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Abstract. With the increasing of the forest area and complexity of
tree species, collaborative classification using multi-source remote sens-
ing data has been drawn increasing attention. Fusion of hyperspectral
and LiDAR data can improve to acquire a comprehensive information
which is conductive to the forest land classification. In this work, a sim-
ilar multi-concentrate network focusing on the fine classification of tree
species, denoted as SMCN, is proposed for woodland data. More specific,
a preprocessing stage named pixel screening for data intensity critical
control is firstly designed. Then, a similar multi-concentrate network is
developed to capture spectral and spatial features from hyperspectral
and LiDAR data and make specific connections, respectively. Experi-
mental results validated on Belgian data have favorably demonstrated
that the proposed SMCN outperforms other state-of-the-art methods.
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1 Introduction

With the development of geospatial science and sensor technology, classification
technologies of remote sensing image faced to forest land information have made
great progress [13]. Collaborative classification of hyperspectral image (HSI)
and light detection and ranging (LiDAR) data takes advantages of the com-
plementary information from multi-source data [4]. For example, hyperspectral
image provides abundant biophysical and chemical canopy properties informa-
tion which is convenient to discriminate various materials of interest target [4,10].
And LiDAR data provides elevation information which can be acquired free from
the limit of time and weather conditions, it is more suited to assess the horizontal
and vertical canopy structure of forest area [4].

Many studies conclude that combining multi-sensor data could achieve bet-
ter classification accuracy than using either data set individually. Collaborative
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classification is beneficial to synthesize diverse forest information to more accu-
rate forest data classification performance [8,12]. Liao et al. proposed a new
deep fusion framework to integrate the complementary information from multi-
sensor data [6]. Recently-proposed dense Convolutional Network [1] and UNET
network [7] demonstrated that they can be used as an effective method for tree
species classification. However, these deep learning architectures might not per-
form better for tree species mapping in complex and closed forest canopies.

Fig. 1. The proposed collaborative classification framework for forest area.

Based on difficult characteristics of complex tree species, a preprocessing
method is proposed for data intensity control which reduces the impact of exces-
sive pixel differences on network training. A similar multi-concentrated network,
denoted as SMCN, is further designed for focusing on reducing the mutual inter-
ference between spectral and spatial signatures which can effectively combine
the respective feature. The similar and a little different structure guarantees
the consistency of the features. At the same time, the specific information sup-
plement mode for the spectral features and spatial features makes the network
more flexible. A real remote sensing scene has been employed to validate the
effectiveness of the proposed SMCN.

2 Proposed SMCN Classification

The proposed SMCN framework is designed to comprehensively learn and rea-
sonably distinguish the difference of multi-sources data in spectral and spatial
features. The overall structure is illustrated in Fig. 1.

Firstly, a screening process for original data is designed to ensure the critical
control of data intensity. When the network is trained, if pixel range of some
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channels is much larger than other channels, it may affect the network only
extract features of a large pixel range and lose useful pixel information of small
channels. Through comparing the pixel range of the popular remote sensing
data sets, a 10-fold difference between the spectral pixel values of hyperspectral
image in Belgium data may affect classification. After origin data normalized
band-by-band, it has improved visually (as shown in Fig. 2). Because it is a
separate normalization operation for each band, difference in the spectrum is
also retained while reduces the effect of excessive pixel range at the same time.
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Fig. 2. Example of spectral pixel inspection: (a) the original image, and (b) the image
after normalized.

Most previous work only pay attention to the study of spatial information,
while proposed network considers the multi-branch to learn different features.
Proposed SMCN divided the same location of data into 2D and 1D image block,
respectively. The former focuses on spatial features and the latter is concen-
trating on spectral features. A one-dimensional processing channel for spectral
features, including two 1-D convolution layers, batch normalization [3], two acti-
vation layers, a max-pooling layer, and the flatten layer. It focuses on the center
pixel pc, through batch normalization to set a high learning rate for accelerating
convergence in each training mini-batch. The leaky rectified linear unit (ReLU)
[9] is used as activation and the convolutional and max-pooling layer are adopted
to solve features simultaneously. To facilitate subsequent processing, the output
spectral features Fspec

p(ij) is solved by flatten layer.
To ensure that the spectral and spatial characteristics of data can be well

combined, the structure of spatial branch is as similar as one-dimensional pro-
cessing channel. It only changed the links and parameter of network. The input
data is image block with radius r around the center pixel pc. After the flatten
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layer, the spatial and spectral features were concatenated into the full-connection
layer. The output can be further expressed as,

Lout = f
(
W ·

(
Fspc

p(ij)‖Fspa
p(ij)

)
+ b

)
(1)

where W and b are the weights and bias of the full connection, || denotes the
simple superposition method of concatenating the spatial and spectral feature
vectors.

Fig. 3. The parameter of deep-mining module.

During training, use HSI image to train the two branch CNN at beginning.
After fixing the weight of trained branch, introduce LiDAR data to fine-tune the
network. The extraction and analysis of spectral characteristics is focusing on the
central pixel of image block, which is independent of each other and have no cor-
responding domain information. Therefore, only a simple superposition is used.
In the branch of spatial features, it not only focuses on the center pixel, but also
considers the spatial features Fspa

p(ij) from the surrounding domain of center tar-
get. Therefore, LiDAR features are passed to HSI branch in stages continuously to
correct the learning of forest information. Finally, perform superposition between
different source feature map and passing the fusion features to subsequent layers.
The final layer usually has the nodes of classification category, it is denoted as Pn

ij

which is a discrete probability distribution values for each category,
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Table 1. The classification performance (%) of different window sizes.

Belgium data 3×3 5×5 7×7

OA 86.28 87.68 87.37

AA 84.28 84.82 84.95

Kappa 82.42 84.17 83.79

Pn
ij =

exp (θn|Lout)∑N
n=1 exp (θn|Lout)

. (2)

Because the initial random weights are far away from the optimal value,
training the specific dual-concentrate network of HSI with a large learning rate
in the first stage. When the training of HSI network is completed and the weights
of the HSI branches are fixed, LiDAR features are transmitted phase by phase
and fine-tuned the network with a small learning rate. The learning rate of the
dual-concentrate structure of HSI is set to 0.01, and the network does fine-tune
at the learning rate of 0.0001 during the adding of LiDAR data, optimizer is
Adam. Figure 3 shows the parameter information of the proposed network in
details.

3 Experimental Results and Analysis

TensorFlow is an open source library that can employ Keras as an application
interface for machine intelligence. Based on the personal computer equipped with
Ubuntu 14.04 and Nvidia GTX 1080, Tensorflow1.3.0 and Keras2.1.2 construct
the integral network. Most programs are implemented using Python language,
some simple processing use MATLAB language.

Belgium data is used to validate the performance of the proposed network. It
represents a forest area reserved at the western part of Belgium. A total of 1450
trees were labeled for the seven species. Tree distribution in the upper canopy
was common beech (27.6%), copper beech (5.5%), pedunculate oak (20.6%),
common ash (4.6%), larch (8.2%), poplar (28.6%) and sweet chestnut (4.6%).
Around 20% samples are used for training, the remaining samples are used for
testing. We only use a multi-band image of 11 PH bands (i.e., full-waveform
LiDAR data) and 286 band hyperspectral data. It covering the visible and short
wave infrared wavelength (372-2498nm). The specific category information can
be acquired in Table 2.

Use overall accuracy (OA), average accuracy (AA), and Kappa coefficients
as evaluation indicator. Table 1 lists the classification performance of the patch
with different sizes. It demonstrates that the size of image block has impact on
the classification performance of different data sets, the best size of Belgium data
is 5×5.
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Table 2. Comparison of the classification accuracy (OA%) among the proposed SMCN.

No. Class(training/testing) Classification performance

SVM ELM Two branch CNN Contex CNN Proposed SMCN

1 Beech(88/321) 79.13 75.39 76.64 63.55 84.74

2 Ash(13/54) 14.81 55.56 64.81 38.89 77.78

3 Larch(23/93) 79.57 82.80 91.4 73.12 86.02

4 Poplar(83/333) 97 93.39 97 92.19 96.7

5 Copper beech (16/64) 100 96.88 93.75 93.75 100

6 Chestnut(13/54) 33.33 51.85 48.15 22.22 64.81

7 Oak (60/243) 75.62 75.62 79.75 75.21 85.12

OA(%) 79.59 80.36 83.38 73.56 87.94

AA(%) 68.49 75.93 78.78 65.56 85.02

Kappa 73.45 74.72 78.70 65.84 84.51

Training time (in Seconds) 943.92 140.32 227.68

To demonstrate the performance of the proposed SMCN framework for multi-
source remote sensing data classification, some traditional and state-of-the-art
methods are compared, such as SVM, ELM [2], Two-Branch CNN [11], Contex
CNN [5], paper [6]. Experimental results listed in Table 2 prove that the proposed
SMCN performs better than aforementioned methods, all kinds of classification
results are excellent.

The distribution of training and testing samples for all the comparison meth-
ods is the same as [6], nearly 20% samples are used for training. At the same
time, based on the different proportion between train and test samples, Table 3
indicates that the proposed network still has good classification performance on
fine classification of tree species. As the number of training samples increases,
the classification of the network becomes more accurate.

Table 3. The classification performance (OA%) on the different proportion between
training and testing samples.

No. Compared methods OA with different proportions

1:9 2:8 3:7

1 SVM 75.86 79.59 84.14

2 ELM 78.62 80.36 86.34

3 Contex CNN 72.95 73.56 85.72

4 Two Branch CNN 81.72 83.38 89.31

5 Proposed SMCN 87.86 87.94 91.86
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4 Conclusion

A collaborative classification method based on the proposed SMCN using HSI
and LiDAR data has been studied for forest area. In the proposed method, each
center pixel of the image block was combined with the spatial information of
the image for deep analysis after learning the relevant information between the
bands. For consensus between the different source information, the structure
of each branch was similar and different. Compared with 3D convolution, the
proposed SMCN has faster speed and better flexibility without taking up too
much memory. Experimental results confirmed that the proposed SMCN was
more effective.
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