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Preface

Fungi range from microscopic, single-celled yeasts to multicellular and hetero-
trophic in nature. Fungal communities have been found in vast ranges of environ-
mental conditions. They can be associated with plants epiphytically, endophytically 
and rhizospherically. Extreme environments represent unique ecosystems that 
harbour novel biodiversity of fungal communities. Interest in the exploration of 
fungal diversity has been spurred by the fact that fungi are essential for life as 
they perform numerous functions integral to the sustenance of the biosphere, 
ranging from nutrient cycling to environmental detoxification, which involves 
processes such as augmentation, supplementation and recycling of plant nutri-
ents – particularly vital to sustainable agriculture. Fungal communities from nat-
ural and extreme habitats help promote plant growth, enhance crops yield and 
enhance soil fertility via direct or indirect plant growth promoting (PGP) mecha-
nisms such as solubilization of phosphorus, potassium and zinc; and production 
of ammonia, hydrogen cyanides, phytohormones, Fe-chelating compounds, 
extracellular hydrolytic enzymes and bioactive secondary metabolites. These 
PGP fungal could be used as biofertilizers, bioinoculants and biocontrol agents in 
an ecofriendly manner for sustainable agriculture and environment instead of 
chemical fertilizers and pesticides. Besides agricultural applications, medically 
important fungi play a significant role in human health. For sustainable environ-
ment, fungal communities are used in bioremediation process that uses microor-
ganism’s metabolism to biologically degrade waste contaminants (sewage, 
domestic and industrial effluents) into nontoxic or less toxic substances. Fungi 
could be used as mycoremediation for the future of environmental sustainability. 
Fungi and fungal products have biochemical and ecological capability to degrade 
environmental organic chemicals and to decrease the risk associated with metals, 
semi-metals and noble metals either by modifying chemical structure or by 
manipulating chemical bioavailability.

The aim of book Recent Trends in Mycological Research, Volume 1: Agricultural 
and Medical Perspective is to provide an understanding of fungal communities 
from diverse environmental habitats and their potential applications in agriculture, 
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medicine, environment and industry. The book will be useful to scientists, 
researchers and students involved in microbiology, biotechnology, agriculture, 
molecular biology, environmental biology and related subjects.

Baru Sahib, Himachal Pradesh, India  Ajar Nath Yadav

Preface
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1.1  Introduction

Fungi are a group of eukaryotic organisms and source of food, organic acids, alco-
hol, antibiotics, growth-promoting substances, enzymes, and amino acids. They 
include microorganisms like molds, yeasts, and mushrooms. Fungi are tremendous 
decomposer of organic waste material and most readily attack cellulose, lignins, 
gums, and other organic complex substances. Fungi can act also under a wide range 
of soil reactions from acidic to alkaline soil reactions. Fungi can jointly play a basic 
role in different physiological processes as well as mineral and water uptake, chemi-
cal change, stomatal movement, and biosynthesis of compounds termed biostimu-
lants, auxins, lignan, and ethylene to enhance the flexibility of plants to ascertain 
and cope with environmental stresses like drought, salinity, heat, cold, and signifi-
cant metals. The primary functions of filamentous fungi in the soil are to degrade 
organic matter and help in soil aggregation. Besides this property, bound species of 
Alternaria, Aspergillus, Cladosporium, Trichoderma¸Dematium, Gliocladium, 
Humicola, and Metarhizium manufacture substance like organic compounds in soil 
and therefore could also be necessary for the maintenance of soil organic matter. 
Plant growth regulators and chemical fertilizers have been used to increase crop 
production (Islam 2008), as well as, a natural product used in the reduction of plant 
diseases (Al-Ani et  al. 2012; Al-Ani 2017b; Mohammed et  al. 2011, 2012) and 
control of pests (Adetunji et al. 2020) as well as, plant extract can use against plant 
pathogens (Sarker et al. 2020; Jatoi et al. 2020).

Although often inconspicuous, fungi occur in every environment on earth and 
play very important roles in most ecosystems. Along with bacteria, fungi are the 
major decomposers in most terrestrial and some aquatic ecosystems, and therefore 
play a critical role in biogeochemical cycles and in many food webs (Gadd 2007; 
Devi et al. 2020b). As decomposers, they play an essential role in nutrient cycling, 
especially as saprotrophs and symbionts, degrading organic matter to inorganic 
molecules, which can then re-enter anabolic metabolic pathways in plants or other 
organisms (Barea et al. 2005: Lindahl et al. 2007).

In agriculture sustainability, there are many useful resources possibly utilized in 
agriculture as biofertilizers and biopesticides, such as microbes comprising virus, 
bacteria, fungi, and nematode (Sharma et  al. 2020; Kour et  al. 2020a; Rastegari 
et al. 2020a, b). Biotechnological tools were utilized to determine the importance of 
useful microbes (Aguilar-Marcelino et al. 2020b). Useful virus as non-pathogenic 
or milder strain can be used to control high pathogen as a mechanism called “Cross- 
Protection” (Al-Ani and Furtado 2020). Bacteria interact with plants and affect the 
plant pathogens (Al-Ani 2017a; Singh et al. 2021) showing efficacy in the control 
of cucumber mosaic virus by induced systemic resistance (Al-Ani 2006; Al-Ani and 
Al-Ani 2011) and Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4) 
(Mohammed et al. 2013, 2014). Nematodes attacked insect and show efficiency as 
entomopathogenic such as Steinernema carpocapsae (Al-Jboory and Al-Zubai 
2006; Katumanyane et al. 2020; Thakur et al. 2020). For fungi, it may be useful if 
they actively compete for nutrients and space with pathogenic microorganisms via 
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the competitive exclusion principle (Fig. 1.1). Entomopathogenic fungi (i.e., a fun-
gus that can act as a parasite of insects and kills or seriously disables them) can be 
used as biopesticides, as they actively kill insects like Beauveria bassiana, 
Metarhizium spp., Hirsutella spp., Paecilomyces (Isaria) spp., Lecanicillium lecanii 
(Keiller 2011), and Fusarium proliferatum (Al-Ani et al. 2018).

Endophytic fungi (living within the plant) of grasses of the genus Neotyphodium, 
such as N. coenophialum, produce alkaloids that are toxic to a range of invertebrate 
and vertebrate herbivores (Bouton et al. 2002). The use of fungi in the degradation 
contaminant in agricultural land is called mycoremediation which is a phrase coined 
by Paul Stamets, a form of bioremediation that uses fungi to degrade contaminants 
in the environment. The key to mycoremediation is determining the right fungal 
species to target a specific pollutant (Fomina et al. 2008). Trichoderma is a more 
beneficial fungus for the ability to control many plant pathogens, pests, and weeds 
by two main mechanisms, first: mycoparasitism, and second: non-mycoparasitism 
and active in different environment (Al-Ani 2018a, b).

The application of chemical fertilizers to crop plants negatively affects human 
health and environments. Recent studies have focused on the identification of alter-
native methods to enhance plant productivity and protect the soil. Soil-borne 
microbes can enter roots and establish their population in plants as endophytes, and 
many plant-associated fungi are well known for their capacity to promote plant 
growth; however, the relationship between these microbes and plants is still uncer-
tain (Sylvia et  al. 2005; Rana et  al. 2020a). Microorganisms have the ability to 

Fig. 1.1 Role of useful fungi in plant growth
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produce phytohormones, solubilize insoluble phosphate, and convert complex 
organic substances to simple forms (Kour et  al. 2020b; Singh et  al. 2020a). 
Endophytic fungi have also been shown to impart plants with tolerance to salt, 
drought, heat, and diseases (Schulz et  al. 2002; Jalgaonwala et  al. 2017;  Rana 
et al. 2019a).

Soil fungi can grow in a wide range of soil pH but the soil fungi is more acidic 
conditions tolerance, because is severe competition with bacteria at neutral pH. A 
majority of fungi are aerobic and prefer to grow at optimum soil moisture. The con-
tribution of these organisms in biochemical transformation under excessive mois-
ture is negligible (Smith and Read 2008). The fungi have ability to produce a wide 
variety of extracellular enzymes, they are able to break down all kinds of organic 
matter, decomposing soil components and thereby regulating the balance of carbon 
and nutrients for maintaining soil health (Kour et al. 2019b). This allows fungi to 
bridge gaps in the soil to transport nutrients relatively far distances back to the 
plants (Sturz et al. 1997). Soil is a primary source of fungal growth and is associated 
with the roots of all plant species. Fungi produce a wide range of bioactive metabo-
lites, which can improve plant growth (Waqas et al. 2014; Devi et al. 2020a). In 
addition, fungi supply inorganic nutrients to plants, such as ammonium, nitrate, and 
phosphate (Seastedt et al. 2008), and they are used as biofertilizers. Rhizosphere 
microorganisms can overcome competition with other soil factors and survive under 
variable environmental conditions (Ferrara et al. 2012).

The fungi have been utilized for controlling insect pests. The microbial control 
of insect pests emerged 100 years ago. Insect is infected by fungi through the body 
surface and this property is different from the infection caused by bacteria, viruses, 
and protozoa. Fungi attacking insect are called entomogenous. The conidia of the 
insect attacking fungi are attached to the insect integument where they germinate 
and the germ tubes penetrate in insect body under optimum temperature and humid-
ity. The fungus proliferates in the insect body and the insect body gets covered with 
mycelia and conidia.

1.2  Fungal Pathogens for Mite and Insect

Fungi caused diseases for mites and insects; many patents about entomopathogenic 
fungi were registered (Al-Ani 2019d). Fungi that affect mites are Zygomycetes such 
as Erynia phalangicidae that affect the mite Pergamasus sp. (Bałazy and Wisniewski 
1984), other fungus is Neozygites acaridis that attacks Halotydeus destructor 
(James 1994), within the Deutoromycetes are Beauveria bassiana that affects 
Tarsonemidae (Peña et al. 1996) and Hirsutella kirchneri that affects Abacarushystrix 
mites, Eutetranychus orientalis, Hemisarcoptes coccophagus, Panonychus citri, 
Phyllocoptruta oleivora (Minter et  al. 1983; Sztejnberg et  al. 1997; Cabrera and 
Domínguez 1987), another fungus is Paecilomyces eriophytis affected by 
Polyphagotarsonemus latus (Peña et al. 1996), and another is Rickia sp. that affects 
Lobogynium sp. and Hirstionyssus sp. (Poinar Jr and Poinar 1998). Hirsutella is one 
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of the most abundant and important fungi for pest insect control in the field. It 
includes approximately 90 species that are capable of infecting and parasitizing a 
wide variety of invertebrate tales such as mites, nematodes, and insects, many of 
which are considered major pests.

Fungi species belonging to the genus Hirsutella are capable of infecting and 
parasitizing a wide variety of pathogenic invertebrates. Its development on the host 
produces a grayish yellowish mycelium with low percentages in the formation of 
conidia. The morphogenetic characterization of Hirsutella has been carried out 
using conserved regions of rRNA called ITS, which has allowed to reveal homolo-
gies with important biocontroller genera such as Beauveria or Cordyceps. The bio-
controlling properties of the fungus act on diverse species of mites and insects that 
cause diseases in crops of agronomic importance. In mites, the ability to colonize 
and control species such as Aceria guerreronis (damage to coconut fruits), Acalitus 
vaccinii (blueberry sprout mite), Tetranychus urticae, and Calacarus heveae (rub-
ber tree pathogen) has been recorded. The fungus Hirsutella pathogenicity has been 
found to be due to complex metabolic toxins that develop during the vegetative 
phase, such as “hirsutellins” in H. thompsonii.

Among the mass production processes, Hirsutella shows high degrees of patho-
genicity on mites such as Aceria guerreronis, Tetranychus urticae, and Brevipalpus 
sp., during the stages of conidiación. Rosas (2003) highlights the pathogenic poten-
tial of H. thompsonii on mites of the following families: Eriophyidae, Tetranychidae, 
Tenuipalpidae, Tarsonimidae, and Brevipalpidae, so with its three varieties, this 
fungus is considered the most important for the natural regulation of arthropods. A 
plague Hirsutella has been isolated from different host mites in tropical and temper-
ate regions. Hirsutella is one of the most abundant and important entomogenous 
fungi, and play an important role in the biocontrol of pest insects. The fungus 
Hirsutella includes three important species: (1) H. thompsonii, (2) H. gigantea, and 
(3) H. citriformis. This genus has been one of the most difficult members for iden-
tification among all major genera of fungal entomopathogens largely because of the 
huge number of species and high variability among these species. Hirsutella spp. 
have been found efficient against nymph and adults of red spider mite, adults. the 
varroa mite (Varroa destructor) of honey bees, coconut eriophyid mite (Aceria 
gueneronis). The attack mode of fungi Hirsutella sp. penetrates into the mites 
mainly through the legs, which later on forms hyphal bodies in chains in the 
hemolymph.

The pathogenicity of the fungus Hirsutella strains against target or Diana pests is 
an important characteristic and its ability for mass production. One of the most 
important advantages is they have a restricted host range and are harmless to non- 
target microorganisms. Therefore, it might be used within integrated pest manage-
ment programs, the disadvantages of biopesticides are that they have a relatively 
short shelf life that can be for a few weeks and are highly sensitive to the environ-
mental conditions. New techniques need to be developed that will help manage the 
pests in better ways since the present pathogenesis mechanism of entomopathogens 
is slow and needs improvement.

1 Role of Useful Fungi in Agriculture Sustainability
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On the other hand, in a study reported by Cabrera et  al. (2005) six-monthly 
samples were taken from August 1997 to January 1998 to identify the fungus spe-
cies associated with the tarsonemid mite Steneotarsonemus spinki (Smiley 1967), 
which infests rice, at five locations of Cuba. The species found included Hirsutella 
nodulosa Petch, 1926, Sarocladium oryzae Sawada, 1922, and three species belong-
ing to the genera Penicillium Link, 1809, Cladosporium Link, 1816, and 
Cephalosporium Corda, 1839, as well as at least one unidentified fungus species. 
The fungus H. nodulosa parasitizing Steneotarsonemus spinki constitutes the first 
record of such association for Cuba, and probably for the entire world. Sarocladium 
oryzae was isolated from 70% S. pinki transferred to Saboureaud Glucose Agar 
medium, supporting the hypothesis that the mite is the main vector of this phyto-
parasitic fungus. The fungus H. nodulosa caused tarsonemid mortality near 71%. 
The S. oryzae fungus is strongly related to S. spinki, which is considered its main 
carrier.

In another study, the variability of Hirsutella thompsonii strains was reported, 
isolated from phytophagous mites from three terrestrial systems in the State of 
Colima, México. Between 1999 and 2004, ten strains of the fungus Hirsutella 
thompsonii Fisher were isolated from infected acari, in 9 localities of 3 of the 11 
terrestrial systems found in the state of Colima, Mexico: Coastal Plain of Tecomán, 
Coastal Plain of Cuyutlán, and Valley of the Armería river of the 10 strains, 5 belong 
to var. thompsonii, whose growth is fluffed mycelial, slightly tall, gray to greenish- 
gray, and 5 to var. sinematosa, with a flat appearance, white to yellow. The hosts 
were two-spotted spider mite (Tetranichus urticae), Eriophidae (Aceria guerreronis 
and Phyllocoptruta oleivora) and Brevipalpidae (Brevipalpus phoenicis), Citrus 
spp. being the host of the acari in 8 of the 10 isolations. Of the 10 strains, only one 
HtM130 strain of H. thompsonii var. thompsonii displayed exudate formation in the 
sporulation phase, characteristic that gives it greater potential for implementation in 
management strategies for the control of phytophagous acari. Strain coloration and 
growth are not correlated with the terrestrial system where they were found, nor to 
prevailing climatic conditions in the system. This contribution demonstrates the 
importance of assessing the presence of native natural enemies, before introducing 
commercial microorganisms or isolations from elsewhere so as not to affect the 
natural regulatory systems (Rosas-Acevedo and Sampedro-Rosas 2006).

1.3  Nematophagous Fungi

Nematophagous fungi (NF) are one of the main natural antagonistic microorgan-
isms of  parasitic nematodes on plant and animal (Nordbring-Hertz et  al. 1982, 
2006) and they have been determined more than 700 species of NF (Zhang et al. 
2011; Li et al. 2015). These cosmopolitan organisms in nature find themselves in a 
saprophytic way and pose the ability to convert into carnivores (de Freitas Soares 
et al. 2018). Many species of fungi (HN) have the ability to modify their nutritional 
strategy to cope with environmental variation, or more often, the presence or 
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absence of a host, e.g., phytopathogenic fungi are a classic example of this versatil-
ity, as they switch from phytopathogenic to saprophytic modalities when their hosts 
die and are transformed into organic matter. This versatility enables them to survive 
until new living hosts with which to resume pathogenic activity become available 
(Souza and Rocha de Brito 2017).

The NF is divided into four groups according to the mechanism of action against 
nematodes (Yang & Zhang 2014). The first group conforms to the NF forming the 
tramp belonging to the phyla Zygomycota and Ascomycota as examples of these NF 
are found: Cystopage sp., Arthrobotrys spp. and Dactyellina spp., the structures for 
infecting nematodes that develop NF that fall within this group are mainly adhesive 
hyphae, adhesive networks, adhesive knobs and non-constricting rings (Moosavi 
and Zare 2012).

The second group is made up of the endoparasitic fungi that are grouped into the 
phyla Oomycota, Chytridiomycota, Blastoclamidiomycota, and Ascomycota, some 
examples of NF cases and their mechanism of action are: Catenaria (constricting 
rings), Dreshmeria spp. (Dijksterhuis et al. 1991), Hirsutella spp. (adhesive conidia), 
and Haptoglossa spp. “Gun cell” injection (Beakes and Glockling 1998). In the 
third group, they find themselves with the NF egg and female parasitic fungi that 
belong to the phyla Oomycota, Ascomycota, and examples of these NF and their 
mechanism of action: Cordyceps (Appressoria), Nematophthora (Zoospores), and 
Pochonia (Appressoria) (Ghahremani et al. 2019). Pleurotus ostreatus and P. eryn-
gii showed the ability in reducing of population the nematode Haemonchus contor-
tus (Comans-Pérez et al. 2021). In the fourth group are found the NF toxin-producing 
fungi that belong to the phyla Basidiomycota and examples of these NF and their 
activation mechanism are: Pleurotus ostreatus (Toxic droplets) (Arizmendi et  al. 
2014), P. djamor (Toxic droplets), P. pulmonarius (Toxic droplets), P. eryngii (Toxic 
droplets) (Pineda-Alegría et  al. 2017; Cuevas-Padilla et  al. 2018), and Coprinus 
comatus (spiny structures) (Luo et al. 2004), among others.

The isolation of the NF was based on soil, leaf litter, feces of ruminants: sheep, 
calves, and buffaloes, in respect of a study carried out by Ojeda-Robertos et  al. 
(2019), loss NF from the feces of water buffalo (WB) and soil from southeastern 
Mexico were isolated, and there in  vitro predatory activity against Haemonchus 
contortus infective larvae (L3) (HcL3) was assessed. Four NF isolates correspond-
ing to Arthrobotrys oligospora, var. microspora (strains 4–276, 269 and 50–80), and 
one identified as A. oligospora, var. oligospora (isolates 48–80) were obtained from 
WB feces. From the soil, five isolates were isolated; three corresponded to A. musi-
formis (Bajío, Yumca, and Macuspana isolates), and two isolates were identified as 
A. oligospora (Comalcalco and Jalapa de Méndez isolates). The predatory activity 
of isolates from WB feces ranged between 85.9 and 100%. Meanwhile, the fungi 
from the soil ranged between 55.5 and 100% (p ≤ 0.05). The NF obtained could 
have important implications in the control of parasites of importance in the livestock 
industry.

Another study reported by Castañeda-Ramírez et al. (2016) determined the mor-
phological taxonomy of 18 nematophagous fungi (NF), as well as their in  vitro 
predatory activity against H. contortus infective larvae (L3). Fungi were classified 
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into six genera and 3 species, the most common of which were Monacrosporium 
eudermatum and Arthrobotrys oligospora. The sequenced five NF isolates used 
ITS4 and ITS5 primers. These sequences showed identity with sequences from the 
NCBI database (98–99%). In contrast, alignments among the same genera and spe-
cies demonstrated 83–97% identity. Polymorphisms observed between Arthrobotrys 
and Monacrosporium appear to be associated with differences in biological func-
tion, nonspecific mutations, evolutionary processes, feeding behavior, predatory 
activity, and microecosystems.

On the other hand, a study reported by Rodríguez-Martínez et al. (2018) aimed 
to evaluate the in vitro lethal activity of the NF Clonostachys rosea against five 
nematodes species belonging to different taxa. Two groups of 35 Petri dishes (PD) 
each were divided into 5 series of 7 (PD). Group 1 (series 1, 2, 3, 4, and 5) contained 
only water agar; meanwhile, group 2 plates (series 6, 7, 8, 9, and 10) contained 
C. rosea cultures growth on agar. Every plate from the two groups was added with 
500 nematodes corresponding to the following genera/specie: H. contortus, 
Caenorhabditis elegans, Rhabditis sp., Panagrellus redivivus, and Butlerius sp. 
After 5-day incubation at room temperature, free (nontrapped) larvae were recov-
ered from plates using the Baermann funnel technique. Recovered nematodes were 
counted and compared with their proper controls. Results show a reduction percent-
age of the nematode population attributed to the fungal lethal activity as follows: 
H. contortus (L3) 87.7%; C. elegans 94.7%; Rhabditis sp. 71.9%; P. redivivus 
92.7%; and Butlerius sp. 100% (𝑝 ≤ 0.05). The activity showed by C. rosea against 
the H. contortus can be crucial for further studies focused on the biocontrol of sheep 
hemonchosis, although the environmental impact against beneficial nematodes 
should be evaluated.

The edible mushrooms, medicinal, and wild mushrooms are the three major 
components of the global mushroom industry. Combined, the mushroom industry 
was valued at $ 63 billion in 2013. Cultivated, edible mushrooms are the leading 
component (54%) accounting for $ 34 billion, while medicinal edible mushrooms 
make up 38% or $24 billion and wild mushroom account for $ 5 billion or 8% of the 
total (Royse et al. 2017).

The NF have great potential in biotechnological application against various 
pests. In an extensive review by Castañeda-Ramírez et al. (2020), an overview of the 
use as sustainable tools for the control of parasitic nematodes affecting agriculture 
and livestock industry is shown. Nematodes are organisms living in the soil and 
animals’ guts where they may live as parasites severely affecting economically 
important crops and farm animals, thus causing economic losses to worldwide agri-
culture. Traditionally, parasitic nematodes have been controlled using commercial 
pesticides and anthelmintic (AH) drugs. Over the years, nematodes developed resis-
tance to the AH drugs, reducing the usefulness of many commercial drugs. Also, the 
use of pesticides/anthelmintic drugs to control nematodes can have important nega-
tive impacts on the environment. Different NF have been not only used as food but 
also studied as alternative methods for controlling several diseases including para-
sitic nematodes. The nematocidal activity of NF assessed their potential use as sus-
tainable tools for the control of nematodes affecting agriculture and livestock 
industry.

L. K. T. Al-Ani et al.
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Among the forms of administration of the HN are: cereal grains, mineral blocks, 
energy blocks, alginate pellets, boluses of controlled release, and multi-nutritional 
pellets (CM). The application form of Duddingtonia flagrans for the control of live-
stock parasites is through oral administration (Aguilar-Marcelino et al. 2017). The 
NF D. flagrans has been studied and its antagonistic activity of animal parasitic 
nematodes has been demonstrated both in vitro and in vivo tests, and may be a bio-
logical tool in the control of livestock parasites (Mendoza de Gives et al. 2019).

Chlamydospores of D. flagrans have been incorporated into CM by adding 
molasses to make them tastier to sheep. In addition, an optimal amount of protein 
and energy has been added in the formulation for the elaboration of the CM. Once 
the MCs are ingested by the sheep, the chlamydospores pass through the animals’ 
gastrointestinal tract and are eliminated along with the feces into the environment 
where they germinate and form their traps with which they capture and kill the lar-
val stages of parasites to finally feed on their tissues. Under field conditions, D. fla-
grans has been proven to significantly reduce infection of grasslands with ruminant 
gastrointestinal nematodes (Mendoza de Gives et al. 2018).

Recently, the effect of supplementation of D. flagrans chlamydospores in Saint 
Croix sheep was evaluated on the H. contortus larvae population in feces and on 
weight gain. The results show that the use of D. flagrans using the CM as an admin-
istration vehicle can contribute significantly in providing a nutritional requirement 
similar to that of a commercial feed and also strengthen the immune system of 
sheep of the Santa breed. Cruz, in addition to reducing the H. contortus population 
in fecal cultures of sheep supplemented with MC in a range of 42.1–84.3%; it is 
important to note that the study was carried out in confined conditions, future stud-
ies should be carried out in field conditions and combine with other control methods 
(Aguilar-Marcelino et al. 2017).

Mycosynthesis of metallic nanoparticles or myconanotechnology (MNT) is the 
use of fungi in HN for the synthesis of NPs. The ability of filamentous fungi to grow 
on low-cost, low-nutrient substrates, as well as their ability to produce a wide vari-
ety of commercially useful secondary metabolites, have been of interest in the use 
of these microorganisms in NP production. Furthermore, for large-scale synthesis 
of nanoparticles in bioreactors, filamentous fungi are the best agents for biomass 
production compared to algae and bacteria, since HN mycelium can withstand flow 
pressure, agitation, and other conditions in this equipment. Recently, nanoparticles 
of NF Duddingtonia flagrans have been successfully produced (Silva et al. 2017).

1.4  Mycorrhiza

At present, 1.5 billion ha of the globe’s land surface is used in crop production 
(arable land and land under permanent crops) (FAO 2003). Globally, agricultural 
production will need to expand by 60% by 2050 to increase world demand popula-
tion (8.9 billion people) and productivity (Alexandratos and Bruinsma 2012) and be 
more resistant and resilient to extreme climate events. Lipper et al. (2014) stated 
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that agriculture needs to get climate-smart. Sustainable agricultural systems have 
been defined as an alternative that could be used to solve food production in an 
ecological way through decrease fertilizer use, reducing input costs, and prevent 
environmental pollution (Siddiqui and Pitchel 2008; Harrier and Watson 2004). 
This type of agriculture develops new practices that are not harmful to the environ-
ment (Lichtfouse et al. 2009; Yadav et al. 2020b, c, d).

Microbial communities play an important role in sustainable agriculture and in 
the integrated soil fertility management. They can provide stability and productivity 
in agroecosystems reducing the input of chemical fertilizers and pesticides (Philippot 
et al. 2013; Bender et al. 2016). A key functional group of soil microorganisms is 
the arbuscular mycorrhizal fungi (AMF) that have shown to increase crop produc-
tivity and the ecosystem sustainability (Van der Heijden et  al. 2008), enhancing 
plant performance and soil quality (Thirkell et al. 2017). The majority of agricul-
tural crops, such as wheat, rice, corn, potato, tomato, onion, pulses, and soybean, 
have the potential to form AMF as root symbionts (Hijri 2016). In the symbiosis 
plant-AMF, the fungi facilitate uptake and translocate some mineral nutrients from 
the soil, alleviating nutrient deficiency, and increasing plant health and yield (Jansa 
et al. 2006; Hijri 2016).

AMF can be used such as biofertilizers improving plant nutrition, as bioregula-
tors interfering in the phytohormone balance of host plants influencing plant devel-
opment, and as bioprotector alleviating the effects of environmental stresses 
(Rouphael et al. 2015). AMF as a biofertilizer are important since these symbioses 
could decrease the use of agrochemicals (Chen et al. 2018). Mycorrhizal fungi play 
a vital role in nutrient cycling and productivity of crops (Smith and Read 1997) 
altering the quality and quantity of soil organic matter and the kinetic properties of 
the root were enhancing its nutrient uptake (Ryglewicz and Andersen 1994). They 
are also environmentally friendly fertilizers and do not cause the pollution 
(Sadhana 2014).

Several plant hormones, such as strigolactones, gibberellin, and auxin, have a 
role in the regulation of AM symbiosis influencing in plant development (AMF as 
bioregulators). Plant hormones are signaling-regulators in physiological processes 
between plants and microbes (Metting 1993; Ruyter-Spira et al. 2015; Weijers and 
Wagner 2016). Strigolactones are involved in the pre-symbiotic growth of the fun-
gus, auxin is required for early steps of fungal growth and the differentiation of 
arbuscules and gibberellin modulates arbuscule formation (Van de Velde et  al. 
2017; Liao et al. 2018). Mycorrhizal plants may differ in their response to stress 
depending on the interaction of AMF-plants-environmental conditions. AMF sym-
biosis as bioprotector can protect host plants against stress conditions (Aggarwal 
et  al. 2011). Abiotic stresses cause extensive losses to agricultural productivity. 
AMF symbioses are recognized to increase host tolerance to abiotic stresses such as 
mineral depletion, drought, salinity, heavy metals, and heat (Barea et  al. 2011; 
Jeffries and Barea 2012). These fungi are an alternative for hostile environmental 
that limits crop productivity worldwide (Barea et al. 2011). Besides, AMF root col-
onization can provide protection against plant pathogens (parasitic fungi and 
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nematodes) (Newsham et al. 1995; Akhtar and Siddiqui 2008; Saldajeno et al. 2008; 
Lax et al. 2011).

Many factors affect the mycorrhizal development, diversity, and AMF commu-
nity’s composition in horticulture and agriculture soils (Grant et al. 2005; Hartmann 
et al. 2015). For example, conventional agricultural practices may reduce AMF den-
sity while organic low-input system increased AMF activity contributing to the sus-
tainable agriculture (Basu et al. 2018; Panwar et al. 2008). However the effects of 
agricultural practices on AMF composition and mycorrhizal functioning depend on 
the environmental context (soil type, fertility, pollution, climate, and microbial 
communities) (Jansa et al. 2006).

In order to develop production strategies in sustainable agriculture, it is neces-
sary to produce high-quality inoculum for successful root colonization with AMF 
(Barea et al. 2016). For every crop, the best AM fungus should be selected in order 
to provide particular benefits such as crop nutrient capture to growth and stress 
resistance (Püschel et al. 2017). AM fungal inoculation is based on their roles to 
improve water uptake (Augé 2004), soil fertility, and soil aggregate stability (Rillig 
et al. 2015; Rillig 2004). The applications of commercial AMF inoculums to crops 
under agricultural conditions are summarized in Weber (2014). Based on it, some 
AM fungal inoculant products can improve plant uptake of nutrients thereby increas-
ing the use of efficiency of applied artificial fertilizers. As Baum et al. (2015) stated, 
the future challenge in the production of vegetables will be optimizing combina-
tions of crop plant-AMF inoculum, inoculation methods, and soil/substrate proper-
ties for mycorrhizal establishment. In sustainable agricultural systems it is important 
to consider the development and establishment of “soil-root-AMF interaction” as 
well as to determine the influence of soil physical and chemical factors and the 
symbiosis efficacy as a biofertilizer, bioregulator, or bioprotector.

1.5  Dark Septate Fungi

Currently, sustainable agriculture management has involved the use of many bio-
logical agents as a biofertilizer to support the productivity of agricultural plants 
based on its function as a plant growth promoter, soil organic compound decom-
poser, facilitator of the availability of nutrients, and controlling plant diseases, one 
of which is the use of dark septate endophytic fungi (DSE) (Jumpponen and Trappe 
1998; Usuki and Narisawa 2007; Mahmoud and Narisawa 2013; Surono and 
Narisawa 2017, 2018). Although the use of DSE fungi is not as popular as mycor-
rhizal fungi, the exploration of DSE fungi is increasingly attracting many research-
ers to investigate DSE fungi in the biodiversity, the role of ecology, and their 
potential ability to support sustainable agricultural practices both in the subtropics 
to the tropics to minimize the use of agrochemicals and improve soil health and 
plants. Initially, most of the studies on DSE fungi were related to the results of isola-
tion from various forestry plants, especially conifers in temperate regions, and 
investigated their ability to symbiosis with forestry plants such as Pinus sylvestris 
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(Grünig and Sieber 2005), Picea rubens (Wilcox and Wang 1987), Picea abies 
(Lukešová et al. 2015), Chamaecyparis obtuse (Surono and Narisawa 2017), and 
Pinus tabulaeformis (Chu et al., 2019). DSE fungi can be isolated from one specific 
target plant, but based on the results of tests both in vitro and in vivo many DSE 
fungi species are capable of symbiosis with various plants in a wide spectrum or 
DSE does not have a special host plant so DSE fungi can be inoculated for various 
plants (Khastini et  al. 2012; Diene et  al., 2014). DSE fungi can colonize non- 
mycorrhizal plants that are not symbiotic with arbuscular mycorrhizal fungi such as 
plant families from Brassicaceae, Caryophyllaceae, Chenopodiaceae, Cyperaceae, 
Polygonaceae, Juncaceae, Cruciferae, and Amaranthaceae (Usuki and Narisawa 
2007; Liu et al. 2017). The potential of the DSE fungi is very beneficial to be used 
in enhancing the productivity of various kinds of agriculture plants because the host 
plants are not specific so that they can be efficiently implemented in the field. Also, 
DSE fungal inoculant production will be easier and more efficient than arbuscular 
mycorrhizal inoculant that require host plants in propagation because arbuscular 
mycorrhizal fungi cannot be propagated individually without a host plant (Mandyam 
and Jumpponen 2005; Malusá et  al. 2012). The use of DSE fungi inoculants in 
plants is also quite efficient. It can be inoculated in the nursery phase so that when 
the plants are ready to be planted in the field (Dalimunte et al. 2019). DSE fungi 
remain in the plant tissues even though the plants are moved to the field.

However, DSE fungi are a group of endophytic fungi that are mostly Ascomycota 
that have dark septates, can colonize both intra- and intercellular root tissue without 
causing disease symptoms (Jumpponen and Trappe 1998; Rodriguez et al. 2009; 
Diene 2009; Diene et al. 2013). DSE fungi play a role in facilitating the absorption 
of nutrients in host plants and can increase the tolerance of host plants to adverse 
environmental conditions such as in high acid and saline conditions (Jumpponen 
2001; Wilson et al. 2004; Silvani et al. 2008; Mahmoud and Narisawa 2013; Usuki 
and Narisawa 2007). DSE fungi were known to have a symbiosis with about 600 
plant species from 320 genera in 114 families, including non-mycorrhizal plant spe-
cies (Jumpponen and Trappe 1998; Sieber 2002; Addy et  al. 2005; Grünig and 
Sieber 2005; Smith and Read 2008). Isolation and selection of DSE fungi from the 
natural environment is increasingly being done to obtain new species that have 
never been reported before (Rodriguez et al. 2009).

Various species of DSE fungi are reported to be able to associate with agricul-
tural plants with the potential ability to increase growth and protect host plants from 
pathogens (Table 1.1). As the report varies, the potential for using DSE inoculants 
to support sustainable agriculture will be very promising. Phialocephala fortinii, 
which is the most well-known DSE fungus species, which is generally symbiotic 
with forestry plants, is also able to promote the growth of agricultural plants such as 
Asparagus officinalis and suppress the severity of Fusarium disease in organic 
growing media (Surono and Narisawa 2017, 2018). DSE species, Veronaeopsis sim-
plex, is capable of symbiosis with Brassica campestris and controlling Fusarium 
wilt (Khastini et al. 2012) and has the potential to be used as a cesium bioremedia-
tion agent in soils contaminated with heavy metals by involving symbiotic activity 
with Solanum lycopersicum and Brassica campestris so that it can be used as an 
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effort to clean up heavy metals polluted land in an environmentally friendly manner 
(Diene et al. 2014). DSE fungus, Pseudosigmoidea ibarakiensis, is capable of sym-
biotic with Brassica campestris and stimulates its growth under ultra acidic condi-
tions (Diene et  al. 2013). DSE species, Ramichloridium cerophilum, are also 
symbiotic with Brassica campestris (Xie et al. 2016). Several studies report that 

Table 1.1 DSE fungi that have the potential as a promoter for the growth of agricultural plants

DSE fungal species Agricultural plants Reference

Phialocephala fortinii Asparagus (Asparagus 
officinalis)

Surono and Narisawa 
(2017)

Ramichloridium cerophilum Chinese cabbage (Brassica 
campestris)

Xie et al. (2016)

Pseudosigmodea ibarakiensis Chinese cabbage (Brassica 
campestris), cucumber 
(Cucumis sativus)

Diene et al. (2013)

Veronaeopsis simplex Chinese cabbage (Brassica 
campestris), tomato 
(Solanum lycopersicum)

Khastini et al. 
(2012); Diene et al. 
(2014)

Cadophora sp. Melon (Cucumis melo) Khastini et al. (2014)
Harpophora oryzae Rice (Oryza sativa) Su et al. (2013)
Helminthosporium velutinum Sorgum (Sorgum bicolor) Diene et al. (2010)
Cadophora sp., Coniothyrium sp., 
Corynespora cassicola, Pyronellaea sp., 
Phaeosphaeria sp., Boeremia sp.

Soybean (Glycine max) Rothen et al. (2017)

Cladophialophora chaetospira Strawberry (Fragaria 
ananassa)

Harsonowati et al. 
(2020)

Scolecobasidium humicola Tomato (Solanum 
lycopersicum)

Mahmoud and 
Narisawa (2013)

Leptodontidium orchidicola Tomato (Solanum 
lycopersicum)

Andrade-Linares 
et al. (2011); Surono 
(2014)

Periconia macrospinosa Tomato (Solanum 
lycopersicum)

Yakti et al. (2018)

Nectria haematococca Tomato (Solanum 
lycopersicum)

Valli and 
Muthukumar (2018)

Paraphoma sp., Embellisia 
chlamydospora, and Cladosporium 
oxysporum

Maize (Zea mays) Li et al. (2019a, b)

Exophiala pisciphila Maize (Zea mays) Li et al. (2011)
Gaeumannomyces cylindrosporus Maize (Zea mays) Yihui et al. (2017)
Rhizopycnis vagum Chili (Capsicum annuum) Manalu et al. (2020)
Cladosporium sp. Physic nut (Jatropha curcas), 

Philippine tung (Reutealis 
trisperma)

Ahadi et al. (2019)

Acrocalymma vagum and Scytalidium 
lignicola)

Alfalfa (Medicago sativa) Hou et al. (2020)

Melanconiella elegans Cowpea (Vigna unguiculata) Farias et al. (2019)
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DSE also forms a symbiotic relationship with Zea mays in supporting growth such 
as DSE fungi Paraphoma sp., Embellisia chlamydospora, and Cladosporium oxys-
porum (Li et  al. 2019a, b), Exophiala pisciphila (Li et  al. 2011), and 
Gaeumannomycesa cylindrosporus (Yihui et al. 2017). The symbiotic relationship 
between DSE fungi and Vaccinum corymbosum (blueberry) (Sadowsky et al. 2012), 
Solanum tuberosum (Das and Kayang 2010), Saccharum officinarum (Claassens 
et al. 2018), and Hevea brasiliensis (Dalimunte et al. 2019) have also been reported, 
through colonization mechanism that causes the performance of these host plants 
that can grow well compared to control plants. Oryza sativa is also capable of sym-
biosis with several DSE species such as Harpophora oryzae (Su et  al. 2013), 
Cladosporium sp. (Surono et al. 2018), and Leptodontidium orchidicola (Surono 
2014). DSE fungi are also capable of symbiosis with fruit plants such as Cucumis 
melo (Khastini et  al. 2014) and Fragaria ananassa (Narisawa et  al. 2002; 
Harsonowati et al. 2020). In Glycine max growth, DSE fungi that form symbiosis to 
promote growth are Cadophora sp., Coniothyrium sp., Corynespora cassicola, 
Pyronellaea sp., Phaeosphaeria sp., and Boeremia sp. (Rothen et  al. 2017). The 
DSE species, Helmintosporium velunitum, is capable of symbiosis with the Sorghum 
bicolor which is a plant that can be used as a biofuel (Diene et  al. 2010). Like 
Brassica campestris, Solanum lycopersicum is also an agriculture plant easy to 
associate with DSE fungi such as Leptodontidium orchicola (Andrade-Linares et al. 
2011; Surono 2014), Scolecobasidium humicola (Mahmoud and Narisawa 2013), 
and Periconia macrospinosa (Yakti et al. 2018). Thus, the range of host plants on 
agricultural plants associated with DSE fungi is increasingly being reported with 
potential as a growth promoter; in fact, some studies report that DSE fungi are effec-
tive in promoting the growth of agricultural plants under organic conditions and 
pathogenic challenges (Mahmoud and Narisawa 2013; Surono and Narisawa 2017, 
2018). The ability of DSE fungi to degrade organic sources of N, P, and K in growth 
media and transfer nutrients, both macro- and micronutrients to host plants, has the 
potential to be utilized in sustainable agricultural production (Surono and Narisawa 
2017; Vergara et al. 2018; Usuki and Narisawa 2007). Although DSE fungi were 
reported to be symbiotic with 600 plant species (Mandyam and Jumpponen 2005), 
efforts to explore DSE fungi in various plants need to be continued, such as DSE 
fungi exploration in the tropics. In tropical regions of Indonesia, DSE fungi have 
been reported to be capable of symbiosis with Oryza sativa, Zea mays, Jatropha 
curcas, Capsicum annuum, and Solanum lycopersicum (Surono et al. 2018, 2019; 
Zaffan et al. 2018; Dalimunte et al. 2019; Manalu et al. 2020).

Indeed, the role and function of the DSE fungi is almost like mycorrhizal fungi, 
even under certain extreme conditions the DSE fungi replace the role of the mycor-
rhizal fungi in its function to enhance the adaptation of host plant growth in extreme 
environments such as high salinity, low pH, and high heavy metal content 
(Ruotsalainen et al. 2004; Mandyam and Jumpponen 2005) although the pattern of 
colonization within the roots of the host plant shows a distinct difference, especially 
the form of microsclerotia as a characteristic of most DSE fungi (Jumpponen and 
Trappe 1998). Therefore, the symbiotic ability of DSE fungi can be used to support 
host plants that are intolerant of extreme environmental conditions into plants that 
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can tolerate extreme conditions in the growing environment so that these plants can 
be planted in extreme environments where conditions without inoculation DSE 
fungi cannot grow normally. In general, microbes, especially DSE, are very effec-
tively utilized as plant growth-promoting agents under abiotic stress conditions 
(Schulz and Boyle 2005). DSE fungi were distributed as root colonization fungi in 
almost all parts of the world from temperate to tropical regions and were often 
found in high abundance in environments where abiotic stress is very strong 
(Rodriguez et al. 2009; Knapp et al. 2015) although the information is still limited. 
Selecting DSE fungi that can increase plant tolerance to abiotic stress is very impor-
tant because abiotic stress is a major factor that limits plant development and pro-
ductivity (Santos et al. 2017).

In general, the association of DSE fungi through the colonization of host plant 
tissue and the formation of microsclerotia is important to enhance the host’s eco-
logical adaptability by increasing tolerance to biotic and abiotic stress (Jumpponen 
and Trappe 1998; Schulz and Boyle 2005; Sieber and Grünig 2013; Hou et al. 2020). 
Several studies related to DSE fungi have focused on the interaction effects of DSE 
fungi isolated from various plants, mainly as biotic and abiotic stress controllers so 
that host plants can grow well without any stress and disease symptoms (Narisawa 
et al. 2004; Su et al. 2013). Mandyam and Jumpponen (2005) stated that DSE fungi 
are more commonly found in depressed environments than arbuscular mycorrhizal 
fungi. DSE fungi are predominantly found and associated with plants that grow in 
stressful and nutrient-limited environments (Lugo et  al. 2009; Newsham et  al. 
2009). Dark septate endophytes (DSE) are ascomycetous fungi that are rich in mela-
nin and their presence and diversity is abundant in stressful environments (Berthelot 
et al. 2019). Melanin expression in DSE fungi can be an indicator for controlling 
abiotic and biotic stress conditions (Henson et  al. 1999; Mugerwa et  al. 2013). 
Melanin in DSE fungi protects damage to cell structures in stressful environments 
by functioning as an antioxidant agent and heavy metal ion binder (Ban et al. 2012; 
Santos et al. 2017).

Research on DSE fungi to promote plant growth in biotic and abiotic stress con-
ditions is still limited (Arnold et al. 2003; Knapp et al. 2015; Ban et al. 2012). One 
abiotic stress that limits plant growth is soil acidity (Kochian et al. 2004). On the 
other hand, soil acidity plays an important role in the formation of the fungal com-
munity (Bonfim et al. 2016). To date, the effect of DSE fungi in promoting plant 
growth under environmental stresses such as low pH has only been reported by 
Diene et al. (2013), Surono (2014), and Surono (2017). Diene et al. (2013) stated 
that Pseudosigmoides ibarakiensis could stimulate the growth of Brassica campes-
tris in ultra acidic conditions (pH 3) in the absence of damage or death of plants 
inoculated with that DSE fungus. Surono (2014) reported that the DSE fungus spe-
cies, Leptodontodium orchidicola, was significantly able to promote the growth of 
Solanum lycopersicum and Oryza sativa under acidity conditions and high alumi-
num concentrations (Fig. 1.2). The DSE fungus, Phialocephala fortinii, is also able 
to increase the growth of Asparagus officinalis in various organic nutrients in soil 
acidity stress (Surono 2017). Surono et al. (2019) succeeded in isolating the DSE 
fungi from plants that grow in the acidic sulfate soil ecosystem of Kalimantan, 
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Indonesia, which is in symbiosis with Eleocharis dulcis that grows predominantly 
in tropical swamp areas under pH 3. In another experiment (Surono et al. 2018), by 
inoculating DSE fungi in upland rice seeds and then planted in growth media using 
Ultisols soil with high acidity conditions (pH 4), upland rice seedlings could still 
grow normally and healthier than control plants (Fig.  1.3). Postma et  al. (2007) 

Fig. 1.2 Inoculated rice 
plant by dark septate 
endophytic fungus, 
Leptodontidium 
orchidicola (b), compared 
to control plant 
(un-inoculated plant) in 
acidic condition (pH 4) 
(Surono 2014)

Fig. 1.3 Upland rice seedlings (var. Situ Patenggang) associated with DSE fungal isolates 
CPP1.1.4 and KSP1 grow better than controls in Ultisols soil media which have a pH of 4
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reported that the colonization of DSE fungi in plants was positively correlated with 
low soil pH compared to mycorrhizal fungi. They suggested that DSE fungi were 
able to replace the role of arbuscular mycorrhizal fungi at very low pH (Göransson 
et al. 2008; Alberton et al. 2010). Based on this limited information, further studies 
are needed regarding the role of the DSE fungi to encourage plant growth under 
acidic conditions. It is hoped that the selected DSE fungi that have a role as a plant 
growth promoter under low pH in vitro and in vivo can be used to overcome the 
problem of acid soils in the field in the future.

Climate change affects several factors related to the occurrence of drought that 
causes a very serious impact on agricultural productivity (Waqas et al. 2014; Kour 
et al. 2019a; Singh et al. 2020b). Therefore, technology to improve plant tolerance 
and adaptation to keep producing optimally in these conditions is needed, one of the 
potential technologies used is the symbiotic technology of DSE fungi. Under 
drought stress conditions, several species of DSE fungi can have a positive effect on 
the host plant by increasing biomass and active compound content so that host 
plants can adapt to the environment such as DSE fungus, Acrocalymma vagum (He 
et al. 2019). In conditions of water deficit, Phialophora sp. and Leptosphaeria sp. 
improved root biomass, nutrient concentration, and antioxidant enzyme activity in 
host plants (Li et al. 2019a, b). DSE fungus, Nectria haematococca, could induce 
Solanum lycopersicum tolerance to drought stress and increase the growth under 
water deficit stress which was indicated by increasing plant height, stem girth, and 
plant biomass (Valli and Muthukumar 2018). DSE fungi were also able to increase 
the tolerance of Oryza sativa to stress due to water deficiency (Santos et al. 2017). 
The interaction model of DSE fungi with host plants in drought conditions contrib-
utes to the understanding and utilization of DSE fungi ecological functions in 
drought stress or water deficit conditions (Li et al. 2019a, b). In the interaction of 
plants and DSE fungi related to the adaptation of host plants to drought stress and 
water deficit, DSE fungi stimulate increased antioxidant activity, catalase, or certain 
compounds in host plants that promote host defense and adaptation to drought stress 
conditions (Santos et  al. 2017; Waqas et  al. 2014). In addition to improving the 
defense system, DSE fungi melanin also affects the anticipation of these stresses 
(Postma et al. 2007). The content of melanin in the DSE fungal hyphae provides 
several selective advantages for being able to survive in a variety of extreme envi-
ronmental stress conditions, such as in environments contaminated by heavy metals, 
acidic soil, saline land, and drought (Postma et al. 2007; Bonfim et al. 2016).

Salinity has now become a major threat to sustainable agricultural production 
due to rising global temperatures and the rate of evaporation from the land that often 
changes so that agricultural plants are faced with these conditions of stress salinity 
(Waqas et al. 2014; Yadav et al. 2020a). Endophytic fungi, including DSE fungi, 
have the potential to increase plant tolerance under conditions of salinity stress, 
although specifically for high salinity stress, the use of DSE with its symbiosis in 
host plants has not been widely reported. There are only limited publications regard-
ing the potential use of DSE symbiotic to stimulate host plant growth under high 
salinity stresses such as the report of Farias et al. (2019) which stated that Vigna 
unguiculata inoculated with DSE fungus, Melanconiella elegans was able to 
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increase nutrient uptake of N and P in plants and the rate of net photosynthesis 
despite the stress of high salt content in the growing environment. Mateu et  al. 
(2020) succeeded in isolating DSE fungi from Phragmites australis that can improve 
the survival of P. australis seeds under high concentrated salt pressure both in the 
laboratory and in greenhouse testing. The challenge going forward is to isolate DSE 
fungi from plants that grow in high salinity ecosystems such as coastal areas, such 
as mangroves, which can grow and develop in high salinity conditions that can be 
symbiotic with agricultural plants that through their symbiotic can increase toler-
ance and production on high salinity land.

Another important function of the DSE fungi is its ability to remediate heavy 
metal and pesticide contamination (Diene et al. 2014; Spagnoletti and Chiocchio 
2020; Manalu et al. 2020). The ability of DSE fungi as a remediator can be utilized 
to clean up land contaminated with heavy metals and pesticides in an environmen-
tally friendly manner so that the land can be re-utilized for sustainable agricultural 
cultivation practices. Even DSE species such as Pseudosigmoidea ibarakiensis 
I.4–2-1, Veronaeopsis simplex Y34, and Helminthosporium velutinum 41–1 can 
remediate Cesium in polluted environments through its symbiotic mechanisms with 
agricultural plants such as Brasssica campestris and Solanum lycopersicum (Diene 
et al., 2014). The DSE fungi, Acrocalymma vagum and Scytalidium lignicola, which 
are inoculated on Medicago sativa can increase root growth and nutrient absorption, 
change soil Cd concentrations, and facilitate plant growth and survival under Cd 
stress conditions (Hou et al. 2020). Another agriculture plant that is often used as 
plant indicator for bioremediation, Zea mays, inoculated with DSE fungus, 
Gaeumannomyces cylindrosporus, was able to significantly increase the height, 
basal diameter, root length, and biomass under high Pb stress conditions (Yihui 
et  al. 2017). Inoculation of Zea mays with DSE fungus, Exophiala pisciphila, 
resulted in a significant decrease in cadmium phytotoxicity and an increase in corn 
growth, one of which was due to the triggering mechanism of the antioxidant sys-
tem (Wang et al. 2016). Ahadi et al. (2019) reported that Cladosporium sp. KSP.1 
was able to increase the growth of Jatropha curcas and Reutealis trisperma, coloni-
zation, and Pb uptake in planting media using soil contaminated with Pb, even to 
anticipate the Pb stress conditions, the DSE formed colonization in the form of 
microsclerotia which dense in the roots of Reutealis trisperma (Fig. 1.4). DSE fungi 
isolated from pesticide-contaminated chili cultivation areas are also able to remedi-
ate pesticides with active ingredients of mancozeb (Manalu et al. 2020) so that the 
DSE fungi have the potential to clean agricultural land contaminated with manco-
zeb and support the growth of vegetables, especially Capsicum annuum in a sustain-
able manner. DSE fungus, Cochliobolus sp., is tolerant of pesticides with active 
ingredients glyphosate and carbendazim in agronomic doses, even at doses that are 
increased to 2 and 10 times the agronomic dose (Spagnoletti and Chiocchio 2020). 
Reports on the use of DSE fungi for remediation of pesticide contamination are still 
limited, but based on research by Manalu et al. (2020) and Spagnoletti and Chiocchio 
(2020), DSE fungi have the potential to remediate pesticide contamination and 
needs further investigation.
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Interestingly, the ability of DSE fungi to suppress the growth and attack of agri-
culture plant pathogens has begun to be investigated to take advantage of its symbi-
otic role in protecting host plants from plant diseases (Narisawa et al. 2002; Khastini 
et al. 2012). Various DSE fungi species have been reported to have a role in protect-
ing host plants from plant pathogen attacks and their potential is promising to be a 
biocontrol agent for sustainable agriculture (Khastini et  al. 2014; Surono and 
Narisawa 2018; Dalimunte et al. 2019; Zaffan et al. 2018; Harsonowati et al. 2020). 
DSE fungi such as Heteroconium chaetospira and Phialocephala fortinii have been 
reported to be able to suppress Verticillium wilting in Solanum mengolena (Narisawa 
et al. 2002). Khastini et al. (2012) reported that Veronaeopsis simplex was effective 
in suppressing Fusarium disease in Brassica campestris even though the dual cul-
ture DSE testing of the species did not show an emphasis on the growth of Fusarium 
oxysporum. DSE fungi are also effective for controlling Fusarium disease in fruit 
plants such as Cadophora sp. which controls Fusarium wilt in Cucumis melo 
(Khastini et  al. 2014) and Cladophialophora chaetospira which stimulate fruit 
growth and production on Fragaria ananassa infected with Fusarium oxysporum 
(Harsonowati et al. 2020). Surono and Narisawa (2018) also reported that P. fortinii 
was able to have a symbiosis with Asparagus officinalis in organic growth media 
while suppressing Fusarium asparagus disease. In forestry plants, Phialocephala 
sphareoides are used to suppress the growth of Heterobasidion parviporum on 
Norwegian spruce plants (Terhonen et al. 2016). DSE fungus Harpophora oryzae, 
which are associated with Oryza sativa, have the potential to inhibit blast disease 
caused by Pyricularia oryzae (Su et al. 2013). In tropical regions such as Indonesia, 
DSE fungi were reported to be able to control tropical plant diseases such as 
Fusarium wilt in Solanum lycopersicum (Zaffan et al. 2018), white root rot in Hevea 
brasiliensis (Dalimunte et al. 2019), and blast disease in Oryza sativa (Surono et al. 

Fig. 1.4 Colonization of 
fungus DSE fungus, 
Cladosporium sp. KSP.1, 
at the roots of Reutealis 
trisperm in the treatment of 
100% tailings 
contaminated with Pb. 
Asterisk: microsclerotia. 
Bars: 50μm
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2018). DSE fungi, Phialophora mustea, Leptodontidium sp., and Cadophora sp. 
can suppress the growth of pathogenic fungi such as Pythium intermedium, 
Phytophthora citrinola, and Heterobasidion annosum (Berthelot et al. 2019). DSE 
fungi are also able to suppress the growth of Ganoderma boninense that causes 
basal stem rot disease in Elaeis guineensis (Fig. 1.5). Attention to the potential of 
DSE in controlling plant diseases, further exploration and assessment of appropriate 
inoculation techniques are needed so that DSE fungi can be applied effectively and 
efficiently to reduce the incidence and severity of plant diseases while increasing 
the growth of the host plants. The mechanism in inhibiting the growth of pathogens 
and protection of host plants from the pathogen attack of each DSE fungus varies by 
species, such as Veronaepsosis simplex in dual culture. The testing does not inhibit 
the growth of Fusarium oxysporum but effectively protects Brassica campestris 
from the severity of Fusarium disease (Khastini et al. 2012), whereas Phialocephala 
fortinii was able to suppress the growth of Fusarium oxysporum in dual culture test-
ing and was also able to inhibit the severity of Fusarium disease in Asparagus offi-
cinalis (Surono and Narisawa 2018). Another mechanism is to produce secondary 
metabolites such as sclerin and sclerotinin by Phiaocephala europaea that can sup-
press the growth of pathogens such as Phytophthora citrinola (Tellenbach et  al. 
2013). DSE fungus Cadophora sp. is able to produce isochromanones, which have 

Fig. 1.5 DSE fungal species, Curvularia sp. PP 2.3 (a), Curvularia sp. 4.1 (b), Cladosporium 
KSP.1 (c), and Cladosporium sp. OLT (d) suppress the growth of Ganoderma boninense in dual 
culture test
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antimicrobial activity (Rusman et al. 2018). In general, endophytic fungi can pro-
duce bioactive compounds to inhibit the growth of pathogens, in addition to their 
role in increasing tolerance and resistance of host plants to abiotic and biotic stresses 
(Yu et al. 2010).

Generally, the application of DSE fungal inoculants as biofertilizers to support 
sustainable agricultural productivity to succeed needs to pay attention on the several 
things such as the selection of appropriate DSE fungi as active ingredients of organic 
fertilizers with tested functional abilities and inoculation techniques on target plants. 
Selected DSE fungus as an active ingredient of biological fertilizers must have been 
selected in the laboratory, greenhouse, and fields with the ability to stimulate the 
growth of host plants with good quality control (Herrmann and Lesueur 2013), 
especially in environments affected by abiotic and biotic stresses. Also, inoculation 
testing of various target plants needs to be done, whether the selected DSE fungus 
has a specific host or has a broad spectrum of host plants including the various 
stressed environment conditions (Berruti et al. 2016). Of course, if the selected DSE 
fungus has a broad spectrum of host plants it will be useful and efficient in its pro-
duction and application, compared to DSE which is only limited to its host plants. 
Appropriate inoculation techniques will also be a success factor in the use of DSE- 
based biological fertilizers because inoculation is the key to the symbiotic process 
between DSE and target plants from early plant growth to harvesting time. Some 
reports state that DSE fungi are very effective inoculated in the seed germination 
and nursery phases that make host plants healthy from the beginning of growth and 
until production (O’Callaghan 2016; Dalimunte et al. 2019). Another important fac-
tor is the quality of DSE fungal inoculants as controlled biofertilizers in both the 
production and use processes in the field so that no contaminants emerge in DSE 
biofertilizers (Herrmann and Lesueur 2013).

1.6  Endophytic Fungi

The use of endophytic fungi-based biological fertilizers is now increasingly promis-
ing to support sustainable agriculture because of its multifunctionality and positive 
impact on the agricultural environment (Zheng et  al. 2016; Li et  al. 2016). 
Environmental issues including climate change have suppressed the use of exces-
sive agrochemicals to prevent environmental damage and enhance the role of micro-
bial resources on degraded agricultural land (Santos et al. 2012; Latz et al. 2018). 
Endophytic fungi become an alternative to support sustainable agriculture because 
of its use as an active ingredient of environmentally friendly fertilizer, namely bio-
logical fertilizer (Mahanty et al. 2017; Rana et al. 2019b), although people tend to 
be more familiar with Rhizobium and mycorrhizal inoculants which are already 
popular. Based on various research results, endophytic fungi are effective for inocu-
lation in agricultural host plants with functions as a supplier of nutrients, controlling 
biotic and abiotic stresses, and other functions when not symbiotic with their host 
plants in a life cycle, namely by switching roles as decomposers of organic 
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materials that help decompose nutrients which changes from an unavailable form to 
a form available to host plants (Card et al. 2016). Therefore, endophytic fungi have 
the ability to symbiotic mutualism with their host plants, but in certain phases, they 
can change their function as saprophytes or decomposers in certain environmental 
conditions that also have benefits in maintaining natural balance (Jia et al. 2016; Xia 
et al. 2019).

The types of endophytic fungi vary in the natural environment, but to support 
sustainable agriculture endophytic fungi need to be selected that function as plant 
growth promoters, control plant diseases, and restore land contaminated with heavy 
metals and pesticides for inoculants that can be produced and applied in the field in 
a broad scale (Fernandes et al. 2015). Many signaling of fungi enhanced the growth 
and development of plants (Al-Ani et al. 2020b). An example of endophytic fungi 
that is widely used is Piriformospora indica which can encourage its host plants to 
grow under conditions of biotic and abiotic stresses by facilitating nutrient uptake 
and modulation of phytohormone so that plants can grow well under various stress 
conditions (Johnson et al. 2014). Piriformospora indica has the ability to symbiosis 
with a wide range of crops such as Oryza sativa, Zea Mays, Triticum aestivum, 
Brassica campestris, and Saccharum officinarum (Johnson et al. 2014) so they can 
be utilized on a broad scale to support agricultural sustainability. Piriformospora 
indica which is inoculated with Glycine max significantly increases dry weight, 
nutrient content, resistance to abiotic stress, rhizobial biomass and stimulates posi-
tive interactions with rhizobia (Bajaj et al. 2018). Piriformospora indica also sym-
biosis with vegetable plants such as Solanum lycopersicum with a positive effect on 
increasing shoot and root biomass, fruit biomass, and decreasing Verticillium dahl-
iae attack in hydroponic culture (Fakhro et al. 2010).

Another endophytic fungus, Pichia guillermondii, is also able to increase plant 
growth, yields, and resistance to the biotic stress of its host plants such as tomato, 
citrus, and chili pepper (Basha and Ramanujam 2015; Sangwanich et al. 2013; Xia 
et al. 2019). Endophytic fungus, P. guilliermondii, has the potential to produce hel-
volic acid as an antimicrobial pathogen with strong inhibitory activity in the germi-
nation of Magnaporthe oryzae plant pathogenic spores with IC50 value of 7.20μg/
mL (Zhao et al. 2010). Thus, endophytic fungus such as Piriforspora indica and 
P. guilliermondii tend to be explored and used as inoculants because of their wide 
and unlimited range of host plants in symbiosis with only one agricultural crop.

As one of the main food plants in the world, rice plants are associated with vari-
ous kinds of endophytic fungi, one of which is Phomopsis liquidambari which has 
a function in promoting rice plants and reducing the use of nitrogen fertilizer (Yang 
et al. 2014). With the inoculation of P. liquidambari on rice plants, the activity of 
nitrate reductase and glutamine synthetase is increasing (Yang et  al. 2014). In a 
symbiotic relationship with rice plants, P. liquidambari can increase the content of 
organic compounds in root exudates, ammonia oxidizers and N-fixers in the rhizo-
sphere environment which has implications for increasing the level of nitrification 
and reducing the input of N fertilizer to increase rice productivity in a sustainable 
manner (Yang et al. 2015). Phomopsis liquidambari is also indicated to stimulate 
the mineralization of organic matter and NH4 + release (Chen et al. 2013). Phomopsis 
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liquidambari symbiosis with rice has the potential to degrade phenanthrene absorbed 
by plants through changes in the phenanthrene-degrading gene that correlates with 
the activity of phenanthrene-degrading enzymes in the roots of rice plants (Fu et al. 
2020). Phomopsis liquidambari in addition to symbiosis with rice plants is also 
associated with peanuts (Arachis hypogaea) with the ability to increase peanut 
yield, nodulation, and N2 fixation of Bradyrhizobium strains by increasing the 
expression of phenolic and flavonoid synthesis-related genes (Xie et al. 2019).

Apart from being a supplier or provider of nutrients for host plants, endophytic 
fungi can be considered as potential biological competitors against plant pathogenic 
fungi because they can live in almost all plant tissues from roots to leaves (Silva 
et al. 2018; Rojas et al. 2020), with the ability to inhibit the attack of plant patho-
gens through mechanisms such as the production of antimicrobial compounds and 
induce host plant resistance (Latz et al. 2018; Rojas et al. 2020). Its function is not 
only as a promoter for the growth of its host plant, but endophytes usually also have 
other abilities to make plants fit and resistant to pests and plant diseases. Such sym-
biosis occurs in wheat plants with various endophytic fungi with Sarocladium stric-
tum, Anthracocystis floculossa, A. floculossa, and Penicillium olsonii which have 
the potential to control Fusarium head blight caused by many Fusarium spp. espe-
cially Fusarium graminearum so that wheat plants can continue to produce even if 
they are attacked by these pathogenic fungi (Rojas et al. 2020). Endophytic fungi of 
wheat plants can also be used as bioremediators of heavy metal contamination such 
as endophytic fungi, Penicillium ruqueforti which are inoculated in wheat plants 
grown in soil contaminated by Ni, Cd, Cu, Zn, and Pb have a positive effect on plant 
growth, nutrient uptake, low heavy metal concentrations in plant biomass through 
the production of indole acetic acid (IAA) so that it has the potential as phytostabi-
lization of heavy metals (Ikram et al. 2018). Endophytic fungus, Serendipita indica, 
can stimulate the growth of sweet basil (Ocimum basilicum) in lead- and copper- 
contaminated soils and even increase concentrations of linalool and eucalyptol 
essential oils in these plants (Sabra et  al. 2018). Endophytic fungus, Mucor sp., 
which are inoculated in Brassicaceae such as Arabidopsis arenosa stimulate higher 
N uptake and show significant catalase activity under heavy metal stress conditions 
such as Zn, Cd, and Pb (Domka et al. 2019). It could enhance the crop production 
by microbial technologies (Aguilar-Marcelino et al. 2020a).

Endophytic fungus, Epicoccum nigrum, is a fungus that has a diverse host plant 
(Lugtenberg et al. 2016). Endophytic fungus, E. nigrum, can increase the growth of 
potato plants, tuber production, reduce the severity of blackleg disease through a 
mechanism of increasing phenolic content, superoxide dismutase, catalase, ascor-
bate peroxidase, and glutathione peroxidase (Bagy et  al. 2019). The symbiosis 
between Epicoccum nigrum and sugar cane can increase the root system biomass 
and control the pathogen in the phylloplane environment (Fávaro et  al. 2012). 
Epicoccum nigrum associated with Zingiber officinale produces antimicrobial com-
pounds that suppress the attack of plant pathogenic fungi, Ustilago maydis by pro-
ducing Pretrichodermamide A (Harwoko et  al. 2019). Epicoccum nigrum also 
symbiosis with fruit plants such as grapevine (Vitis vinifera) with potential as a 
growth booster and controlling pathogens (Martini et al. 2009).
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Another genus of fungi known as endophytic fungi is Acremonium such as 
Acremonium zeae which is symbiotic with corn plants that can function as biocon-
trol of Aspergillus flavus and Fusarium verticillioides. In addition to this, endo-
phytic fungi can produce Pyrrocidine A that showed a high activity against Candida 
albicans (Wicklow et  al. 2005). Endophytic fungi, Acremonium ochraceum, and 
A. strictum reduce Fusarium wilt incidence and severity in tomato plants by increas-
ing resistance to the disease (Grunewaldt-Stöcker and von Alten 2003). Acremonium 
sp. is symbiotic with Panax notoginseng by colonizing the roots, increasing resis-
tance to root rot, saponin, indole acetic acid, and jasmonic acid (Han et al. 2020). 
Acremonium spp. also symbiotic with date palm plants with their antagonistic abil-
ity against Fusarium oxysporum f.sp. albedinis by reducing attacks by 87% (El-Deeb 
and Arab 2013). Secondary compounds of endophytic fungi can reduce the growth 
and development of plant pathogens (Al-Ani 2019a, b). The discoveries of patents 
of endophytic fungi and Trichoderma were very interesting (Al-Ani 2019c, e).

Based on the description above, endophytic fungi have the potential to have a 
symbiotic relationship with various crops with a positive impact. Endophytic fun-
gus originating from Curcuma longa namely Trichoderma harzianum can suppress 
rhizome rot and leaf blight diseases caused by Pythium aphanidermatum and 
Rhizoctonia solani (Vinayarani and Prakash 2018). Trichoderma harzianum can 
induce maize plants resistant to maize chlorotic mottle virus (SCMV) (Kiarie et al. 
2020). Penicillium simplicissimum and Leptosphaeria sp. derived from cotton roots 
can suppress the incidence and index of Verticillium wilt disease that occurs in cot-
ton plants both in greenhouse and field experiments and even increase cotton pro-
duction so that endophytic fungi are potential as biocontrol agents (Yuan et  al. 
2017). Trichoderma and non-pathogenic Fusarium produced several volatile com-
pounds affecting FocTR4 (Al-Ani and Salleh 2010; Al-Ani et al. 2013a, b; Al-Ani 
and Albaayit 2018a, b). Trichoderma showed the ability in controlling plant dis-
eases such as leaf diseases, root diseases, stem diseases, and fruit diseases (Al-Ani 
and Mohammed 2020; Sharma et al. 2019).

The multifunctional potential of endophytic fungi to support agricultural sustain-
ability needs to be explored and formulated to produce inoculants that can be uti-
lized to promote sustainable agriculture production because it will reduce the use of 
various agricultural agrochemicals such as inorganic fertilizers and pesticides 
(Santos et al. 2012; Mahanty et al. 2017; Rana et al. 2019c). Appropriate inoculation 
technology in stimulating symbiosis with target plants needs to be assessed so that 
their use is right on target, especially for field applications. The use of biological 
fertilizer based on endophytic fungi is very important to mitigate the negative 
impacts of environmental change of agrochemical application because its use is fol-
lowing environmentally friendly rules that have an impact on the restoration of envi-
ronmental conditions, especially degraded land into an environment that can be 
utilized for sustainable agricultural cultivation (Singh et al. 2011). Besides, the use 
of biological fertilizer based on endophytic fungi is expected to increase the effec-
tiveness and efficiency of the use of biological fertilizers because it is expected to be 
applied once at the beginning of plant growth and can still live in its host plant tissue 
even though it is moved to various places in the field (Rana et al. 2020b). Indeed, 13 
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fungi genera that classified into two big groups Ascomycota and Basidiomycota 
(the classification can advantage from Wijayawardene et  al. (2020)) comprised 
Trichoderma, Pestalotiopsis, Curvularia, Cladosporium, Phomopsis, Chaetomium, 
Penicillium, Phoma, Alternaria, Fusarium, Colletotrichum, Aspergillus, and 
Diaporthe that more endophyte could modify in the chemistry of the medicinal 
plants (Al-Ani 2019f).

1.7  Edible and Inedible Mushroom

Wild mushrooms have been part of the human diet for several centuries due to their 
nutritional and organoleptic characteristics: taste, texture, and smell (Román et al. 
2006). Likewise, the medicinal use of mushrooms has a long history in countries 
such as China and Japan, where for thousands of years there has been an inherited 
tradition that considers the consumption of mushrooms beneficial to health. In addi-
tion to being recognized as a nutritious food, some fungi are also an important 
source of bioactive compounds with medicinal potentials, such as phenolic com-
pounds, sterols, and triterpenes (Wasser 2010).

Furthermore, the scientific understanding of edible and non-edible fungi present 
in our environment is increasing. This is not only from a nutritional and medicinal 
point of view, but also related to the role they can play when used as an alternative 
to chemical pesticides and other toxic substances. This role contributes to the devel-
opment of sustainable agriculture, which helps to improve environmental quality, 
economic output, and human life.

In recent decades, there has been an enormous increase in the use of agrochemi-
cals worldwide to maximize food production for a rapidly growing human popula-
tion (Campos et  al. 2019). Regarding the above, Geiger et  al. (2010) stated that 
during the last 50 years, agricultural intensification led to the extinction of many 
species of wild plants and animals, which has profoundly changed the functioning 
of agroecosystems, since agricultural intensification involves the loss of elements of 
the landscape the enlargement of farms and excessive use of fertilizers and pesticides.

Unfortunately, the indiscriminate use of and excessive dependence on synthetic 
pesticides in agriculture has led to the accumulation of residues toxic to human 
health, the environment, and the development of strains resistant to pests and patho-
gens (Lengai et al. 2020). Furthermore, pesticides affect soil enzymes, which are 
essential catalysts that govern soil quality (Campos et al. 2019). Given these chal-
lenges, there is a greater interest in using alternative substances to synthetic agro-
chemicals that present a lower risk to the environment and human health, producing 
more food in a clean and sustainable way.

The use of chemical fertilizers can be reduced by applying mycopesticides in the 
field, where this type of control quickly destroys most insects and focuses on reduc-
ing disease and damage to crops (Manivel and Rajkumar 2018). In response to the 
growing market for these biopesticides, it must be ensured that they are available in 
sufficient quantities and that they maintain quality and effectiveness over time, 
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which requires the development of economical and efficient production methods 
(Jaronski and Mascarin 2016). Most of the fungi produced commercially for bio-
logical control belong to the Order Hypocreales. These include Beauveria bassiana, 
Metarhizium spp., Isaria fumosorosea, and Lecanicillium spp., which are used for 
pest control in various crops (Lacey 2017). An advantage of micropesticides com-
pared to many bacterial and all viral biopesticides is that they do not need to be 
ingested to exert their biocontrol action.

Another alternative is mycoremediation, a form of bioremediation in which 
fungi are used to break down toxic compounds, including chemical pesticides. A 
large number of fungal species have demonstrated incredible abilities to degrade a 
growing list of hazardous toxic industrial waste products and chemical pollutants to 
a less toxic or non-toxic form (Prakash 2017). Its application falls into two catego-
ries: in situ and ex situ, where in situ methods treat contaminated soil where it is 
located, while ex situ processes require excavation of the contaminated soil before 
they can be subjected to bioremediation. The most used fungi as microremediators 
are: Pleurotus ostreatus, Rhizopus arrhizus, Phanerochaete chrysosporium, P. sor-
dida, Trametes hirsuta, T. versicolor, Lentinus tigrinus, and L. edodes (Purohit et al. 
2018). In this sense, the edible species of the genus Pleurotus are considered the 
most popular and widely cultivated varieties around the world, since they not only 
stand out for their nutritional and therapeutic properties, but also for their high bio-
sorption potential due to their extensive biomass, accumulating high levels of heavy 
metals (Kapahi and Sachdeva 2017).

The use of microremediation methods for the protection of plants reduces the 
need for the use of pesticides; consequently, research in decontamination processes 
is essential to find a solution to some of the environmental problems caused by toxic 
residues generated by human activity. In addition, it is clear that to avoid an even 
worse scenario, large-scale changes must occur in the way industries and the popu-
lations manage and carry out their activities (Pavlovskaia 2014). The degradation of 
many substrates, including those that are toxic, can be achieved through the metabo-
lism of fungi, key organisms for sustainable agriculture in the future.

1.8  Mycoherbicidal

Weeds are unnecessary plant growth among important crops without human inter-
vention. In nature, many fungi could affect on these weeds. Some fungal pathogens 
can utilize biocontrol weeds as an alternative of chemical herbicides (Al-Ani et al. 
2020a). Phytophthora palmivora showed the ability to control the weed Morrenia 
odorata that grow in Florida (Charudattan 2005). Waipara et  al. (2005) detected 
three plant pathogens Colletotrichum gloeosporioides, Phomopsis sp., and 
Sclerotinia sclerotiorum possibly used against weeds. Alternaria conjuncta and 
Fusarium tricinctum are plant pathogens for dodder (Hopen et al. 1997). Fusarium 
tricinctum is used to biocontrol against two weeds Cytisus scoparius (Broom) and 
Ulex europaeus (Gorse) (Morin et  al. 2000). Fusarium oxysporum infected and 
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controlled Cannabis sativa (Tiourebaev et  al. 1999). Colletotrichum dematium, 
Phomospsis amaranthicola, and Alternaria cassiae showed high efficacy in control-
ling three weeds Crotalaria spectablis (Showy crotolaria), Amaranth spp. (Pigweed), 
and Senna obtusifolia (Sicklepod) (Chadramohan et al. 2002).

However, fungal metabolites are a good mechanism affecting the physiology of 
weeds and growth. Fungi can produce many types of mycotoxins that affected on 
organisms such as weeds. The plant pathogens for weeds can produce several phy-
totoxins affecting on plant metabolisms (Walton 1996). Some fungi produced phy-
totoxins affecting the processes of weed physiology (Cimmino et  al. 2015a, b). 
Fusarium tricinctum produced tricothecenes (Morin et al. 2000). Ascochyta caulina 
could produce three herbicidal toxins included Ascaulitoxin, ascaulitoxin aglycone, 
and trans-aminoproline (Vurro et  al. 2012). Two fungal pathogens including 
Ascochyta caulina and Phoma chenopodiicola can control weeds of Chenopodium 
album by producing phytotoxins (Cimmino et al. 2014). The metabolites of three 
fungi such as Drechslera biseptata, D. australiensis, and D. holmii affected on plant 
vigor of weed Rumex dentatus L. by reducing the shoot biomass, seed germination, 
and root biomass (Akbar and Javaid 2013). Aspergillus sp. produced many myco-
toxins (Attitalla et al. 2010a, b). The culture filter of two Aspergillus species A. fla-
vus and A. parasiticus showed herbicidal activity and affected the root and shoot of 
weed Parthenium hysterophorus (Javaid et al. 2014). Cochliotoxin (new phytotoxin) 
was produced by weed fungal pathogen Cochliobolus australiensis showing high 
activity toxicity against buffelgrass (Masi et al. 2017). Bioproducts of mushroom 
have more effect on plant pathogens (Castañeda-Ramírez et al. 2020).

1.9  Conclusion

Fungal showed capability importance for general health and our environment. The 
beneficial fungi possessed very interesting mechanisms that must be utilizeed as 
possible in agriculture sustainability. The useful fungi are determined according to 
some features such as producing secondary metabolites, and enzymes, as well as, 
other mechanisms. These mechanisms have very clear efficiency for controlling 
plant enemies in the fields. The prevalence of useful fungi is very wide in soil and 
rhizosphere that indicates the ability for providing nutrients important for plant 
growth and development. The capability of useful fungi can degrade the complex 
elements to be available and easy absorption by the plant roots. This case can pre-
pare nutrients for the plant which is leading to useful interaction between plant and 
fungi by excretion nutrients for fungi. Some useful fungi increase the surface of the 
root that reflects an increase of absorption for nutrients.

Therefore, it must use molecular technologies such as PCR, DNA sequencing, 
DNA microarrays, RT-PCR, and cytogenetic methods to study the feature of the 
genome for useful fungi. Many analyses such as GC-MS/MS, HPLC-MS/MS, 
IM-MS, IT-MS, UPLC-MS/MS, NMR, Hs-SPME, FTIR, Proteomic, and 
LC-MS-MS can be utilized to determine the secondary compounds, 
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phytohormones, and enzymes that are more useful to producing biofertilizers and 
biopesticides. The usage of two or three methods is necessary for detecting some 
important characteristics of some useful fungi which can select isolate containing 
more interesting properties to be a strain. In this case, we can utilize this strain in the 
manufacture of biopesticides, or biofertilizers, or both of them.

Indeed, the detection of new useful fungal strains showing high efficacy in con-
trolling plant pathogens, pests, and weeds for exploitation is a requirement. We 
must work on developing the fungal metabolites and utilizing the mycotoxins 
target- specific toxicity as compounds to target weeds, pests, and nematodes by 
improving bioherbicidal, biopesticides, and nematicidial. Finally, the wide study on 
the benefit of fungi is more necessary to reach the levels possible for an alternative 
to the synthetic chemical used in the manufacture of pesticides. The interesting role 
of useful fungi is to save our environment from the residue of chemicals that poten-
tial can detect in food and feed, as well as, damages for the ecosystem generally. 
The influence of synthetic chemicals is increasing through appearing resistance into 
the plant pathogens, weeds, and pests against chemical pesticides. But we must don 
ot forget the efforts made in using the biological factors but did not reach the 
required level. The possible is using useful fungi as biological factors around 99% 
as an alternative to the chemical pesticides in the ecosystem, that will lead to empty 
environment of residue of synthetic chemical. 
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2.1  Introduction

Arbuscular mycorrhizae (AM) are geographically ubiquitous soil-borne microor-
ganisms that establish a mutualistic symbiosis with the vast majority of terrestrial 
plants. They develop symbiotic mutualisms with roots of about 70–90% of vascular 
plant species (Smith and Read 2010). AM fungi are the members of an ancient phy-
lum, Glomeromycota. They are the most abundant type of fungi found in the soil 
contributing 5–36% of the total soil biomass and about 9–55% of the soil microbial 
biomass (Olsson et al. 1999). AM fungi are obligate biotrophs, which need a host 
plant to complete their life cycle (Bago and Bécard 2002). However, the real 
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mechanisms of their occurrence, diversity and dispersal under natural conditions are 
still obscure. The significance of mycorrhiza in sustainable agriculture has been 
established already several years ago, but the importance of these in the level of 
application was recognized only recently. AM fungi play a pivotal role in enhancing 
plant growth and fostering plant diversity. They also improve soil structure by form-
ing extensive networks of hyphae in the soil. Therefore, AM fungi are important in 
organic farming systems and other sustainable agriculture practises. The sustain-
ability concept in agriculture focus on increasing the productive capacity of the soil, 
to efficiently recycle the nutrients and organic matter and to minimize the required 
energy and resources. Sustainability demands effective utilization of nutrients by 
plants. This process can be facilitated through mycorrhizal associations (Jeffries 
and Barea 2001).

In plant-AM fungi association, a bidirectional trade of nutrients takes place 
between plant and AM fungi through extensively branched haustoria, termed arbus-
cules. The plant supplies up to 20% of carbon to the AM fungi from its fixed photo-
synthates, while AM fungi support the plant for the uptake of water, phosphates and 
other mineral nutrients available in soil. The development of AM fungi is accompa-
nied by novel class of plant hormones, known as strigolactones, which act as the 
signalling molecule between the symbionts. Strigolactones produced by the plant 
root stimulate metabolism and branching in AM fungi, which in turn initiates the 
symbiotic association. AM fungi also play a key role in increasing host plant’s resis-
tance to root pathogens and tolerance to abiotic stresses (Smith and Gianinazzi- 
Pearson 1988). Mycorrhizal symbiosis is a keystone to plant diversity and 
productivity as they influence nearly all metabolic processes of the plants (Bonfante 
and Genre 2015). Owing to their diverse functionality and host benefit interaction, 
utilizing mycorrhizal inoculants in sustainable agriculture and forestry has major 
potential for maintaining plant growth and development.

2.2  Characteristics of AM Fungal Symbiosis

In the rhizosphere, AM fungi live in symbiosis with plant roots, forming intra- 
radical (hyphae, arbuscules, vesicles) and extra radical (hyphae, spores) structures. 
They are one group of the beneficial soil mycobionts associated with plants that 
colonize roots and form the mycelial network to facilitate nutrient uptake and plant 
growth. The benefits acquired through AM-plant symbiosis can be physiological, 
nutritional or ecological. AM fungi have been widely utilized in agriculture, vegeta-
tion restoration and horticulture for around two decades. Mycorrhizal network, also 
termed as common mycorrhizal network (CMN), is one of the primary element of 
terrestrial ecosystem, which has substantial effect on different plant communities, 
especially on invasive plant species such as Lythrum salicaria (Pringle et al. 2009). 
The host plants get rewards of symbiosis based on the identity of AM fungal species 
(Facelli et al. 2010; Hoeksema et al. 2010). In plant-mycorrhizal symbiosis, fungal 
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hyphae in the rhizosphere reach out in the soil and transport phosphorous, nitrogen 
and other essential nutrients to the plants (Yadav et al. 2020c).

AM fungi improve plants tolerance to different stress environments which may 
be biotic or abiotic via beneficial changes in their morphological and physiological 
traits (Feddermann et  al. 2010; Hashem et  al. 2015; Plassard and Dell 2010). A 
major challenge faced by the mycorrhizologist is to understand the signalling mech-
anisms and the colonization process of the extremely symbiotic AM fungi towards 
its host plants. AM fungi cannot be cultured in the absence of a host plant and that 
is the reason why they are often known as obligate biotrophs, which always need 
symbiotic relation with its host plant to complete its life cycle. It is an accepted fact 
that during the long run of evolution, AM fungi lost some of its carbon-fixing capa-
bilities and the genetic machinery that supports their symbiotic relationship with the 
plants and became completely dependent on the host plant for a fixed carbon supply. 
A pragmatic evidence for this hypothesis is still lacking, but several indirect 
approaches to the study of this relationship have been developed. AM fungi are 
natural biofertilizers in soil as they nurture the growth of many terrestrial plants. 
Furthermore, AM fungi-enriched soil is remarkably more fertile and forms constant 
masses with significantly higher extra-radical fungal mycelium. Glomalin-related 
soil protein (GRSP), which is found abundantly in hyphae and spores of AM fungi, 
that helps to sustain the water content in soil subjected to diverse stress conditions 
which in turn regulates water frequencies between plants and soil thus triggers the 
plant growth and development (Wu et  al. 2014). Glomalin and its relative com-
pounds protect the soil from dehydration by enhancing soil aggregation and thus 
augmenting the water holding capacity in soil (Sharma et  al. 2017). Therefore, 
researchers encourage the use of AM fungi as biofertilizers in sustainable crop 
improvement (Barrow 2012). Upon AM fungi inoculation, plant growth related 
functions such as photosynthesis, uptake of water and CO2 assimilation increases 
(Chandrasekaran et al. 2019).

An ecologically important association is detected in the rhizosphere between 
leguminous plants and rhizobia. This mutualistic relation is induced by a fungal fac-
tor called Myc, which is analogous to the rhizobial signalling molecules such as 
Nod factor. Myc factors are the AM fungal signals that stimulate and establish AM 
symbiosis in leguminous and other mycotrophic plant species. However, it is still 
unclear whether the Myc factors are induced by plant root generated strictolactones. 
Besides acting as stimulators of AM fungal symbiosis, Myc factors function as plant 
growth regulators (Maillet et al. 2011). Myc factor has been considered the ideal 
candidate for biofertilizers in green technology applications. For example, legumi-
nous seeds treated with Myc factor and Nod factors increased yields of crops such 
as pea, alfalfa and soybean. Compared to Nod factors, Myc factors have much broad 
spectrum of activity that results in the form of improved mycorrhization in plant 
roots, which in turn facilitate a better uptake of water and nutrients and resistance to 
various stresses by the host plant. For large-scale application, an efficient synthesis 
and production of Myc factors by bacteria has already been developed (Maillet et al. 
2011). In order to implement the Myc factors in agriculture, a detailed investigation 
is needed to understand the biological activity and specificity of Myc factors on the 
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host plant, as well as the optimal conditions required for its application (López- 
Ráez and Pozo 2013).

2.3  Taxonomy/Phylogenetic Classification

Mostly, AM fungi form deep monophyletic branches within the fungi and are very 
diverse that they are ranked with a taxonomic phylum, Glomeromycota, which cur-
rently comprises of approximately 200 species distributed among 14 genera 
(Schüβler et  al. 2001; Stürmer 2012). The phylum Glomeromycota contains all 
known AM fungi which are co-evolved with their host plants, which originated in 
the terrestrial habitat during the Ordovician period more than 430 million years ago. 
Molecular studies performed later in the 1990s validated the finding that the AM 
fungi originated at a time between the Ordovician and the Devonian period 
(Helgason et al. 2007; Simon et al. 1993). Excitingly, the mycorrhizal association 
existed before plants had evolved its true roots (Bonfante and Selosse 2010). 
According to the phylogenetic analyses of SSU ribosomal RNA gene sequences, 
AM fungi have been moved from the Zygomycota to a new phylum Glomeromycota 
(Schüßler and Christopher 2011). The conventional taxonomy of AM fungi works 
on the basis of its morphological features of the hyphae, spores and the layers of the 
cell wall (Morton and Msiska 2010). However, the evaluation of the actual distribu-
tion patterns of Glomeromycota assemblages in all ecosystems requires further 
scrutiny (Lee et al. 2013).

Recent revolutions in the molecular techniques have enabled re-evaluation of the 
taxonomy and systematics so that many robust classifications of AM fungi have 
been introduced. New classification systems are introduced based on morphological 
and ontogenic characters of AM fungal spores, as well as consensus nucleotide 
sequences (SSU, ITS, LSU, β-tubulin and nrDNA) (Błaszkowski et al. 2014; Oehl 
et al. 2011). Based on the latest classification, the phylum Glomeromycota comprise 
of four orders (Diversisporales, Archaeosporales, Paraglomerales and Glomerales), 
which consist of 11 families, 25 genera and approximately 250 species (Redecker 
et al. 2013). Goto et al. (2012) proposed a new classification based on combined 
molecular and morphological studies. Recent studies of root samples using next- 
generation sequencing indicate that the number of species may be several magni-
tudes higher than what is known to date (Chen et al. 2018).

2.4  Beneficial Aspects of AM Fungi

Various benefits acquired by plants establishing symbiotic association with AM 
fungi are mainly due to the well expanded extra radical mycelium produced by AM 
fungi, which take up the nutrients and other essential elements from the rhizosphere 
zone within the bulk soil and transfer it to the host plant root in exchange for carbon 
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(Rastegari et al. 2020a, b; Yadav et al. 2020c). Compared to plant root hairs, AM 
hyphae are longer and thinner, which help them to move greater distances from the 
root and to get into soil pores which are unreachable to plant root hairs. It has been 
estimated that for each centimetre of colonized root by AM fungi, there will be an 
increase in the volume of soil explored by 15 cm3. This value can increase up to 
200 cm3 depending on the environmental factors involved (Sieverding et al. 1991). 
The ratio of the length of AM fungal hyphae to that of roots in soil is expected to be 
100:1 or greater (George et al. 1995). With effective colonization of AM fungi in the 
plant roots together with the ability of extra radical mycelium to transport nutrients 
is one of the well-known advantage of mycorrhizal formation, especially those 
nutrients (e.g. phosphorus) that have mobility limitations in soil. In addition, the 
extra radical hyphae provide greater stability of soil structure by enmeshing soil 
particles and by producing substances that bond soil particles together. AM fungi 
contribute substantially to the formation and aggregation of smaller soil particles 
into larger macro-aggregates (Rillig and Mummey 2006).

AM fungi provide many other benefits to host plants other than nutrient acquisi-
tion. These include stress alleviation to abiotic and biotic factors, such as patho-
genic tolerance, water stress, drought, tolerance to toxic heavy metals, pH, salinity 
and adverse temperature (Singh et al. 2020; Singh and Yadav 2020). AM fungi asso-
ciation increases the efficiency of N fixation by legumes and a better plant perfor-
mance following transplantation shock (Campanelli et al. 2013; Chen et al. 2018; 
Meddad-Hamza et  al. 2010). AM plants show physiological and morphological 
changes, especially when they are growing in stressful conditions. This results in 
the form of modifying some essential growth regulators, such as indole-3-acetic 
acid (IAA), indole-3-butyric acid (IBA) and jasmonic acid, that help the host plant 
to have a better adaptation and homeostasis with the changing environmental condi-
tions (Cameron et al. 2013; Foo et al. 2013). Reports state that even with a weaker 
AM fungi colonization, gene expression in plants can be altered. For an example, 
with a very weak AM fungal colonization, the mechanism involved in the expres-
sion of inorganic P (Pi) transporters get changed (Poulsen et al. 2005). Studies sug-
gested that there will be an increase in the average yield of the crop plants upon 
increased AM fungal colonization (McGonigle and Fitter 1988).

2.5  Commercial Application of AM Fungi

The beneficial attributes of AM fungi have raised the possibility of their commercial 
application. In the last few decades, AM fungi market has increased and diversified 
with more patented products becoming available (Devi et al. 2020). Globally, the 
leading producers are located in the United States, China and India. In the last 
decade, the Indian market has seen remarkable progress in biofertilizer production 
(Chen et al. 2018). The European market is the leading marketplace for mycorrhizal- 
based biostimulants. As per surveys, the companies involved in producing and mar-
keting AM fungi products are growing every year. In 1990s, the number of companies 

2 Arbuscular Mycorrhizal Fungi: Interactions with Plant and Their Role…



50

selling AM fungi products was 10; it has reached to 75 firms in 2017. The main 
areas of AM fungi application include agriculture, landscaping, forestry, horticul-
ture, restoration of degraded land, soil remediation and research. Sometimes mycor-
rhizal inoculants are available in the form of mixed inocula, which have different 
strains of AM fungi and rhizobacteria or PGPR (Kour et  al. 2019). The cost of 
mycorrhizal inoculation for potato field was estimated to be $135 per hectare in the 
United States (Hijri 2016). AM fungi inocula are nowadays utilized as biofertilizers 
for sustainable agriculture applications, but a larger volume of inocula production is 
possible only through conventional pot culture methods. AM inocula are available 
as spores, root fragments of plants colonized by AM fungi, or the combination of 
the two or by the incorporation of mycelium. The cultured or isolated inocula are 
usually mixed with a carrier material in either solid or liquid form and applied 
directly to the soil or plants. Mostly used carrier materials include perlite, clay, 
sand, vermiculite, soilrite and glass pellets.

Other alternative methods for AM inocula production include soil-free aeropon-
ics systems (Jarstfer and Sylvia 1995), nutrient film (Elmes and Mosse 1984) and 
root organ culture (Mugnier and Mosse 1987), though they are not cost-effective, 
and large-scale production with them is poorly developed. Though AM fungi have 
been reported as excellent biofertilizers, their large-scale production and inocula-
tion are not practical and achievable for a large-scale agriculture application because 
they are strictly produced by conventional pot culture method. The application has 
been limited more on the production of high-value nursery stocks, gardening prac-
tices and research purposes. Another aspect is the need for diverse communities of 
AM fungi in the product, as different species perform differently in the soil upon 
inoculation. This again influenced by various environmental conditions. Furthermore, 
research evidence suggests that different species of AM fungi vary in their ability to 
increase the crop yield and nutrient transport to its host plant (Rai 2006).

2.6  Significance of AM Fungi in Natural Habitats

The degree to which a plant benefits from AM fungal symbiosis mainly depends on 
the environmental conditions. AM fungi have always been considered important 
plant symbionts in natural habitats with poor soil conditions. Plant root cells with 
arbuscules receive more nutrients due to considerably increased contact surface 
(Alexander et  al. 1989). Another way to absorb nutrients is through AM fungal 
hyphae networks. The AM fungi-colonized plants seem to develop special pathways 
and mechanisms to improve their nutrient uptake. Therefore, it is likely that the 
plants with AM fungi symbiosis thrive better than the non-AM plants in habitats 
with low nutrient contents. Phosphorus is one of the main nutrients, that is made 
available for plants in the form of phosphate via AM fungi symbiosis (Karandashov 
and Bucher 2005; MacLean et al. 2017). Studies have shown that apart from phos-
phorus, other nutrients are being transferred to plants via AM fungal symbiosis. 
Although the mechanisms and pathways of phosphate transfer are well studied, 
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more information is needed to understand how AM fungi help plants in acquiring 
the necessary nutrients such as potassium (Garcia and Zimmermann 2014), nitrogen 
(Correa et al. 2015), sulphur (Casieri et al. 2012), and some micronutrients like as 
zinc (Smith et al. 2010) and Fe (Ouledali et al. 2018). Therefore, AM-associated 
plants in natural habitats with low nutrient availability have the advantage of easier 
access to nutrients compared to non-AM associated plants (Yadav et al. 2020a, b). 
When it comes to competition over the resources, AM-associated plants might have 
a better survival rate.

Under natural conditions, plants are always subjected to various environmental 
stresses, which have negative impact on plant growth and development and it often 
leads to a threat on their survival (Ruiz-Lozano 2003). AM fungi have been found 
in various environments. It is believed that apart from the nutrient exchange, they 
could assist plants in surviving some environmental stress such as salinity or drought 
in arid and semiarid areas. In arid lands, when plants are under stress due to low 
water availability, they undergo anatomical, physiological and metabolic adapta-
tions (Bray 2004; Rossi et al. 2013). Some plant species evolved in the land to avoid 
drought while others tolerate it through certain dodges. In this respect, AM fungi 
play a crucial role in plants to develop tolerance to drought via root symbiosis 
(Rapparini and Peñuelas 2014). In such symbiosis, host plants attain an integrative 
drought response by achieving either a tolerance or avoidance strategies, which help 
the host plant to well adapt with the situation (Ouledali et al. 2018; Rapparini and 
Peñuelas 2014; Ruiz-Sánchez et al. 2010). AM fungi can enhance drought resis-
tance of their host plants through affecting the physiological nutrient uptake, hor-
mone balance, osmotic adjustment and antioxidant systems (Wu and Zou 2017). P 
nutrition enhancement (Bethlenfalvay et  al. 1988; Sweatt and Davies Jr 1984), 
increasing water uptake capacity by hyphae (Zou et  al. 2015), and longer roots 
(Bryla and Duniway 1997) in AM-associated plants are additional AM benefits 
assisting them in overcoming drought stress. In general, plant growth strongly gets 
affected by drought, while AM fungi symbiosis significantly mitigates the negative 
effects of drought stress in plants. Recent studies show that AM fungi are more 
common in drier/non-irrigated soils compared to irrigated soils in certain plant spe-
cies (Landolt et al. 2020). It is believed that in root, microbial symbiosis, such as 
AM, could be the most important factor in the resistance of some tree species to 
drought (Calvo-Polanco et al. 2016).

Several studies have investigated the role of AM fungi symbiosis in saline envi-
ronments (Pan et al. 2020; Sonjak et al. 2009; Wang et al. 2004). Presence of excess 
salt in the soil affect the water and nutrient uptake efficiency of plants resulting in 
disrupting the distribution of ions channels at the cellular level. This will create an 
osmotic and ionic imbalance in the plant cells and thus negatively influence the 
plant growth mechanisms (Saxena et al. 2017). Adaptations to high levels of salinity 
in AM fungi-colonized plants include improvements in host photosynthetic poten-
tial, water use efficiency, nutrition and tolerance to ion toxicity, as well as several 
metabolic adaptations. The metabolic adaptations facilitated by AM fungi include 
higher K+/Na+ ratios in host tissues, improved maintenance of ion homeostasis and 
the accumulation of essential amino acids such as glycine, proline, betaine or 
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soluble sugars that improve osmotic adjustment (Porcel et  al. 2012). Thus, AM 
fungi found in natural saline environments could help with plant salt resistance in 
agricultural plants as well. Being the most severe abiotic stress, soil salinity affects 
the plant growth and production worldwide. Therefore, the application of such fungi 
could be of importance regarding crop production in saline environments. Similarly, 
AM fungi symbiosis offer temperature stress resistance in host plant via increasing 
its nutrient and water uptake efficiency, improving the photosynthetic capacity, 
increasing the osmolyte accumulation and reducing the oxidative damage by pro-
ducing more secondary metabolites (Zhu et al. 2017). These changes could help the 
host plant to overcome stress caused by temperature extremes. AM fungi could also 
have alleviating effects on heavy metal stress in plants growing in the polluted habi-
tats. This adverse effects caused by elevated levels of heavy metals can be mitigated 
by increased water and nutrients uptake and production of plant hormones, changes 
to root activities, including heavy metal uptake, or indirectly via interactions with 
the other soil microbes (Garg and Pandey 2015; Miransari 2010; Miransari 2017; 
Vangronsveld et al. 2005).

The success of host plant survival under harsh and stressed environment depends 
on the AM fungi habitat adaptation and co-evolution with its host plants (Meharg 
and Cairney 1999; Querejeta et al. 2006). Plants that do not have the adaptive mech-
anisms to survive the environmental stress are more likely to depend on AM fungi 
symbiosis for survival. For example, in a recent study conducted by Pan and co- 
authors (Pan et al. 2020) indicated that glycophyte plants are more dependent on 
AM fungi symbiosis than halophyte plants to tolerate the saline environments. 
Interspecific differences in the tolerance of AM fungi to environmental stress and 
their different reaction to the stress when forming symbiosis with different plant 
species highlight the importance of AM fungi studies in the natural environments. 
Indeed, AM fungal diversity and composition are significantly affected by the envi-
ronmental variables such as plant community composition (Krüger et al. 2017) and 
functional groups (Gui et al. 2018), climatic changes (Xiang et al. 2016), properties 
of the soil (Abdedaiem et al. 2020; Carballar-Hernández et al. 2017; Gai et al. 2012; 
Yang et  al. 2016), as well as practices used in management (Binet et  al. 2013; 
Borriello et al. 2012; Higo et al. 2013; Lu et al. 2018; Uibopuu et al. 2009). These 
changes in the AM fungi community could lead to substantial changes in their 
effects on plant communities. Understanding the factors affecting the AM fungi 
communities in different habitats is essential to understand and predict their role in 
ecosystem services under future climate changes and the consequences.

2.7  The Significant Role of AM Fungi on Crop Health

The AM symbiosis offers several benefits to host plants and their surrounding habi-
tats. They boost plant defence against soil pathogens, increase abiotic stress toler-
ance, heavy metal tolerance, and adaptation to climate changes (French 2017). 
During stress conditions, especially in drought, the stress tolerance in plants can be 
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increased by AM fungi symbiosis. This leads to a higher amount of sugar substances 
such as trehalose and mycose in the host plant tissues. Such substance improves the 
plant tolerance against biotic and abiotic stress by producing secondary substances, 
which in turn improve cellular structures, cell wall and lipid bilayers (Lunn et al. 
2014). Inoculation of vascular plants with ectomycorrhizal and AM fungi activates 
the production of trehalose in root cells of host plant (Müller et al. 1995), which 
improves the carbohydrate metabolism in plants via changing the amount of starch 
or sugar in the plant tissue (Wagner et al. 1986) and provides stress tolerance ben-
efits to the host plants via mutual symbiosis. For example, under extreme drought, 
the cells of the AM-associated plants have a better chance to become intact and 
return back to normal under favourable environmental conditions (Wingler 2002).

Studies show that AM fungi induced defence against bacteria, other pathogenic 
fungi, nematodes, and insects (Jung et al. 2012). This defence mechanism mostly 
results from increased plant secondary metabolism followed by the AM fungi sym-
biosis. Such secondary metabolites are alkaloids and phenolic compounds, which 
can be found in the trichomes and vacuoles of the AM-associated plants that can 
improve the plant tolerance against pathogens and insects (Champagne and Boutry 
2016). During a pathogenic attack, internal and external hyphae sense the pathogen 
metabolic compounds in the soil surrounding the roots. AM fungi then warns the 
host cell by producing short chitooligosaccharides (Cos) and lipo- 
chitooligosaccharides (LCOs) (Bonfante and Genre 2015; Zipfel and Oldroyd 
2017); this message then transmits from cell to cell in the host plant via 
plasmodesmata.

Another significant feature of AM fungi is heavy metal tolerance in crops. AM 
fungi have chitin and melanin compounds attached to the cell wall, which could 
form a chemical chain with the unfavourable elements in the rhizosphere soil around 
the roots (Eisenman and Casadevall 2012). The melanin compounds in fungi protect 
them from harsh environmental conditions (Zhdanova et al. 2000). A clear mecha-
nism behind the role of AM fungi in metal tolerance is unclear. It is believed that 
AM fungi use multiple mechanisms to immobilize metal ions. In the case of some 
ectomycorrhizae, these ions are stored in the cell wall, cytoplasm, and vacuole. It is 
suggested that AM fungi also alters the host metabolisms to respond to metal toxic-
ity. For example, Funneliformins mosseae increased the metallothioneins in the 
Festuca sp. plants that have been growing in a soil with high nickel contamination 
by transcription of the related genes (Shabani and Sabzalian 2016).

AM fungi are cosmopolitan in distribution and their diversity has been detected 
in all major ecosystems across the globe (Davison et al. 2018; Öpik et al. 2013). 
Some AM fungi isolates are reported to have restricted distribution in natural com-
munities (Rosendahl et al. 2009). The diversity of AM fungi is reported in arctic 
regions, deserts in the Arabic peninsula, tropical forest and even in the higher 
Himalayas (Al-Yahya’ei et al. 2011; Liu et al. 2011; Lovelock et al. 2003; Varga 
et al. 2015). The presence of cosmopolitan AM fungi species indicates that they are 
highly adaptable and have a great impact on the environment.

Another important service provided by AM fungi to both natural and agricultural 
systems may be the improvement of the soil structure. AMF hyphae which colonize 
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in and around the plant root form a dense hyphal network, which highly interacts 
with the soil particles due to increased surface that is in contact with the soil. The 
glycoprotein referred to as glomalin improves the soil structure by affecting the soil 
aggregates (Singh et al. 2013). Glomalin improves the soil quality, when it is pro-
duced by spores and hyphae of AM fungi in the roots and their surrounding soil. 
They act as a very stable carbon sink and decrease the organic carbon degradation 
via improving the soil aggregation, thus functioning as carbon sequestration in soil 
(Rillig et al. 2001). AM fungi also benefit plant growth via higher water retention 
capacity by improving soil qualities, especially for plants growing in arid/semiarid 
areas or soils with low water availability (Chen et al. 2018). Nutrient leaching is 
another major problem faced in agriculture, which results in loss of soil fertility and 
groundwater pollution (Cavagnaro et al. 2015). Inoculation with AM fungi improves 
soil structure and facilitates storage of nutrients in the aggregates of mycorrhizal 
soil, thus benefiting plant nutrient and water availability (Querejeta 2017). AM 
fungi also alter the available nutrient in the soil by creating closed nutrient cycles, 
which provide long-term soil fertility (Cavagnaro et al. 2015). The beneficial effects 
and the role of AM fungi in plant growth and development are depicted in the 
Fig. 2.1.

2.8  Application of AM Fungi in Agricultural 
and Horticultural Crops

Majority of the agriculture crops are found to be potential hosts for AM fungi, and 
inoculation with AM fungi increases their productivity and fitness (Begum et al. 
2019). AM fungi induce plant tolerance to environmental stress by interfering with 

Fig. 2.1 The beneficial role of AM fungi in plant growth and development
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phytohormone balance. AM fungi absorb and translocate minerals from the soil lay-
ers that are out of plant root zone and alter the secondary metabolisms leading to 
better metabolic trait. AM fungi also increase the root development and surface 
absorbing capability of host plants (Paszkowski and Gutjahr 2013). AM fungi have 
been widely used in agriculture and horticulture field applications. The success of 
AM fungi application always depends on external factors, that is management strat-
egies such as weed control, pruning, ploughing and fertilizer usage (specially P), 
that interfere with AM fungi composition and colonization in the rhizosphere (Chen 
et al. 2018), as well as on the selection of an effective strain of AM fungi and the 
host plant (Njeru et al. 2015). In addition, selecting the ideal AM fungus is impor-
tant for every crop (Njeru et  al. 2015; Rouphael et  al. 2015). The adaptation of 
plants produced by cuttings and micropropagation is a critical task in horticulture. 
Most horticulture practices involve sterile in vitro micropropagation production, but 
during the time of weaning, it can cause large losses. AM fungi inoculation is found 
to be an alternative solution to improve plant growth and nutrient uptake during the 
early stages, which results in larger products with higher commercial values 
(Schubert and Lubraco 2000). Many studies have reported the significance of AM 
fungi in the development of fruit seedlings in early stages. For example, in a study 
conducted by Schubert and Lubraco (2000), apple seedlings growth characteristics 
significantly improved by the AM fungi symbiosis.

Arbuscular mycorrhizal inoculation is profitable in agriculture. Large-scale pro-
duction of AM fungi and coating seeds with them is the most suitable method of 
application. Many crop varieties have been significantly affected by inoculation 
with AM fungi (Ortaş et al. 2017). Researchers have suggested two main approaches 
of using AM fungi; inoculum production in the field and developing cultural prac-
tices that improve the native population of mycorrhizal fungi (Roy-Bolduc and Hijri 
2011). A meta-analysis on potato carried out in 231 different crop fields of Europe 
and North America revealed a significant increase in tuber growth rate and size after 
inoculation with R. irregularis (DAOM 197198) (Hijri 2016). The average crop 
yield in the trials was 3.9 tons/ha, which constitute 9.5% of total crop yield. With an 
estimated profitability threshold of 0.67 tons/ha increased yield, nearly 80% of the 
trials were found to be more profitable. Though cultural methods often improve the 
effectiveness of native mycorrhiza, they do not create the best specific AM fungi- 
plant symbiosis for commercial production. This can be an important challenge 
when solving food security issues. Similarly, the selection of a suitable host plant is 
another concern (Ortas 2015; Ortas and Ustuner 2014). Targeted studies of mycor-
rhizal fungi could be a cost-effective option to solve these problems (Ortaş et al. 
2017). In addition, profitability can be further increased by using AM fungi applica-
tion to decrease fertilization without a decrease in yield (Chen et al. 2018).
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2.9  Role of Subsoil AM Fungi in Sustainable Agriculture

AM fungal biomass abundance varies in the soil based on the soil depth and plant 
root length. AM fungi root colonization levels vary with soil depth. Almost half of 
AM fungi biomass is located below 30 cm (Higo et al. 2013). The AM fungi com-
munities below 30  cm differ from the ones in topsoil both phylogenetically and 
morphologically (Säle et al. 2015). Growing evidence suggests that some AM fun-
gal taxa are defined and limited by different soil layer characteristics (Sosa- 
Hernández et al. 2018b). According to a pot experiment with elevated CO2 levels 
performed by Rillig and Field (2003), there was no change in the AM fungi in the 
topsoil (up to 15 cm), while there was remarkable increase in AM fungi in the sub-
soil (about 15–45 cm soil layer), indicating that top and subsoil communities have 
differential reactions to above ground environmental variables. Evidence of AM 
colonization in deeper soil layers (4–8 m) was reported in many tree species such as 
honey mesquite (Virginia et al. 1986) Acacia, and Eucalyptus (de Araujo Pereira 
et al. 2018). Altogether, AM fungal associations of deeper layers are often over-
looked, which are probably highly valuable for management and production 
improvement (Kour et al. 2020).

AM fungi communities in the subsoil are abundant and unique and contribute to 
better plant production and ecosystem services (Higo et al. 2013; Sosa-Hernández 
et al. 2018a). Reduced pore size, higher soil compaction, and lower oxygen avail-
ability make the subsoil different from topsoil (Lynch and Wojciechowski 2015). 
Subsoil AM fungi are expected to follow a high-stress resistance life cycle. As such, 
deeper soil AM fungi produce more long-lived hypha, as well as optimized resource 
use efficiency, representing an advantageous carbon cost/benefit investment for the 
plants. Plants may receive more benefits in return for every unit of carbon they pro-
vide for the AM fungi in the subsoil compared to that of topsoil. Subsoil AM fungi 
have a considerable role in soil formation (Leake and Read 2017) and weathering 
via various indirect mechanisms (Taylor et al. 2009). Deeper soil layers have lower 
biological activity, higher clay content and usually contain higher amounts of pri-
mary minerals with great potential for mineral weathering and nutrient availability.

AM fungi symbiosis expands the soil space that is reachable by their host root, 
which is known as the mycorrhizosphere (Linderman 1991), and this likely results 
in higher microbial activity in the subsoil. This alliance between the plant roots, AM 
fungi, and the associated soil microbial community has the potential to improve the 
soil structure, especially in shallow soils where the parent material or the bedrock is 
close to the root system.
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2.10  Role of AM Fungi in Reforestation and Landscaping

Forest disturbances are created by human activities and make a dramatic change in 
the habitat, vegetation and soil. The disturbed habitats are usually described by 
aboveground and belowground diversity (Helgason et al. 1998). Utilization of AM 
fungi in reforestation and landscaping is a promising approach as the degraded and 
eroding lands can regain functionality with AM fungi. In arid regions, juvenile trees 
are vulnerable to stress conditions such as heat, drought and nutrient deficiency. 
With mycorrhizal associations, this critical phase can be overcome. An example is 
the mycorrhizal inoculation mediated increase in fitness and survival of young argan 
trees, which are considered endangered species in their original habitats due to 
excessive harvest (El Abbassi et al. 2014). Another approach by Ouahmane et al. 
(2007) was the inoculation of young cypress trees with a mixture of indigenous AM 
fungi, which were isolated from a natural site of C. atlantica, which increased the 
chances to form a symbiosis between AM fungi that is adapted to drought environ-
ments and the host plant.

AM fungi inoculation was a successful approach as it increased the growth and 
survival of these trees in the arid environment. AM fungi inoculation is in fact a 
suitable, sustainable and cost-effective approach in reforestation. AM symbiosis is 
considered to be a critical asset in preventing soil erosion, especially in sandy soil 
ecosystems (Moradi et al. 2017). The rhizosphere of mangroves species belonged to 
nine genera in the west coast of Goa yielded a variety of AM fungi (Sridhar 2005). 
Appropriate vegetation builds the ecosystem in favour of existence and interactions 
of flora, fauna and microbes. The costal ecosystem is a habitat for many inhabitants 
and provides food, fodder and bioactive compounds (Sridhar and Bhagya 2007).

2.11  AM Fungi Promote Bioremediation 
of Contaminated Soils

AM fungi act as a sequester of toxic compounds from the environment as a form of 
bioremediation. They prevent heavy metals from travelling past the plant roots 
(Rajkumar et al. 2012). Though heavy metals play a significant role in some bio-
logical cycles occurring in plants, but excess amount of these heavy metals can have 
adverse effects in plants. AM fungi can store the heavy metals in their vacuoles. In 
some cases, AM fungi increase the heavy metal tolerance of plants instead of 
decreasing the uptake of heavy metals by plants (Ferrol et al. 2016). Thus, AM fungi 
play an essential role in modulation of plant heavy metal accretion in different eco-
systems, and they are considered a key factor in phytoremediation and micronutri-
ent uptake by crops growing in polluted soils.

Heavy metal toxicity in plants results from the excessive uptake of elements 
from the polluted soil. The effect of AM fungi on plant growth and tolerance to 
heavy metals in a polluted soil depends on the fungal species, plant species and 
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heavy metals involved in the consortium. Many case studies reported that the toxic 
effect by heavy metals decreased in plants mainly due to the reduction of their con-
centrations in the soil, which in turn resulted in higher uptake of P and the enhanced 
growth of mycorrhizal plants (Chen et al. 2003). However, plant growth improve-
ment induced by the AM fungi symbiosis is not always related to the metal concen-
trations in plant tissues or in the soil. For example, a study carried out by Lingua 
et al. (2008) reports that Cu and Zn mitigation was found in white poplar trees colo-
nized by R. irregularis or F. mosseae even when the metal concentrations was 
higher in the host plants. AM fungi often increase heavy metal accumulation in 
roots, but their effects on the heavy metal concentration in aboveground organs of 
host plants are not remarkable.

AM fungi have been reported to decrease Zn uptake and allocation of heavy met-
als in above and below ground organs of red clover and tomato when in symbiosis 
with AM fungi on Zn-polluted soils (Li and Christie 2001; Watts-Williams et al. 
2013). AM fungi spores and their abundance in roots are lower in heavy metal con-
taminated soils than unpolluted soils. Usually, the native AM fungi of polluted 
environments are more resistant and efficient at improving heavy metal tolerance of 
plants compared to native AM fungi that are found in non-polluted areas. For exam-
ple, the Rizhophagus irregularis Br1 ecotype isolated by Hildebrandt et al. (1999) 
from the soil under Viola calaminaria plants shown to be more effective in inducing 
heavy metal tolerance on a variety of plants (tomato, maize and M. truncatula) than 
an ecotype of the same species isolated from a non-contaminated soil (Kaldorf 
et al. 1999).

2.12  AM Fungi and Abiotic Stress Tolerance

AM fungi could alleviate plant’s response to different types of stresses or a combi-
nation of stresses that include salinity, drought, nutrients, heavy metals and tem-
perature. Under stress conditions, reactive oxygen species (ROS) will be generated 
in host plants. Based on the severity, there will be an increase in ROS species, which 
in fact harmful to the metabolic activities of the plants (Bauddh and Singh 2012). 
The plants’ cellular mechanisms fight against the reactive oxygen species (ROS) by 
the production of several enzymes, superoxide dismutase (SOD), peroxidase (POD), 
catalase (CAT) and glutathione reductase (GR) (Ahanger and Agarwal 2017). Upon 
inoculation with AM fungi, the plant adaptability to stress get increased by pro-
cesses such as increase in mineral nutrient uptake, improved photosynthetic rate and 
accumulation of osmoprotectants, increased antioxidant enzyme activity and 
manipulation in the rhizosphere ecosystem (Yin et al. 2016). A study by Duc and 
co-authors revealed that inoculation with Scolecobasidium constrictum in tomato 
plants which were set for a combined treatment of salinity and drought showed 
improvement in water uptake, stomatal conductance and biomass production com-
pared to non-inoculated plants (Duc et al. 2018).
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The AM fungi are capable of significantly enhancing plants’ tolerance to stress 
conditions and improve the plant growth and yield even under stress (Latef and 
Chaoxing 2014). Under stress conditions, AM fungi mediate alterations in the phy-
tohormone level and up-regulate its antioxidant system. However, different mecha-
nism of AM fungi action towards alleviating stress in plants depends on the stress 
type and the AM fungal species. For example, mechanisms such as production of 
phytochelatins, compartmentation and sequestration of toxic ions, and expression of 
stress proteins can be specific and show significant changes with AM species 
involved. The hydraulic conductivity changes occurring in the roots under salt stress 
can improve osmotic stress tolerance of the plant to a considerable level (Evelin 
et al. 2009). An investigation made by Zhang et al. (2018) shown that AM fungi 
made a remarkable influence in castor bean growing under saline condition by alter-
ing the levels of some essential plant metabolites and by altering the gas exchange 
traits. Thus, AM fungi offer a considerable importance in the production and man-
agement of different potential crops prone to stress conditions with high nutritional 
quality.

However, to achieve the benefits offered by AM fungi, an extensive study is nec-
essary to unravel the role of AM fungi in neutralizing the effects of combined 
stresses.

2.13  Conclusion

AM fungi and their importance regarding plant growth, production and their effect 
on stress tolerance and nutrient uptake of their host have been studied during past 
decades. However, much remains to be investigated regarding their interaction with 
other root-colonizing microorganisms (e.g. endophytes) and the natural soil micro-
biome. Habitat adaptation and co-evolution with the host plant certainly need more 
attention from the scientists. Identifying the specific AM fungal species which have 
adapted to environmental stress in different habitats might be of value regarding 
agricultural production, especially under salt and drought stress, as well as poor 
soils. AM fungi contribute a major role in carbon sequestration through various 
mechanisms. But a thorough investigation is needed to study the mechanism of 
AM fungi-associated links between C fluxes in soil and the nutrient exchange to the 
host plants. AM fungi inoculation has shown to enhance crop productivity in many 
agriculture crop varieties. AM fungi inoculated alone or in combination with other 
microbial inoculants such as PGPR also help in alleviating plants against different 
stress conditions. In order to have better crop productivity, it is necessary to under-
stand the AM fungi mediated cellular modulations in the tolerance mechanisms and 
the phenomenon by which the signals are transmitted to regulate plant performance. 
In order to promote sustainable agriculture, the use of synthetic fertilizers needs to 
be replaced with AM fungi inoculants which in fact recover the soil fertility and 
increase the crop productivity through its beneficial functions. Thus, the multiple 
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benefits offered by AM fungi decipher its significant services in natural ecosystem 
as well as in sustainable agriculture.
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3.1  Introduction

Endophytic microorganisms as the name indicate generally colonize internal tissues 
of host plants without any harm or apparent loss to their host. Endophyte owes its 
origin to De Bary (1866) who first coined the term. It is comprised of two Greek 
words, endon means inside and phyte refers to plants (Suman et al. 2016). Most of 
the groups in the plant kingdom such as bacteria, actinomycetes, mycoplasma and 
fungi are reported as endophytic microbes (Arnold 2008). Endophytes are known 
for most intimate linkage with their host plants especially involved in beneficial or 
symbiotic associations. Plant and microorganism association may have evolved 

N. Singh 
Amity Centre for Biocontrol and Plant Disease Management,  
Amity University Uttar Pradesh, Noida, Uttar Pradesh, India 

A. Singh 
School of Sciences, Department of Agriculture, Noida International University,  
Noida, Uttar Pradesh, India 

P. Dahiya (*) 
Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP),  
Gautam Buddha Nagar, Noida, India
e-mail: pdahiya@amity.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60659-6_3&domain=pdf
https://doi.org/10.1007/978-3-030-60659-6_3#DOI
mailto:pdahiya@amity.edu


70

>400 years ago for which evidence of such association found in the fossils of stems 
and leaves (Kusari and Spiteller 2012; Verma et al. 2017). During the process of 
evolution, there were drastic changes in adaptation of plants from aquatic to terres-
trial habitat under abiotic pressure in which, however, endophytes adapted their 
microenvironment accordingly or through genetic modification (Arora and Ramawat 
2017). All types of microorganisms that belong to different categories of fungi or 
bacteria have been reported as endophytes, out of which most frequent are fungal 
endophytes (Strobel and Daisy 2003; Kour et al. 2019b; Yadav et al. 2020d).

The first endophyte of fungal category was recognized by Leveillé in 1846 in 
wheat leaves. The research for more than 100 years suggests that most of the plants 
are in symbiotic relationship either with mycorrhizal fungi and/or with other fungal 
endophytes (Petrini 1986; Noel and Nicholas 2004). Unlike mycorrhizal fungi that 
live symbiotically in cortical tissues of the roots and grow around the root zone, 
other fungal endophytes grow either intercellularly or intracellularly in the plant 
tissue and may inhabit stems, leaves, branches, twigs, bark, fruits and seeds (Torres 
et al. 2011); scales, resin canals and meristems (Arora and Ramawat 2017); peti-
oles, flowers (Kumar et al. 2019a, b). However, some fungi are highly specific to 
certain genera/family of plants (Rana et al. 2019b).

The spectrum of fungal endophytes differs in space, time and function within a 
host plant also. For example, alfalfa plants are colonized by distinct fungi in leaves, 
stems and roots (Lugtenberg et al. 2016). Endophytic microbes can enter directly 
through the vertical seeding method and indirectly by horizontal transmission gen-
erally from the soil (Rana et  al. 2019c). In terms of mutualistic benefits, they 
increase the availability of nutrients to the plant, improve the capability of tolerance 
in the plants for abiotic or environmental stress, act as protectant against biotic 
stress by pests and pathogens, help in plant growth and will also produce some 
allelochemicals helpful in reducing the growth of unwanted plants/weeds (Firakova 
2007; Torres et al. 2011; Bamisile et al. 2018). Our knowledge about the potential 
of endophytic fungi, their use as biological agents in reducing abiotic and biotic 
stress, which in turn enhanced crop productivity, is highlighted in chapter. 
Furthermore, the need of fungal endophytes as microbial resources in future for 
maintaining sustainability in agriculture is also discussed.

3.2  Functional Grouping of Fungal Endophytes

Categorization of fungal endophytes is based on the differences in taxonomy, host 
range, tissue specificity, ecological functions, and transmission and colonization 
pattern into two major groups (Schaechte 2011). First group/class is the clavicipita-
ceous endophytes or C-endophytes known for their host specificity infecting some 
grasses mainly belong to grass family poaceae in tropical and temperate regions. 
They are often vertically transmitted through seeds (Saikkonen et  al. 2002). 
C-endophytes include Balansia sp. and Epichloë sp., which represent limited num-
ber of clavicipitaceous species in grasses (Rodriguez et al. 2009; Khiralla et al. 2016).
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These C-endophytes are highly beneficial in improving plant growth under abi-
otic stress including herbivory through producing some toxic chemicals harmful 
for grazing animals (Aremu et al. 2017; Stone et  al. 2004). However, benefits of 
C-endophytes depend on the species of host, their genotype and environmental condi-
tions (Saikkonen et al. 2002; Nair and Padmavathy 2014). The second group of non-
clavicipitaceous endophytes or NC-endophytes are commonly found in vascular and 
non-vascular plant species (Rodriguez et al. 2009; Jain and Pundir 2017). Table 3.1 
represents highly diverse and comprised of species belonging to three divisions: 
Pezizomycotina and Agaricomycotina of class Ascomycota and Pucciniomycotina 
division of class Basidiomycota (Faeth and Sullivan 2003). They have an ability to 
colonize host plants by both types of transmission, vertically and horizontally.

The endophytic colonization ranges from transmission via seeds, vegetative plant-
ing material, from the rhizosphere and phyllosphere, the surrounding environment of 
host plants. Endophytic fungi enter via seeds known as true endophytes. In horizon-
tal transmission, entry of fungal spores of endophytes is possible through surround-
ing soil or air near the host plant (Zabalgogeazcoa 2008; Yadav 2019; Lata et al. 
2018; Rana et al. 2020a). The already established endophytes may transmit from one 
generation to another generation via seeds (Lata et al. 2018). However, NC endo-
phytes can be categorized into three classes 2, 3 and 4 on the basis of biodiversity, 
patterns of colonization, mode/mechanism of transmission in host and their role in 
environment (Lugtenberg et al. 2016), while the first group or C endophytes has just 
one class. NC-endophytes have been the most extensively researched and capable in 
enhancing growth of host plant in adverse environmental conditions or habitat-spe-
cific stresses such as pH, salinity, temperature and water. NC-endophytes, being rich 
in species and ecological diversity, can be recovered from tropical to tundra regions 
(Rodriguez et al. 2009). The fungal endophytes of class 2 belong to Ascomycota and 
Basidiomycota, and generally associate in aerial parts or above-ground tissues algae, 
bryophytes, pteridophytes, conifers, angiosperms; however, in biomes, they range 
from warmer zone to cooler zone communities (Khiralla et al. 2016).

Class 3 endophytes also present in rich diversity and form localized infections in 
the leaves of trees in tropical zones besides other lower plants (Lugtenberg et al. 
2016). Fungal endophytes of class 4 termed as the ‘dark-septate endophytes’ (DSE) 

Table 3.1 Classification of fungal endophytes after Rodriguez et al. (2009)

Clavicipitaceous Non-clavicipitaceous
Criteria Class1 Class 2 Class 3 Class 4

Host range Narrow Broad Broad Broad
Transmission Vertical and horizontal Vertical and horizontal Horizontal Horizontal
Colonized tissue(s) Shoot and rhizome Shoot, root and 

rhizome
Shoot Root

Colonization Extensive Extensive Limited Extensive
Biodiversity Low Low High Unknown
Fitness benefitsa NHA NHA & HA NHA NHA

aAmong benefits, Non-habitatadapted (NHA) such as growth promotion and drought resistance/
tolerance are common among all fungal endophytes; Habitat-adapted (HA) benefits result from 
habitat-specific selective pressures under high/low pH, salinity and temperature
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having melanized dark septate hyphae are often members of class ascomycetes, 
colonize roots of host plants and referred as facultative biotropics. They are ubiqui-
tous in a wide range of ecosystems, especially common in cooler zones and found 
in the roots of more than 600 plant species (Rodriguez et al. 2009; Newsham 2011; 
Lugtenberg et al. 2016). NC-endophytes have been recovered from almost all types 
of ecosystems (Wani et al. 2015). The diverse role of endophytes and their potential 
applications in agriculture (Arnold and Lutzoni 2007; Vasiliauskas et al. 2007) are 
gaining importance among ecologists, botanists, plant protectionists and scientists 
in field of biotechnology all over the world.

3.3  Biodiversity of Endophytic Fungi

The world’s terrestrial biodiversity on earth are represented by tropical and temper-
ate rainforests, which covers 60% of ecosystem. Most of the plant species are asso-
ciated either to one or more microorganisms in their tissues (Anitha et al. 2013; 
Rana et al. 2019a; Yadav et al. 2020b, c). These fungal endophytes in terms of inter-
action with their hosts depend on abiotic and biotic stress under natural environ-
mental conditions, besides experimental factors. Usually one or a few species 
dominate the community, while most of the species are rare and specific to their host 
(Torres et al. 2011). Fungal endophytes reported from higher latitudes are relatively 
characterized by few fungal species in comparison with tropical regions where spe-
cies of fungal endophytes are more in number. These endophytes are predominantly 
members of ascomycetes that appear to be ubiquitous in nature, easily recovered 
from vegetation of warmer and cooler zones besides mangroves in coastal regions 
(Lugtenberg et al. 2016); extreme cold regions – arctic, alpine and xeric environ-
ments (Ali et al. 2018). Xylariaceous fungal endophytes of class Ascomycetes are 
less host specific (associated with one host or a group-related species) and com-
monly found in tropical and subtropical regions. However, endophytes in temperate 
regions are known for host specificity, while fungal endophytes in tropical zones are 
less specific in selection of host plants. It is evident from available literature that 
fungal endophytes worldwide comprise more than million species (Chhipa and 
Deshmukh 2019; Kumar et al. 2019a, b), which provides a significant bio/genetic 
resource for research in enhancing productivity and further application in agricul-
ture fields.

3.4  Fungal Endophytes and Their Function in Agriculture

Fungal endophytes possess significant role in agriculture as it results in increase in 
the yield of crop, shoot and root biomass, and resistance to various biotic and abiotic 
(salinity, drought, metal, temperature) stresses. Endophytes can increase the growth 
and yield of plant by production of secondary active compounds that can help 
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defend the plant against various pathogens. Endophytes play vital role in their colo-
nization in the plant host by production of extracellular enzymes. They act as plant 
growth promoters by producing phytohormones and will help the plant to survive in 
contaminated soils (Eid et al. 2019; Rana et al. 2020b). Endophytes are also influ-
encing the population dynamics, functioning of ecosystem and plant community 
diversity (Arora and Ramawat 2017). These possess significant function for human 
health due to the production of several bioactive compounds. For agriculture crops 
growing in natural or stress conditions, endophytic fungus may be used as future 
biological inoculants/biocontrol agents for sustainable agriculture and environ-
ments. Table 3.2 shows the role of various fungal endophytes reported in different 
field crops.

3.4.1  Fungal Endophytes Conferring Biotic Stress Resistance

Endophytic fungi can grow and survive in healthy crop plants and are able to protect 
the plant against various pathogens via production of phytoalexins and ecological 
occupation. Fungal endophytes lead to the upregulation of secondary metabolites 
such as antioxidant defence enzyme system, phytohormones and phenolic com-
pounds that can protect the plants from various biotic stresses. Various fungal endo-
phytes conferring biotic stress resistance includes Piriformospora indica, 
Trichoderma species, Colletotrichum species, Epicoccum nigrum, entomopatho-
genic fungi, etc., that are helping in the crop growth and yield. Some of these serv-
ing as major fungal endophytes with immense applications in sustainable agriculture 
are as discussed below.

3.4.1.1  Piriformospora indica

A root colonizing filamentous fungus Piriformospora indica was isolated from vari-
ous xerophytes rhizosphere from Thar dessert, India, by Verma et  al. (1998). 
P. indica belongs to the Sebacinales order in Basidiomycota, which can colonize 
both monocot and dicot plants including Hordeum vulgare (barley) and model 
plants such as Nicotiana tabacum (tobacco) and Arabidopsis thaliana (Johnson 
et al. 2014). The endophyte P. indica can form beneficial symbioses with plants and 
therefore possess potential function in agriculture, horticulture and floriculture 
(Oberwinkler et al. 2013; Johnson et al. 2014; Gill et al. 2016). This endophyte is 
famous for its broad host range and can provide several benefits to host such as 
improved plant growth under nutrient stress conditions and resistance to the various 
biotic and abiotic stress conditions. The endophytic fungus P. indica can interact 
with various plant species. It can colonize the root of plants, and the fungal hyphae 
will enter the roots by root hairs. It leads to the formation of pear-shaped chlamydo-
spores in the root hairs and will further proceed in the rhizodermis cells. The fungus 
will grow in the root cortex tissue (Oelmüller et  al. 2009). The fungus does not 
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Table 3.2 Role of some fungal endophytes reported in different field crops

Name of crop Fungal endophytes Activity in host plant References

Cotton 
(Gossypiumhirsutum)

Acremonium alternatum
Cladosporium 
cladosporioides,
Chaetomium globosum
Paecilomyces sp.
Alternaria tenuissima
Epicoccum nigrum,
Drechslerella dactyloides,
Exserohilum rostratum

Antagonists against plant 
pathogens

Ek-Ramos 
et al. (2013)

Cotton 
(Gossypiumhirsutum)

Paecilomyces spp.
Lecanicillium lecanii,
Beauveria bassiana

Entomopathogenic Sword et al. 
(2012)

Soybean (Glycine 
max),
Tobacco (Nicotiana. 
tabacum),
Wheat (Triticum 
aestivum),
Corn (Zea mays)

Beauveria bassiana Entomopathogenic Russo et al. 
(2015)

Rice (Oryza sativa L.) Fusarium oxysporum,
Cladosporium 
cladosporioides
Chaetomium globosum,
Penicillium chrysogenum

Mycoparasitic activities 
against rot pathogens

Naik et al. 
(2009)

Maize (Zea mays L.) Acremonium zeae,
Alternaria alternata,
Aspergillus flavus,
Aspergillus niger,
Saccharomyces 
cerevisiae, Trichoderma 
koningii,
Colletotrichum 
graminicola, Fusarium 
verticillioides

Reported but not studied Orole and 
Adejumo 
(2011)

Chili pepper 
(Capsicum annuum 
L.)

Penicillium (in seedling 
stage), Fusarium (in 
flowering stage) 
Colletotrichum, 
Fusarium, Alternaria, and 
Xylaria (in fruiting stage)

Antagonistic activity 
against fungal pathogens 
(Phytophthora capsici, 
olletotrichum acutatum, 
and Fusarium oxysporum) 
of chili pepper

Paul et al. 
(2012)

Black pepper (Piper 
nigrum)

Ceriporia lacerata
Annulohypoxylon nitens
Daldinia eschscholzii,
Diaporthe spp.,
Phomopsis spp.,
Fusarium spp.

Mycoparasitic against rot 
fungus Phytophthora 
capsici

Sreeja et al. 
(2016)

(continued)
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invade till the middle part of root beyond the endodermis and the structure of fungal 
were investigated using acid fuchsine-lactic acid red. Fungal endophytes conferring 
biotic and abiotic stress resistance is shown in Fig. 3.1.

The endophyte P. indica promotes plant growth and seed production, nutrient 
uptake, increases biomass production and confers resistance to pathogens, and thus 
has been considered a biocontrol fungus (Lugtenberg et al. 2016; Ali et al. 2018). 
Root colonizer P. indica can control different prevalent diseases in plants such as 
Fusarium and Verticillium wilt, black root rot, powdery mildew, yellow leaf mosaic, 
eyespot, cyst nematode, Rhizoctonia root rot and leaf blight in various crop plants 
(Arabidopsis, barley, maize, tomato and wheat). The important mechanisms 
involved in the protection of biological plant disease by P. indica include (a) com-
petitiveness amongst each other in terms of habitat and nutrients, (b) antibiotics 
production and (c) induced resistance and mycoparasitism (Waller et al. 2005). The 
endophytic fungus P. indica confers disease tolerance in crop barley via a separate 
mechanism involved. The symbiotic crops can survive the necrotrophic root patho-
gens because of higher levels of antioxidation (glutathione-ascorbate) mechanism 
(Waller et al. 2005). In barley, P. indica can help tolerate the salt stress, increases the 
grain yield and show resistance against necrotrophic and biotrophic fungus such as 
Fusarium culmorum (root rot) and Blumeria graminis. Similarly, valuable effects 

Table 3.2 (continued)

Name of crop Fungal endophytes Activity in host plant References

Solanaceous 
vegetables

Fusarium oxysporum Most potent anti-oomycete 
activity against late blight 
and several oomycete 
pathogens

Kim et al. 
(2007)

Chinese cabbage 
(Brassica campestris)

Scolecobasidium 
humicola

Plant growth promoter in 
nitrogen enriched soil

Mahmoud 
and Narisawa 
(2013)

Amaranth 
(Amaranthus sp.)

Trichoderma harzianum Mycoparasitic activity 
against leaf blight pathogen 
Rhizoctonia solani
Plant growth promotor

Uppala (2007)

Common bean 
(Phaseolus vulgaris)

Aureobasidium pullulans Highest colonization
in seedling stage

Parsa et al. 
(2016)

Sugarcane (Saccharum 
officinarum L.)

Trichoderma virens Antagonistic against 
pineapple disease pathogen, 
Ceratocystis paradoxa, 
owing to the production of 
Endochitinases

Romao- 
Dumaresq 
et al. (2012) 
and Singh 
et al. (2008)

Sugarcane (Saccharum 
officinarum L.)

Epicoccum nigrum Mycoparasitic against 
Fusarium verticillioides, 
Colletotrichum falcatum, 
Ceratocystis paradoxa,

Fávaro et al. 
(2012)

Sugarcane (Saccharum 
officinarum L.)

Aspergillus niger,
Trichoderma atroviride

Antagonistic activities Robl et al. 
(2013)
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are observed in case for other plants such as rice, maize and wheat (Oelmüller et al. 
2009). Qiang et al. (2012) demonstrated systemic resistance towards various foliar 
pathogenic organisms by interaction with endophyte P. indica. Tomato plant inocu-
lated with P. indica will colonize the roots of plant and results in 20% increase in the 
leaf biomass and decreases the Verticillium wilt disease (caused by Verticillium 
dahliae) by more than 30% (Fakhro et al. 2010).

3.4.1.2  Epicoccum nigrum

Endophyte Epicoccum nigrum belongs to phylum Ascomycota and is known to 
have biocontrol function for various plant pathogenic organisms such as Sclerotinia 
sclerotiorum in sunflower crop (Pieckenstain et  al. 2001), Pythium in cotton 
(Hashem and Ali 2004), phytoplasma in apple trees (Musetti et  al. 2011) and 
Monilinia spp. in crops such as nectarines and peaches (De Cal et al. 2009; Larena 
and Melgarejo 2009; Larena et al. 2005; Mari et al. 2007). It also acts as an impor-
tant sugarcane endophyte, which is known to provide resistance against phytopatho-
gens by secondary metabolite production.

Fávaro et al. (2012) studied the antagonistic property in case of sugarcane endo-
phyte E. nigrum strain P16 tested for various phytopathogens. Endophyte E. nigrum 
was found to colonize the sugarcane crop asymptomatically and resulted in higher 
root system biomass. Endophyte was also found to reduce the growth of plant 
pathogens (Ceratocystis paradoxa, Colletotrichum falcatum, Fusarium verticillioi-
des and Xanthomomas albilineans). The bioactive compounds were found to be 
produced in the initial and advanced stage of growth of E. nigrum. Similarly, 

Fig. 3.1 Figure showing fungal endophytes conferring biotic and abiotic stress resistance
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 biocontrol potential of E. nigrum was reported against Pseudomonas savastanoi pv. 
savastanoi (Psv), leading to olive knot and reduced psv growth by Berardo et al. 
(2018). Chhipa and Deshmukh (2019) observed the biocontrol activity of sugarcane 
isolate E. nigrum against fungal pathogens Pythium and Sclerotinia sclerotiorum in 
cotton and sunflower crops. It possesses antibacterial potential against Phytoplasma 
and Monilinia species in apple, nectarines and peach. The sugarcane endophyte 
produces various anti-microbial compounds such as epicorazines A-B, epirodines 
A-B, flavipin, epicoccines A-D, epipiridones and epicocarines. Out of these, fla-
vipin and epicorazines A-B compounds are mainly linked with biocontrol activity 
of E. nigrum (Brown et al. 1987; Madrigal et al. 1991; Madrigal and Melgarejo 1995).

3.4.1.3  Trichoderma sp.

Trichoderma species are well known as saprophytic fungi acting as biocontrol fungi 
since decades where few isolates are acting as endophytic plant symbionts. These 
can colonize the roots of plant, twigs and stem and thus induce plant resistance. 
Antibiosis, mycoparasitism, competition for nutrients and space were the primary 
biocontrol mechanisms, but recently induced systemic resistance (ISR) was found 
to be more significant mechanism involved (Singh et al. 2011; Talapatra et al. 2017; 
Sharma et al. 2019). Endophytic Trichoderma strains are not only serving as poten-
tial biocontrol agent but can also promote growth of plants and provide resistance 
towards various abiotic stresses.

Hosseyni-Moghaddam and Soltani (2013) reported the antifungal potential of 
fungus Trichoderma strain (T. koningii CSE32) against various pathogenic fungi 
such as Spencermartin siaviticola, Diplodia seriata, Phaeobotryon cupressi and 
Pyricularia oryzae. The results also highlight the antibacterial and antifungal prop-
erties, and cytotoxic potential possessed by endophytic Trichoderma isolate is also 
reported by several others (Sivasithamparam and Ghisalberti 1998; Harman et al. 
2004). Park et al. (2018) reported the antifungal activity of T. citrinoviride which 
was isolated from mountain cultivated ginseng against pathogenic fungus including 
Cylindrocarpon destructans, Botrytis cinerea, Pythium spp., and Rhizoctonia solani.

Various secondary metabolites were produced by the endophyte Trichoderma 
sp., and these metabolites serve as the defence activator factor in plants such as 
tomato, canola and pea (Chhipa and Deshmukh 2019). Trichoderma is acting as a 
bio-controller and a biofertilizer agent, which can replace the harmful agrochemical 
use in agriculture. Plant growth-promoting activity of Trichoderma species tested 
on the seedlings of crop yerba mate has shown that various isolates of Trichoderma 
(T. atroviride LBM 112, T. stilbohypoxyli LBM 120 and T. koningiopsis LBM 
219) increase the crop yerba mate dry weight. The native isolated strains showed 
improved yield of the crop and antagonistic activity against phytopathogens. Both 
the isolates T. atroviride strain LBM 112 and T. stilbohypoxyli strain LBM 120 
possess biocontrol activity and PGP potential as they showed activities such as 
chitinase, endoglucanase, production of siderophores and phosphate solubilization 
(López et al. 2019).
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3.4.2  Fungal Endophytes Conferring Abiotic Stress Resistance

At present, changing climate is the biggest problem faced by the entire world. 
Fungal endophytes support the crops in managing the biotic and abiotic stress fac-
tors, thus helps in reducing the effects of changing climate on the cultivation of 
agricultural crops (Rodriguez et al. 2008). Increasing soil salinity, drought, decrease 
in availability of water and increasing temperature are some of the growing chal-
lenges for growth of crops faced across the globe (Egamberdieva and Lugtenberg 
2014; Kumar et al. 2019a, b; Yadav et al. 2015).

Abiotic stresses represent a significant threat to agricultural crops and their pro-
ductivity. Various medicinal and crop plants are reported to nurture the fungal endo-
phytes, which will provide protection from infectious agents and help the plants 
adapt under abiotic stress conditions. Fungal endophytes help the plants to adapt 
under diverse abiotic stress factors such as extreme temperatures, high salinity, 
heavy metal stress and drought by induced systemic resistance (ISR), bioremedia-
tion and biocontrol mechanisms (Yadav 2019; Rastegari et al. 2020a, b).

3.4.2.1  Salinity Stress Tolerance

Soil salinity is adversely affecting the plant metabolism, agriculture production and 
environmental health. Increase in the concentration of salt ion in soil reduces the 
uptake of water by roots, which lead to accumulation of toxic salts in the plant cells 
(Hussain et al. 2018; Yadav et al. 2020a). It is estimated that by the year 2050, 50% 
of arable land available will be facing the salinity issue (Parande et al. 2013). Fungal 
endophytes have significant function in managing salinity stress by increasing the 
antioxidant enzymes and photosynthesis, producing ACC deaminase enzyme and 
via phytohormone production mainly auxins.

Due to increase in the detoxifying enzyme potential and photosynthetic pigment 
concentration in barley and rice, endophyte Piriformospora indica can reduce the 
salinity stress (Waller et al. 2005; Jogawat et al. 2013). Fusarium culmorum strain 
FcRed1 isolated from dunegrass provides salt stress tolerance capacity to both 
monocot and eudicot plants such as rice and tomato, whereas strains isolated from 
plants in non-coastal areas are not showing any salinity resistance (Rodriguez et al. 
2008). Hussain et al. (2018) reported significant improvement in salt stress and the 
yield in crops such as cucumber, clover, mungbean, maize and tomato when inocu-
lated with AMF (arbuscular mycorrhizal fungi). This significant improvement is 
due to improved osmoregulation by proline accumulation, reduced NaCl level and 
phosphate acquisition. Fungal endophytes such as Penicillium sp. and Phoma glom-
erate reported to increase the plant biomass and accumulation of potassium, cal-
cium and magnesium in cucumber plants and are also observed to decrease the 
toxicity due to sodium when the plant is facing salinity and drought stress (Lata 
et al. 2018). Endophyte Aspergillus flavus strain CHS1 showed salt stress tolerance 
in Glycine max via stimulation of antioxidative enzymes and endogenous hormone 
levels in the host (Lubna et al. 2018). Table 3.3 represents different fungal endo-
phytes conferring abiotic stress tolerance in plants.
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3.4.2.2  Extreme Temperature Heat and Cold Tolerance

Extreme temperature stress leads to extensive denaturation due to damage to cellu-
lar proteins, which will ultimately result in cell death, whereas low temperature 
results in weakened metabolism due to changes in protein structure, inhibition of 
enzyme reactions and interactions among macromolecules (Andreas et al. 2012). 
Endophytes increases the adaptation of various crop plants under extreme tempera-
ture stress conditions by decreasing the cellular damage, increasing the rate of pho-
tosynthesis and accumulating different metabolites such as phenolic compounds, 
proline and starch. Fungal endophytes conferring biotic and abiotic stress resistance 
is shown in Fig. 3.1.

Fungal endophyte Curvularia protuberate isolated from Dichanthelium lanugi-
nosum, a grass species grown in the geothermal soils of Lassen Volcanic and 
Yellowstone National Parks, can provide tolerance to high soil temperatures in the 
range of 38–65 °C (Ali et al. 2018). The survival of grass species in such high heat 
condition is due to its link with the fungal endophyte C. protuberata and its myco-
virus Curvularia thermal tolerance virus (CThTV) as reported by Lata et al. (2018). 
The Curvularia sp. not only provide thermal tolerance to the grasses but also help 
tolerating high temperatures in case of many other crop plants such as tomato, 
watermelon and wheat (Chhipa and Deshmukh 2019). Ali et al. (2018) isolated a 
thermophilic endophytic fungus with high sequence homology (92%) with 

Table 3.3 Endophytic fungus conferring abiotic stress resistance in various agriculturally 
important host plants

Fungal endophyte (species/
strain) Host plant Abiotic stress References

Piriformosporaindica Hordeum vulgare Salinity stress Baltruschat 
et al. (2008)

Trichoderma sp. Theobroma cacao, Hordeum 
vulgare, Brassica rapa 
subsp. Pekinensis

Salinity and 
Drought stress

Chhipa and 
Deshmukh 
(2019)

Curvularia protuberate Lycopersicon esculentum Temperature 
stress

Rodriguez et al. 
(2008)

Paecilomyces formosus 
LWL1

Oryza sativa subsp. 
Japonica

Temperature 
stress

Waqas et al. 
(2015)

Chaetomium globosum and 
Penicillium resedanum

Capsicum annum Drought stress Khan et al. 
(2014)

Penicillium brevicompactum Hordeum vulgare Drought stress Chhipa and 
Deshmukh 
(2019)

Piriformospora indica Brassica rapa subsp. 
Pekinensis

Drought stress Sun et al. 
(2010)

Penicillium roqueforti Thom Triticum Heavy metal 
stress

Ikram et al. 
(2018)

Exophialapisciphila Zea Mays Heavy metal 
stress

Wang et al. 
(2016)

Acrocalymma vagum Nicotiana tabacum Heavy metal 
stress

Jin et al. (2017)
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Thermomyces species. Fungal endophytic strain CpE isolated from Cullen plicata 
(desert plant) roots provides resistance to heat stress in cucumber. This tolerance in 
cucumber is due to the build-up of saponins, flavonoids, total sugars, proteins and 
antioxidant enzymes.

3.4.2.3  Drought Stress Tolerance

Drought stress can suppress growth, development and productivity in plants and the 
plants need to adapt this stress in order to survive. Various biochemical and physi-
ological responses are induced in plants due to drought stress, which includes clo-
sure of stomata, decrease in photosynthetic rate, reduced germination rate, 
suppression of growth and osmotic stress (Kour et al. 2019a). Endophytes supports 
plants during drought stress conditions by enhancing the plant metabolism to pro-
duce amino acids (polyols and prolines), soluble sugars and plant secondary metab-
olites such as alkaloids (Jain and Pundir 2017).

Endophytic fungus has been shown to confer drought tolerance and enhances 
biomass and growth in agricultural crops. Endophytes Curvularia protuberata 
strain Cp4666D and Fusarium culmorum strain FcRed1 showed drought tolerance 
in tomato plant. Both the fungal strains were isolated from geothermal soil and 
Costal Beach (Rodriguez et al. 2008). Rice, tomato and various grasses such as dune 
and panic associated with endophytic fungus utilize less quantity of water and 
showed increased biomass when compared to non-symbiotic counterparts (Lata 
et  al. 2018). The fungal endophyte P. indica can decrease the drought-induced 
decrease in the photosynthetic capacity, chlorophyll and thylakoid protein denatur-
ation (Sun et al. 2010).

3.4.2.4  Heavy Metal Stress Tolerance

Heavy metal toxicity leads to 25–80% of loss of cultivated crop as it is one of the 
most important abiotic stress factors. Heavy metals are highly toxic to roots of crop 
plants, and they result in defective root system development. In order to counteract 
the heavy metal toxicity, plants adopt to various molecular and biochemical mecha-
nisms such as antioxidant enzyme activity, hormonal regulation, transporters and 
metal chelators. Moreover, plants possess antioxidant defence enzymes such as glu-
tathione reductase, superoxide dismutase, guaiacol peroxidase and catalase, which 
reduces the heavy metal toxicity, and glutathione and ascorbate (non-enzymatic 
antioxidants) behave similarly.

Endophyte Aureobasidium pullulans strain BSS6 was found to be efficient in 
enhancing the cucumber plant tolerance to heavy metal stresses by increasing the 
antioxidant defence enzymes and regulating the soil enzymatic activities (Ali et al. 
2019). Significant increase in the enzymes such as catalase, peroxidase and reduced 
glutathione, and inhibition of lipid peroxidation was observed under heavy metal 
stress conditions. The endophyte fungus was able to increase the chlorophyll 

N. Singh et al.



81

 pigment, carotenoid content and improved growth in cucumber plant (Ali et  al. 
2019). Fungal endophyte Gaeumannomyces cylindrosporus was isolated from mine 
tailings, and colonizing the roots of maize shows tolerance to heavy metal lead. The 
fungus significantly increases the height, length of roots, seedling biomass and pho-
tosynthetic rate under metal stress conditions (Yihui et al. 2017).

3.5  Conclusion and Future Prospects

The indiscriminate use of pesticides and fertilizers adversely affect the agro ecosys-
tem and cause threats to consumers also; second, an increasing population and 
higher rate of environmental degradation are further points of concern for scientists 
in various fields. In order to improve soil crop and human health, the application of 
endophytic fungi as biological agents either alone or as component of IPM pack-
ages will be a better option and remedial alternative against chemical farming that 
has been gaining importance in recent years due to their potential properties in 
managing abiotic and biotic stresses imposed by surrounding environment and 
destructive insect pests and/or pathogens, respectively, on host plats by various 
mechanisms. In addition to that, endophytic fungi have shown great potential in 
promoting crop growth and productivity. Fungal endophytes have been proven to be 
a safe and cost-effective option for attaining sustainable farming owing to their abil-
ity to produce growth hormones and other essential compounds that help in promot-
ing the growth of host plants. Such microorganisms are of immense importance and 
attempts would be taken towards their application in sustainable agriculture in the 
near future. They could, therefore, be biotechnologically manipulated to improve 
the productivity and sustainability of agricultural yields.

However, there are some challenges in the green revolution, which could be ful-
filled by establishing consortia constituting potent strains of fungal endophytes 
from local regions and other different ecological habitat that could be a biological 
tool in disease management packages besides crop productivity. Fungal consortia of 
locally isolated fungal endophytes will be a source for our farming community of 
particular region, which should be explored and applied in fields in order to mini-
mize the dependency of growers on pesticides under conventional farming leading 
towards improving soil, crop and human health. Furthermore, investigations are 
required for searching new endophytic fungi from nature, enhancing fertility of soil 
in an ecofriendly way. An advanced research is diverted towards detailed study of 
either community or function of fungal endophytes through using biotechnological 
tools (omics) is also recommendable. Molecular techniques are also recommended 
for studying the endomicrobiome. Further studies are required to establish the fun-
gal consortia constituting potent strains of fungal endophytes from local origin that 
could be applicable in location specific disease management. Further investigations 
are required for discovery of novel endophytic fungi for enhancing fertility of soil 
in an ecofriendly way. Molecular techniques are recommended for studying the 
endomicrobiome. Consortia of fungal endophytes will be proven a source for our 
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farming community, especially indigenous isolates of bioagents grown on agro-
waste should be explored and applied, which would further minimize the depen-
dency of growers on pesticides under conventional farming leading towards 
improving soil, crop and human health.
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4.1  Introduction

Fungi are vital component of the modern-day ecosystem. They always have an 
essential position in the emergence and succession of different groups of land plants 
and animals (Loron et al. 2019). Fungi, one of the major groups of eukaryotes, have 
species richness between 1.5 and 7.1 million species (Dornburg et al. 2017). Since 
its recognition in the Linnaean taxonomy, the taxonomical ideas have undergone 
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significant amendments, which were considered in ‘Regnum Vegetabile’ (Linnaeus 
1767). Initially, based on morphological and reproductive traits, four major phyla 
were defined, namely, Ascomycota, Basidiomycota, Chytridiomycota and 
Zygomycota (Whittaker 1969).

Fungal taxonomy depends on the morphology and phenotypic characters and 
sometimes the characters are unstable so it provides partial systematic information. 
For this reason, other conserved characters are needed for more consistent fungal 
classification. Earlier the taxonomy of fungal communities were based on the mor-
phological features only, but several fungi are unculturable so later on molecular 
techniques have turn out to be broadly used for its taxonomic detection (Tedersoo 
and Nilsson 2016; Tedersoo et al. 2018). In addition, these molecular techniques 
have transformed our perceptive about the phylogenetic relationships amongst sev-
eral fungal species and have significantly changed the old classification system 
based on morphology (Tedersoo et al. 2018; Wijayawardene et al. 2018). Adhering 
to this precise identification of fungal species, it may be used for further ecological 
and functional traits of those taxa (Tedersoo and Smith 2017).

The kingdom fungi consist of nine major phyla that have been established by 
using molecular data and their mode of sexual spore production. They are 
Ascomycota, Basidiomycota, Blastocladiomycota, Chytridiomycota, 
Glomeromycota, Mucoromycota, Neocallimastigomycota, Opisthosporidia and 
Zoopagomycota. All these lineages together form a single clade of true fungi that 
share as a sister clade to the amoeboid protozoans (Tedersoo et al. 2018; Naranjo- 
Ortiz and Gabaldón 2019). During the last decade, 350 new families have been 
described within the fungal kingdom (www.stateoftheworldsfungi.org/2018/reports/
SOTWFungi_2018_Full_Report.pdf).

4.2  History of Fossil Fungi

The most distinguished naturalist, Charles Darwin, noticed the mutualistic presence 
of fungi and some plant fossils (Smith 1884). Some years after in 1898, Meschinelli 
published a compendium on fossil fungi (Meschinelli 1898). Fungi/fungal spores in 
the sediments were a curiosity in the early days; however, several workers men-
tioned their full description. They also discussed how these fungi might have 
affected the performance of hosts and how it functions in the environment. During 
the end of the nineteenth century, a French palaeobotanist Bernard Renault pub-
lished a series of papers (Renault and Bertrand 1885; Renault 1894, 1895a, b, 1896, 
1903) from the Carboniferous cherts in France. These studies mentioned several 
microorganisms associated with the plants present in those rocks. These studies 
show the presence of fungus and its ecological significance. These type of studies 
was also done from the early Devonian (407 Million years) Rhynie chert (Kidston 
and Lang 1917, 1920a, b, 1921a, b). They also described various assemblages of 
fungi and fungus-like organisms. After a long gap, Pirozynski and Malloch (1975) 
mentioned that fungi played a major role in the evolution of terrestrial plants. 
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They initially hypothesised the new organism was produced from the mutualistic 
relationship among fungus and green alga. The studies on the microbial life in the 
Precambrian Period created an interest to know the microbial evidence in different 
ecosystems (Taylor 1993).

The history of fungi is still a mystery in the present world. More than 1 billion 
years ago, fungi diverged from the animal kingdom and made them more closely 
connected to us rather than plants. Still, there is a large gap in the fossil record that 
shows the connecting link. The earliest fungal fossil record is always debatable, 
which provides us with a clue of the life divergence. The oldest record is now traced 
to about 1010–890 million years. This fungus (Ourasphaira giraldae) is preserved 
in the shales of Arctic Canada (Loron et  al. 2019). After this, there was another 
record published by Bonneville et al. (2020) from shales of Democratic Republic of 
Congo (715–810 million years ago). Since then in the recent times, it continued to 
survive with several new groups.

4.3  Fungal Classification Based on Habitat

4.3.1  Aquatic Fungi

The water bodies have several fungal forms. Most of the fungi have their life in 
water and some may have one stage of their life cycle in water and another dispersed 
in air. Several other groups have a transitory aquatic life, probably brought by wind 
or flood water from other areas. Rain plays a major role in the terrestrial fungal 
spores to be carried into the water. So it is tough to identify the real aquatic fungal 
spores. The useful characters for determining the real habitat of aquatic fungi, there 
are number of useful terms have been demarcated later on by various researchers. 
These fungi are available in different freshwater and marine water masses.

The diverse group of freshwater fungi has a vital role in the aquatic ecological 
food chain. These organisms break down the allochthonous organic material, 
namely, plant parts that provide 99% of the total energy back to the surface waters 
(Ittner et al. 2018 and references therein). So, the microorganisms and aquatic fungi 
together play an essential part in the freshwater food web. The freshwater fungi are 
classified into various forms (Goh and Hyde 1996; Shearer et al. 2007). Freshwater 
fungi mostly belong to Ascomycetes, Basidiomycetes, Chytridiomycetes and 
Glomeromycetes (Shearer et al. 2007). Later, a classification was proposed based 
on the functional traits rather than the phylogeny (Wurzbacher et al. 2014; Krauss 
et al. 2011). They introduced four groups based on the functional characteristics, 
namely, aquatic hyphomycetes, chytridiomycetes, glomeromycetes and yeasts. 
Most of these groups are monophyletic. The aquatic hyphomycetes and yeasts both 
belong to ascomycetes and basidiomycetes (Shearer et al. 2007), so they are differ-
entiated by morphology. In addition to this, oomycetes form a separate group since 
they are non-fungal according to their morphology (Shearer et  al. 2007). This 
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classification is considered reasonable as all the groups are aquatic, and they have 
fungal-like ecological functions (Wong et al. 1998).

Marine fungi represent only a ~1% of the total known species (Jones 2011; Jones 
et al. 2015). Jones et al. (2015) mentioned that 1112 species are belonging to 472 
genera marine fungi. Amongst these, most of them belong to Ascomycetes (Jones 
et al. 2015) with 805 species belonging to 352 genera. Most of these reports are 
from coastal habitats. Ascomycota, Basidiomycota, chytridiomycosis and basal 
fungal clades are found in the marine waters. They mainly help in the biogeochemi-
cal cycles (Jones 2000).

4.3.2  Terrestrial Fungi

Fungi are also present in the terrestrial realm. They are present mainly in the soil 
and on the land crops/plants. A vast majority of more than 80,000 fungal species 
that are known likely occur in the soil at some stage of their life cycle (Bridge and 
Spooner 2001). Fungi successfully live in the soil for its high plasticity and capabil-
ity to cope up with diverse forms in response to unfavourable environment (Sun 
et al. 2005). They have several functions in soils such as degradation of dead plant 
material; propagules present as resting states for further reproduction in favourable 
condition. Present knowledge of fungal diversity present in the soil is mostly based 
on the observations of fruiting bodies or the laboratory cultures of fungi isolated 
from soils (Fig. 4.1). So, there are restrictions for detecting the true species diversity 
present in the environment. In terrestrial ecosystems, fungi play a significant role in 
nutrient and carbon cycling as pathogens, mutualists and saprotrophs (McLaughlin 
and Spatafora 2014). They also play an integral part in the process of nitrogen fixa-
tion, production of essential hormones, biological control against pathogens and 
protection against several natural extremities (Jayne and Quigley 2014; Baum et al. 
2015; El-Komy et al. 2015). Several fungal species hold the ability to absorb the 
toxic metals such as cadmium, copper, mercury, lead and zinc through their fruiting 
bodies (Baldrian 2003; Kour et al. 2019b; Singh et al. 2020b).

Soil fungi are classified into three functional groups: (1) biological controllers, 
(2) ecosystem regulators and (3) decomposers (Gardi and Jeffery 2009). Ecosystem 
regulators help in soil formation and habitat alteration for other organisms by regu-
lating the physiological processes in soil. The biological controllers control several 
pests, growth of other microorganisms and diseases (Treseder and Lennon 2015; 
Bagyaraj and Ashwin 2017). Fungi those live in land crops/plants can be advanta-
geous, as well as pathogenic in nature (Devi et al. 2020). Beneficial fungi participate 
in different biological cycles such as decaying the dead plant materials by convert-
ing cells/tissues into nutrients that are later utilised by the plants growing in that 
area. Some also grow in a symbiotic relationship with the root of higher green plants 
known as mycorrhizal. Roots of most cultivated plants, e.g. corn, soybeans, cotton, 
peas, apples, citrus fruits and several others have mycorrhizal relationships with soil 
fungi. The mycorrhizae are highly beneficial and necessary for optimum growth of 
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many plants. Trichoderma spp. are active biocontrol agents against the pathogenic 
fungi. Arthrobotrys dactyloides traps and parasitise the plant pathogenic nematodes. 
Some of the fungal species produce useful antibiotics and enzymes. Penicillium 
spp. produce the famous compound Penicillin-G that prevents from several bacterial 
infections by inhibiting the cell wall formation. The food processing industries such 
as bakery, brewery and milk products are based on fungi. In addition to this, some 
fungi (e.g. mushrooms) are important as daily food.

The pathogenic fungus creates a huge loss for human life and also to the environ-
ment. Wheat crops are commonly destroyed by the infectious fungal spores and 
causes wheat rust diseases (Yellow, leaf and stem rust, Table 4.1). The fungal-like 
organism Phytophthora infestans causes the potato blight disease. The epidemic of 

Fig. 4.1 Potential of different fungal structures and characteristics to mitigate some of the major 
climate change consequences
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Table 4.1 Effect of climate change in the incidence of fungal disease of common cereal crops

Name of disease Causal organism Favourable conditions Symptoms

Stem rust 
(primarily affect 
wheat, but 
sometimes affect 
barley and rye)

Puccinia graminis 
tritici

Optimal temperature is 
above 20 °C, so it is 
important to associate 
acceptable air motions 
with high temperatures

Black elongated 
pustules containing 
teliospores formed on 
stems

Leaf rust 
(primarily affect 
wheat but, weakly 
pathogenic on 
barley, triticale 
and some species 
of goatgrass and 
wheatgrass)

Puccinia triticina Mild winters and warm 
springs are likely to 
become more widespread, 
making common problem 
earlier in the season

Orange to brown 
pustules on the green 
leaf region are seen in 
the early-sown crops

Stripe rust 
(primarily affect 
wheat and barley)

Puccinia striiformis 
var. tritici

Temperature: less than 
18 °C (optimum 6–12 °C) 
with minimum 3 hours of 
leaf wetness (e.g. dew) for 
new infections to occur. 
Once infection is 
established the fungus can 
survive short periods of 
temperatures more than 
40 °C

The older leaves present 
in the lower part of 
plant have yellow 
stripes of pustules 
above the leaf surface

Blackspot (Peas) Mycosphaerella 
pinodes, Phoma 
medicaginis var. 
pinodella, Phoma 
koolunga, Ascochyta 
pisi

During wet weather the 
disease may spread rapidly

Purplish-black 
discolouration and 
streaking of the lower 
stem
Conspicuous spotting of 
the leaves and pods also 
occurs
Leaf spots are small, 
irregular and dark- 
brown in colour
Spots on the pods 
combine to form large, 
sunken, purplish-black 
areas
Infected seeds may be 
discoloured and appear 
purplish-brown

Common Bunt/
Stinking smut
(Wheat)

Tilletia caries, 
Tilletia laevis

Wind-blown spores, 
particularly from late 
harvested crops, can 
contaminate neighbouring 
fields that may present 
bare soil ready for next 
crop planting.

The flag leaves of 
infected plants have 
yellow streaks and 
plants with short, dark 
grey-green ears and 
slightly gaping glumes 
may be stunted. Grain 
discoloration and odour

(continued)
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powdery mildew occurs in wheat, soybeans, onions etc. by different fungi of 
Erysiphales (Table  4.1). Plasmopara viticola affects grape vineyards and causes 
great loss. In addition to these, fungi also produce highly toxic and carcinogenic 
chemicals affect humans in the present and the past. For example, Aspergillus spp. 
can grow on the corns and toxins are filled in the seeds. When these corns are taken 
by the humans, it attacks the liver.

Table 4.1 (continued)

Name of disease Causal organism Favourable conditions Symptoms

Covered smut
(Barley)

Ustilago hordei Infection is seed borne. Kernels are replaced by 
dark-brown smut 
spores. Smutted heads 
are hard and compact.

Loose smut
(Barley) (Wheat)

Ustilago nuda
Ustilago tritici

Seed borne disease: needs 
to infect the seed in the 
previous growing season 
so that it be a pathogen of 
the plant in the current 
growing season. During 
flowering weather 
conditions influence the 
amount of time the florets 
stay open and hence the 
time the plant becomes 
vulnerable to infection. 
Wind and moderate rain, 
as well as cool 
temperatures (16–22 °C) 
are ideal for the dispersal 
of spores

Smutted grain heads 
that contain masses of 
black or brown spores

Powdery mildew
(Wheat)
(Soybeans)
(Onions)

Different species of 
fungi in the order 
Erysiphales mainly 
Podosphaera xanthii
Blumeria 
graministritici
Microsphaera 
diffusa
Oidiopsis taurica

High humidity, 
temperatures range from 
5 °C to 30 °C while 15 °C 
is optimal with relative 
humidity above 95%. 
Sucking insects transmits 
the disease

White powdery spots on 
leaves and stems. The 
lower leaves are the 
most affected

Yellow rust/stripe 
rust
(Wheat)

Puccinia striiformis 
tritici

Optimal temperatures: 
10–15 °C and high relative 
humidity required for 
spore germination and its 
growth that are dispersed 
by air

Yellow-coloured stripes 
are produced parallel 
along the leaf venations
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4.3.3  Human Pathogenic Fungi

Human health is impacted by several microorganisms, among which the pathogenic 
fungi are also one. The skin and nail infections are the most common fungal infec-
tions that are caused by dermatophytes (Epidermophyton sp., Microsporum sp. and 
Trichophyton sp.). These represent one of the most common forms of human dis-
ease that affects 20–25% of the entire world’s population (Havlickova et al. 2008). 
Certain fungal species (Aspergillus, Candida, Cryptococcus and Pneumocystis) can 
also cause several invasive diseases in humans, which kills ~1.5 million people/year 
(Brown et al. 2012). These fungal infections can be acquired environmentally by 
Aspergillus sp. and Cryptococcus sp. or endogenously by Candida sp. Aspergillus 
fumigatus is a species complex composed of ten species found in the decaying veg-
etation when the temperature becomes 50–55 °C. These species are thermophilic, so 
they are adapted to these high temperatures. In human beings, it affects the lungs 
when the spores are inhaled. This disease may be very contagious.

In contrast, Candida albicans is a dimorphic fungus that is present in the 
mouth, digestive tract and vagina of perfectly healthy humans. These species 
cause severe infections on skin, nails, mouth, bronchial tubes and lungs. 
Chromoblastomycosis is mostly tropical to subtropical diseases that are caused by 
several fungal species mainly inhabiting the soil or on rotting vegetation. They 
enter the human body through the foot by wounds from bare-foot walking. 
Coccidioides immitis which causes Coccidioidomycosis (Valley Fever) is endemic 
to the southwest region of the United States, northern Mexico, and some areas of 
central and South America. Infections occur following travel to one of these areas. 
The disease occurs by the inhalation of spores, that causes respiratory disease in 
animals and people. Later on, this may spread from lungs to other parts of the 
body by bloodstream and create pathologic changes, e.g. skin lesions. Sometimes 
this disease may proceed to a complicated stage and remains inactive for several 
years that may reappear later.

4.4  Major Challenges in Crop Production in Present 
Climate Scenario

Agriculture is strongly influenced by weather and climate. The farmers often deal 
with the weather and its year-to-year variability. They usually adapt to the local 
environment in the form of established infrastructure, local farming practice and 
individual experiences. So, climate change may, therefore, impact on crop produc-
tion and the organised aspects of farming systems (Fig. 4.2).

In the tropical region, the most challenging part is to adapt the modes of produc-
tion to the climatic variability with trying to ease the risks and the vulnerability of 
production systems. It is essential to reduce the negative impacts of agriculture on 
the environment, or else we would continue to increase the likelihood of adverse 
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events (cyclone/storms, droughts, heavy rainfall, etc.). For promoting efficient and 
sustainable agricultural production, the national policies must be revised accord-
ingly. It is also essential to identify the risk factors and develop suitable indicators 
to assess the sustainability of farming systems. This development of risk indicators 
will allow understanding the impact of threats, but a well-organised communication 
system must also accompany this with significant scope. This process can minimise 
the loss of producers from adverse events. For this reason, it is vital to strengthen the 
agricultural service institutions that will implement new conservation techniques, 
diversification of production activities and technological adoption.

One of the major limitations for agricultural practices in the tropical region is the 
fluctuations of watering for plant production and the limitations of soil quality suit-
able for plant types. Majority of the tropical soils, especially in humid areas, are 
suffering from acid soil infertility and low organic matter content. The ability to 
capture and exchange water for lands is mostly dependent on organic matter. This 
soil organic matter content can not only boost productivity and crop quality; how-
ever, it can also counteract the growth of atmospheric greenhouse gases. This tropi-
cal environment is suitable for several pests, weeds and diseases. Global warming 
may increase the insect populations that decrease the yields of staple crops such as 
wheat, corn and soybeans (Fig. 4.2). The warmer temperature causes faster growth 
rates for plants and increases the metabolic rate and number of breeding cycles for 
the insects. This can be checked by several measures with prior detection of the 
exact cause. The pesticides and synthetic inputs are majorly used in agricultural 

Fig. 4.2 Effect of climate change on agro-ecosystem and economic loss of future yield

4 Fungal Diversity and Ecology: Major Challenges for Crop Production in Present…



98

practices. These uses must be done in a systematic control where the farmer must 
have prior knowledge because if they are not used correctly, there may be resistance 
to the active ingredients or chemical groups that are in use.

These climatic changes could affect agriculture in several ways:

 1. The productivity of crops is affected in terms of quantity and also its quality.
 2. The agricultural practices are changed by changes in water use in the irrigation 

and the use of herbicides, insecticides and fertilisers.
 3. The environmental effects cause more intensity of soil drainage (leading to nitro-

gen leaching) and soil erosion that indirectly reduces the crop diversity.
 4. The rural space is decreasing with rapid urbanisation, by which the cultivated 

lands are decreasing.
 5. Adaptation by organisms can become more or less competitive where humans 

have developed more competitive organisms such as flood-resistant and salt- 
resistant rice varieties.

Only technological research alone is not sufficient for addressing future issues 
related to climate change. Strong policies are necessary for carrying out sustainable 
agriculture. Some of the major causes of low productivity are as follows:

 (i) The overpopulation caused by climate change may also dwindle natural 
resource. This may cause poor and precisionless agricultural practices.

 (ii) During the worse hit climatic times, the inconsistent and poor implementation 
of pro-climate policies creates a problem for different decisions.

 (iii) Widespread corruption in the system and poor leadership of the society.
 (iv) Reduced funding for research and technology development, as well as poor 

commercialisation of the important products to the local community.

4.5  Climate Change Impacts and Its Effect on Plant Diseases

Environmental conditions play a significant effect on disease incidence on field 
crops and stored grains that range from sporulation in pathogens and its growth with 
virulence gene expression in stressed situations. There are numerous direct and 
indirect effects on the health of the crops after interactions with global change driv-
ers. Under this climate change, there must be more diversity of management strate-
gies by participatory approaches to interdisciplinary sciences (Pautasso et al. 2012). 
They also reported that further research is required on climate change effect on the 
crop production in different parts of tropical and subtropical regions. The research 
must also hover on multiple factors of climate change and its close relationship with 
endophytes, viruses and mycorrhiza using the long-term and large-scale data sets. 
Similarly, the negative impact of climate change is expected while the vulnerability 
of biotic agents increases, that is seen between plants and animals (Lonsdale and 
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Gibbs 2002). So, there is little doubt that in future, the disturbance patterns may 
increase and more frequent problems may occur (Marçais and Wargo 2000).

The production and dispersal of microbial inoculums in crop fields are well 
known to be critical for disease epidemics. Amongst them, fungi are also prone to 
several diseases. Fungi spread through the air by its spores and fasten on the leaves 
of the plant body. Some of them even live in the soil that may move into the plants 
through roots. Some fungal species are most damaging plant pathogens including 
Phytophthora sp. that are the causative agents of potato late blight disease 
(Fig. 4.3).

Fig. 4.3 Potential effects of global climate change on fungal diseases and insect-pests in field 
crops and crop production
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4.5.1  Changes in Mean Climate

Locally, the agricultural and farming practices are influenced by long-term mean 
climate change. The local farming communities have appropriate experience to pro-
duce a particular group of crops that are productive under that local environment. If 
the mean climate changes from the current scenario, then adjustments to the current 
practices are required to maintain productivity. The higher seasonal temperatures 
considerably impact the productivity, incomes from it and food security (Battisti 
and Naylor 2009). Different groups of crops show different sensitivities to warming. 
If mean seasonal temperature increases, then the harvest time of many crops lessens 
that further reduces the final crop yield. In the tropical and arid regions, where the 
atmospheric temperatures are close to the physiological maxima for crops, higher 
temperatures are more immediately damaging by increasing heat stress and water 
loss by evaporation. The temperature of 28 °C in the mid-latitudes increases wheat 
production by nearly 10%; however, at low latitudes the similar amount of warming 
may decrease the yields by the same amount (Gornall et al. 2010). These warming 
are more in the high latitudes; however, little increase in temperature in the lower 
latitudes may have a more considerable impact (Gornall et al. 2010), since agricul-
ture in higher latitudes is less. The changes in precipitation patterns have consider-
able impact on agriculture, as water plays an important need. Around 80% of total 
agriculture is rain-fed, thus the changes in rainfall pattern will influence the crop 
production (Olesen and Bindi 2002; Tubiello et al. 2002; Reilly et al. 2003).

4.5.2  Climate Variability and Extreme Weather Events

4.5.2.1  Temperature

Increases in temperature associated with climate change across the globe have cre-
ated a problem for crop production by having diseases (Beal Cohen et al. 2020). The 
increment of climate variability is also affecting their total yields. The extremely 
high temperatures in the summer with the prolonged heatwave in the tropical Indian 
subcontinent and even in the higher latitudes have contributed widespread trouble in 
world cereal markets (Battisti and Naylor 2009). The short-term temperature 
extremes may also cause a problem if they coincide with the key stages of crop 
development (Fig. 4.3). If the temperature rises more than 32 °C for a few days at 
the flowering stage of the crops, then it drastically reduces the yield (Wheeler 
et al. 2000).
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4.5.2.2  Drought

Demand for water to society has always been an important need. Rainfall is the 
primary source for agricultural practices. Most of the tropical countries such as 
India and other parts of Southeast Asia’s economy depend on the pattern of mon-
soonal rainfall. If there is no normal rainfall in the country, there is a drought condi-
tion which affects the growth of crops (Kour et al. 2019a). Since the soil water level 
also goes gradually downwards, providing water to the croplands is hard for the 
farmers. In this case, there is a huge loss for the farmers. Sometimes there is a defi-
ciency in the soil moisture that increases water stress condition in plants.

Charcoal rot disease, also known as dry weather wilt, is caused by fungus 
Macrophomina phaseolina and affects corn, sorghum, soybean, sunflowers and dry 
beans. This fungal species has a widespread distribution and broad host range. 
Hardened fungal survival bodies known as Microsclerotia are formed inside the 
infected crop tissues. The microsclerotium survives for years in dry soil but only a 
few weeks in the wet soils.

This disease can be managed by reducing the plant density that reduces the 
stress, use of resistant varieties and hybrids, and crop rotation to non-host plants 
(e.g. wheat).

Aspergillus ear rot is another plant disease in the drought-prone and non- irrigated 
fields. This disease affects mainly the cornfields. Aspergillus flavus and A. parasiti-
cus cause this disease, and it produces a chemical compound ‘aflatoxin’ that can be 
toxic for humans and animals that consume the contaminated grains. The pathogen 
Fusarium exists in soil and crop residues for a longer time. Plant stress due to 
drought is one of the foremost factors that increase the severity of diseases by this 
microbe. They are associated with several important diseases of corn, wheat and 
soybean that cause significant loss. Under drought conditions, Fusarium stalk rot, 
Fusarium ear rot and kernel rot diseases of corn are produced by Fusarium verticil-
lioides, whereas the wheat root diseases caused by Bipolaris sorokiniana and 
Fusarium crown rot disease caused by Fusarium spp. are more severe under high 
atmospheric temperature. The root infections by these fungal species can cause 
severe reduction in crop yield in the dry soils. In the soybean plants, drought reduces 
the sudden death syndrome (SDS), but on the other side, it favours the Fusarium 
infections such as Fusarium wilt. These Fusarium diseases can be reduced by mini-
mising stress and injury through herbicides, foliar diseases, damages caused by 
drought or hails, optimising the fertility level of the soils, minimising soil compac-
tion, using fungicide-treated seed while sowing, crop rotation.

The root and crown rot diseases in wheat caused by several different fungi are 
generally overlooked due to invisible symptoms on the outer surface of the crop. 
The fungus Bipolaris sorokiniana causes the common root rot disease that is char-
acterised by dark brown to black necrotic lesions on the roots, internodes and stem. 
In dry areas, dryland foot rot disease develops by a dark brown lesion on the 
entire stem.
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These diseases of wheat can be managed by following ways:

 1. The fields must be ploughed regularly to reduce stress due to inadequate moisture.
 2. Excessive nitrogen fertilisation must be avoided in dry conditions as it promotes 

vegetative growth, which depletes the available water present in the soil. This 
water stress for the plants causes several diseases.

 3. Rotation of crops such as planting non-cereal crop may reduce fungal diseases.
 4. Pathogen-free and fungicide-treated seeds must be sown.
 5. Drought-tolerant varieties of crops may also reduce these diseases.

4.5.2.3  Heavy Rainfall/Flooding

Crop production is also impacted by too much water in the soil. Heavy rainfall 
events that lead to flooding wipes out the cultivable field and the excess water affects 
water logging in agricultural fields, anaerobic condition and reduced plant growth 
(Singh et al. 2020a). The humidity also increases during the rainy season, which 
provides a suitable condition for microbial activities (Fig. 4.3). Moisture conditions 
increase the spread of weeds and weed biomass, which is a menace for crop produc-
tion. The soil-borne microbial diseases and pests such as certain mycotoxins, e.g. 
aflatoxin, patulin, and ochratoxin increase with the increase in moisture content. 
The temperature fluctuation and changing climate are directly influenced by the 
worsening of crop and its annual produce. When the water content in the atmo-
sphere increases, it helps the fungal species to regenerate from the spores present in 
the agricultural soils, which further affects the crops growing in it. While there is 
excessive rainfall, the atmospheric moisture increases, that led to foliar fungal dis-
eases in wheat.

For managing these types of condition, the agricultural field must be designed in 
such a way that water drainage is well planned. The water present in the field must 
be equally distributed and excess water drains off to the unused land or nearby 
canals/rivers.

4.5.2.4  Tropical Storms

These storms are often termed as a cyclone in the tropical region. It is a low- pressure 
system over the tropical and sub-tropical waters with controlled convection and 
specific surface wind cyclonic circulation (Holland 1993). The societal and eco-
nomic implications of these tropical storms can be high in the countries that have 
high population density in tropical and subtropical regions. In India, we are more 
prone to this type that resulted in increased farming in the coastal areas, which is at 
risk from flooding. The seawater inundation in the coastal region is another problem 
in coastal irrigation. This may be managed by producing salt-resistant plants such 
as salt-resistant paddy varieties. These high-speed winds can spread the fungal 
spores over thousands of kilometres for diseases in wheat such as the stem rust dis-
ease caused by pathogen Puccinia graminis (Velásquez et al. 2018).
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We know that many studies are focussed on the negative impacts of tropical 
cyclones in agriculture. However, sometimes it can also bring benefits by bringing 
a large portion of the annual rain in some arid regions in the tropics (Fig. 4.4).

4.6  How to Control the Common Plant Fungal Diseases

The common plant fungal diseases can be controlled by the following ways:

 1. The plant varieties must be chosen for production with their known disease resis-
tance and also grow the plants in suitable areas where it will get its requirements 
from the environment. If the matches are poor in this case, the plants come to 
stress and several diseases occur, which dispose of the plant.

 2. Irrigation must be done wisely. Overhead watering to the plants may disturb the 
powdery mildew spores; however, it encourages several waters spread patho-
gens. Water must be given to the plants close to the ground so that leaves are not 
wet, and it must be carried out early in the morning so that the excess moisture 
may dry by evening.

 3. The air circulation and light penetration in and around plants must be increased 
through trimming and proper spacing of the plants. Thinning the plants or rear-
ranging the surroundings may also help in this case.

 4. Prune the infected parts of the plant and dispose of the debris. Always the healthy 
tissues must be cut back so that no disease is there.

 5. The instruments by which these trimming are done must be sterilised by wiping 
with common household disinfectant as these instruments may spread diseases 
from one plant to the other.

Fig. 4.4 Strategies for sustainable disease management in the agricultural field
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4.7  Future Prospects of Global Agriculture and Its Solution

In this regard, we have to manage the whole agro-ecosystem, with the ability to map 
the vulnerable areas. By addressing these sensitive areas, we have to choose fields 
where high-quality yield may be achieved. This can be achieved by using sensors 
and applying precision that will make this workable and economical in wide areas. 
Sensors may provide the data of soil pH, soil electrical conductivity (EC), organic 
matter and others. Using drones in this situation can only locate inputs where they 
are required. Due to global warming, frequent occurrence of the drought has become 
more intense and is supposed to wreak havoc in Africa, southern Europe, Middle 
East, most of America, Australia and Southeast Asia. Their impacts are felt more 
likely due to the increase in water demand, population growth, urban expansion and 
environmental protection in many cases. Moreover, drought results in crop loss and 
also loss of pasture.

Reviews done in the past reveal that climate change is indeed a challenge, and it 
needs immediate attention as it is backed up by several problems such as agricul-
ture, forestry, landscape management and nature conservation. For these reasons, it 
is essential to understand the interconnections among climate change and other 
devices of global change that is affecting the plant health. Efficient land planning, 
control of the irrigation, integrated nutrient management, weed management and 
pest management play an important role when a farmer is well trained to adapt due 
to climatic conditions and can make an alternate effort to manage the agro- ecosystem 
sustainably. Pest is a persistent problem for farmers and its suppression is a valuable 
service to the environment. Future annual crop production and food security for the 
whole world will be achieved effectively by maintaining a healthy, perennial plant 
cover and mulching, increasing soil health through organic cultivation.
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5.1  Introduction

It is anticipated that world population will reach 9.7 billion by 2050, wherein 
Southeast Asia is the main contributor (Forbes 2017). The current dynamics of 
demographics suggest that the population in India will even surpass China by 2022. 
With our limited and shrinking agricultural land resources, the impetus is largely on 
the development of innovative and sustainable ways of transforming agriculture to 
feed the ever-increasing population. Currently, around 58% of the rural households 
depend upon agriculture as their principal source of livelihood agriculture is one of 
the largest contributors to GDP (gross domestic product) (IBEF 2017). According 
to Central Statistics Organization (CSO), the share of agriculture and allied sectors 
is expected to be 17% of the gross value added (GVA) in 2016–17 at 2011/12 prices. 
Green revolution ushered the successful implementation of Industrial Agriculture 
fueled by large-scale use of synthetic agro-chemicals and chemical fertilizers. The 
unavailability arising from modern agriculture is due to increase in cost of cultiva-
tion and rising food prices, both of which have to be extensively compensated by 
government which makes the economics of its perusal extremely costly and 
inefficient.

Phosphorus (P) is an essential macro-nutrient for plant growth and development. 
In spite of having an ample presence in the soil, its bioavailability is very low (Kour 
et al. 2020b). Mostly it is present in the form of the insoluble complexes and only 
0.1% of the total P is reported to be present in the soluble form (Farhat et al. 2009; 
Tomer et al. 2016). Unfortunately, it is among the least mobile and most unavailable 
soil nutrient for the plants. Its solubility is reported to depend on several factors, 
namely, organic matter, pH, active sesquioxides, lime and nature and content of clay 
(Kour et  al. 2019a). Soil pH is the important determinative factor and pH 6.7 is 
considered ideal for the same (Mehrvarz et al. 2008; Selvi et al. 2011). In tropics, it 
is observed to present as the inorganic compounds, i.e., iron–aluminum compounds 
(under acidic condition) and calcium compounds (under neutral to alkaline condi-
tions) (Mehrvarz et al. 2008; Selvi et al. 2011). During summer and rainy seasons in 
the tropical countries including India, pH was found to go up to 10.5 units, salt level 
up to 2% temperature between 35 and 45 °C, which largely affects the mobility of 
the nutrients in the soil (Nautiyal 2000). Further, the major portion of the chemical 
fertilizers (75–90%) when applied to the agricultural fields get transformed into an 
insoluble oxide/silicate forms by reacting with Al3+, Ca++, Zn++, Fe3+, Co++, etc. 
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(Selvi et al. 2011). This conversion decreases the efficiency of the fertilizers and 
ultimately increases the input cost for the agriculture. In this scenario, PSM pro-
vides a sustainable alternative to supplement the P to the crops. Application of PSM 
has shown up to 40% reduction in the need of chemical fertilizers when applied 
alone (Tomer et al. 2017) (Rajwar et al. 2018). This ability of the microorganisms 
has opened the new doors toward the exploration of microbial technologies in the 
agricultural sector.

India possesses a remarkable potential for the development of organic farming 
practices due to its agro-climatic conditions (Charyulu and Biswas 2010; Giri et al. 
2015). Although India is one of the largest producers for agricultural commodities 
of the world, the productivity index in comparison to world benchmarks is extremely 
low. Shrinking agricultural land sizes are one of its major causes as the average plot 
size in India has fallen from 2.7 hectares in 1970 to under 1.2 hectares today 
(Economist 2015). Also, due to lack of proper education and awareness, there have 
been indiscriminate practices of chemical fertilizers and pesticides across the Indian 
Subcontinent thereby creating huge loss of natural soil productivity. It has been 
reported that excessive application of agro-chemicals leads to loss of soil fertility 
due to increase of salt content and thereby impacting on consumer’s health (Swapna 
2013). Based on numerous studies conducted, it is imperative that a transformation 
of large-scale conventional agriculture is required which in turn will need modifica-
tion of biotic and abiotic factors in order to fulfill the agricultural demand of 
the future.

Replacement of chemical phosphatic fertilizers with PSM is the need of the hour 
to propagate organic input-based agriculture for improvement of overall human and 
environmental health. PSMs are the microbial inoculants or biological active prod-
ucts with formulations containing one or more beneficial strains of fungi or bacteria 
in an easy to apply and efficient carrier material which either add, conserve, or 
mobilize phosphate in soil (Mazid and Khan 2015; Dash et al. 2019). PSM-based 
biofertilizers are easy to use, non-toxic, and cost-effective (Kour et al. 2020c). They 
either manufacture the nutrients required by crops from soil or atmosphere or mobi-
lize the nutrients pre-existing in soil media in forms most absorbable by crops. They 
have also been reported to act as biocontrol agents by conducting antagonistic activ-
ities against phytopathogenic bacteria. An example of one such activity is interfer-
ence in the bacterial quorum sensing system. However, the primary function of 
PSM is reportedly for plant growth enhancement from which it excises more than 
one mechanism (Fig. 5.1) (Rani et al. 2013; Suyal et al. 2014a).

PSMs can solubilize the insoluble P complex into the bioavailable form through 
chelation, ion-exchange reactions, and acidification (Fig.  5.2). Several microbial 
groups including bacteria (Pseudomonas, Thiobacillus, Azotobacter, Erwinia, 
Serratia, Agrobacterium, Arthrobacter, Bacillus, Enterobacter, Flavobacterium, 
Bradyrhizobium, Salmonella, Micrococcus, Alcaligens, Streptomyces, 
Chromobacterium, etc.), cynabacteria (Calothrix braunii, Westiellopsis prolific, 
Anabaena variabilis, etc.), and fungi (Aspergillus, Penicillium, Arthrobotrys, 
Trichoderma, etc.) are known to solubilize the rock phosphates.
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Among the fungi, Aspergillus and Penicillium are the most predominant genera 
which have shown their potential for P solubilization. Yu et al. (2005) have reported 
the P solubilization by Penicillium oxalicum and Aspergillus niger in liquid culture. 
Recently, Kalayu (2019) has reviewed several PSF, namely, Aspergillus tubingensis, 
A. sydawi; A. ochraceus; A. versicolor, Penicillium bilaii, P. citrinum, P. digitatum; 
P. lilacinium; P. balaji; P. funicolosum, P. oxalicum, P. simplicissimum; P. rubrum, 
Arthrobotrys oligospora, Trichoderma viride, Rhizopus, Fusarium, and Sclerotium.

Fig. 5.1 Role of phosphate-solubilizing fungi in plant growth development

Fig. 5.2 Depiction of P-solubilization mechanism of the fungi
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5.2  Rhizospheric P-Solubilizing Fungi

Soil is the natural media that support vegetation by providing nutrients and other 
essential elements for growth. The thin area of soil surrounding the roots of the 
plants is known as rhizosphere. It is directly affected by root exudates and hence is 
rich in soil-related microorganisms. Root exudates are the compounds secreted by 
roots in its immediate proximity. The nature of microbial community in the rhizo-
sphere is directly affected by the constituents of these root exudates. Exudates are 
majorly constituted by ions, sugars, aromatic and aliphatic acids, volatile aromatic 
compounds, vitamins, peptides, proteins, enzymes, plant hormones, alcohols, 
ketones, olefins, and urea. Root exudates contribute to 40% of the net fixed carbon 
by plant photosynthesis containing almost 200 different types of compounds. Root 
exudates perform ecological interactions with the soil microbial community by 
releasing signaling molecules, attractants, and stimulants. Moreover, they can be 
used by plants in their defense against various pathogens (Baetz and Martinoia 
2014; Kobae 2019; Kour et al. 2019b).

The nature of the root exudates varies from one place to another because of the 
impact of various biotic and abiotic factors. The change in the nature of these exu-
dates also changes the microflora of rhizosphere. Besides it, they also help the plant 
to compete with surrounding plants and promote plant–microbe symbiotic interac-
tions (Yadav et al. 2017; Rajwar et al. 2018; Yadav et al. 2019; Rai et al. 2020). The 
microbes use these root exudates as a substrate and also contribute some of the 
metabolites that are absorbed by the plant to fulfill its nutritional requirements. 
Among the rhizospheric PSF, mycorrhizae are the most important groups of the 
microorganisms (Remy et al. 1994; Ezawa and Saito 2018). They are also known as 
fungal roots. Mycorrhizae are well efficient in the nutrient absorption from the soil, 
especially P (Harrison and van Buuren 1995; Harrison et  al. 2002; Fonseca and 
Berbara 2008; Hart et al. 2017). They may be ectomycorrhiza (Leccinum, Hebeloma, 
Lactarius, Suillus, etc.) or endomycorrhizae (Rhizophagus irregularis, Acaulospora, 
Gigaspora, Glomus, Entrophospora, etc.) (Jansa et al. 2008; Kikuchi et al. 2016; 
Kobae 2019).

5.3  Mechanism of P-Solubilization

PSM employs the following three mechanisms (McGill and Cole 1981) to solubilize 
P: (a) by releasing compounds such as hydroxyl ions, protons, siderophores, organic 
acids, and CO2 that assist the breakdown and solubilization of complex molecules; 
(b) biochemical mineralization by the discharge of extracellular enzymes; and (c) 
by releasing phosphorous during substrate degradation.

Further, on the basis of the nature of the substrate, the P-solubilization mecha-
nisms can be explained as follows:

5 Phosphate-Solubilizing Fungi: Current Perspective and Future Need for Agricultural…



114

5.3.1  Organic

Three groups of enzymes are involved in the release of organic phosphorous from 
soil (Kaur et al. 2017).

5.3.1.1  Nonspecific Acid Phosphatases (NSAPs)

These are dephosphorylated phosphoester or phosphoanhydride compounds of 
organic matter. Phosphomonoesterases (phosphatases) are the most common among 
them. Acid phosphatases have been found to be present in several fungi, such as 
Aspergillus, Penicillium, Fusarium, and Neurospora (Shahab et  al. 2009). These 
phosphatases were produced in media containing an inorganic nitrogen source 
[NaNO3, (NH4)2SO4, NH4NO3] and a very low concentration of inorganic phosphate 
(Pi). The fungal strain Humicola lutea 120-5 utilizes the phosphoprotein casein 
through biosynthesis of extracellular enzymes: acid proteinases (Aleksieva and 
Mutafov 1997; Aleksieva and Peeva 2000) and acid phosphatases (Micheva-Viteva 
et  al. 2000). In some cases, mineralization of natural phosphorus and phosphate 
solubilization can exist together. Inoculation either only with phosphate solubilizer 
or with other potential rhizospheric organisms has been very much achieved 
(Ahemed and Kibret 2014).

5.3.1.2  Phytases

These are the enzymes having an ability to release at least one phosphate group 
from the phytic acid, a fixed organic form of P (Suyal and Tewari 2013a, 2013b; 
Kour et al. 2020a). The International Union of Pure and Applied Chemistry and the 
International Union of Biochemistry (IUPAC–IUB) distinguish two classes of phy-
tate degrading enzymes, 3-phytase (EC 3.1.3.8) and 6-phytase (EC 3.1.3.28), initi-
ating the dephosphorylation at the 3 and 6 positions of phytate, respectively (Guilan 
et al. 2009); completely hydrolyzing to inositol and inositol monophosphate.

Microbial phytase activity was most frequently detected in fungi. Mostly phytase 
producers are filamentous fungi, especially from the genus Aspergillus, Penicillium, 
and Mucor. Phytase from A. niger group is considered most active. Over 200 fungal 
isolates belonging to the genus Aspergillus, Mucor, Penicillium, and Rhizopus, 
Trichoderma have been tested for phytase production (Soni et al. 2010; Rawat et al. 
2009). The phytase and its applications have recently been well reviewed by Sharma 
et al. (2020).

Several strains of yeasts, the eukaryotic fungi, contain biologically valuable pro-
teins (40–60%), vitamin B-complex, important trace minerals, and several unique 
“plus” factors, such as ability to enhance P bio-availability (Sharma et al. 2020). It 
is reported that among yeasts, extracellular phytases are produced by Schwanniomyces 
castellii (Segueilha et  al. 1992), Arxula adeninivorans (Sano et  al. 1999), and 
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S. cerevisiae (Veide and Andlid 2006). Intracellular phytase occurs in several yeasts 
such as Saccharomyces cereviseae (Man-Jin et  al. 2008; Iefuji et  al. 2009) and 
Cryptococcus laurentii (Pavlova et al. 2008). Baker’s yeast S. cerevisiae is generally 
recognized as safe (GRAS, defined by U.S. Food and Drug Administration) for food 
production, and has been widely used for the production of food-grade phytase 
(Veide and Andlid 2006; Yasoda et al. 2007).

5.3.2  Inorganic

The following are two main theories in this aspect:

 (i) Acid production theory
 (ii) Proton and enzyme theory

As per acid production theory, PSMs produce organic acids such as oxalic, 
fumaric, glyoxalic, malic, citric, gluconic, succinic, alpha-ketobutyric, 
2- ketogluconic, and tartaric acid which lower the pH (Puente et al. 2004; Rodrigues 
et al. 2004). Its amount and type vary from fungus to fungus. Lowering of pH of the 
filtrates of PSMs is because of these organic acids (Rani et al. 2013). Fasim et al. 
(2002) observed the role of microbes in the solubilization of zinc oxide and phos-
phate through gluconic acid and 2-ketogluconic acid production (Table 5.1).

Proton and enzyme theory states that a group of enzymes such as esterase are 
responsible for the phosphorous solubilization from compounds containing organic 
phosphate. According to this theory, phosphorous solubilization, besides the 

Table 5.1 Organic acids produced by P-solubilizing fungi

Fungi Acids

Aspergillus candidus, A. flavus, A. niger, A. terreus, A. wentii, 
Fusarium oxysporum, Penicillium sp., Trichoderma isridae, 
Ttrichoderma sp.

Lactic, maleic, malic, acetic, 
tartaric, citric, fumaric, gluconic

A. flavus, A. candidus, A. fumigatus Glutaric, oxalic, tartaric
Penicillium oxalicum Malic, gluconic, oxalic
Aspergillus flavus, P. canescens Oxalic, citric, gluconic, succinic
Penicillium rugulosum Citric, gluconic
A. niger Succinic, citric, oxalic, gluconic
Penicicllium variabile, Penicillium rugulosum, Penicillium 
radicum

Gluconic

A. awamori, A. foetidus, A. terricola, A. amstelodemi, 
A. Tamari

Oxalic, citric

A. japonicus, A. foetidus Oxalic, citric, gluconic, 
succinic, tartaric

P. simplicissimum, P. bilaji Citric, oxalic
A. awamori, P. digitatum Succinic, citric, tartaric
Chaetomium nigricolor 2-Ketogluconic
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generation of acid, involves release of protons in association with ammonium 
assimilation (Shahab et al. 2009). Other than these two systems, phytohormones 
such as indole acetic acid, cytokinin, and gibberellin also aid phosphate solubiliza-
tion. Formation of chelating agents such as H2S, CO2, mineral acids, and sidero-
phores also has indirect effect on phosphate solubilization (Shahab et al. 2009).

5.4  Genetics of P-Solubilizing Microbes

Generation of organic acids is likely to be involved in mineral phosphate solubiliza-
tion in all the PSM including fungi. The genes mandatory for these acid productions 
were anticipated to affect this feature. A few genes involved in acid phosphatase 
have been represented (Rossolini et al. 1998). For example, the acpA gene com-
municates an acid phosphatase showing ideal activity at pH 6, with extensive sub-
strate specificity (Reilly et al. 2006). Furthermore, broad-spectrum acid phosphatases 
containing class A gene phoC and class B gene napA, separated from Morganella 
morganii, are extremely encouraging. Besides this, a little is known about the mech-
anism involved in the biochemical systems required for the union of the GDH-PQQ 
halo enzyme and the region for the variation in some microorganisms among con-
stitutive and inducible phenotypes.

The conceivable inducers that show promising halo enzyme activity are glucose, 
gluconate, mannitol, and glycerol. Gluconic acid is synthesized by a mechanism 
involving direct oxidation of glucose through two key proteins, namely, membrane- 
bound quinoprotein and glucose dehydrogenase (GDH) (Kim et al. 1997; Patel et al. 
2008). GDH requires pyrroloquinoline quinone (PQQ) as a cofactor, which is the 
product of a pqq operon comprised of six genes (pqqA, B, C, D, E, and F) in 
Klebsiella pneumonia, Enterobacter intermedium 60-2G, and Rahnella aquatilis 
(Kim et al. 1998, 2003). PQQ is essential for the formation of holoenzyme which 
leads to the production of gluconic acid from glucose. Han et al. (2008) have shown 
that the absence of 2-ketogluconic acid, due to inactivation of pqq genes in 
Enterobacter intermedium 60-2G, leads to insolubility of hydroxyl-apatite. PCR 
studies were conducted in S. marcescens CTM 50650 strain (Farhat et al. 2009) to 
check the presence of genes involved in the expression of MPS via activation of the 
direct oxidation pathway of glucose (GDH encode by gdh and pqq genes involved 
in the biosynthesis of the required PQQ cofactor). Rodrıguez et al. (2000), Rajwar 
et al. (2018), and Joshi et al. (2019) have reported pqq genes in the diazotrophs. A 
gene of phosphatase enzyme in Burkholderia cepacia is known to encode an outer 
membrane protein which increases the P transport within a cell (Rodrıguez et al. 
2000). Two nonspecific periplasmic acid phosphatase genes (napD and napE) from 
Sinorhizobium meliloti were also cloned (Deng et al. 2001).

A MPS gene (gabY) was isolated from Pseudomonas cepacia and its expression 
was studied in E. coli HB 101. Babu-Khan et al. (1995) have identified 396 gabY 
ORFs of P. cepacia and evaluated their expression in E. coli K-12. They have found 
that this strain had synthesized apo-GDH but PQQ. Furthermore, JM109 (pSLY4) 
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and JM109 (pGAB1) were found to synthesize 10-fold more gluconic acid in the 
presence of 1 mM PQQ. In another study, a genetic construct using pKT230 and 
pMCG898 was prepared by Rodriguez et al. (2000), encoding PQQ synthase gene 
(responsible for MPS) from Erwinia herbicola and was transferred to Pseudomonas 
sp. and Burkholderia cepacia IS-16. The positive recombinant clones were able to 
produce higher insoluble phosphate in comparison to their respective wild type 
strains. A 7 kb fragment from Rhanella aquatilis was cloned by Kim et al. (1997) 
and transferred to E. coli strains so that hydroxyapatite-solubilization ability can be 
conferred and hence induce the production of gluconic acid. Presence of two open 
frames ORF1 and ORF2 and a partial ORF were revealed in nucleotide analysis. 
Among them, ORF2 encodes a protein of 44 kDa which has remarkable sequence 
resemblance to pqqE of Klebsiella pneumonia, E. herbicola and Acinetobacter cal-
coaceticus and were revealed in nucleotide analysis. Further, a 10 kDa protein was 
found to encode by ORF1 which has shown a strong sequence resemblance to the 
pqqD of A. calcoaceticus and K. pneumoniae. E. coli can produce GDH, without 
PQQ, and thus, does not produce GA.

The cloned 1.8 kb locus encodes a protein that shows striking resemblance to the 
gene III product of a pqq synthesis gene complex from Acinetobacter calcoaceticus, 
and to pqqE of K. pneumoniae (Liu et al. 1992). It has been observed that DNA 
fragment from E. herbicola worked as PQQ synthase gene. Further, few E. coli 
strains may possess cryptic PQQ which were supposed to complement by this 
ORF. These observations have revealed that although acid production is an essential 
way of P solubilization, it cannot be considered the only way to perform that. 
Numerous genes are reported which are responsible for solubilization of the insolu-
ble phosphate. A pcc (phosphoenolpyruvate carboxylase) gene from Synechococcus 
was found to involve in P solubilization. To release Pi from the organic complexes, 
microorganisms have developed a specific system which possesses the alkaline and 
acid phosphatases. The genetic regulation of these enzymes has been studied. Under 
P limiting conditions, several genes are observed to induced and initiate the pho 
regulation, namely, phoA (for alkaline phosphatase), phoB (a positive regulator or 
an activator), phoT, pstS, and pstB, etc. They all constitute pho box (Torriani and 
Ludtke 1985; Makino et al. 1989; Ezawa and Saito 2018). PhoR protein regulates 
the Pho regulation both negatively and positively with excess and limited phos-
phate, respectively. Pho M is another protein showing inhibitory effect on the prod-
uct of PhoR, into an inactive form, PhoM.  In presence of Pi, PhoU exhibits a 
negative control.

The Pst-Pho U region constitutes an operon with a transcription attenuator 
between Pho S and Pho T (Wanner 1987). As organic acid production is among the 
key mechanisms of P solubilization, it is assumed that any change in structure/func-
tion of the respective genes will affect this property. In this scenario, genes of P 
uptake have been studied thoroughly in several PSM. It has been observed that 
Sinorhizobium meliloti possess at least two P transport systems – high- and low- 
affinity transport systems. The high-affinity system is observed to encode by the 
pho CDET operon, whereas low-affinity system is known to encode by orfA-pit 
operon. These genes are regulated by PhoB activator. In case of P-sufficient 
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conditions, PhoB becomes inactive and thus phoCDET genes are not expressed. 
Under P deficiency, PhoB becomes activated and thus pit permease system (low- 
affinity system) is suppressed while pho CDET system gets activated and predomi-
nantly acts as P transport (Bianco and Defez 2010). pstSCAB homologs have been 
found in some microorganisms that are known to serve as high-affinity P transport-
ers (Behera et al. 2014). Recently, Ezawa and Saito (2018) have reviewed the genet-
ics of P solubilization by arbuscular mycorrhizal fungi. The group has reported an 
SPX domain in the proteins which are involved in Pi homeostasis in eukaryotes.

5.5  Applications of Genetic Engineering for Potential 
Bioinoculants Development

PSF performance mainly depends on its potential to colonize under a certain habi-
tat. Plate counting and most-probable-number techniques have been used for the 
study of fungal communities in the rhizosphere. It is considered that less than 1% of 
the microorganisms in the environment can generally be cultured by standard cul-
ture techniques. Spatial heterogeneity and culturing inability are the major limita-
tions for identification of the fungus (Kirk et al. 2004, Mummey et al. 2006). Spatial 
heterogeneity occurs due to the temporal and spatial variability during the sampling. 
Moreover, improper sampling and handling may also affect the results. On the other 
side, culturing inability arises due to the lack of the suitable growth media. Therefore, 
microbial habitats, their interactions, and growth requirements need to be studied 
properly to overcome this problem.

Molecular biology techniques are extensively used for characterizing microbial 
community structures in different environments. Cloning and sequencing tech-
niques are commonly used techniques to determine microbial community structure. 
Besides them, hybridization and probing techniques can also determine the same 
with the advantage that they are less time-consuming, however require a sufficient 
knowledge of the community to select the appropriate target sequence. Some other 
techniques such as ribosomal intergenic spacer analysis (RISA) and amplified ribo-
somal DNA restriction analysis (ARDRA) can be used to study PGF colonization or 
community structure. ARDRA and RISA have been used in the analysis of mixed 
bacterial populations from different environments. ARDRA can be used for taking 
an overview of genotypic changes occurred in the community over time. However, 
RISA provides a method of microbial community analysis for comparing differing 
environments or treatment effects without any kind of biasness imposed by culture- 
dependent approaches. In brief, RISA involves PCR amplification of an intergenic 
spacer region (ISR). These molecular techniques have greater quantitative effi-
ciency and can be further extended to characterize PGF under in situ conditions.

Knowledge of the fungal genes governing the production of organic acids would 
make it possible to transfer the phosphate-solubilizing ability to various other 
microorganisms that are competent of colonizing a particular rhizosphere. As clear 
from the earlier discussions, rhizosphere competence is a most important factor that 
determines the fate of success or failure of microbial inoculant. The rhizosphere has 
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various amounts of carbon sources that can be utilized by the heterogeneous micro-
bial communities in soil to produce various types of organic acids. Oxidative metab-
olism of glucose by glucose dehydrogenase (GDH) produces gluconic acid; glucose 
dehydrogenase (GDH) requires pyrroloquinoline quinine (PQQ) cofactor. Therefore, 
genes involved in the transport/biosynthesis of PQQ can be cloned from various 
microbes and transferred to the other (Bruto et al. 2014). If the genes involved in 
PQQ biosynthesis are transferred to Trichoderma sp. that possess apo-GDH and that 
is rhizosphere competent too, the resulting Trichoderma strains will show both 
phosphate-solubilizing activity as well as biocontrol activity. Similarly, Ambrose 
et al. (2015) have successfully characterized salicylate hydroxylase gene from the 
fungal endophyte Epichloë festucae.

5.6  Available Approaches and Methodologies to Study 
P-Solubilizing Microbes

For identification and characterization of the rhizospheric fungi, two different 
approaches can be explored, namely, culture-dependent and -independent (Soni 
et al. 2016; Suyal et al. 2019a, 2019b). Culture-dependent approaches involve the 
culturing of the fungi in the lab followed by their morphological characterization, 
carbon source utilization pattern, plasmid fingerprinting, FAME (fatty acid methyl 
esters) analysis, PLFA (phospholipid fatty acid analysis), DNA microarray, MLST 
(Multilocus sequence typing), mass spectrometry, etc. Unfortunately, all the fungi 
are not culturable and therefore, need another approach known as culture- 
independent approach. It involves metagenomics and other genetic fingerprinting 
techniques which provide a profile of the whole community and do not rely on the 
culturing of the fungi. These methods are rapid, accurate, and easy to perform. 
Furthermore, these methods involve the isolation of DNA directly from the soil 
samples followed by its restriction digestion, cloning, and metagenomic library 
construction (Goel et al. 2017). These shotgun clones can further be subjected to 
activity screening. The culture-independent approach also involves the in situ iden-
tification of microorganisms by FISH (fluorescent in situ hybridization) and PCR 
based identification by using different phylogenetic markers.

5.6.1  Morphological Characterization

Several morphological characteristics are useful in the fungal identification and 
characterization, namely, hyphal structure, mycelial growth, pigmentation, spores, 
etc. Morphological characterization is really rapid, easy, and does not need any 
sophisticated instrument. But it has several drawbacks too because the morphologi-
cal expressions are dependent upon environmental factors (Li et al. 2009).
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5.6.2  Biochemical Characterization

5.6.2.1  Carbon Source Utilization Patterns

The evaluation of carbon source utilization efficiency of the microorganisms is one 
of the oldest methods used for their identification and characterization. This tech-
nique is considered fast, reproducible, and cost-effective. The Biolog identification 
system is a commonly used microbial identification method based on their ability to 
oxidize a panel of 95 different carbon sources (Morgan et al. 2009). Thus, metabolic 
profile of the microorganisms is prepared and compared. The major disadvantage of 
this method is its biasness for cultivable microbial communities. Nevertheless, 
results may also vary according to the growth conditions of the microorganisms and 
inoculum density. Frąc et al. (2016) have developed a fast, accurate, and effective 
Microplate Method (Biolog MT2) for the detection of Fusarium.

5.6.2.2  FAME and PLFA Analysis

For many years, microbial lipids have been routinely used for their own identifica-
tion. The two most common methods which are being used for this purpose are 
FAME and PLFA. FAME is rapid but indiscriminate while, PLFA is precise but 
time-consuming. These methods involve the analysis of the microbial fatty acids 
and identify them on the basis of signature molecules. Signature fatty acids are 
known to make a relatively constant proportion within a cell and can be differenti-
ated among major taxonomic groups of the microorganisms (Frostegard and Baath 
1996; Siles et  al. 2018). Therefore, any variation in the fatty acid profile of the 
microorganisms represents the change in the microbial community structure. This 
technique is precise, high-throughput, and cost-effective with higher resolution 
capacity (Nelsona et al. 2010). The limitation of this technique is that cellular fatty 
acid composition depends on growth conditions, media, and temperature used to 
grow the organism, thus, may lead to misinterpretation.

5.6.3  Molecular Characterization

5.6.3.1  PCR-Based Methods

Random Amplification of Polymorphic DNA (RAPD)

It is a PCR-based fingerprinting technique. RAPD markers are the DNA fragments 
produced from the random amplification of the genomic DNA using single primer 
of arbitrary nucleotide sequence. After purifying the genomic DNA, PCR amplifica-
tion can be done by using randomly designed primers (Clerc et al. 1998). By select-
ing the primers and amplification conditions judiciously, all such pairs of sequences 
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represented in the genome result in a set of fragments that is characteristic of the 
species or strain from which the DNA was prepared. These fragments are resolved 
by gel electrophoresis. The band pattern generated in the analysis represents genome 
characterization of a respective microbial strain. Recently, Hassan et al. (2019) have 
used this technique for rapid identification of the Trichoderma sp.

Amplified Fragment Length Polymorphism (AFLP)

It is a variation of RAPD technique, and able to detect polymorphic restriction sites 
without prior sequence knowledge using PCR amplification. Restriction enzyme 
(RE)-digested genomic DNA can be used as a template for PCR amplification. The 
primers contain the recognition sites of the RE as well as additional “arbitrary” 
nucleotides that extend beyond the restriction sites (Blears et al. 1998; Bertani et al. 
2019). The fixed portion gives the primer stability and the random portion allows it 
to detect many loci. The amplified fragments are separated and visualized on dena-
turing polyacrylamide gels. This multiple-locus fingerprinting technique is highly 
sensitive and robust and has been evaluated for genotypic characterization of the 
fungi (Kathuria et al. 2015). Furthermore, it has higher reproducibility, resolution, 
and sensitivity compared to other techniques.

Repetitive Sequence-Based PCR (Rep-PCR)

Microbial genomes possess several low-copy-number repeated sequences, namely, 
rRNA operons, tRNA genes, insertion elements, etc. These sequences contribute to 
the evolution of the genome and function through DNA rearrangements. It also 
helps in creating the genetic fingerprints. Therefore, Rep-PCR fingerprinting is con-
sidered a well-established technique for microbial diversity analysis and identifica-
tion (Shin et al. 2012; Masanto et al. 2019). This method is based on PCR-mediated 
amplification of DNA fragments located between specific interspersed repeated 
sequences in microbial genomes. It has high resolution, but results may vary due to 
the PCR biasness.

Multiple Locus Variable Number Tandem Repeat Analysis (MLVA)

It is a molecular technique which explores the natural variation in the number of 
tandem repeats found in the multiple loci of the microorganism. This method is 
extensively used for molecular typing of the microorganisms (Johansson et  al. 
2006). In this technique, variable number tandem repeats (VNTR) loci are subjected 
to PCR amplification followed by amplicon sequencing. The amplicon size is used 
to assess the number of repeated units in each locus (Singh et al. 2019). Thus, total 
numbers of repeats of the VNTR loci are combined and used to prepare the MLVA 
profile, which can be compared for the fungal identification. This technique has 
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high resolution and accuracy but often imperfect repeats containing mutations are 
encountered which affect the reproducibility of the results.

Multilocus Sequence Typing (MLST)

This technique identifies the microorganisms by analyzing the internal fragments of 
house-keeping genes present in multiple loci (Maiden et  al. 1998; Gaiarsa et  al. 
2019). These fragments are then sequenced and compared. Fragments that differ are 
designated as separate alleles and thus the relatedness of the microorganisms is 
displayed in terms of their phylogenetic relationships.

Single-Strand Conformation Polymorphism (SSCP)

It is a conformational difference in single-stranded nucleotide sequences of identi-
cal length (Schwieger and Tebbe 1998). These nucleotide sequences with different 
confirmation can be separated by the gel electrophoresis technique. Moreover, the 
gel patterns thus observed can be used for fungal identification and characterization. 
The change in single nucleotide in the amplified region is sufficient to produce the 
distinct PCR-SSCP patterns. This technique is rapid and convenient for mutational 
analysis and allelic variance (Martynov et al. 2019). Problem in reproducibility is 
the major limitation for this SSCP technique.

Denaturing Gradient Gel Electrophoresis (DGGE) and Temporal Gradient Gel 
Electrophoresis (TGGE)

These two techniques are the well-known techniques for the microbial ecology 
analysis and involve both PCR as well as polyacrylamide gel electrophoresis 
(Rajwar et al. 2018; Rawat et al. 2019). The metagenomic DNA is amplified using 
GC clamp containing primers and allowed to separate on a polyacrylamide gel. The 
denaturation of the amplicons is achieved by urea and formamide in DGGE, while 
temperature in case of TGGE. The amplicons get denatured and separated on the 
basis of their nucleotide sequences. Thus, a profile can be generated which can be 
compared further for assessing the microbial diversity within a respective sample 
(Kumar et al. 2014). These techniques are fast and labor-intensive. However, primer 
selection, electrophoresis conditions, and PCR reactions require optimization to 
achieve reproducibility.
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5.6.3.2  Restriction Enzyme-Based Methods

Pulsed-Field Gel Electrophoresis (PFGE)

This technique can be used for the separation of DNA fragments under the influence 
of an electric field by changing their directions periodically on the gel matrix. It is a 
powerful genetic fingerprinting technique to construct a genome amp of the micro-
organisms (Basim and Basim 2001; Kwon et  al. 2019). Microbial DNA can be 
restricted digested using RE and allowed to separate through gel electrophoresis. 
However, the direction of the electric field is changed continuously to get a discrete 
band pattern. These patterns are then compared and matched with the available 
databases for the identification of the microorganisms.

Restriction Fragment Length Polymorphism (RFLP) Analysis

RFLP is a genetic fingerprinting technique that explores variations in homologous 
DNA molecules. It involves the restriction digestion of DNA followed by gel elec-
trophoresis (Osborn et al. 2000; Florek et al. 2019). Digested fragments are then 
transferred from the gel matrix to the nitrocellulose membrane. The predesigned 
probes are then subjected to the hybridization with the membrane-bound DNA frag-
ments. RFLP is considered very sensitive for microbial identification. However, 
incomplete restriction digestion of the DNA molecules may change the results.

Ribotyping

It involves the identification of microorganisms based on the restriction digestion of 
rRNA coding genes. In case of bacteria 16S rRNA genes are used for this purpose 
(Suyal et al. 2015a, b, 2019b), while intergenic transcribed spacer (ITS) regions are 
frequently used for ribotyping of the fungi (Suyal et al. 2013a). Furthermore, 18S 
rRNA genes can also be used for fungal identification (Goes et al. 2012). This tech-
nique is among the most powerful genetic fingerprinting techniques and is being 
used extensively worldwide. It is highly accurate and reproducible along with a high 
level of resolution.

Plasmid Fingerprinting with Restriction Enzymes

Plasmid is an extrachromosomal, covalently closed, double-stranded circular DNA 
molecule. Besides the bacteria, these are well known in the members of several 
fungal genera, namely, Absidia, Agaricus, Alternaria, Claviceps, Epichloe, 
Erisyphe, Fusarium, Saccharomyces, etc. Plasmids can be isolated, restricted 
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digested, and allowed to separate on gel electrophoresis to get a unique pattern 
(Owen 1989; Qin et al. 2019). These patterns are then compared for interpreting 
the fungal relatedness. It is a rapid, popular, easy, and cost-effective technique. 
However, plasmid instability is a major drawback for this genetic fingerprinting 
technique.

5.6.3.3  Hybridization-Based Methods

Fluorescent In Situ Hybridization (FISH)

This technique is extensively used for microbial identification under culture- 
dependent as well culture-independent approaches. It can detect the complementary 
DNA sequence within a chromosome with the help of a fluorescence tag (Amann 
et al. 2001; Witchley et al. 2019). For this purpose, fluorescent probes are designed 
which are actually the complementary sequence of the desired DNA fragment. The 
probe: DNA binding is detected by the fluorescent microscopy technique. This tech-
nique is highly reproducible with good resolution ability. Cellular permeability, sen-
sitivity, target site specificity, and accessibility are the major concerns with this 
technique.

DNA Microarray

A DNA microarray can be defined as the collection of small DNA spots on a solid 
surface. It can be identified as a DNA chip, biochip, or gene chip (Wang et al. 2002). 
Initially, this technique was used for expressional analysis of the genes; however, 
nowadays, it is frequently used for microbial identification and characterization. In 
microarray, randomly fragmented microbial genomes are allowed to hybridize to 
with the microbial genome spotted on a solid surface (DNA chip) (Ye et al. 2001; 
Nilsson et al. 2019). Resulting hybridization profiles are then analyzed and com-
pared. This genetic fingerprinting has shown high reproducibility, accuracy, and 
resolution. However, it is considered laborious to perform.

5.6.3.4  Protein-Based Characterization

Serotyping

Serotypes are the microbial strains with distinct immune cells and antigenicity. 
Thus, the identification and characterization of the microorganisms based on their 
serotypes is known as serotyping. Cell surface antigens are the major determinative 
factor for the serotyping. This approach involves western blotting, immunoprecipi-
tation, ELISA, and other immunological techniques to generate the serotyping pro-
files which are then compared to get an idea about the genetic relatedness among the 
microorganisms (Li et al. 2006; Akins and Jian 2019).
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Mass Spectrometry (MS)

It offers high-throughput, robust, and sensitive way of microbial identification and 
characterization. Fungal proteins can be extracted, purified, and allowed to mass 
spectrometric analysis for their detailed characterization (Demirev and Fenselau 
2008; Welker 2011). In the field of microbial proteomics, MS can be used for both 
gel-based as well as gel-less approaches. In recent years, two-dimensional-gel elec-
trophoresis (2D-GE) coupled with MS having ionization with matrix-assisted laser 
desorption/ionization (MALDI)-time of flight (TOF) have shown its potential under 
gel-based proteomic approach (Soni et al. 2015; Suyal et al. 2014b, 2017). However, 
under gel-less approach, liquid chromatography analysis coupled with MS (LC- 
MS) is in great demand (Suyal et al. 2018, 2020). Both the approaches produce a 
profile of the microbial proteins which is then used to compare and characterize the 
respective strains.

5.6.3.5  Enrichments Methods

Bromodeoxyuridine (BrdU) Method

This method can be used to identify a metabolically active population within a niche 
(Sebastián and Gasol 2019). In this technique, BrdU (a labeled nucleotide) is added 
to the system and microbes are allowed to grow (Yin et al. 2000). Metabolically 
active individuals will incorporate BrdU into their nucleic acid and thus identified 
by using a label. This strategy is widely used in the bioremediation, especially for 
the isolation of the fungi which can use xenobiotics, heavy metals, and other 
compounds.

Stable Isotope Probing (SIP)

It is also an enrichment method in which 13C-labeled substrate is provided to the 
microorganisms. Metabolically active microorganisms incorporate 13C in their DNA 
and thus, make it denser than normal DNA. Density gradient centrifugation can be 
used to separate both the DNA which can be analyzed further with the help of the 
specific primers (Achouak and Haichar 2019). Therefore, SIP offers broad opportu-
nity to study microbial communities and can be expanded further to stable isotopes 
of nitrogen and/or phosphorus (Buckley et al. 2007).

5.7  Conclusion and Future Prospects

To meet the ever-increasing demand of food due to population pressure, green revo-
lution came into existence. It, however, brought remarkable gain in food production 
but with unnoticed concerns for sustainability due to disproportionate use of 
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chemical fertilizers. Moreover, future reliability on chemical fertilizers will persist 
to cause loss in soil fertility, pollution, and a lot of saddle on the fiscal system. 
Therefore, biofertilizers are being promoted alone or with combination with fertil-
izers. This integrated approach is vital to improve crop productivity and to maintain 
soil fertility.

PGFs not only exhibit plant growth promotion but they are also effective in bio-
remediation by detoxifying detrimental pollutants such as pesticides and heavy 
metal pollutants. Nevertheless, they are potential biopesticides, as they can control 
a wide variety of phytopathogens. In the case of controlled soil conditions, remark-
able enhancement in yields of different crop plants has been reported through PGF 
applications. But soil is an unpredictable natural ecosystem. Efficacy of PGF in crop 
yield may vary under laboratory, greenhouse, and field trials, and therefore, the 
desired results are sometimes not achieved. Besides it, climatic variations influence 
the effectiveness of PGF.  However, their performance can be optimized through 
acclimatization according to the prevailing natural soil environment. In the current 
scenario, where there is global reluctance toward genetically modified food crops, 
PGF-based farming practices might be an excellent alternative. This is a technology 
which is easy to access even to the farmers of developing nations including India. 
Thus, this trend of least possible input of chemicals in sustainable agricultural sys-
tems may help to achieve the food reliance for an ever-growing population. Further 
research in this perspective will widen the horizon of our knowledge and enable us 
to understand microbial responses to the diverse environments.
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6.1  Introduction

Fungi can produce many compounds and among the compounds are siderophores 
(chelating of Fe), the Greek “siderophores,” which means “iron carriers or carriers,” 
the semolecules are natural products that currently have a broad biotechnology 
(Renshaw et al. 2002), these compounds possess the ability to bind metal ions with 
a high affinity, additionally a complex formation of these natural chelators with 
mostions and metalloids, thus linking a potential development of biotechnological 
products forth area of ecology and agriculture (Kramer et  al. 2020; Winkelman 
2007). Siderophores are low molecular weight molecules that are in a range of 500 
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to 1500 Da, and are synthesized by different microorganisms such as bacteria (Kour 
et al. 2020; Santoyo et al. 2009), particularly Gram-negative and fungi, for example, 
Verticillium dahlia (Barash et al. 1988), Candida sp., Aspergillus fumigatus (Hass 
2014), Mucor sp., Fusarium roseum, Ustilago sphaerogena (1998a, 1998b; An et al. 
1997; Ardon et al. 1997), F. oxysporum, F. oxysporum f. sp. cubense (FocTR4), and 
F. fujikuroi (Al-Ani 2017b), Trichoderma sp. (Anke et  al. 1992; Al-Ani 2017b), 
edible mushroom such as Pleurotus (Castañeda-Ramírez et al. 2020; 38. Comans- 
Pérez et al. 2021), and monocotyledonous and grass-type plants (phytosiderophore), 
presenting functional groups that coordinate Fe ions with high affinity and 
specificity.

The main structural characteristics that determine the selectivity of a siderophore 
by the ferric ion are the type, number (Denticity), and spatial distribution of the 
metal-binding groups, approximately a number of 500 siderophores have been iden-
tified, the diversity of the group functionalities that coordinate the ferric ion is lim-
ited due to the need for donor groups, for example, oxoanions, to coordinate the 
most oxidized form of iron. In this way, most siderophores can be grouped as fol-
lows: hydroxamates, catecholates, α-hydroxycarboxylic acids, and mixed sidero-
phores.The semolecules are generated in response to the low of availability of iron 
in the environment, and its relationship for this elemental low sits uptake from com-
pounds that are present in the environment and from protein from host organisms 
such as transferrin or ferritin. On the other hand, the synthesis of the semolecules 
increases when the microorganisms are in conditions of iron shortage, the high 
affinity of the semolecules for iron facilitates the uptake of this metal from com-
pounds such as ferric hydroxide, and proteins from the host organism such as trans-
ferrin or ferritin (Crowley et al. 1987, 1991).

The complexes that siderophores form with iron in the soil are efficiently assimi-
lated both by the microorganism that produces them and by other microorganisms 
that inhabit them. Various studies have shown that the concentration of this complex 
is high to promote plant nutrition. Likewise, radical exudates, particularly phenolic 
compounds, have an important effect on the proliferation of siderophores-producing 
microorganisms in the rhizosphere of plants, especially in conditions of low iron 
availability.

The types of transport of siderophores in microorganisms such as bacteria and 
fungi have the ability to use exogenous or heterologous ferri-siderophores (Hider 
and Kong 2010). Regarding iron deficiency worldwide, it represents a serious prob-
lem, where in places with a high concentration of salts it limits the availability of 
this important element. On the other hand, due to their capacities to sequester iron, 
microbial siderophores and phytosiderophores (plants) constitute a fundamental 
study area of the nutrition of plants that develop in soils with low iron availability. 
The development of plants with a high capacity to produce siderophores should be 
implemented in plant improvement programs.

One of the alternatives would be isolation and fungi with the ability to produce 
siderophores that have the capacity to sequester or capture this element to contribute 
to the nutrition of various crops, particularly those that are lacking this element 
(Yehuda et  al. 1996). Currently, the applications of protein engineering to the 
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biosynthesis of siderophores open the possibility of the natural diversity of the 
semolecules, through the directed design of new assembly lines.

The strategies are based on the addition, deletion, reorganization of domains and 
modules, alterations in the adenylation domains that affect the specificity of mono-
mer selection, and combination of compatible subunits of different assembly lines. 
Currently, siderophores of a microbial nature have been characterized and are also 
used in various areas such as human medicine, industry, and environmental studies. 
However, the characterized siderophores represent only a small fraction of the total, 
with the field of siderophores largely unexplored. For this reason, the objective of 
this chapter is to study the chelating compounds of Fe that produce fungal commu-
nities and their applications.

6.2  Fungal and Production of Chelating Compounds

Industrial contamination and the indiscriminate use of chemical fertilizers in the 
soil with heavy metals (HM), which are incorporated into rivers, plants, animals, 
and foods, produce an alteration of the trophic chain producing potential risks to 
nature and society (Waisberg et al. 2013). The chelating mechanisms of plants are 
different from those of fungi and bacteria. A wide variety of fungi and bacteria pro-
duce organic acids as natural chelating agents of HM, contributing to mitigate the 
toxicity of these metals in living organisms (Seneviratne et  al. 2017). Iron is an 
essential transition metal for living beings that intervenes in vital biological pro-
cesses, including oxygen transport, electron transference, enzymatic reactions, aer-
obic metabolism, photosynthesis, and nitrogen fixation. The availability of this 
element influences the success or failure of pathogenic and symbiotic microorgan-
isms in invading an organism or colonizing a given environment (Litchman 2010; 
Singh et al. 2020a).

Iron is almost insoluble at neutral or alkaline pH, due to which most fungi and 
microorganisms have developed a highly specific and efficient system to acquire 
iron (Kornitzer 2009; Zeng et al. 2018). This consists of synthesizing siderophores, 
which are chelating compounds with high affinity for ferric iron (Fe3+) that act spe-
cifically as chelating agents that sequester iron in the presence of other metals and 
reduce it to (Fe2+), which is much more soluble and useful in nutrition, forming 
complexes that may be taken into the cell by active transport (Kraemer 2004). Most 
of the siderophores found in fungi are hydroxamates classified into four structural 
families—rhodoturulic acid, the fusarinins, the coprogens, and the ferrichromes 
(Al-Fakih 2014; Garnerin et al. 2017; Winkelmann 2002).

Gluconic, oxalic, acetic, and malic acid have been reported to solubilize heavy 
metals by soil microbes (Gube 2016). Fomina et al. (2005) showed that over secre-
tion of oxalic and citric acid with strong metal chelating properties provided high 
tolerance to toxic metals and soluble minerals of Cd, Cu, Pb, and Zn in Beauveria 
caledonica; the data suggested that oxalic acid was the main agent of mineral trans-
formation. It is also known that the oxalate crystals produced by the 
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ectomycorrhizal (ECM) fungi Hebeloma velutipes, Piloderma byssinum, Paxillus 
involutus, Rhizopogon roseolus, Suillus bovinus, and S. variegatus immobilize and 
detoxify heavy metals (Gadd et al. 2014).

A study by Kaewdoung et al. (2016) showed that the oxalate crystals produced 
by two wood-rotting fungi, Fomitopsis cf. meliae and Ganoderma aff. Steyaertanum, 
favored the tolerance and transformation of heavy metals into less toxic forms, for 
example, zinc sulfate (ZnSO4·7H2O) into zinc oxalate dihydrate (C2O2Zn·2H2O); 
copper sulfate (CuSO4·5H2O) into copper oxalate (C2CuO4·xH2O); cadmium sulfate 
(3CdSO4·8H2) into cadmium oxalate trihydrate (C2CdO4·3H2O); and lead nitrate 
(Pb(NO3)2) into lead oxalate (PbC2O4). ECM fungi accumulate soil heavy metals 
adequately (Gadd et al. 2012), promoting the dynamism of plants in environments 
with metallic alterations (Fig. 6.1), because the metal-tolerant ectomycorrhiza func-
tion as an impediment to the passage of metals into plant tissues and also simulate 
the response of plants to abiotic stress (Colpaert et al. 2011; Khullar and Reddy 2018).

An evaluation of the in vitro production of chelating compounds of heavy metals 
using ECM fungi collected in pine plantations in southern Chile found that isolates 
of Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus 
produced a number of metal-chelating compounds (oxalic, citric, succinic, and 
malonic acids) when cultivated in Melin-Norkrans-modified (MMN) liquid medium 
(Machuca et al. 2007). A recent study showed that ectomycorrhiza may be used in 
phytoextraction and phytostabilization of sites affected by heavy metals and reduce 
the detrimental consequences of these metals in host plants, decreasing their con-
centrations and improving the nutritional state of plants (Tang et al. 2019). This is 

Fig. 6.1 Fungi and metal tolerance in plants
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important for the production and characterization of chelating agents of heavy met-
als with biotechnological potential.

6.3  Type of Siderophores Produced by Fungi

Siderophores (Greek: “iron carriers”) are organic compounds defined as “ferric-ion 
specific chelating agents” with low molecular weight synthesized by fungi under 
low iron stress (Matzanke 2011; Neilands 1995) helping to maintain iron homeosta-
sis (Das et  al. 2007), chelating ferric ions in the surrounding solution 
(Watkinson 2016).

Siderophores can be classified into three groups depending on the chemical 
nature of the oxygen ligands for Fe3+: (a) catecholates and phenolates, (b) carboxyl-
ates, and (c) hydroxamates (Haas et al. 2008). The fungal siderophores names are 
based on their iron charged forms. The principal groups are the hydroxamate and 
the catecholate-type (Jalal et al. 1984). The basic structural unit of the hydroxamate 
siderophores is Nδ-acyl-Nδ-hydroxy-L-ornithine and there are four hydroxamates 
families classified as: rhodotorulic acid, fusarinines, coprogenes, and ferrichromes 
(Renshaw et al. 2002). The simplest hydroxamate, rhodotorulic acid, consists of two 
Nδ-acyl-Nδ-hydroxy-L-ornithine units (Winkelmann 1992). The ferrichromes (fer-
ricrocin), one of the large families of hydroxamate siderophores, were isolated from 
low-iron cultures of many fungi (Emery and Neilands 1961). They are cyclic hexa-
peptides consisting of three Nδ-acyl-Nδ-hydroxy-L-ornithine and three amino acids 
(glycine, serine, or alanine). Coprogen is a linear tri-hydroxamate composed of 
three units of Nδ-acyl-Nδ-hydroxy-L-ornithine. The fusarinines (fusigens), from 
Aspergillus, Penicillium, and Fusarium species, can be monomers, linear dimers or 
trimers, or cyclic trimers. The acyl group is an anhydromevalonic acid (5-hydroxy-3- 
methyl-pent-2-enoic acid) residue (Winkelmann 1992).

The major groups of soil fungi and types of siderophores are shown in Table 6.1. 
Members of Mucoromycota (ex-Zygomycetes) do not produce hydroxamate-type 
siderophores (Comensoli et al. 2007; Winkelmann 1992). They store iron in their 
cells by using the iron-binding protein called rhizoferrin. This molecule is a poly-
carboxylate siderophore originally isolated from the fungus Rhizopus microsporus 
var. rhizopodiformis (Drechsel et al. 1991). For Ascomycota and Basidiomycota, 
the siderophores produced are hydroxamates (Drechsel et al. 1992; Leong 1986) 
being classified into four structural families: fusarinines, coprogens, ferrichromes, 
and rhodotorulic acid (Table 6.1). There are exceptions like the brown-rot fungus 
Wolfiporia cocos, a basidiomycota member used in Chinese medicine, has also been 
reported to have secretion of catecholates and hydroxamates chelators (Arantes and 
Milagres 2008).

In mycorrhizal fungi, few siderophores have been described due to the difficul-
ties of cultivation, under iron limitation, in pure culture. Ericoid, ectomycorrhizal, 
and the ectendomycorrhizal fungi produce hydroxamate (ferrichromes) sidero-
phores (Table  6.1) (Haselwandter 1995; Haselwandter et  al. 1992; Haselwandter 
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Table 6.1 Some examples of the major groups of soil fungi and the types of siderophores produced

Group of fungi
Type of 
siderophores Examples of fungi References

Mucoromycota Rhizoferrin Rhizopus 
microspores var. 
rhizopodiformis
Mucor mucedo
Phycomyces nitens
Chaetostylum 
fresenii
Cokeromyces 
recurvatus
Cunninghamella 
elegans
Mycotypha 
africana
Mortierella 
vinacea
Basidiobolus 
microsporus

Van der Helm and Winkelmann 
(1994), Drechsel et al. (1991, 
1992, 1995) and Thieken and 
Winkelmann (1992)

Ascomycota Rhodotorulic 
acid

Epicoccum 
purpurescens
Histoplasma 
capsulatuma
Stemphilium 
botryosum

Frederick et al. (1981), Burt 
(1982) and Manulis et al. (1987)

Coprogens Curvularia lunata
Epicoccum 
purpurescens
Fusarium dimerum
Histoplasma 
capsulatum
Neurospora crassa
Stemphilium 
botryosum
Penicillum 
chrysogenum
Trichoderma spp.

Van der Helm and Winkelmann 
(1994), Frederick et al. (1981), 
Van der Helm and Winkelmann 
(1994), Burt (1982), Van der 
Helm and Winkelmann (1994), 
Manulis et al. (1987), Charlang 
et al. (1981) and Baakza et al. 
(2004)

Ferrichromes Aspergillus spp. 
(A. nidulans)
Epicoccum 
purpurescens
Microsporum spp.
Trichophyton spp.
Neurospora crassa
Trichoderma spp.

Charlang et al. (1981), Frederick 
et al. (1981), Bentley et al. 
(1986), Mor et al. (1992), Van 
der Helm and Winkelmann 
(1994) and Baakza et al. (2004)

(continued)
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Table 6.1 (continued)

Group of fungi
Type of 
siderophores Examples of fungi References

Fusarinines Aspergillus spp. 
(A. fumigatus)
Epicoccum 
purpurescens
Fusarium spp.
Histoplasma 
capsulatum
Paecilomyces spp.

Winkelmann and Huschka 
(1987), Frederick et al. (1981), 
Diekmann and Zähner (1967), 
Burt (1982) and Van der Helm 
and Winkelmann (1994)

Basidiomycota Rhodotorulic 
acid

Rhodotorula 
mucilaginosa 
(yeast)

Andersen et al. (2003)

Ferrichromes Ustilago maydis
Rhodotorula 
minuta (yeast)
Ustilago 
sphaerogena 
(yeast)

Ardon et al. (1997, 1998a, 
1998b), Matzanke (1990) and 
Emery (1966)

Catecholate and 
hydroxamate

Wolfiporia cocos Arantes and Milagres (2008)

Ericoid mycorrhizal 
fungi

Ferrichromes 
(ferricrocin)

Hymenoscyphus 
ericae
Oidiodendron 
griseum

Haselwandter et al. (1992) and 
Haselwandter et al. (1992)

Fusarinines Rhodothamnus 
chamaecistus

Haselwandter et al. (1992)

Ectendomycorrhizal
Fungus

Ferrichromes Wilcoxina mikolae
Wilcoxina rehmii

Prabhu et al. (1996)

Ectomycorrhizal 
fungi

Ferrichromes Cenococcum 
geophilum
Hebeloma 
crustuliniforme
Suillus granulatus
Suillus luteus

Haselwandter and Winkelmann 
(2002), van Hees et al. (2006) 
and Haselwandter et al. (2011)

Fusarinines Laccaria laccata
Laccaria bicolor
Suillus granulatus
Suillus luteus

Haselwandter et al. (2013) and 
Haselwandter et al. (2011)

Coprogen Suillus granulatus
Suillus luteus

Haselwandter et al. (2011)

Arbuscular 
mycorrhizal fungi

Rhizoferrin
(Glomuloferrin)

G. etunicatum
G. mossae
Unidentified 
Glomus sp.

Winkelmann (2017)

Dark septate fungi Ferrichromes 
(ferricrocin)

Phialocephala 
fortinii

Bartholdy et al. (2001)

Orchidaceous 
mycorrhizal

Ferrichromes
(basidiochrome)
Ferrichromes

Ceratobasidium 
and Rhizoctonia
Nigritella nigra

Haselwandter et al. (2006)
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and Winkelmann 2002). Recently, in the ectomycorrhizal fungi, Cenoccum geophil-
lum (Ascomycota; Haselwandter and Winkelmann 2002) and Hebeloma crustulini-
forme (Basidiomycota; van Hees et  al. 2006) were isolated ferricrocin. In the 
basidiomycota Laccaria laccata and L. bicolor the principal siderophores reported 
are fusigen, coprogen, ferricrocin, and small quantities for tri-acetyl fusarinine 
(Haselwandter et  al. 2013). Until 2008, it has not been established if arbuscular 
mycorrhizal fungi produced siderophores since they cannot be grown independently 
of plant tissue (Haselwandter 2008). In a recent work, Winkelmann (2017) showed 
the release a rhizoferrin-derived siderophores (glomuferrin) from arbuscular- 
mycorrhizal fungi using Tagetes patula nana plants inoculated with Glomus spores 
(G. etunicatum, G. mossae, and unidentified Glomus sp.). Arbuscular mycorrhizal 
fungi seem to respond to low-iron stress by an increased excretion of glomuferrin, a 
carboxylate type siderophores. In dark septate root endophytes of Phialocephala 
fortinii type, the ferricrocin is released as the main siderophore (Bartholdy et al. 
2001). The orchidaceous mycorrhizal fungi released ferrichrome as principal sid-
erophore, although a novel structure was described as a basidiochrome, a linear 
tris-hydroxamate siderophore (Haselwandter et al. 2006).

Although not all fungi produced siderophores, they can transport iron into the 
cell utilizing a ferric reductase or can release large amounts of the relatively weak 
chelating agent citric acid (Watkinson 2016). Most fungi help to cover a wide range 
of natural environments to overcome adverse local conditions of iron solubility 
(Winkelmann 2007) produce a variety of siderophores.

6.4  Application of Siderophores Compounds in Agriculture

The mention to utilize microbial strains and any compounds in agriculture is 
returned to relate it with many organisms. We must use several methods to control 
plant pathogens, pests, and weeds which are possible in getting high yields (Thakur 
et al. 2020). The methods are including chemical, physical, and biological control 
agents. The chemical method is best from other methods in controlling the plant 
enemies (plant pathogens, pests, and weeds) speedily. Definitely, the synthetic 
chemicals used in the manufacture of pesticides have side effects for organisms and 
the environment. In addition, the continuous sprays the chemical pesticides in the 
fields leading to appear resistance against their pesticides and the high cost of its 
manufacture. Therefore, they are looking for alternative methods of high efficacy in 
the fields and near to the effect of the chemical method such as biological control 
agents (Aguilar-Marcelino et al. 2020b) included several virus (Sharma et al. 2020), 
bacteria (Al-Ani 2017a; Rai et al. 2020), fungi such as Trichoderma (Al-Ani 2018b, 
2019c; Al-Ani and Mohammed 2020; Sharma et al. 2019), Entomopathogenic fungi 
(Al-Ani 2019d; Al-Ani et al. 2018), endophytic fungi (Al-Ani 2019e, 2019f; Al-Ani 
and Furtado 2020; Rana et al. 2019a), and non-pathogenic Fusarium (Al-Ani 2019a; 
Al-Ani and Salleh 2010), plant (Al-Ani et al. 2020a), and nematode (Al-Ani et al. 
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2020a), as well as, utilize the natural product (Adetunji et al. 2020; Al-Ani et al. 
2012; Jatoi et al. 2020; Mohammed et al. 2012).

Interestingly, biological control agents in controlling plant enemies are by using 
different mechanisms comprising, (1) induce resistance (Al-Ani 2006; Al-Ani and 
Al-Ani 2011) and defense (Al-Ani 2018a) in plant, (2) competition (Al-Ani 2018a), 
(3) mycoparasitism (Al-Ani 2018a), (4) antibiotic (Al-Ani 2019b), (5) production 
of volatile and nonvolatile compounds (Al-Ani 2019a; Al-Ani and Albaayit 2018a, 
2018b), and (6) siderophores (Al-Ani 2017b). PGPR, non-pathogenic Fusarium, 
and Trichoderma showed high efficacy in control of Fusarium oxysporum f.sp. 
cubense tropical race 4 by producing volatile compounds and siderophores (FocTR4) 
useful for Agricultural sustainability  (Al-Ani et  al. 2013a, 2013b; Al-Ani and 
Albaayit 2018a, 2018b; Mohammed et al. 2011, 2013, 2014; Singh et  al. 2021). 
Trichoderma is potential controlling the plant bacteria pathogen, and plant parasite 
nematodes (Al-Ani et al. 2020b; Sarker et al. 2020). All these mechanisms such as 
producing the siderophores are so interesting, which have attracted the curiosity of 
the researchers by using the best methods to reduce injury as much as possible and 
as an alternative to chemical pesticides.

On the other hand, different species of fungi (Wijayawardene et al. 2020) are 
producing siderophores and these fungi included harmful fungi and beneficial fungi. 
Harmful fungi are producing the problematic compounds such as mycotoxins that 
affect the living cells and also iron-chelating (Attitalla et al. 2010a, 2010b; López- 
Díaz et  al. 2018). These fungi are producing phytotoxins such as fusaric acid 
(López-Díaz et al. 2018), and causing a disease for plant as plant pathogen. Some 
fungi as non-pathogen for plants are producing phytotoxins but these fungi can 
affect on the harmful plants as weeds (Amalfitano et al. 2002). During spraying of 
phytotoxins, extraction of Colletotrichum gloeosporioides on seven different weeds 
showed several effects such as stunted, severely burned, and severely damaged 
without killed (Ohra et al. 1995). Phytotoxins can be a type of siderophores to have 
an activity for iron chelation (Ohra et al. 1995). Production of siderophore by plant 
pathogens is necessary for pathogenicity. Inability of plant fungal pathogen to get 
iron is leading to reduce or lose the pathogenicity (Renshaw et al. 2002). The ability 
to produce many useful compounds such as siderophores is mentioned previously. 
The siderophores produced by fungi showed the influence on plant such as develop-
ment and growth, as well as, plant protection (Al-Ani et al. 2020b; Aguilar- Marcelino 
et al. 2020a). Indeed, the importance of Fe-chelating compounds for agriculture can 
be determined in two very interesting points, as follows:

6.4.1  Biocontrol of Plant Pathogens

Siderophores have wide applications in environmental sciences and medicine. With 
respect to agriculture, they are used to improve soil fertility and biocontrol 
(Vellasamy et al. 2015). There is substantial evidence to believe that siderophores 
can control phytopathogenic microorganisms inhibiting pathogen growth or 
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metabolic activity (Riquelme 1996). In the biological control mechanism, the sig-
nificant role of siderophores to reduce the Fe availability has also been demon-
strated for rhizobacteria (Beneduzi et  al. 2012; Kloepper et  al. 1980). There are 
studies regarding the siderophores produced by pseudomonads in the biological 
control of plant pathogen such as Fusarium oxysporum (Schippers et al. 1987) and 
Gaeumannomyces graminis (Voisard et al. 1989). Other bacterial species besides 
pseudomonads can be used as biocontrol agents such as Bacillus subtilis in the bio-
control of F. oxysporum (Yu et al. 2011).

Fungi can produce different types of siderophores that have been suggested to be 
an environmentally friendly alternative to hazardous pesticides (Devi et al. 2020; 
Schenk et al. 2012). The rhodotorulic acid produced by the yeast Rhodotorula glu-
tinis improved the biological control of blue rot caused by Penicillium expansum in 
harvested apples (Calvente et al. 1999; Chand-Goyal and Spotts 1996). The role of 
siderophores in biocontrol is still unresolved. For example, the antagonistic of 
Trichoderma strains are not correlated to a type or amount of siderophores. 
Trichoderma strains have been shown to produce coprogen and ferricrocin sidero-
phores (Anke et al. 1991). Trichoderma asperellum produced siderophores that con-
trols Fusarium wilt (Segarra et  al. 2010). Besides, siderophores produced by 
Aspergillus niger, Penicillium citrinum, and Trichoderma harzianum were found to 
increase the shoot and root lengths of chickpeas (Cicer arietinum) (Yadav 
et al. 2011).

With respect to mycorrhizal fungi, arbuscular mycorrhizal sorghum plants have 
been observed with a higher concentration of Fe compared to non-mycorrhizal 
plants (Caris et  al. 1998). The nutrition of ectomycorrhizal plants is known to 
depend on fungal siderophores (Van Schöll et al. 2008). The most important factor 
in biocontrol by siderophores is the availability of iron in the medium, since this 
regulates the siderophore production (Buyer and Sikora 1990). More investigation 
on the use of siderophores produced by fungi in the biocontrol of plant pathogens 
is needed.

6.4.2  Enhancing the Plant Growth

Iron deficiency is a limiting factor for plant growth; it affects crop yield negatively 
(Kobayashi and Nishizawa 2012). Lack of Fe also makes young leaves acquire pho-
tosynthetic activity that produces biomass reduction (Briat et al. 2007). Application 
of Fe as ferrous sulfates or chelates significantly increases the growth and yield of 
peas (Thapu et al. 2003), chickpeas (Kumar et al. 2009), and other crops. These 
applications proved Fe plays an important role in promoting plant growth.

The chelating capacity of siderophore metals has been studied in many biotech-
nological areas, including agriculture (Renshaw et al. 2002). The association that is 
established between a fungus and its host enhances various characteristics of plants, 
promoting growth and biomass production due to its influence on photosynthesis 
and improvement of their health status (Baynes et al. 2012; Mei and Flinn 2010). 
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Siderophores may act as biocontrol agents against damage caused by phytopatho-
gens and substitute dangerous pesticides, which explains their role in bioremedia-
tion (Saha et al. 2016).

Endophytes, also called endosymbionts, are a group of microorganisms that col-
onize plant tissues. A large number of fungal and bacterial genera have able to colo-
nize the intracellular and/or intracellular areas of plants (Singh and Dubey 2015; 
Rana et al. 2019b; Yadav et al. 2020c). Endophytic fungi may be highly resistant to 
the presence of heavy metals, even with chelating activity, which may allow reme-
diation of contaminated soils and regulation of the toxicity that these produce in 
plants (Khan and Lee 2013; Yadav et al. 2020a, 2020b).

The endophytic fungi of arbuscular mycorrhiza (AM) (Table 6.2) (Fig. 6.2) are a 
heterogeneous group of the Glomeromycota division that form a symbiotic relation 
with 90% of superior plants (Bonfante and Genre 2010). These fungi produce a 
number of bioactive compounds that include phenolic acids, alkaloids, terpenoids, 
tannins, saponins, steroids, and quinones (Gouda et al. 2016); they also allow the 
development of biopesticides, promoting good growth of plants and resistance to 
environmental stressors, including Fe (Feng et al. 2017; Jalgaonwala et al. 2011; 
Philippot et al. 2013).

Table 6.2 Effective strains of fungi that form associations and promote plant growth

Species Crop References

Glomus versiforme Chickpea (Cicer 
arietinum)

Alloush et al. (2000)

Glomus intraracides Pepper (Capsicum 
annuum)

Martin and Stutz (2004) and 
Beltrano et al. (2013)

Dive versiformes White clover (Trifolium 
repens)

Lu and Wu (2017)

Glomus intraradices Rangpur lime (Citrus 
limonia)

Nogueira and Cordoso (2006)

Glomus caledonium
Glomus mosseae, Glomus intraradices 
or Glomus versiformes

Cucumber (Cucumis 
sativus)

Ortas (2010) and Wang et al. 
(2008)

Rhizophagus irregularis Wheat (Triticum 
aestivum)

Perez-de-Luque et al. (2017)

Glomus mosseae Garlic (Allium sativum) Sari et al. (2002)
Glomus intraradices and Glomus 
mosseae

Maize (Zea mays) Lone et al. (2015)

Glomus intraradices and Glomus 
mosseae

Potato (Solanum 
tuberosum)

Lone et al. (2015)

Glomus sp. Onion (Allium cepa) Shuab et al. (2014)
Glomus mosseae, Glomus versiforme 
and Paraglomus occultum

Peach (Prunus persica) Wu et al. (2011)

Rhizophagus irregularis Tomato (Solanum 
Lycopersicum)

Khalloufi et al. (2017)

Source: Ahmad et al. (2019)

6 Fe-Chelating Compounds Producing Fungal Communities and Their Applications



146

The AM play an important role in promoting the absorption of Fe by the host 
plant. Lehmann and Rillig (2015) reported that inoculation with AM fungi (AMF) 
has a significant positive impact in the Fe nutrition of crops. However, greater mobi-
lization of Fe in the rhizosphere of mycorrhizal plants may not represent a greater 
capacity of root absorption (Nogueira et al. 2007). This suggests that mycorrhizal 
colonization protects the host plant against excessive Fe toxicity, and consequently 
the AMF has a dual function in Fe absorption, which depends on the nutritional 
status of this metal in the plants.

The decrease in Fe stress in soils with mycorrhizae may be due to the mobiliza-
tion of Fe in the rhizosphere and direction absorption of Fe by the extra-radicle 
hyphae of the AM, resulting in better Fe absorption. It is known that the AM may 
improve the capacity of the plant to absorb nutrients and minerals from the soil, thus 
plants inoculated with AM assimilate nutrients by an alternative way such as the 
intra-and extra-radicle hyphae (Smith and Read 2008).

In response to an environment with low Fe availability, AMF can excrete specific 
chelates that mobilize Fe nutrients. Glomaline is a glycoprotein that absorbs metals 
produced by AM hyphae (Rillig 2004); it has been demonstrated to be closely 
related to soil Fe, but the effect of glomaline on the availability and transferability 
of this metal is little known (Yongming et al. 2019). It is known that as well as being 
a component of the hyphal wall, it also contributes organic material to the soil, 
improves the stability of the aggregates present in soil, sequesters metallic cations 
of Pb, Cd, Cu, and Fe, and decreases their toxic effects, both for the mycorrhiza and 
the plants (Driver et al. 2005; Göhre and Paszkowski 2006).

Fig. 6.2 Mechanisms of plant-growth-promoting endophytes (Adapted from: Feng et al. 2017)
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The structural community of microbes and their diversity in the rhizosphere 
region are essential for the development, growth, and health of plants; the microbial 
community associated with a plant has been called its second genome, which is 
much larger than the genome of the plant (Berendsen et al. 2012). Microbes vary in 
number and diversity; they include dozens of thousands of species in fertile agricul-
tural soils. Soil microbial communities usually include fungi, bacteria, algae, proto-
zoa, nematodes, and microarthopods, each of which fulfills important roles such as 
the transformation of organic material and fixation of nutrients in the soil (Paul 
2016; Raaijmakers 2001).

Beneficial soil–plant–microbe interactions are important and imply dynamic 
changes in the genome of the interacting partners by establishing a metabolic and 
signaling network. Two symbiotic plant–microbe associations have been widely 
studied in the last two decades—root nodule symbiosis and the association of AM 
(Kawaguchi and Minamisawa 2010). The beneficial interactions of plant and 
microbe may contribute to better health, growth, and productivity of the plants 
(Rastegari et al. 2020a, 2020b; Velmourougane et al. 2017; Verma et al. 2017). The 
stress tolerance induced in plant crops improves with beneficial microbe popula-
tions by the engineering of the rhizosphere or the use of microbial inoculants and/or 
their metabolites that can modify the soil microbiome (Velmourougane et al. 2017), 
which leads to increase of the productivity of the harvest and sustainability of the 
agro-ecosystem (Subrahmanyam et al. 2020).

The improvement of crops by inoculation with beneficial soil microbes in normal 
and stressful environments has been widely studied (Ahmad et al. 2019; Kour et al. 
2019; Singh 2015; Singh et al. 2020b). However, the application of modern tech-
niques to improve the yield of the soil microbes maybe key for the sustainability of 
agriculture by improving crop productivity, equilibrated nutrition, soil fertility, and 
stress tolerance in plants (Gouda et al. 2018).

6.5  Conclusion

Fungi are very important organisms living in different environmental conditions and 
interacting with many organisms. Therefore, fungi are producing many different 
types of secondary compounds necessary for living and competing with other 
microorganisms. Fungi can produce many important secondary compounds such as 
siderophores between problematic compounds (as phytotoxins) to beneficial com-
pounds. Fungi showed the potential for producing several types of siderophore such 
as coprogens, fusarinines, rhodotorulic acid, and ferrichrome. The ability of fungi to 
produce siderophores is an activity in the uptake of iron essentially. This type of 
secondary compound produced by some biocontrol agents exhibits a significant role 
in the control of some plant pathogens especially soil-borne plant pathogens. The 
enhancement in the production of siderophores is necessary for use in the industry, 
especially in the domain of agriculture.
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However, it is potential utilization of siderophores in agriculture instead of many 
synthetic chemicals such as pesticides and fertilizer. The determination of the abil-
ity of fungal strain (biocontrol agent) to produce siderophore is an important trait 
and can utilize this strain in the manufacturing of biopesticides and biofertiliz-
ers. The possible enhances the characterization of some strains of fungal biocontrol 
agents for producing more siderophores and tolerance for the unsuitable environ-
ment. The biotechnology method such as a transgenic method for fungal strain(s) 
producing siderophore can get strain(s) more tolerant for changes in environmental 
conditions, and confront different plant pathogens, as well as, the fungal strain(s) 
can promote plant growth by providing soluble ferrous available to the plant for 
uptake iron. In addition, the phytotoxins can be utilized as a bioherbicidal instead of 
chemical herbicides. Finally, the mechanism of producing siderophores by biocon-
trol agents is a more interesting tool that the potential to be instead of synthetic chem-
icals pesticides, and synthetic chemicals  fertilizer. Therefore, it is enhancing the 
traits in producing siderophore under the different environments that increase in 
efficiency into using in agriculture.
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7.1  Introduction

Fungi can be found in almost any type of habitat. They compete with other creatures 
in order to survive. Some of the fungi are detritivores, while others form interking-
dom communities to obtain food and development (Willis et al. 2019). Fungi are 
remarkable organisms, and in order to survive (Devi et al. 2020b), they have devel-
oped many protective strategies as well as interactions, one of which is the produc-
tion of different types of compounds known as secondary metabolites (Devi et al. 
2020a). These compounds protect them against various invasive predators, para-
sites, and diseases (Calvo et al. 2002). Traditionally, fungi are considered to be as 
contaminants which infect the human surroundings and cause various diseases. 
Fungi are known for causing serious illnesses such as late blight of potato, caused 
by Phytophthora sp. essentially becoming responsible for the potato famine in 
Ireland, and rice blast leading to the famous Bengal famine of 1943 (Ul Haq et al. 
2020). The damage was not limited to plants only, cattle poisoning with ergot (mold) 
body formed by the mycelium of Claviceps species, and mycotoxins are also caused 
due to fungi (Riet-Correa et al. 2013). Despite of having some negative impacts of 
members of fungal kingdom, it is a known that they carry a vast range of metabo-
lites that can be helpful and could have medical, industrial, environmental, and agri-
cultural applications (Goyal and Ramawat 2017; Kour et al. 2019b). The idea of 
harvesting secondary metabolites fascinates many biotechnologist and emerging 
companies. This idea can be dedicated to the discovery of penicillin by Alexander 
Fleming. Penicillin is a metabolite produced by Penicillin chrysogenum. This par-
ticular discovery has paved the path for consideration of fungi as useful organisms.

By using the same method, other antibiotics such as chloramphenicol and strep-
tomycin were later isolated from various fungal species. In general, today 
Saccharomyces cerevisiae or commonly known as Baker’s yeast is essentially used 
for food production, and the same fungi often act as genetic model for lab testing, 
and in that effect, mycological studies are in their own niche growing ever since. In 
addition, Pichia pastoris and S. cerevisiae are utilized for the biopharmaceuticals 
production (Berlec and Strukelj 2013). Today, we have established that fungi con-
tain many beneficial primary and secondary metabolites ranging from alcohol, 
organic acids, antibiotics, vitamins, pigments, immunosuppressant and immuno-
modulatory agents, and economically important proteins and enzymes (Sanchez 
and Demain 2017). Some of the examples are antibiotic such as penicillin and 
immunosuppressant such as cyclosporine derived from Penicillium fellutanum, 
Tolypocladium inflatum, and many more (Anjum et al. 2012).
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Nevertheless, benefits of fungi are not just limited to pharmaceutical industry, 
and fungi are being actively utilized as biofertilizer, as feedstocks for biofuel pro-
duction, and also as human food for consumption (Azizan et al. 2016; Rana et al. 
2019a; Rastegari et al. 2020a, b; Yadav et al. 2020a, b). Search for the novel com-
pounds is of high demand in the pharmaceutical industry, and this has proven to be 
endless as nature holds an incomprehensible data bank of compounds. The require-
ment of novel compounds can be regarded to the fact that microbes infecting humans 
are ever evolving, which eventually makes the existing solutions ineffective. 
Exploring the compounds for medicine purposes has been a challenge ever since the 
beginning. But one thing that is essential to understand is that fungal kingdom might 
hold the answers to the problems, and a lot of studies are proving that fungal metab-
olites are pharmacologically important and can act as a potential solution in differ-
ent domains such as anticancer, immunosuppressant, antidiabetic, immunoregulator, 
antimicrobial, and antifungal. Therefore, in this chapter, various fungal secondary 
metabolites and their applications have been discussed.

7.2  Fungal Classification

In 1969, Robert Whittaker published the five-kingdom classification which sepa-
rated fungi from the plant kingdom and gave a separate position to fungi in the 
kingdom classification. Prior to that, a two-kingdom classification was proposed by 
Linnaeus, based on whether an organism has the ability to move or not was only 
classified into two groups of animals and plants. The five-kingdom classifications 
were more widely accepted and is still the way of classifying all the organisms. A 
considerable amount of traits were recognized that were neither of animal kind nor 
of plant type, and this prompted R.H. Whittaker to propose a separate kingdom for 
fungi. Traits such as chitin cell wall and absorptive mode of nutrition were different 
as compared to plants which do photosynthesis hence are autotrophs and have cel-
lulose cell wall. On the basis of different phylogenetic evidences, fungal kingdom 
was further subdivided into six broad classifications (Fig. 7.1).

7.2.1  Basidiomycota

Basidiomycota is a monophyletic group having more than 31,000 species, and 
around one third of fungi belong to this phylum, such as mushrooms, toadstools, 
puffballs, jelly fungi, bracket fungi, rusts, and smuts (Taylor et al. 2014). The phy-
lum gets its name from the club-shaped sexually produced spore known as basidio-
spore or basidium (Rivera-Mariani and Bolaños-Rosero 2012). Genetic and 
molecular studies show that there is large diversity present within this group that yet 
to be discovered. They play vital role in functioning of ecosystem at different levels 
and able to degrade different components in wood. Basidiomycota is further 
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subclassified into three subphyla: Pucciniomycotina, Ustilaginomycotina, and 
Agaricomycotina. Pucciniomycotina appear as the most basal subphylum with 
highest support, with Mixiaosmundae branching at the base of subphylum 
Ustilaginomycotina and Agaricomycotina, both of them branch as sister subphyla 
and are monophyletic (McCarthy and Fitzpatrick 2017).

7.2.2  Ascomycota

The phylum computes of the largest phyla of fungal kingdom along with 
Basidiomycota. Its sexually produced spores are housed in a sac-like structure 
called as ascus. For the same reason, the group is often attributed as sac fungi. 
Presence of ascus/sac is the defining feature of Ascomycota. The phylum consists of 
cup fungi, morels, bakers, and brewer’s yeast and truffles (Lutzoni et  al. 2004; 
James et  al. 2006). Further, it has major three subphyla: Taphrinomycotina, 

Fig. 7.1 Classification of fungal kingdom
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Saccharomycotina, and Pezizomycotina. Many ascomycete yeasts, that is, 
Saccharomycotina, are connected with insects for dispersal, and the fungi provide 
enzymes, vitamins, and other resources to host insects however; the fungi do not 
harm the host insects (Vega et al. 2009). Taphrinomycotina are parasitic or saprobic 
on vertebrates and plants (Taylor et al. 2014). Pezizomycotina are the most ecologi-
cally and morphologically complex subphyla of ascomycota.

7.2.3  Zygomycota

The fungi belonging to this category have coenocytic hyphae. Mostly they grow on 
terrestrial terrains. Zygosporangia is the characteristic structure in which spores 
formed by the fusion of two hyphae are stored. They are an ecologically heteroge-
neous, paraphyletic, or polyphyletic assemblage of predominantly terrestrial organ-
isms, which are generally placed near the base of fungal tree of life. They reproduce 
asexually via nonmotile endospores formed in sporangiola, sporangia, or merospo-
rangia or by the formation of arthrospores, chlamydospores, and yeast cells, and 
they reproduce sexually by the formation of zygospores in zygosporangia. Species 
such as Mucor and Rhizopus are the major known examples of this class (Moore 
et al. 2011).

7.2.4  Oomycota

This class of fungal kingdom consists of water molds. The name is derived from 
sexually produced oospore, which is a result of contact between male antheridia and 
the female oogonia. Examples include late potato blight and sudden oak death. Due 
to few major similarities, the class is now classified along with brown algae (Goyal 
and Ramawat 2017).

7.2.5  Deuteromycota

This class is inclusive of fungi which are known only to have asexual form of repro-
duction or we are yet to discover their sexual reproduction. These are also known as 
imperfect fungi. Most of the members are analogous to either Basidiomycota or 
Ascomycota class. Alternaria, Colletotrichum, and Trichoderma are the ones which 
are included in this taxon (Goyal and Ramawat 2017).
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7.2.6  Microsporidiomycota

Microsporidiomycota are obligate intracellular parasite belonging to fungal king-
dom. These are basically unicellular spore-producing fungi (Goyal and Ramawat 
2017) and parasites of animals and protists. They are highly reduced in form and 
develop intimate association with certain parts of cells or organelles. Encephalitozoon 
are the human pathogens and infect kidneys, muscles, eyes, and sinuses. Not all of 
them are detrimental in nature; some of them also possess promising role in pest 
control without the use of pesticides.

7.3  Fungal Secondary Metabolites

The metabolites which are essential for growth and development are regarded as 
primary metabolites, while secondary metabolites are defined as those compounds 
which are not generally essential for the primary growth and development of an 
organism. Their absence often does not result in any observable phenotypic changes 
in the producing organism when grown in laboratory conditions. These small mol-
ecules possess important role in fungi such as defense and survival in external envi-
ronment. These secondary metabolites are source of novel drug formulation. Studies 
prove that secondary metabolites act as antibiotics, antioxidants, antitumor, and 
antidiabetic agents. Bioassays of some of the compounds have also revealed their 
insecticidal properties. A large number of compounds have been isolated from fungi 
(Fig. 7.2).

7.3.1  Polyketides

Polyketides are the largest class among the fungal secondary metabolites. These 
compounds can be crystallized or can undergo reduction reaction, and they even 
undergo various step reactions and all this enables them to be a diverse group. The 
formation is by polyketide pathway in which condensation of acetyl-coenzyme A 
(CoA) and malonyl-CoA is catalyzed by type I polyketide synthases (Daley 
et al. 2017).

7.3.1.1  Aflatoxins

Aflatoxins are mycotoxin that are produced majorly by Aspergillus sp., and these 
species are able to produce an aflatoxin precursor sterigmatocystin, which is a car-
cinogenic compound. Aflatoxins are generally found in different agricultural com-
modities and are strongly regulated with different threshold limits depending on the 
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matrix (Pfliegler et al. 2020). Aspergillus sp. are particularly attracted to nuts and 
oils seeds, such as peanuts, walnut, corn, maize, and cotton seeds (Kumar et  al. 
2017). Aflatoxins are categorized as carcinogenic compounds as they include some 
of the most carcinogenic compounds ever isolated, such as B1, B2, G1, and G2. 
Among all, B1 is the most toxic and carcinogenic obtained from Aspergillus terreus. 
Hepatitis B in conjugation with aflatoxin increases the probability of hepatocarcino-
gencity. They cause serious problems in human and animal, such as hepatotoxicity, 
teratogenicity, and immunotoxicity (Kumar et al. 2017). The toxic nature of these 
compounds links them to a number of diseases in both plants and animals. Illudin S 
isolated from Omphalotus illudens has the ability to glycolate the DNA, which 
makes it extremely toxic. Various aflatoxins producing species include A. 

Fig. 7.2 Secondary metabolites of fungi
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aflatoxiformans, A. arachidicola, A. austwickii, A. cerealis, A. minisclerotigenes, 
A. mottae, A. pipericola, and A. texensis (Pfliegler et al. 2020).

7.3.1.2  Statins

Statins are cholesterol-controlling compounds. One of the best studied compounds 
is lovastatin produced commercially using A. terreus. Statins usually show biologi-
cal activity by influencing on 3-hydroxy-3-methylglutaryl-CoA reductase enzyme, 
which is essentially responsible for cholesterol formation. These are also referred as 
hypocholesterolemic agents. The inactivity of enzyme by statin lowers or nullifies 
the blood low-density lipoprotein cholesterol level (Adrio and Demain 2003).

7.3.1.3  Ochratoxin

Ochratoxin A is a mycotoxin produced by numerous fungal species such as 
Aspergillus carbonarius, Aspergillus niger, Aspergillus ochraceus, and Penicillium 
verrucosum (Bui-Klimke and Wu 2015). It was one of the first toxin that was dis-
covered due to its capacity to infect human cells. It was isolated from Aspergillus 
ochraceus, but toxin is also found in other species such as Aspergillus carbonarius 
and Penicillin verrucosum. Toxin can also be found in grains such as corn, barley, 
oat, and wheat (Kolakowski et al. 2016). It is lethal to dogs, mice, pigs, and trout. It 
is an acute nephrotoxin, which causes necrosis in renal tubules and periportal liver 
cells. Other harmful effects include immunosuppression, embryo damage, and can-
cer induction (Bhalla 2019). Structurally, it is a pentaketide and derived from dihy-
drocourmarins which are similar to β-phenylalanine. The fungi species mainly 
invade plant products such as coffee beans, olives, grapes, nuts, and wines. Although 
ochratoxin A is a fat-soluble toxin and is not excreted, it can be transferred from 
animal sources too. If the fodder of animal is mold contaminated, it can build up in 
issues and circulatory system of animals.

7.3.1.4  Fumonisins

Both Fusarium verticillioides and Fusarium proliferatum are the major producers 
of Fumonisins. It is a mycotoxin which predominantly infects maize, corn, and 
sorghum (Smith 2018). It is a cause of porcine pulmonary edema and equine leuko-
encephalomalacia. They are structurally similar to sphingosine, essential phospho-
lipid in cell membrane. Fumonisins are 20-corbon aliphatic chain with two 
ester-linked hydrophilic side chains. Coincidently, the toxicity of the discovered 
fumonisins B1 and B2 is also a result of competition in phospholipid metabolism. 
The main concern in pharmacology is their carcinogenic, genotoxic, and teratogenic 
effects rather than acute effects (Smith 2018).
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7.3.1.5  Zearalenone

The toxin is produced by various species of Fusarium sp., including F. cerealis, 
F. crookwellense, F. culmorum, F. equiseti, F. graminearum, and F. semitectum 
(Zhang et al. 2018). Zearalenone is a heat-stable compound, and hence, it is found 
in open-field growing crops majorly cereals. The production of toxin is usually pre-
harvesting, but vague handling of crop can lead to postproduction of the toxin too. 
Unlike Ochratoxin, Zearalenone is rapidly metabolized in the animal body, and 
hence, it is less likely to be transferred from animals to humans (Binder et al. 2017). 
It causes reproduction and fertility disorders in mammals. The concentration in 
some cases plays an important role. In cow’s milk, zearalenone can be found if the 
mold concentration on the fodder is extensive. The toxin F-2 was isolated, and 
structurally, it is a resorcylic acid lactone. Prior to this discovery, Fusarium sp. has 
been a major cause for many mycotoxic outbreaks. Zearalenone is also referred as 
mycoestrogen for its estrogen-like activity. It has been reported to stimulate the 
growth of breast cancer cells, though seldom it is administered in cases of hypoes-
trogenic syndromes.

7.3.1.6  Patulin

Patulin is a toxin produced by Penicillium, Aspergillus, and Byssochlamys. This 
toxin is most common in apple-made products such as juices, compotes, cider, and 
baby foods (Zhong et al. 2018). Grapes, oranges, pears, and peaches are also con-
taminated with patulin. Patulin has various biological activities in both animals and 
humans. It is neurotoxic, genotoxic, and immunotoxic to rodents while teratogenic 
to chickens. Patulin causes distortion of DNA and induces mutations in it. On cel-
lular level, many abnormal pathways can be observed, such as production of reac-
tive oxygen species, cell cycle arrest, caspase-3 activation, PARP cleavage, and 
subsequent apoptosis (Kwon et al. 2012). In human intestine and kidney, production 
of reactive oxygen species induces mitochondrial apoptosis and causes endoplasmic 
reticulum stress (Kwon et al. 2012).

7.3.1.7  Melanin

Melanin acts in a protective nature for the fungi. It is produced using two pathways: 
one is polyketide pathway with malonyl-CoA as the precursor and other uses diphe-
nolic compounds such as 3,4-dihydroxyphenylalanine as precursor (Belozerskaya 
et al. 2015). Melanin protects the possessing species of the fungal kingdom from the 
UV radiations and essentially helps in proliferation and growth of the fungi. The 
open-field stress is reduced by the melanin by photoprotection approach (Cordero 
and Casadevall 2017). Albino mutants (i.e., lacking melanin) of the same species of 
fungi did not grow in the open fields. Resting spores of species such as Aspergillus 
fumigatus, Aspergillus nidulans, and Wangiella dermatidis consist of melanin, 
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which helps them to remain dormant and act as perennation agents. Melanin also 
partially acts as a defense against host immune system. Melanin absorbs ROS 
secreted by macrophages and neutrophils. The pigment is considered to be critical 
for pathogenicity of many species of fungal kingdom (Garvey and Keller 2010).

7.3.2  Nonribosomal Peptides

Nonribosomal peptides are secondary metabolites which are synthesized by multi-
domain enzymes called nonribosomal peptide synthetases without the requirement 
of cell ribosomal machinery. They are naturally synthesized by fungi and produced 
via mRNA-independent process. They consist of both proteinogenic and nonpro-
teinogenic amino acids. Tolypocladium niveum produced an immunosuppressant 
cyclosporine which is administered to patients undergoing organ transplant. 
Nonribosomal peptides possess wide range of bioactivities and pharmacological 
properties.

7.3.2.1  Gliotoxin

Gliotoxin was found as a contaminant in the process of fumagacin production when 
it was extracted from A. fumigatus. Structurally, gliotoxin constitutes disulfide 
bridge across the piperazine ring and is characterized as dipeptide. This structural 
integrity of the toxin allows it to interact with other proteins via disulfide bridge 
linking to cysteine residues of the protein. This interaction leads to the formation of 
reactive oxygen species (ROS). The formation of ROS is mainly responsible for its 
toxicity. ROS generation releases cytochrome c and promotes mitochondrial apop-
tosis, caspase production leading to cell death. It is known for its immunosuppres-
sion activity. Immune response suppression can be seen in many fronts such as 
inhibiting NF-κB factor, thereby suppressing inflammatory and cytokine responses, 
inhibiting phagocytosis, and blocking mast cell degranulation. All these events sug-
gest that gliotoxin possesses protective mechanism in A. fumigatus from host envi-
ronment (Kwon-Chung and Sugui 2009).

7.3.2.2  Siderophores

Siderophores are mycotoxin with low molecular weight and considered to be highly 
coordinated with iron. There are three structural families of siderophores: fusari-
nines, coprogens, and ferrichromes (Yadav et al. 2020c). On basic level, almost all 
fungal siderophores are hydroxamate types with few exceptions to this generaliza-
tion. The basic unit is Nδ-acyl-Nδ-hydroxyornithine, whose precursor is L-ornithine 
(Renshaw et  al. 2002). Siderophores formation occurs through nonribosomal 
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peptide pathways. Role of siderophores is speculated in virulence of A. fumigatus as 
iron plays an important role in host–pathogenic interactions, and siderophores pro-
mote growth of hyphae in even iron-limiting environment (Garvey and Keller 2010). 
On the other hand, medically siderophores are being used to treat iron overload and 
aluminum overload conditions, although side effects come into play with the admin-
istration of these mycotoxins (Page 2019). They are also studied for anticancer 
properties in mice models and found to inhibit tumors in them. Actinides are ele-
ments which are mostly radioactive and carcinogenic, while siderophores enhances 
the excretion of actinides from body.

7.3.3  Terpenes

Terpenes are important bioactive metabolites produced by many fungi species. 
Structurally, terpenes are repetitive units of isoprene unit, both in linear and cyclic 
fashion. They are even categorized on the basis of number of isoprene units (C5) 
present into diterpenes (C20), hemiterpenes (C5), monoterpenes (C10), sesquiterpenes 
(C15), sesterterpenes (C25), triterpenes (C30), and tetraterpenes (C40). Diterpenoid, 
triterpenoid, and sesquiterpenoid are the terpenes which possess various biological 
activities. This group of compounds is structurally well diverse, and this fact can be 
pointed to the ability of the compounds to undergo various catalytic modifications 
such as glycosylation, cyclization, redox reaction, and alkylation. The production of 
terpenes is observed by mevalonic acid pathway. Gibberellins, carotenoids, indole- 
diterpenes, trichothecenes, and aristolochenes all are the examples of terpene class 
metabolites (Daley et al. 2017).

7.3.4  Sterols

Sterols are isoprenoid-derived molecules and major constituent of eukaryotic cell 
membranes. It is necessary for permeability, fluidity, and protein function. Therefore, 
they are required for growth of fungi. Ergosterol was discovered over 100 years ago 
in Claviceps purpurea. It has been considered as fungal sterol, and multiple path-
ways are involved in the formation of ergosterol. In some taxa, pathways are incom-
plete and, in some cases, result in the formation of other end-products. Ergosterol 
synthesis starts with acetyl-CoA and comprises of 20 steps (Alcazar-Fuoli et  al. 
2008). In a study two aromatic steroids were isolated from D. concentrica, that is, 
19-norergosta-1,3,5,7,9,14,22-heptaene and 1-methyl-19-norergosta-
1,3,5,7,9,14,22-heptaene (Qin and Liu 2004). Another study reported the presence 
of two steryl esters with a polyhydroxylated ergostane-type nucleus in Tricholomopsis 
rutilans (Wang and Liu 2005).
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7.3.5  Indole Alkaloids

Alkaloids are the largest group which is of pharmacological importance. For indole 
alkaloids, tryptophan and dimethylallyl phosphate are the precursors, but some-
times, other amino acids are also used. The most widely studied group of indole 
alkaloids is ergot alkaloids. Initial findings suggested ergot alkaloids as toxins, but 
later other uses were also found. They are produced by Claviceps purpurea and its 
related species. Ergot alkaloids have the ability to induce abortion and promote 
uterine contractions (Schiff 2006). They also act as vasodilators which can reduce 
blood pressure by dilating the blood vessels. Ergots also inhibit noradrenaline and 
sclerotin. Fumigaclavines and fumitremorgens are also tryptophan-derived alka-
loids synthesized by Aspergillus fumigatus (Goetz et al. 2011).

7.4  Function of Secondary Metabolites

The release of secondary metabolites aligns with either the fungal development or 
to counter any stress conditions including both biotic and abiotic stresses. These 
metabolites can change the course of development, survival, and interaction with 
other species both interkingdom and intrakingdom.

7.4.1  Protects from UV Damage

This functionality is usually devoted to the presence of a polyketide compound 
know as melanin. Melanin is a constituent part of spores and hyphae of the fungi. It 
is usually produced by either polyketide or l-3,4-dihydroxyphenylalanine pathway. 
Protection being the ecological role of melanin was seen in an albino mutant (i.e., 
lacking melanin) of Cochliobolus heterostrophus, which was unable to stand the 
sunlight and thus was not able to survive in open ground. However, other species 
which was having melanin in their spores was able to survive in the open ground. 
There are other metabolites which are also having the function of photoprotection. 
These compounds also protect the pathogenic fungi from the host immunity.

Melanin is a well-studied and widely used secondary metabolite in cosmetics, 
food coloring, human skin care products, and bioelectronics (Blachowicz et  al. 
2020). It is a brown-colored natural pigment localized in the cell wall of spores and 
hyphae of many fungi (Toledo et al. 2017). Melanin biosynthesis in fungus occurs 
through enzymatic or spontaneous polymerization of polyphenols, such as catechol, 
1, 8-dihydroxy naphthalene (DHN), or dihydroxyphenylalanine (L-DOPA). The 
primary role of fungal melanization is microbial pathogenesis and protection against 
extreme environments, such as Arctic and Antarctic poles, high-temperature fluc-
tuations in deserts, acidic pH, exposure to radiations, extraterrestrial conditions, 
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metal-polluted areas, oxidative stress, low moisture, nutrient availability, hyper- 
saline waters, elevated osmotic pressure, and so on. The pigmented fungi exhibit 
resistance to radiotoxicity compared to their albino counterparts. Melanin is defense 
armor for fungus to tolerate and resist toxic conditions (Gómez and Nosanchuk 
2003). A notable property of melanin is to interact with electromagnetic rays, acting 
as a photoprotective and energy harvesting agent. Electromagnetic radiations are 
potentially hazardous when exposed to the human skin depending on the duration of 
exposure. Ionizing radiations or electromagnetic radiations, including gamma rays, 
X-rays, and ultraviolet rays, cause skin damages such as erythema, tanning, skin 
aging, degeneration of skin cells, fibrous tissue, and blood vessels. Prolonged expo-
sure of UV rays is responsible for most nonmelanoma and melanoma skin cancer. 
The UV-A rays (320–400 nm) permeate the dermis causing mutations in the DNA, 
premature aging of the skin (wrinkles, fine lines, freckles, and coarse skin), and sup-
presses immunity. The UV-B rays (280–320 nm) penetrate the epidermis, causing 
erythema and sunburn – a vital factor responsible for melanoma skin cancer. The 
high-frequency electromagnetic radiations generate intermediate free radicals from 
biomolecules such as DNA and proteins (Ikehata and Ono 2011). The free radicals 
or reactive oxygen species (superoxide anions, peroxides, hydrogen peroxide, and 
hydroxyl radical) have unpaired electrons making them highly unstable. The ROS 
damages the cellular structure and function in the epidermal and dermal regions of 
the skin by oxidizing the proteins, carbohydrates, and lipids. Melanin absorbs and 
dissipates photons from ionizing radiations and thus acts as a photo protectant or a 
natural sunscreen for human skin. The complex, unorganized structure of melanized 
fungi absorbs the entire UV region (UV-A, UV-B, UV-C) of the electromagnetic 
spectrum. The same properties of melanin that prevent oxidative damages in the 
human skin protect pathogenic fungi against the host defense mechanism.

7.4.2  Defensive Role

In the open fields, competition for food and survival is not only interspecies but also 
interkingdoms. Fungi have developed mechanisms, either direct or indirect to sur-
vive in the environment. The first ever direct functionality of the mycotoxin was 
illustrated by Alexander Fleming. Penicillin, an antibacterial, was produced by 
Penicillin notatum to kill the surrounding bacteria such as Staphylococci present in 
the culture. Later, penicillin was regarded as the wonder drug. Beauveria bassiana, 
another fungus, contains a toxic metabolite arsenal to kill insects. The species also 
fills the insect with antibacterial so curb down the microbial competition. Aspergillus 
flavus produces aflatoxin, which is considered to be a group of carcinogenic com-
pounds which increases the ability of a fungi to fight and survive with insect prox-
imity by 26 times. Bacterial–fungal interaction is also beneficial for fungi in a 
number of cases. Some examples include that the endosymbiont relation of 
Burkholderia rhizoxinica and Rhizopus microspores is responsible for rice seedling 
blight, which becomes worse once the microbial toxin rhizoxin enters into the plant 
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cells. Some other symbiont species also enhance the rhizoxin to increase its phyto-
toxicity to mutually benefit both organisms from the host. A complex gradient- 
depended effect is also seen with Aspergillus, where phenazine produced by 
Pseudomonas aeruginosa acts as an antifungal agent if present in high concentra-
tion, but within a certain concentration, phenazine is helpful to the fungi for sporu-
lation (Macheleidt et al. 2016; Raffa and Keller 2019).

7.4.3  Protects from Toxic Natural Products

Fungi also need certain mechanisms to protect itself from toxins that are being pro-
duced by itself. That is where different self-protection strategies come in. The efflux 
pumps in GliA are important and provide protection from trichothecenes, cellular 
biosynthetic gene cluster intermediate transporters, detoxifying enzymes, and 
duplicate copies of target protein. Among all, duplicate copies are of high impor-
tance for human kind in drug discovery as the presence of duplicate function directly 
points toward a eukaryotic target. This is the main source of identification of many 
antifungal agents which are modified and used as an effective treatment for human 
invasive pathogens and pathogenic biofilms (Keller 2019).

7.4.4  Growth and Development

Although major development is coordinated by primary metabolites, some protec-
tive function is still depending on secondary metabolites which promote the devel-
opment and reproduction of fungi. Fungi produce toxins such as fusarubins and 
furocoumarin which protect the sexual structures from predators and fungivores. 
Photoprotection of spores by melanin improves the chances of spore germination. 
Production of certain secondary metabolite inhibits other spore germination in the 
surrounding. This external behavior can be seen in Penicillium sp. (Calvo and Cary 
2015; Keller 2019).

7.5  Biological Application of Fungal Secondary Metabolites

For the past few decades, scientists have tested secondary metabolites from over 
10,000 fungal species for biological activity. There is an extensive history of using 
fungi folk medicine in Asian countries to promote health and longevity. Bioactive 
compounds from fungi offer vast and unexplored chemical compounds. The ability 
of fungi to acclimate to all niches of earth offers an understanding that the bioactive 
compound aids the survival of fungi. Decoding the biosynthetic gene clusters of 
fungi can help in finding unexplored bioactive compounds with beneficial 
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properties. Further investigation of bioactivity of secondary metabolites opened the 
gates of new era of antimicrobials from higher fungi. Pharmacological research of 
these bioactive compounds reveals that fungi possess various biological applica-
tions such as antibacterial, antiviral, antiprotozoal, antihelminthic, and antifungal 
activities. In recent decades, fungal secondary metabolites are being researched as 
potential leads in drug development, cosmetics, and crop protection in agriculture 
(Fig. 7.3).

7.5.1  Antibacterial Agents

The development of penicillin paved the way for development of antibacterial fun-
gal metabolites. Penicillin is a bactericidal antibiotic that kills bacteria by inhibiting 
the action of enzyme transpeptidase, required for crosslinking of peptidoglycans in 

Fig. 7.3 Biological applications of fungal secondary metabolites
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the bacterial cell wall synthesis. In the late 1940s, a team of Oxford scientists under 
Howard Florey developed a way to mass-produce penicillin during the outbreak of 
the Second World War, but the drug yields were very low (Florey 1944). To over-
come this challenge, researchers implemented a deep-tank fermentation method, 
which resulted in the production of over 600 billion units of pharmaceutical-grade 
penicillin per annum in 1945 during the Second World War. Ernst Chain, a German 
origin British biochemist along with Florey, discovered the chemical composition 
and therapeutic role of penicillin. In 1945, Howard Florey, Ernst Chain, and 
Alexander Fleming shared a Nobel Prize in Medicine for their work with penicillin. 
There are five types of naturally biosynthesized penicillin viz., penicillin G, penicil-
lin K, penicillin N, penicillin O, and penicillin V. The discovery of β-lactam antibi-
otics such as cephalosporin, monobactam, and carbapenem followed the success of 
penicillin (Ingolia and Queener 1989). Cephalosporin isolated from the aerobic 
mold, Cephalosporium acremonium, forms a significant class of β-lactam antibiot-
ics. There are four generations of cephalosporins which are grouped based on their 
antimicrobial activity (Mehta and Sharma 2016). The previous β-lactam drugs were 
short-range antibiotics effective against few gram-positive bacteria; however, the 
new generation of β-lactam antibiotics exhibits broad range of action and is effec-
tive against a wide range of pathogenic gram-negative bacteria. There are other 
classes of antibiotics derived from fungi that show antibacterial activity by follow-
ing either of the mechanisms, that is, inhibiting protein synthesis; inhibiting nucleic 
acid and folic acid synthesis pathways; permeabilizing cytoplasmic membrane; and 
interfering with cellular processes (Silver 2011).

Fusidic acid isolated from Fusidium coccineum has antibacterial activity against 
Mycobacterium tuberculosis, Neisseria sp., Nocardia sp., Staphylococcus aureus, 
and penicillin-resistant and methicillin-resistant Staphylococcus aureus (Dobie and 
Gray 2004). Retapamulin, extracted from an edible mushroom Pleurotus mutilins, 
was the first pleuromutilin topical antibiotic developed by GlaxoSmithKline and 
sold under the trademark names Altabax and Altargo. Retapamulin is useful in the 
treatment of impetigo. Alamethicin, an ion channel-forming peptaibol antibiotic, 
was isolated from Trichoderma viride (Dotson et al. 2018). Ongoing studies have 
reported that several polyketides, peptides, and sterols extracted from fungi possess 
antibacterial properties, although their mechanism of action is yet to be deciphered.

7.5.2  Antifungal Agents

Fungal infections can be mild skin infections (mycosis), or they may have life- 
threatening implications, as seen in the cases of aspergillosis and candidiasis. The 
most common form of fungal infections includes skin and nail infections. About 40 
types of fungi (typically Trichophyton, Microsporum, or Epidermophyton) can 
cause fungal skin infections (White et al. 2014). They lead to dry red itchy patches 
on the skin. Nail fungal infections, technically called onychomycosis, lead to thick, 
discolored, cracked nails. The cause of these infections is soil yeasts such as 
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Candida parapsilosis, Candida guilliermondii, and Candida albicans. In recent 
years, nondermatophyte molds, for instance, Fusarium spp., and Onychocola 
canadensis are being increasingly detected as the causative agent for fungal nail 
infections. It is difficult to find a cure for fungal infections, and at present, only a 
handful of antifungal agents are available. Fungi synthesize some antifungals as 
secondary metabolites for their existence. Griseofulvin is one of the first naturally 
synthesized antifungals from Penicillium griseofulvum. It is a fungistatic drug used 
in the treatment of hair, skin, and nail fungal infections. Griseofulvin inhibits mito-
sis of fungal cells by binding with tubulin and hinders microtubule function (Gupta 
et al. 2004). In the case of nail and hair infections, griseofulvin binds with keratin 
and makes it resistant to fungal invasions. Cerulenin, an antifungal antibiotic, 
derived from Cephalosporium caerulens, inhibits fatty acid biosynthesis in yeasts.

Invasive fungal infections are life-threatening in immune-compromised patients. 
Healthy individuals can breathe in air with Aspergillus spores and remain unaf-
fected. In case of immune-compromised individuals, spores of Aspergillus can 
cause aspergillosis. Aspergillus infections result in allergies and infections in lung 
and other organ. Similarly, Candida is present on the skin, mouth, throat, gut, and 
vagina without affecting a healthy individual. Candida can be precarious when it 
grows out of control or enters the bloodstream or internal organs. Fungal pathogens 
such as Candida albicans and Aspergillus can also cause hospital-acquired infec-
tions such as bloodstream infections, ventilator-associated pneumonia, urinary tract 
infections, and surgical site infections (Khan et al. 2017).

Echinocandins are the precursor leads of semisynthetic antifungal drugs against 
systemic infections such as aspergillosis and candidiasis. These drugs act by non-
competitively inhibiting the enzyme 1,3-β-D-glucan synthase required for the syn-
thesis of fungal cell wall component β-glucan polymers. Echinocandin B isolated 
from Aspergillus nidulans was the first drug lead of class echinocandin (Denning 
2002). Echinocandin B is the precursor of semisynthetic antifungals caspofungin 
(cancidas), anidulafungin (Eraxis), and micafungin (Mycamine). These three agents 
are approved by the FDA to treat candidemia, invasive candidiasis, and esophageal 
candidiasis. Echinocandins are administered with other groups of antifungals in 
combination therapy to cure aspergillosis. For instance, anidulafungin is used in 
combination with voriconazole to treat Aspergillus infections (Jeans et al. 2012).

Caspofungin is an intravenous drug used in empirical therapy of fungal infec-
tions in febrile patients with neutropenia and therapy of aspergillosis where patients 
are intolerant of conventional antifungal drugs (Shalhoub et al. 2014). Micafungin 
is used in the treatment of candidemia, candida peritonitis, and esophageal candi-
diasis. Micafungin is the only FDA-approved echinocandin drug for the prophylaxis 
of Candida infections in hematopoietic stem cell transplantation patients (Shalhoub 
et al. 2014). Pneumocandins are a closely related group of echinocandins isolated 
from Zalerion arbicola which are effective antifungals against Candida sp. and 
Pneumocystis carinii (Patil and Majumdar 2017).
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7.5.3  Anticancer Agents

Scientists have examined the cytotoxic activity of fungal metabolites in the past few 
decades. Although these secondary metabolites were used since ages, their antitu-
mor activity has been decoded in the past few years. For instance, in ancient China, 
Reishi, a medicinal fungus, served as a folk medicine to promote health and longev-
ity, but in recent years, researchers have pointed out its antitumor mechanisms as 
well. The polysaccharide peptide (GI-PP) from Reishi is a potent angiogenetic and 
induces cell apoptosis by reducing the expression of Bcl-2 (antiapoptotic protein) 
and elevating Bax (proapoptotic protein) (Wachtel-Galor et al. 2011). A high dose 
of GI-PP alleviates the expression of vascular endothelial growth factor, and this 
explains the mechanism of antitumor activity of GI-PP. Ganoderma lucidum, a 
medicinal mushroom, has been demonstrated with apoptotic, antiproliferative prop-
erties. G. lucidum suppresses the migration of PC-3 cells, a highly invasive prostate 
cancer cell (Sohretoglu and Huang 2018). The water extract of G. lucidum was 
studied extensively compared to its alcohol extract. G. lucidum promoted the syn-
thesis of CD5+, CD4+, and CD8+ T lymphocytes (Lin 2005). In horses, G. lucidum 
was observed to elevate the production of specific antibodies. The alcohol extract of 
G. lucidum induced apoptosis in MCF-7 breast cancer cells in a dose- and time- 
dependent manner (Wu et al. 2012). The underlying mechanism is still not known, 
but the hypothesis suggests that it may be due to an increased expression of pro-
apoptotic Bax protein. Another antineoplasmic metabolite isolated from G. lucidum 
is a triterpenoid, lucidenic acid N. It is a potent cytotoxic metabolite against Hep G2 
cells, with an IC50 value of 2.06 × 10–4 μM (Wu et al. 2001).

Maitake glycan, isolated from G. frondosa, is an SFDA-approved drug, clinically 
used to treat cancer, polycystic ovary syndrome, and impaired glucose tolerance 
(Rossi et al. 2018). The bioactive component of maitake glycan is β-glucan or the 
d-fraction composed of β-(1 → 6)-glucan main chain with β-1,3 branches as opposed 
to β-(1 → 3)-glucan as main chain with β-1,6 branches in the β-glucan of other fungi 
with antitumor properties (Rossi et al. 2018). Maitake glycan inhibits tumor growth 
by cell apoptosis via notch1/NF-B/p65-mediated caspase pathway, activating 
immune cell and regulating the production of cytokines. Paclitaxel is a potent drug 
for chemotherapy medication to treat pancreatic cancer, ovarian cancer, breast can-
cer, cervical cancer, lung cancer, and Kaposi’s sarcoma (Singla et al. 2002). The 
WHO has included it in the World Health Organization List of Essential medicines. 
Initially, paclitaxel was derived from Taxus brevifolia; in 1993, researchers discov-
ered paclitaxel in an endophytic fungus that inhabited in the Pacific yew, and, since 
then, it has been found in several endophytic fungi. In 2001, the National Institute 
for Health and Care Excellence approved the use of paclitaxel in the treatment of 
non–small-cell lung cancer, first-line and second-line treatment of ovarian cancer, 
and treatment of advanced breast cancer where anthracyclic chemotherapy fails. 
Paclitaxel is a cytoskeletal drug that targets tubulin. It stabilizes the microtubule 
polymer and prevents the spindle configuration of chromosomes in the metaphase, 
thus blocking the progression of mitosis. This triggers cell apoptosis at the mitotic 
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checkpoint. Poricoic acid G, isolated from Poria cocos, showed cytotoxic properties 
against leukemia HL-60 cells (Ukiya et al. 2002). Experimental cancer drugs that 
target the enzyme farnesyl transferase to inhibit the activity of Ras protein in cancer 
cells such as 11,11′-dideoxyverticillin A, andrastin A, barceloneic acid A, and bar-
celoneic acid B were isolated from marine Penicillium sp (Jin-Ming 2006). Other 
antitumor cytoskeletal drugs targeting tubulin include vinblastine and vincristine. 
Both these drugs are included in the World Health Organization List of Essential 
Medicines. Vinblastine was isolated from the endophytic fungi Curvularia verrucu-
losa from the leaves of Catharanthus roseus. Fungal vincristine from Eutypella 
sp.-CrP14 was isolated from Catharanthus roseus (Kumar et al. 2013). These drugs 
are used in chemotherapy medication to treat small-cell lung cancer, acute lympho-
cytic leukemia, acute myeloid leukemia, Hodgkin’s lymphoma, and 
neuroblastoma.

7.5.4  Antiviral Agents

Fungal secondary metabolites which possess antiviral properties are grouped in two 
categories based on their mechanism of action, that is, biological response modifiers 
(BRMs) and viral inhibitors. BRMs are compounds that modulate the host defense 
system by acting on a therapeutic target in a pathogenic disease. Most of the antivi-
ral metabolites from fungus are BRM. For instance, styrylpyrone compounds, his-
pidin and hispolon, isolated from Inonotus hispidus were observed to show antiviral 
activity against influenza virus type A (H1N1 and H3N2) and B (Awadh Ali et al. 
2003). A retrovirus requires three enzymes for replication in a host, namely reverse 
transcriptase, integrase, and protease. Antivirals target these three enzymes to 
inhibit viral activity by blocking virus replication. Hispidin caps its phenolic group 
with methyl ether and inhibits the activity of enzyme integrase required for viral 
replication (Roy 2017). Ganoderma pfeifferi, a medicinal mushroom, is a source of 
many antiviral metabolites. Triterpenes, ganodermadiol, lucidadiol, applanoxidic 
acid G, ganoderone C, lucialdehyde B, and ergosta-7, 22-dien-3α-isolated 
Ganoderma pfeifferi have shown antiviral properties against influenza virus type A 
(Mothana et  al. 2003). Another group of triterpene metabolites lanosta-7, 9(11), 
24-trien-3-one, 15; 26-dihydroxy, and ganoderic acid Y isolated from G. lucidum 
inhibits the growth of enterovirus 71. The fruiting bodies from G. lucidum such as 
ganoderiol F and ganodermanontriol inhibit the action of HIV protease enzyme. 
The chloroform extract of fruiting bodies G. colossum also inhibits the activity of 
HIV protease enzyme and ceases viral replication (El Dine et al. 2008). Krestin is a 
protein-bound polysaccharide extracted from Basidiomycetes with anti-HIV prop-
erties. It was reported to inhibit the activity of reverse transcriptase enzyme of avian 
myeloblastosis virus (Maehara et al. 2012).
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7.5.5  Antilipidemic Agents

Antilipidemic agents are cholesterol-lowering drugs that inhibit the synthesis of 
cholesterol or low-density lipoproteins (LDL), decreasing fat accumulation in 
plasma and preventing atherosclerosis and thrombosis. Statins are a class of drugs 
primarily used to inhibit the biosynthesis of cholesterol (Endo 2010). The first statin 
drugs, mevastatin isolated from Penicillium citrinum and lovastatin isolated from 
Monascus ruber or Aspergillus terreus, were fermentation products (Subhan et al. 
2016). Static acid is structurally analogous to enzyme hydroxymethylglutaryl coen-
zyme A (HMG-CoA) reductase, required in the biosynthesis of cholesterol by mev-
alonate pathway. Thus, statins act as competitive inhibitors of HMG-CoA and 
inhibit the synthesis of cholesterol, reducing the total and low-density lipoprotein 
cholesterol levels, and prevent the risk of coronary heart diseases. In a study, effect 
of rosuvastatin was evaluated on Coronary Atheroma Burden, patients with preex-
isting heart disease, where 40  mg/day of rosuvastatin was administered. It was 
observed that the drug reduced the levels of LDL cholesterol and elevated the levels 
of HDL cholesterol, and this led to a regression in the atheroma burden (Aly et al. 
2011). Statins help in decreasing the incidences of strokes by ceasing atherosclero-
sis progression, stabilizing plaque, and improving endothelial functions (Pinal- 
Fernandez et al. 2018).

7.5.6  Antihelminthic Activity

Parasitic nematode infections in humans, plants, and animals are a significant cause 
of concern. They result in grave economic losses of crops and livestock. Ascaris 
lumbricoides and the hookworms Ancylostoma duodenale are common nematodes 
that infect humans. In the late nineteenth century, an antihelminthic agent, PF1022A, 
was isolated from Mycelia sterilia. PF1022A is a cyclic octadepsipeptide composed 
of alternating L-D-L configuration of 4N-methyl-L-leucines, 2 D-lactic acids, and 2 
D-phenyllactic acids. PF1022A was initially tested against the roundworm Ascaridia 
galli in chickens. An oral administration of 2 mg/kg of PF1022A in chickens proved 
to inhibit the growth of A. galli (Von Samson-Himmelstjerna et al. 2000). PF1022A 
is not cytotoxic and does not affect the growth of gram-positive or gram-negative 
bacteria or fungi. The antihelminthic activities of PF1022A have been reported 
against Haemonchus contortus, Ostertagia ostertagi, Toxocara canis, and 
Trichostrongylus colubriformis and the intestinal nematode Angiostrongylus canto-
nensis. Fujisawa Pharmaceutical Co. Ltd. (Japan) has synthesized a semisynthetic 
drug derived from PF1022A known as emodepside, which is used in combination 
with praziquantel and sold under the tradename Profender® to treat nematode infec-
tions (Krücken et al. 2012).
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7.5.7  Antimalarial Agents

Malaria caused by a female Anopheles mosquito is a life-threatening disease preva-
lent in Asian and African regions. As per the World Malaria Report, there were 228 
million cases in 2018. Codinaeopsin, a fungal secondary metabolite, has been tested 
for its antimalarial properties against Plasmodium falciparum (Kontnik and Clardy 
2008). 7-hydroxy-3,4,5-trimethyl-6-on-2,3,4,6-tetrahydroisoquinoline-8- 
carboxylic acid and 2,5-dihydroxy-1-(hydroxymethyl) pyridin-4, two alkaloid 
extracts isolated from endophytic fungi, have been reported to possess antimalarial 
activities (Elfita et al. 2011). Other antimalarial metabolites from fungi such as efra-
peptins, zervamicins, and antiamoebin are under research.

7.5.8  Antidiabetic Activity

Many fungal metabolites are tested for its antidiabetic activity. A medicinal fungus, 
Poria cocos or Wolfiporia extensa Ginns, traditionally known as china root, is used 
as a folk medicine in China to treat diabetes. The compounds dehydrotumulosic 
acid, dehydrotrametenolic acid, and pachymic acid were isolated from the chloro-
form extracts of P. cocos (Kim et al. 2019). These three extracts showed different 
levels of insulin sensitizer activity. Dehydrotumulosic acid exhibits hypoglycemic 
properties. An alpha-glucose inhibitor, Aspergillusol A, isolated from a marine 
Aspergillus, has alpha-glucosidase inhibition property (Ingavat et al. 2009). Other 
compounds such as ternatin isolated from mushroom suppress hyperglycemia 
(Kobayashi et  al. 2012). Few fungal isolates were studied, which act as DPP-4, 
alpha-glucosidase, and alpha-amylase inhibitors.

7.5.9  Fungicides and Insecticides

Fungal pathogens are responsible for some of the most devastating crop infections. 
They destroyed about a third of food crops annually, causing grave loss of economy. 
As per the Food and Organization of the United Nations, in 2009–2010, fungi 
induced losses in five staple crops, namely rice, wheat, maize, potato, and soybean. 
Similarly, insects destroy farm produce and can lead to famine. Fungal bioactive 
metabolites can be used as fungicides and insecticides to mitigate the losses (Rana 
et al. 2019b; Singh et al. 2020; Yadav et al. 2020c).

Strobilurins are a class of fungicides derived from β-methoxyacrylic acid. These 
are isolated from the Basidiomycetes genera that include Crepidotus, Cyphellopsis, 
Filoboletus, Hydropus, Mycena, Oudemansiella, Strobilurus, and Xerula and an 
ascomycete Bolinea lutea (Cooper et  al. 2020). Strobilurins are effective against 
phytopathogenic fungi at concentrations as low as 10−8 to 10−7  M and exhibit 
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minimal toxicity to mammalian cells (Cooper et  al. 2020). Strobilurins prevent 
mycelial growth and spore germination by blocking the electron transport chain and 
suppressing fungal cell respiration. Strobilurins are single-target compounds, and 
thus plant pathogenic fungi have quickly developed resistance to them within 
2  years of introducing them in the market. Nodulisporic A isolated from 
Nodulisporium sp. is an effective insecticide against fleas, where it blocks the glu-
tamate-gated ion channel in invertebrates (Smith et al. 2000). Its analog N-tert-butyl 
nodulisporamide is administered orally to dogs and cats to control fleas and ticks. 
Kresoxim-methyl from BASF is another popularly used strobilurin fungicide avail-
able as mixture with other fungicides. For instance, to tackle fungal infection on 
cereals, kresoxim-methyl and fenpropimorph or epoxiconazole are used in combi-
nation, which are sold as Brio® and Allergo®, respectively (Aly et  al. 2011). 
Azoxystrobin is a strobilurin fungicide from Zeneca registered for use on 55 crops 
in about 49 countries and marketed under the brand names Amistar® for cereals, 
Quadris® for grapevines, and Heritage® for turf (Camargos et al. 2016).

7.5.10  Immunosuppressants

Immunosuppressants are drugs that suppress the activity of the immune system. 
Immunosuppressive drugs are used to prevent rejection during organ transplantation 
and suppress allergic reactions, autoimmune disorders, and uncontrolled inflamma-
tion that might damage tissues and organs. Mizoribine (MZB), an imidazole nucleo-
side known by the generic name Bredinin, is an immunosuppressive drug isolated 
from fungus Penicillium brefeldianum. It is used in the treatment of lupus, IgA 
neuropathy, rheumatoid arthritis, and other rheumatic diseases. It is also used during 
renal transplantation, since compared to other immunosuppressive drugs, MZB is 
less toxic and has no drawbacks. MZB inhibits the synthesis of guanine nucleotide 
by inhibiting the activity of inosine monophosphate synthetase and guanosine 
monophosphate synthetase. It suspends DNA synthesis in S-phase of the cell cycle 
(Yokota 2002). Cyclosporine is a widely used class of immunosuppressants isolated 
from Tolypocladium inflatum (Yang et al. 2018). Using cyclosporine in organ trans-
plantation surgery to prevent the rejection of bone marrow and in heart, kidney, and 
liver transplantation has been a revolutionary success, increasing the survival rates 
in transplant patients (Chinen and Buckley 2010).

Cyclosporines prevent cell apoptosis by binding with cyclophilin D, an integral 
part of mitochondrial permeability transition pore that regulates cell necrosis. This 
property of cyclosporines makes them the drug of choice in the treatment of neuro-
degenerative disease, cardiac hypertrophy, trauma, and ischemia–reperfusion injury 
(Yang et  al. 2018). The binding of cyclosporine with cyclophilin D inhibits the 
activity of calcineurin, a protein phosphatase that activates T cells. Cyclosporines 
are the first class of nontoxic immunosuppressants that can selectively immuno-
regulate T cells (Yang et al. 2018). Gliotoxin, an anti-inflammatory drug, was iso-
lated from fungal species such as Aspergillus sp. and Gliocladium fimbriatum. It is 
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an immunosuppressive drug that prevents apoptosis in neutrophils, eosinophils, 
granulocytes, macrophages, and thymocytes. Gliotoxin prevents an inflammatory 
response and release cytokines by inhibiting the activity of nuclear factor-κB (NF- 
κB) (Fraga-Silva et al. 2019).

7.5.11  Miscellaneous Activity

In traditional medicines, fungi have been used to cure several health ailments. 
Cordyceps sinensis was discovered 2000 years ago in China in the Qing dynasty. 
Ethnomedical reports suggest that C. sinensis, an aphrodisiac, has antioxidant prop-
erties and down regulates apoptotic genes (Shashidhar et al. 2013). G. lucidum has 
also been used as a folk medicine in China, Japan, and South Korea. Extracts from 
G. lucidum have shown immunomodulatory effects that impact cancer cells. Apart 
from this, G. lucidum extracts have antiviral, antibacterial, and antitumor agents. 
Endophytic fungi have long been used for sustainable agriculture by developing a 
symbiotic plant–microbe interaction (Singh and Yadav 2020; Verma et al. 2017). 
Endophytic fungi can produce bioactive secondary metabolites such as iron chela-
tors, flavonoids, phenolic acids, steroids, alkaloids, coumarin, quinones, lignans, 
peptides, terpenoids derivatives, phosphate solubilizers, insecticides, and nitrogen 
fixation compounds, which benefit the plant host (Rao et al. 2020; Kour et al. 2019a; 
Rana et al. 2019c, 2020). For instance, endophytic fungi Gliocladium catenulatum, 
inhabiting in Cacao seedlings, releases bioactive metabolites that act as insecticides. 
Endophytic fungi Fusarium solani inhabiting Rheum palmatum synthesize rhein, a 
potent antimicrobial compound. Fungi are also used for biotransformation of ste-
roids commercially as they are comparatively feasible than chemical methods. 
Fungal biotransformation of steroids includes reactions such as hydroxylation, 
dehydrogenation, and sterol side-chain cleavage. Aspergillus species are used in the 
preparation of rostanes by degrading the C-17 saturated side chain of the sterol. 
Fungi such as yeasts, Candida, and Rhodotorula are used in the production of 
industrially important products such as amino acids, ethanol, enzymes, recombinant 
protein insulin, and vitamins. Further source and application of fungal secondary 
metabolites have been mentioned in Table 7.1.

7.6  Conclusion and Future Prospects

Fungi are the microorganisms that can inhabit extreme environmental conditions 
and are a reservoir of bioactive secondary metabolites. Their commercial produc-
tion is still at a slow pace, and alternative methods for upscaling are the need of 
hour. Fungal fermentation has a great scope for producing therapeutic proteins, 
enzymes, and recombinant proteins. The fermentation process needs to be opti-
mized to increase the production yield and find an economical method to purify the 
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end product. The biosynthetic gene clusters (BGCs) in fungi are untapped. 
Researchers must explore bioinformatics tools and techniques to study the fungal 
secondary metabolomes to capture, characterize, and synthesize bioactive metabo-
lites. Current challenges in fungal secondary metabolite research include replicating 
the existing BGC cluster, expressing proteins from cryptic BGC, and identifying 
BGC from unknown genes. Investigations on genomic, proteomic, and metabolo-
mic can help gather the knowledge necessary for the future development of fungal 
secondary metabolites on the industrial level.

Table 7.1 Source and application of fungal secondary metabolites

Drug/drug lead Source Uses Reference

Lucidenic acid N Ganoderma lucidum Anticancer drug Wu et al. (2001)
Poricoic acid G Poria cocos Anticancer drug Ukiya et al. (2002)
Psilocybin Psilocybe mexicana Psychedelic drug Passie et al. (2002)
Mizoribine Fusarium 

subglutinans
Immunosuppressant Yokota (2002)

Ganodermadiol, lucidadiol, 
applanoxidic acid G

Ganoderma pfeifferi Antiviral Mothana et al. 
(2003)

Cephalosporin Cephalosporium 
acremonium

Antibiotic Schmitt et al. 
(2004)

Ganoderic acid β Ganoderma lucidum Antiviral Li and Wang 
(2006)

Pravachol Penicillium 
compactum

Antilipidemic Endo (2010)

Fingolimod Isaria sinclairii Multiple sclerosis Chun and 
Brinkmann (2011)

Endocrocin Aspergillus Immunosuppressant Lim et al. (2012)
Asparaginase Penicillium digitatum Anticancer drug Shrivastava et al. 

(2012)
Zhankuic acid A Antrodia camphorata Anticancer drug Lee et al. (2012)
Lentinan Lentinula edodes Anticancer drug

Antilipidemic
Ina et al. (2013)

Nigrosporin B Nigrospora Antibiotic Wang et al. (2013)
Caspofungin Glarea lozoyensis Antifungal Maiolo et al. 

(2014)
Anidulafungin Aspergillus Antifungal Maiolo et al. 

(2014)
Mycophenolic acid Penicillium 

stoloniferum
Immunosuppressant Patel et al. (2016)

Lysergic acid Claviceps purpurea Psychedelic drug Das et al. (2016)
Proliferin Aspergillus 

proliferans
Antibiotic Woappi et al. 

(2016)
PGG glucan Saccharomyces 

cerevisiae
Antitumor Bashir and Choi 

(2017)
SSG glucan Sclerotinia 

sclerotiorum
Antitumor Bashir and Choi 

(2017)
Polysaccharides Ganoderma lucidum Antitumor Li et al. (2018)
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8.1  Introduction

Biocontrol research is aimed at providing solutions for disease management in the 
agriculture sector. Certain organisms have been extensively studied as potential bio-
control agents, one of the most well studied of these is the fungal genus Trichoderma. 
Trichoderma spp. have great potential as biological control agents against a wide 
range of soil-borne plant pathogenic fungi (Sharma et al. 2019). Members of this 
genus produce a number of fungal cell-wall degrading enzymes including chitin-
ases, 1,3-glucanases, proteases, mannanases, etc. Trichoderma spp. have been used 
increasingly in agriculture, especially in greenhouses where a significant proportion 
of soil-borne disease control products are Trichoderma harzianum-based. Not only 
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is the genus known for its agricultural applications, it also has potential for soil 
bioremediation activity such as hydrocarbon pollutant removal (Knudsen and 
Dandurand 2014).

Biocontrol agents are involved in a variety of trophic and non-trophic interactive 
mechanisms including production of antifungal compounds, hyper-parasitism of 
pathogens and stimulation of host plant defences or competitive colonization of 
spermosphere and rhizosphere substrates. The first fungus to be registered with the 
EPA for control of a plant disease was T. harzianum ATCC 20476. A total of 12 
fungi have been registered with EPA for control of plant diseases (Fravel 2005).

Many promising biological antagonists, mainly from the genus Trichoderma, 
Aspergillus, Penicillium, Pseudomonas and Bacillus, have been reported as effec-
tive antagonists against plant pathogens. The potential of Trichoderma spp. to para-
sitize, suppress as well as kill other plant pathogenic fungi has been recognized as 
an important mechanism for its success as a biological control. Some species of 
Trichoderma such as T. asperellum, T. atroviride, T. virens and T. harzianum are 
widely used as biological control agents of plant pathogens. Three important 
Trichoderma species, i.e., T. virens, T. atroviride and T. harzianum, are recognized 
for their ability to produce higher amounts of chitinolytic enzymes as compared to 
other fungi known to have similar biological control abilities.

8.2  Current Scenario

Plant-fungal diseases are one of the most important issues in agriculture and hin-
drance in food production in the world. Especially, Penicillium species such as 
P. digitatum and P. italicum are involved in post-harvest losses in citrus (Barkai- 
Golan 2001; Eckert and Eaks 1989). Other citrus pathogenic fungi include 
Aspergillus and Alternaria. Aspergillus sp. is the most common environmental 
fungi and can be isolated from citrus fruits, vegetables, tomatoes, corn, pistachios, 
etc. In citrus, Aspergillus niger produces brown rot and Aspergillus flavus creates 
albinism or virescence (Aboutorabi 2018).

Currently, more than two billion tons of pesticides are used in agriculture, every 
year, all over the world. These pesticides include fungicides, bactericides, herbi-
cides, insecticides and others that are used to eliminate undesirable agents, mainly 
fungi, weeds and insects, which are considered crop pests, with the aim to guarantee 
a high yield. The cost of this practice is not only financial improvement, but also 
environmental improvement, because the excessive use of pesticides leads to water 
bodies, groundwater and soil contamination in addition to affecting human and ani-
mals’ health due the toxicity, recalcitrance and the carcinogenic potential of many 
of these compounds. The biological control of pests has been recognized as an alter-
native to the use of pesticides (Thakur et al. 2020). Even though this is a consider-
ably cheaper technology and less harmful to the environment, biological control 
practices are currently very scarcely used in relation to chemical pesticides (Rana 
et  al. 2019a; Rana et  al. 2019b). This fact mainly occurs because biological 
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management is more specific and takes a longer time to achieve the desired results 
(Baron et al. 2019).

Biological control of plant pathogens is the key practice in the sustainable agri-
culture which strives to minimize the use of synthetic fungicides and to use as alter-
native management strategy to control soil-borne pathogens (Barea et  al. 1993). 
Biocontrol agents can be defined as directed, accurate management of the common 
components of the agriculture ecosystem against pathogens (Azcon-Aguilar and 
Barea 1997). The number of biocontrol agents is commercially employed these 
days such as Pseudomonas fluorescens, Bacillus subtilis, Trichoderma harzianum, 
T. viridae and Mycorrhizal fungi (Glomus spp.), Agrobacterium radiobacter strain 
84 and K1026, etc., for soil-borne pathogens. Among them, use of mycorrhizal 
fungi as biocontrol agent gained importance in integrated disease management pro-
grams (Rana et al. 2020; Rana et al. 2019c). Mycorrhizal fungi are a major natural 
occurring component of soil ecosystem and found associated with roots system of 
more than 80% of all terrestrial plant species. Mycorrhizal fungi are known to pro-
tect the plants against several soil-borne pathogens like Fusarium, Pythium, 
Verticillium, Ralstonia, Macrophomina, etc. (Singh et al. 2019).

8.3  Biological Control for Sustainable Agriculture

Biological control is defined as the introduction of an exogenous biological agent 
into the environment with an aim towards its permanent establishment to control the 
pests present therein over the long term (Kenis et al. 2017). The biological agent 
applied can be a parasitotic, a pathogen, or a predator of the organism that is causing 
economic loss (Hajek and Delalibera 2010). However, the growing problem related 
to the indiscriminate use of agricultural chemical inputs has been changing, which 
has led several organizations to begin debates and efforts to improve awareness 
regarding the need to reduce pesticide and fertilizer consumption and prohibit the 
use of products that have been shown to threaten food and occupational safety 
(Carneiro et al. 2015; Yadav et al. 2020a, b, c). This has resulted in greater visibility 
of biological control, which has led to the application of all the accumulated knowl-
edge on this subject in the field.

Fungal diseases of insects have been known since 1834 when the Italian, Agostino 
Bassi, elucidated the fungi to be the cause of the white muscardine disease of silk-
worms. By using fungi as biological control agents is by no means a novel idea and 
was suggested by Pasteur and the American, Le Conte in 1874. This was followed 
by mass production of a fungus, Metarhizium anisopliae for the first time by 
Metschnikoff (1879) and Krassilstchik (1888). Fungi are unique among all the 
groups of insect pathogens, in that they can penetrate directly the cuticular barrier 
and do not have to be ingested. Given favourable environmental conditions, fungi 
will exert spectacular natural control of insect populations but usually epizootics 
occur only when pest populations are very high. Using fungi can prevent a build-up 
of pests to damaging levels, by artificial application of fungal propagules (Hall and 
Papierok 1982).
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Biocontrol fungi (BCF) are beneficial organisms that reduce the negative effects 
of plant pathogens and promote positive responses in the plant (Devi et al. 2020). 
They do control diseases and in addition have other benefits, including amelioration 
of intrinsic physiological stresses in seeds and alleviation of abiotic stresses. They 
also improve photosynthetic efficiency, especially in plants subjected to various 
stresses. Finally, several fungi also increase nitrogen uptake efficiency in plants. As 
a consequence, plants treated with beneficial fungi may be healthier and have 
greater yields than control. Most of the early work on biocontrol of plant diseases 
by Trichoderma spp. revolves around the direct ability of these fungi to interact with 
soil pathogens. The specific mechanisms described are mycoparasitism, production 
of antibiotics and competition for nutrients in the rhizosphere. During the process of 
mycoparasitism, the fungi first locate target hyphae by probing with constitutively 
produced cell wall degrading enzymes (CWDEs) coupled with very sensitive detec-
tion of cell wall fragments released from target fungi. After the fungi come into 
contact, Trichoderma spp. attach and coil around and form appressoria on the sur-
face of the host. Enzymes and antibiotic substances are produced that degrade the 
target hyphae and permit penetration of the Trichoderma strains. Both the enzymes 
and the antibiotics are strongly antifungal and are synergistic in their action (Shoresh 
et al. 2010).

8.4  Sources of Myco-Biocontrol Agents

Bioactive fungi have a wide host range, although there is considerable genetic diver-
sity within species and some strains show a high degree of specificity. For example, 
Metarhizium anisopliae var. acridum is only effective against insects such as grass-
hoppers and locusts (Driver et  al. 2000). Primary requirement for the use of an 
entomogenous fungus such as a myco-biocontrol agent is susceptibility to the insect 
on one hand and virulence of the fungus on the other hand. Deuteromycetes fungi 
have a broad host range, and in particular, Metarhizium and Beauveria are promis-
ing as myco-biocontrol agents with application as myco-insecticide. Beauveria 
bassiana and Metarhizium anisopliae are among the first entomopathogenic fungi 
being successfully used for myco-biocontrol of insect pest. The development of 
molecular biology techniques for entomopathogenic fungi such as Beauveria bassi-
ana and Metarhizium anisopliae, coupled with cloning of putative pathogenesis 
determinant gene, will create more potential candidates for managing the notorious 
insect pest population (Rana et al. 2008; Thakur et al. 2011).

8.5  Applications of Fungi in Biological Control

Among the wide variety of microorganisms that have reported to be potential and 
are being used in biocontrol practices, fungi are the most studied and applied 
(Schrank and Vainstein 2010). According to Thomas and Read (2007), the main 
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reasons for their broad use are their efficiency in eliminating their hosts, their wide 
metabolic diversity that increases the chances of finding appropriate isolate for bio-
control, and their relative environmental safety, as they are primarily decomposers. 
Fungal species that are used in biological control include both basal and higher 
fungi. The basal fungi are the representatives of phylum Blastocladiomycota, such 
as Coelomomyces, and of the subphylum Entomophthoromycotina, such as species 
of the genera Conidiobolus, Entomophthora, Erynia and Entomophaga. Among the 
higher fungi, several species of the phylum Ascomycota (Subkingdom Dikarya) 
have been reported potential and are commercialized and applied in the field such as 
Purpureocillium, Metarhizium, Beauveria, Cordyceps, Fusarium, Trichoderma, 
etc. Before defining the use of a fungus as a commercial product, many characteris-
tics must be observed, including its virulence, capacity to resist environmental 
stressors (ultraviolet resistance, temperature tolerance), mass production potential, 
sporulation capacity on low-cost alternative substrate, ability to cause infection 
under low humidity condition and specificity to the parasite of interest (Pourseyed 
et al. 2010).

Results of ecological studies on epizootic or enzootic infections by fungi, labora-
tory studies and field application studies indicate that fungi can be manipulated in 
two possible ways to control pests (Rastegari et al. 2020a, b). Firstly, they may be 
applied to achieve a ‘knock-down’ effect, either rapidly in the case of fungi produc-
ing toxins or more slowly, where a comparatively long ‘lag-phase’ between applica-
tions and death can be tolerated and where the target insect has a long life cycle 
relative to the infection cycle. Secondly, where an insect pest species has a rapid 
reproductive rate, as in the case of aphids or mites, the fungus must be able to 
spread, following application, more rapidly than the pest is able to reproduce (Latge 
and Perry 1980; Hall 1981). Ideally, it is desirable that a pathogen is able to recycle 
in the environment to control insect below economically or medically important 
thresholds on a long-term basis. The muscardine fungi, M. anisopliae and Beauveria 
spp., are the most intensively studied entomopathogenic fungi. M. anisopliae has 
been used to control several pests such as rhinoceros beetle, Oryctes rhinoceros 
(Latch and Falloon 1976; Anonymous 1978). The use of this fungus as an adjunct 
with a Baculovirus has virtually eliminated this major pest of palms in Polynesia 
(Bedford 1981).

8.5.1  Biological Control of Arthropods by Fungi

Insects are the main class of the Arthropoda phylum and are among the most diverse 
living being on the planet. Even though a small portion of this group contains spe-
cies known as agricultural pest, they are responsible for causing considerable dam-
age to crop, devastating approximately 20% of the global annual production 
(Schrank and Vainstein 2010). Most entomopathogenic fungi belong to the order 
Hypocreales (phylum Ascomycota) and Entomophthorales (subphylum 
Entomophthoromycotina) (Hibbett et al. 2007). Generally, entomophthoralean fungi 
are specific to their host and therefore present a relatively low risk of infecting 
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beneficial insect, such as pollinators. While fungi of the Hypocreales order are less 
selective and infect a wider range of host (Roy and Pell 2000). Entomopathogenic 
fungi are useful for biological control of mosquitoes. Beauveria bassiana is an 
opportunistic pathogen, and its use against many arthropods is widespread.

The fungal strains have restricted host range, for example, Aschersonia aleyrodes 
infects only scaly insects and whiteflies, with individual isolates being more specific 
to target pests. Some species are facultative generalist pathogens, such as Aspergillus 
and Fusarium. Most species are obligate pathogens, often quite specific and rarely 
found, for example, many species of Cordyceps. Entomopathogens such as M. aniso-
pliae and B. bassiana are well characterized with respect to pathogenicity towards 
several insects and have been used as myco-biocontrol biological control agents for 
agriculture pests worldwide (Singh et al. 2019).

8.5.2  Entomopathogenic Fungi

Entomopathogenic fungi are the first organism to be used for the biological control 
of pests. More than 700 species of these fungi from around 90 genera are pathogenic 
to insect. Most of them belong to genera Deuteromycetes and Entomophthorales. 
Some entomopathogenic fungi have restricted host ranges, e.g., Aschersonia aley-
rodes infect insects with scales and whiteflies, while other fungal species have a 
wide host range. Entomopathogens such as M. anisopliae and B. bassiana are well 
characterized with respect to pathogenicity towards several insects, and they have 
been used as biological control agents for agriculture pests worldwide (Sandhu 
et al. 2012).

Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana have 
been widely used against insects and hence these are being exploited as fungal bio- 
pesticide on a large scale. Both fungi are proved pesticides against many crop pests 
and farmers are well acquainted with their use on the field. Using chemical or syn-
thetic pesticides as a single tactic in controlling an important and significant live-
stock pests has been proved as dangerous as their indiscriminate use have often 
resulted in problems such as pesticide resistance, pest resurgence, residual toxicity 
and imbalance in ecological equilibrium (Narladkar et al. 2015).

8.5.2.1  Mode of Action of Entomopathogenic Fungi

In many cases, the control of pathogen can involve direct interaction between fungi 
and plants. The fungi are able to act as plant pathogen antagonists, i.e., they can use 
several different mechanisms, such as the production of metabolites (antibiotics, 
volatile compounds – ammonia, cyanide, alcohols, esters, ketones, etc., or enzymes), 
competition (for space, C, N, or mineral source), parasitism, or the induction of 
systemic resistance in the plant or an increase in its growth response, resulting in a 
reduction in the pathogen’s activities (Vega et al. 2009). The genus Trichoderma 
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(Hypocreales) is one of the best known because of its activities against plant patho-
gens. It includes cosmopolitan species commonly found in the soil. Member of this 
genus present rapid growth and their major role in nature is as primary decomposer. 
In addition, Trichoderma spp. have been targets of studies and are used for com-
mercial exploitation due to their ability to produce antibiotics and several enzymes 
of interest and their potential as biocontrol agents (Anees et al. 2010). These fungi 
are able to inhibit the growth of phytopathogenic fungi by inducing plant resistance 
or by acting directly against the pathogen as an antagonist, mycoparasite/competitor 
(Howell 2003; Verma et al. 2007). Knowing how the fungus behaves in the presence 
of other plant-parasitic fungi is essential to improve the application of this microor-
ganism. One of the main uses of Trichoderma spp. is in the fight against the basid-
iomycete Rhizoctonia solani, a known phytopathogen that causes disease in the 
roots of several plants. Currently, new studies are being developed to explore strain 
that have already been used extensively in biocontrol strategy. For example, studies 
involving Metarhizium and Beauveria species generally focus on their application 
in the control of insect and other arthropods.

Entomopathogenic fungi constitute the largest single group of insect pathogen 
among microorganisms. Such insect-killing fungi are very first microorganisms to 
be recognized as disease-causing agent in insect. Entomogenous fungi are effective 
myco-biocontrol agents for a number of crop pests. Different species belonging to 
order Lepidoptera, Coleoptera, Homoptera, Hymenoptera and Diptera are suscep-
tible to various fungal infections.

The Infection Process

Fungi have a unique mode of infection; they reach the haemocoel through the cuti-
cle or possibly through the mouth part. Ingested fungal spore do not germinate in 
the gut and are voided in the faeces. The death of the insect result from a combina-
tion of factor: mechanical damage resulting from tissue invasions, depletion of 
nutrient resource and toxicosis, and production of toxin in the body of insect.

Conidial Attachment with the Cuticle

The entomopathogenic fungi host location is a random event and attachment being 
a passive process that takes place with the aid of wind or water. Attachment of a 
fungal spore to the cuticle surface of a susceptible host represents the initial event in 
the establishment of mycosis. It was observed that dry spore of B. bassiana pos-
sesses an outer layer composed of interwoven fascicles of hydrophobic rodlet. This 
rodlet layer appears to be special to the conidial stage and has not been reported on 
the vegetative cell. The adhesion of dry spore to the cuticle was suggested to be due 
to nonspecific hydrophobic force imposed by the rodlet. Moieties like lectins have 
also been found on the conidial surface of B. bassiana. It was also observed that 
lectin could be involved in binding between conidia and the insect cuticle. When the 
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pathogen reaches and adheres to the host surface, it proceeds with rapid germination 
and growth which are profoundly influenced by the availability of water, nutrients, 
oxygen as well as pH, and temperature, and by the effect of toxic host-surface com-
pound. Fungi with a broad host range germinate in culture in response to a wide 
range of nonspecific carbon and nitrogen source. Entomopathogenic fungi with lim-
ited host range seem to have more specific requirements for germination.

Formation of an Infection Structure

Entomopathogenic fungi invade their host by infection process, penetration of the 
host cuticle or put pressure on cuticle by making appressorium and then penetrate 
by penetration peg. The cuticles have two layers: the outer epicuticle and the procu-
ticle. The epicuticle is a very complex thin structure which is deficient in chitin but 
contains phenol-stabilized protein and has a covering of waxy layer containing fatty 
acids, lipids and sterol. The procuticle forms the majority of the cuticle and contains 
chitin fibril embedded into a protein matrix together with lipids and quinones. 
Protein may account for up to 70% of the cuticle. In many areas of the cuticle, the 
chitin is organized helically giving rise to a laminate structure. Entomopathogenic 
fungi, B. bassiana conidia, germinate on the host surface and differentiate into 
structure termed appressorium (Sandhu 1995).

Penetration of the Cuticle

Entomopathogenic fungi need to penetrate through the cuticle into the insect body 
to obtain nutrient for their growth and reproduction. Entry into the host involves 
both enzymatic degradation and mechanical pressure as evidenced by the physical 
separation of lamellae by penetrated hyphae. A range of extracellular enzyme that 
can degrade the major component of insect cuticle, including chitinases, lipases, 
esterases and at least four different classes of proteases, have been suggested to 
functions during the fungal pathogenesis. These fungi begin their infective process 
when spores are retained on the integument surface, followed by the formation of 
the germinative tube, and then the fungi start excreting enzymes such as proteases, 
chitinase, quitobiases and lipases.

8.5.3  Nematophagous Fungi and the Biological Control 
of Nematodes

The lack of specificity of the symptoms caused by nematode parasitism is a great 
challenge in diagnosing their presence in crops. A wide range of infestations are 
observed including wilting, discoloration, reduced vigour, nutrient deficiency, root 
lesions, reduced flowering, fruit loss, low productivity and even death. Necrosis 
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may be observed in the aerial parts that are fast spreading while in the roots, galls, 
cysts and agglomerates of worms may occur (Degenkolb and Vilcinskas 2016). For 
the control of these worms, nematophagous fungi have been experimented with.

Nematophagous fungi are microorganisms that can change from saprophytic to 
carnivorous behaviour. This happens under unfavourable conditions of growth and 
the fungi are able to feed on nematodes. The infection strategies are highly devel-
oped. The nematophagous fungal conidia germinate on the body of their host, and 
the hyphae penetrate the nematode and infect it (Sexton and Howlett 2006). There 
are more than 700 nematophagous fungi belonging to phyla Ascomycota, 
Basidiomycota, Zygomycota, etc. (Li et al. 2015). In these, some are toxin- producing 
and some have attack devices or structures (Lui et al. 2009). An example of nema-
tophagous fungi is Purpureocillium lilacinum which is one of the most studied and 
tested fungi in the biological control of nematodes. It is popular among researchers 
for its ability to parasitize even nematode eggs (Atkins et al. 2005). Another positive 
aspect related to Purpureocillium species is the production of secondary metabo-
lites that are able to promote plant growth, such as phytohormones (gibberellins and 
auxins), and substances that facilitate their defence against the harmful effects of 
biotic and abiotic stresses (pH and salinity, for example) (Khan et al. 2012). Another 
example of the nematophagous fungi is Pleurotus sp. which are edible mushrooms 
cultivated commercially. Pleurotus ostreatus produces toxins that immobilize the 
nematodes before infecting those (Satou et al. 2008).

8.6  Fungal Compounds Involved in Induction 
of Plant Responses

Fungal proteins such as xylanase, cellulase and swollen in are secreted by 
Trichoderma species but seem to induce only localized plant reactions and necrosis. 
Trichoderma endochitinase can also enhance defence, probably through induction 
of plant defence-related protein. Other proteins and peptides that are active in induc-
ing terpenoid phytoalexin biosynthesis and peroxidase activity in cotton, e.g., the 
small protein, SM1, which has hydrophobin-like properties, were found to be pro-
duced by strains of T. virens. Another class of elicitors of plant defence includes 
oligosaccharides and low-molecular-weight compounds. These are released from 
fungal or plant cell walls by the activity of Trichoderma enzymes.

8.7  Genetic Engineering Studies of Fungi

A more widespread use of fungi for myco-biocontrol will depend on the improve-
ment of wild-type strains by combining characteristic of different strains and 
mutants. Two types of improvement could be considered: (i) improving the efficacy 
of the insecticide, by reducing the dose necessary to kill the insect, by reducing the 
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time to kill the pest or decreasing crop damage caused by the pest by reducing the 
feeding time; and (ii) expanding the host range.

8.8  Conclusion

By using chemical or synthetic pesticides as a single tactic in controlling an impor-
tant and significant livestock, pests have been proved as dangerous as their indis-
criminate use have often resulted in problems such as pesticide resistance, pest 
resurgence, residual toxicity and imbalance in ecological equilibrium. The fungus 
M. anisopliae (ICIPE-30) and B. bassiana (IMI-391510) spores prove as efficacious 
in infecting and killing larvae of Anopheles stephensi and Anopheles gambiae under 
laboratory conditions (Bukhari et al. 2010). It has been demonstrated that infection 
of adult mosquitoes Culex quinquefasciatus with B. bassiana causes a significant 
reduction in their survival and disease transmission under field condition (Howard 
et al. 2010; Narladkar et al. 2015).

The advantage of using fungi as myco-biocontrol agent is as follows: (1) Their 
high degree of specificity for pest control. Fungi can be applied to control harmful 
insect pests without affecting beneficial insects and non-harmful parasites. (2) The 
absence of effects on mammal and thus the reduction of the hazard normally 
encountered with insecticide application, such as pollution of the environment. (3) 
The lack of problem caused to insect resistance and prolonged pest control. (4) A 
high potential for further development by biotechnological research. (5) High per-
sistence in the environment provides long-term effect of entomopathogenic fungi on 
pest suppression (Sandhu et al. 2012).

Acknowledgement The authors are grateful to their respective institutions for encouragement 
and support.

References

Aboutorabi M (2018) A review on the biological control of plant diseases using various microor-
ganisms. J Res Medical Dental Sci 6:30–35

Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Heraud C, Steinberg C (2010) 
Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. 
Fungal Biol 114:691–701

Anonymous (1978). Research on the control of the coconut palm rhinoceros beetle, phase II. Fiji, 
Tonga, Western Samoa. Technical Report, United Nations Development Programme, Food and 
Agriculture Organization of the United Nations, Rome, 1978

Atkins SD, Clark IM, Pande S, Hirsch PR, Kerry BR (2005) The use of real-time PCR and 
species- specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS 
Microbiol Ecol 51:257–264

Azcon-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: signifi-
cance and potentials. Sci Hortic 68:1–24

C. V. Parulekar-Berde et al.



199

Barea JM, Azcon R, Azcon-Aguilar C (1993) Mycorrhiza and crops. Adv Plant Pathol 9:167–189
Barkai-Golan R (2001) Postharvest diseases of fruits and vegetables: development and control. 

Elsevier Science, The Netherlands
Baron NC, Rigobelo EC, Zied DC (2019) Filamentous fungi in biological control: current status 

and future perspectives. Chilean J Agric Res 79:307–315
Bedford GO (1981) Control of the Rhinoceros beetle by Baculovirus. In: Burges HD (ed) Microbial 

control of pests and plant diseases 1970–1980. Academic Press, New York and London, New 
York, pp 409–426

Bukhari T, Middelman A, Koenraadt CJM, Takken W, Knols BGJ (2010) Factors affecting fungus- 
induced larval mortality in Anopheles gambiae and Anopheles stephensi. Malar J 9:22

Carneiro FF, Pignati WA, Rigotto RM, Silva-Augusto LG, Pinheiro ARO, Faria NMX et al (2015) 
Segurança alimentar e nutricional e saúde. In: Carneiro FF, Rigotto RM, Silva-Augusto LI, 
Friedrich K, Búrigo AC (eds) Dossiê Abrasco: um alerta sobre os impactos dos agrotóxicos na 
saúde. Expressão Popular. Rio de Janeiro/São Paulo, Brasil, pp 46–89

Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural 
products from fungi as an alternative for biological control. Part I: metabolites from nema-
tophagous ascomycetes. Appl Microbiol Biotechnol 100:3799–3812

Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020) Beneficial fungal communities from 
different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 
5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

Driver F, Milner RJ, Trueman JWH (2000) A taxonomic revision of Metarhizium based on a phy-
logenetic analysis of rDNA sequence data. Mycolog Res 104(2):134–150

Eckert JW, Eaks IL (1989) Postharvest disorders and diseases of citrus fruits. The Citrus Industry 
5:179–260

Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 
43:337–359

Hajek AE, Delalibera I (2010) Fungal pathogens as classical biological control agents against 
arthropods. BioControl 55:147–158

Hall RA (1981) The fungus, Verticillium lecanii, as a microbial insecticide against aphids and 
scales. In: Burges HD (ed) Microbial control of pests and plant diseases 1970–1980. Academic 
Press, pp 483–498

Hall RA, Papierok BY (1982) Fungi as biological control agents of arthropods of agricultural and 
medical importance. Parasitology 84:205–240

Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE et al (2007) A higher- 
level phylogenetic classification of the Fungi. Mycolog Res 111:509–547

Howard AFV, N’Guessan R, Koenraadt CJM, Asidi A, Farenhorst M (2010) The entomopathogenic 
fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi- insecticide- 
resistant Culex quinquefasciatus mosquitoes in Benin, West Africa. Parasit Vectors 3:87

Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of 
plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

Kenis M, Hurley BP, Hajek AE, Cock MJW (2017) Classical biological control of insect pests of 
trees: facts and figures. Biol Invasions 19:3401–3417

Khan AL, Hamayun M, Kang SM, Kim YH, Jung HY, Lee JH et al (2012) Endophytic fungal asso-
ciation via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an 
example of Paecilomyces formosus LHL10. BMC Microbiol 12:14

Knudsen GR, Dandurand LMC (2014) Ecological complexity and the success of fungal biological 
control agents. Advs in Agricult 2014:1–11

Krassilstchik IM (1888) La production industrielle des parasites vegetaux pour la destruction des 
insectes nuisibles. Bull Sci France 19:461–472

Latch GCM, Falloon RE (1976) Studies on the use of Metarhizium anisopliae to control Oryctes 
rhinoceros. Entomophaga 21:39–48

Latge JP, Perry D (1980) Utilization of an Entomophthora obscura resting spore preparation in 
biological control experiments against cereal aphids. Organisation Internationale de Lutte 
biologique/Section Regionale Ouest Palearctique HI/ 4:19–25

8 Fungal Communities as Biological Control Agents for Different Phytopathogenic…

https://doi.org/10.21608/mb.2020.32802.1016


200

Li J, Zou C, Xu J, Ji X, Niu X, Xang J, Huang X, Zhang KQ (2015) Molecular mechanism of 
nematode-nematophagus microbe interactions, basis for biological control of plant parasitic 
nematodes. Annu Rev Phytopathol 53:67–95

Lui X, Xiang M, Che Y (2009) The living strategy of nematophagus fungi. Mycoscience 50:20–25
Metschnikoff E (1879) Diseases of the larva of the grain weevil. Insects harmful to Agriculture 

(series). Issue III, The grain weevil. Published by the Commission attached to the Odessa 
Zemstvo office for the investigation of the problem of insects harmful to agriculture. 
Odessa, pp 32

Narladkar BW, Shivpuje PR, Harke PC (2015) Fungal biological control agents for integrated 
management of Culicoides spp. (Diptera: Ceratopogonidae) of livestock. Veterinary World 
8:156–163

Pourseyed SH, Tavassoli M, Bernousi I, Mardani K (2010) Metarhizium anisopliae (Ascomycota: 
Hypocreales): an effective alternative to chemical acaricides against different developmental 
stages of fowl tick Argas persicus (Acari: Argasidae). Vet Parasitol 172:305–310

Rana S, Kanojiya A, Sandhu SS (2008) Mosquito larvicidal potential of fungi isolated from larval 
mosquito habitats against Aedes aegypti. J Biol Control 22:179–183

Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: bio-
diversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, 
Singh S, Gupta A (eds) Recent advancement in white biotechnology through Fungi: volume 1: 
diversity and enzymes perspectives. Springer, Switzerland, pp 1–62

Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic 
fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances 
in endophytic fungal research: present status and future challenges. Springer International 
Publishing, Cham, pp 105–144. https://doi.org/10.1007/978- 3- 030- 03589- 1_6

Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological signifi-
cance and biotechnological applications. Res J Biotechnol 14:142–162

Rana KL, Kour D, Kaur T, Sheikh I, Yadav AN, Kumar V et  al (2020) Endophytic microbes 
from diverse wheat genotypes and their potential biotechnological applications in plant 
growth promotion and nutrient uptake. Proc Natl Acad Sci India B. https://doi.org/10.1007/
s40011- 020- 01168- 0

Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotech-
nology and bioengineering: trends of microbial biotechnology for sustainable agriculture and 
biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotech-
nology and bioengineering: trends of microbial biotechnology for sustainable agriculture and 
biomedicine systems: perspectives for Human Health. Elsevier, Amsterdam

Roy HE, Pell JK (2000) Interactions between entomopathogenic fungi and other natural enemies: 
implications for biological control. Biocontrol Sci Tech 10:737–752

Sandhu SS (1995) Effect of physical factors on germination of entomopathogenic fungus Beauveria 
bassiana conidia. Nat Acad Sci Lett 18:1–5

Sandhu SS, Sharma AK, Beniwal V, Goel G, Batra P, Kumar A, Jaglan U, Sharma AK, Malhotra 
S (2012) Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J 
Pathogens 2012:1–10

Satou T, Kaneko K, Li W, Koike K (2008) The toxin produced by Pleurotus ostreatus reduces the 
head size of nematodes. Biol Pharm Bull 31:574–576

Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 
56:1267–1274

Sexton AC, Howlett BJ (2006) Parallels in fungal pathogenesis on plant and animal hosts. Eukaryot 
Cell 5:1941–1949

Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et  al (2019) Trichoderma: 
biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra 
S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through Fungi: 
volume 1: diversity and enzymes perspectives. Springer, Cham, pp  85–120. https://doi.
org/10.1007/978- 3- 030- 10480- 1_3

C. V. Parulekar-Berde et al.

https://doi.org/10.1007/978-3-030-03589-1_6
https://doi.org/10.1007/s40011-020-01168-0
https://doi.org/10.1007/s40011-020-01168-0
https://doi.org/10.1007/978-3-030-10480-1_3
https://doi.org/10.1007/978-3-030-10480-1_3


201

Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to 
fungal biocontrol agent. Annu Rev Phytopathol 48:21–43

Singh A, Kumar R, Singh D (2019) Mycorrhizal fungi as biocontrol agent for soil borne patho-
gens: a review. J Pharmacogn Phytochemist 8:281–284

Thakur R, Jain N, Pathak R, Sandhu SS (2011) Practices in wound healing studies of plants. Evid 
Based Complement Alternat Med 2011, 438056

Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status 
and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, 
Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine 
systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282. https://doi.
org/10.1016/B978- 0- 12- 820526- 6.00016- 6

Thomas MB, Read AF (2007) Fungal bioinsecticide with a sting. Nat Biotechnol 25:1367–1368
Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S et al (2009) Fungal ento-

mopathogens: new insights on their ecology. Fungal Ecol 2:149–159
Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma 

spp.: panoply of biological control. Biochem Engineer J 37:1–20
Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important Fungi for 

sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer 
International Publishing, Cham

Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important Fungi for sus-
tainable agriculture, volume 2: functional annotation for crop protection. Springer International 
Publishing, Cham

Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. 
Springer, Cham

8 Fungal Communities as Biological Control Agents for Different Phytopathogenic…

https://doi.org/10.1016/B978-0-12-820526-6.00016-6
https://doi.org/10.1016/B978-0-12-820526-6.00016-6


203© Springer Nature Switzerland AG 2021
A. N. Yadav (ed.), Recent Trends in Mycological Research, Fungal Biology, 
https://doi.org/10.1007/978-3-030-60659-6_9

Chapter 9
Halophilic Fungal Communities: Current 
Research and Future Challenges

Rahul Jain, Harshita Nigam, Shweta Kalia, Nitin Chauhan, Deepak Gola, 
Pankaj Tyagi, Sunil Gola, and Arvind Arya

Contents

9.1  Introduction  203
9.2  Application of Halophilic Fungi  204

9.2.1  Industrially Important Compounds  204
9.2.2  Remediation of Pollutants  207
9.2.3  Enzyme Production  209
9.2.4  Biofuel Production  211

9.3  Conclusion  212
 References  213

9.1  Introduction

Salinity has been observed to be an important parameter for the growth of microor-
ganisms. However, many microorganisms have been adapted to survive under high 
salt concentrations; these microorganisms are termed as halophiles. These halo-
philes can further divided into slight, moderate and extreme halophiles, depending 
on the salt concentrations they generally thrive in (Yadav et al. 2020). Literature 
studies have highlighted the presence of many diverse microorganisms even under 
such conditions. Previous reports suggested the presence of mainly the prokaryotes 
under hypersaline conditions, until Gunde-Cimerman et al. (2000) have detected the 
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presence of eukaryotic organisms such as fungi in hypersaline waters of salterns. 
After that, various fungal species have been identified in different hypersaline areas 
(Butinar et al. 2005; Cantrell and Baez-Félix 2010). These fungi are called halo-
philic fungi and are supposed to be present in great diversity in these habitats. 
Further, very few studies have utilized the genetic and proteomic approach to iden-
tify these fungal species and their abundance in saline environments. PCR-based 
techniques (involving 16sRNA) have been used in few studies for the identification 
purposes (Baati et al. 2010). Few recent explorations on using genomic approach 
have proved the presence of high acidic amino acid residues in proteins as an adap-
tation to saline environment, which is also the feature of other halophilic prokary-
otes (Fukuchi et  al. 2003; Kis-Papo et  al. 2014). Further, genomic/proteomic 
analysis revealed the presence of novel mechanisms in halophilic fungi to combat 
high salt concentrations (Ali et al. 2019).

Studies have also provided the evidence of biotechnological advantages of these 
halophilic species, and it has been reported that the hypersaline species produces 
variety of bioactive compounds of industrial importance (beta carotene and ectoine) 
(Lentzen and Schwarz 2006; Oren 2010). These species are capable of producing 
specific compounds in different conditions, that is, hemolysis, antibacterials and 
acetylcholinesterase inhibition (Sepcic et al. 2011). In a study, Xiao et al. (2013) 
have identified various cytotoxic compounds from halophilic fungi of Aspergillus 
sp. isolated from solar salterns of Shandong, China; the compounds such as ergos-
terol, rosellichalasin and cytochalasin E have been identified; and these compounds 
show effective anticancerous activity. Moreover, halophilic fungi have also been 
identified for the production of enzymes such as protease (Annapurna et al. 2012), 
amylase (Ali et al. 2014) and cellulose (Gunny et al. 2014). Further, many important 
information and biotechnological applications of halophilic fungi have been dis-
cussed and summarized in this chapter.

9.2  Application of Halophilic Fungi

9.2.1  Industrially Important Compounds

Extreme environments were once considered to have no life. However, research 
revealed that significant microbial diversity exists in these extreme conditions. 
Halophilic ‘salt-loving’ microorganisms generally show low nutritional require-
ments and are also resistant to high salt concentration along with the ability of 
maintaining a balance in osmotic pressure (DasSarma and Arora 2002; Roberts 
2005; Yadav et al. 2019). This adaptation is generally based on their cellular feature 
of storing KCl (salt in strategy) or the accumulation of compatible solute (salt out 
strategy) (Corral et al. 2020). Advancement of culture techniques, molecular tech-
niques and chemotaxonomic studies have profoundly helped us in understanding 
the diversity of halophilic microorganisms. These microorganisms also show diverse 
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physiology, such as anaerobic, heterotrophic, phototrophic, and chemotrophic and 
chemoautotrophic (Oren 2008; Mesbah and Wiegel 2012). Adverse environment 
leads to the production of unique biomolecules with complex cellular biochemistry 
(Ibrar et al. 2020).

With the advance of biotechnological methods and culture of these halophilic 
microorganisms pave the way to get novel drug molecules for therapeutic purposes. 
A number of such medicinally and industrially important biomolecules were 
extracted from the halophilic microorganisms (Walter et al. 2011). These microor-
ganisms are known to produce various pigments, proteins, enzymes, polymers and 
biofertilizers. Besides these applications, such microorganisms are also being used 
in the industries for various purposes, namely, fermented food products preserva-
tives, fibre, plastics and biosensors (Dassarma et al. 2010).

Almost all living organisms including prokaryotes and eukaryotes produce some 
type of bioactive compound. These compounds possess different activities, namely, 
antimicrobial, anti-inflammatory, anti-allergic and anticancerous. Therefore, these 
compounds have become potential drug molecules. From the last four decades, the 
number of such bioactive compounds has been isolated from many species of bac-
teria and fungi acclimatized in extreme environments (Giddings and Newman 
2015). The search of such novel microorganisms is of great importance. A number 
of studies were conducted in India and abroad to search these microorganisms 
inhabiting extreme environments. Novel features of these microorganisms make 
them a choice for the study of the bioactive compounds in them. Recent advance-
ments in cutting edge biotechnology are helping in understanding the molecular 
mechanism by which these extremophiles produce new bioactive compounds.

Fungi are believed to be the second most diverse organisms on this planet with 
more than 3–5 million species (Blackwell 2011). So far, approximately 0.1 million 
species have been described, and out of this, only a minor proportion has been 
investigated for their pharmacological properties. Aspergillus, Penicillium and 
Fusarium are some of the regular producers of bioactive compounds. The process 
by which microorganisms synthesize these secondary metabolites is also being 
researched. Microorganisms show an interaction with their environment and also 
with the life form in the surrounding. Sometimes, it is a mutualistic interaction with 
some hosts. Fungal-derived secondary metabolites show diversity in their structure 
and biological activity (Devi et al. 2020). The era of fungal-derived medicine was 
started with the discovery of penicillin by Alexander Fleming in 1929. Later, the 
search for the fungal-derived antibiotics geared up, and the fungi are now consid-
ered as the ‘goldmine’. Griseofulvin produced by Penicillium griseofulvum and 
fusidic acid produced by fungi imperfecti are the examples of two such antibiotics.

In the domain Archaea, Bacteria and Eukarya, the halophiles are found with 
great diversity. The similar diversity is also present in the metabolic profile of these 
microorganisms. In present discussion, emphasis is given to the halophilic fungi. 
Fungi are also ubiquitous in nature and found in all known environments of the 
earth including the extreme environments. Report suggest that the fungi exists in the 
hypersaline environment (Gostinčar et al. 2011). Halophilic fungi are the best stud-
ied fungal extremophile found in salt lakes and salterns around the world (Buchalo 
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et  al. 1998; Casamayor et  al. 2002). The classification of these extremophiles is 
based on different environmental variables such as pH, temperature, pressure and 
salinity (Gunde-Cimerman et al. 2004; Satyanarayana et al. 2005; de Oliveira et al. 
2015). In the last decade, much emphasis is given to the extremophilic fungi due to 
the therapeutic applications of the bioactive molecules they produce. In the last 
decade, the fungi were discovered to be present in the hypersaline environment 
(Gunde-Cimerman et al. 2000). However, the role of fungi in such an environment 
is still being investigated (Gunde-Cimerman et al. 2004). The study conducted on 
the halophilic strains of bacteria in salt lake of Jaipur, India, also led to the discovery 
of novel bacterial products with medicinal properties (Jose and Jebakumar 2013). 
Similar studies were conducted in the Saline Saharan Soil and found the halophilic 
Actinomycete strain AH97 with broad-spectrum antibacterial and antifungal proper-
ties (Boudjelal et  al. 2011). A number of rare Actinomycetes were isolated from 
different environments in search of novel bioactive compounds (Cai et  al. 2009; 
Cavaletti and Marinelli 2017). Compared to halophilic bacteria, very few reports are 
available on the application of halophilic fungi in the production of bioactive 
molecules.

According to a study, the Aspergillums sp. is found to produce compounds with 
anticancer property. High salt concentration was further found to increase the pro-
duction of these compounds (cytochalasin E, ergosterol and rosellichalasin) (Xiao 
et al. 2013). All of these compounds were researched for their efficacy against vari-
ous cancerous cell lines. Aspergillus and Penicillium are the two main genera that 
dominate the hypersaline environment. Several stains of these species have been 
isolated from the saline environment. One of the strains of Aspergillus named 8Na 
is able to grow in a wide range of pH, temperature and salinity. These particular 
strains had antimicrobial properties against human pathogens. 

In one of the studies conducted in Weihai, China, the ethyl acetate extract of 
halotolerant Aspergillus sp. from solar saltern found to produce three compounds 
(ergosterol, rosellichalasin and cytochalasin E(60-62)) with significant cytotoxic 
activity against human cell lines (RKO, A-549 and BEL-7402) (Xiao et al. 2013). 
The novel ceramide compound named N-acetyl-3, 5, 11, 18-tetrahydroxyoctadecyl- 2-
amine was isolated from another halotolerant fungus Myrothecium sp. GS-17 from 
saline soil in Gansu, China. Investigation showed that this compound has cytotoxic-
ity against human cell lines (PC-3, HL-60 and MCF-7) (Liu et al. 2015). Anticancer 
potential of four Aspergillus strains from Sonoran Desert was investigated. The two 
new metabolites terrequinone A and terrefuranone along with four known com-
pounds were extracted from these fungal strains (He et al. 2004). Studies also sug-
gest that these metabolites have no direct role in the adaptation of fungi in the 
extreme environment. However, antimicrobial properties of these compounds indi-
rectly give them an edge over other microorganisms to thrive in a limited nutrient 
environment. Much is still to be investigated regarding the growth and culture of 
these extremophiles in vitro. The research in the field of metagenomics of halophilic 
fungi and the new screening techniques will open up new commercial and industrial 
avenues. Finally, the adaptation of these extremophilic fungi to harsh environments 
needs to be explored.
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9.2.2  Remediation of Pollutants

Increasing industrialization and world population cause negative impact on the 
environment (Dey et al. 2016; Gola et al. 2016b, 2020a). Multiple toxic contami-
nants such as dye, heavy metal, hydrocarbons, pesticides and antibiotics and their 
occurrence in above the threshold limits in soil and water have been reported by the 
multiple authors (Duncan et al. 2018; Addo-Bediako et al. 2018; Adeshina et al. 
2019). The main cause of their occurrence in land and water is due to the discharge 
of partially or untreated wastewater directly into the nearby water bodies (river, 
lake, canal, etc.) or land. In addition to this, irrigation practice with contaminated 
wastewater due to the unavailability of fresh water cause production of contami-
nated vegetables and crops (Gola et al. 2016a). Consumption of such agricultural 
products possesses great health risk to the human health (Roba et al. 2016; Gola 
et al. 2017). To remediate the toxic contaminants, multiple physical, chemical and 
biological techniques have been developed with time (Lafi and Al-Qodah 2006; 
Gola et al. 2016a, 2019; Mathur et al. 2018; Heidari et al. 2019; Bahrami et al. 2019; 
Jain et al. 2020). However, biological methods showed upper hand in decontamina-
tion of toxic pollutants due to its economic value and production of less toxic by- 
product produced during the treatment process. Microbes play important role during 
biological wastewater treatment (Chawla et al. 2020; Gola et al. 2020b), and using 
halophilic fungi may provide an additional advantage. Most of the wastewater 
showed high salinity content, and halophilic fungi can easily survive this high salt 
condition. Hence, the present section discusses about the usage of halophilic fungi 
in the treatment of wastewater.

Jiang et  al. (2016) investigated the phenol degradation capacity of halophilic 
fungi isolate (Debaryomyces sp.). However, phenol is a common pollutant in the 
effluent discharged by the multiple industries (chemical, paint, plastic and pharma). 
The fungal isolate was able to degrade phenol even at high pH (10) and salinity 
(15%), mimicking the actual wastewater conditions. It was observed that under 
optimized conditions, the fungal strain can degrade up to 100% phenol (initial con-
centration 500 mg/L and at pH 6) within 32 h. In addition to this, phenol degrada-
tion efficacy of the fungal strain does not change in the presence of toxic heavy 
metal ions (Zn and Mn) in the synthetic wastewater. Lu et al. (2017) examined the 
azo dye (Congo red) absorption capacity of marine isolated halophilic fungal strain 
(Aspergillus niger ZJUBE-1). The fugal pellets were used for the experiments, and 
up to 98% dye removal was observed from the synthetic wastewater with an absorp-
tion capacity of 263.2 mg/g. Further, no significant change was observed in the dye 
removal efficacy of the fungal pellets with the change in pH. Up to 88.66% and 
98.7% dye removal was observed at pH 10 and 2, respectively. Moreover, UV-Vis 
spectrum of treated wastewater shows new peak that might be due to the degrada-
tion of Congo red during the absorption process. The appearance of new peak indi-
cates towards the dye degradation ability of the Aspergillus niger ZJUBE-1 during 
the removal process. The presence of heavy metal ions in industrial effluent dis-
charges has been reported worldwide (Bhattacharya et al. 2015; Gola et al. 2020a). 
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Lotlikar et al. (2018) examined the Cr removal ability of marine drive fungal strain 
(Aspergillus sydowii). Up to 26% removal was observed for the Cr at an initial con-
centration of 300 mg/L in the liquid broth. Further, analytical techniques such as 
scanning electron microscopy (SEM) and electron dispersive spectroscopy (EDS) 
indicate the morphological changes in mycelia along with the deposition of Cr 
inside the biomass of Aspergillus sydowii, indicating the active uptake of Cr ion 
from the liquid broth. Aydogan and Arslan (2015) investigated the dye removal 
potential of halotolerant fungal strain (Aspergillus flavipes MA25) via biosorption 
mechanism. The fungal strain was able to remove up to 100% dye from the unsteril-
ized synthetic wastewater at an initial dye concentration of 0.2 g/L. Further, it was 
observed that the strain was able to remove the toxic dye at high salt concentration 
(15 g/L). In addition to this, the growth of the fungal strain was not affected by the 
increasing concentration of the dye (up to 04.4 g/L). Aspergillus flavipes showed 
great potential in treating the wastewater contaminated with the toxic dye.

Nazareth et al. (2012) isolated multiples fungal strains from the mangroves and 
salters region of Goa (India) on the basis of morphological appearance (colony 
appearance and spore colour). All the fungal species belong to genus Aspergillus 
(16 strains), Penicillium (9 strains), Paecilomyces (4 strains), Fusarium (2 strains), 
Alternaria (3 strains) and Cladosporium (1 strains). Out of all the above stains, spe-
cies belonging to Penicillium genus showed maximum tolerance to salt concentra-
tion (17.5%). Further, maximum tolerance to lead (Pb: 10.0 mM) was observed with 
species belonging to genus Aspergillus followed by genus Penicillium that can tol-
erate Pb concentration up to 7.5 mM. While for copper, maximum tolerance was 
observed for species belonging to Penicillium genus followed by Aspergillus spe-
cies. For cadmium metal, maximum resistance was showed by Penicillium species 
followed by species belonging to Paecilomyces species. It was concluded that toler-
ance against heavy metal was dependent on the metal ion present as well as the 
fungal species taken for the experiment. The above fungal stains showed great 
potential in remediating heavy metals (Pb, Cd and Cu) and can be optimized further 
to increase their heavy metal removal efficiency. Ferreira-Guedes et al. (2012) stud-
ied the pesticide (2,4-dichlorophenoxyacetic acid) degradation ability of fungal 
strain (Penicillium chrysogenum) isolated from the salt mine present in Algarve 
(Portugal). The degradation ability of fungal strain was tested with 
2,4- dichlorophenoxyacetic acid (100 mg/L) as sole carbon source and at different 
salt concentration (0–5.9%). Up to 2% degradation was observed with 2% NaCl; 
however, degradation ability of the fungal strain increases with the decrease in ini-
tial concentration of 2,4-dichlorophenoxyacetic acid. Up to 14% degradation of 
2,4-dichlorophenoxyacetic acid was observed at initial concentration of 40 mg/L, 
indicating the toxicity of the 2,4-dichlorophenoxyacetic acid at higher concentra-
tion. Further, it was observed that addition of different carbon source such as glu-
cose, lactose and sucrose in the media increases the pesticide degradation ability of 
Penicillium chrysogenum.

The presence of additional carbon source increases 2,4-dichlorophenoxyacetic 
acid degradation up to 7%, 3% and 18% with glucose, lactose and sucrose, respec-
tively. González-Abradelo et al. (2019) studied the biodegradation capability of two 
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halotolerant fungi (Aspergillus sydowii and Aspergillus destruens) against xenobi-
otic compounds [PAHs (polycyclic aromatic hydrocarbons)]. Both these xenobiotic 
compounds have multiple negative affect on environment and have been reported to 
cause multiple health issues. Different concentration (60–240  ppm) of benzo-α- 
pyrene and phenanthrene (belonging to PAH) were taken for the degradation stud-
ies, and removal rate was observed at different time interval. It was observed that 
Aspergillus sydowii was able to degrade up to 99% and 97% of benzo-α-pyrene and 
phenanthrene, respectively, within the 12 days in synthetic wastewater.

On the other hand, degradation ability of Aspergillus destruens was on lower side 
as compared to Aspergillus sydowii. Aspergillus sydowii showed up to 97% and 
55% degradation for phenanthrene and benzo-α-pyrene, respectively, during the 
12-day experiment. After obtaining significant degradation of PAH in synthetic 
wastewater, experiments were performed on actual wastewater (collected from 
wood-processing biorefinery) contaminated with different PAHs (naphthalene 
11.8 mg/L; acenaphthene 11.9 mg/L; fluorine 18.4 mg/L; anthracene 13.7 mg/L; 
phenanthrene 212.0 mg/L; fluoranthene 121.4 mg/L; benzo-α-anthracene 18.8 mg/L; 
chrysene 9.4 mg/L; pyrene86.8 mg/L; benzo-α-fluoranthene 8.4 mg/L; benzo[k]flu-
oranthene 2.9 mg/L; benzo(j) fluoranthene 3.2 mg/L; benzo-α-pyrene 3.3 mg/L). 
Up to 100% removal for all the PAHs was observed by both the Aspergillus strain, 
indicating the potential of halo-tolerate in remediating the xenobiotic compounds 
such as PAHs. From the above studies, it can be concluded that halophilic fungi can 
act as a good candidate in removal of toxic pollutant from the wastewater. However, 
all these studies are performed under optimized conditions and required validation 
at large scale, and hence, more studies are need in this regard. The next section dis-
cusses about the production of different enzymes using halophilic fungi.

9.2.3  Enzyme Production

Enzymes play an important role in healthcare, food, agriculture, textile, paper and 
pulp industries (Godfrey and Reichelt 1984; Madhu and Chakraborty 2017; 
Piotrowska-Długosz 2019; Yushkova et  al. 2019; Abdelrazek et  al. 2019; (Kour 
et al. 2019). Microbes can act as a good source of enzyme, and halophilic fungi 
enzymes can provide additional advantage as they can tolerate extreme conditions 
(Table 9.1). This section discusses about the various enzymes produced by the halo-
philic fungi under optimized condition.

Ali et al. (2014) reported α-amylase from Aspergillus flavus isolated from man- 
made saltern 35 KDa and specific activity was 131.02 U/mg. The enzyme kinetics 
showed 𝑉max and 𝐾𝑚 values of 8.36  U/mg and 6.33  mg/mL, respectively. The 
enzyme characterization studies showed the highest residual activity at pH 5 and 
temperature 60  °C showing the thermophilic nature of the enzyme. The residual 
activity increases from 30 to 60 °C, and after that, there was a sharp decline in the 
activity. Amylase showed extremophilic property as its residual activity increases 
from 5% to 25% of salt concentration and showed highest residual activity at 30% 
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NaCl concentration. Ali et al. (2015) reported α-amylase from Aspergillus penicil-
lioides and they were purified using column chromatography. The molecular weight 
of amylase was estimated to be 42 kDa and specific activity was 118.42 U/mg. The 
Km and Vmax values of enzyme kinetics are 1.05 μmol/min/mg and 5.41  mg/mL, 
respectively. The characteristic properties of enzyme showed a gradual increase in 
residual activity from pH 5 to 8 with the highest activity at pH 9 showing the alka-
lophilic nature of enzyme. α-amylase showed highest residual activity at tempera-
ture 80 °C, and after that, decrease in activity was found. In a similar study, Ali et al. 
(2014) extracted α-amylase from Aspergillus gracilis and showed best activity at 
pH-5 with 30% NaCl concentration at 60 °C. Further amylase activity was enhanced 
by the addition of CaCl2, while ZnCl2, FeCl2 and EDTA showed the inhibitory 
effect. While enzyme incubated in the presence of detergent, 80% of activity was 
retained.

Ben Hmad et  al. (2017) reported the novel cellulase (endoglucanase) from 
Stachybotrys microspora that showed specific activity 128.6 U/mg and molecular 
weight 55 kDa. The enzyme exhibited its optimum activity at pH 7 and temperature 
50  °C.  It showed thermostable property as it retained 100% activity from 30 to 
50 °C and alkaline nature indicating stability from pH 5 to 9. The enzyme activity 
increases with increasing slat concentration and showed maximum activity at 30% 
salt concentration. In the presence of NaCl, the optimum activity of enzyme was 
observed at pH 8 and 70  °C. Enzyme was highly stable in the presence of 10% 
SDS. Bano et al. (2019) reported cellulase production from A. flavus and were puri-
fied using gel filtration column chromatography. The molecular weight of enzyme 
was 55 kDa and specific activity was 62.9 U/mg. The enzyme kinetics showed the 
Km and Vmax value 3.02 mg/mL and 37.87 mol/min/mg. The enzyme characteriza-
tion showed the highest activity at pH 10 showing the alkaline nature of amylase, 
and after that, a sharp decline in relative activity was observed. With increasing 
temperature from 30 to 60 °C, the relative activity of enzyme increases and further 
decreases with increasing temperature. α-amylase showed the extremophilic nature 
as the relative activity increases with increasing salt concentration from 5% to 25%. 
It retained 100% relative activity at 20% NaCl concentration. Amylase showed 
>90% relative activity with addition of 2 mM of divalent cation, but with EDTA, 
relative activity was inhibited.

Table 9.1 Enzyme produced by halophilic fungi

Enzyme Species References

Amylase Aspergillus gracilis Ali et al. (2014)
Amylase Aspergillus penicillioides Ali et al. (2015)
Cellulase Stachybotrys microspora Ben Hmad et al. (2017)
Cellulase Aspergillus flavus Bano et al. (2019)
Lipase Fusarium solani Geoffry and Achur (2018)
Protease Aspergillus flavus Annapurna et al. (2012)
Xylanase Aureobasidium pullulans Yegin (2017)
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Geoffry and Achur (2018) reported lipase production from Fusarium solani 
using palm oil mill effluent. Using one factor at a time (OFAT), Plackett–Burman 
design and Face-centred central composite design (FCCD), medium components 
such as K2HPO4, NaNO3 and Tween 80 were optimized. The activity of enzyme 
found using optimized medium components was 7.8 U/mL. The highest activity of 
lipase was observed at pH 8 and 9 showing the alkaline nature of enzyme. Annapurna 
et al. (2012) reported protease from Aspergillus flavus isolated from soil samples. 
Enzyme characterization revealed the optimum pH 6 from higher activity showing 
acidic nature and optimum temperature 57  °C showing thermophilic property of 
enzyme. Protease was activated in the presence of divalent cation CaCl2 and inhib-
ited by HgCl2. Yegin (2017) reported extracellular xylanase Aureobasidium pullu-
lans produced on wheat bran. The molecular weight of purified xylanase was 
21.6 kDa. According to enzyme characterization, optimum pH of enzyme was 4 and 
retained 90–95% activity between pH 3 and 8. The optimum temperature was 50 °C, 
and a further increase in temperature above 50 °C led to decreases in enzyme activ-
ity. The half-life of the enzyme was estimated to be 47.15 min at 60 °C, and inacti-
vation energy was 218 kJ/mol. The Km and Vmax values of enzyme kinetics were 
19.43 mg/mL and 848.4 U/mL, respectively. Xylanase showed tolerance towards 
10% ethanol and showed 100% relative activity with 0–20% NaCl concentration. It 
showed resistance towards metal ions and reagents such as Mg2+, Zn2+, Cu2+, K+, 
EDTA and β-mercaptoethanol.

9.2.4  Biofuel Production

Fungi are termed as oleaginous microbes as more than 20% of their biomass is 
composed of lipid (Wynn and Ratledge 2005). This lipid is mostly in the form of 
triglycerides (TAGs) and stored in intracellular compartments as a reserve supply of 
carbon and energy. TAG accumulation has been found to take place during late loga-
rithmic phase with maximum production in stationary phase under limited nitrogen 
and excess carbon conditions (Ratledge and Wynn 2002). After biomass harvesting 
and lipid extraction, the derived lipid is converted into biodiesel using transesterifi-
cation reaction.

Halophytic fungi are promising microbes for biofuel production because of the 
following advantages. (1) They have higher oil productivity than plants and vegeta-
ble oils and can be grown all year round. (2) They can be grown on inexpensive 
feedstocks such as agricultural waste, sugarcane distillery wastewater, sewage 
sludge, waste molasses and monosodium glutamate wastewater. (3) Fungi can be 
cultivated under controlled environmental conditions without any effect from 
weather fluctuations. (4) They have unique fatty acid profiles with the presence of 
certain groups such as γ-linolenic acid (GLA) that are absent or present in very low 
amount in other oleaginous microbes. (5) Fungi can be genetically modified to 
enhance lipid synthesis with certain genes expression (Dong et al. 2016; Patel et al. 

9 Halophilic Fungal Communities: Current Research and Future Challenges



212

2020). Table 9.2 lists various fungi with their lipid content that demonstrated the 
potential for biofuel production (Table 9.2).

Bioethanol production using lignocellulosic biomass is a sustainable process 
with integration of waste utilization and biofuel production. Agricultural and forest 
residues, woody biomass and agricultural by-products are one of the most abundant 
lignocellulosic bio-resources present on earth. Lignocellulose consists of cellulose, 
hemicellulose linked together by β-1,4 sugar polymer, lignin, a small amount of 
pectin and nitrogenous compounds (Chen and Chen 2014). The degradation of this 
lignocellulosic biomass is one of the most important challenges to produce bioetha-
nol from waste. Biofuel production from lignocellulosic biomass is generally a 
three-step process: pretreatment to remove lignin, using cellulases for hydrolysis of 
exposed cellulose to simple sugars and finally the fermentation of sugars to bioetha-
nol or biobutanol. The lignin pretreatment often involves various physical and 
chemical processes which suffer from high-energy demand, usage of toxic chemi-
cals, corrosion effects and contaminant discharge in the environment. Fungal treat-
ment for lignin degradation and cellulase production is a promising green technology 
that has the potential to substitute toxic and energy intensive physical and chemical 
treatments.

Three groups of fungi have been known for lignin degradation: white-rot, brown- 
rot and soft-rot fungi. Out of these, white rot is effective in degrading both lignin 
and cellulose and thus helps in bioethanol production. Lignin breakdown by brown 
and soft rot has been found to be slow and incomplete. Table 9.3 shows the lignin 
removal efficiency of some white-rot fungi (Sánchez 2009).

9.3  Conclusion

With isolation of various halophilic fungi in diverse saline environments, the study 
of understanding the mechanisms of adaptations, identification, abundance and 
applications has already began. Researchers have used various proteomic and 
genomic tools to study the insight mechanisms used by halophilic fungi. Studies 
have highlighted many novel steps and modifications adopted by these fungal strains 
to survive and flourish under saline conditions. Further, research has also proved the 
tremendous potential residing in these fungal strains, various active metabolites and 

Table 9.2 Various fungi with their lipid content

Fungal species Lipid content (% w/w) References

Mortierella isabellina 50.5 Harde et al. (2016)
Mortierella vinacea 66 Subramaniam et al. (2010)
Mucor circinelloides 19.6 Vicente et al. (2009)
Cunninghamella echinulata 46.6 Gema et al. (2002)
Mortierella alpina 31.1 Eroshin et al. (2000)
Mortierella ramanniana 42 Papanikolaou et al. (2017)
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industrially important enzymes, and also the roles of isolated fungal strains in dif-
ferent bioremediation processes have also been recognized and established using 
advance scientific tools. The identified metabolites from halophilic fungi were 
found to be efficient antimicrobial, ***anticancerous and hemolytic agents. Further, 
in remediation processes (phenol degradation, heavy metal removal and improve-
ment of saline soil) and other environmental issues, halophilic fungi have shown 
effectiveness. Moreover, with enormous potential highlighted by halophilic fungi, it 
is important to isolate and study more halophilic fungi for its wide-scale application 
in different sectors.
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10.1  Introduction

Biological ecosystems possess significant variation in environmental niches with 
different abiotic conditions. These abiotic conditions and factors differ within the 
ecosystem, resulting in the formation of specific zones termed “extreme habitats” 
(Grum-Grzhimaylo et al. 2016). Organisms which possess ability to survive in these 
extreme habitats are considered extremophiles. These habitats have extreme condi-
tions of temperature, pressure, pH, salinity, nutrient concentrations, radiation, harm-
ful heavy metals, and toxic compounds (Canganella and Wiegel 2011; Goswami 
and Das 2016; Moayad et al. 2017). Some of these territories had earlier been argued 
not to support microbial life; notable among them include hot springs, hydrothermal 
and geothermal vents, the cold Arctic, acidic conditions, saturated salt brines, and 
pressurized abyssal waters (Bendia et al. 2018; Gostinčar et al. 2010; Stetter 1999; 
Zhang 2016). Due to adaptation of these species to varying habitats, they could be 
classified as thermophiles (high temperature), psychrophiles (low temperature), 
acidophiles (low pH), alkaliphiles (high pH), piezophiles (high pressure), halophiles 
(high salt concentration), osmophiles (high concentration of organic solutes), oligo-
trophs (low concentration of solutes and/or nutrients), and xerophiles (very dry 
environment) (Seckbach and Rampelotto 2015; Gupta et al. 2014; Kour et al. 2019; 
Yadav et al. 2015c, 2020a).

Some of the conditions that trigger instrisic mechanisms in fungi are linked to a 
number of biochemical, structural, and spore-forming processes, thus enabling their 
survival in harsh environments. Also, besides being heterotrophic eukaryotic organ-
isms and reproducing both sexually and asexually, they inherently possess diverse 
biotechnological, agricultural, and medical uses (Odoh et al. 2017b). For example, 
fungi from extreme environments are a rich source for novel natural products for 
pharmaceutical industries (Manimegalai et  al. 2013; Zhang et  al. 2018), biofuel 
synthesis (Javaid et al. 2019), industrial biotechnological applications (Cavicchioli 
et al. 2002; Hassan et al. 2019), and bioremediation of contaminated soil and sedi-
ments (Selbmann 2019). Over the years, extremophilic fungi such as Trichoderma 
sp. have been documented as efficient biocontrol agents against plant pathogens 
(Carreras-Villasenor et al. 2019; Nieto-jacobo et al. 2017; Kim et al. 2014; Sharma 
et al. 2019). Although extremophilic organisms have been shown to be present in all 
three domains of life (archaea, bacteria, and eukaryotes), the concept of extremo-
philes may be relative, as conditions that are “extreme” to one organism may be 
essential for the survival of another (Irwin and Baird 2004). Organisms that survive 
and thrive under conditions that are detrimental to the majority of other species have 
become a focus of increasing scientific attention over the last few years, with some 
astonishing discoveries of stress-tolerating mechanisms.

In recent times, some studies have directed their focus toward the exploration of 
extremophilic species (bacteria and fungi) while harnessing their role in biotechno-
logical applications (Rastegari et al. 2020a, b; Yadav et al. 2020b, c). In medicine, 
fungal agents thriving under extreme conditions have been gaining prominence 
(Bari Kishor and Padalia 2015). Even though a number of these organisms are 
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considered neutrophils (growing optimally in moderate conditions, e.g., 25–30 °C, 
pH 5–7), some of them have acquired intrinsic properties, enabling their growth in 
harsh environments (Grum-Grzhimaylo et al. 2013). Since the mid-1990s, discover-
ies of fungi growing in diverse extreme environments have broadened the study of 
extremophilic microbiology, which previously focused on the study of prokaryotic 
microorganisms. However, more insights about some of the eukaryotic adaptations 
have been given (Kogej et al. 2006). In this chapter, we tried to unravel extremo-
philic fungi and the mechanism of their adaptation in unfavorable conditions while 
also highlighting their application in the control of pathogenic microbes.

10.2  Extremophilic Fungi

Microorganisms living within extreme environments were previously restricted to 
prokaryotes (Gunde-Cimerman and Zalar 2014). The term “extremophile” was first 
used by MacElroy in 1974 to describe a broad group of organisms which lived opti-
mally under extreme conditions, and the taxonomic range of these organisms has 
expanded from prokaryotes to all three domains—Eucarya, Bacteria, and Archaea 
(Zhang et al. 2018). The term “extremophile” according to Seckbach and Rampelotto 
(2015) also includes microorganisms growing in the presence of high metal concen-
trations or high doses of radiation. They may be found thriving from the frigid 
environments of the Antarctic to the superheated waters of the hydrothermal vents, 
from the bottom of 11-km deep ocean trenches to the high altitudes of the atmo-
sphere, from acidic to alkaline (Stan-Lotter and Fendrihan 2012); some may grow 
in toxic waste, organic solvents, heavy metals, or in several other environments that 
are considered harsh and difficult to survive (Seckbach and Rampelotto 2015). For 
every extreme environmental condition investigated, extremophiles have shown that 
they not only can tolerate these conditions, but often require those conditions for 
survival (Rampelotto 2010). Fungi living in uneven environments have adapted to a 
number of factors such as pressure and temperature (Pettit 2011), or the alkaline pH 
and high salinity of soda lakes (Charlesworth and Burns 2016). In these environ-
ments, microbial inhabitants (fungi) become highly specialized with specific pro-
tein such as enzymes acting against adverse environmental denaturation.

Furthermore, a number of proteins sourced from extremophilic fungi have 
already been utilized in the industry for purposes as diverse as molecular biology 
reagents (Terpe 2013) or as common place as laundry detergents (Charlesworth and 
Burns 2016). Extremophilic fungi also present some biocontrol or bioremediation 
ability (Zhuang et al. 2010; Akpi et al. 2017b) as a result of their metabolic activities 
and tolerance to certain conditions (Akpi et al. 2017a). There is also a growing inter-
est in sourcing these extremophilic fungi for natural products particularly those dis-
playing antimicrobial activities (Pettit 2011; Charlesworth and Burns 2016). In 
understanding this section, we focused and laid much emphasis on classifications of 
extremophilic fungi.

10 Extremophilic Fungi and Their Role in Control of Pathogenic Microbes
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10.3  Classification of Extremophilic Fungi

10.3.1  Acidophilic or Alkaliphilic Fungi

Acidophilic or alkaliphilic fungi are groups of organisms that thrive at the extremes 
of pH. They exhibit optimal growth below pH 3 and/or pH greater than 9 (Tiquia- 
Arashiro and Rodrigues 2016; Wiegel 2011). Found in various habitats across the 
globe, acidophiles flourish in sites of acid mine drainage, solfataric fields, acido-
thermal hot springs and fumaroles, coal spoils, and bioreactors (Hallberg et  al. 
2010; Reeb and Bhattacharya 2010), while alkaliphiles are isolated from normal 
environments such as garden soil. They proliferate in alkali thermal hot springs, 
shallow hydrothermal systems, sewage, and hypersaline soda lakes (Tiquia-Arashiro 
and Rodrigues 2016; Kanekar et al. 2012).

Acidophiles use a variety of pH homeostatic mechanisms that involve restricting 
proton entry by the cytoplasmic membrane and purging of protons and its effects 
by the cytoplasm. They have a highly impermeable cell membrane restricting 
proton influx into the cytoplasm to help maintain ΔpH.  Because the membrane 
proton permeability determines the rate at which protons leak inward, the balance 
between proton permeability, proton influx through energetic and transport sys-
tems, and the rate of outward proton pumping determines cell-appropriate proton 
motive force (PMF). The second strategy involves the reduction of H+ influx 
through transmembrane channels. In addition, generation of a Donnan potential 
through the accumulation of monovalent cations in the cytoplasm could also be 
used as an adaptive mechanism. The high intracellular cation concentration gener-
ates a positive charge gradient Δψ, which inhibits+ influx despite the favorable 
concentration gradient. K+/H+ antiporters with stoichiometries of >1:1 are employed 
to promote the formation of this Donnan potential. These antiporters and ATP-
dependent H+ pumps promote efflux of H+ and resist cytoplasmic acidification 
(Tiquia-Arashiro and Rodrigues 2016; Das et  al. 2009; Enami et  al. 2010). 
Alkaliphiles on the other hand live in an environment characterized with low H+. 
Here, the organisms continuously neutralize the cytoplasm, enabling H+ influx to 
drive ATP synthesis. One of the most prominent adaptations is the use of Na+/H+ 
and K+/H+ antiporters to move H+ into and monovalent cations out of the cell 
(Krulwich et  al. 2009; Mesbah et  al. 2009; Mesbah and Wiegel 2011; Tiquia-
Arashiro and Rodrigues 2016).

Furthermore, acidophiles have good applications in the metal industry for metal 
extraction from ores and as a source of gene products, for example, acid-stable 
enzymes with applications as lubricants and catalysts. They are also exploited for 
the synthesis of nanoparticles (Tiquia -Arashiro and Rodrigues 2016).

C. K. Odoh et al.
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10.3.2  Xerophilic Fungi

Xerophilic fungi are yeast and molds that are capable of growing at low water 
activity or low equilibrium relative humidity. They are an important part of the 
indoor fungal community which has Aspergillus as one of the dominant genera 
(Visagie et al. 2017). These organisms have developed physiological aptitude that 
sustains the functioning of their biological pathways in environments with little or 
no water availability. External conditions of low water activity are sensed by 
membrane osmosensors, thus triggering xerophiles to accrue glycerol as a 
compatible solute to balance both internal and external osmotic pressure. This 
biological condition modifies the cell membranes to retain glycerol within the cell 
(Petterson and Leong 2011).

In nature, organisms such as Aspergillus penicillioides and Aspergillus restrictus 
are broadly distributed and are composed of trait which makes them significant for 
the built environment as well as the food industry. Aspergillus species are among the 
primary colonizers of building materials (Flannigan and Miller 2011) and are found 
in museums or libraries and on historic artifacts such as books, paintings, leather, 
softwood, and a variety of textiles and dried specimens (Cavka et al. 2010; Micheluz 
et al. 2015; Pinar et al. 2013; Pinar et al. 2015; Samson et al. 2010). The Aspergillus 
species has economic impact on the food industry owing to its ability to grow on 
stored grain, cereals, or preserved foods with high sugar (i.e., jams, maple syrup) or 
salt content (i.e., biltong, dried fish) (Samson et al. 2010; Odoh et al. 2017a).

Furthermore, xerophilic fungi produce many extrolites, exhibiting a wide range 
of biological activities (Gomes et  al. 2012; Kanokmedhakul et  al. 2011). For 
instance, compounds from Aspergillus chevalieri have shown to be active against 
the malaria parasite (Plasmodium falciparum), Mycobacterium tuberculosis and 
cancer cells (Kanokmedhakul et  al. 2011). An antitumor compound has recently 
been reported from Aspergillus cristatus, while many compounds are known to be 
antioxidants (Visagie et al. 2017). Some xerophilic fungi produce mycotoxins, such 
as echinulin, flavoglaucin, and physcion, which are toxic to animals (Visagie et al. 
2017; Greco et al. 2015). Xerophile microbes possess multifarious plant growth- 
promoting attributes and are highly effective as biofertilizers for soil health and 
sustainable agriculture (Yadav 2017).

10.3.3  Halophilic Fungi

Halophilic fungi are defined as those fungi which grow favorably in salt concentration 
or hyper saline environments. This is characterized by saturated salt concentrations 
(NaCl), with all inhabited species being tolerant to salt conditions (halophilic) 
(Gunde-Cimerman et al. 2018; Yadav et al. 2020a). Across the globe, these organisms 
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have been isolated from environments with the salinity level above 1.7 M (Ali et al. 
2014). In the past, fungi were not considered as part of hypersaline environments 
until they were first reported as an active inhabitant of solar salterns decades ago 
(Ali et al. 2014). Many species including Aspergillus, Cladosporium, Pencillium, 
and some yeast including those which were previously reported only to be of food 
contaminants have been isolated from hypersaline habitats (Cantrell and Baez- 
Félix 2010).

The mechanisms used by these salt-tolerant microorganisms to withstand the 
high salt concentrations and to adapt to changes in the salt levels are diverse. To 
maintain a high osmotic pressure inside the cells, processes such as “salt in” strat-
egy (where osmotic balance is achieved by accumulating high concentrations of 
inorganic salts in the medium) and “compatible solute” strategy (which allows an 
enzyme to function effectively at a high concentration) are applied (Gunde- 
Cimerman et  al. 2018; Casanueva et  al. 2010; Klähn and Hagemann 2011; 
Oren 2011).

Even though the study of fungi in hypersaline environments is still gaining 
prominence, their application in biotechnology has advanced (Ali et  al. 2014; 
Chamekh et al. 2019). In industries, halophiles (hypersaline surviving organisms) 
are primary sources of industrially important enzymes (Carex 2011) and used 
extensively in several fermentation processes (Gostinčar et al. 2011). Production of 
some bioactive compounds such as beta carotene and ectoine has been associated 
with some halophilic fungi (Lentzen and Schwarz 2006; Oren 2010). Findings have 
further revealed their role as biosurfactants, which enhances biodegradation, 
production of biorhodopsin for optical computing, and exopolysaccharides for 
efficient oil recovery and food additives (Ali et al. 2014; Akpi and Odoh 2017).

10.3.4  Thermophilic Fungi

Fungi that strive at elevated temperatures are called thermophilic organisms. They 
are also referred to as thermotolerant microbes. Typically, these fungi grow at a 
maximum temperature near 50 °C and a minimum below 20 °C (thermotolerant), 
while those that survive at 50 °C or above but do not grow at 20 °C or above are 
regarded as thermophilic (Thanh et al. 2019). Reports have shown that thermophilic 
fungi are a regular microbial component of self-heating decomposing hay. 
Thermophilic fungi are most commonly found in rapidly decomposing plant resi-
dues, in natural environments, where heat is generated through exothermic micro-
bial activity (Thanh et al. 2019). Furthermore, most thermophilic fungi grow well at 
moderate temperatures and can be found in various substrates, including soils, com-
posts, piles of hay, stored grains, wood chip piles, nesting materials of birds and 
animals, or in municipal refuse (Singh and Satyanarayana 2009).
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Additionally, these fungi produce thermostable extracellular enzymes with 
useful applications. It is known that thermophilic activities are generally associated 
with protein thermostability. Therefore, proteins produced by thermophiles tend to 
be more thermostable than their mesophilic counterparts. The mechanisms of intrin-
sic thermostability of the protein that result in the molecular rigidity are related to a 
number of hydrogen and disulfide bonds, salt bridges, presence of hydrophobic 
amino acids, and the packing of external residues (Gomez et al. 2016; Mehta et al. 
2016). Reports have shown that thermophilic fungi are harnessed for the treatment 
of cancer (Liao et al. 2012; Mehta et al. 2013). In an industrial scale, remediation of 
textile dyes, bioconversion of xylose to ethanol, degradation of crude oil, recovery 
of heavy metal, degradation of keratin, saccharification of agricultural residues, and 
diary product processing have all been done using thermophiles (Verma and Shirkot 
2014; Sahni and Gupta 2014; Bajaj et al. 2014; Dimarogona et al. 2012).

10.3.5  Psychrophilic Fungi

Psychrophiles are microorganisms that colonized all permanent cold environments. 
They have been grouped into obligate psychrophiles (grow optimally at less than or 
at 20  °C) and facultative psychrophiles (optimal growth temperature of >20  °C) 
(Hamid et al. 2014). Psychrophilic fungi grow optimally at 15 °C or lower, while 
psychrotrophic fungi thrive well at temperatures above 20 °C (Hassan et al. 2016; 
Yadav et al. 2015a, b, 2016). This group of fungi has been found in cold habitats, 
such as Antarctica, Arctic regions, and cold deep sea environments (Hassan et al. 
2016; Blanchette et  al. 2010). There genera and species, e.g., Thelebolus micro-
spores, Lemonniera, and Tetracladium, have been isolated from different regions of 
the Himalayas and India (Sati et  al. 2014; Anupama et  al. 2011). For instance, 
Penicillium species has been identified from soils, lakes, and historic woodlands and 
Macroalgal thalli in Antarctic regions (Loque et  al. 2010). Also, some genera 
(Leotiomycetes, Cladosporium, Trichoderma, Periconia) are reported to be isolated 
from various polar and nonpolar cold habitats (Laura et  al. 2013; Kostadinova 
et al. 2009).

In this cold environment, these species undergo many extreme limiting factors, 
including frequent freeze-thaw cycles, high salt concentration, low moisture con-
tent, extreme UV radiation, and low nutrient availability (Hassan et al. 2016). These 
are achieved via various physiological and ecological adaptation mechanisms 
(Anupama et al. 2011). Ruisi et al. (2007) reported production of antifreeze pro-
teins, compatible solutes, trehalose, and other freeze tolerance mechanisms as some 
of the key adaptive mechanisms of psychrophilic fungi. Psychrophilic fungi pro-
duce cold-active enzymes, which remain active at low temperatures, and have great 
potential for industrial biocatalysis in terms of energy savings by lowering the 
required temperature of a reaction without sacrificing enzyme activity (Cavicchioli 
et al. 2011).
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In the pharmaceutical, medical, and industries, enzymes (e.g., chitinase, endo- 
chitinase, lipase, laccase, ferulic esterase, beta-lactamase, esterase, peroxidase, and 
imidase) are used for hydrolysis of chitin to chitosan, chitooligosaccharides, and 
glucosamine. Besides being harnessed for biocontrol of mosquito larvae, they are 
also essential for the synthesis of antibacterial agents, antimicrobials, antioxidants, 
and as photoprotectants (Akpi  and Odoh 2017; Cavicchioli et  al. 2011; Jeon 
et al. 2009).

10.3.6  Piezophilic Fungi

These are fungi found predominantly in extreme barometric pressure. Piezophiles 
which are sometimes referred to as barophiles are high hydrostatic pressure- 
dependent. Fungi classified in this group have been identified from the deep-sea 
sediments (>3000 m depth) and the guts of bottom-dwelling animals (Zhang et al. 
2018). Even though first evidence of piezophilic growth in mixed microbial cultures 
and recovering from the deep sea has been demonstrated, these molecular signs and 
traits were affiliated with the phylum Ascomycota, and a few belonged to the phyla 
Basidiomycota and Chytridiomycota (Nagano and Nagahama 2012).

However, many conditions such as low temperature, elevated hydrostatic 
pressure, and low nutrient availability are combined to make the deep sea an extreme 
environment (Jebbar et al. 2015), illustrated in their high-pressure, deep-sea hydro-
thermal vents study. In this habitat, geothermal activity occurs within the oceanic 
floor, resulting in widely varied pH, temperature, and varying nutrient availability, 
which in turn support a diverse and unique environmental niche (Charlesworth and 
Burns 2016). Reed et al. (2013), in their work, opined that piezophiles adapt to the 
high-pressure conditions, through their dense hydrophobic cores on proteins and via 
the formation of multimeric proteins. Finally, piezophillic enzymes play a key role 
in high-pressure sterilization of foods (Zhang et al. 2015), and their highly special-
ized cell membranes enable there adaptation through the incorporation of polyun-
saturated fatty acids (Usui et al. 2012).

10.4  Mechanisms, Operation, and Dynamics 
of Extremophiles

Microorganisms (e.g., fungi and bacteria) are ubiquitous in nature, some of which 
possess unique qualities, genes, and properties enabling their survival. These organ-
ismal adaptations and mechanisms constitute a state by which they are able to bio-
chemically and metabolically operate (Merino et  al. 2019). For instance, some 
Fungi conidia or spores induced structures which support their growth in 
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environments not conducive for typical fungal coenocytic cells (Blachowicz et al. 
2019; Hussain et  al. 2016). Although the presence of extremophiles and their 
physiological properties have long been studied, the whole genome sequence tool 
has enhanced the study of their underlying principles that enabled evolutionary and 
life existence, environmental pressures, and understanding of planetary bodies 
(Bertrand et  al. 2015; Schulze-Makuch 2013; Kumar et  al. 2018). Comparative 
genomic inquiry on extremophiles has shown sets of genes and proteins that 
empower necessary machinery in species; most importantly, organisms lacking 
these proteins cannot survive the same exposure. According to Kumar et al. (2018), 
these proteins safeguard the cell against a wide range of extreme exposures such as 
temperature, pressure, radiations, chemicals, drugs, etc. Also, besides the increasing 
understanding of extremophiles, the processes of their metabolic functions under 
extreme physical stress and how they evolve remain elusive (Lindgren et al. 2016).

10.4.1  High-Temperature Extreme

Thermophilic fungi are an assemblage of eukaryota that have developed strategies 
of growing at elevated temperatures (Czikkely and Bálint 2016; Salar and Aneja 
2007). They are commonly found in soils and habitats with organic matter (Salar 
and Aneja 2006). It is thought that thermophilic fungi have been able to evolve over 
time, developing thermal resistance proteins, and genes, which confer in them the 
ability to thrive beyond mesophilic fungi temperature range. Thermo-tolerance spe-
cies (A. fumigatus) expressed resistance genes. The HIM-SKN7 gene, which binds 
to the domain of heat shock transcription factors, helps in regulating various cellular 
functions (Hussain et  al. 2016). Decreased genome size and shorter introns are 
linked to increased thermos tolerance as seen in thermophilic fungi. Van Noort et al. 
(2013) observed that the genomes of three thermophilic fungi; C. thermophilum 
(Cth), T. terrestris (Tte), and T. heterothallica (Tht) are significantly smaller than 
their close mesophilic relatives such as Chaetomium globosum (Cgl) and Neurospora 
crassa (Ncr); this possibly enhanced there stability in extreme temperature. 
Elsewhere, melanin contents are reported to associate with extremophilic fungi, 
thus serving as a protective shell against adverse conditions such as elevated tem-
perature, heavy metals, UV radiation, and concentrations of salts, dryness, and des-
iccation (Pulschen et al. 2018; Nonzom and Sumbali 2015; Verma et al. 2017).
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10.4.2  Low-Temperature Extreme

Fungi that flourish in cold and/or freezing temperatures (−20 and 10 °C) are known 
as psychrophilic or cryophilic fungi (Durán et al. 2019; Santiago et al. 2016; Wang 
et al. 2017). Predominantly, they are found in temperate regions such as polar ice, 
cold ocean water, and alpine snowpack (Goswami and Das 2016). At these zones, 
psychrophiles remain frozen most of the year. Wang et al. (2017), in their study, 
observed that thick pigmentation in the cell walls of psychrophilic fungi help them 
to withstand the harsh environmental conditions (cold) in Antarctic rock. Cryophilic 
fungi such as the Basidiomycetes inhabit these regions (Arctic and Antarctic) by 
producing antifreezing proteins (Tkachenko 2017). These proteins (AFPs) bind to 
ice crystals through a large complementary surface, creating thermal hysteresis 
while lowering the temperature for the organismal growth (Jia and Davies 2002). 
Gupta et  al. (2014), in their work, opined that psychrophilic/cryophilic fungi 
enzymes have flexible structures of cold-active enzymes. Elsewhere, mechanisms 
of fungi survival in cold conditions have been suggested to include combination of 
strategies such as (a) increase of membrane fluidity at low temperatures (changing 
the composition of fatty acids), (b) increase in the intracellular trehalose and polyol 
concentrations and unsaturated membrane lipids, (c) compatible solutes (glycerol), 
(d) secretion of antifreeze proteins and enzymes active at low temperatures, (e) 
reduction of growth rates, (f) subcellular, molecular, and metabolic changes, and (g) 
formation of exopolysaccharides (Salvino et  al. 2006; Wang et  al. 2017; Merino 
et al. 2019). They are also protected against environmental stresses when found in 
exopolymeric substance (EPS).

10.4.3  Fungi Survival in Acidic or Alkaline Environments

Acidic habitats (pH  <  3) represent some of the most extreme environments for 
microbial growth (Hujslová et al. 2014; Vylkova 2017). Organisms which are domi-
nant in this habitat actively modulate the pH of their environment through the secre-
tion of organic acid such as butyrate, oxalate, malate, citrate, gluconate, and 
succinate (Vylkova 2017). They also regulate the acidity level in their internal envi-
ronment against its external concentration by actively pumping out the hydrogen 
ions fast enough to prevent damage of the DNA (Goswami and Das 2016; Hassan 
et al. 2019). Furthermore, Bi et al. (2016) reported that the extent of fungi adapta-
tion in a pH-dependent environment depends on nutrient availability, organic acid 
synthesis, and the removal of ammonium ions from ammonium sulfate salt by 
the fungi.

In saline environment such as salterns, soda lakes, or alkaline soils, the surviving 
fungi are termed alkaliphiles or halophiles. They are extremophilic microorganisms 
growing optimally at high salt concentrations (Siglioccolo et al. 2011). Halophiles 
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uses two key strategies to maintain proper osmotic pressure in their cytoplasm: 
these include (a) “salt-in strategy”, which involves the accumulation of potassium 
and chloride with extensive adaptation of the intracellular macromolecules and (b) 
“osmolyte strategy” for the biosynthesis of organic osmotic solutes (Siglioccolo 
et al. 2011).Compatible solutes are low-molecular-mass organic compounds, which 
do not have net charge and can be accumulated in high (molar) amounts without 
negatively interfering with cellular metabolism (Silke et  al. 2013). According to 
Silke et al. (2013), microorganisms grow and survive in saline habitats by bypassing 
high salt concentrations within the cytoplasm. They could also adjust by preventing 
water loss and plasmolysis through a specific cell wall construction and composi-
tion to pump out ions by “salting out” processes. Besides modification of the intra-
cellular environment through the accumulation of non-toxic organic osmolytes, 
these organisms also involve proton electrochemical gradients, which serve as the 
driving force for the extrusion of Na+.

10.4.4  Fungi Survival in an Environment of Extreme Pressure

The deep biosphere is often characterized with multiple extreme physicochemical 
conditions. Microbes which strive in pressure extreme conditions are known as 
barophiles or piezophiles (Dutta et al. 2019; Goswami and Das 2016; Gupta et al. 
2014). Under this condition, densification of spatial organization of lipids occur, 
leading to cell damage (Jha 2014). Notably, barophilic groups have developed 
defenses to enable them flourish in extremes of pressure (Zhang et al. 2018). These 
mechanisms range from formation of dense hydrophobic cores on proteins and for-
mation of multimeric proteins, which give tolerance to piezophilic species in high- 
pressure conditions (Charlesworth and Burns 2016). In addition, some fungi agents 
cope with hydrostatic pressure and temperature by reducing fluidity of their cell 
components. This is done through the increase of the packed fatty acyl chains that 
trigger the rise of the unsaturated fatty acids in their lipids (Phil 2017; Raghukumar 
et al. 2010; Oger and Jebbar 2010). Also, it is thought that pressure adaptation may 
be linked to change in cell physiology, which involves genes in osmoregulation 
(ompA), heat shock responses (dnaK, lon, groEL, clpPX, and others), periplasmic 
stress response (ompH), and cold shock responses (csp)(Dutta et al. 2019).

10.4.5  Fungi Survival in Extremely Dry Conditions

Microorganisms that grow in dry or low-water environments are called xerophiles 
(Gupta et al. 2014). Xerophiles grow at low water activity or low relative humidity. 
Some of the important fungal genera include Aspergillus (Visagie et  al. 2017). 
Xerophilic fungi are predominantly found in desert environments. Typical examples 
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are the black microcolonial fungi (MCF) and black yeasts, which are classified 
among the most stress-resistant eukaryotic organisms (Zakharova et  al. 2013). 
Scientific inquiry into their strategies of survival under desiccating conditions has 
shown that xerophiles such as MCF jump desiccation by entering into dormancy—a 
restive state characterized by shutdown of metabolic activity. At this state, the 
organisms are still viable and capable of growth when normalcy returns (Huang 
et al. 2010; Nanguy et al. 2010).The mechanism of survival in Xeromyces bisporus, 
a xereophilic fungus, has been traced to the upregulation of glycerol synthesis genes 
and increased membrane fatty acid owing to decrease in water activity and modifi-
cations to phospholipids, sterols, and cell walls (Leong et al. 2015).

10.5  Role of Extremophilic Fungi in the Control 
of Pathogenic Microbes

10.5.1  Extremophilic Fungi as Bioagents

Extremophilic fungi can act as biological control for the suppression of damaging 
activities of some microorganisms often referred to as natural enemies (Jyoti and 
Singh 2016). One major area where the critical role of fungi as bioagents has been 
felt is in the control of plant pathogens/diseases. Here, some species (Trichoderma) 
which strive in extreme abiotic conditions possess capacity to confer disease resis-
tance and stress tolerance to their hosts (Carreras-Villasenor et  al. 2019; Nieto- 
jacobo et  al. 2017; Singh et  al. 2014). Interestingly, these organisms do this by 
acting as antagonists to various plant pathogens, thus preventing the severity and 
spread of the disease condition in different plants. The role of fungi as bioagents in 
agriculture has been gaining research attention owing to their application in sustain-
able agricultural production (Annapurna et al. 2018; Arya et al. 2017; Deshmukh 
et al. 2016).

10.5.2  Extremophilic Fungi as Biocontrol

The adaptation of fungi to extreme environments has allowed for the biosynthesis of 
novel natural products (Onofri et al. 2011). They colonize and develop distinctive 
defenses to survive and reproduce in their new environments. These extremophiles 
may be found in zones ranging from geothermal and humid soils in volcanic areas 
(Appoloni et al. 2008) to deep permafrost soils (Gilichinsky et al. 2007) and soils 
with low water activity and high salt concentration. Biological control of soil-borne 
plant pathogens by extremophiles is a growing area of plant pathological research 
(Bhattacharjee and Dey 2014). It involves the use of effective natural enemies of 
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pests or plant pathogens to eliminate and/or control their population. Extremophilic 
fungi have been identified as biocontrol because of their ability to suppress phyto-
pathogens and large number of foliar and soil-borne diseases (Odoh et al. 2020a). 
This disease control ability of extremophiles is possible via mechanisms such as 
pathogen antagonism, induced systematic resistance, mycoparasitism, signal inter-
ference, and competition for nutrients (Odoh 2017).

Predation and parasitism is also a major biocontrol mechanism used by 
Trichoderma species, an extremophilic fungus that has shown tolerance to unfavor-
able environmental conditions such as low nitrogen and water through enzymatic 
destruction of the fungal cell wall (Harman et  al. 2004). The induction of plant 
resistance using nonpathogenic, pathogenic, or incompatible microorganisms is 
also a form of biocontrol mechanism that can be harnessed to improve plant/crop 
yield. Most times, multiple and diverse mechanisms are sorted and combined by the 
same fungi to suppress the proliferation of different phytopathogens including the 
production of volatiles, which have an important impact on soil microbiology.

Mycoparasitism, which is the direct attack of one fungus on another, can be 
divided into fungi with biotrophic or necrotrophic form of parasitism. This mecha-
nism of biocontrol is usually a complex one involving series of events such as rec-
ognition, attack, penetration, and killing of the host depending on the form of 
parasitism involved. Biotrophic association in this case obtains nutrients from living 
cells while necrotrophics kill the host cells in advance and exploit their nutrients. In 
a study conducted by Purić et al. (2018), filamentous fungi isolated from soil and 
marine sediments in the Antarctic, an extreme environment, were assessed for their 
potential activity on phytopathogens (Xanthomonas euvesicatoria and Xanthomonas 
axonopodis pv. Passiflorae) that responsible for diseases in pepper, tomato, and pas-
sion fruit. The results of this study show that the bioactive compounds extracted 
from the fungi have the capacity to inhibit phytopathogens.

10.5.3  Biocontrol Mechanisms of Extremophilic Fungi

The use of fungi as biocontrol and alternative form of pest control on plants has long 
been documented (Fig.  10.1). They assist to maintain the quality of agricultural 
crops and minimize the undesirable and hazardous use of chemical pesticides. Plant 
diseases are the most important cause of economic loss to agricultural produce 
(Williams et al. 2017). However, these disease conditions or causing agents can be 
effectively managed and controlled through proper application and utilization of 
fungal base biocontrol. Most isolated species of extremophiles from rhizosphere are 
potential sources of antagonism against many soil-borne fungi such as Fusarium 
oxysporum, Sclerotium rolfsii, and Rizoctonia solani. They also produce antibiotics 
and antifungal toxic metabolites, i.e., trichodermin and viridian, inducing resistance 
activity against pathogens through enzymes such as glucanase, cellulose, chitinase, 
and protease, thus disintegrating the cell wall of the pathogen.
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10.5.3.1  Antibiosis

Antibiosis is a widely recognized and effective biocontrol approach employed by 
both plant growth-promoting bacteria and fungi in controlling soil-borne infections 
in crops. The word “antibiosis” describes the antagonistic effects between 
microorganisms. It is a biocontrol mechanism in which the antagonist produces 
substances (antibiotic, lytic enzyme, volatile substance, or toxin) that target and 
destroy the phytopathogen (Mousa and Raizada 2016). These antibiotics, which 
also function as microbial toxins, inhibit the growth of other microbes (Fig. 10.1). 
Antibiotics produced by microbes during abiotic/biotic stress are particularly effec-
tive against plant pathogens and the diseases caused by them (Thomashow et al. 
2002; Odoh et al. 2019). Antibiotic production by fungi exhibiting biocontrol activ-
ity has regularly been isolated from Gliocladium and Trichoderma in extreme envi-
ronments. They are also shown to exhibit significant in  vitro activity against 
mycotoxin- producing Aspergillus flavus and Fusarium verticillioides (Wicklow and 
Poling 2009). Volatile compounds secreted by most fungi target a range of patho-
gens including the smut fungus Ustilago hordei, F. oxysporum, Rhizoctonia solani 
and Phythium ultimum while Trichoderma harzianum is shown to produce harzian-
opyridone as a mode of action during antibiosis (Mousa and Raizada 2016),

Fig. 10.1 Bio-mechanisms of action of extremophilic fungi on pathogenic microbes
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Thermophilic fungi isolated from thermophilic ascomycete Myriococcum 
albomyce produce novel antibiotics, new crystalline antifungal compound 
“myriocin” that is effective against Candida species and Trichophyton granulosum 
(Xu et al. 2015). Sonia et al. (2019) also reported a novel quinine antibiotic agent 
named malbranicin (TAIM 13 T54), isolated from thermophilic fungus Malbranchea 
cinnamomea, which exhibits toxicity against Staphylococcus aureus and Bacillus 
subtilis. Similarly, antibiotics such as penicillin G, 6-aminopenicillanic acid, 
sillucin, miehein, and vioxanthin are derivatives of thermophilic fungi, which are 
active against both Gram-positive and Gram-negative bacteria (Sonia et al. 2019). 
Table 10.1 represents some bioactive compounds with antibacterial property iso-
lated from extremophilic fungi.

10.5.3.2  Induced Systemic Resistance

Aside from the ability to produce antibiotic molecules as a form of strategy to 
combat plant pathogen infestation, host resistance systems can also be induced by 
pathogens. This induction of host resistance could be local or systemic, and depen-
dent on the type, source stimulation agents, and other biotic and abiotic inducers 
(Vallad and Goodman 2004; Pieterse et al. 2014). In addition, this process induces 
a defense mechanism for host resistance as the plant pathogens develop more 
advanced characteristics and pathways (Reddy and Saravanan 2013). Unlike the 
systemic acquired resistance (SAR) (Vallad and Goodman 2004), which requires 
the involvement of the signal molecule such as salicylic acid (SA), the induced sys-
temic resistance (ISR) utilizes the jasmonic acid (JA) signaling pathway. Induced 
systemic resistance (ISR) also occurs from the colonization of the rhizosphere by 
certain microbes (Beneduzi et  al. 2012; Pieterse et  al. 2014; Odoh et  al. 2019). 
When compounds with enzymatic activity such as xylanase and cellulose get 
released, they also induce resistance on the plant interactive zones (Lotan and Fluhr 
1990; Martinez et al. 2001).

ISR is thus considered as the ability of an agent (a fungus, bacteria, virus, 
chemical, etc.) to express or exert plant defense mechanisms that lead to systemic 

Table 10.1 Bioactive compounds isolated from extremophilic fungi

Type of compound Biological activity References

Alkaloids, peptides, and amides Antiviral or antimicrobial
Cytotoxic

Niu et al. (2017)
Dalsgaard et al. (2005)

Quinones and phenols Antimicrobial and cytotoxic
Cytotoxic

Yao et al. (2014)
Gao et al. (2016)

Xanthones Antimicrobial Fredimoses et al. (2014)
Polyketides Antimicrobial

Cytotoxic
Wu et al. (2015)
Yang et al. (2007)
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resistance of different pathogens (Sharma et  al. 2013). Similar to immunization 
with attenuated vaccines in humans, inoculation of plants with weak pathogens or 
nonpathogens leads to induced systemic plant resistance against pathogens. 
However, during this process, plant gains protection not just against the infesting 
pathogen, but against other agents. Induced systemic resistance (ISR) is mediated 
by jasmonic acid (JA) and ethylene signaling pathways and triggered by 
nonpathogenic microbes (Choudhary et  al. 2007; Shoresh et  al. 2010), just as 
Trichoderma, in association with plant roots, can trigger systemic resistance and 
improve plant nutrient uptake (Contreras-Cornejo et al. 2016).

10.5.3.3  Competition

Microorganisms compete for essential micronutrients such as iron, which are often 
required for the synthesis of ATP and formation of heme and other cellular functions 
(Saraf et al. 2011). It is an important biocontrol process usually harnessed for the 
control of plant disease. Because iron is very limited in the rhizosphere and is 
dependent on the soil pH, it is always sorted by microbes, plants, and phytopatho-
gens (Shahraki et al. 2009). When this iron is in ferric form, its concentration tends 
to reduce. At reduced concentration, the growth of microbes in extreme condition is 
not supported. Hence, the fungal antagonist such as Trichoderma asperellum 
secretes iron-binding ligands called siderophores that controls Fusarium wilt in 
tomato plants (Segarra et al. 2010). This is aimed at preventing the colonization and 
depletion of iron needed by the pathogen.

10.5.3.4  Preemptive Colonization

Preemptive colonization is employed as a mechanism of biocontrol where the 
antagonist is allowed to colonize a particular zone and prevent infection. Preemptive 
colonization is also known as competitive exclusion and has to do with the applica-
tion or growth of the fungal antagonists before the pathogen’s arrival. In niche com-
petition, the ability of the fungal antagonist to survive and multiply in specific 
niches where it is applied enhances its capability to colonize larger areas and pre-
vent pathogen colonization. For effective prevention of pathogen establishment or 
colonization, Benbow and Sugar (1999) note that the colonization of the fungal 
antagonist in sufficient populations is necessary and an important consideration in 
preharvest applications of biocontrol agents. Preemptive colonization leads to dis-
ease suppression and enhancement of resistance against plant pathogens as illus-
trated in a study carried out by Yu et al. (2007) in biocontrol of blue and gray mold 
diseases of pear fruit, where they used the integration of antagonistic yeast with sali-
cylic acid.
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10.5.3.5  Mycoparasitism

Direct parasitism or lysis of a plant pathogen by another microorganism is known as 
hyperparasitism or mycoparasitism. Here, the pathogen is directly attacked by a 
specific fungal antagonist that overwhelms it or its propagules. This direct interac-
tion is often observed among fungi and has rarely been reported for bacteria. Fungi 
with the ability to be parasitic on other fungi are known as mycoparasites and the 
interaction mycoparasitism (Baker and Cook 1974). Four major groups of hyper-
parasites reported include hypoviruses, facultative parasites, obligate bacterial 
pathogens, and predators. Milgroom and Cortesi (2004) report how hypovirulence 
by hypoparasites led to the control of chestnut blight and the factors that determine 
its success or failure. Elsewhere, multiple hyperparasites are suggested to attack a 
single fungal pathogen. For instance, Acremonium alternatum, Acrodontium cra-
teriforme, Ampelomyces quisqualis, Cladosporium oxysporum, and Gliocladium 
virens are few of the examples of fungi with the capacity to parasitize powdery 
mildew pathogens. Zheng et al. (2017), in their work identified a number of fungal 
species which show hyperparasitism against rust pathogens, thus indicating the 
interrelationships of some fungus parasite against some fungus host. The necrotro-
phic mycoparasite Trichoderma produces enzymes that increase the permeability 
and degradation of fungal pathogens cell wall and inadvertently death of the plant 
pathogen. An example of a biotrophic parasite frequently found on sclerotia of plant 
pathogenic fungi such as Sclerotinia minor and Sclerotium cepivorum (the causal 
agents of lettuce drop) is Sporidesmium sclerotium (Karlsson et al. 2017; Nygren 
et al. 2018).

10.5.3.6  Antagonism

An environmentally acceptable management method for numerous pathogens 
would be the use of antagonistic fungi as a sustainable form of biological control 
(Punja and Utkhede 2003; Thakur et  al. 2020). In phytopathology, antagonism 
refers to the act where an organism suppresses or interferes with the normal growth 
and activity of a phytopathogen. In extreme acidic conditions, fungal antagonists 
survive as they antagonize potential fungal phytopathogens (Indra and Kamala 
2011). In an experimental study conducted by Naglot et  al. (2015) indigenous 
strains of Trichoderma species were isolated from rhizosphere soils of Tea gardens 
of Assam, north eastern state of India, and were assessed for in vitro antagonism 
against two important tea fungal pathogens pestalotia theae and Fusarium solani. 
Their study revealed a potent antagonist against the two tea fungal pathogens identi-
fied as Trichoderma viride. Elsewhere, it also showed antifungal activities against 
standard phytopathogens with potent fungal antagonists used to inhibit fungal phy-
topathogens. For instance, Tagawa et al. (2010) and Chen et al. (2018) in their sepa-
rate research isolated and characterized their antagonistic activity against potato 
scab from potato field soils and also evaluated yeasts as potential antagonists for 
biological control of Botrytis cinerea on strawberry fruits.
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10.5.3.7  Signal Interference

Signal interference is a biological control mechanism which relies on the degradation 
of the quorum sensing molecules, i.e., the signal interference regulatory agent (Lin 
et al. 2003; Lugtenberg et al. 2013). Quorum sensing is required for an organism 
(beneficial or pathogenic) to exert its effects as it allows the organisms to sense their 
own population. When this occurs, the organism secretes some biomolecules for the 
expression of a certain character. Some of the most frequently expressed characters 
include pathogenicity/virulence factors, motility, and biofilm formation (Gray and 
Garey 2001; Miller and Bassler 2001). Signal interference is more common in 
bacteria than in fungi (Lugtenberg et al. 2013) owing to the fact that bacteria have 
the ability to sense the production level of exoenzymes regulated by quorum- sensing 
molecules (homo serine lactones). These exoenzymes are capable of degrading the 
cell wall of phytopathogens whether fungal or bacterial. In fungi, however, a 
mechanism such as RNA interference may be used in the control of fungal 
phytopathogens just as McLoughlin et al. (2018), in their studies utilizes species-
specific RNA interference to control plants disease infestation especially those 
caused by Sclerotinia sclerotiorum and Botrytis cinerea.

10.5.3.8  Siderophore Production

Siderophores are produced under low iron stress conditions. They act as biocontrol 
agents with extracellular low-molecular-weight biomolecules, which have strong 
affinity for binding iron (Fe3+) (Sureshbabu et al. 2016). Because iron is a vital ele-
ment needed by all microbes, it is always sourced or in demand due to its relatively 
non-bioavailability for plant, thus prompting its scarcity irrespective of the huge 
mineral deposits on the earth crust (Subrahmanyam et al. 2020). Microbial sidero-
phore production can be grouped into three major groups, namely, catecholates, 
hydroxamates, and carboxylates (Winkelmann 2002). When iron is limited, fungal 
siderophores scavenge and provide the plant with iron from the mineral phase 
through the development of soluble iron complexes. At slightly alkaline pH, Ghosh 
et al. (2017) demonstrated the detection, estimation, and characterization of sidero-
phores from different fungal biocontrol agents like Beauveria spp, Trichoderma 
spp., and Metarhizium spp., which are soil-borne pathogens. They recorded that an 
alkaline pH was favorable for different species of Trichoderma in terms of sidero-
phore production but showed a negative result for siderophore production in 
Beauveria spp and Metarhizium spp. Iron chelation/affinity is weaker in fungi but 
has been shown to improve plant growth as Yadav et al. (2011) note that sidero-
phores produced by Aspergillus niger, Penicillium citrinum, and Trichoderma har-
zianum were found to increase the shoot and root lengths of chickpeas (Cicer 
arietinum), making them more able to withstand environmental stress and phyto-
pathogens (Eze et al. 2018; Odoh et al. 2017c). Elsewhere, many research works 
have also shown that production of siderophores improves not only the growth rate 
and potential of plant during stress conditions but also their ability to take up both 
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radioactive and rhizospheric metal irons even at minute concentrations (Robin et al. 
2008; Dimkpa et al. 2009; Schalk et al. 2011).

10.5.3.9  Plant Growth Promotion

Plant growth-promoting fungi (PGPF) are naturally occurring soil microbes that 
colonize roots and confer a host of beneficial effects to the plants using mechanisms 
such as nutrient solubilization (nitrogen, phosphorus, or iron) (Singh et al. 2020), 
plant hormone production (auxin, cytokinin, or gibberellins) (Tiwari et al. 2020), 
and suppression of pathogenic microbes. PGPF most times also contribute to plant 
fitness by inducing systemic resistance. Some of the examples of PGPF capable of 
inducing systemic resistance include Trichoderma spp., Penicillium spp. GP16-2, 
Phythium oligandrum, Piriformospora indica (Schafer et al. 2009; Van der Ent et al. 
2009). Under several abiotic stresses, PGPF enhance plant tolerance, improve plant 
biochemical composition, and also control numerous foliar and root pathogens. In 
general, they promote function such as biocontrol, biofertilization, and synthesize 
phytohormones (biostimulants),), control flooding and aid phytoremediation pro-
cesses (Glick et al. 1998; Odoh et al. 2017a, 2019).

10.6  Current Research and Application 
of Extremophilic Fungi

Extremophiles are organisms that thrive in extreme environments where other 
microbes are considered unfavorable. These groups of organisms (fungi) produce 
enzymes, enabling their functionality in the diverse extreme conditions (Cowan 
et al. 2015). Extremophilic fungi associated with crop plants are essential for main-
taining the sustainability of agricultural production systems (Yadav 2017). With the 
advent of biotechnology, new possibilities concerning the application of beneficial 
fungi to the soil and for agrobiology have been explored. The growing population of 
today’s world demands an urgent need for enhanced and increased production of 
crop while still retaining soil fertility. Current research reveals that fungi such as 
arbuscular mycorrhizal fungi and Trichoderma have been applied as both biocontrol 
agents and biofertilizers (Odoh et al. 2020b). Mycorrhizal fungi are known for pro-
moting improvements in plant productivity and yield. Genome mining has expanded 
the scope of our understanding that Trichoderma has special genes that enable them 
become successful plant symbionts (Guzmán-Guzmán et al. 2019).

Fungi from extreme environments are a rich source of novel natural products and 
metabolites useful for biological activities as revealed by modern molecular 
research. Besides extremozymes and extremolytes, exopolysaccharides (Raveendran 
et  al. 2015), biopolymers, peptides, and biosurfactants can be produced by 
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extremophilic fungi such as Trichoderma (Askolin et  al. 2001) and have great 
economic- industrial potential. For instance, in agriculture, biosurfactants could 
substitute chemical surfactants as adjuvants in herbicide and pesticide formulations 
and act as biocontrol agents, enhance remediation of soils biologically, and stimulate 
plant defense against phytopathogens (Sachdev and Cameotra 2013). All these 
allow for the expansion and sustainable development of agriculture in extreme 
environments.

10.7  Conclusion and Future Prospects

Extremophilic fungi have unique defenses which enable them to survive extremes 
of pressure, temperature, salinity, and a number of abiotic/biotic factors. This makes 
them good candidates for the control of various plant disease conditions. They are 
also essential components of organic farming owing to their ability to fix, mobilize, 
and solubilize essential nutrients. Harnessing these potentials in fungal agents, how-
ever, provides far reaching impact in curtailing microbial pathogens most impor-
tantly for biotechnology advancement and agricultural development.

With established benefits of extremophilic fungi especially in agriculture, their 
foothold is still growing. Excess nutrients accumulate in the soils, such as phospho-
rus, owing to excessive application of chemical fertilizers by farmers still being on 
the increase. This has led to serious pollution problems, hence the need for fungal 
biofertilizers. While this stress (pollutants) and other forms of abiotic pressures 
reduce the soil quality and hinder plant growth, extremophilic fungal genera can be 
used in eliminating phytopathogens and promote plant growth. Endophytic fungi, 
which do not induce symptoms of disease in plants, should be explored as better 
options for the control of plant disease and crop development. This would aid in 
overcoming the challenges of fungi adaptability and survival among indigenous 
strains. Also, the use of these biological products (extremophilic fungi) should be 
strictly regulated as much research needs to be done to understand their effects on 
plant growth and its persistence in soil under stress environmental conditions.
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11.1  Introduction

The twenty-first century has been marked by global climate change. It has been 
already reported that different environmental stresses are a major threat to future 
food security (Battisti and Naylor 2009), while the world population is thought to 
reach from a current estimated 7 billion approximately to 8.9 billion by 2050 (Singh 
et  al. 2011). Agricultural sustainability is a major concern because of increasing 
climate variation, population, and reduction in soil health for crop cultivation. Issues 
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regarding agricultural sustainability can become more prevalent in the near future 
due to drastic climate change and extensive agricultural practices (Wassmann 2009). 
With limited farming area, traditional agriculture system which is unsustainable and 
ever-increasing population (Masciarelli et al. 2014), working out a policy to fulfill 
the increasing need of food is becoming troublesome. There are a number of factors 
leading to the food crisis all over the world such as increasing urbanization and 
industrialization have led to the shrinkage of the land in the past few decades. 
Nowadays, to increase the crop yield, chemical fertilizers are employed in larger 
extent. To fulfill the food needs of the increasing population and to make the agri-
cultural systems sustainable, there is a critical need to immediately make certain 
eco-friendly measures which will not harm the soil environment (Singh et al. 2020; 
Yadav et al. 2020d).

Problems such as climate changes and their hazardous effects have adverse 
effects on the crop yield and productivity. Plant growth as well as productivity are 
drastically affected by changes in the local climate. In addition to this, changes in 
the climatic elements such as radiation, precipitation, humidity and temperature, 
anthropogenic activities of humans also affect the climate, which lead to harmful 
impact on sustainable productivity of crops in the local ecological system, in the 
agricultural sector on a larger scale, and even on a global scale. Light, water, carbon, 
and mineral nutrients are the major requirements of the plants for optimal growth, 
development, and reproduction. Plants being immobile, they are exposed to a broad 
range of environmental stresses as well as stresses caused by the living entities. 
Extreme conditions (below or above the optimal levels) limit plant growth and 
development (Springmann et al. 2016; Kumar et al. 2019a).

According to a report published by FAO in 2007, only 3.5% of the globe’s land 
area is not under the environmental stresses. Drought has affected 64% of the global 
land area, 13% of the land is affected by flood, 6% is affected because of salinity, 
and 9% is affected due to acidic soils (Mittler 2006; Cramer et al. 2011). It has been 
estimated that only because of single environmental stress, that is,. drought, there is 
9–10% reduction in the national production of the cereals due to the drought 
conditions.

According to another report of FAO published in the year 2012, the area under 
ever-increasing salinization has almost touched the figure of 34 million irrigated 
hectares. An accurate value of agricultural loss, that is, reduction of crop production 
and soil health in terms of agroecological disturbances due to abiotic stresses could 
not be made. It is well known that abiotic stresses affect large land areas and signifi-
cantly hamper the qualitative and quantitative loss in crop production (Cramer 
et al. 2011).

Abiotic stress is widespread and common in all environments. The effects of 
abiotic stress are best documented in agricultural systems where it can cause losses 
in the yield of crops up to 70% (Mantri et al. 2011; Kumar et al. 2019b). One of the 
principle limiting factors declining agricultural productivity is abiotic stress caused 
by adverse climate conditions (Padgham 2009; Grayson 2013). Drought (Pardo 
2010; Cramer et al. 2011), temperature (Weis and Berry 1988), salinity (Munns and 
Tester 2008), pH (Yokota and Ojima 1995; Koyama et al. 2001; Hinsinger et al. 
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2003), acidic conditions, light intensity, submergence, anaerobiosis, and nutrient 
deficiency or excess, all impart negative impact on plant quality (Rastegari et al. 
2020a, b; Yadav et al. 2020b, c).

Plants have the ability to deal with the rapid fluctuations and adversity of envi-
ronmental conditions because of their intrinsic metabolic capabilities (Simontacchi 
et al. 2015). Variations in the outside environment could put the plant metabolism 
out of homeostasis (Foyer and Noctor 2005), as a result of these environmental 
stresses, plants harbor some advanced genetic and metabolic mechanisms present in 
their cellular system (Apel and Hirt 2004; Gill and Tuteja 2010). Plants have a range 
of protecting mechanisms, nonheritable throughout the evolution of plant to tackle 
these environmental stresses (Yolcu et al. 2016). Such mechanisms cause metabolic 
re-programming within the cells (Heil and Bostock 2002; Swarbrick et al. 2006; 
Shao et al. 2008; Bolton 2009; Massad et al. 2012) to facilitate routine biophysico- 
chemical processes. In most cases, plants get help from the microbiome within the 
habitat, in reducing the burden of environmental stresses.

The PGPMs help the plants either directly or indirectly. Direct mechanisms 
involve enhancing the uptake of the micronutrients, phytohormones production, fix-
ing of atmospheric nitrogen and P, K, Zn-solubilization. The indirect mechanisms 
include stimulating the immune system against various fungal pathogens by pro-
duction of varied compounds, enzymes, siderophores, antibiotics, osmolytes, or 
enhancing the texture or structure of the soil.

11.2  Effect of Abiotic Stress on Plants

Plants need light, minerals, nutrients, salinity for their optimal growth and develop-
ments as well as reproduction. An unfavorable environment consisting of extreme 
high or low of temperature, salinity and drought pose a complex set of stress condi-
tions. Plants can sense and react to stresses in many ways that favor their survival 
(Crane et al. 2011; Ahmad et al. 2015; Jiang et al. 2016). Plants remember their past 
exposure to abiotic stresses and even mechanisms to overcome them in such a way 
that responses to repeated stresses can be modified accordingly (Hilker et al. 2015). 
However, the underlying molecular mechanisms of this phenomenon are primarily 
unknown. Initially, any obvious effect of any unfavorable conditions appears at the 
cellular level followed by the appearance of the physiological symptoms.

11.2.1  Water Stress

Prolonged water stress decreases leaf water potential and stomatal opening, reduces 
leaf size, suppresses root growth as well as reduces seed number, size, and viability, 
delays flowering and fruiting and limits plant growth and productivity (Osakabe 
et  al. 2014; Xu et  al. 2016). Water stress adversely affects the physiological 
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condition of plant such as photosynthetic ability. To combat this stress, plants have 
evolved different mechanisms to minimize the consumption of optimal water 
resources and manage their growth till they face adverse conditions (Osakabe 
et al. 2013).

11.2.2  Light Stress

Exposure to low or high light intensities diminishes physiological process and 
adversely influences the growth and development of plants. Excess light initiates 
photooxidation that increases the production of highly reactive oxygen intermedi-
ates to manipulate biomolecules and enzymes. Under extreme conditions, loss in 
plant productivity is observed (Li et al. 2009).

11.2.3  Salinity

Early exposure to salinity leads to ion toxicity within the cell. This leads to the dis-
ruption of osmotic balance when the stress is prolonged for longer duration. Plant 
growth and development is altered by the combined effect of ionic as well as osmotic 
shocks (Munns and Tester 2008). The mechanism evolved to deal with salinity 
stress needs to maintain or quickly adjust both osmotic and ionic homeostasis within 
the cells. To fight against salinity, plants usually try to avoid high saline environ-
ments by keeping sensitive plant tissues away from the zone of high salinity or by 
exuding ions from roots or compartmentalize ions away from the cytoplasm of 
physiologically active cells (Silva et al. 2010; Yadav et al. 2020a). Glomus etunica-
tum has been reported to alleviate salinity stress in the plant Glycine max (Sharifi 
et al. 2007).

Many researchers have previously documented that salt tolerance in plant is 
associated with alleviation of antioxidant enzymes (Sekmen et al. 2007). The ROS 
scavengers include glutathione, ascorbate, and tocopherol, and the enzymes super-
oxide dismutases (SOD), catalases (CAT), ascorbate- or thiol-dependent peroxi-
dases (APX), glutathione reductases (GR), dehydroascorbate reductases (DHAR), 
and monodehydroascorbate reductases (MDHAR) (Rouhier et al. 2008). They are 
involved in the removal of ROS either directly (SOD, CAT, APX) or indirectly via 
regeneration ascorbate and glutathione in the cell. Piriformospora. indica induces 
salt tolerance in barley by increasing the levels of antioxidants (Baltruschat et al. 
2008). Endophytic bacteria producing phytohormones also induce salinity stress 
tolerance in plants. Bacillus amyloliquefaciens RWL-1 secreting abscisic acid 
(ABA) and auxins has been reported to induce salinity stress tolerance in Oryza 
sativa (Shahzad 2017). It is known that the endogenous production of plant hor-
mones, plant growth promoting endophytic bacteria, combine with exogenous jas-
monic acid overcome the negative impact of salinity in Solanum pimpelifolium 
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(Khan 2017). Few examples of plant growth promoting organisms are mentioned in 
Table 11.1.

11.2.4  Osmotic Stress

It has been previously recorded that plants exhibit several mechanisms against 
osmotic stress at molecular, cellular as well as whole plant level including inhibition 
of shoot growth and enhancement of root growth, adjustment in ion transport 
(uptake, extrusion, and compartmentalization of ions) and metabolic changes (car-
bon metabolism, the synthesis of compatible solutes). Some of the above-mentioned 
responses are triggered by primary osmotic stress signals; other may result from 
secondary stresses/signals caused by the primary signals. These secondary signals 
are phytohormones (e.g., ABA, ethylene), ROS, and intracellular secondary mes-
sengers such as phospholipids. Some of these secondary signals may not be con-
fined to the primary stress sites such as the root.

11.2.5  Drought

Drought causes the stimulation of production of varied reactive oxygen species 
(ROS), including hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide radi-
cal (O2), and the hydroxyl radical (HO−) (Cruz de Carvalho 2008), and these reac-
tive oxygen species decrease the normal metabolic processes of the plants by 
causing a oxidative damage to the lipids, various proteins, ultimately leading to the 
cell death (Farooq 2009; Hasanuzzaman 2013; Kour et al. 2019). Plants have sup-
portive as well as efficient enzymatic and nonenzymatic oxidants also referred to as 

Table 11.1 Plant growth promoting microorganisms with crop plant

Plant growth promoting 
microorganisms Crop plant Reference

Piriformospora indica Barley Baltruschat et al. (2008)
Achromobacter piechaudii ARV8 Tomato Mayak et al. (2004)
Pseudomonas pseudoalcaligenes 
Bacillus pumilus

Rice Jha et al. (2011)

Azospirillum sp. Wheat Nia et al. (2012)
Enterobacter aerogenes Pseudomonas 
syringae Pseudomonas fluorescens

Maize Nadeem et al. (2007)

Glomus clarum, Glomus etunicatum Vigna radiata, Capsicum 
annuum, Triticum 
aestivum

Rabie (2005); Daei et al. 
(2009); Kaya et al. (2009)

Bacillus subtilis Lactuca sativa Arkhipova et al. (2007)
Pseudomonas putida Rs-198 Gossypium hirsutum Yao et al. (2010)
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scavenging enzymes to overcome the negative effects of the drought (Cruz de 
Carvalho 2008). Superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), 
glutathione reductase (GR), and ascorbate peroxidase (APX) are among the most 
important enzymatic antioxidants (Cruz de Carvalho 2008; Farooq 2009; 
Hasanuzzaman 2013; Gill 2010). Plants such as panic grass, rice, tomato, and dune 
grass associated with endophytic bacteria have been reported to use less water, have 
increased biomass than in nonsymbiotic plants. According to Malinowski and 
Beleskey (2000), drought tolerance may be explained by enhanced accumulation of 
solutes in the tissues of endophyte-infected plants as compared to noninfected 
plants, or by reduced leaf conductance and a slowdown of the transpiration stream, 
or due to thicker cuticle formation. Characterization of Trichoderma fungus from 
Theobroma cacao revealed changes in gene expression patterns. This point is toward 
a possibility that Trichoderma spp. could induce tolerance against abiotic stresses, 
possibly including drought (Bailey et al. 2006). Few examples of organisms involved 
in the tolerance against drought are mentioned in Table 11.2.

11.2.6  Nutrient Stress

Endophytes enable the supply of macronutrients and micronutrients to their respec-
tive host. Nitrogen-fixing bacteria metabolize plant root exudates and in turn pro-
vide nitrogen to the plant for amino acid synthesis. Endophytes promote plant 
growth by phosphate solubilization, indole acetic acid (IAA), cytokinins, gibberel-
lin (GAs), siderophores production, and the supply of essential vitamins (Jha 
et al. 2011).

Studies have confirmed the role of endophytes in the biodegradation of plant lit-
ter of their host plants. They initially colonize the plants and facilitate the 

Table 11.2 Microorganisms involved in drought tolerance and associated crop plant

Organisms involved in drought tolerance Crop plant Reference

Proteus penneri, Pseudomonas aeruginosa, and 
Alcaligenes faecalis, Burkholderia phytofirmans, 
Enterobacter sp. FD17

Maize Naseem and Bano 
(2014), Naveed et al. 
(2014)

Azospirillum brasilense, Pseudomonas chlororaphis 
O6

Arabidopsis 
thaliana

Cohen (2015) Cho 
et al. (2008)

Trichoderma spp. Cacao Bailey et al. (2006)
Bacillus cereus AR156, B. subtilis SM21, Serratia sp. 
XY21

Cucumis 
sativa

Wang et al. (2012)

Bacillus licheniformis strain K11 Capsicum 
annum

Lim and Kim (2013)

Rhizobium tropici and Paenibacillus polymyxa 
(co-inoculation)

Phaseolus 
vulgaris

Figueiredo et al. (2008)

Glomus intraradices BEG 123 Phaseolus 
vulgaris

Aroca et al. (2008)
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saprophytic microbes to act on through antagonism thereby increasing litter decom-
position (Terekhova and Semenova 2005). Another study demonstrated that all 
endophytes have the ability to decompose organic components, including lignin, 
cellulose, and hemicellulose. This way they aid in nutrient cycling (He et al. 2012).

As soon as the plants sense the stress stimuli, they exhibit an immediate as well 
as effective response to initiate a complex stress-specific signaling cascade 
(Chinnusamy et al. 2004; Andreasson and Ellis 2010). Synthesis of phytohormones 
such as abscisic acid, jasmonic acid, salicylate and ethylene (Spoel and Dong 2008; 
Qin et  al. 2011; Todaka et  al. 2012) occur in response to the stress stimuli. 
Accumulation of phenolic acids and flavonoids (Singh et  al. 2011; Tiwari et  al. 
2011), elaboration of various antioxidants and osmolytes, and the activation of tran-
scription factors (TFs) are initiated along with the expression of stress-specific 
genes to activate appropriate defense system (Koussevitzky et al. 2008; Atkinson 
et al. 2013; Prasch and Sonnewald 2013). Though many of the mechanisms related 
to stress tolerance in plants are known, our knowledge regarding “on-field response” 
of the plants to simultaneous exposure to multiple stresses is still in its infancy.

The most crucial aspect in studying stress in plants is to understand the different 
levels of molecular machinery and its networks operating under stress conditions. 
This study includes elaborative elucidation of abundance of metabolic pathways 
and their regulatory genes in the plant varieties. Identification of multigenic traits 
involved in stress responses, exploration of linked markers for such genes, and 
investigation of the probabilities to pool out important genes through breeding pro-
grams is the current focus of stress mitigation strategies. Some other strategies that 
have been put forward for the alleviation of abiotic stresses in plants include the use 
of various biomolecules of plant and microbial origin. These approaches open new 
ways, through which we can alleviate the abiotic stresses.

11.3  Abiotic Stresses Mitigation Mediated by Microbes

To overcome this problem, modern agricultural productivity is triggered by huge 
quantities of agrochemicals in the form of synthetic fertilizers and pesticides (Duan 
et al. 2016). Conventional meaning of achieving food safety in this era is by deploy-
ing excessive quantities of expensive and environment-polluting agrochemicals, 
hence creating a big threat to humans and environment (Vanlauwe et al. 2014). A 
great success has been recorded through the use of synthetic agrochemicals but they 
do have some drawbacks. The excessive use of the synthetic agrochemicals has a 
deleterious impact on the well-being of humans as well as proper functioning of the 
ecosystem.

They also hamper the sustainable production of crop yield (Smith and Siciliano 
2015). The intensification of agriculture with synthetic agrochemicals adversely 
affects the ecological balance, reduces the fertility of the soil, contaminates the food 
chain, pollutes the groundwater, reduces microbial diversity, reduces soil pH, and 
leads to increased microbial resistance (Uphoff and Dazzo 2016). To keep up with 

11 Alleviation of Diverse Abiotic Stress in Plants Through the Fungal Communities



258

the increasing population and attend the challenge of feeding the huge population, 
agricultural production needs to be intensified, but this must be done sustainably. 
Other alternatives are urgently needed to be searched and should achieve environ-
mental balance and sustainability. Worldwide scientists in the field of agriculture 
and allied science have been searching sensitive and environment-friendly methods 
for sustainable intensification of agricultural production. The maintenance of the 
ecological balance and increased productivity can be achieved through the intensi-
fication of sustainable agricultural system. This will translate into higher crop yields 
owing to improvements in plant resilience and the ability of plants to adapt to 
changing climatic conditions, as well as to biotic and abiotic stress shocks (Pretty 
et al. 2011). Different environmental stresses limit the agricultural productivity. The 
maximization of the productivity is necessary but should be without causing dam-
age to the ecological balance (Busby et al. 2017; Timmusk et al. 2017).

11.4  Role of PGPM Against Abiotic Stress

Microbes induce local stress reduction response mechanisms in plants to sustain 
under abiotic stress conditions. While on the other hand, they help plants to main-
tain their growth and development through nitrogen fixation, mobilization and/or 
production of nutrients, hormones, and organic phytostimulant compounds. Such 
multilayered action of microorganisms or their communities makes them strong, 
important, viable, and vital options for abiotic stress alleviation strategies in crop 
plants (Rai et  al. 2020). Soil-inhabiting microbes from the genera including 
Achromobacter, Azospirillum, Variovorax, Bacillus, Enterobacter, Azotobacter, 
Aeromonas, Klebsiella, and Pseudomonas have been shown to enhance plant growth 
even under environmental stress conditions (Pishchik et  al. 2002; Hamdia et  al. 
2004; Mayak et al. 2004; Arkhipova et al. 2007; Barriuso et al. 2008a, b; Dardanelli 
et al. 2008; Belimov et al. 2009). Large amounts of growth regulating molecules 
mainly indole acetic acid (IAA) are synthesized in shoot and accumulated in actively 
growing regions of roots (Singh and Yadav 2020; Yadav et al. 2020d).

Auxins such as IAA have growth-stimulating effect that causes root growth ini-
tiation. These molecules are also involved in the development of lateral roots (Kour 
et al. 2020a). It has also been reported that higher amounts of auxins have a negative 
impact on the plant growth (Jackson 1991; Sorty et al. 2016). A similar situation can 
also happen due to increased synthesis of ethylene (Jackson 1991). The rhizosphere 
colonizing bacteria are known to work in a similar manner and produce phytohor-
mones to enhance plant growth (Bowen and Rovira 1991; Timmusk and Wagner 
1999; German et  al. 2000; Belimov et  al. 2007). Many scientists have recorded 
beneficial roles of microorganisms associated with rhizosphere, phyllosphere, phyl-
loplane, and rhizoplane, such as rhizobacteria that promote plant growth (PGPR), or 
microorganisms that promote plant growth (Kour et al. 2020b; Mondal et al. 2020; 
Rana et al. 2019, 2020).
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A cheaper, more eco-friendly and sustainable means of achieving agricultural 
intensification and improving productivity is by adopting the use of microbial inoc-
ulants to enhance the availability and use of vital soil nutrients. Microbial inoculants 
have a beneficial role in mitigating both biotic as well as abiotic stress (Jambon 
et al. 2018). There has been a trend in the use of microbial inoculants in contempo-
rary agricultural production to boost soil fertility and improve the cycling of nutri-
ents, to enhance growth, vitality, and the productivity of crops (Ajilogba and 
Babalola 2019; Enebe and Babalola 2018; Igiehon and Babalola 2018). The use of 
microbial inoculants, including biofertilizers, biopesticides, bioflocculants, biore-
mediation agents, and biostimulants in a sustainable way in order to improve the 
growth of plants, their disease resistant properties, and their fitness and vitality is 
the right way forward.

11.5  Abiotic Stress Tolerance in Plants via Endophytes

Symbiotically conferred abiotic stress tolerance involves at least two mechanisms:

 1. Activation of host stress response systems soon after exposure to stress, allowing 
the plants to avoid or mitigate the impacts of the stress (Redman et al. 1999).

 2. Biosynthesis of anti-stress biochemicals by endophytes (Schulz et al. 2002).

Significant increase in the plant biomass, related growth parameters, assimilation of 
essential nutrients such as potassium, calcium, magnesium, and reduced sodium 
toxicity have been seen in Phoma glomerata and Penicillium sp.-infected cucumber 
plants under sodium chloride and polyethylene glycol–induced salinity and drought 
stress when compared with control plants (Waqas et al. 2012).

11.6  Mechanisms Involved in the Alleviation 
of Abiotic Stress

Induced systemic tolerance (IST) is the term being used for microbe-mediated 
induction of abiotic stress responses. Microbes with their potential intrinsic meta-
bolic and genetic capabilities, contribute to alleviate abiotic stresses in the plants 
(Gopalakrishnan et  al. 2015). Several beneficial roles of rhizospheric microbes 
belonging to the genera such as Pseudomonas (Ali et al. 2009; Sorty et al. 2016), 
Azotobacter (Sahoo et al. 2014a, b), Azospirillum (Creus et al. 2004; Omar et al. 
2009), Rhizobium (Alami et al. 2000; Remans et al. 2008), Pantoea (Amellal et al. 
1998; Sorty et al. 2016), Bacillus (Ashraf et al. 2004; Marulanda et al. 2007; Tiwari 
et al. 2011), Enterobacter (Nadeem et al. 2007; Sorty et al. 2016), Bradyrhizobium 
(Panlada et al. 2013), Methylobacterium (Meena et al. 2012), Burkholderia (Barka 
et al. 2006; Oliveira et al. 2009), Trichoderma (Ahmad et al. 2015) and Cyanobacteria 
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(Singh et al. 2011) in plant growth promotion along with reduction of multiple kinds 
of abiotic stresses have been recorded over the years. One of the viable options that 
can help to trigger crop productivity is through selection, screening and application 
of stress tolerant microorganisms. Enhanced oil content in NaCl-affected Indian 
mustard (Brassica juncea) was reported by Trichoderma harzianum application, 
which improved the uptake of essential nutrients and enhanced accumulation of 
antioxidants, osmolytes, and decreased Na+ uptake (Ahmad et al. 2015).

The rhizosphere consists of fraction of soil in the vicinity of plant roots. It creates 
a soil microenvironment in the proximity of root region where the average count of 
microorganisms is very high as compared to rest of the bulk soil. Therefore, it is 
obvious that plant roots with a diversity of their nutrient, mineral, and metabolite 
composition could be a major factor responsible for attracting microorganisms to 
accumulate and associate alongside. The creation of root exudates by plants is a 
vital factor for microbial colonization within the rhizosphere (Subrahmanyam 
et al. 2020).

Chemotactic movement of microorganisms toward the root exudates is an impor-
tant factor that forces the microbial communities to colonize on the roots. While 
utilizing the rhizosphere microenvironment around plant roots, the PGPRs may act 
as biofertilizers, phytostimulators, or biocontrol agents depending upon their inher-
ent capabilities, mode of interaction, and competitive survival conditions. Plant 
growth is promoted through several direct and indirect mechanisms employed by 
the plant growth promoting microbes (Braud et al. 2009; Hayat et al. 2010).

Direct mechanisms include synthesis of bacterial compounds which triggers the 
uptake of essential nutrients and micronutrients from the soil along with the produc-
tion of plant growth regulators, for example, iron and zinc sequestration, sidero-
phore production, phosphorus and potassium solubilization, plant hormone 
production, and atmospheric nitrogen fixation (Verma et al. 2017).

Indirect mechanisms involve antagonistic activity toward plant pathogenic 
organisms, production of HCN and antifungal compounds, and tolerance against 
abiotic stresses (Thakur et al. 2020). Bacterial metabolites acting as an extracellular 
signal can induce systemic tolerance in plants by subsequently triggering a series of 
internal processes. At the end, the translocated signal is perceived by the distant 
plant cells triggering the activation of the defense mechanism.

Fungi, particularly the mycorrhizal fungi, have a beneficial role as plant growth 
promoters (Devi et al. 2020). These are mainly divided into mycorrhizal fungi and 
vesiculararbuscular mycorrhizal (VAM) fungi. These fungi remain associated with 
the host plant externally (Ectomycorrhizae) or they may form endosymbiotic asso-
ciations (VAM). These fungi form an extensive networking of very fine hyphae, thus 
increasing the overall nutrient uptake by the roots. The root fungal endophyte 
Piriformospora indica has been recorded to induce salt tolerance in barley 
(Baltruschat et al. 2008) and drought tolerance in Chinese cabbage (Sun et al. 2010) 
by increasing the levels of antioxidants and improving many other aspects 
(Franken 2012).
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11.7  Conclusion

Plants associated with beneficial microbes are receiving much attention due to their 
crucial role in enhancing the productivity of the crops. They also provide resistance 
against the stress conditions and are widely known as plant growth promoting 
microbes (PGPMs). Through varied mechanisms, PGPMs provide resistance against 
these environmental stresses. Microorganism-based formulations are the basis of 
“greener revolution in agricultural production.” Therefore, the focus must be to 
bring to the forefront simple biological alternatives to take care of these abiotic and 
biotic stresses. Certain novel, trait-specific microbial strains must be developed to 
effectively combat the challenges presented by abiotic or biotic stresses. Alleviation 
of environmental stress is a major agricultural issue that needs to be addressed at the 
earliest with the use of fungal bioinoculants, the most sustainable approach.
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12.1  Introduction

The agricultural productivity is constantly affected by changing climatic conditions 
and environmental stresses (Kumar et al. 2019). In the countries with developing 
economy, global warming and shortage of food supply have a profound effect on 
crop output and quality (Xu 2016). In Germany, for instance, there has been an 
increase in precipitation by up to 11% during the last 100 years, and summers are 
usually dry with constantly increasing temperature (Bender et al. 2016). Due to this, 
plant productivity is decreased and plants become more susceptible to pathogen 
infection resulting in decreased global agricultural output. Plants show adaptation 
to climatic changes by reduced growth and plant biomass, leading to a reduction in 
plant yield (Dresselhaus and Hückelhoven 2018). Moreover, increased susceptibil-
ity to pathogen attack due to fluctuating climate introduces biotic stress on the 
locally adapted crops (Thakur et al. 2020). Considering the increasing demand for 
food resources and adverse environmental conditions, different strategies for crop 
improvement against environmental stresses were undertaken and comprise tissue 
culture methods, classical breeding programs, genetic manipulations, use of biofer-
tilizers, etc. (Helaly 2017; Kour et al. 2020b). In this direction, efficient methods are 
required to mitigate stress conditions, and a better understanding of the mechanisms 
of how plants respond to various environmental stress is essential.

The greatest challenge in the modern era is to understand and develop scientific 
strategies leading to a more sustainable agricultural production. The annual losses 
in agriculture due to abiotic and biotic stress are high, despite sophisticated defense 
mechanism adopted by plants (Pieterse et al. 2009; Kour et al. 2019a). Recent sta-
tistics emphasize on the need to increase the agricultural output by 70% (Bender 
et al. 2016) with the soil microbial communities particularly the arbuscular mycor-
rhizal fungi (AMF) being an emerging area of research (Thirkell et al. 2017). Plant–
microbe associations are being extensively explored for multiple advantages to the 
associated partners and the environment. The microbial communities associated 
with the plant offer distinct advantages to the plant and the environment by influenc-
ing plant growth and development, conferring tolerance to biotic and abiotic stress 
and nutrient cycling (Singh et al. 2020). A better understanding of the functional 
dynamics and how the fungal communities confer beneficial traits to the plant would 
be an ideal platform for enhancing crop productivity and a more sustainable agricul-
ture. Highlighting the emerging importance of plant-associated fungal communities 
and their multifaceted beneficial role in the ecosystem, the chapter extensively dis-
cusses the functional dynamics of the fungal communities in conferring stress toler-
ance and promoting plant growth. With a brief overview of the composition of 
fungal microbiomes and their mutualistic association with higher plants, a better 
understanding of how these microbial communities confer beneficial traits to plants 
is required for a more sustainable agriculture.
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12.2  Environmental Stresses and Plant Productivity

Plants are constantly exposed to multiple environmental stresses under changing 
climatic conditions (Yadav et  al. 2020c). The biotic and abiotic stress adversely 
affects physiological mechanisms hampering plant growth and productivity (Shao 
et al. 2008; Yadav et al. 2020a, b). While the biotic stress burdens plants by patho-
gen or herbivore infection (Mordecai 2011; Maron and Crone 2006), abiotic stress 
has a huge adverse effect on plant growth and consequently crop yield (Wang et al. 
2003). Figure 12.1 provides a diagrammatic representation of the various biotic and 
abiotic stresses and their influence on plant productivity.

Plants have evolved mechanisms to combat stress and usually include molecular, 
cellular, and physiological adaptations. The effect of biotic and abiotic stress on 
plants is adverse, leading to alteration in physiological mechanism, plant health, and 
productivity (Shao et al. 2008; Singh et al. 2020a). In order to respond in an effec-
tive way against stress factors, plants have developed defense mechanism leading to 
activation of signaling cascades (Abou Qamar et al. 2009; Chinnusamy et al. 2004), 
activation of kinases and specific ion channels (Fraire-Velázquez et al. 2011), phy-
tohormone accumulation (Spoel and Dong 2008; Tiwari et al. 2020), generation of 
reactive oxygen (Laloi et  al. 2004) species besides other defense mechanisms to 
minimize the stress damages and increase plant tolerance.

Fig. 12.1  Environmental stresses (biotic and abiotic) affecting plant growth and productivity
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Considering the increasing demands of global food supply and environment- 
induced stress conditions, a better understanding of how plants respond to biotic 
and abiotic stress would provide a platform to improve crop yield and productivity. 
Moreover, it is essential to study the mechanism and influence of environmental 
stresses on plants, and how these devise strategies to combat stress, a feasible 
approach to monitor multiple damages to plants. Several agricultural management 
practices combined with scientific technologies and research are required to counter 
the adverse effects of ever-changing climatic conditions (Shanker and Shanker 
2016). There has been ongoing research by the Bavarian State Ministry of the 
Environment and Consumer Protection, molecular plant researchers in Bavaria to 
understand the molecular mechanisms of how plants evolved strategies to counter 
biotic and abiotic stresses. Moreover, the research consortia the “BayKlimaFit” net-
work were studying the effect of abiotic stress and the influence of symbiotic asso-
ciations and pathogen on plants (http://www.bayklimafit.de) (Schön 2018). Another 
research project Collaborative Research Centre (CRC) SFB924 was working on 
understanding the mechanism regulating the crop yield and stability in plants (http://
sfb924.wzw.tum.de) (Schwechheimer 2018).

12.2.1  Biotic Stress and Secondary Metabolites

During the course of evolution, plants have evolved specific tolerance mechanisms 
to adapt to adverse environmental conditions. In the atmosphere, plants are con-
stantly exposed to biotic pressure in the form of pathogen attack which causes 
changes in the growth dynamics of the plant. In the existing environment, plants are 
considered as a complex community in association with their associated microbiota 
(Zilber-Rosenberg and Rosenberg 2008). The associated microbial communities 
may show several interactions: from symbiotic to commensal and parasitism and 
may change subject to environmental conditions. Moreover, association of microbes 
with plants confers tolerance to pathogen infection and a key molecular mechanism 
comprising the production of low molecular weight plant metabolites (Dresselhaus 
and Hückelhoven 2018). The plant-associated microbiota exhibit enormous poten-
tial in plant protection and abiotic stress management (Aslam and Ali 2018). 
Table  12.1 provides some key examples of plant–fungal associations and fungal 
mechanisms in stress tolerance.

Recent studies have shown that metabolites from grasses, Benzoxazinoids (BXs), 
are involved in chemical defense against biotic stress; its role in metabolism and 
biological functions was discussed in detail (Niculaes et al. 2018). Benzoxazinoids 
(BXs) comprise the most effective defense compounds in Z. mays and highlight 
agronomic importance; however, their biosynthesis and mechanism remain less 
understood in other crops of the Poaceae family (Dresselhaus and Hückelhoven 
2018). The broad spectrum immunity of the plants against a number of pathogens 
depends on the microbe-associated molecular pattern recognition and host endoge-
nous molecular patterns, respectively. The presence of pattern recognition receptors 
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Table 12.1 Some key examples of plant–fungal associations and fungal mechanisms in stress 
tolerance

Fungal 
species/
association

Stress 
condition

Mechanisms of 
stress tolerance Plant species

Biological 
outcome(s) References

AM fungi Salinity Improved plant 
water content
Chlorophyll content 
increase

Sesbania 
aegyptica
S. grandiflora
Lotus glaber

Mitigate 
salinity stress
Confer plant 
tolerance

Colla et al. 
(2008)
Giri and 
Mukerji 
(2004)
Sannazzaro 
et al. (2006)

AM fungi Salinity Plant growth
Improved yield

Lycopersicum 
esculentum
Gossypium 
spp.
Hordeum 
vulgare

Improved 
fruit yield 
and mineral 
content
Plant growth

Al-Karaki 
and 
Hammad 
(2001)
Feng and 
Zhang 
(2003)
Mohammed 
et al. (2003)

AM fungi Salinity Nitrogenase activity
Improved 
nodulation

Cajanus cajan Increased 
antioxidant 
enzyme 
functions

Garg and 
Manchanda 
(2008)

AM fungi Drought Increased activity of 
glutathione 
reductase and 
ascorbate 
peroxidase for the 
removal of H2O2

Glycine max Alleviation 
of drought- 
induced 
nodule 
senescence

Ruiz-Lozano 
et al. (2001)
Porcel et al. 
(2003)

Endophytic 
fungi

Drought Osmoregulation and 
stomatal regulation
Plant protection 
against drought

Perennial 
ryegrass

Increased 
growth,
drought 
tolerance

Bacon and 
Hill (1996)
Ravel et al. 
(1997)

Endophytic 
fungi

Salinity Increased tolerance 
to high saline levels

L. mollis Salinity 
tolerance

Rodriguez 
et al. (2008)

Endophytic 
fungi

High 
temperatures

Heat tolerance in 
symbiotic 
association

Dichanthelium 
lanuginosum

Heat 
tolerance

Marquez 
et al. (2007)

Endophytic 
fungi

Drought Upregulation of 
drought-responsive 
proteins in leaves

Arabidopsis 
thaliana

Drought 
tolerance

Oelmuller 
et al. (2009)

Endophytic 
fungi

High 
temperatures

Increased tolerance 
to high temperatures

L. esculentum Heat 
tolerance 

Rodriguez 
et al. (2008)

Endophytic 
fungi

Drought Adaptation to and 
mitigation of 
drought conditions

L. esculentum Drought 
tolerance 

Rodriguez 
et al. (2004)
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(PRRs) on cell surface and its molecular mechanism in stress tolerance was reported 
(Ranf 2018). The study defines enormous potential in improving crops for sustain-
ing tolerance to environmental stress, thus leading toward sustainable agriculture.

12.2.2  Abiotic Stress and Fungal Communities

The abiotic stress affecting plant and its management comprise a key challenge fac-
ing agricultural productivity. Abiotic stress arises from an interaction between liv-
ing organism and their environmental factors influencing organism. Moreover, 
abiotic stress has a major impact on crop productivity affecting livelihoods of farm-
ers as well as agricultural output, raising socio-economic concerns. With the con-
stantly changing climatic conditions, plants are exposed to abiotic stresses, namely, 
high temperature, drought, salinity, deficiencies of nutrients in soil, etc., which has 
a detrimental effect on plant growth and productivity (Singh et al. 2020). Additionally, 
plant may be affected by abiotic stress due to presence of high concentrations of a 
toxic substance or the absence of an essential component.

Plant growth-promoting microbes have a beneficial effect and confer stress toler-
ance to the plant under adverse conditions. Moreover, the mycorrhizae promote 
plant health by prevention of nutrient leaching and ecosystem maintenance 
(Srivastava et al. 2012; Rastegari et al. 2020a, b). The mycorrhizal association with 
higher plants provides plant tolerance to drought conditions, salinity nutrient uptake, 
and presence of heavy metals in soil (Henning 1993). Several studies in this area 
demonstrated that arbuscular mycorrhizal (AM) fungi improved plant growth in 
salinity stress enhancing salt tolerance in plants. Besides classical breeding tech-
niques and genetic manipulations, fungal endophytes have also been found to 
improve abiotic stress tolerance in plants. Several studies in the present time have 
shown the role of endophytes in the mitigation of abiotic stresses, namely, drought, 
nutrient deficiency, high temperature, etc. (Shukla et al. 2012; Khan et al., 2011b). 
The AM fungi promote soil nutrient uptake (Smith and Read 2008), protection from 
phyto-pathogens (Newsham et al. 1995), and improves water relations (Auge 2001). 
Crops displaying better compatibility with soil fungi are a remarkable approach to 
enhance sustainable agriculture and improve soil nutrient uptake and utilization by 
plants. Additionally, rhizospheric soil fungi can be manipulated to increase soil 
health and agriculture cropping systems, utilizing crop rotation as an initial strategy 
to increase microbial diversity in soil (Ellouze et al. 2014).

12.3  Plant–Fungal Associations in Nature

In nature, plants are closely associated with microbial communities and co-evolved 
with them during the evolutionary course. The soil-inhabiting fungal communities 
are extensively explored as key components of agro-ecosystems, highlighting 
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beneficial prospects in ecological functions as well as sustainable agriculture (Devi 
et al. 2020a, b). However, to increase crop productivity, it is important to manage 
and promote fungal resources efficiently. Among the soil fungal microbiomes, the 
arbuscular mycorrhizal fungi and the endophytic fungi constitute important 
microbes with beneficial attributes. AM fungi are widespread in occurrence and 
form a mutualistic association with roots of terrestrial plants (Smith and Read 
2008). The AM fungi form several structures and hyphal networks connect the host 
plant with the soil (Friese and Allen 1991). Moreover, AM fungi promote availabil-
ity and uptake of soil nutrients to the plant through extensive mycelial network 
(Smith and Read 2008). The other beneficial attributes of AM fungi include protec-
tion against plant herbivores and pathogens (Gange and West 1994).

12.3.1  Arbuscular Mycorrhizal Fungi

With an aim to increase the agricultural output, the focus has been shifted to arbus-
cular mycorrhizal fungi in recent times. AM fungi were found to be associated with 
most agricultural crops and increase nutrient uptake and plant productivity (Smith 
and Smith 2011). In the ecosystem, AM fungi are involved in multiple biological 
processes, namely, abundant fungal biomass (Higo et al. 2013), plant root coloniza-
tion (Jakobsen and Nielsen 1983), and constitute an important component of the 
ecosystem. These organisms are obligate biotrophs, a host plant being essential for 
completion of their life cycle and nutritional requirement (Lumini et al. 2007). In 
mutualistic association with plants, AM fungi form several structures, namely, 
hyphal coils, spores, arbuscules, etc., for performing necessary functions (Smith 
and Read 2008). Some remarkable functions displayed by AM fungi comprise 
of nutrient cycling (nitrogen, carbon, and phosphorous) (Fitter et al. 2011), plant 
nutrient uptake (Smith and Read 2008), improvement of soil health (Rillig and 
Mummey 2006) in the ecosystem. The AM fungal association with plants are 
affected by several biotic and abiotic factors, namely, the plant community which 
affects the diversity of the AM fungi (Antoninka et al. 2011; Kivlin et al. 2011) and 
abiotic factors, namely, climatic changes (Kivlin et al. 2011), soil structure (Entry 
et al. 2002), availability of nutrients (Dumbrell et al. 2010), etc. However, the agri-
culture management techniques alter the biotic and abiotic factors which have a 
profound effect on AM fungal communities. The broad range of functions displayed 
by AM fungal communities highlights their importance in ecosystem.

12.3.2  Fungal Endophytes

Fungal endophytes define an important group of microbes existing in mutualistic 
association with plants. They colonize the internal tissues of the plant without caus-
ing disease and display asymptomatic infections (Rana et al. 2019). Moreover, the 

12 Portraying Fungal Mechanisms in Stress Tolerance: Perspective for Sustainable…



276

fungal endophytes are generally host specific, but endophytes of genera 
Colletotrichum and Phoma are associated with a diverse range of plants. The fungal 
endophytes carry out significant biological functions, for instance, mineral transfor-
mations, fungal–metal interactions and phytoremediation, a few significant ones in 
the ecosystem (Gadd 2007; Yan et al. 2019). Endophytic fungi are classified into 
two categories: Clavicipitaceous endophytes are seed transmitted in nature and 
symbiotically associate with grasses (Rodriguez et al. 2009). While the other cate-
gory of non-clavicipitaceous endophytes are universal in occurrence, colonizing a 
wide range of plants (Rodriguez et al. 2009). The present era has highlighted the 
increasing significance of endophytic fungi in ecological functions as well as its 
biotechnological potential. Studies have suggested the role of fungal endophytes as 
“biocontrol agents” against plant pathogens (Lahlali and Hijri 2010), abiotic stress 
(Shukla et  al. 2012), plant growth promotion (Barrow and Osuna 2002), besides 
other functions. For maximum utilization of the beneficial association of mutualis-
tic fungi, it is important to understand the population dynamics and functional role 
of fungal communities in agriculture system.

12.3.2.1  Impact of Temperature on Microbial Mechanisms

In a plant–microbe association, an ecological condition impact both the plant and 
the microbe (Fahimipour et  al. 2018). Elevated temperatures influences hyphal 
development and plant colonization of arbuscular mycorrhizal parasites (AMF), 
likely because of quicker plant carbon allotment to the rhizosphere where AMF 
lives. Moreover, other ecological conditions such as high temperatures (e.g., damp-
ness and UV radiation) directly influence the tolerance of organisms; however, it is 
uncertain what happens during functi the mitigation of abiotic stresses, namely onal 
mechanism in planta. This was particularly obvious in the investigation of the 
impact of temperature on type III discharge of P. syringae. While it has been reported 
that high temperatures contrarily influence type III discharge in vitro, expanded sort 
III trans-area of effectors into plants was distinguished during PstDC3000 disease 
in Arabidopsis at high temperatures. Hence, it would be attractive if future research 
to survey natural consequences for microorganisms includes experiments performed 
in planta and utilized new systems (e.g., dual RNA sequencing [RNA-seq]) to 
uncover both host and organism changes. Plant–microbe interaction helps partners 
cope with temperature stress. Some rhizosphere microbes and endophytes could 
mitigate the negative effect of temperature and confer stress tolerance to the 
host plant.

12.3.2.2  Moisture, Drought, and Plant–Pathogen Interaction

Water is fundamental to life on earth. Too little water (submerged defect osmotic 
pressure) or an excessive amount (flooding) can adversely affect plants and thereby 
physiological processes. Plants respond to water deficiency by managing the levels 
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of the phytohormone abscisic acid (ABA). An ABA increase triggers transcriptional 
reconstructing and physiological changes, including closure of stomata to decrease 
transpiration. Studies into Arabidopsis showed that the bacterial pathogen, P. syrin-
gae, or PAMPs (a 22-amino-corrosive epitope of Pseudomonas flagellum), can be 
seen by FLS2, bringing about stomatal closure to decrease pathogen movement.

12.3.2.3  Drought and Plant–Root Microbiome Interaction

Drought comprise a key abiotic stress influencing plant–soil microbiome (Kour 
et al. 2020a). Studies have suggested that dry conditions influenced microbial net-
work structure in all examined compartments (mass soil, rhizosphere, and root 
endosphere). Also, in a study to understand the impact of soil dampness on sorghum 
root microbiome, it was found that while bacterial network remained unchanged, 
dry season decreased microbial communities in rhizosphere and root endosphere. 
On the host side, dry spell pressure causes a movement of root metabolites. 
How these dry conditions influence root biome structure is still to be understood. By 
and by, this intriguing relationship recommends that, under dry season, there might 
be atomic discourse among plants and related microbiome to reshape root micro-
biota so as to adapt to dry season pressure, interpreting this subatomic exchange 
should define crucial information to utilize microbiota to upgrade dry season resis-
tance in crop plants.

12.4  Fungal Microbiomes: Functional Role and Significance

Plants are susceptible to multiple biotic and abiotic stresses which hamper cellular 
functions, affecting plant growth and physiology. Plants have evolved several toler-
ance mechanisms to combat stress, production of phytohormones being an impor-
tant one. Studies have shown that exogenous application of phytohormones 
improves plant growth and metabolism under stress conditions (Egamberdieva et al. 
2017a). Plant-associated microbes were found to positively influence plant growth, 
improve nutritional uptake, biotic and abiotic stress tolerance, and protection against 
pathogens (Cho et al. 2015; Grover et al. 2013). Moreover, beneficial plant–microbe 
associations have several socio-economic implications: plant-associated rhizobac-
teria, mycorrhiza, and endophytic microbes have positive effects on plants (Bonfante 
and Genre 2010), Trichoderma harzianum (saprophytic fungi) aids root coloniza-
tion by arbuscular mycorrhizal fungi and promotes plant growth (Arriagada et al. 
2009a, b). To improve plant growth and confer stress tolerance, the microbes syn-
thesize phytohormones under drought, high-temperature, metal toxicity, and saline 
conditions (Egamberdieva et al. 2017b; Liu et al. 2013; Sgroy et al. 2009). Besides 
phytohormone-producing bacterial species, several fungal species were found to 
produce phytohormones and influence plant physiology. A significant study by 
Contreras-Cornejo et  al. (2009) highlighted that the inoculation of Arabidopsis 
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thaliana with Trichoderma virens leads to root formation and growth and increased 
plant biomass(Contreras-Cornejo et al. 2009). Other beneficial attributes of plant–
fungal associations were seen in a study by Khan et al. (2011a). Aspergillus fumiga-
tus produced phytohormone, gibberellins, and increased shoot biomass of Glycine 
max under salt stress conditions (Khan et al. 2011a). A similar study showed that 
Phoma glomerata, an endophytic fungus in Curcumis melo, improved drought and 
salt tolerance in culture (Waqas et al. 2012). Phytohormone production by fungal 
communities modulate physiological processes in plants; for example, Trichoderma 
asperellum Q1 produced ABA, GA, and IAA, and increased plant biomass of seed-
lings under salt stress (Zhao and Zhang 2015). These studies showed that plant- 
associated fungal communities modulate phytohormone levels and, thereby, stress 
tolerance in plants. Table  12.2 provides a comprehensive account of some key 
examples of fungal microbiomes, functional role, and their significance in 
agroecosystem.

12.5  Soil Fungal Resources and Agriculture Management

12.5.1  Crop Rotation Practices

One of the traditional methods in agriculture employed to increase microbial diver-
sity and resistance to pathogens is crop rotation (Fiers et al. 2012). It is one of the 
most efficient methods and depends on multiple factors, namely, genotype of the 
crop (Garbeva et al. 2004), order and plantation frequency (Gan et al. 2003), soil 
properties (Bernard et al. 2012), etc., and have a different influence on the microbial 
communities. Moreover, plantation of different crops (intercropping) of cereals 
(Kiaer et al. 2009), or mixed plantation of barley, canola, and wheat (Nelson et al. 
2012), promotes crop yield by decreasing diseases. A better management of crops 
can also be achieved by changing the crop frequency over different time periods 
(Gan et al. 2003). Crop rotation practices work better for some crops as compared 
to others; the optimization of sequence would maximize the benefit of crop produc-
tion (Gan et al. 2003). Soil factors also play a crucial role in crop rotation, and affect 
distribution and diversity of fungal communities (Reis Martins et al. 2012). Another 
prospective method for crop management includes crop diversification (Larkin and 
Honeycutt 2006) which promotes diversity of fungal communities. Different organic 
residues by different crops result in diverse crops, increasing fungal biomass and 
diversity (Swer et al. 2011). Moreover, crop diversification hinders the life cycle of 
an associated plant pathogen, thereby decreasing disease outcome and susceptibility 
of plants (Singh et al. 2020b). Crop rotation for longer durations is better tolerant 
and results in better crop yields as compared to short rotations. Several other param-
eters of importance comprise allelopathy of crops (Bernard et al. 2012) and possi-
bilities of pathogens affecting alternative crops (Merz and Falloon 2009).
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12.5.2  Selection of Plant Varieties and Genotype

Selection of plant varieties with better genotypes may be another prospective 
method to increase crop productivity in agriculture. Several studies have shown the 
importance and selection of plant genotypes in protection against phyto-pathogens, 
a key technique in managing soil–fungal resources (Ellouze et al. 2014). The varia-
tion between genotypes accounts for the variation in signaling molecules and fungal 
dynamics which paves way for fungi-compatible crop plant. Moreover, selection of 
plant varieties compatible with fungal communities is an effective approach to 

Table 12.2 Fungal microbiomes: functional role and significance in agroecosystem

Fungal species Biological Functions Ecological role References

Arbuscular 
Mycorrhizal 
fungi

Nutrient and water uptake, 
reducing availability to 
decomposers

Subsoil carbon cycling – 
nutrient additions

Jansa and 
Treseder (2017)

Arbuscular 
Mycorrhizal 
fungi

Increased organic matter 
decomposition

Carbon cycling – litter 
decomposition

Rumpel and 
Kögel-Knabner 
(2011)

Arbuscular 
Mycorrhizal 
fungi

Nutrient mineralization and 
immobilization in soil

Re-allocation of nutrients Kautz et al. 
(2013)

Arbuscular 
Mycorrhizal 
fungi

Phosphorous uptake and 
utilization by plants

Better plant growth,
Phosphorus plant nutrition

Almario et al. 
(2017)

Arbuscular 
Mycorrhizal 
fungi

Improved seed 
establishment and quality of 
T. durum Desf.

Plant growth promotion 
attributes

Colla et al. 
(2015)

Arbuscular 
Mycorrhizal 
fungi

Carbon storage in subsoil Enhanced nutrient 
assimilation

Jansa et al. 
(2006)

Arbuscular 
Mycorrhizal 
fungi

Decreased nutrient leaching 
in soil

Enhanced nutrient uptake 
by the plant

Köhl and van der 
Heijden (2016)

Endophytic 
fungi

Ca3(PO4)2 and rock 
phosphate solubilization

Promotion of plant growth Gupta et al. 
(2007)

Endophytic 
fungi

Phosphate-solubilizing 
activity

Enhanced plant 
development for sustainable 
agriculture

Nath et al. (2012)

PGP endophytes Increased surface area of 
roots and root biomass

Enhanced nutrient uptake 
and use by the plant

Delaplace et al. 
(2015)

Endophytic 
fungi

Polycyclic aromatic 
hydrocarbon (PAH) 
degradation

Environmental
Sustainability via 
bioremediation

Bhatt et al. 
(2002)

Endophytic 
fungi

Disintegration of 
phenanthrene

Bioremediation of 
contaminated soil

Tian et al. (2007)

Endophytic 
fungi

3-D structure changes of 
toxic compounds

Biotransformation of toxic 
compounds,
plant tolerance

Borges et al. 
(2008)
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regulate soil nutrient uptake in ecosystems. Different crop varieties planted in com-
bination in agricultural systems have led to improved crop yield under changing 
climatic conditions and higher productivity (Finckh 2008). Moreover, growing 
mixed crop varieties sustains diverse niches to soil microbes, thus maintaining 
diversified fungal communities in soil (Ustuner et al. 2009).

12.5.3  Microbial Inoculation and Soil Management

In agricultural systems, inoculation of soil with rhizobial inoculants is regarded as 
an effective method to promote soil microbial diversity; however, the competition 
among diverse microbes may not produce the desired outcome. However, using 
rhizobial inoculants in combination may increase the positive effects on plant 
growth and production. Different management practices alter soil properties and 
promote beneficial effects of microbes; soil organic matter (SOM) controls multiple 
functions of the soil and is a prospective approach to manage soil microbes. 
Agricultural practices, namely, tillage practices and using organic content in soil 
influence SOM (Manlay et al. 2007). The addition of organic matter and manure 
aids in the maintenance of soil structure through microbial communities. It improves 
moisture levels and nutrients in soil, improving growth of both fungal communities 
and associated host plants. Studies have demonstrated the beneficial effect of fungi 
as a biocontrol agent in plant growth promotion (Siddiqui and Futai 2009); organic 
supplementation provides nutrients to microbes, having a beneficial effect on crop 
yield and production. Furthermore, organic content promotes SOM accumulation, 
leading to an increase in moisture retention, aeration, and soil porosity (Ellouze 
et al. 2014). The addition of microbial inoculants in soil improves soil health and 
increases plant growth and productivity.

12.6  Plant–Fungal Associations and Sustainable Agriculture

Plant–fungal associations define a significant interaction where the fungal species 
contribute to plant growth and productivity. The ecosystem interacts with the ben-
eficial microbiome in mutualistic, obligate, and various other interactions, demon-
strating multiple socioeconomic applications. Plant-associated microbes contribute 
in multiple ways, namely, plant growth promotion, tolerance to biotic and abiotic 
stress, and resistance against pathogens, defining a key approach in sustainable agri-
culture. Moreover, fungi carry out several functions in soil, such as cycling of nutri-
ents, organic decomposition, promoting plant growth, and pathogen protection, 
among other functions (Kour et al. 2019b). Root-associated endophytic fungi acti-
vate ethylene/jasmonate or salicylic acid pathways (systemic resistance) in plants 
conferring stress tolerance (Lahlali et al. 2014). In soil, the occurrence of fungal 
communities is affected by several parameters, namely, physio-chemical structure 
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of soil, soil type, climatic conditions, and plant species (Tkacz et  al. 2015). 
Moreover, fungal communities present in soil are also influenced by agricultural 
management practices. The microbes inhabiting the rhizosphere produce phytohor-
mones, protect against pathogen attack, and may be niche specific (Mendes et al. 
2011). These microbial communities comprise of  arbuscular mycorrhizal fungi 
(AMF), endophytes, and rhizobial symbionts, respectively.

12.6.1  Arbuscular Mycorrhizal Fungi 
and Sustainable Agriculture

Arbuscular mycorrhizal fungi are widely used as biofertilizers in agriculture and 
beneficial to plant growth and quality improvement. AMF offers several advantages 
to organic farming, contributing to nutritional uptake by plants, protection against 
soil-borne pathogens, tolerance to heavy metals, and salinity, among others (Ryan 
and Graham 2002; Smith and Read 2008). Although mycorrhizal associations are 
frequent in both wild and cultivated plants, plant species classified under Cyperaceae 
and Brassicaceae do not associate with AMF. The formation of arbuscular mycor-
rhizal fungal association with plants is considered as an adaptive mechanism, which 
enhanced nutritional uptake by the plant and nutrient cycling in soil. The mutualistic 
association between fungi and plant confers increased tolerance to biotic and abiotic 
stress to the plant as well as improve soil health (Jeffries et al. 2003). Moreover, the 
AMF performs key functions in sustainable agriculture by maintaining plant growth 
and productivity under adverse environmental conditions (Borie et al. 2010). The 
colonization of AMF with the plant alters root exudates’ chemical composition, 
which further influences microbial diversity. These mechanisms occur in soil con-
stituting “mycorrhizosphere,” and understanding and manipulating these may be a 
prospective approach in sustainable agriculture.

Yang et al. (2015), showed that the association of AMF with the leguminous tree 
(Robinia pseudoacacia) may be useful for restoration of lead (Pb)-contaminated 
soil and phytostabilization. Moreover, symbiotic associations, namely, nitrogen- 
fixing bacteria and mycorrhizal fungi have a positive influence on plant, enhance 
plant growth, and confer stress tolerance, leading to improved soil health and sus-
tainable agriculture. Studies have also suggested the importance of saprophytic 
fungi in biodegradation which promote root colonization by AMF (Arriagada et al. 
2009a, b).
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12.6.2  Trichoderma spp. and Plant Improvement

Displaying a significant role in ecosystem, plants associated with Trichoderma spp. 
were extensively explored for their biotechnological and ecological importance 
(Sharma et al. 2019). Trichoderma spp. are present in rhizosphere and are used as a 
biocontrol agent for phyto-pathogens. Different strains of Trichoderma spp. are 
used for different pathogens; some strains are more effective than others (Harman 
2000). Moreover, plant growth can be improved in Zea mays and ornamental plants, 
and root system can be stabilized to drought by application of Trichoderma spp. 
(Harman 2000). Trichoderma harzianum T-22, decreased the toxic fusaric acid, pro-
duced by Fusarium oxysporum f. sp. gladioli, harmful to the plant (Nosir et  al. 
2011). Biocontrol agents exert several mechanisms for pathogen control, for exam-
ple, Trichoderma enhance or reduce plant secretion of antimicrobial compounds 
(Contreras-Cornejo et al. 2009). Contreras-Cornejo et al. (2009) studied the asso-
ciation of Trichoderma virens with Arabidopsis increases plant biomass and lateral 
root growth by auxin-dependent mechanism. Moreover, Viterbo et al. (2010) sug-
gested that T. asperellum regulates ACC (1-aminocyclopropane-1-carboxylate) 
deaminase, which promotes root growth in Brassica napus. Once the fungus infects 
the root and gains entry, the fungus grows intercellularly. Trichoderma koningii 
restricts the production of phytoalexins by colonizing the roots of Lotus japonicas 
(Masunaka et al. 2011).

Several other species of Trichoderma influence plants in multiple beneficial 
ways, for example, T. harzianum increased blooming rate, germination, and height, 
etc., in chrysanthemum and pepper plants (Chang et al. 1986), treatment of Triticum 
aestivum and Glycine max with Trichoderma and Penicillium increased plant growth 
(Shivanna et al. 1996), plant protection against root pathogens (Chet et al. 1997), 
among other significant studies. Also, Trichoderma strains colonizing rhizosphere 
confer resistance against pathogens, a mechanism similar to systemic acquired 
resistance (SAR), induced systemic resistance (ISR), and other plant mechanisms 
(Harman et  al. 2004). Trichoderma may induce plant defense mechanisms by 
elicitor- mediated response activating pathogenesis-related (PR) proteins, phyto-
alexins, etc., which might increase tolerance to pathogen attack (Dana et al. 2001; 
Elad et al. 2000). Plants also respond to biotic stress by hormone activation and 
signaling (known as JA/ET-mediated ISR), aiding plant resistance against plant 
pathogens (Yoshioka et  al. 2012). Moreover, studies have also shown that 
Trichoderma spp. when present in endophytic association with plants regulate tran-
scriptional changes and protect plants against biotic and abiotic stresses (Bae et al. 
2009; Bailey et al. 2006).
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12.6.3  Piriformospora indica and Plant Growth Promotion

Piriformospora indica, an endophyte, is found associated with orchid plants from 
India. It colonizes roots and promotes plant growth similar to AMF. P. indica is 
found in association with a diverse range of plants and influences plant growth, 
disease resistance, nutrient uptake, etc. (Unnikumar et al. 2013). The association of 
beneficial fungi with higher plants has distinct advantages in the promotion of plant 
growth, leading to a more sustainable approach in agriculture. The fungi classified 
under order Sebacinales are widespread in occurrence and exhibit enormous diver-
sity (Weiss et al. 2011). Moreover, P. indica colonize the roots of terrestrial plants, 
aided by ethylene hormone (Camehl et al. 2010). Several plant species are colo-
nized by the fungi; some key examples are Nicotiana tabacum, Zea mays, Oryza 
sativa, Saccharum officinarum, among other species (Varma et al. 2012). The endo-
phyte, P. indica, is very efficient in enhancing plant growth when used commer-
cially as “biofertilizer.” Its application to increase crop yield may lessen the use of 
chemical fertilizers, tolerance to biotic and abiotic stress in plants and plant growth 
promotion (Unnikumar et al. 2013).

12.7  Directions for Future Research and Outcomes

The present era calls for more targeted and intensive strategies in agriculture to 
provide food to billions across the globe. The plant soil microbiome constitutes an 
integral component of agro-ecosystem having a major ecological impact on agricul-
tural production. In order to enhance the agricultural productivity of ecosystems, it 
is essential to effectively manage fungal communities. In this area, several agricul-
tural practices, namely, plant genotype selection and crop rotation will aid in 
increasing microbial biodiversity and beneficial fungal communities in soil. 
However, several socio-economic challenges exist which accounts for the mainte-
nance of ecological balance and social needs, without affecting crop yields. The 
prime concern is the requirement to increase food supply and to feed the ever- 
increasing world population, besides generating revenues and alternative sources of 
energy without causing adverse effects on environment. Moreover, the two most 
plausible strategies are based on the manipulation of plant–fungal associations or 
the development of soil microbial communities. Since the mechanism of plant–
microbe interaction is still not completely understood, a better understanding is 
required at the physiological levels for profiling large microbial communities (Barea 
2015). One recent advancement in this area focuses on engineering the rhizosphere 
to increase microbial communities and their establishment; however, there are many 
gaps in defining the right strategy in understanding plant–fungal associations. 
Moreover, the manipulation of soil microbiomes and the presence of desired fungal 
communities would benefit sustainable agriculture and reduce the use of agrochem-
icals, thus offering a healthier approach to ecological and social subsistence.
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12.8  Conclusion

With the global rise in population and an increasing demand for food supply, explor-
ing alternative methods for promoting sustainable agriculture is the need of the 
hour. In this context, exploitation of the soil microbial communities and their impact 
on ecosystem is a promising approach highlighting beneficial outcomes. Plant- 
associated fungal communities (particularly arbuscular mycorrhizal fungi) posi-
tively influence plant growth and confer tolerance to biotic and abiotic stress. 
Moreover, fungi carry out several functions in soil, such as cycling of nutrients, 
organic decomposition, promotion of plant growth, and pathogen protection, among 
other functions. These fungal communities promote plant growth and productivity 
employing several mechanisms, contributing to a more organic approach to sustain-
able agriculture, and reducing the need of chemical applications. With depleting 
natural resources and increasing global demand for food supply, exploitation of 
plant–fungal associations defines a highly prospective approach to increase crop 
productivity and global agricultural production.
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13.1  Introduction

Genus Trichoderma is filamentous fungi, which is commonly found in soil and the 
rhizosphere of several plants. This genus has become a popular topic of interest in 
the field of basic research and applied mycology mainly because of the important 
role played by Trichoderma spp. in different ecosystems extending from the agri-
cultural fields and forest soils as well as acting as a substrate for the production of 
mushrooms (Kredics et al. 2018). These species also have the ability to function as 
a biocontrol agent against the plant pathogenic nematodes and fungi by their aggres-
sive mechanisms based on antibiosis, competition, and parasitism. Moreover, the 
biostimulant ability of certain Trichoderma species, which enhances the nutrients 
uptake in plants, improves crop production, induces systematic tolerance, and stim-
ulates the growth of a plant, that can be manipulated for environmental-friendly 
agricultural practices (Contreras-Cornejo et  al. 2016; Gupta et  al. 2014; López- 
Bucio et al. 2015; Nawrocka and Małolepsza 2013).
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The recently evolved concept of Trichoderma spp. as a biocontrol agent proved 
them as an avirulent. They develop a symbiotic relationship with endophytic plants 
through their long-term ability to colonize and disperse in the roots and provide 
plants with several benefits (Lorito et al. 2010). However, in addition to the positive 
side of this genus, some of the Trichoderma species may also have harmful effects 
on agriculture such as green mold disease which affects the mushroom cultivation, 
which destroys the mushroom production (Hatvani et al. 2008; Kredics et al. 2010). 
Ecological fitness is an important trait of Trichoderma to establish in agricultural 
habitats such as soil, plant rhizosphere, or compost materials (Cordier et al. 2007; 
Weaver et al. 2005). The survival and spread of Trichoderma in agricultural habitats 
depend on their interactions with the environmental parameters as well as the biotic 
and abiotic components of the local ecosystem (Kredics et al. 2010).

The primary mode of identity of Trichoderma species is morphology-based but 
that method is not always very accurate to differentiate the diversity of these species 
(Ghazanfar et al. 2018; Zhang et al. 2007). The tremendous trait of this genus is its 
ability to infest other disease-causing mycoflora especially associated with root rot 
and wilt infections (Santoro et al. 2014; Verma et al. 2007). Trichoderma species 
were mentioned as endophytic fungi at the same time as generally located in all 
kinds of soils along with agricultural, orchard as well as forest soil as opportunistic 
plant symbionts (Chaverri et  al. 2011), and commonly considered an efficacious 
competitor of plant pathogens (Kim et al. 2012).

13.2  Trichoderma and Its Biology

The term Trichoderma is derived from the mix of two words, thrix (hair) and derma 
(skin) (Hyder et al. 2017). The species of Trichoderma are ubiquitous invaders of 
cellulosic materials and usually found on the decaying plants and wood as well in 
the plant rhizosphere, where they induce systemic tolerance against pathogens 
(Jaklitsch 2009; Kubicek et al. 2008; Schuster and Schmoll 2010). They are free- 
living filamentous fungi that are widely spread in every environment which makes 
them strong opportunistic colonizers that compete for adaptability and food and act 
as mycoparasites (Hyder et al. 2017).

Members of the genus Trichoderma are often diverse, show a great genetic ver-
satility, and commonly found in various habitats (Samuels 2006; Zhang et al. 2007). 
These species are asexual in nature and exist in harmony with other soil-dwelling 
fungi belonging to the genus Ascomycota (Hypocrea) categorized as imperfect 
fungi (Hassan et al. 2014; Mazrou et al. 2020). Trichoderma species have been eas-
ily isolated from natural soil, decaying plant organic matter, and wood. In different 
nutrient media, Trichoderma spp. growth rate increases and they multiply very fast 
under the optimum range between 25 and 30  °C.  Characterization of produced 
spores/conidia is done by different shades of green, whereas some species harvest 
chlamydospores (Ghazanfar et al. 2018; Guo et al. 2010; Latifian et al. 2007) which 
is a diagnostic tool that is also found in related and unrelated genera such as 
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Myrothecium, Clonostachys, and Aspergillus as well as Penicillium respectively 
(Alvindia and Hirooka 2011). Production of chlamydospores in two species such as 
T. longibrachiatum and T. viride is also observed (Hyder et al. 2017).

Conidiophores of these species are not well defined yet mostly ramified. These 
are comprised of single-celled conidia and phialides present at the edges of branched 
hyphal linkage but cannot be seen on a week old images. Usually, the shape of 
conidia is ellipsoidal to oblong, but in some cases Trichoderma spp. have spherical 
to oval-shaped whereas few have smooth-surfaced conidia, respectively 
(Jaklitsch 2009).

Ecologically, species of Trichoderma are very presiding competitors and have 
the ability to grow in different ecosystems as well in all climatic regions (Antarctica, 
tropical, tundra) (Montero-Barrientos et al. 2011; Mukherjee et al. 2013b) due to 
some specific properties such as strong opportunistic invading nature, fast growth 
rate, prolific production of spores, and powerful manufacturer of antibiotics even in 
the highly modest environment (Akshata et  al. 2018; Montero-Barrientos et  al. 
2011; Schuster and Schmoll 2010). In 2011, marine Trichoderma species were iso-
lated and characterized to assess their potential as halotolerant biocontrol agents, 
and effective results were shown against Rhizoctonia solani inducing systemic 
defense responses in plants (Gal-Hemed et al. 2011).

13.3  Trichoderma: Biodiversity and Abundance

In 1794, Persoon firstly named the fungus Trichoderma and then Tulsane in 1865 
suggested the sexual form of Hypocera species. However, morphologically differ-
entiation between the species assigned to the genus Hypocrea/Trichoderma was 
problematic and challenging. So, it was suggested to lessen the taxonomy and 
nomenclature to simply to a single species, Trichoderma viride. The development in 
the concept of their identification was initiated in 1969, and since then, at least 1100 
Trichoderma/Hypocrea strains have been identified from 75 different molecularly 
characterized and recognized species (Contreras-Cornejo et al. 2016; Druzhinina 
et al. 2011; Samuels 2006; Schuster and Schmoll 2010). Since then, mycoparasites, 
T. virens and T. atroviride formerly known as Gliocladium virens and Hypocrea 
atroviridis and the saprophytic T. reesei (teleomorph Hypocrea jecorina) are the 
most frequently studied species while important differences in their lifestyles were 
revealed by modified and comparative genome analysis (Kubicek et  al. 2011; 
Mukherjee et al. 2013a).

Trichoderma spp. are ubiquitous and found in various ecosystems in different 
climatic regions (Kubicek et al. 2008). Microclimate, substrate availability as well 
as intricate ecological interfaces are some factors which modulate the presence of 
Trichoderma species (Hoyos-Carvajal and Bissett 2011). Moreover, competence, 
metabolic diversity, and high reproductive ability of Trichoderma also help them 
survive in diverse geographical habitats. Many studies on the biodiversity of 
Trichoderma followed the standard/benchmarked culture-based protocol consisting 
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of sample collection, isolation on selective media and their maintenance in the 
growth media or cultures as reported in the previous literature (Chang et al. 2020; 
Filizola et al. 2019; Saravanakumar et al. 2016). Population and diversity of these 
species in cereals crop fields and agricultural ecosystems are affected by several 
biotic and abiotic factors, which include plant species, competition with microbial 
community, physical and chemical properties of soil, application of different fertil-
izers or pesticides (Sharaff et al. 2020; Sharma et al. 2019). Trichoderma spp. can 
be isolated from any type of agricultural fields (Harman 2006).

The rhizosphere is considered as one of the top-notch ecological niches for 
Trichoderma species which are attracted by enriched plant-root acquired nutrient 
exudates and existence of soil-borne fungi as their prey (Druzhinina et al. 2011; 
Yadav et al. 2020a, b). Members of this genus are the most commonly isolated fungi 
which can be easily isolated from the non-rhizosphere and rhizosphere soil than 
phyllo-spheres, as well from the different crop fields from all the climatic regions of 
all continents (Harman et al. 2004b). Table 13.1 highlights the different Trichoderma 
species present in the various habitats.

13.4  Biotechnological Applications

13.4.1  Trichoderma as Biocontrol Agents

Plant diseases are the key source of reducing overall crop yields. There are numer-
ous synthetic products that have been used to control plant infections. However, the 
extensive use of pesticides produces unwanted effects on non-target organisms. 
Therefore, there are serious concerns related to the hazardous effects of the overuse 
of these synthetic chemicals. Eventually, it led to a substantial interest in developing 
eco-friendly methods of biocontrol against plant pathogens. In the early 1930s, 
Trichoderma was identified as one of the most popular biocontrol agents of plant 
pathogens (Gupta et al. 2016; Weindling 1932). Plant rhizosphere is a very competi-
tive environment for indigenous microbes such as Trichoderma. These microbes 
compete for plant nutrients and fight other members to dominate this environment 
using a range of different mechanisms. Plant-associated Trichoderma species use 
mechanisms such as antibiotics production, mycoparasitism, nutrient limitation, 
and cell-wall-targeting lytic enzyme production to dominate over competition 
(Monfil and Casas-Flores 2014). They can also protect their plant host by interfer-
ing with pathogen invasion and triggering plant defense responses such as induced 
systemic resistance against the invading pathogens (Harman et al. 2004a). These 
features make Trichoderma species a very attractive biocontrol agent—organisms 
that can be used to target other unwanted organisms such as plant pests and patho-
gens (Table 13.2).

Trichoderma-based bio-fungicides are successful in agricultural sector and com-
prises of 60% of all the fungal-based products (Thakur et al. 2020). Trichoderma 
spp.-based registered biocontrol products are considered as a novel type of  
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Table 13.2 Biocontrol activities, target plants, and mechanisms of different strains of Trichoderma 
spp., as biocontrol agents

Species Target Plants Mechanisms References

T. harzianum Fusarium 
oxysporum
Meloidogyne 
incognita
Sclerotinia 
sclerotiorum
Fusarium 
graminearum
Fusarium 
moniliforme
Macrophomina 
phaseolina
Ralstonia 
solanacearum
Rhizoctonia solani
Cucumber mosaic 
virus

Cucumber
Okra
Soybean
Maize
Tomato
Sesame
Mango
In vitro

ISR, ROS, Lytic 
enzymes, VOC

Harman et al. (2004a), 
Yang et al. (2011), 
Kumar et al. (2012), 
Mukhtar et al. (2013), 
Stewart and Hill 
(2014), Khaledi and 
Taheri (2016), Yuan 
et al. (2016), Zhang 
et al. (2016), Vitti 
et al. (2016), Gajera 
et al. (2016), 
Saravanakumar et al. 
(2017) and Mahmoud 
and Abdalla (2018)

T. koningii Rhizoctonia solani In vitro Mycoparasitism, 
lytic enzymes

Abdel-Latif and 
Haggag (2010), 
Stewart and Hill 
(2014) and Gajera 
et al. (2016)

T. cremeum Fusarium 
oxysporum
Botrytis cinerea, 
Rhizoctonia solani

Tomato, In 
vitro

Secondary 
metabolite

Vinale et al. (2016) 
and Błaszczyk et al. 
(2017)

T. asperellum Fusarium 
oxysporum
Pythium myriotylum
Phytophthora 
capsici
Thielaviopsis 
paradoxa
Colletotrichum 
gloeosporioides
Phytophthora 
megakarya

In vitro, 
cocoyam, 
pepper, 
pineapple, 
mango, 
cocoa

Lytic enzymes, 
mycoparasitism

Viterbo et al. (2010), 
Wijesinghe et al. 
(2010), Mbarga et al. 
(2012), Segarra et al. 
(2013), de los 
Santos-Villalobos 
et al. (2013), Mbarga 
et al. (2014) and 
El-Komy et al. (2015)

T. hamatum Rhizoctonia solani
Sclerotinia 
sclerotiorum
Phytophthora 
capsici
Botrytis cinerea
F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum
Fusarium 
verticillioides
Fusarium solani

In vitro, 
Arabidopsis 
thaliana, 
Maize, 
Cassava, 
Chili 
Pepper

Secondary 
metabolites, 
mycoparasitism, 
lytic enzymes, 
ROS, ISR

Krause et al. (2001), 
Sobowale et al. 
(2010), Mathys et al. 
(2012), Studholme 
et al. (2013), Gajera 
et al. (2016), da Silva 
et al. (2016), 
Błaszczyk et al. (2017) 
and Chemeltorit et al. 
(2017)

(continued)
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Table 13.2 (continued)

Species Target Plants Mechanisms References

T. virens Fusarium 
moniliforme
Rhizoctonia solani

Mango, 
ryegrass

VOC Harman et al. (2004a), 
Kumar et al. (2012), 
Kandula et al. (2015) 
and Gajera et al. 
(2016)

T. atroviride Rhizoctonia solani
Rhizoctonia solani
Pythium ultimum
Sclerotiniatri 
foliorum
F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum

Cucumber, 
In vitro, 
ryegrass, 
red clover, 
white clover

Mycoparasitism, 
ISR, VOC

Kandula et al. (2015), 
Błaszczyk et al. (2017) 
and Nawrocka et al. 
(2018)

T. brevicrassum Rhizoctonia solani Cucumber Mycoparasitism, 
lytic enzymes

Zhang and Zhuang 
(2020)

T. viride Fusarium 
moniliforme
F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum

Mango; 
in vitro

VOC, 
mycoparasitism

Engelberth et al. 
(2001), Kumar et al. 
(2012), Gajera et al. 
(2016) and Błaszczyk 
et al. (2017)

T.  
pseudokoningii

Tobacco mosaic 
virus
Rhizoctonia solani

Tobacco, In 
vitro

ISR Luo et al. (2010) and 
Gajera et al. (2016)

T. reesei Fusarium
Oxysporum
Pythium ultimum
Sclerotia rolfsii
Sclerotinia 
sclerotiorum

In vitro Abdel-Latif and 
Haggag (2010)

T. citrinoviride F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum

In vitro Błaszczyk et al. (2017)

T. koningiopsis F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum
Fusarium 
flocciferum
Fusarium 
oxysporum

In vitro Secondary 
metabolites

Błaszczyk et al. (2017) 
and Hu et al. (2017)

(continued)
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biocontrol agents (Woo et al. 2006). However, only a few species of Trichoderma 
have been reported for their suitability as biocontrol agents for the agriculture sec-
tor, which are summarized in Table 13.2. T. harzianum is one of the most common 
biopesticides and biofertilizers that are being currently used and commercially 
available (Lorito et al. 2010; Vinale et al. 2006). Trichoderma uses different mecha-
nisms to antagonize phytopathogenic fungi which include direct mycoparasitism, 
antibiosis, competition, and colonization (Howell 2003). The antagonistic potential 
of Trichoderma enables it to be an effective biological control agent as compared to 
the alternative method used to control plant pathogens (Chet 1987).

13.4.2  Plant Growth-Promoting Effects of Trichoderma

The increasing use of chemical fertilizers for agricultural productivity has led to 
serious environmental problems. In nature, different soil-borne bacteria and fungi 
can colonize plant roots and may have beneficial effects on the plant. Trichoderma 
spp. are one of the most studied genera among the classic mycorrhizal fungi, 
Rhizobium bacteria, and other plant-growth-promoting rhizobacteria (PGPR), 
which can stimulate plant growth by suppressing plant diseases (Rastegari et  al. 
2020a, b; Van Wees et al. 2008). Trichoderma form endophytic associations to inter-
act with other microbes in the rhizosphere to protect plants from diseases, thereby 

Table 13.2 (continued)

Species Target Plants Mechanisms References

T.  
longibrachiatum

F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum
Fusarium 
verticillioides

In vitro, 
Maize

Secondary 
metabolites

Błaszczyk et al. (2017) 
and Sobowale et al. 
(2010)

T. longipile F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum

In vitro Błaszczyk et al. (2017)

T. viridescens F. avenaceum
F. culmorum
F. cerealis
F. graminearum
F. temperatum

In vitro Błaszczyk et al. (2017)

T. aureoviride Fusarium solani Cassava Lytic enzymes, 
ROS

da Silva et al. (2016)

ROS reactive oxygen species, ISR induced systemic resistance, VOC volatile organic compounds

13 Trichoderma: Biodiversity, Abundances, and Biotechnological Applications
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influencing plant growth and yield. Plant growth-promoting attributes by the asso-
ciation of plant–microbes involves molecular recognition through a signaling net-
work mediated by the plant hormones jasmonic acid, salicylic acid, and ethylene 
(Subrahmanyam et al. 2020; Tiwari et al. 2020; Van Wees et al. 2008). Trichoderma 
spp. are generally found in the rhizosphere of plants due to the secretion of highly 
hydrated polysaccharides of the root-secreted mucigel layer that encourages the 
growth of the fungi. Trichoderma rhizosphere-competent strains show direct effects 
on plants by increasing their growth potential through nutrient uptake, their rate of 
seed germination, and stimulation of plant defenses against abiotic and biotic dam-
age (Shoresh et al. 2010). Trichoderma facilitates root colonization, increased rate 
of leaf photosynthesis, defense mechanisms, and adherence to the root surface, by 
using plant-derived sucrose and hydrophobins (Vargas et al. 2009). Hydrophobins, 
which are small proteins of the outermost cell wall layer of fungal cell surface, and 
expansin-like proteins of Trichoderma facilitate the adherence to the root surface 
for cell wall development. Trichoderma asperellum produces the class I hydropho-
bin TasHyd1, while Trichoderma harzianum produces plant cell-wall degrading 
enzymes which are involved in active root colonization (Morán-Diez et al. 2009; 
Viterbo and Chet 2006). However, different species of Trichoderma have been 
reported for the production of effectors associated with plant growth promotion, 
which are summarized in Table 13.3.

13.4.3  Trichoderma as a Potential Bioremediators

Accumulation of xenobiotics in soils and water is a worldwide problem. These are 
chemical substances including polyaromatic hydrocarbons (PAHs), pesticides, 
heavy metals, polychlorinated aromatics, solvents, hydrocarbons, and other 
 pollutants that are foreign to the biological system (Tripathi et al. 2013). Removal 
of these contaminants from the environment requires specific physical, chemical, 
and biological methods. However, in nature, fungi are found in all types of soil, 
and have the ability to degrade these recalcitrant pollutants and can be applied as 
an effective tool for bioremediation. Trichoderma spp. are the ubiquitous green 
spore-forming fungi that possess natural resistance mechanisms to these pollut-
ants (Ezzi and Lynch 2005; Harman et al. 2004b; Mulè and Melis 2000). In addi-
tion, Trichoderma spp. also have an extensive enzymatic system with high 
biodegradation potential and are effective in soil colonization (Harman et  al. 
2004a; Lorito et al. 2010). These characteristics make this group of fungi a poten-
tial tool toward bioremediation of toxic pollutants (Sharaff et  al. 2020). Heavy 
metals such as arsenic, cadmium, copper, mercury, manganese, and zinc are 
among the most difficult contaminants to treat and they are increasingly being 
released into the environment (Errasquın and Vazquez 2003; Tripathi et al. 2007). 
Trichoderma use different strategies for the bioremediation of heavy metals 
including biovolatilization, biosorption, bioaccumulation, and phytobial remedia-
tion. Bioremediation of various pollutants using Trichoderma spp. is given in 
Table 13.4.

I. Afzal et al.



303

13.4.4  Biofuel Production

Lignocellulosic biomass is the most abundant renewable energy source, which 
mainly constitute celluloses and hemicelluloses. Enzymatic saccharification of lig-
nocellulosic biomass transformed them into glucose and other fermentable sugars, 
which further converted to biofuel and other chemicals. Biofuel production from 

Table 13.3 Some of the important effectors produced by Trichoderma spp., for plant growth 
promotion

Species Effectors Mechanisms Plants References

T. harzianum Endopolygalacturonase 
ThPG1
SwolleninTasSwo, an 
expansin-like protein
Cysteine-rich protein 
(SSCP)

Plant cell-wall- 
degrading 
enzymes, 
cellulose-binding 
domain, 
proliferation of 
secondary roots

Radish, 
pepper, 
cucumber, 
and tomato

Baker et al. (1984), 
Chang et al. 
(1986), Harman 
(2000), Harman 
et al. (2004a), 
Morán-Diez et al. 
(2009), 
Stergiopoulos and 
de Wit (2009) and 
Halifu et al. (2019)

T. atroviride Cysteine-rich protein 
(SSCP)
Cerato-platanins Sm1/
Epl1
Cysteine-rich protein 
(SSCP)

Protection against 
plant chitinases, 
hydrophobin-like 
SSCP orthologues 
that can induce 
expression of 
defense responses

Cotton, 
maize, 
Arabidopsis

Harman et al. 
(2004b), Seidl 
et al. (2006), 
Stergiopoulos and 
de Wit (2009) and 
Salas-Marina et al. 
(2011)

T. viride Xylanase Xyn2/Eix
Alamethicin (20mer 
peptaibol)
Cysteine-rich protein 
(SSCP)
Jasmonic acid
Salicylic acid
Ethylene

Elicits ET 
biosynthesis and 
hypersensitive 
response, Defense 
response

Tobacco 
plants, lima 
bean, cotton, 
maize

Engelberth et al. 
(2001) and Rotblat 
et al. (2002)

T. asperellum Class I hydrophobin 
TasHyd1
SwolleninTasSwo
Jasmonic acid
Salicylic acid

Colonization of 
plant roots, 
availability of 
phosphorus and 
Fe, defense 
response

Cucumber 
roots, 
Arabidopsis 
root

Altomare et al. 
(1999), Viterbo 
and Chet (2006), 
Segarra et al. 
(2007), Tucci et al. 
(2011) and 
Yoshioka et al. 
(2012)

Trichoderma 
koningii

ABC transport systems Degradation of 
the phenolic 
compounds

Lotus 
japonicus

Masunaka et al. 
(2009), Ruocco 
et al. (2009) and 
Chen et al. (2011)

Trichoderma 
saturnisporum

Rich organic matter Production of 
phytochromes

Tomato, 
pepper, 
cucumber 
seedlings

Marín-Guirao et al. 
(2016)
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lignocellulosic biomass, which is called as the second-generation biofuel, is one of 
the eco-friendly ways to reduce costs on the energy sector as compared to fossil fuel 
(Kour et al. 2019; Rastegari et al. 2019). In addition, this sustainable process will 
reduce global warming effects on human health and environment (Rubin 2008). 
However, the major bottleneck of this process is bioconversion of biomass into fer-
mentable sugars by the process of enzymatic hydrolysis due to the recalcitrant crys-
talline nature of cellulosic fibers. The saccharification of cellulose to glucose is 
catalyzed by cellulases.

In nature, filamentous fungi are the major source of cellulases. Trichoderma 
spp. are ubiquitous in an environment and considered as natural degraders due to 
the presence of the extensive hydrolytic and oxidative enzymatic system. 
Cellulolytic fungi belonging to Trichoderma have been considered as the most 
powerful degraders of cellulosic biomass. T. reesei is one of the most important 
cellulase producers used for industrial purposes for the production of monomeric 
sugar for second- generation biofuel production in biotechnology (Ahamed and 
Vermette 2009; Li et  al. 2013). In T. reesei, cellulases can be divided into  
three major enzyme classes: (i) exoglucanases, (ii) endoglucanases, and  
(iii) β-glucosidases and the whole process of cellulose breakdown occurs  

Table 13.4 Bioremediation of different pollutants by Trichoderma spp

Species Pollutants References

T. viride Cadmium
Lead
Arsenic
Chlorpyrifos
Photodieldrin
Nickel

Tabet and Lichtenstein (1976), Mukherjee and 
Gopal (1996), Srivastava et al. (2011) and Sahu 
et al. (2012)

T. asperellum Arsenic
Cadmium
Lead
Nickel

Hajieghrari (2010), Srivastava et al. (2011), 
Mohsenzadeh and Shahrokhi (2014) and 
Hoseinzadeh et al. (2017)

T. atroviride Organophosphate
Pesticide dichlorvos
Heavy metals

Kredics et al. (2001), Errasquın and Vazquez 
(2003) and Tang et al. (2010)

T. harzianum Arsenic
Copper II
DDT
Dieldrin
Endosulfan
Penta-chloro-nitro- benzene
Penta-chloro- phenol
Chlorpyrifos
Photodieldrin
Cadmium

Tabet and Lichtenstein (1976), Katayama and 
Matsumura (1993), Mukherjee and Gopal 
(1996), Arriagada et al. (2009), Mishra and 
Nautiyal (2009), Ting and Choong (2009), 
Mohsenzadeh and Shahrokhi (2014) and 
Hoseinzadeh et al. (2017)

T. virens Aromatic amines (AA) Cocaign et al. (2013)
T. reesei Diesel- contaminated soil

Aromatic amines (AA)
Van Gestel et al. (2003), Mishra and Nautiyal 
(2009), Hajieghrari (2010) and Cocaign et al. 
(2013)

T. tomentosum Cadmium Mohsenzadeh and Shahrokhi (2014)
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simultaneously. Lignocellulose degradation mechanisms in T. reesei provide 
information on genes responsible for the plant cell wall degradation (Kubicek 
et  al. 2009; Martinez et  al. 2008). Moreover, T. reesei provides an alternative 
approach to improve biofuel production by the help of cellulases and hemicellu-
lases using agricultural waste products (Schuster and Schmoll 2010). The genus 
of Trichoderma is so promising that T. reesei is commercially used for the produc-
tion of cellulolytic and hemolytic enzymes, for the improved production of sec-
ond-generation biofuels. Proteomics analysis is an important tool to understand 
the biomass degradation mechanisms using different substrates to improve 
Trichoderma potential in biofuel production. Moreover, through proteomics- 
based approach, multiple carbohydrate-active enzymes present in Trichoderma 
genus are identified, which opens multiple perspectives in the development of 
low-cost lignocellulose degrading enzyme systems (Cologna et al. 2018).

13.4.5  Production of Heterologous Protein

In nature, filamentous fungi are resourceful cell factories and among them, T. reesei 
is generally regarded as safe and often used for the expression of heterologous pro-
tein (Adrio and Demain 2003; Nevalainen et al. 1994, 2005). Heterologous protein 
production and industrial production of calf chymosin from T. reesei have started 
more than 20 years ago (Harkki et al. 1989; Uusitalo et al. 1991). Afterward, the 
expression of several enzymes and immunologically active antibodies in T. reesei 
has been achieved (Nyyssönen et al. 1993). Presently, T. reesei is one of the most 
important filamentous fungi used for the production of heterologous protein 
(Nevalainen et al. 2005; Penttilä 1998). In different biotechnological applications, 
promoters from Trichoderma spp. are often used for heterologous protein produc-
tion based on the efficient expression and regulation of cellulase genes (Keränen 
and Penttilä 1995; Penttilä 1998; Schmoll and Kubicek 2003).

13.4.6  Industrial Applications of Trichoderma Enzymes

The current biotechnological industrial applications of Trichoderma enzymes are 
in the textile industry, paper, and pulp, in food-processing and feed industries, 
detergent industry, in biomass hydrolysis, and some environmental applications 
(Fig.  13.1). Trichoderma spp. have been extensively used for the production of 
food additives, to improve the brewing process by using β-glucanases, as macerat-
ing enzymes in fruit juice production by using pectinases, cellulases, and hemicel-
lulases, as in feed additives (xylanases) (Blumenthal 2004; Schuster and Schmoll 
2010). In addition, Trichoderma spp. produced industrially important metabolites 
used as food additives, one of the example is 6-pentyl-α-pyrone with coconut-like 
aroma, produced from T. viride with antibiotic properties (Oda et  al. 2009). 
Mutanase produced from T. harzianum can be used in toothpaste to prevent 
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 accumulation of the polysaccharide mutan in dental plaque (Wiater et al. 2005). 
One of the Trichoderma spp., T. atroviride used in pharmaceutical industry for the 
production of camptothecin (CPT), as an anticancer drug (Scharf et al. 2016). The 
commercially available enzymes of Trichoderma include Cellubrix, Econase, 
Crystalzyme, Pulpzyme, and Ecopulp, and these reflect the targeted uses of enzyme 
products (Benítez Fernández et al. 2004; Buchert et al. 1998; Galante et al. 1998).

13.5  Conclusion

Trichoderma is an outstanding organism concentrating on its basic and applied 
aspects and demand for sustainable development. The use of Trichoderma as a bio-
logical control agent for plant growth promotion and for the production of enzymes 
and expression of heterologous proteins, make these fungi as a versatile model 
organism. In addition, Trichoderma spp. have resistance mechanisms for heavy 
metals in polluted soil and water, thus making them a preferred choice for 
bioremediation.

References

Abdel-Latif HAM, Haggag WM (2010) Mutagenesis and inter-specific protoplast fusion between 
Trichoderma koningii and Trichoderma reesei for biocontrol improvement. Am J Sci Ind Res 
1:504–515

Adrio JL, Demain AL (2003) Fungal biotechnology. Int Microbiol 6:191–199
Ahamed A, Vermette P (2009) Effect of culture medium composition on Trichoderma reesei’s 

morphology and cellulase production. Bioresour Technol 100:5979–5987

Fig. 13.1 Overview of biotechnological applications of Trichoderma

I. Afzal et al.



307

Akshata LT, Guldekar DD, Potdukhe SR, Kale SS, Kumar A (2018) Shelf life study and antago-
nistic activity of Trichoderma viride in different oil formulations. Int J Curr Microbiol App Sci 
7:225–230

Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and 
micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum 
Rifai 1295–22. Appl Environ Microbiol 65:2926–2933

Alvindia DG, Hirooka Y (2011) Identification of Clonostachys and Trichoderma spp. from banana 
fruit surfaces by cultural, morphological and molecular methods. Mycology 2:109–115

Arriagada C, Aranda E, Sampedro I, Garcia-Romera I, Ocampo JA (2009) Contribution of the 
saprobic fungi Trametes versicolor and Trichoderma harzianum and the arbuscular mycorrhi-
zal fungi Glomus deserticola and G. claroideum to arsenic tolerance of Eucalyptus globulus. 
Bioresour Technol 100:6250–6257

Baker R, Elad Y, Chet I (1984) The controlled experiment in the scientific method with special 
emphasis on biological control. Phytopathology 74:1019–1021

Benítez Fernández CT, Rincón Romero AM, Limón Mirón MD, Carballo Codón A (2004) 
Biocontrol mechanisms of Thrichoderma strains. Int Microbiol 7(4):249–260

Bissett J, Szakacs G, Nolan CA, Druzhinina I, Gradinger C, Kubicek CP (2003) New species of 
Trichoderma from Asia. Can J Bot 81:570–586

Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M (2011) 
Species diversity of Trichoderma in Poland. J Appl Genet 52:233–243

Błaszczyk L, Strakowska J, Chełkowski J, Gąbka-Buszek A, Kaczmarek J (2016) Trichoderma 
species occurring on wood with decay symptoms in mountain forests in Central Europe: 
genetic and enzymatic characterization. J Appl Genet 57:397–407

Błaszczyk L, Basińska-Barczak A, Ćwiek-Kupczyńska H, Gromadzka K, Popiel D, Stȩpień Ł 
(2017) Suppressive effect of Trichoderma spp. on toxigenic Fusarium species. Pol J Microbiol 
66:85–100

Blumenthal CZ (2004) Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, 
and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations 
derived from the three fungi. Regul Toxicol Pharmacol 39(2):214–228

Buchert J, Oksanen J, Pere J, Siika-Aho M, Suurnäkki A, Viikari L (1998) Applications of 
Trichoderma reesei enzymes in the pulp and paper industry. In: Harman GE, Kubicek CP (eds) 
Trichoderma and Gliogladium, vol 2. Taylor and Francis, London, pp 343–363

Chang YC, Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the pres-
ence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

Chang Y, Miao RUI, Baloch AM, Yao Z, Baloch AW, Jiang C, Liu Z, Zhang R (2020) Primary 
investigation of the diversity and distribution characteristics of Trichoderma spp. in the specific 
soil of volcanic forest park and volcano platform. Pak J Bot 52:335–343

Chaverri P, Gazis RO, Samuels GJ (2011) Trichoderma amazonicum, a new endophytic species on 
Heveabrasiliensis and H. guianensis from the Amazon basin. Mycologia 103:139–151

Chemeltorit PP, Mutaqin KH, Widodo W (2017) Combining Trichoderma hamatum THSW13 and 
Pseudomonas aeruginosa BJ10–86: a synergistic chili pepper seed treatment for Phytophthora 
capsici infested soil. Eur J Plant Pathol 147:157–166

Chen L, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum 
SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucum-
bers. Appl Microbiol Biotechnol 89:1653–1663

Chet I (1987) Trichoderma: application, mode of action, and potential as biocontrol agent of 
soilborne plant pathogenic fungi. In: Innovative approaches to plant disease control. Wiley, 
New York, pp 137–160

Cocaign A, Bui L-C, Silar P, Tong LCH, Busi F, Lamouri A, Mougin C, Rodrigues-Lima F, Dupret 
J-M, Dairou J (2013) Biotransformation of Trichoderma spp. and their tolerance to aromatic 
amines, a major class of pollutants. Appl Environ Microbiol 79:4719–4726

Cologna NM, Gómez-Mendoza DP, Zanoelo FF, Giannesi GC, Cavalieri NG, Moreira LRS, 
FerreiraFilho EX, Ricart CAO (2018) Exploring Trichoderma and Aspergillus secretomes: 
proteomics approaches for the identification of enzymes of biotechnological interest. Enzym 
Microb Technol 109:1–10

13 Trichoderma: Biodiversity, Abundances, and Biotechnological Applications



308

Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of 
Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. 
FEMS Microbiol Ecol 92:fiw036

Cordier C, Edel-Hermann V, Martin-Laurent F, Blal B, Steinberg C, Alabouvette C (2007) SCAR- 
based real time PCR to identify a biocontrol strain (T1) of Trichodermaatroviride and study its 
population dynamics in soils. J Microbiol Methods 68:60–68

da Silva JAT, de Medeiros EV, da Silva JM, Tenório D de A, Moreira KA, Nascimento TCE da S, 
Souza-Motta C (2016) Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 
6656 are biocontrol agents that act against cassava root rot through different mechanisms. J 
Phytopathol 164:1003–1011

Danielson RM, Davey CB (1973) The abundance of Trichoderma propagules and the distribution 
of species in forest soils. Soil Biol Biochem 5:485–494

de los Santos-Villalobos S, Guzmán-Ortiz DA, Gómez-Lim MA, Délano-Frier JP, de Folter 
S, Sánchez-García P, Peña-Cabriales JJ (2013) Potential use of Trichoderma asperellum 
(Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in 
mango (Mangifera indica L.). Biol Control 64:37–44

Dou K, Gao J, Zhang C, Yang H, Jiang X, Li J, Li Y, Wang W, Xian H, Li S (2019) Trichoderma 
biodiversity in major ecological systems of China. J Microbiol 57:668–675

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, 
Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of 
opportunistic success. Nat Rev Microbiol 9:749–759

El-Komy MH, Saleh AA, Eranthodi A, Molan YY (2015) Characterization of novel trichoder-
maasperellum isolates to select effective biocontrol agents against tomato fusarium wilt. Plant 
Pathol J 31:50–60

Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel- 
forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk 
between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377

Errasquın EL, Vazquez C (2003) Tolerance and uptake of heavy metals by Trichodermaatroviride 
isolated from sludge. Chemosphere 50:137–143

Ezzi MI, Lynch JM (2005) Biodegradation of cyanide by Trichoderma spp. and Fusarium spp. 
Enzym Microb Technol 36:849–854

Filizola PRB, Luna MAC, de Souza AF, Coelho IL, Laranjeira D, Campos-Takaki GM (2019) 
Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and 
potential of biocontrol against Fusarium strains. Microb Cell Factories 18:89

Gajera HP, Hirpara DG, Katakpara ZA, Patel SV, Golakiya BA (2016) Molecular evolution and 
phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic 
Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. Infect Genet Evol 
45:383–392

Galante YM, De Conti A, Monteverdi R (1998) Application of Trichoderma enzymes in the textile 
industry. In: Harman GF, Kubicek CP (eds) Trichoderma & gliocladium: enzymes, biological 
control and commercial applications. Taylor and Francis, London, pp 311–326

Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O (2011) 
Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for 
arid-zone agriculture. Appl Environ Microbiol 77:5100–5109

Ghazanfar MU, Raza M, Raza W, Qamar MI (2018) Trichoderma as potential biocontrol agent, its 
exploitation in agriculture: a review. Plant Prot 2:109–135

Gherbawy Y, Druzhinina I, Shaban GM, Wuczkowsky M, Yaser M, El-Naghy MA, Prillinger H-J, 
Kubicek CP (2004) Trichoderma populations from alkaline agricultural soil in the Nile valley, 
Egypt, consist of only two species. Mycol Prog 3:211–218

Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) 
Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus 
sp. L14. Bioresour Technol 101:8599–8605

Gupta VG, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy M (2014) 
Biotechnology and biology of Trichoderma. Newnes

I. Afzal et al.



309

Gupta VK, Sharma GD, Tuohy MG, Gaur R (2016) The handbook of microbial bioresources. 
CABI, Wallingford

Hagn A, Pritsch K, Schloter M, Munch JC (2003) Fungal diversity in agricultural soil under differ-
ent farming management systems, with special reference to biocontrol strains of Trichoderma 
spp. Biol Fertil Soils 38:236–244

Hajieghrari B (2010) Effect of some metal-containing compounds and fertilizers on mycoparasite 
Trichoderma species mycelia growth response. Afr J Biotechnol 9:4025–4033

Halifu S, Deng X, Song X, Song R (2019) Effects of two Trichoderma strains on plant growth, 
rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual 
seedlings. Forests 10:758

Harkki A, Uusitalo J, Bailey M, Penttilä M, Knowles JKC (1989) A novel fungal expression sys-
tem: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/
Technology 7:596–603

Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research 
on Trichoderma harzinum T-22. Plant Dis 84:377–393

Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 
96:190–194

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species—opportunis-
tic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

Harman GE, Lorito M, Lynch JM (2004b) Uses of Trichoderma spp. to alleviate or remediate soil 
and water pollution. Adv Appl Microbiol 56:313–330

Hassan MM, Gaber A, El-Hallous EI (2014) Molecular and morphological characterization of 
Trichoderma harzianum from different Egyptian soils. Wulfenia J 21:80–96

Hatvani L, Kocsubé S, Manczinger L, Antal Z, Szekeres A, Druzhinina IS, Komoń-Zelazowska 
M, Kubicek CP, Nagy A, Vágvölgyi C (2008) The green mould disease global threat to the 
cultivation of oyster mushroom (Pleurotus ostreatus): a review. In: Gruening M (ed) Science 
and Cultivation of Edible and Medicinal Fungi: Mushroom Science XVII, Proceedings of the 
17th Congress of the International Society for Mushroom Science. South African Mushroom 
Farmers’ Association, Cape Town, pp 485–495

Hoseinzadeh S, Shahabivand S, Aliloo AA (2017) Toxic metals accumulation in Trichoderma 
asperellum and T. harzianum. Microbiology 86:728–736

Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of 
plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

Hoyos-Carvajal L, Bissett J (2011) Biodiversity of Trichoderma in neotropics. In: Dynamical 
processes of biodiversity-case studies of evolution and spatial distribution. InTech, 
pp 303–320

Hu M, Li QL, Bin YY, Liu K, Miao CP, Zhao LX, Ding ZT (2017) Koninginins R-S from the 
endophytic fungus Trichoderma koningiopsis. Nat Prod Res 31:835–839

Hyder S, Inam-ul-Haq M, Bibi S, Humayun A, Ghuffar S, Iqbal S (2017) Novel potential of 
Trichoderma spp. as biocontrol agent. J Entomol Zool Stud 5:214–222

Jaklitsch WM (2009) European species of Hypocrea part I. The green-spored species. Stud Mycol 
63:1–91

Kandula DRW, Jones EE, Stewart A, McLean KL, Hampton JG (2015) Trichoderma spe-
cies for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Tech 
25:1052–1069

Katayama A, Matsumura F (1993) Degradation of organochlorine pesticides, particularly endosul-
fan, by Trichoderma harzianum. Environ Toxicol Chem Int J 12:1059–1065

Keränen S, Penttilä M (1995) Production of recombinant proteins in the filamentous fungus 
Trichoderma reesei. Curr Opin Biotechnol 6:534–537

Khaledi N, Taheri P (2016) Biocontrol mechanisms of Trichoderma harzianum against soybean 
charcoal rot caused by Macrophomina phaseolina. J Plant Prot Res 56:21–31

Kim C-S, Park M-S, Kim S-C, Maekawa N, Yu S-H (2012) Identification of Trichoderma, a com-
petitor of shiitake mushroom (Lentinula edodes), and competition between Lentinula edodes 
and Trichoderma species in Korea. Plant Pathol J 28:137–148

13 Trichoderma: Biodiversity, Abundances, and Biotechnological Applications



310

Kour D, Rana KL, Yadav N, Yadav AN, Rastegari AA, Singh C et al (2019) Technologies for Biofuel 
Production: current development, challenges, and future prospects. In: Rastegari AA, Yadav 
AN, Gupta A (eds) Prospects of renewable bioprocessing in future energy systems. Springer 
International Publishing, Cham, pp 1–50. https://doi.org/10.1007/978-3-030-14463-0_1

Krause MS, Madden LV, Hoitink HAJ (2001) Effect of potting mix microbial carrying capacity on 
biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown and root rot of 
poinsettia. Phytopathology 91:1116–1123

Kredics L (2012) Genetic and biochemical diversity among Trichoderma isolates in soil samples 
from winter wheat fields of the Great Hungarian Plain. Acta Biol Szegediensis 56:141–149

Kredics L, Antal Z, Manczinger L, Nagy E (2001) Breeding of mycoparasitic Trichoderma strains 
for heavy metal resistance. Lett Appl Microbiol 33:112–116

Kredics L, Garcia Jimenez L, Naeimi S, Czifra D, Urbán P, Manczinger L, Vágvölgyi C, Hatvani L 
(2010) A challenge to mushroom growers: the green mould disease of cultivated champignons. 
Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 1:295–305

Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS, 
Vágvölgyi C (2018) Molecular tools for monitoring Trichoderma in agricultural environments. 
Front Microbiol 9:1599

Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and meta-
bolic diversity of Trichoderma: a case study on south-east Asian isolates. Fungal Genet Biol 
38:310–319

Kubicek CP, Komon-Zelazowska M, Druzhinina IS (2008) Fungal genus Hypocrea/Trichoderma: 
from barcodes to biodiversity. J Zhejiang Univ Sci B 9:753–763

Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strate-
gies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 
2:19

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger 
S, Casas-Flores S, Horwitz BA, Mukherjee PK (2011) Comparative genome sequence anal-
ysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 
12:R40

Kumar P, Misra AK, Modi DR, Gupta VK (2012) Biocontrol potential of Trichoderma species 
against mango malformation pathogens. Arch Phytopathol Plant Prot 45:1237–1245

Latifian M, Hamidi-Esfahani Z, Barzegar M (2007) Evaluation of culture conditions for cellu-
lase production by two Trichoderma reesei mutants under solid-state fermentation conditions. 
Bioresour Technol 98:3634–3637

Li C, Yang Z, Zhang RHC, Zhang D, Chen S, Ma L (2013) Effect of pH on cellulase production 
and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J 
Biotechnol 168:470–477

López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploit-
ing the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: 
from’omics to the field. Annu Rev Phytopathol 48:395–417

Luo Y, Zhang D-D, Dong X-W, Zhao P-B, Chen L-L, Song X-Y, Wang X-J, Chen X-L, Shi M, 
Zhang Y-Z (2010) Antimicrobial peptaibols induce defense responses and systemic resistance 
in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126

Mahmoud AF, Abdalla OA (2018) Biocontrol efficacy of Trichoderma spp. against sesame wilt 
caused by Fusarium oxysporum f. sp. sesami. Arch Phytopathol Plant Prot 51:277–287

Marín-Guirao JI, Rodríguez-Romera P, Lupión-Rodríguez B, Camacho-Ferre F, Tello-Marquina 
JC (2016) Effect of Trichoderma on horticultural seedlings’ growth promotion depending on 
inoculum and substrate type. J Appl Microbiol 121:1095–1102

Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, 
Coutinho PM, Cullen D (2008) Genome sequencing and analysis of the biomass-degrading 
fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

Masunaka A, Hyakumachi M, Takenaka S (2009) Plant growth-promoting fungus, 
Trichodermakoningi suppresses isoflavonoid phytoalexin vestitol production for colonization 
on/in the roots of Lotus japonicus. Microbes Environ 26:128–134

I. Afzal et al.

https://doi.org/10.1007/978-3-030-14463-0_1


311

Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue 
BPA, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis 
thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 
3:108

Mazrou YSA, Makhlouf AH, Elseehy MM, Awad MF, Hassan MM (2020) Antagonistic activity 
and molecular characterization of biological control agent Trichoderma harzianum from Saudi 
Arabia. Egypt J Biol Pest Control 30:4

Mbarga JB, Ten Hoopen GM, Kuaté J, Adiobo A, Ngonkeu MEL, Ambang Z, Akoa A, Tondje PR, 
Begoude BAD (2012) Trichoderma asperellum: a potential biocontrol agent for Pythium myri-
otylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. 
Crop Prot 36:18–22

Mbarga JB, Begoude BAD, Ambang Z, Meboma M, Kuate J, Schiffers B, Ewbank W, Dedieu L, 
Ten Hoopen GM (2014) A new oil-based formulation of Trichoderma asperellum for the bio-
logical control of cacao black pod disease caused by Phytophthora megakarya. Biol Control 
77:15–22

Mghalu MJ, Tsuji T, Kubo N, Kubota M, Hyakumachi M (2007) Selective accumulation of 
Trichoderma species in soils suppressive to radish damping-off disease after repeated inocu-
lations with Rhizoctonia solani, binucleate Rhizoctonia and Sclerotium rolfsii. J Gen Plant 
Pathol 73:250–259

Mishra A, Nautiyal CS (2009) Functional diversity of the microbial community in the rhizosphere 
of chickpea grown in diesel fuel-spiked soil amended with Trichoderma ressei using sole- 
carbon- source utilization profiles. World J Microbiol Biotechnol 25:1175–1180

Mohsenzadeh F, Shahrokhi F (2014) Biological removing of cadmium from contaminated media 
by fungal biomass of Trichoderma species. J Environ Health Sci Eng 12:102

Monfil VO, Casas-Flores S (2014) Molecular mechanisms of biocontrol in Trichoderma spp. and 
their applications in agriculture. In: Biotechnology and biology of Trichoderma. Elsevier, 
Amsterdam, pp 429–453. https://doi.org/10.1016/B978-0-444-59576-8.00032-1

Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Monte E (2011) Functional analysis 
of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of 
reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ 
Microbiol 77:3009–3016

Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) 
The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant benefi-
cial interaction. Mol Plant-Microbe Interact 22:1021–1031

Mukherjee I, Gopal M (1996) Degradation of chlorpyrifos by two soil fungi Aspergillus niger and 
Trichoderma viride. Toxicol Environ Chem 57:145–151

Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013a) Trichoderma 
research in the genome era. Annu Rev Phytopathol 51:105–129

Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (2013b) Trichoderma in agri-
culture, industry and medicine: an overview. In: Trichoderma biology and applications. CAB 
International, Boston, pp 1–9

Mukhtar T, Arshad Hussain M, Zameer Kayani M (2013) Biocontrol potential of Pasteuria pen-
etrans, Pochonia chlamydosporia, Paecilomyces lilacinus and Trichoderma harzianum against 
Meloidogyne incognita in okra. Phytopathol Mediterr 52:66–76

Mulè P, Melis P (2000) Methods for remediation of metal-contaminated soils: preliminary results. 
Commun Soil Sci Plant Anal 31:3193–3204

Naeimi S, Okhovvat SM, Javan-Nikkhah M, Vágvölgyi C, Khosravi V, Kredics L (2010) Biological 
control of Rhizoctonia solani AG1-1A, the causal agent of rice sheath blight with Trichoderma 
strains. Phytopathol Mediterr 49:287–300

Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. 
Biol Control 67:149–156

Nawrocka J, Małolepsza U, Szymczak K, Szczech M (2018) Involvement of metabolic compo-
nents, volatile compounds, PR proteins, and mechanical strengthening in multilayer protec-
tion of cucumber plants against Rhizoctonia solani activated by Trichodermaatroviride TRS25. 
Protoplasma 255:359–373. https://doi.org/10.1007/s00709-017-1157-1

13 Trichoderma: Biodiversity, Abundances, and Biotechnological Applications

https://doi.org/10.1016/B978-0-444-59576-8.00032-1
https://doi.org/10.1007/s00709-017-1157-1


312

Nevalainen H, Suominen P, Taimisto K (1994) On the safety of Trichoderma reesei. J Biotechnol 
37:193–200

Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous 
fungi. Trends Biotechnol 23:468–474

Nyunt KM, Thu MK, San Aye S, Myint KT (2020) Characterization of Trichoderma species iso-
lated from different ecosystems in Myanmar. Plant Pathol 5:47–58

Nyyssönen E, Penttilä M, Harkki A, Saloheimo A, Knowles JKC, Keränen S (1993) Efficient pro-
duction of antibody fragments by the filamentous fungus Trichoderma reesei. Bio/Technology 
11:591–595

Oda S, Isshiki K, Ohashi S (2009) Production of6-pentyl-alpha-pyrone with Trichoderma atro-
viride and its mutant ina novel extractive liquid-surface immobilization (Ext-LSI) system. 
Process Biochem 44(6):625–630

Penttilä M (1998) Heterologous protein production in Trichoderma. Trichoderma Gliocladium 
2:365–382

Pięta D, Patkowska E (2003) The role of antagonistic fungi and bacteria limiting the occurrence 
of some phytopathogens inhabiting the soybean soil environment. Electr J Pol Agric Univ Ser 
Hortic 6(2):415–426

Rastegari AA, Yadav AN, Gupta A (2019) Prospects of renewable bioprocessing in future energy 
systems. Springer, Cham

Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotech-
nology and bioengineering: trends of microbial biotechnology for sustainable agriculture and 
biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotech-
nology and bioengineering: trends of microbial biotechnology for sustainable agriculture and 
biomedicine systems: perspectives for human health. Elsevier, Amsterdam

Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essen-
tial component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055

Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845
Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of 

a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane 
pump in the interaction with different plant-pathogenic fungi. Mol Plant-Microbe Interact 
22:291–301

Sahu A, Mandal A, Thakur J, Manna MC, Rao AS (2012) Exploring bioaccumulation efficacy of 
Trichoderma viride: an alternative bioremediation of cadmium and lead. Natl Acad Sci Lett 
35:299–302

Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, 
Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes 
growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic 
acid pathways. Eur J Plant Pathol 131:15–26

Samuels GJ (2006) Trichoderma: systematics, the sexual state, and ecology. Phytopathology 
96:195–206

Santoro PH, Cavaguchi SA, Alexandre TM, Zorzetti J, Neves PMOJ (2014) In vitro sensitivity of 
antagonistic Trichoderma atroviride to herbicides. Braz Arch Biol Technol 57:238–243

Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J (2016) Biodiversity of Trichoderma com-
munity in the tidal flats and wetland of southeastern China. PLoS One 11:e0168020

Saravanakumar K, Li Y, Yu C, Wang QQ, Wang M, Sun J, Gao JX, Chen J (2017) Effect of 
Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk 
rot. Sci Rep 7:1–13

Sariah M, Choo CW, Zakaria H, Norihan MS (2005) Quantification and characterisation of 
Trichoderma spp. from different ecosystems. Mycopathologia 159:113–117

Scharf DH, Brakhage AA, Mukherjee PK (2016) Gliotoxin- bane or boon. Environ Microbiol 
18(4):1096–1109

Schmoll M, Kubicek CP (2003) Regulation of Trichoderma cellulase formation: lessons in molec-
ular biology from an industrial fungus. Acta Microbiol Immunol Hung 50:125–145

I. Afzal et al.



313

Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol 
Biotechnol 87:787–799

Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic 
acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum 
strain T34. Proteomics 7:3943–3952

Segarra G, Avilés M, Casanova E, Borrero C, Trillas I (2013) Effectiveness of biological control of 
Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol Mediterr 
52:77–83

Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein 
of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family com-
prising plant defense response elicitors. FEBS J 273:4346–4359

Sharaff MS, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of root- 
microbiome interaction for sustainable agriculture in polluted soils. In: Rastegari AA, Yadav 
AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedi-
cine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 61–84. https://
doi.org/10.1016/B978-0-12-820526-6.00005-1

Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P et al (2019) Trichoderma: biodi-
versity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh 
S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1: diversity 
and enzymes perspectives. Springer, Cham, pp 85–120. https://doi.org/10.1007/978-3-030- 
10480-1_3

Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to 
fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

Sobowale AA, Odebode AC, Cardwell KF, Bandyopadhyay R, Jonathan SG (2010) Antagonistic 
potential of Trichoderma longibrachiatum and T. hamatum resident on maize (Zea mays) 
plant against Fusarium verticillioides (Nirenberg) isolated from rotting maize stem. Arch 
Phytopathol Plant Prot 43:744–753

Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological 
removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

Stergiopoulos I, de Wit PJGM (2009) Fungal effector proteins. Annu Rev Phytopathol 
47:233–263

Stewart A, Hill R (2014) Applications of Trichoderma in plant growth promotion. In: 
Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 415–428. https://doi.
org/10.1016/B978-0-444-59576-8.00031-X

Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton 
CR, Grant M (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sus-
tainable agriculture-insights from genomics. Front Plant Sci 4:258

Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020) Diversity, plant growth 
promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, 
Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer, 
Cham, pp 1–52

Sun R, Liu Z, Fu K, Fan L, Chen J (2012) Trichoderma biodiversity in China. J Appl Genet 
53:343–354

Tabet JCK, Lichtenstein EP (1976) Degradation of [14C] photodieldrin by Trichoderma viride as 
affected by other insecticides. Can J Microbiol 22:1345–1356

Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J (2010) Proteomic analysis of Trichoderma atroviride 
mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127

Thakur N, Kaur S, Tomar P, Thakur S, Yadav AN (2020) Microbial biopesticides: current status 
and advancement for sustainable agriculture and environment. In: Rastegari AA, Yadav AN, 
Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine 
systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 243–282

Ting ASY, Choong CC (2009) Bioaccumulation and biosorption efficacy of Trichoderma isolate 
SP2F1 in removing copper (Cu (II)) from aqueous solutions. World J Microbiol Biotechnol 
25:1431–1437

13 Trichoderma: Biodiversity, Abundances, and Biotechnological Applications

https://doi.org/10.1016/B978-0-12-820526-6.00005-1
https://doi.org/10.1016/B978-0-12-820526-6.00005-1
https://doi.org/10.1007/978-3-030-10480-1_3
https://doi.org/10.1007/978-3-030-10480-1_3
https://doi.org/10.1016/B978-0-444-59576-8.00031-X
https://doi.org/10.1016/B978-0-444-59576-8.00031-X


314

Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal com-
munities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, 
Kour D, Yadav N, Kumar A (eds) Agriculturally important Fungi for sustainable agriculture, 
vol 1: perspective for diversity and crop productivity. Springer, Cham, pp 1–25. https://doi.
org/10.1007/978-3-030-45971-0_8

Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic 
hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

Tripathi P, Singh PC, Mishra A, Chauhan PS, Dwivedi S, Bais RT, Tripathi RD (2013) 
Trichoderma: a potential bioremediator for environmental clean up. Clean Techn Environ 
Policy 15:541–550

Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma 
spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

Uusitalo JM, Nevalainen KMH, Harkki AM, Knowles JKC, Penttilä ME (1991) Enzyme produc-
tion by recombinant Trichoderma reesei strains. J Biotechnol 17:35–49

Vajna L (1983) Trichoderma species in Hungary. Acta Phytopathol Acad Sci Hungaricae 
18:291–301

Van Gestel K, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel 
oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368

Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by benefi-
cial microbes. Curr Opin Plant Biol 11:443–448

Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in 
the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 
151:792–808

Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma 
spp.: panoply of biological control. Biochem Eng J 37:1–20

Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary 
metabolites produced by two commercial Trichoderma strains active against different phyto-
pathogens. Lett Appl Microbiol 43:143–148

Vinale F, Strakowska J, Mazzei P, Piccolo A, Marra R, Lombardi N, Manganiello G, Pascale A, Woo 
SL, Lorito M (2016) Cremenolide, a new antifungal, 10-member lactone from Trichoderma 
cremeum with plant growth promotion activity. Nat Prod Res 30:2575–2581

Viterbo ADA, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent 
Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase 
from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS 
Microbiol Lett 305:42–48

Vitti A, Pellegrini E, Nali C, Lovelli S, Sofo A, Valerio M, Scopa A, Nuzzaci M (2016) Trichoderma 
harzianum T-22 induces systemic resistance in tomato infected by cucumber mosaic virus. 
Front Plant Sci 7:1520

Weaver M, Vedenyapina E, Kenerley CM (2005) Fitness, persistence, and responsiveness of a 
genetically engineered strain of Trichoderma virens in soil mesocosms. Appl Soil Ecol 
29:125–134

Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 
22:837–845

Wiater A, Szczodrak J, Pleszczynska M (2005) Optimization of conditions for the efficient 
production of mutan in streptococcal cultures and post-culture liquids. Acta Biol Hung 
56(1–2):137–150

Widden P, Abitbol JJ (1980) Seasonality of Trichoderma species in a spruce-forest soil. Mycologia 
72:775–784

Wijesinghe CJ, Wijeratnam RSW, Samarasekara JKRR, Wijesundera RLC (2010) Biological con-
trol of Thielaviopsis paradoxa on pineapple by an isolate of Trichoderma asperellum. Biol 
Control 53:285–290

Woo SL, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between 
Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

I. Afzal et al.

https://doi.org/10.1007/978-3-030-45971-0_8
https://doi.org/10.1007/978-3-030-45971-0_8


315

Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for 
sustainable agriculture, vol 1: perspective for diversity and crop productivity. Springer 
International Publishing, Cham

Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important Fungi for 
sustainable agriculture, vol 2: functional annotation for crop protection. Springer International 
Publishing, Cham

Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and 
biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucum-
bers. Biol Fertil Soils 47:239–248

Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance 
induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of 
seedborne diseases of rice. Pest Manag Sci 68:60–66

Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B, Wu K, Shi J, Shen B, Shen Q (2016) Biological control 
of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the 
arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 92:164–171

Zhang Y, Zhuang WY (2020) Trichoderma brevicrassum strain TC967 with capacities of diminish-
ing cucumber disease caused by Rhizoctonia solani and promoting plant growth. Biol Control 
142:104151

Zhang C, Liu S, Lin F, Kubicek CP, Druzhinina IS (2007) Trichoderma taxi sp. nov., an endophytic 
fungus from Chinese yew Taxus mairei. FEMS Microbiol Lett 270:90–96

Zhang F, Ge H, Zhang F, Guo N, Wang Y, Chen L, Ji X, Li C (2016) Biocontrol potential of 
Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean. Plant 
Physiol Biochem 100:64–74

13 Trichoderma: Biodiversity, Abundances, and Biotechnological Applications



317© Springer Nature Switzerland AG 2021
A. N. Yadav (ed.), Recent Trends in Mycological Research, Fungal Biology, 
https://doi.org/10.1007/978-3-030-60659-6_14

Chapter 14
Sugar Transporters in Plant–Fungal 
Symbiosis

Mamta Rani, Abhimanyu Jogawat, and Anita Loha

Contents

14.1  Introduction  317
14.2  AM Fungi and AM Symbiosis  318
14.3  Plant Endophytic Symbiotic Fungi  319
14.4  Symbiotic Interface  320
14.5  Phosphate Transporters and Their Role in AM Symbiosis  320
14.6  Ammonium Transporters and Their Role in AM Symbiosis  322
14.7  Sugar Transporters and Their Role in AM Symbiosis  323

14.7.1  Sugar Source  323
14.7.2  Plant Sugar Transporters at Symbiotic Interface  323
14.7.3  AMF Sugar Transporters  325
14.7.4  Sugar Transporters from Ectomycorrhizal and Other Symbiotic Fungi  325

14.8  Conclusion and Future Perspectives  326
 References  327

14.1  Introduction

Plants have established symbiotic relationship with fungi to enrich their nutrient 
uptake capacities and to deal with various abiotic and biotic stresses (Behie and 
Bidochka 2014a; Yadav et al. 2020c). This association is around 400 million years 
old and more than 90% of the terrestrial plants are known to form symbiosis with 
diverse class of fungi (Bonfante and Genre 2010). Plant symbiotic fungi can be 
divided into two categories: mycorrhizal fungi and root endophytes. The main dif-
ference between these symbionts is that while mycorrhizal fungi are mostly obligate 
biotrophs, non-mycorrhizal symbiotic fungi live at least some part of their lifecycle 
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outside of their host plant, however, both kind of symbiotic fungi share similar strat-
egies of soil nutrient assimilation for their host  (Rodriguez et  al. 2009; 
Saikkonen 2007).

This mutualistic relationship benefits both partners by exchange of nutrients via 
transporters (Wang et al. 2017). Fungal partner mainly relies on the plant for its 
carbon source. Fungus aids plant roots for the acquisition of primary minerals such 
as nitrogen (N), phosphate (P), potassium (K), and sulfate (S) (Kour et al. 2019; 
Wang et  al. 2017). Additionally, these symbionts also benefit their host plants 
by improving their resistance against invading pathogens and providing tolerance 
against various abiotic stresses (Pozo and Azcón-Aguilar 2007; Singh et al. 2011). 
One of such symbiotic endophyte is Piriformospora indica, which can colonize a 
broad range of host plants including non-mycorrhizal hosts from the Brassicaceae 
family (Verma et al. 1998; Weiss et al. 2004; Peškan-Berghöfer et al. 2004). P. indica 
is an economically and agriculturally important fungus with many beneficial effects 
(Jogawat et al. 2013, 2016, 2020; Waller et al. 2005). It has been shown to improve 
nitrate, phosphate, and sulfate assimilation and uptake by host plants particularly 
under nutrient-deprived conditions (Lahrmann et al. 2013; Prasad et al. 2019; Yadav 
et al. 2010). Here, we discuss the process of nutrient exhange at symbiotic interface 
of plant-fungal association with a special focus on sugar transporters from symbi-
otic fungi. 

14.2  AM Fungi and AM Symbiosis

Mycorrhizal symbioses are primarily categorized into two categories on the basis of 
root–fungal association structures and fungal partner involved. These are classified 
as ectomycorrhiza and endomycorrhiza (Bonfante and Genre 2010). The fungal 
partner in both kinds of symbiosis is mostly belong to the orders Glomeromycota, 
Basidiomycota, or Ascomycota. While the Endomycorrhizal fungi can colonize a 
majority of land plants, ectomycorrhizal fungi can only colonize host plants mainly 
from gymnosperms and angiosperms. These symbionts mainly differ in the pattern 
of their colonization, as the name suggests, ectomycorrhizal fungal partner covers 
the plant’s lateral roots with mycelial sheath and also expand its intercellular hyphae, 
whereas endomycorrhiza invades as intraradical hyphae and intracellular structures 
(Cress et al. 1985). Arbuscular mycorrhizal (AM) symbiosis includes fungal part-
ners mainly from the order Glomeromycota (Formey et  al. 2012; Smith 2001). 
Nutrients exchange is the basis of symbiosis between plant and fungal partner. This 
is an economic relationship between both partners where plant transports carbon 
source to the fungus which is synthesized by photosynthesis, whereas the fungus 
transports scarce soil mineral nutrients mainly phosphate and nitrogen to the plant 
(Bonfante and Genre 2010; Finlay 2008). It has been estimated that up to 20% of 
photosynthetically fixed carbohydrates are diverted to AM fungi which shows the 
importance of AM symbiosis in terrestrial ecology (Bago et al. 2000).
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AM fungi require plant partners for availing carbon source, sporulation, and for 
completing their life cycles, all these aspects term them as obligate biotrophs. Plants 
can remain in asymbiotic stage up to 2 weeks following interaction with the AM 
fungi (AMF) (Yadav et al. 2020a, b). Various signaling events contribute in estab-
lishing symbiosis when fungal spore or mycelial part comes in contact with appro-
priate host roots (Giovannetti et al. 2004; Harborne 2000; Smith and Read 2008). 
Plant root exudates, including flavonoids or strigolactones are recognized by the 
fungi present in the rhizosphere which initiates hyphal growth and branching for 
interaction. On the other hand, fungus can produce mycorrhizal (myc) factors which 
are recognized by symbiosis receptor complex and triggers downstream calcium ion 
signaling to activate symbiotic events via initiating symbiosis-related genes expres-
sion into the root cells (Gomez-Roldan et al. 2008; Maillet et al. 2011). Upon con-
tact with the root surface, fungal hyphae form hyphopodium and then prepenetration 
apparatus (PPA) for further invasion (Genre et al. 2005). Symbiosis signaling and 
nutrient exchange maintain endophytic fungal proliferation and arbuscule formation 
in the  cortical cells. Arbuscule membrane is known as periarbuscular membrane 
which is the interface for nutrients exchanges between both partners (Gianinazzi-
Pearson et al. 1996; Smith and Smith 1990). Arbuscules are small tree-like intracel-
lular fungal structures originated by fungal hyphae modification and invagination of 
plant cell membrane around this fungal structure (Bonfante-Fasolo 2018). 
Additionally, extraradical mycelium (ERM) network assists in absorbing nutrients 
from the soil.

14.3  Plant Endophytic Symbiotic Fungi

Plant endosymbionts are discovered in a wide range of plant species. They can colo-
nize the plant roots and some of them can also spread to other plant tissues. These 
endosymbionts can live inside the plant without causing any harm to their host; 
however, unlike their AMF counterparts, they are not obligate biotrophs, and can 
live at least some part of their life cycle outside the plant (Rana et al. 2019a, b, 
2020). The root-associated symbiotic fungi share many similarities with mycorrhi-
zal fungi in their nutrient acquisition and plant growth-promoting activities (Behie 
et al. 2012; Behie and Bidochka 2014b); however, there are structural differences in 
their colonization pattern of AMF and endophytic fungi. The mechanistic details of 
their symbiosis are poorly known; therefore, more research is needed to explore the 
mechanism of their colonization and symbiosis (Saikkonen 2007).
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14.4  Symbiotic Interface

AM and other symbiotic fungi have two kinds of mycelium when they interact with 
roots, that is, intraradical mycelium (IRM) and extraradical mycelium (ERM) which 
connect the root system and enhance the absorption surface with the soil. ERM 
uptakes soil nutrients mainly phosphate and ammonium and transfers them to roots. 
In exchange, the plant transfers carbohydrates to the fungus. The exchange of phos-
phate and carbon occurs reciprocally between AMF and roots (Rastegari et  al. 
2020a, b). Phosphate and nitrogen supply to plant regulate the arbuscule formation 
or degeneration in root cells. Similarly, carbon supply to the fungus regulates nutri-
ents transfer from the fungus (Kiers et al. 2011; Luginbuehl and Oldroyd 2017). 
Nutrient exchange at the symbiotic interface can occur either intercellularly or 
intracellularly (Bonfante and Genre 2010; Bonfante and Perotto 1995; Ferrol 2002; 
Smith and Smith 1990). Different transporters are localized at the symbiotic inter-
face for nutrient exchange, and they can be detected by increased ATPase activity at 
this interface (Gianinazzi-Pearson et al. 2000; Wang et al. 2017).

ERM uptakes micronutrients mainly phosphate and ammonium from the soil and 
transfers them to roots, in exchange, they receive carbohydrates. Symporters play a 
key role in phosphate and carbohydrate mobilization. H+-ATPases are also impor-
tantly involved in the translocation of carbohydrates and phosphate at the symbiotic 
interface (Gianinazzi-Pearson et  al. 1991, 2000; Smith and Smith 1990). H+-
ATPases hydrolyze ATP and transport H+ against the concentration gradient which 
generates electrochemical gradient for energizing the transport of different nutrients 
such as sugars, phosphate, ammonium etc. H+-ATPases constitute a large family in 
plants and they are differentially regulated in plant development and diverse stress 
conditions. Barley H+-ATPase shows differential expression in mycorrhizal coloni-
zation (Murphy et  al. 1997). Additionally, two H+-ATPases from tobacco have 
shown to play a crucial role in mycorrhizal interaction (Gianinazzi-Pearson et al. 
2000). Five fungal H+-ATPases have been identified and isolated in Glomus moss-
eae (Ferrol 2002; Ferrol et al. 2002). An H+-ATPase along with a sugar transporter 
GmPMA1 has been identified in Medicago truncatula–G. mosseae symbiosis 
(Requena et al. 2003).

14.5  Phosphate Transporters and Their Role 
in AM Symbiosis

Soil harbors phosphate in complex and insoluble form which cannot be acquired by 
plants. Fungal phosphatases and phytases solubilize these phosphates in simple 
forms in the soil (Kour et al. 2020; Singh et al. 2020). AMF phosphate transporters 
such as GvPT from G. versiforme, GiPT from G. intraradices and GmosPT from 
G. mosseae were shown to be differentially regulated during symbiosis (Harrison 
and Van Buuren 1995; Maldonado-Mendoza et  al. 2001). All these transporters 
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were observed to be highly expressed in ERM, which demonstrates their involve-
ment in inorganic phosphate (Pi) uptake from the soil. This assimilated soil Pi is 
mainly stored as polyphosphate in ERM  vacuoles, again transformed to Pi, and 
translocated to the IRM which is then delivered at the periarbuscular interface 
(Rasmussen et al. 2000). Ectomycorrhizal phosphate transporters HcPT2 and LbPT 
have been discovered from Lacaria bicolor and Hebeloma cylindrosporum. The 
expression of these phosphate transporters was found induced during symbiosis and 
low soil phosphate levels, showing the importance of these P transporters in the 
maintenance of symbiosis (Tatry et al. 2009) (Fig. 14.1).

Plants Pi transporters such as M. truncatula MtPT4 (Harrison et al. 2002), rice 
OsPT11 (Paszkowski et al. 2002), and tomato LePT4 (Nagy et al. 2005) were par-
ticularly observed to be expressed upon AMF colonization. Other Pi transporters, 
such as potato StPT3 (Rausch et al. 2001), maize ZEAma (Nagy et al. 2006), and 
L. japonicas LjPT3 (Maeda et al. 2006) were also involved in transporting Pi at the 
periarbuscular membrane. Moreover, MtPT4 was also observed to play a critical 

Fig. 14.1 Arbuscular mycorrhizal association and nutrient exchange (sugar and phosphate) at 
symbiotic interface. The reciprocal exchange of nutrients occurs at the periarbuscular membrane 
(PAM). Gene expression studies suggest that sugar is transported from phloem to mycorrhizal cells 
both in the form of sucrose and monosaccharides by plasma membrane localized SUT1-type or 
STP transporters. The export of sugars from the host cell to PAM is mediated by the transporters 
of SWEET family (StSWEET7a and StSWEET12a in Solanum tuberosome). The glucose is 
known to be the most preferred form of sugar uptaken by the symbiotic fungal partner, and it is 
mediated by GiMST2 at the symbiotic interface (M. truncatula–G. intraradices interaction). The 
transportation of sugar across PAM is regulated by plant sugar transporter SlSUT2 (in Solanum 
lycopersicum) and STP (in M. truncatula). In ERM, soil phosphate (Pi) is taken up by fungus via 
high-affinity phosphate transporters, some of them are characterized in mycorrhizal and other 
endophytic fungi (GvPT, GmosPT, GiPT, HcPT1, HcPT2, and PiPT). In IRM, fungal phosphate 
transporters such as GmosPT, HcPT2 are known to be involved in Pi efflux from fungi to PAM, 
which is taken up by the host plant cells via phosphate transporters such as MtPT4, LePht1,4,3,5, etc
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role in mycorrhization and arbuscule maintenance, as knockdown of MtPT4 resulted 
in the abolishment of arbuscule formation in roots (Javot et al. 2007). Figure 14.1 
shows the phosphate transporter known to play an important role in symbiotic Pi 
transport.

14.6  Ammonium Transporters and Their Role 
in AM Symbiosis

Nitrogen is an essential nutrient for plants and nitrogen limitation affects the pri-
mary productivity of plants. Nitrogen availability influences the photosynthesis and 
thereby results in carbon-fixation and symbiosis with fungi (Wang et al. 2017). Soil 
nitrogen is mainly present in organic complex form which is unavailable to plants. 
Mycorrhizal fungi are known to secrete several proteases, which release accessible 
and soluble form of nitrogen from inaccessible soil nitrogenous compounds. These 
soluble nitrogen compounds are absorbed by the fungal extraradical mycelium and 
then transported to the plant. In AM fungi, several ammonium transporters have 
been characterized, for instances, GmosAAP1 from G. mosseae, GintAMT1, 
GintAMT2 and GintAMT3 from G. intraradices (Calabrese et al. 2016; Cappellazzo 
et al. 2008; López-Pedrosa et al. 2006; Pérez-Tienda et al. 2011). Additionally, in 
cyanobacterial fungi, Gyosiphon pyriformis, three symbiotically expressed NH4

+ 
transporters GpAMT, GpAMT2, and GpAMT3 have been identified and character-
ized (Ellerbeck et al. 2013). The soil nitrogen absorbed by ERM and transported to 
IRM mainly in the form of arginine. IRM-localized urease converts this arginine 
into urea and NH4

+, which can be utilized by the host plant as nitrogen source (Kiers 
et al. 2011). GinAMT1 and GintAMT2 have been shown to be involved in NH4

+ 
uptake in arbuscocytes. In ectomycorrhizal fungi, a distinct AMT family ammo-
nium transporters have been found to be induced during symbiosis and fungal 
nitrate transporters (NRTs) have also been discovered in roots colonized by ectomy-
corrhizal fungi. The expression of high-affinity nitrate transporters was also 
observed during symbiosis in ectomycorrhizal fungi L. bicolor and H. cylindrospo-
rum (Jargeat et al. 2003; Kemppainen and Pardo 2013). Plant high-affinity NH4

+ 
transporter, LjAMT2;2 has been shown to play a crucial role at the symbiotic inter-
face (Guether et al. 2009). In soybean, NH4

+ transporters were shown to be induced 
upon mycorrhization (Kobae et al. 2010). In M. truncatula, two NH4

+ transporters 
AMT2;3 and AMT2;4 have been characterized and it was observed that AMT2;3 
regulates the degeneration of premature arbuscule (Breuillin-Sessoms et al. 2015).
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14.7  Sugar Transporters and Their Role in AM Symbiosis

The photosynthetically fixed carbon in plants is translocated mainly in the form of 
sucrose from source to fungal colonized root-sink (Hennion et  al. 2019). The 
unloading of the sucrose from phloem to arbuscular cells involves transporters and 
invertases. Both these processes of sucrose transportation and its conversion into 
monosaccharides are tightly regulated in plants. AM fungi do not contain invertases; 
therefore, sucrose is degraded into monosaccharide in host plant cell by plant inver-
tases (Hennion et al. 2019). In this direction, expression of invertases and sucrose 
synthases has been found upregulated during AM symbiosis (García-Rodríguez 
et al. 2007; Schaarschmidt et al. 2007). Colonization by AM fungus strengthens the 
sink through enhancing sugar demand of the sink (Douds et al. 2000). The demand 
is balanced by higher photosynthetic rate and CO2 fixation in leaves (Wright et al. 
1998a, b).

14.7.1  Sugar Source

NMR spectrometry study has proved that IRM uptakes hexoses, that is, glucose and 
fructose but not sucrose at cellular level (Pfeffer et  al. 1999; Shachar-Hill et  al. 
1995; Solaiman and Saito 1997). Thereby, sucrose needs to be converted into mono-
saccharides by invertase or sucrose synthase in apoplast where sugar exchange 
occurs. In tomato roots, AMF colonization increases sucrose and fructose accumu-
lation (Boldt et al. 2011). A study showed that ERM is unable to uptake glucose 
which suggests IRM as sugar exchange site (Pfeffer et al. 1999). Other studies have 
shown that both phosphate and sugar exchange occurs at the plant–IRM interface 
(Pumplin and Harrison 2009; Smith et al. 2000; Smith and Smith 1990). ERM can 
uptake and utilize cell wall monosaccharides such as xylose (Helber et al. 2011). 
Carbon mobilization from IRM to ERM can happen through two routes within fun-
gus either as carbohydrate or as lipids. In the first route, hexoses are converted into 
glycogen via gluconeogenesis and in the second, they can be converted into triacyl-
glycerol via lipidogenesis (Bago et al. 2000, 2003). In ERM, hexoses are stored as 
glycogen and trehalose or can be utilized for synthesizing structural polysaccha-
rides such as chitin.

14.7.2  Plant Sugar Transporters at Symbiotic Interface

In AM-colonized roots, high sugar amount is translocated to roots from source 
organ leaves due to increased sugar demand and enhanced sink strength (Boldt et al. 
2011; Wright et al. 1998a). In apoplastic sucrose loading plants, SUT1 subfamily 
member sucrose transporter SISUT4 loads sucrose to phloem (Zhang and Turgeon 
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2009). In G. mosseae-colonized tomato, SlSUT1 and SlSUT4 transcripts level was 
detected higher in leaves and roots. Therefore SlSUT1 and SlSUT4 are considered 
to play an important role in transporting sugar to AM-colonized roots (Boldt et al. 
2011). In G. intraradices-colonized plants, only SISUT4 expression was observed 
in roots and leaves (Ge et al. 2008). In G. caldeonium-colonized plants, SISUT1 was 
differentially expressed which suggests that there is differential regulation of these 
sucrose transporters with different AMF partners (Ge et  al. 2008). Potato SUT1 
knockdown resulted in sucrose accumulation in leaves and reduction in roots, which 
affected the colonization at high and low phosphate conditions (Gabriel-Neumann 
et al. 2011; Riesmeier et al. 1994).

However, SUT1 overexpression led to higher colonization at high phosphate. 
M. truncatula SUT1 has been shown to be induced in AM-colonized roots specifi-
cally in non-arbusculated cells and cortex cells in close proximity to ERM (Gaude 
et al. 2012). MtSUT1 belongs to SUT4 clade and is localized at the tonoplast. It was 
suggested that MtSUT1 is implicated in carbohydrate mobilization to cells near 
arbuscocytes by exporting vacuole-stored sucrose. Plant monosaccharide transport-
ers have been the focus of studies due to preference of glucose as main sugar com-
ponent in AM symbiosis. ESL (early-responsive to dehydration six-like) subfamily 
member from tomato LeST3 was observed to be upregulated in the leaves colonized 
by G. mosseae or G. intraradices (García-Rodríguez et al. 2005). Later, LeST3 has 
shown to be regulated positively or negatively depending on the associated AM 
fungus species. LeST3 showed upregulation in G. intraradices-colonized tomato 
roots and leaves, whereas it showed downregulation in G. caledonium-colonized 
tomato (Ge et al. 2008). At low phosphate, AM-colonized African maize cultivar 
roots show upregulation of monosaccharide transporter ZmMST1 which was not 
observed in European maize cultivar (Wright et al. 2005). In M. truncatula, MtST1 
is the chief transporter for providing hexoses to fungus which induces during AM 
colonization but not in myc-mutant M. truncatula. Further, MtSucS1RNAi lines 
show highest downregulation of MtST1 in comparison to other candidate genes 
(Baier et al. 2010; Harrison 1996). Its localization was observed in arbuscocytes, 
their adjacent cells, and IRM-contacting cells.

Plant harbors a newly classified family of sugar transporters renowned as Sugars 
Will Eventually be Exported Transporters (SWEETs) (Julius et al. 2017). Emerging 
roles of plant SWEETs are highlighting their significance in symbiosis and patho-
genesis (Yurkov et al. 2019). In potato, 35 SWEETs were identified and their tran-
scription profiling was performed during AM symbiosis which revealed that 22 
SWEETs alter their transcripts level in AM-colonized roots (Manck-Götzenberger 
and Requena 2016). In M. truncatula, glucose transporting MtSWEET1b was 
observed to be expressed in arbuscocytes and localized at the periarbuscular mem-
brane. Its overexpression supports the growth of IRM (An et al. 2019). Moreover, 
MtSWEET12, 15c, and 15d have also been observed to be induced specifically in 
AM-colonized roots depending on the accessibility to nitrogen source from the 
associated AM fungus. In nitrogen rich condition, these SWEETs were observed to 
be suppressed (Kafle et al. 2019). Two soybean SWEETs, that is, GmSWEET6 and 
GmSWEET15 along with a sugar invertase have been observed to be stimulated 
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predominantly only when roots were found to be colonized with more cooperative 
AM fungi in terms of nutrient supply and growth stimulation (Zhao et al. 2019). The 
plant sugar transporters involved in AM symbiosis are shown in Fig. 14.1.

14.7.3  AMF Sugar Transporters

Carbohydrate is transported into fungal cells by hexose transporters (HXT) local-
ized at the symbiotic interface. In this direction, symbiosis-specific GpMST1 was 
characterized from AM fungus G. pyriformis (Schüßler et al. 2006). G. pyriformis 
establishes unique symbiosis with cyanobacteria Nostoc punctiforme in which 
reciprocal nutrient exchanges occur. GpMST1 was found to be highly expressed in 
symbiotic structures called bladder. It was revealed that GpMST1 is a high-affinity 
H+/glucose symporter.

Three monosaccharide transporter genes MST2, MST3, and MST4 have been 
characterized from the mycorrhizal fungus G. intraradices, which forms symbiosis 
with M. truncatula roots (Helber et al. 2011). GiMST2 and GiMST3 show higher 
identity with xylose transporters, whereas GiMST1 showed highest homology with 
GpMST1. The expression of GiMST2 was particularly observed in IRM and arbus-
cules. GiMST2 was characterized as a high-affinity H+/glucose transporter and its 
expression was induced upon exposure with xylose. Further, GiMST2 was able to 
transport a wide range of monosaccharides which are known to be present at the 
symbiotic interface (Gianinazzi-Pearson et al. 1996; Helber et al. 2011). The knock-
down of GiMST2 by host-induced gene silencing (HIGS) in M. truncatula roots led 
to lesser mycorrhization and arbuscule formation, and it also abolished the expres-
sion of symbiosis-specific phosphate transporter MtPT4 (Fig. 14.1).

14.7.4  Sugar Transporters from Ectomycorrhizal and Other 
Symbiotic Fungi

The information about nutrient exchange and sugar transporters in ectomycorrhizal 
and other endosymbiotic fungi is limited. In ectomycorrhizal fungi, few HXTs have 
been characterized. In the first report, a high-affinity glucose transporter AmMST1 
was characterized from ectomycorrhizal fungus Amantia  muscaria (Wiese et  al. 
2000). AmMST1 was expressed constitutively in fungal mycelia under all growth 
conditions; however, its expression was found four-fold upregulated during mycor-
rhizal state as well as in the fungal hyphae grown at more than 5 mM monosaccha-
ride concentrations (Nehls et al. 1998; Wiese et al. 2000). A high-affinity hexose 
transporter TbHXT1 was characterized from the ectomycorrhizal ascomycetes fun-
gus Tuber borchii Vittadini (Polidori et al. 2007). TbHxt1 showed 52% identity with 
AmMst1 from A. muscaria (Nehls et  al. 1998). The expression of TbHXT1 was 

14 Sugar Transporters in Plant–Fungal Symbiosis



326

found to be regulated by negative feedback mechanism under both very low and 
high concentrations of glucose. Prolonged carbon starvation induced the expression 
of TbHXT1. The expression pattern and kinetic properties of TbHXT1 suggested the 
role of TbHXT1 during saprophytic phase of the fungus and excluded its involve-
ment in symbiotic sugar uptake in ectomycorrhiza (Polidori et al. 2007). Three Hxt 
family (LbMST1.2, LbMST1.3, and LbMST3.1) sugar transporters have been char-
acterized from the ectomycorrhizal model fungus L. bicolor (Fajardo López et al. 
2008). All of these genes were found upregulated in ectomycorrhizal mycelium in 
comparison to extraradical mycelium. Recently, a hexose transporter PiHXT5 has 
been identified and characterized from endosymbiotic AMF-like fungus P. indica 
(Rani et al. 2016). PiHXT5 was found to be a symbiosis inducible and high-affinity 
hexose transporter (Fig. 14.1). Till now, very limited information is available of the 
molecular players involved in nutrient exchange between endosymbionts and their 
host, therefore, this area of research needs to be expanded for better understanding 
of these agroeconomically important relationships.

14.8  Conclusion and Future Perspectives

The symbiotic fungi play important role in soil–nutrient recycling in terrestrial eco-
system. Plant–fungal symbiosis is also important for the adaptation of plants to vari-
ous environmental stresses. The research in the area of arbuscular mycorrhizal 
symbiosis has helped in understanding of symbiotic interface, nutrient exchange, 
and symbiotic signaling. Because of the obligate biotrophic nature of the AM fungi, 
they are hard to grow without their host and their manipulation is very tough by 
various transformation techniques; therefore, many aspects of symbiosis such as 
regulation of nutrient exchange and host specificities still need to be explored. 
Endosymbiotic fungi have provided an alternative to overcome the challenges of 
working with AM fungi, and they can be used as model organisms to study various 
plant–fungal interactions. The advancement in the culture and transformation tech-
niques of endophytes has helped in understanding the unexplored aspects of plant–
fungal symbiosis. The study with AM fungi and other endosymbiotic fungi has 
revealed the importance of sugar transportation in regulation and maintenance of 
symbiosis.

The role of host sugar transporters belonging to SWEET superfamily has been 
proposed in various plant–microbe interactions; similarly, few mycorrhizal sugar 
transporters have been characterized. These mycorrhizal sugar transporters were 
found to be specific for symbiotic sugar uptake and maintenance of symbiotic struc-
tures. Despite these new discoveries, the mechanism of sugar transport and signal-
ing in the maintenance of symbiosis is still not clear. The advancement in the 
next-generation sequencing technologies and development of improved and effi-
cient genetic manipulation technologies has enabled the identification of key play-
ers in plant–fungal symbiosis. The information obtained from these studies can be 
used in better and refined understanding of these symbiotic relationships, which in 

M. Rani et al.



327

turn can be used for the development of improved plant varieties for better symbi-
otic soil-nutrient acquisition under diverse environmental conditions. The informa-
tion from advanced molecular research can also be used to elucidate the mechanistic 
insights of symbiosis establishment which can further be applied to develop symbi-
otic relationship between specific fungal and plant partners to provide maximum 
benefit to the plant according to specific environmental stress.
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15.1  Introduction

Kingdom Fungi consists of diverse eukaryotic organisms (approx. 1.5 million), 
which have heterotrophic mode of nutrition and reproduces with the help of spores 
(Hawksworth and Lücking 2017). Members included in this kingdom range from 
microscopic spore-forming fungi to huge fruiting bodies producing mushrooms 
(Smith et al. 1992). The Kingdom Fungi is separated from others due to the pres-
ence of chitin, ergosterol and glucans in their walls (Agrios 2004). Some members 
are inconspicuous because of their cryptic lifestyles on dead matter, soil and symbi-
onts with animals, plants and other fungi (Seipke et al. 2012).

15.2  Medically Important Fungi

Fungi are important to mankind in various ways, irrespective of their microscopic 
and macroscopic size. Fungi are not only decomposers but also the source of vari-
ous antibiotics, for example, Penicillin from Penicillium spp. We also use many 
mushrooms as food and also cheese production. Although the beneficial uses of 
fungi are numerous, but like the two sides of a coin, they are also harmful. Members 
belonging to ascomycetes produce medicinally important compounds, that is, fer-
mented bread, antibiotics, alcoholic drinks and bakery products. They also cause 
many life-threatening diseases in humans. Representative disease-causing medi-
cally important members include Candida, Aspergillus and Fusarium species. The 
disease-causing fungal community has been classified into six major groups: 
Hyalohyphomyces, Zygomycetes, Dematiaceous, Dermatophytes, Dimorphic fungi 
and Yeasts. Medically important fungi are opportunistic rather than obligate para-
sites (Chuku 2018).
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15.2.1  Hyalohyphomyces: The Fungi with Colourless Walls

Those infection-causing fungi which have hyaline body form, light in colour and 
hyphae are branched or unbranched, without any pigments in their walls (Ajello 
1986). Moulds, some Fusarium, Penicillium, Scedosporium and Trichoderma spe-
cies are included in this group and known to cause hyalohyphomycosis (Zhang 
et al. 2015). They are abundantly present in dead organic materials, soil and con-
taminated water (Duong 1996).

15.2.2  Zygomycetes

There are two sub-phyla in Zygomycota based on the phylogenetics: Mucoromycotina 
and Entomophthoromycotina, which are responsible for causing zygomycosis. 
Rhizopus, Mucor, Rhizomucor, Cokeromyces recurvatus, Cunninghamella berthol-
letia, Apophysomyces elegans, Saksenaea vasiformis, Syncephalastrum racemosum 
and Lichtheimia, all belonging to the Mucorales (Mucoromycotina), Conidiobolus 
(Entomophthoromycotina) and Basidiobolus (Basidiobolaceae) are the representa-
tive members which are involved in causing diseases in humans (Roilides et  al. 
2012). Thus far, there is limited information of their ecological niche 
(Richardson 2009).

15.2.3  Dematiaceous (Dark Pigmented) Fungi

The members of Dematiaceous fungi are known to cause a variety of infections 
ranging from superficial infections to disease complexes or syndromes (Wong and 
Revankar 2016). They are often present in soil but distributed all over the world. 
The mode of entry is by inhalation or trauma. They cause deep local infections, dis-
seminated infections and brain abscess. Immunocompromise patients are at high 
risk of death if suffered from their infections (Radhakrishnan et al. 2019). These 
fungi have melanin in their cell wall, which make their spores dark coloured and 
help in pathological identification. Members include Alternaria, Curvularia, 
Lasiodiplodia, etc. (Revankar 2007).

15.2.4  Dermatophytes: The Skin-Invading Fungi

Dermatophytes cause skin infections (Dermatophycosis) as indicated by its name 
(Bouchara et  al. 2017). These fungi have good affinity to invade skin, hairs and 
nails, and external membranes. Majority of the members of Ascomycota are 
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included in this group. They are associated with soil, animals, insects and humans 
(Weitzman and Summerbell 1995). In an immune-competent host, they only pene-
trate the dead epidermis. Trichophyton rubrum is an example, which causes chronic 
dermatophytosis. Different kinds of medias and tests are available for their identifi-
cation (Mercer and Stewart 2019).

15.2.5  Dimorphic (The Phase Switching) Fungi

Some fungal species are able to switch from yeast to mycelium depending on the 
environmental conditions. This phenomenon is called dimorphism and is important 
from both applied and basic concepts. A significant number of human, plant and 
animal pathogenic fungi show this behaviour to enhance their chances for coloniz-
ing their host (Boyce and Andrianopoulos 2015). Due to this transition phase, iden-
tification of fungus becomes difficult (Klein and Tebbets 2007). Now many drugs 
are available, which inhibits the dimorphism and also blocks the pathogenicity 
(San-blas et al. 1984). Talaromyces marneffei is a human pathogen and is thermally 
dimorphic fungi, which is mould at room temperature and changes to yeast on 
human body (Woo et al. 2003).

15.2.6  Yeasts: The Unicellular Fungi

Yeasts are found everywhere on earth. They have both positive and negative impacts 
for humans and animals. Candida esophatagitis is a disease of esophagus, which 
produces thrush. Candida is an example of yeast, which cause many diseases in 
humans. Yeasts also causes vaginal and blood stream infections which are life 
threatening (Miceli et al. 2011). Yeast is known to cause gut infections of serious 
nature in murine as reported by Chiaro et al. (2017).

15.3  Virulence Factors in Human Pathogenic Fungi

Kingdom fungi is comprised of approximately 1.5 million species out of them 
approximately 600 identified fungi are harmful to humans, but there are 30 species 
that are common casual agents of diseases in humans. The general term which is 
used to describe human fungal diseases is ‘mycoses’. There are some components 
that account for the endurance and longevity of fungal pathogen in respective host 
ultimately result in pathogenesis known as ‘virulence factors’ (Fig.  15.1). The 
genome of respective pathogen encodes these factors and any mutation either in 
laboratory system or in nature of these factors cause reduction of virulence. 
However, viability of the pathogen remains unaffected. In short, virulence factors 
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carry characteristics that are necessary for causing diseases; some virulence factors 
of chief importance are as follows:

15.3.1  Adhesions Factor: The Biological Glue 
for Fungal Attachment

The important step in causing disease is the ability of pathogen to attach the host 
cells. So, all the structures and compounds that aid in adhesion to the host by escap-
ing the mucous and movement of cilia come under this category (Chandra et al. 
2001). Some proteins (Hwp1p, Als, rodlet, Eap1p, etc.) and surface receptors on 
fungal hyphae such as BAD1 support the adhesion to collagen, cell to cell epithe-
lium and laminin of the host (Karkowska-Kuleta et al. 2009). Examples of fungal 
species with such kind of adhesion receptors include H. capsulatum C. albicans, 
A. fumigatus, Coccidioides and Blastomyces sp. (Iyalla 2017).

Fig. 15.1 Virulence factors of human pathogenic fungi. Damage to host and resulting disease by 
respective virulence factor (central ring), host responses (outer circle). Interactions with potential 
damage are marked in red. (Adapted from Brunke et al. 2016)
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15.3.2  Morphogenesis Role in Fungal Survival

Some fungi have a dimorphic living style; they normally occur as yeasts, moulds, or 
other filamentous fungi that in normal condition are avirulent but can change their 
form and become pathogenic to humans (Tekaia and Latge 2005). Renowned dimor-
phic fungi are Blastomyces dermatitidis, Aspergillus fumigatus, Paracoccidioides 
brasiliensis, Histoplasma capsulatum, Candida albicans and Coccidioides immitis. 
Dimorphism allows fungi to withstand high body temperatures of human body. HSP 
70 is the protein that enables this adaptation (37–55 degrees; Iyalla 2017).

15.3.3  Fungal Capsule: The Protective Armor

Encapsulated fungi have virulent nature; for example, Cryptococcus neoformans 
can hold out against phagocytosis because of its glucoronoxylomannan-based cap-
sule structure. However, the commonly found non-capsulated environmental strains 
of C. neoformans are of nonpathogenic nature. Other actions done by capsule 
include the disturbance in cytokine network and inhibition of leucocytes production 
on infected site. CAP 59 and CAP 64 genes are required for the capsule formation 
(Casadevall et al. 2019).

15.3.4  Fungal Enzyme: Arsenals for Fungal Growth 
and Protection

Damage of host cells by fungi not only done by physical structures (hyphae), but the 
secretion of lytic enzymes such as lipase and protease also play a significant role. 
These degrading enzymes help in establishment and dissemination of fungal 
enzymes. Damage to host cells is caused by injury of tissues and impairment in its 
defence system. Phospholipase, protease and SAP secreted by C. albicans (Naglik 
et al. 2003), and aspartic protease, serine protease and phospholipases by A. fumiga-
tus are the examples of such enzyme secretions (Guruceaga et al. 2018).

15.3.5  Protection from Reactive Oxygen and Nitrogen Species

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are used by 
human defence mechanism (neutrophils) to protect from fungal infections. 
Mechanisms, for example, peroxidation of lipids along with breakdown of nucleic 
acids, are used to kill the fungal cells (Pradhan et al. 2017). Fungal pathogens pro-
duce catalases, superoxide dismutase, HSP, peroxidases and metals (Cu +2, Zn+2 and 

A. Malik et al.



341

Mn+2) to combat the oxidative species. C. albicans and A. fumigatus are the best 
examples of such type of fungi (Rementeria et al. 2005).

15.3.6  Melanin Pigments in Fungi

Melanin has hydrophobic nature and produced abundantly by pathogenic myco-
flora. It provides protection to fungi against ultraviolet rays, ROS, antibody-based 
phagocytosis and elevated temperatures. Melanin synthesis takes place in A. fumig-
atus, H. capsulatum, P. brasiliensis, C. neoformans and Blastomyces (Rappleye and 
Goldman 2006).

15.3.7  Well-Developed Iron Uptake System

Iron is an important component involved in the respiration and growth of fungi with 
other metabolic activities. Usually iron is not found in host in free form. But some 
fungi have developed some mechanisms to obtain iron from their host (Philpott 
2006). For instance, triacetylfusannine C, siderophore-regulated uptake and desfer-
riferricrocin for the efficient uptake of iron from host cells. These and some other 
mechanisms for uptake of Fe are found in A. fumigatus, A. nidulans and C. alboi-
cans (Iyalla 2017).

15.3.8  Mycotoxin Production in Invasive Fungi

Some pathogenic fungi such as C. albicans and A. fumigatus are familiar to produce 
mycotoxins. These toxins are the secondary metabolites and responsible for causing 
diseases in human host even in the absence of toxin-producing fungi (Moyes et al. 
2016). Examples of mycotoxin include gilitoxin and aflatoxin. Aflatoxin is carcino-
genic and cause destruction of liver cells, whereas gilotoxin suppresses the immune 
system by inhibiting phagocytosis and activation of T cells. It also harms the epithe-
lial layer and decreases the cilia movement to save fungal spores (Arias et al. 2018).
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15.3.9  Calcineurin and Mannitol Regulation in Different 
Fungal Species

Calcineurin works as a sensor for pathogenic fungal species. Heterodimers of calci-
neurin consist of catalytic (CnaA) and regulatory (CnaB) units; are involved in 
growth, stress management and virulence of fungi (e.g., A. fumigatus); also increase 
the expression level of virulence determinants; and aid in tissue invasion (Juvvadi 
et al. 2017). Likewise, mannitol aids fungi C. neoformans to infect CNS by scav-
enging ROS.  Exceeded production of this compound can be a reason of brain 
oedema (Mahadevan and Susarla 2019).

15.3.10  Regulation of Fungal Virulence Through pH

Humans have different pH in different types of body tissues. As a result fungi must 
have a mechanism to cope up with this wide pH range in order to invade and damage 
host tissues. Therefore, in some fungi such as C. albicans, there is a complex net-
work of genes, which is governed by RIM101 (Zn finger-based transcription factor). 
This makes fungi capable to infect human tissues at neutral or high pH (Davis 2009).

15.4  Clinical, Industrial, Environmental and Economic 
Impact of Human Pathogenic Fungi

Over the last few decades, more than 1.6 million deaths are caused by pathogenic 
fungi annually and the number of people that suffer from acute fungal infections 
surpassed 1 billion figures. Despite all these medical losses, there are very limited 
approved antifungal drugs available that are used to cure these infections in humans. 
The most recent approved antifungal drug was developed in 2002. This situation 
might be due to limited research fund for investigating fungal diseases, for example, 
Cryptococcus meningitis is the cause of 180,000 deaths annually but only 0.5% 
fund is allocated for its research. So, the development of new antifungal therapeutic 
strategies is inevitable (Almeida et al. 2019).

Despite the drastic effects on human health some weak human pathogens such as 
Aspergillus niger, Aspergillus flavus and Aspergillus terreus have some industrial 
applications. Biofilms of Aspergillus spp. are high yielding in industrial applica-
tions because its mycelia are free living when compared with typical submerged 
fermentation methods. Biofilms of A. terreus and A. niger can remove the heavy 
metals Cu, Ni, Al, Cr and Fe from industries. Different organic acids including citric 
acid and itaconic acid are produced in abundant quantities using A. niger and A. ter-
reus. Aspergillus biofilms are also a source for producing a number of enzymes: 
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amylase, glucose oxidase, cellulases, inulinase, fructofuranosidase and xylanase. 
A. foetidus is also efficient in degrading plastics (Ramage et al. 2011).

Some fungal species that cause infection in humans are also responsible for ani-
mal diseases, for example, A. fumigatus and C. neoformans. Outbreaks in animal 
population by fungal pathogens can result in high mortality rate. Indirectly loss of 
biodiversity is occurring due to these fungal infections and in severe case, it can 
trigger the global warming. In past, extermination of bat and frog species by 
G. destructans and B. dendrobatidis are the examples of such situation. Few 
Aspergillus species are also responsible for the decline of coral reefs. Use of agri-
cultural antifungal drugs that are medically validated for human can cause resis-
tance in human pathogenic fungi because of sharing same environmental niches 
(Soler-Hurtado et al. 2016; Seyedmousavi et al. 2018; Almeida et al. 2019).

There are some fungal pathogens that crossover pathogenesis capability, it means 
they can infect not only humans but plants and animals also. Most of these fungi 
belong to phylums Ascomycetes and zygomycetes (Mucoromycotina). More than 
180 species of Aspergillus, significantly A. fumigatus, A. niger, A. flavus, are respon-
sible for causing respiratory (aspergillosis), allergic and toxic infections in humans. 
These fungal species also cause destruction in agricultural crops (postharvest losses, 
rots and aflatoxins), as well as involved in poultry losses (brooder’s pneumonia) of 
chicken, turkey and birds. Fusarium oxysporum, Fusarium graminearum and 
Fusarium verticillioides produce mycotoxins that cause cytotoxicity, physical 
stresses, estrogenic toxicity and gastrointestinal toxicity in humans. Vascular dis-
ease caused by complex of Fusarium species also responsible for losses of some 
important agricultural crops such as wheat, cotton, chickpea and tomato globally. 
Fusarium graminearum is responsible for causing disease in livestocks and conse-
quently, reduction in their production.

Dematiaceous fungi (melanin-like compound producing fungi) include 
Alternaria spp. Causal agent of leaf spot and seed breakdown in many plant species 
such as cotton, tomato and cucurbits. A. alternata causes onychomycosis in humans 
and also responsible for some allergic reactions. Similarly, C. neoformans cause 
infections in humans is also accountable for causing diseases in poultry and farm 
animals. H. capsulatum affects birds in zoo and to some extent responsible for 
losses of chicken turkey (De Lucca 2007; Gauthier and Keller 2013; Dhama 
et al. 2013).

Keeping in view the above information, currently we are dealing with diverse 
infectious fungi, so it is very difficult to identify and characterize them into a spe-
cific group. So identifying a fungal pathogen at species level is of prim importance, 
as it effects the therapy of choice, for example, Aspergillus. calidoustus (under sec-
tion Usti) was found less susceptible to triazoles, including posaconazole, were in 
effective against this fungus (Varga et  al. 2008). Similar results for Emericella 
Quadrilineata were observed t to amphotericin B (AmB) treatment. Aspergillus ter-
reus (section Terrie) is a key reason of severe aspergillosis in medical care units, 
getting resistant against AmB. It is discovered from sequence analysis of genes that 
Aspergillus alabamensis (novel species) having resemblance with A. terreus may 
invade immunocompetent patients and show susceptibility toward AmB to 
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antifungal medicines (Walsh et al. 2003). Previously, only morphology identifica-
tion was used, but recently there are many techniques for the identification of fungi 
at species level, which are discussed later in this chapter.

15.5  Diagnostic and Identification Techniques

Fungal infections were insignificant in history but over the last few years, recur-
rence of invasive fungal infections (IFIs) caused by invasive fungal pathogens has 
elevated dramatically mainly because of these enlisted reasons

• Extended antibiotic therapy
• Acquired immunodeficiency syndrome (AIDS)
• Chemotherapy
• Surgeries and transplantations

These opportunistic fungal infections are of prime importance to increase the mor-
tality and morbidity rates (Cuenca-Estrella et al. 2011). The recognition and differ-
entiation of a fungal infection is very challenging in the clinical mycology (Salcedo 
and Powers-Fletcher 2020). Therefore, correct diagnosis of respective fungal spe-
cies at early stages of infection is necessary in clinical mycology to ascertain the 
disease aetiology, control the emerging resistance against various antifungal agents, 
detect the novel disease causing agents and discover the hospital acquired infections 
(HAIs) among patients. Moreover, it reveals the connection of fungal isolate to the 
clinical environment (Bunn and Sikarwar 2016).

Systemic mycosis remains significant cause of serious infections leading to mor-
bidity and mortality in almost 1 billion immunocompromised patients worldwide. 
Corresponding to vast species diversity, fungal diagnosis is major concern at medi-
cal laboratory level to determine etiology of associated infections. Conventional 
diagnostic methods are key to identify deadly fungi through four major steps, 
including morphology-based macroscopic and microscopic pathogen identification 
using different staining techniques, that is, gram, fluorochrome and immunofluores-
cent staining for specific fungal detection. Second is the culturing of fungal patho-
gen on selection media that are appropriate for culture growth and further 
amplification. After culturing media comes the biochemical assessment method to 
differentiate fungal strains according to their characteristics. Last is the immuno-
logical assessment for confirmation of pathogen attachment with antibody for lethal 
infections. Here, we have briefly discussed these strategies.
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15.5.1  Morphological Diagnosis of Invasive Fungi

Medically significant fungi are generally identified on morphological key character-
istics, which include fungal culture characteristics, that is, surface pigmentation in 
diverse colour ranges; reverse pigmentation in different colour exhibits; growth rate 
in terms of fungal colony diameter ranges from 5 to 15 days; the surface topography 
including flat, heaped, raised, radial grooved, folded and domed; texture of surface 
being granular, glabrous, suede-like, fluffy, powdery, cottony and downy; and the 
growth temperature ranges. In view of above keys, zygomycetes are characterized 
according to sporangial characteristics. Hyphomycetes are identified based on 
conidial characteristics, etc. Some of the characteristics are discussed (Table 15.1).

15.5.2  Fungal Microscopic Identification

In humans, 150 fungal species are estimated out of 250,000 to cause pathogenic 
diseases. Microscopy is regarded as traditional techniques for identifying medically 
important fungi (Chuku 2018). Wet mount microscopy or examination through 
potassium hydroxide are mainly used including the staining techniques for enhanc-
ing microscopic imaging. Most commonly used stains are lactophenol cotton blue, 
Gram staining, Calcofluor white and acid fast stain are for quick fungal structure 
evaluation, for differentiating them from other actinomycetes. Fungi residing fluids 
or tissues are detected through fluorescent antibody stain and for differentiating 
dimorphic fungi, Papanicolaou staining is used. India ink stain and Mayer 

Table 15.1 Major fungal groups with their important identification characteristics and 
representative species

Group Characteristics
Medically important 
fungi References

Hyalohyphomyces Colourless walls, branched 
or unbranched hyphae

Moulds, some 
Fusarium species

Zhang et al. (2015)

Zygomycetes Mainly saprobes, 
coenocytic hyphae, 
zygospres

Mucorales, 
Conidiobolus, 
Basidiobolus

Roilides et al. (2012)

Dematiaceous 
fungi

Darkly coloured, melanin 
in cell wall, soilborne

Alternaria, 
Curvularia, 
Lasiodiplodia

Wong and Revankar  
2016)

Dermatophytes Skin invading, 
filamentous, cause itching

Trichophyton rubrum Bouchara et al. (2017)

Dimorphic fungi Phase switching, yeast to 
mycelium

Talaromyces marneffei Boyce and 
Andrianopoulos 
(2015)

Yeasts Unicellular, some species 
form pseudohyphae

Candia species Miceli et al. (2011)
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mucicarmine stain are specifically for identifying capsule of C. neoformans; Giemsa 
staining technique is for bone marrow and blood specimens; Fontana-Masson stain, 
Wright stain, periodic acid-Schiff (PAS) stain and numerous other techniques exist 
for microscopy stain of medically significant fungi. Microscopy accompanied by 
staining and histopathology are efficient to diagnose infections caused by Aspergillus 
spp., C. neoformans, Candida spp., Pneumocystis jirovecci, Coccidioides immitis, 
Blastomyces dermatitidis, Sporothrix schenckii, H. capsulatum, Paracoccidioides 
brasiliensis and Mucormycotic infections but sensitivity of techniques fluctuate 
with specimen source, individual agent and technical expertise, and also these tradi-
tional approaches may require tissue biopsies which are risky for patients who are 
susceptible to invasive fungal infection (Kozel and Wickes 2014). Microscopy anal-
ysis becomes more efficient when combined with other tools and the transmission 
electron microscopy (TEM), scanning electron microscopy (SEM) and confocal 
microscopy (CLSM), and the atomic force microscopy (ATM) are the powerful 
instrumentation techniques for identification of fungi (Schuler et  al. 2015). 
Microscopy is considered limited traditional identification approach in terms of 
time consumption, cost and lab expertise.

15.5.3  Culture-Media-Based Diagnosis

Pure culture of individual fungus is obtained through diverse techniques using 
selective nutrient-supplemented growth media. Selection of media is a critical 
choice based on the type of suspicious fungi. Pure colony of fungi is used for iden-
tification of growth traits including pigmentation, colour, shape, mycelium, texture 
and topography.

These techniques are effective, especially for wide range of invasive candidiasis. 
For instance, the traditional blood culture may firstly omit 50% chances of the 
patients who are documented with linked problem (Fraser et al. 1992; Ostrosky- 
Zeichner and Pappas 2006; Ostrosky-Zeichner 2012) because of the poor sensitiv-
ity. Moreover, it may become positive only in late infection (Ellepola and Morrison 
2005; Clancy and Nguyen 2013). Furthermore, it typically takes time ranging 
24–72 h for identifying Candida in clinical sample, which is too long for early dis-
ease treatment. In case of invasive aspergillosis that majorly caused by contami-
nated air (Kontoyiannis et  al. 2000). Patients suffering from acute pulmonary 
histoplasmosis have recovery chances of 10–15%. But, in condition of cavitary his-
toplasmosis, the sputum cultures are usually positive up to 60% patients. 
Bronchoscopy sputum cultures have higher yield (86% per patient for culture and 
92% for bronchoscopy) in patients suffering from pulmonary blastomycosis (Kozel 
and Wickes 2014). Coccidioides spp. culture is rather more complicated because of 
biosafety hazard associated to cultural mycelia forms. So, the identification of spe-
cific opportunistic fungi that may cause infections demands foremost expertise at 
laboratory level. Examples of culture media include Sabouraud Dextrose Agar 
(SDA), Potato Dextrose Agar (PDA), Brain-Heart Infusion Agar (BHIA), Malt 
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Extract Agar (MEA), Inhibitory Mould Agar (IMA), Dermatophyte Test Medium 
(DTM), Yeast Extract Phosphate Medium (YEPM), cornmeal, sterile bread agar and 
various other (Ostrosky-Zeichner 2012) (Fig. 15.2).

Clinical culture is regarded as standard for fungal infection diagnosis because it 
is specific etiological sample if yields positive culture. It is also used against testing 
susceptibility. However, using culture-based diagnosis is limited for invasive fungal 
disease because culture growth requires much time for filamentous fungal species. 
And fungi look alike, so specific method, that is, chromogenic media is preferable.

15.5.4  Serology-Based Fungal Identification Technique

Serum-based detection of fungal infection is regarded as gold standard traditional 
approach, which is not only accepted worldwide as a nonculture-based assay for 
diagnosis of histoplasmosis but also other severe infections (Hage et  al. 2019). 
Endemic mycoses have been identified through serologic testing of patient’s anti-
bodies despite cultural identification since mid of previous century. The most com-
monly used serologic diagnostic tests are enzyme immunoassay (EIA), 

Fig. 15.2 Collage of different fungal strain grown on different culture media. (a) Aspergillus 
fumigatus on potato dextrose agar (PDA). (b) Histoplasna capsulatum colonies on sabouraud dex-
trose agar (SDA). (c) Candida albicans colonies on yeast extract peptone dextrose (YPD) agar 
(Wibawa and Aman 2015). (d) Colonies of yeast-like fungi C. neoformans on bird seed agar 
(BSA). (e) Dark brown colonies on Cryptococcus gattii on niger seed agar (NSA) (Patil et  al. 
2013). (f) Coccidioides immitis growth on blood culture media. (Adapted from Chae et al. 2012; 
Sahu and Padhy 2014; Wibawa and Aman 2015; Kipyegon et al. 2017; Valdez et al. 2019)
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immunodiffusion (ID) and complement fixation (CF). Histoplasmosis is identified 
through CF and ID mostly for detection of antibodies usually for detecting antibod-
ies in histoplasma M and H antigens and CF testing helps to differentiate between 
acute and recuperating histoplasmosis. Higher titre may indicate chronic pulmonary 
histoplasmosis (Lindsley Mark 2016). Diagnosing coccidioidomycosis in case of 
primary infection or coccidioidal meningitis through serological testing is efficient 
practice (Galgiani 2010). Approximately, 80% acute primary coccidioidomycosis is 
based on IgM detection (Saubolle et al. 2007). IgG antibodies are detected through 
CF and are produced during convalescent phase or during the chronic infection. CF 
is considered more sensitive test than IDCF combined; it also provides quantitative 
testing results. EIA is preferably used for detecting IgM or IgG with antibodies. 
Serological diagnosis also includes galactomannan detection, 1,3- ß-D-glucan 
detection, mannan detection, enolas, secreted aspartyl proteinase (Sap), detection of 
capsular antigen in cryptococcosis and test for detection of metabolites and histo-
plasmosis. There are advantages to use of serological diagnosis for invasive fungal 
infection. First, results may be positive, which were not detected during cultural 
diagnosis. Second, it may reduce culturing of potential devastating fungi, for exam-
ple, Coccidioides spp. Finally, it requires a minimal sample size to reduce testing 
barriers. There are some disadvantages associated with serological testing such as it 
cannot detect presence of infecting fungi and lower sample quantity may lead to less 
sensitivity and less specificity. CF testing is time consuming and infection detection 
for an immunocompromised patient becomes difficult due to possible lower anti-
body response (Tobón et al. 2005).

15.5.5  Molecular Approaches for Mycoflora Diagnostics

In general, protocols and instruments that are involved in the detection of nucleic- 
acid- based biomarkers or the product of gene categorized as molecular diagnostic 
assays. Traditionally used fungal identification methods such as phenotypic appear-
ance of fungi and different biochemical tests require a lot of time, may take days to 
weeks for completion, lack sensitivity and demand more technical skills. In order to 
manage these invasive clinical fungal infections, development of new and precise 
identification techniques is very important. In this way, the economic and social 
losses of these infections can be minimized (Wickes and Wiederhold 2018). To limit 
the drawbacks of traditionally used methods and techniques for the purpose of fun-
gal identification, some recent techniques that seem promising for fungal identifica-
tion such as ITS-based identification, MALDI-TOF MS, LAMP, rolling circle 
amplification nano-diagnostics, etc., (Chuku 2018) are discussed.
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15.5.5.1  DNA Sequencing of Internal-Transcribed Spacers 
for Identification

DNA sequencing is considered ‘Gold Standard’ among all the molecular techniques 
used to differentiate fungi (Perlin and Wiederhold 2017). Extreme worth of this tool 
is due to immense data availability on easily accessible database known as GenBank. 
Substantial data of rRNA gene or rDNA sequences along with single gene or 
genome of individual can easily found at this platform. This tool gain its popularity 
as promising diagnostic technique after successful amplification of internal tran-
scribed spacer (ITS) regions by universal DNA priming site that encodes 18S and 
28S (small and large) ribosomal subunits by White et  al. (Fig.  15.3). ribosomal 
RNA is very sensitive to PCR as it is abundantly present in each cell of eukaryotes. 
Formerly, D1/D2 region also used for the identification purposes, but that region is 
less sensitive to PCR also cannot discriminate the fungi beyond genus level. In clini-
cal environment, fungal identification up to species level is very crucial, for exam-
ple, A. fumigatus species complex and S. apiospermum species complex; species 
differentiation is necessary because of their different respond to antifungals and 
clinical outcomes. Whereas dealing with Candida species, discrimination of its spe-
cies may not be necessary (Nilsson et al. 2006; Lackner et al. 2012; Sugui et al. 2014).

Fig. 15.3 Schematic 
presentation of nested PCR 
used for fungal diagnostics. 
(Adapted from Brunke 
et al. 2016)
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Although ITS/DNA sequencing is a routine protocol for mycology labs. 
Nevertheless, this technique is not commercialized to that extent due to high cost 
investment and demand for high level of technical expertise to conduct this proce-
dure. Another drawback of this technique is the open nature of its database, that is, 
GenBank (Balajee et al. 2005). It allows everyone to submit data without any cura-
tion, which makes it very prone to errors and ultimately leads to misidentification of 
fungal species. RefSeq database on other hand helps to overcome this gap. Common 
fungi can be identified with precision by this highly curated database using different 
filters. Other bi-curated databases with authentic sequence information can be good 
alternatives of BLAST (NCBI; Prakash et al. 2017).

15.5.5.2  Multiplex Polymerase Chain Reaction (MT PCR)

It is a molecular diagnostic tool used for the identification of multiple fungi in single 
specimen at the same time. This tool amplifies the conserved fungal genome regions 
with the help of two sets of specifically designed primers (Badiee et  al. 2007). 
However, identification process from this technique is difficult to some extent as it 
involves the sequencing of amplified product. Many fungal species that are difficult 
to identify by microscopic technique due to similar morphological characteristics 
can be easily diagnosed by PCR. It is also used to diagnose the IFIs through blood 
(Sugawara et al. 2013), BAL (Orsi et al. 2012) and serum samples of the patients. 
PCR is most versatile and diverse among all the techniques to amplify nucleic acid 
and used as major target for diagnostic component. It is the most fundamental and 
globally used technique due to easy handling and relatively low cost instrumenta-
tion. Results can generate at faster pace by PCR, which are quantitative in nature 
and interpreted straightforward by PCR. However, lack of panfungal differentiation 
counted as flaw of this technique. This tool is directly applicable on clinical samples 
that have excessive quantity of nucleic acids, which helps in omitting of in vitro 
fungal culturing step. Unfortunately, in clinical samples the amount of fungal DNA 
is very low in comparison with bacterial or viral samples (Alanio and Bretagne 
2014). Use of different probe and primer combinations make this technique promis-
ing for the diagnosis of a large number of fungal species such as in case of nested 
and qPCR (Fig. 15.4).

Fig. 15.4 Scheme of fungal rRNAs gene cluster showing internal transcribed spacer (ITS) region. 
(Adapted from Wickes and Wiederhold 2018)
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15.5.5.3  Loop-Mediated Isothermal Amplification 
(LAMP)-Based Detection

LAMP is a robust amplification technique, which amplifies the targeted DNA seg-
ment and replaces one strand of the DNA with newly synthesized DNA strand with 
great precision at isothermal conditions (Parida et  al. 2008). The whole process 
done in a single reaction tube, which contains DNA target, DNA polymerase 
enzyme along with its buffer and primers. Temperature range for this reaction is 
60–65 °C. Unlike conventional PCR, this reaction takes place simply using water 
bath or heat block (for the maintenance of isothermal conditions) instead of costly 
thermocyclers or PCR machines (Noguchi et al. 2017). Moreover, in this method, 
heat-based denaturation of dsDNA into single strand is not needed. In the protocol, 
there are four specific primers used in this reaction in place of typically used two 
primers, which are beneficial in increasing the reliability and specificity of the pro-
cedure. Additionally, traditionally used DNA Taq polymerase substituted by Bst 
polymerase in LAMP helps in reducing the sensitivity against PCR inhibitors spe-
cially when dealing with blood samples in clinical labs. High number of DNA cop-
ies (109–1010 copies within 1 hour) makes this method more vigorous and desirable 
than typical PCR. LAMP results can be visualized and examined without using UV 
if CYBR green is included in the reaction mixture (Soliman and El-Matbouli 2005).

LAMP protocols have successfully developed even for the detection of human 
pathogenic fungi, including  Penicellium marneffei, Cryptococcus spp., 
Pseudallescheria spp.  and Scedosporium spp. (Malhotra et  al. 2014). Although 
LAMP is highly specific, cost effective, time saving and simplified technology, 
some gaps are considered drawbacks of this technique. In particular, requirement of 
multiple primer sets makes it more complex because of difficulty in finding appro-
priate sites in a gene for primer designing. In addition, a very few commercial kits 
are available for LAMP compared to regular PCR (Keikha 2018).

15.5.5.4  Rolling Circle Amplification (RCA) Based Assessment 
of Fungal Species

Rolling circle amplification (RCA) is another procedure employed for the identifi-
cation of fungal species. During this procedure, amplification of the target sequence 
can be performed, which is in the form of a circular template (Fakruddin et  al. 
2013). This procedure involves the use of viral polymerase for the amplification 
purpose. Fundamental steps of this technique are the extraction of DNA followed by 
its amplification. Subsequently, a padlock probe is designed and then that probe is 
ligated to that target. Excessive sample and probe are removed by exonucleolysis. 
In the final step, ligated product is used as template for RCA at required temperature 
(65 °C). Resulting data are then examined by using gel electrophoresis, UV light, or 
radiology techniques (Davari et al. 2012).

This technique differentiates the fungal species, which has a close relation to 
their genotypes, and has the ability to detect minute changes such as difference of 
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even single nucleotide (Sun et  al. 2011). Mucorales (Dolatabadi et  al. 2014), 
Exophiala (Kaplan et al. 2018) and Cryptococcus (Trilles et al. 2014) species of 
fungi have successfully identified by using RCA.

15.5.5.5  Nucleic Acid Sequence-Based Amplification (NASBA) Through 
Fungal RNA

This tool works on the amplification principle like PCR, but with mRNA as target 
of amplification along with RNA polymerase rather than, DNA and its polymerase. 
Additionally, this technique is of isothermal nature. Although this method was 
developed in 1991, it failed to gain popularity in scientific community (Zhao et al. 
2016). After a decade, this technology is introduced as a promising tool for recogni-
tion of Aspergillosis (Loeffler et  al. 2001). Afterwards, NASBA in combination 
with real-time PCR is tested to increase the specificity and reliability.

As mRNA used in this method, the possibility of recognition of active infection 
is increased multiple times rather than old or latent disease. Isothermal nature when 
conjoined with the fact of more RNA stability could eliminate the contamination 
risk. All of mentioned aspects make this technique promising for identification of 
susceptible population. In addition to that, accurate prediction of clinical results by 
this technique will be helpful in increased survival rate (Yoo et al. 2007).

15.5.5.6  Real-Time Polymerase Chain Reaction (qPCR)

Methods include probe hybridization, PCR and generation of signals combined in 
single step by this tool. Probe used in qPCR, named as TaqMan, is usually a mixture 
of three components: 5′ fluorescein dye used as a reporter dye, quencher dye at 3′ 
end and lastly, a phosphate group used as a blocker at 3′ end. Breakdown between 
quencher and reporter takes place because of elevated level of reporter dye. 
Consequent quantity of reporter dye is equal to the resulted PCR product. Use of 
TaqMan allows the sample analysis as soon as PCR ends, that is, approximately in 
5–10 mins, which eliminates the post-amplification interpretation step. In this way, 
contamination of samples in laboratory can be minimized. Sensitivity of this proto-
col is ten times higher than the commonly used ethidium bromide-based agarose gel 
electrophoresis. This protocol has been flourished for the diagnosis of A. fumigatus 
and Candida species (Valones et al. 2009).

15.5.5.7  Random Amplified Polymorphic DNA (RAPD) 
Marker-Based Identification

It is another modification of PCR, but with random amplification of target DNA 
region. RAPD generates a semi-novel profile when resulting DNA fingerprints are 
resolved. RAPD involves the use of single primer to amplify the different 
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complementary segments of DNA randomly. Amplification of the DNA segment 
depends upon the annealing position of primer: if primers annealed at very far dis-
tance or the 3′ ends of the annealing primers do not face each other than amplifica-
tion cannot takes place. The amplified products can be visualized on acrylamide gel 
and the sized-based detection of amplified products allow the comparison between 
different fungal species. This technique can identify fungal species that do not have 
any prior information about DNA sequence. This method can discriminate the spe-
cies which have high similarity index, for example, Cryptococcus gatti and C. neo-
formans is discriminated successfully by the use of RAPD (Malhotra et al. 2014).

15.5.5.8  Whole Genome Sequencing (WGS)

Whole genome sequencing is a prompt substitute of traditional DNA sequencing 
technique. It is valuable more than simple identification of fungal species. It is 
effective in genotyping of any fungal strain that lacks any kind of prior information 
or genetic knowledge. Therefore, it is of great use when traditional molecular 
approaches fail to give results, such as in case of any medical emergency or out-
break by unknown fungal pathogen with no or very little availability of insight 
about epidemiology, spread and diversity of related fungal isolate. In such an 
unusual situation, WGS provides first molecular and genetic differentiation about 
that strain of fungus (Alanio et  al. 2017). Since the inception of whole genome 
sequence reported for Saccharomyces cerevisiae and Schizosaccharomyces pombe, 
this technique gained significant importance (Sharma 2016).

The basic principle of WGS is to investigate the genome-wide differences among 
fungal isolates by pinpointing any single nucleotide polymorphism (SNPs) in every 
genome. Thus, information from the SNPs comparison helps to recognize the rela-
tionship between fungal isolates. Genetic relevance calculated by the distance map-
ping of SNPs. Another edge of WGS is that it provides ‘de novo assembly’ against 
the pathogen. It also tells about the ploidy level, genome size and information 
related to characterization of fungal pathogen (Lesho 2016). During recent years, 
outbreaks caused by exceptional fungal pathogens like Candida auris, Saprochaete 
clavata, Sarocladium kiliense, Exserohilum rostratum, were investigated by WGS 
typing. These outbreaks point towards the dawn of a new era of fungal infection 
diagnostics by utilization of WGS (Bougnoux et al. 2018).

Besides this, WGS has huge worth in metagenomics studies. Different microbes 
(fungi, bacteria and viruses) can be present at aseptic sites of human body in tre-
mendous number, and it is very challenging to sample, identify and characterize 
mycoflora from such site compared to purified cultures for which specific molecular 
and phenotypic markers are available. In such situation, WGS can be applied to 
metagenomics investigation of that mycobiome in various ways. An example of 
such research is the identification of human pathogenic oral mycoflora (Ghannoum 
et  al. 2010). In the past, this technology also used to investigate the connection 
between Crohn’s disease and fungi by the identification of responsible fungi (Hoarau 
et al. 2016).
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This technique has some limitations despite high differentiation capability to 
investigate relation between fungal isolates. WGS is a high cost technology and not 
suitable for regular practices in a clinical laboratory because of its slow pace. 
Moreover, due to complexity of this technique, it can only executed in those labora-
tories where all the steps used in this technique are established, for example, com-
putational analysis of WGS-generated data along with the acquisition of sequences 
(Hanage 2014). High variability in fungal genome size, that is, 8.97–177.57 Mb, is 
an important factor that is responsible for high cost of this technique (Mohanta and 
Bae 2015). Furthermore, dynamics in fungal genetic makeup such as less diversity 
in nucleotides of some fungal species, for example, Penicillium spp., limits the effi-
cient use of this technique to study epidemiology (Lasker 2006) (Fig. 15.5).

15.5.5.9  Hybridization-Based Fungal Detection Assays

Numerous probe-detection-based protocols to identify pathogenic fungi categorized 
as hybridization methods, for example, fluorescent in situ hybridization (FISH), 
peptide nucleic acid-fluorescent in situ hybridization (PNA-FISH) and reverse dot 
blot hybridization (RDBH).

Fluorescent In Situ Hybridization (FISH)

In this practice, a fluorescent-labelled oligonucleotide probe is used for the detec-
tion of specified fungal genome target in blood samples. Fluorescent probe gets 
attached to its complementary target DNA sequence within a cell. Key steps of this 
assay includes fixation of sample, which makes fungal cells permeable for the 
absorption of fluorescent probe. Then, preparation of sample is done, which also 
involves some pretreatment steps to enhance the attachment capability of specimens 
to membrane or glass slide. This step is followed by the probe hybridization to the 
specific target region. Afterwards, the washing is performed to remove excessive 
probe that remained unbound. Final steps involve the mounting of membrane or 
glass slide, followed by its visualization through fluoresce microscopy or flow 
cytometry to detect the signals generated by hybridized fluorescent probe (Moter 
and Göbel 2000). This technique is used to detect Candida species for many years 

Fig. 15.5 Workflow of WGS in clinical labs starts with isolation and preparation of fungal sam-
ples, genome sequencing by WGS and computational data analysis of resulting data, then final 
retrieval of the ultimate results. (Adapted from Gabaldón 2019)
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(Kempf et al. 2000). The target sequence of probe could be taxon-specified DNA 
regions such as rRNA genes, ITS regions or genes of mitochondria mainly because 
these genes have high copy number and are conserved in fungal species. Therefore, 
this technique can be used to differentiate fungal species when probe is designed 
against rRNA gene or ITS region. Paracoccidioides brasiliensis and Paracoccidioides 
lutzii species were differentiated by designing probe against ITS1 region of these 
fungi in a study (Arantes et al. 2017) (Fig. 15.6).

Peptide Nucleic Acid-Fluorescent In Situ Hybridization

Peptide nucleic acid-fluorescent in situ hybridization (PNA-FISH) is the modifica-
tion of regularly used FISH assay, in which peptide nucleic-acid-based probe is 
used. Neutral nature and increased binding capacity of probe make this technique 
efficient than simple FISH method (Rigby et al. 2002). Two FDA certified and com-
mercially available PNA-FISH products are Quick FISH and Yeast Traffic Light 
FISH. Candida species (C. albicans, Candida tropicalis, Candida krusei, Candida 
parapsilosis and Candida glabrata) along with Scedosporium, Aspergillus and 
Fusarium species can efficiently identify by this assay (Procop 2007).

Reverse Dot Blot Hybridization (RDBH)

DNA array hybridization and macroarray are the other famous names of this tech-
nique. This technique is the combination of hybridization procedures with 
PCR. Oligonucleotides are synthesized and allow to bind on a solid surface plat-
form: either a nylon membrane or a glass surface/slide. If successful reaction takes 
place between the amplicon (PCR product) of targeted genome and synthesized 
probe, chemi-luminescent signals are generated. These signals are detectable by 
digital camera. Reusable nylon membrane with attachment capacity of numerous 
oligonucleotides make this technique more beneficial than other PCR methods in 
terms of cost (Lau et al. 2009). This is a promising tool for the detection of invasive 
fungal infections such as coccidioidomycosis (Montone et al. 2010) and rhinosinus-
itis (Montone et al. 2011) other than Candida spp. Identification.

Fig. 15.6 Fluorescence in situ hybridization (FISH); mixing of probes with target samples; 
hybridization of probe to their respective DNA sequence, then washing of excessive probe, visual-
ization of hybridized probe via fluorescence microscope. (Adapted from Arvanitis et al. 2014)
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15.5.5.10  Matrix-Assisted Laser Desorption/Ionization Time-of-Flight 
Mass Spectrometry

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 
MALDI-TOF is among the most efficient and reliable techniques used to classify, 
identify and differentiate microorganisms rapidly with great authentication. It has 
massive use in identification of fungi, as well as bacteria (Chalupová et al. 2014). It 
has become a routine method for the identification of yeasts and is equally efficient 
for filamentous and dimorphic fungal identification (Patel 2019). Working principle 
of this tool is the ionization of biomolecules using laser afterwards, mass to charge 
ratio-based detection and measurement of these ionized biomolecules. TOF unit 
operates to generate protein-based fingerprints that are the markers of pathogenic 
spores or cell surfaces. These peptide fingerprints are then used to examine the data-
bases (Singhal et al. 2015) (Fig. 15.7). Many medically significant fungal species 
particularly Aspergillus, Cryptococcus, Candida, Fusarium and Mucor species 
along with other fungi including Histoplasma capsulatum and Blastomyces derma-
tidis have been identified successfully by utilization of this technique (Panda et al. 
2015; Rychert et al. 2018).

Fig. 15.7 Process of species identification through MALDI TOF MS: Colony picking from media 
culture plate placed on the target plate of MALDI TOF; formic acid is added for the yeast identifi-
cation, preceded by drying. The target plate is then placed in mass spectroscopy unit, which pro-
duces a mass spectrum and compare this spectrum with others in library through software. 
(Adapted from Patel 2019)
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This technology has edge on other identification techniques in many ways. It is a 
very rapid technique and requires limited amount of sample and consumables for 
the processing. All these beneficial aspects make this technique suitable for clinical 
setups as well as industrial environment (Wieser et al. 2012). The drawback of this 
technique is the generation of analytes must be done from the pure cultures that can 
increase the turnaround duration by the addition of many days. Furthermore, the 
database used in this technique is not stringent as fingerprints that not generated by 
FDA-validated condition can also accepted. In addition to that, some fungal finger-
print variation is highly dependent on the conditions of culture that is problematic 
in standardization for fungi (Wolk and Clark 2018).

A variation of MALDI-TOF is ESI-MS (electrospray ionization mass spectrom-
etry). It also uses the mass spectrometry to identify and characterize fungal patho-
gen. In comparison to typical fungal identification process, different biomolecules 
can be used in techniques other than nucleic acids with minimal or no suspicion of 
misidentification. A huge number of fungal species can be identified by this tech-
nique in ~6 h (Simner et al. 2013). Unlike MALDI-TOF MS, this method allows the 
direct examination of clinical samples. In addition, many samples can process 
simultaneously. Another benefit is the attached PCR component, which is helpful in 
enhancing the sensitivity even when sample amount is extremely low (Buchan and 
Ledeboer 2014). However, there is a possibility that without some essential struc-
tural changes, resulted amplicon might contaminate. Relatively, the cost of per 
assay run is high and former version of its fungal database lead to the misidentifica-
tion of fungal species. Furthermore, the long-term suitability of this technology in 
clinical environments is still ambiguous (Özenci et al. 2018).

15.5.5.11  Nano-Diagnostics for Fungal Identification

Microfluidics

Another robust platform that has the ability to diagnose fungal species precisely is 
digital microfluidics. Droplet-based microfluidic method developed by Boles et al. 
(2011) supports the concept of electro-wetting for the control and manipulation of 
samples, which is then useful to implicate different processes such as combining 
and mixing of liquid sample followed by its movement to different parts of the 
chip. Combination of all these processes make execution of all the steps used in 
PCR (extraction of DNA, purification and then shifting to various thermal regions) 
possible in an easier way (Schell et al. 2012). Multiple fungal species in a biologi-
cal sample can detect and quantify robustly by microchip-based PCR. Nevertheless, 
the viability of fungal pathogen cannot be determined by this technology, which is 
overcome by the use of Raman spectroscopy that can quantify the different biomol-
ecules and structures, for example, DNA and living/fungal cells (Teles and 
Seixas 2015).
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Metallic Nanoparticles

Nanoparticles play a role in immobilization of biomolecules and can be used as 
labels to detect amplified signals or act as biological probes to recognize particular 
target regions. Some significant and commonly used NP-based bioassays to detect 
invasive fungal infections are gold nanoparticles (Au NPs) for Paracoccidioides 
brasiliensis, Candia and Aspergillus species (Martins et  al. 2012; de Heer et  al. 
2013; Sojinrin et al. 2017).

In addition, metallic nanoparticles employ to intensify the surface area and mag-
nitude of scattering in surface-enhanced Raman spectroscopy (SERS) technique. 
Metal-based NPs cling themselves to fungal wall or they might settle in the propin-
quity of fungal pathogen. SERS along with cell separation technique (DEP) on 
single chip allow the rapid and multiplex identification of Candida spp. (Safavieh 
et al. 2017).

Carbon Nanotubes

This tool consists of tiny pores that are insulated electrically and have ability to 
detect even single molecule when it moves through these tubes or holes. The mol-
ecule recognition depends on the variation in electric current signal generated by 
electrolyte solution containing target molecule (Lyberopoulou et al. 2016). Carbon 
nanotubes consist of a single or multiple wall. Layers of carbon atoms are present 
on the surface of wall. These carbon atoms have the capability to interact with bio-
molecules such as DNA proteins and antibodies. Basic principle to detect fungi 
through nanotubes involves the attachment of biomolecule such as DNA sequence, 
protein or antibody (which has receptors to bind with the target sequence in fungal 
cell wall) to the surface of carbon wall. Some reagents such as Tween20 is used to 
control the unspecific binding (Villamizar et al. 2009). After that fungal samples are 
allowed to pass through them and on the recognition of specific fungal target, sig-
nals are generated by the nanotubes. These signals could be electric or thermal in 
nature. The electrical conductivity of carbon nanotubes is 100x higher than copper, 
and thermal conductivity is almost 100x more than the diamonds (Tîlmaciu and 
Morris 2015). Candida albicans have successfully identified by using carbon nano-
tubes (Villamizar et al. 2009).

Nanowires

These are small channels, which support the flow of electric current. They show 
fluctuation in flow of current when target biomolecule interacts with the specific 
antibody followed by efficient and sensitive detection of that signal (Choi et  al. 
2014). Gold nanowires are effective tool for the diagnosis of C. krusei, C. neofor-
mans, C. glabrata and A. fumigatus (Yoo et al. 2011). In this technique, various 
DNA-based probes are mixed with DNA solution of targeted fungi. Exonuclease III 
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degrades the compatible probe, which results in decline of probe quantity. Recycling 
of selected DNA continues the procedure. Decline in probe load is detected by 
SERS (Yoo et al. 2011) (Fig. 15.8).

15.6  Control Strategies for Human Pathogenic Fungi

Natural defence of humans consists of two barriers to counter fungal infections: 
internal body temperature (37 °C) and innate immunity (e.g. T-cells). In general, 
most of the fungal infections are not dangerous for humans but immunocompro-
mised patients are the target of these infections. Different therapeutics including 
antibiotics, immunity enhancing medicines and some devices (e.g. catheters) are 
used to cure respective conditions but can elevate the risk of severe fungal infections 
in such patients (Scorzoni et al. 2017).

15.6.1  Antifungal Approach

Antifungal drugs are very limited in number as fungal infections were considered 
insignificant. However, in current situation where the number of fungal infections is 
increasing day by day, researchers are in search of new and effective antifungal 
constituents. It is challenging to treat infections caused by fungi because develop-
ment of antifungal drugs is not easy due to growing resistance against antifungals 
and structure resemblance between fungal and host eukaryotic cells. This structure 

Fig. 15.8 Strategic flows of nanowires for pathogen detection through surface-enhanced Raman 
spectroscopy. (Adapted from Yoo et al. 2011)
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similarity can cause damage to host cell along with fungal infection and can be a 
cause of harm to patients. There is very little number of antifungal drugs useful in 
curing fungal infections due to difficulty in discovering the suitable drug target.

The first polyene-based drug Amphotericin B was approved in 1950s. It has 
binding affinity to the ergosterol, which is an important fungal cell membrane com-
ponent and cause disruption of fungal membrane by binding to it. However, ergos-
terol has similarity with the structure of cholesterol in host cells, which can result 
toxicity in humans. Flucytosine is the analogue of pyrimidine, approved during 
1960s. It is mostly used in combination with other antifungal drugs. Such as in case 
of cryptococcal meningitis, it is used in combination with polyenes. This drug inter-
rupts the metabolism of nucleic acid (DNA/RNA) and convert cytosine to 
5- flurouracil, which has toxic nature and cause harm to fungi. Again human cells 
can also get affected if this drug gives off target results.

During late 1970s, Azoles were discovered as new antifungal compounds. They 
act by causing hindrance in the synthesis of ergosterol by the blockage of lanosterol 
14alpha-demethylase. It can be toxic to human cells and cause mild gastric distur-
bance to severe breakdown of liver cells in some cases. Allylamines are found in 
Terbinafine drug. It also effects the synthesis of ergosterol by a fungal enzyme 
named as squalene epoxidase. Its side effects include the gastrointestinal distur-
bance in humans. Caspofungin, anidulafungin and micafungin antifungal drugs 
belong to echinocadins. Antifungal drugs of this class were developed in early 
2000s. The target compound of this antifungal is 1,3 beta flucan synthase, which is 
an important component in cell wall formation of human fungi. This drug is safe to 
use in clinical setups due to less toxicity of the host cells (Holt and Drew 2011; 
Hamill 2013; Peyton et al. 2015; Pappas et al. 2016; Nett and Andes 2016).

Olorofim is the novel class of antifungals, which is currently in phase 2 of clini-
cal trials; this drug is very effective in control of infections caused by Aspergillus 
and Candida species. This drug targets the dihydroorotate dehydrogenase to control 
the invasive growth of fungal pathogen. It can be proved as a potential antifungal 
drug to treat fungal infections, especially in patients with low immunity if approved 
(Lim et al. 2020).

15.6.2  Immunotherapeutic Approach: Vaccine

Another effective approach to deal with fungal infections is vaccination, especially 
in groups that are at higher risk to get these infections. It is relatively easy to calcu-
late the risk possibilities for these infections. Breakthrough in molecular technology 
and the resulting knowledge about the host and pathogen relationship support the 
development of efficacious vaccines. However, the number of clinical trials con-
ducted in humans is very low, and mostly potential candidates for vaccines are in 
pre-clinical phase. Use of vaccines instead of antifungal drugs can minimize the 
off-target results ultimately and reduce the resistance against drugs and toxicity 
caused by them. The most desirable vaccines are those which has ability to induce 
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pro-inflammatory and Th1/Th17 responses that help to increase the phagocytosis of 
fungi. The concept of niche vaccine has provided the new dimension for the patients 
that are limited to specific geographical area along with the patients that are acutely 
at risk (Medici and Del Poeta 2015). Against Candidiasis, two potential vaccines are 
in clinical trial phase. First one consists of an antigen named as rAls3p-N has ability 
to intercept the adhesion and entry of fungal infection in host tissues. This vaccine 
proves to activate the T-cells, neutrophils and another antibody when given to host. 
The other vaccine contains truncated Sap2 antigen, is virosome-based vaccine and 
provides 100% mucosal protection against infection (Vecchiarelli et al. 2012). A 
heat-shocked protein named as Hsp90-CA is used to make a DNA-based vaccine 
with efficacy of 64% in pre-clinical trials. In another study, genetic engineering of 
S. cerevisiae was done to produce an antigen Enolase 1 on the surface of C. albi-
cans. When this vaccine was orally administrated to the mice, they exhibited the 
immunity against respective pathogenic fungus. Some structural similarities of 
Aspergillus and Candida make this vaccine effective for aspergillosis. However, this 
vaccine is also in pre-clinical trials (Shahid 2016).

Other than that, development of vaccines for the other fungal infection is in early 
clinical trials. In case of apergillosis, the immunity generated by type 1 cells is most 
desirable. When Asp 16 f, a recombinant allergen, is given in combination with CpG 
to the mice can improve the immunological response in A. fumigatus-infected popu-
lation. Similarly, vaccines for fungal infections by C. neoformans, P. brasiliensis 
and C. glabrata are under pre-clinical trials (Mor et al. 2016).

15.7  Challenges to Enforce New Technologies

The early diagnosis of invasive fungal pathogens is preliminary for their treatment. 
The conventional detection methods, available for fungal identification, have sev-
eral limitations, including extended time period trained and specialized laboratory 
staff, cost expensive and low levels of accuracy of biochemical and morphological 
identification methods (García and Rodríguez 2013).

State-of-the-art genomic applications, like sequencing of ribosomal and house-
keeping genes, have evolved as a ‘gold standard’ to deal with the disadvantages of 
the conventional diagnostic approaches over the past two decades for molecular 
characterization of fungi to deal with the drawbacks related to conventional meth-
ods (Sibley et al. 2012). However, it is not feasible to apply the genomic methods 
for everyday detection and characterization of microbes (Posteraro et  al. 2013). 
Contrary to the genome or transcriptome, the proteome analysis is directly linked to 
the function. The success of a diagnostic technique in the laboratory is critical in 
terms of its turnaround time and ease of use. The analyses that can be done expedi-
tiously with least possible steps in the sample preparation are preferable.

Like other microbes, the evolution of anti-fungal-resistant strains is a major 
obstacle in the treatment. Therefore, there is an expanding demand for such assays 
that offer the diagnosis, as well as detection of drug resistance if any (Monod 2019). 
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Certain concerns need to be contemplated while implementing any new test. These 
include collecting sufficient material to be used as ‘positive control’ and the con-
tamination of commercial reagents by fungi. The interpretation of the molecular 
analysis results must also be reviewed whether it is a colonization, disease or con-
tamination (Kidd et al. 2020).

Another important element that must be taken into account for employing a 
novel diagnostic method is cost-effectiveness. So, those assays should be preferred, 
which are readily available. For example, in case of NGS, if it is not available indig-
enously, then it may turn out to be cost expensive and the turnaround time is also 
prolonged. However, a decline is being observed in the sequencing costs; thus, the 
likelihood of NGS of becoming a usable choice by many laboratories is expected 
in future.

15.8  Conclusion and Future Prospects

Given the vast majority of fungi causing diseases in humans, it is hard to say that we 
can rely solely on the molecular diagnostic approaches, without using conventional 
detection methods. But the conventional methods have certain disadvantages that 
can be overcome by utilizing the molecular approaches. The increased knowledge 
of the fungal nomenclature and constant new description of new species/genera 
required along with consistent fungal databases and libraries updates will help to 
improve and deliver quality fungal identification into the anticipatable future (Patel 
2019). Although the molecular diagnostic methods are significant in the accurate 
diagnosis and proper treatment of the fungal infections and exhibiting the likelihood 
to replace conventional methods, optimization of sensitivity and precision analysis 
along with comparative analysis is important to standardize the methods that would 
be preferable to be used in the laboratory.

By the next decade, the application of the culture-independent analysis of medi-
cally important fungi will rise as a result of advancement in not only the PCR tech-
nology but also due to advancement in the sequencing technology. Even though the 
molecular diagnostic approaches will relatively increase in the coming years, it is 
implausible that the culturing of microorganisms will be totally replaced by culture- 
independent applications, since the genotypic information alone cannot speculate 
the phenotypic data and also the significance of strain stocks cannot be ignored 
(Sibley et al. 2012). In the coming years, the molecular techniques would be revo-
lutionized not only to examine the susceptibility of host for a certain disease condi-
tion but also to establish the alterations in the host gene expression during the 
infection that results in specific phenotypic alterations that would help in predicting 
the clinical outcome.
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16.1  Introduction

The fungal kingdom is the most diverse and successful of the eukaryotic kingdoms 
dat is widespread in all habitats and environments (plants, soil, animals, humans, 
insects, air, deserts, and deep-sea sediments) which include as many as 6 million 
species. Fungi are organisms dat play many important roles in teh areas of global 
health, agriculture, biodiversity, ecology, manufacturing, and biomedical research 
(Devi et al. 2020; Kour et al. 2019; Rana et al. 2019). Although most of teh fungi 
are saprophytic organisms (as commensals and members of our microbiome) and 
play important role, for example, in the environment (recycling organic matter) and 
as well as industrially useful properties, but only about 300 species of fungi are 
capable of causing disease in humans and their are two likely reasons for this: (1) 
the lack of growth of most fungi at mammalian body temperature and (2) provide 
an TEMPeffective defense by innate and adaptive immune systems (Crous et al. 
2009; Taylor et  al. 2014; Goranov and Madhani 2015; Templeton et  al. 2018). 
Among all these, the most common fungal infections are caused by Candida, 
Cryptococcus, and Aspergillus genera.

Millions of people die every year due to fungal infections dat lead to invasive 
infections (hidden killers). A fungal infection can be classified into cutaneous, sub-
cutaneous, or systemic forms. Tinea (“ringworm”) infections are one of teh most 
common cutaneous fungal infections caused by Microsporum, Trichophyton, and 
Epidermophyton fungi and their treatment is simple and teh fungi are easily elimi-
nated (Levitz and DiBenedetto 1989; Brown et al. 2012a; Goranov and Madhani 
2015; Kim 2016). Systemic infections unlike cutaneous fungal infections are a 
major clinical problem and challenging to diagnose and treat. Systemic fungal 
infections caused either by fungi dat are primary pathogens (e.g., Blastomyces, 
Histoplasma and Coccidioides species [spp.]), which infect immunocompetent 
hosts, or opportunistic pathogens dat require some degree of host compromise for 
infection (e.g., Candida, Aspergillus, Cryptococcus, Murcor spp.).

Although, human fungal pathogens kill about 1.5 million people each year, but 
compared to other microbial pathogens, research on fungal pathogens TEMPhas 
not made significant progress, which TEMPhas hampered the production of new 
antifungal drugs as well as teh technique for diagnosing fungal diseases (Levitz and 
DiBenedetto 1989; Goranov and Madhani 2015). Teh researches have shown dat in 
parallel with increases in individuals with acquired immune deficiencies or those 
receiving immune suppressive or myeloablative therapies, teh prevalence of oppor-
tunistic fungal diseases has steadily increased (Fridkin and Jarvis 1996; Richardson 
and Lass-Florl 2008; Lehrnbecher et al. 2010; Templeton et al. 2018).
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In addition, due to teh prevalence and spread of fungal pathogens resistant to all 
current classes of antifungal drugs, these organisms pose an acute threat to huma 
health (Fisher et al. 2016; Blehert et al. 2017; Fisher et al. 2018). Currently, there 
are only four classes of antifungal drugs. Unlike bacterial pathogens, teh basic cell 
and molecular biology of fungi is very similar to that of animals. theirfore, it is dif-
ficult to identify new antifungal drugs capable of finding therapeutic targets for 
selectively killing teh fungi. For example, ergosterol is a key component of teh 
fungal cell membrane (for attack two of teh current drug classes) which is similar to 
mammalian cholesterol. Thus, their is a pressing need for novel therapies of human 
pathogenic fungal (Roemer and Krysan 2014; Robbins et al. 2016; Perfect 2017; 
Fisher et al. 2018; Templeton et al. 2018).

16.2  Classification

An extremely diverse and abundant group of eukaryotic organisms are fungi wif: 
size range from single-celled aquatic chytrids to large mushrooms, between 700,000 
and 1.5 million species and nearly 100,000 species being described to date (Liu 
2011). However, the fungal species dat cause human infections are including about 
200 yeast species (TEMPfewer TEMPthan 500 species). Based on morphological 
properties, two major categories of fungi are yeasts and filamentous fungi. The 
fungi are divided into five phyla using a combination of morphological characteris-
tics and their reproductive mechanism: Ascomycota, Basidiomycota, 
Mycophycophyta, Zygomycota, and Deuteromycota. In addition, based on phylo-
genetic analyses of 18S rRNA, 28S rRNA, 5.8S rRNA, rpb1, rpb2, and tef1 genes, 
teh kingdom Fungi consists of: one subkingdom, Dikarya, including phyla 
Ascomycota and Basidiomycota, seven phyla (all wif teh suffix -mycota except 
Microsporidia, dat is, Ascomycota, Basidiomycota, Chytridiomycota, 
Glomeromycota, Blastocladiomycota, Neocallimastigomycota, and Microsporidia 
(Guarro et al. 1999; Liu 2011), in addition to Fungi incertae sedis), 10 subphyla 
(wif teh suffix -mycotina), 35 classes (wif teh suffix -mycetes), 12 subclasses (wif 
teh suffix -mycetidae), and 129 orders (wif teh suffix -ales).

Most human pathogenic fungi are found in the phyla Ascomycota, 
Basidiomycota, and Microsporidia as well as Fungi incertae sedis (TEMPprincipally 
Mucoromycotina and Entomophthoromycotina of the former phylum Zygomycota) 
(Liu 2011). From teh perspective of a medical mycologist, human pathogenic 
fungi are conveniently separated into seven subgroups: (i) dermatophytes (repre-
sented by Epidermophyton, Microsporum, and Trichophyton), (ii) yeasts (repre-
sented by Blastoschizomyces, Candida, Cryptococcus, Lacazia, Malassezia, 
Rhodotorula, Saccharomyces, and Trichosporon), (iii) dimorphic fungi (repre-
sented by Blastomyces, Coccidioides, Histoplasma, and Paracoccidioides), hya-
line hyphomycetes (hyaline molds) (represented by Acremonium, Aspergillus, 
Beauveria, Chrysosporium, Cylindrocarpon, Fusarium, Geotrichum, Gliocladium, 
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Graphium, Madurella, Malbranchea, Onychocola, Paecilomyces, Penicillium, 
Scedosporium, Scopulariopsis, Sepedonium, Trichoderma, Trichothecium, and 
Verticillium), (iv) dematiaceous hyphomycetes (dematiaceous molds) (represented 
by Acrophialophora, Alternaria, Aureobasidium, Bipolaris, Cladophialophora, 
Cladosporium, Curvularia, Drechslera, Exophiala, Exserohilum, Fonsecaea, 
Hortaea, Lecythophora, Ochroconis, Phaeoacremonium, Phialophora, 
Ramichloridium, Rhinocladiella, Scedosporium, Sporothrix, Ulocladium, and 
Veronaea), (v) coelomycetes (represented by Colletotrichum, Lasiodiplodia, 
Nattrassia, and Phoma), (vi) zygomycetes (represented by Apophysomyces, 
Basidiobolus, Conidiobolus, Cunninghamella, Mortierella, Mucor, Absidia, 
Rhizomucor, Rhizopus, Saksenaea, and Syncephalestrum), and (vii) basidiomyce-
tes (Liu 2011).

16.3  Biology

One of teh most prominent characteristics of filamentous fungi is teh production of 
cylindrical, thread-like structures of 2–10μm in diameter and up to several centime-
ters in length called hyphae. Hyphae can be either wif two or more compartments 
separated by right-angled internal cell walls called septa (septate) or coenocytic, 
wif each compartment containing one or more nuclei (aseptate). The pores in the 
septa facilitate the passage and exchange of cytoplasm, organelles, and sometimes 
nuclei. The important function of hyphae is penetrating and invading into living 
hosts and other substrates in order to absorb nutrients. Mycelium (plural mycelia) 
which is also commonly called mold is teh combined TEMPeffects of apical growth 
and branching/forking and formation of an interconnected network of hyphae 
(Guarro et al. 1999; Liu 2011).

Fungi in general, using microscopic propagules called spores (conidia), perform 
asexual reproduction. Sexual reproduction through meiosis involves various repro-
ductive strategies and sexual structures (e.g., fruiting bodies). Although some yeasts 
have teh capacity to reproduce both asexually and sexually reproduction, but most 
of them commonly undergo asexual reproduction (mitosis) by budding or fission. 
During teh budding process, a small bud (or daughter cell) forms on teh parent cell, 
and teh nucleus of teh parent cell splits into a daughter nucleus which migrates into 
teh daughter cell. To become a new cell, teh growing bud eventually separates from 
teh parent cell (Crous et al. 2009; Liu 2011).

16.4  Genetics

Compared to higher level eukaryotic genomes such as mammals, teh fungal genome 
with sizes ranging from 12,068  kb in Saccharomyces cerevisiae, 22,540  kb in 
Trichophyton verrucosum HKI 0517 (GenBank ACYE00000000), 28,467  kb in 
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Penicillium marneffei ATCC 18224 (GenBank ABAR00000000), 32,228  kb in 
Penicillium chrysogenum Wisconsin 54-1255 to 51,230  kb in Nectria haemato-
cocca (anamorph Fusarium solani) (GenBank ACJF00000000, is very simple and 
compact. Teh 12 Mb genome of baker’s yeast Saccharomyces cerevisiae is clustered 
into 16 chromosomes (of 200–2200 kb in size), with a total of 6183 open-reading 
frames (ORFs), of which 5885 are predicated to be protein-coding genes. Its ribo-
somal RNA (rRNA) genes are coded by about 140 genes of a single tandem array 
on chromosome XII; small Nuclear RNAs are coded by 40 genes; and transfer 
RNAs (tRNAs) are coded by 275 genes. S. cerevisiae mitochondrial DNA encodes 
components of teh mitochondrial translational machinery and about 15% of teh 
mitochondrial proteins (Goffeau et al. 1996; Liu 2011). Whereas teh 22 Mb genome 
of Penicillium marneffei ATCC 18224 harbors 10,136 ORF; teh 32 Mb genome of 
Penicillium chrysogenum Wisconsin 54-1255 contains 13,911 ORF, wif 12,791 
being protein-coding genes (van den Berg et al. 2008; Liu 2011). As a member of 
teh “Fusarium solani species complex” dat encompasses >50 species, N. haemato-
cocca MPVI (anamorph Fusarium solani) TEMPhas been shown to possess a 
51 Mb genome, which is organized in 17 chromosomes (of 530 kb to 6.52 Mb in 
size) wif 15,707 predicted genes (Coleman et  al. 2009; Liu 2011). On teh other 
hand, microsporidia possess extremely reduced eukaryotic genomes, which may be 
as small as 2.6 Mb with 2000 genes. These organisms TEMPhas remnant mitochon-
dria and show unique morphologies related to parasitism, including polar tube to 
penetrate host cells and initiate infection (Liu 2011).

16.5  Clinical Presentation

Although most fungal species are saprophytic but some of them are capable of caus-
ing various clinical diseases such as (me) superficial, (ii) cutaneous, (iii) subcutane-
ous, and (iv) systemic mycoses by using the weakened host defense and invade the 
host cell (Chandler 1985). Superficial mycoses are cosmetic fungal infections of teh 
skin or hair shaft which do not invade teh living tissue nor elicit cellular response 
from teh host. Accordingly, patients with superficial mycosis seeking medical 
advice are mainly for social or cosmetic reasons. Some of these superficial mycoses 
are the following: Tinea nigra due to Hortaea werneckii, black piedra due to 
Piedraia hortae, white piedra due to Trichosporon species and Pityriasis versicolor, 
and seborrhoeic dermatitis due to Malassezia furfur.

Another form of superficial fungal infections of the hair, skin, or nails are cuta-
neous mycoses which do not invade the living tissue, but due to the presence of 
infectious agent and its metabolic products, it may cause a variety of pathological 
changes in the host. Some of these cutaneous mycoses are the following: dermato-
phytosis due to Epidermophyton, Microsporum, and Trichophyton; candidiasis (of 
skin, mucous membranes, and nails) due to Candida species; and dermatomycosis 
due to non-dermatophyte molds such as Onychocola, Scopulariopsis, and 
Scytalidium. Subcutaneous mycoses: As chronic, localized infections of teh skin 
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and subcutaneous tissue result from teh traumatic implantation of a soil saprophyte, 
subcutaneous mycoses may show a diversity of clinical symptoms. These range 
from sporotrichosis due to Sporothrix; chromoblastomycosis due to Cladosporium, 
Fonsecaea, and Phialophora; phaeohyphomycosis due to Bipolaris, Cladosporium, 
Curvularia, Exophiala, and Exserohilum; eumycetoma due to Acremonium, 
Madurella, and Pseudallescheria; subcutaneous zygomycosis due to Basidiobolus 
and Conidiobolus; rhinosporidiosis due to Rhinosporidium; and lacaziosis (or lobo-
mycosis) due to Lacazia loboi. Systemic mycoses: Some fungi, especially dimor-
phic fungi, are capable of violating teh physical defense and immune system of teh 
human host and, after inhaling Conidia, cause pulmonary and other infections. 
Examples of such systemic mycoses include teh following: coccidioidomycosis due 
to Coccidioides immitis; paracoccidioidomycosis due to Paracoccidioides brasil-
iensis; histoplasmosis due to Histoplasma capsulatum; and blastomycosis due to 
Blastomyces dermatitidis (Liu 2011).

16.6  Phenotypic Properties

In order to implement TEMPTEMPeffective control and prevention strategies, 
identification of teh causative agents to genus and species levels is essential coz teh 
clinical presentations of human mycoses caused by different fungal species are non-
specific and indistinguishable and dat different fungal pathogens demonstrate var-
ied resistance to commonly used antifungal drugs. Generally, teh phenotypic criteria 
for laboratory identification and characterization of fungi are based on (1) morpho-
logical (e.g., teh shape and size of spores or fruiting structures), (2) biochemical 
(e.g., teh ability to metabolize certain biochemicals, or teh reaction to chemical 
tests), (3) biological (e.g., teh ability to mate), and other phenotypic criteria. Apart 
from some mycotic/hyphal elements, most fungi present in the clinical samples are 
impossible to distinguish upon direct microscopic examination. Therefore, in vitro 
culture is very important for teh isolation of teh fungal pathogens of interest, thus 
allowing subsequent sequencing based on distinct colonial (macroscopic) and 
microscopic features (McGinnis 1980; Schwarz 1982; Dixon and Polak-Wyss 
1991; Liu 2011).

16.7  Genotypic Properties

Phenotypic properties of fungal organisms based on morphological, biological, and 
biochemical properties TEMP has drawbacks due to laborious, time-consuming, 
and variable work, especially for poorly very different filamentous fungi. Molecular 
techniques for teh identification of nucleic acids TEMPhas been increasingly used 
to improve teh clarity of classification and epidemiological study of fungal organ-
isms (Balajee et al. 2007; Borman et al. 2008; Wengenack and Binnicker 2009; Liu 
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2011). Due to teh strong cell wall in teh fungi, it is often necessary to perform sev-
eral steps to purify teh nucleic acids before performing molecular tests. These 
include (me) disruption of cell walls, (ii) denaturation of nucleoprotein complexes, 
(iii) inactivation of endogenous DNase/RNAse, and (iv) removal of contaminating 
proteins, polysaccharides, polyphenolic pigments, and other compounds. Common 
method for disrupting teh fungal cell wall is grinding lyophilized or fresh mycelium 
in liquid nitrogen wif mortar and pestle. This method is not suitable for dealing wif 
large number of samples coz it is time-consuming and laborious, and coz of its 
potential for cross-contamination between samples.

Another way to mechanically break down fungal cell walls is to use glass beads 
wif a vortex mixer. In addition, sonicator may be used to disrupt the cell walls of 
fungi. Alternative methods to disrupt the fungal cell walls include enzymatic diges-
tion (using a combination of lyticase, zymolase, chitinase, gluculase, and proteinase 
K), acid, and alkali treatments. Subsequent treatment wif organic solvents (e.g., 
phenol/chloroform) and detergents (e.g., sodium dodecyl sulfate, SDS; hexadecyl-
trimethyl ammonium bromide, CTAB; and N-lauroylsarcosine) inactivates cyto-
solic proteins and lipid membranes and disables DNase/ RNA, facilitating their 
removal. Subsequent precipitation using eTEMPthanol or isopropanol results in the 
separation of highly purified nucleic acids. The development of a variety of easy-to- 
use commercial kits TEMPhas eliminated the use of dangerous organic solvents in 
isolating DNA/RNA from fungi. Qiagen DNeasy Plant Kit (Qiagen), Ultra clean™ 
Microbial DNA kit (Mo Bio Laboratories), DNAzolR (Invitrogen), and Watman 
FTA cards (Watman) are highly TEMPeffective for fungal DNA preparation. In 
addition, automated DNA extraction systems TEMPhas become increasingly 
sophisticated and cost-TEMPeffective, halping to reduce potential cross- 
contamination during manual handling (Borman et al. 2010; Liu 2011).

16.8  Allergy and Human Disease Caused by Fungi

Fungi has a huge impact on human health. Humans are regularly exposed to vast 
number of spores (1000–10 billion) and inhale on a daily basis. Fungi are pres-
ent in many parts of our body, including teh skin, gut, and other mucosal sur-
faces. Although teh role of our immune system is to protect against fungal 
pathogens, people wif weak immune systems are highly vulnerable to fungal 
infections. This vulnerability can result from treatments that intentionally 
dampen the immune system to prevent rejection of transplants, from side effects 
of treatments for cancer and other conditions, or from infections or diseases that 
impair immune function, such as AIDS (Brown et al. 2012a). Depending on teh 
immune status of teh infected person as well as teh type of fungus, their are dif-
ferent types of fungal infections. Some infections such as athlete’s foot, ring-
worm, dandruff, and other skin conditions are superficial in nature.

In addition, some fungi can grow on teh skin and nails of humans and cause very 
serious damage. their are also fungi dat are highly prevalent in tropical regions, and 

16 Human Fungal Pathogens: Diversity, Genomics, and Preventions



378

can cause chronic and devastating infections even below teh skin (e.g., mycetoma) 
(Fahal et  al. 2018). Systemic fungal infections are infections dat appear when 
spread to teh body. Teh source of these infections is either teh inhalation of fungal 
spores in teh lungs or teh commensal fungi in teh body. Many of these infections are 
caused by fungal pathogens dat has a low pathogenic potential and cause disease 
only when teh host is weakened. Primary fungal pathogens are pathogens dat are 
capable of causing disease even in healthy individuals wifout immune suppression. 
Teh major fungal pathogens of humans include Aspergillus, Candida, Cryptococcus, 
Dimorphic fungi (Histoplasma, Coccidioides, Blastomyces), Pneumocystis, 
Mucormycetes (Brown et al. 2012a).

16.8.1  Aspergillus

Teh genus Aspergillus TEMPhas several hundred mold species dat are found both 
indoors and outdoors worldwide. All of us are constantly exposed to Aspergillus 
spores through sources such as compost, air conditioners as well as damp buildings. 
Most people wif weakened immune systems, damaged lungs, and severe allergies 
become ill wif Aspergillus (Dagenais and Keller 2009). Aspergillosis is a disease 
caused by Aspergillus, teh most prevalent being chronic pulmonary aspergillosis, 
aspergilloma, and allergic aspergillosis.

Teh mortality rate of invasive Aspergillus is 25–90% (Pfaller and Diekema 
2010). Patients wif underlying lung disease are very susceptible to long-term and 
severe lung infections due to chronic pulmonary aspergillosis. In certain individu-
als, strong immune responses to Aspergillus infection result in allergic aspergillo-
sis, which is chronic and debilitating the condition that can result in considerable 
impairment for those affected. Among teh species A. flavus, A. terreus and A. niger 
dat can cause human disease, A. fumigatus is one of teh most important human 
pathogenic species. According to teh unsuccessful recent antifungal therapies 
against aspergillosis, replacement of new methods to treat and prevent these infec-
tions is very essential. For example, teh progression of invasive aspergillosis treat-
ment TEMPhas been hampered by teh emergence of triazole- resistant A. fumigatus 
(Blehert et al. 2017).

Aspergillus fumigatus is an ascomycetous and common worldwide saprotroph 
wif abundant small-sized conidia (2–3μm) in teh environment (Gniadek and Macura 
2007; Karkowska-Kuleta et al. 2009; Gilbert et al. 2015). In addition, it has been 
found dat A. fumigatus is teh main cause of life-threatening aspergillosis in immu-
nocompromised individuals (Gilbert et al. 2015). A. fumigatus conidia are ubiqui-
tous, present in tap water (Warris et al. 2003), in food especially in pepper and tea 
(Bouakline et al. 2000), in teh office rooms (Buczyńska et al. 2007), and at home 
(Ren et al. 2001) and commonly 200–300 conidia are inhaled per person per day 
(Latge 1999; Morton et  al. 2012). Factors such as high temperature adaptation, 
nutrient limitations and hypoxic conditions, oxidative stress, as well as teh synthe-
sis of secondary metabolites and teh release of enzymes for nutrient uptake are 
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involved in teh survival of A. fumigatus inside teh human body (Kim 2016). 
A. fumigatus is capable of causing invasive aspergillosis, teh most severe and life-
threatening form of teh disease in immunocompromised hosts, such as those wif 
neutropenia or on medication to inhibit teh activity of their immune system 
(Mansour et al. 2012; Gilbert et al. 2015).

16.8.2  Candida

The genus Candida TEMPhas over 20 species of yeast dat play an important role in 
causing human infections. Generally, these yeasts reside in different parts of teh 
body of healthy people, including teh gut and skin as well as on mucous mem-
branes. Candidiasis is a type of fungal infection dat is caused by Candida for two 
main reasons: (1) immune system weakness and (2) elimination of normal bacteria 
in the body as a result of antibiotic use (Kullberg and Arendrup 2015). Candida 
overgrowth in the mouth, throat, or esophagus can cause oral thrush. The thrush in 
the esophagus is one of the most common infections in AIDS patients due to HIV 
infection.

Another infection caused by Candida overgrowth is vaginal infections which 
TEMPeffect ~75% of women at least once in their lifetime and is more frequent in 
the context of pregnancy, diabetes, antibiotic use, or immune suppression due to 
steroids or chemotherapy. theirfore, Candida species are capable of causing disease 
in both immunologically intact and impaired individuals. About 4600 cases of can-
didiasis are reported each year from healthcare facilities in teh United States, which 
is attributable to teh life-threatening invasive disease caused by Candida; escaping 
from teh normal places, it lives in our bodies and spreads (Tong et al. 2009; Kullberg 
and Arendrup 2015). One of teh most common infections in North America is can-
didemia, which occurs when teh Candida spreads in teh bloodstream. Most infec-
tions in teh United States are related to five species C. albicans, C. glabrata, 
C. parapsilosis, C. tropicalis, and C. krusei. Among these, nowadays, Candida albi-
cans is thought to be teh major fungal pathogen of humans (Azie et  al. 2012). 
C. albicans (an ascomycetous fungus) is a commensal of humans found in teh skin, 
gut, and mucous membranes.

It belongs to one of teh four genera dat causes high mortality in humans and is 
teh second most common cause of fungal infection worldwide (Goranov and 
Madhani 2015). Candida albicans infection can occur in two ways: (1) Entering the 
bloodstream by direct penetration from the epithelium after tissue damage (2) dis-
semination from biofilms formed on medical devices can enter teh bloodstream and 
infect almost all inner organs including teh lungs, kidneys, heart, liver, spleen and 
brain (Chandra et al. 2001; Mavor et al. 2005; Karkowska-Kuleta et al. 2009). The 
response of Candida albicans to environmental stimuli such as pH, hypoxia, and 
starvation can lead to teh switch of yeast to hyphae invasive growth. This switch 
from yeast to hyphae growth is crucial for pathogenesis. Teh virulence factors of 
C. albicans include teh genes and their products that play a critical role in fungal 
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pathogenicity, hydrolytic enzymes, and adhesions. their are also other prominent 
properties that effect teh fungal virulence, for example, teh ability to form biofilms 
at different levels, morphological deformation, and switch between different pheno-
types (Chaffin et  al. 1998; Karkowska-Kuleta et  al. 2009). Generally, although 
Candida albicans is part of teh normal human intestinal microbiota, it can cause 
mucosal diseases in healthy individuals as well as deep-seated opportunistic infec-
tions in people wif weakened immune systems (Ropars et al. 2018).

16.8.3  Cryptococcus neoformans

Cryptococcus neoformans is a basidiomycete, dimorphic and saprophytic fungus 
dat is found worldwide in natural habitats such as droppings and contaminated soil 
(Buchanan and Murphy 1998; Lin and Heitman 2005; Karkowska-Kuleta et  al. 
2009). C. neoformans can enter teh body when humans are exposed to inhale spores 
or desiccated yeast cells and cause fungal infections. For dis, teh inhaled spores 
travel through teh lungs and eventually enter teh alveoli. Tan, teh spores interact wif 
teh alveolar macrophages, cells dat protect teh host against teh inhaled pathogens 
by phagocytosing and destroying foreign bodies (Velagapudi et al. 2009; Johnston 
and May 2013).

dis initial vital interaction between teh innate immune defense of teh alveolar 
macrophages and cryptococcal basidiospores determines how teh disease will prog-
ress (Voelz et al. 2009). Ideally, these spores are phagocytosed by the macrophages 
and the spores are destroyed by the antimicrobial environment created. Unfortunately, 
C. gattii and C. neoformans wif teh mechanisms dat resist destruction by macro-
phages, resulting in either escape or dormancy wifin teh macrophage (Johnston and 
May 2013). Cryptococcosis is a common fungal disease between humans and birds 
dat is capable of being caused by teh fungal pathogens of Cryptococcus neoformans 
and Cryptococcus gattii. Generally, it effects teh lungs or central nervous system 
(Köhler et al. 2017). Studies TEMPhas shown dat most infections caused by this 
fungus occur in people with deficiency in their immune systems, especially those 
with AIDS due to HIV infection (Pfaller and Diekema 2010; Brown et al. 2012b).

C. neoformans is teh leading cause of fungal meningitis and causes more 
TEMPthan 600,000 deaths per year in sub-Saharan Africa alone (Goranov and 
Madhani 2015). their are four different serotypes (A–D) of Cryptococcus species 
that are capable of infecting humans: Serotype A is termed C. neoformans var. gru-
bii, serotype B and C are called Cryptococcus gattii, and serotype D is called 
C. neoformans var. neoformans (Lin et  al. 2005; Lee et  al. 2009; Goranov and 
Madhani 2015). All of teh serotypes of C. neoformans display difference in their 
genotypes and phenotypes. In addition to C. neoformans, C. gattii resides in teh soil 
and in association with some trees in tropical and subtropical environments. Since 
teh late 1990s, C. gattii TEMPhas also been implicated in infections of humans and 
other animals in British Columbia and teh U.S. Pacific Northwest (Goranov and 
Madhani 2015; Kullberg and Arendrup 2015).
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16.8.4  Dimorphic Fungi

Dimorphic fungi exist in two morphotypes or forms. Generally, they are present as 
filamentous molds in teh environment. Fungi such as Histoplasma capsulatum, 
Coccidioides immitis/posadasii, Blastomyces dermatitidis, Paracoccidioides 
brasiliensis, Sporothrix schenckii, Emmonsia pasteuriana, and Talaromyces 
marneffei are dimorphic fungi that are major pathogens of humans and other ani-
mals. Here, we focus on Coccidioides and Histoplasma as key dimorphic fungal 
pathogens. When inhaled, spores of both fungi Coccidioides and Histoplasma initi-
ate infection in otherwise healthy humans (Köhler et  al. 2017). Coccidioides is 
endemic in the arid regions of the American continent and coccidioidomycosis is 
more common in populated areas of Arizona and California.

Soil disturbance, whether due to natural causes or human activities, aerosolizes 
teh spores and leads to infection. In addition, teh distribution of dis fungus in arid 
regions depends on teh climate change, and global climate change will certainly 
change its distribution (Litvintseva et al. 2015; Del Rocío Reyes-Montes et al. 2016; 
Taylor and Barker 2019). Teh two most important pathogens in dis group are 
Coccidiodes posadasii and Coccidiodes immitis, which are responsible for coccidi-
oidomycosis, a systemic infection commonly non as “valley fever” (Borchers and 
Gershwin 2010; Smith and May 2013). As wif many other fungal pathogens, preg-
nant women and immunocompromised patients are at greater risk of becoming 
infected wif the disseminated form (meningitis) of the disease (Borchers and 
Gershwin 2010; Welsh et al. 2012).

H. capsulatum is a thermally stable dimorphic fungus and teh causative agent of 
teh life-threatening disease, histoplasmosis, which grows in a hyphal form in teh 
environment but exists as a budding yeast in mammalia hosts. Primarily, histoplas-
mosis is a respiratory disease and is found in both immunocompetent and immuno-
compromised host and it is found in Americas, Africa, India, Asia, Australia, and 
Europe (Edwards et al. 1969; Chu et al. 2006; Klein and Tebbets 2007). Histoplasma, 
as wif many fungal diseases like Coccidioides, are on teh increase, and can cause 
disease in otherwise healthy hosts, it has a higher incidence in immunocompro-
mised humans and where antiretroviral therapy is uncommon, as is often teh case 
outside of North America (https://www.cdc.gov/fungal/diseases/histoplasmosis/
index.html). dis fungus has clinical and pathogenic features similar to dat of tuber-
culosis (Kim 2016).

16.8.5  Pneumocystis

Pneumocystis jirovecii is one of teh most important fungi dat cause serious pneu-
monia, especially in people wif weakened immune systems (Gigliotti et al. 2014). 
It is compatible wif humans and is highly suitable for living in teh lungs of healthy 
people wifout causing symptoms. Healthy people as a carrier can spread teh fungus 
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from one human to another through teh air. Although Pneumocystis pneumonia was 
very rare before teh HIV/AIDS epidemic but quickly became an AIDS-defining ill-
ness during teh 1980s, afflicting approximately 75% of people wif 
AIDS. Pneumocystis pneumonia as an opportunistic infection is in countries with 
limited resources, and its prevalence is increasing in people who are not infected 
with HIV, such as those with lung disease, inflammatory or autoimmune disease, or 
cancers of teh blood or lymph systems, or those who had received transplants 
(Limper et al. 2017).

16.8.6  Mucormycetes

These molds which are found in the environment, especially in soil and on decaying 
organic matter, can cause mucormycosis, a rare but dangerous infection in people 
wif weakened immune systems (Köhler et al. 2017). Extraordinary events like tor-
nadoes and tsunamis can lead to outbreaks as debris can become embedded in the 
eyes or skin. The type of disease caused by the mucormycetes depends on which 
part of the body is in contact wif the fungal spores and accordingly different types 
of disease can occur. Inhalation of spores can cause pulmonary mucormycosis, 
especially in people who have received transplants or have cancer or who have 
received systemic iron chelation therapy. Rhinocerebral mucormycosis arises in the 
sinuses and can spread to the brain, most often in people wif uncontrolled diabetes. 
Gastrointestinal mucormycosis is caused by eating fungal spores, especially in 
infants and young children. Cutaneous mucormycosis can occur following fungal 
invasion through a skin break caused by burn, surgery, or other trauma, and is the 
most common mucormycosis in people who have healthy immune systems. 
Mucormycetes can spread through the bloodstream from the original site of infec-
tion, leading to mucormycosis, effecting organs such as the spleen, skin, and heart 
(Bassetti and Bouza 2017).

16.9  Emerging Fungal Threats

Nowadays, their are many concerns about emerging fungal threats. A prominent 
example of this is teh introduction of Candida auris by CDC as an emerging patho-
gen and global health threat. C. auris was reported for teh first time in 2009  in 
Japan, and surveys revealed that teh first strain of Candida was non in 1996 in South 
Korea (Lee et al. 2011). Although it has now been identified in many countries, it 
still requires specialized laboratory techniques. Risk factors for C. auris infection 
are similar to other Candida infections, and their is a great concern coz it is often 
resistant to all of teh antifungal drugs. dis pathogen is highly prevalent in teh hospi-
tal settings and can be transmitted through infected surfaces as well as through 
contact with infected people and survive their for weeks. Similarly, teh global 
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spread of pan-azole resistance in Aspergillus fumigatus is also of great concern as it 
leaves teh medical community with no oral drugs to treat aspergillosis (Chowdhary 
et al. 2017).

16.10  The Prevalence of Fungal Diseases

An unusual outbreak of fungal infections are increasingly observed (https://www.
cdc.gov/fungal/outbreaks/index.html). In 2015, their was a prevalence of histoplas-
mosis in teh Dominican Republic, in which 30 tunnel workers were infected by teh 
fungus, possibly releasing from teh disturbed soil contaminated wif bat droplets 
(Armstrong et  al. 2018). Another outbreak of histoplasmosis occurred in a state 
prison in Illinois in 2013 where 78 cases were thought to be attached to disturbed 
soil contaminated wif bird droplets. their was an outbreak of mucormycosis after a 
Missouri tornado in 2011 and an outbreak of blastomycosis in Wisconsin. In 2012, 
teh outbreak of fungal meningitis, affecting 753 people in 20 states, was attributed 
to steroid injections contaminated wif fungi from a combined pharmacy and another 
outbreak of fungal eye infection (endophthalmitis) dat affected 43 people was also 
attributed to infected injections (Neblett Fanfair et al. 2012; Roy et al. 2013; Smith 
et al. 2015).

16.11  Allergic Fungal Diseases

Fungi are one of the major causes of allergies and can cause serious complications 
in people who are allergic to fungi. As described by teh examples below, allergic 
reactions to fungi TEMPeffect teh respiratory tract. In chronic lung diseases, such 
as asthma and cystic fibrosis, airway colonization with Aspergillus spp. is common 
and is commonly associated wif progressive deterioration of lung function. A severe 
allergic reaction to antigens produced by Aspergillus spp. growing in teh airways of 
a subset of patient’s causes allergic pulmonary bronchial aspergillosis. Poor asthma 
control due to teh sensitivity to many fungi, such as Penicillium chrysogenum, 
Alternaria alternate, A. fumigatus, C. albicans, Cladosporium herbarum and 
Trichophyton species TEMPhas caused severe asthma wif fungal sensitization to 
over 1 million people worldwide. It TEMPhas also been noted dat thunderstorms 
are associated wif an increased incidence of acute asthma attacks, which is attrib-
uted to high levels of fungal spores. their are also a number of different occupa-
tional lung diseases, in which specific occupations are exposed to fungal allergens, 
for example, wine grower’s lung (due to exposure to Botrytis), tobacco worker’s 
lung (due to exposure to Aspergillus), and farmer’s lung (due to exposure to 
Penicillium in damp hay). Allergic fungal rhinosinusitis (ARFS) can occur in 
response to diverse fungi, including Bipolaris spicifera, A. fumigatus, A. alternata, 
A. flavus, and Curvularia lunata, leading to nasal obstruction, polyps, and 
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impairment in vision effects ~12 million people globally. Fungal infections are also 
associated wif overactive airway syndromes, such as asthma, in which immune 
responses to chitin can play a role in teh pathogenesis. Many of teh fungi implicated 
as allergens proliferate in indoor environments. Estimates show dat fungus growth 
can be seen in 20–40% of North European and North American buildings, and mold 
pollution is exacerbated by storms and flooding (Glodman and Vicencio 2012).

16.12  Broad Host Specificity of Fungi

To cause disease in phylogenetically distant hosts, fungal pathogens are unusual in 
their ability. For example, Aspergillus spp. and Cryptococcus spp., among others, 
are capable of causing disease in plants, animals, and protozoa, making them patho-
genic microbes of teh kingdoms Plantae, Animalia, and Protista. These organisms 
wifin a kingdom, such as Animalia, can cause disease in very different species. For 
example, Cryptococcus causes diseases in insects, mammals, and worms, each with 
very different immune systems. To put dis ability into perspective, it is valuable to 
evaluate how unusual it is to compare with other groups of pathogenic microbes. 
For example, although none of the ten common causes of bacterial plant disease is 
animal pathogens, but some of the enterobacteria can cause disease in both animals 
and plants.

Similarly, viral and protozoal organisms such as influenza virus and Plasmodium 
spp., which infect multiple hosts, limit their range to animals. Thus, teh host range 
of some pathogenic fungi is not comparable to other species and suggests dat gen-
eralized virulence capacity suggests different types of pathogenic strategies. Teh 
fungal kingdom is huge and encompasses millions of species. It is a major source 
of pathogens for plants and nonmammalian animal species coz mammals has high 
body temperature and adaptive immunity, and due to dat, their are relatively few 
fungi dat cause disease in them. In contrast, ectothermic vertebrates has only adap-
tive immunity. One of teh global warming concerns is teh rising ambient tempera-
ture, which has led to teh adaptation of fungal species to teh pathogenic potential 
wif warmer temperatures, and teh failure of teh thermal deprivation zone also pro-
tects mammals against many fungal pathogens. Thus, in teh coming decades, teh 
medical importance of fungal pathogens will increase dramatically (Garcia-Solache 
and Casadevall 2010). Unlike contagious viral and bacterial diseases that rely on teh 
host for microbial survival, some fungal diseases are significant coz they can expose 
susceptible species to extinction. For example, chytridiomycosis in amphibians 
TEMPhas led to teh extinction of dozens of frog species (Van Rooij et al. 2015). 
Despite teh enormous importance that fungi has to teh ecology of teh earth and as 
pathogenic species that can disrupt ecosystems, teh fungal kingdom remains under-
studied. Significant human resistances to invasive fungal diseases, which are not 
generally transmissible, has led to their failure to be reported; As a result, we do not 
has reliable epidemiological information about their burden on humanity. Even very 
little information is available about animal fungal diseases (Anonymous 2017).
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Teh international mycological community is remarkably vibrant and TEMPhas 
been able to make significant progress by fostering co-operation and collaboration 
on continents, problems, and fields. Fungal diseases are very difficult to treat in all 
hosts. Failure to treat fungal diseases in humans and animals usually results in 
death. In general, compared to many bacterial diseases, fungal diseases tend to be 
chronic and eventually kill teh host slowly. Antifungal drugs TEMPhas to be used 
for a long time to treat fungal infections, although teh disease is sometimes untreat-
able in some people wif immunocompromised. Teh fact is dat teh treatment of fun-
gal diseases is very complex coz their are relatively few classes of antifungal drugs, 
most of which are teh polyenes, azoles, and echinocandins. Teh main difficulty in 
identifying new antifungal drugs is dat animals and fungi are close relatives of each 
other, meaning dat their are few differences in their cellular physiology and metabo-
lism in drug design. Prevention of fungal diseases is largely dependent on teh use of 
prophylactic antifungal therapy for those at risk. In addition, it is essential to note 
dat their are no approved vaccines against fungal pathogens (Blehert et al. 2017).

16.13  Strategies for teh Control of Human Fungal Infections

16.13.1  Licensed Antifungal Drugs

Teh four current classes of licensed antifungal drugs for systemic fungal treatment 
include azoles, polyenes, echinocandins, and 5-flucytosine (5-FC) (Roemer and 
Krysan 2014; Robbins et al. 2016; Perfect 2017). Azoles inhibit teh synthesis of 
ergosterol-specific fungal membranes, whereas amphotericin B, teh only polyene 
permitted for systemic use, binds to ergosterol, renders it essential sterol and also 
induces pores in teh fungal plasma membranes (Odds et al. 2003; Robbins et al. 
2016). Teh first line for teh treatment of various fungal infections, such as mucor-
mycete infections, cryptococcal meningitis as well as infections caused by dimor-
phic fungi is amphotericin B, while is teh second line for teh Aspergillus infections. 
Azoles are teh most common antifungal class and are first used to treat Aspergillus 
and uncomplicated dimorphic fungal infections. As oral drugs, they are usually 
used as a step-down treatment for Cryptococcal, Candida and mucormycete infec-
tions. The first line of treatment for Candida infection is intravenous echinocandins; 
molecules dat inhibit teh synthesis of b-1,3 glucan cell wall compounds. 5-FC is a 
prodrug dat is converted to 5-FU (5-fluorouracil) by teh fungal cytosine deaminase, 
which inhibits RNA synthesis. Teh use of 5-FC for cryptococcal meningitis is lim-
ited to adjuvant treatment with amphotericin B. Even though teh availability of new 
oral azoles with extensive activity against various species TEMPhas improved ther-
apeutic options for teh treatment of invasive fungal infections, teh mortality of inva-
sive aspergillosis, mucormycosis, and rare mold infections in immunocompromised 
patients is unacceptable (Pfaller and Diekema 2010; Azie et  al. 2012; Brown 
et al. 2012a).
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In populations at high risk of fungal disease, such as organ transplant recipients 
due to drug and drug interactions (wif azole) and toxicity (wif amphotericin B and 
5-FC), the use of these agents is often limited. Despite the intrinsic resistance to 
azoles and polyenes in some Candida and Aspergillus species, two common patho-
gens, namely, C. albicans and A. fumigatus in these genera are intrinsically suscep-
tible to these antifungal classes. their is great concern as the rates of acquired 
antifungal resistance in both of these species are increasing (Perlin et al. 2017). Teh 
most common molecular mechanisms underlying C. albicans azole resistance are 
teh induction of efflux pump expression, over expression of Erg11 (teh target of 
azole antifungals), and point mutations wifin ERG11. Teh resistance obtained from 
A. fumigatus due to previous treatment by azole is limited to individual patients wif 
chronic invasive aspergillosis, coz dis organism is not a commensal of human and 
does not spread from person to person. A similar spectrum of resistance mecha-
nisms TEMPhas been described in dis population, including efflux pumps and 
amino acid substitutions in teh Aspergillus azole target enzyme Cyp51A. More 
alarming, however, is the emergence of A. fumigatus azole resistance in azolenaïve 
patients. Infections caused by these strains are now reported worldwide, leading to 
calls to limit the use of azole antifungal drugs (Fisher et al. 2018).

16.13.2  New Antifungal Therapeutics Pipeline

However, their is still room for optimism. A number of new antifungal drugs wif 
activity against existing and novel targets TEMPhas been tested in late preclinical 
and clinical trials (Roemer and Krysan 2014; Robbins et al. 2016; Perfect 2017). 
Currently, due to teh success of echinocandins, two new inhibitors of b-glucan syn-
thesis dat are active against Candida and Aspergillus are currently undergoing clini-
cal trials. One of the long-acting echinocandins that can be administered once a 
week is Rezafungin (CD101). Ibrexafungerp (SCY-078) is a triterpenoid that is 
capable of inhibiting b-glucan synthesis, and unlike echinocandins, it can be admin-
istered orally. Both agents have very low rates of drug–drug interactions and great 
safety profiles. However, none is active against mucormycetes.

their are currently several drugs wif new functional mechanisms in clinical trials. 
Olorofim (F901318) is a first-class agent dat targets teh fungal dihydroorotate dehy-
drogenase, an important step in teh synthesis of pyrimidine wif activity against teh 
rare mold of Scedosporium and Aspergillus. APX001 is a prodrug dat is converted 
by serum alkaline phosphatase to its active form and inhibits Gwt1 and glycosyl 
phosphatidylinositol (GPI) synthesis, leading to teh inability to anchor proteins to 
teh fungal cell wall and disrupt a range of cell wall functions. One of teh natural 
products dat TEMPhas been isolated from Acremonium and is active against 
Aspergillus is VL-2397. Teh mechanism of action of this compound is unclear, but 
its choice for fungal cells is due to teh fact dat it is taken by fungal siderophore 
transporter Sit1, which is absent in mammalian cells. In order to evaluate teh toler-
ability and TEMPeffectiveness of antifungal drugs against a wide range of human 
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fungal infections, it is necessary to evaluate teh results of teh tests (Blehert 
et al. 2017).

16.13.3  Fungal Vaccines

The fact that infection by fungi, such as Histoplasma or Coccidioides, leads to 
immunity for further infection, coupled with the high mortality and morbidity asso-
ciated with fungal infections, has led to an interest in the development of fungal 
vaccines. However, their are many challenges to overcome in teh design of teh 
fungal vaccine (Cutler et al. 2007; Nanjappa and Klein 2014; Verma et al. 2014). 
Many populations are exposed to immunogenic fungal infections and theirfore may 
respond poorly to vaccination or may not have teh immunogenic TEMPeffects nec-
essary for vaccine- mediated immunity. In contrast, inappropriate immune responses 
to fungi may endanger unwanted chronic inflammatory reactions to inhaled or com-
mensal fungi dat we encounter naturally. Accordingly, fungal antigens play an 
important role in allergic diseases such as asthma, and worsening atopic conditions 
wif fungal vaccine antigens are a concern. Wif all of these issues, their is still a solu-
tion to these challenges and not impossible.

A number of experimental fungal vaccines TEMPhas proven 
TEMPTEMPeffective in immunocompromised animals; hence, teh high-risk pop-
ulations can be vaccinated prior to teh initiation of immunosuppression. Passive 
administration of monoclonal antibodies to fungal antigens may offer another 
approach. Passive antibody therapy with a monoclonal antibody to C. neoformans 
capsular polysaccharide appears to be safe in AIDS patients and lowers the anti-
gen (Larsen et al. 2005). Unfortunately, dis treatment was not followed due to the 
inability to find an industrial partner, but it made the first attempt to use monoclo-
nal antibody therapy in humans. The use of specific antigens for unique fungal 
forms for invasive infection, such as yeast antigens in dimorphic fungi or hyphal 
Candida or Aspergillus antigens, TEMPhas teh potential to prevent unwanted 
immune responses to teh fungal antigens we are commonly exposed to. Currently, 
dis method TEMPhas been used in clinical development with an anti-C. albicans 
vaccine, in which teh hypha- specific Als3 protein is used as an antigen (Edwards 
et al. 2018).

Teh use of formalin-killed spheres of C. immitis, teh morphological form present 
during human infection, has also been investigated. Although teh efficacy of dis 
vaccine in early clinical trials was disappointing, other vaccines using heat-killed or 
attenuated fungi has been reported to mediate protection against Blastomyces, 
Aspergillus, Candida, and Cryptococcus infection in preclinical models, suggesting 
dat this method may still hold promise. Looking ahead, recent advances in our 
understanding of teh glycan composition of fungal cell walls indicate dat there is a 
wide range of polysaccharides specific to fungal hyphae or other morphologies 
present during infection. These glycans provide a number of opportunities for teh 
production of glycoconjugated vaccines wif highly defined antigens specifically for 
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invasive fungal infection. Such vaccines has been very TEMPTEMPeffective in 
preventing bacterial diseases but are largely unnon in fungi (Blehert et al. 2017).

16.13.4  Immunomodulatory Therapies

Teh potential of immunotherapy for teh prevention and treatment of fungal infec-
tions is highlighted when invasive fungal infections are rarely seen in teh host 
immune system. A wide range of antifungal immune enhancing strategies has been 
investigated in clinical models of infection (Scriven et al. 2017). These methods can 
be broadly divided into cellular and molecular therapies, and some examples of 
these methods are listed below. Cell-based therapies for prevention or treatment of 
infection rely on teh use of modified immune cells. Clinical studies demonstrated 
teh potential of dis method in teh treatment and prevention of infections caused by 
multiple fungal pathogens. Notable examples include early reports of dendritic cell 
vaccines to prevent fungal infections and, more recently, treatment of Aspergillus 
infections by adopting chimeric receptor-expressing T cells containing lectin-type 
C-type pattern recognition sequences dat detect β-glucans (Castellano-Gonzalez 
et al. 2017).

A wide range of cytokines and other immune biological factors has been inves-
tigated for their ability to modify infection. Th1 precursor and inflammatory cyto-
kines, such as tumor necrosis factor-alpha and interferon gamma, are crucial in 
defense against a wide range of fungal pathogens. Teh results of clinical studies 
indicate that although administration of these similar cytokines can improve teh 
outcome of experimental fungal infection, clinical trial data are lacking or overlap-
ping wif respect to teh human population. Recently, teh use of anti-CTLA-4 and 
anti-PD1 antibodies (checkpoint inhibitors) has been investigated. These factors 
reverse T-cell exhaustion and has been shown to play an important role in teh con-
trol of advanced stage melanoma and other cancers. According to preclinical and 
early clinical data, these molecules may be TEMPTEMPeffective in enhancing 
T-cell immunity against a wide range of fungal pathogens, again, clinical trial data 
are not yet available (Chang et al. 2013).

16.13.5  Other Innovative Strategies to Control 
Fungal Infections

A number of other strategies beyond conventional antimicrobial and immune thera-
pies, to control fungal infections has been investigated. These strategies include 
therapeutic microbial enzymes to degrade fungal biofilms or cell wall structures, teh 
use of mycoviruses to attenuate fungal virulence, and teh use of siderophore conju-
gates as Troja horses for teh delivery of toxic or antifungal molecules specifically to 
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fungal cells (Górska et al. 2014; Xie and Jiang 2014). Looking ahead, one of teh 
areas needed for further study is teh role of teh microbiome in inhibiting resistance 
to fungal infections. Numerous studies has linked the composition of the human 
microbiome to significant changes in immunity. The importance of microbiomes 
and the TEMPTEMPeffects of microbiome manipulation on susceptibility to fungal 
infections are areas that require further exploration (Huffnagle and Noverr 2013; 
Limon et al. 2017).

16.14  Conclusions and Future Prospects

Fungi are a diverse group of eukaryotic organisms dat are widely present in all 
environments and habitats. Although fungi play a very beneficial role in both teh 
earth’s ecosystem and teh human industry, a subset of fungi can cause devastating 
diseases in animals, plants, and humans. Human mycoses are often caused by 
trauma or underlying immunosuppression, with clinical symptoms starting from 
superficial, cutaneous, and subcutaneous to systemic mycoses. Since human myco-
ses caused by different fungal species are virtually impossible to identify clinically, 
teh causative agents of teh genus and teh level of species are important for appropri-
ate therapeutic and preventive measures. Although human fungal pathogens kill 
about 1.5 million people each year, but compared to other microbial pathogens, 
research on fungal pathogens TEMPhas not made significant progress, which 
TEMPhas hampered teh production of new antifungal drugs as well as teh tech-
nique for diagnosing fungal diseases.

Teh researches has shown dat in parallel wif increases in individuals wif acquired 
immune deficiencies or those receiving immune suppressive or myeloablative ther-
apies, teh prevalence of opportunistic fungal diseases TEMPhas steadily increased. 
In addition, due to teh prevalence and spread of fungal pathogens resistant to all 
current classes of antifungal drugs, these organisms pose an acute threat to huma 
health. Given teh complex life cycle and teh production of similar structures mor-
phologically, fungi are difficult to identify based on macroscopic and microscopic 
features. Changes in medical care is increasing teh population of patients who are 
very susceptible to fungal infections, and it is getting worse that our limited arsenal 
of antifungal drugs is weakened (or endangered) by teh emergence of drug-resistant 
strains of fungi. In view of teh above, it can be said that teh purpose of dis study is 
to identify important fungal threats to humans.
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17.1  Introduction

Fungi are members of eukaryotic organisms that include yeasts, moulds, mush-
rooms and toadstools, differentiated from the algae and higher plants by the lack of 
chlorophyll. They are among the most widely distributed organisms on earth, free- 
living in soil, water and decaying organic matter; others form parasitic or symbiotic 
relationships with plants or animals (Devi et al. 2020). Moulds are part of a larger 
group of fungi, more likely to cause food, feed, spices and herbal spoilage leading 
to crop yield, safety and quality reduction with significant economic losses. Changes 
due to spoilage of moulds can be sensory, nutritional and qualitative in nature such 
as discoloration, development of off-odour and off-flavour (Samuel and Adeyeye, 
2016). The level of contamination is affected by the prevailing conditions of the 
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climate. Moulds are widely distributed, found wherever there is moisture (Adejumo 
and Adejoro, 2014) and produce a toxic substance called mycotoxin. In the 1960s, 
the term mycotoxin was first used to describe the toxin in animal feed associated 
with infected peanuts and turkeys’ loss in England.

Mycotoxins are low-molecular-weight molecules formed by fungi (moulds) at 
the end of the exponential growth process as toxic secondary metabolites and do not 
adversely affect the producing organism but cause harm to animals and humans. 
Due to intake of plant or anmal origin food human beings are constantly exposed to 
mycotoxins (Ostry et  al. 2017).  Mushroom-produced poisonous compounds are 
almost never called mycotoxins, but are called ‘mushroom poisons’ or ‘mushroom 
toxins’ (Bennett and Klich, 2003). Mycotoxins accumulate in food crops in the 
field, during transportation and storage (Ahmad and Jae-Hyuk, 2017). Its stability 
against heat, physical and chemical treatments makes difficult to eliminate during 
food processing (Marin et al. 2014). The acute, chronic, mutagenic and teratogenic 
are four kinds of mycotoxins toxicity highly reported (Pitt 2000). The consequence 
of acute toxicity is the reduction in liver and kidney functions, which in extreme 
cases can be lethal. Higher neurotoxin levels cause damage to the brain. Some 
mycotoxins have chronic effect which causes liver cancer and inhibits the replica-
tion of DNA that may contain mutagenic or teratogenic properties (Smith and Moss, 
1985). The multiple effects of mycotoxicosis include necrosis of the skin, leucopoe-
nia and immunosuppressant (Pitt, 2000).

17.2  Prevention and Reduction of Mycotoxin

Control of mycotoxins is important for the country’s public health and economic 
enhancement (Tola and Kabede, 2016). Researchers reported several interdepen-
dent aspects that affect fungal colonization and mycotoxin production. Preventive 
measures are summarized in Fig. 17.1.

17.2.1  Pre-Harvest Approaches

Approaches to prevention of fungal mycotoxin are used before and after harvest 
(Pankaj et al. 2018). Bleeding of plants and good agronomic practices are among 
the pre-harvest methods used to avoid and manage mycotoxin. Through growing 
disease-resistant plant varieties, mycotoxin has been successfully minimized. 
Certain proposed agronomic solutions include avoiding water stress by irrigation 
and reducing infestation of insects by using pesticides. Consequently, the problem 
of mycotoxin contamination such as AFs, OTA and TCTC would be minimized fol-
lowing good farming practices (Fox and Howlett, 2008).

A. Kumari et al.



397

17.2.2  Post-Harvest Approaches

The mycotoxin-contaminated commodities are detoxified after processing to mini-
mize risk. Detoxification is the removal or elimination of mycotoxin from tainted 
food, herbal or animal feeds using physical, chemical and biological methods. 
Mycotoxin adsorbing and bio-transforming agents are used to decontaminate ani-
mal feed and human food (Jans et al. 2014). Adsorbing agents such as alumino- 
silicates, bentonites, activated carbons, micronized fibres and polymers 
(cholestyramine, polyvinylpyrrolidone) minimize exposure to mycotoxins by 
reducing their bioavailability. Doyle et al. (1982) documented the use of activated 
charcoal to extract patulin from naturally polluted cider and reported that bentonite 
is extracted AFM1 from naturally contaminated milk. Bio-transforming agents such 
as bacteria, yeast and enzymes convert mycotoxins to metabolites that are non- 
toxic. It is reported that the combination of modified yeast cells and inorganic min-
erals such as zeolite, bentonite or silicate aluminium deactivates mycotoxins in feed.

Fig. 17.1 Mycotoxin preventive measures
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17.2.2.1  Physical Treatment

Pre-Processing Treatment

Sorting, cleaning, dehulling and milling after harvesting are the key steps in agricul-
tural product processing (Grenier et al. 2014). The damaged kernels can quickly 
become infected with mycotoxin either in the field or during processing (Johansson 
et al. 2006); thus, separating damaged kernels will effectively reduce the potential 
for contamination with mycotoxin. The accumulation of mycotoxin in non-visible 
sign products presents a barrier to optical sorting (Mutiga et al. 2014). Sieve clean-
ing significantly reduces mycotoxin contamination by eradicating large mould 
growth kernels, and also removes broken kernels, dirt and debris. Trenholm et al. 
(1991) recorded approximately 70–80% elimination of DON and ZEN contamina-
tion by removing broken maize kernels. Density segregation or fractionation on 
gravity tables can also achieve elimination of mould-damaged kernels. Water- 
soluble mycotoxins can be extracted by washing partly from the grain layer. 
Trenholm et al. (1992) reported a 65–69% reduction in DON and a 2–61% reduc-
tion in ZEN by washing barley and maize in distilled water three times. Ninety- 
three percent of AFs were removed by maize dehulling (Siwela et al. 2005), and 
46.6% decrease in AFs were reported in Kenya during muthokoi preparation 
(Mutungi et al. 2008), significantly decreasing exposure (Kilonzo et al. 2014). The 
concentration of AFs, FMs, ZEN and DON was decreased by 0.2% NaOH (Lefyedi 
and Taylor 2006) under detectable levels by steeping sorghum grains. Pujol et al. 
(1999) recorded a significant reduction of FB1 by steeping maize kernels in 6 h of 
SO2 solution of 0.2% at 60 °C. Mycotoxin concentration in germ and bran fractions 
was recorded in the dry milling of maize (Bullerman and Bianchini 2007). Thus, 
wet maize milling reduced mycotoxin in starch fractions below a level of concern in 
which 40–50% of AFs transferred from maize to steeping, 28–38% remained in the 
fibre fraction and 11–17% in the gluten fraction (Yahl et al. 1971).

Thermal Treatments

In a processed food product, heat treatment is an essential intervention that indus-
trial processing can significantly affect the mycotoxin content. Cooking, boiling, 
roasting, microwave heating, extrusion and irradiation are some of the techniques 
used during the processing of food. Efficient thermal degradation of mycotoxins is 
a problem as most mycotoxins are stable in heat (Aiko and Mehta, 2015). The rate 
of degradation of mycotoxin depends on factors such as temperature, moisture con-
tent and time. Once coffee was heated for longer exposure time at 200 °C (Levi, 
1980), a higher level of degradation of AFs was achieved. Degradation has been 
found to be more effective at high moisture content. Extrusion techniques reported 
a 50–80% reduction in AFs, a temporary reduction in grain humidity and 
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temperature (Bullerman and Bianchini, 2007). ZEA is heat resistant, but during 
cereal extrusion cooking, it can be partially destroyed (Castells et  al. 2005). AF 
reduction in peanuts and pecans was recorded by 50–70% and maize by roasting by 
40–80% (Conway et al. 1978). The irradiation approach is used at industrial level to 
remove mycotoxins. Non-ionizing techniques such as solar, UV, microwave and 
ionizing- like gamma radiation may partially eliminate the level of mycotoxins in 
food (Karlovsky et  al. 2016). Due to the photosensitivity factor of AFs, specific 
radiations such as daylight and UV light were used in animal feed AF degradation 
studies; a decrease of about 40% of AFs after 3 h and up to 75% after 30 h of direct 
sunlight treatment was observed (Herzallah et  al. 2008). In addition, sunlight in 
olive oil and groundnut oil has been reported to effectively degrade AFB1.

Ultraviolet Rays

Ultraviolet rays and gamma irradiation have shown promising results in the past in 
reducing AFs. For possible toxin removal, new techniques like electron beam irra-
diation and pulsed light processing are currently being investigated. AFB1’s great-
est UV absorption occurs at 362  nm and increases its degradation resistance 
(Samarajeewa et al. 1990). According to Liu et al. (2011), UV radiation showed 
complete degradation of AFB1 in peanut oil treated with 800 μW/cm2 for 30 minutes; 
96% reduction (Mao et al. 2016); 88.7% reduction for 40 minutes at 6.4 mW/cm2 
(Diao et al. 2015), 49.3% reduction of AFB1 for 30 minutes in peanuts (Jabłońska 
and Mańkowska, 2014); >80% reduction of AFB1 for 160 min in wheat (Ghanghro 
et al. 2016). Removal of PAT reported to be effective by UV light in apple juice and 
cider; 222 nm was found to be most appropriate for PAT reduction in apple juice 
(Zhu et al. 2014); it affects apple juice and cider taste, however.

Gamma Rays

Ionizing radiations like gamma rays were potentially used for mycotoxin degrada-
tion. Due to radiolysis of water and other components free radicals generated by 
gamma radiation were effective in aflatoxin degradation (Pankaj et al. 2018). There 
were a 74.3% AFB1 reduction in peanut and >60% AFB1 reduction in almond and 
walnut by gamma irradiation (Jabłońska and Mańkowska, 2014). High doses of 
gamma irradiation have not shown complete degradation of AFs; significant reduc-
tion in combination with other technologies is achieved. The radiation dose of 
4 kGy showed a decline in poultry feed fungal development (Refai et  al. 1996). 
Radiation of 15 and 20 kGy doses, respectively, removed OTA in yellow maize and 
soybeans. Di Stefano et  al. (2014) reported a mere 11–21% reduction in AFs 
at 15 kGy.
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Microwaves

Microwaves are a form of electromagnetic radiation. Various studies showed micro-
wave heating reduction of AFs in a model system where AFs was coated with silica 
gel and in corn and peanut substrates (Pankaj et al. 2018). It has been stated that 
microwave heating is more effective in AFB1 degradation than traditional heating 
(i.e. oven and water bath) (Shi, 2016). Increasing microwave energy, heating tem-
perature and treatment time increase percentage reduction of AFs. Contrary, micro-
wave drying alone has several major drawbacks including non-uniform heating, 
minimal penetration depth of microwave radiation and possible damage to the sur-
face due to difficulty in regulating the final product temperature in microwave dry-
ing (Feng et al. 2012). In another study, it was found that microwave heating is not 
very effective in poultry feed degrading AFs.

Electron Beam Irradiation (EBI)

Electron beam irradiation has a short processing time, is highly effective, requires 
low heat and involves low investment costs (Liu et  al. 2016). EBI demonstrated 
potential degradation of mycotoxin in food products (Luo et al. 2017). In Brazil’s 
nut, 10 kGy of electron beam irradiation produced a 65.7% drop in AFB1 (Assunção 
et al. 2015). The same 25 kGy dose rate is used in maize to reduce AFB1 by gamma 
irradiation and EBI resulted in a reduction of 69 and 67%, respectively (Shahbazi 
et al. 2010). Similar to gamma irradiation, its efficacy in food products has not been 
demonstrated. 

Pulsed Light

Recently, non-thermal pulsed light technology has shown potential for AF degrada-
tion. The decontamination effects from pulsed light technology could be attributed 
to its rich broad spectrum UV content (Elmnasser et al. 2007). Pulsed light treat-
ment in rough rice at 0.52 J/cm2/pulse for 80 seconds showed a reduction of AFB1 
and AFB2 by 75% and 39%, respectively; while at 15 seconds in rice bran, AFB1 
and AFB2 decreased by 90% and 87%, respectively (Wang et al. 2016). Pulsed light 
treatment showed some potential for reducing AFs without leaving residual toxic in 
the product.

Cold Plasma

It is an emerging non-thermal technology, which has shown significant potentials 
for various applications in the food industries. In 5 seconds at atmospheric pressure, 
cold plasma showed complete degradation of AFB1 by microwave argon plasma on 
glass substrate (Park et al. 2007). For 10 minutes, radiofrequency plasma therapy 
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reported a decrease of 88% in AFB1 at 300 W (Wang et al. 2015). Another study 
showed a 90% reduction in AFB1 in 15 min on the glass surface using nitrogen gas 
plasma (Sakudo et al. 2017). Significant reduction of Aspergillus parasiticus con-
tamination in hazelnuts, peanuts and pistachio has been observed with treatment of 
low-pressure cold plasma. Up to 50% of AFs found to be lessened by low-pressure 
plasma treatment on nut surfaces (Basaran et  al. 2008). The fungal spores of 
Aspergillus niger contaminating date palm fruits are destroyed by atmospheric pres-
sure argon cold plasma after 9 min of treatment (Ouf et al. 2015), OTA and FB2 fell 
from 25 and 6 μg/100 mm2, respectively.

17.2.2.2  Chemical Treatment

Acid and Alkaline

Chemicals such as ammonia, NaOH, lactic acid, citric acid, hydrochloric acid, 
hydrogen peroxide, ozone gas, ozonated steam, etc., are treated with positive results 
of mycotoxin degradation. Other methods are also used for aflatoxin decontamina-
tion, such as mineral, organic and so on. Combined with physical therapies, chemi-
cal substances improve the efficacy of mycotoxin degradation. In a recent study, it 
has been shown that lactic acid efficiently degrades aflatoxin B1 to aflatoxin B2 and 
B2a, with aflatoxin B2a being the main heat-treated degradation product (Aiko and 
Mehta, 2015). Ammonia is the most effective of the many chemicals used to detox-
ify mycotoxins and has been approved for use by the corn industry. Because of 
heavy acid treatment with AFB1 and AFG1, respectively, hemiacetal forms of 
AFB2a and AFG2a occur. Aiko et al. (2016) recorded lactic acid efficacy in convert-
ing AFB1 to AFB2 and AFB2a as the main product. Sodium hydroxide and other 
alkaline reagents showed partial detoxification of AFs in groundnut, cottons and 
maize (Müller 1983). Ninety-nine percent of ammonization reduced AFs 
(Chełkowski et al. 1981), and 2% aqueous NH3 showed a significant reduction in 
OTA, ZEN and AFB1.

Ozone (O3)

Ozone (O3) is a tri-atomic oxygen (O2) formed by a high-energy input to O2. It has 
shown promising results of degrading AFs in various food products (Pankaj et al. 
2018). The FDA approved its use as an antimicrobial agent in food. AFB1, AFG1 
and AFM1 with double-bond terminals showed vulnerability to O3 attacks as 
opposed to AFB2, AFG2 and AFM2, missing this dual bond (McKenzie et al. 1997). 
About 1.1  mg/l of O3 caused AFB1 and AFG1 to degrade at room temperature 
within 5 minutes. AFB2 and AFG2 were found to be O3-resistant, taking 50–60 min 
to fully degrade them with 34.3 mg/l O3. Paprika exposures for 60 min at 33 and 
66 mg/l O3 resulted in 80 and 93% reduction of AFB1, respectively (Inan et  al. 
2007). Nonetheless, due to cost, the application of O3 to degradation of AFs in food 
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products is limited and may affect nutrient content (Womack et al. 2014). Treatment 
with NaHSO3 decreased AFB1 in maize and dried figs. Upon heating up bisulphite- 
treated specimens at 45–65 °C for 1 h, a reduction of 68% was observed for added 
AFB1. The 85% reduction in maize DON was achieved after 18  h at 80  °C in 
NaHSO3 solution treatment (Young et al. 1987).

Hydrogen Peroxide (H2O2)

H2O2’s effectiveness in degrading ZEA in contaminated maize has been found to 
depend on its concentration, temperature and exposure time (Abd Alla 1997). 
Lasztity et al. 1977) reported a decrease in concentration of ZEA following H2O2 
aqueous solution treatment.

Electrolyzed Water (EW)

Electrolyzed water (EW) is formed by the electrolysis of diluted NaCl or KCl- 
MgCl2 solution in an electrolysis cell with a diaphragm separating the electrodes 
(Hricova et al. 2008). It has shown some ability for toxin removal (Suzuki et al. 
2002). Reduction of AFB1 was observed by soaking natural infected peanuts for 
15 min in acidic EW (Zhang et al. 2012). Specific EW recorded 100% AFB1 degra-
dation in edible plant oils followed by 5 min oscillation at 220 rpm. Soaking peanut 
in neutral EW for 10 min and 15 min for acidic EW reduced AFB1 for about 90%, 
but the basic EW was found to be ineffective (Xiong et al. 2012). EW has positive 
results for AF decontamination in commercial applications. EW is a simple, cost- 
effective, environmentally friendly technique with no toxic residues (Pankaj 
et al. 2018).

Spices and Herbs

Spices and herbs are noticeable to have mycotoxin detoxification result. Ocimum 
tenuiflorum extracts are documented for detoxification of AFs in food samples at 
room temperature (Panda and Mehta 2013); and extracts of vasaka leaves are recog-
nized for removal of AFB1 at 37 °C after 24 h (Vijayanandraj et al. 2014). Several 
investigators reported that clove oil and its main component, eugenol, inhibited 
Aspergillus growth and AFB1 production (Bullerman et  al. 1977; Jayashree and 
Subramanyam 1999).
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17.2.2.3  Biological Treatment

Biological treatment involves the use of mycotoxin detoxification microorganism, 
enzymes and plant extracts. Plant extracts such as black and long pepper piperine, 
Aztec marigold lutein and xanthophylls, fruits and vegetable carotenoids (Rauscher 
et al. 1998) have been reported to suppress AFB1’s toxicity and mutagenicity. Many 
essential oils of plants have been reported to have a good antimicrobial ability.

Fermentation

Fermentation reduces mycotoxin toxicity. Use of lactic acid bacteria (LAB) in food 
and feed is a promising strategy to reduce exposure to dietary mycotoxins, increase 
their shelf life and reduce health risks, given the unique feature of some LAB- 
decontaminating mycotoxin. As a novel approach to reducing mycotoxin toxicity in 
food products, Lb. pentosus strains have shown promising results (Sangsila et al. 
2016). LAB has been reported to bind AFB1 and AFM1 in food products. Milk to 
yogurt fermentation at pH 4.6 and 4.0 reported a 13% and 22% reduction in AFM1 
concentration and a 16% and 34% reduction in total AFM1 after storage (Govaris 
et al. 2002). PAT is greatly reduced by alcoholic fermentation, whereas most other 
mycotoxins can withstand brewing; thus, high levels of DON are present in beer 
(Scott 1996; Lancova et al. 2008).

Microorganisms

Pseudomonas aeruginosa N17-1 was stated to be able to degrade AFB1, AFB2 and 
AFM1 by 82.8%, 46.8% and 31.9%, respectively, after incubation at 37 °C for 72 h 
in the nutrient broth medium (Sangare et al. 2014). Aflatoxin reduction activity has 
also been shown by few Bacillus sp. such as Bacillus subtilis (Farzaneh et al. 2012). 
In addition, a strain of B. subtilis, ANSB060, was isolated by Gao et al. (2011) from 
fish gut, which showed a strong AF detoxification capability, and AFB1, AFM1 and 
AFG1 degradation percentages were 81.5%, 60%, and 80.7%, respectively. The 
decontamination effect of PAT and OTA has been demonstrated by a culture of 
Saccharomyces cerevisiae used in wine, brewery and sourdough processing (Moss 
and Long 2002).

Enzymes

Enzymes are widely used as processing aids to reduce exposure to mycotoxins. 
Recombinant aspartic protease chymosin, bread producing enzymes, malting and 
brewing are examples of best suited to the use of enzymes as detoxifying agents for 
mycotoxins. Through incorporating beer processing enzymes such as amylases, 
glucanases and proteases (Whitehurst and van Oort, 2010), DON in beer can be 
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detoxified enzymatically. Enzymes pectinases and glucoamylases reduce the con-
centration of PAT in fruit juice. Recombinant lactase produced by A. niger D15- 
Lcc2#3 (118 U/L) decreased AFB1 by 55% in 72 h (Alberts et al. 2017). Peroxidase 
enzymes produced by A. flavus and A. parasiticus have been documented to degrade 
AFB1 and AFG1 (Singh, 1998).

17.3  Economic Implication

Mycotoxins contaminate harvested seeds in many parts of the world, which cause 
losses of agricultural commodities. It affects millions of tons of farm products. 
Twenty-five percent of the world’s crops have been reported to be affected by mould 
or fungal growth (Marin et al. 2014). The mycotoxin contamination of feed results 
in economic losses to the world of animal husbandry wide and, in some cases, 
health harm to human consumers as a result of contamination being transferred 
from infected animal through dairy products, eggs and meat. Mitchell et al. (2016) 
announced an estimated annual loss of US$ 52.1 million to US$ 1.68 billion due to 
AF contamination to the US corn industry. Economic losses are due to impacts on 
livestock production, plant losses and the expense of mycotoxin-oriented regulatory 
programs. In addition, AFs are the central threat found in the Rapid Alert System for 
Food and Feed border studies (Marin et al. 2014). Storage and transport conditions 
under adverse weather have significant potential for contamination of mould and 
mycotoxin to occur. Unfortunately, major agricultural and industrial losses from the 
harvested crops of the world are due to annual contamination of 25% mycotoxins 
(Marin et al. 2014). In addition, the cost of medical care and the loss of productivity 
of people are other economic losses due to the effect of mycotoxin.

17.4  Regulation of Mycotoxin

Mycotoxin risk is a global problem due to food trade globalization. Regulated 
mycotoxins and products and total allowable rates vary significantly in different 
countries. Many countries have already set limits on food and feed for AFs as a 
result of their high toxicity. The overall acceptable rate for all food products in 
world trade was decided to be 15μg/kg of total AFs (Pitt, 2000). The maximum 
standards of food and feed for mycotoxins have been set to ensure consumer safety. 
Drawing large samples, homogenizing before sub-sampling and standardizing AF 
assays are used to ensure that susceptible products meet a country’s stringent export 
and import law requirements. The acceptable levels of aflatoxins in animal feed and 
human food vary with the authority of government (Tola and Kabede, 2016). 
Regulatory limits on OTA levels in food systems are now strictly established in the 
European Union; the upper concentration in cereal was set at 5 ppb, while 2 ppb and 
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5 ppb were set for wine (or grape juice) and coffee products, respectively (EU No. 
594/2012). Table 17.1 summarizes the US and EU limit levels of mycotoxin on food 
and animal feed.

17.5  Conclusion

Contamination of mycotoxin on food produce poses a serious threat to human 
health. The ubiquitous nature of the fungi makes food crops vulnerable during pre- 
harvest and post-harvest conditions to fungal contamination. Therefore, the prob-
lem of mycotoxin cannot be dealt with by one approach; therefore, comprehensive 
approach is required to deal with the issues involved. The combined and endless 
efforts by government, academia, farmers, food handlers and the wider community 
are needed to counteract mycotoxin in order to improve food safety.

Table 17.1 Mycotoxins limit levels set by FAO, the United States (US) and European Union (EU)

Mycotoxins Fungal species Mycotoxin substrate

EU (EC 
1881/2006)
(μg/kg)

FAO, 
1997
(μg/
kg)

US 
FDA
(μg/
kg)

AFB1, AFB2, 
AFG1, AFG2

A. flavus
A. parasiticus

Maize, wheat, sorghum, rice, 
spices, peanut, figs, ground 
nuts, cottonseed, tree nuts, 
almond

2–12 for B1
4–15 for 
total

10 20 for 
total

AFM1 Metabolite of 
AFB1

Milk and milk products 0.025 in 
infant
formulae and 
milk
0.05 in milk

10 0.5

OTA A. ochraceus
P. verrucosum
A. carbonarius

Cereals, wine, coffee, cocoa, 
cheese, dried vine fruit, 
grapes

2–10 5 Not set

FB1, FB2, FB3 F. 
verticillioides
F. proliferatum

maize, maize products,
sorghum, asparagus

200–1000 1000 2000–
4000

ZEA F. 
graminearum
F. culmorum

Cereals and cereal products 20–100 1000 Not set

DON F. 
graminearum
F. culmorum

Cereals and cereal products 200–50 750 1000

PT P. expansum Apples, apple juice
and concentrate

10–50 Not 
set

50
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18.1  Introduction

The main forms of fungal growth is biofilms exhibiting critical for the development 
of infection a clinical and plant disease. The term biofilm is generally used to define 
the true biofilms, being those organisms that grow in a community, unlike those that 
grow separately on surfaces (Desai et al. 2014). The formation of fungal biofilms is 
responsible for a wide spectrum of infections in humans (Fanning and Mitchell 
2012). As a result, most microscopic organisms are capable of synthesizing biofilm, 
and it is believed that this lifestyle is primarily responsible for most infections in 
humans (Potera 1999). Currently, there is an extensive literature focused on studies 
of biofilms in bacteria, but little attention is given to studies aimed at the formation 
of fungal biofilms of medical importance (Chandra et al. 2001). Fungal biofilms 
have similar structural characteristics, being endowed with growing cells and large 
extracellular matrix production (Desai et al. 2014). Generally, this matrix is com-
posed of a combination of macromolecules such as nucleic acids, lipids, proteins, 
and mainly exopolysaccharides. They can act in the supply of nutritional resources, 
in the structure of the cellular community, protection against antimicrobials, protec-
tion against the immune system and can even act in the cellular cohesion (Zarnowski 
et al. 2014). In the current clinical scenario, fungi that produce biofilms can propa-
gate in hospital devices such as catheters and surgical materials, as well as on epi-
thelial or endothelial surfaces, being part of a group of agents that cause nosocomial 
diseases (Kojic and Darouiche 2004; Seidler et al. 2008; Escande et al. 2011). As 
mentioned earlier, there are many fungi of medical importance that produce bio-
films, such as Candida, Aspergillus, Cryptococcus, Pneumocystis, Trichosporon, 
and Coccidioides (Chandra et al. 2001; Bauters et al. 2002; Davis et al. 2002; Di 
Bonaventura et al. 2006; Seidler et al. 2008; Cushion et al. 2009).

In this chapter, we will discuss how biofilms are formed and how their produc-
tion works. We will exemplify the types of fungal biofilms, resistance mechanisms 
biofilms can provide, how fungi that produce biofilms are managed, and efficacy 
and pathogenicity of fungal biofilms. Topics related to potentials for application in 
agriculture and public health and future challenges will also be addressed.
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18.2  Biofilms

Much of the microbial communities grow on different surfaces, including rocks, 
sediments, crusts, skin, and mucosa (Kolter and Greenberg 2006). Autotrophic 
organisms (cyanobacteria) and heterotrophs form a unique architecture for their sur-
vival. It is estimated that 95% of the microorganisms found in nature are linked to 
biofilms (Sardi et al. 2014), while the rest of the microbial population show plank-
ton growth (isolated bacterial cells). Branda et  al. (2005) defined a biofilm as a 
“microscopic mushroom-shaped” 3D community of microbial cells held in associa-
tion and firmly attached to surfaces through an extracellular polymeric matrix that 
is permeated by water channels that enable efficient biomass exchange between the 
population and environment, but only covers biofilm in aqueous environments; 
Castrillón Rivera et al. (2013) defined a biofilm as a microbial community that irre-
versibly binds to a substrate and is embedded in a self-produced extracellular matrix, 
whose cells show an altered phenotype with respect to their growth rate and genetic 
transcription, since microorganisms in nature tend not to exist in isolation and can 
cooperate to build a biofilm favoring protection against environmental stress (Faust 
and Raes 2012). In fact, biofilm formation is so frequent that it is possibly a posi-
tively selected range in microbial evolution to ensure survival in diverse and chang-
ing environments (Harding et al. 2009).

Biofilms were described for the first time when biocorrosion and contamination 
of products in pipes were observed, causing significant losses for industries world-
wide (McCoy et al. 1981). Information on microbial communities is scarce, due to 
the complexity of these systems and the ignorance of their metabolic interactions. 
The discovery of biofilm formation in bacteria and yeasts has led to a better under-
standing of microbial ecology and new insights into the mechanisms of virulence 
and persistence of pathogenic microorganisms. The control and understanding of 
biofilms are important in fields such as the food industry, biotechnology, public 
health, plant pathology, etc.

In the food industry, biofilms are of great importance because some biofilm- 
forming microorganisms can be toxic; these pathogens can develop on common 
structures such as stainless steel, polyethylene, wood, glass, polypropylene, rubber, 
etc. (Abdallah et al. 2015; Colagiorgi et al. 2017). In the specific case of the dairy 
industry, biofilms can adhere to raw milk tanks, pipes, butter centrifuges, pasteur-
izers, and packaging tools. The above is crucial as it can cause public health prob-
lems in both healthy and immunosuppressed individuals (Galie et al. 2018).

On the other hand, it is mentioned that several human infections are related to the 
formation of biofilms (Potera 1999; Pemán et al. 2008). This becomes relevant due 
to the high incidence of nosocomial infections; biofilms act as reservoirs of persis-
tent infections associated with catheters, dental or cardiac prostheses, and other 
biomedical devices and has become a focus of dissemination of infection, hindering 
the functions of these devices and increasing hospital stay, the costs of care, and 
mortality. Fungal infections pose a significant burden in the hospital population 
(Castrillón Rivera et al. 2013). In particular, yeasts take advantage of this condition 
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to access the blood circulation and reach the internal organs of patients. This is 
alarming, as disseminated fungal infections have a high mortality rate (Verstrepen 
and Klis 2006).

Various plant diseases are caused by bacterial biofilms (Rojas et  al. 2002; 
Newman 2004; Quiñones et al. 2005; Danhorn and Fuqua 2007; Chalupowicz et al. 
2012). However, some phytopathogenic fungi such as Botrytis cinerea show growth 
with properties similar to biofilms, such as extracellular polymeric materials and 
communication through diffusible extracellular signals (Harding et al. 2009). The 
inclusion of the biofilm concept in plant pathogenic fungi offers the opportunity to 
test new environmentally friendly ecological practices, avoiding as much as possi-
ble the development of resistance of plant pathogens to fungicides, which would 
greatly help to increase agricultural production and food availability (Villa 
et al. 2017).

Biofilms in the soil consist of various species embedded in a self-produced extra-
cellular polymer matrix, which adheres to soil particles or biotic surfaces such as 
root, hyphae, and decomposing organic material (Burmolle et al. 2012; Flemming 
and Wuertz 2019). Although soil environments are complex and dynamic, biofilms 
can stabilize the conditions surrounding microorganisms, providing protection 
against predation, desiccation, and exposure to antibiotics, while improving nutrient 
and oxygen availability, and providing a niche for horizontal gene transfer (Sørensen 
et al. 2005; Madsen et al. 2012). The structures that form in the biofilm contain 
channels in which nutrients can circulate, and cells in different regions of the bio-
film exhibit different gene expression patterns. These sessile biofilm communities 
can give rise to non-sessile individuals, and a planktonic microorganism can rapidly 
multiply and disperse (Cortés et al. 2011).

18.3  Formation and Production of Biofilms

Different microorganisms have been reported to have the ability to form biofilms in 
different environmental, industrial, and medical settings. Fungi are adapted for 
growth on surfaces, due to their absorbent mode of nutrition, the secretion of extra-
cellular enzymes to digest complex molecules, and the growth of apical hyphae. 
Fungi are excellent candidates for biofilm formation, in addition to allowing micro-
organisms to control disaggregation and restricting the penetration of drugs, making 
them resistant to antifungals, antimicrobials, and the host’s immune system; these 
attributions will depend on fungus species, by complex structure formation, includ-
ing extracellular matrix and intrinsic metabolic heterogeneity (Fanning and 
Mitchell 2012).

In the environmental area, descriptions of complexes that resemble a biofilm for 
the decomposition of wood and in mycorrhizal fungal species have been reported. 
Ali et  al. (1999) describe the abundant production of extracellular mucilaginous 
material in Coniophora puteana (dark rot) and Coriolus versicolor (white rot) dur-
ing colonization of Fagus sylvatica (beech) and Pinus sylvestris (pine). It is 
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suggested that the mucilaginous compound has an essential role during wood 
decomposition, by acting as a diffuse transfer medium for decomposition agents 
and products between the hyphae and the wood cell wall. Mycorrhizal fungi 
Laccaria laccata, Hebeloma crustuliniforme, Hebeloma sinapizans, and Paxillus 
involutus produce networks of extensive hyphae and mycelial cords and grow in 
association with the root surfaces of plants where they are often embedded in an 
extracellular matrix (fungal mantle). The effect of the Harting network can be a fac-
tor in suppressing the disease, acting as a chemical barrier, antibiosis, production of 
antifungal compounds or competition that can protect mycorrhizal plants against 
phytopathogenic fungi (Phytophthora cambivora and P. cinnamomi) observed in 
chestnut seedlings (Branzanti et al. 1999).

There are reports on biofilms of filamentous fungi associated with industrial pro-
cesses. In Aspergillus niger cultures, changes in gene expression are involved with 
the change of planktonic life to biofilm, and adherence is the most important stimu-
lus, in addition to morphogenetic and physiological responses; the regulatory mech-
anism for the synthesis of cellulase and xylanase in biofilms is by means of a 
differential gene expression that is activated when it grows as a biofilm (Villena 
et al. 2008). In fungi, differential gene expression is related to pH, nutrient type and 
availability, heat shock, and culture conditions (Ward et al. 2006).

In the medical area, biofilms are of great importance because they represent more 
than 80 percent of microbial infections in the body, ranging from infections of 
wounds and toenails that are caused by dermatophyte fungi to candidiasis that can 
cause death, because organisms encased in biofilms are 50–500 times more resistant 
to chemotherapy than planktonic microorganisms, and this resistance is related to 
the reduced penetration of antimicrobial agents into the biofilm polysaccharide 
matrix, the slow growth rate of organisms within the biofilm, the ability of microor-
ganisms to express different properties than those of the planktonic cells, and other 
physiological changes caused by the interaction of organisms with surfaces 
(Burkhart and Gupta 2002).

Fungi of the genus Penicillium are very common in nature, and most species are 
plant pathogens, responsible for the deterioration of fruits, and do not grow above 
30  °C, so it is not common to cause infection in humans; however in immune- 
compromised hosts, they can cause health problems, due to its colonization in the 
tracheal granulation tissues, where the characteristic morphology of a biofilm 
(interlaced hyphae, compact mycelium, etc.) has been observed through micro-
graphs. The granulation tissue may be the result of a surface growth where the 
temperature is kept below 35  °C or some toxic by-product produced during the 
growth of the biofilm (Randhawa et al. 2008). Also, in hospital water distribution 
systems, growth of fungi in the pipes has been observed, representing a potential 
source of nosocomial infections (Harding et al. 2009). Biofilms formed by yeasts 
and filamentous fungi show significant differences. Studies of polymicrobial com-
munities have become increasingly important. Both yeasts and filamentous fungi 
can adhere to biotic and abiotic surfaces, becoming highly organized communities 
that are resistant to antimicrobials and environmental conditions, making biofilm 
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formation an important virulence factor in pathogenic fungi (Costa-Orlandi 
et al. 2017).

Harding et al. (2009) described six phases in the formation of filamentous fungal 
biofilms: (a) adsorption of propagules; (b) active binding to surfaces; (c) colony 
formation, where there is growth and colonization, as well as branching of hyphae 
through the surface as a monolayer and production of extracellular matrix that 
adheres to the substrate; (d) formation of compacted hyphal networks of mycelium 
and hypha-hypha adhesion and formation of water channels; (e) maturation and 
reproductive development, where fruiting bodies, spores, sclerotia, and other sur-
vival structures are formed; and (f) spore dispersal or release of biofilm fragments 
to restart the cycle. In the case of filamentous fungi, the secretion of hydrophobins 
(small proteins exclusive to this type of fungus) participate in the formation of aerial 
structures, in the attachment of the hypha to hydrophobic surfaces, and in the forma-
tion of more complex structures, as well as in the formation of biofilms 
(Wessels 1996).

The adhesion and colonization of fungal populations are favored by various fac-
tors, such as the surrounding environment, pH, temperature, and osmolarity, among 
others; the formation of the extracellular matrix greatly favors cell adhesion and 
biofilm maturation. This matrix provides the cell with protection against hostile fac-
tors, such as host immunity and antimicrobial resistance, because it is a mesh of 
proteins and sugars that forms around microbial cells creating an osmotic pressure 
that forces biofilms to swell and expand (Wingender and Flemming 2010).

The life cycle of a soil biofilm can be divided into several stages: (i) fixation on 
solid surfaces (such as minerals and plant roots), (ii) colonization of these surfaces, 
(iii) development, (iv) maturation, and (v) cell dispersion. Fixation is a physico-
chemical process, subject to the interaction of surface charge, dissolved ions, and 
mechanical fluid (Cai et al. 2013). When microorganisms perceive the surface, pro-
found physiological changes occur at the interface that causes colonization (O’Toole 
and Wong 2016). During biofilm development, the physiology of cells changes 
compared to free cells, producing a physically and biochemically distinct pheno-
type. The biofilm is relatively stable as its structure and composition mature. 
However, with nutrient depletion or external disturbances, internal cells can respond 
rapidly, releasing enzymes capable of dispersing the biofilm and triggering cell dis-
persion (Oppenheimer-Shaanan et al. 2013). During biofilm dispersion, cells can 
detach from the biofilm matrix in active or passive forms. These separate cells can 
colonize another site and start a new biofilm cycle (Cai et al. 2019).

The biofilms are complex cell populations that present an extracellular matrix 
that has different phenotypes. In the case of Candida albicans, they are mainly 
composed of yeast-shaped cells and hyphae, and the formation involves adhesion to 
a substrate (abiotic or mucosal surface), followed by the proliferation of yeast cells 
on the surface (induction of hyphal formation) where the extracellular matrix accu-
mulates as the biofilm matures and seems to contribute to cohesion and finally the 
dispersion that corresponds to the release of cells to colonize new sites that can form 
on numerous abiotic and biotic surfaces (Finkel and Mitchell 2011; Fanning and 
Mitchell 2012). The degree of adhesion depends on the microbial properties of the 
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host, the surface, and the antibiotics, such as hydrophobicity of the cell surface and 
the composition of the cell wall (adhesins), as well as the presence of hydrolytic 
enzymes, including proteases, phospholipases, and hemolysins (Silva et al. 2011).

Biofilms of C. albicans, C. glabrata, C. tropicalis, C. krusei, and C. dubliniensis 
present three phases of formation: (1) early adhesion phase (0–11 h), (2) intermedi-
ate phase (12–30 h), and (3) maturation phase (31–72 h); the cells must bind to the 
surface or the host cells (Tan et al. 2016). The formation of Aspergillus fumigatus 
biofilms is slower compared to C. albicans, since after the conidial seeding, adhe-
sion and germination phase of conidia begins (10 h), and then the hyphae will inter-
lace forming a monolayer (10–16 h), followed by an increase in structural complexity 
(4–8  h), in which the hydrophobic extracellular matrix (galactomannan, α-1,3- 
glucans, galactosaminogalactan, monosaccharides, polyols, melanin, and proteins) 
cohesively binds to the hyphae, increasing the biofilm depth from 10 to 200 μm 
(Kaur and Singh 2014).

The components of the extracellular matrix vary according to the type of micro-
organism that forms it, but it is mainly composed of exopolysaccharides, proteins, 
lipids, extracellular DNA, and hydrolytic enzymes, and the amount of each of the 
components depends on the environmental conditions (oxygen, nitrogen, tempera-
ture, pH, etc.) and age of the biofilm, among others (Gupta et al. 2019).

Several proteins, alone or associated with carbohydrates (glycoproteins), have 
been identified that are very similar to the proteins (mannoproteins) present in the 
planktonic supernatant in the fungal extracellular matrix, which plays a fundamen-
tal role in the structure and physiology of the nucleus, including virulence, morpho-
genesis, adherence, antigen presentation, and immunomodulation. It has been 
suggested that extracellular DNA can improve the structural and architectural integ-
rity of the biofilm, in the exchange of genetic information, the supply of nutrients, 
and drug resistance (Kaur and Singh 2014). Autolysis is considered a process for 
release of extracellular DNA in the fungal cells of Aspergillus nidulans and A. fumig-
atus (Alcazar-Fuoli et al. 2011).

The cell wall is of great importance in the formation and development of the 
biofilm, in addition to its importance within the cell structure, since it is the main 
interface between the internal physiology of the fungus and the external environ-
ment; within the polysaccharides that make up the cell wall in fungi are branched 
and linear β-1,3- and β-1,4-glucan, α-1,3-glucan, chitin, chitosan, galactomannan, 
and galactosaminogalactan. β-1–3-glucan branched with ß-1–6-glucan forms the 
skeleton of the wall, and these are covalently bound to chitin and β-1–3/1–4-glucan. 
In the A. fumigatus genome, there are three genes for α-1,3-glucan synthase that are 
overregulated in biofilms, indicating their importance during adhesion and aggrega-
tion of hyphae (Gibbons et al. 2012).

Glucan is one of the main components in filamentous and dimorphic pathogenic 
fungi (A. fumigatus, A. nidulans, Paracoccidioides brasiliensis, Histoplasma capsu-
latum, Blastomyces dermatitidis, Cryptococcus neoformans), and it has also been 
reported that galactosaminogalactan (linear heteropolymer of α-1,4-linked galac-
tose and partially deacetylated N-acetylgalactosamine) is part of the pathogenesis 
by masking β-1,3-glucans from the immune system, adhesion to host cells and other 
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substrates, and resistance to extracellular containment of neutrophils (Gupta et al. 
2019). A major component of C. albicans biofilms is β-1,3-glucan that has been 
linked to the protection of biofilms against antifungal agents (Taff et al. 2012).

The production of polysaccharides is important for the formation and complex 
architecture of biofilms, since, together with other components of the extracellular 
matrix, they have a key role to play in the different stages of biofilm development. 
The various ways in which the extracellular matrix exopolysaccharides interact 
include non-ionic chain-chain interactions that lead to gelation of single or multiple 
polymers and ionic interactions with charged molecules mediated by charged 
groups generally present on the exterior of molecular chains exopolysaccharides 
(Chandrasekaran et al. 1994).

Regardless of the type of organism, whether unicellular or semi-multicellular, 
they have the ability to coordinate such a complex architecture through their extra-
cellular secretions, which allow them to design their environment according to their 
needs, forming a specific local environment, which is a key factor of their lifestyle, 
giving them advantages of adaptive resistance and shielding effect against many 
forms of environmental aggressions (Gupta et al. 2019), such as attacks by preda-
tors and chemical stress such as the host’s immune system or antibiotics and disin-
fectants, information that can be transferred between the components of the biofilm 
(Cortés et al. 2011).

18.4  Management of Biofilm-Related Fungi

The virulence and pathogenicity of microorganisms are often improved as they 
grow forming a biofilm; therefore optimizing strategies to control biofilm formation 
and development is required (Sharp et al. 2006). Biofilms are difficult to counteract 
since antibiotic resistance increases up to 1000 times above that of the planktonic 
form (Cortés et al. 2011). Manipulation of individual environmental factors to pre-
vent biofilm formation has had little success because it may not be applicable in all 
cases. Another form of control is to work on the chemistry of the surface on which 
the biofilm develops, reducing cell fixation, including the development of a dynamic 
surface that degrades or rearranges itself in response to temperature and other envi-
ronmental conditions (Renner and Weibel 2011). The proposed surfaces must have 
antimicrobial properties and modify the polymer coating to reduce cell adsorption. 
An example is the use of silver-containing dressings, a strategy that has become 
frequent in the clinical area to control chronic wounds at risk of infections (Toy and 
Macera 2011).

Mechanisms of resistance to fungal biofilms include extracellular matrix, efflux 
pump activity, persistence, cell density, overexpression of drug targets, stress 
responses, and general cell physiology (Nosanchuk et al. 2012). Therefore, strate-
gies are being sought to increase the efficiency of new treatments against fungal 
infections, leading to inhibition of biofilm growth, biofilm disruption, or biofilm 
eradication. Gaylarde and Morton (1999) mentioned that a biocide compound 
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should have the following general properties: (1) effective against problem causing 
microorganisms; (2) simple and safe to use; (3) no adverse effect on the material to 
protect/treat; (4) cheap (low cost/benefit ratio); and (5) able to provide protection on 
the required time scale. These factors could include enzymes, sodium salts, metal 
nanoparticles, antibiotics, acids, chitosan derivatives, or plant extracts (Sardi et al. 
2014). Acetic acid has proved to be an effective agent against Candida biofilms. It 
is an effective procedure for disinfecting systems used in hemodialysis since it also 
showed effectiveness in inhibiting biofilms. Antifungal and antimicrobial activity of 
silver nanoparticles has been reported in medicine with a well-tolerated tissue 
response. Sun et al. (2012a) reported the activity of lipid nanoparticles loaded with 
terpinen-4-ol against C. albicans biofilms; this compound (10 g/mL) has eradicated 
biofilm formation.

Antibody studies have also been conducted to test their effects on various fungal 
and bacterial organisms. Martinez et al. (2006a) reported that alpha radiation com-
bined with antibodies effectively impairs the formation of fungal biofilms; in addi-
tion, therapeutic treatment of Cryptococcus neoformans biofilms (forms biofilms in 
medical devices) with monoclonal antibody (MAb) therapies and antifungal drug 
was performed. The binding of antibodies to the cryptococcal capsule may have an 
effect on the capsular architecture, which may translate into greater penetration of 
the drug into the cell body (Martinez et al. 2006b). Among the preventive alterna-
tives, they recommend that the administration of a prophylactic dose of biofilm- 
specific antibodies, immediately after insertion of a medical device, is effective in 
preventing biofilm formation.

Among the control strategies is photodynamic therapy, widely used for biofilms 
of Candida species. Several authors have used light-emitting diodes (LEDs) with 
other substances to control diseases (Chen et al. 2012; Ribeiro et al. 2012), since it 
causes DNA damage and destruction of cell membranes and organelles. Recent 
studies have shown that the antimicrobial effect can be obtained with the use of 
photosensitizers belonging to different chemical groups. Because the biofilm matrix 
is made up of DNA, proteins, and extracellular polysaccharides, recent studies have 
indicated that disruption of biofilm structure could be accomplished through the 
degradation of individual biofilm compounds by various enzymes such as DNase, 
lactonases, amylases, and lyases (Taraszkiewicz et al. 2012).

Antifungal therapies include only four antifungal agents, polyenes, triazoles, 
echinocandins, and flucytosine (Chowdhary et al. 2017). In addition, resistance has 
been created, making treatment difficult, and efforts are being made to find antifun-
gal peptides, which are mainly amphipathic molecules that can interact with bio-
logical membranes (Rautenbach et al. 2016). Defensins are peptides with antifungal 
activity; they are organized in an αβ motif, with an α-helix and a triple chain anti-
parallel β-sheet, which is stabilized by disulfide bonds which ensure high stability, 
thus retaining its functions in extreme conditions avoiding/decreasing degradation; 
an example is Psd1, an isolated defense from the seeds of Pisum sativum, which has 
shown promising effects on planktonic cells and biofilm of C. albicans, by disag-
gregating the polysaccharides from the yeast cell wall (increasing cellular rough-
ness and decreasing its stiffness), followed by membrane permeabilization through 
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interaction with the GlcCer defensin (glycosphingolipid). When Psd1 accumulates 
the cell, it triggers an intracellular mechanism of action by interrupting the cell 
cycle, which leads to apoptosis (Gonçalves et al. 2017).

Cathelicidin peptides (12–80-amino acid-cationic peptides that adopt an α-helix 
or β-sheet as secondary structures) were isolated from different mammalian species 
and exhibit broad-spectrum activities against fungi (Zanetti 2004). LL-37 (human 
cathelicidin) inhibits the adhesion and aggregation of C. albicans (2.2 and 4.5 μM) 
on biotic and abiotic surfaces by interacting with cell wall components (chitin, glu-
can, and mannan) of the pathogen (Tsai et al. 2011). Cathelecidins can be used for 
development of drugs that are used in medical devices to combat fungal biofilm; in 
addition, it can act synergistically with conventional antifungal agents, which could 
favor the effect in biofilm-forming fungus treatments. Human salivary histatins 
(they are histidine-rich proteins consisting of 7–38 amino acids), isolated from 
parotid saliva, are highly selective antifungals and have little toxicity to mammalian 
cells. They are alternatives specific to counteract fungi and are therefore which is 
currently being developed as commercial products (Oshiro et al. 2019).

18.5  Biofilms: Examples

We usually hear about biofilms when we talk about bacterial consortia. For the for-
mation of a biofilm, a liquid-solid medium is needed (Nazar 2007). Examples of 
these biofilms include a film used to cover a vase with a bunch of flowers, stones 
from the river, pipe interiors, and dental plaque from the teeth (Thomas and Nakaishi 
2006). In industrial processes, we can find biofilms in pipes and valves of large 
companies (Navia et al. 2010). Other less known biofilms are fungal biofilms. These 
biofilms have been described in infectious processes such as Candida, Cryptococcus 
neoformans, Cryptococcus laurentii, and Aspergillus. Candida has been reported in 
biomedical devices (urinary catheters, prosthesis, valves, etc.) placed in hospital 
patients. However, they can also be found in the middle ear (Del Pozo and Cantón 
2015). Cryptococcus is a yeast that causes disease in humans, especially in immune- 
deficient people. Pigeon feces are the most important source of this infection, and 
transplanted organs also transmit it. It normally enters the respiratory tract, reaches 
the lungs, and then spreads to the central nervous system (Martin-Mazuelos and 
Valverde-Conde). Aspergillus is a filamentous fungus that also affects the lungs of 
different patients (Fortún et al. 2012).

It was through these infectious diseases that the knowledge of fungal biofilms 
began to emerge. Biofilms have the ability to protect microorganisms that surround 
or cover them. This is a very relevant characteristic for the industry that uses and 
seeks processes to preserve and protect different types of materials.

It was with this background that they sought to make coatings from food for 
human consumption or that were innocuous to health (Arvanitoyannis et al. 1998). 
It was thus that the use of coatings was used in an advantageous way in the industry, 
in the case of maintaining and preserving edible plant material for people, without 
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causing damages and having innocuousness. For the formation of these coatings, 
polysaccharides from fungi have been used. The use of coatings on food is one of 
the most cost-effective ways to increase its shelf life during storage (Bósquez et al. 
2000). The advantages of these coatings are that they reduce the impact to the envi-
ronment, looking for future biodegradable materials for daily use.

18.6  Efficacy of Biofilms

For public health, biofilms of harmful fungi have shown difficulties and have even 
caused mortality in some cases (Martín-Mazuelos and Valverde-Conde 2020; Del 
Pozo and Cantón 2015). This has also caused losses of livestock affected by fungal 
toxins (Sanmartín and Cano 2018). These biofilms are showing high resistance to 
common agents used in cleaning (Jay 2005). This resistance could be given by the 
polymeric matrix which functions as a protective barrier. This quality has shown 
that biofilm bacteria can be up to 1000 times more resistant to antibiotics (Mah and 
Toole 2001; Donlan and Costerton 2002). Due to the resistance of biofilms, indus-
trial factories use them to clean or remove biofilms strong chemicals, disinfectants, 
surfactants and/or extreme heat conditions (Navia et al. 2010).

However, in the case of coatings found to be beneficial to the industry, they have 
been shown to protect against bacteria and food dehydration. In the case of foods, 
each of the coatings is evaluated for each specific food (Bósquez et al. 2000). The 
effectiveness of these coatings has been used several years ago, starting with the 
immersion of oranges and limes in wax in China to delay the loss of water (Greener 
and Fennema 1994). These coatings have presented many advantages over food, 
seeking to ensure that they do not affect humans and that their environmental impact 
is minimal. Food coatings have been so used and their efficiency has been proven 
that industries apply some of these processes. In the search for more materials to 
make coatings, fungi have begun to be explored to make coatings.

18.7  Resistance of Biofilms

Exopolysaccharides or biofilms are currently defined as complex, highly structured 
microbial communities. These microorganisms can be represented by fungi or bac-
teria and are usually associated with solid surfaces, inert materials, and even living 
tissues of susceptible hosts. Thus, the production of biofilm consists of the synthesis 
of a protective extracellular matrix, which keeps these organisms protected (Ramage 
et al. 2009). In fungi, the formation of biofilms is not considered just a hypoxic 
aggregate of yeast or mycelial cells but may present communities with complex 
phenotypes. In addition, the extracellular matrix produced shows resistance to many 
antimicrobial agents (Desai et  al. 2014). Fungi present inside the biofilm are 
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responsible for the synthesis of the extracellular matrix and manifest different phe-
notypes between the cells that are in suspension of the planktonic cells (Desai 
et al. 2014).

After the formation of the biofilm, the microorganism can present advantages, 
such as protection to the environment, metabolic cooperation, resistance to chemi-
cal and physical stresses, persistence during the infectious process in patients, and 
even assist in the homeostatic processes of the cell regulating gene expression. 
Usually, the public affected by biofilm-producing fungi are immunosuppressed 
patients (e.g., HIV carriers), newly transplanted patients, patients undergoing che-
motherapy treatment, newborns, and individuals in intensive care (Calderone and 
Gow 2002; Ramage et al. 2006, 2009).

Fungal biofilms are essential factors for fungal development during the progress 
of clinical infection. As a result, several fungi of medical importance have proper-
ties to produce biofilms. These can be represented by fungi of the genera 
Trichosporon, Coccidioides, Aspergillus, Candida, Pneumocystis, Malassezia, and 
Cryptococcus (Anne and Frank-Michael 2009; Cushion et  al. 2009; Davis et  al. 
2002; Di Bonaventura et  al. 2006; Finkel and Mitchell 2011; Martinez and 
Casadevall 2007). One of the main factors involved in the resistance mechanisms of 
fungal biofilms is resistance to antifungal drugs and the host’s immune system.

18.8  Mechanisms of Drug Biofilm Resistance

Currently, a growing problem in immune-compromised individuals has been the 
resistance of biofilms to antifungal drugs. This resistance has resulted in a signifi-
cant increase in the incidence of systemic and opportunistic mycoses. In most cases, 
the clinical resistance of biofilms occurs through the persistence and progression of 
infections caused by certain fungi, despite adequate drug therapy.

The resistance can be induced in response to antifungal compounds, or by means 
of irreversible genetic changes, resulting from long-term exposure of the fungus to 
drugs. Thus, morphological changes, overexpression of target molecules, limited 
diffusion of compounds, active extrusion through the efflux pump system, and even 
tolerance and cell density to drugs may be involved. All of these mechanisms men-
tioned above can act as resistance mechanisms used by the fungus to combat the 
effects of antifungal treatment (Niimi et al. 2010; Ramage et al. 2012). To under-
stand how biofilm resistance mechanisms work in fungi, we will use Candida albi-
cans as an example, since this fungus can be used as a common model among the 
diversity of fungi that produce resistance exopolysaccharides (Fig. 18.1).

Regarding the resistance of this complex, it can be divided into two ways: pri-
mary resistance, where the microorganism is resistant to the drug before exposure 
to the antifungal, and secondary resistance, where the organism develops in response 
to exposure to the drug (Jabra-Rizk et al. 2004; White et al. 2002). Therefore, this 
biofilm resistance mechanism is responsible for antifungal resistance. In fungi, mul-
tidrug efflux pumps are genes that are directly related to drug resistance. These, 
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when positively regulated, can result in biofilms’ multi-resistance to drugs (Chandra 
et al. 2001; Douglas 2002; Harry et al. 2002; Jabra-Rizk et al. 2004; Ramage et al. 
2002; White et al. 2002). In some Candida species, the presence of carrier mole-
cules such as ABC transporters (adenosine triphosphate-binding cassette) that are 
encoded from genes such as CDRs and other transporters encoded by MDR (multi-
drug resistance) genes has already been described (Douglas 2002; Jabra-Rizk et al. 
2004; Moran et al. 1998; White et al. 2002; Wirsching et al. 2001). These genes 
have been shown to be expressed throughout the formation and development of 
biofilms and during resistance to fluconazole (Chandra et al. 2001; Douglas 2002; 
Jabra-Rizk et al. 2004; Ramage et al. 2002).

In studies, tests were carried out to verify the resistance potential of biofilms. 
Initially, the penetration capacity of drugs in biofilms grown in vitro was measured. 
Thus, it was demonstrated that the biofilms of C. albicans inhibited the penetration 
of drugs such as fluconazole, flucytosine, and amphotericin B. The penetration of 
amphotericin B was also inhibited by biofilms from Candida krusei and Candida 
parapsilosis. In C. albicans, the biofilm was susceptible to the drugs flucytosine and 
fluconazole. This suggests that exopolysaccharides help in the biofilm antifungal 
resistance, limiting the penetration of drugs in the same (Samaranayake et al. 2005).

In studies focused on the resistance caused by biofilms, C. albicans demonstrated 
a phenotype of resistance to amphotericin B, when subjected to conditions of iron 
ion or glucose deprivation. Subsequently, when C. albicans was subjected to anaer-
obic conditions, biofilms demonstrated resistance to high levels of amphotericin B 
and other azole antifungals (Bachmann et al. 2002). It has also been demonstrated 
that factors such as temperature, environmental stressors, availability of oxygen, 

Fig. 18.1 General scheme of the resistance mechanisms of C. albicans biofilms against antifun-
gals. In the top are listed the main factors that influence the formation of biofilms (Adapted from 
Costa-Orlandi et al. (2017))
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and hydrogen potential lead to changes in biofilm architecture and sensitivity to 
antifungal drugs (Kucharíková et al. 2011; Pettit et al. 2010).

In other analyzes, tests were carried out to isolate biofilms from Candida sp. for 
resistance assessments. Thus, it was observed that the biofilm was resistant to the 
antifungals used, even in the absence of planktonic cells (Nett et  al. 2007). 
Subsequently, they radiolabeled the antifungal fluconazole to trace this compound 
in the biofilm, where it was observed that a large part of the antifungal was found 
associated with the polysaccharide matrix, implying the sequestration of the drug. 
Then, the extracellular matrix was challenged using enzymes that cause the degra-
dation of β-1,3-glucan, which resulted in the susceptibility of biofilm resistance, 
indicating that this component present in the polysaccharide matrix is related to 
drug resistance mechanisms (Nett et al. 2007).

18.9  Mechanisms of Biofilm Resistance 
to the Immune System

The mechanism of action of the cells of the immune system begins when it encoun-
ters the pathogen, presenting as a direct response to infection they control the 
recruitment of phagocytes, extracellular neutrophil trap (NET), recruitment of 
phagocytes, production of reactive oxygen species, production (Chaffin et al. 1998). 
It has been shown that in C. albicans, recruitment of primary leukocytes to the site 
of infection is caused by the formation of biofilm (Dongari-Bagtzoglou et al. 2009; 
Nett 2016; Nieminen et  al. 2014). This cellular recruitment has already been 
observed in several clinical biofilms, during oral and vaginal candidiasis, in cathe-
ters, and even in animal models during experimentation (Dongari-Bagtzoglou et al. 
2009; Fidel et al. 2004; Nett et al. 2015). Despite this recruitment, these immune 
system cells are unable to eradicate the biofilms formed by Candida sp., as demon-
strated in studies that were carried out using human neutrophils. In those studies, it 
was observed that C. albicans biofilms are able to resist attacks by neutrophils 
(Katragkou et al. 2010; Xie et al. 2012).

Generally, neutrophils release NETs, as one of the ways to fight Candida sp. The 
release of these structures leads to the fight against large fungal structures that are 
not usually phagocytosed, such as hyphae (Kernien et al. 2018; Urban et al. 2006). 
However, it has been shown that neutrophils do not release NETs during contact 
with the biofilms produced by Candida (Johnson et al. 2016). In addition, Candida 
biofilms support monocyte attacks, showing that these cells are unable to phagocy-
tize the fungus when it is associated with the biofilm (Chandra et al. 2007). This 
encounter between monocytes and biofilm triggers the production and release of 
cytokines. However, it has already been shown that when in contact with the bio-
film, the regulation of TNF-α becomes negative, this cytokine being extremely 
important for the phagocyte activation processes (Katragkou et  al. 2010). The 
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exposure of macrophages to the biofilm, it was shown that the complex reduced 
macrophage the recognition of planktonic organisms (Alonso et al. 2017).

In other fungi, for example, Aspergillus fumigatus, the neutrophils are important 
during the pathogen-host interaction process, being recruited for fungal conidial 
phagocytosis (Behnsen et al. 2007; Bonnett et al. 2006). Neutrophils also have prop-
erties for releasing NETs, in response to the mycelium form of Aspergillus. However, 
NETs are active against hyphae, but are not effective against Aspergillus conidia. In 
addition, biofilm production protects A. fumigatus from neutrophil attack (Kernien 
et al. 2018; McCormick et al. 2010). The β-glucans present in the hyphae cell wall 
and in Aspergillus biofilms play an important role. They are able to mask recogni-
tion by dendritic cells in in vitro assays (Gravelat et al. 2013).

Another important factor is galactomannans and galactosamines (GAG), which 
impair neutrophil cell recruitment during the development of biofilm. These mole-
cules are able to modulate immunity by inducing apoptosis in neutrophils (Robinet 
et al. 2014). The conidia of Aspergillus sp. have a protein in their structure, called 
RodA. This protein is a hydrophobin that is present on the cell wall surface of these 
propagules present in the biofilm and has the activity of masking PAMPs, thus pre-
venting attacks from the immune system. In addition, it can result in the production 
of NET, as previously mentioned (Bruns et al. 2010; de Jesus Carrion et al. 2013).

Currently, the pathogen-host interaction between humans and the biofilms pro-
duced by Cryptococcus sp. remains a great mystery. The production of the muco-
polysaccharide capsule (GMX) in Cryptococcus is one of the main virulence and 
defense factors of the host’s immune system (Kernien et al. 2018). The GMX is 
evidenced as the main responsible for the inhibition of neutrophilic functions, such 
as phagocytosis, NET production, chemotaxis, and even antifungal activity (Dong 
and Murphy 1995; Rocha et al. 2015; Vecchiarelli 2000). Another important factor 
during the pathogen-host interaction is the production of GMX by Cryptococcus sp. 
The inhibitions of the phagocytosis process are mediated by macrophages and 
monocytes (Vecchiarelli 2000).

18.10  Pathogenicity of Fungal Biofilms

Fungal biofilms can be present on surfaces of clinical materials or involved in the 
infectious process, positively or negatively, impacting human health. During the 
synthesis of a biofilm, fungi can adhere to these inanimate surfaces, such as prosthe-
ses, catheters, and surgical materials. Adherence to these surfaces facilitates the 
infection process, since during the contact of these materials with the patient, they 
facilitate the access of yeasts to the bloodstream, with the possibility of the fungus 
spreading in the body and reaching various internal organs of the affected individ-
ual. It is worth noting that the spread of fungi in the body has high mortality rates 
(Verstrepen and Klis 2006). Thus, there is a wide variety of pathogenic fungi that 
can synthesize biofilms, such as Cryptococcus, Trichosporon, Malassezia, Fusarium, 
Aspergillus, and Candida among others.
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Lately, infections caused by Cryptococcus laurentii have been described in 
immune-compromised patients (Kordossis et al. 1998). Colonizations of the oro-
pharynx with repeated recurrences in a patient with erythroleukemia and other 
infections such as keratitis, meningitis, and even fungemia have already been 
reported when the involvement is by fungi of the genus Cryptococcus (Bauters et al. 
2002; Khawcharoenporn et al. 2006; Shankar et al. 2006). Infection usually occurs 
via the respiratory tract, through inhalation of yeasts or nosocomial, and is most 
often associated with neutropenia in patients and intravascular catheters (Johnson 
et al. 1998).

The excessive growth of yeasts of the genus Malassezia can cause seborrheic 
dermatitis (SD). Malassezia pachydermatis is one of the representatives of SD; 
although this fungus is a commensal in the skin of dogs, it can affect humans 
(Velegraki et al. 2015). SD is a type of dermatitis that works by compromising the 
immune system. The biofilms of this fungus are formed together with communities 
of microbial cells that have the ability to strongly attach to material surfaces (Bhatt 
et al. 2015; Macé et al. 2008). The formation of biofilm during the chronic phase of 
the infection has been evidenced in several models of infection. Otitis media, endo-
carditis, and even periodontitis have been reported (Donlan and Costerton 2002). In 
addition, there are reports of invasive infections by Malassezia spp. in neonates who 
received intravenous lipid supplementation. Other cases report infection through the 
process of parenteral nutrition with the use of catheters (Amend 2014).

Fungi of the genus Trichosporon are ubiquitous in nature. They can be found in 
water, soil decomposing materials, and feces of bats and birds (Colombo et  al. 
2011). It has been reported that fungi of the genus Trichosporon is the third most 
isolated species in clinical laboratories, representing between 5.5% and 10.6% of all 
isolates obtained (Pfaller et al. 2007). In addition, this fungus has already been asso-
ciated with hypersensitivity pneumonitis and white Piedra syndrome (Ando et al. 
1995; Colombo et al. 2011; Kiken et al. 2006). This fungus has also been associated 
with systemic infections, affecting immune-compromised patients, as well as 
patients with central venous catheter (Girmenia et  al. 2005; Suzuki et  al. 2010). 
However, there are still few studies addressing the central themes of the pathogenic-
ity of Trichosporon spp., including the production of biofilm (Fonseca et al. 2009; 
Karashima et al. 2002; Sun et al. 2012b).

Lately, the incidence of keratitis caused by Fusarium sp. has been reported. This 
mainly affects rural workers, during harvesting seasons. One of the most affected 
points is the eyes due to corneal exposure being susceptible to contact with airborne 
spores (Bharathi et al. 2007; Bharathi et al. 2003; Xie et al. 2006). Keratitis has also 
been reported caused by Fusarium in contaminated contact lenses, lens cleaning 
solutions, and case to store the same. As a result, biofilms have already been isolated 
from contact lenses and may play an important role in inflammation of the corneas 
(Imamura et  al. 2008). Approximately 300 reported cases of keratitis caused by 
Fusarium were associated with contact lenses. Many patients have undergone kera-
toplasty, and some have even undergone removal of the entire eye. This type of 
involvement is often due to wrong diagnosis or inadequate treatments due to failures 
in the use of antifungals for treatment (Chang et al. 2006; Donnio et al. 2007).
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In studies carried out on A. fumigatus, it has already been shown that when its 
conidia are inhaled by immunocompetent (depending on the patient’s immune sta-
tus) or immunosuppressed people, it can cause aspergilloma in the pre-existing lung 
cavities and in chronically obstructed paranasal sinuses. These factors are elimi-
nated by pulmonary macrophages and PMNs (Latgé 2001). Cases of asthma and 
allergic rhinitis, bronchopulmonary aspergillosis, chronic necrotizing pneumonia, 
and even hypersensitivity pneumonitis have also been reported (Kaur and Singh 
2014; Latgé 2001; Müller et al. 2011; Williams et al. 2016). Thus, analyses have 
shown the production of biofilm during aspergilloma, caused by Aspergillus sp. 
(Müller et al. 2011).

Biofilms formed by Candida species can cause both superficial and systemic 
fungal infections in individuals with compromised immune systems (Sims et  al. 
2005). As a pathogenetic mechanism, Candida can resist antifungal drugs and pro-
mote biofilm formation and the expression of virulence factors. In fact, the infec-
tions that occur in the mucous membranes of affected patients, for the most part, 
cause the formation of biofilm, which can lead to changes in the commensal bacte-
rial flora and the components present in the mucous membranes of the host (Dongari- 
Bagtzoglou et  al. 2009; Ganguly and Mitchell 2011). As a result, nosocomial 
infections have already been identified where Candida isolates have been found in 
dental prostheses, defibrillators, cardiac devices, and catheters (Elving et al. 2002; 
Kojic and Darouiche 2004). Urinary tract infections, caused by Candida tropicalis, 
and involvement of the skin of healthy hosts by Candida parapsilosis have been 
reported, with the main causative agent being catheters containing Candida biofilms 
(Bonassoli et al. 2005; Rho et al. 2004).

18.11  Biotechnological Applications of Biofilms

18.11.1  Agricultural Applications

In recent years, biofilms have generated interest in the agricultural sector because of 
their potential for crop improvement. These biofilms colonize the soil surface, roots, 
and plant shoots, allowing better growth and adaptability to the environment 
(Velmourougane et al. 2017). Thus, it has been observed that biofilms have different 
applications in agriculture. The availability of nutrients in the soil is important in 
plant growth, since on this depends that the plants can metabolize them and have a 
proper development. In this sense, the use of biofertilizers with biofilm formation 
has been studied, which have demonstrated a greater release of nutrients and organic 
acids into the soil and growth hormone production, compared with crops without 
biofilm formation (Seneviratne et al. 2011).

The use of biofilms in bioremediation is a cost-effective and attractive method 
for the degradation of various hazardous contaminants such as hydrocarbons, heavy 
metals, toxic minerals, and drugs, among others (Edwards and Kjellerup 2013). In 
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bioremediation the formation of biofilms plays an important role due to their capac-
ity to absorb cations, which reduces their migration into the environment (Farber 
et al. 2020). In this way, it has been reported that some fungi and yeasts have the 
capacity to form biofilms and can be used to reduce contamination in places with 
dangerous pollutants (Nilanjana et al. 2012; Tkavc et al. 2017).

On the other hand, a positive effect on the growth of ornamental plants has also 
been seen when they are inoculated with microbial biofilms. Although there is a 
better response in growth when the biofilm is mainly composed of bacteria, in a 
bacteria-fungus combination, we also see a greater growth and yield of the plant, 
compared to those that were not inoculated (Kanchan et al. 2019). This is why the 
use of biofilms in plant cultivation is very important, because they can produce dif-
ferent polysaccharides and bioactive compounds. In addition, not only does plant 
growth benefit, but there is also an improvement in soil quality throught an increase 
in the nutrient cycle (Pandit et al. 2020).

18.11.2  Potential Applications for Health

Fungi can adhere to various items used in medicine such as prostheses and cathe-
ters. This is of concern, since these fungi can travel through the bloodstream and 
generate fungal infections in internal organs (Desai et al. 2014). Different infections 
caused by biofilm-forming fungi have been reported such as histoplasmosis caused 
by Histoplasma capsulatum, dermatophytosis caused by Trichophyton rubrum and 
T. mentagrophytes, nosocomial infections caused by Aspergillus spp., and candidia-
sis caused by Candida spp., among others (Costa-Orlandi et al. 2017). Therefore, 
fungal biofilms have become a clinical and economic problem. This is because 
when a patient becomes infected, it is recommended to administer antimicrobials 
and remove the contaminated device; however, these procedures are costly, and 
medical complications may occur (Orlandi et al. 2014). In addition, several cases of 
resistance to multiple antifungal agents have been reported (Sherry et al. 2017).

Because of this, some researchers have been creating medical devices based on 
biopolymers that inhibit the development of fungal biofilms (Jäger et  al. 2015). 
Another problem is the formation of biofilms in the food industry. It has been 
observed that different microorganisms, including fungi, can generate biofilms in 
food, causing gastrointestinal poisoning and infections. This is why companies use 
chemical products or physical methods for the prevention or elimination of biofilm 
formation in pipes and factory surfaces (Galie et al. 2018). Without a doubt, the 
impact that these microorganisms have on human health is alarming and must be 
taken into consideration for future studies.
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18.11.3  Potential Applications for Livestock and Health Public

Before knowing the applications of these biofilms, we must know where we can find 
them. In the case of livestock, we can find this type of biofilm in ponds stored with 
water from the livestock. Also, we can also observe these in pumps, walls, and 
roofs. The best-known fungi in livestock farming are of the mycotoxin-producing 
genera that are Aspergillus, Penicillium, and Fusarium. These types of mycotoxins 
form or are sometimes present in biofilms of fungi. Mycotoxins present in a feed 
can be found associated with polysaccharides or proteins. These affect agricultures 
and, when processed and consumed by livestock, the health of the livestock (Bueno 
and Vero 2018).

One of the examples observed in livestock damage is that in contaminated corn, 
pigs are the most sensitive to mycotoxins. Clinical signs presented by infected ani-
mals are estrogen syndrome, vomiting, bleeding, lethargy, ataxia, reproductive dis-
orders, pulmonary edema, and liver damage (Sanmartín and Cano 2018). Mycotoxins 
are absorbed in the gastrointestinal tract, distributed, and affect enzymatic pro-
cesses. Aflatoxins can be found in milk for human consumption for this reason this 
value is regulated by the Food and Drug Administration (FDA), to have minimum 
values in consumption and not affect human health (García and Diaz 2018). In the 
case of public health, it is well-known that what is least desired is biofilms of patho-
genic fungi, mainly in medical patient instruments that affect and deteriorate the 
patient.

18.12  Conclusion and Future Prospects

Biofilms are produced in a niche by fungal characterizations to confront stress in the 
environment. The fungal biofilms are helpful for assemblies on the host surface or 
inside such as plant, animal, and human, bound by a polysaccharide matrix. The 
formation of fungal biofilms plays a significant role in many fields like agriculture 
and livestock and in humans. Many fungi showed potential to produce biofilms in a 
niche. The production and formation of biofilms on the surface for adapting are 
most important for growth on the surface, growth of apical hyphae, absorbent of 
nutrient, and secretion of extracellular enzymes. Biofilms are also found to be 
essential for fungal life cycle such as the formation of a colony, hyphal networks of 
mycelium, and fruit bodies, spores dispersal, maturation, and reproductive develop-
ment. They are also associated with increase or decrease in pathogenicity and resis-
tance or sensitivity to drug and fungicides. Therefore, biofilms have been considered 
a big challenge for researchers, as strategies for the control of their production 
should be in place with their potential utilization in several fields.

Biofilms can be used in agriculture such as production, reduction in virulence of 
fungal pathogens, improving the fungicides, improvement the ability of useful fungi 
that using as biocontrol agents. In the livestock sector and the clinical area, is an 
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essential for producing the antifungal possibility as drug and don’t appear resistance 
by fungi for this drug. More information about biofilms is necessary to prevent the 
occurrence of various fungal strains that cause many diseases in plants, livestock, 
and humans. Finally, biotechnology tools play a vital role in determining the struc-
tures and compounds of fungal biofilms. However, hand, it can utilize to increase 
the efficacy of useful fungi to be more aggressive through using as a biocontrol 
agent against several pathogens. This process is potentially being more useful for 
saving the ecosystem from residue in synthetic fungicides and the chemical drugs, 
as well as, the occurrence of the resistance varieties in the strains of fungal pathogens.
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19.1  Introduction

Candida spp. are the eukaryotic diploid yeasts, belonging to class Deuteromycetes 
of kingdom fungi. Candida spp. are generally asymptomatic, and can occur in 80% 
of the healthy individuals. Candida is the most common agent which causes the 
opportunistic diseases worldwide. It is a frequent colonizer of human skin and 
mucosal membranes. It is naturally found on the skin, mouth, vagina and stool in a 
non-pathogenic form. The genus Candida includes around 200 species among them 
only 20 species are responsible for causing diseases in humans. Some of these spe-
cies are most frequently isolated in humanlike C. auris, C. albicans, C. tropicalis, 
C. glabrata, C. krusei, C. parapsilosis, and C. lusitaniae. Candida albicans are 
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dimorphic and opportunistic pathogen for human. C. albicans are commonly found 
in the gastrointestinal, genitourinary tracts, in the oral cavity. Candida auris was 
first isolated in Japan from the ear of the patients (Blandin et al. 2000).

Candida auris are the global threat to the world health. Candida auris is 
multidrug- resistant in nature that it is resistance to all the three antifungal classes. 
Its infection is more fatal than the other Candida spp. It is mainly common in the 
blood infections, wound infection, and ear infection, and also in respiratory and 
urine specimen. It is commonly found in patients who are in ICU. Candida tropica-
lis is among the most virulent species of Candida. It is also resistant to the antifun-
gal like azoles, polyenes, and echinocandins. This Candida strain was first isolated 
from bronchitis in 1910 and is a diploid, asexual yeast (Zuza-Alves et al. 2017). 
Candida glabrata infection is generally found in the urinary tract (sometimes infect-
ing the urinary bladder and also the kidney), genitals, mouth, and if it gets severe 
then it also infects the bloodstream. Candida glabrata has resistance to the flucon-
azole (azole derivatives), amphotericin B and flucytosine. Candida krusei is another 
multidrug-resistant fungal pathogen resistant to fluconazole and amphotericin B 
(Pfaller et al. 2008). Candida parapsilosis is the most commonly isolated Candida 
species from the bloodstream. It causes its infection on human skin, and it is often 
harmless (Trofa et al. 2008). Candida lusitaniae is a rare opportunistic yeast resis-
tant to amphotericin B and causes genitourinary candidiasis. (Wawrysiuk et  al. 
2018). This Candida spp. may be present in the normal gastrointestinal and genital 
flora of healthy humans, while C. famata and C. guillermondii are skin commensals.

The infections caused by Candida spp. are referred as candidiasis. Candida can 
cause infection when it grows out of control and went deep into the body like blood-
stream, or the internal organ like kidney, heart, or brain, a condition known as can-
dedemia. They have the ability to cause various superficial and systemic infections, 
when the host’s resistance to infections is compromised. The most frequent are 
superficial candidiasis, including cutaneous, oropharyngeal candidiasis, and vulvo-
vaginitis. These infections are frequent and usually benign in immunocompetent 
hosts. Candida can also cause life-threatening infections, mainly in a hospitalized 
patient. The methods of identification of Candida spp. are phenotypic methods, 
specialized instruments-based methods, biotyping, molecular identification meth-
ods and non-invasive diagnostic tools. In phenotypic methods of identification, the 
Candida spp. are identified on the basis of the germ tube formation, chlamydospore 
formation, growth temperature, carbon and nitrogen assimilation, and some other 
instrumental methods that help in the phenotypic identification of Candida. Another 
category of identification is specialized instruments-based methods of the Candida 
spp., microbial identification system in which we use the principle of gas chroma-
tography. Molecular identification methods have high accuracy rate, sensitivity and 
specificity for identification and differentiation between two similar Candida spp. 
In these methods, identification is done by the PCR and non-PCR methods. 
Multiplex PCR, nested PCR and real-Time PCR are commonly used for the identi-
fication. Peptide nucleic acid fluorescence in situ hybridization and MALDI-TOS 
mass spectroscopy are also used for the identification of the Candida spp. 
(Neppelenbroek et al. 2013).
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19.2  Exploration of Candida spp.

There are so many different Candida species and every species have their own gene 
sequence, phenotypic sequence, structure and their environmental condition.

 (i) Characteristics of the sequences: It has guanine-cytosine nucleotide content in 
the nuclear sequences. It is large counting a ribosomal DNA, and some of the 
sequences are carrying the long terminal repeat elements (LTRs).

 (ii) Nuclear ribosomal DNA: The DNA sequences of the Candida spp. are similar 
to the Saccharomyces cerevisiae DNA sequences. For example, the repeated 
unit of Candida spp. is more longer than that of S. cerevisiae. Its structure is 
different because the sequence of the ribosomal RNA seems to be repeated. 
But some of the certain genes of Candida spp. is 90–96% identical with 
S. cerevisiae genes as observed in the phylogenetic trees.

 (iii) tRNA genes: S. cerevisiae tRNA genes are comparable to Candida spp. tRNA 
genes with its 42 number of families. Some of the families of S. cerevisiae are 
completely or partially identical with Candida tRNA genes. Since S. cerevisiae 
is homologous, any changes in the genetic codons are synonym with each other.

 (iv) Transposable elements: Candida spp. transposable elements are compared by 
the translational products of the RSTs genes of the S. cerevisiae retransposons. 
Their mechanisms are similar too.

 (v) Mitochondrial DNA: The mitochondrial DNA sequence of S. cerevisiae and its 
translated products of four other fungi: Allomyces macrognus, Pichia canaden-
sis, Podospora anserina and Schizosaccharomyces pombe compared with the 
Candida spp. For example, Candida tropicalis has 87 RSTs, they are similar to 
mitochondrial genes encoding 21S rRNA, 15S rRNA, tRNAglu, cytochrome 
oxidase subunits 1, 2 and 3, apocytochrome b, NADH dehydrogenase subunits 
1, 2 and 4 and ATPase subunits 6, 8 and 9.

 (vi) Comparison with the proteome of S. cerevisiae: identification of Candida spp. 
protein-coding genes, conformation of genetic code and determination of 
codon usage: for this, they have to search the identical genes which encode the 
proteins in Candida tropicalis and enforced against the translated proteins of 
S. cerevisiae. The CUG codon of the Candida tropicals is translated and it 
encodes the serine not leucine. These translational codons change the low 
occurrence of the CUG codon and reduce the difference on the genes. All the 
genes are compared by the bioinformatical processes like blastx. The ORF 
product of S. cerevisiae is aligned between the RSTs product of Candida tropi-
calis by the blastx is 47.05%.
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19.3  Multidrug Resistance and Problems for Healthcare

Multidrug resistance (MDR) is the common property of the Candida spp. MDR is 
referred as the resistance to more than one antifungal agent. MDR is developed in 
the person who is immuno-compromised, like HIV, diabetic patients, organ trans-
plantation patients, and the person who is staying in the hospital for 15 to 30 days. 
MDR is the phenomenon of hospital-acquired infections (Tanwar et al. 2014). MDR 
is a serious global threat and demands immediate attention as it continues to be 
significant obstacle for healthcare in providing effective and complete medicinal 
treatment. This is evident by the fact that there is alarmingly high number of 
antibiotic- resistant species, which includes most commonly used antibiotics like 
azole-resistant fungi causing candidiasis. Another reason could be attributed by lim-
ited arsenal of antifungal drugs in comparison to antibacterial drugs. Moreover, the 
recent upswing in number of ‘superbugs’ is also the repercussions of MDR only.

The evolution of drug resistance in pathogens poses grave concern for medical 
and pharmaceutical world because of the limited number of clinically useful antimi-
crobial drugs available in the market. MDR leads to high death rates, increased 
medical costs and has a significant impact on the effectiveness of antimicrobial 
drugs. Moreover, marked variations in the resistance profiles of fungal pathogens, 
as well as the quality of public hygiene also have a considerable impact on the effec-
tiveness of drugs. Furthermore, the process of horizontal gene transfer has made the 
matter from bad to worse where some resistant pathogens are able to transfer copies 
of DNA that codes for a mechanism of resistance to other nearby species of micro-
organism, thereby conferring resistance to their neighbours, which then are also 
able to pass on the resistant gene.

Today there is a urgent need for completely dissecting drug resistance mecha-
nisms, as rapid increase of severe infections and the spread of resistant micro- 
organisms are indisputable facts. In addition, the emergence of MDR has illustrated 
the need for regular monitoring and continuous surveillance of resistance profiles of 
clinical isolates. MDR is a complex process involving various known and unknown 
mechanisms. Improved knowledge of such unknown molecular mechanisms con-
trolling MDR will surely facilitate the development of novel therapies to combat 
these infections and will help in deeper understanding of the pathogenesis of micro-
bial organisms. The recent upswing in cases of hospital-acquired infections com-
bined with rise of MDR strains demands novel approaches. Moreover, implementation 
of strict infection control policies in healthcare settings is required to mitigate the 
progression of antimicrobial resistance. For instance, selecting the antibiotic target-
ing a particular infection should be preferred over broad-spectrum antibiotics. 
Moreover, full course of antibiotics should be completed without stopping even 
after symptoms disappear. This might in turn will facilitate the development of bet-
ter antimicrobial strategies to efficiently control the human infectious diseases 
which are claiming many lives each year.
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19.4  Virulence Factors

A promising approach to antifungal drug development is to target pathogen-specific 
virulence factors. Comprehending the infection biology of Candida spp. is pertinent 
in recognizing new drug targets. Virulence factors are basically the toxins produced 
by the organisms. Virulence factors in the Candida spp. are responsible for binding 
of the organisms to the host cells. Degradation of the enzymes is shown to promote 
the virulence. Virulence factors that promote fungal colonization to the host includes 
the ability to adhere to host cells and resist physical removal, invade host cells, 
compete for nutrients, resist innate immune defences such as phagocytosis and 
evading adaptive immune defences (Deorukhkar et al. 2014). There are different 
virulence factors of Candida spp. which helps it in biofilm formation, hyphal forma-
tion, cell adhesins, phenotypic switching, morphogenesis, quorum sensing, haemo-
lysin production, and exoenzymatic activity (Deorukhkar et al. 2014). Inhibition of 
virulence factors is advantageous over other strategies because it collates various 
potential targets required for drug discovery and minimizes development of 
MDR (Höfs et al. 2016). The virulence traits are regulated at both molecular and 
metabolic levels. Comprehensive understanding of the role of the various C. albi-
cans virulence traits is still rudimentary; therefore, further studies are required to 
fully understand pathogenesis of this opportunistic pathogen. The subsequent sec-
tions summarize an overview of different virulence traits.

19.4.1  Biofilm Formation

Biofilms are formed by the Candida spp. that cause very superficial and systematic 
infections in the immunocompromised patients (Marak and Dhanashree 2018). A 
majority of the diseases caused by various Candida spp. are via formation of bio-
films. Biofilms are universal, complex, interdependent communities of surface- 
associated microorganisms, enclosed in an exopolysaccharide matrix on the host 
cell surface. It is an important virulence factor for recognition of the candidiasis. 
Biofilm is highly structured and coordinated, microbial shields that colonize the 
surface of the host cell thereby increasing the fatality risk (Reginatto et al. 2020). 
The biofilms are irreversibly attached to a given surface, inert material, or living 
tissue, producing extracellular polymers that provide a structural matrix (Cavalheiro 
and Teixeira 2018). The biofilms exhibit the lower growth rates and also higher 
resistance to the antifungal agents like fluconazole, nystatin, amphotericin B, and 
chlorhexidine (Chandra et  al. 2001). Biofilm formation varies depending on the 
particular Candida spp. The characteristics of these species are resistance to anti-
fungal drugs, expression of virulent factors (shows pathogenicity) and ability for the 
formation of biofilms (Pierce et  al. 2015). Because of these characteristics, it 
becomes difficult to treat such infections (Yigit et al. 2011). Biofilm formation is the 
multifaceted process, earlier phase is the adherence phase, then an intermediate 
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phase which is followed by maturation phase and migration (Fig. 19.1). In the early 
phase of biofilm formation, the yeast cells adhere to the surface of the host cell and 
form the discrete colony. In the intermediate phase, the cells are getting organized 
and start producing extracellular polymeric substances.

The maturation phase consists of the components involved in the maturation of 
the 3-D structure. Once the biofilm gets matured, the cells become detached and 
start migrating to the other niches to form expanded biofilms (Cavalheiro and 
Teixeira 2018). Biofilm formation differs from species to species, depending upon 
the type of species, the surface, host niche and other factors (Marak and Dhanashree 
2018). Candida biofilms mostly occur in the mucosa and endothelial lining. There 
are some effective measures taken for the management of clinical biofilm. These 
include: (i) the production of material with the antimicrobial texture, which inter-
feres with the way microorganism interact with the surface and this technique is 
known as antimicrobial lock therapy (ALT), (ii) surface coating with combination 
of anti-adhesive and antimicrobial properties, by which the surface becomes resis-
tant to adhere the cell surface. These techniques are using for the reduction of the 
cell adhesion property of the Candida species. These strategies are for the antifun-
gal polymers that form barrier films. This is a highly effective strategy for the 

Fig. 19.1 Steps of biofilm formation of Candida spp.
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management of biofilm production (Reginatto et al. 2020). Biofilm production is 
done 57.16% by the non-Candida albicans species and 39.02% by Candida albi-
cans. The different Candida spp. contribute to the production of biofilm: 100% of 
the Candida parapislosis, 61.53% of the Candida tropicalis, and 55.55% of the 
Candida krusei. Fluconazole is sensitive to 75.55% strains and resistant to the 
24.44% strains among the Candida spp. Among the Candida spp., 40.90% of 
Candida albicans, 36.36% of Candida tropicalis, 22.72% of Candida krusei, 
18.88% of the other Candida spp. 34% and 14% resistance rates of fluconazole and 
voriconazole among C. albicans (Marak and Dhanashree 2018).

19.4.2  Cell Adherence

Cell adherence is the first step for the formation of biofilms. Adhesins are biomol-
ecules which aid in recognition of host cells (Lipke 2018). Adhesin is responsible 
for the adherence of the yeast cell to the surface of the host cell which takes place to 
form a discrete colony (Grubb et al. 2009). The adherence leads to the biofilm for-
mation and the Candida cells becomes resistant to the various drugs. Cell adherence 
is mediated by adhesion molecules which are 600–2500 residues of mannoproteins 
and covalently bind to the cell wall (Lipke 2018). Adhesins can change the host 
immune response. The role of adhesin in biofilm formation appears to recapitulate 
its role in organogenesis and development. Cell adherence can be in different forms 
like heterotypic primary adherence (direct adherence with the host cell surface) and 
homotypic secondary adherence (Candida spp. already bound to the cell surface of 
host) (Lipke 2018). The yeast form of Candida is capable to adhere the endothelium 
and bringing the morphological change of Candida spp. Candida proteins get 
binded to the mammalian extracellular matrix proteins such as fibronectin and fibro-
gen (Calderone and Fonzi 2001). Hydrophobicity has ability to increase the viru-
lence activity in the Candida spp. The hydrophobic cells are able to be more 
adherent to the host cells and have mucin and extracellular matrix proteins (Sardi 
et al. 2010).

There are some genes which encode the protein such as Als family, Hwp1p, 
Int1p and Mnt1p. Als1p (agglutinin-like sequence) of C. albicans is homologous to 
the S. cerevisiae α-agglutinin protein required for cell–cell recognition during mat-
ing and is a member of a family of seven glycosylated proteins (Calderone and 
Fonzi 2001). ALS genes include three domains: 5′ domain of 433–436 amino acids; 
central domain of 180 bp; and 3’domain is serine-theronine-rich (Calderone and 
Fonzi 2001). ALS genes were first isolated in LoisHoyer lab and this gene is named 
as ALS1. HWP1 gene is isolated as a hyphal- and germtube-specific gene. It encodes 
the outer surface of the mannoparticles at the carboxyl terminal of the cell wall. The 
amino terminal of the HWP1 contains proline and transglutamine-rich amino acids 
which resembles transglutaminase (TGase). Hwp1p get binds to the TGases, and 
then the binding of hyphal form of the Candida spp. to the human epithelial cells. 
Candida spp. bind to the ECM, FN, laminin, collagen I and IV.  Int1p is the 
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integrin-like protein which contains I-domains and is 18% similar to the human 
alpha-M integrin domain. Int1p plays an important role in the Candida cell adher-
ence and the filamentation of the yeast Candida cells. Int1p interacts with cytoskel-
eton proteins to mediate morphogenesis. Mnt1p (α-1, 2- mannosyltransferase) is 
less effective on adherence and virulence. Pichiapastoris expression system is used 
for the expression of Mnt1p. PMT1 genes encode O-glycosylation mannosyltrans-
ferase, and help adhere to the epithelial cell line (Calderone and Fonzi 2001).

19.4.3  Phenotypic Switching

Phenotypic switching is defined as the capacity of organism to undergo spontane-
ous, reversible transition between a set of colony morphologies. A trait of pheno-
typic switching was never tested according to the earlier literature. The variability 
of the colony morphology could be reversible. Every morphotype has its own viru-
lence profile and each pleomorphic form helps in crucial roles required for infectiv-
ity. It will occur at the high frequency and stimulated by the low doses of UV (Soll 
2014). White-opaque transition is the spontaneous and reversible process. It has two 
phases of cellular morphology. According to the studies, the white-opaque transi-
tion is responsible for the gene and regulatory network that control all the processes. 
In Candida spp. there are some genes which are responsible for the switching of 
white colony to opaque colony. White-opaque transition has been isolated from the 
human bloodstream infection from the immunocompromised patient. The regula-
tion of white-opaque transition is chromatin state-regulated in the part by histone 
acetylases and deacetylases, DNA modifiers, mediator complex, signal transduction 
pathways, transduction factors including Wor2, Wor3, Efg1, Ahr1, Czf1, configura-
tion of the MTL locus haemoglobin and Hrr1 signalling system (Soll 2014). The 
environmental issues which help in the regulation are CO2, temperature, UV, stress 
condition, white cell metabolites, sugar substrates, etc. (Fig. 19.2). The white cells 
are more virulent than the opaque cells. The white and opaque cells are responsible 
for the commensalism and pathogenesis in human (Soll 2014).

The a1-α2 co-repressor complex is playing main role in the regulation of white–
opaque transition. This complex is able to repress some genes and down-regulate 
the MTL1a leading to the white-opaque transitions. There are some environmental 
conditions like sudden change of carbon sources, CO2, which helps in the white–
opaque transition without MTL homozygosis (Soll 2014). Phenotypic switching or 
white–opaque switching is a reversible transition. It influences the virulence traits, 
mating behaviour and biofilm formation. In phenotypic transition, white cells are 
smooth and round in appearance and the opaque cell are rough or sometimes smooth 
but oval in a shape or structure. Colonies of white cells are domed and the colonies 
of opaque cells are flattered and translucent colonies. White and opaque states of the 
Candida spp. are regulated by more than 450 genes which differentially affects the 
level of pathogenicity and other virulence factors. White and opaque cells show the 
difference between the interactions with the immune cells; white cells interact with 
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leucocytes and secrete chemoattractants but opaque cells do not. The factor which 
regulates the white–opaque switch is encoded by Wor1 genes also known as TOS9 
or EAP2 genes. And the overexpression of the Wor1 genes forced to switch the 
white cells into the opaque cells. In the absence of Wor1 gene, the switching of 
opaque cell is not occurred (Alby and Bennett 2009).

19.4.4  Morphogenesis

Morphogenesis is defined as the transition of the unicellular yeast cells to a filamen-
tous form of Candida spp. C. albicans and C. dubliniensis are both converted into 
filamentous type of growth. Morphological transition of C. albicans in response to 
changing environmental conditions represents a strategy to ease pathogenicity by 
which the Candida adapts to different host niches (Calderone and Fonzi 2001). The 
yeast morphology and the filamentous form both are playing a role in the develop-
ment and progression of the disease (Brand 2012). Virulence is attenuated in mor-
phological mutants confined either to yeast or germ tube morphology (Pukkila- Worley 
et al. 2009). There are some specific genes which are controlled by some regulatory 
factors for the morphological development. Those specific genes are crucial for the 
virulence of Candida spp. There are two signal pathways that regulate morphogen-
esis in Candida spp. The first pathway is STE12 mating and pseudohyphae path-
way, in which the phosphorylation is regulated by protein of mitogen- activated 
protein (MAP) kinase pathway, including STE20, STE7 and KSS1 (Calderone and 
Fonzi 2001). The second morphogenesis pathway in Candida spp. is mediated by 
transcriptional factor Egf1p. Disruption of RAS1 reveals that mutants are not able 
to form hyphae; however, it forms a pseudohyphal form. RAS might be activated 

Fig. 19.2 The regulation of white-opaque phenotype switching. (Adapted from Soll 2014)
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through both pathways (Desai 2018). Other pathways are required for the morpho-
genesis that are cell wall integrity and osmoregulation pathways. The family of 
SAPgenes also contributes in the development of the candidiasis (SAP1-3 from 
oral, SAP6 from vagina). The expression of SAP1 is for early invasion, SAP8 is for 
extensive penetration, SAP6 for extensive hyphal growth and SAP2 is required for 
the development of diseases (Felk et al. 2002). There are some other mechanism of 
hyphal growth production (Naseem et al. 2015). The transduction pathway induces 
the hyphal growth in the Candida spp. The extreme polarized growth hypha is oper-
ated due to the infection process and the cellular mechanism. The factors which 
affect the signal transduction pathways are temperature, serum, CO2 and starvation. 
The transduction of these signals leads to the activation of transcriptional factors 
such as Efg1, Eed1 and Ume6, through to the outputs of Hgc1 expression (Fig. 19.3). 
These factors are required for polarized growth and inhibition of cell separations. 
The polarized growth is continued through the cell cycle of the Candida spp.

The role of Hgc1 is promoting the hyphal growth by phosphorylation of Rga2, 
Mob2, Efg1 and Sec2. The other targeted gene Cdc28 can be identified. And this 
helps in the polarized growth and cell separation suppressor (Sudbery 2011). Hyphal 
formation plays a vital role in the virulence in Candida tropicalis (Jieng et al. 2016). 
Hyphal form has ability to penetrate the mucosal membrane, tissues and gets deeper 
into the bloodstream. Hyphal form cells are also protected from killing by the neu-
trophils and macrophages. Yeast to hyphal transition is common in the superficial 
mucosal infection. There are number of molecules which are able to interfere in the 
hyphal transition. They include the agents who have good potential for the future 
development, lithium, azoles, rapamycin, geldanamycin, histone deacetylase 

Fig. 19.3 Systematic regulation of hyphal formation from yeast cells. (Adapted from 
Sudbery 2011)
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inhibitors, propranolol, actin antagonists, hydroxyurea and nocodazole (Bar Yosef 
et  al. 2017). Their critical roles are regulating the yeast to hyphal transition and 
serve as signal transduction regulators, notably components of the MAPK-13 and 
cAMP/PKA-dependent pathways. The formation of biofilm by yeast alone is thin 
and is removed by the mechanical disruption. The Als3 is an amyloid-like, hypha- 
specific adhesion, and Ssa1 is an intracellular heat shock protein which is involved 
in the hyphal formation or Candida morphology (Naglik 2012). Hyphal forms 
increased the resistance against phagocytosis; initiate the adherence to the host cell 
surfaces and ability to invade epithelial cell layers. A study showed that the Saponins 
are able to inhibit the yeast–hyphal transition (Chevalier et al. 2012).

19.4.5  Quorum Sensing

Quorum sensing is the mechanism that is dependent on the cell density which regu-
lates the secretion of virulence factors, biofilm formation, competence and so on. 
quorum sensing is referred as the autoinduction, in which the individual cells con-
tinuously release the molecules and these molecules are known as quorum sensing 
molecules (QSM) (Albuquerque and Casadevall 2012). Quorum sensing also con-
tributes to the morphogenic control of Candida spp. QSM such as cysteine, trypto-
phol and phenylethyl alcohol are able to inhibit the hyphal development of the 
Candida spp. These molecules are helping in the regulation of morphogenesis. 
Tyrosol regulates the hyphal formation in the early stage of biofilm formation. 
Contrary farnesol regulates the later stages or phases of biofilm formation. Quorum 
sensing molecules are considered as virulence factors because they are toxic for the 
host cells and able to modulate the host cells immunity. QSM are sensed by all the 
surrounding cells. When the population of cell density is increased and the QSM 
reached the threshold level, the activation and repression of certain genes induces 
the cellular behaviour and secretion of extracellular enzymes (Han et al. 2011). This 
leads to biofilm formation, and secretion of other virulence factors, morphological 
switching, hyphal formation, plasmid transfer and antibiotic biosynthesis. The 
mechanism depends on the signal system to involve passive diffusion across the cell 
membrane, efflux pump and specific transporter (Hogan 2006).

QSM (tryptophol, phenylethyl alcohol and farnesol) suppress the hyphal forma-
tion at high cell density, although one of the QSM trysol accelerates the hyphal 
formation at low cell density (Fig. 19.4) (Han et al. 2011). Farnesol resists to oxida-
tive stress and the trysol is an antioxidant protecting the Candida by eutrophication 
during phagocytosis. Quorum sensing pathways regulate all the development, main-
tenance, dispersion of multicellular, surface-associated biofilms. Quorum sensing 
signals may be inhibited by antagonists produced by other organisms. The quorum 
pathways are beneficial and have role in protection (Kruppa 2008). Farnesol plays a 
vital role in the virulence of Candida spp. Farnesonic acid and farnesol are also the 
morphogenic autoregulatory substance. Farnesol is produced by the Candida spp. 
other than C. albicans while farnesonic acid is produced only by C. albicans. There 
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are some physiological effects of farnesol: size effect of filamentation (farnesol 
shows no effect on the cells as it already gets modulated into mycelium formation); 
biofilm formation, oxidative stress (the role of farnesol is as antioxidant signalling 
molecules), modulation of drug efflux (farnesol modulates the Candida spp. by the 
ABC transporter genes without effecting the multidrug extrusion pump protein). 
Exogenous farnesol causes inhibition in the transitional growth of the Candida 
parapsilosis. Trysol is another QSM which decreases the length of the lag phase of 
Candida spp. and also stimulates the filamentous and biofilm formations. Trysol 
inhibits and kills the growth of Candida spp. (Manoharan et al. 2017).

19.4.6  Haemolysin Production

Pathogenic fungi can grow on the host cell by using haemoglobin that is a source of 
iron (Silva et al. 2011). For degradation of haemoglobin to extract the elemental 
form of iron, Candida produces a haemolysin which acts as a virulence factor that 
helps Candida to promote pathogen survival in the host. Candida has the ability to 
utilize the iron and produce haemolytic factor that can lyse erythrocytes and pro-
duce haemoglobin (Silva et al. 2011). The genetic expression of haemolytic activity 
of Candida is haemolysin-like protein (HLP) genes. The identification of the hae-
molytic activity of the Candida leads to cloning, and the virulence evaluation. The 

Fig. 19.4 Effect of quorum sensing molecules on morphogenesis
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relationship between pathogenic and commensal isolates of Candida depends on 
the virulence and the degree of haemolysin production (Wan et al. 2015). Haemolytic 
activity of Candida spp. will be concentrated by absorption on a concanavalin-A 
sepharose matrix. Haemolysin production is regulated by the presence of glucose. 
Genetic expression of haemolytic activity by Candida spp. is the haemolysin-like 
protein (HLP) genes which is associated from Candida glabrata. The identification 
of Candida albicans haemolysins involves cloning, disruption and virulence evalu-
ation. All these molecules and genes are responsible for virulence factors of Candida 
spp. (Silva et  al. 2011). Haemolysin is effective in the promotion of pathogenic 
properties in the Candida species (Wan et al. 2015).

19.4.7  Exoenzymatic Activity

Candida spp. have the ability to produce some of the exoenzymes such as proteases, 
phospholipases, etc. (Luo et  al. 2001). The Candida adhesion, cell damage and 
invasion of the host cell are associated with the enzymatic activity of the following.

 (i) Phospholipases and lipases activity: Phospholipases are the enzymes that 
hydrolyse the phospholipids into fatty acids. These enzymes are classified into 
PLsA, PLsB, PLsC and PLsD and are produced by Candida spp. These enzymes 
are contributing in the membrane damage of the host cell. The cells damage the 
exposed receptors, and promote the cell adhesion. Candida spp. produce extra-
cellular enzyme (phospholipases) at lower levels. Lipases are involved in the 
hydrolysis and synthesis of triacylglycerols. These enzymes are able to survive 
at high temperature and inorganic solvent and this enzyme is able to resist the 
proteolysis (Silva et al. 2011)

 (ii) Proteinases: Sap proteins contribute to pathogenesis by the degradation of host 
cell membranes and molecules of the defence system to avoid antifungal attack 
by the host. This is an important virulent factor of Candida and is classified in 
saps classes. It causes the disruption of mucosal membrane of hosts for the 
colonization and invasion of tissues and affects the immunological and struc-
tural defence proteins. There are different types of SAP genes which are present 
in different species (Silva et al. 2011).

19.5  Case Studies of virulence in Candida spp.

Case 1 This case is about Candidal vulvovaginitis which is a worldwide problem 
and the second most common problem of the vaginitis. In this case, authors studied 
that the Candidal vulvovaginitis is caused by the Candida auris. This case was 
reported in 28-year-old lady who has a complaint of lower back pain, burning or 
itchy sensation and vaginal discharge. In a clinical diagnosis, it was diagnosed as 

19 Virulence Traits of Candida spp.: An Overview



452

vulvovaginitis and fungal culture test identified the presence of ovoid budding yeast 
cells. After that, they performed antifungal resistance test and observed that it was 
resistant to azoles and amphotericin B. The pathogen C. auris is causing fungemia 
but in this case the C. auris is found as the causative agent of vulvovaginitis candi-
diasis. C. auris clinical isolation is increased as it has ability to colonise, infect, and 
capacity to cause the disease. In this case, the report said that C. auis is resistance to 
itraconazole only but it has capacity to develop high resistance to the fluconazole. 
In Candida spp. there are various virulence factors which are linked with the colo-
nization of pathogenic species of the Candida. These species are also associated 
with the drug resistance property. In this study, they demonstrated the presence of 
phospholipase enzymatic activity and proteinase enzymatic activity in the C. auris 
isolates. The phospholipases (extracellular hydrolytic enzyme) act as an important 
virulence trait which helps in the adherence and invasion of the host cells. For the 
widespread infection, it uses the haemolysin production and it consumes the iron 
from the host that leads to the hyphal formation of the yeast cells and increases the 
diseases. This case studied that the C. auris isolates has the ability to develop drug 
resistance and virulence traits that increase the pathogenicity (Kumar et al. 2015).

Case 2 This case again studied about the candidial vulvovaginal but caused by the 
presence of Candida albicans. For this study, they took a vaginal swap from 232 
women, who complaint about the vaginal discharge, burning itchy sensation, back-
ache, and pain in the lower abdomen (Kumari et al. 2020). They performed the cul-
ture test and identified the strains. They identified some of the cultures as Candida 
spp. For the further identification of different species and their virulence traits, they 
tested by Gram straining, germ-tube test and other methods described above. They 
get 71 Candida positive cases out of 232 vulvovaginitis patients. And all the species 
are from three Candida spp.: Candida albicans, Candida parapsilosis and Candida 
glabrata. Further, they proceed the experiments for the identification or character-
ization of different species of Candida. For identification, they perform Gram stain-
ing and observe that budding yeast structure shows pseudohyphal growth only in 
27.81% of the positive cases. Candida spp. are able to express virulence traits and 
colonize on the surface of host cells and get deep into the host tissue by the disrup-
tion of the host-cell membranes. Phospholipases activity was also associated with 
non-albicans Candida spp.

Case 3 The third case is from cancer patients infected by Candida albicans and 
also some non-albicans like Candida tropicalis, Candida glabrata, Candida parap-
silosis and Candida krusei. In the case of leukaemia patients, bone marrow trans-
plant patients were infected by Candida krusei and Candida lusitaniae. Candida 
tropicalis are the most pathogenic species of Candida reported in the cancer patients. 
This species is more common in the patients of leukaemia than in the tumour 
patients. It is transmitted by the bloodstreams and it has all virulence factors than 
Candida albicans. It produces a systematic infection at smaller doses and shows 
pathogenicity. This strain shows the proteinase, exoenzymatic activities that invade 
the tissues and reached to the bloodstreams. It commonly affected the  gastrointestinal 
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tract. In another study, a patient who had undergone coronary artery bypass surgery 
got infected by Candida tropicalis and observed that he is highly infected at the 
fingertips, throats and nose. Its virulence traits get increased when the patients are 
immunocompromised. Candida glabrata is an occasional pathogen. It has low viru-
lence activity. It infects the patients with cancer, leukaemia or lymphoma. And it is 
more risky in the cancer patients than in the leukaemia patients. It infects the human 
host cells by the colonization at the respiratory tracts. Its recovery rate is higher than 
the others. In one study, some of the strains of Candida glabrata was resistant to 
fluconazole. Candida krusei is a rare pathogen according to the studies; it is com-
mon in the oncology units. It is resistance to the fluconazole. It has capacity to 
adhere to the fibronectin and epithelial cells. This is the very initial stages of the 
colonization and fetal infections. It is entered into the bloodstreams. Candida lusita-
nia is recognized as human pathogen. It has resistance to polyene agent amphoteri-
cin B.  The patients who undergo the treatment for hematologic malignancies 
develop the resistance against amphotericin B. This strain is not frequently trans-
mitted by the patients to patient as it has a low capacity of colonization. Candida 
parapsilosis is the infrequent pathogenic human infectious agent. This strain is 
found in the bone marrow-transplanted patients. It has resistance to amphotericin 
B. This strain is responded at the high dose of fluconazole.

19.6  Conclusion

The Candida spp. is successful both as a commensal and as a pathogen. Candida 
utilizes several traits whose expression is required for virulence including host- 
recognition proteins (adhesins), proteolytic and lipolytic enzymes and phenotypic 
switching. Understanding these traits will help in better antifungal therapeutic strat-
egies. Although many virulence traits in Candida have been identified, considering 
the complexity of the pathogenesis process, many more must still be elusive. Since 
these determinants are unique to fungi, hence identification of novel traits with the 
advancements in technology in the antifungal drug discovery programme will be 
widened as more new virulence factors will be discovered.
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20.1  Introduction

Farming is the practical implementation of the agriculture industry, the process in 
which the food, fodder, and fibers are produced. One of the most important branches 
of agricultural sciences is agronomy which deals with the study of crop production 
for food, fiber, and soil management-related aspects (Singh et al. 2016). It plays a 
very crucial role as it is the driving force of the economy in most developing coun-
tries, feeding humans directly and indirectly (Chhipa and Joshi 2016). There are 
predictions for the world population to be nine billion by 2050. It will be challeng-
ing to imagine also feed such a huge population with the same available resources 
and deteriorated environment. Therefore, global production in the field of agricul-
ture should upsurge to feed this rapidly increasing population. But the agricultural 
sector has been facing very serious challenges for sustainable food production 
(Godfray and Garnett 2014).

Major problems faced by agriculture include increased population, climatic 
changes, soil erosion, and the difference in soil conditions, micro and macronutrient 
deficiencies, pathogens attack, urbanization, and industrialization which affect the 
production of food and increase the pressure on arable land. Almost 35–40% of crop 
production depends upon the use of fertilizers. But excessive use of these synthetic 
fertilizers also affects the growth and yield of crops directly (Manjunatha et  al. 
2016). Disease management of crops with pesticides has led to the increase in the 
concentration of toxic compounds in the soil as well as ground and surface water 
which is also a major reason for bio-accumulation of toxic compounds in the food 
chain. Conventional methods used for irrigation purposes are another reason for 
water depletion as more water is being pumped out than it is replenished or reused 
(Rodell et al. 2009). Water scarcity all over the world due to variable climatic condi-
tions and extreme weather actions harms crop production. Conventional irrigation 
methods also remove the important minerals from the soil causing the salinity which 
ultimately leads to a reduction in the agricultural land (Mukhopadhyay 2005). This 
scenario for such a complex agricultural system is a serious challenge mostly for 
developing countries as it involves various sub-branches (Fig.  20.1). Therefore, 
advancement in science and technology is very much needed. Nanotechnology has 
emerged in recent decades which are leaving its footprints in every sector of life 
from health to food, agriculture to aerospace, clothing to cosmos, and many more.
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Nanotechnology is an advanced field of science, deals with production, manipu-
lation, and implication of matter at the nanoscale. The name is based on a Greek 
letter “nano” meaning dwarf. It is one billionth part of a meter or 10−9 m (Rai and 
Ingle 2012). Nanomaterials are very minute structures that range from 0.1 to 
100 nm. These are very important because these microscopic sizes as well have dif-
ferent properties from bulk material. Properties of these nanomaterials such as elec-
trical conductance, magnetism, chemical reactivity, optical effects, and physical 
strength vary from bulk materials due to their smaller size. These nanomaterials 
form a link between bulk material and their respective nanoparticles (Boisseau and 
Loubaton 2011). Nanotechnology provides tools and techniques which can revolu-
tionize the agricultural industry. Nanotechnology is the use of nanomaterials with 
exceptional properties to enhance the productivity of crops as well as livestock. It is 
focused to improve the quality of food, protect crops, monitor the growth of plants, 
enhance the production of food, and identify the disease-causing pathogens (Ramu 
et al. 2016, 2017). Among the mentioned applications, food production and crop 
protection are the main applications of nanotechnology in the agricultural industry. 
Innovative tools are provided by nanotechnology to deliver agrochemicals at the 
targeted area safely without disturbing the ecosystem. It has developed such carrier 
systems that enable the controlled release of compounds when needed; that is how 
the concentration of pesticides in the environment can be reduced to a greater extent 
(González et al. 2014). The present chapter provides an appraisal on the applica-
tions of myco-nanotechnology for agricultural sustainability.

Fig. 20.1 Sub-branches of agricultural sciences
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20.2  Classification of Nanomaterials

Nanomaterials are classified into three main groups on a dimensional basis: one- 
dimensional nanoparticles, two-dimensional nanoparticles, and three-dimensional 
nanoparticles. Nanomaterials having less than 100 nm size with one dimension are 
grouped into one-dimensional nanoparticles category. Nanowires and nanorods are 
examples of one-dimensional nanoparticles that are being used in buildup of various 
chemical and biological sensors, solar cells, IT systems, and optical devices. 
Nanomaterials having a size less than 100 nm along two dimensions at least are 
known as two-dimensional nanoparticles, e.g., carbon nanotubes fibers and platelets 
(González et al. 2014). Metallic nanomaterials having <100 nm in all dimensions, 
i.e., quantum dots, dendrimers, and hollow spheres are three-dimensional nanopar-
ticles. Nanomaterials are also classified based on structural configuration, namely 
metallic nanoparticles, nanocrystals, quantum dots, carbon nanotubes, polymeric 
micelles, and polymeric nanoparticles (Holdren 2011).

20.3  Synthesis of Nanomaterials

Two approaches are being used to synthesize nanoparticles: top to bottom approach, 
and bottom to up approach (Fig. 20.2).

Fig. 20.2 Methods for synthesis of nanomaterials
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20.3.1  Top to Bottom Approach

The top to bottom approach refers to the breakdown of suitable given bulk material 
into particles in the size range of nanometer due to reduction in size by various 
methods. This includes grinding of material, milling, sputtering laser ablation, and 
evaporation–condensation. Various nanoparticles have been synthesized using this 
technique such as silver nanoparticles, gold nanoparticles, lead, and fullerene 
nanoparticles (Prasad et al. 2019a; Pankaj et al. 2020). A tube furnace is used in this 
method to generate high atmospheric pressure. In the center of the tube furnace, 
concerning bulk material is placed on a boat, allowed to vaporize and carried 
through a gas. But the use of this tube furnace has several disadvantages as it 
requires large equipment and a huge place to be installed. A lot of energy more than 
several kilowatts is consumed to raise the temperature of the tube furnace around 
the bulk material and it also entails a lot of time to attain a stable operating tempera-
ture and gain thermal stability. The imperfection of the surface structure of nanopar-
ticles is the other limitation of this procedure as various physical properties are 
highly dependent on the surface chemistry of nanoparticles (Kumar et  al. 2014; 
Prathna et al. 2011).

20.3.2  Bottom to Up Approach

When nanoparticles are being synthesized using different chemicals as well as bio-
logical systems that are known as bottom to top approach. In the bottom to top 
approach, atoms are self-assembled into new nuclei forming the particles of nano 
size. Nanoparticles can be synthesized by several chemical methods. The most com-
monly used method among all the chemical methods is a chemical reduction for the 
synthesis of nanoparticles. Various compounds including both organic and inor-
ganic are being used as reducing agents for the production of nanoparticles, i.e., 
sodium borohydride (NaBH4), ascorbate, elemental hydrogen, Tollen’s reagent, 
N,N-dimethyl formamide, sodium citrate, and copolymers of polyethylene glycol 
are examples to quote (Yuvakkumar et al. 2015). Capping agents are the chemicals 
that are responsible to control and stabilize the size of the nanoparticles avoiding the 
aggregation. Nanoparticles can be synthesized in bulk amounts by using the reduc-
tion capability of different chemicals and it takes very little time for reaction com-
pletion. But it becomes harmful due to the use of synthetic chemicals that are toxic, 
hazardous, and risk for environment and living systems (Iravani et al. 2014). These 
reasons lead to the development of nanoparticles by using methods other than 
chemical methods. Therefore, the need to develop such methods becomes manda-
tory which are non-toxic, environment friendly, and economically beneficial.

Biological synthesis of nanoparticles plays a vital role in the field of nanotech-
nology. Use of biological entities such as microorganisms including viruses, bacte-
ria, fungi as well as plant material either in the form of extract or biomass is an 
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alternate way in an ecofriendly manner for the production of nanoparticles than to 
the physical and chemical methods (Alghuthaymi et al. 2015; Prasad et al. 2019b). 
Microorganisms are important biological factories being used for the synthesis of 
nanoparticles  (Gopal et  al. 2009). Microorganisms produce several reductase 
enzymes which can reduce the metals into metallic nanoparticles having a narrow 
range of size distribution. This approach for the synthesis of nanoparticles holds 
immense potential as it is eco-friendly, avoiding the use of toxic and harsh chemi-
cals and it is a cost-effective tool that does not require the consumption of high 
energy and longer time as physiochemical approaches.

Microorganisms, i.e., bacteria, yeasts, and fungi have been considered for the 
synthesis of metal nanoparticles in both extracellular and intracellular ways 
(Madhusudan et al. 2016; Zameer et al. 2016). Fungi are primitive eukaryotic organ-
isms. Most fungi are microscopic, while some are macroscopic, such as mushrooms, 
toadstools, puffballs, and stinkhorns. Generally, their mode of nutrition is heterotro-
phic, although some are parasites and saprophytes. Fungi are cosmopolitan in dis-
tribution. In an ecosystem, fungi play an important role in nutrient cycling, as 
sources of food, decomposers, symbiosis, and also protection.

From time immemorial, fungi have been utilized as a source of food and har-
nessed to ferment and preserve foods and beverages. In the twentieth century, 
human beings have learned to exploit fungi to protect human health through antibi-
otics, anti-cholesterol statins, and immunosuppressive agents (Abdel-Aziz et  al. 
2018). Industrial utilization of fungi for the production of enzymes, acids, and bio-
surfactants with the advent of modern nanotechnology has been started in the 1980s. 
Fungi can easily be isolated from different sources of environment and also can be 
cultivated in simple and less nutrient media like Potato Dextrose Agar and Czapek 
Dox Broth in the laboratory. The maintenance of fungi in the laboratory is also very 
easy as their nutrition requirement is far simpler compared to bacteria. Fungi have 
more enzyme-secreting activity, and it is easy to isolate and maintain, so they are 
selected for silver and other nanoparticle production by the research fraternity 
(Alghuthaymi et al. 2015; Abdel-Aziz et al. 2018). Different fungi have been inves-
tigated for the synthesis of nanoparticles such as gold, silver, selenium, platinum, 
zinc oxide, and titanium by various researchers across the globe. Fungi have numer-
ous advantages from other organisms in the synthesis of nanoparticles 
(Zameer et al. 2010a) They are easy to isolate and handle and are capable of secret-
ing extracellular enzymes and can withstand flow pressure than bacteria and plants 
(Prasad et al. 2016). Besides, the process of synthesis has a greener approach as it is 
non-toxic and occurs at a very low cost. Fungi-based synthesis of nanoparticles has 
received much attention to researchers due to their extensive advantages in different 
fields. Fungal nanoparticles can be used in various fields like agriculture, engineer-
ing, pharmaceuticals, environment, textiles, medicine, food industry, etc. Thus, 
myco-nanotechnology provides a greener alternative to chemically synthesized 
nanoparticles. The present chapter throws light on the synthesis of myco- 
nanoparticles (fungal nanoparticles), factors that affect their synthesis, advantages 
of myco-nanoparticles, the application of myco-nanotechnology in agriculture, and 
its future perspectives for sustainable agricultural practices.
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20.4  Synthesis of Fungal Nanoparticles

Fungal nanoparticles can be synthesized both intracellularly and extracellularly 
(Fig. 20.3). Nanoparticles are fabricated inside the cell of the fungus in intracellular 
where the biomass of the fungus is reacted with a metal, whereas in extracellular 
synthesis, the filtrate of the fungus reacts with the solution of a metal (Yadav et al. 
2015). Electrostatic interactions occur during intracellular synthesis where ions of 
the metal bind upon the fungal cell. The ions of the metal are reduced by the enzymes 
present in the cell wall and then the formation of nanoparticles occurs due to aggre-
gation of the metal ions. During extracellular synthesis, the fungus when exposed to 
the metal ions leads to the release of reductase enzymes and the formation of highly 
stable nanoparticles (Kashyap et al. 2013). A rapid extracellular and intracellular 
biosynthesis of gold nanoparticles using the fungus Penicillium sp. was reported in 
the scientific investigation. Intracellular synthesis of gold nanoparticles was 
obtained when AuCl4

− ions reacted with the cell filtrate of the fungus in 1  min, 
whereas extracellular synthesis occurred when the solution of AuCl4

− incubated 
with fungal biomass for 8 h.

There are two different methods for the preparation of extracellular biosynthesis, 
i.e., rapid synthesis and slow synthesis, whereas intracellular biosynthesis is a time- 
limiting factor that depends on in vivo synthesis of cells (Du et al. 2011). Due to an 
additional step required to obtain the purified nanoparticles, the extracellular syn-
thesis method is more favorable than the intracellular method. The myco-synthesis 
of silver nanoparticles using Aspergillus flavus are reported. The synthesized 
nanoparticle was found to be spherical with 50 nm in size which showed antimicro-
bial effect against pathogenic fungi and bacteria.

Further, it is also reported to be a microbicidal agent in the field of agriculture. 
Fusarium solani was reported to be a new biological agent in the extracellular syn-
thesis of silver nanoparticles (Anbazhagan et al. 2017). Fourier transform infrared 
spectroscopy (FTIR) revealed the silver nanoparticle to be highly stable due to the 
presence of a capping agent. Extracellular synthesis of gold nanoparticles using 
Fusarium oxysporum sp. Cubense and its antimicrobial activity against Pseudomonas 

Fig. 20.3 Synthesis of fungal nanoparticles
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sp. was reported. The extracellular synthesis of gold nanoparticles using 
Helminthosporium tetramera was studied by the synthesized gold nanoparticle that 
was found to be poly-dispersed spherical with a size range of 8–50 nm. This study 
would be appropriate for establishing a process for large-scale manufacturing of 
scanty AuNPs. Zinc oxide nanoparticles against two pathogenic fungi, i.e., Botrytis 
cinerea and Penicillium expansum, and its antifungal activity were investigated 
(Baskar et al. 2013). The results suggest that zinc oxide nanoparticles could be used 
in agriculture as a productive fungicide and application in food safety. A study also 
revealed a greener synthesis of zinc oxide nanoparticles against Aspergillus terreus. 
The synthesized crystalline zinc nanoparticles were characterized by UV absorption 
spectrum, X-ray diffraction spectrum and Fourier transform infrared spectroscopy 
and were found to be spherical, and a scanning electron microscope revealed the 
size range from 54.8 to 82.6 nm. The synthesized zinc oxide nanoparticle was found 
to be a potent antifungal agent against fungal species (Sarkar et al. 2011).

Another study of intracellular and extracellular synthesis of gold nanoparticles 
using an alkali-tolerant fungus Trichothecium sp. was investigated. Gold ions when 
reacted under stationary conditions, with the fungal biomass, produced extracellular 
synthesis, while the biomass reaction with agitating conditions resulted in the intra-
cellular growth of the nanoparticles. The synthesized gold nanoparticles were found 
to be spherical and triangular in morphology. They demonstrated that altering the 
conditions of the reactions of the fungal biomass and gold ions resulted in the intra-
cellular and extracellular synthesis, where under stationary conditions, the enzymes 
and proteins are released into the medium but are not released under shaking condi-
tions (Ahmad et  al. 2005). An extracellular synthesis of platinum nanoparticles 
using Fusarium oxysporum was studied. Fusarium oxysporum reacted with hexa-
chloro platinic acid resulted in the formation of selenium nanoparticle with size in 
the range of 5–30 nm which are highly stable. Because of their high stability, ability 
not to flocculate, and having a good mono-dispersity, they find applications in vari-
ous fields including agriculture (Syed and Ahmad 2012). The work done by 
researchers in the synthesis of fungal nanoparticles is listed in Table 20.1.

20.5  Factors Affecting Myco-Synthesis of Nanoparticles

Several biotic and abiotic factors affect the synthesis of fungal nanoparticles such as 
temperature, biomass, concentration, and time in the exposure of the substrate, pH, 
and the presence of a particular enzyme (Fig.  20.4). These are known to be the 
major factors that affect the shape and size of nanoparticles. The studies are been 
conducted for the optimization of various parameters such as pH, the quantity of 
fungal biomass, temperature, and concentration of silver nitrate in the synthesis of 
silver nanoparticles from Aspergillus niger (Khan et  al. 2016). The studies con-
cluded that optimizing the above parameters will enhance the silver nanoparticles 
synthesis as well as its yield. Optimizing the cultural and physical conditions in the 
synthesis of silver nanoparticles from Fusarium oxysporum has also been studied. 
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Table 20.1 Myco-synthesis of nanoparticles

Fungal species Nanoparticle Synthesis
Size 
(nm) Reference

Aspergillus flavus Silver Extracellular 50 Priyadarshini et al. 
(2014)

Fusarium solani Silver Extracellular 5–35 Anbazhagan et al. 
(2017)

Fusarium oxysporum Gold Extracellular 22 Baskar et al. (2013)
Helminthosporium 
tetramera

Gold Extracellular 8–50 Singh et al. (2016)

Botrytis cinerea Zinc oxide Extracellular 70 Bhattacharyya et al. 
(2016)

Penicillium expansum Zinc oxide Extracellular 70 Du et al. (2011)
Aspergillus terreus Zinc oxide Extracellular 54.8–

82.6
Khan et al. (2016)

Coriolus versicolor Silver Intracellular and 
extracellular

10 Baskar et al. (2013)

Saccharomyces 
cerevisiae

Cadmium 
sulfide

Extracellular 2.5–5.5 Priyadarshini et al. 
(2014)

Coriolus versicolor Cadmium 
sulfide

Extracellular 10 Baskar et al. (2013)

Aspergillus flavus Titanium 
dioxide

Extracellular 62–74 Priyadarshini et al. 
(2014)

Alternaria alternata Selenium Extracellular 13–15 Aziz et al. (2016)
Fusarium oxysporum Platinum Extracellular 5–30 Syed and Ahmad 

(2012)
Mucor hiemalis Silver Intracellular and 

extracellular
5–15 Singh et al. (2016)

Fig. 20.4 Parameters affecting myco-synthesis of nanoparticles
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One of the most important factors affecting the myco-synthesis of nanoparticles is 
pH. It greatly influences the nature and size of the nanoparticles synthesized. The 
nanoparticle was found to be 10−19 nm at pH 10 based on UV-Vis spectroscopy, 
XRD, TEM, EDX, and FTIR results which revealed the characteristic property of 
the synthesized nanoparticle. Temperature plays an important role in regulating the 
activity of the fungus and the movement of the ions (Priyadarshini et al. 2014). The 
synthesis of nanoparticles with a greener approach requires temperatures lesser than 
100 °C or ambient temperature. They found that increase in temperature of the reac-
tion results in a decrease of the nanoparticle size but an increase in mono-dispersity. 
Incubation time is also another important factor affecting the synthesis of fungal 
nanoparticles. The period in which the reaction medium incubates greatly enhances 
the type of nanoparticle synthesized and the quality. The incubation time might 
occur in different ways such as the particles may aggregate because they are stored 
for a longer time; therefore, the potential is affected (Baer 2011).

20.6  Mechanisms Behind Myco-Nanoparticles Synthesis

Several promising mechanisms have been recommended for the development of 
metal nanoparticles, but no such mechanism has been known yet and extensive 
research is still needed. According to few studies, mainly the cell wall and sugar 
component of the fungal cell wall involve in the process of bio-reduction of the 
metallic ions. Nanoparticles are formed on the exterior of a fungal cell wall, and the 
very basic step is bio-reduction to trap the metallic ions. The electrostatic interac-
tions between the charged group on the cell wall surface and metal ions followed by 
metal ions enzymatic reduction leads to the accumulation and formation of nanopar-
ticles (Birla et al. 2009). Fungal cell wall proteins play a substantial role in the for-
mation of metal nanoparticles. Fungi secrete hydrolyzing the protein in an acidic 
condition that binds with metal to form the metal NPs. These NPs forming proteins 
are cationic with a molecular weight of 55 kDa. Verticillium sp. also produces these 
cationic proteins which might be the cause of hydrolysis of ferric ions. Tryptophan 
and tyrosine are the amino acids that play a pivotal role in the bio-reduction of metal 
ions to metallic nanoparticles. NADH-dependent enzymes and the fungal proteins 
are also involved in metal ion reduction (Germain et al. 2003). Fungi are a fascinat-
ing source for the green synthesis of nanoparticles owed to their metal bioaccumula-
tion capacity. Furthermore, fungi are easy to grow in the laboratory, and production 
of a large quantity of biomass make them valuable to be used in the green synthesis 
of NPs. Biosynthesized nanoparticles are eco-friendly and are bio-compatible for 
pharmacological uses. Biosynthesis of nanoparticles by fungi as a base material is a 
reasonable approach (Fig.  20.5). Fungal enzymes possess high redox potential 
which makes them more suitable for the redox reaction (Gopal et al. 2009) for the 
conversion of metallic ions into specific nanoparticles (Kumar et al. 2011). So, the 
green synthesis of nanoparticles is now an attractive field around the globe. Phyto- 
pathologists are working in search of techniques to protect economically important 
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crops from destructive plant pathogens. Nanotechnology provides an alternative 
way for the production of pesticides and fertilizers which are safer for the environ-
ment. Nanoparticles are found effective against pests, nematodes, and fungal plant 
pathogens.

20.7  Application of Myco-Nanoparticles in Agriculture

Nano-formulations pose lots of benefits in agriculture (Fig.  20.6). Myco- 
nanoparticles find a wide range of applications from improving growth, protection 
from pests and undesired fungi, providing nutrition in form of fertilizers, elimina-
tion of weeds, enhancing the efficiency of hydroponics last but not the least in the 
advanced monitoring devices for crop rotation and environmental stresses 
(Fig. 20.7). These mentioned applications are explained in detail.

20.7.1  Plant Germination and Growth

In the last few decades, many researchers have studied the effects of nanoparticles 
on plant germination and growth with the target to endorse its use for agricultural 
improvements. Nano-TiO2-treated seeds, over a germination period of 30  days, 

Fig. 20.5 Advantages of fungi as bio-industries for nanoparticle synthesis

20 Myco-Nanotechnology for Sustainable Agriculture: Challenges and Opportunities



468

produced plants with 73% more dry weight, three times higher photosynthetic rate, 
and a 45% increase in chlorophyll-a formation compared to that of the control. It 
was found that the growth rate of spinach seeds was inversely proportional to the 
material size signifying that the smaller the nanomaterials the better the germination 
(Khodakovskaya et al. 2009). According to them, the nano-sized TiO2 penetrated 
the seed resulting in the increased seed germination and absorption of inorganic 
nutrients, fastened the breakdown of organic substances, and also caused quenching 
of oxygen free radicals formed during the photosynthetic process, hence increasing 
the photosynthetic rate. Studies on the influence of metal nanoparticles (Si, Pd, Au, 
Cu) on germination of lettuce seeds indicate that nanoparticles (at different 

Fig. 20.6 Benefits of nano-formulations in agriculture

Fig. 20.7 Applications of myco-nanoparticles in agriculture
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concentrations) had a positive influence on seed germination. The influence was 
measured in terms of the shoot-to-root ratio and growth of the seedling. The con-
trolled liberation of active plant growth stimulators and other chemicals encapsu-
lated in nanocomposites made of layered double hydroxides (anionic clays) could 
be the feasible option for organic agriculture.

The consequences of the use of nanoparticles on plants can be positive or nega-
tive (Aguilar-Méndez et al. 2011). One of the important consequences for nanoma-
terials’ applications in seed germination is their phytotoxicity. The type and 
concentration of nanomaterial determine the level of phytotoxicity. The applicabil-
ity of fluorescein isothiocyanate (FITC)-labeled silica nanoparticles and photosta-
ble cadmium-selenide (CdSe) quantum dots were used as bio-labels for promoting 
and assessment of seed germination. They found that FTIC-labeled silica nanopar-
ticles induced seed germination in rice, whereas quantum dots arrested the seed 
germination. Root length of radish, rape canola, ryegrass, lettuce, corn, and cucum-
ber species were found to inhibit the use of 200 mg/L nano-Zn and ZnO. The phy-
totoxic behavior of the nanomaterials needs to be meticulously understood before 
utilizing under field conditions. It has always been a debate regarding the applicabil-
ity and phytotoxicity of silver nanomaterials in agriculture (Nair et al. 2011).

The citrate-coated colloidal Ag-NPs were not genotoxic (genetic), cytotoxic 
(cell), and phototoxic (toxicity through photodegradation) to humans; however, 
citrate-coated silver nanoparticles in powder form were found to be toxic. It was 
also found that the phototoxicity of the powdered Ag-NPs was interestingly 
repressed when they were coated with biocompatible polyvinyl pyrrole. Exploring 
such biocompatible coatings to reduce or inhibit the toxicity of nanomaterials would 
increase the chances of applying nanomaterials in plant germination and growth. 
However, it is also needed to explore the undesirable effect of such coatings on the 
desired seed or plant properties and the effectiveness of nanomaterials (Lu 
et al. 2010).

20.7.2  Nanofungicides

The common plant pathogens are fungi compared to viruses and bacteria 
(Zameer et al., 2016, 2010a, b). These plant pathogens such as species of Aspergillus, 
Fusarium, and Phytophthora can be used as a nanomaterial for the synthesis of 
nanoparticles. The silver nanoparticle can be used as an effective antifungal agent in 
the treatment of different plant pathogens (Manjunatha et  al. 2013; Singh et  al. 
2016). In-vitro assay was performed on a Petri dish. They used 18 plant pathogenic 
fungi for treating the silver nanoparticles on malt extract agar, potato dextrose agar, 
and cornmeal agar plates. The fungal inhibition was calculated to evaluate the anti-
fungal activity of silver nanoparticles against the pathogens. The results revealed 
that silver nanoparticles possess antifungal properties against these plant pathogens 
at different levels (Yadav et al. 2015).
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In vitro as well as field conditions trials were conducted. They demonstrated the 
effects of silver nanoparticles using Colletotrichum species and pepper anthracnose 
disease. Silver nanoparticle solution at different concentrations, viz., 10, 30, 50, and 
100 ppm, were used for the in vitro assay. The maximum inhibition rate was at 
100 ppm silver nanoparticles solution with a percentage of 93.50%, while the low-
est inhibition was found to be 11.33% at 10 ppm. In the case of field trial analysis, 
an experiment was conducted before and after the pepper was infected. Two positive 
controls, i.e., commercial fungicide NSS-F and chemical fungicide Feneri, were 
used. The leaves of the plants were treated with silver nanoparticles 3–4  weeks 
before and after the outbreak of the disease. Results were analyzed 1 and 4 weeks 
after the final treatment respectively (Lamsal et  al. 2011). Each experiment was 
performed in triplicates. Moreover, after the disease outbreak treatments, disease 
incidence was higher compared to before with NSS-F 72.1% and Fenari 63.4%. The 
lowest disease incidence was noticed on plants treated with 50 ppm silver nanopar-
ticles before the disease outbreak with 9.7%, whereas the highest disease incidence 
was observed on plants treated with NSS-F after the disease outbreak with 72.1%. 
The results show that, before the outbreak of the disease, silver nanoparticle treat-
ment was applied which suppressed the pathogen attack (Lamsal et al. 2011). Silica- 
based silver nanoparticles were prepared, and antifungal activity was performed 
against Rhizoctonia solani, Botrytis cinerea, Magnaporthe grisea, Colletotrichum 
gloeosporioides, and Pythium ultimum. The antifungal effect was performed on 
powdery mildew in the field. The results suggest that since silver and silica are non-
toxic and safe for human health, the cost is much lower than the commercial fungi-
cide (Bhattacharyya et  al. 2016). This nano-formulation is highly useful for 
managing different fungal plant diseases (Prasad et al. 2012).

20.7.3  Nano-pesticides

Plant diseases have reduced agriculture production. Various methods have been 
employed in combating the different diseases of plants such as natural or artificial 
methods. Excessive use of pesticides can cause environmental hazards. Therefore, 
scientists have been investigating the replacement of chemical-based pesticides. 
Due to its durability, and high efficacy, nano-pesticides represent the next- generation 
pesticides. Nano-pesticides can be prepared in two ways: organic ingredients which 
are polymers and inorganic, i.e., metal oxides (Bhattacharyya et al. 2016). Cetyl 
trimethyl ammonium bromide and copper nitrate were used to synthesize stable 
copper nanoparticles at room temperature. A significant antifungal activity was 
determined against three Fusarium spp. crop pathogens namely  F. oxysporum, 
F. culmorum, and F. equiseti (Devi et al. 2019). Useful properties of nanomaterials, 
i.e., stiffness, solubility, thermal stability, permeability, crystallinity, and biodegrad-
ability are needed for formulating nano- pesticides. They possess a larger surface 
area to volume ratio and a greater absorption rate and higher affinity to the target. 
The use of these nano-pesticides can reduce the runoff of organic solvents and the 
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movement of overdosed pesticides by increasing the dispersion of these formula-
tions (Devi et al. 2019; Yadav et al. 2015).

The rapid development in nano-pesticide research over the last few years has 
stimulated several international organizations to consider potential issues relating to 
the use of nanotechnology for crop protection. Microorganisms have caused mar-
velous ecological changes. This is the result of the ingress of new diseases into the 
environment leading to the disease and death of plants. Crops and forestry should, 
therefore, be protected against the invasions of insects, pests, and pathogens 
(Bergeson 2010). A sustainable mechanism for disease control is therefore essen-
tial, and the improvement of nano-pesticides can facilitate the control plant dis-
eases. Nano-pesticides enhance the diffusion and wettability of agricultural 
formulations. The different delivery techniques of nano-pesticides, like nano- 
emulsions, nano-encapsulates, nano-containers, and nano-cages are used for plant 
protection. Recently, nanotechnology has increased the effectiveness of Ag-NPs 
because of its antimicrobial activity and non-toxicity to humans. A mechanism for 
disease control is therefore required (Archarya et al. 2014). Ag-NPs caused damage 
to fungal hyphae of Raffaelea sp. causing oak wilt, by reducing microbial absorp-
tion, and increased inhibition of fungal growth and conidial germination. Similarly, 
it was found that Ag-NPs inhibited the hyphal growth of R. solani, S. sclerotiorum, 
and S. minor in a dose-dependent manner in vitro (Kar et al. 2014). The antifungal 
activity of different forms of silver ions and NPs against B. sorokiniana and M. gri-
sea was observed. They found that both silver ions and Ag-NPs could manipulate 
the colony formation of spores and disease progress of phytopathogenic fungi 
(Bergeson 2010; Aziz et al. 2016). These results advocate that Ag-NPs may have a 
huge impend of nano-pesticides on the control of phytopathogens.

20.7.4  Nano-fertilizers

Fertilizers are those vital nutrients in disguise for the growth of the plants. Excessive 
consumption and continuous use of chemical fertilizers decrease the fertility of the 
soil and crop production. Therefore, nano-fertilizers can replace in regaining and 
protecting the fertility of the soil. The use of nano-fertilizers leads to an increase in 
nutrient efficiencies and reduces the toxicity of the soil. Zinc nanoparticle was 
employed as a nano-fertilizer in pearl millet Pennisetum americanum L. for enhanc-
ing crop production. Zinc oxide solution reacted with the fungus R. bataticola for 
62 h resulted in the extracellular synthesis of high mono-dispersed zinc nanoparti-
cles with an average size of 18.5 nm as confirmed by transmission electron micros-
copy (Prasad et al. 2017). To determine the effect of the synthesized zinc nanoparticle 
as a nano-fertilizer, seeds of pearl millet were sown at 3 cm depth in the field. The 
field experiment was conducted with three treatments such as control, i.e., without 
any treatment, nanosize, and normal size zinc oxide. After 2 weeks of germination, 
the foliage was sprayed with the normal size zinc oxide and nano-zinc. Results were 
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observed after 4 weeks of spray in which significant improvement was observed in 
shoot length, root area, and root length (Prasad et al. 2017; Liu and Lal 2015).

Besides, the chlorophyll content, dry biomass of plant, total soluble leaf protein, 
dehydrogenase, and enzyme activities of acid phosphatase were also estimated in 
6-week-old plants. The hydrothermal method was employed for the synthesis of 
zinc oxide nanoparticles and was characterized by powder X-ray diffraction, and 
field emission electron microscopy provided the size range with a diameter of 
20–30 cm and is spherical. Zinc oxide nanoparticle was used during the root growth 
and seed germination of Cicer arietinum which resulted in an increased level of 
Indole acetic acid in the roots, therefore bringing out an increase in the rate of 
plant’s growth (Singhal et al. 2017).

20.7.5  Hydroponics

Hydroponics is a technique of agriculture that is not very well known for a common 
man. But it is also a fact that several fruits and vegetables in superstores are products 
of hydroponics. It is a branch of agriculture including the technique of growing 
plants without soil. It is a widely used technique. It is being used for the production 
of lettuce, tomatoes, cucumber, melons, broccoli, sweet pepper, chilies, and egg-
plant. Research is also going on the hydroponic procedure of biofuel and fodder 
crops. Scientists have used nanotechnology to harvest nanoparticles in crops as 
nutrients. It is the future of man when agricultural land is going to be limited 
(Sekhon 2014). Nutrient management in agricultural production is increasingly 
important and is more effective in hydroponic than in soil-based production. Recent 
work on nano-phosphor-based on electroluminescence lighting devices has shown 
that its use can reduce energy consumption significantly. Such nanotechnology- 
based light could reduce energy costs and encourage photosynthesis in indoor, 
hydroponic agriculture (Witanachchi et al. 2012).

20.7.6  Nano-herbicides

Weeds are unwanted plants growing in soil and taking the essential nutrients which 
are added for the growth and development of crops to get better yield. These weeds 
not only survive but spread in the soil through tubers and deep roots. Conventional 
methods are available to remove weeds as removal by hands, but these are laborious 
and time-consuming jobs. Weeds in the soil can be destroyed and their germination 
can be prevented while the conditions become suitable for their growth. For this 
purpose, nano-herbicides can be used as being very small they will blend with soil 
easily and eradicate weeds in an eco-friendly way without leaving any toxic resi-
dues and prevent the growth of weeds. Herbicides can be applied in the form of an 
active ingredient combined with any smart delivery system purposed by 
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nanotechnology according to requirement. The use of nano-herbicides can improve 
crop production by reducing the competition for nutrients between the weeds and 
plants without harming the agricultural land, environment, and the workers who 
have direct exposure to weeds while working in the field (Mukherjee et al. 2015).

20.7.7  Sustainable Water Use

Scientists have been working on the optimized use of water in agriculture and its 
conservation for the future. Various approaches have been introduced, i.e., sprinkler 
irrigation, gun, and drip irrigation. More precise systems are needed to be developed 
for the delivery of water in the field. Water holding ability of the soil should be 
increased to prevent the leaching of water (Cross et al. 2009). Proper distribution of 
water near the roots is a key factor of maximum water absorption by plants. Nano- 
hydrogels, a product introduced by nanotechnology, can be used for efficient use of 
water. These gels can absorb more water than normal soil and release it on demand. 
These can be used to store rain and irrigation water. It is especially useful in dry 
areas. This is highly needed as drought is considered the largest environmental risk 
for crop production. Nanosensors, distributed in the field, can measure the amount 
of already present water and determine the time of its requirement (Vundavalli et al. 
2015). Nanoparticles like zeolite, metal oxides, alumina, silver, zinc, carbon nano-
tubes and fibers, enzymes, and titanium are also good for water treatments.

20.7.8  Field Sensing Systems to Monitor Crop Condition 
and Environmental Stresses

Nanomaterials also play an important role in promoting sustainable agriculture and 
provide better agro-products worldwide. In developing countries, nanotechnology 
has received significant importance for enhancing agricultural productivity, along 
with other emerging technologies such as biotechnology including genetic engi-
neering, plant breeding, disease control, fertilizer technology, precision agriculture, 
and other associated fields. Nanotechnology can be used for combating the plant 
diseases either by the controlled delivery of functional molecules or as an indicative 
tool for disease detection (Scott and Chen 2012). Signaling networks of wireless 
nanosensors placed across cultivated fields afford essential data leading to the best 
agronomic proficient processes resulting in minimizing resource utilization and 
maximizing the product output. Such kind of signals can provide information about 
optimal timing for planting and harvesting crops and the level of water; time of 
application of agrochemicals like fertilizers, pesticides, and herbicides; and other 
treatments that need to be administered for a specific plant physiological, pathologi-
cal, and environmental conditions. The crop nutrient status, insects, pathogens, 
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weeds, moisture level, soil fertility, soil temperature, etc., can be recognized and 
measured with the help of nanosensors and other field-sensing devices which in turn 
help in real-time monitoring of the crop growth and provide indispensable data for 
precision farming practices leading to diminishing agricultural inputs and maximiz-
ing resource output and yield (Singh et al. 2015).

20.8  Challenges

While nanotechnology provides a solution to many of the issues faced by the agri-
cultural industry to date, still further research is needed to assuage the questions that 
the public and policymakers have a concern about the effect of these materials on 
humans and the ecosystem. Some of the key concerns that plague the application of 
nanotechnology in the agricultural industry are as follows:

 1. Non-target interactions: There is the possibility that these nanoparticles may also 
interact with non-target surfaces or cells. For instance, if a nanoparticle is being 
used as an antimicrobial agent, these particles may also act on non-target organ-
isms or even on other compounds creating non-desired outcomes (Chaudhary 
and Misra 2017).

 2. Effect on human and environment: Although much research is being directed 
toward the development of new nanoparticles in various industries, there is insuf-
ficient research on determining the effect of these nanoparticles on humans and 
the environment. Nanotechnology is the way forward as it has enormous poten-
tial that remains to be harnessed for the agricultural industry (Singh et al. 2015).

 3. Cost effect: This technology is a state of the art and therefore not a cheap alterna-
tive to be adopted by all agricultural nations. Investment by the government and 
the industry players is limited, and this can limit the adoption of this technology. 
Research in this area also requires funding which is also limited.

 4. Public awareness: Making the general public and policymakers aware of the 
application and providing evidence on the safety and positive outcomes of utiliz-
ing this platform is lacking.

 5. Regulations and ethical concerns: These are a new platform for the agroindustry, 
and therefore, regulations need to be in place to ensure all safety procedures have 
been adhered to and the products using nanomaterials are labeled accordingly.

 6. Each one of the abovementioned constraints can deter or slow the process of 
acceptance of this technology in the agroindustry.
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20.9  Future Perspectives

Sustainable agriculture must be taken as an eco-friendly method, where abiotic and 
biotic-living beings live in accord with coordinated stability of food chains and their 
related energy balances. New technologies, modernization, increased use of nano- 
chemicals, specialization, and government policies are adapted to maximize pro-
duction in agriculture. Nanotechnology helps in the food supply chain (from the 
field to table: crop production, use of agrochemicals such as nano-fertilizers, nano- 
pesticides, nano-herbicides, etc., precision farming techniques, intelligent feed, 
enhancement of food texture and quality, and bioavailability/nutrient values, pack-
aging and labeling, etc.) around the world agricultural sector (Satapathy et al. 2019). 
The bio-sensors-related nanotechnology has an effective role in insect pest control 
and food products of agriculture. Consumers always can get actual information on 
the state of certain food products via intelligent food packaging corporate with 
nanosensors.

• The properties of nanomaterials such as size, dose, exposure time, surface chem-
istry, structures, immune response, accumulation, and retention time should be 
accessed carefully. New analytical methods are needed to develop to detect, vali-
date, and access the effects of each nanomaterial/and nanofood.

• Shelf-life analysis of nanomaterials/nanofoods should be done. Improvement of 
wide-ranging databank as well as international collaboration for policy, idea, and 
regulation are needed for manipulation of this knowledge. Additionally, the 
authorities should provide clear guidelines and roadmaps for reducing risks of 
the use of nanotechnological products.

• New communication channels and debates should be opened with the participa-
tion of different sides such as consumers, researchers, authorities, and industrial 
sectors to discuss impacts of this technology in human life, economy, and 
science.

20.10  Conclusion

Mycogenic synthesis of nanoparticles has attracted great interest in recent years, 
although most of the mechanisms related to their synthesis have not been elucidated 
yet; it is supposed that fungi will take measures when the toxic ions are present in 
their growth environment for protection. Since the cell surface of fungal biomass is 
of a negative charge, and the secretion of cells is sticky, the ions will get adhered to 
the cells due to the electrostatic interaction. The functional reducing agents, metab-
olites, and enzymes released by fungi to convert the toxic ions into non-toxic mat-
ters may have a specific role in nanoparticle synthesis. Besides, it cannot rule out the 
possibility that the nanoparticles were formed due to the precipitation. The better 
control of particle size, shape, and mono-dispersity of nanoparticle synthesis by 
fungi is still being sought. In terms of the results of related studies, it can be 
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understood that variations of fungal strains, growth medium, and synthesis condi-
tions are responsible for the size and mono-dispersity of nanoparticles.

The mycological methods to produce nanoparticles are still in the developing 
stage. Extracellular methods are appropriate for entrapment and immobilization of 
nanomaterials on the desired support. Intracellular methods may be suitable for bio- 
inorganic composite films. The strategy of the utilization of enzymes secreted by the 
fungi for subsequent formation of nanoparticles in-vitro opens up the new exciting 
possibility of biosynthesis of nanoparticles of predefined chemical composition and 
developing a rational, eco-friendly fungal enzyme-based large scale bioprocess for 
nanoparticle synthesis. With the recent progress in improving nanomaterial(s) 
(QDs, nano-wires, nano-emulsions, nano-sensors, nano-fibrous mats, nano- 
biopesticides) synthesis efficiency, exploring their applications in agro-industry and 
assessment of environmental risks associated with these particles, it is hopeful that 
the implementation of myco-nanotechnology strategies on a large scale and their 
commercial applications in agriculture and allied sectors will take place in the com-
ing years.
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transposable elements, 441
virulence factors, 443

biofilm formation, 443–445
C. vulvovaginitis, 451, 452
cell adherence, 445, 446
cultures, 452
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Caspofungin, 175, 360
Cathelicidin peptides, 420
Cell adherence, 445, 446
Cell wall degrading enzymes (CWDEs), 192
Cellular system, 253
Cellulase, 197, 210, 212
Cellulases

β-glucanases, 305
in T. reesei, 304
Trichoderma spp., 304

Characterization techniques
medicinal fungi (see Medicinal fungi)

Charcoal rot disease, 101
Chelating compounds, 137, 138
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symbiotic relationship, 14
Veronaeopsis simplex, 12
with host plants, 17

Dematiaceous (dark pigmented) fungi, 337
Dematiaceous fungi, 343
Denaturing gradient gel electrophoresis 

(DGGE), 122
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Dermatophytes, 337

Detoxification, 397
Deuteromycetes fungi, 192
Deuteromycota, 163, 373
Dimorphic (the phase switching) fungi, 338
Dimorphic fungi, 381
Disease management, 458
DNA microarray, 124
DNA sequencing

ITS, 349, 350
Donnan potential, 222
Drought

abiotic stress, 252
Chinese cabbage, 260
environmental stresses, 252
and plant–root microbiome interaction, 277
ROS, 255
tolerance, 256
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Food coatings, 421
Food industry, 413, 428
Forest disturbances, 57
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effective strains for plant growth, 145
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filamentous fungi, 2
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halophilic (see Halophilic fungi)
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Hirsutella thompsonii, 5, 6
Histoplasma capsulatum, 376, 381
Histoplasmosis, 348, 383
Hospital acquired infections (HAIs), 344
Human fungal infections
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Hypersensitivity pneumonitis, 426

Hyphae, 374
Hypocholesterolemic agents, 166

I
Immune response suppression, 168
Immune suppressive, 372
Immune system, 425, 427
Immunodiffusion (ID), 348
Immunomodulatory therapies, 388
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