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Abstract. The Brain-Computer Interfaces (BCI) based on Electroencephalog-
raphy (EEG), allow that through the processing of impulses or electrical signals
generated by the human brain, people who have some type of severe motor
disability or suffer from neurological conditions or neurodegenerative diseases,
can establish communication with electronic devices. This paper proposes the
development of an expert system that generates the control sequences for a
neuroprosthesis that will be used in the rehabilitation of patients who cannot
control their own muscles through neuronal pathways. This proposal is based on
the EGG record during the operation of a BCI under the rare event paradigm and
the presence or not of the P300 wave of the Event-Related Potential (ERP).
Feature extraction and classification will be implemented on a mobile device
using Python as a platform. The processing of the EEG records will allow
obtaining the information so that an Expert System implemented in the mobile
device, is responsible for determining the control sequences that will be exe-
cuted by a neuroprosthesis. The tests will be performed by controlling a neu-
roprosthesis developed by the Instituto Nacional de Rehabilitación in México,
which aims to stimulate the movement of a person’s upper limb.
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1 Introduction

According to the World Report on Disability issued by the World Health Organization
(WHO) [1], it is estimated that more than 1 billion people in the world live with some
form of disability; of these people, almost 200 million have considerable difficulties
executing actions or tasks that are considered normal for a human being. In the medical
area, physical rehabilitation has been used for the retraining of people affected by
lesions to the nervous system, and it is through functional electrical stimulation
(FES) that the motor nerves are artificially activated, causing muscle contractions that
generate functional movement by applying electrical current pulses. On the other hand,
the brain-computer interfaces (BCI), based on electroencephalography (EEG) provide
an alternative for humans to establish communication with external devices, and are
helpful for people who have some type of severe motor disability, suffer from neu-
rological conditions or neurodegenerative diseases; This is currently possible because
EEG-based BCIs record brain signals in order to create a non-muscular communication
channel between mental intentions and electronic devices.

The main noninvasive methods of BCIs include Slow Cortical Potentials (SCPs),
evoked potential of the P300 wave, Visual Steady State Potentials (SSVEPs) and Motor
Imagination (MI) [2]. This change attracts the subject’s attention, forcing him to use
working memory to compare the rare or infrequent stimulus with frequent previous
stimuli [3]. In this work we propose the development of a system that generates the
control sequences through the P300 component for a neuroprosthesis that will be used
in the rehabilitation of patients who cannot control their own muscles.

2 Methods and Materials

The general form of the methodology considered in this work is made up of the
following steps:

Step 1 Acquisition of signals: The signal acquisition stage aims to record the
electrical activity of the brain, which reflects the user’s intentions, is carried out
through an EEG using electrodes. In this first stage, the registered signal is prepared for
further processing.

Step 2 EEG registration: Hardware and Software: A 16-channel biopotential
amplifier, model g.USBamp™ from the company g.tec ™, was used, with which the
EEG was registered in 10 positions of the International 10–20 System (Fz, C4, Cz, C3,
P4, Pz, P3, PO8, Oz and P07) during the operation of the P300 Speller application of
the experimental platform for the BCI2000 ™ [4], based on the original Donchin
Speller [5].

Step 3 Feature Extraction: The methods to extract features such as Principal
Component Analysis (PCA), Independent Component Analysis (ICA) and Common
Spatial Pattern (CSP). For the analysis of the data in time-frequency, we find the
Fourier Transform by Intervals (STFT), Wavelet Transform (WT), Autoregressive
Models (AR) and Adaptive Filter (MF) with the same objective.
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Step 4 Classifiers: In this stage, the parameters that classify the signal between
different patterns or classes are established. Which can be: neural networks, deep neural
networks, the support vector machine (SVM), etc.

Step 5 Control: Finally, the control stage corresponds to direct interaction with the
end user. Once the features have been detected and they have been classified as control
signals, the implemented application must perform the corresponding actions.

3 Results

To validate the advances in this research, from the EEG record database [6], the
following test considerations were taken. A set of test subjects underwent 4 registration
sessions organized as follows:….

Session 1. Directed Spelling. Number of sequences per symbol: 15. Record: 1. Target
word: HEAT. Record 2: Target word: CARIÑO. Record 3: Target word: SUSHI.

Session 2. Directed Spelling with classification matrix. Number of sequences per
symbol: 15. Record 1: Target word: SUSHI.

Session 3. Free Spelling with classification matrix. Number of sequences per symbol:
15. From 1 to 4 registers. Target words chosen by the subject.

Session 4. Free Spelling with fewer intensification sequences. Number of sequences:
variable (1 to 15). From 1 to 10 records. Target words chosen by the subject.

3.1 Considerations

In directed spelling registers (sessions 1 and 2), the target words are predefined and the
symbols that make them up are indicated one by one, performing 15 stimulation
sequences per symbol. A stimulation sequence consists of the random intensification
(the symbols contained in a row or column light up in white) of each of the 6 rows and
the 6 columns of the symbol matrix. In the records of the free spelling sessions (3 and
4), the target words are freely chosen by the subject and the number of stimulation
sequences per symbol in each record varies between 1 and 15, also by choice of the
subject. For each of the 10 test subjects considered, each of the 4 EEG (directed
spelling) records can be expressed as xi;ch (n), where i Є {1, 2, 3, 4} represents the
record number, ch Є {1,2,…, 10} the channel number, n = 1, 2,…, N are the instants of
the EEG signal sampling time, and N is the total number of samples from register i,
which depends on the number of spelled symbols (5 or 6). Figure 2 shows the EGG
signals.

With the EEG raw signal from each of the 10 channels, for each record xi;ch (n), the
following is done:

• An EEG epoch is expressed as xk;yi;ch (n), with n = {1, 2, …, 257}, it is defined as a
window with 257 samples (after the moment of stimulation) from register i and
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class k Є {a, u} where k = a indicates an epoch of the attended class and k = u, an
epoch of the unattended class.

• The super index k = a corresponds to the synchronized time with the intensification
of a row or column of the matrix of the Speller P300, containing a target symbol
(infrequent event), and k = u corresponds to a time of EEG associated with a
intensification that does not include a target symbol (frequent event). The super-
script indicates the type of epoch: the rows (y = f) or columns (y = c).

• In each of the 4 EEG records of each subject, all available times are extracted and
divided into 4 groups, Fig. 1. Times attended by rows: xa;fi;ch (n), times attended by

columns: xa;ci;ch (n), unattended times of rows: xu;fi;ch (n), unattended times of columns:
xu;ci;ch (n).

The information from Record 1 of the Directed Spelling of Session 1 that has been
specified in the previous section, was processed using Python tools and a total of 890
epochs were identified, of which 149 correspond to epochs attended and 741 to epochs
not catered for. From said grouping, what is specified in Table 1 is obtained.

Fig. 1. Signal recording EEG in the target times.
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From the extracted signals, the average of the records of the times attended and not
attended by letter is calculated, through Directed Spelling and the registration channel,
obtaining the information records shown in Figs. 2, 3 and 4.

As can be seen in Figs. 2, 3 and 4, the information that corresponds to the average
of the times attended and not attended by the recording channel are very similar, this
corresponds to the measurement of the signal power content versus the frequency of the
channels that are of interest Pz, Cz and Oz.

Table 1. Number of times for record 1 of Directed Spelling.

Letter Attended Not attended

C 29 140
A 29 139
L 29 142
O 29 147
R 29 140

Fig. 2. Average recording of EEG signals of channels Pz, Cz, Oz that correspond to the times
attended and not attended for the letter “C” of Directed Spelling.
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Fig. 3. Average recording of EEG signals of channels P3, C4, C3 that correspond to the times
attended and not attended for the letter “C” of Directed Spelling.

Fig. 4. Average recording of EEG signals of channels P4, PO8, PO7 that correspond to the
times attended and not attended for the letter “C” of Directed Spelling.
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4 Conclusions

In the course of this research, the registration of the EEG signals is obtained for a
population of 10 individuals with different abilities, who were presented with the test
board to start the acquisition of the signals. The acquired signals were subjected to the
corresponding filtering as well as the extraction of the signal spectrum to detect the
frequency in which it presents the greatest energy, this point being considered as the
center of attention of the individual in the letter they wish to express. From the previous
process already established, the corresponding acquisitions will be made to extract the
pertinent characteristics and continue with the selection of the training and classifica-
tion algorithm on mobile devices.
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