
from deviations of this average. Since −ϑk ≤ −δ, the error terms are not seen
except when they represent a large deviation of size at least δn. A union bound
over all the vertices and all the configurations, in combination with Hoeffding’s
inequality, guarantees that, with PERn(p)-probability tending to 1 as n→∞, for
any σ there are at most (log 2)/2δ2 = O(1)many vertices that can lead to a large
deviation of size at least δn. Since r(σ, σ v) ≤ 1, we obtain

∑

v∈σ
r(σ, σ v) = O(1)+ [n− k −O(1)] e−2β[−ϑk]+ . (8.45)

This is a refinement of (3.10).
4. Similarly, let σ ∈ Ak and σv ∈ Ak+1, where σv is obtained from σ by flipping

the sign at vertex v /∈ σ from−1 to +1. Write the transition rate from σ to σv as

r(σ, σ v) = exp

(
−β

[
2p(1− 2k

n
)− 2h+ 2

n

(
ε(σ , v)− ε(σ, v))

]

+

)

= exp

(
−2β

[
ϑk + 1

n

(
ε(σ , v) − ε(σ, v))

]

+

)
.

(8.46)

We cannot remove [·]+ when the error terms represent a large deviation of order
δn. By the same argument as above, this happens for all but (log 2)/2δ2 = O(1)
many vertices v. For all other vertices, we can remove [·]+ and write

r(σ, σ v) = e−2βϑk exp

(
1

n

(
ε(σ , v)− ε(σ, v))

)
. (8.47)
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Next, we sum over v and use the inequality, valid for δ small enough,

e−(1+δ)
1
M |

∑M
i=1 ai | ≤ 1

M

M∑

i=1

eai ≤ e(1+δ)
1
M |

∑M
i=1 ai | ∀ 0 ≤ |ai | ≤ δ, 1 ≤ i ≤ M.

(8.48)

This gives

∑
v /∈σ r(σ, σ v) = O(1)+ [k −O(1)] e−2βϑk eO(|Sn|),

Sn = 1
[k−O(1)]

1
n

∑
v /∈σ

(
ε(σ , v)− ε(σ, v)). (8.49)

We know from Lemma 3.2 that, with PERn(p)-probability tending to 1 as n→∞,

|Sn| ≤ cn3/2

[k −O(1)]n ∀ c >
√

1

8
log 2. (8.50)

Since we may take k ≥ n
3 (p − h) (recall (3.14)), we obtain

∑

v /∈σ
r(σ, σ v) = O(1)+ [k −O(1)] e−2βϑk eO(n

−1/2). (8.51)

This is a refinement of (3.11).
5. The same argument works when we assume that k is such that ϑk ≤ −δ for some

fixed δ > 0: simply reverse the arguments in Steps 3 and 4. It therefore remains
to explain what happens when ϑk ≈ 0, i.e., ak ≈ − h

p
. We then see from (1.27)

that R′p,β,h(ak) ≈ β−1I ′(ak) < 0, so that ak lies in the interval [t, 0], which is
beyond the top state (recall Fig. 4).
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1 Introduction and Main Results

In Sect. 1.1 we give a brief introduction to the parabolic Anderson model. In
Sect. 1.2 we give the basic notation. In Sects. 1.3 and 1.4 we present our results
for Galton-Watson trees and for the configuration model, respectively. In Sect. 1.5
we discuss these results.

1.1 The PAM and Intermittency

The parabolic Anderson model (PAM) concerns the Cauchy problem for the heat
equation with a random potential, i.e., solutions u to the equation

∂tu(t, x) = Δu(t, x)+ ξ(x)u(t, x), t > 0, x ∈X , (1.1)

where X is a space equipped with a Laplacian Δ, and ξ is a random potential
on X . The operator Δ + ξ is called the Anderson operator. Although Z

d and R
d

are the most common choices for X , other spaces are interesting as well, such as
Riemannian manifolds or discrete graphs. In the present paper we study the PAM on
random graphs. For surveys on the mathematical literature on the PAM until 2016,
we refer the reader to [1, 12].

The main question of interest in the PAM is a detailed description of the
concentration effect called intermittency: in the limit of large time the solution
u concentrates on small and well-separated regions in space, called intermittent
islands. This concentration effect can be studied particularly well in the PAM
because efficient mathematical tools are available, such as eigenvalue expansions
and the Feynman-Kac formula. In particular, these lead to a detailed description of
the locations of the intermittent islands, as well as the profiles of the potential ξ and
the solution u inside these islands.

The analysis of intermittency usually starts with a computation of the logarithmic
large-time asymptotics of the total mass, encapsulated in Lyapunov exponents.
There is an important distinction between the annealed setting (i.e., averaged over
the random potential) and the quenched setting (i.e., almost surely with respect
to the random potential). Often both types of Lyapunov exponents admit explicit
descriptions in terms of characteristic variational formulas that contain information
about how the mass concentrates in space, and serve as starting points for deeper
investigations. The ‘annealed’ and the ‘quenched’ variational formula are typically
connected, but take two different points of view. They contain two parts: a rate
function term that identifies which profiles of the potential are most favourable for
mass concentration, and a spectral term that identifies which profiles the solution
takes inside the intermittent islands.

From now on, we restrict to discrete spaces and to random potentials that
consist of i.i.d. variables. For Z

d , the above intermittent picture was verified for
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several classes of marginal distributions. It turned out that the double-exponential
distribution with parameter * ∈ (0,∞), given by

P(ξ(0) > u) = e−eu/* , u ∈ R, (1.2)

is particularly interesting, because it leads to non-trivial intermittent islands and to
interesting profiles of both potential and solution inside. There are four different
classes of potentials, distinguished by the type of variational formula that emerges
and the scale of the diameter of the intermittent island (cf. [17]). The double-
exponential distribution is critical in the sense that the intermittent islands neither
grow nor shrink with time, and therefore represents a class of its own.

The setup of the present paper contains two features that are novel in the study
of the PAM: (1) we consider a random discrete space, thereby introducing another
layer of randomness into the model; (2) this space has a non-Euclidean topology,
in the form of an exponential growth of the volume of balls as a function of their
radius. As far as we are aware, the discrete-space PAM has so far been studied only
on Z

d and on two examples of finite deterministic graphs: the complete graph with
n vertices [6] and the N-dimensional hypercube with n = 2N vertices [2]. These
graphs have unbounded degrees as n → ∞, and therefore the Laplace operator
was equipped with a prefactor that is equal to the inverse of the degree, unlike the
Laplace operator considered here.

Our main target is the PAM on a Galton-Watson tree with bounded degrees.
However, our approach also applies to large finite graphs that are sparse (e.g.
bounded degrees) and locally tree-like (rare loops). As an illustration, we consider
here the configuration model or, more precisely, the uniform simple random graph
with prescribed degree sequence. We choose to work in the almost-sure (or large-
probability) setting with respect to the randomnesses of both graph and potential,
and we take as initial condition a unit mass at the root of the graph. We identify
the leading order large-time asymptotics of the total mass, and derive a variational
formula for the correction term. This formula contains a spatial part (identifying the
subgraph on which the concentration takes place) and a profile part (identifying the
shape on that subgraph of both the potential and the solution). Both parts are new.
In some cases we can identify the minimiser of the variational formula. As in the
case of Zd , the structure of the islands does not depend on time: no spatial scaling
is necessary.

1.2 The PAM on a Graph

We begin with some definitions and notations, and refer the reader to [1, 12] for
more background on the PAM in the case of Zd .
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Let G = (V ,E) be a simple undirected graph, either finite or countably infinite.
Let ΔG be the Laplacian on G, i.e.,

(ΔGf )(x) :=
∑

y∈V :
{x,y}∈E

[f (y)− f (x)], x ∈ V, f : V → R. (1.3)

Our object of interest is the non-negative solution of the Cauchy problem for the
heat equation with potential ξ : V → R and localised initial condition,

∂tu(x, t) = (ΔGu)(x, t)+ ξ(x)u(x, t), x ∈ V, t > 0,
u(x, 0) = δO(x), x ∈ V, (1.4)

where O ∈ V is referred to as the origin or root of G. We say that G is rooted at O
and call G = (V ,E,O) a rooted graph. The quantity u(t, x) can be interpreted as
the amount of mass present at time t at site x when initially there is unit mass at O.

Criteria for existence and uniqueness of the non-negative solution to (1.4) are
well-known for the case G = Z

d (see [8]), and rely on the Feynman-Kac formula

u(x, t) = EO

[
exp

{∫ t

0
ξ(Xs)ds

}
1l{Xt = x}

]
, (1.5)

where X = (Xt)t≥0 is the continuous-time random walk on the vertices V with
jump rate 1 along the edges E, and PO denotes the law of X given X0 = O. We
will be interested in the total mass of the solution,

U(t) :=
∑

x∈V
u(x, t) = EO

[
exp

{∫ t

0
ξ(Xs)ds

}]
. (1.6)

Often we suppress the dependence on G, ξ from the notation. Note that, by time
reversal and the linearity of (1.4),U(t) = û(O, t)with û the solution with a different
initial condition, namely, constant and equal to 1.

Throughout the paper, we assume that the random potential ξ = (ξ(x))x∈V
consists of i.i.d. random variables satisfying:

Assumption (DE) For some * ∈ (0,∞),

P (ξ(0) ≥ 0) = 1, P (ξ(0) > u) = e−eu/* for u large enough. (1.7)

Under Assumption (DE), ξ(0) ≥ 0 almost surely and ξ(x) has an eventually exact
double-exponential upper tail. The latter restrictions are helpful to avoid certain
technicalities that are unrelated to the main message of the paper and that require
no new ideas. In particular, (1.7) is enough to guarantee existence and uniqueness
of the non-negative solution to (1.4) on any discrete graph with at most exponential
growth, as can be inferred from the proof of the Z

d -case in [9]. All our results
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remain valid under (1.2) or even milder conditions, e.g. [9, Assumption (F)] plus an
integrability condition on the lower tail of ξ(0).

The following characteristic variational problem will turn out to be important
for the description of the asymptotics of U(t) when ξ has a double-exponential tail.
Denote by P(V ) the set of probability measures on V . For p ∈ P(V ), define

IE(p) :=
∑

{x,y}∈E

(√
p(x)−√

p(y)
)2
, JV (p) := −

∑

x∈V
p(x) logp(x),

(1.8)

and set

χG(*) := inf
p∈P(V )

[IE(p)+ *JV (p)], * ∈ (0,∞). (1.9)

The first term in (1.9) is the quadratic form associated with the Laplacian, describing
the solution u(·, t) in the intermittent islands, while the second term in (1.9) is the
Legendre transform of the rate function for the potential, describing the highest
peaks of ξ(·) inside the intermittent islands. See Sect. 1.5 for its relevance and
interpretation, and Sect. 2.3 for alternate representations.

1.3 Results: Galton-Watson Trees

In this section we focus on our first example of a random graph.
LetD0,Dg be random variables taking values in N = {1, 2, 3, . . . }. The Galton-

Watson tree with initial degree distribution D0 and general degree distribution
Dg is constructed as follows. Start with a root vertex O, and attach edges from
O to D0 first-generation vertices. Proceed recursively: after having attached the
n-th generation of vertices, attach to each one of them an independent (Dg − 1)-
distributed number of new vertices, whose union gives the (n+ 1)-th generation of
vertices. Denote by GW = (V ,E) the graph obtained, by P its probability law, and
by E the corresponding expectation. The law ofDg − 1 is the offspring distribution
of GW, and the law of Dg is the degree distribution. Write supp(Dg) to denote the
set of degrees that are taken by Dg with positive probability.

We will work under the following bounded-degree assumption:

Assumption (BD)

dmin := min supp(Dg) ≥ 2, E[Dg] > 2, (1.10)

and, for some dmax ∈ N with dmax ≥ dmin,

max supp(Dg) ≤ dmax. (1.11)



596 F. den Hollander et al.

Under Assumption (BD), GW is almost surely an infinite tree. Moreover,

lim
r→∞

log |Br(O)|
r

= logE[Dg − 1] =: ϑ > 0 P− a.s., (1.12)

where Br(O) is the ball of radius r around O in the graph distance (see e.g. [13,
pp. 134–135]). Note that Assumption (BD) allows deterministic trees with constant
offspring dmin − 1 (provided dmin ≥ 3).

To state our main result, we define the constant

χ̃(*) := inf
{
χT (*) : T infinite tree with degrees in supp(Dg)

}
(1.13)

with χG(*) defined in (1.9).

Theorem 1.1 (Quenched Lyapunov Exponent for the PAM on GW) Let G =
GW = (V ,E,O) be the rooted Galton-Watson random tree satisfying Assumption
(BD), and let ϑ be as in (1.12). Let ξ = (ξ(x))x∈V be an i.i.d. potential satisfying
Assumption (DE). Let U(t) denote the total mass at time t of the solution u to the
PAM on GW. Then, as t →∞,

1

t
logU(t) = * log

(
*tϑ

log log t

)
− * − χ̃(*)+ o(1), (P×P)-a.s. (1.14)

The proof of Theorem 1.1 is given in Sect. 4.
For * sufficiently large we can identify the infimum in (1.13). For d ≥ 2, denote

by Td the infinite homogeneous tree with degree equal to d at every node.

Theorem 1.2 (Identification of the Minimiser) If * ≥ 1/ log(dmin + 1), then
χ̃(*) = χTdmin

(*).

The proof of Theorem 1.2 is given in Sect. 6 with the help of a comparison
argument that appends copies of the infinite dmin-tree to itself. We believe Tdmin

to be the unique minimiser of (1.13) under the same assumptions, but proving so
would require more work.

1.4 Results: Configuration Model

In this section we focus on our second example of a random graph.
For n ∈ N, let d(n) = (d

(n)

i )
n
i=1 be a collection of positive integers. The

configuration model with degree sequence d(n) is a random multigraph (i.e., a graph
that may have self-loops and multiple edges) on the vertex set Vn := {1, . . . , n}
defined as follows. To each i ∈ Vn, attach d(n)i ‘half-edges’. After that, construct
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edges by successively attaching each half-edge uniformly at random to a remaining
half-edge. For this procedure to be successful, we must require that

d
(n)

1 + · · · + d(n)n is even for every n ∈ N. (1.15)

Draw a root On uniformly at random from Vn. Denote by CMn = (Vn,En,On) the
rooted multigraph thus obtained, and by Pn its probability law. For further details,
we refer the reader to [15, Chapter 7].

We will work under the following assumption on d(n):

Assumption (CM) The degree sequences d(n) = (d(n)i )ni=1, n ∈ N, satisfy (1.15).
Moreover,

1. There exists an N-valued random variableD such that d(n)On ⇒ D as n→∞.
2. dmin := min supp(D) ≥ 3.
3. There exists a dmax ∈ N such that 2 ≤ d(n)i ≤ dmax for all n ∈ N and 1 ≤ i ≤ n.

In particular, 3 ≤ dmin ≤ dmax <∞ andD ≤ dmax almost surely. It is possible to
take d(n) random. In that case Assumption (CM) must be required almost surely or in
probability with respect to the law of d(n), and our results below must be interpreted
accordingly.

Proposition 1.3 (Connectivity and Simplicity of CMn) Under Assumption (CM),

lim
n→∞Pn(CMn is a simple graph) = e−

ν
2− v

2
4 , (1.16)

where

ν := E[D(D − 1)]
E[D] ∈ [2,∞). (1.17)

Moreover,

lim
n→∞Pn

(
CMn is connected | CMn is simple

) = 1. (1.18)

Proof See [15, Theorem 7.12] and [5, Theorem 2.3]. ��
Item (1.16) in Proposition 1.3 tells us that for large n the set

Un(d
(n)) := {

simple graphs on {1, . . . , n} with degrees d(n)1 , . . . , d
(n)

n

}
(1.19)

is non-empty. Hence, we may consider the uniform simple random graph UGn that
is drawn uniformly at random from Un(d(n)).

Proposition 1.4 (Conditional Law of CMn Given Simplicity) Under the condi-
tional law Pn( · | CMn is simple), CMn has the same law as UGn.

Proof See [15, Proposition 7.15]. ��
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As usual, for a sequence of events (An)n∈N, we say that An occurs with high
probability (whp) as n → ∞ if the probability of An tends to 1 as n → ∞. This
notion does not require the events to be defined on the same probability space. We
denote by distTV(X, Y ) the total variation distance between two random variables
X and Y (i.e., between their laws). Let

Φn :=
( 1

n
∨ distTV(d

(n)

On,D)
)−1
, (1.20)

and note that, by Assumption (CM), Φn →∞ as n→∞.

Theorem 1.5 (Quenched Lyapunov Exponent for the PAM on UGn) For any
n ∈ N, let G = UGn be the uniform simple random graph with degree sequence
d(n) satisfying Assumption (CM). For any n ∈ N, let ξ be an i.i.d. potential on Vn
satisfying Assumption (DE). Let Un(t) denote the total mass of the solution to the
PAM on G = UGn as defined in Sect. 1.2. Fix a sequence of times (tn)n∈N with
tn →∞ and tn log tn = o(logΦn) as n→∞. Then, with high P×Pn-probability
as n→∞,

1

tn
logUn(tn) = * log

(
*tnϑ

log log tn

)
− * − χ̃ (*)+ o(1), (1.21)

where ϑ := log ν > 0 with ν as in (1.17), and χ̃(*) is as in (1.13).

The proof of Theorem 1.5 is given in Sect. 5. The main ingredients in the proof
are Theorem 1.1 and a well-known comparison between the configuration model
and an associated Galton-Watson tree inside a slowly-growing ball, from which the
condition on tn originates.

Condition (1) in Assumption (CM) is a standard regularity condition. Conditions
(2) and (3) provide easy access to results such as Propositions 1.3 and 1.4 above. As
examples of degree sequences satisfying Assumption (CM) we mention:

• Constant degrees. In the case where di = d ≥ 3 for a deterministic d ∈ N and all
1 ≤ i ≤ n, we have dOn = D = d almost surely, and UGn is a uniform regular
random graph. To respect (1.15), it is enough to restrict to n such that nd is even.
In this case distTV(dOn ,D) = 0, and so Φn = n in (1.20).

• Random degrees. In the case where (di)i∈N forms an i.i.d. sequence taking values
in {3, . . . , dmax}, classical concentration bounds (e.g. Azuma’s inequality) can be
used to show that, for any γ ∈ (0, 1

2 ),

dTV(dOn ,D) = o(n−γ ) almost surely as n→∞, (1.22)

and so Φn � nγ . The condition in (1.15) can be easily satisfied after replacing
dn by dn + 1 when d1 + · · · + dn is odd, which does not affect (1.22). With this
change, Assumption (CM) is satisfied. For more information about CMn with
i.i.d. degrees, see [15, Chapter 7].
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1.5 Discussion

Our main results, Theorems 1.1 and 1.5, identify the quenched logarithmic asymp-
totics of the total mass of the PAM. Our proofs show that the first term in the
asymptotics comes from the height of the potential in an intermittent island, the
second term −* from the probability of a quick sprint by the random walk in
the Feynman-Kac formula from O to the island, and the third term χ̃(*) from the
structure of the island and the profile of the potential inside. Below we explain how
each of these three terms comes about. Much of what follows is well-known from
the study of the PAM on Z

d (see also [12]), but certain aspects are new and derive
from the randomness of the ambient space and its exponential growth.

1.5.1 Galton-Watson Tree

First and Second Terms

The large-t asymptotics of the Feynman-Kac formula (2.10) for U(t) comes from
those random walk paths (Xs)s∈[0,t ] that run within st time units to some favorable
local region of the graph (the intermittent island) and subsequently stay in that
region for the rest of the time. In order to find the scale rt of the distance to the
region and the time st of the sprint, we have to balance and optimise a number of
crucial quantities: the number of sites in the ball Brt (O) aroundO with radius rt , the
scale of the maximal value of the potential within that ball, the probability to reach
that ball within time st , and the gain from the Feynman-Kac formula from staying
in that ball during t − st time units. One key ingredient is the well-known fact that
the maximum of m independent random variables satisfying Assumption (DE) is
asymptotically equal to hm ≈ * log logm for large m. Another key ingredient is
that Brt (O) has approximately ert ϑ vertices (see (1.12)). Hence, this ball contains
values of the potential of height≈ hert ϑ ≈ * log (rtϑ), not just at one vertex but on
a cluster of vertices of arbitrary finite size. The contribution from staying in such as
cluster during ≈ t time units yields the first term of the asymptotics, where we still
need to identify rt . A slightly more precise calculation, involving the probabilistic
cost to run within st time units over rt space units and to afterwards gain a mass of
size (t − st )* log (rtϑ), reveals that the optimal time is st ≈ rt /* log rt . Optimising
this together with the first term * log (rtϑ) over rt , we see that the optimal distance
is rt = *t/ log log t . The term −* comes from the probability of making rt steps
within st = rt /* log rt time units.

Third Term

The variational formula χ̃G(*) describes the second-order asymptotics of the gain
of the random walk from staying ≈ t time units in an optimal local region (the first-
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order term has already been identified as * log (rtϑ)). Indeed, pick some finite tree
T that is admissible, i.e., has positive probability to occur locally in the graph G =
GW. Many copies of T occur disjointly with positive density inG. In particular, they
appear within the ball Brt (O) a number of times that is proportional to the volume
of the ball. By standard extreme-value analysis, on one of these many copies of
T the random potential achieves an approximately optimal height (≈ * log (rtϑ))
and shape. The optimality of the shape is measured in terms of the negative local
Dirichlet eigenvalue −λT (ξ) of ΔG + ξ inside T . The shapes q that ξ can assume
locally are those that have a large-deviation rate value L(q) = ∑

x eq(x)/* at most
1 (note that L(q) measures the probabilistic cost of the shape q on an exponential
scale). All allowed shapes q are present locally at some location inside the ball
Brt (O) for large t . Each of these locations can be used by the random walk as an
intermittent island. Optimising over all allowed shapes q , we see that the second-
order term of the long stay in that island must indeed be expressed by the term

sup
q : L(q)≤1

[−λT (q)]. (1.23)

When T is appropriately chosen, this number is close to the number χ̃(*) defined
in (1.13) (cf. Proposition 2.3). This completes the heuristic explanation of the
asymptotics in (1.14).

1.5.2 Configuration Model

The analogous assertion for the configuration model in (1.21) is understood in the
same way, ignoring the fact that the graph is now finite, and that size and time
are coupled. As to the additional growth constraint on tn log tn in Theorem 1.5: its
role is to guarantee that the ball Brtn (O) is small enough to contain no loop with
high probability. In fact, this ball is very close in distribution to the same ball in an
associated Galton-Watson tree (cf. Proposition 5.1), which allows us to carry over
our result.

1.5.3 Minimal Degree Tree Is Optimal

What is a heuristic explanation for our result in Theorem 1.2 that the optimal tree
is an infinitely large homogeneous tree of minimal degree dmin at every vertex? The
first term in (1.9), the quadratic form associated with the Laplacian, has a spread-out
effect. Apparently, the self-attractive effect of the second term is not strong enough
to cope with this, as the super-linear function p �→ p logp in the definition of JV
in (1.8) is ‘weakly superlinear’. This suggests that the optimal structure should be
infinitely large (also on Z

d the optimal profile is positive anywhere in the ambient
space Z

d ). The first term is obviously monotone in the degree, which explains why
the infinite tree with minimal degree optimises the formula.
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1.5.4 Hurdles

The exponential growth of the graph poses a number of technical difficulties that are
not present for the PAM on Z

d or Rd . Indeed, one of the crucial points in the proof
of the upper bound for the large-time asymptotics is to restrict the infinite graph G
to some finite but time-dependent subgraph (in our case the ball Brt (O)). On Z

d , a
reflection technique that folds Z

d into a box of an appropriate size gives an upper
bound at the cost of a negligible boundary term. For exponentially growing graphs,
however, this technique can no longer be used because the boundary of a large ball is
comparable in size to the volume of the ball. Therefore we need to employ and adapt
an intricate method developed on Z

d for deriving deeper properties of the PAM,
namely, Poisson point process convergence of all the top eigenvalue-eigenvector
pairs and asymptotic concentration in a single island. This method relies on certain
path expansions which are developed in Sect. 3 and rely on ideas from [4, 14].

1.6 Open Questions

We discuss next a few natural questions for future investigation.

1.6.1 Unbounded Degrees

A central assumption used virtually throughout in the paper is that of a uniformly
bounded degree for the vertices of the graph. While this assumption can certainly
be weakened, doing so would require a careful analysis of many interconnected
technical arguments involving both the geometry of the graph and the behaviour the
random walk. An inspection of our proofs will reveal that some mild growth of the
maximal degree with the volume is allowed, although this would not address the real
issues at hand and would therefore be far from optimal. For this reason we prefer to
leave unbounded degrees for future work.

1.6.2 Small 	

The question of whether Theorem 1.2 is still true when * < 1/ log(dmin + 1) seems
to us not clear at all, and in fact interesting. Indeed, the analogous variational prob-
lem in Z

d was analysed in [7] and was shown to be highly non-trivial for small *.

1.6.3 Different Time Scales

In a fixed finite graph, the PAM can be shown to localise for large times on the
site that maximises the potential. It is reasonable to expect the same when the
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graph is allowed to grow but only very slowly in comparison to the time window
considered, leading to a behaviour very different from that shown in Theorem 1.5. A
more exciting and still widely open question is whether there could be other growth
regimes between graph size and time that would lead to new asymptotic behaviours.
We expect that Theorem 1.5 would still hold for times well above the time cutoff
given. For investigations of a similar flavour we direct the reader to [2, 6].

1.6.4 Annealing

In the present paper we only consider the quenched setting, i.e., statements that hold
almost-surely or with high probability with respect to the law of both the random
graph and the random potential. There are three possible annealed settings, where
we would average over one or both of these laws. Such settings would certainly lead
to different growth scales for the total mass, corresponding to new probabilities to
observe local structures in the graph and/or the potential. The variational problems
could be potentially different, but for double-exponential tails comparison with the
Z
d case suggests that they would coincide.

1.7 Outline

The remainder of the paper is organised as follows. In Sect. 2 we collect some basic
notations and facts about graphs, spectral objects, alternate representations of the
characteristic formula χG(*), and the potential landscape. In Sect. 3 we employ a
path expansion technique to estimate the contribution to the Feynman-Kac formula
coming from certain specific classes of paths. In Sect. 4 we prove Theorem 1.1. In
Sect. 5 we prove Theorem 1.5. In Sect. 6 we analyse the behaviour of the variational
formula χT for trees T under certain glueing operations, and prove Theorem 1.2.

2 Preliminaries

In this section we gather some facts that will be useful in the remainder of the paper.
In particular, we transfer some basic properties of the potential landscape derived in
[3] and [4] for the Euclidean-lattice setting to the sparse-random-graph setting. In
Sect. 2.1 we describe the classes of graphs we will work with. In Sect. 2.2 we derive
spectral bounds on the Feynman-Kac formula. In Sect. 2.3 we provide alternative
representations for the constant χ in (1.9). In Sect. 2.4 we obtain estimates on the
maximal height of the potential in large balls as well as on the sizes and local
eigenvalues of the islands where the potential is close to maximal. In Sect. 2.5 we
obtain estimates on the heights of the potential seen along self-avoiding paths and
on the number of islands where the potential is close to maximal.
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2.1 Graphs

All graphs considered in Sect. 2 are simple, connected and undirected, and are either
finite or countably infinite. For a graph G = (V ,E), we denote by dist(x, y) =
distG(x, y) the graph distance between x, y ∈ V , and by

deg(x) = degG(x) := #{y ∈ V : {y, x} ∈ E}, (2.1)

the degree of the vertex x ∈ V . The ball of radius � > 0 around x is defined as

B�(x) = BG� (x) := {y ∈ V : distG(y, x) ≤ �}. (2.2)

For a rooted graphG = (V ,E,O), the distance to the root is defined as

|x| := distG(x,O), x ∈ V, (2.3)

and we set B� := B�(O), L� := |B�|.
The classes of graphs that we will consider are as follows. Fix a parameter dmax ∈

N. For r ∈ N0 = N ∪ {0}, define

Gr :=
{

simple connected undirected rooted graphsG = (V ,E,O) with

V finite or countable, |V | ≥ r + 1 and maxx∈V degG(x) ≤ dmax

}
.

(2.4)

Note that if G ∈ Gr , then Lr = |Br | ≥ r + 1. Also define

G∞ = ⋂
r∈N0

Gr

=
{simple connected undirected rooted graphs G=(V ,E,O) with

V countable, |V |=∞ and maxx∈V degG(x)≤dmax

}
.

(2.5)

When dealing with infinite graphs, we will be interested in those that have an
exponential growth. Thus we define, for ϑ > 0,

G(ϑ)∞ =
{
G ∈ G∞ : lim

r→∞
logLr
r

= ϑ
}
. (2.6)

Note that GW ∈ G
(ϑ)∞ almost surely, with ϑ as in (1.12).

2.2 Spectral Bounds

LetG = (V ,E) be a simple connected graph with maximal degree dmax ∈ N, where
the vertex set V may be finite or countably infinite.
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We recall the Rayleigh-Ritz formula for the principal eigenvalue of the Anderson
Hamiltonian. For Λ ⊂ V and q : V → [−∞,∞), let λ(1)Λ (q;G) denote the largest
eigenvalue of the operatorΔG+q inΛwith Dirichlet boundary conditions on V \Λ.
More precisely,

λ
(1)
Λ (q;G) := sup

{〈(ΔG + q)φ, φ〉�2(V ) : φ ∈ R
V , suppφ ⊂ Λ, ‖φ‖�2(V ) = 1

}
.

(2.7)

We will often omit the superscript “(1)”, i.e., write λΛ(q;G) = λ
(1)
Λ (q;G), and

abbreviate λG(q) := λV (q;G). When there is no risk of confusion, we may also
suppressG from the notation, and omit q when q = ξ .

Here are some straightforward consequences of the Rayleigh-Ritz formula:

1. For any Γ ⊂ Λ,

max
z∈Γ q(z)− dmax ≤ λ(1)Γ (q;G) ≤ λ(1)Λ (q;G) ≤ max

z∈Λ q(z). (2.8)

2. The eigenfunction corresponding to λ(1)Λ (q;G) can be taken to be non-negative.
3. If q is real-valued and Γ � Λ are finite and connected in G, then the middle

inequality in (2.8) is strict and the non-negative eigenfunction corresponding to
λ
(1)
Λ (q;G) is strictly positive.

In what follows we state some spectral bounds for the Feynman-Kac formula.
These bounds are deterministic, i.e., they hold for any fixed realisation of the
potential ξ ∈ R

V .
Inside G, fix a finite connected subset Λ ⊂ V , and let HΛ denote the Anderson

Hamiltonian in Λ with zero Dirichlet boundary conditions on Λc = V \Λ (i.e., the
restriction of the operatorHG = ΔG + ξ to the class of functions supported on Λ).
For y ∈ Λ, let uyΛ be the solution of

∂tu(x, t) = (HΛu)(x, t), x ∈ Λ, t > 0,
u(x, 0) = 1ly(x), x ∈ Λ, (2.9)

and set UyΛ(t) :=
∑
x∈Λ u

y
Λ(x, t). The solution admits the Feynman-Kac represen-

tation

u
y
Λ(x, t) = Ey

[
exp

{∫ t

0
ξ(Xs)ds

}
1l{τΛc > t,Xt = x}

]
, (2.10)

where τΛc is the hitting time of Λc. It also admits the spectral representation

u
y
Λ(x, t) =

|Λ|∑

k=1

etλ
(k)
Λ φ

(k)

Λ (y)φ
(k)

Λ (x), (2.11)
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where λ(1)Λ ≥ λ
(2)
Λ ≥ · · · ≥ λ

(|Λ|)
Λ and φ(1)Λ , φ

(2)
Λ , . . . , φ

(|Λ|)
Λ are, respectively, the

eigenvalues and the corresponding orthonormal eigenfunctions of HΛ. These two
representations may be exploited to obtain bounds for one in terms of the other, as
shown by the following lemma.

Lemma 2.1 (Bounds on the Solution) For any y ∈ Λ and any t > 0,

etλ
(1)
Λ φ

(1)
Λ (y)

2 ≤ Ey

[
e

∫ t
0 ξ(Xs)ds1l{τΛc>t,Xt=y}

]

≤ Ey

[
e

∫ t
0 ξ(Xs)ds1l{τΛc>t}

]
≤ etλ

(1)
Λ |Λ|1/2.

(2.12)

Proof The first and third inequalities follow from (2.10)–(2.11) after a suitable
application of Parseval’s identity. The second inequality is elementary. ��

The next lemma bounds the Feynman-Kac formula integrated up to an exit time.

Lemma 2.2 (Mass up to an Exit Time) For any y ∈ Λ and γ > λ(1)Λ ,

Ey

[
exp

{∫ τΛc

0
(ξ(Xs)− γ ) ds

}]
≤ 1+ dmax|Λ|

γ − λ(1)Λ
. (2.13)

Proof See [10, Lemma 4.2]. ��

2.3 About the Constant χ

We next introduce alternative representations for χ in (1.9) in terms of a ‘dual’
variational formula. Fix * ∈ (0,∞) and a graphG = (V ,E). The functional

LV (q; *) :=
∑

x∈V
eq(x)/* ∈ [0,∞], q : V → [−∞,∞), (2.14)

plays the role of a large deviation rate function for the potential ξ in V (compare
with (1.7)). Henceforth we suppress the superscript “(1)” from the notation for the
principal eigenvalue (2.7), i.e., we write

λΛ(q;G) = λ(1)Λ (q;G), Λ ⊂ V, (2.15)

and abbreviate λG(q) = λV (q;G). We also define

χ̂Λ(*;G) := − sup
q : V→[−∞,∞),

LV (q;*)≤1

λΛ(q;G) ∈ [0,∞), χ̂G(*) := χ̂V (*;G).

(2.16)
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The condition LV (q; *) ≤ 1 on the supremum above ensures that the potentials q
have a fair probability under the i.i.d. double-exponential distribution. Finally, for
an infinite rooted graphG = (V ,E,O), we define

χ
(0)
G (*) := inf

r>0
χ̂Br (*;G). (2.17)

Both χ(0) and χ̂ give different representations for χ .

Proposition 2.3 (Alternative Representations for χ) For any graph G = (V ,E)
and any Λ ⊂ V ,

χ̂Λ(*;G) ≥ χ̂V (*;G) = χ̂G(*) = χG(*). (2.18)

IfG = (V ,E,O) ∈ G∞, then

χ
(0)
G (*) = lim

r→∞ χ̂Br (*;G) = χG(*). (2.19)

Proposition 2.3 will be proved in Sect. 6.1.

2.4 Potentials and Islands

We next consider properties of the potential landscape. Recall that (ξ(x))x∈V are
i.i.d. double-exponential random variables. Set

aL := * log log(L ∨ ee). (2.20)

The next lemma shows that aLr is the leading order of the maximum of ξ in Br .

Lemma 2.4 (Maximum of the Potential) Fix r �→ gr > 0 with limr→∞ gr = ∞.
Then

sup
G∈Gr

P

(∣
∣
∣
∣max
x∈Br

ξ(x)− aLr
∣
∣
∣
∣ ≥

gr

logLr

)
≤ max

{
1

r2 , e
− gr
*

}
∀ r > 2e2.

(2.21)

Moreover, for any ϑ > 0 and anyG ∈ G
(ϑ)∞ , P-almost surely eventually as r →∞,

∣
∣∣
∣max
x∈Br

ξ(x)− aLr
∣
∣∣
∣ ≤

2* log r

ϑr
. (2.22)
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Proof Without loss of generality, we may assume that gr ≤ 2* log r . Fix G ∈ Gr
and estimate

P

(
max
x∈Bn

ξ(x) ≤ aLr −
gr

logLr

)
= e−

1
* Lr(logLr)e

− gr
* logLr ≤ e

− r log r
e2* ≤ e−

gr
* ,

(2.23)

provided r > 2e2. On the other hand, using ex ≥ 1+ x, x ∈ R, we estimate

P

(
max
x∈Bn

ξ(x) ≥ aLr +
gr

log r

)
= 1−

(
1− e−e

log logLr+ gr
* log r

)Lr
≤ e−

gr
* . (2.24)

Since the bounds above do not depend onG ∈ Gr , (2.21) follows.
For the caseG ∈ G(ϑ)∞ , let gr := 3

2* log r . Note that the right-hand side of (2.21)
is summable over r ∈ N, so that, by the Borel-Cantelli lemma,

∣
∣
∣∣max
x∈Br

ξ(x)− aLr
∣
∣
∣∣ <

gr

logLr
<

2* log r

ϑr
(2.25)

P-almost surely eventually as r →∞, proving (2.22). ��
For a fixed rooted graphG = (V ,E,O) ∈ Gr , we define sets of high excedances

of the potential in Br as follows. Given A > 0, let

Πr,A = Πr,A(ξ) := {z ∈ Br : ξ(z) > aLr − 2A} (2.26)

be the set vertices in Br where the potential is close to maximal. For a fixed α ∈
(0, 1), define

Sr := (log r)α (2.27)

and set

Dr,A = Dr,A(ξ) := {z ∈ Br : distG(z,Πr,A) ≤ Sr } ⊃ Πr,A, (2.28)

i.e., Dr,A is the Sr -neighbourhood of Πr,A. Let Cr,A denote the set of all connected
components of Dr,A in G, which we call islands. For C ∈ Cr,A, let

zC := argmax{ξ(z) : z ∈ C} (2.29)

be the point with highest potential within C. Since ξ(0) has a continuous law, zC is
P-a.s. well defined for all C ∈ Cr,A.

The next lemma gathers some useful properties of Cr,A.
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Lemma 2.5 (Maximum Size of the Islands) For every A > 0, there exists MA ∈
N such that the following holds. For a graphG ∈ Gr , define the event

Br :=
{∃ C ∈ Cr,A with |C ∩Πr,A| > MA

}
. (2.30)

Then
∑
r∈N0

supG∈Gr P(Br ) <∞. In particular,

lim
r→∞ sup

G∈Gr
P(Br ) = 0, (2.31)

and, for any fixed G ∈ G∞, P-almost surely eventually as r → ∞, Br does not
occur. Note that

on Bc
r ,∀ C ∈ Cr,A, |C ∩Πr,A| ≤ MA, diamG(C) ≤ 2MASr, |C| ≤MAdSrmax.

(2.32)

Proof The claim follows from a straightforward estimate based on (1.7) (see [3,
Lemma 6.6]). ��

Apart from the dimensions, it will be also important to control the principal
eigenvalues of islands in Cr,A. For this we restrict to graphs in G

(ϑ)∞ .

Lemma 2.6 (Principal Eigenvalues of the Islands) For any ϑ > 0, any G ∈
G
(ϑ)∞ , and any ε > 0,P-almost surely eventually as r →∞,

all C ∈ Cr,A satisfy: λ
(1)
C (ξ;G) ≤ aLr − χ̂C(*;G)+ ε. (2.33)

Proof We follow [9, Lemma 2.11]. Let ε > 0, G = (V ,E,O) ∈ G(ϑ)∞ , and define
the event

Br :=
{

there exists a connected subset Λ ⊂ V with Λ ∩ Br = ∅,
|Λ| ≤MAdSrmax and λ(1)Λ (ξ;G) > aLr − χ̂Λ(*;G)+ ε

}
(2.34)

withMA as in Lemma 2.5. Note that, by (1.7), eξ(x)/* is stochastically dominated by
C∨E, whereE is an Exp(1) random variable and C > 0 is a constant. Thus, for any
Λ ⊂ V , using (2.16), taking γ := √

eε/* > 1 and applying Markov’s inequality, we
may estimate

P
(
λ
(1)
Λ (ξ;G) > aLr − χ̂Λ(*;G)+ ε

) ≤ P
(
LΛ(ξ − aLr − ε) > 1

)

= P
(
γ−1LΛ(ξ) > γ logLr

) ≤ e−γ logLrE[eγ−1LΛ(ξ)] ≤ e−γ logLrK
|Λ|
γ

(2.35)

for some constant Kγ ∈ (1,∞). Next note that, for any x ∈ Br , n ∈ N, the number
of connected subsets Λ ⊂ V with x ∈ Λ and |Λ| = n is at most ec◦n for some



The Parabolic Anderson Model on a Galton-Watson Tree 609

c◦ = c◦(dmax) > 0 (see e.g. [11, Proof of Theorem (4.20)]). Using a union bound
and applying logLr ∼ ϑr , we estimate, for some constants c1, c2, c3 > 0,

P(Br ) ≤ e−(γ−1) logLr
%MAdSrmax&∑

n=1

ec◦nKnγ ≤ c1 exp
{
−c2r + c3d

(log r)α
max

}
≤ e−

1
2 c2r

(2.36)

when r is large. Now the Borel-Cantelli lemma implies that, P-a.s. eventually as
r →∞, Br does not occur. The proof is completed by invoking Lemma 2.5. ��

For later use, we state the consequence for GW in terms of χ̃(ρ) in (1.13).

Corollary 2.7 (Uniform Bound on Principal Eigenvalue of the Islands) For
G = GW as in Sect. 1.3, ϑ > as in (1.12), and any ε > 0, P × P-almost surely
eventually as r →∞,

max
C∈Cr,A

λ
(1)
C (ξ;G) ≤ aLr − χ̃(*)+ ε. (2.37)

Proof Note that GW ∈ G
(ϑ)∞ almost surely, so Lemma 2.6 applies. By Lemma 2.4,

for any constant C > 0, the maximum of ξ in a ball of radius CSr around O
is of order O(log log r). This means that O is distant from Πr,A, in particular,
dist(O,Dr,A) ≥ 2 almost surely eventually as r → ∞. For C ∈ Cr,A, let TC be
the infinite tree obtained by attaching to each x ∈ ∂C := {y /∈ C : ∃z ∈ C with z ∼
y} ? O an infinite tree with constant offspring dmin − 1. Then TC is an infinite tree
with degrees in supp(Dg) and, by Proposition 2.3,

χ̂C(*;GW) = χ̂C(*; TC) ≥ χTC(*) ≥ χ̃(*), (2.38)

so the claim follows by Lemma 2.6. ��

2.5 Connectivity

We again work in the setting of Sect. 2.1. We recall the following Chernoff bound
for a Binomial random variable Bin(n, p) with parameters n, p (see e.g. [4, Lemma
5.9]):

P (Bin(n, p) ≥ u) ≤ exp

{
−u

(
log

u

np
− 1

)}
∀ u > 0. (2.39)
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Lemma 2.8 (Number of Intermediate Peaks of the Potential) For any β ∈ (0, 1)
and any ε ∈ (0, β/2), the following holds. For G ∈ Gr and a self-avoiding path π
in G, set

Nπ = Nπ(ξ) := |{z ∈ supp(π) : ξ(z) > (1− ε)aLr }|. (2.40)

Define the event

Br :=
{

there exists a self-avoiding path π in G with

supp(π) ∩ Br = ∅, |supp(π)| ≥ (logLr)β and Nπ >
|supp(π)|
(logLr)ε

}

.

(2.41)

Then
∑
r∈N0

supG∈Gr P(Br ) <∞. In particular,

lim
r→∞ sup

G∈Gr
P(Br ) = 0 (2.42)

and, for any fixedG ∈ G∞, P-almost surely eventually as r →∞, all self-avoiding
paths π in G with supp(π) ∩ Br = ∅ and |supp(π)| ≥ (logLr)β satisfy Nπ ≤
|supp(π)|
(logLr)ε

.

Proof Fix β ∈ (0, 1) and ε ∈ (0, β/2). For any G ∈ Gr , (1.7) implies

pr := P(ξ(0) > (1− ε)aLr ) = exp
{
−(logLr)1−ε

}
. (2.43)

Fix x ∈ Bn and k ∈ N. The number of self-avoiding paths π in Br with |supp(π)| =
k and π0 = x is at most dkmax. For such a π , the random variable Nπ has a Bin(pr ,
k)-distribution. Using (2.39) and a union bound, we obtain

P
(
∃ self-avoiding π with |supp(π)| = k, π0 = x and Nπ > k/(logLr)ε

)

≤ exp
{
−k

(
(logLr)1−2ε − log dmax − 1+ε log logLr

(logLr)ε

)}
.

(2.44)

Note that, since Lr > r and the function x �→ log log x/(log x)ε is eventually
decreasing, for r large enough and uniformly over G ∈ Gr , the expression in
parentheses above is at least 1

2 (logLr)1−2ε. Summing over k ≥ (logLr)β and
x ∈ Br , we get

P
(∃ self-avoiding π such that |supp(π)| ≥ (logLr)β and (2.40 does not hold

)

≤ 2Lr exp
{
− 1

2 (logLr)1+β−2ε
}
≤ c1 exp

{−c2(logLr)1+δ
}

(2.45)
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for some positive constants c1, c2, δ, uniformly over G ∈ Gr . Since Lr > r , (2.45)
is summable in r (uniformly over G ∈ Gr ). The proof is concluded invoking the
Borel-Cantelli lemma. ��

A similar computation bounds the number of high exceedances of the potential.

Lemma 2.9 (Number of High Exceedances of the Potential) For any A > 0
there is a C ≥ 1 such that, for all δ ∈ (0, 1), the following holds. For G ∈ Gr and
a self-avoiding path π in G, let

Nπ := |{x ∈ supp(π) : ξ(x) > aLr − 2A}|. (2.46)

Define the event

Br :=
{

there exists a self-avoiding path π in G with

supp(π) ∩ Br = ∅, |supp(π)| ≥ C(logLr)δ and Nπ >
|supp(π)|
(logLr)δ

}

.

(2.47)
Then

∑
r∈N0

supG∈Gr P(Br ) <∞. In particular,

lim
r→∞ sup

G∈Gr
P(Br ) = 0 (2.48)

and, for any fixedG ∈ G∞, P-almost surely eventually as r →∞, all self-avoiding
paths π in G with supp(π) ∩ Br = ∅ and |supp(π)| ≥ C(logLr)δ satisfy

Nπ = |{x ∈ supp(π) : ξ(x) > aLr − 2A}| ≤ |supp(π)|
(logLr)δ

. (2.49)

Proof Proceed as for Lemma 2.8, noting that this time

pr := P
(
ξ(0) > aLr − 2A

) = L−εr (2.50)

where ε = e−
2A
* , and taking C > 2/ε. ��

3 Path Expansions

We again work in the setting of Sect. 2.1. In the following, we develop a way to
bound the contribution of certain specific classes of paths to the Feynman-Kac
formula, similar to what is done in [4] in the Z

d -case. In Sect. 3.1 we state a key
proposition reducing the entropy of paths. This proposition is proved in Sect. 3.4
with the help of a lemma bounding the mass of an equivalence class of paths, which
is stated and proved in Sect. 3.3 and is based on ideas from [14]. The proof of
this lemma requires two further lemmas controlling the mass of the solution along
excursions, which are stated and proved in Sect. 3.2.
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3.1 Key Proposition

Fix a graphG = (V ,E,O) ∈ Gr . We define various sets of nearest-neighbour paths
in G as follows. For � ∈ N0 and subsets Λ,Λ′ ⊂ V , put

P�(Λ,Λ
′) :=

{
(π0, . . . , π�) ∈ V �+1 : π0 ∈ Λ,π� ∈ Λ′,

{πi, πi−1} ∈ E ∀ 1 ≤ i ≤ �
}
,

P(Λ,Λ′) := ⋃
�∈N0

P�(Λ,Λ
′),

(3.1)
and set

P� :=P�(V , V ), P :=P(V , V ). (3.2)

WhenΛ orΛ′ consists of a single point, we write x instead of {x}. For π ∈P�, we
set |π | := �. We write supp(π) := {π0, . . . , π|π |} to denote the set of points visited
by π .

Let X = (Xt)t≥0 be the continuous-time random walk on G that jumps from
x ∈ V to any neighbour y ∼ x with rate 1. We denote by (Tk)k∈N0 the sequence of
jump times (with T0 := 0). For � ∈ N0, let

π(�)(X) := (X0, . . . , XT�) (3.3)

be the path in P� consisting of the first � steps of X and, for t ≥ 0, let

π(X[0,t ]) = π(�t )(X), where �t ∈ N0 satisfies T�t ≤ t < T�t+1, (3.4)

denote the path in P consisting of all the steps taken by X between times 0 and t .
Recall the definitions from Sect. 2.4. For G ∈ Gr , π ∈P and A > 0, define

λr,A(π) := sup
{
λ
(1)
C (ξ;G) : C ∈ Cr,A, supp(π) ∩ C ∩Πr,A = ∅}

, (3.5)

with the convention sup∅ = −∞. This is the largest principal eigenvalue among the
components of Cr,A inG that have a point of high exceedance visited by the path π .

The main result of this section is the following proposition. Hereafter we
abbreviate log(3) x := log log log x.

Proposition 3.1 (Entropy Reduction) For every fixed dmax ∈ N, there exists an
A0 = A0(dmax) > 0 such that the following holds. Let α ∈ (0, 1) be as in (2.27)
and let κ ∈ (α, 1). For all A > A0, there exists a constant cA = cA(dmax) > 0
such that, with probability tending to one as r → ∞ uniformly over G ∈ Gr ,
the following statement is true: For each x ∈ Br , each N ⊂ P(x, Br) satisfying
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supp(π) ⊂ Br and max1≤�≤|π | distG(π�, x) ≥ (logLr)κ for all π ∈ N, and each
assignment π �→ (γπ , zπ ) ∈ R× V satisfying

γπ ≥
(
λr,A(π)+ e−Sr

)
∨ (aLr − A) for all π ∈ N (3.6)

and

zπ ∈ supp(π) ∪
⋃

C∈Cr,A :
supp(π)∩C∩Πr,A =∅

C for all π ∈ N, (3.7)

the following inequality holds for all t ≥ 0:

logEx
[
e

∫ t
0 ξ(Xs)ds1l{π(X[0,t])∈N}

]
≤ sup
π∈N

{
tγπ −

(
log(3) Lr − cA

)
distG(x, zπ)

}
.

(3.8)

Moreover, for any G ∈ G∞, P-almost surely eventually as r → ∞, the same
statement is true.

The key to the proof of Proposition 3.1 in Sect. 3.4 is Lemma 3.5 in Sect. 3.3,
whose proof depends on Lemmas 3.2–3.3 in Sect. 3.2. We note that all these results
are deterministic, i.e., they hold for any realisation of the potential ξ .

3.2 Mass of the Solution Along Excursions

Fix G = (V ,E,O) ∈ Gr . The first step to control the contribution of a path to the
total mass is to control the contribution of excursions outsideΠr,A (recall (2.26)).

Lemma 3.2 (Path Evaluation) For � ∈ N0, π ∈P� and γ > max0≤i<|π |{ξ(πi)−
deg(πi)},

Eπ0

[
exp

{∫ T�

0
(ξ(Xs)− γ ) ds

} ∣
∣∣
∣π

(�)(X) = π
]
=
�−1∏

i=0

deg(πi)

γ − [ξ(πi)− deg(πi)] .
(3.9)

Proof The left-hand side of (3.9) can be evaluated using the fact that T� is the sum
of � independent Exp(deg(πi)) random variables that are independent of π(�)(X).
The condition on γ ensures that all integrals are finite. ��

For a path π ∈P and ε ∈ (0, 1), we write

Mr,ε
π := ∣

∣{0 ≤ i < |π | : ξ(πi) ≤ (1− ε)aLr
}∣
∣, (3.10)
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with the interpretation thatMr,ε
π = 0 if |π | = 0.

Lemma 3.3 (Mass of Excursions) For every A, ε > 0 there exist c > 0 and n0 ∈
N such that, for all r ≥ n0, all γ > aLr − A and all π ∈ P satisfying πi /∈ Πr,A
for all 0 ≤ i < � := |π |,

Eπ0

[
exp

{∫ T�

0
(ξ(Xt )− γ ) ds

} ∣
∣
∣∣π

(�)(X) = π
]
≤ q�Ae

(
c−log(3) Lr

)
M
r,ε
π , (3.11)

where qA := (1+ A/dmax)
−1. Note that π� ∈ Πr,A is allowed.

Proof By our assumptions on π and γ , we can use Lemma 3.2. Splitting the product
in the right-hand side of (3.9) according to whether ξ(πi) ≥ (1 − ε)aLr or not, and
using that ξ(πi) ≤ aLr − 2A for 0 ≤ i < |π |, we bound the left-hand side of (3.11)
by

q�A

[
qA
εaLr − A
dmax

]−|{0≤i<� : ξ(πi)≤(1−ε)aLr }|
. (3.12)

Since aLr = * log logLr ≥ * log log r , for large r the number within square
brackets in (3.12) is at least qAε*(log logLr)/2dmax > 1. Hence (3.11) holds with
c := log(1 ∨ 2dmax(qAε*)

−1). ��

3.3 Equivalence Classes of Paths

We follow [4, Section 6.2]. Note that the distance betweenΠr,A andDc
r,A in G is at

least Sr = (logLr)α.

Definition 3.4 (Concatenation of Paths)

(a) When π and π ′ are two paths in P with π|π | = π ′0, we define their
concatenation as

π ◦ π ′ := (π0, . . . , π|π |, π ′1, . . . , π ′|π ′|) ∈P . (3.13)

Note that |π ◦ π ′| = |π | + |π ′|.
(b) When π|π | = π ′0, we can still define the shifted concatenation of π and π ′ as

π ◦ π̂ ′, where π̂ ′ := (π|π |, π|π | + π ′1 − π ′0, . . . , π|π | + π ′|π ′| − π ′0). The shifted
concatenation of multiple paths is defined inductively via associativity.

Now, if a path π ∈ P intersects Πr,A, then it can be decomposed into an initial
path, a sequence of excursions between Πr,A and Dc

r,A, and a terminal path. More
precisely, there exists mπ ∈ N such that

π = π̌ (1) ◦ π̂ (1) ◦ · · · ◦ π̌ (mπ ) ◦ π̂ (mπ ) ◦ π̄ , (3.14)
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where the paths in (3.14) satisfy

π̌ (1) ∈P(V ,Πr,A) with π̌ (1)i /∈ Πr,A, 0 ≤ i < |π̌ (1)|,
π̂ (k) ∈P(Πr,A,D

c
r,A) with π̂ (k)i ∈ Dr,A, 0 ≤ i < |π̂ (k)|, 1 ≤ k ≤ mπ − 1,

π̌ (k) ∈P(Dc
r,A,Πr,A) with π̌ (k)i /∈ Πr,A, 0 ≤ i < |π̌ (k)|, 2 ≤ k ≤ mπ,

π̂ (mπ ) ∈P(Πr,A, V ) with π̂ (mπ )i ∈ Dr,A, 0 ≤ i < |π̂ (mπ )|,
(3.15)

while

π̄ ∈P(Dc
r,A, V ) and π̄i /∈ Πr,A ∀ i ≥ 0 if π̂ (mπ ) ∈P(Πr,A,D

c
r,A),

π̄0 ∈ Dr,A, |π̄ | = 0 otherwise.
(3.16)

Note that the decomposition in (3.14)–(3.16) is unique, and that the paths π̌ (1), π̂ (mπ )

and π̄ can have zero length. If π is contained in Br , then so are all the paths in the
decomposition.

Whenever supp(π) ∩Πr,A = ∅ and ε > 0, we define

sπ :=
mπ∑

i=1

|π̌ (i)| + |π̄ |, kr,επ :=
mπ∑

i=1

M
r,ε

π̌(i)
+Mr,ε

π̄ (3.17)

to be the total time spent in exterior excursions, respectively, on moderately low
points of the potential visited by exterior excursions (without their last point).

In case supp(π)∩Πr,A = ∅, we setmπ := 0, sπ := |π | and kr,επ := Mr,ε
π . Recall

from (3.5) that, in this case, λr,A(π) = −∞.
We say that π, π ′ ∈P are equivalent, written π ′ ∼ π , ifmπ = mπ ′ , π̌ ′(i) = π̌ (i)

for all i = 1, . . . ,mπ , and π̄ ′ = π̄ . If π ′ ∼ π , then sπ ′ , k
r,ε
π ′ and λr,A(π ′) are all

equal to the counterparts for π .
To state our key lemma, we define, for m, s ∈ N0,

P(m,s) = {π ∈P : mπ = m, sπ = s} , (3.18)

and denote by

Cr,A := max{|C| : C ∈ Cr,A} (3.19)

the maximal size of the islands in Cr,A.

Lemma 3.5 (Mass of an Equivalence Class) For every A, ε > 0 there exist c > 0
and r0 ∈ N such that, for all r ≥ r0, all m, s ∈ N0, all π ∈P(m,s) with supp(π) ⊂
Br , all γ > λr,A(π) ∨ (aLr − A) and all t ≥ 0,

Eπ0

[
e

∫ t
0 (ξ(Xu)−γ ) du 1l{π(X[0,t])∼π}

]

≤
(
C

1/2
r,A

)1l{m>0} (
1+ dmax Cr,A

γ−λr,A(π)
)m (

qA
dmax

)s
e

(
c−log(3) Lr

)
k
r,ε
π .

(3.20)
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Proof Fix A, ε > 0 and let c > 0, n0 ∈ N be as given by Lemma 3.3. Set

Iba := e
∫ b
a (ξ(Xu)−γ )du, 0 ≤ a ≤ b <∞. (3.21)

We use induction on m. Suppose that m = 1, let � := |π̌ (1)|. There are two
possibilities: either π̄0 belongs toDr,A or not. First we consider the case π̄0 ∈ Dr,A,
which implies that |π̄ | = 0. By the strong Markov property,

Eπ0

[
I t0 1l{π(X[0,t])∼π}

]
≤ Eπ0

[
I
T�
0 I

t
T�

1l{π(�)(X)=π̌ (1)}1l{T�<t}1l{Xu+T�∈Dr,A ∀u∈[0,t−T�]}
]

= Eπ0

[
I
T�
0 1l{π(�)(X)=π̌ (1)}1l{T�<t}

(
E
π̌
(1)
�

[
I t−u0 1l{τDc

r,A
>t−u}

])

u=T�

]
.

(3.22)

Put z = π̌ (1)� . Since z ∈ Πr,A, we may write Cz to denote the island in Cr,A containing
z. Since τDc

r,A
= τCc

z
Pz-a.s., Lemma 2.1 and the hypothesis on γ allow us to bound

the inner expectation in (3.22) by |Cz|1/2. Applying Lemma 3.3, we further bound
(3.22) by

|Cz|1/2Eπ0

[
I
T�
0 1l{π(�)(X)=π̌ (1)}

]
≤ C1/2

r,A

(
qA

dmax

)�
e

(
c−log(3) Lr

)
M
r,ε

π̌(1) , (3.23)

which proves (3.20) for m = 1 and π̄0 ∈ Dr,A.
Next consider the case π̄0 ∈ Dc

r,A. Abbreviating σ := inf{u > T� : Xu /∈ Dr,A},
write

Eπ0

[
I t01l{π(X[0,t])∼π}

] ≤ Eπ0

[
Iσ0 1l{π(�)(X)=π̌ (1), σ<t}

(
Eπ̄0

[
I t−u0 1l{π(X[0,t−u])=π̄}

] )

u=σ

]
.

(3.24)

Let �∗ := |π̄ | and note that, since π̄�∗ /∈ Πr,A, by the hypothesis on γ we have

Eπ̄0

[
I t−u0 1l{π(X[0,t−u])=π̄}

] ≤ Eπ̄0

[
I
T�∗
0 1l{π(�∗)(X)=π̄}

]
≤

(
qA

dmax

)�∗
e

(
c−log(3) Lr

)
M
r,ε
π̄

(3.25)

where the second inequality holds by Lemma 3.3. On the other hand, by Lemmas 2.2
and 3.3,

Eπ0

[
Iσ0 1l{π(�)(X)=π̌ (1)}

] = Eπ0

[
I
T�
0 1l{π(�)(X)=π̌ (1)}

]
Ez

[
I
τCc
z

0

]

≤
(

1+ dmax Cr,A
γ−λr,A(π)

) (
qA
dmax

)�
e

(
c−log(3) Lr

)
M
r,ε

π̌(1) .
(3.26)

Putting together (3.24)–(3.26), we complete the proof of the case m = 1. The case
m = 0 follows from (3.25) after we replace π̄ by π and t − u by t .
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Suppose now that the claim is proved for some m ≥ 1, and let π ∈ P(m+1,s).
Define π ′ := π̌ (2) ◦ π̂ (2) ◦ · · · ◦ π̌ (m+1) ◦ π̂ (m+1) ◦ π̄ . Then π ′ ∈ P(m,s ′), where s =
s′+|π̌ (1)| and kr,επ = Mr,ε

π̌(1)
+kr,ε

π ′ . Setting � := |π̌ (1)|, σ := inf{u > T� : Xu /∈ Dr,A}
and x := π̌ (2)0 , we get

Eπ0

[
I t01l{π(X0,t )∼π}

] ≤ Eπ0

[
Iσ0 1l{π(�)(X)=π̌ (1), σ<t}

(
Ex

[
I t−u0 1l{π(X0,t−u)∼π ′}

] )

s=σ

]
,

(3.27)

from which (3.20) follows via the induction hypothesis and (3.26). ��

3.4 Proof of Proposition 3.1

Proof The proof is based on Lemma 3.5. First define

c0 := 1+ 3 log log dmax, A0 := dmax

(
e3c0 − 1

)
. (3.28)

Fix A > A0, β < α and ε ∈ (0, β/2) as in Lemma 2.8. Let r0 ∈ N be as given
by Lemma 3.5, and take r ≥ r0 so large that the conclusions of Lemmas 2.5–2.8
hold, i.e., assume that the events Br from both lemmas do not occur with either
G = (V ,E,O) ∈ Gr orG ∈ G∞ accordingly. Fix x ∈ Br . Recall the definitions of
Cr,A and P(m,s). Noting that the relation ∼ defined below (3.17) is an equivalence
relation in P(m,s), we define

P̃(m,s)
x := {

equivalence classes of the paths in P(x, V ) ∩P(m,s)
}
. (3.29)

Lemma 3.6 (Bound Equivalence Classes)
|P̃(m,s)

x | ≤ [2dmaxCr,A]mdsmax for all m, s ∈ N0.

Proof The estimate is clear when m = 0. To prove that it holds for m ≥ 1, write
∂Λ := {z /∈ Λ : distG(z,Λ) = 1} for Λ ⊂ V . Then |∂C ∪ C| ≤ (dmax + 1)|C| ≤
2dmaxCr,A. We define a map Φ : P̃(m,s)

x → Ps(x, V ) × {1, . . . , 2dmaxCr,A}m
as follows. For each Λ ⊂ V with 1 ≤ |Λ| ≤ 2dmaxCr,A, fix an injective
function fΛ : Λ → {1, . . . , 2dmaxCr,A}. Given a path π ∈ P(m,s) ∩ P(x, V ),
decompose π as in (3.14), and denote by π̃ ∈ Ps (x, V ) the shifted concatenation
(cf. Definition 3.4) of π̌ (1), . . . , π̌ (m), π̄ . Note that, for 2 ≤ k ≤ m, the point π̌ (k)0 lies
in ∂Ck for some Ck ∈ Cr,A, while π̄0 ∈ ∂C ∪ C for some C ∈ Cr,A. Thus, we may set

Φ(π) := (
π̃ , f∂C2(π̌

(2)
0 ), . . . , f∂Cm(π̌

(m)

0 ), f∂C̄∪C̄(π̄0)
)
. (3.30)

As is readily checked, Φ(π) depends only on the equivalence class of π and, when
restricted to equivalence classes, Φ is injective. Hence the claim follows. ��
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Now take N ⊂P(x, V ) as in the statement, and set

Ñ(m,s) := {
equivalence classes of paths in N ∩P(m,s)

} ⊂ P̃(m,s)
x . (3.31)

For each M ∈ Ñ(m,s), choose a representative πM ∈ M, and use Lemma 3.6 to
write

Ex

[
e

∫ t
0 ξ(Xu)du1l{π(X[0,t])∈N}

]
= ∑

m,s∈N0

∑
M∈Ñ(m,s) Ex

[
e

∫ t
0 ξ(Xu)du1l{π(X[0,t])∼πM}

]

≤ ∑
m,s∈N0

(2dmaxCr,A)
mdsmax supπ∈N(m,s) Ex

[
e

∫ t
0 ξ(Xu)du1l{π(X[0,t])∼π}

]
,

(3.32)

where we use the convention sup∅ = 0. For fixed π ∈ N(m,s), by (3.6), we may
apply (3.20) and Lemma 2.5 to obtain, for all r large enough and with c0 as in (3.28),

(2dmax)
mdsmaxEx

[
e

∫ t
0 ξ(Xu)du1l{π(X[0,t])∼π}

]
≤ etγπ ec0mSr qsAe

(
c−log(3) Lr

)
k
r,ε
π .

(3.33)

We next claim that, for r large enough and π ∈ N(m,s),

s ≥ [(m− 1) ∨ 1]Sr . (3.34)

Indeed, when m ≥ 2, |supp(π̌ (i))| ≥ Sr for all 2 ≤ i ≤ m. When m = 0,
|supp(π)| ≥ max1≤�≤|π | |π� − x| ≥ (logLr)κ � Sr by assumption. When m = 1,
the latter assumption and Lemma 2.5 together imply that supp(π) ∩Dc

r,A = ∅, and
so either |supp(π̌ (1))| ≥ Sr or |supp(π̌ (1))| ≥ Sr . Thus, (3.34) holds by (3.17) and
(2.27).

Note that qA < e−3c0 , so

∑

m≥0

∑

s≥[(m−1)∨1]Sr
ec0mSr qsA =

q
Sr
A
+ ec0Sr qSr

A
+∑

m≥2 ec0Srmq(m−1)Sr
A

1− qA ≤ 4e−c0Sr
1− qA < 1

(3.35)

for r large enough. Inserting this back into (3.32), we obtain

logEx
[
e

∫ t
0 ξ(Xs)ds1l{π(X0,t )∈N}

]
≤ sup
π∈N

{
tγπ +

(
c − log(3) Lr

)
kr,επ

}
. (3.36)

Thus the proof will be finished once we show that, for some ε′ > 0, whp
(respectively, almost surely eventually) as n→∞, all π ∈ N satisfy

kr,επ ≥ distG(x, zπ)(1− 2(logLr)−ε
′
). (3.37)
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To that end, we define for each π ∈ N an auxiliary path π% as follows. First note
that by using our assumptions we can find points z′, z′′ ∈ supp(π) (not necessarily
distinct) such that

distG(x, z′) ≥ (logLr)κ , distG(z′′, zπ ) ≤ 2MASr, (3.38)

where the latter holds by Lemma 2.5. Write {z1, z2} = {z′, z′′} with z1, z2 ordered
according to their hitting times by π , i.e., inf{� : π� = z1} ≤ inf{� : π� = z2}. Define
πe as the concatenation of the loop erasure of π between x and z1 and the loop
erasure of π between z1 and z2. Since πe is the concatenation of two self-avoiding
paths, it visits each point at most twice. Finally, define π% ∼ πe by substituting
the excursions of πe from Πr,A to Dc

r,A by direct paths between the corresponding

endpoints, i.e., substitute each π̂ (i)e with |π̂ (i)e | = �i , (π̂
(i)
e )0 = xi ∈ Πr,A and

(π̂
(i)
e )�i = yi ∈ Dc

r,A by a shortest-distance path π̃ (i)% with the same endpoints and

|π̃ (i)% | = distG(xi, yi). Since π% visits each x ∈ Πr,A at most 2 times,

kr,επ ≥ kr,επ% ≥ Mr,ε
π%
− 2|supp(π%) ∩Πr,A|(Sr + 1) ≥Mr,ε

π%
− 4|supp(π%) ∩Πr,A|Sr .

(3.39)

Note that Mr,ε
π%

≥ ∣
∣{x ∈ supp(π%) : ξ(x) ≤ (1− ε)aLr }

∣
∣ − 1 and, by (3.38),

|supp(π%)| ≥ distG(x, z′) ≥ (logLr)κ � (logLr)α+2ε′ for some 0 < ε′ < ε.
Applying Lemmas 2.8–2.9 and using (2.27) and Lr > r , we obtain, for r large
enough,

kr,επ ≥ |supp(π%)|
(

1− 2
(logLr)ε

− 4Sr
(logLr)α+2ε′

)
≥ |supp(π%)|

(
1− 1

(logLr )ε
′
)
.

(3.40)

On the other hand, since |supp(π%)| ≥ (logLr)κ and by (3.38) again,

|supp(π%)| =
( |supp(π%)| + 2MASr

)− 2MASr
≥ (

distG(x, z′′)+ 2MASr
) (

1− 2MASr
(logLr)κ

)

≥ distG(x, zπ )
(

1− 1
(logLr)ε

′
)
.

(3.41)

Now (3.37) follows from (3.40)–(3.41). ��

4 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We note that, after replacing
dmax by dmax ∨D0 if necessary, we may assume without loss of generality that

GW ∈ G(ϑ)∞ . (4.1)
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4.1 Lower Bound

In this section we give the proof of the lower bound for the large-t asymptotics of
the total mass. This proof already explains the random mechanism that produces the
main contribution to the total mass. This mechanism comes from an optimisation
of the behaviour of the random path in the Feynman-Kac formula, which in turn
comes from the existence of a favorite region in the random graph, both in terms
of the local graph structure and the high values of the potential in this local graph
structure. The optimality is expressed in terms of a distance to the starting point
O that can be reached in a time o(t) with a sufficiently high probability, such that
time t − o(t) is left for staying inside the favorite region, thus yielding a maximal
contribution to the Feynman-Kac formula. The latter is measured in terms of the
local eigenvalue of the Anderson operator Δ + ξ , which in turn comes from high
values and optimal shape of the potential ξ in the local region.

We write the total mass of the solution of (2.9) in terms of the Feynman-Kac
formula as

U(t) = EO
[

exp
{ ∫ t

0
ξ(Xs) ds

}]
, (4.2)

where (Xs)s≥0 is the continuous-time random walk on GW, i.e., the Markov chain
with generator ΔGW = Δ, the Laplacian on GW, starting from the origin O. As
usual in the literature of the PAM, this formula is the main point of departure for our
proof.

Fix ε > 0. By the definition of χ̃ , there exists an infinite rooted tree T =
(V ′, E′,Y) with degrees in supp(Dg) such that χT (*) < χ̃(*) + 1

4ε. Let Qr =
BTr (Y) be the ball of radius r around Y in T . By Proposition 2.3 and (2.16), there
exist a radius R ∈ N and a potential profile q : BTR → R with LQR(q; *) < 1 (in
particular, q ≤ 0) such that

λQR(q; T ) ≥ −χ̂QR(*; T )−
1

2
ε > −χ̃(*)− ε. (4.3)

For � ∈ N, let B� = B�(O) denote the ball of radius � around O in GW. We will
show next that, almost surely eventually as �→ ∞, B� contains a copy of the ball
QR where ξ is lower bounded by * log log |B�| + q .

Proposition 4.1 (Balls with High Exceedances) P × P-almost surely eventually
as � → ∞, there exists a vertex z ∈ B� with BR+1(z) ⊂ B� and an isomorphism
ϕ : BR+1(z)→ QR+1 such that ξ ≥ * log log |B�| + q ◦ ϕ in BR(z). In particular,

λBR(z)(ξ;GW) > * log log |B�| − χ̃(*)− ε. (4.4)

Any such z necessarily satisfies |z| ≥ c�P× P-almost surely eventually as �→∞
for some constant c = c(*, ϑ, χ̃ (*), ε) > 0.
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Proof First note that, as a consequence of the definition of GW, it may be shown
straightforwardly that, for some p = p(T ,R) ∈ (0, 1) and P-almost surely
eventually as �→∞, there exist N ∈ N, N ≥ p|B�| and distinct z1, . . . , zN ∈ B�
such that BR+1(zi) ∩ BR+1(zj ) = ∅ for 1 ≤ i = j ≤ N and, for each 1 ≤ i ≤ N ,
BR+1(zi) ⊂ B� and BR+1(zi) is isomorphic to QR+1. Now, by (1.7), for each
i ∈ {1, . . . , N},

P
(
ξ ≥ * log log |B�| + q in BR(zi)

) = |B�|−LQR (q). (4.5)

Using additionally that |B�| ≥ � and 1− x ≤ e−x , x ∈ R, we obtain

P(  ∃i ∈ {1, . . . , N} : ξ ≥ * log log |B�| + q in BR(zi))

=
(

1− |B�|−LQR (q)
)N ≤ e−p�

1−LQR (q)
,

(4.6)

which is summable in � ∈ N, so the proof of the first statement is completed using
the Borel-Cantelli lemma. As for the last statement, note that, by (2.8), Lemma 2.4
and Lr ∼ ϑr ,

λBc�(ξ ;GW) ≤ max
x∈Bc�

ξ(x) < aLc� + o(1) < aL� + * log cϑ + o(1) < aL� − χ̃ (*)− ε
(4.7)

provided c > 0 is small enough. ��
Proof (Of the Lower Bound in (1.14)) Let z be as in Proposition 4.1. Write τz for
the hitting time of z by the random walk X. For any s ∈ (0, t), we obtain a lower
bound for U(t) as follows:

U(t) ≥ EO
[

exp
{ ∫ t

0 ξ(Xu) du
}

1l{τz≤s} 1l{Xu∈BR(z) ∀u∈[τz,t ]}
]

= EO
[
e

∫ τz
0 ξ(Xu) du 1l{τz≤s} Ez

[
e

∫ v
0 ξ(Xu) du 1l{Xu∈T ∀u∈[0,v]}

]∣
∣
∣
v=t−τz

]
,

(4.8)

where we use the strong Markov property at time τz. We first bound the last term in
the integrand in (4.8). Since ξ ≥ * log log |B�| + q in BR(z),

Ez

[
e

∫ v
0 ξ(Xu) du1l{Xu∈BR(z) ∀u∈[0,v]}

]
≥ ev* log log |B�|EY

[
e

∫ v
0 q(Xu) du1l{Xu∈QR ∀u∈[0,v]}

]

≥ ev* log log |B�|evλQR (q;T )φ(1)QR (Y)2
> exp

{
v (* log log |B�| − χ̃(*)− ε)

}
,

(4.9)
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for large v, where we used that BR+1(z) is isomorphic to QR+1 and we applied
Lemma 2.1 and (4.3). On the other hand, since ξ ≥ 0,

EO
[

exp
{ ∫ τz

0
ξ(Xu) du

}
1l{τz ≤ s}

]
≥ PO(τz ≤ s), (4.10)

and we can bound the latter probability from below by the probability that the
random walk runs along a shortest path from the root O to z within a time at most
s. Such a path (yi)

|z|
i=0 has y0 = O, y|z| = z, yi ∼ yi−1 for i = 1, . . . , |z|, has at

each step from yi precisely deg(yi) choices for the next step with equal probability,
and the step is carried out after an exponential time Ei with parameter deg(yi). This
gives

PO(τz ≤ s) ≥
( |z|∏

i=1

1

deg(yi)

)
P

( |z|∑

i=1

Ei ≤ s
)
≥ d−|z|max Poidmins ([|z|,∞)),

(4.11)
where Poiγ is the Poisson distribution with parameter γ , andP is the generic symbol
for probability. Summarising, we obtain

U(t) ≥ d−|z|max e−dmins (dmins)
|z|

|z|! e(t−s)[* log log |B�|−χ̃(*)−ε]

≥ exp
{
−dmins + (t − s)

[
* log log |B�| − χ̃(*)− ε

]− |z| log
(
dmax
dmin

|z|
s

)}

≥ exp
{
−dmins + (t − s)

[
* log log |B�| − χ̃(*)− ε

]− � log
(
dmax
dmin

�
s

)}
,

(4.12)

where for the last inequality we assume s ≤ |z| and use � ≥ |z|. Further assuming
that � = o(t), we see that the optimum over s is obtained at

s = �

dmin + * log log |B�| − χ̃ (*)− ε = o(t). (4.13)

Note that, by Proposition 4.1, this s indeed satisfies s ≤ |z|. Applying (1.12) we get,
after a straightforward computation, almost surely eventually as t →∞,

1

t
logU(t) ≥ * log log |B�| − �

t
log log �− χ̃ (*)− ε +O

(
�

t

)
. (4.14)

Analysing the main terms above and using log |B�| ∼ ϑ�, we find that the optimal
� satisfies � log log � − �

log � ∼ t*, i.e., � ∼ *t/ log log t = rt . For this choice we
obtain

1

t
logU(t) ≥ * log log |Brt |− rt log log rt − χ̃(*)− ε+O

(
1

log log t

)
. (4.15)
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Substituting log |Br | ∼ ϑr and the definition of rt , we obtain, P× P-almost surely,

lim inf
t→∞

{
1

t
logU(t)− * log

(
*ϑt

log log t

)}
≥ −* − χ̃(*)− ε. (4.16)

Since ε > 0 is arbitrary, the proof of the lower bound in (1.14) is complete. ��

4.2 Upper Bound

In this section we prove the upper bound in (1.14). A first step is to reduce the
problem to a ball of radius t log t . Here we include more general graphs.

Lemma 4.2 (Spatial Truncation) For any c > 0 and any �t ∈ N, �t ≥ ct log t ,

sup
G∈G�t

EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

�t
<t}

]
≤ e−�t whp as t →∞. (4.17)

Moreover, for any G ∈ G(ϑ)∞ ,

EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

�t
<t}

]
≤ e−�t P-a.s. eventually as t →∞. (4.18)

Proof For r ≥ �t and G ∈ G�t , let

Br :=
{

max
x∈Br

ξ(x) ≥ aLr + 2*

}
. (4.19)

By Lemma 2.4 and a union bound, we see that

sup
G∈G�t

P

⎛

⎝
⋃

r≥�t
Br

⎞

⎠ ≤
∑

r≥�t
sup
G∈G�t

P(Br )→ 0, t →∞, (4.20)

while, forG ∈ G(ϑ)∞ , by the Borel-Cantelli lemma,

⋃

r≥�t
Br does not occur P-a.s. eventually as t →∞. (4.21)

We may therefore work on the event
⋂
r≥�t B

c
r . On this event, we may write

EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

�t
<t}

]
= ∑

r≥�t EO
[
e

∫ t
0 ξ(Xs)ds1l{sups∈[0,t] |Xs |=r}

]

≤ eCt
∑
r≥�t e*t log r

PO (Jt ≥ r) ,
(4.22)



624 F. den Hollander et al.

where Jt is the number of jumps ofX up to time t , C = *(2+ log log dmax), and we
use that |Br | ≤ drmax. Note that Jt is stochastically dominated by a Poisson random
variable with parameter tdmax. Hence

PO (Jt ≥ r) ≤ (tdmax)
r

r! ≤ exp

{
−r log

(
r

etdmax

)}
(4.23)

for large r . Using �t ≥ ct log t , we can check that, for r ≥ �t and t large enough,

r log

(
r

etdmax

)
− *t log r > 2r (4.24)

and thus (4.22) is at most e−�t e−�t+Ct+2 < e−�t . ��
In order to be able to apply Proposition 3.1 in the following, we need to make

sure that all paths considered exit a ball with a slowly growing radius.

Lemma 4.3 (No Short Paths) For any γ ∈ (0, 1),

sup
G∈G1tγ 2

EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

1tγ 2
>t}

]

U(t)
= o(1) whp as t →∞. (4.25)

Moreover, for any G ∈ G∞,

lim
t →∞

EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

1tγ 2
>t}

]

U(t)
= 0 P-a.s. almost surely. (4.26)

Proof By Lemma 2.4 with gr = 2* log r , we may assume that

max
x∈B1tγ 2

ξ(x) ≤ * log logL1t γ 2 + 2* = γ * log t + 2* + o(1) as t →∞. (4.27)

By (4.16), for some constant C > 0,

EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

1tγ 2
>t}

]

U(t)
≤ eCt log(3) te−(1−γ )*t log t → 0, t →∞.

(4.28)
��

For the remainder of the proof we fix γ ∈ (α, 1) with α as in (2.27). Let

Kt := 1t1−γ log t2, r
(k)
t := k1tγ 2, 1 ≤ k ≤ Kt and �t := Kt1tγ 2 ≥ t log t .

(4.29)
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For 1 ≤ k ≤ Kt andG ∈ G
(ϑ)∞ , define

N(k)

t :=
{
π ∈P(O, V ) : supp(π) ⊂ B

r
(k+1)
t

, supp(π) ∩ Bc
r
(k)
t

= ∅
}

(4.30)

and set

U
(k)

t := EO
[
e

∫ t
0 ξ(Xs)ds1l{π[0,t](X)∈N(k)t }

]
. (4.31)

Recall the scale rt = *t/ log log t .

Lemma 4.4 (Upper Bound on U(k)t ) For any ε > 0 and any G ∈ G
(ϑ)∞ , P-almost

surely eventually as t →∞,

sup
1≤k≤Kt

1

t
logU(k)t ≤ * log(ϑrt )− * − χ̃(*)+ ε. (4.32)

Proof Before we apply Proposition 3.1, we first do a bit of analysis. For c > 0, let

Fc,t (r) := * log(ϑr)− r
t
(log log r − c) , r > 0. (4.33)

Note that Fc,t is maximised at a point rc,t satisfying

*t = rc,t log log rc,t − crc,t + rc,t

log rc,t
. (4.34)

In particular, rc,t ∼ rt , which implies

sup
r>0
Fc,t (r) ≤ * log(ϑrt )− * + o(1) as t →∞. (4.35)

Next, fix k ∈ {1, . . . ,Kt }. For π ∈ N(k)

t , let

γπ := λr(k+1)
t ,A

(π)+ exp{−S1t γ 2}, zπ ∈ supp(π), |zπ | > r(k)t . (4.36)

By Proposition 3.1, almost surely eventually as t →∞,

1

t
logU(k)t ≤ γπ + |zπ |

t

(
log log r(k+1)

t − cA + o(1)
)
. (4.37)

Using Corollary 2.7 and logLr ∼ ϑr , we bound

γπ ≤ * log(ϑr(k+1)
t )− χ̃(*)+ 1

2
ε + o(1). (4.38)
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Moreover, |zπ | > r(k+1)
t − 1tγ 2 and

1tγ 2
t

(
log log r(k+1)

t − cA
) ≤ 2

t1−γ
log log(2t log t) = o(1), (4.39)

which allows us to further bound (4.37) by

* log(ϑr(k+1)
t )− r

(k+1)
t

t

(
log log r(k+1)

t − 2cA
)− χ̃(*)+ 1

2
ε + o(1). (4.40)

Applying (4.35) we obtain
1

t
logU(k)t < * log(ϑrt )− * − χ̃(*)+ ε. ��

Proof (Of Upper Bound in (1.14)) To avoid repetition, all statements are assumed
to be made P × P-almost surely eventually as t →∞. Let G = GW and note that
GW ∈ G

(ϑ)∞ almost surely, where ϑ is as in (1.12). Define

U
(0)
t := EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc

1tγ 2
>t}

]
, U

(∞)
t := EO

[
e

∫ t
0 ξ(Xs)ds1l{τBc1t log t2≤t}

]
.

(4.41)

Note that

U(t) ≤ U(0)t + U(∞)t +Kt max
1≤k≤Kt

U
(k)

t (4.42)

and, since U(0)t + U(∞)t ≤ o(1)U(t) by Lemmas 4.2–4.3 and (4.15),

U(t) ≤ 2Kt max
1≤k≤Kt

U
(k)

t and so
1

t
logU(t) ≤ log(2Kt)

t
+ max

1≤k≤Kt
1

t
logU(k)t .

(4.43)

By Lemma 4.4 and (4.29), for any ε > 0,

1
t

logU(t) ≤ * log(ϑrt )− * − χ̃(*)+ ε + o(1) (4.44)

therefore, P× P-almost surely,

lim sup
t→∞

{
1

t
logU(t)− * log

(
ϑ*t

log log t

)}
≤ −* − χ̃ (*)+ ε. (4.45)

Since ε > 0 is arbitrary, this completes the proof of the lower bound in (1.14). ��
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5 Proof of Theorem 1.5

In this section we give the proof of Theorem 1.5. The proof is based on the fact
that, up to a radius growing slower than logΦn (cf. (1.20)), the configuration model
equals a Galton-Watson tree with high probability. From this the result will follow
via Theorem 1.1 and Lemma 4.2.

To describe the associated Galton-Watson tree, we define a random variable D%
as the size-biased version of D in Assumption (CM)(1), i.e.,

P(D% = k) = kP (D = k)
E[D] . (5.1)

Proposition 5.1 (Coupling of UGn and GW) Let UGn = (Vn,En,On) be the uni-
form simple random graph with degree sequence d(n) satisfying Assumption (CM),
and let GW = (V ,E,O) be a Galton-Watson tree with initial degree distribution
D0 = D and general degree distribution Dg = D%. There exists a coupling P̃ of
UGn and GW such that, for any mn ∈ N satisfying 1 � mn � logΦn,

lim
n→∞ P̃

(
BUGn
mn
(On) = BGW

mn
(O)

)
= 1. (5.2)

Proof For CMn in place of UGn, this is a consequence of the proof of [16,
Proposition 5.4]: the statement there only covers coupling |Bmn |, but the proof
actually gives Bmn . The fact that mn may be taken up to o(logΦn) can be inferred
from the proof. In fact, mn could be taken up to c logΦn with some c = c(ν) > 0.
The result is then passed to UGn by (1.16) (see e.g. [15, Corollary 7.17]). ��
Proof (Of Theorem 1.5) First note that, by Propositions 1.3–1.4, we may assume
that UGn is connected, thus fitting the setup of Sect. 2. Let Un(t) be the total mass
for UGn and U(t) the total mass for GW as in Proposition 5.1. Define

U◦n (t) := EOn

[
e

∫ t
0 ξ(Xs)ds1l{τBc

t log t >t
}
]
, (5.3)

and analogously U◦(t). By Lemma 4.2 and Proposition 5.1, whp as n→∞,

Un(tn) = U◦n(tn)+ o(1) = U◦(tn)+ o(1) = U(tn)+ o(1), (5.4)

so (1.21) follows from Theorem 1.1 after noting that ν in (1.17) is equal to E[D% −
1]. ��
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6 Appendix: Analysis of χ(ρ)

In this appendix we study the variational problem in (1.9). In particular, we prove
the alternative representations in Proposition 2.3, and we prove Theorem 1.2, i.e.,
we identify for * ≥ 1/ log(dmin+1) the quantity χ̃(*) that appears in Theorems 1.1
and 1.5 as χG with G the infinite tree with homogeneous degree dmin ∈ N\{1}, the
smallest degree that has a positive probability in our random graphs. In other words,
we show that the infimum in (1.13) is attained on the infinite tree with the smallest
admissible degrees.

It is not hard to understand heuristically why the optimal tree is infinite and
has the smallest degree: the first part in (1.9) (the quadratic energy term coming
from the Laplace operator) has a spreading effect and is the smaller the less bonds
there are. However, proving this property is not so easy, since the other term (the
Legendre transform from the large-deviation term of the random potential) has an
opposite effect. In the setting where the underlying graph is Z

d instead of a tree,
this problem is similar to the question whether or not the minimiser has compact
support. However, our setting is different because of the exponential growth of balls
on trees. We must therefore develop new methods.

Indeed, we will not study the effect on the principal eigenvalue due to the
restriction of a large graph to a subgraph, but rather due to an opposite manipulation,
namely, the glueing of two graphs obtained by adding one single edge (or possibly
a joining vertex). The effect of such a glueing is examined in Sect. 6.2. The result
will be used in Sect. 6.3 to finish the proof of Theorem 1.2. Before that, we discuss
in Sect. 6.1 alternative representations for χ and prove Proposition 2.3.

In this section, no probability is involved. We drop * from the notation at many
places.

6.1 Alternative Representations

Fix a graphG = (V ,E). Recall that P(V ) denotes the set of probability measures on
V , and recall that the constant χG = χG(*) in (1.9) is defined as infp∈P(V )[IE(p)+
*JV (p)] with I, J as in (1.8). As the next lemma shows, the constant χ̂ in (2.16)
can be also represented in terms of I ,J .

Lemma 6.1 (First Representation) For any graphG = (V ,E) and any Λ ⊂ V ,

χ̂V (*;G) = inf
p∈P(V ) :
supp(p)⊂Λ

[IE(p)+ *JV (p)] . (6.1)

In particular,

χ̂Λ(*;G) ≥ χ̂V (*;G) = χG(*). (6.2)
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Proof For the proof of (6.1), see [9, Lemma 2.17]. Moreover, (6.2) follows from
(6.1). ��

We next consider the constant χ(0)G in (2.17) for infinite rooted graphs G =
(V ,E,O). Note that, by (6.1), χ̂Br (*;G) is non-increasing in r . With (6.2) this
implies

χ
(0)
G (*) = lim

r→∞ χ̂Br (*;G) ≥ χG(*). (6.3)

Lemma 6.2 (Second Representation) For any rootedG ∈ G∞, χG(*) = χ(0)G (*).
Proof Write G = (V ,E,O). By (1.9), Lemma 6.1 and (6.3), it suffices to show
that, for any p ∈ P(V ) and r ∈ N, there is a pr ∈ P(V ) with support in Br such
that

lim inf
r→∞ {IE(pr)+ *JV (pr)} ≤ IE(p)+ *JV (p). (6.4)

Simply take

pr(x) = p(x)1lBr (x)
p(Br)

, x ∈ V, (6.5)

i.e., the normalised restriction of p to Br . Then we easily see that

JV (pr )− JV (p) = − 1
p(Br )

∑
x∈Br p(x) logp(x) + logp(Br)+∑

x∈V p(x) logp(x)

≤ JV (p)
p(Br )

(1− p(Br ))→ 0, r →∞,
(6.6)

where we use logp(Br ) ≤ 0 and p(x) logp(x) ≤ 0 for every x. As for the I -term,

IE(pr) = 1
p(Br)

∑
{x,y}∈E : x,y∈Br

(√
p(x)−√p(y) )2

+ 1
2

∑
{x,y}∈E : x∈Br, y∈Bc

r

p(x)
p(Br)

≤ IE(p)
p(Br)

+ dmax
2
p(Bc

r−1)

p(Br )
,

(6.7)

and therefore

IE(pr)−IE(p) ≤ IE(p)
p(Br )

(1−p(Br))+dmax

2

p(Bc
r−1)

p(Br )
→ 0, r →∞. (6.8)

��
Proof (Of Proposition 2.3) The claim follows from Lemmas 6.1–6.2 and (6.3). ��
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6.2 Glueing Graphs

Here we analyse the constant χ of a graph obtained by connecting disjoint graphs.
First we show that glueing two graphs together with one additional edge does not
decrease the quantity χ :

Lemma 6.3 (Glue Two) Let Gi = (Vi, Ei), i = 1, 2, be two disjoint connected
simple graphs, and let xi ∈ Vi , i = 1, 2. Denote by G the union graph of G1,
G2 with one extra edge between x1 and x2, i.e., G = (V ,E) with V := V1 ∪ V2,
E := E1 ∪ E2 ∪ {(x1, x2)}. Then

χG ≥ min
{
χG1, χG2

}
. (6.9)

Proof Given p ∈ P(V ), let ai = p(Vi), i = 1, 2, and define pi ∈ P(Vi) by putting

pi(x) :=
{

1
ai
p(x)1lVi (x) if ai > 0,

1lxi (x) otherwise.
(6.10)

Straightforward manipulations show that

IE(p) =
2∑

i=1

aiIEi (pi)+
(√
p(x1)−

√
p(x2)

)2
, JV (p) =

2∑

i=1

[
aiJVi (pi )− ai log ai

]
,

(6.11)

and so

IE(p)+ *JV (p) ≥
2∑

i=1

ai

[
IEi (pi)+ *JVi (pi)

]
≥ min{χG1, χG2}. (6.12)

The proof is completed by taking the infimum over p ∈ P(V ). ��
Below it will be useful to define, for x ∈ V ,

χ
(x,b)

G = inf
p∈P(V ),
p(x)=b

[IE(p)+ *JV (p)], (6.13)

i.e., a version of χG with “boundary condition” b at x. It is clear that χ(x,b)G ≥ χG.
Next we glue several graphs together and derive representations and estimates

for the corresponding χ . For k ∈ N, let Gi = (Vi, Ei), 1 ≤ i ≤ k, be a collection
of disjoint graphs. Let x be a point not belonging to

⋃k
i=1 Vi . For a fixed choice

yi ∈ Vi , 1 ≤ i ≤ k, we denote by Gk = (V k,Ek) the graph obtained by adding
an edge from each y1, . . . , yk to x, i.e., V k = V1 ∪ · · · ∪ Vk ∪ {x} and Ek =
E1 ∪ · · · ∪ Ek ∪ {(y1,O), . . . , (yk, x)}.
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Lemma 6.4 (Glue Many Plus Vertex) For any * > 0, any k ∈ N, and any Gi =
(Vi, Ei), yi ∈ Vi , 1 ≤ i ≤ k,

χGk = inf 0≤ci≤ai≤1,
a1+···+ak≤1

{ ∑k
i=1 ai

(
χ
(yi ,ci /ai )

Gi
− * log ai

)

+∑k
i=1

(√
ci −

√
1−∑k

i=1 ai

)2 − *
(

1−∑k
i=1 ai

)
log

(
1−∑k

i=1 ai

)}
.

(6.14)

Proof The claim follows from straightforward manipulations with (1.8). ��
Lemma 6.4 leads to the following comparison lemma. For j ∈ N, let

(G
j

i , y
j

i ) =
{
(Gi, yi) if i < j,
(Gi+1, yi+1) if i ≥ j, (6.15)

i.e., (Gji )i∈N is the sequence (Gi)i∈N with the j -th graph omitted. Let G
j

k be the

analogue of Gk obtained fromGji , 1 ≤ i ≤ k, i = j , instead of Gi , 1 ≤ i ≤ k.
Lemma 6.5 (Comparison) For any * > 0 and any k ∈ N,

χGk+1
= inf1≤j≤k+1 inf0≤c≤u≤ 1

k+1
inf 0≤ci≤ai≤1,

a1+···+ak≤1{
(1 − u)

[ ∑k
i=1 ai

(
χ
(yσj (i)

,ci /ai )

Gσj (i)
− * log ai

)

+∑k
i=1

(√
ci −

√
1−∑k

i=1 ai

)2 − *
(

1−∑k
i=1 ai

)
log

(
1−∑k

i=1 ai

)]

+uχ(yj ,c/u)Gj
+

(√
c −

√
(1− u)

(
1−∑k

i=1 ai

))2

−* [
u log u+ (1 − u) log(1− u)]

}
.

(6.16)

Moreover,

χGk+1
≥ inf1≤j≤k+1 inf0≤u≤ 1

k+1{
(1− u)χ

G
j
k

+ infv∈[0,1]
{
uχ
(yj ,v)

Gj
+ 1{u(1+v)≥1}

[√
vu−√1− u

]2}

−* [
u logu+ (1− u) log(1− u)]

}
.

(6.17)



632 F. den Hollander et al.

Proof Note that

{
(ci, ai)

k+1
i=1 : 0 ≤ ci ≤ ai ≤ 1,

∑k+1
i=1 ai ≤ 1

}

=
k+1⋃

j=1

⎧
⎨

⎩

(
(1− u)(ci, ai)j−1

i=1 , (c, u), (1− u)(ci, ai)ki=j
)
:

0 ≤ c ≤ u ≤ 1
k+1 , 0 ≤ ci ≤ ai ≤ 1,

∑k
i=1 ai ≤ 1

⎫
⎬

⎭
,

(6.18)

from which (6.16) follows by straightforward manipulations on (6.14). To prove
(6.17), note that the first term within the square brackets in the first two lines of
(6.16) equals the term minimised in (6.14), and is therefore not smaller than χ

G
j
k

.
��

Lemma 6.6 (Propagation of Lower Bounds) If * > 0,M ∈ R, C > 0 and k ∈ N

satisfy * ≥ C/ log(k + 1) and

inf
1≤j≤k+1

χ
G
j
k

≥ M, inf
1≤j≤k+1

inf
v∈[0,1]χ

(yj ,v)

Gj
≥ M − C, (6.19)

then χGk+1
≥ M .

Proof Dropping some non-negative terms in (6.17), we obtain

χGk+1
−M ≥ inf0≤u≤1/(k+1)

{
u

(
χ
(yj ,v)

Gj
−M

)
− *u logu

}

≥ inf0≤u≤1/(k+1) {u (* log(k + 1)− C)} ≥ 0
(6.20)

by the assumption on *. ��
The above results will be applied in the next section to minimise χ over families

of trees with minimum degrees.

6.3 Trees with Minimum Degrees

Fix d ∈ N. Let T̊d be an infinite tree rooted at O such that the degree of O equals d−
1 and the degree of every other vertex in T̊d is d . Let T̊ (0)

d = {̊Td } and, recursively,

let T̊ (n+1)
d denote the set of all trees obtained from a tree in T̊ (n)

d and a disjoint copy
of T̊d by adding an edge between a vertex of the former and the root of the latter.
Write T̊d = ⋃

n∈N0
T̊ (n)

d . Assume that all trees in T̊d are rooted at O.
Recall that Td is the infinite regular d-tree. Observe that Td is obtained from

(̊Td,O) and a disjoint copy (̊T′d,O′) by adding one edge between O and O′.
Consider Td to be rooted at O. Let T (0)

d = {Td} and, recursively, let T (n+1)
d denote

the set of all trees obtained from a tree in T (n)

d and a disjoint copy of T̊d by
adding an edge between a vertex of the former and the root of the latter. Write
Td = ⋃

n∈N0
T (n)

d , and still consider all trees in Td to be rooted at O. Note that
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T (n)

d contains precisely those trees of T̊ (n+1)
d that have Td as a subgraph rooted at O.

In particular, T (n)

d ⊂ T̊ (n+1)
d and Td ⊂ T̊d .

Our objective is to prove the following.

Proposition 6.7 (Minimal Tree Is Optimal) If * ≥ 1/ log(d + 1), then

χTd (*) = min
T ∈Td

χT (*).

For the proof of Proposition 6.7, we will need the following.

Lemma 6.8 (Minimal Half-Tree Is Optimal) For all * ∈ (0,∞),

χT̊d (*) = min
T ∈T̊d

χT (*).

Proof Fix * ∈ (0,∞). It will be enough to show that

χT̊d = min
T ∈T̊ (n)

d

χT , n ∈ N0, (6.21)

which we will achieve by induction in n. The case n = 0 is obvious. Assume that
(6.21) holds for some n ∈ N0. Any tree T ∈ T̊ (n+1)

d can be obtained from a tree

T̃ ∈ T̊ (n)

d and a disjoint copy T̊′d of T̊d by adding an edge between a point x̃ in the

vertex set of T̃ to the root of T̊′d . Applying Lemma 6.3 together with the induction
hypothesis, we obtain

χT ≥ min
{
χT̃ , χT̊′d

}
≥ χT̊d , (6.22)

which completes the induction step. ��
Lemma 6.9 (A Priori Bounds) For any d ∈ N and any * ∈ (0,∞),

χT̊d (*) ≤ χTd (*) ≤ χT̊d (*)+ 1. (6.23)

Proof The first inequality follows from Lemma 6.8. For the second inequality, note
that Td contains as subgraph a copy of T̊d , and restrict the minimum in (1.9) to
p ∈ P(̊Td). ��
Proof (Of Proposition 6.7) Fix * ≥ 1/ log(d + 1). It will be enough to show that

χTd = min
T ∈T (n)

d

χT , n ∈ N0. (6.24)

We will prove this by induction in n. The case n = 0 is trivial. Assume that, for
some n0 ≥ 0, (6.24) holds for all n ≤ n0. Let T ∈ T

(n0+1)

d . Then there exists a
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vertex x of T with degree k+ 1 ≥ d + 1. Let y1, . . . , yk+1 be set of neighbours of x
in T . When we remove the edge between yj and x, we obtain two connected trees;

call Gj the one containing yj , and G
j

k the other one. With this notation, T may be
identified with Gk+1.

Now, for each j , the rooted tree (Gj , yj ) is isomorphic (in the obvious sense) to

a tree in T̊
(�j )

d , where �j ∈ N0 satisfy �1 + · · · + �k+1 ≤ n0, while G
j

k belongs to

T
(nj )

d for some nj ≤ n0. Therefore, by the induction hypothesis,

χ
G
j
k

≥ χTd , (6.25)

while, by (6.13), Lemma 6.8 and Lemma 6.9,

inf
v∈[0,1]χ

(yj ,v)

Gj
≥ χGj ≥ χT̊d ≥ χTd − 1. (6.26)

Thus, by Lemma 6.3 applied withM = χTd and C = 1,

χT = χḠk+1
≥ χTd , (6.27)

which completes the induction step. ��
Proof (Of Theorem 1.2) First note that, since Tdmin has degrees in supp(Dg),
χ̃(*) ≤ χTdmin

(*). For the opposite inequality, we proceed as follows. Fix an infinite

tree T with degrees in supp(Dg), and root it at a vertex Y. For r ∈ N, let T̃r be the
tree obtained from Br = BTr (Y) by attaching to each vertex x ∈ Br with |x| = r a
number dmin − 1 of disjoint copies of (̊Tdmin,O), i.e., adding edges between x and
the corresponding roots. Then T̃r ∈ Tdmin and, since Br has more out-going edges
in T than in T̃r , we may check using (6.1) that

χ̂Br (*; T ) ≥ χ̂Br (*; T̃r ) ≥ χT̃r (*) ≥ χTdmin
(*). (6.28)

Taking r →∞ and applying Proposition 2.3, we obtain χT (*) ≥ χTdmin
(*). Since

T is arbitrary, the proof is complete. ��
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1 Introduction and Main Results

1.1 Description of the Model

We describe our model and then state our main results: see Sect. 1.4 for a discussion
of related literature. Write x ∈ R

2 in Cartesian coordinates as x = (x1, x2). For
parameters a+, a− > 0 and β+, β− ≥ 0, define, for z ≥ 0, functions d+(z) :=
a+zβ+ and d−(z) := a−zβ− . Set

D :=
{
x ∈ R

2 : x1 ≥ 0, −d−(x1) ≤ x2 ≤ d+(x1)
}
.

Write ‖ · ‖ for the Euclidean norm onR2. For x ∈ R
2 andA ⊆ R

2, write d(x,A) :=
infy∈A ‖x−y‖ for the distance from x toA. Suppose that there existB ∈ (0,∞) and
a subset DB of D for which every x ∈ DB has d(x,R2\D) ≤ B. Let DI := D\DB ;
we call DB the boundary and DI the interior. Set D±

B := {x ∈ DB : ±x2 > 0} for
the parts of DB in the upper and lower half-plane, respectively.

Let ξ := (ξ0, ξ1, . . .) be a discrete-time, time-homogeneous Markov chain on
state-space S ⊆ D . Set SI := S ∩ DI , SB := S ∩ DB , and S±B := S ∩ D±

B .
Write Px and Ex for conditional probabilities and expectations given ξ0 = x ∈ S,
and suppose that Px(ξn ∈ S for all n ≥ 0) = 1 for all x ∈ S. Set Δ := ξ1 − ξ0.
Then P(ξn+1 ∈ A | ξn = x) = Px(x + Δ ∈ A) for all x ∈ S, all measurable
A ⊆ D , and all n ∈ Z+. In what follows, we will always treat vectors in R

2 as
column vectors.

We will assume that ξ has uniformly bounded p > 2 moments for its increments,
that in SI it has zero drift and a fixed increment covariance matrix, and that it
reflects in SB , meaning it has drift away from ∂D at a certain angle relative to the
inwards-pointing normal vector. In fact we permit perturbations of this situation that
are appropriately small as the distance from the origin increases. See Fig. 1 for an
illustration.

To describe the assumptions formally, for x1 > 0 let n+(x1) denote the
inwards-pointing unit normal vector to ∂D at (x1, d

+(x1)), and let n−(x1) be
the corresponding normal at (x1,−d−(x1)); then n+(x1) is a scalar multiple

of (a+β+xβ
+−1

1 ,−1), and n−(x1) is a scalar multiple of (a−β−xβ
−−1

1 , 1).
Let n+(x1, α) denote the unit vector obtained by rotating n+(x1) by angle α
anticlockwise. Similarly, let n−(x1, α) denote the unit vector obtained by
rotating n−(x1) by angle α clockwise. (The orientation is such that, in each
case, reflection at angle α < 0 is pointing on the side of the normal
towards 0.)

We write ‖ · ‖op for the matrix (operator) norm defined by ‖M‖op := supu ‖Mu‖,
where the supremum is over all unit vectors u ∈ R

2. We take ξ0 = x0 ∈ S fixed,
and impose the following assumptions for our main results.
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0

Fig. 1 An illustration of the model parameters, in the case where β+ = β− ∈ (0, 1)

(N) Suppose that Px(lim supn→∞ ‖ξn‖ = ∞) = 1 for all x ∈ S.
(Mp) There exists p > 2 such that

sup
x∈S

Ex(‖Δ‖p) <∞. (1)

(D) We have that supx∈SI :‖x‖≥r ‖Ex Δ‖ = o(r−1) as r →∞.
(R) There exist angles α± ∈ (−π/2, π/2) and functions μ± : S±B → R with

lim inf‖x‖→∞ μ±(x) > 0, such that, as r →∞,

sup
x∈S+B :‖x‖≥r

‖Ex Δ− μ+(x)n+(x1, α
+)‖ = O(r−1); (2)

sup
x∈S−B :‖x‖≥r

‖Ex Δ− μ−(x)n−(x1, α
−)‖ = O(r−1). (3)

(C) There exists a positive-definite, symmetric 2× 2 matrix Σ for which

lim
r→∞ sup

x∈SI :‖x‖≥r
∥∥Ex(ΔΔ

F)−Σ∥∥
op = 0.
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We write the entries of Σ in (C) as

Σ =
(
σ 2

1 ρ

ρ σ 2
2

)
.

Here ρ is the asymptotic increment covariance, and, since Σ is positive definite,
σ1 > 0, σ2 > 0, and ρ2 < σ 2

1 σ
2
2 .

To identify the critically recurrent cases, we need slightly sharper control of the
error terms in the drift assumption (D) and covariance assumption (C). In particular,
we will in some cases impose the following stronger versions of these assumptions:

(D+) There exists ε > 0 such that supx∈SI :‖x‖≥r ‖Ex Δ‖ = O(r−1−ε) as r →∞.
(C+) There exists ε > 0 and a positive definite symmetric 2 × 2 matrix Σ for

which

sup
x∈SI :‖x‖≥r

∥
∥Ex(ΔΔ

F)−Σ∥
∥

op = O(r−ε), as r →∞.

Without loss of generality, we may use the same constant ε > 0 for both (D+)
and (C+).

The non-confinement condition (N) ensures our questions of recurrence and
transience (see below) are non-trivial, and is implied by standard irreducibility or
ellipticity conditions: see [26] and the following example.

Example 1 Let S = Z
2 ∩ D , and take DB to be the set of x ∈ D for which x is

within unit �∞-distance of some y ∈ Z
2 \ D . Then SB contains those points of

S that have a neighbour outside of D , and SI consists of those points of S whose
neighbours are all in D . If ξ is irreducible on S, then (N) holds (see e.g. Corollary
2.1.10 of [26]). If β+ > 0, then, for all ‖x‖ sufficiently large, every point of x ∈ S+B
has its neighbours to the right and below in S, so if α+ = 0, for instance, we can
achieve the asymptotic drift required by (2) using only nearest-neighbour jumps if
we wish; similarly in S−B .

Under the non-confinement condition (N), the first question of interest is whether
lim infn→∞ ‖ξn‖ is finite or infinite. We say that ξ is recurrent if there exists r0 ∈
R+ for which lim infn→∞ ‖ξn‖ ≤ r0, a.s., and that ξ is transient if limn→∞ ‖ξn‖ =
∞, a.s. The first main aim of this paper is to classify the process into one or other of
these cases (which are not a priori exhaustive) depending on the parameters. Further,
in the recurrent cases it is of interest to quantify the recurrence by studying the tails
(or moments) of return times to compact sets. This is the second main aim of this
paper.

In the present paper we focus on the case where α+ + α− = 0, which we
call ‘opposed reflection’. This case is the most subtle from the point of view of
recurrence/transience, and, as we will see, exhibits a rich phase diagram depending
on the model parameters. We emphasize that the model in the case α+ + α− = 0 is
near-critical in that both recurrence and transience are possible, depending on the
parameters, and moreover (i) in the recurrent cases, return-times to bounded sets
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have heavy tails being, in particular, non-integrable, and so stationary distributions
will not exist, and (ii) in the transient cases, escape to infinity will be only diffusive.
There is a sense in which the model studied here can be viewed as a perturbation of
zero-drift random walks, in the manner of the seminal work of Lamperti [19]: see
e.g. [26] for a discussion of near-critical phenomena. We leave for future work the
case α+ + α− = 0, in which very different behaviour will occur: if β± < 1, then
the case α+ + α− > 0 gives super-diffusive (but sub-ballistic) transience, while the
case α+ + α− < 0 leads to positive recurrence.

Opposed reflection includes the special case where α+ = α− = 0, which is
‘normal reflection’. Since the results are in the latter case more easily digested, and
since it is an important case in its own right, we present the case of normal reflection
first, in Sect. 1.2. The general case of opposed reflection we present in Sect. 1.3. In
Sect. 1.4 we review some of the extensive related literature on reflecting processes.
Then Sect. 1.5 gives an outline of the remainder of the paper, which consists of the
proofs of the results in Sects. 1.2–1.3.

1.2 Normal Reflection

First we consider the case of normal (i.e., orthogonal) reflection.

Theorem 1 Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = α− = 0.

(a) Suppose that β+, β− ∈ [0, 1). Let β := max(β+, β−). Then the following
hold.

(i) If β < σ 2
1 /σ

2
2 , then ξ is recurrent.

(ii) If σ 2
1 /σ

2
2 < β < 1, then ξ is transient.

(iii) If, in addition, (D+) and (C+) hold, then the case β = σ 2
1 /σ

2
2 is recurrent.

(b) Suppose that (D+) and (C+) hold, and β+, β− > 1. Then ξ is recurrent.

Remark 1

(i) Omitted from Theorem 1 is the case when at least one of β± is equal to 1,
or their values fall each each side of 1. Here we anticipate behaviour similar
to [5].

(ii) If σ 2
1 /σ

2
2 < 1, then Theorem 1 shows a striking non-monotonicity property:

there exist regions D1 ⊂ D2 ⊂ D3 such that the reflecting random walk
is recurrent on D1 and D3, but transient on D2. This phenomenon does not
occur in the classical case when Σ is the identity: see [28] for a derivation of
monotonicity in the case of normally reflecting Brownian motion in unbounded
domains in R

d , d ≥ 2.
(iii) Note that the correlation ρ and the values of a+, a− play no part in Theorem 1;

ρ will, however, play a role in the more general Theorem 3 below.
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Let τr := min{n ∈ Z+ : ‖ξn‖ ≤ r}. Define

s0 := s0(Σ, β) := 1

2

(

1− σ
2
2 β

σ 2
1

)

. (4)

Our next result concerns the moments of τr . Since most of our assumptions are
asymptotic, we only make statements about r sufficiently large; with appropriate
irreducibility assumptions, this restriction could be removed.

Theorem 2 Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = α− = 0.

(a) Suppose that β+, β− ∈ [0, 1). Let β := max(β+, β−). Then the following
hold.

(i) If β < σ 2
1 /σ

2
2 , then Ex(τ

s
r ) <∞ for all s < s0 and all r sufficiently large,

but Ex(τ sr ) = ∞ for all s > s0 and all x with ‖x‖ > r for r sufficiently
large.

(ii) If β ≥ σ 2
1 /σ

2
2 , then Ex(τ

s
r ) = ∞ for all s > 0 and all x with ‖x‖ > r for

r sufficiently large.

(b) Suppose that β+, β− > 1. Then Ex(τ
s
r ) = ∞ for all s > 0 and all x with

‖x‖ > r for r sufficiently large.

Remark 2

(i) Note that if β < σ 2
1 /σ

2
2 , then s0 > 0, while s0 < 1/2 for all β > 0, in

which case the return time to a bounded set has a heavier tail than that for
one-dimensional simple symmetric random walk.

(ii) The transience result in Theorem 1(a)(ii) is essentially stronger than the claim
in Theorem 2(a)(ii) for β < σ 2

1 /σ
2
2 , so the borderline (recurrent) case β =

σ 2
1 /σ

2
2 is the main content of the latter.

(iii) Part (b) shows that the case β± > 1 is critical: no moments of return times
exist, as in the case of, say, simple symmetric random walk in Z

2 [26, p. 77].

1.3 Opposed Reflection

We now consider the more general case where α+ + α− = 0, i.e., the two reflection
angles are equal but opposite, relative to their respective normal vectors. For α+ =
−α− = 0, this is a particular example of oblique reflection. The phase transition in
β now depends on ρ and α in addition to σ 2

1 and σ 2
2 . Define

βc := βc(Σ, α) := σ
2
1

σ 2
2

+
(
σ 2

2 − σ 2
1

σ 2
2

)

sin2 α + ρ

σ 2
2

sin 2α. (5)



Reflecting Random Walks in Curvilinear Wedges 643

The next result gives the key properties of the critical threshold function βc which
are needed for interpreting our main result.

Proposition 1 For a fixed, positive-definite Σ such that |σ 2
1 − σ 2

2 | + |ρ| > 0, the
function α �→ βc(Σ, α) over the interval [−π2 , π2 ] is strictly positive for |α| ≤ π/2,
with two stationary points, one in (−π2 , 0) and the other in (0, π2 ), at which the
function takes its maximum/minimum values of

1

2
+ σ 2

1

2σ 2
2

± 1

2σ 2
2

√(
σ 2

1 − σ 2
2

)2 + 4ρ2. (6)

The exception is the case where σ 2
1 − σ 2

2 = ρ = 0, when βc = 1 is constant.

Here is the recurrence classification in this setting.

Theorem 3 Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = −α− = α
for |α| < π/2.

(a) Suppose that β+, β− ∈ [0, 1). Let β := max(β+, β−). Then the following
hold.

(i) If β < βc, then ξ is recurrent.
(ii) If β > βc, then ξ is transient.

(iii) If, in addition, (D+) and (C+) hold, then the case β = βc is recurrent.

(b) Suppose that (D+) and (C+) hold, and β+, β− > 1. Then ξ is recurrent.

Remark 3

(i) The threshold (5) is invariant under the map (α, ρ) �→ (−α,−ρ).
(ii) For fixed Σ with |σ 2

1 − σ 2
2 | + |ρ| > 0, Proposition 1 shows that βc is non-

constant and has exactly one maximum and exactly one minimum in (−π2 , π2 ).
Since βc(Σ,±π2 ) = 1, it follows from uniqueness of the minimum that the
minimum is strictly less than 1, and so Theorem 3 shows that there is always
an open interval of α for which there is transience.

(iii) Since βc > 0 always, recurrence is certain for small enough β.
(iv) In the case where σ 2

1 = σ 2
2 and ρ = 0, then βc = 1, so recurrence is certain

for all β+, β− < 1 and all α.
(v) If α = 0, then βc = σ 2

1 /σ
2
2 , so Theorem 3 generalizes Theorem 1.

Next we turn to passage-time moments. We generalize (4) and define

s0 := s0(Σ, α, β) := 1

2

(
1− β

βc

)
, (7)

with βc given by (5). The next result includes Theorem 2 as the special case α = 0.

Theorem 4 Suppose that (N), (Mp), (D), (R), and (C) hold with α+ = −α− = α
for |α| < π/2.
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(a) Suppose that β+, β− ∈ [0, 1). Let β := max(β+, β−). Then the following
hold.

(i) If β < βc, then s0 ∈ (0, 1/2], and Ex(τ
s
r ) < ∞ for all s < s0 and all r

sufficiently large, but Ex(τ sr ) = ∞ for all s > s0 and all x with ‖x‖ > r
for r sufficiently large.

(ii) If β ≥ βc, then Ex(τ
s
r ) = ∞ for all s > 0 and all x with ‖x‖ > r for r

sufficiently large.

(b) Suppose that β+, β− > 1. Then Ex(τ
s
r ) = ∞ for all s > 0 and all x with

‖x‖ > r for r sufficiently large.

1.4 Related Literature

The stability properties of reflecting random walks or diffusions in unbounded
domains in R

d have been studied for many years. A pre-eminent place in the
development of the theory is occupied by processes in the quadrant R2+ or quarter-
lattice Z2+, due to applications arising in queueing theory and other areas. Typically,
the process is assumed to be maximally homogeneous in the sense that the transition
mechanism is fixed in the interior and on each of the two half-lines making up the
boundary. Distinct are the cases where the motion in the interior of the domain has
non-zero or zero drift.

It was in 1961, in part motivated by queueing models, that Kingman [18]
proposed a general approach to the non-zero drift problem on Z

2+ via Lyapunov
functions and Foster’s Markov chain classification criteria [14]. A formal statement
of the classification was given in the early 1970s by Malyshev, who developed
both an analytic approach [22] as well as the Lyapunov function one [23] (the
latter, Malyshev reports, prompted by a question of Kolmogorov). Generically,
the classification depends on the drift vector in the interior and the two boundary
reflection angles. The Lyapunov function approach was further developed, so that
the bounded jumps condition in [23] could be relaxed to finiteness of second
moments [10, 27, 29] and, ultimately, of first moments [13, 30, 33]. The analytic
approach was also subsequently developed [11], and although it seems to be not
as robust as the Lyapunov function approach (the analysis in [22] was restricted
to nearest-neighbour jumps), when it is applicable it can yield very precise infor-
mation: see e.g. [15] for a recent application in the continuum setting. Intrinsically
more complicated results are available for the non-zero drift case in Z

3+ [24] and
Z

4+ [17].
The recurrence classification for the case of zero-drift reflecting random walk in

Z
2+ was given in the early 1990s in [6, 12]; see also [13]. In this case, generically, the

classification depends on the increment covariance matrix in the interior as well as
the two boundary reflection angles. Subsequently, using a semimartingale approach
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extending work of Lamperti [19], passage-time moments were studied in [5], with
refinements provided in [2, 3].

Parallel continuum developments concern reflecting Brownian motion in wedges
in R

2. In the zero-drift case with general (oblique) reflections, in the 1980s
Varadhan and Williams [31] had showed that the process was well-defined, and
then Williams [32] gave the recurrence classification, thus preceding the random
walk results of [6, 12], and, in the recurrent cases, asymptotics of stationary
measures (cf. [4] for the discrete setting). Passage-time moments were later studied
in [7, 25], by providing a continuum version of the results of [5], and in [2], using
discrete approximation [1]. The non-zero drift case was studied by Hobson and
Rogers [16], who gave an analogue of Malyshev’s theorem in the continuum setting.

For domains like our D , Pinsky [28] established recurrence in the case of
reflecting Brownian motion with normal reflections and standard covariance matrix
in the interior. The case of general covariance matrix and oblique reflection does
not appear to have been considered, and neither has the analysis of passage-time
moments. The somewhat related problem of the asymptotics of the first exit time τe
of planar Brownian motion from domains like our D has been considered [8, 9, 20]:
in the case where β+ = β− = β ∈ (0, 1), then logP(τe > t) is bounded above and
below by constants times −t(1−β)/(1+β): see [20] and (for the case β = 1/2) [9].

1.5 Overview of the Proofs

The basic strategy is to construct suitable Lyapunov functions f : R2 → R that
satisfy appropriate semimartingale (i.e., drift) conditions on Ex[f (ξ1)− f (ξ0)] for
x outside a bounded set. In fact, since the Lyapunov functions that we use are most
suitable for the case where the interior increment covariance matrix is Σ = I , the
identity, we first apply a linear transformation T of R2 and work with T ξ . The linear
transformation is described in Sect. 2. Of course, one could combine these two steps
and work directly with the Lyapunov function given by the composition f ◦T for the
appropriate f . However, for reasons of intuitive understanding and computational
convenience, we prefer to separate the two steps.

Let β± < 1. Then for α+ = α− = 0, the reflection angles are both pointing
essentially vertically, with an asymptotically small component in the positive x1
direction. After the linear transformation T , the reflection angles are no longer
almost vertical, but instead are almost opposed at some oblique angle, where the
deviation from direct opposition is again asymptotically small, and in the positive
x1 direction. For this reason, the case α+ = −α− = α = 0 is not conceptually
different from the simpler case where α = 0, because after the linear transformation,
both cases are oblique. In the case α = 0, however, the details are more involved
as both α and the value of the correlation ρ enter into the analysis of the Lyapunov
functions, which is presented in Sect. 3, and is the main technical work of the paper.
For β± > 1, intuition is provided by the case of reflection in the half-plane (see
e.g. [32] for the Brownian case).
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Once the Lyapunov function estimates are in place, the proofs of the main theo-
rems are given in Sect. 4, using some semimartingale results which are variations on
those from [26]. The appendix contains the proof of Proposition 1 on the properties
of the threshold function βc defined at (5).

2 Linear Transformation

The inwards pointing normal vectors to ∂D at (x1, d
±(x1)) are

n±(x1) = 1

r±(x1)

(
a±β±xβ

±−1
1

∓1

)

, where r±(x1) :=
√

1+ (a±)2(β±)2x2β±−2
1 .

Define

n±⊥(x1) := 1

r±(x1)

(
±1

a±β±xβ
±−1

1

)

.

Recall that n±(x1, α
±) is the unit vector at angle α± to n±(x1), with positive angles

measured anticlockwise (for n+) or clockwise (for n−). Then (see Fig. 2 for the case
of n+) we have n±(x1, α

±) = n±(x1) cosα± + n±⊥(x1) sinα±, so

n±(x1, α
±) = 1

r±(x1)

(
sin α± + a±β±xβ±−1

1 cosα±

∓ cosα± ± a±β±xβ±−1
1 sin α±

)

.

Fig. 2 Diagram describing oblique reflection at angle α+ > 0
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In particular, if α+ = −α− = α,

n±(x1, α
±) = 1

r±(x1)

(
± sinα + a±β±xβ±−1

1 cosα

∓ cosα + a±β±xβ±−1
1 sin α

)

=:
(
n±1 (x1, α

±)
n±2 (x1, α

±)

)
. (8)

Recall that Δ = ξ1 − ξ0. Write Δ = (Δ1,Δ2) in components.

Lemma 1 Suppose that (R) holds, with α+ = −α− = α and β+, β− ≥ 0. If
β± < 1, then, for x ∈ S±B , as ‖x‖ → ∞,

Ex Δ1 = ±μ±(x) sinα + a±β±μ±(x)xβ±−1
1 cosα

+O(‖x‖2β±−2)+O(‖x‖−1); (9)

Ex Δ2 = ∓μ±(x) cosα + a±β±μ±(x)xβ±−1
1 sin α

+O(‖x‖2β±−2)+O(‖x‖−1). (10)

If β± > 1, then, for x ∈ S±B , as ‖x‖ → ∞,

Ex Δ1 = μ±(x) cosα ± μ
±(x) sinα

a±β± x
1−β±
1 +O(x2−2β±

1 )+O(‖x‖−1); (11)

Ex Δ2 = μ±(x) sinα ∓ μ
±(x) cosα

a±β±
x

1−β±
1 +O(x2−2β±

1 )+O(‖x‖−1). (12)

Proof Suppose that x ∈ S±B . By (2), we have that ‖Ex Δ − μ±(x)n±(x1, α
±)‖ =

O(‖x‖−1). First suppose that 0 ≤ β± < 1. Then, 1/r±(x1) = 1+O(x2β±−2
1 ), and

hence, by (8),

n±1 (x1, α
±) = ± sin α + a±β±xβ±−1

1 cosα +O(x2β±−2
1 );

n±2 (x1, α
±) = ∓ cosα + a±β±xβ±−1

1 sin α +O(x2β±−2
1 ).

Then, since ‖x‖ = x1 + o(x1) as ‖x‖ → ∞ with x ∈ D , we obtain (9) and (10).
On the other hand, if β± > 1, then

1

r±(x1)
= x

1−β±
1

a±β±
+O(x3−3β±

1 ),
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and hence, by (8),

n±1 (x1, α
±) = cosα ± sin α

a±β±
x

1−β±
1 +O(x2−2β±

1 );

n±2 (x1, α
±) = sin α ∓ cosα

a±β±
x

1−β±
1 +O(x2−2β±

1 ).

The expressions (11) and (12) follow. ��
It is convenient to introduce a linear transformation of R

2 under which the
asymptotic increment covariance matrix Σ appearing in (C) is transformed to the
identity. Define

T :=
(
σ2
s
− ρ
sσ2

0 1
σ2

)

, where s := √
detΣ =

√
σ 2

1 σ
2
2 − ρ2;

recall that σ2, s > 0, since Σ is positive definite. The choice of T is such that
TΣT F = I (the identity), and x �→ T x leaves the horizontal direction unchanged.
Explicitly,

T

(
x1

x2

)
=

(
σ2
s
x1 − ρ

sσ2
x2

1
σ2
x2

)

. (13)

Note that T is positive definite, and so ‖T x‖ is bounded above and below by positive
constants times ‖x‖. Also, if x ∈ D and β+, β− < 1, the fact that |x2| = o(x1)

means that T x has the properties (i) (T x)1 > 0 for all x1 sufficiently large, and (ii)
|(T x)2| = o(|(T x)1|) as x1 →∞. See Fig. 3 for a picture.

The next result describes the increment moment properties of the process under
the transformation T . For convenience, we set Δ̃ := TΔ for the transformed
increment, with components Δ̃i = (TΔ)i .
Lemma 2 Suppose that (D), (R), and (C) hold, with α+ = −α− = α, and
β+, β− ≥ 0. Then, if ‖x‖ → ∞ with x ∈ SI ,

‖Ex Δ̃‖ = o(‖x‖−1), and
∥
∥Ex(Δ̃Δ̃

F)− I∥∥op = o(1). (14)

If, in addition, (D+) and (C+) hold with ε > 0, then, if ‖x‖ → ∞ with x ∈ SI ,

‖Ex Δ̃‖ = O(‖x‖−1−ε), and
∥
∥Ex(Δ̃Δ̃

F)− I∥∥op = O(‖x‖−ε). (15)
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Fig. 3 An illustration of the transformation T with ρ > 0 acting on a domain D with β+ = β− =
β for β ∈ (0, 1) (left) and β > 1 (right). The angle θ2 is given by θ2 = arctan(ρ/s), measured
anticlockwise from the positive horizontal axis

If β± < 1, then, as ‖x‖ → ∞ with x ∈ S±B ,

Ex Δ̃1 = ±σ2μ
±(x)
s

sin α ± ρμ
±(x)
sσ2

cosα + σ2a
±β±μ±(x)
s

x
β±−1
1 cosα

− ρa
±β±μ±(x)
sσ2

x
β±−1
1 sin α +O(‖x‖2β±−2)+O(‖x‖−1);

(16)

Ex Δ̃2 = ∓μ
±(x)
σ2

cosα + a
±β±μ±(x)
σ2

x
β±−1
1 sinα

+O(‖x‖2β±−2)+O(‖x‖−1). (17)

If β± > 1, then, as ‖x‖ → ∞ with x ∈ S±B ,

Ex Δ̃1 = σ2μ
±(x)
s

cosα − ρμ
±(x)
sσ2

sinα ± σ2μ
±(x)

a±β±s
x

1−β±
1 sinα

± ρμ±(x)
a±β±sσ2

x
1−β±
1 cosα +O(x2−2β±

1 )+O(‖x‖−1); (18)

Ex Δ̃2 = μ
±(x)
σ2

sin α ∓ μ±(x)
a±β±σ2

x
1−β±
1 cosα +O(x2−2β±

1 )+O(‖x‖−1).

(19)
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Proof By linearity,

Ex Δ̃ = T Ex Δ, (20)

which, by (D) or (D+), is, respectively, o(‖x‖−1) or O(‖x‖−1−ε) for x ∈ SI . Also,
since TΣT F = I , we have

Ex(Δ̃Δ̃
F)− I = T Ex(ΔΔ

F)T F − I = T (
Ex(ΔΔ

F)−Σ)
T F.

For x ∈ SI , the middle matrix in the last product here has norm o(1) or O(‖x‖−ε),
by (C) or (C+). Thus we obtain (14) and (15). For x ∈ S±B , the claimed results
follow on using (20), (13), and the expressions for Ex Δ in Lemma 1. ��

3 Lyapunov Functions

For the rest of the paper, we suppose that α+ = −α− = α for some |α| < π/2.
Our proofs will make use of some carefully chosen functions of the process. Most
of these functions are most conveniently expressed in polar coordinates.

We write x = (r, θ) in polar coordinates, with angles measured relative to the
positive horizontal axis: r := r(x) := ‖x‖ and θ := θ(x) ∈ (−π, π] is the angle
between the ray through 0 and x and the ray in the Cartesian direction (1, 0), with
the convention that anticlockwise angles are positive. Then x1 = r cos θ and x2 =
r sin θ .

For w ∈ R, θ0 ∈ (−π/2, π/2), and γ ∈ R, define

hw(x) := hw(r, θ) := rw cos(wθ − θ0), and f γw (x) := (hw(T x))γ , (21)

where T is the linear transformation described at (13). The functions hw were used
in analysis of processes in wedges in e.g. [5, 21, 29, 31]. Since the hw are harmonic
for the Laplacian (see below for a proof), Lemma 2 suggests that hw(T ξn) will be
approximately a martingale in SI , and the choice of the geometrical parameter θ0
gives us the flexibility to try to arrange things so that the level curves of hw are
incident to the boundary at appropriate angles relative to the reflection vectors. The
level curves of hw cross the horizontal axis at angle θ0: see Fig. 4, and (33) below.
In the case β± < 1, the interest is near the horizontal axis, and we take θ0 to be
such that the level curves cut ∂D at the reflection angles (asymptotically), so that
hw(T ξn)will be approximately a martingale also in SB . Then adjustingw and γ will
enable us to obtain a supermartingale with the properties suitable to apply some
Foster–Lyapunov theorems. This intuition is solidified in Lemma 4 below, where
we show that the parameters w, θ0, and γ can be chosen so that f γw (ξn) satisfies an
appropriate supermartingale condition outside a bounded set. For the case β± < 1,
since we only need to consider θ ≈ 0, we could replace these harmonic functions in
polar coordinates by suitable polynomial approximations in Cartesian components,
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Fig. 4 Level curves of the function hw(x) with θ0 = π/6 and w = 1/4. The level curves cut the
horizontal axis at angle θ0 to the vertical

but since we also want to consider β± > 1, it is convenient to use the functions in
the form given. When β± > 1, the recurrence classification is particularly delicate,
so we must use another function (see (57) below), although the functions at (21) will
still be used to study passage time moments in that case.

If β+, β− < 1, then θ(x) → 0 as ‖x‖ → ∞ with x ∈ D , which means that,
for any |θ0| < π/2, hw(x) ≥ δ‖x‖w for some δ > 0 and all x ∈ S with ‖x‖
sufficiently large. On the other hand, for β+, β− > 1, we will restrict to the case
with w > 0 sufficiently small such that cos(wθ − θ0) is bounded away from zero,
uniformly in θ ∈ [−π/2, π/2], so that we again have the estimate hw(x) ≥ δ‖x‖w
for some δ > 0 and all x ∈ D , but where now D is close to the whole half-plane
(see Remark 4). In the calculations that follow, we will often use the fact that hw(x)
is bounded above and below by a constant times ‖x‖w as ‖x‖ → ∞ with x ∈ D .

We use the notation Di := d
dxi

for differentials, and for f : R2 → R write Df
for the vector with components (Df )i = Dif . We use repeatedly

D1r = cos θ, D2r = sin θ, D1θ = − sin θ

r
, D2θ = cos θ

r
. (22)

Define

θ1 := θ1(Σ, α) := arctan

(
σ 2

2

s
tan α + ρ

s

)

∈ (−π/2, π/2). (23)
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For β± > 1, we will also need

θ2 := θ2(Σ) := arctan
(ρ
s

)
∈ (−π/2, π/2), (24)

and θ3 := θ3(Σ, α) ∈ (−π, π) for which

sin θ3 = s sin α

σ2d
, and cos θ3 = σ

2
2 cosα − ρ sin α

σ2d
, (25)

where

d := d(Σ, α) :=
√
σ 2

2 cos2 α − 2ρ sinα cosα + σ 2
1 sin2 α. (26)

The geometric interpretation of θ1, θ2, and θ3 is as follows.

• The angle between (0,±1) and T (0,±1) has magnitude θ2. Thus, if β± < 1,
then θ2 is, as x1 → ∞, the limiting angle of the transformed inwards pointing
normal at x1 relative to the vertical. On the other hand, if β± > 1, then θ2 is, as
x1 → ∞, the limiting angle, relative to the horizontal, of the inwards pointing
normal to T ∂D . See Fig. 3.

• The angle between (0,−1) and T (sinα,− cosα) is θ1. Thus, if β± < 1,
then θ1 is, as x1 → ∞, the limiting angle between the vertical and the
transformed reflection vector. Since the normal in the transformed domain
remains asymptotically vertical, θ1 is in this case the limiting reflection angle,
relative to the normal, after the transformation.

• The angle between (1, 0) and T (cosα, sin α) is θ3. Thus, if β± > 1, then θ3
is, as x1 → ∞, the limiting angle between the horizontal and the transformed
reflection vector. Since the transformed normal is, asymptotically, at angle θ2
relative to the horizontal, the limiting reflection angle, relative to the normal,
after the transformation is in this case θ3 − θ2.

We need two simple facts.

Lemma 3 We have (i) infα∈[− π2 , π2 ] d(Σ, α) > 0, and (ii) |θ3 − θ2| < π/2.

Proof For (i), from (26) we may write

d2 = σ 2
2 +

(
σ 2

1 − σ 2
2

)
sin2 α − ρ sin 2α. (27)

If σ 2
1 = σ 2

2 , then, by Lemma 11, the extrema over α ∈ [−π2 , π2 ] of (27) are

σ 2
2 +

σ 2
1 − σ 2

2

2

(

1±
√

1+ 4ρ2

(σ 2
1 − σ 2

2 )
2

)

.
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Hence

d2 ≥ σ
2
1 + σ 2

2

2
− 1

2

√
(σ 2

1 − σ 2
2 )

2 + 4ρ2,

which is strictly positive since ρ2 < σ 2
1 σ

2
2 . If σ 2

1 = σ 2
2 , then d2 ≥ σ 2

2 − |ρ|, and
|ρ| < |σ1σ2| = σ 2

2 , so d is also strictly positive in that case.
For (ii), we use the fact that cos(θ3 − θ2) = cos θ3 cos θ2 + sin θ3 sin θ2, where,

by (24), sin θ2 = ρ
σ1σ2

and cos θ2 = s
σ1σ2

, and (25), to get cos(θ3−θ2) = s
σ1d

cosα >
0. Since |θ3 − θ2| < 3π/2, it follows that |θ3 − θ2| < π/2, as claimed. ��

We estimate the expected increments of our Lyapunov functions in two stages:
the main term comes from a Taylor expansion valid when the jump of the walk is
not too big compared to its current distance from the origin, while we bound the
(smaller) contribution from big jumps using the moments assumption (Mp). For the
first stage, let Bb(x) := {z ∈ R

2 : ‖x − z‖ ≤ b} denote the (closed) Euclidean
ball centred at x with radius b ≥ 0. We use the multivariable Taylor theorem in
the following form. Suppose that f : R2 → R is thrice continuously differentiable
in Bb(x). Recall that Df (x) is the vector function whose components are Dif (x).
Then, for y ∈ Bb(x),

f (x + y) = f (x)+ 〈Df (x), y〉 + y2
1
D2

1f (x)

2
+ y2

2
D2

2f (x)

2
+ y1y2D1D2f (x)

+ R(x, y), (28)

where, for all y ∈ Bb(x), |R(x, y)| ≤ C‖y‖3R(x) for an absolute constant C <∞
and

R(x) := max
i,j,k

sup
z∈Bb(x)

∣
∣DiDjDkf (z)

∣
∣ .

For dealing with the large jumps, we observe the useful fact that if p > 2 is a
constant for which (1) holds, then for some constant C <∞, all δ ∈ (0, 1), and all
q ∈ [0, p],

Ex

[‖Δ‖q1{‖Δ‖ ≥ ‖x‖δ}] ≤ C‖x‖−δ(p−q), (29)

for all ‖x‖ sufficiently large. To see (29), write ‖Δ‖q = ‖Δ‖p‖Δ‖q−p and use the
fact that ‖Δ‖ ≥ ‖x‖δ to bound the second factor.

Here is our first main Lyapunov function estimate.

Lemma 4 Suppose that (Mp), (D), (R), and (C) hold, with p > 2, α+ = −α− = α
for |α| < π/2, and β+, β− ≥ 0. Let w, γ ∈ R be such that 2− p < γw < p. Take
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θ0 ∈ (−π/2, π/2). Then as ‖x‖ → ∞ with x ∈ SI ,

E[f γw (ξn+1)− f γw (ξn) | ξn = x] =
γ (γ − 1)

2
w2(hw(T x))

γ−2‖T x‖2w−2

+ o(‖x‖γw−2). (30)

We separate the boundary behaviour into two cases.

(i) If 0 ≤ β± < 1, take θ0 = θ1 given by (23). Then, as ‖x‖ → ∞ with x ∈ S±B ,

E[f γw (ξn+1)− f γw (ξn) | ξn = x]

= γw‖T x‖w−1 (hw(T x))
γ−1 a

±μ±(x)σ2 cos θ1

s cosα

(
β± − (1−w)βc

)
x
β±−1
1

+ o(‖x‖wγ+β±−2), (31)

where βc is given by (5).
(ii) If β± > 1, suppose that w ∈ (0, 1/2) and θ0 = θ0(Σ, α,w) = θ3 − (1−w)θ2,

where θ2 and θ3 are given by (24) and (25), such that supθ∈[− π2 , π2 ] |wθ − θ0| <
π/2. Then, with d = d(Σ, α) as defined at (26), as ‖x‖ → ∞ with x ∈ S±B ,

E[f γw (ξn+1)− f γw (ξn) | ξn = x]

= γw‖T x‖w−1 (hw(T x))
γ−1 dμ

±(x)
s

(cos((1−w)(π/2))+ o(1)) .
(32)

Remark 4 We can choose w > 0 small enough so that |θ3 − (1− w)θ2| < π/2, by
Lemma 3(ii), and so if θ0 = θ3 − (1 − w)θ2, we can always choose w > 0 small
enough so that supθ∈[− π2 , π2 ] |wθ − θ0| < π/2, as required for the β± > 1 part of
Lemma 4.

Proof (of Lemma 4) Differentiating (21) and using (22) we see that

D1hw(x) = wrw−1 cos ((w − 1)θ − θ0) , and

D2hw(x) = −wrw−1 sin ((w − 1)θ − θ0) . (33)

Moreover,

D2
1hw(x) = w(w − 1)rw−2 cos ((w − 2)θ − θ0) = −D2

2hw(x),

verifying that hw is harmonic. Also, for any i, j, k, |DiDjDkhw(x)| = O(rw−3).

Writing hγw(x) := (hw(x))γ , we also have thatDih
γ
w(x) = γ hγ−1

w (x)Dihw(x), that

DiDjh
γ
w(x) = γ hγ−1

w (x)DiDjhw(x)+ γ (γ − 1)hγ−2
w (x)(Dihw(x))(Djhw(x)),
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and |DiDjDkhγw(x)| = O(rγw−3). We apply Taylor’s formula (28) in the ball
Br/2(x) together with the harmonic property of hw, to obtain, for y ∈ Br/2(x),

hγw(x + y) = hγw(x)+ γ 〈Dhw(x), y〉hγ−1
w (x)+ γ (γ − 1)

2
〈Dhw(x), y〉2hγ−2

w (x)

+ γ
(
(y2

1 − y2
2)D

2
1hw(x)

2
+ y1y2D1D2hw(x)

)

hγ−1
w (x)

+ R(x, y), (34)

where |R(x, y)| ≤ C‖y‖3‖x‖γw−3, using the fact that hw(x) is bounded above and
below by a constant times ‖x‖w .

Let Ex := {‖Δ‖ < ‖x‖δ}, where we fix a constant δ satisfying

max{2, γw, 2 − γw}
p

< δ < 1; (35)

such a choice of δ is possible since p > 2 and 2− p < γw < p. If ξ0 = x and Ex
occurs, then T x + Δ̃ ∈ Br/2(T x) for all ‖x‖ sufficiently large. Thus, conditioning
on ξ0 = x, on the event Ex we may use the expansion in (34) for hγw(T x + Δ̃),
which, after taking expectations, yields

Ex

[
(f γw (ξ1)− f γw (ξ0))1Ex

] = γ (hw(T x))γ−1
Ex

[〈Dhw(T x), Δ̃〉1Ex
]

+ γ (hw(T x))γ−1

[
D2

1hw(T x)Ex
[
(Δ̃2

1 − Δ̃2
2)1Ex

]

2
+D1D2hw(T x)Ex

[
Δ̃1Δ̃21Ex

]
]

+ γ (γ − 1)

2
(hw(T x))

γ−2
Ex

[〈Dhw(T x), Δ̃〉21Ex
]+ Ex

[
R(T x, Δ̃)1Ex

]
. (36)

Let p′ = p ∧ 3, so that (1) also holds for p′ ∈ (2, 3]. Then, writing ‖Δ̃‖3 =
‖Δ̃‖p′ ‖Δ̃‖3−p′ ,

Ex

[|R(T x, Δ̃)|1Ex
] ≤ C‖x‖γw−3+(3−p′)δ

Ex

[‖Δ̃‖p′] = o(‖x‖γw−2),

since (3 − p′)δ < 1. If x ∈ SI , then (14) shows |Ex〈Dhw(T x), Δ̃〉| = o(‖x‖w−2),
so

Ex

∣
∣〈Dhw(T x), Δ̃〉1Ex

∣
∣ ≤ C‖x‖w−1

Ex(‖Δ‖1Ec
x
)+ o(‖x‖w−2).

Note that, by (35), δ > 2
p
> 1
p−1 . Then, using the q = 1 case of (29), we get

Ex

∣∣〈Dhw(T x), Δ̃〉1Ex
∣∣ = o(‖x‖w−2). (37)
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A similar argument using the q = 2 case of (29) gives

Ex

[〈Dhw(T x), Δ̃〉21Ec
x

] ≤ C‖x‖2w−2−δ(p−2) = o(‖x‖2w−2).

If x ∈ SI , then (14) shows that Ex(Δ̃2
1 − Δ̃2

2) and Ex(Δ̃1Δ̃2) are both o(1), and
hence, by the q = 2 case of (29) once more, we see that Ex [|Δ̃2

1 − Δ̃2
2|1Ex ] and

Ex [|Δ̃1Δ̃2|1Ex ] are both o(1). Moreover, (14) also shows that

Ex〈Dhw(T x), Δ̃〉2 = Ex

(
(Dhw(T x))

FΔ̃Δ̃FDhw(T x)
)

= (Dhw(T x))FDhw(T x)+ o(‖x‖2w−2)

= (D1hw(T x))
2 + (D2hw(T x))

2 + o(‖x‖2w−2).

Putting all these estimates into (36) we get, for x ∈ SI ,

Ex

[
(f
γ
w (ξ1)− f γw (ξ0))1Ex

] = γ (γ − 1)

2
(hw(T x))

γ−2
(
(D1hw(T x))

2 + (D2hw(T x))
2
)

+ o(‖x‖γw−2). (38)

On the other hand, given ξ0 = x, if γw ≥ 0, by the triangle inequality,

∣
∣f γw (ξ1)− f γw (x)

∣
∣ ≤ ‖T ξ1‖γw + ‖T x‖γw ≤ 2

(‖T ξ1‖ + ‖T x‖)γw

≤ 2
(
2‖T x‖ + ‖Δ̃‖)γw. (39)

It follows from (39) that |f γw (ξ1) − f γw (x)|1Ec
x
≤ C‖Δ‖γw/δ , for some constant

C <∞ and all ‖x‖ sufficiently large. Hence

Ex

∣
∣(f γw (ξ1)− f γw (ξ0))1Ec

x

∣
∣ ≤ C Ex

[‖Δ‖γw/δ1Ec
x

]
.

Since δ > γw
p

, by (35), we may apply (29) with q = γw
δ

to get

Ex

∣
∣(f γw (ξ1)− f γw (ξ0))1Ec

x

∣
∣ = O(‖x‖γw−δp) = o(‖x‖γw−2), (40)

since δ > 2
p

. If wγ < 0, then we use the fact that f γw is uniformly bounded to get

Ex

∣
∣(f γw (ξ1)− f γw (ξ0))1Ec

x

∣
∣ ≤ CPx(Ec

x) = O(‖x‖−δp),

by the q = 0 case of (29). Thus (40) holds in this case too, since γw > 2 − δp by
choice of δ at (35). Then (30) follows from combining (38) and (40) with (33).

Next suppose that x ∈ SB . Truncating (34), we see that for all y ∈ Br/2(x),

hγw(x + y) = hγw(x)+ γ 〈Dhw(x), y〉hγ−1
w (x)+ R(x, y), (41)
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where now |R(x, y)| ≤ C‖y‖2‖x‖γw−2. It follows from (41) and (Mp) that

Ex

[
(f γw (ξ1)− f γw (ξ0))1Ex

] = γ hγ−1
w (T x)Ex

[〈Dhw(T x), Δ̃〉1Ex
]+O(‖x‖γw−2).

By the q = 1 case of (29), since δ > 1
p−1 , we see that Ex [〈Dhw(T x), Δ̃〉1Ec

x
] =

o(‖x‖w−2), while the estimate (40) still applies, so that

Ex

[
f γw (ξ1)− f γw (ξ0)

] = γ hγ−1
w (T x)Ex〈Dhw(T x), Δ̃〉 +O(‖x‖γw−2). (42)

From (33) we have

Dhw(T x) = w‖T x‖w−1
(

cos((1−w)θ(T x)+ θ0)

sin((1−w)θ(T x)+ θ0)

)
. (43)

First suppose that β± < 1. Then, by (13), for x ∈ S±B , x2 = ±a±xβ±1 +O(1) and

sin θ(T x) = ± sa
±

σ 2
2

x
β±−1
1 +O(x2β±−2

1 )+O(x−1
1 ).

Since arcsin z = z+O(z3) as z→ 0, it follows that

θ(T x) = ± sa
±

σ 2
2

x
β±−1
1 +O(x2β±−2

1 )+O(x−1
1 ).

Hence

cos ((1−w)θ(T x) + θ0) = cos θ0 ∓ (1− w)sa
±
σ 2

2

x
β±−1
1 sin θ0 +O(x2β±−2

1 )+O(x−1
1 );

sin ((1−w)θ(T x) + θ0) = sin θ0 ± (1− w)sa
±
σ 2

2

x
β±−1
1 cos θ0 +O(x2β±−2

1 )+O(x−1
1 ).

Then (43) with (16) and (17) shows that

Ex〈Dhw(T x), Δ̃〉

= w‖T x‖w−1μ
±(x) cos θ0 cosα

sσ2

(
±A1 + (a±A2 + o(1))xβ

±−1
1

)
, (44)

where, for |θ0| < π/2, A1 = σ 2
2 tanα + ρ − s tan θ0, and

A2 = σ 2
2 β

± − ρβ± tanα − (1−w)s tan θ0 tanα − (1− w) sρ
σ 2

2

tan θ0

+ sβ± tan θ0 tanα − (1− w) s
2

σ 2
2

.
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Now take θ0 = θ1 as given by (23), so that s tan θ0 = σ 2
2 tanα + ρ. Then A1 = 0,

eliminating the leading order term in (44). Moreover, with this choice of θ0 we get,
after some further cancellation and simplification, that

A2 = σ
2
2

(
β± − (1−w)βc

)

cos2 α
,

with βc as given by (5). Thus with (44) and (42) we verify (31).
Finally suppose that β± > 1, and restrict to the case w ∈ (0, 1/2). Let θ2 ∈

(−π/2, π/2) be as given by (24). Then if x = (0, x2), we have θ(T x) = θ2 − π
2 if

x2 < 0 and θ(T x) = θ2 + π
2 if x2 > 0 (see Fig. 3). It follows from (13) that

θ(T x) = θ2 ± π
2
+O(x1−β±

1 ), for x ∈ S±B ,

as ‖x‖ → ∞ (and x1 →∞). Now (43) with (18) and (19) shows that

Ex〈Dhw(T x), Δ̃〉 = w‖T x‖w−1μ
±(x)
sσ2

(
σ 2

2 cosα cos ((1−w)θ(T x)+ θ0)

− ρ sinα cos ((1−w)θ(T x)+ θ0)

+ s sinα sin ((1−w)θ(T x)+ θ0)+O(x1−β±
1 )

)
. (45)

Set φ := (1−w)π2 . Choose θ0 = θ3− (1−w)θ2, where θ3 ∈ (−π, π) satisfies (25).
Then we have that, for x ∈ S±B ,

cos ((1−w)θ(T x)+ θ0) = cos (θ3 ± φ)+O(x1−β±
1 )

= cosφ cos θ3 ∓ sin φ sin θ3 +O(x1−β±
1 ). (46)

Similarly, for x ∈ S±B ,

sin ((1− w)θ(T x)+ θ0) = cosφ sin θ3 ± sinφ cos θ3 +O(x1−β±
1 ). (47)

Using (46) and (47) in (45), we obtain

Ex〈Dhw(T x), Δ̃〉 = w‖T x‖w−1μ
±(x)
sσ2

(A3 cosφ ∓ A4 sin φ + o(1)) ,

where

A3 =
(
σ 2

2 cosα − ρ sinα
)

cos θ3 + s sinα sin θ3

= σ2d cos2 θ3 + σ2d sin2 θ3 = σ2d,
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by (25), and, similarly,

A4 =
(
σ 2

2 cosα − ρ sin α
)

sin θ3 − s sin α cos θ3 = 0.

Then with (42) we obtain (32). ��
In the case where β+, β− < 1 with β+ = β−, we will in some circumstances

need to modify the function f γw so that it can be made insensitive to the behaviour
near the boundary with the smaller of β+, β−. To this end, define forw, γ, ν, λ ∈ R,

Fγ,νw (x) := f γw (x)+ λx2‖T x‖2ν. (48)

We state a result for the case β− < β+; an analogous result holds if β+ < β−.

Lemma 5 Suppose that (Mp), (D), (R), and (C) hold, with p > 2, α+ = −α− = α
for |α| < π/2, and 0 ≤ β− < β+ < 1. Letw, γ ∈ R be such that 2−p < γw < p.
Take θ0 = θ1 ∈ (−π/2, π/2) given by (23). Suppose that

γw + β− − 2 < 2ν < γw + β+ − 2.

Then as ‖x‖ → ∞ with x ∈ SI ,

E[Fγ,νw (ξn+1)− Fγ,νw (ξn) | ξn = x]

= 1

2
γ (γ − 1)(w2 + o(1))(hw(T x))γ−2‖T x‖2w−2. (49)

As ‖x‖ → ∞ with x ∈ S+B ,

E[Fγ,νw (ξn+1)− Fγ,νw (ξn) | ξn = x]

= γw‖T x‖w−1 (hw(T x))
γ−1 a

+μ+(x)σ2 cos θ1

s cosα

(
β+ − (1−w)βc

)
x
β+−1
1

+ o(‖x‖wγ+β+−2). (50)

As ‖x‖ → ∞ with x ∈ S−B ,

E[Fγ,νw (ξn+1)− Fγ,νw (ξn) | ξn = x] = λ‖T x‖2ν (
μ−(x) cosα + o(1)) . (51)

Proof Suppose that 0 ≤ β− < β+ < 1. As in the proof of Lemma 4, let Ex =
{‖Δ‖ < ‖x‖δ}, where δ ∈ (0, 1) satisfies (35). Set vν(x) := x2‖T x‖2ν . Then, using
Taylor’s formula in one variable, for x, y ∈ R

2 with y ∈ Br/2(x),

‖x + y‖2ν = ‖x‖2ν
(

1+ 2〈x, y〉 + ‖y‖2

‖x‖2

)ν
= ‖x‖2ν + 2ν〈x, y〉‖x‖2ν−2 + R(x, y),
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where |R(x, y)| ≤ C‖y‖2‖x‖2ν−2. Thus, for x ∈ S with y ∈ Br/2(x) and x+y ∈ S,

vν(x + y)− vν(x) = (x2 + y2)‖T x + T y‖2ν − x2‖T x‖2ν

= y2‖T x‖2ν + 2νx2〈T x, T y〉‖T x‖2ν−2 + 2νy2〈T x, T y〉‖T x‖2ν−2

+ R(x, y), (52)

where now |R(x, y)| ≤ C‖y‖2‖x‖2ν+β+−2, using the fact that both |x2| and |y2| are
O(‖x‖β+). Taking x = ξ0 and y = Δ so Ty = Δ̃, we obtain

Ex

[
(vν(ξ1)−vν(ξ0))1Ex

] = ‖T x‖2ν
Ex

[
Δ21Ex

]+2νx2‖T x‖2ν−2
Ex

[〈T x, Δ̃〉1Ex
]

+ 2ν‖T x‖2ν−2
E

[
Δ2〈T x, Δ̃〉1Ex

]

+ E
[
R(x,Δ)1Ex

]
. (53)

Suppose that x ∈ SI . Similarly to (37), we have Ex [〈T x, Δ̃〉1Ex ] = o(1), and,
by similar arguments using (29), E[Δ21Ex ] = o(‖x‖−1), Ex |Δ2〈T x, Δ̃〉1Ec

x
| =

o(‖x‖), and Ex |R(x,Δ)1Ex | = o(‖x‖2ν−1), since β+ < 1. Also, by (13),

Ex(Δ2〈T x, Δ̃〉) = σ2 Ex(Δ̃2〈T x, Δ̃〉)
= σ2(T x)1 Ex(Δ̃1Δ̃2)+ σ2(T x)2 Ex(Δ̃

2
2).

Here, by (14), Ex(Δ̃1Δ̃2) = o(1) and Ex(Δ̃
2
2) = O(1), while σ2(T x)2 = x2 =

O(‖x‖β+). Thus Ex(Δ2〈T x, Δ̃〉) = o(‖x‖). Hence also

Ex

[
Δ2〈T x, Δ̃〉1Ex

] = o(‖x‖).

Thus from (53) we get that, for x ∈ SI ,

Ex

[
(vν(ξ1)− vν(ξ0))1Ex

] = o(‖x‖2ν−1). (54)

On the other hand, since |vν(x + y)− vν(x)| ≤ C(‖x‖ + ‖y‖)2ν+β+ we get

Ex

[|vν(ξ1)− vν(ξ0)|1Ec
x

] ≤ C Ex

[‖Δ‖(2ν+β+)/δ1Ec
x

]
.

Here 2ν+β+ < 2ν+1 < γw < δp, by choice of ν and (35), so we may apply (29)
with q = (2ν + β+)/δ to get

Ex

[|vν(ξ1)− vν(ξ0)|1Ec
x

] = O(‖x‖2ν+β+−δp) = o(‖x‖2ν−1), (55)

since δp > 2, by (35). Combining (54), (55) and (30), we obtain (49), provided that
2ν − 1 < γw − 2, which is the case since 2ν < γw + β+ − 2 and β+ < 1.
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Now suppose that x ∈ S±B . We truncate (52) to see that, for x ∈ S with y ∈
Br/2(x) and x + y ∈ S,

vν(x + y)− vν(x) = y2‖T x‖2ν + R(x, y),

where now |R(x, y)| ≤ C‖y‖‖x‖2ν+β±−1, using the fact that for x ∈ S±B , |x2| =
O(‖x‖β±). It follows that, for x ∈ S±B ,

Ex

[
(vν(ξ1)− vν(ξ0))1Ex

] = ‖T x‖2ν
Ex

[
Δ21Ex

]+O(‖x‖2ν+β±−1).

By (29) and (35) we have that E[|Δ2|1Ec
x
] = O(‖x‖−δ(p−1)) = o(‖x‖−1), while if

x ∈ S±B , then, by (10), Ex Δ2 = ∓μ±(x) cosα + O(‖x‖β±−1). On the other hand,
the estimate (55) still applies, so we get, for x ∈ S±B ,

Ex [vν(ξ1)− vν(ξ0)] = ∓‖T x‖2νμ±(x) cosα +O(‖x‖2ν+β±−1). (56)

If we choose ν such that 2ν < γw + β+ − 2, then we combine (56) and (31)
to get (50), since the term from (31) dominates. If we choose ν such that 2ν >
γw + β− − 2, then the term from (56) dominates that from (31), and we get (51).

��
In the critically recurrent cases, where max(β+, β−) = βc ∈ (0, 1) or β+, β− >

1, in which no passage-time moments exist, the functions of polynomial growth
based on hw as defined at (21) are not sufficient to prove recurrence. Instead we
need functions which grow more slowly. For η ∈ R let

h(x) := h(r, θ) := log r + ηθ, and �(x) := logh(T x), (57)

where we understand log y to mean max(1, log y). The function h is again harmonic
(see below) and was used in the context of reflecting Brownian motion in a wedge
in [31]. Set

η0 := η0(Σ, α) := σ
2
2 tan α + ρ

s
, and η1 := η1(Σ, α) := σ

2
1 tan α − ρ

s
. (58)

Lemma 6 Suppose that (Mp), (D+), (R), and (C+) hold, with p > 2, ε > 0,
α+ = −α− = α for |α| < π/2, and β+, β− ≥ 0. For any η ∈ R, as ‖x‖ → ∞
with x ∈ SI ,

E[�(ξn+1)− �(ξn) | ξn = x] = − 1+ η2 + o(1)
2‖T x‖2(log ‖T x‖)2 . (59)
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If 0 ≤ β± < 1, take η = η0 as defined at (58). Then, as ‖x‖ → ∞ with x ∈ S±B ,

E[�(ξn+1)− �(ξn) | ξn = x]

= σ
2
2 a

±μ±(x)
s2 cosα

1

‖T x‖2 log ‖T x‖
(
(β± − βc)x

β±
1 +O(‖x‖2β±−1)+O(1)

)
.

(60)

If β± > 1, take η = η1 as defined at (58). Then as ‖x‖ → ∞ with x ∈ S±B ,

E[�(ξn+1)− �(ξn) | ξn = x]

= μ±(x)
s2 cosα

x1

‖T x‖2 log ‖T x‖

(

σ 2
1 sin2 α + σ 2

2 cos2 α − σ 2
1

β±
− ρ sin 2α + o(1)

)

.

(61)

Proof Given η ∈ R, for r0 = r0(η) = exp(e + |η|π), we have from (58) that both
h and logh are infinitely differentiable in the domain Rr0 := {x ∈ R

2 : x1 >

0, r(x) > r0}. Differentiating (58) and using (22) we obtain, for x ∈ Rr0 ,

D1h(x) = 1

r
(cos θ − η sin θ) , and D2h(x) = 1

r
(sin θ + η cos θ) . (62)

We verify that h is harmonic in Rr0 , since

D2
1h(x) =

η sin 2θ

r2 − cos 2θ

r2 = −D2
2h(x).

Also, for any i, j, k, |DiDjDkh(x)| = O(r−3). Moreover, Di logh(x) =
(h(x))−1Dih(x),

DiDj logh(x) = DiDjh(x)
h(x)

− (Dih(x))(Djh(x))
(h(x))2

,

and |DiDjDk logh(x)| = O(r−3(log r)−1). Recall that Dh(x) is the vector
function whose components are Dih(x). Then Taylor’s formula (28) together with
the harmonic property of h shows that for x ∈ R2r0 and y ∈ Br/2(x),

logh(x + y) = logh(x)+ 〈Dh(x), y〉
h(x)

+ (y
2
1 − y2

2 )D
2
1h(x)

2h(x)
+ y1y2D1D2h(x)

h(x)

− 〈Dh(x), y〉2
2(h(x))2

+ R(x, y), (63)
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where |R(x, y)| ≤ C‖y‖3‖x‖−3(log ‖x‖)−1 for some constant C < ∞, all
y ∈ Br/2(x), and all ‖x‖ sufficiently large. As in the proof of Lemma 4, let
Ex = {‖Δ‖ < ‖x‖δ} for δ ∈ ( 2

p
, 1). Then applying the expansion in (63) to

logh(T x + Δ̃), conditioning on ξ0 = x, and taking expectations, we obtain, for
‖x‖ sufficiently large,

Ex

[
(�(ξ1)− �(ξ0))1Ex

] = Ex

[〈Dh(T x), Δ̃〉1Ex
]

h(T x)
+ D

2
1h(T x)Ex

[
(Δ̃2

1 − Δ̃2
2)1Ex

]

2h(T x)

+ D1D2h(T x)Ex
[
Δ̃1Δ̃21Ex

]

h(T x)
− Ex

[〈Dh(T x), Δ̃〉21Ex
]

2(h(T x))2
+ Ex

[
R(T x, Δ̃)1Ex

]
.

(64)

Let p′ ∈ (2, 3] be such that (1) holds. Then

Ex

∣
∣R(T x, Δ̃)1Ex

∣
∣ ≤ C‖x‖−3+(3−p′)δ

Ex(‖Δ‖p′) = O(‖x‖−2−ε′),

for some ε′ > 0.
Suppose that x ∈ SI . By (15), Ex(Δ̃1Δ̃2) = O(‖x‖−ε) and, by (29),

Ex |Δ̃1Δ̃21Ec
x
| ≤ C E[‖Δ‖21Ec

x
] = O(‖x‖−ε′), for some ε′ > 0. Thus

Ex(Δ̃1Δ̃21Ex ) = O(‖x‖−ε′). A similar argument gives the same bound for
Ex [(Δ̃2

1 − Δ̃2
2)1Ex ]. Also, from (15) and (62), Ex(〈Dh(T x), Δ̃〉) = O(‖x‖−2−ε)

and, by (29), Ex |〈Dh(T x), Δ̃〉1Ec
x
| = O(‖x‖−2−ε′) for some ε′ > 0. Hence

Ex [〈Dh(T x), Δ̃〉1Ex ] = O(‖x‖−2−ε′). Finally, by (15) and (62),

Ex〈Dh(T x), Δ̃〉2 = Ex

(
(Dh(T x))FΔ̃Δ̃FDh(T x)

)

= (Dh(T x))FDh(T x)+O(‖x‖−2−ε)

= (D1h(T x))
2 + (D2h(T x))

2 +O(‖x‖−2−ε),

while, by (29), Ex |〈Dh(T x), Δ̃〉21Ec
x
| = O(‖x‖−2−ε′). Putting all these estimates

into (64) gives

Ex

[
(�(ξ1)− �(ξ0))1Ex

] = − (D1h(T x))
2 + (D2h(T x))

2

2(h(T x))2
+O(‖x‖−2−ε′),

for some ε′ > 0. On the other hand, for all ‖x‖ sufficiently large, |�(x+y)−�(x)| ≤
C log log ‖x‖ + C log log ‖y‖. For any p > 2 and δ ∈ ( 2

p
, 1), we may (and do)

choose q > 0 sufficiently small such that δ(p − q) > 2, and then, by (29),

Ex

[
(�(ξ1)− �(ξ0))1Ec

x

] ≤ C Ex

[‖Δ‖q1Ec
x

]

= O(‖x‖−δ(p−q)) = O(‖x‖−2−ε′), (65)
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for some ε′ > 0. Thus we conclude that

Ex

[
�(ξ1)− �(ξ0)

] = − (D1h(T x))
2 + (D2h(T x))

2

2(h(T x))2
+O(‖x‖−2−ε′),

for some ε′ > 0. Then (59) follows from (62).
Next suppose that x ∈ SB . Truncating (63), we have for x ∈ R2r0 and y ∈

Br/2(x),

logh(x + y) = logh(x)+ 〈Dh(x), y〉
h(x)

+ R(x, y),

where now |R(x, y)| ≤ C‖y‖2‖x‖−2(log ‖x‖)−1 for ‖x‖ sufficiently large. Hence

Ex

[
(�(ξ1)− �(ξ0))1Ex

] = Ex

[〈Dh(T x), Δ̃〉1Ex
]+O(‖x‖−2)

h(T x)
.

Then by (65) and the fact that Ex |〈Dh(T x), Δ̃〉1Ec
x
| = O(‖x‖−2−ε′) (as above),

Ex

[
�(ξ1)− �(ξ0)

] = Ex

[〈Dh(T x), Δ̃〉]+O(‖x‖−2)

h(T x)
. (66)

From (62) we have

Dh(x) = 1

‖x‖2

(
x1 − ηx2

x2 + ηx1

)

, and hence Dh(T x) = 1

‖T x‖2

(
σ2
s x1 − ρ

sσ2
x2 − η

σ2
x2

1
σ2
x2 + ησ2

s x1 − ηρ
sσ2
x2

)

,

using (13). If β± < 1 and x ∈ S±B , we have from (16) and (17) that

Ex〈Dh(T x), Δ̃〉

= μ
±(x)
s2

1

‖T x‖2

{
a±

[ (
sη(β± − 1)− ρ(1+ β±)) sinα +

(
σ 2

2 β
± − σ 2

1

)
cosα

]
x
β±
1

±
[
σ 2

2 sinα + (ρ − sη) cosα
]
x1 +O(x2β±−1

1 )+O(1)
}
.

Taking η = η0 as given by (58), the ±x1 term vanishes; after simplification, we get

Ex〈Dh(T x), Δ̃〉 = σ 2
2 a

±μ±(x)
‖T x‖2s2 cosα

((
β± − βc

)
x
β±
1 +O(x2β±−1

1 )+O(1)
)
.

(67)

Using (67) in (66) gives (60).
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On the other hand, if β± > 1 and x ∈ S±B , we have from (18) and (19) that

Ex 〈Dh(T x), Δ̃〉

= μ
±(x)
s2

1

‖T x‖2

{
1

β±
[ (
sη(β± − 1)− ρ(1+ β±)) sinα +

(
σ 2

2 β
± − σ 2

1

)
cos α

]
x1

± a±
[
σ 2

1 sinα − (ρ + sη) cos α
]
x
β±
1 +O(x2−β±

1 )+O(1)
}
.

Taking η = η1 as given by (58), the ±xβ±1 term vanishes, and we get

Ex 〈Dh(T x), Δ̃〉 = μ±(x)
s2 cos α

x1

‖T x‖2

(

σ 2
1 sin2 α + σ 2

2 cos2 α − σ 2
1
β± − ρ sin 2α + o(1)

)

,

as ‖x‖ → ∞ (and x1 →∞). Then using the last display in (66) gives (61). ��
The function � is not by itself enough to prove recurrence in the critical

cases, because the estimates in Lemma 6 do not guarantee that � satisfies a
supermartingale condition for all parameter values of interest. To proceed, we
modify the function slightly to improve its properties near the boundary. In the case
where max(β+, β−) = βc ∈ (0, 1), the following function will be used to prove
recurrence,

gγ (x) := gγ (r, θ) := �(x)+ θ2

(1+ r)γ ,

where the parameter η in � is chosen as η = η0 as given by (58).

Lemma 7 Suppose that (Mp), (D+), (R), and (C+) hold, with p > 2, ε > 0,
α+ = −α− = α for |α| < π/2, and β+, β− ∈ (0, 1) with β+, β− ≤ βc. Let
η = η0, and suppose

0 < γ < min(β+, β−, 1− β+, 1− β−, p − 2).

Then as ‖x‖ → ∞ with x ∈ SI ,

E[gγ (ξn+1)− gγ (ξn) | ξn = x] = − 1+ η2 + o(1)
2‖T x‖2(log ‖T x‖)2 . (68)

Moreover, as ‖x‖ → ∞ with x ∈ S±B ,

E[gγ (ξn+1)− gγ (ξn) | ξn = x] ≤ −2a±μ±(x)(cosα + o(1))‖x‖β±−2−γ .
(69)
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Proof Set uγ (x) := uγ (r, θ) := θ2(1+ r)−γ , and note that, by (22), for x1 > 0,

D1uγ (x) = − 2θ sin θ

r(1+ r)γ −
γ θ2 cos θ

(1+ r)1+γ , D2uγ (x) = 2θ cos θ

r(1+ r)γ −
γ θ2 sin θ

(1+ r)1+γ ,

and |DiDjuγ (x)| = O(r−2−γ ) for any i, j . So, by Taylor’s formula (28), for all
y ∈ Br/2(x),

uγ (x + y) = uγ (x)+ 〈Duγ (x), y〉 + R(x, y),

where |R(x, y)| ≤ C‖y‖2‖x‖−2−γ for all ‖x‖ sufficiently large. Once more define
the event Ex = {‖Δ‖ < ‖x‖δ}, where now δ ∈ ( 2+γ

p
, 1). Then

Ex

[
(uγ (ξ1)− uγ (ξ0))1Ex

] = Ex

[〈Duγ (x),Δ〉1Ex
]+O(‖x‖−2−γ ).

Moreover, Ex |〈Duγ (x),Δ〉1Ec
x
| ≤ C‖x‖−1−γ

Ex(‖Δ‖1Ec
x
) = O(‖x‖−2−γ ),

by (29) and the fact that δ > 2
p
> 1
p−1 . Also, since uγ is uniformly bounded,

Ex

[|uγ (ξ1)− uγ (ξ0)|1Ec
x

] ≤ CPx(Ec
x) = O(‖x‖−pδ),

by (29). Since pδ > 2+ γ , it follows that

Ex

[
uγ (ξ1)− uγ (ξ0)

] = Ex〈Duγ (x),Δ〉 +O(‖x‖−2−γ ). (70)

For x ∈ SI , it follows from (70) and (D+) that Ex[uγ (ξ1)−uγ (ξ0)] = O(‖x‖−2−γ ),
and combining this with (59) we get (68).

Let β = max(β+, β−) < 1. For x ∈ S, |θ(x)| = O(rβ−1) as ‖x‖ → ∞, so (70)
gives

Ex[uγ (ξ1)− uγ (ξ0)] = 2θ cos θ Ex Δ2

‖x‖(1+ ‖x‖)γ +O(‖x‖
2β−3−γ )+O(‖x‖−2−γ ).

If x ∈ S±B then θ = ±a±(1 + o(1))xβ±−1
1 and, by (10), Ex Δ2 = ∓μ±(x) cosα +

o(1), so

Ex[uγ (ξ1)− uγ (ξ0)] = −2a±μ±(x)(cosα + o(1))‖x‖β±−2−γ . (71)

For η = η0 and β+, β− ≤ βc, we have from (60) that

Ex[�(ξ1)− �(ξ0)] ≤ 1

‖T x‖2 log ‖T x‖
(
O(‖x‖2β±−1)+O(1)

)
.
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Combining this with (71), we obtain (69), provided that we choose γ such that
β±−2−γ > 2β±−3 and β±−2−γ > −2, that is, γ < 1−β± and γ < β±. ��

In the case where β+, β− > 1, we will use the function

wγ (x) := �(x)− x1

(1+ ‖x‖2)γ
,

where the parameter η in � is now chosen as η = η1 as defined at (58). A similar
function was used in [6].

Lemma 8 Suppose that (Mp), (D+), (R), and (C+) hold, with p > 2, ε > 0,
α+ = −α− = α for |α| < π/2, and β+, β− > 1 Let η = η1, and suppose that

1

2
< γ < min

(
1− 1

2β+
, 1 − 1

2β−
,
p − 1

2

)
.

Then as ‖x‖ → ∞ with x ∈ SI ,

E[wγ (ξn+1)−wγ (ξn) | ξn = x] = − 1+ η2 + o(1)
2‖T x‖2(log ‖T x‖)2 . (72)

Moreover, as ‖x‖ → ∞ with x ∈ S±B ,

E[wγ (ξn+1)− wγ (ξn) | ξn = x] = −μ
±(x) cosα + o(1)

‖x‖2γ . (73)

Proof Let qγ (x) := x1(1+ ‖x‖2)−γ . Then

D1qγ (x) = 1

(1+ ‖x‖2)γ
− 2γ x2

1

(1+ ‖x‖2)1+γ
, D2qγ (x) = − 2γ x1x2

(1+ ‖x‖2)1+γ
,

and |DiDjqγ (x)| = O(‖x‖−1−2γ ) for any i, j . Thus by Taylor’s formula, for y ∈
Br/2(x),

qγ (x + y)− qγ (x) = 〈Dqγ (x), y〉 + R(x, y),

where |R(x, y)| ≤ C‖y‖2‖x‖−1−2γ for ‖x‖ sufficiently large. Once more let Ex =
{‖Δ‖ < ‖x‖δ}, where now we take δ ∈ ( 1+2γ

p
, 1). Then

Ex

[
(qγ (ξ1)− qγ (ξ0))1Ex

] = Ex

[〈Dqγ (x),Δ〉1Ex
]+O(‖x‖−1−2γ ).
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Moreover, we get from (29) that Ex |〈Dqγ (x),Δ〉1Ec
x
| = O(‖x‖−2γ−δ(p−1)), where

δ(p − 1) > 2γ > 1, and, since qγ is uniformly bounded for γ > 1/2,

Ex

[
(qγ (ξ1)− qγ (ξ0))1Ec

x

] = O(‖x‖−pδ),

where pδ > 1+ 2γ . Thus

Ex

[
qγ (ξ1)− qγ (ξ0)

] = Ex〈Dqγ (x),Δ〉 +O(‖x‖−1−2γ ). (74)

If x ∈ SI , then (D+) gives Ex〈Dqγ (x),Δ〉 = O(‖x‖−1−2γ ) and with (59) we
get (72), since γ > 1/2. On the other hand, suppose that x ∈ S±B and β± > 1. Then

‖x‖ ≥ cxβ±1 for some c > 0, so x1 = O(‖x‖1/β±). So, by (74),

Ex[qγ (ξ1)− qγ (ξ0)] = Ex Δ1

(1+ ‖x‖2)γ
+O

(
‖x‖

1
β± −1−2γ

)
.

Moreover, by (11), Ex Δ1 = μ±(x) cosα + o(1). Combined with (61), this
yields (73), provided that 2γ ≤ 2 − (1/β±), again using the fact that x1 =
O(‖x‖1/β±). This completes the proof. ��

4 Proofs of Main Results

We obtain our recurrence classification and quantification of passage-times via
Foster–Lyapunov criteria (cf. [14]). As we do not assume any irreducibility, the
most convenient form of the criteria are those for discrete-time adapted processes
presented in [26]. However, the recurrence criteria in [26, §3.5] are formulated
for processes on R+, and, strictly, do not apply directly here. Thus we present
appropriate generalizations here, as they may also be useful elsewhere. The
following recurrence result is based on Theorem 3.5.8 of [26].

Lemma 9 Let X0,X1, . . . be a stochastic process on R
d adapted to a filtration

F0,F1, . . .. Let f : R
d → R+ be such that f (x) → ∞ as ‖x‖ → ∞, and

E f (X0) < ∞. Suppose that there exist r0 ∈ R+ and C < ∞ for which, for all
n ∈ Z+,

E[f (Xn+1)− f (Xn) | Fn] ≤ 0, on {‖Xn‖ ≥ r0};
E[f (Xn+1)− f (Xn) | Fn] ≤ C, on {‖Xn‖ < r0}.

Then if P(lim supn→∞ ‖Xn‖ = ∞) = 1, we have P(lim infn→∞ ‖Xn‖ ≤ r0) = 1.
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Proof By hypothesis, E f (Xn) <∞ for all n. Fix n ∈ Z+ and let λn := min{m ≥
n : ‖Xm‖ ≤ r0} and, for some r > r0, set σn := min{m ≥ n : ‖Xm‖ ≥ r}. Since
lim supn→∞ ‖Xn‖ = ∞ a.s., we have that σn <∞, a.s. Then f (Xm∧λn∧σn),m ≥ n,
is a non-negative supermartingale with limm→∞ f (Xm∧λn∧σn) = f (Xλn∧σn), a.s.
By Fatou’s lemma and the fact that f is non-negative,

E f (Xn) ≥ E f (Xλn∧σn) ≥ P(σn < λn) inf
y:‖y‖≥r f (y).

So

P

(
inf
m≥n ‖Xm‖ ≤ r0

)
≥ P(λn <∞) ≥ P(λn < σn) ≥ 1− E f (Xn)

infy:‖y‖≥r f (y)
.

Since r > r0 was arbitrary, and infy:‖y‖≥r f (y) → ∞ as r → ∞, it follows that,
for fixed n ∈ Z+, P(infm≥n ‖Xm‖ ≤ r0) = 1. Since this holds for all n ∈ Z+, the
result follows. ��

The corresponding transience result is based on Theorem 3.5.6 of [26].

Lemma 10 Let X0,X1, . . . be a stochastic process on R
d adapted to a filtration

F0,F1, . . .. Let f : R
d → R+ be such that supx f (x) < ∞, f (x) → 0 as

‖x‖ → ∞, and infx:‖x‖≤r f (x) > 0 for all r ∈ R+. Suppose that there exists
r0 ∈ R+ for which, for all n ∈ Z+,

E[f (Xn+1)− f (Xn) | Fn] ≤ 0, on {‖Xn‖ ≥ r0}.

Then if P(lim supn→∞ ‖Xn‖ = ∞) = 1, we have that P(limn→∞ ‖Xn‖ = ∞) = 1.

Proof Since f is bounded, E f (Xn) < ∞ for all n. Fix n ∈ Z+ and r1 ≥ r0. For
r ∈ Z+ let σr := min{n ∈ Z+ : ‖Xn‖ ≥ r}. Since P(lim supn→∞ ‖Xn‖ = ∞) = 1,
we have σr <∞, a.s. Let λr := min{n ≥ σr : ‖Xn‖ ≤ r1}. Then f (Xn∧λr ), n ≥ σr ,
is a non-negative supermartingale, which converges, on {λr < ∞}, to f (Xλr ). By
optional stopping (e.g. Theorem 2.3.11 of [26]), a.s.,

sup
x:‖x‖≥r

f (x) ≥ f (Xσr ) ≥ E[f (Xλr ) |Fσr ] ≥ P(λr <∞ | Fσr ) inf
x:‖x‖≤r1

f (x).

So

P(λr <∞) ≤ supx:‖x‖≥r f (x)
infx:‖x‖≤r1 f (x)

,

which tends to 0 as r →∞, by our hypotheses on f . Thus,

P

(
lim inf
n→∞ ‖Xn‖ ≤ r1

)
= P

(∩r∈Z+ {λr <∞}) = lim
r→∞P(λr <∞) = 0.
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Since r1 ≥ r0 was arbitrary, we get the result. ��
Now we can complete the proof of Theorem 3, which includes Theorem 1 as the

special case α = 0.

Proof (of Theorem 3) Let β = max(β+, β−), and recall the definition of βc
from (5) and that of s0 from (7). Suppose first that 0 ≤ β < 1 ∧ βc. Then s0 > 0
and we may (and do) choosew ∈ (0, 2s0). Also, take γ ∈ (0, 1); note 0 < γw < 1.
Consider the function f γw with θ0 = θ1 given by (23). Then from (30), we see that
there exist c > 0 and r0 <∞ such that, for all x ∈ SI ,

E[f γw (ξn+1)− f γw (ξn) | ξn = x] ≤ −c‖x‖γw−2, for all ‖x‖ ≥ r0. (75)

By choice of w, we have β − (1−w)βc < 0, so (31) shows that, for all x ∈ S±B ,

E[f γw (ξn+1)− f γw (ξn) | ξn = x] ≤ −c‖x‖γw−2+β±,

for some c > 0 and all ‖x‖ sufficiently large. In particular, this means that (75)
holds throughout S. On the other hand, it follows from (39) and (Mp) that there is a
constant C <∞ such that

E[f γw (ξn+1)− f γw (ξn) | ξn = x] ≤ C, for all ‖x‖ ≤ r0. (76)

Since w, γ > 0, we have that f γw (x)→ ∞ as ‖x‖ → ∞. Then by Lemma 9 with
the conditions (75) and (76) and assumption (N), we establish recurrence.

Next suppose that βc < β < 1. If β+ = β− = β, we use the function f γw , again
with θ0 = θ1 given by (23). We may (and do) choose γ ∈ (0, 1) and w < 0 with
w > −2|s0| and γw > w > 2 − p. By choice of w, we have β − (1 − w)βc > 0.
We have from (30) and (31) that (75) holds in this case also, but now f γw (x)→ 0 as
‖x‖ → ∞, since γw < 0. Lemma 10 then gives transience when β+ = β−.

Suppose now that βc < β < 1 with β+ = β−. Without loss of generality,
suppose that β = β+ > β−. We now use the function Fγ,νw defined at (48), where,
as above, we take γ ∈ (0, 1) and w ∈ (−2|s0|, 0), and we choose the constants
λ, ν with λ < 0 and γw + β− − 2 < 2ν < γw + β+ − 2. Note that 2ν <
γw − 1, so Fγ,νw (x) = f

γ
w (x)(1 + o(1)). With θ0 = θ1 given by (23), and this

choice of ν, Lemma 5 applies. The choice of γ ensures that the right-hand side
of (49) is eventually negative, and the choice of w ensures the same for (50). Since
λ < 0, the right-hand side of (51) is also eventually negative. Combining these three
estimates shows, for all x ∈ S with ‖x‖ large enough,

E[Fγ,νw (ξn+1)− Fγ,νw (ξn) | ξn = x] ≤ 0.

Since Fγ,νw (x)→ 0 as ‖x‖ → ∞, Lemma 10 gives transience.
Of the cases where β+, β− < 1, it remains to consider the borderline case where

β = βc ∈ (0, 1). Here Lemma 7 together with Lemma 9 proves recurrence. Finally,
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if β+, β− > 1, we apply Lemma 8 together with Lemma 9 to obtain recurrence.
Note that both of these critical cases require (D+) and (C+). ��

Next we turn to moments of passage times: we prove Theorem 4, which includes
Theorem 2 as the special case α = 0. Here the criteria we apply are from [26, §2.7],
which are heavily based on those from [5].

Proof (of Theorem 4) Again let β = max(β+, β−). First we prove the existence of
moments part of (a)(i). Suppose that 0 ≤ β < 1∧βc, so s0 as defined at (7) satisfies
s0 > 0. We use the function f γw , with γ ∈ (0, 1) and w ∈ (0, 2s0) as in the first part
of the proof of Theorem 3. We saw in that proof that for these choices of γ,w we
have that (75) holds for all x ∈ S. Rewriting this slightly, using the fact that f γw (x)
is bounded above and below by constants times ‖x‖γw for all ‖x‖ sufficiently large,
we get that there are constants c > 0 and r0 <∞ for which

E[f γw (ξn+1)− f γw (ξn) | ξn = x] ≤ −c(f γw (x))1−
2
γw , for all x ∈ S with ‖x‖ ≥ r0.

(77)

Then we may apply Corollary 2.7.3 of [26] to get Ex(τ sr ) < ∞ for any r ≥ r0 and
any s < γw/2. Taking γ < 1 and w < 2s0 arbitrarily close to their upper bounds,
we get Ex(τ sr ) <∞ for all s < s0.

Next suppose that 0 ≤ β ≤ βc. Let s > s0. First consider the case where β+ =
β−. Then we consider f γw with γ > 1, w > 2s0 (so w > 0), and 0 < wγ < 2.
Then, since β−(1−w)βc = βc−β+(w−2s0)βc > 0, we have from (30) and (31)
that

E[f γw (ξn+1)− f γw (ξn) | ξn = x] ≥ 0, (78)

for all x ∈ S with ‖x‖ sufficiently large. Now set Yn := f
1/w
w (ξn), and note that

Yn is bounded above and below by constants times ‖ξn‖, and Y γwn = f γw (ξn). Write
Fn = σ(ξ0, ξ1, . . . , ξn). Then we have shown in (78) that

E[Y γwn+1 − Y γwn | Fn] ≥ 0, on {Yn > r1}, (79)

for some r1 sufficiently large. Also, from the γ = 1/w case of (30) and (31),

E[Yn+1 − Yn |Fn] ≥ − B
Yn
, on {Yn > r2}, (80)

for some B < ∞ and r2 sufficiently large. (The right-hand side of (31) is still
eventually positive, while the right-hand-side of (30) will be eventually negative if
γ < 1.) Again let Ex = {‖Δ‖ < ‖x‖δ} for δ ∈ (0, 1). Then from the γ = 1/w case
of (41),

∣
∣
∣f 1/w
w (ξ1)− f 1/w

w (ξ0)

∣
∣
∣
2

1Ex ≤ C‖Δ‖2,
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while from the γ = 1/w case of (39) we have

∣
∣
∣f 1/w
w (ξ1)− f 1/w

w (ξ0)

∣
∣
∣
2

1Ec
x
≤ C‖Δ‖2/δ.

Taking δ ∈ (2/p, 1), it follows from (Mp) that for some C <∞, a.s.,

E[(Yn+1 − Yn)2 | Fn] ≤ C. (81)

The three conditions (79)–(81) show that we may apply Theorem 2.7.4 of [26] to get
Ex(τ

s
r ) = ∞ for all s > γw/2, all r sufficiently large, and all x ∈ S with ‖x‖ > r .

Hence, taking γ > 1 and w > 2s0 arbitrarily close to their lower bounds, we get
Ex(τ

s
r ) = ∞ for all s > s0 and appropriate r, x. This proves the non-existence of

moments part of (a)(i) in the case β+ = β−.
Next suppose that 0 ≤ β+, β− ≤ βc with β+ = β−. Without loss of generality,

suppose that 0 ≤ β− < β+ = β ≤ βc. Then 0 ≤ s0 < 1/2. We consider the
function Fγ,νw given by (48) with θ0 = θ1 given by (23), λ > 0, w ∈ (2s0, 1), and
γ > 1 such that γw < 1. Also, take ν for which γw+β−−2 < 2ν < γw+β+−2.
Then by choice of γ and w, we have that the right-hand sides of (49) and (50) are
both eventually positive. Since λ > 0, the right-hand side of (51) is also eventually
positive. Thus

E[Fγ,νw (ξn+1)− Fγ,νw (ξn) | ξn = x] ≥ 0,

for all x ∈ S with ‖x‖ sufficiently large. Take Yn := (F
γ,ν
w (ξn))

1/(γw). Then we
have shown that, for this Yn, the condition (79) holds. Moreover, since γw < 1 we
have from convexity that (80) also holds. Again let Ex = {‖Δ‖ < ‖x‖δ}. From (41)
and (52),

∣∣Fγ,νw (x + y)− Fγ,νw (x)
∣∣ ≤ C‖y‖‖x‖γw−1,

for all y ∈ Br/2(x). Then, by another Taylor’s theorem calculation,

∣
∣
∣
(
Fγ,νw (x + y))1/(γw) − (

Fγ,νw (x)
)1/(γw)

∣
∣
∣ ≤ C‖y‖,

for all y ∈ Br/2(x). It follows that Ex[(Y1 − Y0)
21Ex ] ≤ C. Moreover, by a similar

argument to (40), |Y1 − Y0|2 ≤ C‖Δ‖2γw/δ on Ec
x , so taking δ ∈ (2/p, 1) and

using the fact that γw < 1, we get Ex[(Y1 − Y0)
21Ec

x
] ≤ C as well. Thus we also

verify (81) in this case. Then we may again apply Theorem 2.7.4 of [26] to get
Ex(τ

s
r ) = ∞ for all s > γw/2, and hence all s > s0. This completes the proof

of (a)(i).
For part (a)(ii), suppose first that β+ = β− = β, and that βc ≤ β < 1. We

apply the function f γw with w > 0 and γ > 1. Then we have from (30) and (31)
that (78) holds. Repeating the argument below (78) shows that Ex(τ sr ) = ∞ for all
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s > γw/2, and hence all s > 0. The case where β+ = β− is similar, using an
appropriate Fγ,νw . This proves (a)(ii).

It remains to consider the case where β+, β− > 1. Now we apply f γw with γ > 1
and w ∈ (0, 1/2) small enough, noting Remark 4. In this case (30) with (32) and
Lemma 3 show that (78) holds, and repeating the argument below (78) shows that
Ex(τ

s
r ) = ∞ for all s > 0. This proves part (b). ��

Appendix: Properties of the Threshold Function

For a constant b = 0, consider the function

φ(α) = sin2 α + b sin 2α.

Set α0 := 1
2 arctan(−2b), which has 0 < |α0| < π/4.

Lemma 11 There are two stationary points of φ in [−π2 , π2 ]. One of these is a local
minimum at α0, with

φ(α0) = 1

2

(
1−

√
1+ 4b2

)
< 0.

The other is a local maximum, at α1 = α0+ π
2 if b > 0, or at α1 = α0− π

2 if b < 0,
with

φ(α1) = 1

2

(
1+

√
1+ 4b2

)
> 1.

Proof We compute φ′(α) = sin 2α + 2b cos 2α and φ′′(α) = 2 cos 2α − 4b sin 2α.
Then φ′(α) = 0 if and only if tan 2α = −2b. Thus the stationary values of φ are
α0 + k π2 , k ∈ Z. Exactly two of these values fall in [−π2 , π2 ], namely α0 and α1 as
defined in the statement of the lemma. Also

φ′′(α0) = 2 cos 2α0 − 4b sin 2α0 =
(

2+ 8b2
)

cos 2α0 > 0,

so α0 is a local minimum. Similarly, if |δ| = π/2, then sin 2δ = 0 and cos 2δ = −1,
so

φ′′(α0 + δ) = − cos 2α0 + 4b sin 2α0 = −φ′′(α0),

and hence the stationary point at α1 is a local maximum. Finally, to evaluate the
values of φ at the stationary points, note that

cos 2α0 = 1√
1+ 4b2

, and sin 2α0 = −2b√
1+ 4b2

,
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and use the fact that 2 sin2 α0 = 1 − cos 2α0 to get φ(α0), and that 2 cos2 α0 =
cos 2α0 + 1 to get φ(α1) = cos2 α0 − b sin 2α0 = 1− φ(α0). ��
Proof (of Proposition 1) By Lemma 11 (and considering separately the case σ 2

1 =
σ 2

2 ) we see that the extrema of βc(Σ, α) over α ∈ [−π2 , π2 ] are

σ 2
1 + σ 2

2

2σ 2
2

± 1

2σ 2
2

√(
σ 2

2 − σ 2
1

)2 + 4ρ2,

as claimed at (6). It remains to show that the minimum is strictly positive, which is
a consequence of the fact that

σ 2
1 + σ 2

2 −
√(
σ 2

1 + σ 2
2

)2 − 4
(
σ 2

1 σ
2
2 − ρ2

)
> 0,

since ρ2 < σ 2
1 σ

2
2 (as Σ is positive definite). ��
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Noise Stability of Weighted Majority

Yuval Peres

Abstract Benjamini et al. (Inst Hautes Études Sci Publ Math 90:5–43, 2001)
showed that weighted majority functions of n independent unbiased bits are
uniformly stable under noise: when each bit is flipped with probability ε, the
probability pε that the weighted majority changes is at most Cε1/4. They asked
what is the best possible exponent that could replace 1/4. We prove that the answer
is 1/2. The upper bound obtained for pε is within a factor of

√
π/2+ o(1) from the

known lower bound when ε → 0 and nε →∞.

Keywords Noise sensitivity · Boolean functions · Weighted majority

MSC 60C05

1 Introduction

In their study of noise sensitivity and stability of Boolean functions, Benjamini et
al. [2] showed that weighted majority functions of n independent unbiased ±1-
valued variables are uniformly stable under noise: When each variable is flipped
with probability ε, the weighted majority changes with probability at most Cε1/4.
They asked what is the best possible exponent that could replace 1/4. In this note
we prove that the answer is 1/2. The upper bound obtained for pε is within a factor
of
√
π/2+ o(1) from the known lower bound when ε → 0 and nε →∞.

Remark The result presented here was obtained in 1999 (as mentioned in [2]) and
was uploaded on the arxiv in 2004, but was not previously published. It was featured
as a highlight in Section 5.5 of the book [9].
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Denote sgn(u) = u/|u| for u = 0 and sgn(0) = 0, and let Nε : Rn → R
n be the

noise operator that flips each variable in its input independently with probability ε.
Formally, given a random vector X = (X1, . . . , Xn), the random vector Nε(X) is
defined as (σ1X1, . . . , σnXn) where the i.i.d. random variables σi are independent
of X and take the values 1,−1 with probabilities 1− ε, ε respectively.

Theorem 1 Let X = (X1, . . . , Xn) be a random vector uniformly distributed over
{−1, 1}n. Given nonzero weights w1, . . . , wn ∈ R and a threshold t ∈ R, consider
the weighted majority function f : Rn → {−1, 0, 1} defined by

f (x) = sgn
( n∑

i=1

wixi − t
)

(1)

Then for ε ≤ 1/2,

pε(n,w, t) = P

(
f (X) = f (Nε(X))

)
≤ 2ε1/2. (2)

Moreover, p∗ε = lim supn→∞ supw,t pε(n,w, t) satisfies

lim sup
ε→0

p∗ε√
ε
≤ √

2/π . (3)

In the statement of the theorem we opted for a simple formulation: Our proof yields
the following sharper, but more involved estimate:

pε(n,w, t) ≤ 2

m
· E |Bm − m

2
| + [1− (1− ε)n]

(
n

%n/2&
)

2−n , (4)

wherem = %ε−1& and Bm is a Binomial(m, 1/2) variable.
It easy to see, and classical [4, 11], that for simple majority (when all weights are

equal) we have

lim
n→∞P(sgn

n∑

i=1

Xi = sgn
n∑

i=1

(NεX)i) = 1

π
arccos(1− 2ε) = 2

π

√
ε +O(ε3/2) .

(5)

For the reader’s convenience we include a brief argument:

Since Cov
(∑n

i=1Xi,
∑n
i=1(NεX)i

)
= n(1 − 2ε), the central limit theorem

implies that as n→∞,

1√
n

( n∑

i=1

Xi,

n∑

i=1

(NεX)i

)
⇒ (Z1, Z

∗
1) in law,
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where Z1, Z
∗
1 are standard normals with covariance 1 − 2ε. We can write Z∗1 =

Z1 cosα−Z2 sin α whereZ1, Z2 are i.i.d. standard normals and α ∈ (0, π) satisfies
cosα = 1 − 2ε. Rotating the random vector (Z1, Z2) by the angle α yields a
vector with first coordinate Z∗1 . Since (Z1, Z2) has a rotationally-symmetric law,
the rotation changes the sign of the first coordinate with probability α/π . This
verifies the left-hand side of (5); the right-hand side follows from Taylor expansion
of cosine.

Thus the estimate (2) is sharp (up to the value of the constant). Moreover, the
ratio between the upper bound in (3) and the value for simple majority in (5) tends to√
π/2 < 1.26 as ε→ 0. We remark that the stability result in theorem 1 is stronger

than an assertion about stability of half-spaces, {x : ∑
i wixi > θ}, because we

consider the weighted majority as taking three values, rather than two.

2 Proof of Theorem 1

Using symmetry of Xi , we may assume that wi > 0 for i = 1, . . . , n. Let
〈w,X〉 = ∑n

i=1 wiXi . We first consider the threshold t = 0. Later, we will extend
the argument to thresholds t = 0.

We will need the following well-known fact from [3]:

P

(
〈w,X〉 = 0

)
≤

(
n

%n/2&
)

2−n. (6)

Indeed, the collection D(w) of sets D ⊂ {1, . . . n} such that
∑
i∈D wi =

∑
k/∈D wk

forms an anti-chain with respect to inclusion, so Sperner’s theorem (see [1, Ch. 11])
implies that the cardinality of D(w) is at most

(
n

%n/2&
)
. Finally, observe that a vector

x ∈ {−1, 1}n satisfies 〈w, x〉 = 0 iff {i : xi = 1} is in D(w).
Let m = %ε−1& and let τ be a random variable taking the values 0, 1, . . . ,m,

with P(τ = j) = ε for j = 1, . . . ,m and P(τ = 0) = 1 −mε. We use a sequence
τ1, τ2, . . . , τn of i.i.d. random variables with the same law as τ , to partition [n] =
{1, . . . , n} into m+ 1 random sets

Aj =
{
i ∈ [n] : τi = j

}
for 0 ≤ j ≤ m. (7)

Denote Sj = ∑
i∈Aj wiXi and let Y1 = ∑

i /∈A1
wiXi = 〈w,X〉 − S1. Observe that

Y1 − S1 has the same law, given X, as 〈w,Nε(X)〉. Therefore,

pε(n,w, 0) = P

(
sgn〈w,X〉 = sgn〈w,Nε(X)〉

)
(8)

= P

(
sgn(Y1 + S1) = sgn(Y1 − S1)

)
.
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Denote ξj = sgn(Sj ). A key step in the proof is the pointwise identity

1{sgn(Y1 + S1) = sgn(Y1 − S1)} (9)

= 2 · 1{S1 = 0} E
( 1

2
− 1{sgn(S1 + Y1) = −ξ1}

∣
∣
∣Y1, |S1|

)
.

To verify this, we consider three cases:

(i) Clearly both sides vanish if S1 = 0.
(ii) Suppose that 0 < |S1| < |Y1| and therefore sgn(Y1 + S1) = sgn(Y1). The

conditional distribution of S1 given Y1 and |S1| is uniform over {−|S1|, |S1|},
whence the conditional probability that sgn(S1 + Y1) = −ξ1 is 1/2. Thus both
sides of (9) also vanish in this case.

(iii) Finally, suppose that S1 = 0 and |S1| ≥ |Y1|. In this case sgn(S1 + Y1) = −ξ1,
so both sides of (9) equal 1.

Taking expectations in (9) and using (8), we deduce that

pε(n,w, 0) = 2E
[
1{S1 = 0}

(1

2
− 1{sgn〈w,X〉 = −ξ1}

)]

= 2

m
E

∑

j∈Λ

( 1

2
− 1{sgn〈w,X〉 = −ξj }

)
, (10)

whereΛ = {j ∈ [1,m] : Sj = 0}.
The random variable BΛ = #{j ∈ Λ : ξj = 1} has a Binomial(#Λ, 1

2 )

distribution givenΛ, and satisfies the pointwise inequality

∑

j∈Λ

(1

2
− 1{sgn〈w,X〉 = −ξj }

)
≤

∣
∣
∣BΛ − #Λ

2

∣
∣
∣+ 1

2
1{〈w,X〉 = 0}

m∑

j=1

1{Aj = ∅} .

To see this, consider the three possibilities for sgn〈w,X〉. Taking expectations and
using (10), we get

pε(n,w, 0) ≤ 2

m
E

∣∣
∣BΛ − #Λ

2

∣∣
∣+ P(A1 = ∅)P(〈w,X〉 = 0). (11)

Let B� denote a Binomial(�, 1
2 ) random variable. Since for any martingale {M�}�≥1

the absolute values |M�| form a submartingale, the expression E|B� − �
2 | is

increasing in �. By averaging over Λ, we see that E|BΛ − #Λ
2 | ≤ E|Bm − m

2 |.
In conjunction with (11) and (6), this implies

pε(n,w, 0) ≤ 2

m
E|Bm − m

2
| + [1− (1− ε)n]

(
n

%n/2&
)

2−n. (12)
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Next, suppose that f (x) = sgn
(∑n

i=1 wixi − t
)

, where t = 0 is a given

threshold. Let Xn+1 be a ±1 valued symmetric random variable, independent of
X = (X1, . . . , Xn), and define wn+1 = t . Then

pε(n,w, t) = P

(
f (X) = f (Nε(X))

)
(13)

= P

(
sgn

n+1∑

i=1

wiXi = sgn
[ n∑

i=1

wi(NεX)i +wn+1XN+1
])
,

and the argument used above to establish the bound (12) for pε(n,w, 0), yields the
same bound for pε(n,w, t). This proves (4).

To derive (2), we may assume that ε ≤ 1/4. Use Cauchy-Schwarz to write
E|Bm − m

2 | ≤
√

Var(Bm) = √
m/4 and apply the elementary inequalities

(
n

%n/2&
)

2−n ≤ √
3/4n−1/2,

(see, e.g., [10, Section 2.3]) and [1− (1− ε)n] ≤ min{nε, 1} ≤ √
nε, to obtain

pε(n,w, t) ≤ m−1/2 +√nε ·√3/4n−1/2 . (14)

Since m = %ε−1& ≥ 4/(5ε) for ε ≤ 1/4, we conclude that

pε(n,w, t) ≤
(√

5/4+√
3/4

)
ε1/2 < 2ε1/2 ,

and this proves (2).
Finally, the central limit theorem implies that

lim
m→∞

E|2Bm −m|√
m

= 1√
2π

∫ ∞

−∞
|u|e−u2/2 du = √

2/π .

This proves (3). ��
Remark

1. Theorem 1 states that among linear threshold functions, majority is the most
sensitive (up to a constant factor). Conversely, [8] showed that among balanced
functions where each variable has low influence, majority is asymptotically the
most stable.

2. The randomization idea which is crucial to our proof of Theorem 1 was inspired
by an argument of Matthews [7] to bound cover times for Markov chains. See
also [12] for related random walk estimates.
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3. After I presented the proof of Theorem 1 to R. O’Donnell in 2001, he found
(jointly with A. Klivans and R. Servedio) some variants and applications of the
argument to learning theory, see [6] and the book [9].

4. The proof of Theorem 1 extends verbatim to the case where Xi are independent
symmetric real-valued random variables with P(Xi = 0) = 0 for all i. However,
this extension reduces to Theorem 1 by conditioning on |Xi |.

5. In [2, Remark 3.6], the authors asked whether simple majority is the most noise
sensitive of the weighted majority functions. Several people, including Noam
Berger (2003, personal communication), Sivakanth Gopi and Daniel Kane found
counterexamples for a small number of variables; see, e.g., [5]. However, an
asymptotic version of this question is still open.

6. Is simple majority the most noise sensitive of the weighted majority functions,
asymptotically when ε → 0 and nε →∞ ?
In particular, is it possible to replace the right-hand side of (3) by 2/π?

Acknowledgments I am grateful to I. Benjamini, G. Kalai and O. Schramm for suggesting the
problem, and to E. Mossel, R. Peled, O. Schramm, R. Siegmund-Schultze and H. V. Weizsäcker
for useful discussions.
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Abstract We discuss anisotropic scaling limits of long-range dependent linear
random fields X on Z

2 with arbitrary dependence axis (direction in the plane along
which the moving-average coefficients decay at a smallest rate). The scaling limits
VXγ are random fields on R

2+ defined as the limits (in the sense of finite-dimensional
distributions) of partial sums ofX taken over rectangles with sides increasing along
horizontal and vertical directions at rates λ and λγ respectively as λ → ∞ for
arbitrary fixed γ > 0. The scaling limits generally depend on γ and constitute
a one-dimensional family {V Xγ , γ > 0} of random fields. The scaling transition

occurs at some γX0 > 0 if V Xγ are different and do not depend on γ for γ > γX0
and γ < γX0 . We prove that the fact of ‘oblique’ dependence axis (or incongruous
scaling) dramatically changes the scaling transition in the above model so that
γX0 = 1 independently of other parameters, contrasting the results in Pilipauskaitė
and Surgailis (2017) on the scaling transition under congruous scaling.
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1 Introduction

Pilipauskaitė and Surgailis [12–14], Damarackas and Paulauskas [2, 3], Puplinskaitė
and Surgailis [16, 17], and Surgailis [19, 21] discussed scaling limits

{
A−1
λ,γS

X
λ,γ(x), x ∈ R

ν+
}

fdd→ V Xγ , λ→∞, (1)

for some classes of stationary random fields (RFs) X = {X(t), t ∈ Z
ν}, where

Aλ,γ →∞ is a normalization and

SXλ,γ(x) :=
∑

t∈Kλ,γ(x)
X(t), x ∈ R

ν+, (2)

are partial sums of RFX taken over rectanglesKλ,γ(x) := {t = (t1, . . . , tν)F ∈ Z
ν :

0 < ti ≤ λγi xi, i = 1, . . . , ν} for arbitrary fixed collection γ = (γ1, . . . , γν)
F ∈

R
ν+ of exponents, with sides [1, . . . , %λγi xi&] increasing at generally different

rates O(λγi ), i = 1, . . . , ν. Following [13, 19] the family {VXγ , γ ∈ R
ν+} of all

scaling limits in (1) will be called the scaling diagram of RF X. Recall that a
stationary RF X with Var(X(0)) < ∞ is said long-range dependent (LRD) if∑

t∈Zν |Cov(X(0),X(t))| = ∞, see [10, 17]. [14, 16, 17] observed that for a large
class of LRD RFs X in dimension ν = 2, the scaling diagram essentially consists
of three points. More precisely (assuming γ1 = 1, γ2 = γ w.l.g.), there exists a
(nonrandom) γX0 > 0 such that VXγ ≡ VX(1,γ ) do not depend on γ for γ > γX0 and

γ < γX0 , viz.,

V Xγ =

⎧
⎪⎪⎨

⎪⎪⎩

VX+ , γ > γX0 ,

V X− , γ < γX0 ,

V X0 , γ = γX0 ,
(3)

and V X+
fdd= aV X− , ∀a > 0. We note that V X± , VX0 and γX0 generally depend

on the distribution (the model parameters) of X. The above fact was termed the
scaling transition [16, 17], V X0 called the well-balanced and VX± the unbalanced
scaling limits of X. In the sequel, we shall also refer to γX0 > 0 in (3) as the
scaling transition or the critical point. Intuitively, VX± arise when the scaling in
the vertical direction is much stronger than in the horizontal one or vice versa. The
well-balanced limit V X0 corresponds to the balanced scaling in the two directions
and is generally different from both VX± . The existence of the scaling transition was
established for a wide class of planar linear and nonlinear RF models including those
appearing in telecommunications and econometrics. See the review paper [20] for
further discussion and recent developments.
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Particularly, [14] discussed anisotropic scaling of linear LRD RFs X on Z
2

written as a moving-average

X(t) =
∑

s∈Z2

a(t− s)ε(s), t ∈ Z
2, (4)

of standardized i.i.d. sequence {ε(t), t ∈ Z
2} with deterministic coefficients

a(t) = 1

|t1|q1 + |t2|q2

×
(
Lsign(t2)

(
t1

(|t1|q1 + |t2|q2)1/q1

)
+ o(1)

)
, |t| := |t1| + |t2| → ∞,(5)

where qi > 0, i = 1, 2, satisfy

1 < Q := 1

q1
+ 1

q2
< 2 (6)

and L± are continuous functions on [−1, 1] with L+(±1) = L−(±1) =: L0(±1).
The latter condition on L± and natural definition of L0 guarantee continuity of the
angular factor in (5) on the set {t ∈ R

2 : |t1|q1 + |t2|q2 = 1}. ([14, 21] use a slightly
different form of moving-average coefficients a, and assume L+ = L− but their
results are valid for a in (5). See also Sect. 4 below.) Since a(t, 0) = O(|t|−q1),
a(0, t) = O(|t|−q2), t → ∞, for q1 = q2 decay at different rate in the horizontal
and vertical directions, the ratio γ 0 := q1/q2 can be regarded as ‘intrinsic (internal)
scale ratio’ and the exponent γ > 0 as ‘external scale ratio’, characterizing the
anisotropy of the RF X in (4) and the scaling procedure in (1)–(2), respectively.
Indeed, the scaling transition for the above X occurs at the point γX0 = γ 0 where
these ratios coincide [14]. Let us remark that isotropic scaling of linear and nonlinear
RFs on Z

ν and R
ν was discussed in [5, 6, 10, 11] and other works, while the scaling

limits of linear random processes with one-dimensional ‘time’ (case ν = 1) were
identified in [4]. We also refer to the monographs [1, 7, 8] on various probabilistic
and statistical aspects of long-range dependence.

A direction in the plane (a line passing through the origin) along which
the moving-average coefficients a, decay at the smallest rate may be called the
dependence axis of RF X in (4). The rigorous definition of dependence axis is given
in Sect. 4. Due to the form in (5) the dependence axis agrees with the horizontal axis
if q1 < q2 and with the vertical axis if q1 > q2, see Proposition 4. Since the scaling
in (1)–(2) is parallel to the coordinate axes, we may say that for RF X in (4)–(5),
the scaling is congruous with the dependence axis of X and the results of [14, 21]
(as well as of [16, 17]) refer to this rather specific situation. The situation when the
dependence axis does not agree with any of the two coordinate axes (the case of
incongruous scaling) seems to be more common and then one may naturally ask
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about the scaling transition and the scaling transition point γX0 under incongruous
scaling.

The present paper discusses the above problem for linear RF

X(t) =
∑

s∈Z2

b(t− s)ε(s), t ∈ Z
2, (7)

with the moving-average coefficients

b(t) = 1

|b1 · t|q1 + |b2 · t|q2

×
(
Lsign(b2·t)

(
b1 · t

(|b1 · t|q1 + |b2 · t|q2)1/q1

)
+ o(1)

)
, |t| → ∞, (8)

where bi · t := bi1t1 + bi2t2 is the scalar product, bi = (bi1, bi2)F, i = 1, 2, are
real vectors, B = (bij )i,j=1,2 is a nondegenerate matrix and qi > 0, i = 1, 2,
Q ∈ (1, 2), L± are the same as in (5). The above assumptions imply

∑

t∈Z2

|b(t)| = ∞ and
∑

t∈Z2

b(t)2 <∞, (9)

in other words, X in (7) is a well-defined RF with LRD. The dependence axis of X
with coefficients b in (8) is given by t ∈ R

2 for which

b2 · t = 0 (q1 < q2) or b1 · t = 0 (q1 > q2), (10)

see Proposition 4 below, and generally does not agree with the coordinate axes,
which results in incongruous scaling in (1). We prove that the last fact completely
changes the scaling transition. Namely, under incongruous scaling the scaling
transition point γX0 in (3) is always 1: γX0 = 1 for any q1 > 0, q2 > 0 satisfying
(6), and the unbalanced limits V X± are generally different from the corresponding
limits in the congruous scaling case. The main results of this paper are illustrated in
Table 1. Throughout the paper we use the notation

Q̃i := Q− 1

2qi
, H̃i := 1− qi

2
(2−Q), Hi := 1

2
+ qi(Q− 1), i = 1, 2, (11)

and BH1,H2 = {BH1,H2(x), x ∈ R
2+} for fractional Brownian sheet (FBS) with

Hurst parameters 0 < Hi ≤ 1, i = 1, 2, defined as a Gaussian RF with zero mean
and covariance EBH1,H2(x)BH1,H2(y) = (1/4)

∏2
i=1(x

2Hi

i +y2Hi

i −|xi−yi |2Hi ),
x, y ∈ R

2+.
If Q < 1 and

∑
t∈Z2 b(t) = 0 then the corresponding RF X in (7) is short-range

dependent and its all scaling limits VXγ agree with the Brownian Sheet B1/2,1/2 for
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Table 1 Unbalanced scaling limits V X± (without asymptotic constants) under congruous and
incongruous scaling

Congruous scaling Incongruous scaling

Parameter region Critical γX0 V X+ V X− Critical γX0 V X+ VX−
Q̃1 ∧ Q̃2 > 1 q1/q2 B1,H̃2

B
H̃1,1

1 B1,H̃1∧H̃2
B
H̃1∧H̃2,1

Q̃1 < 1 < Q̃2 q1/q2 BH1,1/2 B
H̃1,1

1 BH1∧H2,1/2 B1/2,H1∧H2

Q̃2 < 1 < Q̃1 q1/q2 B1,H̃2
B1/2,H2 1 BH1∧H2,1/2 B1/2,H1∧H2

Q̃1 ∨ Q̃2 < 1 q1/q2 BH1,1/2 B1/2,H2 1 BH1∧H2,1/2 B1/2,H1∧H2

any γ > 0, see Theorem 5, in other words, X does not exhibit a scaling transition.
On the other hand, we expect that the results in Table 1 can be extended to negatively
dependent linear RFs with coefficients as in (8) satisfyingQ < 1 (which guarantees
their summability) and the zero-sum condition

∑
t∈Z2 b(t) = 0. The existence of the

scaling transition for negatively dependent RFs with coefficients as in (5) (i.e., under
congruous scaling) was established in [21]. Let us note that the case of negative
dependence is more delicate, due to the possible occurrence of edge effects, see [10,
21]. Further interesting open problems concern incongruous scaling of nonlinear
or subordinated RFs on Z

2 (see [14]) and possible extensions to Z
3 and higher

dimensions. We mention that the scaling diagram of linear LRD RF on Z
3 under

congruous scaling is quite complicated, see [19]; the incongruous scaling may lead
to a much more simple result akin to Table 1.

Section 2 contains the main results (Theorems 1–4), together with rigorous
assumptions and the definitions of the limit RFs. The proofs of these facts are given
in Sect. 3. Section 4 (Appendix) contains the definition and the existence of the
dependence axis for moving-average coefficients b as in (8) (Proposition 4). We also
prove in Sect. 4 that the dependence axis is preserved under convolution, implying
that the covariance function of the linear RF X also decays along this axis at the
smallest rate.

Notation In what follows, C denote generic positive constants which may be

different at different locations. We write
fdd→,

fdd= , and
fdd= for the weak convergence,

equality, and inequality of finite-dimensional distributions, respectively. 1 :=
(1, 1)F, 0 := (0, 0)F, R2

0 := R
2 \ {0}, R2+ := {x = (x1, x2)

F ∈ R
2 : xi >

0, i = 1, 2}, R+ := (0,∞) and (0, x] := (0, x1] × (0, x2], x = (x1, x2)
F ∈ R

2+.
Also, %x& := max{k ∈ Z : k ≤ x}, 1x2 := min{k ∈ Z : k ≥ x}, x ∈ R, and
%x& := (%x1&, %x2&)F, 1x2 := (1x12, 1x22)F, |x| := |x1|+|x2|, x = (x1, x2)

F ∈ R
2.

We also write f (x) = f (x1, x2), x = (x1, x2)
F ∈ R

2.
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2 Main Results

For γ > 0, we study the limit distribution in (1) of partial sums

Sλ,γ (x) =
∑

t∈(0,λx1]×(0,λγ x2]∩Z2

X(t), x ∈ R
2+, (12)

over rectangles of a linear RF X in (7) satisfying the following assumptions.

Assumption A Innovations ε(t), t ∈ Z
2, in (7) are i.i.d. r.v.s with Eε(0) = 0,

E|ε(0)|2 = 1.
Assumption B Coefficients b(t), t ∈ Z

2, in (7) satisfy

b(t) = ρ(Bt)−1(L(Bt)+ o(1)), |t| → ∞, (13)

where B = (bij )i,j=1,2 is a real nondegenerate matrix, and

ρ(u) := |u1|q1 + |u2|q2, u ∈ R
2, (14)

with qi > 0, i = 1, 2, satisfying (6), and

L(u) := L+(u1/ρ(u)1/q1)1(u2 ≥ 0)+ L−(u1/ρ(u)1/q1)1(u2 < 0), u ∈ R
2
0,

(15)

where L±(x), x ∈ [−1, 1], are continuous functions such that L+(1) = L−(1),
L+(−1) = L−(−1).

We note that the boundedness and continuity assumptions of the ‘angular
functions’ L± in (15) do not seem necessary for our results and possibly can be
relaxed. Note q1 < q2 for 1 < Q < 2 implies H1 ∧ H2 = H1, H̃1 ∧ H̃2 = H̃2.
Then from Proposition 4 we see that {t ∈ R

2 : b2 · t = 0} with b2 = (b21, b22)
F

is the dependence axis of X, which agrees with the coordinate axes if and only if
b21 = 0 or b22 = 0 leading to the two cases, namely b21 = 0 (congruous scaling)
and b21b22 = 0 (incongruous scaling).

The limit Gaussian RFs in our theorems are defined as stochastic integrals w.r.t.
(real-valued) Gaussian white noise W = {W(du),u ∈ R

2} with zero mean and
variance EW(du)2 = du (= the Lebesgue measure on R

2). Let

a∞(u) := ρ(u)−1L(u), u ∈ R
2
0, (16)

and

ṼD̃(x) := | det(B)|− 1
2

∫

R2

{∫

(0,x]
a∞(D̃t− u)dt

}
W(du), x ∈ R

2+, (17)
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where D̃ is any 2× 2 matrix in (18) below:

B̃00 :=
[
b11 0
0 b22

]
, B̃01 :=

[
b11 0
b21 0

]
, B̃02 :=

[
0 b12

0 b22

]
, B̃20 :=

[
0 0
b21 b22

]
,

B̃11 :=
[
b11 0
0 0

]
, B̃21 :=

[
0 0
b21 0

]
, B̃22 :=

[
0 0
0 b22

]
. (18)

Also let

VD(x) := | det(B)|−1
∫

R2

{∫

R2
a∞(t)1(Dt+ u ∈ (0, x])dt

}
W(du), x ∈ R

2+,

(19)

whereD is any 2× 2 matrix in (20) below:

B01 := 1

det(B)

[
b22 0

−b21 0

]
, B11 := 1

det(B)

[
b22 0

0 0

]
,

B10 := 1

det(B)

[
b22 −b12

0 0

]
, B20 := 1

det(B)

[
0 0

−b21 b11

]
,

B21 := 1

det(B)

[
0 0

−b21 0

]
, B22 := 1

det(B)

[
0 0
0 b11

]
. (20)

Recall that in (18), (20) bij are entries of the matrix B in (13). To shorten notation,
write Ṽij := ṼB̃ij

, Vij := VBij and also define Ṽ0 := ṼB , V0 := VB−1 satisfying

Ṽ0
fdd= V0. The existence of all these RFs in the corresponding regions of parameters

q1, q2 is established in Proposition 1, which also identifies some of these RFs with
FBS having one of its parameters equal to 1 or 1

2 . Recall that stochastic integral∫
R2 h(u)W(du) =: I (h) w.r.t. Gaussian white noise W is well defined for any h ∈
L2(R2) and has a Gaussian distribution with zero mean and variance E|I (h)|2 =
‖h‖2 = ∫

R2 |h(u)|2du, c.f. [18]. Recall the definitions of Q̃i , H̃i , Hi , i = 1, 2, in
(11). In Proposition 1 and Theorems 1–4 below, Assumptions A and B hold without
further notice. Let σ̃ 2

ij := E|Ṽij (1)|2, σ 2
ij := E|Vij (1)|2.

Proposition 1 The following RFs in (17)–(20) are well defined:

(i) Ṽ00, Ṽ11, Ṽ20, Ṽ21, and Ṽ22 provided q1 < q2 and Q̃1 > 1 hold; moreover,

Ṽ22
fdd= σ̃22B1,H̃2

, Ṽ21
fdd= σ̃21BH̃2,1

, Ṽ11
fdd= σ̃11BH̃1,1

. (21)
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(ii) Ṽ00, Ṽ11, V01, V11, and V21 provided q1 < q2 and Q̃1 < 1 < Q̃2 hold;
moreover,

V11
fdd= σ11BH1,

1
2
, V21

fdd= σ21B 1
2 ,H1

. (22)

(iii) Ṽ00, V01, V11, V21, and V22 provided q1 < q2 and Q̃2 < 1 hold; moreover,

V22
fdd= σ22B 1

2 ,H2
. (23)

(iv) Ṽ02, Ṽ0, and Ṽ01 provided q1 = q2 =: q ∈ (1, 3
2 ); moreover,

Ṽ01
fdd= σ̃01BH̃,1, Ṽ02

fdd= σ̃02B1,H̃ , H̃ := 2− q ∈
(

1

2
, 1

)
. (24)

(v) V10, V0, and V20 provided q1 = q2 =: q ∈ ( 3
2 , 2); moreover,

V10
fdd= σ10BH, 1

2
, V20

fdd= σ20B 1
2 ,H
, H := 5

2
− q ∈

(
1

2
, 1

)
. (25)

Remark 1 While some of the RFs in (17)–(20) are well identified by (21)–(25) as
FBS with special values of the Hurst parameters, the remaining ones, namely Ṽ00,

Ṽ20, Ṽ0, V01, and V0 which arise as well-balanced limits in Theorems 1–4, are
less explicit and depend on a∞ in (16) and the matrix B in a more complicated
way. Using the isometry EI (h1)I (h2) =

∫
R2 h1(u)h2(u)du for any h1, h2 ∈ L2(R)

the covariance function of these RFs write as integral of the product of the corre-
sponding kernels; for instance, E[Ṽ00(x)Ṽ00(y)] = | det(B)|−1

∫
R2{

∫
(0,x] a∞(B̃00t−

u)dt} × {∫
(0,y] a∞(B̃00s − u)ds}du which is a complex function of x, y even for

q1 = q2 and L± = 1. We note that all RFs in (17)–(20) have rectangular
stationary increments (see [14] for definition) and satisfy the self-similarity property
in (29) below; however, these properties are very general and are satisfied by many
Gaussian RFs. See also Dobrushin [5] for (spectral) characterization of stationary
self-similar Gaussian RFs.

As noted above, our main results (Theorems 1–4) describe the anisotropic scaling
limits and the scaling transition of the linear RF X in (7), viz.,

{
A−1
λ,γ S

X
λ,γ (x), x ∈ R

2+
}

fdd→ VXγ =

⎧
⎪⎪⎨

⎪⎪⎩

V X+ , γ > γX0 ,

V X− , γ < γX0 ,

V X0 , γ = γX0 ,
λ→∞, (26)
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where SXλ,γ is the partial-sum RF in (12). As explained above, in Theorems 1–3 we
distinguish between two cases:

Case 1: b21b22 = 0 (incongruous scaling), (27)

Case 2: b21 = 0 (congruous scaling).

Theorem 1 Let q1 < q2 and Q̃1 > 1. Then the convergence in (26) holds for all
γ > 0 with

Case 1: γX0 = 1 and V X+ = Ṽ22, V X− = Ṽ21, V X0 = Ṽ20,

Case 2: γX0 = q1
q2

and V X+ = Ṽ22, V X− = Ṽ11, V X0 = Ṽ00.

Theorem 2 Let q1 < q2 and Q̃1 < 1 < Q̃2. Then the convergence in (26) holds
for all γ > 0 with

Case 1: γX0 = 1 and V X+ = V11, V X− = V21, V X0 = V01,
Case 2: γX0 = q1

q2
and V X+ = V11, V X− = Ṽ11, V X0 = Ṽ00.

Theorem 3 Let q1 < q2 and Q̃2 < 1. Then the convergence in (26) holds for all
γ > 0 with

Case 1: γX0 and VX+ , VX− , V X0 the same as in Case 1 of Theorem 2,
Case 2: γX0 = q1

q2
and V X+ = V11, V X− = V22, V X0 = Ṽ00.

Theorem 4 discusses the case q1 = q2 when the dependence axis is undefined.

Theorem 4 Let q1 = q2 =: q and Q̃1 = Q̃2 =: Q̃. Then the convergence in (26)
holds for all γ > 0 with γX0 = 1 and

(i) V X+ = Ṽ02, V X− = Ṽ01, VX0 = Ṽ0 if q ∈ (1, 3
2 ) or Q̃ > 1.

(ii) V X+ = V10, V X− = V20, VX0 = V0 if q ∈ ( 3
2 , 2) or Q̃ < 1.

Remark 2 In the above theorems the convergence in (26) holds under normalization

Aλ,γ = λH(γ ), (28)

where H(γ ) > 0 is defined in the proof of these theorems below. Under congruous
scaling b21 = 0 the exponentH(γ ) in (28) is the same as in the case B = I (= the
identity matrix) studied in [14]. As shown in [17], VXγ in (26) satisfies the following
self-similarity property:

{
V Xγ (λ

Γ x), x ∈ R
2+

}
fdd=

{
λH(γ )V Xγ (x), x ∈ R

2+
}

∀λ > 0, (29)

where λΓ = diag(λ, λγ ) andH(γ ) is the same as in (28). Note that an FBS BH1,H2

with Hi ∈ (0, 1], i = 1, 2, satisfies (29) with

H(γ ) =H1 + γH2. (30)
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Thus, in Theorems 1–4 in the case of unbalanced (FBS) limit Aλ,γ in (28) can also
be identified from (30) and the expressions for Hi , H̃i , i = 1, 2, in (11).

In the above theorems, a crucial LRD condition (guaranteeing (9)) is Q ∈
(1, 2). For Q < 1 the linear RF X in (4) is short-range dependent (SRD), viz.,∑

t∈Z2 |Cov(X(0),X(t))| < ∞, and the scaling transition does not occur, see [14,
Thm. 3.4]. These facts extend also to RFX in (7) with ‘rotated’ coefficients b of (8),
see Theorem 5 below. Its proof is omitted because it mimics that of [14, Thm. 3.4].

Theorem 5

(i) Let X be a linear RF in (7) with coefficients b such that

∑

t∈Z2

|b(t)| <∞ and
∑

t∈Z2

b(t) = 0. (31)

Then for any γ > 0

{
λ−(1+γ )/2SXλ,γ (x), x ∈ R

2+
}

fdd→ σB1/2,1/2, (32)

where σ 2 = (∑t∈Z2 b(t))2 > 0.
(ii) If b satisfy Assumption B withQ < 1 instead ofQ ∈ (1, 2), then

∑
t∈Z2 |b(t)| <

∞. If, in addition,
∑

t∈Z2 b(t) = 0, then the corresponding linear RF X in (7)
satisfies the CLT in (32).

3 Proofs of Proposition 1 and Theorems 1–4

For γ > 0, the limit distribution of SXλ,γ is obtained using a general criterion for the
weak convergence of linear forms in i.i.d. r.v.s towards a stochastic integral w.r.t. the
white noise. Consider a linear form

S(g) :=
∑

s∈Z2

g(s)ε(s) (33)

with real coefficients
∑

s∈Z2 g(s)2 < ∞ and innovations satisfying Assumption A.
The following proposition extends [8, Prop. 14.3.2], [21, Prop. 5.1], [19, Prop. 3.1].

Proposition 2 For λ > 0, let S(gλ) be as in (33) with gλ : Z2 → R satisfying∑
s∈Z2 gλ(s)2 < ∞. Assume that for some 2 × 2 non-degenerate matrix A and

Λ = diag(l1, l2) with li = li(λ), i = 1, 2, such that l1 ∧ l2 → ∞, λ → ∞, the
functions

g̃λ(u) := | det(AΛ)|1/2gλ(1AΛu2), u ∈ R
2, λ > 0, (34)
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tend to a limit h in L2(R2), i.e.

‖g̃λ − h‖2 =
∫

R2
|g̃λ(u)− h(u)|2du → 0, λ→∞. (35)

Then

S(gλ)
d→ I (h) =

∫

R2
h(u)W(du), λ→∞. (36)

Proof Denote by S(R2) the set of simple functions f : R
2 → R, which

are finite linear combinations of indicator functions of disjoint squares �Kk :=
∏2
i=1(ki/K, (ki + 1)/K], k ∈ Z

2, K ∈ N. The set S(R2) is dense in L2(R2):
given f ∈ L2(R2), for every ε > 0 there exists fε ∈ S(R2) such that ‖f −fε‖ < ε.
(36) follows once we show that for every ε > 0 there exists hε ∈ S(R2) such that
as λ → ∞, the following relations (i)–(iii) hold: (i) E|S(gλ) − S(hε,λ)|2 < ε, (ii)

S(hε,λ)
d→ I (hε), (iii) E|I (hε)− I (h)|2 < ε, where

hε,λ(s) := | det(AΛ)|−1/2hε((AΛ)
−1s), s ∈ Z

2, λ > 0. (37)

As for (i), note that

E|S(gλ)− S(hε,λ)|2 =
∫

R2
|gλ(1s2)− hε,λ(1s2)|2ds

= | det(AΛ)|
∫

R2
|gλ(1AΛu2)− hε,λ(1AΛu2)|2du

= ‖g̃λ − h̃ε,λ‖2,

where h̃ε,λ is derived from hε,λ in the same way as g̃λ is derived from gλ in (34). To
prove (i) we need to find suitable hε ∈ S(R2) and thus hε,λ in (37). By (35), there
exists λ0 > 0 such that ‖g̃λ− h‖ < ε/4, ∀λ ≥ λ0. Given g̃λ0 ∈ L2(R2), there exists
hε ∈ S(R2) such that ‖g̃λ0 − hε‖ < ε/4. Note that

‖hε − h̃ε,λ‖2 =
∫

R2
|hε(u)− hε((AΛ)−11AΛu2)|2du → 0, λ→∞,

follows from |(AΛ)−11AΛu2−u| = |(AΛ)−1(1AΛu2−AΛu)| ≤ Cmin(l1, l2)−1

= o(1) uniformly in u ∈ R
2 and the fact that hε is bounded and has a compact

support. Thus, there exists λ1 > 0 such that ‖hε − h̃ε,λ‖ < ε/4, ∀λ ≥ λ1. Hence,

‖g̃λ−h̃ε,λ‖ ≤ ‖g̃λ−h‖+‖h−g̃λ0‖+‖g̃λ0−hε‖+‖hε−h̃ε,λ‖ < ε, ∀λ ≥ λ0∨λ1,
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completing the proof of (i). The above reasoning implies also (iii) since (E|I (hε)−
I (h)|2)1/2 = ‖hε − h‖ ≤ ‖hε − g̃λ0‖ + ‖g̃λ0 − h‖ < ε/2.

It remains to prove (ii). The step function hε in the above proof of (i) can be

written as hε(u) = ∑
k∈Z2 h

�Kk
ε 1(u ∈ �Kk ), u ∈ R

2, (∃K ∈ N), where h
�Kk
ε = 0

except for a finite number of k ∈ Z
2. Then, by (37),

hε,λ(s) = | det(AΛ)|−1/2
∑

k∈Z2

h
�Kk
ε 1(s ∈ AΛ�Kk ), s ∈ Z

2,

and S(hε,λ) = ∑
k∈Z2 h

�Kk
ε Wλ(�Kk ), where

Wλ(�Kk ) := | det(AΛ)|−1/2
∑

s∈AΛ�Kk
ε(s), k ∈ Z

2.

Since the r.v.s ε(s), s ∈ Z
2, are i.i.d. with Eε(0) = 0, E|ε(0)|2 = 1 and the

parallelograms AΛ�Kk , k ∈ Z
2, are disjoint, the r.v.s Wλ(�Kk ), k ∈ Z

2, are
independent and satisfy EWλ(�Kk ) = 0, E|Wλ(�Kk )|2 = | det(AΛ)|−1 ∑

s∈Z2 1(s ∈
AΛ�Kk )→

∫
�Kk du, λ→∞. Hence, by the classical CLT, for every J ∈ N,

{
Wλ(�Kk ),k ∈ {−J, . . . , J }2

}
d→

{
W(�Kk ),k ∈ {−J, . . . , J }2

}
, λ→∞,

implying the convergence S(hε,λ)
d→ ∑

k∈Z2 h
�Kk
ε W(�Kk ) = I (hε), λ → ∞, or

part (ii), and completing the proof of the proposition. ��
We shall also need some properties of the generalized homogeneous function ρ

in (14) for qi > 0, i = 1, 2, withQ := 1
q1
+ 1
q2

. Note the elementary inequality

C1ρ(u)1/q1 ≤ (|u1|2 + |u2|2q2/q1)1/2 ≤ C2ρ(u)1/q1, u ∈ R
2, (38)

with Ci > 0, i = 1, 2, independent of u, see [19, (2.16)]. From (38) and [14,
Prop. 5.1] we obtain for any δ > 0,

∫

R2
ρ(u)−11(ρ(u) < δ)du <∞⇐⇒ Q > 1, (39)

∫

R2
ρ(u)−21(ρ(u) ≥ δ)du <∞⇐⇒ Q < 2.

Moreover, with q = max{q1, q2, 1},

ρ(u+ v)1/q ≤ ρ(u)1/q + ρ(v)1/q, u, v ∈ R
2, (40)
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see [14, (7.1)], and, for 1 < Q < 2,

(ρ−1 % ρ−1)(u) :=
∫

R2
ρ(v)−1ρ(v+ u)−1dv = ρ̃(u)−1L̃(|u1|/ρ̃(u)1/q̃1), u ∈ R

2
0,

(41)

where with q̃i := qi(2−Q), i = 1, 2,

ρ̃(u) := |u1|q̃1 + |u2|q̃2, u ∈ R
2, (42)

and L̃(z) := (ρ−1 %ρ−1)(z, (1−zq̃1)1/q̃2), z ∈ [0, 1], is a continuous function. Note
q̃2 < 1 (respectively, q̃1 < 1) is equivalent to Q̃1 > 1 (respectively, Q̃2 > 1). The
proof of (41) is similar to that of [14, (5.6)] (see also Proposition 5 below).

Proof of Proposition 1 Since Ṽij (1) = I (h̃ij ), Vij (1) = I (hij ), it suffices to prove

‖h̃ij ‖ <∞, ‖hij ‖ <∞ (43)

for suitable i, j in the corresponding regions of parameters q1, q2. Using the
boundedness of L± in (16) and (38) we can replace |a∞| by ρ−1 in the subsequent
proofs of (43). Hence and from (41) it follows that

‖h̃ij ‖2 ≤ C
∫

(0,1]2×(0,1]2
(ρ−1 % ρ−1)(B̃ij (t− s))dtds

≤ C
∫

(0,1]2×(0,1]2
ρ̃(B̃ij (t− s))−1dtds. (44)

Existence of Ṽ00 Relation ‖h̃00‖2 ≤ C ∫
[−1,1]2 ρ̃(b11t1, b22t2)

−1dt < ∞ follows

from (39) since 1
q̃1
+ 1
q̃2
= Q

2−Q > 1 for 1 < Q < 2. This proves the existence of

Ṽ00 in all cases (i)–(iii) of Proposition 1.

Existence of Ṽ20, Ṽ21, Ṽ22 From (44) we get ‖h̃20‖2 ≤ C
∫
[−1,1]2 |b21t1 +

b22t2|−q̃2dt <∞ since q̃2 < 1. The proof of ‖h̃21‖ <∞, ‖h̃22‖ <∞ is completely
analogous. This proves the existence of Ṽ20, Ṽ21 and Ṽ22 for Q̃1 > 1.

Existence of Ṽ11 Similarly as above, from (44) we get ‖h̃11‖2 ≤ C ∫
[−1,1] |b11t|−q̃1

dt <∞ since q̃1 > 1. This proves the existence of Ṽ11 for Q̃2 > 1.

Existence of V01, V11, V21 We have

‖h01‖2 ≤ C
∫

R2

(∫

R

|t1|−q1(1− 1
q2
)
1 (b22t1 + u1 ∈ (0, 1],−b21t1 + u2 ∈ (0, 1]) dt1

)2
du

≤ C
∫

R2
|t1|−q1(1− 1

q2
)|t2|−q1(1− 1

q2
)
1(|b22(t1 − t2)| ≤ 1, |b21(t1 − t2)| ≤ 1)dt1dt2

≤ C
∫

R2
|t1|−q1(1− 1

q2
)|t2|−q1(1− 1

q2
)
1(|t1 − t2| ≤ 1)dt1dt2 <∞
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since 1
2 < q1(1 − 1

q2
) < 1 or Q̃1 < 1 < Q. The proof of ‖h11‖ < ∞ and

‖h21‖ <∞ is completely analogous.

Existence of V22 Similarly as above, ‖h22‖2 ≤ C ∫
R2 |t1|−q2(1− 1

q1
)|t2|−q2(1− 1

q1
)1

(|t1 − t2| ≤ 1)dt1dt2 <∞ since 1
2 < q2(1− 1

q1
) < 1 or Q̃2 < 1 < Q.

Existence of Ṽ02, Ṽ01 From (44) we get ‖h̃02‖2 ≤ C ∫
[−1,1]2 ρ̃(b12t2, b22t2)

−1dt <

∞ since q̃ = 2(q − 1) < 1 for q ∈ (1, 3
2 ). The proof of ‖h̃01‖ < ∞ is completely

analogous.

Existence of V20, V10 We have

‖h20‖2 ≤ C
∫

R

(∫

R2
ρ(t)−11(b22t1 − b12t2 + u ∈ (0, 1])dt

)2
du

≤ C
∫

R

(∫

R

ρ(1+ b12

b22
t2, t2)

−1dt2

∫

R

|t1|1−q1(b22t1 + u ∈ (0, 1])dt1
)2

du <∞

for q ∈ ( 3
2 , 2). The proof of ‖h10‖ <∞ is completely analogous.

Existence of Ṽ0, V0 Relation ‖h̃0‖2 ≤ C
∫
[−1,1]2 ρ̃(Bt)−1dt < ∞ follows from

(39) since 2
q̃
= 1
q−1 > 1 for q ∈ (1, 2). We have ‖h0‖ = ‖h̃0‖ <∞.

It remains to show the relations (21)–(25), which follow from the variance
expressions: for any x ∈ R

2+, we have that

E|Ṽ22(x)|2 = σ̃ 2
22x

2
1x

2H̃2
2 , E|Ṽ21(x)|2 = σ̃ 2

21x
2H̃2
1 x2

2 , E|Ṽ11(x)|2 = σ̃ 2
11x

2H̃1
1 x2

2 ,

E|V11(x)|2 = σ 2
11x

2H1
1 x2, E|V21(x)|2 = σ 2

21x1x
2H1
2 , E|V22(x)|2 = σ 2

22x1x
2H2
2 ,

E|Ṽ01(x)|2 = σ̃ 2
01x

2H̃
1 x2

2 , E|Ṽ02(x)|2 = σ̃ 2
02x

2
1x

2H̃
2 ,

E|V10(x)|2 = σ 2
10x

2H
1 x2, E|V20(x)|2 = σ 2

20x1x
2H
2 . (45)

Relations (45) follow by a change of variables in the corresponding integrals, using

the invariance property: λa∞(λ
1
q1 t1, λ

1
q2 t2) = a∞(t), t ∈ R

2
0, for all λ > 0. E.g.,

after a change of variables t2 → x2t2, u2 → x2u2, u1 → x

q2
q1
2 u1, the first expectation

in (45) writes as E|Ṽ22(x)|2 = x2
1 | det(B)|−1

∫
R2 |

∫ x2
0 a∞(u1, b22t2 + u2)dt2|2du =

x2
1x

2H̃2
2 σ̃ 2

22, where σ̃ 2
22 := | det(B)|−1

∫
R2 |

∫ 1
0 a∞(u1, b22t2 + u2)dt2|2du < ∞.

Proposition 1 is proved. ��
Similarly as in [14, 19] and other papers, in Theorems 1–4 we restrict the proof

of (26) to one-dimensional convergence at x ∈ R
2+. Towards this end, we use
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Proposition 2 and rewrite every λ−H(γ )SXλ,γ (x) = S(gλ) as a linear form in (33)
with

gλ(u) := λ−H(γ )
∫

(0,λx1]×(0,λγ x2]
b(1t2 − u)dt, u ∈ Z

2. (46)

In what follows, w.l.g., we set | det(B)| = 1.

Proof of Theorem 1

Case 1 and γ > 1 or VX+ = Ṽ22 Set H(γ ) = 1+ γ ( 3
2 + q2

2q1
− q2) = 1+ γ H̃2 in

agreement with (28)–(30). Rewrite

gλ(s) = λ1+γ−H(γ )
∫

R2
b(1Λ′t2 − s)1(Λ′t ∈ (0, %Λ′x&])dt, s ∈ Z

2,

with Λ′ = diag(λ, λγ ). Use Proposition 2 with A = B−1 and Λ = diag(l1, l2),

where l1 = λγ
q2
q1 , l2 = λγ . According to the definition in (34),

g̃λ(u) =
∫

R2
λγq2b(1Λ′t2 − 1B−1Λu2)1(Λ′t ∈ (0, %Λ′x&])dt, u ∈ R

2, (47)

for which we need to show the L2-convergence in (35) with h(u) replaced by

h̃22(u) :=
∫

(0,x]
a∞(B̃22t− u)dt, u ∈ R

2, (48)

where the integrand does not depend on t1. Note since q1 < q2 and γ > 1 that

Λ−1B(1Λ′t2 − 1B−1Λu2)→ B̃22t− u, (49)

point-wise for any t,u ∈ R
2 and therefore, by continuity of ρ−1,

λγq2ρ(B(1Λ′t2 − 1B−1Λu2))−1 → ρ(B̃22t− u)−1 (50)

for any t,u ∈ R
2 such that B̃22t − u = 0. Later use (13), (49), (50) and continuity

of L± to get

λγq2b(1Λ′t2 − 1B−1Λu2)→ a∞(B̃22t− u) (51)

for t,u ∈ R
2 such that B̃22t − u = 0. Therefore, g̃λ(u) → h̃22(u) for all u ∈ R

2.
This point-wise convergence can be extended to that in L2(R2) by applying Pratt’s
lemma, c.f. [15], [14, proof of Theorem 3.2], to the domination |g̃λ(u)| ≤ CG̃λ(u),
where

G̃λ(u) :=
∫

(0,x]
ρ(Λ−1BΛ′t−u)−1dt →

∫

(0,x]
ρ(B̃22t−u)−1dt =: G̃(u), (52)
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for all u ∈ R
2. To get this domination we use |b(s)| ≤ Cmax{ρ(Bs), 1}−1, s ∈ Z

2,
and by (40) and ρ(Λ−1t) = λ−γ q2ρ(t), we further see that

ρ(Λ−1BΛ′t− u) ≤ C{ρ(Λ−1B(1Λ′t2 − 1B−1Λu2))
+ρ(Λ−1B(Λ′t− B−1Λu− 1Λ′t2 + 1B−1Λu2))}

≤ Cλ−γ q2 max{ρ(B(1Λ′t2 − 1B−1Λu2)), 1},

where C does not depend on t,u ∈ R
2. Then in view of the domination |g̃λ(u)| ≤

CG̃λ(u), u ∈ R
2, and (52), the L2-convergence in (35) follows by Pratt’s lemma

from the convergence of norms ‖G̃λ‖2 = ∫
(0,x]×(0,x](ρ

−1 % ρ−1)(Λ−1BΛ′(t −
s))dtds → ‖G̃‖2. Indeed, after such a change of variables in the last integral that
b22(t2 − s2) = b22(t

′
2 − s′2)− λ1−γ b21(t1 − s1) we see that

‖G̃λ‖2 =
∫

R4
(ρ−1 % ρ−1)(λ

1−γ q2q1 det(B)

b22
(t1 − s1)

+λγ (1−
q2
q1
)
b12(t

′
2 − s′2), b22(t

′
2 − s′2))

×1(t1 ∈ (0, x1], −λ1−γ b21

b22
t1 + t ′2 ∈ (0, x2])

×1(s1 ∈ (0, x1], −λ1−γ b21

b22
s1 + s′2 ∈ (0, x2])dt1dt ′2ds1ds′2

→
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(0, b22(t

′
2 − s′2))dt1dt ′2ds1ds′2 = ‖G̃‖2 (53)

by the dominated convergence theorem using the continuity of (ρ−1 % ρ−1)(t) and
(ρ−1 % ρ−1)(t) ≤ C|t2|−q̃2 for t2 = 0 with q̃2 = q2(2−Q) < 1, see (41), (42).

Case 1 and γ = 1 or V X0 = Ṽ20 Set H(γ ) = 5
2 + q2

2q1
− q2 = 1+ H̃2. The proof is

similar to that in Case 1, γ > 1 above. We use Proposition 2 with A = B−1, Λ′ =
diag(λ, λ) and Λ = diag(λ

q2
q1 , λ). Accordingly, we need to prove ‖g̃λ − h̃20‖ → 0,

where

h̃20(u) :=
∫

(0,x]
a∞(B̃20t− u)dt, u ∈ R

2,

and g̃λ is defined as in (47) with γ = 1. Note that now (49) must be replaced by

Λ−1B(1Λ′t2 − 1B−1Λu2)→ B̃20t− u,

leading to

λq2b(1Λ′t2 − 1B−1Λu2)→ a∞(B̃20t− u)
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for B̃20t − u = 0. Therefore, g̃λ converges to h̃20 point-wise. To prove the L2-
convergence use Pratt’s lemma as in the case γ > 1 above, with G̃λ, G̃ defined as
in (52) with γ = 1 and B̃22 replaced by B̃20. Then G̃λ(u) → G̃(u) for all u ∈ R

2

as in (52) and

‖G̃λ‖2 =
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(Λ−1BΛ′(t− s))dtds

=
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(λ

1− q2q1 (b11(t1 − s1)+ b12(t2 − s2)),

b21(t1 − s1)+ b22(t2 − s2))dtds

→
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(B̃20(t− s))dtds = ‖G̃‖2

follows similarly to (53).

Case 1 and γ < 1 or V X− = Ṽ21 Set H(γ ) = γ + 3
2 + q2

2q1
− q2 = γ + H̃2.

The proof proceeds similarly as above with A = B−1, Λ′ = diag(λ, λγ ) and Λ =
diag(λ

q2
q1 , λ). Then

g̃λ(u) =
∫

R2
λq2b(1Λ′t2 − 1B−1Λu2)1(Λ′t ∈ (0, %Λ′x&])dt

→
∫

(0,x]
a∞(B̃21t− u)dt =: h̃21(u), u ∈ R

2,

in view ofΛ−1B(1Λ′t2− 1B−1Λu2)→ B̃21t−u and λq2b(1Λ′t2− 1B−1Λu2)→
a∞(B̃21t− u) for B̃21t− u = 0. The proof of ‖g̃λ − h̃21‖ → 0 using Pratt’s lemma
also follows similarly as above, with G̃λ(u) :=

∫
(0,x] ρ(Λ

−1BΛ′t − u)−1dt →
∫
(0,x] ρ(B̃21t− u)−1dt =: G̃(u) for all u ∈ R

2 and

‖G̃λ‖2 =
∫

R4
(ρ−1 % ρ−1)(λ

1− q2
q1 b11(t

′
1 − s ′1)− λγ−

q2
q1

det(B)

b21
(t2 − s2), b21(t

′
1 − s ′1))

×1(t ′1 − λγ−1 b22

b21
t2 ∈ (0, x1], t2 ∈ (0, x2])

×1(s ′1 − λγ−1 b22

b21
t2 ∈ (0, x1], s2 ∈ (0, x2])dt ′1dt2ds ′1ds2

→
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(0, b21(t

′
1 − s ′1))dt ′1dt2ds ′1ds2 = ‖G̃‖2

as in (53).
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Case 2 and γ > q1
q2

orV X+ = Ṽ22 SetH(γ ) = 1+γ H̃2. The proof of ‖g̃λ−h̃22‖ →
0 is completely analogous to that in Case 1, γ > 1, with the same g̃λ, Λ′, Λ, h̃22 as
in (47), (48) using the fact that

Λ−1BΛ′ =
[
λ

1−γ q2q1 b11 λ
γ (1− q2q1 )b12

0 b22

]

→ B̃22.

Case 2 and γ = q1
q2

or V X0 = Ṽ00 Set H(γ ) = 3
2 + 3q1

2q2
− q1 = H̃1 + q1

q2
=

1 + q1
q2
H̃2, A = B−1, Λ = Λ′ = diag(λ, λ

q1
q2 ). The proof of ‖g̃λ − h̃00‖ → 0

with h̃00(u) :=
∫
(0,x] a∞(B̃00t − u)dt, u ∈ R

2, follows similar lines as in the other

cases. The point-wise convergence g̃λ → h̃00 uses Λ−1B(1Λ′t2 − 1B−1Λu2) →
B̃00t − u and λq1b(1Λ′t2 − 1B−1Λu2) → a∞(B̃00t − u) for B̃00t − u = 0. The
L2-convergence can be verified using Pratt’s lemma with the dominating function
G̃λ(u) :=

∫
(0,x] ρ(Λ

−1BΛ′t− u)−1dt → ∫
(0,x] ρ(B̃00t− u)−1dt =: G̃(u), u ∈ R

2,
satisfying

‖G̃λ‖2 =
∫

R4
(ρ−1 % ρ−1)(b11(t

′
1 − s′1), b22(t2 − s2))

×1(t ′1 − λ
q1
q2
−1 b12

b11
t2 ∈ (0, x1], t2 ∈ (0, x2])

×1(s′1 − λ
q1
q2
−1 b12

b11
s2 ∈ (0, x1], s2 ∈ (0, x2])dt1dt2ds1ds2

→
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(b11(t

′
1 − s′1), b22(t2 − s2))dt ′1dt2ds′1ds2 = ‖G̃‖2,

which follows from the dominated convergence theorem using (ρ−1 % ρ−1)(t) ≤
Cρ̃(t)−1, t ∈ R

2
0, and the (local) integrability of the function ρ̃−1 with 1

q̃1
+ 1
q̃2
=

Q
2−Q > 1, see (41), (42) and (39).

We note that the above proof applies for all q1 < q2 satisfying 1 < Q < 2, hence
also in Cases 2, V X0 = Ṽ00 of Theorems 2 and 3.

Case 2 and γ < q1
q2

or V X− = Ṽ11 Set H(γ ) = γ + 3
2 + q1

2q2
− q1 = γ + H̃1, A =

B−1, Λ = diag(λ, λ
q1
q2 ), Λ′ = diag(λ, λγ ). Then Λ−1B(1Λ′t2 − 1B−1Λu2) →

B̃11t − u and λq1b(1Λ′t2 − 1B−1Λu2) → a∞(B̃11t − u) for B̃11t − u = 0. This
leads to g̃λ(u) → h11(u) :=

∫
(0,x] a∞(B̃11t − u)dt for all u ∈ R

2. The required
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convergence ‖g̃λ− h̃11‖ → 0 follows similarly as in the other cases using G̃λ(u) :=∫
(0,x] ρ(Λ

−1BΛ′t− u)−1dt → ∫
(0,x] ρ(B̃11t− u)−1dt =: G̃(u) for all u ∈ R

2 and

‖G̃λ‖2 =
∫

R4
(ρ−1 % ρ−1)(b11(t

′
1 − s′1), λγ−

q1
q2 b22(t2 − s2))

×1(t ′1 − λγ−1 b12

b11
t2 ∈ (0, x1], t2 ∈ (0, x2])

×1(s′1 − λγ−1 b12

b11
s2 ∈ (0, x1], s2 ∈ (0, x2])dt ′1dt2ds′1ds2

→
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(b11(t

′
1 − s′1), 0)dt ′1dt2ds′1ds2 = ‖G̃‖2

which follows from the dominated convergence theorem using (ρ−1 % ρ−1)(t) ≤
C|t1|−q̃1 for all t1 = 0 with q̃1 < 1.

Note that the above proof applies for all q1 < q2 satisfying q̃1 < 1 or Q̃2 > 1
hence also in Case 2, V X− = Ṽ11 of Theorem 2. Theorem 1 is proved. ��
Proof of Theorem 2

Case 1 and γ > 1 or V X+ = V11 Set H(γ ) = 3
2 + q1

q2
− q1+ γ

2 = H1+ γ
2 . Rewrite

gλ(s) as

gλ(s) = λ−H(γ )
∫

R2
b(1t2)1(1t2 + s ∈ (0, %λx1&] × (0, %λγ x2&])dt

= λ1+ q1q2 −H(γ )
∫

R2
b(1B−1Λ′t2)

×1(1B−1Λ′t2 + s ∈ (0, %λx1&] × (0, %λγ x2&])dt, s ∈ Z
2, (54)

whereΛ′ := diag(λ, λ
q1
q2 ). We use Proposition 2 with

A :=
[

1 0
− b21
b22

1

]

, Λ :=
[
λ 0
0 λγ

]
. (55)

Note Λ−1B−1Λ′ → B11, Λ−1AΛ → I since γ > 1. Then, according to the
definition (34), g̃λ(u) =

∫
R2 b̃λ(u, t)dt, where

b̃λ(u, t) := λq1b(1B−1Λ′t2)1(1B−1Λ′t2 + 1AΛu2 ∈ (0, %Λx&])
→ a∞(t)1(B11t+ u ∈ (0, x]) (56)
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for all u, t ∈ R
2 such that t = 0, b22t1 + u1 ∈ {0, x1}, u2 ∈ {0, x2}. It suffices to

prove that the following point-wise convergence also holds

g̃λ(u)→ h11(u) :=
∫

R2
a∞(t)1(B11t+ u ∈ (0, x])dt in L2(R2). (57)

To show (57), decompose g̃λ(u) = g̃λ,0(u)+g̃λ,1(u)with g̃λ,j (u) =
∫
R2 b̃λ,j (u, t)dt

given by

b̃λ,0(u, t) := b̃λ(u, t)1(|t2| ≥ λ1− q1q2 ),

b̃λ,1(u, t) := b̃λ(u, t)1(|t2| < λ1− q1
q2 ), u, t ∈ R

2.

Then (57) follows from

‖g̃λ,1 − h11‖ → 0 and ‖g̃λ,0‖ → 0. (58)

The first relation in (58) follows from (56) and the dominated convergence theorem,
as follows. To justify the domination, combine |b(s)| ≤ Cmax{ρ(Bs), 1}−1, s ∈ Z

2,
and ρ(t) ≤ Cλ−q1 max{ρ(B1B−1Λ′t2), 1}, t ∈ R

2, to get λq1 |b(1B−1Λ′t2)| ≤
Cρ(t)−1, t ∈ R

2, λ > 1. Also note that

1(|t2| < λ1− q1
q2 , 1B−1Λ′t2 + 1AΛu2 ∈ (0, %Λx&])

≤ 1(|t2| < λ1− q1q2 , B−1Λ′t+AΛu ∈ (−2,Λx])

≤ 1(|t2| < λ1− q1
q2 , b22t1 − λ

q1
q2
−1
b12t2 + u1 ∈ (− 2

λ
, x1],

−λ1−γ b21

b22
(b22t1 − λ

q1
q2
−1
b12t2 + u1)+ λ

q1
q2
−γ det(B)

b22
t2 + u2 ∈ (− 2

λγ
, x2])

≤ 1(|b22t1 + u1| ≤ C1, |u2| ≤ C2)

for some C1, C2 > 0 independent of t,u ∈ R
2 and λ > 0. Thus, |g̃λ,1(u)| ≤ ḡ(u),

where the dominating function ḡ(u) := C1(|u2| ≤ C2)
∫
R2 ρ(t)−11(|b22t1 + u1| ≤

C1)dt ≤ C1(|u2| ≤ C2)
∫
R
|t1|

q1
q2
−q11(|b22t1 + u1| ≤ C1)dt1, u ∈ R

2, satisfies
‖ḡ‖ < ∞ since Q̃1 < 1, proving the first relation in (58). The second relation in
(58) follows by Minkowski’s inequality:

‖g̃λ,0‖ ≤ C
∫

R2

(∫

R2
ρ(t1 − 1

b22
u1, t2)

−21(|t2| ≥ λ1− q1
q2 )

×1(|b22t1 − λ
q1
q2
−1
b12t2| ≤ C1, |λ

q1
q2
−γ det(B)

b22
t2 + u2| ≤ C2)du

) 1
2

dt
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= C
∫

R2

(∫

R

ρ(u1, t2)
−21(|t2| ≥ λ1− q1

q2 )

×1(|b22t1 − λ
q1
q2
−1
b12t2| ≤ C1)du1

) 1
2

dt

= C
∫

R2
|t2|q2(

1
2q1

−1)1(|t2| ≥ λ1− q1q2 , |b22t1 − λ
q1
q2
−1
b12t2| ≤ C1)dt

= C
∫

R

|t2|q2(
1

2q1
−1)1(|t2| ≥ λ1− q1q2 )dt2 = o(1)

since 1
2q1
< Q̃1 < 1. This proves (58) and (57).

We note that the above argument applies to the proof of the limit V X+ = V11
in both Cases 1 and 2 of Theorems 2 and 3 as well, including Case 2 and q1

q2
<

γ ≤ 1, with the difference that in the latter case we make the change of variable

t → B−1Λ′t in (54) with Λ′ := diag(λγ , λ
γ
q1
q2 ).

Case 1 and γ = 1 or VX+ = V01 Set H(γ ) = H1 + 1
2 . The proof proceeds as

in Case 1, γ > 1 above, by writing g̃λ(u) =
∫
R2 b̃λ(u, t)dt with A as in (55),

Λ := diag(λ, λ), Λ′ := diag(λ, λ
q1
q2 ) in

b̃λ(u, t) := λq1b(1B−1Λ′t2)1(1B−1Λ′t2 + 1Λu2 ∈ (0, %Λx&])
→ a∞(t)1(B01t+ u ∈ (0, x])

for all u, t ∈ R
2 such that t = 0, b22t1+u1 ∈ {0, x1},−b21t1+u2 ∈ {0, x2}, c.f. (56).

The details of the convergence g̃λ(u)→ h01(u) :=
∫
R2 a∞(t)1(B01t+u ∈ (0, x])dt,

u ∈ R
2, in L2(R2) are similar as above and omitted.

We note that the above argument applies to the proof of V X0 = V01 in Case 1 of
Theorem 3.

Case 1 and γ < 1 or VX− = V21 Set H(γ ) = 1
2 + γ ( 3

2 + q1
q2
− q1) = 1

2 + γH1.
Use Proposition 2 with

A :=
[

1 − b22
b21

0 1

]

, Λ :=
[
λ 0
0 λγ

]
.

Similarly to (56), g̃λ(u) =
∫
R2 b̃λ(u, t)dt, where

b̃λ(u, t) := λγq1b(1B−1Λ′t2)1(1B−1Λ′t2 + 1Λu2 ∈ (0, %Λx&])
→ a∞(t)1(B21t+ u ∈ (0, x])
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for all u, t ∈ R
2 such that t = 0, u1 ∈ {0, x1}, −b21t1 + u2 ∈ {0, x2}. It suffices to

prove g̃λ(u)→ h21(u) :=
∫
R2 a∞(t)1(B21t+ u ∈ (0, x])dt in L2(R2) or

‖g̃λ,1 − h21‖ → 0 and ‖g̃λ,0‖ → 0, (59)

where g̃λ,j (u) =
∫
R2 b̃λ,j (u, t)dt and

b̃λ,0(u, t) := b̃λ(u, t)1(|t2| ≥ λγ (1−
q1
q2
)
),

b̃λ,1(u, t) := b̃λ(u, t)1(|t2| < λγ (1−
q1
q2
)
), u, t ∈ R

2.

The proof of (59) is similar to that of (58) and omitted. This proves Case 1. The
above proofs also included Case 2 of Theorem 2. Theorem 2 is proved. ��
Proof of Theorem 3

Case 2 and γ < q1
q2

or V X− = V22 Set H(γ ) = 1
2 + γ ( 3

2 + q2
q1
− q2) = 1

2 + γH2.
The proof is similar to that in Case 1 of Theorem 2 using

A :=
[

1 − b12
b11

0 1

]

, Λ :=
[
λ 0
0 λγ

]
, Λ′ :=

[
λ
γ
q2
q1 0

0 λγ

]

.

Accordingly, g̃λ(u) =
∫
R2 b̃λ(u, t)dt, where

b̃λ(u, t) := λγq2b(1B−1Λ′t2)1(1B−1Λ′t2 + 1Λu2 ∈ (0, %Λx&])
→ a∞(t)1(B22t+ u ∈ (0, x])

for all u, t ∈ R
2 such that t = 0, u1 ∈ {0, x1}, b11t2 + u2 ∈ {0, x2}. It suffices to

prove g̃λ(u)→ h22(u) :=
∫
R2 a∞(t)1(B22t+ u ∈ (0, x])dt in L2(R2) or

‖g̃λ,1 − h22‖ → 0 and ‖g̃λ,0‖ → 0, (60)

where g̃λ,j (u) =
∫
R2 b̃λ,j (u, t)dt and

b̃λ,0(u, t) := b̃λ(u, t)1(|t1| ≥ λγ
q2
q1
−1
),

b̃λ,1(u, t) := b̃λ(u, t)1(|t1| < λγ
q2
q1
−1
), u, t ∈ R

2.

The proof of (60) using Q̃2 < 1 is similar to that of (58) and omitted. The
remaining cases of Theorem 3 follow from Theorem 2, thereby completing the proof
of Theorem 3. ��
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Proof of Theorem 4

Case (i) and γ > 1 or V X+ = Ṽ02 Set H(γ ) = 1 + γ H̃ . We follow the proof
of Theorem 1, Case 1, γ > 1. Let Λ := diag(λγ , λγ ), Λ′ := diag(λ, λγ ). Then
(49) and (51) hold with q2 = q and B̃22 replaced by B̃02. Then the convergence
g̃λ(u) → h̃02(u) :=

∫
(0,x] a∞(B̃02t − u)dt in L2(R2) follows similarly by Pratt’s

lemma with (53) replaced by

‖G̃λ‖2 =
∫

R4
(ρ−1 % ρ−1)(λ1−γ det(B)

b22
(t1 − s1)+ b12(t

′
2 − s′2), b22(t

′
2 − s′2))

×1(t1 ∈ (0, x1], −λ1−γ b21

b22
t1 + t ′2 ∈ (0, x2])

×1(s1 ∈ (0, x1], −λ1−γ b21

b22
s1 + s′2 ∈ (0, x2])dt1dt ′2ds1ds′2

→
∫

(0,x]×(0,x]
(ρ−1 % ρ−1)(B̃22(t− s))dtds = ‖G̃‖2.

The proof in Case (i), γ = 1 and γ < 1 is similar to that of Theorem 1, Case 1 and
is omitted.

Case (ii) and γ > 1 or VX+ = V10 Set H(γ ) = H + γ
2 . We follow the proof

of Theorem 2, Case 1, γ > 1, with Λ′ := diag(λ, λ) and A,Λ as in (55).
Then Λ−1B−1Λ′ → B10 and the result follows from ‖g̃λ − h10‖ → 0, where
h10(u) :=

∫
R2 a∞(t)1(B10t + u ∈ (0, x])dt. Following the proof of (57), we

decompose g̃λ(u) = g̃λ,0(u)+ g̃λ,1(u) with g̃λ,j (u) =
∫
R2 b̃λ,j (u, t)dt given by

b̃λ,0(u, t) := b̃λ(u, t)1(|t2| ≥ C̃), b̃λ,1(u, t) := b̃λ(u, t)1(|t2| < C̃),
and b̃λ(u, t), u, t ∈ R

2, as in (56), where C̃ > 0 is a sufficiently large constant. It
suffices to prove

lim
C̃→∞

lim sup
λ→∞

‖g̃λ,1 − h10‖ = 0 and lim
C̃→∞

lim sup
λ→∞

‖g̃λ,0‖ = 0. (61)

The proof of (61) mimics that of (59) and we omit the details. The remaining
statements in Theorem 4, Case (ii) also follow similarly to the proof of Theorem 2,
Case 1. Theorem 4 is proved. ��

4 Appendix

4.1 Generalized Homogeneous Functions

Let qi > 0, i = 1, 2, with Q := 1
q1
+ 1
q2

.
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Definition 1 A measurable function h : R2 → R is said to be:

(i) generalized homogeneous if for all λ > 0,

λh(λ1/q1 t1, λ
1/q2 t2) = h(t), t ∈ R

2
0. (62)

(ii) generalized invariant if λ �→ h(λ1/q1 t1, λ
1/q2 t2) is a constant function on R+

for any t ∈ R
2
0.

Proposition 3 Any generalized homogeneous function h can be represented as

h(t) = L(t)/ρ(t), t ∈ R
2
0, (63)

where ρ(t) = |t1|q1 + |t2|q2 , t ∈ R
2, and L is a generalized invariant function.

Moreover, L can be written as

L(t) = Lsign(t2)(t1/ρ(t)
1/q1), t2 = 0, (64)

where L±(z) := h(z,±(1− |z|q1)1/q2), z ∈ [−1, 1].
Proof Equation (63) follows from (62), by taking λ = 1/ρ(t). Then L(t) :=
h(t1/ρ(t)1/q1, t2/ρ(t)1/q2) is a generalized invariant function. Whence, (64) follows
since t2/ρ(t)1/q2 = sign(t2)(1− |t1/ρ(t)1/q1|q1)1/q2 . ��

The notion of generalized homogeneous function was introduced in [9]. The last
paper also obtained a representation of such functions different from (63). Note t �→
(t1, ρ(t)1/q1) is a 1-1 transformation of the upper half-plane {t ∈ R

2 : t2 ≥ 0} onto
itself. Following [5], the form in (63) will be called the polar representation of h.
The two factors in (63), viz., ρ−1 and L are called the radial and angular functions,
respectively. Note that h being strictly positive and continuous on R

2
0 is equivalent to

L± both being strictly positive and continuous on [−1, 1]with L+(±1) = L−(±1).

4.2 Dependence Axis

Definition 2 Let g : R2 → R be a measurable function. We say that a line passing
through the origin and given by {t ∈ R

2 : a · t = 0} with a ∈ R
2
0 is the dependence

axis of g if for all c ∈ R
2
0 such that a1c2 = c1a2,

lim inf|t|→∞, c·t=0

log(1/|g(t)|)
log |t| > lim sup

|t|→∞, a·t=0

log(1/|g(t)|)
log |t| . (65)

We say that a line {t ∈ R
2 : a · t = 0} with a ∈ R

2
0 is the dependence axis of

g : Z2 → R if this line is the dependence axis of g(%t&), t ∈ R
2.
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Proposition 4 Let g : Z2 → R satisfy

g(t) = ρ(Bt)−1(L(Bt)+ o(1)), |t| → ∞, (66)

where B = (bij )i,j=1,2 is a 2 × 2 nondegenerate matrix, ρ(t) := |t1|q1 + |t2|q2 ,
t ∈ R

2, with qi > 0, i = 1, 2, and L : R
2
0 → R satisfies Assumption B. In

addition,

(i) let q1 < q2 and |L+(1)| = |L−(1)| > 0, |L+(−1)| = |L−(−1)| > 0. Then
the dependence axis of g is {t ∈ R

2 : b2 · t = 0} with b2 = (b21, b22)
F;

(ii) let q1 > q2 and |L+(0)| > 0, |L−(0)| > 0. Then the dependence axis of g is
{t ∈ R

2 : b1 · t = 0} with b1 = (b11, b12)
F.

Proof It suffices to show part (i) only since (ii) is analogous. Below we prove that

lim|t|→∞, b2·t=0
|t|q1 |g(%t&)| = |b2|q1

| det(B)|q1

{
L±(1), b1 · t →+∞,
L±(−1), b1 · t →−∞, (67)

lim sup
|t|→∞, c·t=0

|t|q2 |g(%t&)| <∞, ∀c ∈ R
2
0, b21c2 = c1b22. (68)

Note (67) implies lim|t|→∞, b2·t=0
log(1/|g(%t&)|)

log |t| = q1 while (68) implies

lim inf|t|→∞, c·t=0
log(1/|g(%t&)|)

log |t| ≥ q2, hence the statement of the proposition.
Let us prove (67). We have

b1 · t

ρ(B%t&)1/q1
= sign(b1 · t)

(|b1 · %t&/|b1 · t||q1 + |b2 · %t&|q2/|b1 · t|q1 )1/q1
→±1, b1 · t →±∞

since |b2·%t&|=O(1) on b2·t=0. In a similar way, lim|t|→∞, b2·t=0 |t|q1ρ(B%t&)−1 =
(
|b21|+|b22|| det(B)| )

q1 . Whence, (67) follows by the asymptotic form of g and the assumption
of the continuity of L±.

Consider (68). In view of (66) and the boundedness of L± it suffices to show
(68) for ρ(Bt)−1 in place of g(t), t ∈ Z

2. Then |t|q2ρ(B%t&)−1 = (
|b1·%t&|q1|t|q2 +

|b2·%t&|q2
|t|q2 )−1, where |b1·%t&|q1

|t|q2 → 0 and |b2·%t&||t| → |b21c2−b22c1||c1|+|c2| > 0, proving (68). ��
Below, we show that the dependence axis is preserved under ‘discrete’ convolu-

tion [g1 % g2](t) := ∑
u∈Z2 g1(u)g2(u+ t), t ∈ Z

2, of two functions gi : Z2 → R,
i = 1, 2.

Proposition 5 For i = 1, 2, let gi : Z2 → R satisfy

gi(t) = ρ(Bt)−1(Li(Bt)+ o(1)), |t| → ∞, (69)
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where B is a 2 × 2 nondegenerate matrix, ρ with Q = q−1
1 + q−1

2 ∈ (1, 2) and Li
are functions as in Assumption B. For i = 1, 2, let a∞,i (t) := ρ(t)−1Li(t), t ∈ R

2
0.

Then

[g1 % g2](t) = ρ̃(Bt)−1(L̃(Bt)+ o(1)), |t| → ∞, (70)

where ρ̃(t) := |t1|q̃1 + |t2|q̃2 , t ∈ R
2, with q̃i := qi(2−Q), i = 1, 2, and

L̃(t) := | det(B)|−1(a∞,1 % a∞,2)(t1/ρ̃(t)1/q̃1, t2/ρ̃(t)1/q̃2), t ∈ R
2
0, (71)

is a generalized invariant function in the sense of Definition 1 (ii) (with qi replaced
by q̃i , i = 1, 2). Moreover, if L1 = L2 ≥ 0 then L̃ is strictly positive.

Proof We follow the proof in [14, Prop. 5.1 (iii)]. For t ∈ Z
2, split every gi(t)

as a sum of g1
i (t) := gi(t) − g0

i (t) and g0
i (t) := (1 ∨ ρ(Bt))−1Li(Bt) using the

convention g0
i (0) = Li(0) := 0. Then [g1 % g2](t) = ∑1

k,j=0[gk1 % gj2 ](t) and (70)
follows from

lim|t|→∞

∣
∣
∣ρ̃(Bt)[g0

1 % g
0
2](t)− L̃(Bt)

∣
∣
∣ = 0 (72)

and

ρ̃(Bt)[gk1 % gj2 ](t) = o(1), |t| → ∞, (k, j) = (0, 0). (73)

To prove (72) we write the ‘discrete’ convolution as integral [g0
1 % g

0
2](t) =∫

R2 g
0
1(1u2)× g0

2(1u2 + t)du, where we change a variable: u → B−1R*̃u with

t′ := Bt, *̃ := ρ̃(t′), R*̃ := diag(*̃1/q̃1, *̃1/q̃2).

Then with Q̃ := q̃−1
1 + q̃−1

2 we have

ρ̃(Bt)[g0
1 % g

0
2](t)

= | det(B)|−1*̃1+Q̃
∫

R2

L1(B1B−1R*̃u2)
ρ(B1B−1R*̃u2) ∨ 1

× L2(B1B−1R*̃u2 + t′)
ρ(B1B−1R*̃u2 + t′) ∨ 1

du

= | det(B)|−1
∫

R2
g*̃,z(u)du, z = R−1

*̃
t′,

where for all ρ̃ > 0, z ∈ R
2 such that ρ̃(z) = 1, u ∈ R

2,

g*̃,z(u) :=
L1(R

−1
*̃
B1B−1R*̃u2)

ρ(R−1
*̃
B1B−1R*̃u2) ∨ *̃−q1/q̃1

×
L2(R

−1
*̃
B1B−1R*̃u2 + z)

ρ(R−1
*̃
B1B−1R*̃u2 + z) ∨ *̃−q1/q̃1
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and we used generalized homogeneous and generalized invariance properties of ρ
and Li , i = 1, 2, and the facts that q1/q̃1 = q2/q̃2, 1 + Q̃ = 2q1/q̃1 = 2/(2−Q).
Whence using continuity of ρ and Li , i = 1, 2, it follows that g*̃,z(u)− a∞,1(u)×
a∞,2(u + z) → 0 as *̃ → ∞ or |t| → ∞ for all u ∈ R

2
0, u + z ∈ R

2
0. Then

similarly as in [14, (7.8)] we conclude that supz∈R2:ρ(z)=1 |
∫
R2 g*̃,z(u)du− (a∞,1 %

a∞,2)(z)| → 0, *̃→∞, and (72) holds. The remaining details including the proof
of (73) are similar to those in [14]. Proposition 5 is proved. ��
Corollary 1 Let X be a linear RF on Z

2 satisfying Assumptions A, B and having a
covariance function rX(t) := EX(0)X(t) = [b % b](t), t ∈ Z

2. Then

rX(t) = ρ̃(Bt)−1(L̃(Bt)+ o(1)), |t| → ∞, (74)

where ρ̃, L̃ are as in (70), (71) (with a∞,1 = a∞,2 = a∞ of (16)). Particularly,
if q1 = q2 and L± satisfy the conditions in Proposition 4, the dependence axes
of the covariance function rX in (74) and the moving-average coefficients b in (8)
coincide.

Acknowledgments We are grateful to an anonymous referee for useful comments. The authors
thank Shanghai New York University for hosting their visits in April–May, 2019 during which
this work was initiated and partially completed. Vytautė Pilipauskaitė acknowledges the financial
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Brownian Aspects of the KPZ Fixed Point

Leandro P. R. Pimentel

Abstract The Kardar-Parisi-Zhang (KPZ) fixed point is a Markov process that is
conjectured to be at the core of the KPZ universality class. In this article we study
two aspects the KPZ fixed point that share the same Brownian limiting behaviour:
the local space regularity and the long time evolution. Most of the results that we will
present here were obtained by either applying explicit formulas for the transition
probabilities or applying the coupling method to discrete approximations. Instead
we will use the variational description of the KPZ fixed point, allowing us the
possibility of running the process starting from different initial data (basic coupling),
to prove directly the aforementioned limiting behaviours.

Keywords Random growth · Kardar-Parisi-Zhang fixed point · Brownian motion

1 Introduction and Main Results

The universality class concept is an instrument of modern statistical mechanics that
systemizes the idea that there are but a few important characteristics that determine
the scaling behaviour of a stochastic model. In d + 1 stochastic growth models
the object of interest is a height function h(x, t) over the d-dimensional substrate
x ∈ R

d at time t ≥ 0, whose evolution is described by a random mechanism.
For fairly general models one has a deterministic macroscopic shape for the height
function and its fluctuations, under proper space and time scaling, are expected to
be characterized by a universal distribution. A well known example is given by the
random deposition growth model, where blocks are pilled in columns (indexed by
x ∈ Z) according to independent Poisson processes. The existence of a macroscopic
shape follows from the law of large numbers and, due to the classical central limit
theorem, the height function at x ∈ R has Gaussian fluctuations that are independent
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in space. In 1986 [18], Kardar, Parisi and Zhang (KPZ) proposed a stochastic partial
differential equation (the KPZ equation) for a growth model where a non-linear
local slope dependent rate is added to a diffusion equation with additive noise:
∂th = 1

2 (∂xh)
2 + ∂2

xh+ ξ . In opposition to the previous random deposition growth
model, they predicted that for d = 1 the solution of the KPZ equation at time nt has
fluctuations of order n1/3, and on a scale of n2/3 that non-trivial spatial correlation
is achieved (KPZ scaling exponents). Since then it is expected that 1 + 1 interface
growth models that exhibit a similar KPZ growth mechanism would satisfy

h(an2/3x, nt) ∼ bnt + cn1/3ht (x) ,

for some constants a, b, c ∈ R \ {0} that might depend on the microscopic
distributional details of the model, but where ht (x) is a universal space-time process
called the KPZ fixed point [11]. Illustrations of natural phenomena within the KPZ
universality class include turbulent liquid crystals, bacteria colony growth and paper
wetting [27]. For a more complete introduction to the KPZ equation and universality
class, and its relation with other discrete growth models in statistical physics, the
author address to [9].

After [18], the study of KPZ fluctuations became a famous subject in the
literature of physics and mathematics and, in the late nineties, a breakthrough was
presented by Baik, Deift and Johansson [2, 16]. By applying an exact formula
(in terms of a Toeplitz determinant) for the Hammersley last-passage percolation
growth model with narrow wedge initial profile, and then by analysing asymp-
totics of the resulting expressions, they were able to prove convergence of shape
fluctuations at x = 0 to the Tracy-Widom (GUE) distribution. In the past 20
years there has been a significant amount of improvements of the theory and the
exact statistics for some special initial conditions, resulting in different types of
limiting distributions, were computed using connections with integrable probability
[1, 6, 17, 25]. Recently, a unifying approach was developed by Matetski et al. [19]
in the totally asymmetric simple exclusion process (TASEP) context that conducted
to a rigorous construction of the Markov process (ht , t ≥ 0) and the explicit
computation of its transition probabilities.

Alongside the rich structure of integrable probability, the study of the KPZ
universality class was also developed by techniques based on the graphical rep-
resentation of an interacting particle system due to Harris [15]. There are many
advantages of this approach, also known as the coupling method, comprising the
possibility of running the process starting from different initial data on the same
probability space. In the seminal paper by Cator and Groeneboom [7], the authors
applied the coupling method to derive the KPZ scaling exponents (1/3 and 2/3) for
the Hammersley last-passage percolation growth model. This method was further
developed in the TASEP context by Balázs et al. [4], and became a successful tool
to analyse fluctuations of models [3, 5, 26] lying within the KPZ universality class,
and local properties of different types of of Airy processes [8, 14, 23]. Related to
that, there has been considerable developments in describing the KPZ fixed point
for fixed x ∈ R and t > 0 in terms of a variational formula [11, 12, 14, 19].
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The full variational space-time picture of the KPZ fixed point in terms of the
directed landscape was constructed by Dauvergne et al. [13], which relies on the
existence and uniqueness of a two-dimensional random scalar field, called the Airy
sheet. In analogy with Harris graphical representation, the directed landscape allows
one to run simultaneously the process starting from different initial data on the
same probability space (basic coupling). Thereby, it seems natural to expect that
particle systems techniques that were applied to discrete approximations of the
KPZ fixed point [23, 24] can be developed in the continuous space-time context
itself. In the course of this article we prove Brownian behaviour of the KPZ fixed
point (Theorems 1–3) by using soft arguments based on geometrical aspects of the
directed landscape.

1.1 The Airy Sheet and the Directed Landscape

The construction of the directed landscape is based on the existence and uniqueness
of the so called Airy Sheet, which in turn is defined through a last-passage perco-
lation model over the Gibbsian Airy line ensemble [10, 13, 25]. For a sequence of
differentiable functions F = (. . . ,F−1,F0,F1, . . . )with domainR, and coordinates
x ≤ y and n ≤ m, define the last-passage percolation time

F ((x,m)→ (y, n)) := sup
π

∫ y

x

F′π(t)(t)dt ,

where the supremum is over nonincreasing functions π : [x, y] → Z with
π(x) = m and π(y) = n. Notice that, for such paths, the integral is just the sum
of the increments of F (over each line), so the same can be defined for continuous
F. An important example is given by setting F ≡ B a sequence of independent
standard two-sided Brownian motions (Brownian last-passage percolation). In the
literature of last-passage percolation it is normally considered maximization over
nondecreasing paths instead, but to accommodate the natural order of the Airy
line ensemble from top to bottom (as below), Dauvergne et al. [13] defined it for
nonincreasing paths.

The Airy line ensemble [10, 25] is a random sequence of ordered real functions
L1 > L2 > . . . with domain R. The function Ln(x) + x2 is stationary for all
n ≥ 1, and the top line L1(x)+ x2 is known as the Airy2 process and represents the
limit fluctuations of some integrable last-passage percolation models, including the
Brownian one.

Definition 1 The stationary Airy sheet is a random continuous function A : R2 →
R such that:

• A
dist.= T(z,w)A for all (z,w) ∈ R

2, where T(z,w)f(x, y) := f(x + z, y + w).
• A can be coupled with the Airy line ensemble so that

(A (0, x) , x ∈ R)
dist.=

(
L1(x)+ x2 , x ∈ R

)
,
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and for all (x, y, z) ∈ Q
+ × Q

2 almost surely there exists a randomKx,y,z such
that for all k ≥ Kx,y,z we have

L
(
(−√

k/2x, k)→ (z, 1)
)
−L

(
(−√

k/2x, k)→ (y, 1)
)
=L (x, z)−L (x, y) ,

where

L (x, y) := A (x, y)− (x − y)2 . (1)

In [13] the authors have a similar definition for the Airy sheet L (x, y) (see
Definition 1.2[13] and notice that they used different notation to represent the Airy
line ensemble and the Airy sheet), but it follows from their results (Remark 1.1 and
Theorem 1.3 [13]) that the stationary Airy sheet exists and is unique in law. The Airy
sheet satisfies a version of the 1:2:3 scaling with respect to metric composition. For
each γ > 0 let Sγ denote the diffusive scaling transform, which we will apply to
real functions of one or two variables:

Sγ f(x) := γ−1f(γ 2x) and Sγ f(x, y) := γ−1f(γ 2x, γ 2y) .

Define the Airy sheet Ls of scale s > 0 by

Ls(x, y) := Ss−1L (x, y) = sL (x/s2, y/s2) .

Then

Lr (x, y)
dist.= max

z∈R

{
L (1)
s (x, z)+L (2)

t (z, y)
}
, with r3 = s3 + t3 ,

(as random functions) where L (1)
s and L (2)

t are two independent copies of the
Airy sheet of scales s, t > 0, respectively. (For the Airy sheet (1) we have a true
maximum!)

To introduce the directed landscape we consider an oriented four-dimensional
parameter space defined as

R
4↑ :=

{
(x, s; y, t) ∈ R

4 : s < t
}
.

Coordinates s and t represents time while coordinates x and y represents space.
In the next we follow Definition 10.1 [13] to introduce the directed landscape. By
Theorem 10.9 [13], the directed landscape exists and is unique in law.

Definition 2 The directed landscape is a random continuous functionL : R4↑ → R

that satisfies the following properties.
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• Airy sheets marginals: for each t ∈ R and s > 0 we have

L (·, t; ·, t + s) dist.= Ls(·, ·) . (2)

• Independent increments: if {(ti, ti + si) : i = 1, . . . , k} is a collection of disjoint
intervals then {L (·, ti; ·, ti + si ) : i = 1, . . . , k} is a collection of independent
random functions.

• Metric composition: almost surely

L (x, r; y, t) = max
z∈R

{L (x, r; z, s)+L (z, s; y, t)} , ∀ (x, s; y, t) ∈ R
4↑ and s ∈ (r, t) .

(3)

Dauvergne et al. [13] showed that the directed landscape describes the full space
and time scaling limit of the fluctuations of the Brownian last-passage percolation
model (Theorem 1.5 [13]). By setting (x, s)n := (s+2x/n1/3,−%sn&), they proved
that there exists a coupling between the directed landscape and the Brownian last-
passage percolation model such that

B(n) ((x, s)n → (y, t)n) = 2(t − s)√n+ 2(y − x)n1/6 + n−1/6 (L + on) (x, s; y, t) ,
(4)

where B(n)(. . . ,B(n)−1,B
(n)
0 ,B

(n)
1 , . . . ) is a sequence of Brownian motions and on is

a random function asymptotically small in the sense that for each compactK ⊆ R
4↑

there exists a > 1 such that E (asupK on)→ 1 as n→∞.
The directed landscape induces an evolution which takes into account the metric

composition (3). The state space UC is defined below and, as our initial data, we
incorporate (generalized) functions that might take value −∞.

Definition 3 We say that a function f : R→ [−∞,∞) is upper semicontinuous if

lim sup
x→y

f(x) ≤ f(y) .

Let UC denote the space of upper semicontinuous generalized functions f : R →
[−∞,∞) with f(x) ≤ C1|x| + C2 for all x ∈ R, for some C1, C2 < ∞, and
f(x) > −∞ for some x ∈ R.

A canonical example of a (generalized) upper semicontinuous function that will
be consider here several time is

dx(z) =
{

0 for z = x
−∞ for z = x . (5)

The state space UC can be endowed with the topology of local convergence turning
it into a Polish space (Section 3.1 [19]).
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Proposition 1 Let h ∈ UC. Then a.s. for all 0 < s < t and x ∈ R the random
function z ∈ R �→ h(z)+L (z, s; x, t) attains it maximum and the process

hs,t (x; h) := max
z∈R

{h(z)+L (z, s; x, t)} , (6)

defines a Markov process acting on UC, i.e.

hr,t+s(·; h) = ht,t+s(·; hr,t ) .

From now on we denote ht ≡ h0,t .

Proposition 1 follows from Proposition 2, which will be proved in the next
section. Notice that, by independence of increments (Definition 2), hr,t (·; h) and
L (·, t; ·, t + s) are independent. The directed landscape can be recovered in terms
of hs,t by choosing a proper initial condition (5):

L (x, s; y, t) = hs,t (y; dx) . (7)

The KPZ fixed point satisfies the 1:2:3 scaling invariance:

Sγ−1hγ−3t (·; Sγ h) dist.= ht (·; h) . (8)

Furthermore, if we set

b ≡ two-sided Brownian motion with diffusion coefficient 2 , (9)

then

Δht (·; bμ) dist.= bμ(·) , for all t ≥ 0 , (10)

where Δf(x) := f(x) − f(0) and bμ(x) := μx + b(x). The time invariance (10)
can be justified in two ways: one can use that the directed landscape is the limit
fluctuations of the Brownian the last-passage percolation model (4), and that the
Brownian motion is invariant for the Markov evolution induced by the Brownian
last-passage percolation model [21]; or Theorem 4.5 in [19], where it is used that the
KPZ fixed point is of the limit fluctuations of the TASEP, whose invariant measure
are given by Bernoulli i.i.d. random variables.

The transition probabilities of hs,t were computed by Matetski et al. [19], and
the connection with the directed landscape construction was established by Nica et
al. [20]. We give a brief description of the transition probabilities as follows. The
collection composed by cylindrical subsets

Cy(x, a) := {
f ∈ UC : f(x1) ≤ a1, . . . , f(xm) ≤ am

}
for x, a ∈ R

m ,



Brownian Aspects of the KPZ Fixed Point 717

is a generating sub-algebra for the Borel σ -algebra over UC. The KPZ fixed point
(ht (·) , t ≥ 0) is the unique time homogenous Markov process taking values in UC
with transition probabilities given by the extension from the cylindrical sub-algebra
to the Borel sets of

P

(
ht ∈ Cy(x, a) | h0 = h

)
= det

(
I− Kh

t,x,a

)

L 2({x1,...,xm}×R)
. (11)

On the right hand side of (11) we have a Fredholm determinant of the operator
Kh
t,x,a, whose definition we address to [19] (I is the identity operator). From this

formula one can recover several of the classical Airy processes by starting with
special profiles for which the respective operatorsK are explicit (see Section 4.4 of
[19]). For instance, the Airy2 process A (·) = h(·; d0) is defined by taking the initial
profile (5) with x = 0.

1.2 Space Hölder Regularity and Brownian Behaviour

Using kernel estimates for discrete approximations of the integral operator in (11),
Matetski et al. [19] proved that ht has Hölder 1/2− regularity in space (Theorem
4.13 [19] and Proposition 1.6 [13]), and also that S√εΔht converges to b, as ε →
0+, in terms of finite dimensional distributions (Theorem 4.14 [19]). Functional
convergence was proved by Pimentel [23] for several versions of Airy processes,
which are obtained from the fundamental initial profiles h ≡ d0, h ≡ 0 and h ≡
b, and stronger forms of local Brownian behaviour were proved by Corwin and
Hammond [10] and Hammond [15]. Here we use geometrical properties related to
(6) to control space regularity of ht .

Let β ∈ [0, 1] and define the Hölder semi-norm of a real function f : R→ R as

‖f‖β,[−a,a] := sup

{ |f(x)− f(y)|
|x − y|β : x, y ∈ [−a, a] and x = y

}
.

Theorem 1 Fix a, t > 0 and β ∈ [0, 1/2). Then

P
(‖ht‖β,[−a,a] <∞) = 1 . (12)

Furthermore,

lim
ε→0+

S√εΔht (·) dist.= b(·) , (13)

where the distribution of b is given by (9).
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For f : R2 → R, define the Hölder semi-norm as follows

‖f‖β,[−a,a]2 := sup

{
|f(x)− f(y)|
|x− y|β∞

: x, y ∈ [−a, a]2 and x = y

}

.

Denote

Δf(x, y) := f(x, y)− f(0, 0) ,

and let B(x, y) := b1(x) + b2(y), where b1 and b2 are two independent copies of
(9).

Theorem 2 Consider the stationary Airy sheet and β ∈ [0, 1/2). Then

P
(‖A ‖β,[−a,a]2 <∞) = 1 .

Furthermore1

lim
ε→0+

S√εΔA (·, ·) dist.= B(·, ·) .

In view of (1) and (2), we also have that

lim
t→∞ΔL (·, 0; ·, t)

dist.= B(·, ·) .

1.3 Brownian Long Time Behaviour

From (8), one can see that the long time behaviour of Δht can be written in terms
of the local space behaviour of Δh1 (take γ = t1/3), which allows one to obtain
long time convergence (in terms of finite dimensional distributions) from the local
convergence to Brownian motion, as soon as Sγ h converges in distribution in UC
as γ → ∞ (Theorem 4.15 [19]). Based on the same geometrical tools to study the
space regularity of the KPZ fixed point, we will prove long time convergence of the
KPZ fixed.

Theorem 3 Assume that there exist c > 0 and a real function ψ such that for all
γ ≥ c and r ≥ 1

P
(
Sγ h(z) ≤ r|z| , ∀ |z| ≥ 1

) ≥ 1− ψ(r) and lim
r→∞ψ(r) = 0 . (14)

1Convergence in terms of a sequence of random elements in the space of continuous scalar fields
on a fixed compact subset of R2, endowed with the uniform metric.
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Let a, t, η > 0 and set rt := 4
√
t2/3a−1. Under (14), where b (9) and h are sample

independently, there exists a real function φ, which does not depend on a, t, η > 0,
such that for all t ≥ max{c3, a3/2} and η > 0 we have

P

(

sup
x∈[−a,a]

|Δht (x; h)−Δht (x; b)| > η
√
a

)

≤ φ (rt )+ 1

ηrt
and lim

r→∞φ(r) = 0 .

(15)

In particular, if limt→∞ at t−2/3 = 0 then

lim
t→∞P

(

sup
x∈[−at ,at ]

|Δht (x; h)−Δht (x; b)| > η√at
)

= 0 .

Since S√atΔht (·; b) dist.= b(·), we also have that

lim
t→∞ S

√
atΔht (·; h) dist.= b(·) .

Remark 1 For deterministic h(x) = xζ , for ζ ∈ [0, 1], we have that Sγ h(x) =
γ 2ζ−1xζ . If ζ ∈ [0, 1/2], then h does satisfy (14), while for ζ ∈ (1/2, 1] it does not.
We use assumption (14) to ensure that, for all large values of t ,

P

(
|Zt(±a; h)| > rt2/3

)
≤ φ1(r)→ 0 , as r →∞ , (16)

where Zt(x; h) is the rightmost z ∈ R to attain the maximum (6), and φ1 is a real
function that does not depend on a > 0 or t > 0 (Lemma 2). If one can prove (16),
based on possible different assumptions, then (15) will follow as well.

Remark 2 Theorem 3 does not imply immediately that the only spatially ergodic (in
terms of its increments) and time invariant process with zero drift is b. This would
follow as soon as one can verify (14) or (16) for such a process.

2 Geometry, Comparison and Attractiveness

Given an upper semicontinuous function f such that

lim|z|→∞ f(z) = −∞ , (17)
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then the supremum of f(z) over z ∈ R is indeed a maximum, i.e. ∃Z ∈ R such that
f(Z) ≥ f(z) for all z ∈ R. Additionally, the set

arg max
z∈R

f(z) :=
{
Z ∈ R : f(Z) = max

z∈R
f(z)

}
.

is compact. Since with probability one, for all h ∈ UC, h(z)+L (z, s; x, t) satisfies
(17), for all s < t and x ∈ R, (due to the parabolic drift (1)) we can use these
aforementioned facts to study the Markov evolution (6).

We call a continuous path P : [r, t] → R a geodesic between the space-time
points (x, r) and (y, t) if P(r) = x, P(t) = y and for s ∈ (r, t)

L (x, r; y, t) = L (x, r;P(s), s)+L (P(s), s; y, t) (18)

Define P
y,t
x,r (r) = x, Py,t

x,r (t) = y and

P
y,t
x,r (s) := max arg max

z∈R
{L (x, r; z, s)+L (z, s; y, t)} for s ∈ (r, t) .

By Lemma 13.3 [13], almost surely, Py,t
x,r is a geodesic for every (x, r) and (y, t).

We also identify the geodesic path (or function) P with its graph {(P(s), s) :
s ∈ [r, t]} in order to handle intersection points between different paths. For each
h ∈ UC, 0 < t and x ∈ R, let

Zt(x; h) := max arg max
z∈R

{h(z)+L (z, s; x, t)} . (19)

Proposition 2 Almost surely ht and Zt are a well defined real functions for which
we have the following properties.

(i) ht (x) = h (Zt (x))+L (Zt (x), 0; x, t).
(ii) For every w ∈ R and u ∈ [0, t),

ht (x) ≥ hu(w)+L (w, u; x, t) .

(iii) For every (w, u) ∈Px,t
Zt (x),0

,

ht (x) = hu(w)+L (w, u; x, t) and hu(w) = h(Zt (x))+L (0, Zt(x);w,u) .

(iv) For fixed t > 0, Zt(x) is a nondecreasing function of x ∈ R.
(v) hs,t satisfies a composition property: ht+s(·; h) = ht,t+s(·; ht ), i.e.

ht+s(x; h) = max
z∈R

{ht (z; h)+L (z, t; x, t + s)} , ∀ x ∈ R .
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Proof By compactness, Zt(x) ∈ arg maxz∈R {h(z)+L (z, 0; x, t)}, which implies
(i). Now we use (6) and (3) to get (ii): for any z,w ∈ R and u ∈ (0, t),

ht (x) ≥ h(z)+L (0, z; x, t) ≥ h(z)+L (0, z; u,w)+L (w, u; x, t) ,

and hence

ht (x) ≥ hu(w)+L (w, u; x, t) .

By (i) and (18), if w =Px,t
Zt (x),0

(u) then

ht (x) = h(Zt (x))+L (Zt (x), 0; x, t)
= h(Zt (x))+L (Zt (x), 0;w,u)+L (w, u; x, t)
≤ hu(w)+L (w, u; x, t) ,

and thus, by (ii),

ht (x) = hu(w)+L (w, u; x, t)

and

hu(w) = h(Zt (x))+L (0, Zt(x);w, u) ,

which concludes the proof of (iii). To prove (iv), assume that Zt(y) < Zt(x) for
some x < y. ThenPy,t

Zt (y),0
andPx,t

Zt (x),0
intersects at some space-time point (w, u).

By (iii), we have that

ht (y) = hu(w)+L (w, u; y, t) and hu(w) = h(Zt (x))+L (Zt (x), 0;w,u) .

This shows that

ht (y) = hu(w)+L (w, u; y, t)
= h(Zt (x))+L (Zt (x), 0;w,u)+L (w, u; y, t)
≤ h(Zt (x))+L (Zt (x), 0; y, t) ,

where we use the metric composition (3) for the last inequality. Hence, Zt(x) is
also a location that attains the maximum for ht (y), which leads to a contradiction
since we assumed that Zt(y) < Zt(x) and Zt(y) is the rightmost point to attain the
maximum. The composition property (v) follows directly item (iii). ��
Proposition 3 (Argmax Comparison) If x < y and Zt(y; h) ≤ Zt(x; h̃) then

ht (y; h)− ht (x; h) ≤ ht (y; h̃)− ht (x; h̃) .
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Proof Denote z ≡ Zt(y; h) and z̃ ≡ Zt(x; h̃). By assumption, x < y and z ≤
z̃, and hence there exists (w, u) ∈ P

y,t
z,0 ∩ Px,t

z̃,0 . Since (w, u) ∈ Px,t
z̃,0 , by (iii)-

Proposition 2,

ht (x; h̃) = hu(w; h̃)+L (w, u; x, t) ,

and, by (ii)-Proposition 2,

ht (y; h̃) ≥ hu(w; h̃)+L (w, u; y, t) ,

that yields to

ht (y; h̃)− ht (x; h̃) ≥ L (w, u; y, t)−L (w, u; x, t) .

Now (w, u) ∈P
y,t
z,0 and by using Proposition 2 as before, we have

ht (y; h) = hu(w; h)+L (w, u; y, t) and ht (x; h) ≥ hu(w; h)+L (w, u; x, t) ,

which implies that

ht (y; h)− ht (x; h) ≤ L (w, u; y, t)−L (w, u; x, t) ,

and therefore ht (y; h)− ht (x; h) ≤ ht (y; h̃)− ht (x; h̃). ��
Proposition 4 (Attractiveness) If h(y)− h(x) ≤ h̃(y)− h̃(x) for all x < y then

ht (y; h)− ht (x; h) ≤ ht (y; h̃)− ht (x; h̃) ∀ x < y ,∀ t ≥ 0 .

Proof Denote again z ≡ Zt(y; h) and z̃ ≡ Zt(x; h̃). If z ≤ z̃ then

ht (y; h)− ht (x; h) ≤ ht (y; h̃)− ht (x; h̃) ,

by Proposition 3. If z > z̃ then, by (i)-Proposition 2,

ht (y; h̃)− ht (x; h̃) −
(
ht (y; h)− ht (x; h)

)

= ht (y; h̃)−
(
h̃(z̃)+L (z̃, 0; x, t))

−
((
h(z)+L (z, 0; y, t))− ht (x; h)

)

= ht (y; h̃)−
(
h̃(z)+L (z, 0; y, t))+

(
ht (x; h)

− (
h(z̃)+L (z̃, 0; x, t))

)

+ (
h̃(z)− h̃(z̃)

)− (
h(z)− h(z̃)

)
.
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Thus, by (6),

ht (y; h̃)−
(
h̃(z)+L (z, 0; y, t)) ≥ 0 ,

and

ht (x; h)−
(
h(z̃)+L (z̃, 0; x, t)) ≥ 0 ,

while, by assumption,

(
h̃(z)− h̃(z̃)

)− (
h(z)− h(z̃)

) ≥ 0 ,

since z > z̃. ��

2.1 Uniqueness of the Argmax

We finish this section by pointing out how the ideas in [22] can be combined with the
fact that the Airy2 process is locally absolutely continuous with respect to Brownian
motion [10], to prove a.s. uniqueness of the location of the maxima in (6). Since
h(z) +L (z, s; x, t) satisfies (17), it is enough to prove uniqueness of the location
of the maximum restrict to a compact set. On the other hand, {L (z, s; x, t) : z ∈
R} is distributed as a rescaled Airy2 process minus a parabola (for fixed x ∈ R

and 0 < s < t), which is locally absolutely continuous with respect to Brownian
motion [10]. Therefore, uniqueness of the location of the maxima in (6) follows from
the next proposition, which is similar to Theorem 2 [22], combined with Lemma 2
[22].2

Proposition 5 Let K ⊆ R be a compact set and f : K → R be a random upper
semicontinuous function. Denote fa(z) := f(z)+ az,M(f) := maxz∈K f(z), and let

m(a) = E
(
M

(
fa

)−M (f)) .

Then |m(a)| < ∞ for all a ∈ R and a.s. there exists a unique Z ∈ K such that
M(f) = f(Z) if and only if m(a) is differentiable at a = 0. Furthermore, in this
case,

m′(0) = EZ .

Proof The first part of the proof is merely analytic and we follow the proof of
Lemma 1 [22], where f was assumed to be continuous. There are two fundamental

2Lemma 2 [22] shows that m(a) is differentiable at a = 0 if f is a sum of a deterministic function
h with a Brownian motion.
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steps where we used continuity that needs to be adapted to upper semicontinuous
functions. Denote

Z1(f) := inf arg max
z∈K

f(z) and Z2(f) := sup arg max
z∈K

f(z) .

For simple notation we putMa ≡ M(fa),M ≡ M(f), Zai ≡ Zi(fa) and finally Zi ≡
Zi(f). The first step in [22] was to argue that M = f(Zi) and Ma = f(Zai ) + aZai .
But for a upper semicontinuous function, arg maxz∈K f(z) is a compact set, and then
Z1(f), Z2(f) ∈ arg maxK f(z) (which also holds for fa). Thus, we can conclude that

M + aZi = f(Zi)+ aZi ≤ Ma = f(Zai )+ aZai ≤ M + aZai . (20)

Since Zi,Zai ∈ K and K is compact, by (20), we have that |m(a)| < ∞ for all
a ∈ R. The second step in [22] was to prove that

lim
a→0−

Za1 = Z1 and lim
a→0+

Za2 = Z2 . (21)

Indeed, by (20), we have that Za1 ≤ Z1 for all a < 0, and if the convergence of Za1
to Z1 does not hold then, by compactness of K , we can find Z̃1 ∈ K , δ > 0 and a
sequence an→ 0− such that limn→∞ Zan1 = Z̃1 and Z̃1 ≤ Z1 − δ. But by (20), we
also have that

0 ≤ a (
Zai − Zi

)− (
f(Zi)− f(Zai )

)
, for i = 1, 2 ,

and thus (first inequality)

f(Z1) ≤ lim sup
n

f(Zan1 ) ≤ f(Z̃1) ,

where we use upper semicontinuity in the second inequality. But this is a con-
tradiction, since Z1 is the leftmost location to attain the maximum, and hence
lima→0− Z

a
1 = Z1. Since Za2 ≥ Z2 for all a > 0, the proof of lima→0+ Z

a
2 = Z2 is

analogous. By (20) again,

0 ≤ (Ma −M)− aZi ≤ a(Zai − Zi) ,

which implies that

0 ≥ M
a −M
a

− Z1 ≥ Za1 − Z1 ≥ −diam(K) , for a < 0 ,

and

0 ≤ M
a −M
a

− Z2 ≤ Za2 − Z2 ≤ diam(K) , for a > 0 ,
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where diam(K) denotes the diameter of K . Since the location of the maximum is
a.s. unique if and only if E (Z1) = E (Z2) (now we have a random f), using the
inequalities above, (21) and dominated convergence, we see that the location of the
maximum of f is a.s. unique if and only if m(a) is differentiable at a = 0:

E (Z1) = E (Z2) ⇐⇒ lim
a→0−

m(a)−m(0)
a

= lim
a→0+

m(a)−m(0)
a

,

which concludes the proof. ��

3 Proof of the Theorems

A key step to use comparison (Proposition 3) relies on the control of Zt(x; h)
(recall (19)) as a function of h, x and t . Let X be the closest point to the origin
such that h(X) > −∞ (if a tiebreak occurs we pick the nonnegative one). By
assumption, X ∈ R is a well defined random variable. Since the location of a
maximum is invariant under vertical shifts of h, if we want to control the location
of the maximum, we can assume without loss of generality that h(X) = 0. By the
symmetries (i)-(ii)-(iii), for fixed values of x ∈ R and t > 0,

Zt(x; h) dist.= t2/3Z1(0; Sγt Txh)+ x , (22)

where γt := t1/3. By (22), for x ∈ [−a, a],

P

(
|Zt(x; h)| > rt2/3

)
≤ P

(
|Z1(0; Sγt Txh)| > r − |x|t−2/3

)

≤ P

(
|Z1(0; Sγt Txh)| > r − at−2/3

)
. (23)

The right hand side of (23) is bounded by

P

(
max

|z|>r−at−2/3

{
Sγt Txh(z)+A (z)− z2

}
= max
z∈R

{
Sγt Txh(z)+A (z)− z2

})
,

where A (z) := A (z, 0). If we take

Xt := γ−2
t (X − x) ,

we get that Sγt Txh(Xt ) = h(X) = 0, and the right hand side of (23) is bounded by

P

(
max

|z|>r−at−2/3

{
Sγt Txh(z)+A (z)− z2

}
≥ A (Xt )−X2

t

)
. (24)
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In the next lemmas we will use that the Airy2 process {A (z) : z ∈ R} is stationary

and independent of X, which implies that A (Xt)
dist.= A (0), and we can split the

probability in (24) as

P

(
max

|z|>r−at−2/3

{
Sγt Txh(z)+A (z)− z2

}
≥ −L

)
+ P

(
A (0)−X2

t ≤ −L
)
,

(25)

for any choice of L > 0.

Lemma 1 Let a, t > be fixed. For every h ∈ UC

lim
r→∞P ( |Zt(±a; h)| > r ) = 0 .

Proof For the sake of simplicity, we are going to prove it for t = 1 and a = 1, and
X1 = X − 1. Let us pick Lr = (r − 1)2/4. Then

lim
r→∞P

(
A (0)− (X − 1)2 ≤ −Lr

)
= 0 ,

since the random variable A (0)− (X−1)2 does not depend on r . By (23), (24) and
(25), we still need to prove that

lim
r→∞P

(
max
|z|>r−1

{
T1h(z)+A (z)− z2

}
≥ −Lr

)
= 0 .

If r > 2 and |z| > r − 1 then |z| > r/2 > 1 and r
4 |z| − z2 ≤ −z2/2. Hence, if

T1h(z) ≤ r
4 |z| then

T1h(z)− z2 ≤ r
4
|z| − z2 ≤ −z2/2 ,

which shows that

P

(
max|z|>r−1

{
T1h(z)+A (z)− z2

}
≥ −Lr

)
≤ ψ ( r/4; T1h )

+ P

(
max|z|>r−1

{
A (z)− z

2

2

}
≥ −Lr

)
,

where

ψ(r; h) := 1− P ( h(z) ≤ r|z| , ∀ |z| ≥ 1 ) .
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By (b)-Proposition 2.13 [12], there exist constants c1, c2 > 0 such that for all
r > c1,

P

(
max|z|>r

{
A(z)− z

2

2

}
> − r

2

4

)
≤ e−c2r3

,

which shows that

lim
r→∞P ( |Z1(1; h)| > r ) = 0 ,

as soon as we prove that,

lim
r→∞ψ(r; h) = 0 for all h ∈ UC .

But for every probability measure on UC, we have that

P (∃ r > 0 s. t. h(z) ≤ r(1+ |z|) ∀ z ∈ R) = 1 ,

and if r1 < r2 then

{h(z) ≤ r1(1+ |z|) ∀ z ∈ R} ⊆ {h(z) ≤ r2(1+ |z|) ∀ z ∈ R} ,

which implies that

lim
r→∞P (h(z) ≤ r(1+ |z|) ∀ z ∈ R) = 1 .

Since r2 (1+ |z|) ≤ r|z| for all |z| ≥ 1 we have that

{h(z) ≤ r
2
(1+ |z|) ∀ z ∈ R} ⊆ {h(z) ≤ r|z| ∀ |z| ≥ 1} ,

and therefore, limr→∞ ψ(r; h) = 0. ��
Lemma 2 Under (14), there exists a real function φ1, which does not depend on
a > 0 or t > 0, such that for all t ≥ max{c3, a3/2} we have

P

(
|Zt(±a; h)| > rt2/3

)
≤ φ1(r) and lim

r→∞ φ1(r) = 0 .

Proof We use again (23), (24) and (25). Pick Lr = (r − 1)2/4 and t ≥
max{c3, a3/2}. Then (recall that γt = t1/3)

γ−4
t (X − a)2 ≤ 2γ−4

t

(
X2 + a2

)
≤ 2

(
X2

c4 + 1

)
,
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and thus,

P

(
A (0) ≤ −Lr + γ−4

t (X − a)2
)
≤ P

(
A (0) ≤ −Lr + 2

(
X2

c4 + 1

))
.

The right hand side of the above inequality is a function of r that does not depend
on a > 0 or t > 0, and goes to zero as r goes to infinity. To control the first term in
the right hand side of (25) we note that, if Sγt h(z) ≤ r

4 |z| for all |z| ≥ 1, then

Sγt Tah(z) = Sγt h
(
z + at−2/3

)
≤ r

4
|z+ at−2/3| ≤ r

4

(
|z| + at−2/3

)
,

as soon as |z + at−2/3| ≥ 1. This needs to hold for all |z| > r − at−2/3 in order
to upper bound the maximum over all such z’s. However, for r > 3 and |z| >
r − at−2/3 (recall that t ≥ max{c3, a3/2}) we certainly have that |z + at−2/3| ≥ 1.
Therefore, if Sγt h(z) ≤ r

4 |z| for all |z| ≥ 1, then

max
|z|>r−at−2/3

{
Sγt Tah(z)+A (z) − z2

}
≤ max

|z|>r−at−2/3

{ r
4

(
|z| + at−2/3

)
+A (z) − z2

}

≤ max|z|>r−1

{ r
4
(|z| + 1)+A (z) − z2

}
.

To ensure that r4 (|z| + 1)− z2 ≤ − z2

2 for |z| > r − 1 we take r > 4. Thus, we can
conclude that for r > 4 and t ≥ max{c3, a3/2} we have that

P

(
max

|z|>r−at−2/3

{
Sγt Tah(z)+A (z)− z2

}
≥ −Lr

)

is bounded by

ψ(r/4) + P

(
max|z|>r−1

{
A (z)− z

2

2

}
≥ −Lr

)
.

which is only a function of r and it concludes the proof of Lemma 2. ��
In order to use Proposition 3 we tilt the initial profile b as follows. For μ ≥ 0

denote

h
±μ
t (·) ≡ ht (·; b±μ) , where b±μ(z) = ±μz+ b(z) , (26)

and b is given by (9). Hence, for all x < y,

b−μ(y)− b−μ(x) ≤ b(y)− b(x) ≤ bμ(y)− bμ(x) . (27)
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Recall (19) and let

Z
±μ
t (x) = Zt

(
x; b±μ)

.

Then

Z
μ
t (x)

dist.= Z0
t (x)+

μ

2
t
dist.= t2/3Z0

1(0)+ x +
μ

2
t . (28)

The next step is to construct an event Et (μ) where we can sandwich the local
increments of ht in between the local increments h±μt , and this is the point where
we use Proposition 3. Define the event

Et(μ) =
{
Zt(a; h) ≤ Z+μt (−a) and Zt(−a; h) ≥ Z−μt (a)

}
. (29)

By (iv)-Proposition 2, on the event Et(μ), for x < y and x, y ∈ [−a, a],

Zt(y; h) ≤ Zt(a; h) ≤ Zμt (−a) ≤ Zμt (x) ,

and

Z
−μ
t (y) ≤ Z−μt (a) ≤ Zt(−a; h) ≤ Zt(x; h) .

Therefore, by Proposition 3, on the event Et(μ), if x < y and x, y ∈ [−a, a], then

h
−μ
t (y)− h

−μ
t (x) ≤ ht (y; h)− ht (x; h) ≤ h

μ
t (y)− h

μ
t (x) . (30)

3.1 Proof of Theorem 1

We want to control the Hölder semi-norm for β ∈ [0, 1/2) (we omit the dependence
on the domain and on the initial profile h),

‖ht‖β ≡ ‖ht‖β,[−a,a] := sup
x,y∈[−a,a] , x =y

|ht (x)− ht (y)|
|x − y|β .

By (30), on the event Et(μ) (29),

‖ht‖β ≤ max
{
‖hμt ‖β , ‖h−μt ‖β

}
,
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and hence,

P
(‖ht‖β > A

) ≤ P
({‖ht‖β > A

} ∩ Et(μ)
)+ P

(
Et(μ)

c
)

≤ P
(‖hμt ‖β > A

)+ P

(
‖h−μt ‖β > A

)
+ P

(
Et(μ)

c
)
.

Since ‖h±μt ‖β = ‖Δh±μt ‖β and Δh±μt are drifted Brownian motions (10),

lim
A→∞P

(
‖h±μt ‖β > A

)
= lim
A→∞P

(
‖Δh±μt ‖β > A

)
= 0 ,

which yields to

0 ≤ lim sup
A→∞

P
(‖ht‖β > A

) ≤ P
(
Et(μ)

c
)
.

We picked μ > 0 arbitrary and

P
(
Et(μ)

c
) ≤ P

(
|Zt(a; h)| > μ

4
t
)
+P

(
Z
μ
t (−a) ≤

μ

4
t
)
+P

(
Z
−μ
t (a) ≥ −μ

4
t
)
.

By (28) and Lemma 1, this implies that P (Et (μ)c)→ 0 as μ→∞. Therefore

lim
A→∞P

(‖ht‖β > A
) = 0 ,

which finishes the proof of (12).
To prove convergence of

S√εΔht (x; h) = ε−1/2 (ht (εx)− ht (0)) ,

to Brownian motion (13), we consider the event Et(μ) (29) again with a = 1 (we
will choose μ later as a suitable function of ε). Given a compact set K ⊆ R we take
ε > 0 such that εK ⊆ [−1, 1]. Thus, by (30), on the eventEt(μ) (29), if x < y and
x, y ∈ K , then

h
−μ
t (εy)− h

−μ
t (εx) ≤ ht (εy; h)− ht (εx; h) ≤ h

μ
t (εy)− h

μ
t (εx) . (31)

Denote the modulus of continuity of a function f by

ω(f, δ) := sup
x,y∈K , x =y , |x−y|≤δ

|f(x)− f(y)| .

By (31), on the event Et(μ),

ω
(
S√εΔht , δ

)
≤ max

{
ω

(
S√εΔh

−μ
t , δ

)
, ω

(
S√εΔh

μ
t , δ

)}
. (32)
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We note that, for every μ ∈ R,

S√εΔh
μ
t (x)

dist.= με1/2x + b(x) (as process in x ∈ R) , (33)

and we want to tune μ = με in order to have

P
(
Et (μ)

c
) → 0 and με1/2 → 0 , as ε → 0 .

By choosing με = ε−1/4 we have both (using (28) and Lemma 1), and by (32) and
(33), for every η > 0,

P

(
ω

(
S√εΔht , δ

)
> η

)
≤ 2P

(
ω (b, δ) > η − δε1/4

)
+ P

(
Et(με)

c
)
.

This shows that for every η1, η2 > 0 there exist δ > 0 and ε0 > 0 such that

P

(
ω

(
S√εΔht , δ

)
> η1

)
< η2 , ∀ ε < ε0 .

Since S√εΔht (0) = 0, this implies that the sequence of probability measures in
C induced by S√εΔht is tight. On the other hand, by picking x = 0 in (31), με =
ε−1/4 and then using (33), we see that the finite dimensional distributions of S√εΔht
are converging, as ε → 0, to those of b, which finishes the proof of (13).

3.2 Proof of Theorem 2

Recall that

A (x, y) = L (x, y)+ (x − y)2 ,

where L (x, y) := L (x, 0; y, 1), and it is sufficient to prove the analog result for
L . SinceΔL (0, 0) = 0, to prove tightness we only need to control the modulus of
continuity of the two-dimensional scalar field L . Now we can write

ε−1/2 (L (εx2, εy2)−L (εx1, εy1)) = ε−1/2 (L (εx2, εy2)−L1(εx2, εy1))

+ ε−1/2 (L (εx2, εy1)−L (εx1, εy1)) .

By the symmetry {L (x, y)}(x,y)∈R2
dist.= {L (y, x)}(x,y)∈R2, it is sufficient to

control the supremum of

ε−1/2 (L (εx, εy2)−L (εx, εy1)) ,
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over all (y1, x), (y2, x) ∈ K with |y1 − y2| ≤ δ, where K is a fixed compact subset
of R2. Recall that the directed landscape can be expressed as

L (x, y) = h1(y; dx) , where dx(z) =
{

0 for z = x
−∞ for z = x .

Notice also that Z1(y; dx) = x for all y ∈ R. Given K ⊆ R
2 compact there exists

ε0 such that ε|x|, ε|y| ≤ 1 for all (x, y) ∈ K and for all ε < ε0. Hence

|Z1(εy; dεx)| = ε|x| ≤ 1 , for all (x, y) ∈ K ,

and, on the event that

Z
−μ
t (1) ≤ −1 < 1 ≤ Zμt (−1) , (34)

(as in (31)) we have that for all (x, y1) ∈ K and (x, y2) ∈ K , with y1 < y2,

ε−1/2
(
h
−μ
1 (εy2)− h

−μ
1 (εy1)

)
≤ ε−1/2

(
h1(εy2; dεx)− h1(εy1; dεx)

)

≤ ε−1/2
(
h
μ
1 (εy2)− h

μ
1 (εy1)

)
.

For μ = με = ε−1/4, (34) occurs with high probability as ε → 0, and under (34),
for all x ∈ R such that (x, y) ∈ K for some y ∈ R, we have that

ω
(
S√εΔht (·; dεx), δ

)
≤ max

{
ω

(
S√εΔh

−μ
t , δ

)
, ω

(
S√εΔh

μ
t , δ

)}
.

From here one can follow the proof of Theorem 1 to conclude tightness and
marginal local Brownian behaviour. From the same argument, one can get 1/2-
Holder regularity of the Airy Sheet.

To prove independence we have to change the comparison set up, and we do it by
splitting the space-time directed landscape at time s = 1/2. For x, y ∈ R consider

Z1/2(x, y) =P
y,1
x,0 (1/2) ,

i.e. the location at time s = 1/2 of the rightmost geodesic between (x, 0) and (y, 1).
Thus, by metric composition (3),

L (x, y) = max
z∈R

{L (x, 0; z, 1/2)+L (z, 1/2; y, 1)}
= L (x, 0;Z1/2, 1/2)+L (Z1/2, 1/2; y, 1) .
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As in the proof of (iv)-Proposition 2, we have monotonicity of geodesics as follows:
for all x1 ≤ x2 and y1 ≤ y2 then

P
y1,1
x1,0
(s) ≤P

y2,1
x2,0
(s) , ∀ s ∈ [0, 1] ,

and, in particular,

Z1/2(x1, y1) ≤ Z1/2(x2, y2) . (35)

Let

h̄1/2+(y; h) := max
z∈R

{h(z)+L (z, 1/2; y, 1)}

and

h̄1/2−(x; h) := max
z∈R

{h(z)+L (x, 0; z, 1/2)} .

Then, by metric composition (3),

L (x, y) = h̄1/2+(y; h̄+,x) and L (x, 0) = h̄1/2−(x; h̄−) ,

where

h̄+,x(z) = L (x, 0; z, 1/2) = h1/2(z; dx) and h̄−(z) = L (z, 1/2; 0, 1) .

Therefore,

L (x, y)−L (0, 0) = L (x, y)−L (x, 0)+L (x, 0)−L (0, 0)

= Δh̄1/2+(y; h̄+,x)+Δh̄1/2−(x; h̄−) .

The trick now is to pick b1 and b2, two independent copies of b, and then apply the
coupling method to compare simultaneouslyΔh̄1/2+(y; h̄+,x) with Δh̄1/2+(y; bμ1 ),
andΔh̄1/2−(y; h̄−) with Δh̄1/2−(y; bμ2 ). By time independence and stationarity (2)
of the directed landscape, we clearly have that h̄1/2+(·; bμ1 ) and h̄1/2−(·; bμ2 ) are
independent processes, and

Δh̄1/2+(·; bμ1 ) dist.= bμ
dist.= Δh̄1/2−(·; bμ2 ) .

Let

Z̄1/2+(y, h) := max arg max
z∈R

{h(z)+L (z, 1/2; y, 1)} ,
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and

Z̄1/2−(x, h) := max arg max
z∈R

{h(z)+L (x, 0; z, 1/2)} .

Hence,

Z̄1/2+(y, h̄+,x) = Z1/2(x, y) and Z̄1/2−(x, h̄−) = Z1/2(x, 0) .

Let

Ē1/2+(μ) :=
{
Z̄1/2+(−1, bμ1 ) ≥ Z1/2(1, 1) and Z̄1/2+(1, b−μ1 ) ≤ Z1/2(−1,−1)

}
,

and

Ē1/2−(μ) :=
{
Z̄1/2−(−1, bμ2 ) ≥ Z1/2(1, 0) and Z̄1/2+(1, b−μ2 ) ≤ Z1/2(−1, 0)

}
.

For a compact set K ⊆ R
2, chose ε0 so that ε|x|, ε|y| ≤ 1 for all (x, y) ∈ K and

ε < ε0. By (35),

Z1/2(−1,−1) ≤ Z1/2(εx, εy) ≤ Z1/2(1, 1)

and

Z1/2(−1, 0) ≤ Z1/2(εx, 0) ≤ Z1/2(1, 0) .

Denote

h̄
±μ
+1/2(·) ≡ h̄+1/2(·; b±μ1 ) and h̄

±μ
−1/2(·) ≡ h̄−1/2(·; b±μ2 ) .

On the event Ē1/2+(μ), for all (x, y) ∈ K , if 0 < y then

h̄
−μ
1/2+(εy)− h̄

−μ
1/2+(0) ≤ h̄1/2+(εy; dεx)− h̄1/2+(0; dεx) ≤ h̄

μ
1/2+(εy)− h̄

μ
1/2+(0) ,

while if y < 0 then

h̄
μ
1/2+(εy)− h̄

μ
1/2+(0) ≤ h̄1/2+(εy; dεx)− h̄1/2+(0; dεx) ≤ h̄

−μ
1/2+(εy)− h̄

−μ
1/2+(0) .

On the event Ē1/2−(μ) for all (x, y) ∈ K , if 0 < y then

h̄
−μ
1/2−(εy)− h̄

−μ
1/2−(0) ≤ h̄1/2−(εy; h̄−)− h̄1/2−(0; h̄−) ≤ h̄

μ
1/2−(εy)− h̄

μ
1/2−(0) ,
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while if y < 0 then

h̄
μ
1/2−(εy)− h̄

μ
1/2−(0) ≤ h̄1/2−(εy; h̄−)− h̄1/2−(0; h̄−) ≤ h̄

−μ
1/2−(εy)− h̄

−μ
1/2−(0) .

Thus, forμ = με = ε−1/4, on the event Ē1/2+(μ)∩Ē1/2−(μ), one can approximate
the finite dimensional distributions of (S√εΔh̄1/2+, S√εΔh̄1/2−) using the finite
dimensional distributions of (b1, b2) (as in the proof of Theorem 1). Since

P
(
Ē1/2+(μ) ∩ Ē1/2−(μ)

) → 1 as ε → 0 ,

this finishes the proof Theorem 2.

3.3 Proof of Theorem 3

Recall (26) and (27). By Proposition 4 (attractiveness),

Δh
−μ
t (x) ≤ Δh0

t (x) ≤ Δh+μt (x) , for x ≥ 0 ,

and

Δh
+μ
t (x) ≤ Δh0

t (x) ≤ Δh−μt (x) , for x ≤ 0 .

Furthermore,3

0 ≤ Δh+μt (x)−Δh−μt (x) ≤ Δh+μt (a)−Δh−μt (a) , ∀x ∈ [0, a] ,

and

0 ≤ Δh−μt (x)−Δh+μt (x) ≤ Δh−μt (−a)−Δh+μt (−a) , ∀x ∈ [−a, 0] .

By time invariance (10), Δh±μt (x) is a two-sided Brownian motion with drift ±μ.
Hence

E

(
Δh

+μ
t (a)−Δh−μt (a)

)
= E

(
Δh

−μ
t (−a)−Δh+μt (−a)

)
= 2μa .

Consider the event Et (μ) (29). By (30),

Δh
−μ
t (x) ≤ Δht (x; h) ≤ Δh+μt (x) , for x ∈ [0, a] ,

3It also follows from Proposition 4 that Δh+μt (x) −Δh−μt (x) is a nondecreasing function of x.
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and

Δh
+μ
t (x) ≤ Δht (x; h) ≤ Δh−μt (x) , for x ∈ [−a, 0] .

Thus, if Et(μ) occurs then both Δh0
t (·) = Δht (·; b) and Δht (·; h) are sand-

wiched by Δh±μt (·), which implies the following uniform control on the distance
betweenΔht (·; h) and Δht (·; b):

sup
x∈[−a,a]

|Δht (x; h)−Δht (x; b)| ≤ It (a) ,

where

0 ≤ It (a) = Δh+μt (a)−Δh−μt (a)+Δh−μt (−a)−Δh+μt (−a) .

Therefore, using Markov inequality and that E (It (a)) = 4μa,

P

(

sup
x∈[−a,a]

|Δht (x; h)−Δht (x; b)| > η
√
a

)

≤ P
(
Et(μ)

c
)+ E (It (a))

η
√
a

= P
(
Et(μ)

c
)+ 4μ

√
a

η
.

In order to make this inequality useful, we have to chose μ = μt in such way
that

P
(
Et(μ)

c
) → 0 and μ

√
a → 0 , as t →∞

(we allow a = at as well). For t ≥ a3/2 we have that ±at−2/3 does not play any
rule in the asymptotic analysis of Et(μ) (recall (28)). By Lemma 2, we know that

P

(
|Zt(±a; h)| > rt2/3

)
→ 0 , as r →∞ ,

(uniformly in t). Thus, by (28), Et(μ) should occur with high probability, as soon
as ±μt1/3 →±∞. By setting μ = r(4t1/3)−1, for some r = rt →∞, then

4μ
√
a = r(at−2/3)1/2 .

A natural choice is rt = (at−2/3)−δ with δ ∈ (0, 1/2), and for the sake of simplicity
we take δ = 1/4, which yields to

P

(
sup

x∈[−a,a]
|Δht (x; h)−Δht (x; b)| > η√a

)
≤ P

(
Et (μ)

c
)+ 1

ηrt
. (36)
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Therefore, Theorem 3 is a consequence of (36) and Lemma 3 below.

Lemma 3 Let μ := r(4t1/3)−1. Then, under assumption (14), there exists a
function φ, that does not depend on a, t > 0, such that for all t ≥ max{c3, a3/2}

P
(
Et(μ)

c
) ≤ φ(r) and lim

r→∞φ(r) = 0 .

Proof By the definition of Et(μ),

Et(μ)
c∩

{
|Zt(a; h)| ≤ r

16
t2/3

}
⊆

{
Z
μ
t (−a) ≤

r

16
t2/3

}
∪

{
Z
−μ
t (a) ≥ − r

16
t2/3

}
,

and hence, P (Et (μ)c) is bounded by

P

(
|Zt(a; h)| > r

16
t2/3

)
+ P

(
Z
μ
t (−a) ≤

r

16
t2/3

)
+ P

(
Z
−μ
t (a) ≥ − r

16
t2/3

)
.

(37)

By Lemma 2, we only need to show that there exists a function φ2, that does not
depend on a, t > 0, such that for all t ≥ max{c3, a3/2}

max
{
P

(
Z
μ
t (−a) ≤

r

16
t2/3

)
, P

(
Z
−μ
t (a) ≥ − r

16
t2/3

)}
≤ φ2(r) ,

and limr→∞ φ2(r) = 0. Since μ := r(4t1/3)−1 and t ≥ a3/2, by (28),

P

(
Z
μ
t (−a) ≤

r

16
t2/3

)
= P

(
Z0

1(0) ≤ − r
16

+ at−2/3
)

≤ P

(
Z0

1(0) ≤ −
( r

16
− 1

))
,

and

P

(
Z
−μ
t (a) ≥ − r

16
t2/3

)
= P

(
Z0

1(0) ≥
r

16
− at−2/3

)

≤ P

(
Z0

1(0) ≥
r

16
− 1

)
,

which allows us to take φ2(r) := P
(|Z0

1(0)| > r
16 − 1

)
. Therefore, together with

(37), this shows that

P
(
Et(μ)

c
) ≤ φ1(r)+ 2φ2(r) ,

and finishes the proof of Lemma 3. ��
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How Can the Appropriate Objective and
Predictive Probabilities Get into
Non-collapse Quantum Mechanics?

Roberto H. Schonmann

Abstract It is proved that in non-collapse quantum mechanics the state of a closed
system can always be expressed as a superposition of states all of which describe
histories that conform to Born’s probability rule. This theorem allows one to see
Born probabilities in non-collapse quantum mechanics as an appropriate predictive
tool, implied by the theory, provided an appropriate version of the superposition
principle is included in its axioms

Keywords Non-collapse quantum mechanics · Everett · Born’s rule · Origin of
probability in quantum mechanics

1 Introduction

This is a shorter version of the paper [17], where the reader will find a much
more detailed and thorough discussion of the relevance of the theorem introduced
here, as well as further comparison of the role of probabilities in collapse and
non-collapse quantum mechanics. This version is being written in memory of
Vladas Sidoravicius, whose premature death shocked and saddened his friends
and colleagues, and whose interests focused on probability theory not only in the
abstract, but especially as it relates to physics. Vladas’ passing happened close in
time to that of Harry Kesten, good friend and mentor to both of us and to so many
others. This paper is also dedicated to his memory.

For mathematicians who may need an introduction to quantum mechanics, I
recommend the text [11]. (Chapters 1 and 3 suffice for the purposes of this paper.)

This paper deals with an important aspect of what is known as the “measurement
problem in quantum mechanics”. In standard quantum mechanics the state of
a system (which is a vector in a Hilbert space) evolves in two distinct and
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incompatible fashions, and it is unclear when each one applies. When it is not
being observed it evolves in a deterministic, continuous way, according to certain
unitary transformations. But when observed, the system evolves in a probabilistic,
discontinuous way (called a collapse, or reduction of the state), jumping to a new
state according to a probabilistic prescription called Born’s rule (we will refer
to this as the collapse axiom, or the probability axiom). But what constitutes an
“observation”? After all the “observers” (whether we are able to include in this
class humans, other animals, robots, photographic plates, . . . ) should be considered
as part of the system, so that “observations” should not have distinct physics. Non-
collapse quantum mechanics (first introduced in [9]) proposes that the collapse
axiom be eliminated from quantum mechanics, and claims that we would still have
the same experiences that we predict from standard quantum mechanics. Instead
of collapses happening, the system always evolves in the deterministic unitary
fashion, and this implies that at the end of each experiment all the possible outcomes
materialize, including one version of the “observers” (possibly humans) associated
to each outcome, perceiving and recording that outcome and no other. This accounts
for our observation of collapses as illusions, so to speak. But then, what accounts
for them following Born’s probability rule, rather than some other probability rule,
or no probability rule at all? This is the focus of this paper (see below for references
and some comments on the extensive work already available on this fundamental
issue).

Before we proceed, a few words about terminology. We will use the expression
“Born-rule collapse quantum mechanics” for the standard quantum mechanics
theory, as presented in our textbooks, including the assumption that measurements
lead to collapses of the state of the system according to Born’s rule. “Collapse
quantum mechanics” will be used for a broader set of theories, in which the
collapses follow some probability distribution that may or not be the one given
by Born’s rule. And by “non-collapse quantum mechanics” we simply mean that
we eliminate the assumption of collapse when measurements are performed. In
non-collapse quantum mechanics, we do not include the words “measurement”
or “observation” in the axioms of the theory, and use them only informally when
applying the theory to explain and predict our experiences.

Readers who want an introduction to non-collapse quantum mechanics will
benefit from the classic [8], where papers by those who first proposed and advertised
it as a (better) alternative to collapse quantum mechanics are collected. The subject
is not standard in textbooks geared to physicists, or mathematicians, but is standard
in texts concerned with the philosophy of quantum mechanics; see, e.g., [2–4, 21]
and [12]. For a positive appraisal of the theory, written for the general scientific
public, see, e.g., [19]. For expositions for the general public, see, e.g., [5, 20] and
[6]. For a recent collection of mostly philosophical discussions see [16]. And for
some among the many research papers on the subject, see, e.g., [1, 7, 18] and [13],
which also provide extensive additional references.

Our concern here is with the origin of our perception of Born-rule probabilities
in a theory, non-collapse quantum mechanics, in which everything is deterministic
and, in particular, no probabilities are introduced in its axioms. A great deal has been
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written about this problem, e.g., in the references cited in the last paragraph and
references therein, with opinions ranging from “the problem is solved” (sometimes
by the authors themselves), to “the problem is hopeless and the proposed solutions
all flawed”. This project was motivated by my dissatisfaction with the previously
proposed solutions, especially with the current trend of treating the probabilities
in non-collapse quantum mechanics as subjective ones ([7, 13, 18, 21]; see for
instance Chapter 6 of [12] for a criticism). I hope nevertheless to convince the
reader that the theorem stated and proved here provides a solution to this puzzle and
explains how our perception of probabilities, as given by Born’s rule, emerges in
non-collapse quantum mechanics, if we include in its axioms an appropriate version
of the superposition principle. I propose even that the puzzle be turned around: If
collapses do happen, why do they happen precisely with the same rule that comes
out of quantum mechanics without collapse?

In Sect. 2 we will state the theorem alluded to in the abstract, in a mathematically
self-contained fashion, but without emphasizing the corresponding physics, which
will then be briefly discussed in Sect. 3. (For a longer discussion the reader is
referred to [17].) To help the reader keep in mind what is planned, we include next
a few words of introduction on how the mathematical setting in Sect. 2 is motivated
by collapse quantum mechanics.

We will be working in the Heisenberg picture (operators evolve in time, rather
than states), as applied to a closed system (possibly the whole universe). Associated
to the system there is a Hilbert space H (not assumed in this paper to be necessarily
separable). The state of the system is given at any time by a non-null vector in
H (with non-null scalar multiples of a vector corresponding to the same state).
This state does not change with time except when there is a collapse. Collapses are
associated with measurements and with their corresponding self-adjoint operators
(which in the Heisenberg picture are time dependent). In each collapse, the state
immediately after the collapse is a projection of the state immediately before the
collapse on a subspace (a subset of H closed linearly and topologically) chosen
at random, according to a specified probability law (in the standard case, Born’s
rule), from among the eigenspaces of that operator, one eigenspace for each possible
outcome of the experiment. (To avoid unnecessary mathematical complications,
and on physical grounds, we are assuming that every experiment can only have a
finite number of possible outcomes.) To each subspace of H there is associated a
projection operator (self-adjoint idempotent operator on H ) that projects on that
subspace. If initially the state was a vector ψ ∈ H , then immediately after a
collapse the state can be expressed as Projψ , where Proj is the composition of the
projections that took place after each collapse, up to and including this last one.

It is natural to represent all the possible ways in which the system can evolve
using a rooted (oriented) tree. The root vertex of the tree will correspond to the
beginning of times for the system under study, and the other vertices will either
correspond to collapse events, or be terminal vertices (vertices of degree 1) that
signal that no further experiment is performed along a branch of the tree. (In the
interesting cases the tree will be infinite. One can think of terminal vertices as
uncommon in the tree, possibly even absent.) The projections associated to the
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possible outcomes in the collapses, as described at the end of the last paragraph, will
then be indexed by the edges of the tree. The tree does not have to be homogeneous,
as, e.g., decisions on what experiments to perform in a lab may depend on the
outcomes of previous experiments. More interesting and dramatic examples of non-
homogeneity of the tree occur if one thinks of some major human decisions being
made by use of “quantum coins”, i.e., outcomes of experiments performed for
this purpose (depending on these decisions the future of humanity may take quite
different turns).

After stating the theorem in Sect. 2 and then briefly discussing its relevance in
Sect. 3, we will prove it in Sect. 4.

2 The Theorem

Let (V,E) be a tree with vertex set V, including a singled out vertex called the root
vertex, and edge set E. We assume that the root vertex has a single edge incident to it
and call it the root edge. Such a tree will be called an edge-rooted tree. We orient the
root edge from the root vertex to its other end, and we give an orientation to every
edge in the tree, so that each vertex other than the root vertex has exactly one edge
oriented towards it. If e is the edge oriented towards vertex v and e1, . . . , en are the
edges incident to v and oriented away from it, we call e1, . . . , en the children of e,
and we refer to {e1, . . . en} as a set of siblings and to e as their parent. (The advantage
of using such “family” language, even if a bit funny, is that the terminology becomes
easy to remember and easy to extend.) Childless edges will be called terminal edges,
and the vertices to which terminal edges point will be called terminal vertices. Each
edge belongs to a generation defined inductively by declaring the generation of the
root edge as 1, and the generation of the children of the edges of generation i to be
i + 1. It will be convenient to declare that childless edges that belong to generation
i also belong to generations i + 1, i + 2, . . . A partial history is a finite sequence of
edges (e1, e2, . . . , en), where each ei is a child of ei−1, i = 2, . . . , n. A complete
history (or just a history) is either a partial history in which e1 is the root edge and
the last edge is a terminal edge, or an infinite sequence of edges (e1, e2, . . .), where
e1 is the root edge and each ei is a child of ei−1, i = 2, . . ..

Definition 1 A tree-structured set of projections on a Hilbert space H is a
collection of such projections, P = {Proje : e ∈ E}, where the index set E is
the set of edges of an edge-rooted tree, and the following conditions are satisfied:

1. If e is the root edge, then Proje is the identity operator.
2. If e1, . . . , en are the children of e, then

∑n
i=1 Projei = Proje.

We write He = ProjeH for the subspace associated to Proje. The first condition
means that He = H when e is the root edge, while the second one means that
the subspaces Hei associated to a set of siblings {e1, . . . , en} are orthogonal to each
other and their linear span is the subspace He associated to the parent e.
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Implicit in the definition of a tree-structured set of projectionsP is the associated
edge-rooted tree (V,E). The set of histories on this tree, denoted Ω , is the sample
space on which one defines Born’s probabilities (and alternative ones) associated to
P . Recall that, informally speaking, an element ω ∈ Ω is a sequence of edges
starting from the root and having each of its elements succeeded by one of its
children, either with no end, or ending at a terminal edge. Abusing notation, we
will write e ∈ ω for the statement that the edge e is an element of the sequence ω.
For each e ∈ E, we define Ωe = {ω : e ∈ ω}, the set of histories that go through
e. Unions of finitely many sets Ωe define an algebra of sets (a class of sets that is
closed with respect to complements, finite unions and finite intersections) that we
denote by A . (This statement requires a proof, which is easily obtained by noting
that every set A ∈ A can be written as a union over sets Ωe with all e in the same
generation, and thatAc is then the union of the setsΩe over the other e belonging to
this same generation. This shows closure under complements. Closure under unions
is immediate and De Morgan’s law then provides closure under intersections.) The
smallest σ -algebra that contains A will be denoted by B.

Born’s probabilities are defined on the measure space (Ω,B) and, in addition
to P , depend on a vector ψ ∈ H \{0}. (In the theorem below, ψ is arbitrary, but
in all our applications it will be the initial state of our system. In collapse quantum
mechanics,ψ will be chosen as the state, in the Heisenberg picture, before collapses.
In non-collapse quantum mechanics,ψ will be chosen as the unchanging state, in the
Heisenberg picture.) Born’s probability corresponding to ψ will be denoted by Pψ .
It is described informally by imagining a walker that moves on the edges of the tree.
The walker starts at the root vertex of the tree and then moves in the direction of the
orientation, deciding at each vertex where to go in a probabilistic fashion, with edges
chosen with probability proportional to norm-squared, i.e., when at a vertex that
separates a parent e from its children, the walker chooses child e′ with probability
||Proje′ψ||2/||Projeψ||2, independently of past choices. If ever at a terminal vertex,
the walker stops. A simple inductive computation shows that this is equivalent to
the statement

Pψ(Ωe) = ||Projeψ||2
||ψ||2 , for each e ∈ E. (1)

It is standard to show that (1) extends in a unique fashion to A and then to B,
defining in this way a unique probability measure on (Ω,B). Actually, for our
purposes it will be important to observe that this standard procedure yields even
more. For each ψ ∈ H , the extension of the probability measure is to a larger
measure space, (Ω,Mψ), where Mψ ⊃ B, completes B with respect to the
measure Pψ , meaning in particular that ifA ∈ B, Pψ(A) = 0 andB ⊂ A, then also
B ∈ Mψ and Pψ(B) = 0. We should note that all that is needed to implement this
extension is contained in two facts about the non-negative numbers pe = Pψ(Ωe),
which are similar to conditions 1 and 2 in Definition 1: pe = 1, when e is the root
edge, and

∑
i=1,...,n pei = pe, when e1, . . . , en are the children of e. (In obtaining

the extension of Pψ to the algebra A as a premeasure, the only non-trivial claim
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that has to be checked is that if A ∈ A is described in two distinct ways as finite
disjoint unions of setsΩe, then the sum of the pe over these sets is the same for both
descriptions. And this is not difficult, if one realizes that it is possible to compare
both representations to a third one, in which all the sets Ωe have all e in the same
sufficiently large generation. The extension from a premeasure on A to a measure
onMψ is an application of Carathéodory’s Extension Theorem; see Sections 1 and 2
of Chapter 12 in [15], or Section 4 of Chapter 1 in [10].)

Before stating our theorem, we need to introduce a few more definitions, which
will play a fundamental role in this paper. Given φ ∈H and ω ∈ Ω , we say that φ
persists on ω if for each e ∈ ω, Projeφ = 0. Otherwise we say that φ terminates on
ω. We set now

Ω(φ) = {ω ∈ Ω : φ persists on ω}, (2)

and

Ωc(φ) = Ω\Ω(φ) = {ω ∈ Ω : φ terminates on ω}. (3)

Keep in mind that the choice of P is implicit in the definitions in the last two
paragraphs. We omitted it from the notation, but should not forget that Ω , Pψ ,
Ω(φ), etc., depend on this choice.

Theorem 1 Let H be a Hilbert space andP be a tree-structured set of projections
on H . For any ψ ∈H \{0} and A ⊂ Ω , the following are equivalent.

(1) Pψ(A) = 0.
(2.i) There exist φ1, φ2, . . . orthogonal to each other, such that ψ = ∑

φi and
Ω(φi) ⊂ Ac, for each i.

(2.ii) There exist ζ1, ζ2, . . . such that ζn→ ψ andΩ(ζn) ⊂ Ac, for each n.

Note that we are not, a priori, making any assumption of measurability on A. But
if we assume that one of (2.i), (2.ii) is true, then we learn from the theorem that
A ∈ Mψ (and Pψ(A) = 0). On the other hand, assuming that (1) holds means
assuming that A ∈Mψ (and Pψ(A) = 0).

The first two propositions stated and proved in Sect. 4 will add mathematical
structure to the content of Theorem 1, and allow it to be restated in a very compact
form in display (9).

3 Relevance of the Theorem

The theorem stated in the previous section holds for any Hilbert space H and any
choice of tree-structured set of projections P on it. The arbitrariness of P should
be kept in mind as our discussion returns to Physics. When we consider collapse
quantum mechanics, there is a special choice of P , namely the one described in
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the introduction: vertices (other than the root vertex and terminal ones) correspond
to experiments and edges (other than the root edge) correspond to the possible
outcomes in each experiment. In the case of collapse quantum mechanics, and with
this choice of P , Ω is the set of possible histories that could materialize from
the collapses. And in the special case of Born-rule collapse quantum mechanics,
statement (1) in Theorem 1 means that eventA is (probabilistically) precluded from
happening. In the case of non-collapse quantum mechanics there is in principle
no special choice of P . But, as the reader may have anticipated, for the purpose
of comparing non-collapse to collapse quantum mechanics, via Theorem 1, it is
natural to choose precisely the same P . We will observe below, as the reader may
have also anticipated, that with this choice, the equivalence between statements (1)
and (2.i) in the theorem implies (modulo plausible postulates on how the theories
provide predictions) that quantum mechanics without collapse gives raise to the
same predictions as Born-rule collapse quantum mechanics.

In collapse quantum mechanics only one history ω = (e1, e2, e3, . . .) ma-
terializes. In the Heisenberg picture that we are considering, the state of our
system is initially some ψ ∈ H , but it changes at each collapse, following
the path (Proje1ψ,Proje2ψ,Proje3ψ, . . .) = (ψ,Proje2ψ,Proje3ψ, . . .). In non-
collapse quantum mechanics in the Heisenberg picture, ψ never changes. Everett
[9] was the first to make the observation that this would still be compatible with
our perception that collapses happen. As observers who are part of the system
(otherwise we would not be able to interact with the experimental arrangement
and observe it), the particles that form our bodies and in particular our brains must
follow the same quantum mechanics that describes the rest of the system that we
are observing. So that at the end of an experiment we can be described as being in
a superposition of states, each one with a brain that encodes a different outcome for
this experiment. All the possible outcomes materialize, and versions of the human
observers, entangled to each possible experimental outcome, are included in this
superposition.

The non-collapse view of quantum mechanics has the significant advantage of
eliminating the mystery of collapse: How can systems behave differently when they
are being “measured”? It yields a much simpler and consistent theory. One of the
main hurdles that prevents its acceptance is probably psychological, as it affects
substantially our sense of identity and of our reality. But other than this, probably
the greatest obstacle to its acceptance is the issue addressed (once more) in this
paper: even accepting Everett’s observation that we will see collapses even if they
do not happen, the question remains of why it is that we perceive them happening
as if they were produced according to Born’s probability rule. I will not discuss
here the various previous approaches to this problem, and rather refer the reader to
the recent papers [1, 13, 18], references therein and papers in the collection [16] for
background and recent ideas. In [17] I argue at some length why Theorem 1 presents
an answer. Here I will summarize the idea.

Stating that collapses do happen according to Born’s probabilities can only have
meaning if we add some postulate telling us how this leads to predictions. I assume
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that in collapse quantum mechanics, the predictive power derived from the collapse
axiom is fully contained in the following postulate.

Prediction Postulate of Collapse Quantum Mechanics (PPCQM) In making
predictions in collapse quantum mechanics, events of probability 0 can be deemed
as sure not to happen.

If it is accepted that this postulate covers the full predictive power of the
probability axiom in collapse quantum mechanics, and in particular of Born’s rule
in Born-rule collapse quantum mechanics, then Theorem 1 tells us that non-collapse
quantum mechanics will yield the same predictions as Born-rule collapse quantum
mechanics, provided we accept the following postulate for non-collapse quantum
mechanics.

Prediction Postulate of Non-Collapse Quantum mechanics (PPNCQM) In
making predictions in non-collapse quantum mechanics, if the state of our system
is a superposition of states all of which exclude a certain event (i.e., if (2.i) of
Theorem 1 holds for this event A), then this event can be deemed as sure not to
happen.

This postulate can be seen as a version of the superposition principle of quantum
mechanics, and does not include probabilities in its statement. Theorem 1 therefore
provides an explanation of how probabilities emerge in non-collapse quantum
mechanics, and why they are given by Born’s rule.

The observation above provides an answer to the question in the title of this paper,
but it also raises a fundamental question. Can one formulate non-collapse quantum
mechanics in a precise and consistent fashion that provides a clear notion for what
is reality in the theory (provides a precise ontology for the theory) and is compatible
with the PPNCQM? In current work in progress I hope to provide an affirmative
answer.

One important consequence of the observations above is that not only objective
predictive probabilities emerge in non-collapse quantum mechanics (from the
non-probabilistic PPNCQM), but that they are precisely the ones supported by
experimental observation, namely, Born’s rule probabilities. This point is discussed
at some length in Section 4 of [17]. It implies that non-collapse quantum mechanics
with the PPNCQM included would be falsified by data that indicated collapses with
a (significantly) different probability law.

Theorem 1 and the discussion in this section help dismiss an old and important
misconception associated to non-collapse quantum mechanics. That the “natural”
probability distribution that it entails is some sort of “branch counting” or “uniform”
one. (The quotation marks are used because in the case of non-homogeneous
trees, there is ambiguity in such wording. In the case of a homogeneous tree in
which each edge has b children, this probability distribution is well defined by
setting P(Ωe) = b−n+1, when e is an edge in the n-th generation.) Typically
this probability distribution will produce predictions at odds with those produced
by using Born’s rule. And this has been used as an argument against non-collapse
quantum mechanics. But while the use of Born’s rule to make predictions in non-
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collapse quantum mechanics is shown here to be equivalent to the PPNCQM,
one cannot find any good reason why a “branch counting rule” would be the
appropriate tool for this purpose. There is a tradition of saying something like:
“since all branches are equally real, a branch counting probability distribution is
implied”. But this is a meaningless sentence. What would “real, but not equally
real” mean? “Equally real” (whatever it may mean) does not imply equally likely in
any predictive sense. For instance all the teams competing for a soccer World Cup
are “equally real”, but if we want to predict who will win the cup, there is no reason
for using a uniform distribution.

4 Proof of the Theorem

The orientation that was introduced on the tree (V,E) induces a partial order on the
set of edges: for any two edges we write e′ ≤ e′′ if there is a partial history that
starts with e′ and ends with e′′. We write e′ < e′′ if e′ ≤ e′′ and e′ = e′′. If neither
e′ ≤ e′′, nor e′′ ≤ e′, then we say that e′ and e′′ are not comparable.

Definition 1 has some simple consequences. If e′′ is a child of e′, then He′′ ⊂
He′ . By induction along a partial history line, this extends to:

If e′ ≤ e′′, then He′′ ⊂He′ . (4)

In contrast, if e′ and e′′ are siblings, then He′ ⊥ He′′ . By induction along partial
history lines, this extends to:

If e′ and e′′ are not comparable, then He′ ⊥He′′ . (5)

Proposition 1 For every φ1, φ2 ∈ H , Ω(φ1 + φ2) ⊂ Ω(φ1) ∪ Ω(φ2), or
equivalentlyΩc(φ1) ∩Ωc(φ2) ⊂ Ωc(φ1 + φ2).

Proof Suppose ω ∈ Ωc(φ1) ∩ Ωc(φ2). Then there are e1, e2 ∈ ω such that
Proje1φ1 = Proje2φ2 = 0. As ω is a history, e1 and e2 are comparable. Let e be
the larger between e1 and e2. Also because ω is a history, for i = 1, 2 we have
now, from (4), He ⊂ Hei and hence Projeφi = 0. Therefore Proje(φ1 + φ2) =
Projeφ1 + Projeφ2 = 0, which means that ω ∈ Ωc(φ1 + φ2). ��

For each A ⊂ Ω we define the following two sets (T stands for “truth” and F
for “falsehood”):

T (A) = {φ ∈H : Ω(φ) ⊂ A}, (6)

and

F(A) = T (Ac) = {φ ∈H : Ω(φ) ⊂ Ac} = {φ ∈H : A ⊂ Ωc(φ)}. (7)
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Proposition 2 For every A ⊂ Ω , T (A) and F(A) are vector spaces.

Proof Since F(A) = T (Ac), it suffices to prove the statement for T (A). Suppose
φ1, φ2 ∈ T (A), a1, a2 scalars. Then, for i = 1, 2,Ω(aiφi) = Ω(φi), if ai = 0, and
Ω(aiφi) = ∅, if ai = 0. In any caseΩ(aiφi) ⊂ Ω(φi) ⊂ A. From Proposition 1 we
obtainΩ(a1φ1 + a2φ2) ⊂ Ω(a1φ1) ∪Ω(a2φ2) ⊂ A, which means a1φ1 + a2φ2 ∈
T (A). ��

We can rephrase Statement (2.ii) in Theorem 1 as

ψ ∈ F(A), (8)

where the bar denotes topological closure in the Hilbert space H .
The equivalence of (2.ii) and the apparently stronger statement (2.i) in The-

orem 1, can be obtained, in a standard fashion, by applying the Gram-Schmidt
orthonormalization procedure (see p. 46 of [14], or p. 167 of [10]) to the vectors
ζ1, ζ2 − ζ1, ζ3 − ζ2, . . . to produce an orthonormal system with the same span.
Proposition 2 assures us that this orthonormal system will be contained in F(A),
since the ζi are. The vectors φ1, φ2, φ3, . . . , are then obtained by expanding ψ in
this orthonormal system.

The proof of Theorem 1 is now reduced to showing that for any ψ ∈H \{0} and
A ⊂ Ω ,

Pψ(A) = 0 ⇐⇒ ψ ∈ F(A). (9)

The class Aσ of subsets of Ω obtained by countable unions of elements of A
will play a major role in the proof of (9). Every A ∈ Aσ is a union of sets in the
countable class {Ωe: e ∈ E}. But sinceΩe′′ ⊂ Ωe′ , whenever e′ ≤ e′′, we will avoid
redundancies in this union by writing it as

A =
⋃

e∈E(A)

Ωe, (10)

where

E(A) = {e ∈ E : Ωe ⊂ A and there is no e′ ∈ E such that e′ < e andΩe′ ⊂ A}.
(11)

Any two distinct elements of E(A) are not comparable. And since Ωe′ ∩Ωe′′ = ∅,
whenever e′ and e′′ are not comparable, (10) is a disjoint union. Moreover, using
(5) we see that {He : e ∈ E(A)} is a countable collection of orthogonal subspaces
of H . We will associate to A their direct sum (the topological closure of the linear
span of vectors in these He), which we denote by

H (A) =
⊕

e∈E(A)

He. (12)
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If S is a subspace of H and φ ∈ H , we will use the notation Proj(φ|S ) to
denote the projection of φ on S . For instance Proj(φ|He) = Projeφ.

Lemma 1 For any φ ∈H and A ∈ Aσ ,

(i) For any e ∈ E, Projeφ = 0 ⇐⇒ Ωe ⊂ Ωc(φ).
(ii) H ⊥(A) = F(A).

(iii) Ωc(φ) ∈ Aσ .
(iv) φ ∈H ⊥(Ωc(φ)).
(v) ||Proj(φ|H (A))||2 = ||φ||2 Pφ(A), if φ = 0.

Proof

(i) The implication (-⇒) is clear. To prove (⇐-) suppose that Projeφ = 0. Then
either e is a terminal edge, or it has a child e′ with Proje′φ = 0. Repeating
inductively this reasoning, we produce a history ω such that e ∈ ω and φ
persists on ω. HenceΩe ⊂ Ωc(φ).

(ii)

H ⊥(A) =
⋂

e∈E(A)

H ⊥
e =

⋂

e∈E(A)

{φ ∈H : Ωe ⊂ Ωc(φ)}

= {φ ∈H : A ⊂ Ωc(φ)} = F(A),

where in the first equality we used the definition (12) of H (A), in the second
equality we used part (i) of the lemma, in the third equality we used (10), and
in the fourth equality we used (7)

(iii) Ωc(φ) = ∪{Ωe : e ∈ E, Projeφ = 0}. And this set belongs to Aσ , since this
union is countable.

(iv) Thanks to part (iii) of the lemma, we can take A = Ωc(φ) in part (ii) of the
lemma. Using then (7), we obtain

H ⊥(Ωc(φ)) = F(Ωc(φ)) = {φ′ ∈H : Ωc(φ) ⊂ Ωc(φ′)} ? φ.

(v)

||Proj(φ|H (A))||2 =
∑

e∈E(A)

||Proje(φ)||2 =
∑

e∈E(A)

||φ||2Pφ(Ωe)

= ||φ||2Pφ(∪e∈E(A)Ωe) = ||φ||2Pφ(A),

where in the first equality we used the definition (12) of H (A), in the second
equality we used (1), in the third equality we used the disjointness of the sets
involved, and in the fourth equality we used (10).

��
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We will use some consequences of Carathéodory’s theorem that extends the
measure Pψ from A to Mψ (see Sections 1 and 2 of Chapter 12 in [15], or Section
4 of Chapter 1 in [10]). Given ψ ∈ H , define the outer measure of any set A ⊂ Ω
by

P∗ψ(A) = inf{Pψ(A′) : A′ ∈ Aσ , A ⊂ A′}, (13)

and define also

Mψ = {A ⊂ Ω : for all S ⊂ Ω, P∗ψ(A ∩ S)+P∗ψ(Ac ∩ S) = P∗ψ(S)}. (14)

Then it follows from Carathéodory’s Extension Theorem that Mψ is a σ -algebra
that extends B and P∗ψ(A) = Pψ(A) for every A ∈ Mψ , in particular for every
A ∈ B and therefore for every A ∈ Aσ . It also follows that P∗ψ(A) = 0 implies
A ∈Mψ and is necessary and sufficient for Pψ(A) = 0.

The next two lemmas prove each one of the directions of the equivalence (9),
completing the proof of Theorem 1.

Lemma 2 For any ψ ∈H \{0} and A ⊂ Ω ,

ψ ∈ F(A) -⇒ Pψ(A) = 0.

Proof If ψ ∈ F(A), there are ζn ∈ F(A) such that ζn → ψ . Set Bn = Ωc(ζn).
From (7) and Lemma 1(iii) we have A ⊂ Bn ∈ Aσ . Using (13) and Lemma 1(v),
we obtain

0 ≤ P∗ψ(A) ≤ Pψ(Bn) = ||Proj(ψ|H (Bn))||2
||ψ||2 .

But since Lemma 1(iv) tells us that ζn ∈H ⊥(Bn), we can write

||Proj(ψ|H (Bn))||2 = ||Proj(ψ − ζn|H (Bn)) + Proj(ζn|H (Bn))||2
= ||Proj(ψ − ζn|H (Bn))||2 ≤ ||ψ − ζn||2.

Since n is arbitrary, the two displays combined give

0 ≤ P∗ψ(A) ≤ lim
n→∞

||ψ − ζn||2
||ψ||2 = 0,

proving that P∗ψ(A) = 0 and hence A ∈Mψ and Pψ(A) = 0. ��
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Lemma 3 For any ψ ∈H \{0} and A ⊂ Ω ,

Pψ(A) = 0 -⇒ ψ ∈ F(A).

Proof If Pψ(A) = 0, (13) tells us that there are An ∈ Aσ such that A ⊂ An and
Pψ(An) → 0. Set ξn = Proj(ψ|H ⊥(An)). Then ξn ∈ H ⊥(An) = F(An) ⊂
F(A), where the equality is Lemma 1(ii), and in the last step we are using (7).
Therefore, using Lemma 1(v), we obtain

||ξn − ψ||2 = ||Proj(ψ|H (An))||2 = ||ψ||2 Pψ(An) → 0,

as n → ∞. This shows that (ξn) is a sequence in F(A) that converges to ψ and
therefore ψ ∈ F(A). ��
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On One-Dimensional Multi-Particle
Diffusion Limited Aggregation

Allan Sly

Dedicated to the memory of Vladas Sidoravicius, colleague,
mentor and friend.

Abstract We prove that the one dimensional Multi-Particle Diffusion Limited
Aggregation model has linear growth whenever the particle density exceeds 1
answering a question of Kesten and Sidoravicius. As a corollary we prove linear
growth in all dimensions d when the particle density is at least 1.

Keywords Interacting particle systems · Diffusion Limited Aggregation

1 Introduction

In the Diffusion Limited Aggregation (DLA) model introduced by Witten and
Sanders [7] particles arrive from infinity and adhere to a growing aggregate. It
produces beautiful fractal-like pictures of dendritic growth but mathematically
it remains poorly understood. We consider a variant, multiparticle DLA, where
the aggregate sits in an infinite Poisson cloud of particles which adhere when
they hit the aggregate, a model which has been studied in both physics [6] and
mathematics [3, 5]. Again one is interested in the growth of the aggregate and its
structure.

In the model, initially, there is a collection of particles whose locations are given
by a mean K Poisson initial density on Z

d . The particles each move independently
according to rate 1 continuous time random walks on Z

d . We follow the random
evolution of an aggregate Dt ⊂ Z

d where at time 0 an aggregate is placed at the
origin D0 = {0} to which other particles adhere according the following rule. When
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a particle at v ∈ Dt− attempts to move onto the aggregate at time t , it stays in place
and instead is added to the aggregate so Dt = Dt− ∪ {v} and the particle no longer
moves. Any other particles at v at the time are also frozen in place.

We will mainly focus on the one dimension setting and in Sect. 5 will discuss
how to boost the results to higher dimensions. In this case the aggregate is simply a
line segment and the processes on the positive and negative axes are independent so
we simply restrict our attention to the rightmost position of the aggregate at time t
which we denote Xt . When a particle at time t at position Xt− + 1 attempts to take
a step to the left it is incorporated into the aggregate along with any other particles.

It was proved by Kesten and Sidoravicius [3] that Xt grows like
√
t when K <

1. Indeed there simply are not enough particles around for it to grow faster. They
conjectured, however, that whenK > 1 then it should grow linearly. Our main result
confirms this conjecture.

Theorem 1 For all K > 1 the limit limt 1
t
Xt exists almost surely and is a positive

constant.

We also give a simple extension of these results to higher dimensions and prove
the following corollary.

Corollary 1 In all dimensions d ≥ 2 when K > 1 the diameter of the aggregate
grows linearly in t , that is for some positive constant δ > 0

lim inf
t

1

t
Diam(Dt ) > δ a.s.

Previously Sidoravicius and Stauffer [5] studied the case of d ≥ 2 in a slightly
different variant where particles instead perform a simple exclusion process. They
showed that for densities close to 1, that there is a positive probability that the
aggregate grows with linear speed. Also in Sect. 5 we describe how for d ≥ 2 the
upper bound on the threshold can be reduced further below 1, for example to 5

6 when
d = 2. However, strikingly Eldan [2] conjectured that the critical value is always 0,
that is the aggregate grows with linear speed for allK > 0. We are inclined to agree
with this conjecture but our methods do not suggest a way of reaching the threshold.
A better understanding of the growth of the standard DLA seems to be an important
starting point.

2 Basic Results

We will analyse the function valued process Yt given by,

Yt (s) :=
{
Xt −Xt−s 0 ≤ s ≤ t
∞ s > t.

(1)
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Let Ft denote the filtration generated by Xt . We let S(t) denote the infinitesimal
rate at which Xt increases given Ft . Given Ft the number of particles at Xt + 1 is
conditionally Poisson with intensity given by the probability that a random walker
atXt +1 at time t was never located in the aggregate. Each of the particles jumps to
the left at rate 1

2 so withWt denoting an independent continuous time random walk,

S(t) = 1

2
KP[max

0≤s≤t Ws − Yt (s) ≤ 0 | Yt ].

Note that S(t) is increasing as a function of Yt . Indeed we could realise Xt as
follows, let Π be a Poisson process on [0,∞)2 and then

Xt = Π({(x, y) : 0 ≤ x ≤ t, 0 ≤ y ≤ S(x)}.

Since both Xt and Yt are increasing functions of Π we can make use of the FKG
property.

Also note that Yt is a function valued Markov process in t . Its infinitesimal rate
change can be described as follows, if there is no new particle in [t, t + dt] then

Yt+dt (s) =
{
Yt (s − dt), s > dt

0, s ≤ dt.

If a new particle arrives at time then Yt (s) = Yt−(s)+ 1. Since new particles arrive
at rate S(t), which is itself a function of Yt the process is Markovian.

We now observe an important monotonicity property of this process. Suppose
that we have two copies of the process Xt and X′t such that at time t∗ we have that
Yt∗(s) ≥ Y ′t∗(s) for all s ≥ 0. Then the infinitesimal rates will satisfy S(t∗) ≥ S′(t∗).
Suppose that we couple the processes to use the same point processΠ after time t∗.
Let t1 be the first time after t∗ that eitherXt orX′t encounters a new particle. For t∗ ≤
t < t1 we must have that Yt ≥ Y ′t and so we also have that S(t) ≥ S(t ′). Hence, since
S is larger in the first chain, at time t1 we either have that both processes encounter
a new particle or X does and X′ does not. In either case Yt1 ≥ Y ′t1 . Applying this
inductively we will have that Yt ≥ Y ′t for all time t ≥ t∗. In other words the Markov
process Yt is a stochastically monotone Markov process.

Since Y0(s) = +∞ for all s > 0 we have that the initial value of Y is the
maximal value and Y0 ≥ Yt for all t . Applying the Markov property this means that
Ys stochastically dominated Yt+s for all t, s ≥ 0, in other words Yt is stochastically
decreasing.

Most of our analysis will involve estimating S(t) and using that to control the
evolution of Yt and show that it does not become too small for too long. Let Mt =
max0≤s≤t Ws be the maximum process ofWt .
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Lemma 1 For any i ≥ 0 we have that

S(t) ≥ K
2
P[M2i = 0]

∞∏

i′=i
P[M2i′+1 ≤ Yt (2i′) | Yt ]

Proof We have

S(t) ≥ K
2
P[max

0≤s≤t
Ws − Yt (s) ≤ 0 | Yt ]

≥ K
2
P[M2i = 0,∀i ′ ≥ i M2i′+1 ≤ Yt (2i′) | Yt ]

≥ K
2
P[M2i = 0]

∏

i′≥i
P[M2i′+1 ≤ Yt (2i′) | Yt ]

where the final inequality follows from the FKG inequality.

By the reflection principle we have that for any integer j ≥ 0,

P[Mt ≥ j ] = P[Wt ≥ j ] + P[Wt ≥ j + 1].

Thus asymptotically we have that

P[Mt = 0] ≈ 1√
2π
t−1/2 (2)

Now let Tj be the first hitting time of j . Since cosh(s) − 1 ≤ s2 for 0 ≤ s ≤ 1 we
have that for t ≥ 1,

E[e 1√
t
Wt∧Tj ] ≤ E[e 1√

t
Wt ] = e(cosh( 1√

t
)−1)t ≤ e1,

and hence by Markov’s inequality

P[Mt ≥ j t1/2] ≤ P[e
1√
t
Wt∧T

j
√
t = ej ] ≤ e1−j . (3)

Plugging the above equations into Lemma 1 we get the following immediate
corollary.

Corollary 2 There exists i∗ such that the following holds. Suppose that i ≥ i∗ and
for all i ′ ≥ i we have ji′ = Yt (2i′)2−i′/2. Then

S(t) ≥ K

10
2−i/2

∞∏

i′=i
(1− e1−max{1,ji′/

√
2})
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Next we check that provided S(t) remains bounded below during an interval then
we get a comparable lower bound on the speed of Xt .

Lemma 2 We have that for all ρ ∈ (0, 1) there exists ψ(ρ) > 0 such that for all
Δ > 0,

P[ min
s∈[t,t+Δ]S(s) ≥ γ,Xt+Δ −Xt ≤ ρΔγ | Yt ] ≤ exp(−ψ(ρ)Δγ )

The function ψ satisfies ψ( 1
2 ) ≥ 1

10 .

Proof Using the construction of the process in terms ofΠ we have that

P[ min
s∈[t,t+Δ] S(s) ≥ γ,Xt+Δ −Xt ≤ ρΔγ | Yt ] ≤ P[Π([t, t +Δ] × [0, γ ]) ≤ ρΔγ ]

= P[Poisson(Δγ ) ≤ ρΔγ ]

Now if N ∼ Poisson(Δγ ) then Ee−θN = exp((e−θ − 1)Δγ ) and so by Markov’s
inequality

P[N ≤ ρΔγ ] = P[e−θN ≥ e−θρΔγ ] ≤ exp((e−θ − 1)Δγ )

exp(−θρΔγ ) = exp((θρ+ e−θ − 1)Δγ ).

Setting fρ(θ) = −(θρ + e−θ − 1) and

ψ(ρ) = sup
θ≥0
fρ(θ)

it remains to check that ψ(ρ) > 0. This follows from the fact that fρ(0) = 0 and
f
′
ρ(0) = 1− ρ > 0. Since f 1

2
( 1

2 ) ≥ 1
10 we have that ψ( 1

2 ) ≥ 1
10 .

3 Proof of Positive Speed

In this section we aim to show that Yt does not become too small in order to show
that Xt continues to progress. We say that Yt is permissive at time t and at scale i if
Yt (2i ) ≥ 10i2i/2. Our approach, will be to consider functions

yα(s) =
{

0 s ≤ α−3/2

min{α(s − α−3/2), s1/2 log2 s} s ≥ α−3/2.

and show that if Yt (s) ≥ yα(s) holds for α, then it is likely that Yt ′(s) ≥ yα′(s) for
some specified t ′ > t, α′ > α and thus show that if Yt starts to get too small, it
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will have a positive drift and will usually not stay too small for too long. We define
events R as

R(t, s, γ ) = {Xt+s −Xt ≥ γ s},

to measure the speed of the aggregate in an interval of time.

Lemma 3 For all ε > 0 there exists 0 < α%(ε) ≤ 1 such that for all 0 < α < α%,

P[max
s≥0

Ws − yα((s − α−4/3) ∨ 0) ≤ 0] ≥ 2(1− ε)α.

Proof When α%(ε) is small enough we have that for α−3/2 ≤ s ≤ α−2,

α(s − α−4/3 − α−3/2) ≤ (s − α−4/3)1/2 log2(s − α−4/3)

Hence with ξ = ξα = α−4/3 + α−3/2 if we set

A = {max
s≥0

Ws − α((s − ξ) ∨ 0) ≤ 0}

and

B = { max
s≥α−2

Ws − (s − α−4/3)1/2 log2(s − α−4/3) ≤ 0}

then

P[max
s≥0

Ws − yα((s − α−4/3) ∨ 0) ≤ 0] ≥ P[A ,B] ≥ P[A ]P[B].

where the second inequality follows by the FKG inequality since A and B are both
decreasing events for Ws . For large s, we have s1/2 log2 s ≤ 2(s/2)1/2 log2(s/2)
and so

P[B] ≥ P[ max
s≥α−2

Ws − 1
2 s

1/2 log2(
1
2s) ≤ 0]

≥ P[∀i ≥ %log2(α
−2)&,M2i+1 ≤ 1

2 (i − 1)2i/2]
≥

∏

i≥%log2(α
−2)&

P[M2i+1 ≤ 1
2 (i − 1)2i/2]

≥
∏

i≥%log2(α
−2)&
(1− exp(1− (i − 1)2−3/2))

where the third inequality follows from the FKG inequality and the final inequality
is by Eq. (3). Thus as α→ 0 we have that P[B] → 1 so it is sufficient to show that
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for small enough α that P[A ] ≥ 2α(1− ε/2). By the reflection principle for a ≤ 1,

P[Mt ≥ 1,Wt = a] = P[Mt ≥ 1,Wt = 2−a] = P[Wt = 2−a] = P[Wt = a−2],

and so

P[Mt ≥ 1] =
∑

a>1

P[Mt ≥ 1,Wt = a] +
∑

a≤1

P[Mt ≥ 1,Wt = a]

=
∑

a>1

P[Wt = a] +
∑

a≤1

P[Wt = a − 2]

= 1− P[Wt = 0] − P[Wt = 1].

Hence by the Local Central Limit Theorem,

lim
t

√
tP[Mt = 0] = lim

t

√
t (P[Wt = 0] + P[Wt = 1]) = 2√

2π
.

Also we have for a ≤ 0,

P[Wt=a,Mt = 0]=P[Wt = a]−P[Wt = a,Mt ≥ 1] = P[Wt = a]−P[Wt = a−2]

and so the law ofWt conditioned onMt = 0 satisfies,

lim
t
P[ 1√

t
Wt ≤ x | Mt = 0] = lim

t

∑x
√
t

a=−∞ P[Wt = a] − P[Wt = a − 2]
P[Mt = 0]

= lim
t

P[Wt = x√t] + P[Wt = x√t − 1]
P[Mt = 0]

= lim
t

2 1√
2π
e−x2/2

2√
2π

= e−x2/2

where x ≤ 0 and hence is the negative of the Rayleigh distribution. Now let Zt =
Wt − αt and Ut = eθZt . Then

EUt = exp((cosh(θ)− 1− αθ)t).

As fα(θ) = cosh(θ)− 1− αθ is strictly convex, it has two roots, one of which is at
θ = 0. Let θα be the non-zero root of fα . Since

fα(θ) = −αθ + 1

2
θ2 +O(θ4)
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for small α we have that θα = 2α + O(α2). Then with θ = θα we have that
Ut = eθαZt is a martingale. Let T = mint Zt > 0 and so by the Optional Stopping
Theorem,

E[UT | Z0 = x] = eθαx.

Also since UT ∈ [0, 1] if T <∞ so

E[UT | Z0 = x] ≥ P[T <∞ | Z0 = x]

so

P[T <∞ | Z0 = z] ≤ e−θα .

Thus we have that as α→ 0,

P[A ] = P[max
s≥0

Ws − α((s − ξ) ∨ 0) ≤ 0]

=
0∑

x=−∞
P[Mξ = 0,Wξ = x]P[T = ∞ | Z0 = x]

≥ P[Mξ = 0]
0∑

x=−∞
P[Wξ = x | Mξ = 0](1− eθαx)

≥ 2+ o(1)√
2πξ

0∑

x=−∞
P[Wξ = x | Mξ = 0](−2αx)

→ 2+ o(1)√
2πξ

· (2α)√ξ
√
π

2
= 2α,

since the mean of the Rayleigh distribution is
√
π
2 . This completes the lemma.

Lemma 4 For allK > 1 there exists i%(K) such that if i ≥ i% and YT is permissive
at all levels i and above then with

α = 1

80
2−i/2

we have that

P[inf
s
YT+2i (s)− yα(s) ≥ 0 | YT ] ≥ 1− exp(−2i/10).
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Proof Since YT (2i
′
) ≥ 10i ′2i′/2 for all i ′ ≥ i if we set

ỹ(s) =
{

0 s < 2i+1 ,

10j2j/2 s ∈ [2j+1, 2j+2), j ≥ i.

then since YT+u(s) ≥ YT (s − u) we have that

inf
0≤u≤2i

inf
s≥0
YT+u(s)− ỹ(s) ≥ 0. (4)

By Corollary 2 for all t ∈ [0, 2i]

S(t) ≥ 1

10
2−(i+1)/2

∞∏

i′=i
(1− e1−max{1,5(i′−1)}) ≥ 1

20
2−i/2 ,

where the second inequality holds provided that i%(K) is sufficiently large. Defining
D as the event that Xt moves at rate at least 1

40 2−i/2 for each interval (�22i/3, (� +
1)22i/3],

D :=
2i/3−1⋂

�=0

R(T + �22i/3, 22i/3,
1

40
2−i/2)

by Lemma 2 we have that

P[D] ≥ 1− 2i/3 exp(− 1

10
· 22i/3 · 1

40
2−i/2) ≥ 1− exp(−2i/10)

where the last inequality holds provided that i%(K) is sufficiently large. We claim
that on the event D , we have that YT+2i (s) ≥ yα(s) for all s. For s ≥ 2i+1 this holds
since by Eq. (4) we have that

YT+2i (s) ≥ ỹ(s) ≥ s1/2 log2 s ≥ yα(s).

For 0 ≤ s ≤ 2i , on the event D ,

YT+2i (s) ≥ %s2−2i/3&22i/3 1

40
2−i/2 ≥ max{0, s − α−3/2} 1

40
2−i/2 ≥ yα(s),

and for 2i ≤ s ≤ 2i+1

YT+2i (s) ≥ YT+2i (2
i ) ≥ 2i · 1

40
2−i/2 ≥ yα(2i+1).

Thus for all s ≥ 0, YT+2i (s) ≥ yα(s) which completes the proof.
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Lemma 5 For allK > 1, there existsΔ(K) and χ(K) > 0 such that if 0 ≤ α ≤ Δ
and infs YT (s)− yα(s) = 0 then

P

[
R

(
T , α−4/3,

α(K + 1)

2

)c | YT
]
≤ exp

(
− χ(K)α−1/3

)
.

Proof With α%(ε) defined as in Lemma 3 set Δ(K) = α%(K−1
3K ). Then for 0 ≤ t ≤

α−4/3

S(T + t) = K
2
P[max
s≥0

Ws − YT+t (s) ≤ 0 | YT+t ]

≥ K
2
P[max
s≥0

Ws − yα((s − α−4/3) ∨ 0) ≤ 0]

≥ K
2

2
(
1− K − 1

3K

)
α = α(2K + 1)

3

where the first inequality follows from the fact that

YT+t (s) ≥ YT ((s − α−4/3) ∨ 0) ≥ yα((s − α−4/3) ∨ 0)

and the second inequality follows from Lemma 3. Now take ρ = 3K+3
4K+2 < 1 and

with ψ defined in Lemma 2 set χ(K) = ψ(ρ). Then since

inf
0≤t≤α−4/3

S(T + t) ≥ α(2K + 1)

3
= ρ−1 α(K + 1)

2

by Lemma 2 we have that

P

[
R

(
T , α−4/3,

α(K + 1)

2

)c | YT
]
≤ exp

(
− χ(K)α−1/3

)
.

This result is useful because of the following claim.

Claim For some 0 ≤ α ≤ 1
2 suppose that infs YT (s) − yα(s) = 0. Then for an

0 ≤ t ≤ α−3/2 and γ ≥ 1 on the event R
(
T , t, αγ

)
we have that infs YT+t (s) −

yα(s) = 0.

Proof Since yα(s) = for 0 ≤ s ≤ α−3/2 it is sufficient to check s ≥ α−3/2. Then

YT+t (s) = YT (s − t)+XT+t − Xt
≥ YT (s − t)+ αγ t
≥ yα(s − t)+ αγ t
≥ yα(s)− αt + αγ t ≥ yα(t),
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where the first inequality is by the event R
(
T , t, αγ

)
, the second is by assumption

and the third is since d
ds
yα(s) is uniformly bounded above by α.

Lemma 6 For allK > 1, there existsΔ(K) and χ(K) > 0 such that if 0 ≤ α ≤ Δ
and infs YT (s)− yα(s) = 0 then

P

[
inf
s
YT+α−3(s)− y α(K+1)

2
(s) ≥ 0 | YT

]
≥ 1− α−5/3 exp

(
− χ(K)α−1/3

)
.

Proof Let D� denote the event,

D� = R(T + �α−4/3, α−4/3,
α(K + 1)

2
).

By Claim 3 and induction if
⋂�−1
�′=0 D�′ holds then infs YT+�α−4/3(s) − yα(s) = 0.

Thus by Lemma 5 we have that

P

[
D� |

�−1⋂

�′=0

D�′ , YT

]
≥ 1− exp

(
− χ(K)α−1/3

)

and so with D∗ = ⋂α−5/3−1
�=0 D�,

P
[
D∗ | YT

] ≥ 1− α−5/3 exp
(
− χ(K)α−1/3

)
.

Now suppose that the event D∗ holds and assume thatΔ(K) is small enough so that
for all 0 ≤ α ≤ Δ(K) the following hold:

• α−4/3 ≤ (α(K+1)
2 )−3/2,

• K+1
2 α−2 ≥ (2α−3)1/2 log2(2α

−3),
• ∀s ≥ α−3, min{α(s − α−3/2), s1/2 log2 s} = s1/2 log2 s,
• ∀s ≥ α−3, min{α(K+1)

2 (s − (α(K+1)
2 )−3/2), s1/2 log2 s} = s1/2 log2 s,

• infs≥2α−3 −s1/2 log2 s + (s − α−3)1/2 log2(s − α−3)+ K+1
2 α−2 ≥ 0.

It is straightforward to check that all of these hold for sufficiently small α. For all
(α(K+1)

2 )−3/2 ≤ s ≤ α−3 that

YT+α−3(s) ≥ %sα4/3&α−4/3 · α(K + 1)

2

≥
(

s −
(
α(K + 1)

2

)3/2
)
α(K + 1)

2

≥ yα(K+1)
2
(s).
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For α−3 ≤ s ≤ 2α−3,

YT+α−3(s) ≥ YT (s − α−3)+ K + 1

2
α−2

≥ yα(s − α−3)+ K + 1

2
α−2

≥ (2α−3)1/2 log2(2α
−3) = yα(K+1)

2
(2α−3).

Finally, for s ≥ 2α−3,

YT+α−3(s) ≥ yα(s − α−3)+ K + 1

2
α−2

= yα(K+1)
2
(s)− s1/2 log2 s + (s − α−3)1/2 log2(s − α−3)+ K + 1

2
α−2

≥ yα(K+1)
2
(s).

Combining the previous 3 equations implies that YT+α−3(s) ≥ yα(K+1)
2
(s) for all s

and hence

P

[
inf
s
YT+α−3(s)−yα(K+1)

2
(s) ≥ 0 | YT

]
≥ P[D∗] ≥ 1−α−5/3 exp

(
−χ(K)α−1/3

)
.

Lemma 7 For allK > 1, there exists i∗(K) such that the following holds. If i ≥ i∗
and YT is permissive for all i ′ > i then

P

[
min

s∈[4i ,2e2i/10 ]
YT+s (2i ) ≤ 10i2i/2 | FT

]
≤ 3e−2i/10

,

that is YT+s is permissive at scale i for all s ∈ [2i , 2e2i/10].
Proof We choose i∗(K) large enough so that,

20i∗2−i∗/2
(

1+K
2

)
≤ Δ(K)

where Δ(K) was defined in Lemma 6. Set t0 = 2i+1 and α0 = 1
80 2−(i+1)/2. We

define α� =
(
K+1

2

)�
α0 and t� = t�−1 + α−3

�−1. Define the event W� as

W� =
{

inf
s
YT+t� (s)− yα�(s) ≥ 0

}
.
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By Lemma 4 we have that

P[W0 | FT ] ≥ 1− exp(−2(i+1)/10),

and by Lemma 6 we have that

P

[
W� |

�−1⋂

�′=0

W�′ | FT
]
≥ 1− α−5/3

�−1 exp
(
− χ(K)α−1/3

�−1

)
.

Now choose L to be the smallest integer such that αL ≥ 20i2−i/2. So L =
1 log(1600i21/2)

log((K+1)/2) 2 which is bounded above by i provided that i∗(K) is sufficiently large
and αL ≤ Δ(K). Thus

P[WL | FT ] ≥ 1− exp(−2i/10)−
L−1∑

�=0

α
−5/3
�−1 exp

(
− χ(K)α−1/3

�−1

)

≥ 1− exp(−2i/10)− i(20i2−i/2)−5/3 exp
(
− χ(K)(20i2−i/2)−1/3

)

≥ 1− 2 exp(−2i/10)

where the final inequality holds for i is sufficiently large. Now let Dk denote the
event,

Dk = R(T + tL + kα−4/3
L , α

−4/3
L , αL).

By Claim 3 on the event WL and
⋂k−1
k′=0 Dk′ we have

inf
s
Y
T+tL+kα−4/3

L

(s)− yαL(s) ≥ 0.

Thus by Lemma 5 we have that

P[Dk | FT ,WL,
k−1⋂

k′=0

Dk′ ] ≥ 1− exp
(
− χ(K)α−1/3

L

)
.

Let D∗ be the event

D∗ =

⎧
⎪⎨

⎪⎩
WL,

e2i/10−1⋂

k′=0

Dk′

⎫
⎪⎬

⎪⎭
.
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Then for i sufficiently large since αL ≤ 20iK2−i/2,

P[D∗ | FT ] ≥ 1−2 exp(−2i/10)−exp
(

2i/10−χ(K)α−1/3
L

)
≥ 1−3 exp(−2i/10).

One the event D∗ we have that for all tL + 2i ≤ s ≤ α−4/3
L e2i/10

that

YT+s ≥ αL(2i − 2α−4/3
L ) ≥ 10i2i/2.

By construction tL = 2i+1 +∑L−1
�=0 α

−3
� ≤ 4i and hence

P

[
min

s∈[4i ,2e2i/10 ]
YT+s (2i) ≤ 10i2i/2 | FT

]
≤ P[(D∗)c | FT ] ≤ 3e−2i/10

.

Corollary 3 For all K > 1, there exists i∗(K) such if i ≥ i∗ then

P

[
min

s∈[0,e2i/10 ]
Ys(2i) ≤ 10i2i/2

]
≤ 3e−2i/10

,

Proof We can apply Lemma 7 to time T = 0 since it is permissive at all levels and
hence have that

P

[
min

s∈[4i ,2e2i/10 ]
Ys(2i) ≤ 10i2i/2

]
≤ 3e−2i/10

,

Since Yt is stochastically decreasing in t we have that

P

[

min
0≤t≤e2i/10

Yt (2i) ≤ 10i2i/2 − i2i
]

≤ P

[
min

s∈[4i ,4i+e2i/10 ]
Ys(2i) ≤ 10i2i/2

]
≤ 3e−2i/10

,

which completes the corollary.

Lemma 8 For all K > 1, there exists i∗(K) such that

inf
t
P

[
∀i ≥ i∗, Yt (2i ) ≥ 10i2i/2

]
≥ 1

2
.

Proof Take i∗(K) as in Lemma 7 and suppose that I ≥ i∗. Let DI denote the event
that Yt is permissive for all levels i ≥ I and all t ∈ [0, e2I/10]. By Corollary 3 we
have that

P[DcI ] ≤
∑

i≥I
3e−2i/10 ≤ 4e−2I/10

.
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Next set t0 = 1
2e

2I/10
and let tk = tk−1 + 4I−k . Let Hk denote the event that Yt

is permissive at level I − k for all t ∈ [tk, tk + e2(I−k)/10]. By Lemma 7 then for
0 ≤ k ≤ I − i∗,

P[H c
k ,∩k−1

k′=1Hk′ ,Di∗ ] ≤ 3e−2(I−k)/10
.

Thus, provided i∗ is large enough,

P[∩I−i∗
k′=1Hk′ ,Di∗ ] ≥ 1− 4e−2I/10 −

I−i∗∑

k′=1

3e−2(I−k)/10 ≥ 1

2
.

Let τ = τI = tI−i∗ . Then for all I ≥ i∗,

P

[
∀i ≥ i∗, YτI (2i ) ≥ 10i2i/2

]
≥ 1

2
.

since Yt is stochastically decreasing in t and τI →∞ as I →∞,

inf
t
P

[
∀i ≥ i∗, Yt (2i ) ≥ 10i2i/2

]
≥ 1

2
.

Theorem 2 ForK > 1 there exists a random function Y ∗(s) such that Yt converges
weakly to Y ∗ in finite dimensional distributions. Furthermore, with

α∗ = K
2
E

[
P[max
s≥0

Ws − Y ∗(s) ≤ 0 | Y ∗]
]
,

we have that 1
t
Xt converges in probability to α∗ > 0.

Proof Since Yt is stochastically decreasing it must converge in distribution to some
limit Y ∗. By Claim 2

P

[
K

2
P[max
s≥0

Ws − Y ∗(s) ≤ 0 | Y ∗] ≥ K

10
2−i/2

∞∏

i=i∗
(1− e1−max{1,10i/

√
2})

]

≥ 1

2
,

and so α∗ = limt ES(t) > 0. To show convergence in probability fix ε > 0. For
some large enough L,

E[ 1

L
XL] = 1

L

∫ L

0
ES(t)dt ≤ α∗ + ε/2.



770 A. Sly

Let Nk = E[XkL − X(k−1)L | F(k−1)L] and Rk = XkL − X(k−1)L − Nk . By
monotonicity

1

L
Nk ≤ E[ 1

L
XL] ≤ α∗ + ε/2.

The sequence Rk are martingale differences with uniformly bounded exponential
moments (since it is bounded from below by −(α∗ + ε/2) and stochastically
dominated by a Poisson with mean LK). Thus

lim
n

1

n

n∑

k=1

Rk = 0 a.s. .

It follows that almost surely lim supt
1
t
Xt ≤ α∗. Since Xt is stochastically

dominated by Poisson(Kt)we have that E[( 1
t
Xt )

2] ≤ K2+K/t and so is uniformly
bounded. Hence since limE

1
t
Xt → α∗ it follows that we must have that 1

t
Xt

converges in distribution to α∗.

4 Regeneration Times

In order to establish almost sure convergence to the limit we define a series of
regeneration times. We select some small α(K) > 0, and say an integer time t
is a regeneration time if

1. The function Yt satisfies infs Yt (s)− yα(s) ≥ 0.
2. For Jt the set of particles to the right of the aggregate at time t , their

trajectories {ζj (s)}j∈Jt on (−∞, t] satisfy

inf
s
ζj (t − s)− (Xt − yα(s)) > 0. (5)

Let 0 ≤ T1 < T2 < . . . denote the regeneration times and let R denote the set of
regeneration times.

Lemma 9 For all K > 1, there exists δ(K) > 0 such that,

inf
t∈N

P[t ∈ R] ≥ δ.

Proof Let Dt be the event that infs Yt (s)− yα(s) ≥ 0. Provided that α(K) is small
enough by Lemmas 4 and 8 we have that

P[Dt ] ≥ 1

3
.
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As the density of particles to the right ofXt is increasing in Yt it is, therefore greatest
when t = 0 and so P[t ∈ R | Dt ] is minimized at t = 0. Let w� be defined as the
probability

w� = P[max
s≥0

Ws − yα(s) > �].

Then Kw� is the Poisson density of particles at � which fail to satisfy (5) for time
t = 0. For 0 ≤ � < α−4 we simply bound w� ≤ 1 so let us consider � ≥ α−4. Then

w� ≤ 1− P[M� ≤ �,∀i ≥ %log2(�)& : M2i+1 ≤ �+ i2i+1]
≤ 1− P[M� ≤ �]

∏

i≥%log2(�)&
P[M2i+1 ≤ �+ i2i+1]

≤ 1− (1− e1−�1/2
)

∏

i≥%log2(�)&
(1− e1−i/√2)

≤ e1−�1/2 +
∑

i≥%log2(�)&
e1−i/√2

where the third inequality is be the FKG inequality and the final inequality is by
Eq. (3). Then we have that

∑

�≥α−4

w� ≤
∑

�≥α−4

e1−�1/2 +
∑

�≥α−4

∑

i≥%log2(�)&
e1−i/√2

≤
∑

�≥α−4

e1−�1/2 +
∑

i

2i+1e1−i/√2 <∞,

since 2e−1/
√

2 < 1. Hence
∑∞
�=0 w� < ∞ and so since the number of particles

which fail to satisfy (5) at time 0 is distributed as a Poisson with mean K
∑∞
�=0w�,

P[0 ∈ R | D0] = P[Poisson(K
∞∑

�=0

w�) = 0] > 0.

Thus there exists δ > 0 such that inft∈N P[t ∈ R] ≥ δ.
We can now establish our main result.

Proof (Theorem 1) By Lemma 9 there is a constant density of regeneration times
so the expected inter-arrival time is finite. By Theorem 2 the process Xt travels at
speed α∗, at least in probability. By the Strong Law of Large Numbers for renewal-
reward processes this convergence must also be almost sure.
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5 Higher Dimensions

Our approach gives a simple way of proving positive speed in higher dimensions
although not down to the critical threshold. Simulations for small K in two
dimensions produce pictures which look very similar to the classical DLA model.
Surprisingly, however, Eldan [2] conjectured that the critical value for d ≥ 2 is 0!
That is to say that despite the simulations there is linear growth in of the aggregate
for all densities of particles and that these simulations are just a transitory effect
reflecting that we are not looking at large enough times. We are inclined to agree
but our techniques will only apply for larger values of K . A better understanding
of the notoriously difficult classical DLA model may be necessary, for instance that
the aggregate has dimension smaller than 2.

Let us now assume that K > 1. In the setting of Zd it will be convenient for the
sake of notation to assume that the particles perform simple random walks with rate
d which simply speeds the process be a factor of d . The projection of the particles
in each co-ordinate is then a rate 1 walk. We let Ut be the location of the rightmost
particle in the aggregate (if there are multiple rightmost particles take the first one)
at time t and let Xt denote its first coordinate. We then define Yt (s) according to (1)
as before. We call a particle with path

(
Z1(t), . . . , Zd(t)

)
conforming at time t if

Z1(s) > Xs for all s ≤ t . By construction conforming particles cannot be part of the
aggregate and conditional on Xt form a Poisson process with intensity depending
only on the first coordinate.

Let ei denote the unit vector in coordinate i. The intensity of conforming particles
at time t at Ut + e1 is then simply

KP[max
0≤s≤t Ws − Yt (s) ≤ 0 | Yt ].

where Ws is an independent simple random walk. Similarly the rate at which
conforming particles move fromUt +e1 to Yt thus forming a new rightmost particle
is

S(t) = 1

2
KP[max

0≤s≤t Ws − Yt (s) ≤ 0 | Yt ],

the same as the formula we found in the one dimensional case. Of course by
restricting to conforming particles we are restricting ourselves and so the rate at
which Xt increments is strictly larger than S(t). Since S(t) is increasing as a
function of Xt (through Yt ) we can stochastically dominate the one dimensional
case by the higher dimensional process which establishes Corollary 1.

Let us now briefly describe how to improve upon K = 1. In the argument
above we are being wasteful in two regards, first by only considering conforming
particles and secondly by considering only a single rightmost particle. If there are
two rightmost particles then the rate at which Xt increases doubles. The simplest
way to get such a new particle is for a conforming particle at Ut + e1 ± ei to jump
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first to Ut ± ei and then to Ut . There are (2d − 2) such location and the first move
occurs at rate S(t) and the second at has probability 1/(2d) to move in the correct
direction and takes time exponential with rate d . After this sequence of events the
rate at which Xt increments becomes 2S(t).

In Lemma 2, on which the whole proof effectively rests, we show that for ρ < 1
if S(s) ≥ γ for s ∈ [t, t+Δ] then with exponentially high probabilityXt+Δ−Xt ≥
ρΔγ for any ρ < 1 which is intuitively obvious since Xt grows at rate S(s) ≥ γ .
We can improve our lower bound on K by increasing the range of ρ for which this
holds for small values of γ .

Define the following independent random variables

V1 ∼ Exp(γ ), V2 ∼ Exp(
2d − 2

2d
γ ), V3 ∼ Exp(d), V4 ∼ Exp(γ )

where we interpret V1 as the time until the first conforming particle hits Ut . We will
view V2 as the waiting time for a conforming particle to move from Ut +±ei + e1
to Ut ± ei for some 2 ≤ i ≤ d and we further specify that their next step will
move directly to Ut which thins the process by a factor 1

2d . Let V3 be the time
until its next move. On the event V2 + V3 < V1 there is an additional rightmost
particle before one has been added to the right of Ut . Now let V4 be the first time a
conforming particle reaches this new rightmost site. So the time for Xt to increase
is stochastically dominated by

T = min{V1, V2 + V3 + V4}.

Now using the memoryless property of exponential random variables,

ET = EV1 − E [(V1 − (V2 + V3 + V4))I (V1 ≥ V2 + V3 + V4)]

= 1

γ
(1− P[V1 ≥ V2 + V3 + V4])

and

P[V1 ≥ V2 + V3 + V4] = P[V1 ≥ V2]P[V1 ≥ V2 + V3 | V1 ≥ V2]
× P[V1 ≥ V2 + V3 + V3 | V1 ≥ V2 + V3]

=
2d−2

2d γ

γ + 2d−2
2d γ

d

γ + d
γ

2γ

= d − 1

2(2d − 1)

d

γ + d
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In the proof we need only to consider the case where γ is close to 0 and

lim
γ→0

γET = 3d − 1

4d − 2
.

HavingXt growing at rate γ 4d−2
3d−1 corresponds in the proof to linear growth provided

thatK > 3d−1
4d−2 . In the case for d = 2 this meansK > 5

6 . We are still being wasteful
in several ways and expect that a more careful analysis would yield better bounds
that tend to 0 as d → ∞. However, we don’t believe that this approach alone is
sufficient to show that the critical value ofK is 0 when d ≥ 2. For that more insight
into the local structure is likely needed along with connections to standard DLA.

6 Open Problems

In the one dimensional case the most natural open questions concern the behaviour
of Xt for densities close to 1. Rath and Sidoravicius made a series of predictions
in [4] including that the speed should be approximately 1

2 (K−1)whenK is slightly
above 1. Perhaps of most interest is what is the exponent of growth for Xt when
K = 1. Here the heuristics of [4] suggest that it may grow as t2/3. In a related
model, Dembo and Tsai [1] established t2/3 at the critical density.

In higher dimensions the main open problem is to establish Eldan’s conjecture
of linear growth for all K . Another natural question is to prove a shape theorem for
the aggregate.
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On the C1-Property of the Percolation
Function of Random Interlacements and
a Related Variational Problem

Alain-Sol Sznitman

In memory of Vladas Sidoravicius

Abstract We consider random interlacements on Z
d , d ≥ 3. We show that the

percolation function that to each u ≥ 0 attaches the probability that the origin does
not belong to an infinite cluster of the vacant set at level u, is C1 on an interval
[0, û), where û is positive and plausibly coincides with the critical level u∗ for the
percolation of the vacant set. We apply this finding to a constrained minimization
problem that conjecturally expresses the exponential rate of decay of the probability
that a large box contains an excessive proportion ν of sites that do not belong to an
infinite cluster of the vacant set. When u is smaller than û, we describe a regime of
“small excess” for ν where all minimizers of the constrained minimization problem
remain strictly below the natural threshold value

√
u∗ −

√
u for the variational

problem.
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1 Introduction

In this work we consider random interlacements on Z
d , d ≥ 3, and the percolation

of the vacant set of random interlacements. We show that the percolation function θ0
that to each level u ≥ 0 attaches the probability that the origin does not belong to an
infinite cluster of V u, the vacant set at level u of the random interlacements, is C1 on
an interval [0, û), where û is positive and plausibly coincides with the critical level
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u∗ for the percolation of V u, although this equality is presently open. We apply this
finding to a constrained minimization problem that for 0 < u < u∗ conjecturally
expresses the exponential rate of decay of the probability that a large box contains
an excessive proportion ν bigger than θ0(u) of sites that do not belong to the infinite
cluster of V u. When u > 0 is smaller than û and ν close enough to θ0(u), we show
that all minimizers ϕ of the constrained minimization problem are C1,α-functions
on R

d , for all 0 < α < 1, and their supremum norm lies strictly below
√
u∗ −

√
u.

In particular, the corresponding “local level” functions (
√
u + ϕ)2 do not reach the

critical value u∗.
We now discuss our results in more details. We consider random interlacements

on Z
d , d ≥ 3, and refer to [4] or [6] for background material. For u ≥ 0, we let I u

stand for the random interlacements at level u and V u = Z
d\I u for the vacant set

at level u. A key object of interest is the percolation function

θ0(u) = P[0 u←→/ ∞], for u ≥ 0, (1)

where {0 u←→/ ∞} is a shorthand for the event {0 V u←→/ ∞} stating that 0 does
not belong to an infinite cluster of V u. One knows from [14] and [13] that there
is a critical value u∗ ∈ (0,∞) such that θ0 equals 1 on (u∗,∞) and is smaller
than 1 on (0, u∗). And from Corollary 1.2 of [16], one knows that the non-
decreasing left-continuous function θ0 is continuous except maybe at the critical
value u∗.

With an eye towards applications to a variational problem that we discuss below,
see (9), we are interested in proving that θ0 is C1 on some (hopefully large)
neighborhood of 0. With this goal in mind, we introduce the following definition.
Given 0 ≤ α < β < u∗, we say that NLF(α, β), the no large finite cluster property
on [α, β], holds when

there exists L0(α, β) ≥ 1, c0(α, β) > 0, γ (α, β) ∈ (0, 1] such that

for all L ≥ L0 and u ∈ [α, β], P[0 u←→ ∂BL, 0
u←→/ ∞] ≤ e−c0Lγ , (2)

where BL = B(0, L) is the closed ball for the sup-norm with center 0 and radius
L, ∂BL its internal boundary (i.e. the subset of sites in BL that are neighbors of
Z
d\BL), and the notation is otherwise similar to (1). We then set

û = sup{u ∈ [0, u∗) ; NLF(0, u) holds}. (3)

One knows from Corollary 1.2 of [7] that û is positive:

û ∈ (0, u∗] . (4)
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Fig. 1 A heuristic sketch of
the graph of θ0 (with a
possible but not expected
jump at u∗)

0

u
u∗

1

θ0

It is open, but plausible, that û = u∗ (see also [8] for related progress in the
context of level-set percolation of the Gaussian free field). Our first main result is:

Theorem 1

The function θ0 is C1 on [0, û) and (5)

θ ′0 is positive on [0, û). (6)

Incidentally, let us mention that in the case of Bernoulli percolation the function
corresponding to θ0 is known to beC∞ in the supercritical regime, see Theorem 8.92
of [10]. However, questions pertaining to the sign of the second derivative (in
particular the possible convexity of the corresponding function in the supercritical
regime) are presently open. Needless to say that in our case the shape of the function
θ0 is not known (and the sketch in Fig. 1 conceivably misleading).

Our interest in Theorem 1 comes in conjunction with an application to a
variational problem that we now describe. We consider

D the closure of a smooth bounded domain, or of an open
sup-norm ball, of Rd that contains 0.

(7)

Given u and ν such that

0 < u < u∗ and θ0(u) ≤ ν < 1, (8)

we introduce the constrained minimization problem

IDu,ν = inf
{

1

2d

∫

Rd

|∇ϕ|2dz; ϕ ≥ 0, ϕ ∈ C∞0 (Rd ),
∫

D

− θ0
(
(
√
u+ ϕ)2)

dz > ν
}
,

(9)
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where C∞0 (Rd) stands for the set of smooth compactly supported functions on
R
d and

∫
D− . . . dz for the normalized integral 1

|D|
∫
. . . dz with |D| the Lebesgue

measure of D (see also below (10) for the interpretation of ϕ).
The motivation for the variational problem (9) lies in the fact that it conjecturally

describes the large deviation cost of having a fraction at least ν of sites in the large
discrete blow-up DN = (ND) ∩ Z

d of D that are not in the infinite cluster C u∞ of
V u. One knows by the arguments of Remark 6.6 2) of [15] that

lim inf
N

1

Nd−2
logP[|DN\C u∞| ≥ ν |DN |] ≥ −IDu,ν for u, ν as in (8) (10)

(with |A| standing for the number of sites in A for A subset of Zd ).
It is presently open whether the lim inf can be replaced by a limit and the

inequality by an equality in (10), i.e. if there is a matching asymptotic upper
bound. If such is the case, there is a direct interest in the introduction of a notion
of minimizers for (9). Indeed, (

√
u + ϕ)2( ·

N
) can be interpreted as the slowly

varying local levels of the tilted interlacements that enter the derivation of the lower
bound (10) (see Section 4 and Remark 6.6 2) of [15]). In this perspective, it is a
relevant question whether minimizers ϕ reach the value

√
u∗ −

√
u. The regions

where they reach the value
√
u∗ − √

u could potentially reflect the presence of
droplets secluded from the infinite cluster C u∞ and taking a share of the burden
of creating an excess fraction ν of sites of DN that are not in C u∞ (see also the
discussion at the end of Sect. 3).

The desired notion of minimizers for (9) comes in Theorem 2 below. For this
purpose we introduce the right-continuous modification θ0 of θ0:

θ0(u) =
{
θ0(u), when 0 ≤ u < u∗,
1, when u ≥ u∗.

(11)

Clearly, θ0 ≥ θ0 and it is plausible, but presently open, that θ0 = θ0. We recall
that D1(Rd) stands for the space of locally integrable functions f on R

d with
finite Dirichlet energy that decay at infinity, i.e. such that {|f | > a} has finite
Lebesgue measure for all a > 0, see Chapter 8 of [11], and define for D,u, ν
as in (7), (8)

J Du,ν = inf
{

1

2d

∫

Rd

|∇ϕ|2 dz; ϕ ≥ 0, ϕ ∈ D1(Rd),

∫

D

− θ0
(
(
√
u+ ϕ)2)

dz ≥ ν
}
.

(12)

Since θ0 ≥ θ0 and D1(Rd) ⊇ C∞0 (Rd), we clearly have J Du,ν ≤ IDu,ν . But in
fact:

Theorem 2 For D,u, ν as in (7), (8), one has

J Du,ν = IDu,ν . (13)
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In addition, the infimum in (12) is attained:

J Du,ν = min
{

1

2d

∫

Rd

|∇ϕ|2 dz; ϕ ≥ 0,

ϕ ∈ D1(Rd ),

∫

D

− θ0
(
(
√
u+ ϕ)2)

dz ≥ ν
}
.

(14)

and any minimizer ϕ in (14) satisfies

0 ≤ ϕ ≤ √
u∗ −

√
u a.e.,

ϕ is harmonic outsideD, and ess sup
z∈Rd

|z|d−2ϕ(z) <∞. (15)

Thus, Theorem 2 provides a notion of minimizers for (9), the variational problem
of interest. Its proof is given in Sect. 3. Additional properties of (14) and the
corresponding minimizers can be found in Remark 1. We refer to Chapter 11 §3
of [1] for other instances of non-smooth variational problems.

In Sect. 4 we bring into play the C1-property of θ0 and show

Theorem 3 If u0 ∈ (0, u∗) is such that

θ0 is C1 on a neighborhood of [0, u0], (16)

then for any u ∈ (0, u0) there are c1(u, u0,D) < θ0(u∗)− θ0(u) and c2(u, u0) > 0
such that

for ν ∈ [θ0(u), θ0(u)+ c1], any minimizer ϕ in (14) is C1,α for all
0 < α < 1, and 0 ≤ ϕ ≤ {

c2
(
ν − θ0(u)

)} ∧ (√u0 −
√
u) (<

√
u∗ −

√
u).

Here C1,α stands for the C1-functions with α-Hölder continuous partial
derivatives.

(17)

In view of Theorem 1 the above Theorem 3 applies to any u0 < û (with û as
in (3)). It describes a regime of “small excess” for ν where minimizers do not reach
the threshold value

√
u∗−

√
u. In the proof of Theorem 3 we use the C1-property to

write an Euler-Lagrange equation for the minimizers, see (90), and derive a bound
in terms of ν − θ0(u) of the corresponding Lagrange multipliers, see (91). It is an
interesting open problem whether a regime of “large excess” for ν can be singled
out where some (or all) minimizers of (14) reach the threshold value

√
u∗ −

√
u on

a set of positive Lebesgue measure. We refer to Remark 2 for some simple minded
observations related to this issue.

Finally, let us state our convention about constants. Throughout we denote by
c, c′, c̃ positive constants changing from place to place that simply depend on the
dimension d . Numbered constants c0, c1, c2, . . . refer to the value corresponding to
their first appearance in the text. Dependence on additional parameters appears in
the notation.
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2 The C1-Property of θ0

The main object of this section is to prove Theorem 1 stated in the Introduction.
Theorem 1 is the direct consequence of the following Lemma 1 and Proposition 1.
We let g(·, ·) stand for the Green function of the simple random walk on Z

d .

Lemma 1 For 0 ≤ u < u∗, one has

lim inf
ε↓0

1

ε

(
θ0(u+ ε)− θ0(u)

) ≥ (
1− θ0(u)

) 1

g(0, 0)
. (18)

Proposition 1 For any 0 ≤ α < β < u∗ such that NLF(α, β) holds (see (2)),

θ0 is C1 on
[
α,
α + β

2

]
. (19)

As we now explain, Theorem 1 follows immediately. By Proposition 1 and a
covering argument, one see that θ0 is C1 on [0, û). Then, by Lemma 1, one finds
that θ ′0 > 0 on [0, û), and Theorem 1 follows.

There remains to prove Lemma 1 and Proposition 1.

Proof of Lemma 1 Consider u ≥ 0 and ε > 0 such that u + ε < u∗. Then,
denoting by I u,u+ε the collection of sites of Z

d that are visited by trajectories
of the interlacement with level lying in (u, u+ ε], we have

θ0(u+ ε)− θ0(u) = P[0 u←→ ∞, 0
u+ε←→/ ∞]

≥ P[0 u←→ ∞, 0 ∈ I u,u+ε]
independence= (

1− θ0(u)
)
P[0 ∈ I u,u+ε]

= (
1− θ0(u)

)
(1− e−ε/g(0,0)).

(20)

Dividing by ε both members of (20) and letting ε tend to 0 yields (18). This proves
Lemma 1. �

We now turn to the proof of Proposition 1. An important tool is Lemma 2
below. We will use Lemma 2 to gain control over the difference quotients of θ0,
as expressed in (27) or (37) below. The claimed C1-property of θ0 on [α, α+β2 ] will
then quickly follow, see below (37). To prove (27) with Lemma 2, we define an
increasing sequence of levels ui , 1 ≤ i ≤ iη so that u1 = u′ (in Proposition 1)
and ui − u doubles as i increases by one unit, until it reaches η (of (27)), and in
essence apply Lemma 2 repeatedly to compare the successive difference quotients
of θ0 between u and ui , see (32) till (36).

Proof of Proposition 1 We consider 0 ≤ α, β < u∗ such that NLF(α, β) holds (see
(0.2)), and set

c3 (α, β) = 2/c0 . (21)
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As mentioned above, an important tool in the proof of Proposition 1 is provided by

Lemma 2 Consider u < u′ ≤ u′′ in [α, α+β2 ] such that

u′′ − u ≤ e− 1
c3
L
γ
0 (≤ 1), (22)

and set

Δ′ = 1

u′ − u
(
θ0(u

′)− θ0(u)
)

and Δ′′ = 1

u′′ − u
(
θ0(u

′′)− θ0(u)
)
, (23)

as well as L′ ≥ L′′ ≥ L0 (with L0 as in (2)) via

L′ =
(
c3 log

1

u′ − u
)1/γ

and L′′ =
(
c3 log

1

u′′ − u
)1/γ

. (24)

Then, with cap(·) denoting the simple random walk capacity, one has

|Δ′ − e(u′′−u′) cap(BL′ ) Δ′′| ≤ 3(u′′ − u)(1+ cap(BL′)
2)
e(u

′′−u′) cap(BL′ ). (25)

Let us first admit Lemma 2 and conclude the proof of Proposition 1 (i.e. that θ0
is C1 on [α, α+β2 ]). We introduce

η0 = 1

4

(
β − α

2
∧ e− 1

c3
L
γ
0
) (

≤ 1

4

)
. (26)

We will use Lemma 2 to show that

when 0 < η ≤ η0, then for all u < u′ in
[
α,
α + β

2

]
with u′ ≤ u+ η, one has

∣
∣
∣

1

u′ − u
(
θ0(u

′)− θ0(u)
)− 1

η

(
θ0(u+ η)− θ0(u)

)∣
∣
∣ ≤ c(α, β)√η.

(27)

Once (27) is established, Proposition 1 will quickly follow (see below (37)). For the
time being we will prove (27). To this end we set

ui = 2i−1(u′ −u)+u, for 1 ≤ i ≤ iη, where iη = max{i ≥ 1, ui ≤ u+η} (28)

(note that u1 = u′), as well as

Δi = 1

ui − u
(
θ0(ui)− θ0(u)

)
and Li =

(
c3 log

1

ui − u
) 1
γ
(
(26)≥ L0),

for 1 ≤ i ≤ iη.
(29)
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We also define

δi = (ui − u) cap(BLi ) and δ̃i = 6(ui − u)+ 6δi cap(BLi ), for 1 ≤ i ≤ iη.
(30)

We will apply (25) of Lemma 2 to u′ = ui , u′′ = ui+1, when 1 ≤ i < iη, and to
u′ = uiη , u′′ = u + η. We note that for 1 ≤ i ≤ iη, we have δi ≤ c(α, β)√ui − u
and δ̃i ≤ c(α, β)√ui − u so that

for 1 ≤ j ≤ iη,
∑

1≤i≤j
δi ≤ c(α, β)

√
uj − u and

∑

1≤i≤j
δ̃i ≤ c(α, β)

√
uj − u.

(31)

The application of (25) to u′′ = ui+1, u′ = ui , for 1 ≤ i < iη and the observation
that ui+1 − ui = ui − u yield the inequality

|Δi − eδiΔi+1| ≤ c δ̃i eδi , for 1 ≤ i < iη, so that∣
∣e

∑
�<i δ�Δi − e

∑
�<i+1 δ�Δi+1

∣
∣ ≤ c e

∑
�<i+1 δ� δ̃i , for 1 ≤ i < iη. (32)

Hence, adding these inequalities, we find that

∣∣Δ1 − e
∑
�<iη

δ�Δiη
∣∣ ≤ c

∑

1≤i<iη
e

∑
�<i+1 δ� δ̃i

(31),η≤ 1
4≤ c(α, β)

√
η . (33)

Then, the application of (25) to u′′ = u+ η and u′ = uiη , noting that u+ η− uiη ≤
uiη − u, yields

∣∣
∣Δiη−e(u+η−uiη ) cap(BLiη ) 1

η

(
θ0(u+η)−θ0(u)

)∣∣
∣ ≤ δ̃iη eδiη ≤ c(α, β)

√
η. (34)

Multiplying both members of (34) by e
∑
�<iη

δ� and using (33) and (31) as well, we
thus find

∣∣
∣

1

u′ − u
(
θ0(u

′)− θ0(u)
)− e

∑
�<iη

δ�+(u+η−uiη ) cap(BLiη ) 1

η

(
θ0(u+ η)− θ0(u)

)∣∣
∣

≤ c(α, β)√η
(35)

and the term inside the exponential is at most c(α, β)
√
η.

Applying (35) with the choice η = η0, see (26), one obtains that

sup
α≤u<u′≤ α+β2 ,u′≤u+η0

1

u′ − u
(
θ0(u

′)− θ0(u)
) ≤ c(α, β). (36)
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Coming back to (35), with the help of the observation below (35) and the inequality
ea − 1 ≤ c′(α, β)a for 0 ≤ a ≤ c(α, β), one obtains the claim (27).

We will now see how the C1-property of θ0 on [α, α+β2 ] (i.e. Proposition 1)

follows. We note that for v,w ∈ [α, α+β2 ] with 0 < |v − w| ≤ η(≤ η0), the
claim (27) applied to u = v ∧w and u′ = v ∨ w yields that

∣
∣
∣

1

w − v
(
θ0(w)− θ0(v)

)− 1

η

(
θ0(v ∧w+ η)− θ0(v ∧w)

)∣
∣
∣ ≤ c(α, β)√η. (37)

Letting Γ (·) stand for the modulus of continuity of θ0 on the interval [α, α+β2 ] ⊆
[0, u∗), we find that for v,w ∈ [α, α+β2 ] with 0 < |v −w| ≤ η (≤ η0), one has

∣
∣
∣

1

w − v
(
θ0(w)− θ0(v)

) − 1

η

(
θ0(v + η)− θ0(v)

)∣
∣
∣ ≤

c(α, β)
√
η + 2

η
Γ (|w − v|). (38)

The above inequality implies that for any v ∈ [α, α+β2 ], when w ∈ [α, α+β2 ]
tends to v, the difference quotients 1

w−v (θ0(w) − δ0(v)) are Cauchy. Thus, letting
w tend to v, we find that

θ0 is differentiable on [α, α+β2 ], and for 0 < η ≤ η0 and v ∈ [α, α+β2 ],∣
∣
∣θ ′0(v) −

1

η

(
θ0(v + η)− θ0(v)

)∣
∣
∣ ≤ c(α, β)√η. (39)

As a result we see that θ ′0 is the uniform limit on [α, α+β2 ] of continuous functions,
and as such θ ′0 is continuous. This is the claimed C1-property of Proposition 1. The
last missing ingredient is the

Proof of Lemma 2 We introduce the notation for v ≥ 0 and L ≥ 1

θ0,L(v) = P[0 v←→/ ∂BL], (40)

and the approximations of Δ′ andΔ′′ in (23)

Δ̃′ = 1

u′ − u
(
θ0,L′(u

′)− θ0,L′(u)
)
, Δ̃′′ = 1

u′′ − u
(
θ0,L′′(u

′′)− θ0,L′′(u)
)
, (41)

where we recall that L′ ≥ L′′ (≥ L0) are defined in (24). Note that

Δ′ = 1

u′ − u
(
P[0 u′←→/ ∞] − P[0 u←→/ ∞]) = 1

u′ − u P[0 u←→∞, 0 u′←→/ ∞],

Δ̃′ = 1

u′ − u P[0 u←→ ∂BL′ , 0
u′←→/ ∂BL′ ],

(42)
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and as we now explain

Δ′ − Δ̃′ = 1

u′ − u
(
P[0 u′←→ ∂BL′ , 0

u′←→/ ∞] − P[0 u←→ ∂BL′ , 0
u←→/ ∞]).

(43)

Indeed, by (42), (42), one has

Δ′ − Δ̃′ = 1

u′ − u
(
P[0 u←→ ∞, 0 u′←→/ ∞] − P[0 u←→ ∂BL′ , 0

u′←→/ ∂BL′ ]
) =

1

u′ − u
(
P[0 u←→ ∂BL′ , 0

u′←→/ ∞] − P[0 u←→ ∂BL′, 0
u←→/ ∞, 0

u′←→/ ∞]
− P[0 u←→ ∂BL′ , 0

u′←→/ ∂BL′ ]
) = 1

u′ − u
(
P[0 u←→ ∂BL′ , 0

u′←→/ ∂BL′ ]
+ P[0 u←→ ∂BL′ , 0

u′←→ ∂BL′ , 0
u′←→/ ∞]

− P[0 u←→ ∂BL′ , 0
u←→/ ∞] − P[0 u←→ ∂BL′, 0

u′←→/ ∂BL′ ]) =
1

u′ − u
(
P[0 u′←→ ∂BL′ , 0

u′←→/ ∞] − P[0 u←→ ∂BL′, 0
u←→/ ∞]),

(44)

whence (43). Clearly, one also has similar identities as in (42)–(43) forΔ′′ and Δ̃′′.

We now proceed with the proof of (25). By (43), we have

|Δ′ − Δ̃′| ≤ 1

u′ − u max
{
P[0 u′←→ ∂BL′ , 0

u′←→/ ∞], P[0 u←→ ∂BL′ , 0
u←→/ ∞]}

(2)≤ 1

u′ − u e
−c0 L′ γ (24),(21)= u′ − u,

(45)

and likewise we have

|Δ′′ − Δ̃′′| ≤ u′′ − u. (46)

We will now compare Δ̃′ and Δ̃′′. We first recall that whenZ is a Poisson-distributed
random variable with parameter λ > 0, then one has

P [Z ≥ 2] = 1− e−λ − λ e−λ =
∫ λ

0
s e−s ds ≤ λ2

2
. (47)

If Nu,u′(BL′) stands for the number of trajectories in the interlacements with labels
in (u, u′] that reach BL′ (this is a Poisson((u′ − u) cap(BL′))-distributed random
variable), we find by (42) that

Δ̃′ = 1

u′ − u
(
P[0 u←→ ∂BL′ , 0

u′←→/ ∂BL′, Nu,u′(BL′) = 1] +
P[0 u←→ ∂BL′ , 0

u′←→/ ∂BL′ , Nu,u′(BL′) ≥ 2]).
(48)
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If we consider an independent random walk X. with initial distribution eBL′ ,
where eBL′ stands for the normalized equilibrium measure of BL′ , and write
V̂ u = V u\(range X), we find from (48), (47) that

∣∣Δ̃′ − cap(BL′) e−(u
′−u) cap(BL′ )PeB

L′ ⊗ P[0 u←→ ∂BL′ , 0
V̂ u←→/ ∂BL′ ]

∣∣ ≤
1

2
(u′ − u) cap(BL′)2

(49)

(this formula is close in spirit to Theorem 1 of [5]). Then, we note that

cap(BL′) e−(u
′−u) cap(BL′ )PeB

L′ ⊗ P[0 u←→ ∂BL′, 0
V̂ u←→/ ∂BL′ ] =

1

u′′ − u e
(u′′−u′) cap(BL′ )P[Nu,u′′(BL′) = 1]PeB

L′
⊗ P[0 u←→ ∂BL′, 0

V̂ u←→/ ∂BL′ ] =
1

u′′ − u e
(u′′−u′) cap(BL′ )

(
P[0 u←→ ∂BL′ , 0

u′′←→/ ∂BL′ ]
− P[0 u←→ ∂BL′ , 0

u′′←→/ ∂BL′ , Nu,u′′(BL′) ≥ 2]).
(50)

Inserting this identity into (49) and using (47) once again, we find that

∣
∣
∣Δ̃′ − 1

u′′ − u e
(u′′−u′) cap(BL′ )P[0 u←→ ∂BL′, 0

u′′←→/ ∂BL′ ]
∣
∣
∣ ≤

1

2
(u′ − u) cap(BL′)2 + 1

2
(u′′ − u) cap(BL′)2 e(u

′′−u′) cap(BL′ ) ≤
(u′′ − u) cap(BL′)2 e(u

′′−u′) cap(BL′ ).

(51)

Note that L′′ ≤ L′ and a similar calculation as (44) yields the identity

1

u′′ − u P[0 u←→ ∂BL′, 0
u′′←→/ ∂BL′ ] − Δ̃′′ =

1

u′′ − u (P[0
u′′←→ ∂BL′′, 0

u′′←→/ ∂BL′ ] − P[0 u←→ ∂BL′′ , 0
u←→/ ∂BL′ ]

)

(52)

(u′′ plays the role of u′, L′′ the role of L′, and L′ the role of ∞ in (43)). The
application of (2) with L′′ as in (24) now yields

∣
∣∣

1

u′′ − u P[0 u←→ ∂BL′ , 0
u′′←→/ ∂BL′ ] − Δ̃′′

∣
∣∣ ≤ u′′ − u. (53)

Coming back to (51), we find that

|Δ̃′ − e(u′′−u′) cap(BL′ ) Δ̃′′| ≤ (u′′ − u)(1+ cap(BL′)
2)
e(u

′′−u′) cap(BL′ ). (54)
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Using (45), (46), it then follows that

|Δ′ − e(u′′−u′) cap(BL′ ) Δ′′| ≤ 3(u′′ − u) (
1+ cap(BL′)

2)
e(u

′′−u′) cap(BL′ ). (55)

This completes the proof of (25) and hence of Lemma 2. �
With this last ingredient the proof of Proposition 1 is now complete. �

3 The Variational Problem

The main object of this section is to prove Theorem 2 that provides a notion
of minimizers for the variational problem (9), see (13)–(15). At the end of the
section, the Remark 1 contains additional information on the variational problem,
in particular when D, see (7), is star-shaped or a ball.

Proof of Theorem 2 We will first prove (14) and (15). We consider D,u, ν as
in (7), (8) and J Du,ν defined in (12). We let ϕn ≥ 0 in D1(Rd), n ≥ 0, stand for
a minimizing sequence of (12). Then, by Theorem 8.6, p. 208 and Corollary 9.7,
p. 212 of [11], we can extract a subsequence still denoted by ϕn and find ϕ ≥ 0 in
D1(Rd ) such that 1

2d

∫
Rd
|∇ϕ|2dz ≤ lim infn 1

2d

∫
Rd
|∇ϕn|2dz = J Du,ν and ϕn→ ϕ

a.e. and in L2
loc(R

d ). Then, one has

∫

D

− θ0
(
(
√
u+ ϕ)2)

dz ≥
∫

D

− lim sup
n

θ0
(
(
√
u+ ϕn)2

)
dz

reverse Fatou≥ lim sup
n

∫

D

− θ0
(
(
√
u+ ϕn)2

)
dz ≥ ν.

(56)

This shows that ϕ is a minimizer for the variational problem in (12) and (14) is
proved. If ϕ is a minimizer for (12), note that ϕ̃ = ϕ ∧ (√u∗ −

√
u) ∈ D1(Rd),

and using Theorem 6.17, p. 152 of [11], ϕ − ϕ̃ = (ϕ − (√u∗ −
√
u))+ and ϕ̃ are

orthogonal in D1(Rd ). In addition, one has θ0((
√
u + ϕ̃)2) = θ0((

√
u + ϕ)2) so

that ϕ̃ is a minimizer for (12) as well. It follows that ϕ = ϕ̃ (otherwise ϕ would
not be a minimizer). With analogous arguments, one sees that the infimum defining
J Du,ν in (12) remains the same if one omits the condition ϕ ≥ 0 in the right member
of (12). Then, using smooth perturbations in R

d\D of a minimizer ϕ for (12), one
finds that ϕ is harmonic outside D and tends to 0 at infinity (see Remark 5.10 1) of
[15] for more details). In addition, see the same reference, |z|d−2ϕ(z) is bounded at
infinity and hence everywhere since ϕ is bounded. This completes the proof of (15).

We now turn to the proof of (13). As already stated above Theorem 2, we know
by direct inspection that IDu,ν ≥ J Du,ν . Thus, we only need to show that

J Du,ν ≥ IDu,ν . (57)
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To this end, we consider a minimizer ϕ for J Du,ν and know that (15) holds. As we
now explain, if ψ ≥ 0 belongs to C∞0 (Rd) and ψ > 0 onD, then one has

∫

D

− θ0
(
(
√
u+ ϕ + ψ)2)

dz > ν. (58)

We consider two cases to argue (58). LettingmD stand for the normalized Lebesgue
measure on D, either

mD(ϕ <
√
u∗ −

√
u) = 0 or (59)

mD(ϕ <
√
u∗ −

√
u) > 0. (60)

In the first case (59), then ϕ ≥ √
u∗ −

√
u a.e. on D so that the left member of (58)

equals 1 and (58) holds since ν < 1 by (8). In the second case (60), since θ0 is
strictly increasing on [0, u∗) (cf. Lemma 1), one has

∫

D

θ0
(
(
√
u+ ϕ + ψ)2)

dz =
∫

D∩{ϕ<√u∗−
√
u}
θ0

(
(
√
u+ ϕ + ψ)2)

dz+
∫

D∩{ϕ≥√u∗−
√
u}
θ0

(
(
√
u+ ϕ + ψ)2)

dz >

∫

D∩{ϕ<√u∗−
√
u}
θ0

(
(
√
u+ ϕ)2)

dz+ |D ∩ {ϕ ≥ √
u∗ −

√
u}| =

∫

D

θ0
(
(
√
u+ ϕ)2)

dz ≥ ν |D|,

(61)

and (58) follows. We have thus proved (58). Using multiplication by a smooth
compactly supported [0, 1]-valued function and convolution, we can construct a
sequence ϕn ≥ 0 in C∞0 (Rd), which approximates ϕ + ψ in D1(Rd) and such
that ϕn converges to ϕ + ψ a.e. on D. Then, we have

ν
(58)
<

∫

D

− θ0
(
(
√
u+ ϕ + ψ)2)

dz ≤
∫

D

− lim inf
n

θ0
(
(
√
u+ ϕn)2

)
dz

Fatou≤ lim inf
n

∫

D

− θ0
(
(
√
u+ ϕn)2

)
dz.

(62)

Hence, for infinitely many n, one has IDu,ν ≤ 1
2d

∫ |∇ϕn|2 dz, so that

IDu,ν ≤ 1

2d

∫

Rd

|∇(ϕ + ψ)|2 dz. (63)
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If we now let ψ tend to 0 in D1(Rd) and recall that 1
2d

∫
Rd
|∇ϕ|2 dz = J Du,ν , we

find (57). This completes the proof of Theorem 2. �
Remark 1

(1) Note that forD as in (7) and 0 < u < u∗, the non-decreasing map

ν ∈ [θ0(u), 1) −→ IDu,ν
Theorem 2= JDu,ν is continuous. (64)

Indeed, by definition of IDu,ν in (9), the map is right continuous. To see that
the map is also left continuous, consider ν ∈ (θ0(u), 1) and a sequence νn
smaller than ν increasing to ν. If ϕn is a corresponding sequence of minimizers
for (14), by the same arguments as above (56), we can extract a subsequence
still denoted by ϕn and find ϕ ≥ 0 in D1(Rd) so that 1

2d

∫
Rd
|∇ϕ|2 dz ≤

lim infn
∫
Rd
|∇ϕn|2 dz = limn J Du,νn and ϕn → ϕ a.e. Using the reverse Fatou

inequality as in (56), we then have

∫

D

− θ0
(
(
√
u+ ϕ)2)

dz ≥
∫

D

− lim sup
n

θ0
(
(
√
u+ ϕn)2

)
dz

≥ lim sup
n

∫

D

− θ0
(
(
√
u+ ϕn)2

)
dz ≥ lim sup

n
νn = ν.

(65)

This shows that J Du,ν ≤ limn J Du,νn and completes the proof of (64).
(2) If D in (7) is star-shaped around z∗ ∈ D (that is, when λ(z − z∗)+ z∗ ∈ D for

all z ∈ D and 0 ≤ λ ≤ 1), then for u, ν as in (8), one has the additional fact

any minimizer ϕ in (14) satisfies
∫

D

− θ0
(
(
√
u+ ϕ)2)

dz = ν, and (66)

J Du,ν = (67)

min
{

1

2d

∫

Rd

|∇ϕ|2 dz; ϕ ≥ 0, ϕ ∈ D1(Rd),

∫

D

− θ0
(
(
√
u+ ϕ)2)

dz = ν
}
.

Indeed, if ϕ is a minimizer of (14), one sets for 0 < λ < 1, ϕλ(z) = ϕ(z∗ +
1
λ
(z−z∗)). Then, one has

∫
Rd
|∇ϕλ|2 dz = λd−2

∫
Rd
|∇ϕ|2 dz, and, withDλ ⊇

D, the image of D under the dilation with center z∗ and ratio λ−1, one finds∫
D
− θ0((

√
u+ϕλ)2) dz =

∫
Dλ
− θ0 ((

√
u+ϕ)2) dz ≥ λd ∫

D
− θ0((

√
u+ϕ)2) dz. Thus

∫
D− θ0((

√
u+ϕ)2) dz ≥ ν must actually equal ν, otherwise the consideration of

ϕλ for λ < 1 close to 1 would contradict the fact that ϕ is a minimizer for (14).
This proves (66) and (67) readily follows.

Incidentally, note that due to (66), (67),

the map in (64) is strictly increasing. (68)
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Indeed, otherwise there would be ν < ν′ with J Du,ν = J Du,ν ′ , and corresponding
minimizers ϕ, ϕ′ as in (67). But then ϕ′ would contradict (66). The claim (68)
thus follows.

(3) If D satisfying (7) is a closed Euclidean ball of positive radius in R
d , given a

minimizer ϕ of (14), we can consider its symmetric decreasing rearrangement
ϕ∗ relative to the center of D, see Chapter 3 §3 of [11]. One knows that
ϕ∗ ∈ D1(Rd ) and

∫
Rd
|∇ϕ∗|2 dz ≤ ∫

Rd
|∇ϕ|2 dz, see p. 188–189 of the same

reference. As we now explain:

ϕ∗ is a minimizer of (14) as well. (69)

The argument is a (small) variation on Remark 5.10 2) of [15]. With mD the
normalized Lebesgue measure on D, one has mD(ϕ ≥ s) ≤ mD(ϕ∗ ≥ s) for

all s in R. Setting θ
−1
0 (a) = inf{t ≥ 0; θ0(t) ≥ a}, for 0 ≤ a ≤ 1, we see that

for 0 ≤ t ≤ 1, {θ0((
√
u + ϕ)2) ≥ t} = {ϕ ≥

√
θ
−1
0 (t) −

√
u}, and a similar

identity holds with ϕ∗ in place of ϕ. Hence, we have

ν ≤
∫

D

− θ0
(
(
√
u+ ϕ)2)

dt =
∫ 1

0
mD

(
θ0

(
(
√
u+ ϕ)2) ≥ t) dt

=
∫ 1

0
mD

(
ϕ ≥

√
θ
−1
0 (t)−

√
u

)
dt ≤

∫ 1

0
mD

(
ϕ∗ ≥

√
θ
−1
0 (t)−

√
u

)
dt

=
∫ 1

0
mD

(
θ0

(
(
√
u+ ϕ)2) ≥ t)dt =

∫

D

− θ0
(
(
√
u+ ϕ∗)2)

dz .

(70)

Thus, ϕ∗ is a minimizer of (14) as well, and the claim (69) follows. Incidentally,
note thatD is clearly star-shaped so that (64) and (68) hold. �

With Theorem 2 we have a notion of minimizers for the variational problem
corresponding to (9). As mentioned in the Introduction, it is a natural question
whether there is a strengthening of the asymptotics (10): is it the case that

lim
N

1

Nd−2
logP[|DN\C u∞| ≥ ν |DN |] = JDu,ν Theorem 2= J Du,ν ? (71)

Given a minimizer ϕ in (14), the function (
√
u + ϕ)2( ·

N
) can heuristically be

interpreted as describing the slowly varying local levels of the tilted interlacements
that enter the derivation of the lower bound (10) for (71), see Section 4 of [15].
Hence, the special interest in analyzing whether the minimizers ϕ for (14) reach
the value

√
u∗ −

√
u. Indeed, if ϕ remains smaller than

√
u∗ −

√
u the local level

function (
√
u + ϕ)2 remains smaller than u∗, and so with values in the percolative

regime of the vacant set of random interlacements. On the other hand, the presence
of a region where ϕ ≥ √

u∗ −
√
u raises the question of the possible occurrence of

droplets secluded from the infinite cluster of the vacant set that would take part in
the creation of an excessive fraction ν of sites of DN outside the infinite cluster of
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V u (somewhat in the spirit of the Wulff droplet in the case Bernoulli percolation or
for the Ising model, see [2, 3]).

4 An Application of the C1-Property of θ0 to the Variational
Problem

The main object of this section is to prove Theorem 3 of the Introduction that
describes a regime of small excess ν for which all minimizers of the variational
problem (14) remain strictly below the threshold value

√
u∗ −

√
u. At the end of the

section, the Remark 2 contains some simple observations concerning the existence
of minimizers reaching the threshold value

√
u∗ −

√
u.

We considerD as in (7), and as in (16)

u0 ∈ (0, u∗) such that θ0 is C1 on a neighborhood of [0, u0]. (72)

To prove Theorem 3, we will replace θ0 by a suitable C1-function θ̃ , which agrees
with θ0 on [0, u0], see Lemma 3, and show that for 0 < u < u0 and ν ≥ θ0(u) the
variational problem J̃ Du,ν attached to θ̃ , see (86) and Lemma 5, has minimizers that
satisfy an Euler-Lagrange equation, see (90), involving a Lagrange multiplier that
can be bounded from above and below in terms of ν − θ0(u), see (91). Using such
tools, we will derive properties such as stated in (17) for the minimizers of J̃ Du,ν and
show that they coincide with the minimizers of the original problem J Du,ν in (14)
when 0 < u < u0 and ν is close to θ0(u), see below (99).

Proof of Theorem 3 Recall u0 as in (72). Our fist step is

Lemma 3 There exist non-negative functions θ̃ and γ̃ on R+ such that

θ0 = θ̃ − γ̃ , (73)

the function η̃(b) = θ̃ (b2) is C1 on R, (74)

η̃ ′ is bounded and uniformly continuous on R, (75)

η̃ ′ is uniformly positive on each interval [a,+∞), a > 0, (76)

γ̃ = 0 on [0, u0] and γ̃ > 0 on (u0,∞). (77)

Proof By assumption there is u1 ∈ (u0, u∗) such that θ0 is C1 on a neighborhood
of [0, u1] with a uniformly positive derivative on [0, u1] by Lemma 1. We set u2 =
max{u∗, 4}, so that u0 < u1 < u2. We then define θ̃ (v) = θ0(v) on [0, u0], θ̃ (v) =
θ0(v)+a(v−u0)

2 on [u0, u1], where a > 0 is chosen so that θ̃ (u1) = 1 (≥ θ0(u∗) >
θ0(u1)), and θ̃ (v) = √

v (≥ 2) on [u2,∞). In particular, η̃(b) = b for b ≥ √
u2.

Then, any choice of θ̃ on [u1, u2] that is C1 on [u1, u2] with right derivative θ ′0(u1)
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at u1, left derivative 1
2
√
u2

at u2, and uniformly positive derivative on [u1, u2], leads

to functions θ̃ , γ̃ that satisfy (73)–(77).

We select functions fulfilling (73)–(77) and from now on we view

θ̃ (and hence γ̃ ) as fixed and solely depending on u0. (78)

For the results below up until the end of the proof of Theorem 3, the only property
of u0 that matters is that u0 is positive and a decomposition of θ0 satisfying (73)–
(77) has been selected. In particular, if such a decomposition can be achieved in the
case of u0 = u∗, the results that follow until the end of the proof of Theorem 3,
with the exception of the last inequality (17) (part of the claim at the end of the
proof), remain valid. This observation will be useful in Remark 2 at the end of this
section.

With u ∈ (0, u0), D as in (7), and η̃ as in (74), we now introduce the map:

Ã : ϕ ∈ D1(Rd)→ Ã(ϕ) =
∫

D

− η̃(
√
u+ ϕ) dz ∈ R. (79)

We collect some properties of Ã in the next

Lemma 4

|Ã(ϕ + ψ)− Ã(ϕ)| ≤ c(u0) ‖ψ‖L1(mD)
, for ϕ,ψ ∈ D1(Rd) (80)

(recall mD stands for the normalized Lebesgue measure on D).

Ã is a C1-map and A′(ϕ), its differential at ϕ ∈ D1(Rd), is the (81)

linear form ψ ∈ D1(Rd)→
∫

D

− η̃ ′(√u+ ϕ)ψ dz = A′(ϕ) ψ.

For any ϕ ≥ 0, A′(ϕ) is non-degenerate. (82)

Proof The claim (80) is an immediate consequence of the Lipschitz property of η̃
resulting from (75). We then turn to the proof of (81). For ϕ,ψ in D1(Rd), we set

Γ = Ã (ϕ + ψ)− Ã(ϕ)−
∫

D

− η̃ ′(√u+ ϕ)ψ dz =
∫ 1

0
ds

∫

D

− (
η̃ ′(
√
u+ ϕ + s ψ)− η̃ ′(√u+ ϕ))ψ dz.

(83)
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With the help of the uniform continuity and boundedness of η̃ ′, see (75), for any
δ > 0 there is a ρ > 0 such that for any ϕ,ψ in D1(Rd)

|Γ | ≤
∫

D

− (δ + 2‖η̃ ′‖∞1{|ψ| ≥ ρ}) |ψ| dz

≤ δ‖ψ‖L1(mD)
+ 2

ρ
‖η̃ ′‖∞ ‖ψ‖2

L2(mD)
.

(84)

Since the D1(Rd)-norm controls the L2(mD)-norm, see Theorem 8.3, p. 202
of [11], we see that for any ϕ ∈ D1(Rd ), Γ = o (‖ψ‖D1(Rd)), as ψ → 0 in
D1(Rd ). Hence, Ã is differentiable with differential given in the second line of (81).
In addition, with δ > 0 and ρ > 0 as above, for any ϕ, γ,ψ in D1(Rd )

∣
∣
∣
∫

D

− (̃η ′(√u+ ϕ + γ )− η̃ ′(√u+ ϕ))ψ dz
∣
∣
∣ ≤

∫

D

− (δ + 2‖η̃ ′‖∞ 1{|γ | ≥ ρ}) |ψ| dz
≤ δ‖ψ‖L1(mD)

+ 2

ρ
‖η̃ ′‖∞ ‖γ ‖L2(mD)

‖ψ‖L2(mD)
.

(85)

This readily implies that Ã is C1 and completes the proof of (81). Finally, (82)
follows from (76) and the fact that u > 0. This completes the proof of Lemma 4.

Recall that u ∈ (0, u0). We now define the auxiliary variational problem

J̃ Du,ν = min
{

1

2d

∫

Rd

|∇ϕ|2dz; ϕ ≥ 0, ϕ ∈ D1(Rd), Ã(ϕ) ≥ ν
}
,

for ν ≥ θ̃ (u) ((77)= θ0(u) ).

(86)

In the next lemma we collect some useful facts about this auxiliary variational
problem and its minimizers. We denote by G the convolution with the Green
function of 1

2d Δ (i.e. d

2πd/2
Γ (d2 − 1) | · |−(d−2) with | · | the Euclidean norm on

R
d ).

Lemma 5 For D as in (7), u ∈ (0, u0), ν ≥ θ̃ (u) (= θ0(u)), one has

J̃ Du,ν = min
{

1

2d

∫

Rd

|∇ϕ|2dz; ϕ ≥ 0, ϕ ∈ D1(Rd), Ã(ϕ) = ν
}
. (87)

Moreover, one can omit the condition ϕ ≥ 0 without changing the above value, and

any minimizer of (86) satisfies Ã(ϕ) = ν. (88)
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In addition, when ν = θ̃ (u), ϕ̃ = 0 is the only minimizer of (86) and when ν >
θ0(u), for any minimizer ϕ̃ of (86)

ϕ̃ (≥ 0) is C1,α for all α ∈ (0, 1), harmonic outside D, with
sup
z
|z|d−2ϕ(z) <∞, (89)

and there exists a Lagrange multiplier λ̃ > 0 such that

ϕ̃ = λ̃ G(̃η ′(√u+ ϕ̃) 1D), with (90)

c′(u0,D)
(
ν − θ0(u)

) ≤ λ̃ ≤ c(u, u0,D)
(
ν − θ0(u)

)
(91)

(recall that θ0(u) = θ̃ (u)).
Proof We begin by the proof of (87), (88). For ϕ ∈ D1(Rd), we write D(ϕ) as
a shorthand for 1

2d

∫
Rd
|∇ϕ|2dz. Note that limb→∞ η̃(b) = ∞ by (76), so that the

set in the right member of (86) is not empty. Taking a minimizing sequence ϕn
in (86), we can extract a subsequence still denoted by ϕn and find ϕ ∈ D1(Rd )

such that D(ϕ) ≤ lim infnD(ϕn) and ϕn → ϕ in L1(mD) (see Theorem 8.6, p. 208
of [11]). By (80) of Lemma 4, we find that Ã(ϕ) ≥ ν. Hence, ϕ is a minimizer
of (86).

Now, for any minimizer ϕ of (86), if Ã(ϕ) > ν, then for some λ ∈ (0, 1)
close to 1, Ã(λϕ) ≥ ν. Moreover, ϕ is not the zero function (since Ã(ϕ) > ν),
and D(λϕ) = λ2D(ϕ) < D(ϕ). This yields a contradiction and (88), (87)
follow.

Also, if one removes the condition ϕ ≥ 0 in (88), one notes that for any ϕ
in D1(Rd ), D(|ϕ|) ≤ D(ϕ) and Ã(|ϕ|) ≥ Ã(ϕ). So, the infimum obtained by
removing the condition ϕ ≥ 0 is at least J̃ Du,ν and hence equal to J̃ Du,ν . The claim
of Lemma 5 below (87) follows.

When ν = θ̃ (u), J̃ Du,ν = 0 and ϕ = 0 is the only minimizer. We now
assume ν > θ̃(u) and will prove (89), (90). For ϕ̃ ≥ 0 in D1(Rd) a minimizer
of (87), one finds using smooth perturbations in R

d\D (see Remark 5.10 1) of
[15] for similar arguments) that ϕ̃ is a non-negative harmonic function in R

d\D
that vanishes at infinity and that |z|d−2 ϕ̃(z) is bounded at infinity. By (81), (82)
of Lemma 4, ϕ̃ satisfies an Euler-Lagrange equation (see Remark 5.10 4) of [15]
for a similar argument) and for a suitable Lagrange multiplier λ̃, one has (90)
(and necessarily λ̃ > 0). Since η̃ ′ is bounded by (21), it follows from (90)
that ϕ̃ is C1,α for all α ∈ (0, 1), see for instance (4.8), p. 71 of [9]. This
proves (89), (90).

There remains to prove (91). We have (recall that θ0(u) = θ̃ (u))

ν − θ0(u) =
∫

D

− η̃(√u+ ϕ̃)− η̃ (√u) dz. (92)



794 A.-S. Sznitman

By (75), we see that

ν − θ0(u) ≤ ‖η̃ ′‖∞
∫

D

− ϕ̃ dz (90)= λ̃ ‖η̃ ′‖∞
∫

D

− G(̃η ′(√u+ ϕ̃) 1D
)
dz

≤ λ̃ ‖η̃ ′‖2∞
∫

D

− G(1D) dz = c(u0,D) λ̃.

(93)

On the other hand, by (76), we see that

ν − θ0(u) ≥ inf
[√u,∞)

η̃ ′
∫

D

− ϕ̃ dz (90)= λ̃ inf
[√u,∞)

η̃ ′
∫

D

− G(
η̃ ′(

√
u+ ϕ2) 1D

)
dz

≥ λ̃
(

inf
[√u,∞)

η̃ ′
)2

∫

D

− G(1D) dz = c(u, u0,D) λ̃.

(94)

The claim (91) now follows from (93) and (94). This concludes the proof of
Lemma 5. �

We now continue the proof of Theorem 3. Given u ∈ (0, u0) and ν ≥ θ̃ (u)

(= θ0(u)), we see by Lemma 5 that any minimizer ϕ̃ for (87) satisfies (90) for a
suitable λ̃ satisfying (91), so that

‖ϕ̃‖∞ ≤ λ̃ ‖η̃ ′‖∞ ‖G1D‖∞
(91),(75)≤ c2(u, u0,D)

(
ν − θ0(u)

)
. (95)

In particular, we find that

for θ0(u) ≤ ν ≤ θ0(u)+ c1(u, u0,D)(< 1), any minimizer ϕ̃
for (87) satisfies 0 ≤ ϕ̃ ≤ (√u0 −

√
u) ∧ {

c2
(
ν − θ0(u)

)}
.

(96)

We will now derive the consequences for the basic variational problem of interest
J Du,ν , see (12), (14). By (73), (77) and the definition of θ0 (see (11)), we find that
θ̃ ≥ θ0, so that

for all u ∈ (0, u0) and ν ∈ [θ0(u), 1), J
D
u,ν ≥ J̃ Du,ν . (97)

Moreover, when ν ∈ [θ0(u), θ0(u)+c1] (with c1 as in (96)), any minimizer ϕ̃ for (87)
is bounded by

√
u0 −

√
u, and hence satisfies as well

∫
D
− θ0((

√
u+ ϕ̃)2) dz ≥ ν (in

fact an equality by (88)). We thus find that

J Du,ν = J̃ Du,ν for all ν ∈ [θ0(u)+ c1], and any minimizer ϕ̃ of J̃ Du,ν in (87)
is a minimizer of J Du,ν in (14).

(98)
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Now for ν as above, consider ϕ a minimizer of (14). Then, we have D(ϕ) = J Du,ν =
J̃ Du,ν , and since θ̃ ≥ θ0, we find that

Ã(ϕ) =
∫

D

− θ̃ (
(
√
u+ ϕ)2)

dz ≥
∫

D

− θ0
(
(
√
u+ ϕ)2)

dz ≥ ν. (99)

This show that ϕ is a minimizer for (86), hence for (87) by (88). We thus find that
when ν ∈ [θ0(u), θ0(u) + c1], the set of minimizers of (14) and (87) coincide and
the claim (17) now follows from Lemma 5. This concludes the proof of Theorem 3.

With Theorem 3 we have singled out a regime of “small excess” for ν such that
all minimizers ϕ for J Du,ν in (14) stay below the maximal value

√
u∗ −

√
u. In the

remark below we make some simple observations about the possible existence of a
regime where some minimizers in (14) reach the threshold

√
u∗ −

√
u.

Remark 2

(1) If θ0 is discontinuous at u∗ (a not very plausible possibility), then θ0(u∗) < 1,
and for any ν ∈ (θ0(u∗), 1) any minimizer for (14) must reach the threshold
value

√
u∗ −

√
u on a set of positive Lebesgue measure due to the constraint

in (14).
(2) If θ0 is continuous and its restriction to [0, u∗] is C1 with uniformly positive

derivative (corresponding to a “mean field” behavior of the percolation function
θ0), then a decomposition as in Lemma 3 can be achieved with now u0 = u∗.
As mentioned below (78), the facts established till the end of Theorem 3 (with
the exception of the last inequality of (17)) remain valid in this context. In
particular, if for some u ∈ (0, u∗) and ν ∈ (θ0(u), 1) there is a minimizer ϕ̃
for J̃ Du,ν in (87) such that ‖ϕ̃‖∞ = √

u∗ −
√
u, then ϕ̃ is a minimizer for J Du,ν

in (14) and it reaches the threshold value
√
u∗ −

√
u. In the toy example where

η̃ is affine on [√u+∞) and 0 < η̃ (
√
u) < η̃ (

√
u∗) = 1, such a ν < 1 and ϕ̃

(which satisfies (90)) are for instance easily produced. �
The above remark naturally raises the question of finding some plausible

assumptions on the behavior of the percolation function θ0 close to u∗ (if the
behavior mentioned in Remark 2 2) is not pertinent, see for instance Figure 4 of [12]
for the level-set percolation of the Gaussian free field, when d = 3) and whether
such assumptions give rise to a regime for u, ν, ensuring that minimizers of J Du,ν
in (14) achieve the maximal value

√
u∗ −

√
u on a set of positive measure. But there

are many other open questions. For instance, what can be said about the number of
minimizers for (14)? Is the map ν → J Du,ν in (64) convex? An important question
is of course whether the asymptotic lower bound (10) can be complemented by a
matching asymptotic upper bound.
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On Clusters of Brownian Loops
in d Dimensions

Wendelin Werner
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Abstract We discuss random geometric structures obtained by percolation of
Brownian loops, in relation to the Gaussian Free Field, and how their existence and
properties depend on the dimension of the ambient space. We formulate a number
of conjectures for the cases d = 3, 4, 5 and prove some results when d > 6.
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1 Introduction

Field theory has been remarkably successful in describing features of many
models of statistical physics at their critical points. In that approach, the focus
is put on correlation functions between the values taken by the field at a certain
number of given points in space. In many instances, these functions correspond to
experimentally measurable macroscopic quantities (such as for instance the global
magnetization in the Ising model).
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Some of these correlation functions can also be directly related to features of
conjectural (and sometimes physically relevant) random fractal geometric objects;
for instance, a 2-point function F(x1, x2) can describe the asymptotic behaviour
as ε → 0 of the probability that x1 and x2 are both in the ε-neighbourhood of
some “random cluster” in a statistical physics model—and the critical exponent that
describes the behaviour of F as y → x is then related to the fractal dimension of the
scaling limits of those clusters. This type of more concrete geometric interpretation
is however not instrumental in the field-theoretical set-up (and for some fields,
there is actually no underlying geometric object). It remained for a long time rather
hopeless to go beyond this aforementioned partial description of these geometric
structures via correlation functions, due to the lack of other available mathematical
tools to define such random geometric objects in the continuum.

In the very special case of two-dimensions (which is related to Conformal Field
Theory (CFT) on the field theory side), this has changed with Oded Schramm’s
construction of Schramm–Loewner Evolutions (SLE processes) in [32]. These are
concrete random curves in the plane defined via some mathematical conformally
invariant growth mechanism, and that are conjectured to be relevant for most critical
systems in two dimensions. The Conformal Loop Ensembles (CLE) that were
subsequently introduced in [34, 35] are random collection of loops, or equivalently
random connected fractal sets that are built using variants of SLE, and that describe
the (conjectural) scaling limit of the joint law of all clusters in critical lattice models.
It should be stressed that all these SLE-based developments rely on conformal
invariance in a crucial manner, so that they are specific to the two-dimensional case.

In this study of two-dimensional and conformal invariant random structures, the
following two random objects have turned out to be very closely related to the SLE
and CLE:

• The Gaussian Free Field (GFF): As shown in a series of work by Schramm-
Sheffield, Dubédat and Miller-Sheffield starting with [9, 27, 33], this random
generalized function essentially turns out to host (in a deterministic way) most
SLE-based structures. There exists for instance a procedure that allows to
deterministically draw a CLE, starting from a sample of a GFF. In particular,
it was pointed out by Miller and Sheffield (see [5] and the references therein)
that the CLE4 appears naturally as a collection of generalized level lines of the
GFF. Of course, it should be recalled that the GFF is also an elementary and
fundamental building block in field theory.

• The Brownian loop-soups: This object, introduced in [21], is a Poissonian cloud
of Brownian loops in a domainD. If, as proposed in [38] and shown in [35], one
considers clusters of Brownian loops, and their outer boundaries, one constructs
also a CLEκ where κ = κ(c) varies between 8/3 and 4 as the intensity c of the
loop-soup varies between 0 and 1. This intensity plays the role of the central
charge in the CFT language.

There is actually a close relation between these two constructions of CLE4 (via
the GFF or via the Brownian loop-soup with intensity c = 1), see [30] and the
references therein. We will come back to this later, but roughly speaking, starting
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from a sample of a Brownian loop-soup, one can construct a GFF in such a way that
the Brownian loop-soup clusters can be interpreted as “excursion sets” of the GFF,
a little bit like the excursion intervals away from 0 of one-dimensional Brownian
motion, see [4] and the references therein.

The starting point of the present paper is the observation that both the Brownian
loop-soup and the Gaussian Free Field can be defined in any dimension. This leads
naturally to wonder what natural random fractal subsets of d-dimensional space
for d ≥ 3 can be built using these special and natural objects. In particular, one
can guess that just as in two dimensions, clusters of Brownian loops (for a loop-
soup of intensity c = 1) will have an interesting geometry, and argue that they
should be fundamental structures within a GFF sample. A first immediate reaction
is however to be somewhat cautious or even sceptical. Indeed, Brownian loops in
dimensions 4 and higher are simple loops, and no two loops in a Brownian loop-
soup will intersect, so that a Brownian loop-soup cluster will a priori consist only of
one single isolated simple loop. But, as we shall explain in the present paper, things
are more subtle, and, if properly defined, it should still be possible to agglomerate
these disjoint Brownian loops into interesting clusters when the dimension of the
space is 4 and 5.

The structure of the present paper is the following: We will first review some
basic facts about Lupu’s coupling of the GFF and loop-soups on cable graphs. After
discussing heuristically some general aspects of their scaling limits and reviewing
the known results in d = 2, we will make conjectures about the cases d = 3, 4, 5.
Then, we will state and derive some results for d > 6.

We conclude this introduction with the following remark: It is interesting that this
loop-soup approach to the GFF bears many similarities with the random walk rep-
resentations of fields as initiated by Symanzik [37] and further developed by many
papers, including by Simon [36], the celebrated work by Brydges, Fröhlich and
Spencer [7] or Dynkin [11]. Their motivation was actually to understand/describe
“interacting fields” (i.e., beyond the free field!) via their correlation functions; given
that the correlation functions of the GFF are all explicit, there was then not much
motivation to study it further, while the question of existence and constructions
of non-Gaussian fields was (and actually still is) considered to be an important
theoretical challenge.

2 Background: Lupu’s Coupling on Cable-Graphs

A crucial role will be played here by the cable-graph GFF and the cable-graph loop-
soup, that have been introduced by Titus Lupu in [24, 25]. Let us briefly review their
main features in this section, and we refer to those papers for details.

In this section, we consider D to be a fixed connected (via nearest-neighbour
connections) subset of Zd (the case of subsets of δZd is then obtained simply by
scaling space by a factor δ) on which the discrete Green’s function is finite. We can
for instance take D to be all (or any connected subset) of Zd when d ≥ 3, or a
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bounded subset of Z2. The set ∂D is the set of points that is at distance exactly 1 of
D . The Green’s functionG(x, y) = GD (x, y) is the expected number of visits of y
made by a simple random walk in Z

d starting from x before exiting D (if this exit
time is finite, otherwise count all visits of y).

The cable graph Dc associated to D is the set consisting of the union of D with
all edges (viewed as open intervals of length 1) that have at least one endpoint in
D . One can define also Brownian motion on the cable graph (that behaves like one-
dimensional Brownian motion on the edges and in an isotropic way when it is at
a site of D). One can then also define the Green’s function GDc for this Brownian
motion (this time, the boundary conditions correspond to a killing when it hits ∂D)
and note that its values on D×D coincide with that of the discrete Green’s function
GD for the discrete random walk.

One can then on the one hand define the Gaussian Free Field (GFF) on the
cable graph (φ(x))x∈D as a centred Gaussian process with covariance given by the
Green’s function GDc on the cable graph. This is a random continuous function on
Dc that generalizes Brownian motion (or rather Brownian bridges) to the case where
the time-line is replaced by the graph Dc. The process (φ2(x))x∈Dc is then called a
squared GFF on Dc. The connected components of {x ∈ Dc, φ(x) = 0} are called
the excursion sets of φ (or equivalently of φ2).

On the other hand, one can also define a natural Brownian loop measure on
Brownian loops on Dc, and then the Brownian loop-soups which are Poisson point
processes with intensity given by a multiple c of this loop measure. In all the sequel,
we will always work with Brownian loop-soups with intensity equal to c = 1
(in the normalization that is for instance described in [40]—in the Le Jan-Lupu
normalization that differs by a factor 2, this would be the loop-soup with intensity
α = 1/2), which is the one for which one can make the direct relation to the GFF.
Let us make two comments about this loop-soup L on the cable-graph:

(i) When one considers a given point on the cable-graph, it will be almost
surely visited by an infinite number of small Brownian loops in the loop-
soup. However, it turns out that there almost surely exist exceptional points
in the cable-graph that are visited by no loop in the loop-soup (what follows
will actually show that the set Z of such points has Hausdorff dimension
1/2). Another equivalent way to define these sets is to first consider clusters
of Brownian loops: We say that two loops γ and γ ′ in a loop-soup belong
to the same loop-soup cluster, if one can find a finite chain of loops γ0 =
γ, γ1, . . . , γn = γ ′ in L such that γj ∩ γj−1 = ∅ for j = 1, . . . , n. Then,
loop-soup clusters are exactly the connected components of Dc \Z .

(ii) Just in the same way in which the occupation time measure of one-dimensional
Brownian motion has a continuous density with respect to Lebesgue measure
(the local time of Brownian motion, see e.g. [31]), each Brownian loop γ will
have an occupation time measure with a finite intensity �γ on the cable graph,
so that for all sets A, the total time spent by γ in A is equal to

∫
A
�γ (x)dx

where dx denote the one-dimensional Lebesgue measure on Dc. One can then
define the “cumulative” occupation time density Γ of the loop-soup as Γ :=
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∑
γ∈L �γ . This is a continuous function on the cable-graph, that is equal to

0 on all points of ∂D . Simple properties of Brownian local time show that
Z = {x ∈ Dc, Γ (x) = 0}.

Lupu’s coupling between the cable-graph loop-soup and the GFF can now be
stated as follows.

Proposition 1 (Le Jan [22] and Lupu [24]) Suppose that one starts with a Brow-
nian loop-soup L on the cable-graph Dc. Then the law of its total occupation
time density Γ is that of (a constant multiple) of a squared GFF. Furthermore, if
one then defines the function U = √

Γ and tosses i.i.d. ± fair coins εj (one for
each excursion set Kj of Γ ), then if we write ε(x) = εj for x ∈ Kj , the function
(ε(x)U(x))x∈Dc is distributed exactly like (a constant multiple of) a GFF on the
cable-graph.

In the sequel, we will always implicitly assume that a GFF φ on a cable-system is
coupled to a loop-soup L in this way. We can note that the excursion sets of φ are
then exactly the loop-soup clusters of L .

We see that in this setting, the only contribution to the correlation between φ(x)
and φ(y) comes from the event that x and y are in the same loop-soup cluster (we
denote this event by x ↔ y), i.e., one has

E[φ(x)φ(y)] = E[ε(x)ε(y)× |φ(x)| × |φ(y)|] = E[|φ(x)| × |φ(y)| × 1x↔y]

for all x, y in Dc. In the last expression, all quantities are functions of the loop-soup
only (and do not involve the εj coin tosses). Similarly, all higher order correlation
functions and moments can be expressed only in terms of the cable-graph loop-soup.

Conversely, since the law of the GFF is explicit and the correlations between
ε(x) = sgn(φ(x)) is given in term of cable-graph loop-soup connection events, one
gets explicit formulas for those connection probabilities. For instance, Proposition 1
immediately shows that for all x, y in Dc,

E[sgn(φ(x))sgn(φ(y))] = E[ε(x)ε(y)] = P [x ↔ y],

from which one readily deduces that:

Corollary 2 (Part of Proposition 5.2 in [24]) For all x = y in Dx ,

P [x ↔ y] = arcsin
G(x, y)√

G(x, x)G(y, y)
.

In particular, if one considers the cable-graph loop-soup in Z
d for d ≥ 3, we see

that

P [0 ↔ x] ∼ C

‖x‖d−2 (1)
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for some constant C as x →∞.
We can note that in this case of Z

d for d ≥ 3, P [0 ↔ x] and
E[|φ(0)||φ(x)|10↔x] are comparable when x → ∞. Loosely speaking, this
means that when one conditions on 0 ↔ x (and lets x → ∞), the number of
small Brownian loops (say of diameter between 1 and A for a fixed A) that pass
through the origin does not blow up (this type of considerations can easily be made
rigorous—the conditional law of |φ(0)| in fact remains tight as x →∞).

Remark Throughout this paper, we will always work with loop-soups defined under
the very special intensity c = 1 that makes its occupation time related to the GFF
as described above. Understanding features of the “percolation phase transition”
when the loop-soup intensity varies is a question that will not be discussed here (see
[8, 10, 23] and the references therein for results in this direction).

3 The Fine-Mesh and Continuum Limit

When D is a connected subset of R
d , in which the continuum Green’s function

GD(x, y) is finite when x = y (one can for instance think of D to be the unit disk
in R

2, or the whole of R
d when d ≥ 3), instead of sampling a Brownian loop-

soup or a continuum GFF directly in D, we will consider a Brownian loop-soup
and a GFF defined on the cable-graph of a connected fine-grid approximation of D
in δZd . For instance (this slightly convoluted definition is just to avoid issues with
“thin” boundary pieces), if z0 is a given point in D, when δ is small enough, we
can chooseDδ to be the connected component of the set of points in δZd that are at
distance at least δ from the complement of D, and that contains the points that are
at distance less than δ from z0. One can then consider its cable graph Dδ,c and the
corresponding GFF and loop-soups as in the previous section (just scaling space by
a factor δ).

We now discuss what happens in the fine-mesh limit (when δ → 0). To avoid
confusion, we will use the following terminology:

• The cable-graph loop-soup and the cable-graph clusters will respectively be the
soup of Brownian loops defined on the cable graph Dδ,c and the corresponding
collection of clusters.

• The Brownian loop-soup will be the usual continuum Brownian loop-soup in
D. The clusters that are created via intersecting Brownian loops will be called
Brownian loop-soup clusters.

Now, when the mesh of the lattice δ goes to 0, one can consider the joint limit in
distribution of the cable-graph loop-soup, of the corresponding cable-graph clusters
and of the cable-graph GFF, and make the following observations:

(i) About the limit of the loop-soup. If one sets any positive macroscopic cut-
off a, then the law of the loops in the cable-graph loop-soup which have a
diameter greater than a does converge to that of the loops with diameter greater
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than a in a (continuum) Brownian loop-soup in D. This follows from rather
standard approximations of Brownian motion by random walks (see [20] for
this particular instance). So, in that sense, the scaling limit of the cable graph
loop-soup is just the Brownian loop-soup inD. By Skorokhod’s representation
theorem, we can also view a Brownian loop-soup in D as an almost sure limit
of cable-graph loop-soups.

(ii) About the limit of the cable-graph GFF. The cable-graph GFF does converge in
law to the continuum GFF, because the correlation functions of the cable-graph
GFF converge to those of the continuum GFF (all this is due to elementary
consideration on Gaussian processes). It should however be stressed that the
continuum GFF is not a random function anymore (see for instance [40]) so
that this weak convergence has to be understood in the appropriate function
space.

(iii) A warning when d ≥ 4. While the GFF and the Brownian loop-soup are
well-defined in any dimension, it is possible to make sense neither of the
(renormalized) square of the GFF nor of the (renormalized) total occupation
time measure of the Brownian loop when d ≥ 4. This is due to the fact that the
total occupation time of the Brownian loops of diameter in [2−n, 2−n+1] inside
a box of size 1 will have a second moment of the order of a constant times
2n(d−4), which is not summable as soon as d ≥ 4 (so that the fluctuations
of the occupation times of the very small loops will outweigh those of the
macroscopic ones). Since the relation between the cable-graph GFF and the
cable-graph loop-soup did implicitly involve the square of the cable-graph
GFF, this indicates that some caution is needed when one tries to tie a direct
relation between the continuum GFF and the Brownian loop-soup in R

d when
d ≥ 4.

Despite (iii), one can nevertheless always study the joint limit of the coupled
cable-graph GFF and cable-graph loop-soup (and its clusters). The correlation
functions of the cable-graph GFF do provide information on the structure of the
cable graph clusters, and therefore on their behaviour as δ → 0, as illustrated by
Corollary 2. One key point is that the scaling limit of the cable graph clusters (if
they exist) might be strictly larger than the Brownian loop-soup clusters. Indeed,
cable graph clusters may contain loops of macroscopic size (say, some of the finitely
many loops of diameter greater than some cut-off value a), but they will also contain
many small loops, for instance of diameter comparable to the mesh-size δ, or to δb

for some positive power b. All these small loops do disappear from the loop-soup
in the scaling limit if one uses the procedure described in (i), but (just as critical
percolation does create macroscopic clusters made of union of edges of size equal
to the mesh-size, while each individual edge does “disappear” in the scaling limit)
their cumulative effect in terms of contributing to create macroscopic cable graph
clusters does not necessarily vanish.



804 W. Werner

In the fine-mesh limit, there a priori appear to be four possible likely scenarios
(for presentation purposes, we will consider in the remaining of this section that D
is the hypercube (0, 1)d ):

• Case 0. There is no limiting joint law for the cable graph clusters when δ → 0.
This should for instance be the case when the number of macroscopic cable graph
clusters in Dδ tends to infinity as δ → 0. We will come back to this interesting
case later. In the remaining cases 1, 2a and 2b, we will assume that the number of
cable graph clusters of diameter greater than any fixed a remains tight, and that
their joint law has a scaling limit as δ→ 0.

• Case 1: The limit of the family of macroscopic cable graph clusters is exactly the
family of macroscopic clusters Brownian loop-soup clusters. This means that in
this case, the effect of the microscopic loops disappears as δ vanishes.

• Case 2: The limit of the cable graph clusters consists of macroscopic Brownian
loops that are somehow agglomerated together also by the effect of the micro-
scopic loops (i.e., the limit of the cable graph clusters are strictly larger than
the clusters of macroscopic Brownian loops). Here, the limit of the cable graph
clusters would consist of a combination of macroscopic effects and microscopic
effects. There are actually two essentially different subcases:

– Case 2a: The glueing procedure does involve additional randomness (i.e.,
randomness that is not present in the Brownian loop soup).

– Case 2b: The glueing procedure of how to agglomerate the macroscopic loops
is a deterministic function of these macroscopic loops (i.e., the limit of the
cable-graph clusters is a deterministic function of the corresponding Brownian
loop-soup).

Let us summarize here already the conjectures that we will state more precisely
in the next sections. We will conjecture that each of the four cases 0, 1, 2a and 2b
do occur for some value of the dimension. More specifically, in dimension d = 2,
it is known that Case 1 holds, and we believe that this should also the case when
d = 3, although a proof of this fact appears to remain surprisingly elusive at this
point. So, in those lower dimensions, only the macroscopic (in the scaling limit,
Brownian) loops prevail to construct the excursion sets of the GFF. For intermediate
dimensions, microscopic loops will start to play an important role: As we will try
to explain, it is natural to expect that Case 2b holds for d = 4 and that Case 2a
holds for d = 5. These are two quite fascinating instances, with an actual interplay
between microscopic and macroscopic features.

In higher dimensions, one can adapt some ideas that have been developed in the
context of (ordinary) high-dimensional percolation to show that Case 0 holds. There
is no excursion decomposition of the continuum GFF anymore, but a number of
instructive features can be highlighted. A “typical” large cable graph cluster will
actually contain no macroscopic Brownian loop (even though some exceptional
clusters will contain big Brownian loops). Hence, this loop-soup percolation
provides a simple percolation-type model that somehow explains “why” general
high-dimensional critical percolation models should exhibit “Gaussian behaviour.
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Indeed, the collection of all these cable-graph clusters is actually very similar to
that of ordinary percolation (as they are constructed using only small loops of
vanishingly small size at macroscopic level). This in turn sheds some light onto
some of the lace-expansion ideas.

We will now discuss separately the different dimensions. We will first briefly
review what is known and proved when d = 2 and mention the conjectures for
d = 3. We will then heuristically discuss the cases d = 4 and d = 5 and make some
further conjectures, based on some analogies with features of critical percolation
within Conformal Loop Ensembles. Finally, we will state and prove some results in
the case where the dimension is greater than 6. We note that we will (as often in
these percolation questions) not say anything about the “critical” case d = 6 here.

4 Low and Intermediate Dimensions

4.1 Low Dimensions

4.1.1 Review of the Two-Dimensional Case

This is the case where the behaviour of the scaling limit of cable-graph loop-soup
clusters is by now essentially fully understood. Indeed, in this case, one has an
additional direct good grip on features of the continuum GFF that are built on its
coupling with the SLE4 curves (as initiated in [33]) and the CLE4 loop ensembles.
The paper [35] provides an explicit description of the Brownian loop-soup clusters
as CLE4 loops, so that one can deduce some explicit formulas (such as in [41])
for the laws of these clusters. These formulas turn out to match exactly the ones
that appear in the scaling limit of cable-graph clusters (in the spirit of the formulas
by Le Jan [22]), so that one can conclude (this is one of the main results of [26])
that the scaling limit of the cable-graph loop-soup clusters are exactly the Brownian
loop-soup clusters (see also some earlier discussion of this problem without the
cable-graph insight in [6]).

It is then actually possible to push this further: One important result in [3, 4] is
that if one associates to each Brownian loop-soup cluster Cj a particular “natural”
measure μj supported on Cj (which is a deterministic function of this cluster Cj ),
then, if (εj ) are i.i.d. ±1 fair coin flips, the sum

∑
j εjμj (viewed as an L2 limit) is

actually a continuum GFF. In other words, the Brownian loop-soup clusters provide
indeed a loop-soup based “excursion decomposition” of the continuum GFF despite
the fact that the GFF is not a continuous function (it is only a generalized function).

4.1.2 Conjectural Behaviour in Dimension 3

When d = 3, one can recall that Brownian paths (and loops) have many double
points (the Hausdorff dimension of the set of double points in actually equal to
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1). Hence, a Brownian loop in a Brownian loop-soup will almost surely intersect
infinitely many other Brownian loops in this loop-soup. From this, one can actually
deduce that the Hausdorff dimensionΔ of the Brownian loop-soup clusters is almost
surely greater than 2 (0−1 law arguments show that this dimension actually always
takes the same constant value). On the other hand, Corollary 2 can be used to prove
that Δ can not be larger than 5/2. It is natural to conjecture that:

Conjecture A Just as in two dimensions, the scaling limit of the cable-graph loop-
soup clusters in three dimensions should exactly be the collection of Brownian loop-
soup clusters. The dimensionΔ of these clusters should be equal to 5/2.

One difficulty in proving this conjecture is to be able to exclude the somewhat
absurd-looking scenario that in the limit δ → 0, there might exist infinitely many
disjoint dense (and “very skinny”) cable-graph loop-soup clusters.

4.1.3 A Further Open Question

When d = 2, it is known that the obtained loop-soup clusters are in fact a deter-
ministic function of the continuum GFF (based on the fact that their boundaries are
level lines of this GFF in the sense of [27]), so that this “excursion decomposition”
of the GFF is indeed unique (see [3, 4]).

Let us also recall that when d = 2 and d = 3, it is possible to define the
(renormalized) square of the continuum GFF (or equivalently, the renormalized total
occupation time measure of the loop-soup), see for instance [30] and the references
therein. Let us now mention a related open question (also to illustrate that some
questions remain also in the two-dimensional case).

Open Question B In dimension d = 2 and d = 3: Are the (scaling limits of
the) loop-soup clusters a deterministic function of this (renormalized) square of the
continuum GFF? If not, what is the missing randomness?

In dimension d = 3: Are the (scaling limits of the) loop-soup clusters a
deterministic function of the continuum GFF?

4.2 Intermediate Dimensions

4.2.1 Some a Priori Estimates

Again, the cable-graph loop-soup clusters do not proliferate in the δ→ 0 limit, then
it is to be expected, based on estimates such as Corollary 2 that the dimension of the
scaling limits would beΔ = 1+ (d/2). In particular, when d = 4 and d = 5, if one
adds another independent macroscopic Brownian loop to an existing loop-soup, this
additional loop will almost surely intersect infinitely many of these limits of cable-
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graph clusters. From this, it is easy to deduce that a limit of cable-graph clusters
would actually contain infinitely many Brownian loops.

Recall however that a Brownian loop is almost surely a simple loop and that
almost surely, any two loops in the loop-soup will be disjoint, so that Brownian loop-
soup clusters will all consist of just one loop each (and therefore have Hausdorff
dimension equal to 2).

Finally, self-similarity of the construction suggests that Brownian loops will be
part of the scaling limit of the cable graph loop-soups at every scale, and that if one
removes all Brownian loops of size greater than a say, then as a → 0, the size of
the largest limiting cluster will also vanish. In other words, the “macroscopic” loops
are instrumental in the construction of the Brownian loop-soup clusters.

Let us summarize part of this in terms of a concrete conjecture.

Conjecture C When d = 4 and d = 5, the limit in distribution of the cable-graph
clusters in (0, 1)d ∩ δZd does exist, and it is supported on families of clusters of
fractal dimension 1 + (d/2) with the property that for all small a, the number of
clusters of diameter greater than a is finite.

The main additional heuristic question that we will now discuss is whether the
disjoint Brownian loops in the loop-soup get agglomerated into these scaling limit
of cable-graph clusters in a deterministic manner or not (i.e., are the scaling limit of
the cable-graph clusters a deterministic function the collection of Brownian loops
or not?).

4.2.2 Background and Analogy with CLE Percolation

It is worthwhile to draw an analogy with one aspect of the papers [28, 29] about the
existence of a non-trivial “critical percolation” model in a random fractal domain.
Here, one should forget that CLEκ for κ ∈ (8/3, 4] is related to loop-soups or to the
GFF, and one should view it as an example of random fractal “carpet” in the square
[0, 1]2. The CLEκ carpet Kκ in [0, 1]2 is obtained by removing from this square a
countable collection of simply connected sets, that are all at positive distance from
each other. It can be therefore be thought of as a conformal randomized version of
the Sierpinski carpet. The following features are relevant here:

• The larger κ is, the smaller the CLEκ tends to be. It is actually possible (this
follows immediately from the CLE construction via loop-soups in [35]) to couple
them in a decreasing way i.e., Kκ ⊂ Kκ ′ when 8/3 < κ ′ ≤ κ ≤ 4.

• There is one essential difference between CLEκ for κ < 4 and CLE4: When
κ < 4, there exists a positive u(κ) such that for all a > 0, the probability
that there exists two holes in Kκ that have diameter greater than a and are at
distance less than ε from each other does decay (at least) as εu+o(1) as ε → 0.
This property fails to hold for CLE4 (this probability will decay logarithmically)
which intuitively means that exceptional bottlenecks are more likely in that CLE4
case.
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One of the results of [28] is the construction of a process that can be interpreted
as a critical percolation process within the random set Kκ . One can view this either
as defining a collection of clusters that live within Kκ , or if one looks at the dual
picture, as a collection of clusters that “glue” the different CLE loops together (in
the original percolation picture, the loops and their interior are “closed” and in the
dual one, they are now “open”). In this dual picture, this does therefore construct
a natural way to randomly regroup these holes (or their outer boundaries, that are
SLE-type loops) into clusters.

One of the results of [29] is that this percolation/clustering procedure is indeed
random (i.e., the obtained clusters are not a deterministic function of the CLEκ ) as
long a κ < 4. On the other hand, it is shown in [28] that no non-trivial clustering
mechanism can work for CLE4.

4.2.3 Conjectures

The complement of a Brownian loop-soup in (0, 1)d for d ≥ 4 has some similarities
with the previous CLEκ case. It is the complement of a random collection of disjoint
simple loops, with a fractal structure. When d ≥ 5, the “space” in-between the loops
is much larger than in the 4-dimensional case, in the sense that the probability that
two macroscopic loops are ε-close decays like a power of ε, while it only decays in
a logarithmic fashion in 4 dimensions. Further analogies can also be made, that lead
to:

Conjecture D When d = 5, we conjecture that “critical percolation” in the space
defined by “contracting all the loops in a loop-soup” (or equivalently, percolation
that tries to glue together the loops in a loop-soup) should exist and be non-trivial.
In other words, by observing the Brownian loop-soup only, one does not know which
Brownian loops do belong to the same clusters.

When d = 4, we conjecture that the glueing mechanism is deterministic. In other
words, by observing the Brownian loop-soup only, one knows which Brownian loops
do belong to the same clusters.

Let us finally conclude with the same question as for d = 3:

Open Question E When d = 4, 5: In the scaling limit (taking the joint limit of
the cable-graph clusters and of the GFF), are the limits of the cable-graph clusters
determined by the limiting GFF?

5 High Dimensions (d > 6)

5.1 General Features

As opposed to the cases d = 3, 4, 5 where most features are conjectural, it is
possible to derive a number of facts when the dimension of the ambient space
becomes large enough (note that we will not discuss the somewhat complex case
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d = 6 here). As opposed to the lower-dimensional cases, these results do not say
anything about geometric structures within the continuum GFF, but they provide
insight into the asymptotic behaviour of the cable-graph loop-soup clusters in Z

d

(or in large boxes in Z
d ). Actually, when the dimension of the space is large enough,

we expect that the Brownian loop-soup in R
d (appearing as the scaling limit of the

cable-graph loop-soup) and the GFF (appearing as the limit of the cable-graph GFF
constructed using the cable-graph loop-soup) become asymptotically independent.

It is worth first recalling some of the results about usual (finite-range) critical
percolation in high dimensions (see [1, 12–18] and the references therein). A
landmark result in the study of those models is that when d is large enough,
the “two-point function” (i.e., the probability that two points x and y belong to
the same cluster) behaves (up to a multiplicative constant) like 1/‖x − y‖d−2 as
‖x − y‖ → ∞. This is known to hold for (sufficiently) spread-out percolation in
Z
d for d > 6, and in the case of usual nearest-neighbour percolation for d ≥ 11.

The existing proofs are based on the lace-expansion techniques (that have also been
successfully applied to other models than percolation) as developed in this context
by Hara and Slade [13, 15–17]). This estimate is then the key to the following
subsequent statements that we describe in rather loose terms here (see Aizenman
[1]): If one considers a finite-range percolation model restricted to [−N,N]d , for
which the two-point function estimates is shown to hold, then as N →∞:

• Clusters with large diameter (say, greater than N/2) will proliferate as N →
∞—their number will be greater than Nd−6+o(1) with high probability.

• With high probability, no cluster will have more than N4+o(1) points in it.

Note also that the geometry of large clusters can be related to superbrownian
excursions.

As we shall explain now, similar results hold true for the loop-soup clusters in the
cable-graph of Zd when d > 6. The general feature is that the behaviour of the two-
point function in this case is given for free by Corollary 2, so that the difficult lace-
expansion ideas are not needed here. One just has to adjust ideas such as developed
by Aizenman in [1] on how to extract further information from the estimate on the
two-point function.

5.2 Some Results

Let us now explain how to adapt some arguments of [1] to the case of loop-soup
percolation. It is convenient to work in the following setting: We define ΛN to be
the set of integer lattice points in [−N,N]d , and ΛN,c the cable graph associated
to it. We will consider the cable-graph loop-soup onΛN,c and study its clusters and
connectivity properties. We denote by n0 the number of cable-graph clusters that
contain at least one point of ΛN , and we order them using some deterministic rule
as C1, . . . , Cn0 . We denote by |C| the number of points ofΛN that lie in a set C, and
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when x ∈ ΛN , we call C(x) the cluster that contains x. In the sequel, x ↔ y will
always denote the event that x and y are connected via the cable-graph loop-soup in
ΛN,c (the dependency on N will always be implicit). Note that for all k ≥ 1,

E[|C(x)|k] =
∑

y1,...,yk∈ΛN
P [x ↔ y1, . . . , x ↔ yk].

and also that

E[
∑

n≤n0

|Cn|k+1] =
∑

x∈ΛN
E[|C(x)|k|].

Corollary 2 then implies (using simple bounds on the Green’s function in a box)
immediately that there exist constants v1, v2 such that for all sufficiently large N ,

v1N
2 ≤ min

x∈ΛN/2
E[|C(x)|] ≤ max

x∈ΛN/2
E[|C(x)|] ≤ max

x∈ΛN
E[|C(x)|] ≤ v2N

2

and then summing over x in ΛN and in ΛN/2, one gets the existence of v3, v4 such
that for all large N ,

v3N
d+2 ≤ E[

∑

n≤n0

|Cn|2] ≤ v4N
d+2.

Let us first show the following analogue of (4.10) in [1]:

Proposition 3 For some fixed large c0, with probability going to 1 as N →∞, no
loop-soup cluster (in ΛN ) contains more than c0N

4 logN points.

Proof This is based on the fact that the Aizenman-Newman diagrammatic proce-
dure [2] used in [1] to bound the moments of |C(x)| can be adapted to this loop-soup
percolation setting. Let us first explain this in some detail the case of the second
moment. As mentioned above, one has

E[|C(x)|2] =
∑

y1,y2∈ΛN
P [x ↔ y1, x ↔ y2].

When x ↔ y1, x ↔ y2 both occur, then it means that for some loop γ in the cable-
system loop-soup the events γ ↔ x, γ ↔ y1 and γ ↔ y2 occur disjointly (i.e.,
using disjoint sets of loops—the loops may overlap, but each event is realized using
different loops); we call T this event. [To see this, one can first choose a “minimal”
chain of loops that join x to y1 (this means that one can not remove any these loops
from the chain without disconnecting x to y1) and then use a second “minimal”
chain of loops that join y2 to this first chain. The loop γ will be the loop of the first
chain that this second chain joins y2 to.]

In particular, it means that for at least one loop γ in the cable-system loop-soup,
one can find integer points x0, x1 and x2 inΛN that are at distance at most 1 from γ
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Fig. 1 Compared to the “usual” Aizenman–Newman tree expansion, one has also to sum over the
loops that play the role of nodes of the tree, but this additional sum converges

such that x ↔ x0, y1 ↔ x1 and y2 ↔ x2 occur disjointly (see Fig. 1). We are going
to treat differently the case where γ visits at least two points of Zd from the case
where it visits less than two points.

Let us introduce some notation and make some further preliminary comments:
For each cable-system loop γ that visits at least two integer points, one can look at
its trace on Z

d that we denote by l(γ ), which is a discrete loop in ΛN . Note that
the collection L of all l(γ )’s for γ in the loop-soup L is a discrete random walk
loop-soup in ΛN , and that when an integer point is at distance at most 1 from γ , it
is also at distance at most 1 from l(γ ). If |l| ≥ 2 denotes the number of steps of the
discrete loop l(γ ), there are therefore at most |l| × (2d + 1) possibilities for each of
x0, x1 and x2.

For each given x, y1 and y2, we can now use the BK inequality to bound P [x ↔
y1, x ↔ y2] by the sum of the contributions described in (a) and (b) below:

(a) The sum over all x0, x1 and x2 that are all at distance at least 2 from each other
of the product

P [x0 ↔ x]P [x1 ↔ y1]P [x2 ↔ y2].

This sum corresponds to the contribution to the event T of the cases where
γ visits at most one point of Z

d . Note that for a given x0, there are at most
(2d + 1)2 choices (corresponding to the two steps or less needed to go from x0
to x1) for x1 and (2d + 1)2 choices for x2.

(b) The sum over all discrete loops l with |l| ≥ 2 steps, of the sum over all x0, x1,
x2 that lie at distance at most 1 of l, of the product

P [l ∈ L]P [x0 ↔ x]P [x1 ↔ y1]P [x2 ↔ y2].

This sum corresponds to the case where the loop γ in the event T visits at least
two integer points (and we sum over all possible choices for l(γ )).
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Equation (1) shows the existence of a constant w0 independent of N , such that for
all y, y ′ ∈ ΛN (as it is easier to create a connection in Z

d than in ΛN ), P [y ↔
y ′] ≤ w0/(1 + ‖y − y ′‖d−2); it follows immediately (summing over all y ′ that are
in y +Λ2N ) that for some constant w1, for all N ≥ 1 and all y ∈ ΛN ,

∑

y ′∈ΛN
P [y ↔ y ′] ≤ w1N

2, (1)

which is an inequality that we will now repeatedly use. For each choice of x0, x1
and x2 (and possibly l if we are in the case (a)), if we now sum over all choices of
y1 and y2 in ΛN , we can use (1) to see that

E[|C(x)|2] ≤
∑

x0∈ΛN
P [x0 ↔ x](2d + 1)4(w1N

2)2

+
∑

(x0,l)∈U

[
P [x ↔ x0] × P [l ∈ L] × (|l|(2d + 1))2 × (w1N

2)2
]

where U is the set of pairs (x0, l) satisfying (i)–(iii) where (i) x0 ∈ ΛN , (ii) the
discrete loop l has at least 2 steps, and (iii) x0 is at distance at most 1 from l; the
term (2d + 1)4 comes from the bound on the number of possible choices for x1 and
x2 for a given x0 in (a), and the term (|l|(2d+ 1))2 comes from the possible choices
for x1 and x2 in (b) for a given discrete loop l with |l| ≥ 2 steps).

The first sum over x0 is bounded (2d+1)4w3
1N

6 (using (1) again). For the second
one, we can first note that for each given x0, the expected number of discrete loops of
lengthm in a loop-soup in the whole of Zd that pass through x0 is given by the total
mass of such loops under the discrete loop-measure, which is in turn expressed in
terms of the probability that a random walk started from x0 is back at x0 afterm steps
(see for instance [19, 40] for such elementary considerations on loop-measures),
which is bounded by some constant w2 times m−d/2. Hence, if we regroup the sum
over all loops with the same lengthm, we see that the second sum over (x0, l) in U
is bounded by

∑

x0∈ΛN

[
(2d + 1)P [x ↔ x0]w2

1N
4

∑

m≥2

[w2m
−d/2(m(2d + 1))2]

]
.

The key point is now that when d/2 − 2 > 1, i.e., d > 6, then
∑
m m

2−d/2 < ∞,
so that finally, we see that this sum over (x0, l) in U is bounded by some constant
times

N4
∑

x0∈ΛN
P [x ↔ x0]
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which in turn is also bounded by some constant timesN6 (using (1) again). Together
with the bound for the sum in (a), we can therefore conclude that for some constant
w3, for all N ≥ 2 and all x ∈ ΛN ,

E[|C(x)|2] ≤ w3N
6.

In summary, we see that d > 6 is also the threshold at which the extended nature of
the Brownian loops does not essentially influence the estimates compared to finite-
range percolation.

Similarly, for any k ≥ 3, by enumerating trees, and expanding in a similar way
(this time, one has to sum over k−1 loops in the loop-soup that will be the nodes of
the tree) using the Aizenman-Newman enumeration ideas, one obtains the existence
of constants w4 and w5 such that for all N , x and k,

E[|C(x)|k] ≤ w4k!wk5N4k−2. (2)

If we then finally sum over all x in ΛN , we get that

E[
∑

n≤n0

|Cn|k+1] =
∑

x∈Λn
E[|C(x)|k] ≤ w4k!wk5Nd+4k−2.

In particular, if M denotes max |Cn|, we get an upper bound for E[Mk+1] from
which one readily deduces the proposition by using Markov’s inequality and
choosing the appropriate k (of the order of a constant times logN).

Let us now turn to the proliferation of large clusters:

Proposition 4 With probability that tends to 1 asN tends to infinity, there exist more
than Nd−6/ log2N disjoint loop-soup clusters with diameter greater than N/2.

The proof proceeds along the same lines as the analogous result (4.8) in [1]:

Proof One can for instance define B1 and B2 to be the boxes obtained by shifting
ΛN/4 along the first-coordinate axis by −N/2 and N/2 respectively. Each of the
two boxes has circa (N/2)d points in it, they at distance at least N/4 from ∂ΛN ,
and they are at distance circa N/2 from each other. Now, Corollary 2 readily shows
that if we define

X :=
∑

n

|Cn ∩ B1| × |Cn ∩ B2|,

then for some positive finite constant b1,

E[X] = E[
∑

x1∈B1,x2∈B2

1x1↔x2] ∼ b1N
d+2
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as N →∞. On the other hand, one can bound the second moment

E[X2] =
∑

x1,y1∈B1,x2,y2∈B2

P [E (x1, x2, y1, y2)]

where E (x1, x2, y1, y2) := {x1 ↔ x2, y1 ↔ y2} using the following remark (call
the truncation lemma in [1]): To check if E holds, one can first discover C(x1). If
it does contain x2, y1 and y2 (we call this event E1), then we know already that
E holds. The only other scenario (we call this event E2 = E \ E1) for which E
holds is that y1 ∈ C(x1), that neither y1 nor y2, are in C(x1), and then that for the
remaining loop-soup percolation in the complement of C(x1) in the cable-graph, y1
is connected to y2. Clearly,

P [E2] = P [E ] − P [E1] ≤ P [x1 ↔ y1]P [x2 ↔ y2]

(the first probability in the product is an upper bound for the probability that y1 ∈
C(x1) and that neither y1 nor y2 are in C(x1), and the second probability is an
upper bound for the conditional probability that x2 ↔ y2 in the remaining domain).
Summing this inequality over all x1, x2, y1, y2, and using (2) one immediately gets
that

E[X2] − E[X]2 =
∑

x1,y1∈B1,x2,y2∈B2

[P [E (x1, x2, y1, y2)] − P [x1 ↔ y1]P [x2 ↔ y2]]

≤
∑

x1,x2,y1,y2∈ΛN
P [E1(x1, x2, y1, y2)]

= E[
∑

n≤n0

|Cn|4]

≤ b2N
d+10

for some constant b2 independent of N . Combining this bound of the variance of X
with the estimate of its mean (and noting that d + 10 < 2(d + 2) because d > 6),
we see that for all ε,

P [X ∈ [(b1 − ε)Nd+2, (b1 + ε)Nd+2]] → 1

as N → ∞. If X denotes the number of clusters that intersect both B1 and B2,
noting that with high probability, all quantities |Cn ∩ B1| and |Cn ∩ B2| are smaller
than c0N

4 logN (because of Proposition 3), we deduce that with a probability that
goes to 1 as N →∞,

X ≥ (b1/2)× Nd+2

(c0N4 logN)2
= (b1/2c2

0)×
Nd−6

log2N
.
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5.3 Some Final Comments

We conclude with the following comments: On the one hand, we have seen that
when N → ∞, there will typically be a large number of large clusters (say of
diameter greater than N/2), but on the other hand, only a tight number of Brownian
loops of diameter comparable to N . In fact, when a ∈ (0, d), the Na -th largest
Brownian loop will have a diameter of the order ofN ×N−a/d+o(1). This means for
instance that an overwhelming fraction of the numerous large clusters will contain
no loop of diameter greater than Nb for b > 6/d . In other words, if we remove
all loops of diameter greater than Nb , one will still have at least Nd−6+o(1) large
clusters, and the estimates for the two-point function will actually remain valid. If
we fix b ∈ (6/d, 1), since Nb is also much smaller than the size N of the box,
we can interpret this cable-graph loop-soup percolation with cut-off as a critical (or
near-critical) percolation model: If we scale everything down by a factor N : We
are looking at a Poissonian family of small sets, and for the chosen parameters one
observes macroscopic clusters (as N →∞).

We plan to discuss further aspects of loop-soup cluster percolation and the
structure of the GFF in high dimensions in forthcoming work. In particular, when
d ≥ 9, the relation with the integrated superbrownian excursions can be made more
precise.
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